Sample records for direct neutron scattering

  1. Characterization of Heavy Oxide Inorganic Scintillator Crystals for Direct Detection of Fast Neutrons Based on Inelastic Scattering

    DTIC Science & Technology

    2015-03-01

    HEAVY OXIDE INORGANIC SCINTILLATOR CRYSTALS FOR DIRECT DETECTION OF FAST NEUTRONS BASED ON INELASTIC SCATTERING by Philip R. Rusiecki...HEAVY OXIDE INORGANIC SCINTILLATOR CRYSTALS FOR DIRECT DETECTION OF FAST NEUTRONS BASED ON INELASTIC SCATTERING 6. AUTHOR(S) Philip R. Rusiecki 7...ABSTRACT (maximum 200 words) Heavy oxide inorganic scintillators may prove viable in the detection of fast neutrons based on the mechanism of

  2. Neutron Scattering Web

    Science.gov Websites

    Neutron Scattering Home Page A new portal for neutron scattering has just been established at neutronsources.org. The information contained here in the Neutron Scattering Web has been transferred to the new site . We will leave the current content here for archival purposes but no new content will be added. We

  3. Neutron Scattering Differential Cross Sections for 12C

    NASA Astrophysics Data System (ADS)

    Byrd, Stephen T.; Hicks, S. F.; Nickel, M. T.; Block, S. G.; Peters, E. E.; Ramirez, A. P. D.; Mukhopadhyay, S.; McEllistrem, M. T.; Yates, S. W.; Vanhoy, J. R.

    2016-09-01

    Because of the prevalence of its use in the nuclear energy industry and for our overall understanding of the interactions of neutrons with matter, accurately determining the effects of fast neutrons scattering from 12C is important. Previously measured 12C inelastic neutron scattering differential cross sections found in the National Nuclear Data Center (NNDC) show significant discrepancies (>30%). Seeking to resolve these discrepancies, neutron inelastic and elastic scattering differential cross sections for 12C were measured at the University of Kentucky Acceleratory Laboratory for incident neutron energies of 5.58, 5.83, and 6.04 MeV. Quasi mono-energetic neutrons were scattered off an enriched 12C target (>99.99%) and detected by a C6D6 liquid scintillation detector. Time-of-flight (TOF) techniques were used to determine scattered neutron energies and allowed for elastic/inelastic scattering distinction. Relative detector efficiencies were determined through direct measurements of neutrons produced by the 2H(d,n) and 3H(p,n) source reactions, and absolute normalization factors were found by comparing 1H scattering measurements to accepted NNDC values. This experimental procedure has been successfully used for prior neutron scattering measurements and seems well-suited to our current objective. Significant challenges were encountered, however, with measuring the neutron detector efficiency over the broad incident neutron energy range required for these measurements. Funding for this research was provided by the National Nuclear Security Administration (NNSA).

  4. Direct Observation Of Nanoparticle-Surfactant Interactions Using Small Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Kumar, Sugam; Aswal, V. K.

    2010-12-01

    Interactions of anionic silica nanoparticles with anionic, cationic and nonionic surfactants have directly been studied by contrast variation small angle neutron scattering (SANS). The measurements are performed on 1 wt% of both silica nanoparticles and surfactants of anionic sodium dodecyle sulphate (SDS), cationic dodecyltrimethyl ammonium bromide (DTAB) and non-ionic polyoxyethylene 10 lauryl ether (C12E10) in aqueous solution. We show that there is no direct interaction in the case of SDS with silica particles, whereas strong interaction for DTAB leads to the aggregation of silica particles. The interaction of C12E10 is found through the micelles adsorbed on the silica particles.

  5. Simultaneous neutron scattering and Raman scattering.

    PubMed

    Adams, Mark A; Parker, Stewart F; Fernandez-Alonso, Felix; Cutler, David J; Hodges, Christopher; King, Andrew

    2009-07-01

    The capability to make simultaneous neutron and Raman scattering measurements at temperatures between 1.5 and 450 K has been developed. The samples to be investigated are attached to one end of a custom-made center-stick suitable for insertion into a 100 mm-bore cryostat. The other end of the center-stick is fiber-optically coupled to a Renishaw in Via Raman spectrometer incorporating a 300 mW Toptica 785 nm wavelength stabilized diode laser. The final path for the laser beam is approximately 1.3 m in vacuo within the center-stick followed by a focusing lens close to the sample. Raman scattering measurements with a resolution of 1 to 4 cm(-1) can be made over a wide range (100-3200 cm(-1)) at the same time as a variety of different types of neutron scattering measurements. In this work we highlight the use of inelastic neutron scattering and neutron diffraction in conjunction with the Raman for studies of the globular protein lysozyme.

  6. Neutron Scattering Reference

    Science.gov Websites

    Conversion Factors Periodic Table of the Elements Chart of the Nuclides Map of the Nuclides Computer Index of (Atominstitut der Österreichischen Universitäten) Neutron Activation Table of Elements Neutron Scattering at neutronsources.org. The information contained here in the Neutron Scattering Web has been

  7. Single Crystal Diffuse Neutron Scattering

    DOE PAGES

    Welberry, Richard; Whitfield, Ross

    2018-01-11

    Diffuse neutron scattering has become a valuable tool for investigating local structure in materials ranging from organic molecular crystals containing only light atoms to piezo-ceramics that frequently contain heavy elements. Although neutron sources will never be able to compete with X-rays in terms of the available flux the special properties of neutrons, viz. the ability to explore inelastic scattering events, the fact that scattering lengths do not vary systematically with atomic number and their ability to scatter from magnetic moments, provides strong motivation for developing neutron diffuse scattering methods. Here, we compare three different instruments that have been used bymore » us to collect neutron diffuse scattering data. Two of these are on a spallation source and one on a reactor source.« less

  8. Single Crystal Diffuse Neutron Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welberry, Richard; Whitfield, Ross

    Diffuse neutron scattering has become a valuable tool for investigating local structure in materials ranging from organic molecular crystals containing only light atoms to piezo-ceramics that frequently contain heavy elements. Although neutron sources will never be able to compete with X-rays in terms of the available flux the special properties of neutrons, viz. the ability to explore inelastic scattering events, the fact that scattering lengths do not vary systematically with atomic number and their ability to scatter from magnetic moments, provides strong motivation for developing neutron diffuse scattering methods. Here, we compare three different instruments that have been used bymore » us to collect neutron diffuse scattering data. Two of these are on a spallation source and one on a reactor source.« less

  9. Neutron Scattering Home Page (Low-Graphics)

    Science.gov Websites

    will be added. We encourage everyone interested in neutron scattering to take full advantage of this Home Page | Facilities | Reference | Software | Conferences | Announcements | Mailing Lists Neutron Scattering Banner Neutron Scattering Home Page A new portal for neutron scattering has just been established

  10. Neutron Scattering Announcements

    Science.gov Websites

    will be added. We encourage everyone interested in neutron scattering to take full advantage of this neutron source ESS. After an initial layout phase using analytical considerations further assessment of Home Page | Facilities | Reference | Software | Conferences | Announcements | Mailing Lists Neutron

  11. A method for moisture measurement in porous media based on epithermal neutron scattering.

    PubMed

    El Abd, A

    2015-11-01

    A method for moisture measurement in porous media was proposed. A wide beam of epithermal neutrons was obtained from a Pu-Be neutron source immersed in a cylinder made of paraffin wax. (3)He detectors (four or six) arranged in the backward direction of the incident beam were used to record scattered neutrons from investigated samples. Experiments of water absorption into clay and silicate bricks, and a sand column were investigated by neutron scattering. While the samples were absorbing water, scattered neutrons were recorded from fixed positions along the water flow direction. It was observed that, at these positions scattered neutrons increase as the water uptake increases. Obtained results are discussed in terms of the theory of macroscopic flow in porous media. It was shown that, the water absorption processes were Fickian and non Fickian in the sand column and brick samples, respectively. The advantages of applying the proposed method to study fast as well as slow flow processes in porous media are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. The electron-spin--nuclear-spin interaction studied by polarized neutron scattering.

    PubMed

    Stuhrmann, Heinrich B

    2007-11-01

    Dynamic nuclear spin polarization (DNP) is mediated by the dipolar interaction of paramagnetic centres with nuclear spins. This process is most likely to occur near paramagnetic centres at an angle close to 45 degrees with respect to the direction of the external magnetic field. The resulting distribution of polarized nuclear spins leads to an anisotropy of the polarized neutron scattering pattern, even with randomly oriented radical molecules. The corresponding cross section of polarized coherent neutron scattering in terms of a multipole expansion is derived for radical molecules in solution. An application using data of time-resolved polarized neutron scattering from an organic chromium(V) molecule is tested.

  13. Neutron Scattering Template

    Science.gov Websites

    Scattering Banner Acknowledgements The graphics used on the Neutron Scattering Web Pages were designed by reused on these web pages by kind permission of Jack Carpenter, and with the assistance of Mary Koelbl (IPD). Rick Goyette (IPNS) set up and maintains the Linux web server as well as helping to automate the

  14. BUILDING A NETWORK FOR NEUTRON SCATTERING EDUCATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pynn, Roger; Baker, Shenda Mary; Louca, Despo A

    In a concerted effort supported by the National Science Foundation, the Department of Commerce, and the Department of Energy, the United States is rebuilding its leadership in neutron scattering capability through a significant investment in U.S. neutron scattering user facilities and related instrumentation. These unique facilities provide opportunities in neutron scattering to a broad community of researchers from academic institutions, federal laboratories, and industry. However, neutron scattering is often considered to be a tool for 'experts only' and in order for the U.S. research community to take full advantage of these new and powerful tools, a comprehensive education and outreachmore » program must be developed. The workshop described below is the first step in developing a national program that takes full advantage of modern education methods and leverages the existing educational capacity at universities and national facilities. During March 27-28, 2008, a workshop entitled 'Building a Network for Neutron Scattering Education' was held in Washington, D.C. The goal of the workshop was to define and design a roadmap for a comprehensive neutron scattering education program in the United States. Successful implementation of the roadmap will maximize the national intellectual capital in neutron sciences and will increase the sophistication of research questions addressed by neutron scattering at the nation's forefront facilities. (See Appendix A for the list of attendees, Appendix B for the workshop agenda, Appendix C for a list of references. Appendix D contains the results of a survey given at the workshop; Appendix E contains summaries of the contributed talks.) The workshop brought together U.S. academicians, representatives from neutron sources, scientists who have developed nontraditional educational programs, educational specialists, and managers from government agencies to create a national structure for providing ongoing neutron scattering

  15. Update on the direct n-n scattering experiment at the reactor YAGUAR

    NASA Astrophysics Data System (ADS)

    Stephenson, S. L.; Crawford, B. E.; Furman, W. I.; Lychagin, E. V.; Muzichka, A. Yu.; Nekhaev, G. V.; Sharapov, E. I.; Shvetsov, V. N.; Strelkov, A. V.; Levakov, B. G.; Lyzhin, A. E.; Chernukhin, Yu. I.; Howell, C. R.; Mitchell, G. E.; Tornow, W.; Showalter-Bucher, R. A.

    2013-10-01

    The first direct measurement of the 1S0 neutron-neutron scattering experiment using the YAGUAR aperiodic reactor at the Russian Federal Nuclear Center - All Russian Research Institute of Technical Physics has preliminary results. Thermal neutrons are scattered from a thermal neutron ``gas'' within the scattering chamber of the reactor and measured via time-of-flight. These initial results show an unexpectedly large thermal neutron background now understood to be from radiation-induced desorption within the scattering chamber. Analysis of the neutron time-of-flight spectra suggests neutron scattering from H2 and possibly H2O molecules. An experimental value for the desorption yield ηγ of 0.02 molecules/gamma agrees with modeled results. Techniques to reduce the effect of the nonthermal desorption will be presented. This work was supported in part by ISTC project No. 2286, Russia Found. Grant 01-02-17181, the US DOE grants Nos. DE-FG02-97-ER41042 and DE-FG02-97-ER41033, and by the US NSF through Award Nos. 0107263 and 0555652.

  16. Some Notes on Neutron Up-Scattering and the Doppler-Broadening of High-Z Scattering Resonances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsons, Donald Kent

    When neutrons are scattered by target nuclei at elevated temperatures, it is entirely possible that the neutron will actually gain energy (i.e., up-scatter) from the interaction. This phenomenon is in addition to the more usual case of the neutron losing energy (i.e., down-scatter). Furthermore, the motion of the target nuclei can also cause extended neutron down-scattering, i.e., the neutrons can and do scatter to energies lower than predicted by the simple asymptotic models. In recent years, more attention has been given to temperature-dependent scattering cross sections for materials in neutron multiplying systems. This has led to the inclusion of neutronmore » up-scatter in deterministic codes like Partisn and to free gas scattering models for material temperature effects in Monte Carlo codes like MCNP and cross section processing codes like NJOY. The free gas scattering models have the effect of Doppler Broadening the scattering cross section output spectra in energy and angle. The current state of Doppler-Broadening numerical techniques used at Los Alamos for scattering resonances will be reviewed, and suggestions will be made for further developments. The focus will be on the free gas scattering models currently in use and the development of new models to include high-Z resonance scattering effects. These models change the neutron up-scattering behavior.« less

  17. Geometry Survey of the Time-of-Flight Neutron-Elastic Scattering (Antonella) Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oshinowo, Babatunde O.; Izraelevitch, Federico

    The Antonella experiment is a measurement of the ionization efficiency of nuclear recoils in silicon at low energies [1]. It is a neutron elastic scattering experiment motivated by the search for dark matter particles. In this experiment, a proton beam hits a lithium target and neutrons are produced. The neutron shower passes through a collimator that produces a neutron beam. The beam illuminates a silicon detector. With a certain probability, a neutron interacts with a silicon nucleus of the detector producing elastic scattering. After the interaction, a fraction of the neutron energy is transferred to the silicon nucleus which acquiresmore » kinetic energy and recoils. This kinetic energy is then dissipated in the detector producing ionization and thermal energy. The ionization produced is measured with the silicon detector electronics. On the other hand, the neutron is scattered out of the beam. A neutron-detector array (made of scintillator bars) registers the neutron arrival time and the scattering angle to reconstruct the kinematics of the neutron-nucleus interaction with the time-of-flight technique [2]. In the reconstruction equations, the energy of the nuclear recoil is a function of the scattering angle with respect to the beam direction, the time-of-flight of the neutron and the geometric distances between components of the setup (neutron-production target, silicon detector, scintillator bars). This paper summarizes the survey of the different components of the experiment that made possible the off-line analysis of the collected data. Measurements were made with the API Radian Laser Tracker and I-360 Probe Wireless. The survey was completed at the University of Notre Dame, Indiana, USA in February 2015.« less

  18. Direct Measure of the Dense Methane Phase in Gas Shale Organic Porosity by Neutron Scattering

    DOE PAGES

    Eberle, Aaron P. R.; King, Hubert E.; Ravikovitch, Peter I.; ...

    2016-08-30

    Here, we report the first direct measurements of methane density in shale gas using small-angle neutron scattering. At a constant pressure, the density of methane in the inorganic pores is similar to the gas bulk density of the system conditions. Conversely, the methane density is 2.1 ± 0.2 times greater in the organic mesopores. Furthermore, classical density functional theory calculations show that this excess density in the organic pores persists to elevated temperatures, typical of shale gas reservoir conditions, providing new insight into the hydrocarbon storage mechanisms within these reservoirs.

  19. Protein dynamics as seen by (quasi) elastic neutron scattering.

    PubMed

    Magazù, S; Mezei, F; Falus, P; Farago, B; Mamontov, E; Russina, M; Migliardo, F

    2017-01-01

    Elastic and quasielastic neutron scattering studies proved to be efficient probes of the atomic mean square displacement (MSD), a fundamental parameter for the characterization of the motion of individual atoms in proteins and its evolution with temperature and compositional environment. We present a technical overview of the different types of experimental situations and the information quasi-elastic neutron scattering approaches can make available. In particular, MSD can crucially depend on the time scale over which the averaging (building of the "mean") takes place, being defined by the instrumental resolution. Due to their high neutron scattering cross section, hydrogen atoms can be particularly sensitively observed with little interference by the other atoms in the sample. A few examples, including new data, are presented for illustration. The incoherent character of neutron scattering on hydrogen atoms restricts the information obtained to the self-correlations in the motion of individual atoms, simplifying at the same time the data analysis. On the other hand, the (often overlooked) exploration of the averaging time dependent character of MSD is crucial for unambiguous interpretation and can provide a wealth of information on micro- and nanoscale atomic motion in proteins. By properly exploiting the broad range capabilities of (quasi)elastic neutron scattering techniques to deliver time dependent characterization of atomic displacements, they offer a sensitive, direct and simple to interpret approach to exploration of the functional activity of hydrogen atoms in proteins. Partial deuteration can add most valuable selectivity by groups of hydrogen atoms. "This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo". Copyright © 2016 Elsevier B.V. All rights reserved.

  20. American Conference on Neutron Scattering 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dillen, J. Ardie

    2014-12-31

    Scientists from the around the world converged in Knoxville, TN to have share ideas, present technical information and contribute to the advancement of neutron scattering. Featuring over 400 oral/poster presentations, ACNS 2014 offered a strong program of plenary, invited and contributed talks and poster sessions covering topics in soft condensed matter, hard condensed matter, biology, chemistry, energy and engineering applications in neutron physics – confirming the great diversity of science that is enabled by neutron scattering.

  1. Non-destructive diagnostics of irradiated materials using neutron scattering from pulsed neutron sources

    NASA Astrophysics Data System (ADS)

    Korenev, Sergey; Sikolenko, Vadim

    2004-09-01

    The advantage of neutron-scattering studies as compared to the standard X-ray technique is the high penetration of neutrons that allow us to study volume effects. The high resolution of instrumentation on the basis neutron scattering allows measurement of the parameters of lattice structure with high precision. We suggest the use of neutron scattering from pulsed neutron sources for analysis of materials irradiated with pulsed high current electron and ion beams. The results of preliminary tests using this method for Ni foils that have been studied by neutron diffraction at the IBR-2 (Pulsed Fast Reactor at Joint Institute for Nuclear Research) are presented.

  2. Multiple magnetic scattering in small-angle neutron scattering of Nd-Fe-B nanocrystalline magnet.

    PubMed

    Ueno, Tetsuro; Saito, Kotaro; Yano, Masao; Ito, Masaaki; Shoji, Tetsuya; Sakuma, Noritsugu; Kato, Akira; Manabe, Akira; Hashimoto, Ai; Gilbert, Elliot P; Keiderling, Uwe; Ono, Kanta

    2016-06-20

    We have investigated the influence of multiple scattering on the magnetic small-angle neutron scattering (SANS) from a Nd-Fe-B nanocrystalline magnet. We performed sample-thickness- and neutron-wavelength-dependent SANS measurements, and observed the scattering vector dependence of the multiple magnetic scattering. It is revealed that significant multiple scattering exists in the magnetic scattering rather than the nuclear scattering of Nd-Fe-B nanocrystalline magnet. It is considered that the mean free path of the neutrons for magnetic scattering is rather short in Nd-Fe-B magnets. We analysed the SANS data by the phenomenological magnetic correlation model considering the magnetic microstructures and obtained the microstructural parameters.

  3. Multiple magnetic scattering in small-angle neutron scattering of Nd–Fe–B nanocrystalline magnet

    PubMed Central

    Ueno, Tetsuro; Saito, Kotaro; Yano, Masao; Ito, Masaaki; Shoji, Tetsuya; Sakuma, Noritsugu; Kato, Akira; Manabe, Akira; Hashimoto, Ai; Gilbert, Elliot P.; Keiderling, Uwe; Ono, Kanta

    2016-01-01

    We have investigated the influence of multiple scattering on the magnetic small-angle neutron scattering (SANS) from a Nd–Fe–B nanocrystalline magnet. We performed sample-thickness- and neutron-wavelength-dependent SANS measurements, and observed the scattering vector dependence of the multiple magnetic scattering. It is revealed that significant multiple scattering exists in the magnetic scattering rather than the nuclear scattering of Nd–Fe–B nanocrystalline magnet. It is considered that the mean free path of the neutrons for magnetic scattering is rather short in Nd–Fe–B magnets. We analysed the SANS data by the phenomenological magnetic correlation model considering the magnetic microstructures and obtained the microstructural parameters. PMID:27321149

  4. Using Neutron Spin Echo Resolved Grazing Incidence Scattering to Investigate Organic Solar Cell Materials

    PubMed Central

    Parnell, Andrew J.; Hobson, Adam; Dalgliesh, Robert M.; Jones, Richard A. L.; Dunbar, Alan D. F.

    2014-01-01

    The spin echo resolved grazing incidence scattering (SERGIS) technique has been used to probe the length-scales associated with irregularly shaped crystallites. Neutrons are passed through two well defined regions of magnetic field; one before and one after the sample. The two magnetic field regions have opposite polarity and are tuned such that neutrons travelling through both regions, without being perturbed, will undergo the same number of precessions in opposing directions. In this case the neutron precession in the second arm is said to "echo" the first, and the original polarization of the beam is preserved. If the neutron interacts with a sample and scatters elastically the path through the second arm is not the same as the first and the original polarization is not recovered. Depolarization of the neutron beam is a highly sensitive probe at very small angles (<50 μrad) but still allows a high intensity, divergent beam to be used. The decrease in polarization of the beam reflected from the sample as compared to that from the reference sample can be directly related to structure within the sample. In comparison to scattering observed in neutron reflection measurements the SERGIS signals are often weak and are unlikely to be observed if the in-plane structures within the sample under investigation are dilute, disordered, small in size and polydisperse or the neutron scattering contrast is low. Therefore, good results will most likely be obtained using the SERGIS technique if the sample being measured consist of thin films on a flat substrate and contain scattering features that contains a high density of moderately sized features (30 nm to 5 µm) which scatter neutrons strongly or the features are arranged on a lattice. An advantage of the SERGIS technique is that it can probe structures in the plane of the sample. PMID:24457355

  5. Model-based design evaluation of a compact, high-efficiency neutron scatter camera

    NASA Astrophysics Data System (ADS)

    Weinfurther, Kyle; Mattingly, John; Brubaker, Erik; Steele, John

    2018-03-01

    This paper presents the model-based design and evaluation of an instrument that estimates incident neutron direction using the kinematics of neutron scattering by hydrogen-1 nuclei in an organic scintillator. The instrument design uses a single, nearly contiguous volume of organic scintillator that is internally subdivided only as necessary to create optically isolated pillars, i.e., long, narrow parallelepipeds of organic scintillator. Scintillation light emitted in a given pillar is confined to that pillar by a combination of total internal reflection and a specular reflector applied to the four sides of the pillar transverse to its long axis. The scintillation light is collected at each end of the pillar using a photodetector, e.g., a microchannel plate photomultiplier (MCP-PM) or a silicon photomultiplier (SiPM). In this optically segmented design, the (x , y) position of scintillation light emission (where the x and y coordinates are transverse to the long axis of the pillars) is estimated as the pillar's (x , y) position in the scintillator "block", and the z-position (the position along the pillar's long axis) is estimated from the amplitude and relative timing of the signals produced by the photodetectors at each end of the pillar. The neutron's incident direction and energy is estimated from the (x , y , z) -positions of two sequential neutron-proton scattering interactions in the scintillator block using elastic scatter kinematics. For proton recoils greater than 1 MeV, we show that the (x , y , z) -position of neutron-proton scattering can be estimated with < 1 cm root-mean-squared [RMS] error and the proton recoil energy can be estimated with < 50 keV RMS error by fitting the photodetectors' response time history to models of optical photon transport within the scintillator pillars. Finally, we evaluate several alternative designs of this proposed single-volume scatter camera made of pillars of plastic scintillator (SVSC-PiPS), studying the effect of

  6. Inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Petit, Sylvain

    2017-10-01

    The goal of the JDN22 school was to propose a progressive teaching eager to improve the expertise of students in neutron diffraction. Neutron-based techniques have indeed proved for decades to be essential tools in the investigation of condensed matter. This lecture is however concerned with inelastic neutron scattering and is thus somehow apart. In the context of this school, it should then only be considered as a brief introduction. We give simple examples along with the basics of the spectrometers, and finally useful formula for the inelastic cross sections in different situations. We strongly encourage interested readers to refer to the bibliography for more detailed information.

