A Family of Exponential Fitting Direct Quadrature Methods for Volterra Integral Equations
NASA Astrophysics Data System (ADS)
Cardone, A.; Ferro, M.; Ixaru, L. Gr.; Paternoster, B.
2010-09-01
A new class of direct quadrature methods for the solution of Volterra Integral Equations with periodic solution is illustrated. Such methods are based on an exponential fitting gaussian quadrature formula, whose coefficients depend on the problem parameters, in order to better reproduce the behavior the analytical solution. The construction of the methods is described, together with the analysis of the order of accuracy.
Tuning of PID controllers for integrating systems using direct synthesis method.
Anil, Ch; Padma Sree, R
2015-07-01
A PID controller is designed for various forms of integrating systems with time delay using direct synthesis method. The method is based on comparing the characteristic equation of the integrating system and PID controller with a filter with the desired characteristic equation. The desired characteristic equation comprises of multiple poles which are placed at the same desired location. The tuning parameter is adjusted so as to achieve the desired robustness. Tuning rules in terms of process parameters are given for various forms of integrating systems. The tuning parameter can be selected for the desired robustness by specifying Ms value. The proposed controller design method is applied to various transfer function models and to the nonlinear model equations of jacketed CSTR to show its effectiveness and applicability. PMID:25800952
A robust direct-integration method for rotorcraft maneuver and periodic response
NASA Technical Reports Server (NTRS)
Panda, Brahmananda
1992-01-01
The Newmark-Beta method and the Newton-Raphson iteration scheme are combined to develop a direct-integration method for evaluating the maneuver and periodic-response expressions for rotorcraft. The method requires the generation of Jacobians and includes higher derivatives in the formulation of the geometric stiffness matrix to enhance the convergence of the system. The method leads to effective convergence with nonlinear structural dynamics and aerodynamic terms. Singularities in the matrices can be addressed with the method as they arise from a Lagrange multiplier approach for coupling equations with nonlinear constraints. The method is also shown to be general enough to handle singularities from quasisteady control-system models. The method is shown to be more general and robust than the similar 2GCHAS method for analyzing rotorcraft dynamics.
Corcelli, S.A.; Kress, J.D.; Pratt, L.R.
1995-08-07
This paper develops and characterizes mixed direct-iterative methods for boundary integral formulations of continuum dielectric solvation models. We give an example, the Ca{sup ++}{hor_ellipsis}Cl{sup {minus}} pair potential of mean force in aqueous solution, for which a direct solution at thermal accuracy is difficult and, thus for which mixed direct-iterative methods seem necessary to obtain the required high resolution. For the simplest such formulations, Gauss-Seidel iteration diverges in rare cases. This difficulty is analyzed by obtaining the eigenvalues and the spectral radius of the non-symmetric iteration matrix. This establishes that those divergences are due to inaccuracies of the asymptotic approximations used in evaluation of the matrix elements corresponding to accidental close encounters of boundary elements on different atomic spheres. The spectral radii are then greater than one for those diverging cases. This problem is cured by checking for boundary element pairs closer than the typical spatial extent of the boundary elements and for those cases performing an ``in-line`` Monte Carlo integration to evaluate the required matrix elements. These difficulties are not expected and have not been observed for the thoroughly coarsened equations obtained when only a direct solution is sought. Finally, we give an example application of hybrid quantum-classical methods to deprotonation of orthosilicic acid in water.
NASA Astrophysics Data System (ADS)
Ding, Nenggen; Taheri, Saied
2010-10-01
In this article, an adaptive integrated control algorithm based on active front steering and direct yaw moment control using direct Lyapunov method is proposed. Variation of cornering stiffness is considered through adaptation laws in the algorithm to ensure robustness of the integrated controller. A simple two degrees of freedom (DOF) vehicle model is used to develop the control algorithm. To evaluate the control algorithm developed here, a nonlinear eight-DOF vehicle model along with a combined-slip tyre model and a single-point preview driver model are used. Control commands are executed through correction steering angle on front wheels and braking torque applied on one of the four wheels. Simulation of a double lane change manoeuvre using Matlab®/Simulink is used for evaluation of the control algorithm. Simulation results show that the integrated control algorithm can significantly enhance vehicle stability during emergency evasive manoeuvres on various road conditions ranging from dry asphalt to very slippery packed snow road surfaces.
Study of methods for direct optical address of integrated optical circuits
NASA Technical Reports Server (NTRS)
Wood, V. E.; Verber, C. M.
1979-01-01
Methods for introducing optical information directly, without intervening recording and storage steps, into integrated optical data-processing devices are surveyed. The information is taken to be in the form of a one-dimensional variation of intensity across the beam. Physical phenomena that may be utilized are evaluated, and the most suitable presently known classes of materials for exploitation of each type of interaction are discussed. A variety of possible device configurations are suggested and general principles are outlined whereby many more device types can be generated. A simple experimental device was demonstrated and its operation was analyzed.
Direction and Integration of Experimental Ground Test Capabilities and Computational Methods
NASA Technical Reports Server (NTRS)
Dunn, Steven C.
2016-01-01
This paper groups and summarizes the salient points and findings from two AIAA conference panels targeted at defining the direction, with associated key issues and recommendations, for the integration of experimental ground testing and computational methods. Each panel session utilized rapporteurs to capture comments from both the panel members and the audience. Additionally, a virtual panel of several experts were consulted between the two sessions and their comments were also captured. The information is organized into three time-based groupings, as well as by subject area. These panel sessions were designed to provide guidance to both researchers/developers and experimental/computational service providers in defining the future of ground testing, which will be inextricably integrated with the advancement of computational tools.
McCammon, R.B.; Finch, W.I.; Kork, J.O.; Bridges, N.J.
1994-01-01
An integrated data-directed numerical method has been developed to estimate the undiscovered mineral endowment within a given area. The method has been used to estimate the undiscovered uranium endowment in the San Juan Basin, New Mexico, U.S.A. The favorability of uranium concentration was evaluated in each of 2,068 cells defined within the Basin. Favorability was based on the correlated similarity of the geologic characteristics of each cell to the geologic characteristics of five area-related deposit models. Estimates of the undiscovered endowment for each cell were categorized according to deposit type, depth, and cutoff grade. The method can be applied to any mineral or energy commodity provided that the data collected reflect discovered endowment. ?? 1994 Oxford University Press.
The Direct Integral Method for Confidence Intervals for the Ratio of Two Location Parameters
Wang, Yanqing; Wang, Suojin; Carroll, Raymond J.
2015-01-01
Summary In a relative risk analysis of colorectal caner on nutrition intake scores across genders, we show that, surprisingly, when comparing the relative risks for men and women based on the index of a weighted sum of various nutrition scores, the problem reduces to forming a confidence interval for the ratio of two (asymptotically) normal random variables. The latter is an old problem, with a substantial literature. However, our simulation results suggest that existing methods often either give inaccurate coverage probabilities or have a positive probability to produce confidence intervals with infinite length. Motivated by such a problem, we develop a new methodology which we call the Direct Integral Method for Ratios (DIMER), which, unlike the other methods, is based directly on the distribution of the ratio. In simulations, we compare this method to many others. These simulations show that, generally, DIMER more closely achieves the nominal confidence level, and in those cases that the other methods achieve the nominal levels, DIMER has comparable confidence interval lengths. The methodology is then applied to a real data set, and with follow up simulations. PMID:25939421
A facile method for integrating direct-write devices into three-dimensional printed parts
NASA Astrophysics Data System (ADS)
Chang, Yung-Hang; Wang, Kan; Wu, Changsheng; Chen, Yiwen; Zhang, Chuck; Wang, Ben
2015-06-01
Integrating direct-write (DW) devices into three-dimensional (3D) printed parts is key to continuing innovation in engineering applications such as smart material systems and structural health monitoring. However, this integration is challenging because: (1) most 3D printing techniques leave rough or porous surfaces if they are untreated; (2) the thermal sintering process required for most conductive inks could degrade the polymeric materials of 3D printed parts; and (3) the extensive pause needed for the DW process during layer-by-layer fabrication may cause weaker interlayer bonding and create structural weak points. These challenges are rather common during the insertion of conductive patterns inside 3D printed structures. As an avoidance tactic, we developed a simple ‘print-stick-peel’ method to transfer the DW device from the polytetrafluoroethylene or perfluoroalkoxy alkanes film onto any layer of a 3D printed object. This transfer can be achieved using the self-adhesion of 3D printing materials or applying additional adhesive. We demonstrated this method by transferring Aerosol Jet® printed strain sensors into parts fabricated by PolyJet™ printing. This report provides an investigation and discussion on the sensitivity, reliability, and influence embedding the sensor has on mechanical properties.
Pinheiro, Carmen; Schäfer, Thomas; Crespo, João G
2005-08-01
The present study investigates the possibility of monitoring the bioproduction of a complex aroma profile with an analytical electronic aroma-sensing technique, the so-called "electronic nose", combined with a pervaporative sample enrichment method necessary to overcome the ethanol interference on the sensors' response. It presents in detail the development of a direct integrated pervaporation-electronic nose unit for a simple and fast analysis, which are key criteria for this technique to be broadly implemented. The system developed was investigated using model solutions simulating the muscatel wine must fermentation. It proved to be able to evaluate different relevant aroma compounds in solutions of varying degree of complexity, and also in the presence of ethanol, which is a major interference on the sensors' response to the aromas. The transient sensors' response was investigated in detail, revealing information for sample discrimination and reducing the analysis time. The system developed allowed a simple, fast, and selective analysis, therefore permitting a high sample throughput over time, with the possibility of fully automation. PMID:16053306
Transient Response of Shells of Revolution by Direct Integration and Modal Superposition Methods
NASA Technical Reports Server (NTRS)
Stephens, W. B.; Adelman, H. M.
1974-01-01
The results of an analytical effort to obtain and evaluate transient response data for a cylindrical and a conical shell by use of two different approaches: direct integration and modal superposition are described. The inclusion of nonlinear terms is more important than the inclusion of secondary linear effects (transverse shear deformation and rotary inertia) although there are thin-shell structures where these secondary effects are important. The advantages of the direct integration approach are that geometric nonlinear and secondary effects are easy to include and high-frequency response may be calculated. In comparison to the modal superposition technique the computer storage requirements are smaller. The advantages of the modal superposition approach are that the solution is independent of the previous time history and that once the modal data are obtained, the response for repeated cases may be efficiently computed. Also, any admissible set of initial conditions can be applied.
NASA Astrophysics Data System (ADS)
Xie, Guizhong; Zhang, Jianming; Huang, Cheng; Lu, Chenjun; Li, Guangyao
2014-04-01
This paper presents a direct traction boundary integral equation method (TBIEM) for three-dimensional crack problems. The TBIEM is based on the traction boundary integral equation (TBIE). The TBIE is collocated on both the external boundary and one of the crack surfaces. The displacements and tractions are used as unknowns on the external boundary and the relative crack opening displacements (CODs) are introduced as unknowns on the crack surface. In our implementation, all the surfaces of the considered structure are discretized into discontinuous elements to satisfy the continuity requirement for the existence of finite-part integrals, and special crack-front elements are constructed to capture the crack-tip behavior. To calculate the finite-part integrals, an adaptive singular integral technique is proposed. The stress intensity factors (SIFs) are computed through a modified COD extrapolation method. Numerical examples of SIFs computation are presented to demonstrate the accuracy and efficiency of our method.
NASA Technical Reports Server (NTRS)
Young, D. P.; Woo, A. C.; Bussoletti, J. E.; Johnson, F. T.
1986-01-01
A general method is developed combining fast direct methods and boundary integral equation methods to solve Poisson's equation on irregular exterior regions. The method requires O(N log N) operations where N is the number of grid points. Error estimates are given that hold for regions with corners and other boundary irregularities. Computational results are given in the context of computational aerodynamics for a two-dimensional lifting airfoil. Solutions of boundary integral equations for lifting and nonlifting aerodynamic configurations using preconditioned conjugate gradient are examined for varying degrees of thinness.
New types of multisoliton solutions of some integrable equations via direct methods
NASA Astrophysics Data System (ADS)
Burde, Georgy I.
2016-06-01
Exact explicit solutions, which describe new multisoliton dynamics, have been identified for some KdV type equations using direct methods devised for this purpose. It is found that the equations, having multi-soliton solutions in terms of the KdV-type solitons, possess also an alternative set of multi-soliton solutions which include localized static structures that behave like (static) solitons when they collide with moving solitons. The alternative sets of solutions include the steady-state solution describing the static soliton itself and unsteady solutions describing mutual interactions in a system consisting of a static soliton and several moving solitons. As distinct from common multisoliton solutions those solutions represent combinations of algebraic and hyperbolic functions and cannot be obtained using the traditional methods of soliton theory.
Song, Yuelin; Song, Qingqing; Li, Jun; Zheng, Jiao; Li, Chun; Zhang, Yuan; Zhang, Lingling; Jiang, Yong; Tu, Pengfei
2016-07-01
Direct analysis is of great importance to understand the real chemical profile of a given sample, notably biological materials, because either chemical degradation or diverse errors and uncertainties might be resulted from sophisticated protocols. In comparison with biofluids, it is still challenging for direct analysis of solid biological samples using high performance liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Herein, a new analytical platform was configured by online hyphenating pressurized liquid extraction (PLE), turbulent flow chromatography (TFC), and LC-MS/MS. A facile, but robust PLE module was constructed based on the phenomenon that noticeable back-pressure can be generated during rapid fluid passing through a narrow tube. TFC column that is advantageous at extracting low molecular analytes from rushing fluid was employed to link at the outlet of the PLE module to capture constituents-of-interest. An electronic 6-port/2-position valve was introduced between TFC column and LC-MS/MS to fragment each measurement into extraction and elution phases, whereas LC-MS/MS took the charge of analyte separation and monitoring. As a proof of concept, simultaneous determination of 24 endogenous substances including eighteen steroids, five eicosanoids, and one porphyrin in feces was carried out in this paper. Method validation assays demonstrated the analytical platform to be qualified for directly simultaneous measurement of diverse endogenous analytes in fecal matrices. Application of this integrated platform on homolog-focused profiling of feces is discussed in a companion paper. PMID:27268518
NASA Astrophysics Data System (ADS)
Wei, Jian-Gong; Peng, Zhen; Lee, Jin-Fa
2012-10-01
The implementation details of a fast direct solver is described herein for solving dense matrix equations from the application of surface integral equation methods for electromagnetic field scatterings from non-penetrable targets. The proposed algorithm exploits the smoothness of the far field and computes a low rank decomposition of the off-diagonal coupling blocks of the matrices through a set of skeletonization processes. Moreover, an artificial surface (the Huygens' surface) is introduced for each clustering group to efficiently account for the couplings between well-separated groups. Furthermore, a recursive multilevel version of the algorithm is presented. Although asymptotically the algorithm would not alter the bleak outlook of the complexity of the worst case scenario,O(N3) for required CPU time where N denotes the number of unknowns, for electrically large electromagnetic (EM) problems; through numerical examples, we found that the proposed multilevel direct solver can scale as good as O(N1.3) in memory consumption and O(N1.8) in CPU time for moderate-sized EM problems. Note that our conclusions are drawn based on a few sample examples that we have conducted and should not be taken as a true complexity analysis for general electrodynamic applications. However, for the fixed frequency (h-refinement) scenario, where the discretization size decreases, the computational complexities observed agree well with the theoretical predictions. Namely, the algorithm exhibits O(N) and O(N1.5) complexities for memory consumption and CPU time, respectively.
The core of the research effort in the Regional Vulnerability Assessment Program (ReVA) is a set of data integration methods ranging from simple overlays to complex multivariate statistics. These methods are described in the EPA publication titled, "Regional Vulnerability Assess...
ERIC Educational Resources Information Center
Cliff, William H.; Curtin, Leslie Nesbitt
2000-01-01
Provides an example of a directed case on human anatomy and physiology. Uses brief real life newspaper articles and clinical descriptions of medical reference texts to describe an actual, fictitious, or composite event. Includes interrelated human anatomy and physiology topics in the scenario. (YDS)
Accelerated adaptive integration method.
Kaus, Joseph W; Arrar, Mehrnoosh; McCammon, J Andrew
2014-05-15
Conformational changes that occur upon ligand binding may be too slow to observe on the time scales routinely accessible using molecular dynamics simulations. The adaptive integration method (AIM) leverages the notion that when a ligand is either fully coupled or decoupled, according to λ, barrier heights may change, making some conformational transitions more accessible at certain λ values. AIM adaptively changes the value of λ in a single simulation so that conformations sampled at one value of λ seed the conformational space sampled at another λ value. Adapting the value of λ throughout a simulation, however, does not resolve issues in sampling when barriers remain high regardless of the λ value. In this work, we introduce a new method, called Accelerated AIM (AcclAIM), in which the potential energy function is flattened at intermediate values of λ, promoting the exploration of conformational space as the ligand is decoupled from its receptor. We show, with both a simple model system (Bromocyclohexane) and the more complex biomolecule Thrombin, that AcclAIM is a promising approach to overcome high barriers in the calculation of free energies, without the need for any statistical reweighting or additional processors. PMID:24780083
Accelerated Adaptive Integration Method
2015-01-01
Conformational changes that occur upon ligand binding may be too slow to observe on the time scales routinely accessible using molecular dynamics simulations. The adaptive integration method (AIM) leverages the notion that when a ligand is either fully coupled or decoupled, according to λ, barrier heights may change, making some conformational transitions more accessible at certain λ values. AIM adaptively changes the value of λ in a single simulation so that conformations sampled at one value of λ seed the conformational space sampled at another λ value. Adapting the value of λ throughout a simulation, however, does not resolve issues in sampling when barriers remain high regardless of the λ value. In this work, we introduce a new method, called Accelerated AIM (AcclAIM), in which the potential energy function is flattened at intermediate values of λ, promoting the exploration of conformational space as the ligand is decoupled from its receptor. We show, with both a simple model system (Bromocyclohexane) and the more complex biomolecule Thrombin, that AcclAIM is a promising approach to overcome high barriers in the calculation of free energies, without the need for any statistical reweighting or additional processors. PMID:24780083
Ding, Wen-jie; Chen, Wen-he; Deng, Ming-jia; Luo, Hui; Li, Lin; Liu, Jun-xin
2016-02-15
Co-processing of sewage sludge using the cement kiln can realize sludge harmless treatment, quantity reduction, stabilization and reutilization. The moisture content should be reduced to below 30% to meet the requirement of combustion. Thermal drying is an effective way for sludge desiccation. Odors and volatile organic compounds are generated and released during the sludge drying process, which could lead to odor pollution. The main odor pollutants were selected by the multi-index integrated assessment method. The concentration, olfactory threshold, threshold limit value, smell security level and saturated vapor pressure were considered as indexes based on the related regulations in China and foreign countries. Taking the pollution potential as the evaluation target, and the risk index and odor emission intensity as evaluation indexes, the odor pollution potential rated evaluation model of the pollutants was built according to the Weber-Fechner law. The aim of the present study is to form the rating evaluation method of odor potential pollution capacity suitable for the directly drying process of sludge. PMID:27363173
Directed random polymers via nested contour integrals
NASA Astrophysics Data System (ADS)
Borodin, Alexei; Bufetov, Alexey; Corwin, Ivan
2016-05-01
We study the partition function of two versions of the continuum directed polymer in 1 + 1 dimension. In the full-space version, the polymer starts at the origin and is free to move transversally in R, and in the half-space version, the polymer starts at the origin but is reflected at the origin and stays in R-. The partition functions solve the stochastic heat equation in full-space or half-space with mixed boundary condition at the origin; or equivalently the free energy satisfies the Kardar-Parisi-Zhang equation. We derive exact formulas for the Laplace transforms of the partition functions. In the full-space this is expressed as a Fredholm determinant while in the half-space this is expressed as a Fredholm Pfaffian. Taking long-time asymptotics we show that the limiting free energy fluctuations scale with exponent 1 / 3 and are given by the GUE and GSE Tracy-Widom distributions. These formulas come from summing divergent moment generating functions, hence are not mathematically justified. The primary purpose of this work is to present a mathematical perspective on the polymer replica method which is used to derive these results. In contrast to other replica method work, we do not appeal directly to the Bethe ansatz for the Lieb-Liniger model but rather utilize nested contour integral formulas for moments as well as their residue expansions.
Integrated-optical directional coupler biosensor
NASA Astrophysics Data System (ADS)
Luff, B. J.; Harris, R. D.; Wilkinson, J. S.; Wilson, R.; Schiffrin, D. J.
1996-04-01
We present measurements of biomolecular binding reactions, using a new type of integrated-optical biosensor based on a planar directional coupler structure. The device is fabricated by Ag+ - Na+ ion exchange in glass, and definition of the sensing region is achieved by use of transparent fluoropolymer isolation layers formed by thermal evaporation. The suitability of the sensor for application to the detection of environmental pollutants is considered.
Integrated test plan for directional boring
Volk, B.W.
1993-02-10
This integrated test plan describes the field testing of the DITCH WITCH Directional Boring System. DITCH WITCH is a registered trademark of The Charles Machine Works, Inc., Perry, Oklahoma. The test is being conducted as a coordinated effort between Charles Machine Works (CMW), Sandia National Laboratories (SNL), and the Westinghouse Hanford Company (WHC). Funding for the WHC portion of the project is through the Volatile Organic Compound-Arid Integrated Demonstration (VOC-Arid ID). The purpose of the test is to evaluate the performance of the directional boring system for possible future use on environmental restoration projects at Hanford and other Department of Energy (DOE) sites. The test will be conducted near the 200 Areas Fire Station located between the 200 East and 200 West Area of the Hanford Site. The directional boring system will be used to drill and complete (with fiberglass casing) two horizontal boreholes. A third borehole will be drilled to test sampling equipment but will not be completed with casing.
Method for directional hydraulic fracturing
Swanson, David E.; Daly, Daniel W.
1994-01-01
A method for directional hydraulic fracturing using borehole seals to confine pressurized fluid in planar permeable regions, comprising: placing a sealant in the hole of a structure selected from geologic or cemented formations to fill the space between a permeable planar component and the geologic or cemented formation in the vicinity of the permeable planar component; making a hydraulic connection between the permeable planar component and a pump; permitting the sealant to cure and thereby provide both mechanical and hydraulic confinement to the permeable planar component; and pumping a fluid from the pump into the permeable planar component to internally pressurize the permeable planar component to initiate a fracture in the formation, the fracture being disposed in the same orientation as the permeable planar component.
Investigation of direct integrated optics modulators
NASA Technical Reports Server (NTRS)
Batchman, T. E.; Mcwright, G. M.
1981-01-01
Direct optical modulation techniques applicable to integrated optical data preprocessors were studied. Emphasis was placed on the analysis and fabrication of a field effect type modulator. A series of computer modeling studies were performed to determine the effects of semiconductor cladding on the fields of propagating waves in planar dielectric waveguides. These studies predicted that changes in the propagation characteristics of waveguides clad with silicon and gallium arsenide could be made large enough to be useful in modulators. These effects are dependent on the complex permittivity and thickness of the cladding. Since the conductivity of the cladding can be changed by the photon generation of hole-electron pairs, incoherent light may be used as the input to modulate a coherent light beam. Waveguides were fabricated and silicon claddings were applied to verify the theoretical predictions.
Hybrid manufacturing : integrating direct write and sterolithography.
Davis, Donald W.; Inamdar, Asim; Lopes, Amit; Chavez, Bart D.; Gallegos, Phillip L.; Palmer, Jeremy Andrew; Wicker, Ryan B.; Medina, Francisco; Hennessey, Robert E.
2005-07-01
A commercial stereolithography (SL) machine was modified to integrate fluid dispensing or direct-write (DW) technology with SL in an integrated manufacturing environment for automated and efficient hybrid manufacturing of complex electrical devices, combining three-dimensional (3D) electrical circuitry with SL-manufactured parts. The modified SL system operates similarly to a commercially available machine, although build interrupts were used to stop and start the SL build while depositing fluid using the DW system. An additional linear encoder was attached to the SL platform z-stage and used to maintain accurate part registration during the SL and DW build processes. Individual STL files were required as part of the manufacturing process plan. The DW system employed a three-axis translation mechanism that was integrated with the commercial SL machine. Registration between the SL part, SL laser and the DW nozzle was maintained through the use of 0.025-inch diameter cylindrical reference holes manufactured in the part during SL. After depositing conductive ink using DW, the SL laser was commanded to trace the profile until the ink was cured. The current system allows for easy exchange between SL and DW in order to manufacture fully functional 3D electrical circuits and structures in a semi-automated environment. To demonstrate the manufacturing capabilities, the hybrid SL/DW setup was used to make a simple multi-layer SL part with embedded circuitry. This hybrid system is not intended to function as a commercial system, it is intended for experimental demonstration only. This hybrid SL/DW system has the potential for manufacturing fully functional electromechanical devices that are more compact, less expensive, and more reliable than their conventional predecessors, and work is ongoing in order to fully automate the current system.
Directional microwave applicator and methods
NASA Technical Reports Server (NTRS)
Fink, Patrick W. (Inventor); Lin, Greg Y. (Inventor); Chu, Andrew W. (Inventor); Dobbins, Justin A. (Inventor); Arndt, G. Dickey (Inventor); Ngo, Phong H. (Inventor)
2008-01-01
A miniature microwave antenna is disclosed which may be utilized for biomedical applications such as, for example, radiation induced hyperthermia through catheter systems. One feature of the antenna is that it possesses azimuthal directionality despite its small size. This directionality permits targeting of certain tissues while limiting thermal exposure of adjacent tissue. One embodiment has an outer diameter of about 0.095'' (2.4 mm) but the design permits for smaller diameters.
Direct integration of transient rotor dynamics
NASA Technical Reports Server (NTRS)
Kascak, A. F.
1980-01-01
An implicit method was developed for integrating the equations of motion for a lumped mass model of a rotor dynamics system. As an aside, a closed form solution to the short bearing theory was also developed for a damper with arbitrary motion. The major conclusions are that the method is numerically stable and that the computation time is proportional to the number of elements in the rotor dynamics model rather than to the cube of the number. This computer code allowed the simulation of a complex rotor bearing system experiencing nonlinear transient motion and displayed the vast amount of results in an easily understood motion picture format - a 10 minute, 16 millimeter, color, sound motion picture supplement. An example problem with 19 mass elements in the rotor dynamics model took 0.7 second of central processing unit time per time step on an IBM 360-67 computer in a time sharing mode.
Direct Extraction of One-loop Integral Coefficients
Forde, Darren
2007-04-16
We present a general procedure for obtaining the coefficients of the scalar bubble and triangle integral functions of one-loop amplitudes. Coefficients are extracted by considering two-particle and triple unitarity cuts of the corresponding bubble and triangle integral functions. After choosing a specific parameterization of the cut loop momentum we can uniquely identify the coefficients of the desired integral functions simply by examining the behavior of the cut integrand as the unconstrained parameters of the cut loop momentum approach infinity. In this way we can produce compact forms for scalar integral coefficients. Applications of this method are presented for both QCD and electroweak processes, including an alternative form for the recently computed three-mass triangle coefficient in the six-photon amplitude A{sub 6}(1{sup -}, 2{sup +}, 3{sup -}, 4{sup +}, 5{sup -}, 6{sup +}). The direct nature of this extraction procedure allows for a very straightforward automation of the procedure.
NASA Astrophysics Data System (ADS)
Frisch, Michael J.; Head-Gordon, Martin; Pople, John A.
1990-02-01
We present a direct method for evaluating the gradient of the second-order Møller-Plesset (MP2) energy without storing any quartic quantities, such as two-electron repulsion integrals (ERIs), double substitution amplitudes or the two-particle density matrix. For an N-basis-function calculation, N3 memory is required, and the ERIs and their first derivatives are computed up to O (number of occupied orbitals) times, plus additional ERI evaluations to obtain the Hartree-Fock (HF) orbitals and solve the coupled perturbed HF equation. Larger amounts of memory are used to reduce the O evaluations in the MP2 step. The floating point operation count is still proportional to ON4, as in conventional MP2 gradient codes since ERI evaluation is just an N4 step. Illustrative calculations are reported to assess the performance of the algorithm.
A selective integrated tempering method.