  7. Inelastic neutron scattering from {sup 238}U

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moxon, M.C.; Wartena, J.A.; Weigmann, H.

    1994-12-31

    A measurement of the neutron inelastic scattering cross-section of {sup 238}U at 4 distant neutron energies in the low keV region has been undertaken using a 30m flight path on the pulsed neutron source GELINA. The scattered neutrons are detected in a plastic scintillator after passing through a 270 mm iron filter. The values obtained for the cross-section to the first excited 2{sup +} state in {sup 238}U are 293{+-}31, 660{+-}296, 978{+-}73 and 1176{+-}95 mb at neutron energies of 68.2, 126.6, 182.4 and 213.6 keV respectively.

  8. Neutron scattering facilities at Chalk River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holden, T.M.; Powell, B.M.; Dolling, G.

    1995-12-31

    The Chalk River Laboratories of AECL Research provides neutron beams for research with the NRU reactor. The NRU reactor has eight reactor loops for engineering test experiments, 30 isotope irradiation sites and beam tubes, six of which feed the neutron scattering instruments. The peak thermal flux is 3 {times} 10{sup 14}n cm{sup {minus}2} s{sup {minus}1}. The neutron spectrometers are operated as national facilities for Canadian neutron scattering research. Since the research requirements for the Canadian nuclear industry are changing, and since the NRU reactor is unlikely to operate much beyond the year 2000, a new Irradiation Research Facility (IRF) ismore » being considered for start-up in the first decade of the next century. An outline is given of this proposed new neutron source.« less

  9. Fluence-compensated down-scattered neutron imaging using the neutron imaging system at the National Ignition Facility.

    PubMed

    Casey, D T; Volegov, P L; Merrill, F E; Munro, D H; Grim, G P; Landen, O L; Spears, B K; Fittinghoff, D N; Field, J E; Smalyuk, V A

    2016-11-01

    The Neutron Imaging System at the National Ignition Facility is used to observe the primary ∼14 MeV neutrons from the hotspot and down-scattered neutrons (6-12 MeV) from the assembled shell. Due to the strong spatial dependence of the primary neutron fluence through the dense shell, the down-scattered image is convolved with the primary-neutron fluence much like a backlighter profile. Using a characteristic scattering angle assumption, we estimate the primary neutron fluence and compensate the down-scattered image, which reveals information about asymmetry that is otherwise difficult to extract without invoking complicated models.

  10. Direct nn-Scattering Measurement With the Pulsed Reactor YAGUAR.

    PubMed

    Mitchell, G E; Furman, W I; Lychagin, E V; Muzichka, A Yu; Nekhaev, G V; Strelkov, A V; Sharapov, E I; Shvetsov, V N; Chernuhin, Yu I; Levakov, B G; Litvin, V I; Lyzhin, A E; Magda, E P; Crawford, B E; Stephenson, S L; Howell, C R; Tornow, W

    2005-01-01

    Although crucial for resolving the issue of charge symmetry in the nuclear force, direct measurement of nn-scattering by colliding free neutrons has never been performed. At present the Russian pulsed reactor YAGUAR is the best neutron source for performing such a measurement. It has a through channel where the neutron moderator is installed. The neutrons are counted by a neutron detector located 12 m from the reactor. In preliminary experiments an instantaneous value of 1.1 × 10(18)/cm(2)s was obtained for the thermal neutron flux density. The experiment will be performed by the DIANNA Collaboration as International Science & Technology Center (ISTC) project No. 2286.

  11. Direct nn-Scattering Measurement With the Pulsed Reactor YAGUAR

    PubMed Central

    Mitchell, G. E.; Furman, W. I.; Lychagin, E. V.; Muzichka, A. Yu.; Nekhaev, G. V.; Strelkov, A. V.; Sharapov, E. I.; Shvetsov, V. N.; Chernuhin, Yu. I.; Levakov, B. G.; Litvin, V. I.; Lyzhin, A. E.; Magda, E. P.; Crawford, B. E.; Stephenson, S. L.; Howell, C. R.; Tornow, W

    2005-01-01

    Although crucial for resolving the issue of charge symmetry in the nuclear force, direct measurement of nn-scattering by colliding free neutrons has never been performed. At present the Russian pulsed reactor YAGUAR is the best neutron source for performing such a measurement. It has a through channel where the neutron moderator is installed. The neutrons are counted by a neutron detector located 12 m from the reactor. In preliminary experiments an instantaneous value of 1.1 × 1018/cm2s was obtained for the thermal neutron flux density. The experiment will be performed by the DIANNA Collaboration as International Science & Technology Center (ISTC) project No. 2286. PMID:27308126

  12. Elastic and inelastic scattering of neutrons on 238U nucleus

    NASA Astrophysics Data System (ADS)

    Capote, R.; Trkov, A.; Sin, M.; Herman, M. W.; Soukhovitskiĩ, E. Sh.

    2014-04-01

    Advanced modelling of neutron induced reactions on the 238U nucleus is aimed at improving our knowledge of neutron scattering. Capture and fission channels are well constrained by available experimental data and neutron standard evaluation. A focus of this contribution is on elastic and inelastic scattering cross sections. The employed nuclear reaction model includes - a new rotational-vibrational dispersive optical model potential coupling the low-lying collective bands of vibrational character observed in even-even actinides; - the Engelbrecht-Weidenmüller transformation allowing for inclusion of compound-direct interference effects; - and a multi-humped fission barrier with absorption in the secondary well described within the optical model for fission. Impact of the advanced modelling on elastic and inelastic scattering cross sections including angular distributions and emission spectra is assessed both by comparison with selected microscopic experimental data and integral criticality benchmarks including measured reaction rates (e.g. JEMIMA, FLAPTOP and BIG TEN). Benchmark calculations provided feedback to improve the reaction modelling. Improvement of existing libraries will be discussed.

  13. The hydrogen anomaly problem in neutron Compton scattering

    NASA Astrophysics Data System (ADS)

    Karlsson, Erik B.

    2018-03-01

    Neutron Compton scattering (also called ‘deep inelastic scattering of neutrons’, DINS) is a method used to study momentum distributions of light atoms in solids and liquids. It has been employed extensively since the start-up of intense pulsed neutron sources about 25 years ago. The information lies primarily in the width and shape of the Compton profile and not in the absolute intensity of the Compton peaks. It was therefore not immediately recognized that the relative intensities of Compton peaks arising from scattering on different isotopes did not always agree with values expected from standard neutron cross-section tables. The discrepancies were particularly large for scattering on protons, a phenomenon that became known as ‘the hydrogen anomaly problem’. The present paper is a review of the discovery, experimental tests to prove or disprove the existence of the hydrogen anomaly and discussions concerning its origin. It covers a twenty-year-long history of experimentation, theoretical treatments and discussions. The problem is of fundamental interest, since it involves quantum phenomena on the subfemtosecond time scale, which are not visible in conventional thermal neutron scattering but are important in Compton scattering where neutrons have two orders of magnitude times higher energy. Different H-containing systems show different cross-section deficiencies and when the scattering processes are followed on the femtosecond time scale the cross-section losses disappear on different characteristic time scales for each H-environment. The last section of this review reproduces results from published papers based on quantum interference in scattering on identical particles (proton or deuteron pairs or clusters), which have given a quantitative theoretical explanation both regarding the H-cross-section reduction and its time dependence. Some new explanations are added and the concluding chapter summarizes the conditions for observing the specific quantum

  14. Quasielastic neutron scattering in biology: Theory and applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vural, Derya; Univ. of Tennessee, Knoxville, TN; Hu, Xiaohu

    Neutrons scatter quasielastically from stochastic, diffusive processes, such as overdamped vibrations, localized diffusion and transitions between energy minima. In biological systems, such as proteins and membranes, these relaxation processes are of considerable physical interest. We review here recent methodological advances and applications of quasielastic neutron scattering (QENS) in biology, concentrating on the role of molecular dynamics simulation in generating data with which neutron profiles can be unambiguously interpreted. We examine the use of massively-parallel computers in calculating scattering functions, and the application of Markov state modeling. The decomposition of MD-derived neutron dynamic susceptibilities is described, and the use of thismore » in combination with NMR spectroscopy. We discuss dynamics at very long times, including approximations to the infinite time mean-square displacement and nonequilibrium aspects of single-protein dynamics. Lastly, we examine how neutron scattering and MD can be combined to provide information on lipid nanodomains.« less

  15. Quasielastic neutron scattering in biology: Theory and applications

    DOE PAGES

    Vural, Derya; Univ. of Tennessee, Knoxville, TN; Hu, Xiaohu; ...

    2016-06-15

    Neutrons scatter quasielastically from stochastic, diffusive processes, such as overdamped vibrations, localized diffusion and transitions between energy minima. In biological systems, such as proteins and membranes, these relaxation processes are of considerable physical interest. We review here recent methodological advances and applications of quasielastic neutron scattering (QENS) in biology, concentrating on the role of molecular dynamics simulation in generating data with which neutron profiles can be unambiguously interpreted. We examine the use of massively-parallel computers in calculating scattering functions, and the application of Markov state modeling. The decomposition of MD-derived neutron dynamic susceptibilities is described, and the use of thismore » in combination with NMR spectroscopy. We discuss dynamics at very long times, including approximations to the infinite time mean-square displacement and nonequilibrium aspects of single-protein dynamics. Lastly, we examine how neutron scattering and MD can be combined to provide information on lipid nanodomains.« less

  16. Backward-forward reaction asymmetry of neutron elastic scattering on deuterium

    NASA Astrophysics Data System (ADS)

    Pirovano, E.; Beyer, R.; Junghans, A. R.; Nankov, N.; Nolte, R.; Nyman, M.; Plompen, A. J. M.

    2017-02-01

    A new measurement of the angular distribution of neutron elastic scattering on deuterium was carried out at the neutron time-of-flight facility nELBE. The backward-forward asymmetry of the reaction was investigated via the direct detection of neutrons scattered at the laboratory angle of 15∘ and 165∘ from a polyethylene sample enriched with deuterium. In order to extend the measurement to neutron energies below 1 MeV, 6Li glass scintillators were employed. The data were corrected for the background and the multiple scattering in the target, the events due to scattering on deuterium were separated from those due to carbon, and the ratio of the differential cross section at 15∘ and 165∘ was determined. The results, covering the energy range from 200 keV to 2 MeV, were found to be in agreement with the theoretical predictions calculated by Canton et al. [Eur. Phys. J. A 14, 225 (2002)], 10.1140/epja/i2001-10122-3 and by Golak et al. [Eur. Phys. J. A 50, 177 (2014)], 10.1140/epja/i2014-14177-7. The comparison with the evaluated nuclear data libraries indicated CENDL-3.1, JEFF-3.2, and JENDL-4.0 as the evaluations that best describe the asymmetry of n -d scattering. ENDF/B-VII.1 is compatible with the data for energies below 700 keV, but above the backward to forward ratio is higher than measured. ROSFOND-2010 and BROND-2.2 resulted to have little compatibility with the data.

  17. Hierarchical optimization for neutron scattering problems

    DOE PAGES

    Bao, Feng; Archibald, Rick; Bansal, Dipanshu; ...

    2016-03-14

    In this study, we present a scalable optimization method for neutron scattering problems that determines confidence regions of simulation parameters in lattice dynamics models used to fit neutron scattering data for crystalline solids. The method uses physics-based hierarchical dimension reduction in both the computational simulation domain and the parameter space. We demonstrate for silicon that after a few iterations the method converges to parameters values (interatomic force-constants) computed with density functional theory simulations.

  18. Hierarchical optimization for neutron scattering problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Feng; Archibald, Rick; Bansal, Dipanshu

    In this study, we present a scalable optimization method for neutron scattering problems that determines confidence regions of simulation parameters in lattice dynamics models used to fit neutron scattering data for crystalline solids. The method uses physics-based hierarchical dimension reduction in both the computational simulation domain and the parameter space. We demonstrate for silicon that after a few iterations the method converges to parameters values (interatomic force-constants) computed with density functional theory simulations.

  19. Debye-Waller Factor in Neutron Scattering by Ferromagnetic Metals

    NASA Astrophysics Data System (ADS)

    Paradezhenko, G. V.; Melnikov, N. B.; Reser, B. I.

    2018-04-01

    We obtain an expression for the neutron scattering cross section in the case of an arbitrary interaction of the neutron with the crystal. We give a concise, simple derivation of the Debye-Waller factor as a function of the scattering vector and the temperature. For ferromagnetic metals above the Curie temperature, we estimate the Debye-Waller factor in the range of scattering vectors characteristic of polarized magnetic neutron scattering experiments. In the example of iron, we compare the results of harmonic and anharmonic approximations.

  20. Neutron-Proton Scattering Experiments at ANKE-COSY

    NASA Astrophysics Data System (ADS)

    Kacharava, A.; Chiladze, D.; Chiladze, B.; Keshelashvili, I.; Lomidze, N.; Macharashvili, G.; McHedlishvili, D.; Nioradze, M.; Rathmann, F.; Ströher, H.; Wilkin, C.

    2010-04-01

    The nucleon-nucleon interaction (NN) is fundamental for the whole of nuclear physics and hence to the composition of matter as we know it. It has been demonstrated that stored, polarised beams and polarised internal targets are experimental tools of choice to probe spin effects in NN-scattering experiments. While the EDDA experiment has dramatically improved the proton-proton date base, information on spin observables in neutron-proton scattering is very incomplete above 800 MeV, resulting in large uncertainties in isoscalar n p phase shifts. Experiments at COSY, using a polarised deuteron beam or target, can lead to significant improvements in the situation through the study of quasi-free reactions on the neutron in the deuteron. Such a measurements has already been started at ANKE by using polarised deuterons on an unpolarised target to study the dp → ppn deuteron charge-exchange reaction and the full program with a polarised storage cell target just has been conducted. At low excitation energies of the final pp system, the spin observables are directly related to the spin- dependent parts of the neutron-proton charge-exchange amplitudes. Our measurement of the deuteron-proton spin correlations will allow us to determine the relative phases of these amplitudes in addition to their overall magnitudes.

  1. Neutron-neutron quasifree scattering in nd breakup at 10 MeV

    NASA Astrophysics Data System (ADS)

    Malone, R. C.; Crowe, B.; Crowell, A. S.; Cumberbatch, L. C.; Esterline, J. H.; Fallin, B. A.; Friesen, F. Q. L.; Han, Z.; Howell, C. R.; Markoff, D.; Ticehurst, D.; Tornow, W.; Witała, H.

    2016-03-01

    The neutron-deuteron (nd) breakup reaction provides a rich environment for testing theoretical models of the neutron-neutron (nn) interaction. Current theoretical predictions based on rigorous ab-initio calculations agree well with most experimental data for this system, but there remain a few notable discrepancies. The cross section for nn quasifree (QFS) scattering is one such anomaly. Two recent experiments reported cross sections for this particular nd breakup configuration that exceed theoretical calculations by almost 20% at incident neutron energies of 26 and 25 MeV [1, 2]. The theoretical values can be brought into agreement with these results by increasing the strength of the 1S0 nn potential matrix element by roughly 10%. However, this modification of the nn effective range parameter and/or the 1S0 scattering length causes substantial charge-symmetry breaking in the nucleon-nucleon force and suggests the possibility of a weakly bound di-neutron state [3]. We are conducting new measurements of the cross section for nn QFS in nd breakup. The measurements are performed at incident neutron beam energies below 20 MeV. The neutron beam is produced via the 2H(d, n)3He reaction. The target is a deuterated plastic cylinder. Our measurements utilize time-of-flight techniques with a pulsed neutron beam and detection of the two emitted neutrons in coincidence. A description of our initial measurements at 10 MeV for a single scattering angle will be presented along with preliminary results. Also, plans for measurements at other energies with broad angular coverage will be discussed.

  2. Early history of neutron scattering at oak ridge

    NASA Astrophysics Data System (ADS)

    Wilkinson, M. K.

    1986-03-01

    Most of the early development of neutron scattering techniques utilizing reactor neutrons occurred at the Oak Ridge National Laboratory during the years immediately following World War II. C.G. Shull, E.O. Wollan, and their associates systematically established neutron diffraction as a quantitative research tool and then applied this technique to important problems in nuclear physics, chemical crystallography, and magnetism. This article briefly summarizes the very important research at ORNL during this period, which laid the foundation for the establishment of neutron scattering programs throughout the world.

  3. Dynamic neutron scattering from conformational dynamics. I. Theory and Markov models

    NASA Astrophysics Data System (ADS)

    Lindner, Benjamin; Yi, Zheng; Prinz, Jan-Hendrik; Smith, Jeremy C.; Noé, Frank

    2013-11-01

    The dynamics of complex molecules can be directly probed by inelastic neutron scattering experiments. However, many of the underlying dynamical processes may exist on similar timescales, which makes it difficult to assign processes seen experimentally to specific structural rearrangements. Here, we show how Markov models can be used to connect structural changes observed in molecular dynamics simulation directly to the relaxation processes probed by scattering experiments. For this, a conformational dynamics theory of dynamical neutron and X-ray scattering is developed, following our previous approach for computing dynamical fingerprints of time-correlation functions [F. Noé, S. Doose, I. Daidone, M. Löllmann, J. Chodera, M. Sauer, and J. Smith, Proc. Natl. Acad. Sci. U.S.A. 108, 4822 (2011)]. Markov modeling is used to approximate the relaxation processes and timescales of the molecule via the eigenvectors and eigenvalues of a transition matrix between conformational substates. This procedure allows the establishment of a complete set of exponential decay functions and a full decomposition into the individual contributions, i.e., the contribution of every atom and dynamical process to each experimental relaxation process.

  4. Excess wing in glass-forming glycerol and LiCl-glycerol mixtures detected by neutron scattering

    DOE PAGES

    Gupta, S.; Arend, N.; Lunkenheimer, P.; ...

    2015-01-22

    The relaxational dynamics in glass-forming glycerol and glycerol mixed with LiCl is investigated using different neutron scattering techniques. The performed neutron spin echo experiments, which extend up to relatively long relaxation time scales of the order of 10 ns, should allow for the detection of contributions from the so-called excess wing. This phenomenon, whose microscopic origin is controversially discussed, arises in a variety of glass formers and, until now, was almost exclusively investigated by dielectric spectroscopy and light scattering. In conclusion, we show here that the relaxational process causing the excess wing can also be detected by neutron scattering, whichmore » directly couples to density fluctuations.« less

  5. Depth resolved grazing incidence neutron scattering experiments from semi-infinite interfaces: a statistical analysis of the scattering contributions

    NASA Astrophysics Data System (ADS)

    Adlmann, Franz A.; Herbel, Jörg; Korolkovas, Airidas; Bliersbach, Andreas; Toperverg, Boris; Van Herck, Walter; Pálsson, Gunnar K.; Kitchen, Brian; Wolff, Max

    2018-04-01

    Grazing incidence neutron scattering experiments offer surface sensitivity by reflecting from an interface at momentum transfers close to total external reflection. Under these conditions the penetration depth is strongly non-linear and may change by many orders of magnitude. This fact imposes severe challenges for depth resolved experiments, since the brilliance of neutron beams is relatively low in comparison to e.g. synchrotron radiation. In this article we use probability density functions to calculate the contribution of scattering at different distances from an interface to the intensities registered on the detector. Our method has the particular advantage that the depth sensitivity is directly extracted from the scattering pattern itself. Hence for perfectly known samples exact resolution functions can be calculated and visa versa. We show that any tails in the resolution function, e.g. Gaussian shaped, hinders depth resolved experiments. More importantly we provide means for a descriptive statistical analysis of detector images with respect to the scattering contributions and show that even for perfect resolution near surface scattering is hardly accessible.

  6. Neutron stars at the dark matter direct detection frontier

    NASA Astrophysics Data System (ADS)

    Raj, Nirmal; Tanedo, Philip; Yu, Hai-Bo

    2018-02-01

    Neutron stars capture dark matter efficiently. The kinetic energy transferred during capture heats old neutron stars in the local galactic halo to temperatures detectable by upcoming infrared telescopes. We derive the sensitivity of this probe in the framework of effective operators. For dark matter heavier than a GeV, we find that neutron star heating can set limits on the effective operator cutoff that are orders of magnitude stronger than possible from terrestrial direct detection experiments in the case of spin-dependent and velocity-suppressed scattering.

  7. Neutron Scattering Cross Section Measurements for 169Tm via the (n,n') Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alimeti, Afrim; Kegel, Gunter H.R.; Egan, James J.

    2005-05-24

    The neutron physics group at the University of Massachusetts Lowell (UML) has been involved in a program of scattering cross-section measurements for highly deformed nuclei such as 159Tb, 169Tm, 232Th, 235U, 238U, and 239Pu. Ko et al. have reported neutron inelastic scattering data from 169Tm for states above 100 keV via the (n,n'{gamma}) reaction at incident energies in the 0.2 MeV to 1.0 MeV range. In the present research, in which the time-of-flight method was employed, direct (n,n') measurements of neutrons scattered from 169Tm in the 0.2 to 1.0 MeV range were taken. It requires that our 5.5-MeV Van demore » Graaff accelerator be operated in the pulsed and bunched beam mode producing subnanosecond pulses at a 5-MHz repetition frequency. Neutrons are produced by the 7Li(p,n)7Be reaction using a thin metallic elemental lithium target.« less

  8. Chamber for mechanical testing in H2 with observation by neutron scattering

    NASA Astrophysics Data System (ADS)

    Connolly, Matthew; Bradley, Peter; Slifka, Andrew; Drexler, Elizabeth

    2017-06-01

    A gas-pressure chamber has been designed, constructed, and tested at a moderate pressure (3.4 MPa, 500 psi) and has the capability of mechanical loading of steel specimens for neutron scattering measurements. The chamber will allow a variety of in situ neutron scattering measurements: in particular, diffraction, quasielastic scattering, inelastic scattering, and imaging. The chamber is compatible with load frames available at the user facilities at the NIST Center for Neutron Research and Oak Ridge National Laboratory Spallation Neutron Source. A demonstration of neutron Bragg edge imaging using the chamber is presented.

  9. Neutron Scattering Studies on Large Length Scale Sample Structures

    NASA Astrophysics Data System (ADS)

    Feng, Hao

    Neutron scattering can be used to study structures of matter. Depending on the interested sample properties, different scattering techniques can be chosen. Neutron reflectivity is more often used to detect in-depth profile of layered structures and the interfacial roughness while transmission is more sensitive to sample bulk properties. Neutron Reflectometry (NR) technique, one technique in neutron reflectivity, is first discussed in this thesis. Both specular reflectivity and the first order Bragg intensity were measured in the NR experiment with a diffraction grating in order to study the in-depth and the lateral structure of a sample (polymer) deposited on the grating. However, the first order Bragg intensity solely is sometimes inadequate to determine the lateral structure and high order Bragg intensities are difficult to measure using traditional neutron scattering techniques due to the low brightness of the current neutron sources. Spin Echo Small Angle Neutron Scattering (SESANS) technique overcomes this resolution problem by measuring the Fourier transforms of all the Bragg intensities, resulting in measuring the real-space density correlations of samples and allowing the accessible length scale from few-tens of nanometers to several microns. SESANS can be implemented by using two pairs of magnetic Wollaston prims (WP) and the accessible length scale is proportional to the magnetic field intensity in WPs. To increase the magnetic field and thus increase the accessible length scale, an apparatus named Superconducting Wollaston Prisms (SWP) which has a series of strong, well-defined shaped magnetic fields created by superconducting coils was developed in Indiana University in 2016. Since then, various kinds of optimization have been implemented, which are addressed in this thesis. Finally, applications of SWPs in other neutron scattering techniques like Neutron Larmor Diffraction (NLD) are discussed.

  10. Immersive Visual Analytics for Transformative Neutron Scattering Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steed, Chad A; Daniel, Jamison R; Drouhard, Margaret

    The ORNL Spallation Neutron Source (SNS) provides the most intense pulsed neutron beams in the world for scientific research and development across a broad range of disciplines. SNS experiments produce large volumes of complex data that are analyzed by scientists with varying degrees of experience using 3D visualization and analysis systems. However, it is notoriously difficult to achieve proficiency with 3D visualizations. Because 3D representations are key to understanding the neutron scattering data, scientists are unable to analyze their data in a timely fashion resulting in inefficient use of the limited and expensive SNS beam time. We believe a moremore » intuitive interface for exploring neutron scattering data can be created by combining immersive virtual reality technology with high performance data analytics and human interaction. In this paper, we present our initial investigations of immersive visualization concepts as well as our vision for an immersive visual analytics framework that could lower the barriers to 3D exploratory data analysis of neutron scattering data at the SNS.« less

  11. Neutron Scattering from Polymers: Five Decades of Developing Possibilities.

    PubMed

    Higgins, J S

    2016-06-07

    The first three decades of my research career closely map the development of neutron scattering techniques for the study of molecular behavior. At the same time, the theoretical understanding of organization and motion of polymer molecules, especially in the bulk state, was developing rapidly and providing many predictions crying out for experimental verification. Neutron scattering is an ideal technique for providing the necessary evidence. This autobiographical essay describes the applications by my research group and other collaborators of increasingly sophisticated neutron scattering techniques to observe and understand molecular behavior in polymeric materials. It has been a stimulating and rewarding journey.

  12. Neutron scattering investigations of frustated magnets

    NASA Astrophysics Data System (ADS)

    Fennell, Tom

    This thesis describes the experimental investigation of frustrated magnetic systems based on the pyrochlore lattice of corner-sharing tetrahedra. Ho2Ti207 and Dy2Ti207 are examples of spin ices, in which the manifold of disordered magnetic groundstates maps onto that of the proton positions in ice. Using single crystal neutron scattering to measure Bragg and diffuse scattering, the effect of applying magnetic fields along different directions in the crystal was investigated. Different schemes of degeneracy removal were observed for different directions. Long and short range order, and the coexistence of both could be observed by this technique.The field and temperature dependence of magnetic ordering was studied in Ho2Ti207 and Dy2Ti207. Ho2Ti2()7 has been more extensively investigated. The field was applied on [00l], [hh0], [hhh] and [hh2h]. Dy2Ti207 was studied with the field applied on [00l] and [hho] but more detailed information about the evolution of the scattering pattern across a large area of reciprocal space was obtained.With the field applied on [00l] both materials showed complete degeneracy removal. A long range ordered structure was formed. Any magnetic diffuse scattering vanished and was entirely replaced by strong magnetic Bragg scattering. At T =0.05 K both materials show unusual magnetization curves, with a prominent step and hysteresis. This was attributed to the extremely slow dynamics of spin ice materials at this temperature.Both materials were studied in greatest detail with the field applied on [hh0]. The coexistence of long and short range order was observed when the field was raised at T = 0.05 K. The application of a field in this direction separated the spin system into two populations. One could be ordered by the field, and one remained disordered. However, via spin-spin interactions, the field restricted the degeneracy of the disordered spin population. The neutron scattering pattern of Dy2Ti207 shows that the spin system was separated

  13. Towards neutron scattering experiments with sub-millisecond time resolution

    DOE PAGES

    Adlmann, F. A.; Gutfreund, Phillip; Ankner, John Francis; ...

    2015-02-01

    Neutron scattering techniques offer several unique opportunities in materials research. However, most neutron scattering experiments suffer from the limited flux available at current facilities. This limitation becomes even more severe if time-resolved or kinetic experiments are performed. A new method has been developed which overcomes these limitations when a reversible process is studied, without any compromise on resolution or beam intensity. We demonstrate that, by recording in absolute time the neutron detector events linked to an excitation, information can be resolved on sub-millisecond timescales. Specifically, the concept of the method is demonstrated by neutron reflectivity measurements in time-of-flight mode atmore » the Liquids Reflectometer located at the Spallation Neutron Source, Oak Ridge National Laboratory, Tennessee, USA, combined with in situ rheometry. Finally, the opportunities and limitations of this new technique are evaluated by investigations of a micellar polymer solution offering excellent scattering contrast combined with high sensitivity to shear.« less

  14. Neutron scatter camera

    DOEpatents

    Mascarenhas, Nicholas; Marleau, Peter; Brennan, James S.; Krenz, Kevin D.

    2010-06-22

    An instrument that will directly image the fast fission neutrons from a special nuclear material source has been described. This instrument can improve the signal to background compared to non imaging neutron detection techniques by a factor given by ratio of the angular resolution window to 4.pi.. In addition to being a neutron imager, this instrument will also be an excellent neutron spectrometer, and will be able to differentiate between different types of neutron sources (e.g. fission, alpha-n, cosmic ray, and D-D or D-T fusion). Moreover, the instrument is able to pinpoint the source location.

  15. New neutron imaging techniques to close the gap to scattering applications

    NASA Astrophysics Data System (ADS)

    Lehmann, Eberhard H.; Peetermans, S.; Trtik, P.; Betz, B.; Grünzweig, C.

    2017-01-01

    Neutron scattering and neutron imaging are activities at the strong neutron sources which have been developed rather independently. However, there are similarities and overlaps in the research topics to which both methods can contribute and thus useful synergies can be found. In particular, the spatial resolution of neutron imaging has improved recently, which - together with the enhancement of the efficiency in data acquisition- can be exploited to narrow the energy band and to implement more sophisticated methods like neutron grating interferometry. This paper provides a report about the current options in neutron imaging and describes how the gap to neutron scattering data can be closed in the future, e.g. by diffractive imaging, the use of polarized neutrons and the dark-field imagining of relevant materials. This overview is focused onto the interaction between neutron imaging and neutron scattering with the aim of synergy. It reflects mainly the authors’ experiences at their PSI facilities without ignoring the activities at the different other labs world-wide.

  16. Neutron beam characterization measurements at the Manuel Lujan Jr. neutron scattering center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mocko, Michal; Muhrer, Guenter; Daemen, Luke L

    We have measured the neutron beam characteristics of neutron moderators at the Manuel Lujan Jr. Neutron Scattering Center at LANSCE. The absolute thermal neutron flux, energy spectra and time emission spectra were measured for the high resolution and high intensity decoupled water, partially coupled liquid hydrogen and partially coupled water moderators. The results of our experimental study will provide an insight into aging of different target-moderator-reflector-shield components as well as new experimental data for benchmarking of neutron transport codes.

  17. A compact neutron scatter camera for field deployment

    DOE PAGES

    Goldsmith, John E. M.; Gerling, Mark D.; Brennan, James S.

    2016-08-23

    Here, we describe a very compact (0.9 m high, 0.4 m diameter, 40 kg) battery operable neutron scatter camera designed for field deployment. Unlike most other systems, the configuration of the sixteen liquid-scintillator detection cells are arranged to provide omnidirectional (4π) imaging with sensitivity comparable to a conventional two-plane system. Although designed primarily to operate as a neutron scatter camera for localizing energetic neutron sources, it also functions as a Compton camera for localizing gamma sources. In addition to describing the radionuclide source localization capabilities of this system, we demonstrate how it provides neutron spectra that can distinguish plutonium metalmore » from plutonium oxide sources, in addition to the easier task of distinguishing AmBe from fission sources.« less

  18. Elastic and inelastic neutron scattering cross sections for fission reactor applications

    NASA Astrophysics Data System (ADS)

    Hicks, S. F.; Chakraborty, A.; Combs, B.; Crider, B. P.; Downes, L.; Girgis, J.; Kersting, L. J.; Kumar, A.; Lueck, C. J.; McDonough, P. J.; McEllistrem, M. T.; Peters, E. E.; Prados-Estevz, F. M.; Schniederjan, J.; Sidwell, L.; Sigillito, A. J.; Vanhoy, J. R.; Watts, D.; Yates, S. W.

    2013-04-01

    Nuclear data important for the design and development of the next generation of light-water reactors and future fast reactors include neutron elastic and inelastic scattering cross sections on important structural materials, such as Fe, and on coolant materials, such as Na. These reaction probabilities are needed since neutron reactions impact fuel performance during irradiations and the overall efficiency of reactors. While neutron scattering cross sections from these materials are available for certain incident neutron energies, the fast neutron region, particularly above 2 MeV, has large gaps for which no measurements exist, or the existing uncertainties are large. Measurements have been made at the University of Kentucky Accelerator Laboratory to measure neutron scattering cross sections on both Fe and Na in the region where these gaps occur and to reduce the uncertainties on scattering from the ground state and first excited state of these nuclei. Results from measurements on Fe at incident neutron energies between 2 and 4 MeV will be presented and comparisons will be made to model calculations available from data evaluators.

  19. Elastic and Inelastic Scattering of Neutrons using a CLYC array

    NASA Astrophysics Data System (ADS)

    Brown, Tristan; Doucet, E.; Chowdhury, P.; Lister, C. J.; Wilson, G. L.; Devlin, M.; Mosby, S.

    2015-10-01

    CLYC scintillators, which have dual neutron and gamma response, have recently ushered in the possibility of fast neutron spectroscopy without time-of-flight (TOF). A 16-element array of 1'' x 1'' 6Li-depleted CLYC crystals, where pulse-shape-discrimination is achieved via digital pulse processing, has been commissioned at UMass Lowell. In an experiment at LANSCE, high energy neutrons were used to bombard 56Fe and 238U targets, in order to measure elastic and inelastic neutron scattering cross sections as a function of energy and angle with the array. The array is placed very close to the targets for enhanced geometrical solid angles for scattered neutrons compared to standard neutron-TOF measurements. A pulse-height spectrum of scattered neutrons in the detectors is compared to the energy of the incident neutrons, which is measured via the TOF of the pulsed neutrons from the source to the detectors. Recoil corrections are necessary to combine the energy spectra from all the detectors to obtain angle-integrated elastic and inelastic cross-sections. The detection techniques, analysis procedures and results will be presented. Supported by NNSA-SSAA program through DOE Grant DE-NA00013008.

  20. Neutron scattering studies of crude oil viscosity reduction with electric field

    NASA Astrophysics Data System (ADS)

    Du, Enpeng

    Small-angle neutron scattering (SANS) is a very powerful laboratory technique for micro structure research which is similar to the small angle X-ray scattering (SAXS) and light scattering for microstructure investigations in various materials. In small-angle neutron scattering (SANS) technique, the neutrons are elastically scattered by changes of refractive index on a nanometer scale inside the sample through the interaction with the nuclei of the atoms present in the sample. Because the nuclei of all atoms are compact and of comparable size, neutrons are capable of interacting strongly with all atoms. This is in contrast to X-ray techniques where the X-rays interact weakly with hydrogen, the most abundant element in most samples. The SANS refractive index is directly related to the scattering length density and is a measure of the strength of the interaction of a neutron wave with a given nucleus. It can probe inhomogeneities in the nanometer scale from 1nm to 1000nm. Since the SANS technique probes the length scale in a very useful range, this technique provides valuable information over a wide variety of scientific and technological applications, including chemical aggregation, defects in materials, surfactants, colloids, ferromagnetic correlations in magnetism, alloy segregation, polymers, proteins, biological membranes, viruses, ribosome and macromolecules. Quoting the Nobel committee, when awarding the prize to C. Shull and B. Brockhouse in 1994: "Neutrons tell you where the atoms are and what the atoms do". At NIST, there is a single beam of neutrons generated from either reactor or pulsed neutron source and selected by velocity selector. The beam passes through a neutron guide then scattered by the sample. After the sample chamber, there are 2D gas detectors to collect the elastic scattering information. SANS usually uses collimation of the neutron beam to determine the scattering angle of a neutron, which results in an even lower signal-to-noise ratio for

  1. Spin waves in full-polarized state of Dzyaloshinskii-Moriya helimagnets: Small-angle neutron scattering study

    NASA Astrophysics Data System (ADS)

    Grigoriev, S. V.; Sukhanov, A. S.; Altynbaev, E. V.; Siegfried, S.-A.; Heinemann, A.; Kizhe, P.; Maleyev, S. V.

    2015-12-01

    We develop the technique to study the spin-wave dynamics of the full-polarized state of the Dzyaloshinskii-Moriya helimagnets by polarized small-angle neutron scattering. We have experimentally proven that the spin-waves dispersion in this state has the anisotropic form. We show that the neutron scattering image displays a circle with a certain radius which is centered at the momentum transfer corresponding to the helix wave vector in helimagnetic phase ks, which is oriented along the applied magnetic field H . The radius of this circle is directly related to the spin-wave stiffness of this system. This scattering depends on the neutron polarization showing the one-handed nature of the spin waves in Dzyaloshinskii-Moriya helimagnets in the full-polarized phase. We show that the spin-wave stiffness A for MnSi helimagnet decreased twice as the temperature increases from zero to the critical temperature Tc.

  2. Forward Helion Scattering and Neutron Polarization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buttimore, N. H.

    The elastic scattering of spin half helium-3 nuclei at small angles can show a sufficiently large analyzing power to enable the level of helion polarization to be evaluated. As the helion to a large extent inherits the polarization of its unpaired neutron the asymmetry observed in helion collisions can be transformed into a measurement of the polarization of its constituent neutron. Neutron polarimetry therefore relies upon understanding the spin dependence of the electromagnetic and hadronic interactions in the region of interference where there is an optimal analyzing power.

  3. Model-based design evaluation of a compact, high-efficiency neutron scatter camera

    DOE PAGES

    Weinfurther, Kyle; Mattingly, John; Brubaker, Erik; ...

    2017-11-22

    This paper presents the model-based design and evaluation of an instrument that estimates incident neutron direction using the kinematics of neutron scattering by hydrogen-1 nuclei in an organic scintillator. The instrument design uses a single, nearly contiguous volume of organic scintillator that is internally subdivided only as necessary to create optically isolated pillars, i.e., long, narrow parallelepipeds of organic scintillator. Scintillation light emitted in a given pillar is confined to that pillar by a combination of total internal reflection and a specular reflector applied to the four sides of the pillar transverse to its long axis. The scintillation light ismore » collected at each end of the pillar using a photodetector, e.g., a microchannel plate photomultiplier (MCPPM) or a silicon photomultiplier (SiPM). In this optically segmented design, the (x, y) position of scintillation light emission (where the x and y coordinates are transverse to the long axis of the pillars) is estimated as the pillar’s (x, y) position in the scintillator ‘‘block’’, and the z-position (the position along the pillar’s long axis) is estimated from the amplitude and relative timing of the signals produced by the photodetectors at each end of the pillar. The neutron’s incident direction and energy is estimated from the (x, y, z)-positions of two sequential neutron–proton scattering interactions in the scintillator block using elastic scatter kinematics. For proton recoils greater than 1 MeV, we show that the (x, y, z)-position of neutron–proton scattering can be estimated with < 1 cm root-mean-squared [RMS] error and the proton recoil energy can be estimated with < 50 keV RMS error by fitting the photodetectors’ response time history to models of optical photon transport within the scintillator pillars. Finally, we evaluate several alternative designs of this proposed single-volume scatter camera made of pillars of plastic scintillator (SVSC

  4. Model-based design evaluation of a compact, high-efficiency neutron scatter camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinfurther, Kyle; Mattingly, John; Brubaker, Erik

    This paper presents the model-based design and evaluation of an instrument that estimates incident neutron direction using the kinematics of neutron scattering by hydrogen-1 nuclei in an organic scintillator. The instrument design uses a single, nearly contiguous volume of organic scintillator that is internally subdivided only as necessary to create optically isolated pillars, i.e., long, narrow parallelepipeds of organic scintillator. Scintillation light emitted in a given pillar is confined to that pillar by a combination of total internal reflection and a specular reflector applied to the four sides of the pillar transverse to its long axis. The scintillation light ismore » collected at each end of the pillar using a photodetector, e.g., a microchannel plate photomultiplier (MCPPM) or a silicon photomultiplier (SiPM). In this optically segmented design, the (x, y) position of scintillation light emission (where the x and y coordinates are transverse to the long axis of the pillars) is estimated as the pillar’s (x, y) position in the scintillator ‘‘block’’, and the z-position (the position along the pillar’s long axis) is estimated from the amplitude and relative timing of the signals produced by the photodetectors at each end of the pillar. The neutron’s incident direction and energy is estimated from the (x, y, z)-positions of two sequential neutron–proton scattering interactions in the scintillator block using elastic scatter kinematics. For proton recoils greater than 1 MeV, we show that the (x, y, z)-position of neutron–proton scattering can be estimated with < 1 cm root-mean-squared [RMS] error and the proton recoil energy can be estimated with < 50 keV RMS error by fitting the photodetectors’ response time history to models of optical photon transport within the scintillator pillars. Finally, we evaluate several alternative designs of this proposed single-volume scatter camera made of pillars of plastic scintillator (SVSC

  5. 2011 U.S. National School on Neutron and X-ray Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lang, Jonathan; te Vethuis, Suzanne; Ekkebus, Allen E

    The 13th annual U.S. National School on Neutron and X-ray Scattering was held June 11 to 25, 2011, at both Oak Ridge and Argonne National Laboratories. This school brought together 65 early career graduate students from 56 different universities in the US and provided them with a broad introduction to the techniques available at the major large-scale neutron and synchrotron x-ray facilities. This school is focused primarily on techniques relevant to the physical sciences, but also touches on cross-disciplinary bio-related scattering measurements. During the school, students received lectures by over 30 researchers from academia, industry, and national laboratories and participatedmore » in a number of short demonstration experiments at Argonne's Advanced Photon Source (APS) and Oak Ridge's Spallation neutron Source (SNS) and High Flux Isotope Reactor (HFIR) facilities to get hands-on experience in using neutron and synchrotron sources. The first week of this year's school was held at Oak Ridge National Lab, where Lab director Thom Mason welcomed the students and provided a shitorical perspective of the neutron and x-ray facilities both at Oak Ridge and Argonne. The first few days of the school were dedicated to lectures laying out the basics of scattering theory and the differences and complementarity between the neutron and x-ray probes given by Sunil Sinha. Jack Carpenter provided an introduction into how neutrons are generated and detected. After this basic introduction, the students received lectures each morning on specific techniques and conducted demonstration experiments each afternoon on one of 15 different instruments at either the SNS or HFIR. Some of the topics covered during this week of the school included inelastic neutron scattering by Bruce Gaulin, x-ray and neutron reflectivity by Chuck Majkrazak, small-angle scattering by Volker Urban, powder diffraction by Ashfia Huq and diffuse scattering by Gene Ice.« less

  6. Method for improving the angular resolution of a neutron scatter camera

    DOEpatents

    Mascarenhas, Nicholas; Marleau, Peter; Gerling, Mark; Cooper, Robert Lee; Mrowka, Stanley; Brennan, James S.

    2012-12-25

    An instrument that will directly image the fast fission neutrons from a special nuclear material source wherein the neutron detection efficiency is increased has been described. Instead of the previous technique that uses a time-of-flight (TOF) between 2 widely spaced fixed planes of neutron detectors to measure scatter neutron kinetic energy, we now use the recoil proton energy deposited in the second of the 2 scatter planes which can now be repositioned either much closer together or further apart. However, by doubling the separation distance between the 2 planes from 20 cm to a distance of 40 cm we improved the angular resolution of the detector from about 12.degree. to about 10.degree.. A further doubling of the separation distance to 80 cm provided an addition improvement in angular resolution of the detector to about 6.degree. without adding additional detectors or ancillary electronics. The distance between planes also may be dynamically changed using a suitable common technique such as a gear- or motor-drive to toggle between the various positions. The angular resolution of this new configuration, therefore, is increased at the expanse of detection sensitivity. However, the diminished sensitivity may be acceptable for those applications where the detector is able to interrogate a particular site for an extended period.

  7. 2016 American Conference on Neutron Scattering (ACNS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woodward, Patrick

    The 8th American Conference on Neutron Scattering (ACNS) was held July 10-14, 2016 in Long Beach California, marking the first time the meeting has been held on the west coast. The meeting was coordinated by the Neutron Scattering Society of America (NSSA), and attracted 285 attendees. The meeting was chaired by NSSA vice president Patrick Woodward (the Ohio State University) assisted by NSSA president Stephan Rosenkranz (Argonne National Laboratory) together with the local organizing chair, Brent Fultz (California Institute of Technology). As in past years the Materials Research Society assisted with planning, logistics and operation of the conference. The sciencemore » program was divided into the following research areas: (a) Sources, Instrumentation, and Software; (b) Hard Condensed Matter; (c) Soft Matter; (d) Biology; (e) Materials Chemistry and Materials for Energy; (f) Engineering and Industrial Applications; and (g) Neutron Physics.« less

  8. PREFACE: Structure and dynamics determined by neutron and x-ray scattering Structure and dynamics determined by neutron and x-ray scattering

    NASA Astrophysics Data System (ADS)

    Müller-Buschbaum, Peter

    2011-06-01

    Neutron and x-ray scattering have emerged as powerful methods for the determination of structure and dynamics. Driven by emerging new, powerful neutron and synchrotron radiation sources, the continuous development of new instrumentation and novel scattering techniques gives rise to exciting possibilities. For example, in situ observations become possible via a high neutron or x-ray flux at the sample and, as a consequence, morphological transitions with small time constants can be detected. This special issue covers a broad range of different materials from soft to hard condensed matter. Hence, different material classes such as colloids, polymers, alloys, oxides and metals are addressed. The issue is dedicated to the 60th birthday of Professor Winfried Petry, scientific director of the Research Neutron Source Heinz Maier-Leibnitz (FRM-II), Germany, advisor at the physics department for the Bayerische Elite-Akademie, chair person of the Arbeitsgemeinschaft Metall- und Materialphysik of the German Physical Society (DPG) and a member of the professional council of the German Science Foundation (Deutsche Forschungsgemeinschaft, DFG). We would like to acknowledge and thank all contributors for their submissions, which made this special issue possible in the first place. Moreover, we would like to thank the staff at IOP Publishing for helping us with the administrative aspects and for coordinating the refereeing process, and Valeria Lauter for the beautiful cover artwork. Finally, to the readers, we hope that you find this special issue a valuable resource that provides insights into the present possibilities of neutron and x-ray scattering as powerful tools for the investigation of structure and dynamics. Structure and dynamics determined by neutron and x-ray scattering contents In situ studies of mass transport in liquid alloys by means of neutron radiography F Kargl, M Engelhardt, F Yang, H Weis, P Schmakat, B Schillinger, A Griesche and A Meyer Magnetic spin

  9. Neutron inelastic scattering by amino acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thaper, C.L.; Sinha, S.K.; Dasannacharya, B.A.

    Inelastic neutron scattering experiments on normal, N-deuterated glycine, normal and N-deuterated alanine, L-valine, L-tyrosine and, L-phenylalanine at 100 K, are reported. Coupling of the external modes to different hydrogens is discussed.

  10. Inelastic scattering of neutron-rich Ni and Zn isotopes off a proton target

    NASA Astrophysics Data System (ADS)

    Cortés, M. L.; Doornenbal, P.; Dupuis, M.; Lenzi, S. M.; Nowacki, F.; Obertelli, A.; Péru, S.; Pietralla, N.; Werner, V.; Wimmer, K.; Authelet, G.; Baba, H.; Calvet, D.; Château, F.; Corsi, A.; Delbart, A.; Gheller, J.-M.; Gillibert, A.; Isobe, T.; Lapoux, V.; Louchart, C.; Matsushita, M.; Momiyama, S.; Motobayashi, T.; Niikura, M.; Otsu, H.; Péron, C.; Peyaud, A.; Pollacco, E. C.; Roussé, J.-Y.; Sakurai, H.; Santamaria, C.; Sasano, M.; Shiga, Y.; Takeuchi, S.; Taniuchi, R.; Uesaka, T.; Wang, H.; Yoneda, K.; Browne, F.; Chung, L. X.; Dombradi, Zs.; Franchoo, S.; Giacoppo, F.; Gottardo, A.; Hadynska-Klek, K.; Korkulu, Z.; Koyama, S.; Kubota, Y.; Lee, J.; Lettmann, M.; Lozeva, R.; Matsui, K.; Miyazaki, T.; Nishimura, S.; Olivier, L.; Ota, S.; Patel, Z.; Sahin, E.; Shand, C. M.; Söderström, P.-A.; Stefan, I.; Steppenbeck, D.; Sumikama, T.; Suzuki, D.; Vajta, Zs.; Wu, J.; Xu, Z.