Yang, Lijiang; Qin Gao, Yi
2009-12-01
In this paper, based on the integrated tempering sampling we introduce a selective integrated tempering sampling (SITS) method for the efficient conformation sampling and thermodynamics calculations for a subsystem in a large one, such as biomolecules solvated in aqueous solutions. By introducing a potential surface scaled with temperature, the sampling over the configuration space of interest (e.g., the solvated biomolecule) is selectively enhanced but the rest of the system (e.g., the solvent) stays largely unperturbed. The applications of this method to biomolecular systems allow highly efficient sampling over both energy and configuration spaces of interest. Comparing to the popular and powerful replica exchange molecular dynamics (REMD), the method presented in this paper is significantly more efficient in yielding relevant thermodynamics quantities (such as the potential of mean force for biomolecular conformational changes in aqueous solutions). It is more important that SITS but not REMD yielded results that are consistent with the traditional umbrella sampling free energy calculations when explicit solvent model is used since SITS avoids the sampling of the irrelevant phase space (such as the boiling water at high temperatures). PMID:19968339
NASA Astrophysics Data System (ADS)
Pischiutta, M.; Pastori, M.; Improta, L.; Salvini, F.; Rovelli, A.
2014-01-01
polarization is investigated using 200 seismograms recorded by a network of 20 stations installed on rock outcrops in the Val d'Agri region that hosts the largest oil fields in the southern Apennines (Italy). Polarization is assessed both in the frequency and time domains through the individual-station horizontal-to-vertical spectral ratio and covariance-matrix analysis, respectively. We find that most of the stations show a persistent horizontal polarization of waveforms, with a NE-SW predominant trend. This direction is orthogonal to the general trend of Quaternary normal faults in the region and to the maximum horizontal stress related to the present extensional regime. According to previous studies in other areas, such a directional effect is interpreted as due to the presence of fault-related fracture fields, polarization being orthogonal to their predominant direction. A comparison with S wave anisotropy inferred from shear wave splitting indicates an orthogonal relation between horizontal polarization and fast S wave direction. This suggests that wavefield polarization and fast velocity direction are effects of the same cause: The existence of an anisotropic medium represented by fractured rocks where shear wave velocity is larger in the crack-parallel component and compliance is larger perpendicularly to the crack strike. The latter is responsible for the observed anisotropic pattern of amplitudes of horizontal ground motion in the study area.
Direct optimization method for reentry trajectory design
NASA Astrophysics Data System (ADS)
Jallade, S.; Huber, P.; Potti, J.; Dutruel-Lecohier, G.
The software package called `Reentry and Atmospheric Transfer Trajectory' (RATT) was developed under ESA contract for the design of atmospheric trajectories. It includes four software TOP (Trajectory OPtimization) programs, which optimize reentry and aeroassisted transfer trajectories. 6FD and 3FD (6 and 3 degrees of freedom Flight Dynamic) are devoted to the simulation of the trajectory. SCA (Sensitivity and Covariance Analysis) performs covariance analysis on a given trajectory with respect to different uncertainties and error sources. TOP provides the optimum guidance law of a three degree of freedom reentry of aeroassisted transfer (AAOT) trajectories. Deorbit and reorbit impulses (if necessary) can be taken into account in the optimization. A wide choice of cost function is available to the user such as the integrated heat flux, or the sum of the velocity impulses, or a linear combination of both of them for trajectory and vehicle design. The crossrange and the downrange can be maximized during reentry trajectory. Path constraints are available on the load factor, the heat flux and the dynamic pressure. Results on these proposed options are presented. TOPPHY is the part of the TOP software corresponding to the definition and the computation of the optimization problemphysics. TOPPHY can interface with several optimizes with dynamic solvers: TOPOP and TROPIC using direct collocation methods and PROMIS using direct multiple shooting method. TOPOP was developed in the frame of this contract, it uses Hermite polynomials for the collocation method and the NPSOL optimizer from the NAG library. Both TROPIC and PROMIS were developed by the DLR (Deutsche Forschungsanstalt fuer Luft und Raumfahrt) and use the SLSQP optimizer. For the dynamic equation resolution, TROPIC uses a collocation method with Splines and PROMIS uses a multiple shooting method with finite differences. The three different optimizers including dynamics were tested on the reentry trajectory of the
Retroviral DNA Integration Directed by HIV Integration Protein in Vitro
NASA Astrophysics Data System (ADS)
Bushman, Frederic D.; Fujiwara, Tamio; Craigie, Robert
1990-09-01
Efficient retroviral growth requires integration of a DNA copy of the viral RNA genome into a chromosome of the host. As a first step in analyzing the mechanism of integration of human immunodeficiency virus (HIV) DNA, a cell-free system was established that models the integration reaction. The in vitro system depends on the HIV integration (IN) protein, which was partially purified from insect cells engineered to express IN protein in large quantities. Integration was detected in a biological assay that scores the insertion of a linear DNA containing HIV terminal sequences into a λ DNA target. Some integration products generated in this assay contained five-base pair duplications of the target DNA at the recombination junctions, a characteristic of HIV integration in vivo; the remaining products contained aberrant junctional sequences that may have been produced in a variation of the normal reaction. These results indicate that HIV IN protein is the only viral protein required to insert model HIV DNA sequences into a target DNA in vitro.
Investigation of direct integrated optics modulators. [applicable to data preprocessors
NASA Technical Reports Server (NTRS)
Batchman, T. E.
1980-01-01
Direct modulation techniques applicable to integrated optics data preprocessors were investigated. Several methods of modulating a coherent optical beam by interaction with an incoherent beam were studied. It was decided to investigate photon induced conductivity changes in thin semiconductor cladding layers on optical waveguides. Preliminary calculations indicate significant changes can be produced in the phase shift in a propagating wave when the conductivity is changed by ten percent or more. Experimental devices to verify these predicted phase changes and experiments designed to prove the concept are described.
Direct toxicity assessment - Methods, evaluation, interpretation.
Gruiz, Katalin; Fekete-Kertész, Ildikó; Kunglné-Nagy, Zsuzsanna; Hajdu, Csilla; Feigl, Viktória; Vaszita, Emese; Molnár, Mónika
2016-09-01
Direct toxicity assessment (DTA) results provide the scale of the actual adverse effect of contaminated environmental samples. DTA results are used in environmental risk management of contaminated water, soil and waste, without explicitly translating the results into chemical concentration. The end points are the same as in environmental toxicology in general, i.e. inhibition rate, decrease in the growth rate or in yield and the 'no effect' or the 'lowest effect' measurement points of the sample dilution-response curve. The measurement unit cannot be a concentration, since the contaminants and their content in the sample is unknown. Thus toxicity is expressed as the sample proportion causing a certain scale of inhibition or no inhibition. Another option for characterizing the scale of toxicity of an environmental sample is equivalencing. Toxicity equivalencing represents an interpretation tool which enables toxicity of unknown mixtures of chemicals be converted into the concentration of an equivalently toxic reference substance. Toxicity equivalencing, (i.e. expressing the toxicity of unknown contaminants as the concentration of the reference) makes DTA results better understandable for non-ecotoxicologists and other professionals educated and thinking based on the chemical model. This paper describes and discusses the role, the principles, the methodology and the interpretation of direct toxicity assessment (DTA) with the aim to contribute to the understanding of the necessity to integrate DTA results into environmental management of contaminated soil and water. The paper also introduces the benefits of the toxicity equivalency method. The use of DTA is illustrated through two case studies. The first case study focuses on DTA of treated wastewater with the aim to characterize the treatment efficacy of a biological wastewater treatment plant by frequent bioassaying. The second case study applied DTA to investigate the cover layers of two bauxite residue (red mud
Direct-Broadcast Satellites and Cultural Integrity
ERIC Educational Resources Information Center
Pool, Ithiel de Sola
1975-01-01
Argues that progress in satellite communications depends upon the assurance that satellites are useful to people in all countries, and that a world television network and a worldwide packet data communication system would help achieve that goal, and asserts that direct-satellite television broadcasting does not represent, at present, an active…
Enhancing Scalability of Sparse Direct Methods
Li, Xiaoye S.; Demmel, James; Grigori, Laura; Gu, Ming; Xia,Jianlin; Jardin, Steve; Sovinec, Carl; Lee, Lie-Quan
2007-07-23
TOPS is providing high-performance, scalable sparse direct solvers, which have had significant impacts on the SciDAC applications, including fusion simulation (CEMM), accelerator modeling (COMPASS), as well as many other mission-critical applications in DOE and elsewhere. Our recent developments have been focusing on new techniques to overcome scalability bottleneck of direct methods, in both time and memory. These include parallelizing symbolic analysis phase and developing linear-complexity sparse factorization methods. The new techniques will make sparse direct methods more widely usable in large 3D simulations on highly-parallel petascale computers.
GaN directional couplers for integrated quantum photonics
Zhang Yanfeng; McKnight, Loyd; Watson, Ian M.; Gu, Erdan; Calvez, Stephane; Dawson, Martin D.; Engin, Erman; Cryan, Martin J.; Thompson, Mark G.; O'Brien, Jeremy L.
2011-10-17
Large cross-section GaN waveguides are proposed as a suitable architecture to achieve integrated quantum photonic circuits. Directional couplers with this geometry have been designed with aid of the beam propagation method and fabricated using inductively coupled plasma etching. Scanning electron microscopy inspection shows high quality facets for end coupling and a well defined gap between rib pairs in the coupling region. Optical characterization at 800 nm shows single-mode operation and coupling-length-dependent splitting ratios. Two photon interference of degenerate photon pairs has been observed in the directional coupler by measurement of the Hong-Ou-Mandel dip [C. K. Hong, et al., Phys. Rev. Lett. 59, 2044 (1987)] with 96% visibility.
Methods of conditioning direct methanol fuel cells
Rice, Cynthia; Ren, Xiaoming; Gottesfeld, Shimshon
2005-11-08
Methods for conditioning the membrane electrode assembly of a direct methanol fuel cell ("DMFC") are disclosed. In a first method, an electrical current of polarity opposite to that used in a functioning direct methanol fuel cell is passed through the anode surface of the membrane electrode assembly. In a second method, methanol is supplied to an anode surface of the membrane electrode assembly, allowed to cross over the polymer electrolyte membrane of the membrane electrode assembly to a cathode surface of the membrane electrode assembly, and an electrical current of polarity opposite to that in a functioning direct methanol fuel cell is drawn through the membrane electrode assembly, wherein methanol is oxidized at the cathode surface of the membrane electrode assembly while the catalyst on the anode surface is reduced. Surface oxides on the direct methanol fuel cell anode catalyst of the membrane electrode assembly are thereby reduced.
Integrated Force Method for Indeterminate Structures
NASA Technical Reports Server (NTRS)
Hopkins, Dale A.; Halford, Gary R.; Patnaik, Surya N.
2008-01-01
Two methods of solving indeterminate structural-mechanics problems have been developed as products of research on the theory of strain compatibility. In these methods, stresses are considered to be the primary unknowns (in contrast to strains and displacements being considered as the primary unknowns in some prior methods). One of these methods, denoted the integrated force method (IFM), makes it possible to compute stresses, strains, and displacements with high fidelity by use of modest finite-element models that entail relatively small amounts of computation. The other method, denoted the completed Beltrami Mitchell formulation (CBMF), enables direct determination of stresses in an elastic continuum with general boundary conditions, without the need to first calculate displacements as in traditional methods. The equilibrium equation, the compatibility condition, and the material law are the three fundamental concepts of the theory of structures. For almost 150 years, it has been commonly supposed that the theory is complete. However, until now, the understanding of the compatibility condition remained incomplete, and the compatibility condition was confused with the continuity condition. Furthermore, the compatibility condition as applied to structures in its previous incomplete form was inconsistent with the strain formulation in elasticity.
Automatic numerical integration methods for Feynman integrals through 3-loop
NASA Astrophysics Data System (ADS)
de Doncker, E.; Yuasa, F.; Kato, K.; Ishikawa, T.; Olagbemi, O.
2015-05-01
We give numerical integration results for Feynman loop diagrams through 3-loop such as those covered by Laporta [1]. The methods are based on automatic adaptive integration, using iterated integration and extrapolation with programs from the QUADPACK package, or multivariate techniques from the ParInt package. The Dqags algorithm from QuadPack accommodates boundary singularities of fairly general types. PARINT is a package for multivariate integration layered over MPI (Message Passing Interface), which runs on clusters and incorporates advanced parallel/distributed techniques such as load balancing among processes that may be distributed over a network of nodes. Results are included for 3-loop self-energy diagrams without IR (infra-red) or UV (ultra-violet) singularities. A procedure based on iterated integration and extrapolation yields a novel method of numerical regularization for integrals with UV terms, and is applied to a set of 2-loop self-energy diagrams with UV singularities.
Integrated Aeroservoelastic Optimization: Status and Direction
NASA Technical Reports Server (NTRS)
Livne, Eli
1999-01-01
The interactions of lightweight flexible airframe structures, steady and unsteady aerodynamics, and wide-bandwidth active controls on modern airplanes lead to considerable multidisciplinary design challenges. More than 25 years of mathematical and numerical methods' development, numerous basic research studies, simulations and wind-tunnel tests of simple models, wind-tunnel tests of complex models of real airplanes, as well as flight tests of actively controlled airplanes, have all contributed to the accumulation of a substantial body of knowledge in the area of aeroservoelasticity. A number of analysis codes, with the capabilities to model real airplane systems under the assumptions of linearity, have been developed. Many tests have been conducted, and results were correlated with analytical predictions. A selective sample of references covering aeroservoelastic testing programs from the 1960s to the early 1980s, as well as more recent wind-tunnel test programs of real or realistic configurations, are included in the References section of this paper. An examination of references 20-29 will reveal that in the course of development (or later modification), of almost every modern airplane with a high authority active control system, there arose a need to face aeroservoelastic problems and aeroservoelastic design challenges.
ERIC Educational Resources Information Center
Tillema, Harm H.
2003-01-01
The Educational Development and Assessment System in a Dutch university's vocational education program involves student-directed, self-regulated evaluation methods and integrates assessment with instruction. Evaluation focuses on competencies and portfolio assessments. (Contains 29 references.) (SK)
Method of descent for integrable lattices
NASA Astrophysics Data System (ADS)
Bogoyavlensky, Oleg
2009-05-01
A method of descent for constructing integrable Hamiltonian systems is introduced. The derived periodic and nonperiodic lattices possess Lax representations with spectral parameter and have plenty of first integrals. Examples of Liouville-integrable four-dimensional Hamiltonian Lotka-Volterra systems are presented.
Integration methods for molecular dynamics
Leimkuhler, B.J.; Reich, S.; Skeel, R.D.
1996-12-31
Classical molecular dynamics simulation of a macromolecule requires the use of an efficient time-stepping scheme that can faithfully approximate the dynamics over many thousands of timesteps. Because these problems are highly nonlinear, accurate approximation of a particular solution trajectory on meaningful time intervals is neither obtainable nor desired, but some restrictions, such as symplecticness, can be imposed on the discretization which tend to imply good long term behavior. The presence of a variety of types and strengths of interatom potentials in standard molecular models places severe restrictions on the timestep for numerical integration used in explicit integration schemes, so much recent research has concentrated on the search for alternatives that possess (1) proper dynamical properties, and (2) a relative insensitivity to the fastest components of the dynamics. We survey several recent approaches. 48 refs., 2 figs.
A Collocation Method for Volterra Integral Equations
NASA Astrophysics Data System (ADS)
Kolk, Marek
2010-09-01
We propose a piecewise polynomial collocation method for solving linear Volterra integral equations of the second kind with logarithmic kernels which, in addition to a diagonal singularity, may have a singularity at the initial point of the interval of integration. An attainable order of the convergence of the method is studied. We illustrate our results with a numerical example.
Integrated control system and method
Wang, Paul Sai Keat; Baldwin, Darryl; Kim, Myoungjin
2013-10-29
An integrated control system for use with an engine connected to a generator providing electrical power to a switchgear is disclosed. The engine receives gas produced by a gasifier. The control system includes an electronic controller associated with the gasifier, engine, generator, and switchgear. A gas flow sensor monitors a gas flow from the gasifier to the engine through an engine gas control valve and provides a gas flow signal to the electronic controller. A gas oversupply sensor monitors a gas oversupply from the gasifier and provides an oversupply signal indicative of gas not provided to the engine. A power output sensor monitors a power output of the switchgear and provide a power output signal. The electronic controller changes gas production of the gasifier and the power output rating of the switchgear based on the gas flow signal, the oversupply signal, and the power output signal.
Robust rotational-velocity-Verlet integration methods
NASA Astrophysics Data System (ADS)
Rozmanov, Dmitri; Kusalik, Peter G.
2010-05-01
Two rotational integration algorithms for rigid-body dynamics are proposed in velocity-Verlet formulation. The first method uses quaternion dynamics and was derived from the original rotational leap-frog method by Svanberg [Mol. Phys. 92, 1085 (1997)]; it produces time consistent positions and momenta. The second method is also formulated in terms of quaternions but it is not quaternion specific and can be easily adapted for any other orientational representation. Both the methods are tested extensively and compared to existing rotational integrators. The proposed integrators demonstrated performance at least at the level of previously reported rotational algorithms. The choice of simulation parameters is also discussed.
Fast integral methods for integrated optical systems simulations: a review
NASA Astrophysics Data System (ADS)
Kleemann, Bernd H.
2015-09-01
Boundary integral equation methods (BIM) or simply integral methods (IM) in the context of optical design and simulation are rigorous electromagnetic methods solving Helmholtz or Maxwell equations on the boundary (surface or interface of the structures between two materials) for scattering or/and diffraction purposes. This work is mainly restricted to integral methods for diffracting structures such as gratings, kinoforms, diffractive optical elements (DOEs), micro Fresnel lenses, computer generated holograms (CGHs), holographic or digital phase holograms, periodic lithographic structures, and the like. In most cases all of the mentioned structures have dimensions of thousands of wavelengths in diameter. Therefore, the basic methods necessary for the numerical treatment are locally applied electromagnetic grating diffraction algorithms. Interestingly, integral methods belong to the first electromagnetic methods investigated for grating diffraction. The development started in the mid 1960ies for gratings with infinite conductivity and it was mainly due to the good convergence of the integral methods especially for TM polarization. The first integral equation methods (IEM) for finite conductivity were the methods by D. Maystre at Fresnel Institute in Marseille: in 1972/74 for dielectric, and metallic gratings, and later for multiprofile, and other types of gratings and for photonic crystals. Other methods such as differential and modal methods suffered from unstable behaviour and slow convergence compared to BIMs for metallic gratings in TM polarization from the beginning to the mid 1990ies. The first BIM for gratings using a parametrization of the profile was developed at Karl-Weierstrass Institute in Berlin under a contract with Carl Zeiss Jena works in 1984-1986 by A. Pomp, J. Creutziger, and the author. Due to the parametrization, this method was able to deal with any kind of surface grating from the beginning: whether profiles with edges, overhanging non
Methods for direct alkene diamination, new & old
de Jong, Sam; Nosal, Daniel G.; Wardrop, Duncan J.
2012-01-01
The 1,2-diamine moiety is a ubiquitous structural motif present in a wealth of natural products, including non-proteinogenic amino acids and numerous alkaloids, as well as in pharmaceutical agents, chiral ligands and organic reagents. The biological activity associated with many of these systems and their chemical utility in general has ensured that the development of methods for their preparation is of critical importance. While a wide range of strategies for the preparation of 1,2-diamines have been established, the diamination of alkenes offers a particularly direct and efficient means of accessing these systems. The purpose of this review is to provide an overview of all methods of direct alkene diamination, metal-mediated or otherwise. PMID:22888177
EMERGY METHODS: VALUABLE INTEGRATED ASSESSMENT TOOLS
NHEERL's Atlantic Ecology Division is investigating emergy methods as tools for integrated assessment in several projects evaluating environmental impacts, policies, and alternatives for remediation and intervention. Emergy accounting is a methodology that provides a quantitative...
Non-contact method for directing electrotaxis
NASA Astrophysics Data System (ADS)
Ahirwar, Dinesh K.; Nasser, Mohd W.; Jones, Travis H.; Sequin, Emily K.; West, Joseph D.; Henthorne, Timothy L.; Javor, Joshua; Kaushik, Aniruddha M.; Ganju, Ramesh K.; Subramaniam, Vish V.
2015-06-01
We present a method to induce electric fields and drive electrotaxis (galvanotaxis) without the need for electrodes to be in contact with the media containing the cell cultures. We report experimental results using a modification of the transmembrane assay, demonstrating the hindrance of migration of breast cancer cells (SCP2) when an induced a.c. electric field is present in the appropriate direction (i.e. in the direction of migration). Of significance is that migration of these cells is hindered at electric field strengths many orders of magnitude (5 to 6) below those previously reported for d.c. electrotaxis, and even in the presence of a chemokine (SDF-1α) or a growth factor (EGF). Induced a.c. electric fields applied in the direction of migration are also shown to hinder motility of non-transformed human mammary epithelial cells (MCF10A) in the presence of the growth factor EGF. In addition, we also show how our method can be applied to other cell migration assays (scratch assay), and by changing the coil design and holder, that it is also compatible with commercially available multi-well culture plates.
Helping Abused and Traumatized Children: Integrating Directive and Nondirective Approaches
ERIC Educational Resources Information Center
Gil, Eliana
2006-01-01
Presenting an integrative model for treating traumatized children, this book combines play, art, and other expressive therapies with ideas and strategies drawn from cognitive-behavioral and family therapy. Eliana Gil demonstrates how to tailor treatment to the needs of each child by using both directive and nondirective approaches. Throughout,…
77 FR 67063 - VA Directive 0005 on Scientific Integrity
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-08
... April 9, 2012 (77 FR 21158). FOR FURTHER INFORMATION CONTACT: Billy E. Jones, M.D., Senior Advisor to... was announced in the Federal Register on April 9, 2012 (77 FR 21158). All of the public comments have... AFFAIRS VA Directive 0005 on Scientific Integrity AGENCY: Office of Policy and Planning, Department...
Direct Instruction vs. Arts Integration: A False Dichotomy
ERIC Educational Resources Information Center
Aprill, Arnold
2010-01-01
In this article, the author takes on what he considers to be the false dichotomy between direct instruction and arts integration. He contends that at a time when national issues of sustainability and conservation of energy and resources become ever more urgent, it is time that those committed to quality arts education stop squandering time, money,…
Integrating Advance Research Directives into the European Legal Framework.
Andorno, Roberto; Gennet, Eloïse; Jongsma, Karin; Elger, Bernice
2016-04-01
The possibility of using advance directives to prospectively consent to research participation in the event of dementia remains largely unexplored in Europe. Moreover, the legal status of advance directives for research is unclear in the European regulations governing biomedical research. The article explores the place that advance research directives have in the current European legal framework, and considers the possibility of integrating them more explicitly into the existing regulations. Special focus is placed on issues regarding informed consent, the role of proxies, and the level of acceptable risks and burdens. PMID:27228684
Direct volume rendering methods for cell structures.
Martišek, Dalibor; Martišek, Karel
2012-01-01
The study of the complicated architecture of cell space structures is an important problem in biology and medical research. Optical cuts of cells produced by confocal microscopes enable two-dimensional (2D) and three-dimensional (3D) reconstructions of observed cells. This paper discuses new possibilities for direct volume rendering of these data. We often encounter 16 or more bit images in confocal microscopy of cells. Most of the information contained in these images is unsubstantial for the human vision. Therefore, it is necessary to use mathematical algorithms for visualization of such images. Present software tools as OpenGL or DirectX run quickly in graphic station with special graphic cards, run very unsatisfactory on PC without these cards and outputs are usually poor for real data. These tools are black boxes for a common user and make it impossible to correct and improve them. With the method proposed, more parameters of the environment can be set, making it possible to apply 3D filters to set the output image sharpness in relation to the noise. The quality of the output is incomparable to the earlier described methods and is worth increasing the computing time. We would like to offer mathematical methods of 3D scalar data visualization describing new algorithms that run on standard PCs very well. PMID:22511504
NASA Astrophysics Data System (ADS)
Liu, Xiaofeng; Siddle-Mitchell, Seth
2015-11-01
This paper presents a novel pressure reconstruction method featuring rotating parallel ray omni-directional integration, as an improvement over the circular virtual boundary integration method introduced by Liu and Katz (2003, 2006, 2008 and 2013) for non-intrusive instantaneous pressure measurement in incompressible flow field. Unlike the virtual boundary omni-directional integration, where the integration path is originated from a virtual circular boundary at a finite distance from the real boundary of the integration domain, the new method utilizes parallel rays, which can be viewed as being originated from a distance of infinity, as guidance for integration paths. By rotating the parallel rays, omni-directional paths with equal weights coming from all directions toward the point of interest at any location within the computation domain will be generated. In this way, the location dependence of the integration weight inherent in the old algorithm will be eliminated. By implementing this new algorithm, the accuracy of the reconstructed pressure for a synthetic rotational flow in terms of r.m.s. error from theoretical values is reduced from 1.03% to 0.30%. Improvement is further demonstrated from the comparison of the reconstructed pressure with that from the Johns Hopkins University isotropic turbulence database (JHTDB). This project is funded by the San Diego State University.
EDM 1.0: electron direct methods.
Kilaas, R; Marks, L D; Own, C S
2005-02-01
A computer program designed to provide a number of quantitative analysis tools for high-resolution imaging and electron diffraction data is described. The program includes basic image manipulation, both real space and reciprocal space image processing, Wiener-filtering, symmetry averaging, methods for quantification of electron diffraction patterns and two-dimensional direct methods. The program consists of a number of sub-programs written in a combination of C++, C and Fortran. It can be downloaded either as GNU source code or as binaries and has been compiled and verified on a wide range of platforms, both Unix based and PC's. Elements of the design philosophy as well as future possible extensions are described. PMID:15639355
The present state and future directions of PDF methods
NASA Technical Reports Server (NTRS)
Pope, S. B.
1992-01-01
The objectives of the workshop are presented in viewgraph format, as is this entire article. The objectives are to discuss the present status and the future direction of various levels of engineering turbulence modeling related to Computational Fluid Dynamics (CFD) computations for propulsion; to assure that combustion is an essential part of propulsion; and to discuss Probability Density Function (PDF) methods for turbulent combustion. Essential to the integration of turbulent combustion models is the development of turbulent model, chemical kinetics, and numerical method. Some turbulent combustion models typically used in industry are the k-epsilon turbulent model, the equilibrium/mixing limited combustion, and the finite volume codes.
Direct B-integral measurement, and SPM compensation in fiber optic CPA systems
NASA Astrophysics Data System (ADS)
Gee, S.; Mielke, M.
2014-09-01
A direct B-integral measurement, and SPM compensation method in fiber optic CPA systems is demonstrated. For a pair of input pulses, the chirped nature of the amplification transforms a nonlinear phase change into a temporal amplitude change resulted in a satellite side pulses generation. The SHG autocorrelation measurement of these satellite pulses is directly correlated to B-integral value. Then the accumulated SPM is removed by precompensation of the spectral phase. The degree of compensation again confirmed the described B-integral measurement result.
Integral Deferred Correction methods for scientific computing
NASA Astrophysics Data System (ADS)
Morton, Maureen Marilla
Since high order numerical methods frequently can attain accurate solutions more efficiently than low order methods, we develop and analyze new high order numerical integrators for the time discretization of ordinary and partial differential equations. Our novel methods address some of the issues surrounding high order numerical time integration, such as the difficulty of many popular methods' construction and handling the effects of disparate behaviors produce by different terms in the equations to be solved. We are motivated by the simplicity of how Deferred Correction (DC) methods achieve high order accuracy [72, 27]. DC methods are numerical time integrators that, rather than calculating tedious coefficients for order conditions, instead construct high order accurate solutions by iteratively improving a low order preliminary numerical solution. With each iteration, an error equation is solved, the error decreases, and the order of accuracy increases. Later, DC methods were adjusted to include an integral formulation of the residual, which stabilizes the method. These Spectral Deferred Correction (SDC) methods [25] motivated Integral Deferred Corrections (IDC) methods. Typically, SDC methods are limited to increasing the order of accuracy by one with each iteration due to smoothness properties imposed by the gridspacing. However, under mild assumptions, explicit IDC methods allow for any explicit rth order Runge-Kutta (RK) method to be used within each iteration, and then an order of accuracy increase of r is attained after each iteration [18]. We extend these results to the construction of implicit IDC methods that use implicit RK methods, and we prove analogous results for order of convergence. One means of solving equations with disparate parts is by semi-implicit integrators, handling a "fast" part implicitly and a "slow" part explicitly. We incorporate additive RK (ARK) integrators into the iterations of IDC methods in order to construct new arbitrary order
A survey of payload integration methods
NASA Technical Reports Server (NTRS)
Engels, R. C.; Harcrow, H. W.