    2018-04-01

    Proton inelastic scattering of Ni,7472 and Zn,8076 ions at energies around 235 MeV/nucleon was performed at the Radioactive Isotope Beam Factory and studied using γ -ray spectroscopy. Angular integrated cross sections for direct inelastic scattering to the 21+ and 41+ states were measured. The Jeukenne-Lejeune-Mahaux folding model, extended beyond 200 MeV, was used together with neutron and proton densities stemming from quasiparticle random-phase approximation (QRPA) calculations to interpret the experimental cross sections and to infer neutron to proton matrix element ratios. In addition, coupled-channels calculations with a phenomenological potential were used to determine deformation lengths. For the Ni isotopes, correlations favor neutron excitations, thus conserving the Z =28 gap. A dominance of proton excitation, on the other hand, is observed in the Zn isotopes, pointing to the conservation of the N =50 gap approaching 78Ni. These results are in agreement with QRPA and large-scale shell-model calculations.

  11. Nondestructive hydrogen analysis of steam-oxidized Zircaloy-4 by wide-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Yan, Yong; Qian, Shuo; Garrison, Ben; Smith, Tyler; Kim, Peter

    2018-04-01

    A nondestructive neutron scattering method to precisely measure the hydrogen content in high-temperature steam-oxidized Zircaloy-4 cladding was developed. Zircaloy-4 cladding was used to produce hydrided specimens with hydrogen content up to ≈500 wppm. Following hydrogen charging, the hydrogen content of the hydrided specimens was measured using the vacuum hot extraction method, by which the samples with desired hydrogen concentrations were selected for the neutron study. The hydrided samples were then oxidized in steam up to ≈6.0 wt. % at 1100 °C. Optical microscopy shows that our hydriding procedure results in uniform distribution of circumferential hydrides across the wall thickness, and uniform oxide layers were formed on the sample surfaces by the steam oxidation. Small- and wide-angle neutron scattering were simultaneously performed to provide a quick (less than an hour per sample) measurement of the hydrogen content in various types of hydrided and oxidized Zircaloy-4. Our study demonstrates that the hydrogen in pre-oxidized Zircaloy-4 cladding can be measured very accurately by both small- and wide-angle neutron scattering. For steam-oxidized samples, the small-angle neutron scattering is contaminated with coherent scattering from additional structural features induced by the steam oxidation. However, the scattering intensity of the wide-angle neutron scattering increases proportionally with the hydrogen charged in the samples. The hydrogen content and wide-angle neutron scattering intensity are highly linearly correlated for the oxidized cladding samples examined in this work, and can be used to precisely determine the hydrogen content in steam-oxidized Zircaloy-4 samples. Hydrogen contents determined by neutron scattering of oxidation samples were also found to be consistent with the results of chemical analysis within acceptable margins for error.

  12. Nondestructive hydrogen analysis of steam-oxidized Zircaloy-4 by wide-angle neutron scattering

    DOE PAGES

    Yan, Yong; Qian, Shuo; Garrison, Ben; ...

    2018-04-15

    In this study, a nondestructive neutron scattering method to precisely measure the hydrogen content in high-temperature steam-oxidized Zircaloy-4 cladding was developed. Zircaloy-4 cladding was used to produce hydrided specimens with hydrogen content up to ≈500 wppm. Following hydrogen charging, the hydrogen content of the hydrided specimens was measured using the vacuum hot extraction method, by which the samples with desired hydrogen concentrations were selected for the neutron study. The hydrided samples were then oxidized in steam up to ≈6.0wt. % at 1100°C. Optical microscopy shows that our hydriding procedure results in uniform distribution of circumferential hydrides across the wall thickness,more » and uniform oxide layers were formed on the sample surfaces by the steam oxidation. Small- and wide-angle neutron scattering were simultaneously performed to provide a quick (less than an hour per sample) measurement of the hydrogen content in various types of hydrided and oxidized Zircaloy-4. Our study demonstrates that the hydrogen in pre-oxidized Zircaloy-4 cladding can be measured very accurately by both small- and wide-angle neutron scattering. For steam-oxidized samples, the small-angle neutron scattering is contaminated with coherent scattering from additional structural features induced by the steam oxidation. However, the scattering intensity of the wide-angle neutron scattering increases proportionally with the hydrogen charged in the samples. The hydrogen content and wide-angle neutron scattering intensity are highly linearly correlated for the oxidized cladding samples examined in this work, and can be used to precisely determine the hydrogen content in steam-oxidized Zircaloy-4 samples. Hydrogen contents determined by neutron scattering of oxidation samples were also found to be consistent with the results of chemical analysis within acceptable margins for error.« less

  13. Nondestructive hydrogen analysis of steam-oxidized Zircaloy-4 by wide-angle neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Yong; Qian, Shuo; Garrison, Ben

    In this study, a nondestructive neutron scattering method to precisely measure the hydrogen content in high-temperature steam-oxidized Zircaloy-4 cladding was developed. Zircaloy-4 cladding was used to produce hydrided specimens with hydrogen content up to ≈500 wppm. Following hydrogen charging, the hydrogen content of the hydrided specimens was measured using the vacuum hot extraction method, by which the samples with desired hydrogen concentrations were selected for the neutron study. The hydrided samples were then oxidized in steam up to ≈6.0wt. % at 1100°C. Optical microscopy shows that our hydriding procedure results in uniform distribution of circumferential hydrides across the wall thickness,more » and uniform oxide layers were formed on the sample surfaces by the steam oxidation. Small- and wide-angle neutron scattering were simultaneously performed to provide a quick (less than an hour per sample) measurement of the hydrogen content in various types of hydrided and oxidized Zircaloy-4. Our study demonstrates that the hydrogen in pre-oxidized Zircaloy-4 cladding can be measured very accurately by both small- and wide-angle neutron scattering. For steam-oxidized samples, the small-angle neutron scattering is contaminated with coherent scattering from additional structural features induced by the steam oxidation. However, the scattering intensity of the wide-angle neutron scattering increases proportionally with the hydrogen charged in the samples. The hydrogen content and wide-angle neutron scattering intensity are highly linearly correlated for the oxidized cladding samples examined in this work, and can be used to precisely determine the hydrogen content in steam-oxidized Zircaloy-4 samples. Hydrogen contents determined by neutron scattering of oxidation samples were also found to be consistent with the results of chemical analysis within acceptable margins for error.« less

  14. Neutron scattering at the high flux isotope reactor at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yethiraj, M.; Fernandez-Baca, J.A.

    Since its beginnings in Oak Ridge and Argonne in the late 1940`s, neutron scattering has been established as the premier tool to study matter in its various states. Since the thermal neutron wavelength is of the same order of magnitude as typical atomic spacings and because they have comparable energies to those of atomic excitations in solids, both structure and dynamics of matter can be studied via neutron scattering. The High Flux Isotope Reactor (HFIR) provides an intense source of neutrons with which to carry out these measurements. This paper summarizes the available neutron scattering facilities at the HFIR.

  15. Precision measurement of the n-3He incoherent scattering length using neutron interferometry.

    PubMed

    Huber, M G; Arif, M; Black, T C; Chen, W C; Gentile, T R; Hussey, D S; Pushin, D A; Wietfeldt, F E; Yang, L

    2009-05-22

    We report the first measurement of the low-energy neutron-(3)He incoherent scattering length using neutron interferometry: b_{i};{'} = (-2.512 +/- 0.012 stat +/- 0.014 syst) fm. This is in good agreement with a recent calculation using the AV18 + 3N potential. The neutron-(3)He scattering lengths are important for testing and developing nuclear potential models that include three-nucleon forces, effective field theories for few-body nuclear systems, and neutron scattering measurements of quantum excitations in liquid helium. This work demonstrates the first use of a polarized nuclear target in a neutron interferometer.

  16. Neutron scattering for the analysis of biological structures. Brookhaven symposia in biology. Number 27

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schoenborn, B P

    1976-01-01

    Sessions were included on neutron scattering and biological structure analysis, protein crystallography, neutron scattering from oriented systems, solution scattering, preparation of deuterated specimens, inelastic scattering, data analysis, experimental techniques, and instrumentation. Separate entries were made for the individual papers.

  17. 54Fe neutron elastic and inelastic scattering differential cross sections from 2-6 MeV

    NASA Astrophysics Data System (ADS)

    Vanhoy, J. R.; Liu, S. H.; Hicks, S. F.; Combs, B. M.; Crider, B. P.; French, A. J.; Garza, E. A.; Harrison, T.; Henderson, S. L.; Howard, T. J.; McEllistrem, M. T.; Nigam, S.; Pecha, R. L.; Peters, E. E.; Prados-Estévez, F. M.; Ramirez, A. P. D.; Rice, B. G.; Ross, T. J.; Santonil, Z. C.; Sidwell, L. C.; Steves, J. L.; Thompson, B. K.; Yates, S. W.

    2018-04-01

    Measurements of neutron elastic and inelastic scattering cross sections from 54Fe were performed for nine incident neutron energies between 2 and 6 MeV. Measured differential scattering cross sections are compared to those from previous measurements and the ENDF, JENDL, and JEFF data evaluations. TALYS calculations were performed and modifications of the default parameters are found to better describe the experimental cross sections. A spherical optical model treatment is generally adequate to describe the cross sections in this energy region; however, in 54Fe the direct coupling is found to increase suddenly above 4 MeV and requires an increase in the DWBA deformation parameter by approximately 25%. This has little effect on the elastic scattering differential cross sections but makes a significant improvement in both the strength and shape of the inelastic scattering angular distribution, which are found to be very sensitive to the size and extent of the surface absorption region.

  18. Direct comparison of elastic incoherent neutron scattering experiments with molecular dynamics simulations of DMPC phase transitions.

    PubMed

    Aoun, Bachir; Pellegrini, Eric; Trapp, Marcus; Natali, Francesca; Cantù, Laura; Brocca, Paola; Gerelli, Yuri; Demé, Bruno; Marek Koza, Michael; Johnson, Mark; Peters, Judith

    2016-04-01

    Neutron scattering techniques have been employed to investigate 1,2-dimyristoyl-sn -glycero-3-phosphocholine (DMPC) membranes in the form of multilamellar vesicles (MLVs) and deposited, stacked multilamellar-bilayers (MLBs), covering transitions from the gel to the liquid phase. Neutron diffraction was used to characterise the samples in terms of transition temperatures, whereas elastic incoherent neutron scattering (EINS) demonstrates that the dynamics on the sub-macromolecular length-scale and pico- to nano-second time-scale are correlated with the structural transitions through a discontinuity in the observed elastic intensities and the derived mean square displacements. Molecular dynamics simulations have been performed in parallel focussing on the length-, time- and temperature-scales of the neutron experiments. They correctly reproduce the structural features of the main gel-liquid phase transition. Particular emphasis is placed on the dynamical amplitudes derived from experiment and simulations. Two methods are used to analyse the experimental data and mean square displacements. They agree within a factor of 2 irrespective of the probed time-scale, i.e. the instrument utilized. Mean square displacements computed from simulations show a comparable level of agreement with the experimental values, albeit, the best match with the two methods varies for the two instruments. Consequently, experiments and simulations together give a consistent picture of the structural and dynamical aspects of the main lipid transition and provide a basis for future, theoretical modelling of dynamics and phase behaviour in membranes. The need for more detailed analytical models is pointed out by the remaining variation of the dynamical amplitudes derived in two different ways from experiments on the one hand and simulations on the other.

  19. Elastic neutron scattering studies at 96 MeV for transmutation.

    PubMed

    Osterlund, M; Blomgren, J; Hayashi, M; Mermod, P; Nilsson, L; Pomp, S; Ohrn, A; Prokofiev, A V; Tippawan, U

    2007-01-01

    Elastic neutron scattering from (12)C, (14)N, (16)O, (28)Si, (40)Ca, (56)Fe, (89)Y and (208)Pb has been studied at 96 MeV in the10-70 degrees interval, using the SCANDAL (SCAttered Nucleon Detection AssembLy) facility. The results for (12)C and (208)Pb have recently been published, while the data on the other nuclei are under analysis. The achieved energy resolution, 3.7 MeV, is about an order of magnitude better than for any previous experiment above 65 MeV incident energy. A novel method for normalisation of the absolute scale of the cross section has been used. The estimated normalisation uncertainty, 3%, is unprecedented for a neutron-induced differential cross section measurement on a nuclear target. Elastic neutron scattering is of utmost importance for a vast number of applications. Besides its fundamental importance as a laboratory for tests of isospin dependence in the nucleon-nucleon, and nucleon-nucleus, interaction, knowledge of the optical potentials derived from elastic scattering come into play in virtually every application where a detailed understanding of nuclear processes is important. Applications for these measurements are dose effects due to fast neutrons, including fast neutron therapy, as well as nuclear waste incineration and single event upsets in electronics. The results at light nuclei of medical relevance ((12)C, (14)N and (16)O) are presented separately. In the present contribution, results on the heavier nuclei are presented, among which several are of relevance to shielding of fast neutrons.

  20. Corrections on energy spectrum and scatterings for fast neutron radiography at NECTAR facility

    NASA Astrophysics Data System (ADS)

    Liu, Shu-Quan; Bücherl, Thomas; Li, Hang; Zou, Yu-Bin; Lu, Yuan-Rong; Guo, Zhi-Yu

    2013-11-01

    Distortions caused by the neutron spectrum and scattered neutrons are major problems in fast neutron radiography and should be considered for improving the image quality. This paper puts emphasis on the removal of these image distortions and deviations for fast neutron radiography performed at the NECTAR facility of the research reactor FRM- II in Technische Universität München (TUM), Germany. The NECTAR energy spectrum is analyzed and established to modify the influence caused by the neutron spectrum, and the Point Scattered Function (PScF) simulated by the Monte-Carlo program MCNPX is used to evaluate scattering effects from the object and improve image quality. Good analysis results prove the sound effects of the above two corrections.

  1. Polarized neutron scattering on HYSPEC: the HYbrid SPECtrometer at SNS

    DOE PAGES

    Zaliznyak, Igor A.; Savici, Andrei T.; Ovidiu Garlea, V.; ...

    2017-06-20

    Here, we describe some of the first polarized neutron scattering measurements performed at HYSPEC [1-4] spectrometer at the Spallation Neutron Source, Oak Ridge National Laboratory. Furthermore, we discuss details of the instrument setup and the experimental procedures in the mode with full polarization analysis. Examples of polarized neutron diffraction and polarized inelastic neutron data obtained on single crystal samples are presented.

  2. Incoherent neutron scattering in acetanilide and three deuterated derivatives

    NASA Astrophysics Data System (ADS)

    Barthes, Mariette; Almairac, Robert; Sauvajol, Jean-Louis; Moret, Jacques; Currat, Roland; Dianoux, José

    1991-03-01

    Incoherent-neutron-scattering measurements of the vibrational density of states of acetanilide and three deuterated derivatives are presented. These data allow one to identify an intense maximum, assigned to the N-H out-of-plane bending mode. The data display the specific behavior of the methyl torsional modes: large isotopic shift and strong low-temperature intensity; confirm our previous inelastic-neutron-scattering studies, indicating no obvious anomalies in the range of frequency of the acoustic phonons. In addition, the data show the existence of thermally activated quasielastic scattering above 100 K, assigned to the random diffusive motion of the methyl protons. These results are discussed in the light of recent theoretical models proposed to explain the anomalous optical properties of this crystal.

  3. Investigating Structure and Dynamics of Proteins in Amorphous Phases Using Neutron Scattering.

    PubMed

    Castellanos, Maria Monica; McAuley, Arnold; Curtis, Joseph E

    2017-01-01

    In order to increase shelf life and minimize aggregation during storage, many biotherapeutic drugs are formulated and stored as either frozen solutions or lyophilized powders. However, characterizing amorphous solids can be challenging with the commonly available set of biophysical measurements used for proteins in liquid solutions. Therefore, some questions remain regarding the structure of the active pharmaceutical ingredient during freezing and drying of the drug product and the molecular role of excipients. Neutron scattering is a powerful technique to study structure and dynamics of a variety of systems in both solid and liquid phases. Moreover, neutron scattering experiments can generally be correlated with theory and molecular simulations to analyze experimental data. In this article, we focus on the use of neutron techniques to address problems of biotechnological interest. We describe the use of small-angle neutron scattering to study the solution structure of biological molecules and the packing arrangement in amorphous phases, that is, frozen glasses and freeze-dried protein powders. In addition, we discuss the use of neutron spectroscopy to measure the dynamics of glassy systems at different time and length scales. Overall, we expect that the present article will guide and prompt the use of neutron scattering to provide unique insights on many of the outstanding questions in biotechnology.

  4. New opportunities for quasielastic and inelastic neutron scattering at steady-state sources using mechanical selection of the incident and final neutron energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mamantov, Eugene

    2015-06-12

    We propose a modification of the neutron wide-angle velocity selector (WAVES) device that enables inelastic (in particular, quasielastic) scattering measurements not relying on the neutron time-of-flight. The proposed device is highly suitable for a steady-state neutron source, somewhat similar to a triple-axis spectrometer, but with simultaneous selection of the incident and final neutron energy over a broad range of scattering momentum transfer. Both the incident and final neutron velocities are defined by the WAVES geometry and rotation frequency. The variable energy transfer is achieved through the natural variation of the velocity of the transmitted neutrons as a function of themore » scattering angle component out of the equatorial plane.« less

  5. The fluctuating ribosome: thermal molecular dynamics characterized by neutron scattering

    NASA Astrophysics Data System (ADS)

    Zaccai, Giuseppe; Natali, Francesca; Peters, Judith; Řihová, Martina; Zimmerman, Ella; Ollivier, J.; Combet, J.; Maurel, Marie-Christine; Bashan, Anat; Yonath, Ada

    2016-11-01

    Conformational changes associated with ribosome function have been identified by X-ray crystallography and cryo-electron microscopy. These methods, however, inform poorly on timescales. Neutron scattering is well adapted for direct measurements of thermal molecular dynamics, the ‘lubricant’ for the conformational fluctuations required for biological activity. The method was applied to compare water dynamics and conformational fluctuations in the 30 S and 50 S ribosomal subunits from Haloarcula marismortui, under high salt, stable conditions. Similar free and hydration water diffusion parameters are found for both subunits. With respect to the 50 S subunit, the 30 S is characterized by a softer force constant and larger mean square displacements (MSD), which would facilitate conformational adjustments required for messenger and transfer RNA binding. It has been shown previously that systems from mesophiles and extremophiles are adapted to have similar MSD under their respective physiological conditions. This suggests that the results presented are not specific to halophiles in high salt but a general property of ribosome dynamics under corresponding, active conditions. The current study opens new perspectives for neutron scattering characterization of component functional molecular dynamics within the ribosome.

  6. New evaluation of thermal neutron scattering libraries for light and heavy water

    NASA Astrophysics Data System (ADS)

    Marquez Damian, Jose Ignacio; Granada, Jose Rolando; Cantargi, Florencia; Roubtsov, Danila

    2017-09-01

    In order to improve the design and safety of thermal nuclear reactors and for verification of criticality safety conditions on systems with significant amount of fissile materials and water, it is necessary to perform high-precision neutron transport calculations and estimate uncertainties of the results. These calculations are based on neutron interaction data distributed in evaluated nuclear data libraries. To improve the evaluations of thermal scattering sub-libraries, we developed a set of thermal neutron scattering cross sections (scattering kernels) for hydrogen bound in light water, and deuterium and oxygen bound in heavy water, in the ENDF-6 format from room temperature up to the critical temperatures of molecular liquids. The new evaluations were generated and processable with NJOY99 and also with NJOY-2012 with minor modifications (updates), and with the new version of NJOY-2016. The new TSL libraries are based on molecular dynamics simulations with GROMACS and recent experimental data, and result in an improvement of the calculation of single neutron scattering quantities. In this work, we discuss the importance of taking into account self-diffusion in liquids to accurately describe the neutron scattering at low neutron energies (quasi-elastic peak problem). To improve modeling of heavy water, it is important to take into account temperature-dependent static structure factors and apply Sköld approximation to the coherent inelastic components of the scattering matrix. The usage of the new set of scattering matrices and cross-sections improves the calculation of thermal critical systems moderated and/or reflected with light/heavy water obtained from the International Criticality Safety Benchmark Evaluation Project (ICSBEP) handbook. For example, the use of the new thermal scattering library for heavy water, combined with the ROSFOND-2010 evaluation of the cross sections for deuterium, results in an improvement of the C/E ratio in 48 out of 65

  7. Aerodynamic laser-heated contactless furnace for neutron scattering experiments at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Landron, Claude; Hennet, Louis; Coutures, Jean-Pierre; Jenkins, Tudor; Alétru, Chantal; Greaves, Neville; Soper, Alan; Derbyshire, Gareth

    2000-04-01

    Conventional radiative furnaces require sample containment that encourages contamination at elevated temperatures and generally need windows which restrict the entrance and exit solid angles required for diffraction and scattering measurements. We describe a contactless windowless furnace based on aerodynamic levitation and laser heating which has been designed for high temperature neutron scattering experiments. Data from initial experiments are reported for crystalline and amorphous oxides at temperatures up to 1900 °C, using the spallation neutron source ISIS together with our laser-heated aerodynamic levitator. Accurate reproduction of thermal expansion coefficients and radial distribution functions have been obtained, demonstrating the utility of aerodynamic levitation methods for neutron scattering methods.