1981-01-01
The most prominent payload integration methods are presented and evaluated. The paper outlines the problem and some of the difficulties encountered when analyzing a coupled booster/payload system. Descriptions of both full-scale and short-cut methods are given together with an assessment of their strengths and weaknesses. Finally, an extensive list of references is included.
Thermally tunable resonator using directly integrated metallic heater
NASA Astrophysics Data System (ADS)
Chen, Ruobing; Li, Xinbai; Deng, Qingzhong; Michel, Jurgen; Zhou, Zhiping
2015-08-01
A thermally tunable half-disk resonator (HDR) with directly-integrated metallic heater is presented. The proposed resonator is based on the structure of HDR, which allows direct electrical contacts in HDR region without causing extra loss. The metallic heater is designed to be directly integrated on the silicon devices, and single-mode operation can be retained simultaneously. Metallic heater deposited on inner side of the ring, which cannot realize before because of weakened light confinement resulting in substantial leakage and loss, guides most heat power to the waveguide. This thermal localization enhances tuning efficiency. The simulation result shows a wavelength shift of 0.855 nm under ultralow driving voltage of 0.02V, corresponding to high thermal tuning efficiency of 2.831 nm/mW. The structure possesses both the advantages of high thermal tuning efficiency and low resistance, hence requiring smaller voltage and energy to drive, desirable for optical interconnects applications. Moreover, the proposed structure also eliminates the need to use doped silicon slab for electrical contacts, as widely used in conventional directly integrated heaters. Undoped strip waveguide in HDR enables higher Q-factor and improves optical performance.
Efficient integration method for fictitious domain approaches
NASA Astrophysics Data System (ADS)
Duczek, Sascha; Gabbert, Ulrich
2015-10-01
In the current article, we present an efficient and accurate numerical method for the integration of the system matrices in fictitious domain approaches such as the finite cell method (FCM). In the framework of the FCM, the physical domain is embedded in a geometrically larger domain of simple shape which is discretized using a regular Cartesian grid of cells. Therefore, a spacetree-based adaptive quadrature technique is normally deployed to resolve the geometry of the structure. Depending on the complexity of the structure under investigation this method accounts for most of the computational effort. To reduce the computational costs for computing the system matrices an efficient quadrature scheme based on the divergence theorem (Gauß-Ostrogradsky theorem) is proposed. Using this theorem the dimension of the integral is reduced by one, i.e. instead of solving the integral for the whole domain only its contour needs to be considered. In the current paper, we present the general principles of the integration method and its implementation. The results to several two-dimensional benchmark problems highlight its properties. The efficiency of the proposed method is compared to conventional spacetree-based integration techniques.
Phototherapy: current methods and future directions.
Vreman, Hendrik J; Wong, Ronald J; Stevenson, David K
2004-10-01
Phototherapy is the most common therapeutic intervention used for the treatment of hyperbilirubinemia. Although it has become a mainstay since its introduction in 1958, a better understanding of the photobiology of bilirubin, characteristics of the phototherapy devices, the efficacy and safety considerations of phototherapy applications, and improvements in spectroradiometers and phototherapy devices are necessary for more predictable and improved clinical practices and outcomes. A step forward in instituting consistent, uniform, and effective use of phototherapy is the recent American Academy of Pediatrics clinical guideline on the management of hyperbilirubinemia in the newborn infant 35 or more weeks of gestation, which outlines a clinical strategy for the diagnosis of hyperbilirubinemia and contains direct recommendations for the application of phototherapy. This article reviews the parameters that determine the efficacy of phototherapy, briefly discusses current devices and methods used to deliver phototherapy, and speculates on future directions and studies that are still needed to complement our presently incomplete knowledge of the facets of this common mode of therapy. PMID:15686263
Metacognition influences item-method directed forgetting.
Foster, Nathaniel L; Sahakyan, Lili
2012-09-01
In 4 experiments, we examined whether metacognitive beliefs about item memorability influence item-method directed forgetting. In Experiment 1, participants studied loud and quiet items, which were subsequently cued as to-be-remembered (TBR) or to-be-forgotten (TBF). Typically, the volume of stimuli does not influence recall, although loud items are judged as more memorable than quiet items (Rhodes & Castel, 2009). In contrast, we found a recall advantage for loud items in directed forgetting, although this was observed for TBR items but not TBF items. The loud item advantage disappeared in Experiment 2, when we eliminated all TBF trials and instead inserted additional trials during which participants could engage in extra rehearsal of earlier presented items. In Experiments 3 and 4, a recall advantage for loud items was observed again when items were assigned a mixture of positive and negative values, but it did not emerge when items were assigned graded positive values. Overall, the results showed that the recall advantage for loud items emerges only in response to the need to forget some items. We propose 2 mechanisms to account for these results-either participants select to rehearse loud items as a controlled strategy that allows them to forget some items, or they have an unconscious preference for loud items that emerges only in response to the need to forget. PMID:22468801
NASA Astrophysics Data System (ADS)
Xie, Guizhong; Zhang, Dehai; Zhang, Jianming; Meng, Fannian; Du, Wenliao; Wen, Xiaoyu
2016-07-01
As a widely used numerical method, boundary element method (BEM) is efficient for computer aided engineering (CAE). However, boundary integrals with near singularity need to be calculated accurately and efficiently to implement BEM for CAE analysis on thin bodies successfully. In this paper, the distance in the denominator of the fundamental solution is first designed as an equivalent form using approximate expansion and the original sinh method can be revised into a new form considering the minimum distance and the approximate expansion. Second, the acquisition of the projection point by Newton-Raphson method is introduced. We acquire the nearest point between the source point and element edge by solving a cubic equation if the location of the projection point is outside the element, where boundary integrals with near singularity appear. Finally, the subtriangles of the local coordinate space are mapped into the integration space and the sinh method is applied in the integration space. The revised sinh method can be directly performed in the integration element. Averification test of our method is proposed. Results demonstrate that our method is effective for regularizing the boundary integrals with near singularity.
Direct path integral estimators for isotope fractionation ratios
Cheng, Bingqing; Ceriotti, Michele
2014-12-28
Fractionation of isotopes among distinct molecules or phases is a quantum effect which is often exploited to obtain insights on reaction mechanisms, biochemical, geochemical, and atmospheric phenomena. Accurate evaluation of isotope ratios in atomistic simulations is challenging, because one needs to perform a thermodynamic integration with respect to the isotope mass, along with time-consuming path integral calculations. By re-formulating the problem as a particle exchange in the ring polymer partition function, we derive new estimators giving direct access to the differential partitioning of isotopes, which can simplify the calculations by avoiding thermodynamic integration. We demonstrate the efficiency of these estimators by applying them to investigate the isotope fractionation ratios in the gas-phase Zundel cation, and in a few simple hydrocarbons.
Direct-write fabrication of integrated, multilayer ceramic components
Dimos, D.; Yang, P.; Garino, T.J.; Raymond, M.V.; Rodriguez, M.A.
1997-08-01
The need for advanced (electronic) ceramic components with smaller size, greater functionality, and enhanced reliability requires the ability to integrate electronic ceramics in complex 3-D architectures. For rapid prototyping and small-lot manufacturing, traditional tape casting and screen printing approaches are poorly suited. To address this need, the authors are developing a direct-write approach for fabricating highly integrated, multilayer components using a micropen to deposit slurries in precise patterns. With this technique, components can be constructed layer by layer, simplifying fabrication. It can also be used to produce structures combining several materials in a single layer. The parts are either cofired or sequentially fired, after each layer is deposited. Since differential shrinkage can lead to defects in these multilayer structures, they are characterizing the sintering behavior of individual layers. This technique has been used to fabricate devices such integrated RC filters, multilayer voltage transformers, and other passive components. The direct-write approach provides the ability to fabricate multifunctional, multimaterial integrated ceramic components (MMICCs) in an agile and rapid way.
Differential temperature integrating diagnostic method and apparatus
Doss, James D.; McCabe, Charles W.
1976-01-01
A method and device for detecting the presence of breast cancer in women by integrating the temperature difference between the temperature of a normal breast and that of a breast having a malignant tumor. The breast-receiving cups of a brassiere are each provided with thermally conductive material next to the skin, with a thermistor attached to the thermally conductive material in each cup. The thermistors are connected to adjacent arms of a Wheatstone bridge. Unbalance currents in the bridge are integrated with respect to time by means of an electrochemical integrator. In the absence of a tumor, both breasts maintain substantially the same temperature, and the bridge remains balanced. If the tumor is present in one breast, a higher temperature in that breast unbalances the bridge and the electrochemical cells integrate the temperature difference with respect to time.
Integrated force method versus displacement method for finite element analysis
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Berke, Laszlo; Gallagher, Richard H.
1990-01-01
A novel formulation termed the integrated force method (IFM) has been developed in recent years for analyzing structures. In this method all the internal forces are taken as independent variables, and the system equilibrium equations (EE's) are integrated with the global compatibility conditions (CC's) to form the governing set of equations. In IFM the CC's are obtained from the strain formulation of St. Venant, and no choices of redundant load systems have to be made, in constrast to the standard force method (SFM). This property of IFM allows the generation of the governing equation to be automated straightforwardly, as it is in the popular stiffness method (SM). In this report IFM and SM are compared relative to the structure of their respective equations, their conditioning, required solution methods, overall computational requirements, and convergence properties as these factors influence the accuracy of the results. Overall, this new version of the force method produces more accurate results than the stiffness method for comparable computational cost.
Integrated force method versus displacement method for finite element analysis
NASA Technical Reports Server (NTRS)
Patnaik, S. N.; Berke, L.; Gallagher, R. H.
1991-01-01
A novel formulation termed the integrated force method (IFM) has been developed in recent years for analyzing structures. In this method all the internal forces are taken as independent variables, and the system equilibrium equations (EEs) are integrated with the global compatibility conditions (CCs) to form the governing set of equations. In IFM the CCs are obtained from the strain formulation of St. Venant, and no choices of redundant load systems have to be made, in constrast to the standard force method (SFM). This property of IFM allows the generation of the governing equation to be automated straightforwardly, as it is in the popular stiffness method (SM). In this report IFM and SM are compared relative to the structure of their respective equations, their conditioning, required solution methods, overall computational requirements, and convergence properties as these factors influence the accuracy of the results. Overall, this new version of the force method produces more accurate results than the stiffness method for comparable computational cost.
Implicit integration methods for dislocation dynamics
Gardner, D. J.; Woodward, C. S.; Reynolds, D. R.; Hommes, G.; Aubry, S.; Arsenlis, A.
2015-01-20
In dislocation dynamics simulations, strain hardening simulations require integrating stiff systems of ordinary differential equations in time with expensive force calculations, discontinuous topological events, and rapidly changing problem size. Current solvers in use often result in small time steps and long simulation times. Faster solvers may help dislocation dynamics simulations accumulate plastic strains at strain rates comparable to experimental observations. Here, this paper investigates the viability of high order implicit time integrators and robust nonlinear solvers to reduce simulation run times while maintaining the accuracy of the computed solution. In particular, implicit Runge-Kutta time integrators are explored as a way of providing greater accuracy over a larger time step than is typically done with the standard second-order trapezoidal method. In addition, both accelerated fixed point and Newton's method are investigated to provide fast and effective solves for the nonlinear systems that must be resolved within each time step. Results show that integrators of third order are the most effective, while accelerated fixed point and Newton's method both improve solver performance over the standard fixed point method used for the solution of the nonlinear systems.
Implicit integration methods for dislocation dynamics
Gardner, D. J.; Woodward, C. S.; Reynolds, D. R.; Hommes, G.; Aubry, S.; Arsenlis, A.
2015-01-20
In dislocation dynamics simulations, strain hardening simulations require integrating stiff systems of ordinary differential equations in time with expensive force calculations, discontinuous topological events, and rapidly changing problem size. Current solvers in use often result in small time steps and long simulation times. Faster solvers may help dislocation dynamics simulations accumulate plastic strains at strain rates comparable to experimental observations. Here, this paper investigates the viability of high order implicit time integrators and robust nonlinear solvers to reduce simulation run times while maintaining the accuracy of the computed solution. In particular, implicit Runge-Kutta time integrators are explored as a waymore » of providing greater accuracy over a larger time step than is typically done with the standard second-order trapezoidal method. In addition, both accelerated fixed point and Newton's method are investigated to provide fast and effective solves for the nonlinear systems that must be resolved within each time step. Results show that integrators of third order are the most effective, while accelerated fixed point and Newton's method both improve solver performance over the standard fixed point method used for the solution of the nonlinear systems.« less
Bioluminescent bioreporter integrated circuit detection methods
Simpson, Michael L.; Paulus, Michael J.; Sayler, Gary S.; Applegate, Bruce M.; Ripp, Steven A.
2005-06-14
Disclosed are monolithic bioelectronic devices comprising a bioreporter and an OASIC. These bioluminescent bioreporter integrated circuit are useful in detecting substances such as pollutants, explosives, and heavy-metals residing in inhospitable areas such as groundwater, industrial process vessels, and battlefields. Also disclosed are methods and apparatus for detection of particular analytes, including ammonia and estrogen compounds.
Implicit integration methods for dislocation dynamics
NASA Astrophysics Data System (ADS)
Gardner, D. J.; Woodward, C. S.; Reynolds, D. R.; Hommes, G.; Aubry, S.; Arsenlis, A.
2015-03-01
In dislocation dynamics simulations, strain hardening simulations require integrating stiff systems of ordinary differential equations in time with expensive force calculations, discontinuous topological events and rapidly changing problem size. Current solvers in use often result in small time steps and long simulation times. Faster solvers may help dislocation dynamics simulations accumulate plastic strains at strain rates comparable to experimental observations. This paper investigates the viability of high-order implicit time integrators and robust nonlinear solvers to reduce simulation run times while maintaining the accuracy of the computed solution. In particular, implicit Runge-Kutta time integrators are explored as a way of providing greater accuracy over a larger time step than is typically done with the standard second-order trapezoidal method. In addition, both accelerated fixed point and Newton's method are investigated to provide fast and effective solves for the nonlinear systems that must be resolved within each time step. Results show that integrators of third order are the most effective, while accelerated fixed point and Newton's method both improve solver performance over the standard fixed point method used for the solution of the nonlinear systems.
Fidelity of the Integrated Force Method Solution
NASA Technical Reports Server (NTRS)
Hopkins, Dale; Halford, Gary; Coroneos, Rula; Patnaik, Surya
2002-01-01
The theory of strain compatibility of the solid mechanics discipline was incomplete since St. Venant's 'strain formulation' in 1876. We have addressed the compatibility condition both in the continuum and the discrete system. This has lead to the formulation of the Integrated Force Method. A dual Integrated Force Method with displacement as the primal variable has also been formulated. A modest finite element code (IFM/Analyzers) based on the IFM theory has been developed. For a set of standard test problems the IFM results were compared with the stiffness method solutions and the MSC/Nastran code. For the problems IFM outperformed the existing methods. Superior IFM performance is attributed to simultaneous compliance of equilibrium equation and compatibility condition. MSC/Nastran organization expressed reluctance to accept the high fidelity IFM solutions. This report discusses the solutions to the examples. No inaccuracy was detected in the IFM solutions. A stiffness method code with a small programming effort can be improved to reap the many IFM benefits when implemented with the IFMD elements. Dr. Halford conducted a peer-review on the Integrated Force Method. Reviewers' response is included.
Alternating direction method for balanced image restoration.
Xie, Shoulie; Rahardja, Susanto
2012-11-01
This paper presents an efficient algorithm for solving a balanced regularization problem in the frame-based image restoration. The balanced regularization is usually formulated as a minimization problem, involving an l(2) data-fidelity term, an l(1) regularizer on sparsity of frame coefficients, and a penalty on distance of sparse frame coefficients to the range of the frame operator. In image restoration, the balanced regularization approach bridges the synthesis-based and analysis-based approaches, and balances the fidelity, sparsity, and smoothness of the solution. Our proposed algorithm for solving the balanced optimal problem is based on a variable splitting strategy and the classical alternating direction method. This paper shows that the proposed algorithm is fast and efficient in solving the standard image restoration with balanced regularization. More precisely, a regularized version of the Hessian matrix of the l(2) data-fidelity term is involved, and by exploiting the related fast tight Parseval frame and the special structures of the observation matrices, the regularized Hessian matrix can perform quite efficiently for the frame-based standard image restoration applications, such as circular deconvolution in image deblurring and missing samples in image inpainting. Numerical simulations illustrate the efficiency of our proposed algorithm in the frame-based image restoration with balanced regularization. PMID:22752137
Procassini, R.J.; Birdsall, C.K.; Morse, E.C.; Cohen, B.I.
1988-01-01
Implicit time integration schemes allow for the use of larger time steps than conventional explicit methods, thereby extending the applicability of kinetic particle simulation methods. This paper will describe a study of the performance and optimization of two such direct implicit schemes, which are used to follow the trajectories of charged particles in an electrostatic, particle-in-cell plasma simulation code. The direct implicit method that was used for this study is an alternative to the moment-equation implicit method. 10 refs., 7 figs., 4 tabs.
Numerical methods for engine-airframe integration
Murthy, S.N.B.; Paynter, G.C.
1986-01-01
Various papers on numerical methods for engine-airframe integration are presented. The individual topics considered include: scientific computing environment for the 1980s, overview of prediction of complex turbulent flows, numerical solutions of the compressible Navier-Stokes equations, elements of computational engine/airframe integrations, computational requirements for efficient engine installation, application of CAE and CFD techniques to complete tactical missile design, CFD applications to engine/airframe integration, and application of a second-generation low-order panel methods to powerplant installation studies. Also addressed are: three-dimensional flow analysis of turboprop inlet and nacelle configurations, application of computational methods to the design of large turbofan engine nacelles, comparison of full potential and Euler solution algorithms for aeropropulsive flow field computations, subsonic/transonic, supersonic nozzle flows and nozzle integration, subsonic/transonic prediction capabilities for nozzle/afterbody configurations, three-dimensional viscous design methodology of supersonic inlet systems for advanced technology aircraft, and a user's technology assessment.
Integrability: mathematical methods for studying solitary waves theory
NASA Astrophysics Data System (ADS)
Wazwaz, Abdul-Majid
2014-03-01
real features in a variety of vital areas in science, technology and engineering. In recognition of the importance of solitary waves theory and the underlying concept of integrable equations, a variety of powerful methods have been developed to carry out the required analysis. Examples of such methods which have been advanced are the inverse scattering method, the Hirota bilinear method, the simplified Hirota method, the Bäcklund transformation method, the Darboux transformation, the Pfaffian technique, the Painlevé analysis, the generalized symmetry method, the subsidiary ordinary differential equation method, the coupled amplitude-phase formulation, the sine-cosine method, the sech-tanh method, the mapping and deformation approach and many new other methods. The inverse scattering method, viewed as a nonlinear analogue of the Fourier transform method, is a powerful approach that demonstrates the existence of soliton solutions through intensive computations. At the center of the theory of integrable equations lies the bilinear forms and Hirota's direct method, which can be used to obtain soliton solutions by using exponentials. The Bäcklund transformation method is a useful invariant transformation that transforms one solution into another of a differential equation. The Darboux transformation method is a well known tool in the theory of integrable systems. It is believed that there is a connection between the Bäcklund transformation and the Darboux transformation, but it is as yet not known. Archetypes of integrable equations are the Korteweg-de Vries (KdV) equation, the modified KdV equation, the sine-Gordon equation, the Schrödinger equation, the Vakhnenko equation, the KdV6 equation, the Burgers equation, the fifth-order Lax equation and many others. These equations yield soliton solutions, multiple soliton solutions, breather solutions, quasi-periodic solutions, kink solutions, homo-clinic solutions and other solutions as well. The couplings of linear and
Package for integrated optic circuit and method
Kravitz, S.H.; Hadley, G.R.; Warren, M.E.; Carson, R.F.; Armendariz, M.G.
1998-08-04
A structure and method are disclosed for packaging an integrated optic circuit. The package comprises a first wall having a plurality of microlenses formed therein to establish channels of optical communication with an integrated optic circuit within the package. A first registration pattern is provided on an inside surface of one of the walls of the package for alignment and attachment of the integrated optic circuit. The package in one embodiment may further comprise a fiber holder for aligning and attaching a plurality of optical fibers to the package and extending the channels of optical communication to the fibers outside the package. In another embodiment, a fiber holder may be used to hold the fibers and align the fibers to the package. The fiber holder may be detachably connected to the package. 6 figs.
Package for integrated optic circuit and method
Kravitz, Stanley H.; Hadley, G. Ronald; Warren, Mial E.; Carson, Richard F.; Armendariz, Marcelino G.
1998-01-01
A structure and method for packaging an integrated optic circuit. The package comprises a first wall having a plurality of microlenses formed therein to establish channels of optical communication with an integrated optic circuit within the package. A first registration pattern is provided on an inside surface of one of the walls of the package for alignment and attachment of the integrated optic circuit. The package in one embodiment may further comprise a fiber holder for aligning and attaching a plurality of optical fibers to the package and extending the channels of optical communication to the fibers outside the package. In another embodiment, a fiber holder may be used to hold the fibers and align the fibers to the package. The fiber holder may be detachably connected to the package.
The finite element method: Is weighted volume integration essential?
NASA Astrophysics Data System (ADS)
Narasimhan, T. N.
In developing finite element equations for steady state and transient diffusion-type processes, weighted volume integration is generally assumed to be an intrinsic requirement. It is shown that such finite element equations can be developed directly and with ease on the basis of the elementary notion of a surface integral. Although weighted volume integration is mathematically correct, the algebraic equations stemming from it are no more informative than those derived directly on the basis of a surface integral. An interesting upshot is that the derivation based on surface integration does not require knowledge of a partial differential equation but yet is logically rigorous. It is commonly stated that weighted volume integration of the differential equation helps one carry out analyses of errors, convergence and existence, and therefore, weighted volume integration is preferable. It is suggested that because the direct derivation is logically consistent, numerical solutions emanating from it must be testable for accuracy and internal consistency in ways that the style of which may differ from the classical procedures of error- and convergence-analysis. In addition to simplifying the teaching of the finite element method, the thoughts presented in this paper may lead to establishing the finite element method independently in its own right, rather than it being a surrogate of the differential equation. The purpose of this paper is not to espouse any one particular way of formulating the finite element equations. Rather, it is one of introspection. The desire is to critically examine our traditional way of doing things and inquire whether alternate approaches may reveal to us new and interesting insights.
Integrative methods for studying cardiac energetics.
Diolez, Philippe; Deschodt-Arsac, Véronique; Calmettes, Guillaume; Gouspillou, Gilles; Arsac, Laurent; Dos Santos, Pierre; Jais, Pierre; Haissaguerre, Michel
2015-01-01
The more recent studies of human pathologies have essentially revealed the complexity of the interactions involved at the different levels of integration in organ physiology. Integrated organ thus reveals functional properties not predictable by underlying molecular events. It is therefore obvious that current fine molecular analyses of pathologies should be fruitfully combined with integrative approaches of whole organ function. It follows an important issue in the comprehension of the link between molecular events in pathologies, and whole organ function/dysfunction is the development of new experimental strategies aimed at the study of the integrated organ physiology. Cardiovascular diseases are a good example as heart submitted to ischemic conditions has to cope both with a decreased supply of nutrients and oxygen, and the necessary increased activity required to sustain whole body-including the heart itself-oxygenation.By combining the principles of control analysis with noninvasive (31)P NMR measurement of the energetic intermediates and simultaneous measurement of heart contractile activity, we developed MoCA (for Modular Control and Regulation Analysis), an integrative approach designed to study in situ control and regulation of cardiac energetics during contraction in intact beating perfused isolated heart (Diolez et al., Am J Physiol Regul Integr Comp Physiol 293(1):R13-R19, 2007). Because it gives real access to integrated organ function, MoCA brings out a new type of information-the "elasticities," referring to internal responses to metabolic changes-that may be a key to the understanding of the processes involved in pathologies. MoCA can potentially be used not only to detect the origin of the defects associated with the pathology, but also to provide the quantitative description of the routes by which these defects-or also drugs-modulate global heart function, therefore opening therapeutic perspectives. This review presents selected examples of the
Approximation method to compute domain related integrals in structural studies
NASA Astrophysics Data System (ADS)
Oanta, E.; Panait, C.; Raicu, A.; Barhalescu, M.; Axinte, T.
2015-11-01
Various engineering calculi use integral calculus in theoretical models, i.e. analytical and numerical models. For usual problems, integrals have mathematical exact solutions. If the domain of integration is complicated, there may be used several methods to calculate the integral. The first idea is to divide the domain in smaller sub-domains for which there are direct calculus relations, i.e. in strength of materials the bending moment may be computed in some discrete points using the graphical integration of the shear force diagram, which usually has a simple shape. Another example is in mathematics, where the surface of a subgraph may be approximated by a set of rectangles or trapezoids used to calculate the definite integral. The goal of the work is to introduce our studies about the calculus of the integrals in the transverse section domains, computer aided solutions and a generalizing method. The aim of our research is to create general computer based methods to execute the calculi in structural studies. Thus, we define a Boolean algebra which operates with ‘simple’ shape domains. This algebraic standpoint uses addition and subtraction, conditioned by the sign of every ‘simple’ shape (-1 for the shapes to be subtracted). By ‘simple’ shape or ‘basic’ shape we define either shapes for which there are direct calculus relations, or domains for which their frontiers are approximated by known functions and the according calculus is carried out using an algorithm. The ‘basic’ shapes are linked to the calculus of the most significant stresses in the section, refined aspect which needs special attention. Starting from this idea, in the libraries of ‘basic’ shapes, there were included rectangles, ellipses and domains whose frontiers are approximated by spline functions. The domain triangularization methods suggested that another ‘basic’ shape to be considered is the triangle. The subsequent phase was to deduce the exact relations for the
Development of Improved Surface Integral Methods for Jet Aeroacoustic Predictions
NASA Technical Reports Server (NTRS)
Pilon, Anthony R.; Lyrintzis, Anastasios S.
1997-01-01
The accurate prediction of aerodynamically generated noise has become an important goal over the past decade. Aeroacoustics must now be an integral part of the aircraft design process. The direct calculation of aerodynamically generated noise with CFD-like algorithms is plausible. However, large computer time and memory requirements often make these predictions impractical. It is therefore necessary to separate the aeroacoustics problem into two parts, one in which aerodynamic sound sources are determined, and another in which the propagating sound is calculated. This idea is applied in acoustic analogy methods. However, in the acoustic analogy, the determination of far-field sound requires the solution of a volume integral. This volume integration again leads to impractical computer requirements. An alternative to the volume integrations can be found in the Kirchhoff method. In this method, Green's theorem for the linear wave equation is used to determine sound propagation based on quantities on a surface surrounding the source region. The change from volume to surface integrals represents a tremendous savings in the computer resources required for an accurate prediction. This work is concerned with the development of enhancements of the Kirchhoff method for use in a wide variety of aeroacoustics problems. This enhanced method, the modified Kirchhoff method, is shown to be a Green's function solution of Lighthill's equation. It is also shown rigorously to be identical to the methods of Ffowcs Williams and Hawkings. This allows for development of versatile computer codes which can easily alternate between the different Kirchhoff and Ffowcs Williams-Hawkings formulations, using the most appropriate method for the problem at hand. The modified Kirchhoff method is developed primarily for use in jet aeroacoustics predictions. Applications of the method are shown for two dimensional and three dimensional jet flows. Additionally, the enhancements are generalized so that
A direct method for photoacoustic tomography with inhomogeneous sound speed
NASA Astrophysics Data System (ADS)
Belhachmi, Zakaria; Glatz, Thomas; Scherzer, Otmar
2016-04-01
The standard approach for photoacoustic imaging with variable speed of sound is time reversal, which consists of solving a well-posed final-boundary value problem for the wave equation backwards in time. This paper investigates the iterative Landweber regularization algorithm, where convergence is guaranteed by standard regularization theory, notably also in cases of trapping sound speed or for short measurement times. We formulate and solve the direct and inverse problem on the whole Euclidean space, which is common in standard photoacoustic imaging, but not for time reversal algorithms, where the problems are considered on a domain enclosed by the measurement devices. We formulate both the direct and adjoint photoacoustic operator as the solution of an interior and an exterior differential equation which are coupled by transmission conditions. The former is solved numerically using a Galerkin scheme in space and finite difference discretization in time, while the latter consists of solving a boundary integral equation. We therefore use a boundary element method/finite element method approach for numerical solution of the forward operators. We analyze this method, prove convergence, and provide numerical tests. Moreover, we compare the approach to time reversal.