  8. Observation of events with an energetic forward neutron in deep inelastic scattering at HERA

    NASA Astrophysics Data System (ADS)

    Derrick, M.; Krakauer, D.; Magill, S.; Mikunas, D.; Musgrave, B.; Okrasinski, J. R.; Repond, J.; Stanek, R.; Talaga, R. L.; Zhang, H.; Mattingly, M. C. K.; Bari, G.; Basile, M.; Bellagamba, L.; Boscherini, D.; Bruni, A.; Bruni, G.; Bruni, P.; Cara Romeo, G.; Castellini, G.; Cifarelli, L.; Cindolo, F.; Contin, A.; Corradi, M.; Gialas, I.; Giusti, P.; Iacobucci, G.; Laurenti, G.; Levi, G.; Margotti, A.; Massam, T.; Nania, R.; Palmonari, F.; Polini, A.; Sartorelli, G.; Zamora Garcia, Y.; Zichichi, A.; Amelung, C.; Bornheim, A.; Crittenden, J.; Deffner, R.; Doeker, T.; Eckert, M.; Feld, L.; Frey, A.; Geerts, M.; Grothe, M.; Hartmann, H.; Heinloth, K.; Heinz, L.; Hilger, E.; Jakob, H.-P.; Katz, U. F.; Mengel, S.; Paul, E.; Pfeiffer, M.; Rembser, Ch.; Schramm, D.; Stamm, J.; Wedemeyer, R.; Campbell-Robson, S.; Cassidy, A.; Cottingham, W. N.; Dyce, N.; Foster, B.; George, S.; Hayes, M. E.; Heath, G. P.; Heath, H. F.; Piccioni, D.; Roff, D. G.; Tapper, R. J.; Yoshida, R.; Arneodo, M.; Ayad, R.; Capua, M.; Garfagnini, A.; Iannotti, L.; Schioppa, M.; Susinno, G.; Caldwell, A.; Cartiglia, N.; Jing, Z.; Liu, W.; Parsons, J. A.; Titz, S.; Sciulli, F.; Straub, P. B.; Wai, L.; Yang, S.; Zhu, Q.; Borzemski, P.; Chwastowski, J.; Eskreys, A.; Jakubowski, Z.; Przybycień, M. B.; Zachara, M.; Zawiejski, L.; Adamczyk, L.; Bednarek, B.; Jeleń, K.; Kisielewska, D.; Kowalski, T.; Przybycień, M.; Rulikowska-Zarȩbska, E.; Suszycki, L.; Zajaç, J.; Duliński, Z.; Kotański, A.; Abbiendi, G.; Bauerdick, L. A. T.; Behrens, U.; Beier, H.; Bienlein, J. K.; Cases, G.; Deppe, O.; Desler, K.; Drews, G.; Flasiński, M.; Gilkinson, D. J.; Glasman, C.; Göttlicher, P.; Große-Knetter, J.; Haas, T.; Hain, W.; Hasell, D.; Heßling, H.; Iga, Y.; Johnson, K. F.; Joos, P.; Kasemann, M.; Klanner, R.; Koch, W.; Kötz, U.; Kowalski, H.; Labs, J.; Ladage, A.; Löhr, B.; Löwe, M.; Lüke, D.; Mainusch, J.; Mańczak, O.; Milewski, J.; Monteiro, T.; Ng, J. S. T.; Notz, D.; Ohrenberg, K.; Poitrzkowski, K.; Roco, M.; Rohde, M.; Roldán, J.; Schneekloth, U.; Schulz, W.; Selonke, F.; Surrow, B.; Voß, T.; Westphal, D.; Wolf, G.; Wollmer, U.; Youngman, C.; Zeuner, W.; Grabosch, H. J.; Kharchilava, A.; Mari, S. M.; Meyer, A.; Schlenstedt, S.; Wulff, N.; Barbagli, G.; Gallo, E.; Pelfer, P.; Maccarrone, G.; De Pasquale, S.; Votano, L.; Bamberger, A.; Eisenhardt, S.; Trefzger, T.; Wölfle, S.; Bromley, J. T.; Brook, N. H.; Bussey, P. J.; Doyle, A. T.; Saxon, D. H.; Sinclair, L. E.; Utley, M. L.; Wilson, A. S.; Dannemann, A.; Holm, U.; Horstmann, D.; Sinkus, R.; Wick, K.; Burow, B. D.; Hagge, L.; Lohrmann, E.; Poelz, G.; Schott, W.; Zetsche, F.; Bacon, T. C.; Brümmer, N.; Butterworth, I.; Harris, V. L.; Howell, G.; Hung, B. H. Y.; Lamberti, L.; Long, K. R.; Miller, D. B.; Pavel, N.; Prinias, A.; Sedgbeer, J. K.; Sideris, D.; Whitfield, A. F.; Mallik, U.; Wang, M. Z.; Wang, S. M.; Wu, J. T.; Cloth, P.; Filges, D.; An, S. H.; Cho, G. H.; Ko, B. J.; Lee, S. B.; Nam, S. W.; Park, H. S.; Park, S. K.; Kartik, S.; Kim, H.-J.; McNeil, R. R.; Metcalf, W.; Nadendla, V. K.; Barreiro, F.; Fernandez, J. P.; Graciani, R.; Hernández, J. M.; Hervás, L.; Labarga, L.; Martinez, M.; del Peso, J.; Puga, J.; Terron, J.; de Trocóniz, J. F.; Corriveau, F.; Hanna, D. S.; Hartmann, J.; Hung, L. W.; Lim, J. N.; Matthews, C. G.; Patel, P. M.; Riveline, M.; Stairs, D. G.; St-Laurent, M.; Ullmann, R.; Zacek, G.; Tsurugai, T.; Bashkirov, V.; Dolgoshein, B. A.; Stifutkin, A.; Bashindzhagyan, G. L.; Ermolov, P. F.; Gladilin, L. K.; Golubkov, Yu. A.; Kobrin, V. D.; Korzhavina, I. A.; Kuzmin, V. A.; Lukina, O. Yu.; Proskuryakov, A. S.; Savin, A. A.; Shcheglova, L. M.; Solomin, A. N.; Zotov, N. P.; Botje, M.; Chlebana, F.; Engelen, J.; de Kamps, M.; Kooijman, P.; Kruse, A.; van Sighem, A.; Tiecke, H.; Verkerke, W.; Vossebeld, J.; Vreeswijk, M.; Wiggers, L.; de Wolf, E.; van Woudenberg, R.; Acosta, D.; Bylsma, B.; Durkin, L. S.; Gilmore, J.; Li, C.; Ling, T. Y.; Nylander, P.; Park, I. H.; Romanowski, T. A.; Bailey, D. S.; Cashmore, R. J.; Cooper-Sarkar, A. M.; Devenish, R. C. E.; Harnew, N.; Lancaster, M.; Lindemann, L.; McFall, J. D.; Nath, C.; Noyes, V. A.; Quadt, A.; Tickner, J. R.; Uijterwaal, H.; Walczak, R.; Waters, D. S.; Wilson, F. F.; Yip, T.; Bertolin, A.; Brugnera, R.; Carlin, R.; Dal Corso, F.; De Giorgi, M.; Dosselli, U.; Limentani, S.; Morandin, M.; Posocco, M.; Stanco, L.; Stroili, R.; Voci, C.; Zuin, F.; Bulmahn, J.; Feild, R. G.; Oh, B. Y.; Whitmore, J. J.; D'Agostini, G.; Marini, G.; Nigro, A.; Tassi, E.; Hart, J. C.; McCubbin, N. A.; Shah, T. P.; Barberis, E.; Dubbs, T.; Heusch, C.; Van Hook, M.; Lockman, W.; Rahn, J. T.; Sadrozinski, H. F.-W.; Seiden, A.; Williams, D. C.; Biltzinger, J.; Seifert, R. J.; Schwarzer, O.; Walenta, A. H.; Zech, G.; Abramowicz, H.; Briskin, G.; Dagan, S.; Levy, A.; Fleck, J. I.; Inuzuka, M.; Ishii, T.; Kuze, M.; Mine, S.; Nakao, M.; Suzuki, I.; Tokushuku, K.; Umemori, K.; Yamada, S.; Yamazaki, Y.; Chiba, M.; Hamatsu, R.; Hirose, T.; Homma, K.; Kitamura, S.; Matsushita, T.; Yamauchi, K.; Cirio, R.; Costa, M.; Ferrero, M. I.; Maselli, S.; Peroni, C.; Sacchi, R.; Solano, A.; Staiano, A.; Dardo, M.; Bailey, D. C.; Benard, F.; Brkic, M.; Fagerstroem, C.-P.; Hartner, G. F.; Joo, K. K.; Levman, G. M.; Martin, J. F.; Orr, R. S.; Polenz, S.; Sampson, C. R.; Simmons, D.; Teuscher, R. J.; Butterworth, J. M.; Catterall, C. D.; Jones, T. W.; Kaziewicz, P. B.; Lane, J. B.; Saunders, R. L.; Shulman, J.; Sutton, M. R.; Lu, B.; Mo, L. W.; Bogusz, W.; Ciborowski, J.; Gajewski, J.; Grzelak, G.; Kasprzak, M.; Krzyżanowski, M.; Muchorowski, K.; Nowak, R. J.; Pawlak, J. M.; Tymieniecka, T.; Wróblewski, A. K.; Zakrzewski, J. A.; Żarnecki, A. F.; Adamus, M.; Coldewey, C.; Eisenberg, Y.; Hochman, D.; Karshon, U.; Revel, D.; Zer-Zion, D.; Badgett, W. F.; Breitweg, J.; Chapin, D.; Cross, R.; Dasu, S.; Foudas, C.; Loveless, R. J.; Mattingly, S.; Reeder, D. D.; Silverstein, S.; Smith, W. H.; Vaiciulis, A.; Wodarczyk, M.; Bhadra, S.; Cardy, M. L.; Fagerstroem, C.-P.; Frisken, W. R.; Furutani, K. M.; Khakzad, M.; Murray, W. N.; Schmidke, W. B.; ZEUS Collaboration

    1996-02-01

    In deep inelastic neutral current scattering of positrons and protons at the center of mass energy of 300 GeV, we observe, with the ZEUS detector, events with a high energy neutron produced at very small scattering angles with respect to the proton direction. The events constitute a fixed fraction of the deep inelastic, neutral current event sample independent of Bjorken x and Q2 in the range 3 · 10 -4 < xBJ < 6 · 10 -3 and 10 < Q2 < 100 GeV 2.

  9. Effects of Hot-Spot Geometry on Backscattering and Down-Scattering Neutron Spectra

    NASA Astrophysics Data System (ADS)

    Mohamed, Z. L.; Mannion, O. M.; Forrest, C. J.; Knauer, J. P.; Anderson, K. S.; Radha, P. B.

    2017-10-01

    The measured neutron spectrum produced by a fusion experiment plays a key role in inferring observable quantities. One important observable is the areal density of an implosion, which is inferred by measuring the scattering of neutrons. This project seeks to use particle-transport simulations to model the effects of hot-spot geometry on backscattering and down-scattering neutron spectra along different lines of sight. Implosions similar to those conducted at the Laboratory of Laser Energetics are modeled by neutron transport through a DT plasma and a DT ice shell using the particle transport codes MCNP and IRIS. Effects of hot-spot geometry are obtained by ``detecting'' scattered neutrons along different lines of sight. This process is repeated for various hot-spot geometries representing known shape distortions between the hot spot and the shell. This material is based upon work supported by the Department of Energy National Nuclear Security Administration under Award Number DE-NA0001944.

  10. Direct observation of electronic and nuclear ground state splitting in external magnetic field by inelastic neutron scattering on oxidized ferrocene and ferrocene containing polymers

    NASA Astrophysics Data System (ADS)

    Appel, Markus; Frick, Bernhard; Elbert, Johannes; Gallei, Markus; Stühn, Bernd

    2015-01-01

    The quantum mechanical splitting of states by interaction of a magnetic moment with an external magnetic field is well known, e.g., as Zeeman effect in optical transitions, and is also often seen in magnetic neutron scattering. We report excitations observed in inelastic neutron spectroscopy on the redox-responsive polymer poly(vinylferrocene). They are interpreted as splitting of the electronic ground state in the organometallic ferrocene units attached to the polymer chain where a magnetic moment is created by oxidation. In a second experiment using high resolution neutron backscattering spectroscopy we observe the hyperfine splitting, i.e., interaction of nuclear magnetic moments with external magnetic fields leading to sub-μeV excitations observable in incoherent neutron spin-flip scattering on hydrogen and vanadium nuclei.

  11. Calcium ions in aqueous solutions: Accurate force field description aided by ab initio molecular dynamics and neutron scattering

    NASA Astrophysics Data System (ADS)

    Martinek, Tomas; Duboué-Dijon, Elise; Timr, Štěpán; Mason, Philip E.; Baxová, Katarina; Fischer, Henry E.; Schmidt, Burkhard; Pluhařová, Eva; Jungwirth, Pavel

    2018-06-01

    We present a combination of force field and ab initio molecular dynamics simulations together with neutron scattering experiments with isotopic substitution that aim at characterizing ion hydration and pairing in aqueous calcium chloride and formate/acetate solutions. Benchmarking against neutron scattering data on concentrated solutions together with ion pairing free energy profiles from ab initio molecular dynamics allows us to develop an accurate calcium force field which accounts in a mean-field way for electronic polarization effects via charge rescaling. This refined calcium parameterization is directly usable for standard molecular dynamics simulations of processes involving this key biological signaling ion.

  12. In-situ soil carbon analysis using inelastic neutron scattering

    USDA-ARS?s Scientific Manuscript database

    In situ soil carbon analysis using inelastic neutron scattering (INS) is based on the emission of 4.43 MeV gamma rays from carbon nuclei excited by fast neutrons. This in-situ method has excellent potential for easily measuring soil carbon since it does not require soil core sampling and processing ...

  13. Optimizing Neutron Thermal Scattering Effects in very High Temperature Reactors. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hawari, Ayman; Ougouag, Abderrafi

    2014-07-08

    This project aims to develop a holistic understanding of the phenomenon of neutron thermalization in the VHTR. Neutron thermalization is dependent on the type and structure of the moderating material. The fact that the moderator (and reflector) in the VHTR is a solid material will introduce new and interesting considerations that do not apply in other (e.g. light water) reactors. The moderator structure is expected to undergo radiation induced changes as the irradiation (or burnup) history progresses. In this case, the induced changes in structure will have a direct impact on many properties including the neutronic behavior. This can bemore » easily anticipated if one recognizes the dependence of neutron thermalization on the scattering law of the moderator. For the pebble bed reactor, it is anticipated that the moderating behavior can be tailored, e.g. using moderators that consist of composite materials, which could allow improved optimization of the moderator-to-fuel ratio.« less

  14. Survey of background scattering from materials found in small-angle neutron scattering.

    PubMed

    Barker, J G; Mildner, D F R

    2015-08-01

    Measurements and calculations of beam attenuation and background scattering for common materials placed in a neutron beam are presented over the temperature range of 300-700 K. Time-of-flight (TOF) measurements have also been made, to determine the fraction of the background that is either inelastic or quasi-elastic scattering as measured with a 3 He detector. Other background sources considered include double Bragg diffraction from windows or samples, scattering from gases, and phonon scattering from solids. Background from the residual air in detector vacuum vessels and scattering from the 3 He detector dome are presented. The thickness dependence of the multiple scattering correction for forward scattering from water is calculated. Inelastic phonon background scattering at small angles for crystalline solids is both modeled and compared with measurements. Methods of maximizing the signal-to-noise ratio by material selection, choice of sample thickness and wavelength, removal of inelastic background by TOF or Be filters, and removal of spin-flip scattering with polarized beam analysis are discussed.

  15. Survey of background scattering from materials found in small-angle neutron scattering

    PubMed Central

    Barker, J. G.; Mildner, D. F. R.

    2015-01-01

    Measurements and calculations of beam attenuation and background scattering for common materials placed in a neutron beam are presented over the temperature range of 300–700 K. Time-of-flight (TOF) measurements have also been made, to determine the fraction of the background that is either inelastic or quasi-elastic scattering as measured with a 3He detector. Other background sources considered include double Bragg diffraction from windows or samples, scattering from gases, and phonon scattering from solids. Background from the residual air in detector vacuum vessels and scattering from the 3He detector dome are presented. The thickness dependence of the multiple scattering correction for forward scattering from water is calculated. Inelastic phonon background scattering at small angles for crystalline solids is both modeled and compared with measurements. Methods of maximizing the signal-to-noise ratio by material selection, choice of sample thickness and wavelength, removal of inelastic background by TOF or Be filters, and removal of spin-flip scattering with polarized beam analysis are discussed. PMID:26306088

  16. Fast oxygen diffusion in bismuth oxide probed by quasielastic neutron scattering

    DOE PAGES

    Mamontov, Eugene

    2016-09-24

    In this paper, we present the first, to our knowledge, study of solid state oxygen translational diffusion by quasielastic neutron scattering. Such studies in the past might have been precluded by relatively low diffusivities of oxygen anions in the temperature range amenable to neutron scattering experiments. To explore the potential of the quasielastic scattering technique, which can deduce atomic diffusion jump length of oxygen anions through the momentum transfer dependence of the scattering signal, we have selected the fastest known oxygen conductor, bismuth oxide. Finally, we have found the oxygen anion jump length in excellent agreement with the nearest oxygen-vacancymore » distance in the anion sublattice of the fluorite-related structure of bismuth oxide.« less

  17. Correlation spectrometer for filtering of (quasi) elastic neutron scattering with variable resolution

    NASA Astrophysics Data System (ADS)

    Magazù, Salvatore; Mezei, Ferenc; Migliardo, Federica

    2018-05-01

    In a variety of applications of inelastic neutron scattering spectroscopy the goal is to single out the elastic scattering contribution from the total scattered spectrum as a function of momentum transfer and sample environment parameters. The elastic part of the spectrum is defined in such a case by the energy resolution of the spectrometer. Variable elastic energy resolution offers a way to distinguish between elastic and quasi-elastic intensities. Correlation spectroscopy lends itself as an efficient, high intensity approach for accomplishing this both at continuous and pulsed neutron sources. On the one hand, in beam modulation methods the Liouville theorem coupling between intensity and resolution is relaxed and time-of-flight velocity analysis of the neutron velocity distribution can be performed with 50 % duty factor exposure for all available resolutions. On the other hand, the (quasi)elastic part of the spectrum generally contains the major part of the integrated intensity at a given detector, and thus correlation spectroscopy can be applied with most favorable signal to statistical noise ratio. The novel spectrometer CORELLI at SNS is an example for this type of application of the correlation technique at a pulsed source. On a continuous neutron source a statistical chopper can be used for quasi-random time dependent beam modulation and the total time-of-flight of the neutron from the statistical chopper to detection is determined by the analysis of the correlation between the temporal fluctuation of the neutron detection rate and the statistical chopper beam modulation pattern. The correlation analysis can either be used for the determination of the incoming neutron velocity or for the scattered neutron velocity, depending of the position of the statistical chopper along the neutron trajectory. These two options are considered together with an evaluation of spectrometer performance compared to conventional spectroscopy, in particular for variable

  18. Neutron scattering cross section measurements for Fe 56

    DOE PAGES

    Ramirez, A. P. D.; Vanhoy, J. R.; Hicks, S. F.; ...

    2017-06-09

    Elastic and inelastic differential cross sections for neutron scattering from 56Fe have been measured for several incident energies from 1.30 to 7.96 MeV at the University of Kentucky Accelerator Laboratory. Scattered neutrons were detected using a C 6D 6 liquid scintillation detector using pulse-shape discrimination and time-of-flight techniques. The deduced cross sections have been compared with previously reported data, predictions from evaluation databases ENDF, JENDL, and JEFF, and theoretical calculations performed using different optical model potentials using the TALYS and EMPIRE nuclear reaction codes. The coupled-channel calculations based on the vibrational and soft-rotor models are found to describe the experimentalmore » (n,n 0) and (n,n 1) cross sections well.« less

  19. Neutron scattering cross section measurements for 56Fe

    NASA Astrophysics Data System (ADS)

    Ramirez, A. P. D.; Vanhoy, J. R.; Hicks, S. F.; McEllistrem, M. T.; Peters, E. E.; Mukhopadhyay, S.; Harrison, T. D.; Howard, T. J.; Jackson, D. T.; Lenzen, P. D.; Nguyen, T. D.; Pecha, R. L.; Rice, B. G.; Thompson, B. K.; Yates, S. W.

    2017-06-01

    Elastic and inelastic differential cross sections for neutron scattering from 56Fe have been measured for several incident energies from 1.30 to 7.96 MeV at the University of Kentucky Accelerator Laboratory. Scattered neutrons were detected using a C6D6 liquid scintillation detector using pulse-shape discrimination and time-of-flight techniques. The deduced cross sections have been compared with previously reported data, predictions from evaluation databases ENDF, JENDL, and JEFF, and theoretical calculations performed using different optical model potentials using the talys and empire nuclear reaction codes. The coupled-channel calculations based on the vibrational and soft-rotor models are found to describe the experimental (n ,n0 ) and (n ,n1 ) cross sections well.

  20. Neutron production in the interaction of 12 and 18 MeV electrons with a scattering foil inside a simple LINAC head.

    PubMed

    Soto-Bernal, Tzinnia Gabriela; Baltazar-Raigosa, Antonio; Medina-Castro, Diego; Vega-Carrillo, Hector Rene

    2018-04-18

    The characteristics of photons and neutrons produced during the interaction between a monoenergetic (12 and 18 MeV) electron beam and a tungsten scattering foil enclosed into a 10 cm-thick tungsten shell have been determined using Monte Carlo methods. This model was used aiming to represent a linac head working in electron-mode for cancer treatment. Photon and neutron spectra were determined around the scattering foil and to 50 and 100 cm below the electron source. Induced photons are mainly produced along the direction of the incoming electron beam. On the other hand, neutrons are produced in two sites, mainly in the inner surface of the linac head and in less extent in the scattering foil. The neutron spectra are evaporation neutrons which are emitted isotropically from the site where are produced leaking out from the linac head, reaching locations were the patient is allocated. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Early Years of Neutron Scattering and Its Manpower Development in Indonesia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marsongkohadi

    In this paper I shall give a short history of the development of neutron scattering at the Research Centre for Nuclear Techniques (PPTN), in Bandung, and the early development of a more advanced facilities at the Neutron Scattering Laboratory (NSL BATAN), Centre of Technology for Nuclear Industrial Materials, in Serpong. The first research reactor in Indonesia was the TRIGA MARK II in Bandung, which became operational in 1965, with a power of 250 KW, upgraded to 1 MW in 1971, and to 2 MW in 2000. The neutron scattering activities was started in 1967, with the design and construction ofmore » the first powder diffractometer, and put in operation in 1970. It was followed by the second instrument, the filter detector spectrometer built in 1975 in collaboration with the Bhabha Atomic Research Centre (BARC), India. A powder diffractometer for magnetic studies was built in 1980, and finally, a modification of the filter detector spectrometer to measure textures was made in 1986. A brief description of the design and construction of the instruments, and a highlight of some research topics will be presented. Early developments of neutron scattering activities at the 30 MW, RSG-GAS reactor in Serpong in choosing suitable research program, which will be mainly centred around materials testing/characterization, and materials/condensed matter researches has been agreed. Instrument planning and layout which were appropriate to carry out the program had been decided. Manpower development for the neutron scattering laboratory is a severe problem. The efforts to overcome this problem has been solved. International Cooperation through workshops and on the job trainings also support the supply of qualified manpower.« less

  2. Event-Based Processing of Neutron Scattering Data

    DOE PAGES

    Peterson, Peter F.; Campbell, Stuart I.; Reuter, Michael A.; ...

    2015-09-16

    Many of the world's time-of-flight spallation neutrons sources are migrating to the recording of individual neutron events. This provides for new opportunities in data processing, the least of which is to filter the events based on correlating them with logs of sample environment and other ancillary equipment. This paper will describe techniques for processing neutron scattering data acquired in event mode that preserve event information all the way to a final spectrum, including any necessary corrections or normalizations. This results in smaller final errors, while significantly reducing processing time and memory requirements in typical experiments. Results with traditional histogramming techniquesmore » will be shown for comparison.« less

  3. Medical applications of neutron inelastic scattering

    NASA Astrophysics Data System (ADS)

    Kehayias, Joseph J.; Banuk-Waitekus, Anathea; Valtuena, Silvia; Sheahan, Charles A.

    1999-10-01

    A sealed, D-T, pulsed neutron generator is used for the in vivo measurement of body carbon and oxygen by neutron inelastic scattering. The generator is operated at 10 KHz, at a neutron output of about 2 X 107 n/s/4(pi) . Gamma ray spectra are collected with two B4Ge3O12 crystal detectors. The measurements are used to measure fat and lean content and distribution in the body, with minimal radiation exposure (0.08 mSv). When combined with other measurements (such as total body potassium), this whole body scanning device provides us with the `quality of lean mass', a measurable outcome of treatments designed to improve nutritional status and function. The method is used in studies of human nutrition and for assessing the efficacy of new anti-obesity and anti-cachexia pharmaceuticals.

  4. Elastic and inelastic scattering of neutrons from 56Fe

    NASA Astrophysics Data System (ADS)

    Ramirez, Anthony Paul; McEllistrem, M. T.; Liu, S. H.; Mukhopadhyay, S.; Peters, E. E.; Yates, S. W.; Vanhoy, J. R.; Harrison, T. D.; Rice, B. G.; Thompson, B. K.; Hicks, S. F.; Howard, T. J.; Jackson, D. T.; Lenzen, P. D.; Nguyen, T. D.; Pecha, R. L.

    2015-10-01

    The differential cross sections for elastic and inelastic scattered neutrons from 56Fe have been measured at the University of Kentucky Accelerator Laboratory (www.pa.uky.edu/accelerator) for incident neutron energies between 2.0 and 8.0 MeV and for the angular range 30° to 150°. Time-of-flight techniques and pulse-shape discrimination were employed for enhancing the neutron energy spectra and for reducing background. An overview of the experimental procedures and data analysis for the conversion of neutron yields to differential cross sections will be presented. These include the determination of the energy-dependent detection efficiencies, the normalization of the measured differential cross sections, and the attenuation and multiple scattering corrections. Our results will also be compared to evaluated cross section databases and reaction model calculations using the TALYS code. This work is supported by grants from the U.S. Department of Energy-Nuclear Energy Universities Program: NU-12-KY-UK-0201-05, and the Donald A. Cowan Physics Institute at the University of Dallas.

  5. High-energy magnetic excitations in overdoped La 2-xSr xCuO 4 studied by neutron and resonant inelastic X-ray scattering

    DOE PAGES

    Wakimoto, S.; Ishii, K.; Kimura, H.; ...

    2015-05-21

    We have performed neutron inelastic scattering and resonant inelastic x-ray scattering (RIXS) at the Cu-L 3 edge to study high-energy magnetic excitations at energy transfers of more than 100 meV for overdoped La 2₋xSr xCuO 4 with x=0.25 (T c=15 K) and x=0.30 (nonsuperconducting) using identical single-crystal samples for the two techniques. From constant-energy slices of neutron-scattering cross sections, we have identified magnetic excitations up to ~250 meV for x=0.25. Although the width in the momentum direction is large, the peak positions along the (π,π) direction agree with the dispersion relation of the spin wave in the nondoped La 2CuOmore » 4 (LCO), which is consistent with the previous RIXS results of cuprate superconductors. Using RIXS at the Cu-L 3 edge, we have measured the dispersion relations of the so-called paramagnon mode along both (π,π) and (π,0) directions. Although in both directions the neutron and RIXS data connect with each other and the paramagnon along (π,0) agrees well with the LCO spin-wave dispersion, the paramagnon in the (π,π) direction probed by RIXS appears to be less dispersive and the excitation energy is lower than the spin wave of LCO near (π/2,π/2). Thus, our results indicate consistency between neutron inelastic scattering and RIXS, and elucidate the entire magnetic excitation in the (π,π) direction by the complementary use of two probes. The polarization dependence of the RIXS profiles indicates that appreciable charge excitations exist in the same energy range of magnetic excitations, reflecting the itinerant character of the overdoped sample. Lastly, we find a possible anisotropy in the charge excitation intensity might explain the apparent differences in the paramagnon dispersion in the (π,π) direction as detected by the x-ray scattering.« less

  6. Improved Convergence Rate of Multi-Group Scattering Moment Tallies for Monte Carlo Neutron Transport Codes

    NASA Astrophysics Data System (ADS)

    Nelson, Adam

    Multi-group scattering moment matrices are critical to the solution of the multi-group form of the neutron transport equation, as they are responsible for describing the change in direction and energy of neutrons. These matrices, however, are difficult to correctly calculate from the measured nuclear data with both deterministic and stochastic methods. Calculating these parameters when using deterministic methods requires a set of assumptions which do not hold true in all conditions. These quantities can be calculated accurately with stochastic methods, however doing so is computationally expensive due to the poor efficiency of tallying scattering moment matrices. This work presents an improved method of obtaining multi-group scattering moment matrices from a Monte Carlo neutron transport code. This improved method of tallying the scattering moment matrices is based on recognizing that all of the outgoing particle information is known a priori and can be taken advantage of to increase the tallying efficiency (therefore reducing the uncertainty) of the stochastically integrated tallies. In this scheme, the complete outgoing probability distribution is tallied, supplying every one of the scattering moment matrices elements with its share of data. In addition to reducing the uncertainty, this method allows for the use of a track-length estimation process potentially offering even further improvement to the tallying efficiency. Unfortunately, to produce the needed distributions, the probability functions themselves must undergo an integration over the outgoing energy and scattering angle dimensions. This integration is too costly to perform during the Monte Carlo simulation itself and therefore must be performed in advance by way of a pre-processing code. The new method increases the information obtained from tally events and therefore has a significantly higher efficiency than the currently used techniques. The improved method has been implemented in a code system

  7. Implementation of a small-angle scattering model in MCNPX for very cold neutron reflector studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grammer, Kyle B.; Gallmeier, Franz X.

    Current neutron moderator media do not sufficiently moderate neutrons below the cold neutron regime into the very cold neutron (VCN) regime that is desirable for some physics applications. Nesvizhevsky et al [1] have demonstrated that nanodiamond powder efficiently reflect VCN via small angle scattering. He suggests that these effects could be exploited to boost the neutron output of a VCN moderator. Simulation studies of nanoparticle reflectors are being investigated as part of the development of a VCN source option for the SNS second target station. We are pursuing an expansion of the MCNPX code by implementation of an analytical small-anglemore » scattering function [2], which is adaptable by scattering particle sizes, distributions, and packing fractions in order to supplement currently existing scattering kernels. The analytical model and preliminary studies using MCNPX will be discussed.« less

  8. Constant- q data representation in Neutron Compton scattering on the VESUVIO spectrometer

    NASA Astrophysics Data System (ADS)

    Senesi, R.; Pietropaolo, A.; Andreani, C.

    2008-09-01

    Standard data analysis on the VESUVIO spectrometer at ISIS is carried out within the Impulse Approximation framework, making use of the West scaling variable y. The experiments are performed using the time-of-flight technique with the detectors positioned at constant scattering angles. Line shape analysis is routinely performed in the y-scaling framework, using two different (and equivalent) approaches: (1) fitting the parameters of the recoil peaks directly to fixed-angle time-of-flight spectra; (2) transforming the time-of-flight spectra into fixed-angle y spectra, referred to as the Neutron Compton Profiles, and then fitting the line shape parameters. The present work shows that scattering signals from different fixed-angle detectors can be collected and rebinned to obtain Neutron Compton Profiles at constant wave vector transfer, q, allowing for a suitable interpretation of data in terms of the dynamical structure factor, S(q,ω). The current limits of applicability of such a procedure are discussed in terms of the available q-range and relative uncertainties for the VESUVIO experimental set up and of the main approximations involved.

  9. Inelastic neutron scattering cross-section measurements on 7Li and 63,65Cu

    NASA Astrophysics Data System (ADS)

    Nyman, Markus; Belloni, Francesca; Ichinkhorloo, Dagvadorj; Pirovano, Elisa; Plompen, Arjan; Rouki, Chariklia

    2017-09-01

    The γ-ray production cross section for the 477.6-keV transition in 7Li following inelastic neutron scattering has been measured from the reaction threshold up to 18 MeV. This cross section is interesting as a possible standard for other inelastic scattering measurements. The experiment was conducted at the Geel Electron LINear Accelerator (GELINA) pulsed white neutron source with the Gamma Array for Inelastic Neutron Scattering (GAINS) spectrometer. Previous measurements of this cross section are reviewed and compared with our results. Recently, this cross section has also been calculated using the continuum discretized coupled-channels (CDCC) method. Experiments for studying neutrinoless double-β decay (2β0ν) or other very rare processes require greatly reducing the background radiation level (both intrinsic and external). Copper is a common shielding and structural material, used extensively in experiments such as COBRA, CUORE, EXO, GERDA, and MAJORANA. Understanding the background contribution arising from neutron interactions in Cu is important when searching for very weak experimental signals. Neutron inelastic scattering on natCu was investigated with GAINS. The results are compared with previous experimental data and evaluated nuclear data libraries.

  10. Investigation of condensed matter by means of elastic thermal-neutron scattering

    NASA Astrophysics Data System (ADS)

    Abov, Yu. G.; Dzheparov, F. S.; Elyutin, N. O.; Lvov, D. V.; Tyulyusov, A. N.

    2016-07-01

    The application of elastic thermal-neutron scattering in investigations of condensed matter that were performed at the Institute for Theoretical and Experimental Physics is described. An account of diffraction studies with weakly absorbing crystals, including studies of the anomalous-absorption effect and coherent effects in diffuse scattering, is given. Particular attention is given to exposing the method of multiple small-angle neutron scattering (MSANS). It is shown how information about matter inhomogeneities can be obtained by this method on the basis of Molière's theory. Prospects of the development of this method are outlined, and MSANS theory is formulated for a high concentration of matter inhomogeneities.

  11. Crystal electric field excitations in the quasicrystal approximant TbCd 6 studied by inelastic neutron scattering

    DOE PAGES

    Das, Pinaki; Lory, P. -F.; Flint, R.; ...

    2017-02-07

    Here, we have performed inelastic neutron scattering measurements on powder samples of the quasicrystal approximant, TbCd 6, grown using isotopically enriched 112Cd. Both quasielastic scattering and distinct inelastic excitations were observed below 3 meV. The intensity of the quasielastic scattering measured in the paramag- netic phase diverges as T N ~ 22 K is approached from above. The inelastic excitations, and their evolution with temperature, are well characterized by the leading term, Bmore » $$0\\atop{2}$$O$$0\\atop{2}$$, of the crystalline electric field (CEF) level scheme for local pentagonal symmetry for the rare-earth ions [1] indicating that the Tb moment is directed primarily along the unique local pseudo-five-fold axis of the Tsai-type clusters. We also find good agreement between the inverse susceptibility determined from magnetization measurements using a magnetically diluted Tb 0.05Y 0.95Cd 6 sample and that calculated using the CEF level scheme determined from the neutron measurements.« less

  12. Crystal electric field excitations in the quasicrystal approximant TbCd6 studied by inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Das, Pinaki; Lory, P.-F.; Flint, R.; Kong, T.; Hiroto, T.; Bud'ko, S. L.; Canfield, P. C.; de Boissieu, M.; Kreyssig, A.; Goldman, A. I.

    2017-02-01

    We have performed inelastic neutron scattering measurements on powder samples of the quasicrystal approximant, TbCd6, grown using isotopically enriched 112Cd. Both quasielastic scattering and distinct inelastic excitations were observed below 3 meV. The intensity of the quasielastic scattering measured in the paramagnetic phase diverges as TN˜22 K is approached from above. The inelastic excitations, and their evolution with temperature, are well characterized by the leading term, B20O20 , of the crystal electric field (CEF) level scheme for local pentagonal symmetry for the rare-earth ions [S. Jazbec et al., Phys. Rev. B 93, 054208 (2016), 10.1103/PhysRevB.93.054208] indicating that the Tb moment is directed primarily along the unique local pseudofivefold axis of the Tsai-type clusters. We also find good agreement between the inverse susceptibility determined from magnetization measurements using a magnetically diluted Tb0.05Y0.95Cd6 sample and that calculated using the CEF level scheme determined from the neutron measurements.

  13. Proposal for the Simultaneous Measurement of the Neutron-Neutron and Neutron-Proton Quasi-Free Scattering Cross Section via the Neutron-Deuteron Breakup Reaction at E n = 19 MeV

    NASA Astrophysics Data System (ADS)

    Tornow, W.; Howell, C. R.; Crowell, A. S.

    2013-12-01

    In order to confirm or refute the present discrepancy between data and calculation for the neutron-neutron quasi-free scattering cross section in the neutron-deuteron breakup reaction, we describe a new experimental approach currently being pursued at TUNL.

  14. The use of neutron scattering to determine the functional structure of glycoside hydrolase.

    PubMed

    Nakamura, Akihiko; Ishida, Takuya; Samejima, Masahiro; Igarashi, Kiyohiko

    2016-10-01

    Neutron diffraction provides different information from X-ray diffraction, because neutrons are scattered by atomic nuclei, whereas X-rays are scattered by electrons. One of the key advantages of neutron crystallography is the ability to visualize hydrogen and deuterium atoms, making it possible to observe the protonation state of amino acid residues, hydrogen bonds, networks of water molecules and proton relay pathways in enzymes. But, because of technical difficulties, less than 100 enzyme structures have been evaluated by neutron crystallography to date. In this review, we discuss the advantages and disadvantages of neutron crystallography as a tool to investigate the functional structure of glycoside hydrolases, with some examples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Neutron Scattering in Chemistry: Experiments, Models and Statistical Description of Physical Phenomena

    NASA Astrophysics Data System (ADS)

    Ramirez Cuesta, Timmy

    Incoherent inelastic neutron scattering spectroscopy is a very powerful technique that requires the use of ab-initio models to interpret the experimental data. Albeit not exact the information obtained from the models gives very valuable insight into the dynamics of atoms in solids and molecules, that, in turn, provides unique access to the vibrational density of states. It is extremely sensitive to hydrogen since the neutron cross section of hydrogen is the largest of all chemical elements. Hydrogen, being the lightest element highlights quantum effects more pronounced than the rest of the elements.In the case of non-crystalline or disordered materials, the models provide partial information and only a reduced sampling of possible configurations can be done at the present. With very large computing power, as exascale computing will provide, a new opportunity arises to study these systems and introduce a description of statistical configurations including energetics and dynamics characterization of configurational entropy. As part of the ICE-MAN project, we are developing the tools to manage the workflows, visualize and analyze the results. To use state of the art computational methods and most neutron scattering that using atomistic models for interpretation of experimental data This work is supported by the Laboratory Directed Research and Development (LDRD 8237) program of the UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.

  16. Quantum translator-rotator: inelastic neutron scattering of dihydrogen molecules trapped inside anisotropic fullerene cages.

    PubMed

    Horsewill, A J; Panesar, K S; Rols, S; Johnson, M R; Murata, Y; Komatsu, K; Mamone, S; Danquigny, A; Cuda, F; Maltsev, S; Grossel, M C; Carravetta, M; Levitt, M H

    2009-01-09

    We report an inelastic neutron scattering investigation of the quantum dynamics of hydrogen molecules trapped inside anisotropic fullerene cages. Transitions among the manifold of quantized rotational and translational states are directly observed. The spectra recorded as a function of energy and momentum transfer are interpreted in terms of the rotational potential and the cage dimensions. The thermodynamics of orthohydrogen and parahydrogen are investigated through temperature dependence measurements.

  17. Chiral Three-Nucleon Interactions in Light Nuclei, NeutronScattering, and Neutron Matter

    DOE PAGES

    Lynn, J. E.; Tews, I.; Carlson, Joseph Allen; ...

    2016-02-09

    Here we present quantum Monte Carlo calculations of light nuclei, neutron- scattering, and neutron matter using local two- and three-nucleon (3N) interactions derived from chiral e effective fi eld theory up to next-to-next-to-leading order (N 2LO). The two undetermined 3N low-energy couplings are fi t to the 4He binding energy and, for the first time, to the spin-orbit splitting in the neutron- P-wave phase shifts. Furthermore, we investigate different choices of local 3N-operator structures and find that chiral interactions at N 2LO are able to simultaneously reproduce the properties of A = 3; 4; 5 systems and of neutron matter,more » in contrast to commonly used phenomenological 3N interactions.« less

  18. Chiral Three-Nucleon Interactions in Light Nuclei, NeutronScattering, and Neutron Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynn, J. E.; Tews, I.; Carlson, Joseph Allen

    Here we present quantum Monte Carlo calculations of light nuclei, neutron- scattering, and neutron matter using local two- and three-nucleon (3N) interactions derived from chiral e effective fi eld theory up to next-to-next-to-leading order (N 2LO). The two undetermined 3N low-energy couplings are fi t to the 4He binding energy and, for the first time, to the spin-orbit splitting in the neutron- P-wave phase shifts. Furthermore, we investigate different choices of local 3N-operator structures and find that chiral interactions at N 2LO are able to simultaneously reproduce the properties of A = 3; 4; 5 systems and of neutron matter,more » in contrast to commonly used phenomenological 3N interactions.« less

  19. SLOW-NEUTRON SCATTERING BY MOLECULES OF LIQUID METHANE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogalska, Z.

    1962-10-01

    The total slow neutron scattering cross section of liquid methane molecules as a function of neutron energy was measured. Agreement between experimental results and the theoretical curve, calculated on the basis of the Krieger and Nelkin theory for gaseous methane, was found. The most reasonable interpretation of this agreement was attributed to the fact that there exists a free rotation of molecules in liquid methane. It might be concluded that a free rotation is maintained at the transition from gas to liquid. (auth)

  20. Monte Carlo Calculation of Thermal Neutron Inelastic Scattering Cross Section Uncertainties by Sampling Perturbed Phonon Spectra

    NASA Astrophysics Data System (ADS)

    Holmes, Jesse Curtis

    Nuclear data libraries provide fundamental reaction information required by nuclear system simulation codes. The inclusion of data covariances in these libraries allows the user to assess uncertainties in system response parameters as a function of uncertainties in the nuclear data. Formats and procedures are currently established for representing covariances for various types of reaction data in ENDF libraries. This covariance data is typically generated utilizing experimental measurements and empirical models, consistent with the method of parent data production. However, ENDF File 7 thermal neutron scattering library data is, by convention, produced theoretically through fundamental scattering physics model calculations. Currently, there is no published covariance data for ENDF File 7 thermal libraries. Furthermore, no accepted methodology exists for quantifying or representing uncertainty information associated with this thermal library data. The quality of thermal neutron inelastic scattering cross section data can be of high importance in reactor analysis and criticality safety applications. These cross sections depend on the material's structure and dynamics. The double-differential scattering law, S(alpha, beta), tabulated in ENDF File 7 libraries contains this information. For crystalline solids, S(alpha, beta) is primarily a function of the material's phonon density of states (DOS). Published ENDF File 7 libraries are commonly produced by calculation and processing codes, such as the LEAPR module of NJOY, which utilize the phonon DOS as the fundamental input for inelastic scattering calculations to directly output an S(alpha, beta) matrix. To determine covariances for the S(alpha, beta) data generated by this process, information about uncertainties in the DOS is required. The phonon DOS may be viewed as a probability density function of atomic vibrational energy states that exist in a material. Probable variation in the shape of this spectrum may be

  1. A brief History of Neutron Scattering at the Oak Ridge High Flux Isotope Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagler, Stephen E; Mook Jr, Herbert A

    2008-01-01

    Neutron scattering at the Oak Ridge National Laboratory dates back to 1945 when Ernest Wollan installed a modified x-ray diffractometer on a beam port of the original graphite reactor. Subsequently, Wollan and Clifford Shull pioneered neutron diffraction and laid the foundation for an active neutron scattering effort that continued through the 1950s, using the Oak Ridge Research reactor after 1958, and, starting in 1966, the High Flux Isotope Reactor, or HFIR.

  2. 16th National School on Neutron and X-ray Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakoumakos, Bryan; Achilles, Cherie; Cybulskis, Viktor

    Students talk about their experience at the 16th National School on Neutron and X-ray Scattering, or NXS 2014. Jointly conducted by Oak Ridge and Argonne national laboratories, NXS immerses graduate students in national user facilities to learn in a hands-on environment how to use neutrons and X-rays in their research.

  3. 16th National School on Neutron and X-ray Scattering

    ScienceCinema

    Chakoumakos, Bryan; Achilles, Cherie; Cybulskis, Viktor; Gilbert, Ian

    2018-02-14

    Students talk about their experience at the 16th National School on Neutron and X-ray Scattering, or NXS 2014. Jointly conducted by Oak Ridge and Argonne national laboratories, NXS immerses graduate students in national user facilities to learn in a hands-on environment how to use neutrons and X-rays in their research.

  4. Measurement of the scattering cross section of slow neutrons on liquid parahydrogen from neutron transmission

    DOE PAGES

    Grammer, K. B.; Alarcon, R.; Barrón-Palos, L.; ...

    2015-05-08

    Liquid hydrogen is a dense Bose fluid whose equilibrium properties are both calculable from first principles using various theoretical approaches and of interest for the understanding of a wide range of questions in many-body physics. Unfortunately, the pair correlation function g(r) inferred from neutron scattering measurements of the differential cross section dσ/dΩ from different measurements reported in the literature are inconsistent. We have measured the energy dependence of the total cross section and the scattering cross section for slow neutrons with energies between 0.43 and 16.1 meV on liquid hydrogen at 15.6 K (which is dominated by the parahydrogen component)more » using neutron transmission measurements on the hydrogen target of the NPDGamma collaboration at the Spallation Neutron Source at Oak Ridge National Laboratory. The relationship between the neutron transmission measurement we perform and the total cross section is unambiguous, and the energy range accesses length scales where the pair correlation function is rapidly varying. At 1 meV our measurement is a factor of 3 below the data from previous work. We present evidence that these previous measurements of the hydrogen cross section, which assumed that the equilibrium value for the ratio of orthohydrogen and parahydrogen has been reached in the target liquid, were in fact contaminated with an extra nonequilibrium component of orthohydrogen. Liquid parahydrogen is also a widely used neutron moderator medium, and an accurate knowledge of its slow neutron cross section is essential for the design and optimization of intense slow neutron sources. Furthermore, we describe our measurements and compare them with previous work.« less

  5. Virtual Excitation and Multiple Scattering Correction Terms to the Neutron Index of Refraction for Hydrogen.

    PubMed

    Schoen, K; Snow, W M; Kaiser, H; Werner, S A

    2005-01-01

    The neutron index of refraction is generally derived theoretically in the Fermi approximation. However, the Fermi approximation neglects the effects of the binding of the nuclei of a material as well as multiple scattering. Calculations by Nowak introduced correction terms to the neutron index of refraction that are quadratic in the scattering length and of order 10(-3) fm for hydrogen and deuterium. These correction terms produce a small shift in the final value for the coherent scattering length of H2 in a recent neutron interferometry experiment.

  6. Small Angle Neutron Scattering Observation of Chain Retraction after a Large Step Deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanchard, A.; Heinrich, M.; Pyckhout-Hintzen, W.

    The process of retraction in entangled linear chains after a fast nonlinear stretch was detected from time-resolved but quenched small angle neutron scattering (SANS) experiments on long, well-entangled polyisoprene chains. The statically obtained SANS data cover the relevant time regime for retraction, and they provide a direct, microscopic verification of this nonlinear process as predicted by the tube model. Clear, quantitative agreement is found with recent theories of contour length fluctuations and convective constraint release, using parameters obtained mainly from linear rheology. The theory captures the full range of scattering vectors once the crossover to fluctuations on length scales belowmore » the tube diameter is accounted for.« less

  7. Simulation of Thermal Neutron Transport Processes Directly from the Evaluated Nuclear Data Files

    NASA Astrophysics Data System (ADS)

    Androsenko, P. A.; Malkov, M. R.

    The main idea of the method proposed in this paper is to directly extract thetrequired information for Monte-Carlo calculations from nuclear data files. The met od being developed allows to directly utilize the data obtained from libraries and seehs to be the most accurate technique. Direct simulation of neutron scattering in themmal energy range using file 7 ENDF-6 format in terms of code system BRAND has beer achieved. Simulation algorithms have been verified using the criterion x2

  8. Neutron Scattering Studies of Vortex Matter in Type-II Superconductors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xinsheng Ling

    2012-02-02

    The proposed program is an experimental study of the fundamental properties of Abrikosov vortex matter in type-II superconductors. Most superconducting materials used in applications such as MRI are type II and their transport properties are determined by the interplay between random pinning, interaction and thermal fluctuation effects in the vortex state. Given the technological importance of these materials, a fundamental understanding of the vortex matter is necessary. The vortex lines in type-II superconductors also form a useful model system for fundamental studies of a number of important issues in condensed matter physics, such as the presence of a symmetry-breaking phasemore » transition in the presence of random pinning. Recent advances in neutron scattering facilities such as the major upgrade of the NIST cold source and the Spallation Neutron Source are providing unprecedented opportunities in addressing some of the longstanding issues in vortex physics. The core component of the proposed program is to use small angle neutron scattering and Bitter decoration experiments to provide the most stringent test of the Bragg glass theory by measuring the structure factor in both the real and reciprocal spaces. The proposed experiments include a neutron reflectometry experiment to measure the precise Q-dependence of the structure factor of the vortex lattice in the Bragg glass state. A second set of SANS experiments will be on a shear-strained Nb single crystal for testing a recently proposed theory of the stability of Bragg glass. The objective is to artificially create a set of parallel grain boundaries into a Nb single crystal and use SANS to measure the vortex matter diffraction pattern as a function of the changing angle between the applied magnetic field to the grain boundaries. The intrinsic merits of the proposed work are a new fundamental understanding of type-II superconductors on which superconducting technology is based, and a firm understanding of

  9. Dynamics of crystalline acetanilide: Analysis using neutron scattering and computer simulation

    NASA Astrophysics Data System (ADS)

    Hayward, R. L.; Middendorf, H. D.; Wanderlingh, U.; Smith, J. C.