Cabbages--And Kings: Research Directions in Integrated/Interdisciplinary Curriculum.
ERIC Educational Resources Information Center
Kain, Daniel L.
1993-01-01
Examines past research into integrated or interdisciplinary studies and explores future directions for research. Discusses reasons for integrating curricula, characteristics of integrated studies, benefits of curriculum integration, and pedagogical changes accompanying integrated studies. Predicts an unstable future for integrated studies.…
Can we estimate total magnetization directions from aeromagnetic data using Helbig's integrals?
Phillips, J.D.
2005-01-01
An algorithm that implements Helbig's (1963) integrals for estimating the vector components (mx, my, mz) of tile magnetic dipole moment from the first order moments of the vector magnetic field components (??X, ??Y, ??Z) is tested on real and synthetic data. After a grid of total field aeromagnetic data is converted to vector component grids using Fourier filtering, Helbig's infinite integrals are evaluated as finite integrals in small moving windows using a quadrature algorithm based on the 2-D trapezoidal rule. Prior to integration, best-fit planar surfaces must be removed from the component data within the data windows in order to make the results independent of the coordinate system origin. Two different approaches are described for interpreting the results of the integration. In the "direct" method, results from pairs of different window sizes are compared to identify grid nodes where the angular difference between solutions is small. These solutions provide valid estimates of total magnetization directions for compact sources such as spheres or dipoles, but not for horizontally elongated or 2-D sources. In the "indirect" method, which is more forgiving of source geometry, results of the quadrature analysis are scanned for solutions that are parallel to a specified total magnetization direction.
Direct current power delivery system and method
Zhang, Di; Garces, Luis Jose; Dai, Jian; Lai, Rixin
2016-09-06
A power transmission system includes a first unit for carrying out the steps of receiving high voltage direct current (HVDC) power from an HVDC power line, generating an alternating current (AC) component indicative of a status of the first unit, and adding the AC component to the HVDC power line. Further, the power transmission system includes a second unit for carrying out the steps of generating a direct current (DC) voltage to transfer the HVDC power on the HVDC power line, wherein the HVDC power line is coupled between the first unit and the second unit, detecting a presence or an absence of the added AC component in the HVDC power line, and determining the status of the first unit based on the added AC component.
Integrated Low Emissions Cleanup system for direct coal fueled turbines
Newby, R.A.; Alvin, M.A.; Bachovchin, D.M.; Smeltzer, E.E.; Lippert, T.E.
1993-07-01
The United States Department of.Energy, Morgantown Energy Research Center (DOE/METC), is sponsoring the development of coal-fired turbine technology in the areas of Pressurized Fluidized Bed Combustion, Integrated Gasification Combined Cycles, and Direct Coal-Fired Turbines. A major technical challenge remaining for the development of coal-fired turbine systems is high-temperature gas cleaning to meet environmental standards for sulfur oxides and particulate emissions, as well as to provide acceptable turbine life. The Westinghouse Electric Corporation, Science & Technology Center, is evaluating an Integrated Low Emissions Cleanup (ILEC) concept that has been configured to meet this technical challenge. This ceramic barrier filter, ILEC concept simultaneously controls sulfur, particulate, and alkali contaminants in high-pressure fuel gases or combustion gases, and is considering cleaning temperatures up to 2100{degrees}F. This document describes Phase II of the program, the design, construction, and shakedown of a bench-scale facility to test and confirm the feasibility of this ILEC technology.
Methods of Genomic Competency Integration in Practice
Jenkins, Jean; Calzone, Kathleen A.; Caskey, Sarah; Culp, Stacey; Weiner, Marsha; Badzek, Laurie
2015-01-01
Purpose Genomics is increasingly relevant to health care, necessitating support for nurses to incorporate genomic competencies into practice. The primary aim of this project was to develop, implement, and evaluate a year-long genomic education intervention that trained, supported, and supervised institutional administrator and educator champion dyads to increase nursing capacity to integrate genomics through assessments of program satisfaction and institutional achieved outcomes. Design Longitudinal study of 23 Magnet Recognition Program® Hospitals (21 intervention, 2 controls) participating in a 1-year new competency integration effort aimed at increasing genomic nursing competency and overcoming barriers to genomics integration in practice. Methods Champion dyads underwent genomic training consisting of one in-person kick-off training meeting followed by monthly education webinars. Champion dyads designed institution-specific action plans detailing objectives, methods or strategies used to engage and educate nursing staff, timeline for implementation, and outcomes achieved. Action plans focused on a minimum of seven genomic priority areas: champion dyad personal development; practice assessment; policy content assessment; staff knowledge needs assessment; staff development; plans for integration; and anticipated obstacles and challenges. Action plans were updated quarterly, outlining progress made as well as inclusion of new methods or strategies. Progress was validated through virtual site visits with the champion dyads and chief nursing officers. Descriptive data were collected on all strategies or methods utilized, and timeline for achievement. Descriptive data were analyzed using content analysis. Findings The complexity of the competency content and the uniqueness of social systems and infrastructure resulted in a significant variation of champion dyad interventions. Conclusions Nursing champions can facilitate change in genomic nursing capacity through
A Novel Method of Line Detection using Image Integration Method
NASA Astrophysics Data System (ADS)
Lin, Daniel; Sun, Bo
2015-03-01
We developed a novel line detection algorithm based on image integration method. Hough Transformation uses spatial image gradient method to detect lines on an image. This is problematic because if the image has a region of high noise intensity, the gradient would point towards the noisy region . Denoising the noisy image requires an application of sophisticated noise reduction algorithm which increases computation complexity. Our algorithm can remedy this problem by averaging the pixels around the image region of interest. We were able to detect collagen fiber lines on an image produced by confocal microscope.
Semi-direct sums of Lie algebras and continuous integrable couplings
NASA Astrophysics Data System (ADS)
Ma, Wen-Xiu; Xu, Xi-Xiang; Zhang, Yufeng
2006-02-01
A relation between semi-direct sums of Lie algebras and integrable couplings of continuous soliton equations is presented, and correspondingly, a feasible way to construct integrable couplings is furnished. A direct application to the AKNS spectral problem leads to a novel hierarchy of integrable couplings of the AKNS hierarchy of soliton equations. It is also indicated that the study of integrable couplings using semi-direct sums of Lie algebras is an important step towards complete classification of integrable systems.
Solution methods for very highly integrated circuits.
Nong, Ryan; Thornquist, Heidi K.; Chen, Yao; Mei, Ting; Santarelli, Keith R.; Tuminaro, Raymond Stephen
2010-12-01
While advances in manufacturing enable the fabrication of integrated circuits containing tens-to-hundreds of millions of devices, the time-sensitive modeling and simulation necessary to design these circuits poses a significant computational challenge. This is especially true for mixed-signal integrated circuits where detailed performance analyses are necessary for the individual analog/digital circuit components as well as the full system. When the integrated circuit has millions of devices, performing a full system simulation is practically infeasible using currently available Electrical Design Automation (EDA) tools. The principal reason for this is the time required for the nonlinear solver to compute the solutions of large linearized systems during the simulation of these circuits. The research presented in this report aims to address the computational difficulties introduced by these large linearized systems by using Model Order Reduction (MOR) to (i) generate specialized preconditioners that accelerate the computation of the linear system solution and (ii) reduce the overall dynamical system size. MOR techniques attempt to produce macromodels that capture the desired input-output behavior of larger dynamical systems and enable substantial speedups in simulation time. Several MOR techniques that have been developed under the LDRD on 'Solution Methods for Very Highly Integrated Circuits' will be presented in this report. Among those presented are techniques for linear time-invariant dynamical systems that either extend current approaches or improve the time-domain performance of the reduced model using novel error bounds and a new approach for linear time-varying dynamical systems that guarantees dimension reduction, which has not been proven before. Progress on preconditioning power grid systems using multi-grid techniques will be presented as well as a framework for delivering MOR techniques to the user community using Trilinos and the Xyce circuit simulator
Fourier-sparsity integrated method for complex target ISAR imagery.
Gao, Xunzhang; Liu, Zhen; Chen, Haowen; Li, Xiang
2015-01-01
In existing sparsity-driven inverse synthetic aperture radar (ISAR) imaging framework a sparse recovery (SR) algorithm is usually applied to azimuth compression to achieve high resolution in the cross-range direction. For range compression, however, direct application of an SR algorithm is not very effective because the scattering centers resolved in the high resolution range profiles at different view angles always exhibit irregular range cell migration (RCM), especially for complex targets, which will blur the ISAR image. To alleviate the sparse recovery-induced RCM in range compression, a sparsity-driven framework for ISAR imaging named Fourier-sparsity integrated (FSI) method is proposed in this paper, which can simultaneously achieve better focusing performance in both the range and cross-range domains. Experiments using simulated data and real data demonstrate the superiority of our proposed framework over existing sparsity-driven methods and range-Doppler methods. PMID:25629707
77 FR 21158 - VA Directive 0005 on Scientific Integrity: Availability for Review and Comment
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-09
... AFFAIRS VA Directive 0005 on Scientific Integrity: Availability for Review and Comment AGENCY: Office of... (VA) Directive 0005 on Scientific Integrity. The Draft Directive incorporates the principles of scientific integrity contained in the Presidential Memorandum of March 9, 2009, and the Director, Office...
A survey of payload integration methods
NASA Technical Reports Server (NTRS)
Engels, R. C.; Craig, R. R., Jr.; Harcrow, H. W.
1984-01-01
Several full-scale and short-cut methods for analyzing a booster/payload system are presented. Two full-scale techniques are considered: (1) a technique that uses a restrained payload together with a free-booster model, the latter being augmented with residual mass and stiffness correction and (2) a technique that uses a restrained payload and booster model. Both techniques determine the 'modal modes', which require the solution of a system eigenvalue problem; the loads usually are then determined via an acceleration approach. A brief description is given of a number of short-cut methods which are of special interest to Shuttle payload design: structural modification, base drive, and interface impedance methods. Directions for further research and development are suggested.
Recent Advances in the Method of Forces: Integrated Force Method of Structural Analysis
NASA Technical Reports Server (NTRS)
Patnaik, Surya N.; Coroneos, Rula M.; Hopkins, Dale A.
1998-01-01
Stress that can be induced in an elastic continuum can be determined directly through the simultaneous application of the equilibrium equations and the compatibility conditions. In the literature, this direct stress formulation is referred to as the integrated force method. This method, which uses forces as the primary unknowns, complements the popular equilibrium-based stiffness method, which considers displacements as the unknowns. The integrated force method produces accurate stress, displacement, and frequency results even for modest finite element models. This version of the force method should be developed as an alternative to the stiffness method because the latter method, which has been researched for the past several decades, may have entered its developmental plateau. Stress plays a primary role in the development of aerospace and other products, and its analysis is difficult. Therefore, it is advisable to use both methods to calculate stress and eliminate errors through comparison. This paper examines the role of the integrated force method in analysis, animation and design.
Future Directions of Electromagnetic Methods for Hydrocarbon Applications
NASA Astrophysics Data System (ADS)
Strack, K. M.
2014-01-01
For hydrocarbon applications, seismic exploration is the workhorse of the industry. Only in the borehole, electromagnetic (EM) methods play a dominant role, as they are mostly used to determine oil reserves and to distinguish water from oil-bearing zones. Throughout the past 60 years, we had several periods with an increased interest in EM. This increased with the success of the marine EM industry and now electromagnetics in general is considered for many new applications. The classic electromagnetic methods are borehole, onshore and offshore, and airborne EM methods. Airborne is covered elsewhere (see Smith, this issue). Marine EM material is readily available from the service company Web sites, and here I will only mention some future technical directions that are visible. The marine EM success is being carried back to the onshore market, fueled by geothermal and unconventional hydrocarbon applications. Oil companies are listening to pro-EM arguments, but still are hesitant to go through the learning exercises as early adopters. In particular, the huge business drivers of shale hydrocarbons and reservoir monitoring will bring markets many times bigger than the entire marine EM market. Additional applications include support for seismic operations, sub-salt, and sub-basalt, all areas where seismic exploration is costly and inefficient. Integration with EM will allow novel seismic methods to be applied. In the borehole, anisotropy measurements, now possible, form the missing link between surface measurements and ground truth. Three-dimensional (3D) induction measurements are readily available from several logging contractors. The trend to logging-while-drilling measurements will continue with many more EM technologies, and the effort of controlling the drill bit while drilling including look-ahead-and-around the drill bit is going on. Overall, the market for electromagnetics is increasing, and a demand for EM capable professionals will continue. The emphasis will
Face recognition using fuzzy integral and wavelet decomposition method.
Kwak, Keun-Chang; Pedrycz, Witold
2004-08-01
In this paper, we develop a method for recognizing face images by combining wavelet decomposition, Fisherface method, and fuzzy integral. The proposed approach is comprised of four main stages. The first stage uses the wavelet decomposition that helps extract intrinsic features of face images. As a result of this decomposition, we obtain four subimages (namely approximation, horizontal, vertical, and diagonal detailed images). The second stage of the approach concerns the application of the Fisherface method to these four decompositions. The choice of the Fisherface method in this setting is motivated by its insensitivity to large variation in light direction, face pose, and facial expression. The two last phases are concerned with the aggregation of the individual classifiers by means of the fuzzy integral. Both Sugeno and Choquet type of fuzzy integral are considered as the aggregation method. In the experiments we use n-fold cross-validation to assure high consistency of the produced classification outcomes. The experimental results obtained for the Chungbuk National University (CNU) and Yale University face databases reveal that the approach presented in this paper yields better classification performance in comparison to the results obtained by other classifiers. PMID:15462434
Path Integral Monte Carlo Methods for Fermions
NASA Astrophysics Data System (ADS)
Ethan, Ethan; Dubois, Jonathan; Ceperley, David
2014-03-01
In general, Quantum Monte Carlo methods suffer from a sign problem when simulating fermionic systems. This causes the efficiency of a simulation to decrease exponentially with the number of particles and inverse temperature. To circumvent this issue, a nodal constraint is often implemented, restricting the Monte Carlo procedure from sampling paths that cause the many-body density matrix to change sign. Unfortunately, this high-dimensional nodal surface is not a priori known unless the system is exactly solvable, resulting in uncontrolled errors. We will discuss two possible routes to extend the applicability of finite-temperatue path integral Monte Carlo. First we extend the regime where signful simulations are possible through a novel permutation sampling scheme. Afterwards, we discuss a method to variationally improve the nodal surface by minimizing a free energy during simulation. Applications of these methods will include both free and interacting electron gases, concluding with discussion concerning extension to inhomogeneous systems. Support from DOE DE-FG52-09NA29456, DE-AC52-07NA27344, LLNL LDRD 10- ERD-058, and the Lawrence Scholar program.
Integrability: mathematical methods for studying solitary waves theory
NASA Astrophysics Data System (ADS)
Wazwaz, Abdul-Majid
2014-03-01
real features in a variety of vital areas in science, technology and engineering. In recognition of the importance of solitary waves theory and the underlying concept of integrable equations, a variety of powerful methods have been developed to carry out the required analysis. Examples of such methods which have been advanced are the inverse scattering method, the Hirota bilinear method, the simplified Hirota method, the Bäcklund transformation method, the Darboux transformation, the Pfaffian technique, the Painlevé analysis, the generalized symmetry method, the subsidiary ordinary differential equation method, the coupled amplitude-phase formulation, the sine-cosine method, the sech-tanh method, the mapping and deformation approach and many new other methods. The inverse scattering method, viewed as a nonlinear analogue of the Fourier transform method, is a powerful approach that demonstrates the existence of soliton solutions through intensive computations. At the center of the theory of integrable equations lies the bilinear forms and Hirota's direct method, which can be used to obtain soliton solutions by using exponentials. The Bäcklund transformation method is a useful invariant transformation that transforms one solution into another of a differential equation. The Darboux transformation method is a well known tool in the theory of integrable systems. It is believed that there is a connection between the Bäcklund transformation and the Darboux transformation, but it is as yet not known. Archetypes of integrable equations are the Korteweg-de Vries (KdV) equation, the modified KdV equation, the sine-Gordon equation, the Schrödinger equation, the Vakhnenko equation, the KdV6 equation, the Burgers equation, the fifth-order Lax equation and many others. These equations yield soliton solutions, multiple soliton solutions, breather solutions, quasi-periodic solutions, kink solutions, homo-clinic solutions and other solutions as well. The couplings of linear and
Borja, Angel; Bricker, Suzanne B; Dauer, Daniel M; Demetriades, Nicolette T; Ferreira, João G; Forbes, Anthony T; Hutchings, Pat; Jia, Xiaoping; Kenchington, Richard; Carlos Marques, João; Zhu, Changbo
2008-09-01
In recent years, several sets of legislation worldwide (Oceans Act in USA, Australia or Canada; Water Framework Directive or Marine Strategy in Europe, National Water Act in South Africa, etc.) have been developed in order to address ecological quality or integrity, within estuarine and coastal systems. Most such legislation seeks to define quality in an integrative way, by using several biological elements, together with physico-chemical and pollution elements. Such an approach allows assessment of ecological status at the ecosystem level ('ecosystem approach' or 'holistic approach' methodologies), rather than at species level (e.g. mussel biomonitoring or Mussel Watch) or just at chemical level (i.e. quality objectives) alone. Increasing attention has been paid to the development of tools for different physico-chemical or biological (phytoplankton, zooplankton, benthos, algae, phanerogams, fishes) elements of the ecosystems. However, few methodologies integrate all the elements into a single evaluation of a water body. The need for such integrative tools to assess ecosystem quality is very important, both from a scientific and stakeholder point of view. Politicians and managers need information from simple and pragmatic, but scientifically sound methodologies, in order to show to society the evolution of a zone (estuary, coastal area, etc.), taking into account human pressures or recovery processes. These approaches include: (i) multidisciplinarity, inherent in the teams involved in their implementation; (ii) integration of biotic and abiotic factors; (iii) accurate and validated methods in determining ecological integrity; and (iv) adequate indicators to follow the evolution of the monitored ecosystems. While some countries increasingly use the establishment of marine parks to conserve marine biodiversity and ecological integrity, there is awareness (e.g. in Australia) that conservation and management of marine ecosystems cannot be restricted to Marine Protected
Fingerprint image enhancement method using directional median filter
NASA Astrophysics Data System (ADS)
Wu, Chaohong; Shi, Zhixin; Govindaraju, Venu
2004-08-01
The performance of any fingerprint recognizer highly depends on the fingerprint image quality. Different types of noises in the fingerprint images pose greater difficulty for recognizers. Most Automatic Fingerprint Identification Systems (AFIS) use some form of image enhancement. Although several methods have been described in the literature, there is still scope for improvement. In particular, effective methodology of cleaning the valleys between the ridge contours are lacking. We observe that noisy valley pixels and the pixels in the interrupted ridge flow gap are "impulse noises". Therefore, this paper describes a new approach to fingerprint image enhancement, which is based on integration of Anisotropic Filter and directional median filter(DMF). Gaussian-distributed noises are reduced effectively by Anisotropic Filter, "impulse noises" are reduced efficiently by DMF. Usually, traditional median filter is the most effective method to remove pepper-and-salt noise and other small artifacts, the proposed DMF can not only finish its original tasks, it can also join broken fingerprint ridges, fill out the holes of fingerprint images, smooth irregular ridges as well as remove some annoying small artifacts between ridges. The enhancement algorithm has been implemented and tested on fingerprint images from FVC2002. Images of varying quality have been used to evaluate the performance of our approach. We have compared our method with other methods described in the literature in terms of matched minutiae, missed minutiae, spurious minutiae, and flipped minutiae(between end points and bifurcation points). Experimental results show our method to be superior to those described in the literature.
Directional couplers with integrated carbon nanotube incandescent light emitters.
Fechner, Randy G; Pyatkov, Felix; Khasminskaya, Svetlana; Flavel, Benjamin S; Krupke, Ralph; Pernice, Wolfram H P
2016-01-25
We combine on-chip single-walled carbon nanotubes (SWNTs) emitters with directional coupling devices as fundamental building blocks for carbon photonic systems. These devices are essential for studying the emission properties of SWNTs in the few photon regime for future applications in on-chip quantum photonics. The combination of SWNTs with on-chip beam splitters herein provides the basis for correlation measurements as necessary for nanoscale source characterization. The employed fabrication methods are fully scalable and thus allow for implementing a multitude of functional and active circuits in a single fabrication run. Our metallic SWNT emitters are broadband and cover both visible and near-infrared wavelengths, thus holding promise for emerging hybrid optoelectronic devices with fast reconfiguration times. PMID:26832479
Direct methods for radionuclides measurement in water environment.
Chernyaev, A; Gaponov, I; Kazennov, A
2004-01-01
The paper is devoted to the direct method of anthropogenic radionuclide measurement in the water environment. Opportunities of application of submersible gamma-spectrometers for in situ underwater measurements of gamma-radiating nuclides and also the direct method for 90Sr detection are considered. PMID:15162871
Path integral method for DNA denaturation
NASA Astrophysics Data System (ADS)
Zoli, Marco
2009-04-01
The statistical physics of homogeneous DNA is investigated by the imaginary time path integral formalism. The base pair stretchings are described by an ensemble of paths selected through a macroscopic constraint, the fulfillment of the second law of thermodynamics. The number of paths contributing to the partition function strongly increases around and above a specific temperature Tc∗ , whereas the fraction of unbound base pairs grows continuously around and above Tc∗ . The latter is identified with the denaturation temperature. Thus, the separation of the two complementary strands appears as a highly cooperative phenomenon displaying a smooth crossover versus T . The thermodynamical properties have been computed in a large temperature range by varying the size of the path ensemble at the lower bound of the range. No significant physical dependence on the system size has been envisaged. The entropy grows continuously versus T while the specific heat displays a remarkable peak at Tc∗ . The location of the peak versus T varies with the stiffness of the anharmonic stacking interaction along the strand. The presented results suggest that denaturation in homogeneous DNA has the features of a second-order phase transition. The method accounts for the cooperative behavior of a very large number of degrees of freedom while the computation time is kept within a reasonable limit.
Boundary-integral methods in elasticity and plasticity. [solutions of boundary value problems
NASA Technical Reports Server (NTRS)
Mendelson, A.
1973-01-01
Recently developed methods that use boundary-integral equations applied to elastic and elastoplastic boundary value problems are reviewed. Direct, indirect, and semidirect methods using potential functions, stress functions, and displacement functions are described. Examples of the use of these methods for torsion problems, plane problems, and three-dimensional problems are given. It is concluded that the boundary-integral methods represent a powerful tool for the solution of elastic and elastoplastic problems.
Methods and systems for integrating fluid dispensing technology with stereolithography
Medina, Francisco; Wicker, Ryan; Palmer, Jeremy A.; Davis, Don W.; Chavez, Bart D.; Gallegos, Phillip L.
2010-02-09
An integrated system and method of integrating fluid dispensing technologies (e.g., direct-write (DW)) with rapid prototyping (RP) technologies (e.g., stereolithography (SL)) without part registration comprising: an SL apparatus and a fluid dispensing apparatus further comprising a translation mechanism adapted to translate the fluid dispensing apparatus along the Z-, Y- and Z-axes. The fluid dispensing apparatus comprises: a pressurized fluid container; a valve mechanism adapted to control the flow of fluid from the pressurized fluid container; and a dispensing nozzle adapted to deposit the fluid in a desired location. To aid in calibration, the integrated system includes a laser sensor and a mechanical switch. The method further comprises building a second part layer on top of the fluid deposits and optionally accommodating multi-layered circuitry by incorporating a connector trace. Thus, the present invention is capable of efficiently building single and multi-material SL fabricated parts embedded with complex three-dimensional circuitry using DW.
Richman, Eric E.; Merzouk, Massine B.
2014-06-12
A Comparison of 2pi and 4pi Photometric Testing of Directional and Omnidirectional Sources in an Integrating Sphere. These data will help determine if differences in methods should be addresed in test methods specifically for LED products but applicable to other technologies as well
Calculation of transonic flows using an extended integral equation method
NASA Technical Reports Server (NTRS)
Nixon, D.
1976-01-01
An extended integral equation method for transonic flows is developed. In the extended integral equation method velocities in the flow field are calculated in addition to values on the aerofoil surface, in contrast with the less accurate 'standard' integral equation method in which only surface velocities are calculated. The results obtained for aerofoils in subcritical flow and in supercritical flow when shock waves are present compare satisfactorily with the results of recent finite difference methods.
A Modified Alternating Direction Method for Variational Inequality Problems
Han, D.
2002-07-01
The alternating direction method is an attractive method for solving large-scale variational inequality problems whenever the subproblems can be solved efficiently. However, the subproblems are still variational inequality problems, which are as structurally difficult to solve as the original one. To overcome this disadvantage, in this paper we propose a new alternating direction method for solving a class of nonlinear monotone variational inequality problems. In each iteration the method just makes an orthogonal projection to a simple set and some function evaluations. We report some preliminary computational results to illustrate the efficiency of the method.
A direct-inverse method for transonic and separated flows about airfoils
NASA Technical Reports Server (NTRS)
Carlson, K. D.
1985-01-01
A direct-inverse technique and computer program called TAMSEP that can be sued for the analysis of the flow about airfoils at subsonic and low transonic freestream velocities is presented. The method is based upon a direct-inverse nonconservative full potential inviscid method, a Thwaites laminar boundary layer technique, and the Barnwell turbulent momentum integral scheme; and it is formulated using Cartesian coordinates. Since the method utilizes inverse boundary conditions in regions of separated flow, it is suitable for predicing the flowfield about airfoils having trailing edge separated flow under high lift conditions. Comparisons with experimental data indicate that the method should be a useful tool for applied aerodynamic analyses.
A direct-inverse method for transonic and separated flows about airfoils
NASA Technical Reports Server (NTRS)
Carlson, Leland A.
1990-01-01
A direct-inverse technique and computer program called TAMSEP that can be used for the analysis of the flow about airfoils at subsonic and low transonic freestream velocities is presented. The method is based upon a direct-inverse nonconservative full potential inviscid method, a Thwaites laminar boundary layer technique, and the Barnwell turbulent momentum integral scheme; and it is formulated using Cartesian coordinates. Since the method utilizes inverse boundary conditions in regions of separated flow, it is suitable for predicting the flow field about airfoils having trailing edge separated flow under high lift conditions. Comparisons with experimental data indicate that the method should be a useful tool for applied aerodynamic analyses.
A Direct Method for Viewing Ferromagnetic Phase Transition.
ERIC Educational Resources Information Center
Lue, Chin-Shan
1994-01-01
Provides a method, using the Rowland ring as a specimen, to observe the phase transition process directly on the oscilloscope and even extract the critical exponent of ferromagnetic transition. Includes theory, experimental setup, and results. (MVL)
A DIRECT METHOD TO ASSAY NEUROTOXIC ESTERASE ACTIVITY
A direct photometric method for assaying neurotoxic esterase (NTE) activity of chicken brain microsomal preparation has been developed using 4-nitrophenyl esters as substrates. Paired samples of the microsomal preparation were preincubated for 20 min. with paraoxon plus either (a...
Direct Linear Transformation Method for Three-Dimensional Cinematography
ERIC Educational Resources Information Center
Shapiro, Robert
1978-01-01
The ability of Direct Linear Transformation Method for three-dimensional cinematography to locate points in space was shown to meet the accuracy requirements associated with research on human movement. (JD)
Solution of elastoplastic torsion problem by boundary integral method
NASA Technical Reports Server (NTRS)
Mendelson, A.
1975-01-01
The boundary integral method was applied to the elastoplastic analysis of the torsion of prismatic bars, and the results are compared with those obtained by the finite difference method. Although fewer unknowns were used, very good accuracy was obtained with the boundary integral method. Both simply and multiply connected bodies can be handled with equal ease.
Electron beam directed energy device and methods of using same
Retsky, Michael W.