    1995-04-01

    The unusual temperature dependence of several optical spectroscopic vibrational bands in crystalline acetanilide has been interpreted as providing evidence for dynamic localization. Here we examine the vibrational dynamics of crystalline acetanilide over a spectral range of ˜20-4000 cm-1 using incoherent neutron scattering experiments, phonon normal mode calculations and molecular dynamics simulations. A molecular mechanics energy function is parametrized and used to perform the normal mode analyses in the full configurational space of the crystal i.e., including the intramolecular and intermolecular degrees of freedom. One- and multiphonon incoherent inelastic neutron scattering intensities are calculated from harmonic analyses in the first Brillouin zone and compared with the experimental data presented here. Phonon dispersion relations and mean-square atomic displacements are derived from the harmonic model and compared with data derived from coherent inelastic neutron scattering and neutron and x-ray diffraction. To examine the temperature effects on the vibrations the full, anharmonic potential function is used in molecular dynamics simulations of the crystal at 80, 140, and 300 K. Several, but not all, of the spectral features calculated from the molecular dynamics simulations exhibit temperature-dependent behavior in agreement with experiment. The significance of the results for the interpretation of the optical spectroscopic results and possible improvements to the model are discussed.

  10. Structural and mechanical properties of cardiolipin lipid bilayers determined using neutron spin echo, small angle neutron and X-ray scattering, and molecular dynamics simulations

    DOE PAGES

    Pan, Jianjun; Cheng, Xiaolin; Sharp, Melissa; ...

    2014-10-29

    We report that the detailed structural and mechanical properties of a tetraoleoyl cardiolipin (TOCL) bilayer were determined using neutron spin echo (NSE) spectroscopy, small angle neutron and X-ray scattering (SANS and SAXS, respectively), and molecular dynamics (MD) simulations. We used MD simulations to develop a scattering density profile (SDP) model, which was then utilized to jointly refine SANS and SAXS data. In addition to commonly reported lipid bilayer structural parameters, component distributions were obtained, including the volume probability, electron density and neutron scattering length density.

  11. A mechanical rotator for neutron scattering measurements

    DOE PAGES

    Thaler, A.; Northen, E.; Aczel, A. A.; ...

    2016-12-01

    We have designed and built a mechanical rotation system for use in single crystal neutron scattering experiments at low temperatures. The main motivation for this device is to facilitate the application of magnetic fields transverse to a primary training axis, using only a vertical cryomagnet. Development was done in the context of a triple-axis neutron spectrometer, but the design is such that it can be generalized to a number of different instruments or measurement techniques. Here, we discuss some of the experimental constraints motivating the design, followed by design specifics, preliminary experimental results, and a discussion of potential uses andmore » future extension possibilities.« less

  12. Quasielastic small-angle neutron scattering from heavy water solutions of cyclodextrins

    NASA Astrophysics Data System (ADS)

    Kusmin, André; Lechner, Ruep E.; Saenger, Wolfram

    2011-01-01

    We present a model for quasielastic neutron scattering (QENS) by an aqueous solution of compact and inflexible molecules. This model accounts for time-dependent spatial pair correlations between the atoms of the same as well as of distinct molecules and includes all coherent and incoherent neutron scattering contributions. The extension of the static theory of the excluded volume effect [A. K. Soper, J. Phys.: Condens. Matter 9, 2399 (1997)] to the time-dependent (dynamic) case allows us to obtain simplified model expressions for QENS spectra in the low Q region in the uniform fluid approximation. The resulting expressions describe the quasielastic small-angle neutron scattering (QESANS) spectra of D _2O solutions of native and methylated cyclodextrins well, yielding in particular translational and rotational diffusion coefficients of these compounds in aqueous solution. Finally, we discuss the full potential of the QESANS analysis (that is, beyond the uniform fluid approximation), in particular, the information on solute-solvent interactions (e.g., hydration shell properties) that such an analysis can provide, in principle.

  13. Cross correlation calculations and neutron scattering analysis for a portable solid state neutron detection system

    NASA Astrophysics Data System (ADS)

    Saltos, Andrea

    In efforts to perform accurate dosimetry, Oakes et al. [Nucl. Intrum. Mehods. (2013)] introduced a new portable solid state neutron rem meter based on an adaptation of the Bonner sphere and the position sensitive long counter. The system utilizes high thermal efficiency neutron detectors to generate a linear combination of measurement signals that are used to estimate the incident neutron spectra. The inversion problem associated to deduce dose from the counts in individual detector elements is addressed by applying a cross-correlation method which allows estimation of dose with average errors less than 15%. In this work, an evaluation of the performance of this system was extended to take into account new correlation techniques and neutron scattering contribution. To test the effectiveness of correlations, the Distance correlation, Pearson Product-Moment correlation, and their weighted versions were performed between measured spatial detector responses obtained from nine different test spectra, and the spatial response of Library functions generated by MCNPX. Results indicate that there is no advantage of using the Distance Correlation over the Pearson Correlation, and that weighted versions of these correlations do not increase their performance in evaluating dose. Both correlations were proven to work well even at low integrated doses measured for short periods of time. To evaluate the contribution produced by room-return neutrons on the dosimeter response, MCNPX was used to simulate dosimeter responses for five isotropic neutron sources placed inside different sizes of rectangular concrete rooms. Results show that the contribution of scattered neutrons to the response of the dosimeter can be significant, so that for most cases the dose is over predicted with errors as large as 500%. A possible method to correct for the contribution of room-return neutrons is also assessed and can be used as a good initial estimate on how to approach the problem.

  14. A United Effort for Crystal Growth, Neutron Scattering, and X-ray Scattering Studies of Novel Correlated Electron Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Young S.

    2015-02-12

    The research accomplishments during the award involved experimental studies of correlated electron systems and quantum magnetism. The techniques of crystal growth, neutron scattering, x-ray scattering, and thermodynamic & transport measurements were employed, and graduate students and postdoctoral research associates were trained in these techniques.

  15. Resolution of the VESUVIO spectrometer for High-energy Inelastic Neutron Scattering experiments

    NASA Astrophysics Data System (ADS)

    Imberti, S.; Andreani, C.; Garbuio, V.; Gorini, G.; Pietropaolo, A.; Senesi, R.; Tardocchi, M.

    2005-11-01

    New perspectives for epithermal neutron spectroscopy have been opened up as a result of the development of the Resonance Detector and its use on inverse geometry time-of-flight spectrometers at spallation sources. A special application of the Resonance Detector is the Very Low Angle Detector Bank (VLAD) for the VESUVIO spectrometer at ISIS, operating in the angular range 1∘<2θ<5∘. This equipment allows High-energy Inelastic Neutron Scattering (HINS) measurements to be performed in the (q,ω) kinematical region at low wavevector (q<10 Å-1) and high energy (unlimited) transfer ℏω>500 meV, a regime so far inaccessible to experimental studies on condensed matter systems. The HINS measurements complement the Deep Inelastic Neutron Scattering (DINS) measurements performed on VESUVIO in the high wavevector q(20 Å-11 eV), where the short-time single-particle dynamics can be sampled. This paper will revise the main components of the resolution for HINS measurements of VESUVIO. Instrument performances and examples of applications for neutron scattering processes at high energy and at low wavevector transfer are discussed.

  16. Modeling down-scattered neutron images from cryogenic fuel implosions at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Raman, Kumar; Casey, Dan; Callahan, Debra; Clark, Dan; Fittinghoff, David; Grim, Gary; Hatchett, Steve; Hinkel, Denise; Jones, Ogden; Kritcher, Andrea; Seek, Scott; Suter, Larry; Merrill, Frank; Wilson, Doug

    2016-10-01

    In experiments with cryogenic deuterium-tritium (DT) fuel layers at the National Ignition Facility (NIF), an important technique for visualizing the stagnated fuel assembly is to image the 6-12 MeV neutrons created by scatters of the 14 MeV hotspot neutrons in the surrounding cold fuel. However, such down-scattered neutron images are difficult to interpret without a model of the fuel assembly, because of the nontrivial neutron kinematics involved in forming the images. For example, the dominant scattering modes are at angles other than forward scattering and the 14 MeV neutron fluence is not uniform. Therefore, the intensity patterns in these images usually do not correspond in a simple way to patterns in the fuel distribution, even for simple fuel distributions. We describe our efforts to model synthetic images from ICF design simulations with data from the National Ignition Campaign and after. We discuss the insight this gives, both to understand how well the models are predicting fuel asymmetries and to inform how to optimize the diagnostic for the types of fuel distributions being predicted. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. Hierarchical Pore Morphology of Cretaceous Shale: A Small-Angle Neutron Scattering and Ultrasmall-Angle Neutron Scattering Study

    DOE PAGES

    Bahadur, J.; Melnichenko, Y. B.; Mastalerz, Maria; ...

    2014-09-25

    Shale reservoirs are becoming an increasingly important source of oil and natural gas supply and a potential candidate for CO 2 sequestration. Understanding the pore morphology in shale may provide clues to making gas extraction more efficient and cost-effective. The porosity of Cretaceous shale samples from Alberta, Canada, collected from different depths with varying mineralogical compositions, has been investigated by small- and ultrasmall-angle neutron scattering. Moreover these samples come from the Second White Specks and Belle Fourche formations, and their organic matter content ranges between 2 and 3%. The scattering length density of the shale specimens has been estimated usingmore » the chemical composition of the different mineral components. Scattering experiments reveal the presence of fractal and non-fractal pores. It has been shown that the porosity and specific surface area are dominated by the contribution from meso- and micropores. The fraction of closed porosity has been calculated by comparing the porosities estimated by He pycnometry and scattering techniques. There is no correlation between total porosity and mineral components, a strong correlation has been observed between closed porosity and major mineral components in the studied specimens.« less

  18. Nuclear spin dependence of time reversal invariance violating effects in neutron scattering

    NASA Astrophysics Data System (ADS)

    Gudkov, Vladimir; Shimizu, Hirohiko M.

    2018-06-01

    The spin structure of parity violating and time reversal invariance violating effects in neutron scattering is discussed. The explicit relations between these effects are presented in terms of functions nuclear spins and neutron partial widths of p -wave resonances.

  19. Monte-Carlo simulation of soil carbon measurements by inelastic neutron scattering

    USDA-ARS?s Scientific Manuscript database

    Measuring soil carbon is critical for assessing the potential impact of different land management practices on carbon sequestration. The inelastic neutron scattering (INS) of fast neutrons (with energy around 14 MeV) on carbon-12 nuclei produces gamma rays with energy of 4.43 MeV; this gamma flux ca...

  20. Fast, quantitative, and nondestructive evaluation of hydrided LWR fuel cladding by small angle incoherent neutron scattering of hydrogen

    DOE PAGES

    Yan, Y.; Qian, S.; Littrell, K.; ...

    2015-02-13

    A non-destructive neutron scattering method to precisely measure the uptake of hydrogen and the distribution of hydride precipitates in light water reactor (LWR) fuel cladding was developed. Zircaloy-4 cladding used in commercial LWRs was used to produce hydrided specimens. The hydriding apparatus consists of a closed stainless steel vessel that contains Zr alloy specimens and hydrogen gas. Following hydrogen charging, the hydrogen content of the hydrided specimens was measured using the vacuum hot extraction method, by which the samples with desired hydrogen concentration were selected for the neutron study. Optical microscopy shows that our hydriding procedure results in uniform distributionmore » of circumferential hydrides across the wall. Small angle neutron incoherent scattering was performed in the High Flux Isotope Reactor at Oak Ridge National Laboratory. This study demonstrates that the hydrogen in commercial Zircaloy-4 cladding can be measured very accurately in minutes by this nondestructive method over a wide range of hydrogen concentrations from a very small amount ( 20 ppm) to over 1000 ppm. The hydrogen distribution in a tube sample was obtained by scaling the neutron scattering rate with a factor determined by a calibration process using standard, destructive direct chemical analysis methods on the specimens. This scale factor will be used in future tests with unknown hydrogen concentrations, thus providing a nondestructive method for absolute hydrogen concentration determination.« less

  1. Neutron scattered dose equivalent to a fetus from proton radiotherapy of the mother.

    PubMed

    Mesoloras, Geraldine; Sandison, George A; Stewart, Robert D; Farr, Jonathan B; Hsi, Wen C

    2006-07-01

    Scattered neutron dose equivalent to a representative point for a fetus is evaluated in an anthropomorphic phantom of the mother undergoing proton radiotherapy. The effect on scattered neutron dose equivalent to the fetus of changing the incident proton beam energy, aperture size, beam location, and air gap between the beam delivery snout and skin was studied for both a small field snout and a large field snout. Measurements of the fetus scattered neutron dose equivalent were made by placing a neutron bubble detector 10 cm below the umbilicus of an anthropomorphic Rando phantom enhanced by a wax bolus to simulate a second trimester pregnancy. The neutron dose equivalent in milliSieverts (mSv) per proton treatment Gray increased with incident proton energy and decreased with aperture size, distance of the fetus representative point from the field edge, and increasing air gap. Neutron dose equivalent to the fetus varied from 0.025 to 0.450 mSv per proton Gray for the small field snout and from 0.097 to 0.871 mSv per proton Gray for the large field snout. There is likely to be no excess risk to the fetus of severe mental retardation for a typical proton treatment of 80 Gray to the mother since the scattered neutron dose to the fetus of 69.7 mSv is well below the lower confidence limit for the threshold of 300 mGy observed for the occurrence of severe mental retardation in prenatally exposed Japanese atomic bomb survivors. However, based on the linear no threshold hypothesis, and this same typical treatment for the mother, the excess risk to the fetus of radiation induced cancer death in the first 10 years of life is 17.4 per 10,000 children.

  2. Note: Versatile sample stick for neutron scattering experiments in high electric fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bartkowiak, M., E-mail: marek.bartkowiak@psi.ch; White, J. S.; Laboratory for Quantum Magnetism, Ecole Polytechnique Fédérale de Lausanne

    2014-02-15

    We present a versatile high voltage sample stick that fits into all cryomagnets and standard cryostats at the Swiss Spallation Neutron Source, Paul Scherrer Institut, and which provides a low effort route to neutron scattering experiments that combine electric field with low temperature and magnetic field. The stick allows for voltages up to 5 kV and can be easily adapted for different scattering geometries. We discuss the design consideration and thermal behavior of the stick, and give one example to showcase the abilities of the device.

  3. Neutron beam flux monitors in coaxial and planar geometry for neutron scattering instruments at Dhruva reactor

    NASA Astrophysics Data System (ADS)

    Desai, Shraddha S.; Devan, Shylaja; Das, Amrita; Patkar, S. M.; Rao, Mala N.

    2018-04-01

    Neutron scattering instruments at Dhruva reactor are equipped with in house developed neutron beam flux monitors. Measurements of variations in intensity are essential to normalize the scattered neutron spectra against the reactor power fluctuations, energy of monochromatic beam, and various other factors. Two different beam monitor geometries are considered as per the beam size and optics. These detectors are fabricated with tailor-made designs to suit individual beam size and neutron flux. Pencil size beam monitors for integral intensity measurement are fabricated with coaxial geometry and BF3 fill gas for high n-gamma discrimination and count rate capability. Brass cathode design is modified to SS based rugged design, considering beam transmission. Coaxial beam monitor partially intercepts the collimated beam and gives relative magnitude of the flux with time. For certain experiments, size of beam varies due to use of focusing monochromator. Thus a beam monitor with square sensitive region covering entire beam is essential. Multiwire based planar detector for use in transmission mode is designed. Negligible absorption of neutron beam intensity within the detector hardware is ensured. Design of detectors is tailor made for beam geometry. Both these types of beam monitors are fabricated and characterized at G2 beam line and Triple Axis Spectrometer at Dhruva reactor. Performance of detector is suitable for the beam monitoring up to neutron flux ˜ 106 n/cm2/sec. Design aspects and performance details of these beam monitors are mentioned in the paper.

  4. Nuclear spin dependence of time reversal invariance violating effects in neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gudkov, Vladimir; Shimizu, Hirohiko M.

    In this study, the spin structure of parity violating and time reversal invariance violating effects in neutron scattering is discussed. The explicit relations between these effects are presented in terms of functions nuclear spins and neutron partial widths of p-wave resonances.

  5. Nuclear spin dependence of time reversal invariance violating effects in neutron scattering

    DOE PAGES

    Gudkov, Vladimir; Shimizu, Hirohiko M.

    2018-06-11

    In this study, the spin structure of parity violating and time reversal invariance violating effects in neutron scattering is discussed. The explicit relations between these effects are presented in terms of functions nuclear spins and neutron partial widths of p-wave resonances.

  6. Benchmarking the inelastic neutron scattering soil carbon method

    USDA-ARS?s Scientific Manuscript database

    The herein described inelastic neutron scattering (INS) method of measuring soil carbon was based on a new procedure for extracting the net carbon signal (NCS) from the measured gamma spectra and determination of the average carbon weight percent (AvgCw%) in the upper soil layer (~8 cm). The NCS ext...

  7. Wavelength-independent constant period spin-echo modulated small angle neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sales, Morten, E-mail: lsp260@alumni.ku.dk; Plomp, Jeroen; Bouwman, Wim

    2016-06-15

    Spin-Echo Modulated Small Angle Neutron Scattering (SEMSANS) in Time-of-Flight (ToF) mode has been shown to be a promising technique for measuring (very) small angle neutron scattering (SANS) signals and performing quantitative Dark-Field Imaging (DFI), i.e., SANS with 2D spatial resolution. However, the wavelength dependence of the modulation period in the ToF spin-echo mode has so far limited the useful modulation periods to those resolvable with the limited spatial resolution of the detectors available. Here we present our results of an approach to keep the period of the induced modulation constant for the wavelengths utilised in ToF. This is achieved bymore » ramping the magnetic fields in the coils responsible for creating the spatially modulated beam in synchronisation with the neutron pulse, thus keeping the modulation period constant for all wavelengths. Such a setup enables the decoupling of the spatial detector resolution from the resolution of the modulation period by the use of slits or gratings in analogy to the approach in grating-based neutron DFI.« less

  8. Small angle neutron scattering study of nano sized microstructure in Fe-Cr ODS steels for gen IV in-core applications.

    PubMed

    Han, Young-Soo; Mao, Xiadong; Jang, Jinsung

    2013-11-01

    The nano-sized microstructures in Fe-Cr oxide dispersion strengthened steel for Gen IV in-core applications were studied using small angle neutron scattering. The oxide dispersion strengthened steel was manufactured through hot isostatic pressing with various chemical compositions and fabrication conditions. Small angle neutron scattering experiments were performed using a 40 m small angle neutron scattering instrument at HANARO. Nano sized microstructures, namely, yttrium oxides and Cr-oxides were quantitatively analyzed by small angle neutron scattering. The yttrium oxides and Cr-oxides were also observed by transmission electron microscopy. The microstructural analysis results from small angle neutron scattering were compared with those obtained by transmission electron microscopy. The effects of the chemical compositions and fabrication conditions on the microstructure were investigated in relation to the quantitative microstructural analysis results obtained by small angle neutron scattering. The volume fraction of Y-oxide increases after fabrication, and this result is considered to be due to the formation of non-stochiometric Y-Ti-oxides.

  9. Quasifree (p ,p N ) scattering of light neutron-rich nuclei near N =14

    NASA Astrophysics Data System (ADS)

    Díaz Fernández, P.; Alvarez-Pol, H.; Crespo, R.; Cravo, E.; Atar, L.; Deltuva, A.; Aumann, T.; Avdeichikov, V.; Beceiro-Novo, S.; Bemmerer, D.; Benlliure, J.; Bertulani, C. A.; Boillos, J. M.; Boretzky, K.; Borge, M. J. G.; Caamaño, M.; Cabanelas, P.; Caesar, C.; Casarejos, E.; Catford, W.; Cederkäll, J.; Chartier, M.; Chulkov, L. V.; Cortina-Gil, D.; Datta Pramanik, U.; Dillmann, I.; Elekes, Z.; Enders, J.; Ershova, O.; Estradé, A.; Farinon, F.; Fernández-Domínguez, B.; Fraile, L. M.; Freer, M.; Galaviz, D.; Geissel, H.; Gernhäuser, R.; Golubev, P.; Göbel, K.; Hagdahl, J.; Heftrich, T.; Heil, M.; Heine, M.; Heinz, A.; Henriques, A.; Holl, M.; Hufnagel, A.; Ignatov, A.; Johansson, H. T.; Jonson, B.; Jurčiukonis, D.; Kalantar-Nayestanaki, N.; Kanungo, R.; Kelic-Heil, A.; Knyazev, A.; Kröll, T.; Kurz, N.; Labiche, M.; Langer, C.; Le Bleis, T.; Lemmon, R.; Lindberg, S.; Machado, J.; Marganiec, J.; Moro, A. M.; Movsesyan, A.; Nacher, E.; Najafi, A.; Nikolskii, E.; Nilsson, T.; Nociforo, C.; Panin, V.; Paschalis, S.; Perea, A.; Petri, M.; Pietras, B.; Pietri, S.; Plag, R.; Reifarth, R.; Ribeiro, G.; Rigollet, C.; Rossi, D.; Röder, M.; Savran, D.; Scheit, H.; Simon, H.; Sorlin, O.; Syndikus, I.; Taylor, J. T.; Tengblad, O.; Thies, R.; Togano, Y.; Vandebrouck, M.; Velho, P.; Volkov, V.; Wagner, A.; Wamers, F.; Weick, H.; Wheldon, C.; Wilson, G.; Winfield, J. S.; Woods, P.; Yakorev, D.; Zhukov, M.; Zilges, A.; Zuber, K.; R3B Collaboration

    2018-02-01

    Background: For many years, quasifree scattering reactions in direct kinematics have been extensively used to study the structure of stable nuclei, demonstrating the potential of this approach. The R 3B collaboration has performed a pilot experiment to study quasifree scattering reactions in inverse kinematics for a stable 12C beam. The results from that experiment constitute the first quasifree scattering results in inverse and complete kinematics. This technique has lately been extended to exotic beams to investigate the evolution of shell structure, which has attracted much interest due to changes in shell structure if the number of protons or neutrons is varied. Purpose: In this work we investigate for the first time the quasifree scattering reactions (p ,p n ) and (p ,2 p ) simultaneously for the same projectile in inverse and complete kinematics for radioactive beams with the aim to study the evolution of single-particle properties from N =14 to N =15 . Method: The structure of the projectiles 23O, 22O, and 21N has been studied simultaneously via (p ,p n ) and (p ,2 p ) quasifree knockout reactions in complete inverse kinematics, allowing the investigation of proton and neutron structure at the same time. The experimental data were collected at the R3B -LAND setup at GSI at beam energies of around 400 MeV/u. Two key observables have been studied to shed light on the structure of those nuclei: the inclusive cross sections and the corresponding momentum distributions. Conclusions: The knockout reactions (p ,p n ) and (p ,2 p ) with radioactive beams in inverse kinematics have provided important and complementary information for the study of shell evolution and structure. For the (p ,p n ) channels, indications of a change in the structure of these nuclei moving from N =14 to N =15 have been observed, i.e., from the 0 d5 /2 shell to the 1 s1 /2 . This supports previous observations of a subshell closure at N =14 for neutron-rich oxygen isotopes and its weakening

  10. Neutron detector

    DOEpatents

    Stephan, Andrew C [Knoxville, TN; Jardret,; Vincent, D [Powell, TN

    2011-04-05

    A neutron detector has a volume of neutron moderating material and a plurality of individual neutron sensing elements dispersed at selected locations throughout the moderator, and particularly arranged so that some of the detecting elements are closer to the surface of the moderator assembly and others are more deeply embedded. The arrangement captures some thermalized neutrons that might otherwise be scattered away from a single, centrally located detector element. Different geometrical arrangements may be used while preserving its fundamental characteristics. Different types of neutron sensing elements may be used, which may operate on any of a number of physical principles to perform the function of sensing a neutron, either by a capture or a scattering reaction, and converting that reaction to a detectable signal. High detection efficiency, an ability to acquire spectral information, and directional sensitivity may be obtained.