2007-10-16
A method and apparatus is disclosed for an electron beam directed energy device. The device consists of an electron gun with one or more electron beams. The device includes one or more accelerating plates with holes aligned for beam passage. The plates may be flat or preferably shaped to direct each electron beam to exit the electron gun at a predetermined orientation. In one preferred application, the device is located in outer space with individual beams that are directed to focus at a distant target to be used to impact and destroy missiles. The aimings of the separate beams are designed to overcome Coulomb repulsion. A method is also presented for directing the beams to a target considering the variable terrestrial magnetic field. In another preferred application, the electron beam is directed into the ground to produce a subsurface x-ray source to locate and/or destroy buried or otherwise hidden objects including explosive devices.
A GPU-accelerated direct-sum boundary integral Poisson-Boltzmann solver
NASA Astrophysics Data System (ADS)
Geng, Weihua; Jacob, Ferosh
2013-06-01
In this paper, we present a GPU-accelerated direct-sum boundary integral method to solve the linear Poisson-Boltzmann (PB) equation. In our method, a well-posed boundary integral formulation is used to ensure the fast convergence of Krylov subspace based linear algebraic solver such as the GMRES. The molecular surfaces are discretized with flat triangles and centroid collocation. To speed up our method, we take advantage of the parallel nature of the boundary integral formulation and parallelize the schemes within CUDA shared memory architecture on GPU. The schemes use only 11N+6Nc size-of-double device memory for a biomolecule with N triangular surface elements and Nc partial charges. Numerical tests of these schemes show well-maintained accuracy and fast convergence. The GPU implementation using one GPU card (Nvidia Tesla M2070) achieves 120-150X speed-up to the implementation using one CPU (Intel L5640 2.27 GHz). With our approach, solving PB equations on well-discretized molecular surfaces with up to 300,000 boundary elements will take less than about 10 min, hence our approach is particularly suitable for fast electrostatics computations on small to medium biomolecules.
Multiple methods integration for structural mechanics analysis and design
NASA Technical Reports Server (NTRS)
Housner, J. M.; Aminpour, M. A.
1991-01-01
A new research area of multiple methods integration is proposed for joining diverse methods of structural mechanics analysis which interact with one another. Three categories of multiple methods are defined: those in which a physical interface are well defined; those in which a physical interface is not well-defined, but selected; and those in which the interface is a mathematical transformation. Two fundamental integration procedures are presented that can be extended to integrate various methods (e.g., finite elements, Rayleigh Ritz, Galerkin, and integral methods) with one another. Since the finite element method will likely be the major method to be integrated, its enhanced robustness under element distortion is also examined and a new robust shell element is demonstrated.
Integrated navigation method based on inertial navigation system and Lidar
NASA Astrophysics Data System (ADS)
Zhang, Xiaoyue; Shi, Haitao; Pan, Jianye; Zhang, Chunxi
2016-04-01
An integrated navigation method based on the inertial navigational system (INS) and Lidar was proposed for land navigation. Compared with the traditional integrated navigational method and dead reckoning (DR) method, the influence of the inertial measurement unit (IMU) scale factor and misalignment was considered in the new method. First, the influence of the IMU scale factor and misalignment on navigation accuracy was analyzed. Based on the analysis, the integrated system error model of INS and Lidar was established, in which the IMU scale factor and misalignment error states were included. Then the observability of IMU error states was analyzed. According to the results of the observability analysis, the integrated system was optimized. Finally, numerical simulation and a vehicle test were carried out to validate the availability and utility of the proposed INS/Lidar integrated navigational method. Compared with the test result of a traditional integrated navigation method and DR method, the proposed integrated navigational method could result in a higher navigation precision. Consequently, the IMU scale factor and misalignment error were effectively compensated by the proposed method and the new integrated navigational method is valid.
Psychiatric Advance Directives and Social Workers: An Integrative Review
ERIC Educational Resources Information Center
Van Dorn, Richard A.; Scheyett, Anna; Swanson, Jeffrey W.; Swartz, Marvin S.
2010-01-01
Psychiatric advance directives (PADs) are legal documents that allow individuals to express their wishes for future psychiatric care and to authorize a legally appointed proxy to make decisions on their behalf during incapacitating crises. PADs are viewed as an alternative to the coercive interventions that sometimes accompany mental health crises…
Direct Assessment of IS Student Learning Using an Integrative Exercise
ERIC Educational Resources Information Center
McKell, Lynn J.; Hansen, Gary; Albrecht, Conan
2008-01-01
The assessment of learning objectives has become an important element in the improvement and accreditation of academic programs, including information systems (IS). Indirect assessments have been common in these endeavors, but direct assessments have been sparse. In the first semester at Brigham Young University (BYU), IS students take four…
An Integrative Conceptual Framework of Disability: New Directions for Research.
ERIC Educational Resources Information Center
Tate, Denise G.; Pledger, Constance
2003-01-01
Examines various disability paradigms across time, assessing the relative contribution of the socioecological perspective in guiding research designed to improve the lives of people with disabilities. Recommends new research directions that include a focus on life span issues, biomedicine, biotechnology, the efficacy and effectiveness of current…
New directions for Artificial Intelligence (AI) methods in optimum design
NASA Technical Reports Server (NTRS)
Hajela, Prabhat
1989-01-01
Developments and applications of artificial intelligence (AI) methods in the design of structural systems is reviewed. Principal shortcomings in the current approach are emphasized, and the need for some degree of formalism in the development environment for such design tools is underscored. Emphasis is placed on efforts to integrate algorithmic computations in expert systems.
NASA Astrophysics Data System (ADS)
Hesch, Christian; Betsch, Peter
2011-10-01
The present work deals with the development of an energy-momentum conserving method to unilateral contact constraints and is a direct continuation of a previous work (Hesch and Betsch in Comput Mech 2011, doi: 10.1007/s00466-011-0597-2) dealing with the NTS method. In this work, we introduce the mortar method and a newly developed segmentation process for the consistent integration of the contact interface. For the application of the energy-momentum approach to mortar constraints, we extend an approach based on a mixed formulation to the segment definition of the mortar constraints. The enhanced numerical stability of the newly proposed discretization method will be shown in several examples.
Wang, Pengfei; Hatta, Agus Muhamad; Zhao, Haoyu; Zheng, Jie; Farrell, Gerald; Brambilla, Gilberto
2015-01-01
A ratiometric wavelength measurement based on a Silicon-on-Insulator (SOI) integrated device is proposed and designed, which consists of directional couplers acting as two edge filters with opposite spectral responses. The optimal separation distance between two parallel silicon waveguides and the interaction length of the directional coupler are designed to meet the desired spectral response by using local supermodes. The wavelength discrimination ability of the designed ratiometric structure is demonstrated by a beam propagation method numerically and then is verified experimentally. The experimental results have shown a general agreement with the theoretical models. The ratiometric wavelength system demonstrates a resolution of better than 50 pm at a wavelength around 1550 nm with ease of assembly and calibration. PMID:26343668
Wang, Pengfei; Hatta, Agus Muhamad; Zhao, Haoyu; Zheng, Jie; Farrell, Gerald; Brambilla, Gilberto
2015-01-01
A ratiometric wavelength measurement based on a Silicon-on-Insulator (SOI) integrated device is proposed and designed, which consists of directional couplers acting as two edge filters with opposite spectral responses. The optimal separation distance between two parallel silicon waveguides and the interaction length of the directional coupler are designed to meet the desired spectral response by using local supermodes. The wavelength discrimination ability of the designed ratiometric structure is demonstrated by a beam propagation method numerically and then is verified experimentally. The experimental results have shown a general agreement with the theoretical models. The ratiometric wavelength system demonstrates a resolution of better than 50 pm at a wavelength around 1550 nm with ease of assembly and calibration. PMID:26343668
An equivalent domain integral method for three-dimensional mixed-mode fracture problems
NASA Technical Reports Server (NTRS)
Shivakumar, K. N.; Raju, I. S.
1991-01-01
A general formulation of the equivalent domain integral (EDI) method for mixed mode fracture problems in cracked solids is presented. The method is discussed in the context of a 3-D finite element analysis. The J integral consists of two parts: the volume integral of the crack front potential over a torus enclosing the crack front and the crack surface integral due to the crack front potential plus the crack face loading. In mixed mode crack problems the total J integral is split into J sub I, J sub II, and J sub III representing the severity of the crack front in three modes of deformations. The direct and decomposition methods are used to separate the modes. These two methods were applied to several mixed mode fracture problems, were analyzed, and results were found to agree well with those available in the literature. The method lends itself to be used as a post-processing subroutine in a general purpose finite element program.
An equivalent domain integral method for three-dimensional mixed-mode fracture problems
NASA Technical Reports Server (NTRS)
Shivakumar, K. N.; Raju, I. S.
1992-01-01
A general formulation of the equivalent domain integral (EDI) method for mixed mode fracture problems in cracked solids is presented. The method is discussed in the context of a 3-D finite element analysis. The J integral consists of two parts: the volume integral of the crack front potential over a torus enclosing the crack front and the crack surface integral due to the crack front potential plus the crack face loading. In mixed mode crack problems the total J integral is split into J sub I, J sub II, and J sub III representing the severity of the crack front in three modes of deformations. The direct and decomposition methods are used to separate the modes. These two methods were applied to several mixed mode fracture problems, were analyzed, and results were found to agree well with those available in the literature. The method lends itself to be used as a post-processing subroutine in a general purpose finite element program.
High Throughput Screening and Selection Methods for Directed Enzyme Evolution
2015-01-01
Successful evolutionary enzyme engineering requires a high throughput screening or selection method, which considerably increases the chance of obtaining desired properties and reduces the time and cost. In this review, a series of high throughput screening and selection methods are illustrated with significant and recent examples. These high throughput strategies are also discussed with an emphasis on compatibility with phenotypic analysis during directed enzyme evolution. Lastly, certain limitations of current methods, as well as future developments, are briefly summarized. PMID:26074668
Integrated GNSS Attitude Determination and Positioning for Direct Geo-Referencing
Nadarajah, Nandakumaran; Paffenholz, Jens-André; Teunissen, Peter J. G.
2014-01-01
Direct geo-referencing is an efficient methodology for the fast acquisition of 3D spatial data. It requires the fusion of spatial data acquisition sensors with navigation sensors, such as Global Navigation Satellite System (GNSS) receivers. In this contribution, we consider an integrated GNSS navigation system to provide estimates of the position and attitude (orientation) of a 3D laser scanner. The proposed multi-sensor system (MSS) consists of multiple GNSS antennas rigidly mounted on the frame of a rotating laser scanner and a reference GNSS station with known coordinates. Precise GNSS navigation requires the resolution of the carrier phase ambiguities. The proposed method uses the multivariate constrained integer least-squares (MC-LAMBDA) method for the estimation of rotating frame ambiguities and attitude angles. MC-LAMBDA makes use of the known antenna geometry to strengthen the underlying attitude model and, hence, to enhance the reliability of rotating frame ambiguity resolution and attitude determination. The reliable estimation of rotating frame ambiguities is consequently utilized to enhance the relative positioning of the rotating frame with respect to the reference station. This integrated (array-aided) method improves ambiguity resolution, as well as positioning accuracy between the rotating frame and the reference station. Numerical analyses of GNSS data from a real-data campaign confirm the improved performance of the proposed method over the existing method. In particular, the integrated method yields reliable ambiguity resolution and reduces position standard deviation by a factor of about 0.8, matching the theoretical gain of 3/4 for two antennas on the rotating frame and a single antenna at the reference station. PMID:25036330
Integrated GNSS attitude determination and positioning for direct geo-referencing.
Nadarajah, Nandakumaran; Paffenholz, Jens-André; Teunissen, Peter J G
2014-01-01
Direct geo-referencing is an efficient methodology for the fast acquisition of 3D spatial data. It requires the fusion of spatial data acquisition sensors with navigation sensors, such as Global Navigation Satellite System (GNSS) receivers. In this contribution, we consider an integrated GNSS navigation system to provide estimates of the position and attitude (orientation) of a 3D laser scanner. The proposed multi-sensor system (MSS) consists of multiple GNSS antennas rigidly mounted on the frame of a rotating laser scanner and a reference GNSS station with known coordinates. Precise GNSS navigation requires the resolution of the carrier phase ambiguities. The proposed method uses the multivariate constrained integer least-squares (MC-LAMBDA) method for the estimation of rotating frame ambiguities and attitude angles. MC-LAMBDA makes use of the known antenna geometry to strengthen the underlying attitude model and, hence, to enhance the reliability of rotating frame ambiguity resolution and attitude determination. The reliable estimation of rotating frame ambiguities is consequently utilized to enhance the relative positioning of the rotating frame with respect to the reference station. This integrated (array-aided) method improves ambiguity resolution, as well as positioning accuracy between the rotating frame and the reference station. Numerical analyses of GNSS data from a real-data campaign confirm the improved performance of the proposed method over the existing method. In particular, the integrated method yields reliable ambiguity resolution and reduces position standard deviation by a factor of about 0:8, matching the theoretical gain of √ 3/4 for two antennas on the rotating frame and a single antenna at the reference station. PMID:25036330
Accelerometer method and apparatus for integral display and control functions
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor)
1992-01-01
Vibration analysis has been used for years to provide a determination of the proper functioning of different types of machinery, including rotating machinery and rocket engines. A determination of a malfunction, if detected at a relatively early stage in its development, will allow changes in operating mode or a sequenced shutdown of the machinery prior to a total failure. Such preventative measures result in less extensive and/or less expensive repairs, and can also prevent a sometimes catastrophic failure of equipment. Standard vibration analyzers are generally rather complex, expensive, and of limited portability. They also usually result in displays and controls being located remotely from the machinery being monitored. Consequently, a need exists for improvements in accelerometer electronic display and control functions which are more suitable for operation directly on machines and which are not so expensive and complex. The invention includes methods and apparatus for detecting mechanical vibrations and outputting a signal in response thereto. The apparatus includes an accelerometer package having integral display and control functions. The accelerometer package is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine condition over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase over the selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated. The benefits of a vibration recording and monitoring system with controls and displays readily
Bi-directional evolutionary level set method for topology optimization
NASA Astrophysics Data System (ADS)
Zhu, Benliang; Zhang, Xianmin; Fatikow, Sergej; Wang, Nianfeng
2015-03-01
A bi-directional evolutionary level set method for solving topology optimization problems is presented in this article. The proposed method has three main advantages over the standard level set method. First, new holes can be automatically generated in the design domain during the optimization process. Second, the dependency of the obtained optimized configurations upon the initial configurations is eliminated. Optimized configurations can be obtained even being started from a minimum possible initial guess. Third, the method can be easily implemented and is computationally more efficient. The validity of the proposed method is tested on the mean compliance minimization problem and the compliant mechanisms topology optimization problem.
Integrating Qualitative and Quantitative Evaluation Methods in Substance Abuse Research.
ERIC Educational Resources Information Center
Dennis, Michael L.; And Others
1994-01-01
Some specific opportunities and techniques are described for combining and integrating qualitative and quantitative methods from the design stage of a substance abuse program evaluation through implementation and reporting. The multiple problems and requirements of such an evaluation make integrated methods essential. (SLD)
Calculation of unsteady transonic flows using the integral equation method
NASA Technical Reports Server (NTRS)
Nixon, D.
1978-01-01
The basic integral equations for a harmonically oscillating airfoil in a transonic flow with shock waves are derived; the reduced frequency is assumed to be small. The problems associated with shock wave motion are treated using a strained coordinate system. The integral equation is linear and consists of both line integrals and surface integrals over the flow field which are evaluated by quadrature. This leads to a set of linear algebraic equations that can be solved directly. The shock motion is obtained explicitly by enforcing the condition that the flow is continuous except at a shock wave. Results obtained for both lifting and nonlifting oscillatory flows agree satisfactorily with other accurate results.
Apparatus and method for a light direction sensor
NASA Technical Reports Server (NTRS)
Leviton, Douglas B. (Inventor)
2011-01-01
The present invention provides a light direction sensor for determining the direction of a light source. The system includes an image sensor; a spacer attached to the image sensor, and a pattern mask attached to said spacer. The pattern mask has a slit pattern that as light passes through the slit pattern it casts a diffraction pattern onto the image sensor. The method operates by receiving a beam of light onto a patterned mask, wherein the patterned mask as a plurality of a slit segments. Then, diffusing the beam of light onto an image sensor and determining the direction of the light source.
Application of two direct runoff prediction methods in Puerto Rico
Sepulveda, N.
1997-01-01
Two methods for predicting direct runoff from rainfall data were applied to several basins and the resulting hydrographs compared to measured values. The first method uses a geomorphology-based unit hydrograph to predict direct runoff through its convolution with the excess rainfall hyetograph. The second method shows how the resulting hydraulic routing flow equation from a kinematic wave approximation is solved using a spectral method based on the matrix representation of the spatial derivative with Chebyshev collocation and a fourth-order Runge-Kutta time discretization scheme. The calibrated Green-Ampt (GA) infiltration parameters are obtained by minimizing the sum, over several rainfall events, of absolute differences between the total excess rainfall volume computed from the GA equations and the total direct runoff volume computed from a hydrograph separation technique. The improvement made in predicting direct runoff using a geomorphology-based unit hydrograph with the ephemeral and perennial stream network instead of the strictly perennial stream network is negligible. The hydraulic routing scheme presented here is highly accurate in predicting the magnitude and time of the hydrograph peak although the much faster unit hydrograph method also yields reasonable results.
Integration design of endoscopes with different viewing directions
NASA Astrophysics Data System (ADS)
Zhang, Lingyun; Cheng, Dewen; Wang, Yongtian
2015-09-01
High definition and magnification rigid endoscope is a significant equipment in the examination and surgery. In this paper, the design of a high definition (HD) rigid endoscope is presented with a FOV of 70°. The entrance pupil is 0.3 mm, achieved for the first time to our best knowledge. For the fabricated prototype, the theoretical resolution is 22.3 lp/mm at an object distance of 20 mm, the depth of field (DOF) is 115 mm and the stray light is eliminated effectively. The viewing angle of the developed endoscope is zero. However, the endoscope with non-zero viewing angle is more popular in some conditions, we present two designs with non-zero viewing direction for better observation and diagnosis of lesions on inner walls of organs and tissues.
Direct Solve of Electrically Large Integral Equations for Problem Sizes to 1M Unknowns
NASA Technical Reports Server (NTRS)
Shaeffer, John
2008-01-01
Matrix methods for solving integral equations via direct solve LU factorization are presently limited to weeks to months of very expensive supercomputer time for problems sizes of several hundred thousand unknowns. This report presents matrix LU factor solutions for electromagnetic scattering problems for problem sizes to one million unknowns with thousands of right hand sides that run in mere days on PC level hardware. This EM solution is accomplished by utilizing the numerical low rank nature of spatially blocked unknowns using the Adaptive Cross Approximation for compressing the rank deficient blocks of the system Z matrix, the L and U factors, the right hand side forcing function and the final current solution. This compressed matrix solution is applied to a frequency domain EM solution of Maxwell's equations using standard Method of Moments approach. Compressed matrix storage and operations count leads to orders of magnitude reduction in memory and run time.
Integrated molecular mechanism directing nucleosome reorganization by human FACT
Tsunaka, Yasuo; Fujiwara, Yoshie; Oyama, Takuji; Hirose, Susumu; Morikawa, Kosuke
2016-01-01
Facilitates chromatin transcription (FACT) plays essential roles in chromatin remodeling during DNA transcription, replication, and repair. Our structural and biochemical studies of human FACT–histone interactions present precise views of nucleosome reorganization, conducted by the FACT-SPT16 (suppressor of Ty 16) Mid domain and its adjacent acidic AID segment. AID accesses the H2B N-terminal basic region exposed by partial unwrapping of the nucleosomal DNA, thereby triggering the invasion of FACT into the nucleosome. The crystal structure of the Mid domain complexed with an H3–H4 tetramer exhibits two separate contact sites; the Mid domain forms a novel intermolecular β structure with H4. At the other site, the Mid–H2A steric collision on the H2A-docking surface of the H3–H4 tetramer within the nucleosome induces H2A–H2B displacement. This integrated mechanism results in disrupting the H3 αN helix, which is essential for retaining the nucleosomal DNA ends, and hence facilitates DNA stripping from histone. PMID:26966247
Integrated molecular mechanism directing nucleosome reorganization by human FACT.
Tsunaka, Yasuo; Fujiwara, Yoshie; Oyama, Takuji; Hirose, Susumu; Morikawa, Kosuke
2016-03-15
Facilitates chromatin transcription (FACT) plays essential roles in chromatin remodeling during DNA transcription, replication, and repair. Our structural and biochemical studies of human FACT-histone interactions present precise views of nucleosome reorganization, conducted by the FACT-SPT16 (suppressor of Ty 16) Mid domain and its adjacent acidic AID segment. AID accesses the H2B N-terminal basic region exposed by partial unwrapping of the nucleosomal DNA, thereby triggering the invasion of FACT into the nucleosome. The crystal structure of the Mid domain complexed with an H3-H4 tetramer exhibits two separate contact sites; the Mid domain forms a novel intermolecular β structure with H4. At the other site, the Mid-H2A steric collision on the H2A-docking surface of the H3-H4 tetramer within the nucleosome induces H2A-H2B displacement. This integrated mechanism results in disrupting the H3 αN helix, which is essential for retaining the nucleosomal DNA ends, and hence facilitates DNA stripping from histone. PMID:26966247
Treatment of domain integrals in boundary element methods
Nintcheu Fata, Sylvain
2012-01-01
A systematic and rigorous technique to calculate domain integrals without a volume-fitted mesh has been developed and validated in the context of a boundary element approximation. In the proposed approach, a domain integral involving a continuous or weakly-singular integrand is first converted into a surface integral by means of straight-path integrals that intersect the underlying domain. Then, the resulting surface integral is carried out either via analytic integration over boundary elements or by use of standard quadrature rules. This domain-to-boundary integral transformation is derived from an extension of the fundamental theorem of calculus to higher dimension, and the divergence theorem. In establishing the method, it is shown that the higher-dimensional version of the first fundamental theorem of calculus corresponds to the well-known Poincare lemma. The proposed technique can be employed to evaluate integrals defined over simply- or multiply-connected domains with Lipschitz boundaries which are embedded in an Euclidean space of arbitrary but finite dimension. Combined with the singular treatment of surface integrals that is widely available in the literature, this approach can also be utilized to effectively deal with boundary-value problems involving non-homogeneous source terms by way of a collocation or a Galerkin boundary integral equation method using only the prescribed surface discretization. Sample problems associated with the three-dimensional Poisson equation and featuring the Newton potential are successfully solved by a constant element collocation method to validate this study.
Integral Education: New Directions for Higher Learning. SUNY Series in Integral Theory
ERIC Educational Resources Information Center
Esbjorn-Hargens, Sean, Ed.; Reams, Jonathan, Ed.; Gunnlaugson, Olen, Ed.
2010-01-01
The educational challenges faced today are driving us toward a new step in the evolution of educational theory and practice. Educators are called to go beyond simply presenting alternatives, to integrating the best of mainstream and alternative approaches and taking them to the next level. "Integral Education" accomplishes this by bringing…
Generalized directed loop method for quantum Monte Carlo simulations.
Alet, Fabien; Wessel, Stefan; Troyer, Matthias
2005-03-01
Efficient quantum Monte Carlo update schemes called directed loops have recently been proposed, which improve the efficiency of simulations of quantum lattice models. We propose to generalize the detailed balance equations at the local level during the loop construction by accounting for the matrix elements of the operators associated with open world-line segments. Using linear programming techniques to solve the generalized equations, we look for optimal construction schemes for directed loops. This also allows for an extension of the directed loop scheme to general lattice models, such as high-spin or bosonic models. The resulting algorithms are bounce free in larger regions of parameter space than the original directed loop algorithm. The generalized directed loop method is applied to the magnetization process of spin chains in order to compare its efficiency to that of previous directed loop schemes. In contrast to general expectations, we find that minimizing bounces alone does not always lead to more efficient algorithms in terms of autocorrelations of physical observables, because of the nonuniqueness of the bounce-free solutions. We therefore propose different general strategies to further minimize autocorrelations, which can be used as supplementary requirements in any directed loop scheme. We show by calculating autocorrelation times for different observables that such strategies indeed lead to improved efficiency; however, we find that the optimal strategy depends not only on the model parameters but also on the observable of interest. PMID:15903632
Method to directly radiolabel antibodies for diagnostic imaging and therapy
Thakur, Mathew L.
1994-01-01
The invention is a novel method and kit for directly radiolabeling proteins such as antibodies or antibody fragments for diagnostic and therapeutic purposes. The method comprises incubating a protein-containing solution with a solution of sodium ascorbate; adding a required quantity of reduced radionuclide to the incubated protein. A kit is also provided wherein the protein and/or reducing agents may be in lyophilized form.
Method to directly radiolabel antibodies for diagnostic imaging and therapy
Thakur, Mathew L.
1991-01-01
The invention is a novel method and kit for directly radiolabeling proteins such as antibodies or antibody fragments for diagnostic and therapeutic purposes. The method comprises incubating a protein-containing solution with a solution of sodium ascorbate; adding a required quantity of reduced radionuclide to the incubated protein. A kit is also provided wherein the protein and/or reducing agents may be in lyophilized form.
Advances and future directions of research on spectral methods
NASA Technical Reports Server (NTRS)
Patera, A. T.
1986-01-01
Recent advances in spectral methods are briefly reviewed and characterized with respect to their convergence and computational complexity. Classical finite element and spectral approaches are then compared, and spectral element (or p-type finite element) approximations are introduced. The method is applied to the full Navier-Stokes equations, and examples are given of the application of the technique to several transitional flows. Future directions of research in the field are outlined.
Direct current uninterruptible power supply method and system
Sinha, Gautam
2003-12-02
A method and system are described for providing a direct current (DC) uninterruptible power supply with the method including, for example: continuously supplying fuel to a turbine; converting mechanical power from the turbine into alternating current (AC) electrical power; converting the AC electrical power to DC power within a predetermined voltage level range; supplying the DC power to a load; and maintaining a DC load voltage within the predetermined voltage level range by adjusting the amount of fuel supplied to the turbine.
Computational methods for inlet airframe integration
NASA Technical Reports Server (NTRS)
Towne, Charles E.
1988-01-01
Fundamental equations encountered in computational fluid dynamics (CFD), and analyses used for internal flow are introduced. Irrotational flow; Euler equations; boundary layers; parabolized Navier-Stokes equations; and time averaged Navier-Stokes equations are treated. Assumptions made and solution methods are outlined, with examples. The overall status of CFD in propulsion is indicated.
Integrated method for chaotic time series analysis
Hively, L.M.; Ng, E.G.
1998-09-29
Methods and apparatus for automatically detecting differences between similar but different states in a nonlinear process monitor nonlinear data are disclosed. Steps include: acquiring the data; digitizing the data; obtaining nonlinear measures of the data via chaotic time series analysis; obtaining time serial trends in the nonlinear measures; and determining by comparison whether differences between similar but different states are indicated. 8 figs.
Integrated method for chaotic time series analysis
Hively, Lee M.; Ng, Esmond G.
1998-01-01
Methods and apparatus for automatically detecting differences between similar but different states in a nonlinear process monitor nonlinear data. Steps include: acquiring the data; digitizing the data; obtaining nonlinear measures of the data via chaotic time series analysis; obtaining time serial trends in the nonlinear measures; and determining by comparison whether differences between similar but different states are indicated.
Integrating Formal Methods and Testing 2002
NASA Technical Reports Server (NTRS)
Cukic, Bojan
2002-01-01
Traditionally, qualitative program verification methodologies and program testing are studied in separate research communities. None of them alone is powerful and practical enough to provide sufficient confidence in ultra-high reliability assessment when used exclusively. Significant advances can be made by accounting not only tho formal verification and program testing. but also the impact of many other standard V&V techniques, in a unified software reliability assessment framework. The first year of this research resulted in the statistical framework that, given the assumptions on the success of the qualitative V&V and QA procedures, significantly reduces the amount of testing needed to confidently assess reliability at so-called high and ultra-high levels (10-4 or higher). The coming years shall address the methodologies to realistically estimate the impacts of various V&V techniques to system reliability and include the impact of operational risk to reliability assessment. Combine formal correctness verification, process and product metrics, and other standard qualitative software assurance methods with statistical testing with the aim of gaining higher confidence in software reliability assessment for high-assurance applications. B) Quantify the impact of these methods on software reliability. C) Demonstrate that accounting for the effectiveness of these methods reduces the number of tests needed to attain certain confidence level. D) Quantify and justify the reliability estimate for systems developed using various methods.
Shape integral method for magnetospheric shapes. [boundary layer calculations
NASA Technical Reports Server (NTRS)
Michel, F. C.
1979-01-01
A method is developed for calculating the shape of any magnetopause to arbitrarily high precision. The method uses an integral equation which is evaluated for a trial shape. The resulting values of the integral equation as a function of auxiliary variables indicate how close one is to the desired solution. A variational method can then be used to improve the trial shape. Some potential applications are briefly mentioned.
One directional polarized neutron reflectometry with optimized reference layer method
NASA Astrophysics Data System (ADS)
Masoudi, S. Farhad; Jahromi, Saeed S.
2012-09-01
In the past decade, several neutron reflectometry methods for determining the modulus and phase of the complex reflection coefficient of an unknown multilayer thin film have been worked out among which the method of variation of surroundings and reference layers are of highest interest. These methods were later modified for measurement of the polarization of the reflected beam instead of the measurement of the intensities. In their new architecture, these methods not only suffered from the necessity of change of experimental setup but also another difficulty was added to their experimental implementations. This deficiency was related to the limitations of the technology of the neutron reflectometers that could only measure the polarization of the reflected neutrons in the same direction as the polarization of the incident beam. As the instruments are limited, the theory has to be optimized so that the experiment could be performed. In a recent work, we developed the method of variation of surroundings for one directional polarization analysis. In this new work, the method of reference layer with polarization analysis has been optimized to determine the phase and modulus of the unknown film with measurement of the polarization of the reflected neutrons in the same direction as the polarization of the incident beam.
A Preliminary Investigation of the Direct Standard Setting Method.
ERIC Educational Resources Information Center
Jones, J. Patrick; And Others
Three studies assessed the psychometric characteristics of the Direct Standard Setting Method (DSSM). The Angoff technique was also used in each study. The DSSM requires judges to consider an examination 10 items at a time and determine the minimum items in that set a candidate should answer correctly to receive the credential. Nine judges set a…
Method to directly radiolabel antibodies for diagnostic imaging and therapy
Thakur, M.L.
1991-04-30
This patent describes a method for directly labeling proteins with radionuclides for use in diagnostic imaging and therapy. It comprises: the steps of incubating a protein-containing solution with a solution of sodium ascorbate; adding a required quantity of reduced radionuclide to the incubated protein-containing solution and incubating.
Unsaturated hydraulic parameters determined from direct and indirect methods
Flint, Lorraine E.; Hudson, David B.; Flint, Alan L.
1997-10-22
Hydraulic parameters are required for numerical simulations of unsaturated flow at Yucca Mountain, a vertically heterogeneous volcanic site for a potential high-level waste repository in the desert southwest. In this paper, direct measurements of the unsaturated hydraulic conductivity using a centrifuge with a specialized rotor are compared to those estimated using a predictive conductivity equation and two methods of measuring moisture retention.
Stevens' Direct Scaling Methods and the Uniqueness Problem
ERIC Educational Resources Information Center
Augustin, Thomas
2006-01-01
Stevens postulated that we can use the responses of a participant in a ratio scaling experiment directly to construct a psychophysical function representing the participant's sensations. Although Stevens' methods of constructing measurement scales are widely used in the behavioral sciences, the problem of which scale type is appropriate to…
Psychiatric advance directives and social workers: an integrative review.
Van Dorn, Richard A; Scheyett, Anna; Swanson, Jeffrey W; Swartz, Marvin S
2010-04-01
Psychiatric advance directives (PADs) are legal documents that allow individuals to express their wishes for future psychiatric care and to authorize a legally appointed proxy to make decisions on their behalf during incapacitating crises. PADs are viewed as an alternative to the coercive interventions that sometimes accompany mental health crises for people with mental illness. Insofar as coercive interventions can abridge clients' autonomy and self-determination--values supported by the NASW Code of Ethics--social workers have a vested interest in finding ways to reduce coercion and increase autonomy and self-determination in their practice. However, PADs are also viewed as having the potential to positively affect a variety of other clinical outcomes, including, but not limited to, treatment engagement, treatment satisfaction, and working alliance. This article reviews the clinical and legal history of PADs and empirical evidence for their implementation and effectiveness. Despite what should be an inherent interest in PADs and the fact that laws authorizing PADs have proliferated in the past decade, there is little theoretical or empirical research on PADS in the social work literature. PMID:20408357
Psychiatric Advance Directives and Social Workers: An Integrative Review
Van Dorn, Richard A.; Scheyett, Anna; Swanson, Jeffrey W.; Swartz, Marvin S.
2013-01-01
Psychiatric Advance Directives (PADs) are legal documents that allow individuals to express their wishes for future psychiatric care and to authorize a legally appointed proxy to make decisions on their behalf during incapacitating crises. PADs are viewed as an alternative to the coercive interventions that sometimes accompany mental health crises for persons with mental illness. Insofar as coercive interventions can abridge clients’ autonomy and self-determination -- values supported by the Profession’s Code of Ethics -- social workers have a vested interest in finding ways to reduce coercion and increase autonomy and self-determination in their practice. However, PADs are also viewed as having the potential to positively affect a variety of other clinical outcomes, including but not limited to treatment engagement, treatment satisfaction, and working alliance. This article reviews the clinical and legal history of PADs and empirical evidence for their implementation and effectiveness. Despite what should be an inherent interest in PADs, and the fact that laws authorizing PADs have proliferated in the past decade, there is little theoretical or empirical research in the social work literature. PMID:20408357
Integrating task-directed planning with reactive object recognition
NASA Astrophysics Data System (ADS)
Dickinson, Sven J.; Stevenson, Suzanne; Amdur, Eugene; Tsotsos, John K.; Olsson, Lars
1993-08-01
We describe a robot vision system that achieves complex object recognition with two layers of behaviors, performing the tasks of planning and object recognition, respectively. The recognition layer is a pipeline in which successive stages take in images from a stereo head, recover relevant features, build intermediate representations, and deposit 3-D objects into a world model. Each stage is an independent process that reacts automatically to output from the previous stage. This reactive system operates continuously and autonomously to construct the robot's 3-D model of the environment. Sitting above the recognition pipeline is the planner which is responsible for populating the world model with objects that satisfy the high-level goals of the system. For example, upon examination of the world model, the planner can decide to direct the head to another location, gating new images into the recognition pipeline, causing new objects to be deposited into the world model. Alternatively, the planner can alter the recognition behavior of the pipeline so that objects of a certain type or at a certain location appear in the world model.
Damping identification in frequency domain using integral method
NASA Astrophysics Data System (ADS)
Guo, Zhiwei; Sheng, Meiping; Ma, Jiangang; Zhang, Wulin
2015-03-01
A new method for damping identification of linear system in frequency domain is presented, by using frequency response function (FRF) with integral method. The FRF curve is firstly transformed to other type of frequency-related curve by changing the representations of horizontal and vertical axes. For the newly constructed frequency-related curve, integral is conducted and the area forming from the new curve is used to determine the damping. Three different methods based on integral are proposed in this paper, which are called FDI-1, FDI-2 and FDI-3 method, respectively. For a single degree of freedom (Sdof) system, the formulated relation of each method between integrated area and loss factor is derived theoretically. The numeral simulation and experiment results show that, the proposed integral methods have high precision, strong noise resistance and are very stable in repeated measurements. Among the three integral methods, FDI-3 method is the most recommended because of its higher accuracy and simpler algorithm. The new methods are limited to linear system in which modes are well separated, and for closely spaced mode system, mode decomposition process should be conducted firstly.
NASA Astrophysics Data System (ADS)
Meng, Yang; Gao, Shesheng; Zhong, Yongmin; Hu, Gaoge; Subic, Aleksandar
2016-03-01
The use of the direct filtering approach for INS/GNSS integrated navigation introduces nonlinearity into the system state equation. As the unscented Kalman filter (UKF) is a promising method for nonlinear problems, an obvious solution is to incorporate the UKF concept in the direct filtering approach to address the nonlinearity involved in INS/GNSS integrated navigation. However, the performance of the standard UKF is dependent on the accurate statistical characterizations of system noise. If the noise distributions of inertial instruments and GNSS receivers are not appropriately described, the standard UKF will produce deteriorated or even divergent navigation solutions. This paper presents an adaptive UKF with noise statistic estimator to overcome the limitation of the standard UKF. According to the covariance matching technique, the innovation and residual sequences are used to determine the covariance matrices of the process and measurement noises. The proposed algorithm can estimate and adjust the system noise statistics online, and thus enhance the adaptive capability of the standard UKF. Simulation and experimental results demonstrate that the performance of the proposed algorithm is significantly superior to that of the standard UKF and adaptive-robust UKF under the condition without accurate knowledge on system noise, leading to improved navigation precision.
Direct structural damping identification method using complex FRFs
NASA Astrophysics Data System (ADS)
Arora, Vikas
2015-03-01
Most of the identification methods are based only on the viscous damping model and uses modal data. In this paper, a new FRF-based direct structural damping identification method is proposed. The proposed method is a direct method and identifies structural damping matrix explicitly. As the new method is a FRF-based method, it overcomes the problem of closely spaced modes for damping identification. The accuracy of identified structural damping matrix depends upon the accuracy of finite element model. In this paper, FRF-based model updating method is used to obtain accurate mass and stiffness matrices. Thus, the procedure to obtain accurate structural damping matrix is a two-step procedure. In the first step, mass and stiffness matrices are updated and in the second step, structural damping matrix is identified using updated mass and stiffness matrices, which are obtained in the previous step. The effectiveness of the new method is demonstrated by three numerical examples and one experimental example. The numerical studies of lumped mass system, fixed-fixed beam and L-shaped frame structure are carried out. The effects of coordinate incompleteness, ill-conditioning and robustness of method under presence of noise are investigated. The proposed method is able to predict FRFs accurately for the frequency range covering the modes considered. However, beyond the considered modes, the predicted FRFs do not match the experimental FRFs. It is suggested in this work that ill-conditioning problem should be dealt by considering all the modes in the frequency range of interest. The performance of the proposed method is investigated for cases of light, medium and heavily damped structures. The numerical studies are followed by experimental case study of cantilever beam structure. The effectiveness of the proposed method is evaluated by comparing the predicted and the experimental FRFs. The results have shown that the proposed method is able to predict accurately the
Yu, Zhao-Yan; Yuan, Ping; Pan, Yang; Zhang, Zhong-Min
2016-02-01
The aim of the present study was to explore a simple and safe method for central venous catheterization (CVC) from the right internal jugular vein (RIJV) by comparing carotid artery (CA) positioning with sternocleidomastoid (SCM) positioning. The medical records of patients who underwent CVC between January 2011 and January 2015 were retrospectively reviewed. Central venous catheters were inserted into the RIJV either above the level of the cricoid cartilage using the CA-directed method (419 patients, Group 1) or below the level of the cricoid cartilage using the SCM-directed method (436 patients, Group 2). Success rate and related complications of catheterization were evaluated in the two groups. The total success rate of RIJV cannulation in Group 1 (97.2%) was higher than that in Group 2 (94.5%). Moreover, the success rate at first attempt was significantly higher in Group 1 than in Group 2 (92.4% vs 86.9%). The incidence of hematoma was 1.6 per cent in Group 1 and 3.8 per cent in Group 2. The rate of other complications such as pneumothorax, catheter-related infections, and catheter occlusion did not significantly differ between the groups. In conclusions, CA-directed RIJV cannulation is more effective and simple to perform than the SCM-directed method, and should become the preferred CVC technique in the absence of ultrasound guidance. PMID:26874140
Exponential Methods for the Time Integration of Schroedinger Equation
Cano, B.; Gonzalez-Pachon, A.
2010-09-30
We consider exponential methods of second order in time in order to integrate the cubic nonlinear Schroedinger equation. We are interested in taking profit of the special structure of this equation. Therefore, we look at symmetry, symplecticity and approximation of invariants of the proposed methods. That will allow to integrate till long times with reasonable accuracy. Computational efficiency is also our aim. Therefore, we make numerical computations in order to compare the methods considered and so as to conclude that explicit Lawson schemes projected on the norm of the solution are an efficient tool to integrate this equation.
An Integral Method to Evaluate Wall Heat Flux Suitable For Experimental Data
NASA Astrophysics Data System (ADS)
Ebadi, Alireza; Mehdi, Faraz; White, Christopher
2013-11-01
An integral method to evaluate wall heat flux in turbulent boundary layers is presented. The method is mathematically exact and has the advantage of having no explicit streamwise gradient terms, thus making it amenable to experimental data. Using existing data sets, the method is shown to work in both zero- and adverse-pressure gradient boundary layers. The method is particularly useful for the latter case where Reynolds analogy does not hold and the wall heat flux must be measured directly.
Lean direct wall fuel injection method and devices
NASA Technical Reports Server (NTRS)
Choi, Kyung J. (Inventor); Tacina, Robert (Inventor)
2000-01-01
A fuel combustion chamber, and a method of and a nozzle for mixing liquid fuel and air in the fuel combustion chamber in lean direct injection combustion for advanced gas turbine engines, including aircraft engines. Liquid fuel in a form of jet is injected directly into a cylindrical combustion chamber from the combustion chamber wall surface in a direction opposite to the direction of the swirling air at an angle of from about 50.degree. to about 60.degree. with respect to a tangential line of the cylindrical combustion chamber and at a fuel-lean condition, with a liquid droplet momentum to air momentum ratio in the range of from about 0.05 to about 0.12. Advanced gas turbines benefit from lean direct wall injection combustion. The lean direct wall injection technique of the present invention provides fast, uniform, well-stirred mixing of fuel and air. In addition, in order to further improve combustion, the fuel can be injected at a venturi located in the combustion chamber at a point adjacent the air swirler.
A Rationale for Mixed Methods (Integrative) Research Programmes in Education
ERIC Educational Resources Information Center
Niaz, Mansoor
2008-01-01
Recent research shows that research programmes (quantitative, qualitative and mixed) in education are not displaced (as suggested by Kuhn) but rather lead to integration. The objective of this study is to present a rationale for mixed methods (integrative) research programs based on contemporary philosophy of science (Lakatos, Giere, Cartwright,…
A new direct design method for the medium thickness wind turbine airfoil
NASA Astrophysics Data System (ADS)
Wang, Quan; Chen, Jin; Pang, Xiaoping; Li, Songlin; Guo, Xiaofeng
2013-11-01
The newly developed integral function of airfoil profiles based on Trajkovski conformal transform theory could be used to optimize the profiles for the thin thickness airfoil. However, it is hard to adjust the coefficients of the integral function for the medium thickness airfoil. B-spline curve has an advantage of local adjustment, which makes it to effectively control the airfoil profiles at the trailing edge. Therefore, a new direct design method for the medium thickness wind turbine airfoil based on airfoil integral expression and B-spline curve is presented in this paper. An optimal mathematical model of an airfoil is built. Two new airfoils with similar thickness, based on the new designed method and the original integral method, are designed. According to the comparative analysis, the CQU-A25 airfoil designed based on the new method exhibits better results than that of the CQU-I25 airfoil which is designed based on the original method. It is demonstrated that the new method is feasible to design wind turbine airfoils. Meanwhile, the comparison of the aerodynamic performance for the CQU-A25 airfoil and for the DU91-W2-250 airfoil is studied. Results show that the maximum lift coefficient and the maximum lift/drag ratio of the CQU-A25 airfoil are higher than the ones of DU91-W2-250 airfoil in the same condition. This new airfoil design method would make it possible to design other airfoils with different thicknesses.
Mutant fatty acid desaturase and methods for directed mutagenesis
Shanklin, John; Whittle, Edward J.
2008-01-29
The present invention relates to methods for producing fatty acid desaturase mutants having a substantially increased activity towards substrates with fewer than 18 carbon atom chains relative to an unmutagenized precursor desaturase having an 18 carbon chain length specificity, the sequences encoding the desaturases and to the desaturases that are produced by the methods. The present invention further relates to a method for altering a function of a protein, including a fatty acid desaturase, through directed mutagenesis involving identifying candidate amino acid residues, producing a library of mutants of the protein by simultaneously randomizing all amino acid candidates, and selecting for mutants which exhibit the desired alteration of function. Candidate amino acids are identified by a combination of methods. Enzymatic, binding, structural and other functions of proteins can be altered by the method.
Direct simulation Monte Carlo method with a focal mechanism algorithm
NASA Astrophysics Data System (ADS)
Rachman, Asep Nur; Chung, Tae Woong; Yoshimoto, Kazuo; Yun, Sukyoung
2015-01-01
To simulate the observation of the radiation pattern of an earthquake, the direct simulation Monte Carlo (DSMC) method is modified by implanting a focal mechanism algorithm. We compare the results of the modified DSMC method (DSMC-2) with those of the original DSMC method (DSMC-1). DSMC-2 shows more or similarly reliable results compared to those of DSMC-1, for events with 12 or more recorded stations, by weighting twice for hypocentral distance of less than 80 km. Not only the number of stations, but also other factors such as rough topography, magnitude of event, and the analysis method influence the reliability of DSMC-2. The most reliable result by DSMC-2 is obtained by the best azimuthal coverage by the largest number of stations. The DSMC-2 method requires shorter time steps and a larger number of particles than those of DSMC-1 to capture a sufficient number of arrived particles in the small-sized receiver.
Decoupled direct method for sensitivity analysis in combustion kinetics
NASA Technical Reports Server (NTRS)
Radhakrishnan, Krishnan
1987-01-01
An efficient, decoupled direct method for calculating the first order sensitivity coefficients of homogeneous, batch combustion kinetic rate equations is presented. In this method the ordinary differential equations for the sensitivity coefficients are solved separately from , but sequentially with, those describing the combustion chemistry. The ordinary differential equations for the thermochemical variables are solved using an efficient, implicit method (LSODE) that automatically selects the steplength and order for each solution step. The solution procedure for the sensitivity coefficients maintains accuracy and stability by using exactly the same steplengths and numerical approximations. The method computes sensitivity coefficients with respect to any combination of the initial values of the thermochemical variables and the three rate constant parameters for the chemical reactions. The method is illustrated by application to several simple problems and, where possible, comparisons are made with exact solutions and those obtained by other techniques.
Method for observing phase objects without halos and directional shadows
NASA Astrophysics Data System (ADS)
Suzuki, Yoshimasa; Kajitani, Kazuo; Ohde, Hisashi
2015-03-01
A new microscopy method for observing phase objects without halos and directional shadows is proposed. The key optical element is an annular aperture at the front focal plane of a condenser with a larger diameter than those used in standard phase contrast microscopy. The light flux passing through the annular aperture is changed by the specimen's surface profile and then passes through an objective and contributes to image formation. This paper presents essential conditions for realizing the method. In this paper, images of colonies formed by induced pluripotent stem (iPS) cells using this method are compared with the conventional phase contrast method and the bright-field method when the NA of the illumination is small to identify differences among these techniques. The outlines of the iPS cells are clearly visible with this method, whereas they are not clearly visible due to halos when using the phase contrast method or due to weak contrast when using the bright-field method. Other images using this method are also presented to demonstrate a capacity of this method: a mouse ovum and superimposition of several different images of mouse iPS cells.
Quantitative methods to direct exploration based on hydrogeologic information
Graettinger, A.J.; Lee, J.; Reeves, H.W.; Dethan, D.
2006-01-01
Quantitatively Directed Exploration (QDE) approaches based on information such as model sensitivity, input data covariance and model output covariance are presented. Seven approaches for directing exploration are developed, applied, and evaluated on a synthetic hydrogeologic site. The QDE approaches evaluate input information uncertainty, subsurface model sensitivity and, most importantly, output covariance to identify the next location to sample. Spatial input parameter values and covariances are calculated with the multivariate conditional probability calculation from a limited number of samples. A variogram structure is used during data extrapolation to describe the spatial continuity, or correlation, of subsurface information. Model sensitivity can be determined by perturbing input data and evaluating output response or, as in this work, sensitivities can be programmed directly into an analysis model. Output covariance is calculated by the First-Order Second Moment (FOSM) method, which combines the covariance of input information with model sensitivity. A groundwater flow example, modeled in MODFLOW-2000, is chosen to demonstrate the seven QDE approaches. MODFLOW-2000 is used to obtain the piezometric head and the model sensitivity simultaneously. The seven QDE approaches are evaluated based on the accuracy of the modeled piezometric head after information from a QDE sample is added. For the synthetic site used in this study, the QDE approach that identifies the location of hydraulic conductivity that contributes the most to the overall piezometric head variance proved to be the best method to quantitatively direct exploration. ?? IWA Publishing 2006.
Method for determining shear direction using liquid crystal coatings
NASA Technical Reports Server (NTRS)
Reda, Daniel C.
1995-01-01
A method is provided for determining shear direction wherein a beam of white light is directed onto the surface of a liquid crystal coating to cause the white light to be dispersed (reflected) from the surface in a spectrum having bands of different colors in a fixed spatial 2 (angular) sequence. The system is calibrated by locating an observer, e.g., a video and movie camera, such that a particular color band (preferably at or near the center of the reflected spectrum) is observed to thereby provide a reference color band. Because the application of shear causes either clockwise or counterclockwise rotation of the reflected spectrum dependent on the direction of the shear, a determination is then made of the reflected color band observed by the observer when the surface of the liquid crystal is subjected to shear to thereby determine the direction of the shear based on the directional (rotation) relation of the observed color band with respect to the reference color band in the spatial sequence of color bands.
Two-dimensional location and direction estimating method.
Haga, Teruhiro; Tsukamoto, Sosuke; Hoshino, Hiroshi
2008-01-01
In this paper, a method of estimating both the position and the rotation angle of an object on a measurement stage was proposed. The system utilizes the radio communication technology and the directivity of an antenna. As a prototype system, a measurement stage (a circle 240mm in diameter) with 36 antennas that placed in each 10 degrees was developed. Two transmitter antennas are settled in a right angle on the stage as the target object, and the position and the rotation angle is estimated by measuring efficiency of the radio communication of each 36 antennas. The experimental result revealed that even when the estimated location is not so accurate (about a 30 mm error), the rotation angle is accurately estimated (about 2.33 degree error on average). The result suggests that the proposed method will be useful for estimating the location and the direction of an object. PMID:19162938
Comparison of Integrated Analysis Methods for Two Model Scenarios
NASA Technical Reports Server (NTRS)
Amundsen, Ruth M.
1999-01-01
Integrated analysis methods have the potential to substantially decrease the time required for analysis modeling. Integration with computer aided design (CAD) software can also allow a model to be more accurate by facilitating import of exact design geometry. However, the integrated method utilized must sometimes be tailored to the specific modeling situation, in order to make the process most efficient. Two cases are presented here that illustrate different processes used for thermal analysis on two different models. These examples are used to illustrate how the requirements, available input, expected output, and tools available all affect the process selected by the analyst for the most efficient and effective analysis.
Maximum patch method for directional dark matter detection
Henderson, Shawn; Monroe, Jocelyn; Fisher, Peter
2008-07-01
Present and planned dark matter detection experiments search for WIMP-induced nuclear recoils in poorly known background conditions. In this environment, the maximum gap statistical method provides a way of setting more sensitive cross section upper limits by incorporating known signal information. We give a recipe for the numerical calculation of upper limits for planned directional dark matter detection experiments, that will measure both recoil energy and angle, based on the gaps between events in two-dimensional phase space.
Dynamic optical methods for direct laser written waveguides
NASA Astrophysics Data System (ADS)
Salter, P. S.; Booth, M. J.
2013-03-01
Direct laser writing is widely used to fabricate 3D waveguide devices by modi cation of a materials refractive index. The fabrication delity depends strongly on focal spot quality, which in many cases is impaired by aberrations, particularly spherical aberration caused by refractive index mismatch. We use adaptive optics to correct aberration and maintain fabrication performance at a range of depths. Adaptive multifocus methods are also shown for increasing the fabrication speed for single waveguides.
Improvement of high-order least-squares integration method for stereo deflectometry.
Ren, Hongyu; Gao, Feng; Jiang, Xiangqian
2015-12-01
Stereo deflectometry is defined as measurement of the local slope of specular surfaces by using two CCD cameras as detectors and one LCD screen as a light source. For obtaining 3D topography, integrating the calculated slope data is needed. Currently, a high-order finite-difference-based least-squares integration (HFLI) method is used to improve the integration accuracy. However, this method cannot be easily implemented in circular domain or when gradient data are incomplete. This paper proposes a modified easy-implementation integration method based on HFLI (EI-HFLI), which can work in arbitrary domains, and can directly and conveniently handle incomplete gradient data. To carry out the proposed algorithm in a practical stereo deflectometry measurement, gradients are calculated in both CCD frames, and then are mixed together as original data to be meshed into rectangular grids format. Simulation and experiments show this modified method is feasible and can work efficiently. PMID:26836684
New method for analyzing dark matter direct detection data
NASA Astrophysics Data System (ADS)
Davis, Jonathan H.; Enßlin, Torsten; BÅ`hm, Céline
2014-02-01
The experimental situation of dark matter direct detection has reached an exciting crossroads, with potential hints of a discovery of dark matter (DM) from the CDMS, CoGeNT, CRESST-II and DAMA experiments in tension with null results from xenon-based experiments such as XENON100 and LUX. Given the present controversial experimental status, it is important that the analytical method used to search for DM in direct detection experiments is both robust and flexible enough to deal with data for which the distinction between signal and background points is difficult, and hence where the choice between setting a limit or defining a discovery region is debatable. In this article we propose a novel (Bayesian) analytical method, which can be applied to all direct detection experiments and which extracts the maximum amount of information from the data. We apply our method to the XENON100 experiment data as a worked example, and show that firstly our exclusion limit at 90% confidence is in agreement with their own for the 225 live days data, but is several times stronger for the 100 live days data. Secondly we find that, due to the two points at low values of S1 and S2 in the 225 days data set, our analysis points to either weak consistency with low-mass dark matter or the possible presence of an unknown background. Given the null result from LUX, the latter scenario seems the more plausible.
Ran, Changyan; Cheng, Xianghong
2016-01-01
This paper presents a direct and non-singular approach based on an unscented Kalman filter (UKF) for the integration of strapdown inertial navigation systems (SINSs) with the aid of velocity. The state vector includes velocity and Euler angles, and the system model contains Euler angle kinematics equations. The measured velocity in the body frame is used as the filter measurement. The quaternion nonlinear equality constraint is eliminated, and the cross-noise problem is overcome. The filter model is simple and easy to apply without linearization. Data fusion is performed by an UKF, which directly estimates and outputs the navigation information. There is no need to process navigation computation and error correction separately because the navigation computation is completed synchronously during the filter time updating. In addition, the singularities are avoided with the help of the dual-Euler method. The performance of the proposed approach is verified by road test data from a land vehicle equipped with an odometer aided SINS, and a singularity turntable test is conducted using three-axis turntable test data. The results show that the proposed approach can achieve higher navigation accuracy than the commonly-used indirect approach, and the singularities can be efficiently removed as the result of dual-Euler method. PMID:27598169
Integrated resonant micro-optical gyroscope and method of fabrication
Vawter, G. Allen; Zubrzycki, Walter J.; Guo, Junpeng; Sullivan, Charles T.
2006-09-12
An integrated optic gyroscope is disclosed which is based on a photonic integrated circuit (PIC) having a bidirectional laser source, a pair of optical waveguide phase modulators and a pair of waveguide photodetectors. The PIC can be connected to a passive ring resonator formed either as a coil of optical fiber or as a coiled optical waveguide. The lasing output from each end of the bidirectional laser source is phase modulated and directed around the passive ring resonator in two counterpropagating directions, with a portion of the lasing output then being detected to determine a rotation rate for the integrated optical gyroscope. The coiled optical waveguide can be formed on a silicon, glass or quartz substrate with a silicon nitride core and a silica cladding, while the PIC includes a plurality of III V compound semiconductor layers including one or more quantum well layers which are disordered in the phase modulators and to form passive optical waveguides.
An integrated lean-methods approach to hospital facilities redesign.
Nicholas, John
2012-01-01
Lean production methods for eliminating waste and improving processes in manufacturing are now being applied in healthcare. As the author shows, the methods are appropriate for redesigning hospital facilities. When used in an integrated manner and employing teams of mostly clinicians, the methods produce facility designs that are custom-fit to patient needs and caregiver work processes, and reduce operational costs. The author reviews lean methods and an approach for integrating them in the redesign of hospital facilities. A case example of the redesign of an emergency department shows the feasibility and benefits of the approach. PMID:22671435
An extension of A-stability to alternating direction implicit methods
NASA Technical Reports Server (NTRS)
Warming, R. F.; Beam, R. M.
1978-01-01
An alternating direction implicit (ADI) scheme was constructed by the method of approximate factorization. An A-stable linear multistep method (LMM) was used to integrate a model two-dimensional hyperbolic-parabolic partial differential equation. Sufficient conditions for the A-stability of the LMM were determined by applying the theory of positive real functions to reduce the stability analysis of the partial differential equations to a simple algebraic test. A linear test equation for partial differential equations is defined and then used to analyze the stability of approximate factorization schemes. An ADI method for the three-dimensional heat equation is also presented.
A dynamic integrated fault diagnosis method for power transformers.
Gao, Wensheng; Bai, Cuifen; Liu, Tong
2015-01-01
In order to diagnose transformer fault efficiently and accurately, a dynamic integrated fault diagnosis method based on Bayesian network is proposed in this paper. First, an integrated fault diagnosis model is established based on the causal relationship among abnormal working conditions, failure modes, and failure symptoms of transformers, aimed at obtaining the most possible failure mode. And then considering the evidence input into the diagnosis model is gradually acquired and the fault diagnosis process in reality is multistep, a dynamic fault diagnosis mechanism is proposed based on the integrated fault diagnosis model. Different from the existing one-step diagnosis mechanism, it includes a multistep evidence-selection process, which gives the most effective diagnostic test to be performed in next step. Therefore, it can reduce unnecessary diagnostic tests and improve the accuracy and efficiency of diagnosis. Finally, the dynamic integrated fault diagnosis method is applied to actual cases, and the validity of this method is verified. PMID:25685841
Achieving Integration in Mixed Methods Designs—Principles and Practices
Fetters, Michael D; Curry, Leslie A; Creswell, John W
2013-01-01
Mixed methods research offers powerful tools for investigating complex processes and systems in health and health care. This article describes integration principles and practices at three levels in mixed methods research and provides illustrative examples. Integration at the study design level occurs through three basic mixed method designs—exploratory sequential, explanatory sequential, and convergent—and through four advanced frameworks—multistage, intervention, case study, and participatory. Integration at the methods level occurs through four approaches. In connecting, one database links to the other through sampling. With building, one database informs the data collection approach of the other. When merging, the two databases are brought together for analysis. With embedding, data collection and analysis link at multiple points. Integration at the interpretation and reporting level occurs through narrative, data transformation, and joint display. The fit of integration describes the extent the qualitative and quantitative findings cohere. Understanding these principles and practices of integration can help health services researchers leverage the strengths of mixed methods. PMID:24279835
Explicit Integration of Extremely Stiff Reaction Networks: Partial Equilibrium Methods
Guidry, Mike W; Billings, J. J.; Hix, William Raphael
2013-01-01
In two preceding papers [1,2] we have shown that, when reaction networks are well removed from equilibrium, explicit asymptotic and quasi-steady-state approximations can give algebraically stabilized integration schemes that rival standard implicit methods in accuracy and speed for extremely stiff systems. However, we also showed that these explicit methods remain accurate but are no longer competitive in speed as the network approaches equilibrium. In this paper we analyze this failure and show that it is associated with the presence of fast equilibration timescales that neither asymptotic nor quasi-steady-state approximations are able to remove efficiently from the numerical integration. Based on this understanding, we develop a partial equilibrium method to deal effectively with the new partial equilibrium methods, give an integration scheme that plausibly can deal with the stiffest networks, even in the approach to equilibrium, with accuracy and speed competitive with that of implicit methods. Thus we demonstrate that algebraically stabilized explicit methods may offer alternatives to implicit integration of even extremely stiff systems, and that these methods may permit integration of much larger networks than have been feasible previously in a variety of fields.
Methods for biological data integration: perspectives and challenges
Gligorijević, Vladimir; Pržulj, Nataša
2015-01-01
Rapid technological advances have led to the production of different types of biological data and enabled construction of complex networks with various types of interactions between diverse biological entities. Standard network data analysis methods were shown to be limited in dealing with such heterogeneous networked data and consequently, new methods for integrative data analyses have been proposed. The integrative methods can collectively mine multiple types of biological data and produce more holistic, systems-level biological insights. We survey recent methods for collective mining (integration) of various types of networked biological data. We compare different state-of-the-art methods for data integration and highlight their advantages and disadvantages in addressing important biological problems. We identify the important computational challenges of these methods and provide a general guideline for which methods are suited for specific biological problems, or specific data types. Moreover, we propose that recent non-negative matrix factorization-based approaches may become the integration methodology of choice, as they are well suited and accurate in dealing with heterogeneous data and have many opportunities for further development. PMID:26490630
NASA Astrophysics Data System (ADS)
Kang, S.; Suh, Y. K.
2011-02-01
The so-called smoothed profile method, originally suggested by Nakayama and Yamamoto and further improved by Luo et al. in 2005 and 2009, respectively, is an efficient numerical solver for fluid-structure interaction problems, which represents the particles by a certain smoothed profile on a fixed grid and constructs some form of body force added into the momentum (Navier-Stokes) equation by ensuring the rigidity of particles. For numerical simulations, the method first advances the flow and pressure fields by integrating the momentum equation except the body-force (momentum impulse) term in time and next updates them by separately taking temporal integration of the body-force term, thus requiring one more Poisson-equation solver for the extra pressure field due to the rigidity of particles to ensure the divergence-free constraint of the total velocity field. In the present study, we propose a simplified version of the smoothed profile method or the one-stage method, which combines the two stages of velocity update (temporal integration) into one to eliminate the necessity for the additional solver and, thus, significantly save the computational cost. To validate the proposed one-stage method, we perform the so-called direct numerical simulations on the two-dimensional motion of multiple inertialess paramagnetic particles in a nonmagnetic fluid subjected to an external uniform magnetic field and compare their results with the existing benchmark solutions. For the validation, we develop the finite-volume version of the direct simulation method by employing the proposed one-stage method. Comparison shows that the proposed one-stage method is very accurate and efficient in direct simulations of such magnetic particulate flows.
Zhao, Yifang; Chen, Ming-Hui; Pei, Baikang; Rowe, David; Shin, Dong-Guk; Xie, Wangang; Yu, Fang; Kuo, Lynn
2012-01-01
Many statistical methods have been developed to screen for differentially expressed genes associated with specific phenotypes in the microarray data. However, it remains a major challenge to synthesize the observed expression patterns with abundant biological knowledge for more complete understanding of the biological functions among genes. Various methods including clustering analysis on genes, neural network, Bayesian network and pathway analysis have been developed toward this goal. In most of these procedures, the activation and inhibition relationships among genes have hardly been utilized in the modeling steps. We propose two novel Bayesian models to integrate the microarray data with the putative pathway structures obtained from the KEGG database and the directional gene–gene interactions in the medical literature. We define the symmetric Kullback–Leibler divergence of a pathway, and use it to identify the pathway(s) most supported by the microarray data. Monte Carlo Markov Chain sampling algorithm is given for posterior computation in the hierarchical model. The proposed method is shown to select the most supported pathway in an illustrative example. Finally, we apply the methodology to a real microarray data set to understand the gene expression profile of osteoblast lineage at defined stages of differentiation. We observe that our method correctly identifies the pathways that are reported to play essential roles in modulating bone mass. PMID:23482678
NASA Technical Reports Server (NTRS)
Madsen, Niel K.
1992-01-01
Several new discrete surface integral (DSI) methods for solving Maxwell's equations in the time-domain are presented. These methods, which allow the use of general nonorthogonal mixed-polyhedral unstructured grids, are direct generalizations of the canonical staggered-grid finite difference method. These methods are conservative in that they locally preserve divergence or charge. Employing mixed polyhedral cells, (hexahedral, tetrahedral, etc.) these methods allow more accurate modeling of non-rectangular structures and objects because the traditional stair-stepped boundary approximations associated with the orthogonal grid based finite difference methods can be avoided. Numerical results demonstrating the accuracy of these new methods are presented.
The method of modular characteristic direction probabilities in MPACT
Liu, Z.; Kochunas, B.; Collins, B.; Downar, T.; Wu, H.
2013-07-01
The method of characteristic direction probabilities (CDP) is based on a modular ray tracing technique which combines the benefits of the collision probability method (CPM) and the method of characteristics (MOC). This past year CDP was implemented in the transport code MPACT for 2-D and 3-D transport calculations. By only coupling the fine mesh regions passed by the characteristic rays in the particular direction, the scale of the probabilities matrix is much smaller compared to the CPM. At the same time, the CDP has the same capacity of dealing with the complicated geometries with the MOC, because the same modular ray tracing techniques are used. Results from the C5G7 benchmark problems are given for different cases to show the accuracy and efficiency of the CDP compared to MOC. For the cases examined, the CDP and MOC methods were seen to differ in k{sub eff} by about 1-20 pcm, and the computational efficiency of the CDP appears to be better than the MOC for some problems. However, in other problems, particularly when the CDP matrices have to be recomputed from changing cross sections, the CDP does not perform as well. This indicates an area of future work. (authors)
Reliable Transition State Searches Integrated with the Growing String Method.
Zimmerman, Paul
2013-07-01
The growing string method (GSM) is highly useful for locating reaction paths connecting two molecular intermediates. GSM has often been used in a two-step procedure to locate exact transition states (TS), where GSM creates a quality initial structure for a local TS search. This procedure and others like it, however, do not always converge to the desired transition state because the local search is sensitive to the quality of the initial guess. This article describes an integrated technique for simultaneous reaction path and exact transition state search. This is achieved by implementing an eigenvector following optimization algorithm in internal coordinates with Hessian update techniques. After partial convergence of the string, an exact saddle point search begins under the constraint that the maximized eigenmode of the TS node Hessian has significant overlap with the string tangent near the TS. Subsequent optimization maintains connectivity of the string to the TS as well as locks in the TS direction, all but eliminating the possibility that the local search leads to the wrong TS. To verify the robustness of this approach, reaction paths and TSs are found for a benchmark set of more than 100 elementary reactions. PMID:26583985
NASA Astrophysics Data System (ADS)
Liu, Peigui; Elshall, Ahmed S.; Ye, Ming; Beerli, Peter; Zeng, Xiankui; Lu, Dan; Tao, Yuezan
2016-02-01
Evaluating marginal likelihood is the most critical and computationally expensive task, when conducting Bayesian model averaging to quantify parametric and model uncertainties. The evaluation is commonly done by using Laplace approximations to evaluate semianalytical expressions of the marginal likelihood or by using Monte Carlo (MC) methods to evaluate arithmetic or harmonic mean of a joint likelihood function. This study introduces a new MC method, i.e., thermodynamic integration, which has not been attempted in environmental modeling. Instead of using samples only from prior parameter space (as in arithmetic mean evaluation) or posterior parameter space (as in harmonic mean evaluation), the thermodynamic integration method uses samples generated gradually from the prior to posterior parameter space. This is done through a path sampling that conducts Markov chain Monte Carlo simulation with different power coefficient values applied to the joint likelihood function. The thermodynamic integration method is evaluated using three analytical functions by comparing the method with two variants of the Laplace approximation method and three MC methods, including the nested sampling method that is recently introduced into environmental modeling. The thermodynamic integration method outperforms the other methods in terms of their accuracy, convergence, and consistency. The thermodynamic integration method is also applied to a synthetic case of groundwater modeling with four alternative models. The application shows that model probabilities obtained using the thermodynamic integration method improves predictive performance of Bayesian model averaging. The thermodynamic integration method is mathematically rigorous, and its MC implementation is computationally general for a wide range of environmental problems.
A hybrid decomposition method for integrating coal supply and demand models
Shapiro, J.F.; White, D.E.
1982-09-01
A number of large scale models have been proposed and implemented in recent years to study the anticipated expansion of coal production and utilization in the United States. This paper reports on the application of mathematical programming decomposition methods to the constructive integration and optimization of these models. In particular, it was found that an implemented hybrid decomposition approach, part resource directed and part price directed, exhibited fast convergence to an optimal solution. (23 refs.)
NEW COMPLETENESS METHODS FOR ESTIMATING EXOPLANET DISCOVERIES BY DIRECT DETECTION
Brown, Robert A.; Soummer, Remi
2010-05-20
We report on new methods for evaluating realistic observing programs that search stars for planets by direct imaging, where observations are selected from an optimized star list and stars can be observed multiple times. We show how these methods bring critical insight into the design of the mission and its instruments. These methods provide an estimate of the outcome of the observing program: the probability distribution of discoveries (detection and/or characterization) and an estimate of the occurrence rate of planets ({eta}). We show that these parameters can be accurately estimated from a single mission simulation, without the need for a complete Monte Carlo mission simulation, and we prove the accuracy of this new approach. Our methods provide tools to define a mission for a particular science goal; for example, a mission can be defined by the expected number of discoveries and its confidence level. We detail how an optimized star list can be built and how successive observations can be selected. Our approach also provides other critical mission attributes, such as the number of stars expected to be searched and the probability of zero discoveries. Because these attributes depend strongly on the mission scale (telescope diameter, observing capabilities and constraints, mission lifetime, etc.), our methods are directly applicable to the design of such future missions and provide guidance to the mission and instrument design based on scientific performance. We illustrate our new methods with practical calculations and exploratory design reference missions for the James Webb Space Telescope (JWST) operating with a distant starshade to reduce scattered and diffracted starlight on the focal plane. We estimate that five habitable Earth-mass planets would be discovered and characterized with spectroscopy, with a probability of zero discoveries of 0.004, assuming a small fraction of JWST observing time (7%), {eta} = 0.3, and 70 observing visits, limited by starshade
Laser housing having integral mounts and method of manufacturing same
Herron, Michael Alan; Brickeen, Brian Keith
2004-10-19
A housing adapted to position, support, and facilitate aligning various components, including an optical path assembly, of a laser. In a preferred embodiment, the housing is constructed from a single piece of material and broadly comprises one or more through-holes; one or more cavities; and one or more integral mounts, wherein the through-holes and the cavities cooperate to define the integral mounts. Securement holes machined into the integral mounts facilitate securing components within the integral mounts using set screws, adhesive, or a combination thereof. In a preferred method of making the housing, the through-holes and cavities are first machined into the single piece of material, with at least some of the remaining material forming the integral mounts.
Application of integrated fluid-thermal-structural analysis methods
NASA Technical Reports Server (NTRS)
Wieting, Allan R.; Dechaumphai, Pramote; Bey, Kim S.; Thornton, Earl A.; Morgan, Ken
1988-01-01
Hypersonic vehicles operate in a hostile aerothermal environment which has a significant impact on their aerothermostructural performance. Significant coupling occurs between the aerodynamic flow field, structural heat transfer, and structural response creating a multidisciplinary interaction. Interfacing state-of-the-art disciplinary analysis methods is not efficient, hence interdisciplinary analysis methods integrated into a single aerothermostructural analyzer are needed. The NASA Langley Research Center is developing such methods in an analyzer called LIFTS (Langley Integrated Fluid-Thermal-Structural) analyzer. The evolution and status of LIFTS is reviewed and illustrated through applications.
When Curriculum and Technology Meet: Technology Integration in Methods Courses
ERIC Educational Resources Information Center
Keeler, Christy G.
2008-01-01
Reporting on the results of an action research study, this manuscript provides examples of strategies used to integrate technology into a content methods course. The study used reflective teaching of a social studies methods course at a major Southwestern university in 10 course sections over a four-semester period. In alignment with the research…
An Integrated Calculation Method to Predict Arc Behavior
NASA Astrophysics Data System (ADS)
Li, Xingwen; Chen, Degui
The precision of magnetic field calculation is crucial to predict the arc behavior using magnetohydrodynamic (MHD) model. A integrated calculation method is proposed to couple the calculation of magnetic field and fluid dynamics based on the commercial software ANSYS and FLUENT, which especially benefits to take into account the existence of the ferromagnetic parts. An example concerning air arc is presented using the method.
Method and system of integrating information from multiple sources
Alford, Francine A.; Brinkerhoff, David L.
2006-08-15
A system and method of integrating information from multiple sources in a document centric application system. A plurality of application systems are connected through an object request broker to a central repository. The information may then be posted on a webpage. An example of an implementation of the method and system is an online procurement system.
A Comparison of Treatment Integrity Assessment Methods for Behavioral Intervention
ERIC Educational Resources Information Center
Koh, Seong A.
2010-01-01
The purpose of this study was to examine the similarity of outcomes from three different treatment integrity (TI) methods, and to identify the method which best corresponded to the assessment of a child's behavior. Six raters were recruited through individual contact via snowball sampling. A modified intervention component list and 19 video clips…
Methods for integration site distribution analyses in animal cell genomes
Ciuffi, Angela; Ronen, Keshet; Brady, Troy; Malani, Nirav; Wang, Gary; Berry, Charles C.; Bushman, Frederic D.
2014-01-01
The question of where retroviral DNA becomes integrated in chromosomes is important for understanding (i) the mechanisms of viral growth, (ii) devising new anti-retroviral therapy, (iii) understanding how genomes evolve, and (iv) developing safer methods for gene therapy. With the completion of genome sequences for many organisms, it has become possible to study integration targeting by cloning and sequencing large numbers of host–virus DNA junctions, then mapping the host DNA segments back onto the genomic sequence. This allows statistical analysis of the distribution of integration sites relative to the myriad types of genomic features that are also being mapped onto the sequence scaffold. Here we present methods for recovering and analyzing integration site sequences. PMID:19038346
Engle, Mark A.; Olea, Ricardo A.; O'Keefe, Jennifer M. K.; Hower, James C.; Geboy, Nicholas J.
2013-01-01
Coal fires occur in nature spontaneously, contribute to increases in greenhouse gases, and emit atmospheric toxicants. Increasing interest in quantifying coal fire emissions has resulted in the adaptation and development of specialized approaches and adoption of numerical modeling techniques. Overview of these methods for direct estimation of diffuse gas emissions from coal fires is presented in this paper. Here we take advantage of stochastic Gaussian simulation to interpolate CO2 fluxes measured using a dynamic closed chamber at the Ruth Mullins coal fire in Perry County, Kentucky. This approach allows for preparing a map of diffuse gas emissions, one of the two primary ways that gases emanate from coal fires, and establishing the reliability of the study both locally and for the entire fire. Future research directions include continuous and automated sampling to improve quantification of gaseous coal fire emissions.
Directed self-assembly process integration: Fin patterning approaches and challenges
NASA Astrophysics Data System (ADS)
Sayan, Safak; Chan, B. T.; Gronheid, Roel; Van Roey, Frieda; Kim, Min-Soo; Williamson, Lance; Nealey, Paul
2014-03-01
Resolution requirements for photolithography have reached beyond the wavelength of light. Consequently, it is becoming increasingly complicated and expensive to further minimize feature dimensions as required to push the limits of Moore's law. EUV lithography has been the much anticipated solution; however, its insertion timing for High Volume Manufacturing is still an uncertainty due to source power and EUV mask infrastructure limitations. Extending the limits of 193nm immersion lithography requires pitch division using either Double Patterning Pitch Division (DPPD), and/or Spacer Based Pitch Division (SBPD) schemes (e.g. Hard mask image transfer methods (Double, Triple, Quadruple)). While these approaches reduce pitch, there is an associated risk/compromise of process complexity, and overlay accuracy budget issues. Directed Self Assembly (DSA) processes offer the promise of providing alternative ways to extend optical lithography cost-effectively for sub-10nm nodes and present itself as an alternative pitch division approach. As a result, DSA has gained increased momentum in recent years, as a means for extending optical lithography past its current limits. The availability of a DSA processing line can enable to further push the limits of 193nm immersion lithography and overcome some of the critical concerns for EUV lithography. Robust etch transfer of DSA patterns into commonly used device integration materials such as silicon, silicon nitride, and silicon dioxide had been previously demonstrated [1,2]. However DSA integration to CMOS process flows, including cut/keep structures to form fin arrays, is yet to be demonstrated on relevant film stacks (front-end-of-line device integration such as hard mask stacks, and STI stacks). Such a demonstration will confirm and reinforce its viability as a candidate for sub-10nm technology nodes.
NASA Astrophysics Data System (ADS)
Solodov, A. A.; Anderson, K. S.; Betti, R.; Gotcheva, V.; Myatt, J.; Delettrez, J. A.; Skupsky, S.; Theobald, W.; Stoeckl, C.
2009-05-01
A thorough understanding of future integrated fast-ignition experiments combining compression and heating of high-density thermonuclear fuel requires hybrid (fluid+particle) simulations of the implosion and ignition process. Different spatial and temporal scales need to be resolved to model the entire fast-ignition experiment. The two-dimensional (2D) axisymmetric hydrocode DRACO [P. B. Radha et al., Phys. Plasmas 12, 056307 (2005)] and the 2D/three-dimensional hybrid particle-in-cell code LSP [D. R. Welch et al., Nucl. Instrum. Methods Phys. Res. A 464, 134 (2001)] have been integrated to simulate the implosion and heating of direct-drive, fast-ignition fusion targets. DRACO includes the physics required to simulate compression, ignition, and burn of fast-ignition targets. LSP simulates the transport of hot electrons from the place where they are generated to the dense fuel core where their energy is absorbed. The results from integrated simulations of cone-in-shell CD targets designed for fast-ignition experiments on OMEGA [T. R. Boehly et al., Opt. Commun. 133, 495 (1997); C. Stoeckl et al., Fusion Sci. Technol. 49, 367 (2006)] are presented. Target heating and neutron yields are computed. The results from LSP simulations of electron transport in solid-density plastic targets are also presented. They confirm an increase in the electron divergence angle with the laser intensity in the current experiments. The self-generated resistive magnetic field is found to collimate the hot-electron beam and increase the coupling efficiency of hot electrons with the target. Resistive filamentation of the hot-electron beam is also observed.
A Flow SPR Immunosensor Based on a Sandwich Direct Method
Tomassetti, Mauro; Conta, Giorgia; Campanella, Luigi; Favero, Gabriele; Sanzò, Gabriella; Mazzei, Franco; Antiochia, Riccarda
2016-01-01
In this study, we report the development of an SPR (Surface Plasmon Resonance) immunosensor for the detection of ampicillin, operating under flow conditions. SPR sensors based on both direct (with the immobilization of the antibody) and competitive (with the immobilization of the antigen) methods did not allow the detection of ampicillin. Therefore, a sandwich-based sensor was developed which showed a good linear response towards ampicillin between 10−3 and 10−1 M, a measurement time of ≤20 min and a high selectivity both towards β-lactam antibiotics and antibiotics of different classes. PMID:27187486
A Flow SPR Immunosensor Based on a Sandwich Direct Method.
Tomassetti, Mauro; Conta, Giorgia; Campanella, Luigi; Favero, Gabriele; Sanzò, Gabriella; Mazzei, Franco; Antiochia, Riccarda
2016-01-01
In this study, we report the development of an SPR (Surface Plasmon Resonance) immunosensor for the detection of ampicillin, operating under flow conditions. SPR sensors based on both direct (with the immobilization of the antibody) and competitive (with the immobilization of the antigen) methods did not allow the detection of ampicillin. Therefore, a sandwich-based sensor was developed which showed a good linear response towards ampicillin between 10(-3) and 10(-1) M, a measurement time of ≤20 min and a high selectivity both towards β-lactam antibiotics and antibiotics of different classes. PMID:27187486
A flexible importance sampling method for integrating subgrid processes
NASA Astrophysics Data System (ADS)
Raut, E. K.; Larson, V. E.
2016-01-01
Numerical models of weather and climate need to compute grid-box-averaged rates of physical processes such as microphysics. These averages are computed by integrating subgrid variability over a grid box. For this reason, an important aspect of atmospheric modeling is spatial integration over subgrid scales. The needed integrals can be estimated by Monte Carlo integration. Monte Carlo integration is simple and general but requires many evaluations of the physical process rate. To reduce the number of function evaluations, this paper describes a new, flexible method of importance sampling. It divides the domain of integration into eight categories, such as the portion that contains both precipitation and cloud, or the portion that contains precipitation but no cloud. It then allows the modeler to prescribe the density of sample points within each of the eight categories. The new method is incorporated into the Subgrid Importance Latin Hypercube Sampler (SILHS). The resulting method is tested on drizzling cumulus and stratocumulus cases. In the cumulus case, the sampling error can be considerably reduced by drawing more sample points from the region of rain evaporation.
A flexible importance sampling method for integrating subgrid processes
Raut, E. K.; Larson, V. E.
2016-01-29
Numerical models of weather and climate need to compute grid-box-averaged rates of physical processes such as microphysics. These averages are computed by integrating subgrid variability over a grid box. For this reason, an important aspect of atmospheric modeling is spatial integration over subgrid scales. The needed integrals can be estimated by Monte Carlo integration. Monte Carlo integration is simple and general but requires many evaluations of the physical process rate. To reduce the number of function evaluations, this paper describes a new, flexible method of importance sampling. It divides the domain of integration into eight categories, such as the portion that containsmore » both precipitation and cloud, or the portion that contains precipitation but no cloud. It then allows the modeler to prescribe the density of sample points within each of the eight categories. The new method is incorporated into the Subgrid Importance Latin Hypercube Sampler (SILHS). The resulting method is tested on drizzling cumulus and stratocumulus cases. In the cumulus case, the sampling error can be considerably reduced by drawing more sample points from the region of rain evaporation.« less
A flexible importance sampling method for integrating subgrid processes
Raut, E. K.; Larson, V. E.
2016-01-29
Numerical models of weather and climate need to compute grid-box-averaged rates of physical processes such as microphysics. These averages are computed by integrating subgrid variability over a grid box. For this reason, an important aspect of atmospheric modeling is spatial integration over subgrid scales. The needed integrals can be estimated by Monte Carlo integration. Monte Carlo integration is simple and general but requires many evaluations of the physical process rate. To reduce the number of function evaluations, this paper describes a new, flexible method of importance sampling. It divides the domain of integration into eight categories, such as the portion that containsmore » both precipitation and cloud, or the portion that contains precipitation but no cloud. It then allows the modeler to prescribe the density of sample points within each of the eight categories. The new method is incorporated into the Subgrid Importance Latin Hypercube Sampler (SILHS). Here, the resulting method is tested on drizzling cumulus and stratocumulus cases. In the cumulus case, the sampling error can be considerably reduced by drawing more sample points from the region of rain evaporation.« less
A flexible importance sampling method for integrating subgrid processes
Raut, E. K.; Larson, V. E.
2016-01-01
Numerical models of weather and climate need to compute grid-box-averaged rates of physical processes such as microphysics. These averages are computed by integrating subgrid variability over a grid box. For this reason, an important aspect of atmospheric modeling is spatial integration over subgrid scales.
The needed integrals can be estimated by Monte Carlo integration. Monte Carlo integration is simple and general but requires many evaluations of the physical process rate. To reduce the number of function evaluations, this paper describes a new, flexible method of importance sampling. It divides the domain of integration into eight categories, such as the portion that contains both precipitation and cloud, or the portion that contains precipitation but no cloud. It then allows the modeler to prescribe the density of sample points within each of the eight categories.
The new method is incorporated into the Subgrid Importance Latin Hypercube Sampler (SILHS). The resulting method is tested on drizzling cumulus and stratocumulus cases. In the cumulus case, the sampling error can be considerably reduced by drawing more sample points from the region of rain evaporation.
NASA Astrophysics Data System (ADS)
Cheng, Ya; Liao, Yang; Sugioka, Koji
2014-03-01
The creation of complex three-dimensional (3D) fluidic systems composed of hollow micro- and nanostructures embedded in transparent substrates has attracted significant attention from both scientific and applied research communities. However, it is by now still a formidable challenge to build 3D micro- and nanofluidic structures with arbitrary configurations using conventional planar lithographic fabrication methods. As a direct and maskless fabrication technique, femtosecond laser micromachining provides a straightforward approach for high-precision spatial-selective modification inside transparent materials through nonlinear optical absorption. Here, we demonstrate rapid fabrication of high-aspect-ratio micro- and/or nanofluidic structures with various 3D configurations in glass substrates by femtosecond laser direct writing. Based on this approach, we demonstrate several functional micro- and nanofluidic devices including a 3D passive microfluidic mixer, a capillary electrophoresis (CE) analysis chip, and an integrated micro-nanofluidic system for single DNA analysis. This technology offers new opportunities to develop novel 3D micro-nanofluidic systems for a variety of lab-on-a-chip applications.
Explicit Integration of Extremely Stiff Reaction Networks: Asymptotic Methods
Guidry, Mike W; Budiardja, R.; Feger, E.; Billings, J. J.; Hix, William Raphael; Messer, O.E.B.; Roche, K. J.; McMahon, E.; He, M.
2013-01-01
We show that, even for extremely stiff systems, explicit integration may compete in both accuracy and speed with implicit methods if algebraic methods are used to stabilize the numerical integration. The stabilizing algebra differs for systems well removed from equilibrium and those near equilibrium. This paper introduces a quantitative distinction between these two regimes and addresses the former case in depth, presenting explicit asymptotic methods appropriate when the system is extremely stiff but only weakly equilibrated. A second paper [1] examines quasi-steady-state methods as an alternative to asymptotic methods in systems well away from equilibrium and a third paper [2] extends these methods to equilibrium conditions in extremely stiff systems using partial equilibrium methods. All three papers present systematic evidence for timesteps competitive with implicit methods. Because explicit methods can execute a timestep faster than an implicit method, our results imply that algebraically stabilized explicit algorithms may offer a means to integration of larger networks than have been feasible previously in various disciplines.
Parallel Performance Optimization of the Direct Simulation Monte Carlo Method
NASA Astrophysics Data System (ADS)
Gao, Da; Zhang, Chonglin; Schwartzentruber, Thomas
2009-11-01
Although the direct simulation Monte Carlo (DSMC) particle method is more computationally intensive compared to continuum methods, it is accurate for conditions ranging from continuum to free-molecular, accurate in highly non-equilibrium flow regions, and holds potential for incorporating advanced molecular-based models for gas-phase and gas-surface interactions. As available computer resources continue their rapid growth, the DSMC method is continually being applied to increasingly complex flow problems. Although processor clock speed continues to increase, a trend of increasing multi-core-per-node parallel architectures is emerging. To effectively utilize such current and future parallel computing systems, a combined shared/distributed memory parallel implementation (using both Open Multi-Processing (OpenMP) and Message Passing Interface (MPI)) of the DSMC method is under development. The parallel implementation of a new state-of-the-art 3D DSMC code employing an embedded 3-level Cartesian mesh will be outlined. The presentation will focus on performance optimization strategies for DSMC, which includes, but is not limited to, modified algorithm designs, practical code-tuning techniques, and parallel performance optimization. Specifically, key issues important to the DSMC shared memory (OpenMP) parallel performance are identified as (1) granularity (2) load balancing (3) locality and (4) synchronization. Challenges and solutions associated with these issues as they pertain to the DSMC method will be discussed.
Six direct methods for standardisation of 152Eu
NASA Astrophysics Data System (ADS)
Johansson, L.; Altzitzoglou, T.; Sibbens, G.; Denecke, B.; Reher, D. F. G.
2003-08-01
In the course of the past 40 years, IRMM has developed a large number of direct methods for the accurate standardisation of radionuclide solutions, all providing traceability to the SI unit. Six different measurement methods were employed to standardise a 152Eu solution in the frame of a BIPM key comparison: 4πβ(PPC)-γ-coincidence counting, using a modified version of the 'Funck' pressurised proportional counter (Ar-CH 4) for counting the electrons and low-energy photons, and a 15×15 cm NaI(Tl) well crystal for counting the γ-rays; 4πβ(PPC)-γ-sum counting using the same equipment as above; 4πβ-γ-coincidence counting, using a 2D shaped proportional counter (Kr-CH 4) sandwiched between two 7.5×7.5 cm 2 NaI(Tl) crystals; 4πγ counting, using a 15×15 cm 2 NaI(Tl) well crystal; 4πCsI(Tl) counting; Liquid scintillation counting (LSC) using the CIEMAT/NIST method. The methods will be described and compared, with emphasis on their strengths and weaknesses. In the case of 152Eu, we were able to achieve a standard deviation of the weighted mean of 0.14% among all methods, or 0.11% when excluding the LSC result.
Holographic LEED: A direct method for surface crystallography
NASA Astrophysics Data System (ADS)
Vamvakas, John Athanasios
Since 1960's Low Energy Electron Diffraction (LEED) has been one of the most reliable methods for surface crystallography. It has solved hundreds of structures over the past 20-25 years and continues to be a powerful tool in the hands of crystallographers. Yet, the main disadvantage of the method is the fact that it is very time consuming. The programs that do the multiple scattering calculations can run literally for days! The key part of the method is the initial "guess" of a structure that will be close the one being seeked. A wrong guess would lead to huge amounts of wasted time and effort. We suggest a direct method that can give us a pretty good idea of the structure under determination. We call this method of ours: Holographic LEED (h-LEED) because it is based on the ideas of Dennis Gabor, the inventor of holography. The 3D images h-LEED reconstructs from LEED diffraction patterns can be reliably used to initialize LEED thus reducing the annoying computation time as well as the effort required by the crystallographer. We show that h-LEED produces good images for p(2× 2) reconstruction of adsorbed atoms by testing it on two adsorption systems: O/Ni(001) and K/Ni(001). The images were reconstructed from both diffuse LEED patterns from disordered adsorbates and superstructure Bragg spots from ordered adsorbates.
Directional radiation of Babinet-inverted optical nanoantenna integrated with plasmonic waveguide
Kim, Jineun; Roh, Young-Geun; Cheon, Sangmo; Jeong Kim, Un; Hwang, Sung Woo; Park, Yeonsang; Lee, Chang-Won
2015-01-01
We present a Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide. Using an integrated nanoantenna, we can couple the plasmon guide mode in a metal-insulator-metal (MIM) structure into the resonant antenna feed directly. The resonantly excited feed slot then radiates to free space and generates a magnetic dipole-like far-field pattern. The coupling efficiency of the integrated nanoantenna is calculated as being approximately 19% using a three-dimensional finite-difference time-domain (3D FDTD) simulation. By adding an auxiliary groove structure along with the feed, the radiation direction can be controlled similar to an optical Yagi-Uda antenna. We also determine, both theoretically and experimentally, that groove depth plays a significant role to function groove structure as a reflector or a director. The demonstrated Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide can be used as a “plasmonic via” in plasmonic nanocircuits. PMID:26135115
A Fully Integrated Nanosystem of Semiconductor Nanowires for Direct Solar Water Splitting
Liu, Chong; Tang, Jinyao; Chen, HaoMing; Liu, Bin; Yang, Peidong
2013-02-21
Artificial photosynthesis, the biomimetic approach to converting sunlight?s energy directly into chemical fuels, aims to imitate nature by using an integrated system of nanostructures, each of which plays a specific role in the sunlight-to-fuel conversion process. Here we describe a fully integrated system of nanoscale photoelectrodes assembled from inorganic nanowires for direct solar water splitting. Similar to the photosynthetic system in a chloroplast, the artificial photosynthetic system comprises two semiconductor light absorbers with large surface area, an interfacial layer for charge transport, and spatially separated cocatalysts to facilitate the water reduction and oxidation. Under simulated sunlight, a 0.12percent solar-to-fuel conversion efficiency is achieved, which is comparable to that of natural photosynthesis. The result demonstrates the possibility of integrating material components into a functional system that mimics the nanoscopic integration in chloroplasts. It also provides a conceptual blueprint of modular design that allows incorporation of newly discovered components for improved performance.
Directional radiation of Babinet-inverted optical nanoantenna integrated with plasmonic waveguide
NASA Astrophysics Data System (ADS)
Kim, Jineun; Roh, Young-Geun; Cheon, Sangmo; Jeong Kim, Un; Hwang, Sung Woo; Park, Yeonsang; Lee, Chang-Won
2015-07-01
We present a Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide. Using an integrated nanoantenna, we can couple the plasmon guide mode in a metal-insulator-metal (MIM) structure into the resonant antenna feed directly. The resonantly excited feed slot then radiates to free space and generates a magnetic dipole-like far-field pattern. The coupling efficiency of the integrated nanoantenna is calculated as being approximately 19% using a three-dimensional finite-difference time-domain (3D FDTD) simulation. By adding an auxiliary groove structure along with the feed, the radiation direction can be controlled similar to an optical Yagi-Uda antenna. We also determine, both theoretically and experimentally, that groove depth plays a significant role to function groove structure as a reflector or a director. The demonstrated Babinet-inverted optical nanoantenna integrated with a plasmonic waveguide can be used as a “plasmonic via” in plasmonic nanocircuits.
A method for assurance of image integrity in CAD-PACS integration
NASA Astrophysics Data System (ADS)
Zhou, Zheng
2007-03-01
Computer Aided Detection/Diagnosis (CAD) can greatly assist in the clinical decision making process, and therefore, has drawn tremendous research efforts. However, integrating independent CAD workstation results with the clinical diagnostic workflow still remains challenging. We have presented a CAD-PACS integration toolkit that complies with DICOM standard and IHE profiles. One major issue in CAD-PACS integration is the security of the images used in CAD post-processing and the corresponding CAD result images. In this paper, we present a method for assuring the integrity of both DICOM images used in CAD post-processing and the CAD image results that are in BMP or JPEG format. The method is evaluated in a PACS simulator that simulates clinical PACS workflow. It can also be applied to multiple CAD applications that are integrated with the PACS simulator. The successful development and evaluation of this method will provide a useful approach for assuring image integrity of the CAD-PACS integration in clinical diagnosis.
Retrieval practice can eliminate list method directed forgetting.
Abel, Magdalena; Bäuml, Karl-Heinz T
2016-01-01
It has recently been shown that retrieval practice can reduce memories' susceptibility to interference, like retroactive and proactive interference. In this study, we therefore examined whether retrieval practice can also reduce list method directed forgetting, a form of intentional forgetting that presupposes interference. In each of two experiments, subjects successively studied two lists of items. After studying each single list, subjects restudied the list items to enhance learning, or they were asked to recall the items. Following restudy or retrieval practice of list 1 items, subjects were cued to either forget the list or remember it for an upcoming final test. Experiment 1 employed a free-recall and Experiment 1 a cued-recall procedure on the final memory test. In both experiments, directed forgetting was present in the restudy condition but was absent in the retrieval-practice condition, indicating that retrieval practice can reduce or even eliminate this form of forgetting. The results are consistent with the view that retrieval practice enhances list segregation processes. Such processes may reduce interference between lists and thus reduce directed forgetting. PMID:26286882
Simulation of turbulent flows using nodal integral method
NASA Astrophysics Data System (ADS)
Singh, Suneet
Nodal methods are the backbone of the production codes for neutron-diffusion and transport equations. Despite their high accuracy, use of these methods for simulation of fluid flow is relatively new. Recently, a modified nodal integral method (MNIM) has been developed for simulation of laminar flows. In view of its high accuracy and efficiency, extension of this method for the simulation of turbulent flows is a logical step forward. In this dissertation, MNIM is extended in two ways to simulate incompressible turbulent flows---a new MNIM is developed for the 2D k-epsilon equations; and 3D, parallel MNIM is developed for direct numerical simulations. Both developments are validated, and test problems are solved. In this dissertation, a new nodal numerical scheme is developed to solve the k-epsilon equations to simulate turbulent flows. The MNIM developed earlier for laminar flow equations is modified to incorporate eddy viscosity approximation and coupled with the above mentioned schemes for the k and epsilon equations, to complete the implementation of the numerical scheme for the k-epsilon model. The scheme developed is validated by comparing the results obtained by the developed method with the results available in the literature obtained using direct numerical simulations (DNS). The results of current simulations match reasonably well with the DNS results. The discrepancies in the results are mainly due to the limitations of the k-epsilon model rather than the deficiency in the developed MNIM. A parallel version of the MNIM is needed to enhance its capability, in order to carry out DNS of the turbulent flows. The parallelization of the scheme, however, presents some unique challenges as dependencies of the discrete variables are different from those that exist in other schemes (for example in finite volume based schemes). Hence, a parallel MNIM (PMNIM) is developed and implemented into a computer code with communication strategies based on the above mentioned
Integrative methods for analyzing big data in precision medicine.
Gligorijević, Vladimir; Malod-Dognin, Noël; Pržulj, Nataša
2016-03-01
We provide an overview of recent developments in big data analyses in the context of precision medicine and health informatics. With the advance in technologies capturing molecular and medical data, we entered the area of "Big Data" in biology and medicine. These data offer many opportunities to advance precision medicine. We outline key challenges in precision medicine and present recent advances in data integration-based methods to uncover personalized information from big data produced by various omics studies. We survey recent integrative methods for disease subtyping, biomarkers discovery, and drug repurposing, and list the tools that are available to domain scientists. Given the ever-growing nature of these big data, we highlight key issues that big data integration methods will face. PMID:26677817
Method and apparatus for high-efficiency direct contact condensation
Bharathan, Desikan; Parent, Yves; Hassani, A. Vahab
1999-01-01
A direct contact condenser having a downward vapor flow chamber and an upward vapor flow chamber, wherein each of the vapor flow chambers includes a plurality of cooling liquid supplying pipes and a vapor-liquid contact medium disposed thereunder to facilitate contact and direct heat exchange between the vapor and cooling liquid. The contact medium includes a plurality of sheets arranged to form vertical interleaved channels or passageways for the vapor and cooling liquid streams. The upward vapor flow chamber also includes a second set of cooling liquid supplying pipes disposed beneath the vapor-liquid contact medium which operate intermittently in response to a pressure differential within the upward vapor flow chamber. The condenser further includes separate wells for collecting condensate and cooling liquid from each of the vapor flow chambers. In alternate embodiments, the condenser includes a cross-current flow chamber and an upward flow chamber, a plurality of upward flow chambers, or a single upward flow chamber. The method of use of the direct contact condenser of this invention includes passing a vapor stream sequentially through the downward and upward vapor flow chambers, where the vapor is condensed as a result of heat exchange with the cooling liquid in the contact medium. The concentration of noncondensable gases in the resulting condensate-liquid mixtures can be minimized by controlling the partial pressure of the vapor, which depends in part upon the geometry of the vapor-liquid contact medium. In another aspect of this invention, the physical and chemical performance of a direct contact condenser can be predicted based on the vapor and coolant compositions, the condensation conditions. and the geometric properties of the contact medium.
Method and apparatus for high-efficiency direct contact condensation
Bharathan, D.; Parent, Y.; Hassani, A.V.
1999-07-20
A direct contact condenser having a downward vapor flow chamber and an upward vapor flow chamber, wherein each of the vapor flow chambers includes a plurality of cooling liquid supplying pipes and a vapor-liquid contact medium disposed thereunder to facilitate contact and direct heat exchange between the vapor and cooling liquid. The contact medium includes a plurality of sheets arranged to form vertical interleaved channels or passageways for the vapor and cooling liquid streams. The upward vapor flow chamber also includes a second set of cooling liquid supplying pipes disposed beneath the vapor-liquid contact medium which operate intermittently in response to a pressure differential within the upward vapor flow chamber. The condenser further includes separate wells for collecting condensate and cooling liquid from each of the vapor flow chambers. In alternate embodiments, the condenser includes a cross-current flow chamber and an upward flow chamber, a plurality of upward flow chambers, or a single upward flow chamber. The method of use of the direct contact condenser of this invention includes passing a vapor stream sequentially through the downward and upward vapor flow chambers, where the vapor is condensed as a result of heat exchange with the cooling liquid in the contact medium. The concentration of noncondensable gases in the resulting condensate-liquid mixtures can be minimized by controlling the partial pressure of the vapor, which depends in part upon the geometry of the vapor-liquid contact medium. In another aspect of this invention, the physical and chemical performance of a direct contact condenser can be predicted based on the vapor and coolant compositions, the condensation conditions, and the geometric properties of the contact medium. 39 figs.
Methods and future directions for paleoclimatology in the Maya Lowlands
NASA Astrophysics Data System (ADS)
Douglas, Peter M. J.; Brenner, Mark; Curtis, Jason H.
2016-03-01
A growing body of paleoclimate data indicates that periods of severe drought affected the Maya Lowlands of southeastern Mexico and northern Central America, especially during the Terminal Classic period (ca. 800-950 CE), raising the possibility that climate change contributed to the widespread collapse of many Maya polities at that time. A broad range of paleoclimate proxy methods have been applied in the Maya Lowlands and the data derived from these methods are sometimes challenging for archeologists and other non-specialists to interpret. This paper reviews the principal methods used for paleoclimate inference in the region and the rationale for climate proxy interpretation to help researchers working in the Maya Lowlands make sense of paleoclimate datasets. In particular, we focus on analyses of speleothems and lake sediment cores. These two paleoclimate archives have been most widely applied in the Maya Lowlands and have the greatest potential to provide insights into climate change impacts on the ancient Maya. We discuss the development of chronologies for these climate archives, the proxies for past climate change found within them, and how these proxy variables are interpreted. Finally, we present strategies for improving our understanding of proxy paleoclimate data from the Maya Lowlands, including multi-proxy analyses, assessment of spatial variability in past climate change, combined analysis of climate models and proxy data, and the integration of paleoclimatology and archeology.
A direct method for e-cigarette aerosol sample collection.
Olmedo, Pablo; Navas-Acien, Ana; Hess, Catherine; Jarmul, Stephanie; Rule, Ana
2016-08-01
E-cigarette use is increasing in populations around the world. Recent evidence has shown that the aerosol produced by e-cigarettes can contain a variety of toxicants. Published studies characterizing toxicants in e-cigarette aerosol have relied on filters, impingers or sorbent tubes, which are methods that require diluting or extracting the sample in a solution during collection. We have developed a collection system that directly condenses e-cigarette aerosol samples for chemical and toxicological analyses. The collection system consists of several cut pipette tips connected with short pieces of tubing. The pipette tip-based collection system can be connected to a peristaltic pump, a vacuum pump, or directly to an e-cigarette user for the e-cigarette aerosol to flow through the system. The pipette tip-based system condenses the aerosol produced by the e-cigarette and collects a liquid sample that is ready for analysis without the need of intermediate extraction solutions. We tested a total of 20 e-cigarettes from 5 different brands commercially available in Maryland. The pipette tip-based collection system condensed between 0.23 and 0.53mL of post-vaped e-liquid after 150 puffs. The proposed method is highly adaptable, can be used during field work and in experimental settings, and allows collecting aerosol samples from a wide variety of e-cigarette devices, yielding a condensate of the likely exact substance that is being delivered to the lungs. PMID:27200479
Omni-Directional Extension of the Refraction Microtremor Method
NASA Astrophysics Data System (ADS)
Hauksson, S. E.; Louie, J. N.; Pullammanappallil, S.
2010-12-01
We propose and test an extension of the refraction microtremor (ReMi) method allowing us to extend our analysis from linear to two-dimensional arrays. Our “omni-directional” approach allows resolution of the azimuth of arriving ambient microtremor, as well as of lower frequencies and thus deeper velocities in areas where deploying a long linear array is not practical. We have found from our study of various array configurations that the specific array geometry (circle, triangles, rectangle, U, etc.) is not overly important. For this study, we analyze data collected with an approximately U shaped array, and with a triangular array. The U shaped array consisted of 48 geophones at 50-foot spacing and was recorded in 1997 near the Reno/Tahoe Airport. The data consisted of Rayleigh waves from background sources, mostly morning traffic from the airport and the nearby I-80/US-395 interchange. Originally, the data were used to measure the Rayleigh-wave dispersion values along separated east-west and north-south arrays. However, the U shape of the complete array is amenable to measuring wave speed in any desired direction. Using the omni-directional ReMi analysis, we can now analyze the speed of Rayleigh waves traveling in any direction. We have created a map of Vs30 (modeled average velocity from the surface to 30 m depth) values radiating out from the airport site to compare with the initial measurements. We also added the sum of p-f images for each analyzed directional vector to give an average Vs30 estimate for the area under the array. In comparison with an F-K dispersion curve published for a larger triangle array at the site in 2001, the omni-directional analysis of the U-shaped array finds correct phase velocities. As well, we find phase velocities to lower frequencies than could the standard linear-array ReMi analysis. Next, arrays of nested triangles provided data that we compare against P-S log data from a borehole drilled at the same location. The omni-directional
Direct integration of a supercapacitor into the backside of a silicon photovoltaic device
NASA Astrophysics Data System (ADS)
Westover, Andrew S.; Share, Keith; Carter, Rachel; Cohn, Adam P.; Oakes, Landon; Pint, Cary L.
2014-05-01
We demonstrate a route to integrate active material for energy storage directly into a silicon photovoltaic (PV) device, and the synergistic operation of the PV and storage systems for load leveling. Porous silicon supercapacitors with 84% Coulombic efficiency are etched directly into the excess absorbing layer material in a commercially available polycrystalline silicon PV device and coupled with solid-state polymer electrolytes. Our work demonstrates the simple idea both that the PV device can charge the supercapacitor under an external load and that a constant current load can be maintained through periods of intermittent illumination, demonstrating the concept of an all-silicon integrated solar supercapacitor.
Statistical length measurement method by direct imaging of carbon nanotubes.
Bengio, E Amram; Tsentalovich, Dmitri E; Behabtu, Natnael; Kleinerman, Olga; Kesselman, Ellina; Schmidt, Judith; Talmon, Yeshayahu; Pasquali, Matteo
2014-05-14
The influence of carbon nanotube (CNT) length on their macroscopic properties requires an accurate methodology for CNT length measurement. So far, existing techniques are limited to short (less than a few micrometers) CNTs and sample preparation methods that bias the measured values. Here, we show that the average length of carbon nanotubes (CNTs) can be measured by cryogenic transmission electron microscopy (cryo-TEM) of CNTs in chlorosulfonic acid. The method consists of dissolving at low concentration CNTs in chlorosulfonic acid (a true solvent), imaging the individual CNTs by cryo-TEM, and processing and analyzing the images to determine CNT length. By measuring the total CNT contour length and number of CNT ends in each image, and by applying statistical analysis, we extend the method to cases where each CNT is long enough to span many cryo-TEM images, making the direct length measurement of an entire CNT impractical. Hence, this new technique can be used effectively to estimate samples in a wide range of CNT lengths, although we find that cryo-TEM imaging may bias the measurement towards longer CNTs, which are easier to detect. Our statistical method is also applied to AFM images of CNTs to show that, by using only a few AFM images, it yields estimates that are consistent with literature techniques, based on individually measuring a higher number of CNTs. PMID:24773046
Entropy-based method to evaluate the data integrity
NASA Astrophysics Data System (ADS)
Peng, Xu; Tianyu, Ma; Yongjie, Jin
2006-12-01
Projection stage of single photon emission computed tomography (SPECT) was discussed to analyze the characteristics of information transmission and evaluate the data integrity. Information is transferred from the source to the detector in the photon emitting process. In the projection stage, integrity of projection data can be assessed by the information entropy, which is the conditional entropy standing for the average uncertainty of the source object under the condition of projection data. Simulations were performed to study projection data of emission-computed tomography with a pinhole collimator. Several types of collimators were treated. Results demonstrate that the conditional entropy shows the data integrity, and indicate how the algorithms are matched or mismatched to the geometry. A new method for assessing data integrity is devised for those decision makers to help improve the quality of image reconstruction.
Scenario driven data modelling: a method for integrating diverse sources of data and data streams
Brettin, Thomas S.; Cottingham, Robert W.; Griffith, Shelton D.; Quest, Daniel J.
2015-09-08
A system and method of integrating diverse sources of data and data streams is presented. The method can include selecting a scenario based on a topic, creating a multi-relational directed graph based on the scenario, identifying and converting resources in accordance with the scenario and updating the multi-directed graph based on the resources, identifying data feeds in accordance with the scenario and updating the multi-directed graph based on the data feeds, identifying analytical routines in accordance with the scenario and updating the multi-directed graph using the analytical routines and identifying data outputs in accordance with the scenario and defining queries to produce the data outputs from the multi-directed graph.
NASA Astrophysics Data System (ADS)
Herrmann, Harald; Rust, Ulrich; Schafer, Klaus
1995-03-01
Weighted coupling for strong sidelobe suppression of integrated acoustooptical mode converters in LiNbO3 using acoustical directional couplers has been studied theoretically and experimentally. A parameter free model for the propagation of surface acoustic waves in guiding structures has been developed based on a step-like variation of the acoustic velocity. Comparisons of theoretical results with experimental ones for acoustic waveguides and directional coupler structures confirm the applicability of the model. A coupled mode description of the acousto-optical polarization conversion in converters with acoustical directional couplers has been developed and applied to several tapered acoustical directional couplers. The model reveals that the conversion characteristics are usually strongly asymmetric. If the directional coupler is appropriately designed, a sidelobe suppression of about 30 dB can be achieved. First experimental results with tapered directional couplers confirm within some limits the theoretical predictions.
Mechanical System Reliability and Cost Integration Using a Sequential Linear Approximation Method
NASA Technical Reports Server (NTRS)
Kowal, Michael T.
1997-01-01
The development of new products is dependent on product designs that incorporate high levels of reliability along with a design that meets predetermined levels of system cost. Additional constraints on the product include explicit and implicit performance requirements. Existing reliability and cost prediction methods result in no direct linkage between variables affecting these two dominant product attributes. A methodology to integrate reliability and cost estimates using a sequential linear approximation method is proposed. The sequential linear approximation method utilizes probability of failure sensitivities determined from probabilistic reliability methods as well a manufacturing cost sensitivities. The application of the sequential linear approximation method to a mechanical system is demonstrated.
Accelerometer Method and Apparatus for Integral Display and Control Functions
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor)
1998-01-01
Method and apparatus for detecting mechanical vibrations and outputting a signal in response thereto is discussed. An accelerometer package having integral display and control functions is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine conditions over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase in amplitude over a selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated.
Accelerometer Method and Apparatus for Integral Display and Control Functions
NASA Technical Reports Server (NTRS)
Bozeman, Richard J., Jr. (Inventor)
1996-01-01
Method and apparatus for detecting mechanical vibrations and outputting a signal in response thereto. Art accelerometer package having integral display and control functions is suitable for mounting upon the machinery to be monitored. Display circuitry provides signals to a bar graph display which may be used to monitor machine conditions over a period of time. Control switches may be set which correspond to elements in the bar graph to provide an alert if vibration signals increase in amplitude over a selected trip point. The circuitry is shock mounted within the accelerometer housing. The method provides for outputting a broadband analog accelerometer signal, integrating this signal to produce a velocity signal, integrating and calibrating the velocity signal before application to a display driver, and selecting a trip point at which a digitally compatible output signal is generated.
Reaching a consensus in networks of high-order integral agents under switching directed topologies
NASA Astrophysics Data System (ADS)
Cheng, Long; Wang, Hanlei; Hou, Zeng-Guang; Tan, Min
2016-06-01
Consensus problem of high-order integral multi-agent systems under switching directed topology is considered in this study. Depending on whether the agent's full state is available or not, two distributed protocols are proposed to ensure that states of all agents can be convergent to a same stationary value. In the proposed protocols, the gain vector associated with the agent's (estimated) state and the gain vector associated with the relative (estimated) states between agents are designed in a sophisticated way. By this particular design, the high-order integral multi-agent system can be transformed into a first-order integral multi-agent system. Also, the convergence of the transformed first-order integral agent's state indicates the convergence of the original high-order integral agent's state, if and only if all roots of the polynomial, whose coefficients are the entries of the gain vector associated with the relative (estimated) states between agents, are in the open left-half complex plane. Therefore, many analysis techniques in the first-order integral multi-agent system can be directly borrowed to solve the problems in the high-order integral multi-agent system. Due to this property, it is proved that to reach a consensus, the switching directed topology of multi-agent system is only required to be 'uniformly jointly quasi-strongly connected', which seems the mildest connectivity condition in the literature. In addition, the consensus problem of discrete-time high-order integral multi-agent systems is studied. The corresponding consensus protocol and performance analysis are presented. Finally, three simulation examples are provided to show the effectiveness of the proposed approach.
An Integrated Approach to Research Methods and Capstone
ERIC Educational Resources Information Center
Postic, Robert; McCandless, Ray; Stewart, Beth
2014-01-01
In 1991, the AACU issued a report on improving undergraduate education suggesting, in part, that a curriculum should be both comprehensive and cohesive. Since 2008, we have systematically integrated our research methods course with our capstone course in an attempt to accomplish the twin goals of comprehensiveness and cohesion. By taking this…