  11. Preface: Proceedings of the 4th European Conference on Neutron Scattering (Lund, Sweden, 25 29 June 2007)

    NASA Astrophysics Data System (ADS)

    Rennie, Adrian R.

    2008-03-01

    Approximately 700 delegates came to the small university city of Lund in southern Sweden at the end of June 2007 to attend the 4th European Conference on Neutron Scattering. The majority of these participants are primarily interested in specific areas of condensed matter science and use neutron techniques as a powerful tool to study the structure and dynamic behaviour of materials. These range from liquids, superconductors, magnetic materials and archaeological artefacts. The diversity of scientific problems is reflected by the attendance of many laboratories with specializations in numerous different disciplines. The maturity of the technique is shown by the fact that neutron scattering is now applied widely in so many areas. Most results from neutron scattering experiements are published as articles that primarily relate to a specific scientific discipline in the context of problem oriented research. The neutron scattering conference provided an opportunity to exchange ideas between different fields. It is hoped that this collection of papers, from participants that submitted articles on applications of neutron scattering, will continue to promote the exchange of ideas for new studies, as was seen at the conference. The papers that describe instrumentation and advances in methods of neutron scattering will appear separately in Measurement Science and Technology Worldwide activity in developing new facilities for neutron scattering and the motivation for substantial projects, such as the new target station at the ISIS facility in the UK or the proposed European Spallation Source, comes from unique information obtained from working with neutrons. The results reported in the following papers show that there is substantial exciting work still to be performed as the community of users expands into new fields. The participants, as well as the organizers, are extremely grateful to the numerous sponsors that helped to make the conference a resounding success. We are

  12. LiquidLib: A comprehensive toolbox for analyzing classical and ab initio molecular dynamics simulations of liquids and liquid-like matter with applications to neutron scattering experiments

    NASA Astrophysics Data System (ADS)

    Walter, Nathan P.; Jaiswal, Abhishek; Cai, Zhikun; Zhang, Yang

    2018-07-01

    Neutron scattering is a powerful experimental technique for characterizing the structure and dynamics of materials on the atomic or molecular scale. However, the interpretation of experimental data from neutron scattering is oftentimes not trivial, partly because scattering methods probe ensemble-averaged information in the reciprocal space. Therefore, computer simulations, such as classical and ab initio molecular dynamics, are frequently used to unravel the time-dependent atomistic configurations that can reproduce the scattering patterns and thus assist in the understanding of the microscopic origin of certain properties of materials. LiquidLib is a post-processing package for analyzing the trajectory of atomistic simulations of liquids and liquid-like matter with application to neutron scattering experiments. From an atomistic simulation, LiquidLib provides the computation of various statistical quantities including the pair distribution function, the weighted and unweighted structure factors, the mean squared displacement, the non-Gaussian parameter, the four-point correlation function, the velocity auto correlation function, the self and collective van Hove correlation functions, the self and collective intermediate scattering functions, and the bond orientational order parameter. LiquidLib analyzes atomistic trajectories generated from packages such as LAMMPS, GROMACS, and VASP. It also offers an extendable platform to conveniently integrate new quantities into the library and integrate simulation trajectories of other file formats for analysis. Weighting the quantities by element-specific neutron-scattering lengths provides results directly comparable to neutron scattering measurements. Lastly, LiquidLib is independent of dimensionality, which allows analysis of trajectories in two, three, and higher dimensions. The code is beginning to find worldwide use.

  13. Monte Carlo analysis of neutron diffuse scattering data

    NASA Astrophysics Data System (ADS)

    Goossens, D. J.; Heerdegen, A. P.; Welberry, T. R.; Gutmann, M. J.

    2006-11-01

    This paper presents a discussion of a technique developed for the analysis of neutron diffuse scattering data. The technique involves processing the data into reciprocal space sections and modelling the diffuse scattering in these sections. A Monte Carlo modelling approach is used in which the crystal energy is a function of interatomic distances between molecules and torsional rotations within molecules. The parameters of the model are the spring constants governing the interactions, as they determine the correlations which evolve when the model crystal structure is relaxed at finite temperature. When the model crystal has reached equilibrium its diffraction pattern is calculated and a χ2 goodness-of-fit test between observed and calculated data slices is performed. This allows a least-squares refinement of the fit parameters and so automated refinement can proceed. The first application of this methodology to neutron, rather than X-ray, data is outlined. The sample studied was deuterated benzil, d-benzil, C14D10O2, for which data was collected using time-of-flight Laue diffraction on SXD at ISIS.

  14. Neutron Angular Scatter Effects in 3DHZETRN: Quasi-Elastic

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Werneth, Charles M.; Slaba, Tony C.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.

    2017-01-01

    The current 3DHZETRN code has a detailed three dimensional (3D) treatment of neutron transport based on a forward/isotropic assumption and has been compared to Monte Carlo (MC) simulation codes in various geometries. In most cases, it has been found that 3DHZETRN agrees with the MC codes to the extent they agree with each other. However, a recent study of neutron leakage from finite geometries revealed that further improvements to the 3DHZETRN formalism are needed. In the present report, angular scattering corrections to the neutron fluence are provided in an attempt to improve fluence estimates from a uniform sphere. It is found that further developments in the nuclear production models are required to fully evaluate the impact of transport model updates. A model for the quasi-elastic neutron production spectra is therefore developed and implemented into 3DHZETRN.

  15. Research Opportunities at LANSCE in Neutron Scattering: The Legacy of Louie Rosen

    NASA Astrophysics Data System (ADS)

    Hurd, Alan

    2009-10-01

    Many are surprised to know that the Four Corners Region is a powerhouse in neutron scattering, and the future portends increased competitive advantage for those who use the Lujan Neutron Scattering Center at LANSCE. Connected to the world's first---and until 2010 the world's only---megawatt proton accelerator, the Lujan Center has one of the highest intensity neutron pulses in the world. Its suite of 14 instruments offers 11 materials research stations and 3 stations for nuclear physics. Importantly, the Enhanced Lujan Program scheduled for 2010-2014 will see a doubling in science capacity and quality as new instrument concepts are realized. The general user community is encouraged to become involved with instrument concept development. This presentation is dedicated to Louie Rosen, the father of the LANSCE accelerator, who passed away in August 2009.

  16. Small-angle neutron scattering study of micropore collapse in amorphous solid water.

    PubMed

    Mitterdorfer, Christian; Bauer, Marion; Youngs, Tristan G A; Bowron, Daniel T; Hill, Catherine R; Fraser, Helen J; Finney, John L; Loerting, Thomas

    2014-08-14

    Vapor-deposited amorphous solid water (ASW) is the most abundant solid molecular material in space, where it plays a direct role in both the formation of more complex chemical species and the aggregation of icy materials in the earliest stages of planet formation. Nevertheless, some of its low temperature physics such as the collapse of the micropore network upon heating are still far from being understood. Here we characterize the nature of the micropores and their collapse using neutron scattering of gram-quantities of D2O-ASW of internal surface areas up to 230 ± 10 m(2) g(-1) prepared at 77 K. The model-free interpretation of the small-angle scattering data suggests micropores, which remain stable up to 120-140 K and then experience a sudden collapse. The exact onset temperature to pore collapse depends on the type of flow conditions employed in the preparation of ASW and, thus, the specific surface area of the initial deposit, whereas the onset of crystallization to cubic ice is unaffected by the flow conditions. Analysis of the small-angle neutron scattering signal using the Guinier-Porod model suggests that a sudden transition from three-dimensional cylindrical pores with 15 Å radius of gyration to two-dimensional lamellae is the mechanism underlying the pore collapse. The rather high temperature of about 120-140 K of micropore collapse and the 3D-to-2D type of the transition unraveled in this study have implications for our understanding of the processing and evolution of ices in various astrophysical environments.

  17. The suite of small-angle neutron scattering instruments at Oak Ridge National Laboratory

    DOE PAGES

    Heller, William T.; Cuneo, Matthew J.; Debeer-Schmitt, Lisa M.; ...

    2018-02-21

    Oak Ridge National Laboratory is home to the High Flux Isotope Reactor (HFIR), a high-flux research reactor, and the Spallation Neutron Source (SNS), the world's most intense source of pulsed neutron beams. The unique co-localization of these two sources provided an opportunity to develop a suite of complementary small-angle neutron scattering instruments for studies of large-scale structures: the GP-SANS and Bio-SANS instruments at the HFIR and the EQ-SANS and TOF-USANS instruments at the SNS. This article provides an overview of the capabilities of the suite of instruments, with specific emphasis on how they complement each other. As a result, amore » description of the plans for future developments including greater integration of the suite into a single point of entry for neutron scattering studies of large-scale structures is also provided.« less

  18. The suite of small-angle neutron scattering instruments at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heller, William T.; Cuneo, Matthew J.; Debeer-Schmitt, Lisa M.

    Oak Ridge National Laboratory is home to the High Flux Isotope Reactor (HFIR), a high-flux research reactor, and the Spallation Neutron Source (SNS), the world's most intense source of pulsed neutron beams. The unique co-localization of these two sources provided an opportunity to develop a suite of complementary small-angle neutron scattering instruments for studies of large-scale structures: the GP-SANS and Bio-SANS instruments at the HFIR and the EQ-SANS and TOF-USANS instruments at the SNS. This article provides an overview of the capabilities of the suite of instruments, with specific emphasis on how they complement each other. As a result, amore » description of the plans for future developments including greater integration of the suite into a single point of entry for neutron scattering studies of large-scale structures is also provided.« less

  19. Experimental measurements with Monte Carlo corrections and theoretical calculations of neutron inelastic scattering cross section of 115In

    NASA Astrophysics Data System (ADS)

    Wang, Chao; Xiao, Jun; Luo, Xiaobing

    2016-10-01

    The neutron inelastic scattering cross section of 115In has been measured by the activation technique at neutron energies of 2.95, 3.94, and 5.24 MeV with the neutron capture cross sections of 197Au as an internal standard. The effects of multiple scattering and flux attenuation were corrected using the Monte Carlo code GEANT4. Based on the experimental values, the 115In neutron inelastic scattering cross sections data were theoretically calculated between the 1 and 15 MeV with the TALYS software code, the theoretical results of this study are in reasonable agreement with the available experimental results.

  20. Characterization of nanoparticles of lidocaine in w/o microemulsions using small-angle neutron scattering and dynamic light scattering

    NASA Astrophysics Data System (ADS)

    Shukla, A.; Kiselev, M. A.; Hoell, A.; Neubert, R. H. H.

    2004-08-01

    Microemulsions (MEs) are of special interest because a variety of Reactants can be introduced into the nanometer-sized aqueous domains, leading to materials with controlled size and shape [1,2]. In the past few years, significant research has been conducted in the reverse ME-mediated synthesis of organic nanoparticles [3,4]. In this study, a w/o ME medium was employed for the synthesis of lidocaine by direct precipitation in w/o microemulsion systems: water/isopropylpalmitat/Tween80/Span80. The particle size as well as the location of nanoparticles in the ME droplet were characterized by means of dynamic light scattering (DLS) and small angle neutron scattering (SANS). It is observed that lidocaine precipitated in the aqueous cores because of its insolubility in water. Hydrodynamic radius and gyration radius of microemulsion droplets were estimated as ~15 nm and ~4.50 nm from DLS and SANS respectively. Furthermore, different size parameters obtained by DLS and SANS experiments were compared

  1. Anisotropic itinerant magnetism and spin fluctuations in BaFe2As2 : A neutron scattering study

    NASA Astrophysics Data System (ADS)

    Matan, K.; Morinaga, R.; Iida, K.; Sato, T. J.

    2009-02-01

    Neutron scattering measurements were performed to investigate magnetic excitations in a single-crystal sample of the ternary iron arsenide BaFe2As2 , a parent compound of a recently discovered family of Fe-based superconductors. In the ordered state, we observe low energy spin-wave excitations with a gap energy Δ=9.8(4)meV . The in-plane spin-wave velocity vab and out-of-plane spin-wave velocity vc measured at 12 meV are 280(150) and 57(7)meVÅ , respectively. At high energy, we observe anisotropic scattering centered at the antiferromagnetic wave vectors. This scattering indicates two-dimensional spin dynamics, which possibly exist inside the Stoner continuum. At TN=136(1)K , the gap closes and quasielastic scattering is observed above TN , indicative of short-range spin fluctuations. In the paramagnetic state, the scattering intensity along the L direction becomes “rodlike,” characteristic of uncorrelated out-of-plane spins, attesting to the two-dimensionality of the system.

  2. A Computational Approach for Modeling Neutron Scattering Data from Lipid Bilayers

    DOE PAGES

    Carrillo, Jan-Michael Y.; Katsaras, John; Sumpter, Bobby G.; ...

    2017-01-12

    Biological cell membranes are responsible for a range of structural and dynamical phenomena crucial to a cell's well-being and its associated functions. Due to the complexity of cell membranes, lipid bilayer systems are often used as biomimetic models. These systems have led to signficant insights into vital membrane phenomena such as domain formation, passive permeation and protein insertion. Experimental observations of membrane structure and dynamics are, however, limited in resolution, both spatially and temporally. Importantly, computer simulations are starting to play a more prominent role in interpreting experimental results, enabling a molecular under- standing of lipid membranes. Particularly, the synergymore » between scattering experiments and simulations offers opportunities for new discoveries in membrane physics, as the length and time scales probed by molecular dynamics (MD) simulations parallel those of experiments. We also describe a coarse-grained MD simulation approach that mimics neutron scattering data from large unilamellar lipid vesicles over a range of bilayer rigidity. Specfically, we simulate vesicle form factors and membrane thickness fluctuations determined from small angle neutron scattering (SANS) and neutron spin echo (NSE) experiments, respectively. Our simulations accurately reproduce trends from experiments and lay the groundwork for investigations of more complex membrane systems.« less

  3. An automated analysis workflow for optimization of force-field parameters using neutron scattering data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynch, Vickie E.; Borreguero, Jose M.; Bhowmik, Debsindhu

    Graphical abstract: - Highlights: • An automated workflow to optimize force-field parameters. • Used the workflow to optimize force-field parameter for a system containing nanodiamond and tRNA. • The mechanism relies on molecular dynamics simulation and neutron scattering experimental data. • The workflow can be generalized to any other experimental and simulation techniques. - Abstract: Large-scale simulations and data analysis are often required to explain neutron scattering experiments to establish a connection between the fundamental physics at the nanoscale and data probed by neutrons. However, to perform simulations at experimental conditions it is critical to use correct force-field (FF) parametersmore » which are unfortunately not available for most complex experimental systems. In this work, we have developed a workflow optimization technique to provide optimized FF parameters by comparing molecular dynamics (MD) to neutron scattering data. We describe the workflow in detail by using an example system consisting of tRNA and hydrophilic nanodiamonds in a deuterated water (D{sub 2}O) environment. Quasi-elastic neutron scattering (QENS) data show a faster motion of the tRNA in the presence of nanodiamond than without the ND. To compare the QENS and MD results quantitatively, a proper choice of FF parameters is necessary. We use an efficient workflow to optimize the FF parameters between the hydrophilic nanodiamond and water by comparing to the QENS data. Our results show that we can obtain accurate FF parameters by using this technique. The workflow can be generalized to other types of neutron data for FF optimization, such as vibrational spectroscopy and spin echo.« less

  4. Neutron scattering as a probe of liquid crystal polymer-reinforced composite materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hjelm, R.P.; Douglas, E.P.; Benicewicz, B.C.

    1995-12-31

    This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). This research project sought to obtain nanoscale and molecular level information on the mechanism of reinforcement in liquid crystal polymer (LCP)-reinforced composites, to realize molecular-reinforced LCP composites, and to test the validity of the concept of molecular reinforcement. Small-angle neutron scattering was used to study the structures in the ternary phase diagram of LCP with liquid crystal thermosets and solvent on length scales ranging from 1-100 nm. The goal of the scattering measurements is to understand the phase morphologymore » and degree of segregation of the reinforcing and matrix components. This information helps elucidate the physics of self assembly in these systems. This work provides an experimental basis for a microengineering approach to composites of vastly improved properties.« less

  5. Hot background” of the mobile inelastic neutron scattering system for soil carbon analysis

    USDA-ARS?s Scientific Manuscript database

    The problem of gamma spectrum peaks identification arises when conducting soil carbon (and other elements) analysis using the mobile inelastic neutron scattering (MINS) system. Some gamma spectrum peaks could be associated with radioisotopes appearing due to neutron activation of both the MINS syste...

  6. Charge-dependent conformations and dynamics of pamam dendrimers revealed by neutron scattering and molecular dynamics

    NASA Astrophysics Data System (ADS)

    Wu, Bin

    , at neutral condition, the exterior residues folding back into interior would necessarily lead to higher entropy and equivalently lower free energy and thereby is energetically favored. As one decreases the pH condition of PAMAM dendrimers, the constituent residues would carry positive charges. The resultant inter-residue Coulomb repulsion would naturally result in conformational evolution. We found from CVSANS analysis that when dendrimers are charged by different acids, this conformational evolution is not the same. For dendrimers charged by DCl, the mass is seen to relocate from molecular interior to periphery. Nevertheless, those acidified by D 2SO4 exhibit surprisingly minor structural change under variation of molecular charge. To explain the above observation, we performed MD simulations and calculated the excess free energy of Cl- and SO 42- counterions. The binding between sulfate ions and charged amines of PAMAM dendrimers are found to be much stronger than the case for chlorides. This more energetic binding would serve as better screening effect among charged residues. Consequently, electrostatic repulsion triggered outstretching tendency is effectively diminished. In order to make direct comparison between MD simulations and neutron scattering experiments, we proposed and implemented a rigorous method, which incorporates the contribution from those invasive water molecules, to calculate scattering functions of a single PAMAM dendrimer using equilibrium MD trajectories. The bridge between neutron scattering experiments and MD simulation is successfully established. Aside from structural comparisons between MD simulations and experiments, we utilized MD simulation to decipher the previously reported QENS experimental observation that the segmental dynamics of PAMAM dendrimer would enhance with increasing molecular charge. We pursued the mechanism from the perspective of hydrocarbon component of dendrimer and solvent (water) interaction as a form similar to

  7. Neutron scattering to study membrane systems: from lipid vesicles to living cells.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nickels, Jonathan D.; Chatterjee, Sneha; Stanley, Christopher B.

    The existence and role of lateral lipid organization in biological membranes has been studied and contested for more than 30 years. Lipid domains, or rafts, are hypothesized as scalable compartments in biological membranes, providing appropriate physical environments to their resident membrane proteins. This implies that lateral lipid organization is associated with a range of biological functions, such as protein co-localization, membrane trafficking, and cell signaling, to name just a few. Neutron scattering techniques have proven to be an excellent tool to investigate these structural features in model lipids, and more recently, in living cells. I will discuss our recent workmore » using neutrons to probe the structure and mechanical properties in model lipid systems and our current efforts in using neutrons to probe the structure and organization of the bilayer in a living cell. These efforts in living cells have used genetic and biochemical strategies to generate a large neutron scattering contrast, making the membrane visible. I will present our results showing in vivo bilayer structure and discuss the outlook for this approach.« less

  8. A novel small-angle neutron scattering detector geometry

    PubMed Central

    Kanaki, Kalliopi; Jackson, Andrew; Hall-Wilton, Richard; Piscitelli, Francesco; Kirstein, Oliver; Andersen, Ken H.

    2013-01-01

    A novel 2π detector geometry for small-angle neutron scattering (SANS) applications is presented and its theoretical performance evaluated. Such a novel geometry is ideally suited for a SANS instrument at the European Spallation Source (ESS). Motivated by the low availability and high price of 3He, the new concept utilizes gaseous detectors with 10B as the neutron converter. The shape of the detector is inspired by an optimization process based on the properties of the conversion material. Advantages over the detector geometry traditionally used on SANS instruments are discussed. The angular and time resolutions of the proposed detector concept are shown to satisfy the requirements of the particular SANS instrument. PMID:24046504

  9. Neutron-scattering spectrum of cesium hydrogen dinitrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roziere, J.; Berney, C.V.

    1976-03-17

    The neutron-scattering spectrum of cesium hydrogen dinitrate was obtained in order to complete previously reported structural chemical studies obtained by x-ray diffraction and infrared-Raman spectra. The proton position was of particular interest. Satellite peak intensities suggested proton coupling to motions of the NO/sub 3//sup -/ groups, and therefore not located at the center of the distorted tetrahedron formed by four of the oxygen groups. The precise position of the proton was not established. (DDA)

  10. Directly Characterizing the Relative Strength and Momentum Dependence of Electron-Phonon Coupling Using Resonant Inelastic X-Ray Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Devereaux, T. P.; Shvaika, A. M.; Wu, K.

    The coupling between lattice and charge degrees of freedom in condensed matter materials is ubiquitous and can often result in interesting properties and ordered phases, including conventional superconductivity, charge-density wave order, and metal-insulator transitions. Angle-resolved photoemission spectroscopy and both neutron and nonresonant x-ray scattering serve as effective probes for determining the behavior of appropriate, individual degrees of freedom—the electronic structure and lattice excitation, or phonon dispersion, respectively. However, each provides less direct information about the mutual coupling between the degrees of freedom, usually through self-energy effects, which tend to renormalize and broaden spectral features precisely where the coupling is strong,more » impacting one’s ability to quantitatively characterize the coupling. Here, we demonstrate that resonant inelastic x-ray scattering, or RIXS, can be an effective tool to directly determine the relative strength and momentum dependence of the electron-phonon coupling in condensed matter systems. Using a diagrammatic approach for an eight-band model of copper oxides, we study the contributions from the lowest-order diagrams to the full RIXS intensity for a realistic scattering geometry, accounting for matrix element effects in the scattering cross section, as well as the momentum dependence of the electron-phonon coupling vertex. A detailed examination of these maps offers a unique perspective into the characteristics of electron-phonon coupling, which complements both neutron and nonresonant x-ray scattering, as well as Raman and infrared conductivity.« less

  11. Directly Characterizing the Relative Strength and Momentum Dependence of Electron-Phonon Coupling Using Resonant Inelastic X-Ray Scattering

    DOE PAGES

    Devereaux, T. P.; Shvaika, A. M.; Wu, K.; ...

    2016-10-25

    The coupling between lattice and charge degrees of freedom in condensed matter materials is ubiquitous and can often result in interesting properties and ordered phases, including conventional superconductivity, charge-density wave order, and metal-insulator transitions. Angle-resolved photoemission spectroscopy and both neutron and nonresonant x-ray scattering serve as effective probes for determining the behavior of appropriate, individual degrees of freedom—the electronic structure and lattice excitation, or phonon dispersion, respectively. However, each provides less direct information about the mutual coupling between the degrees of freedom, usually through self-energy effects, which tend to renormalize and broaden spectral features precisely where the coupling is strong,more » impacting one’s ability to quantitatively characterize the coupling. Here, we demonstrate that resonant inelastic x-ray scattering, or RIXS, can be an effective tool to directly determine the relative strength and momentum dependence of the electron-phonon coupling in condensed matter systems. Using a diagrammatic approach for an eight-band model of copper oxides, we study the contributions from the lowest-order diagrams to the full RIXS intensity for a realistic scattering geometry, accounting for matrix element effects in the scattering cross section, as well as the momentum dependence of the electron-phonon coupling vertex. A detailed examination of these maps offers a unique perspective into the characteristics of electron-phonon coupling, which complements both neutron and nonresonant x-ray scattering, as well as Raman and infrared conductivity.« less

  12. Direction sensitive neutron detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahlen, Steven; Fisher, Peter; Dujmic, Denis

    2017-01-31

    A neutron detector includes a pressure vessel, an electrically conductive field cage assembly within the pressure vessel and an imaging subsystem. A pressurized gas mixture of CF.sub.4, .sup.3He and .sup.4He at respective partial pressures is used. The field cage establishes a relatively large drift region of low field strength, in which ionization electrons generated by neutron-He interactions are directed toward a substantially smaller amplification region of substantially higher field strength in which the ionization electrons undergo avalanche multiplication resulting in scintillation of the CF.sub.4 along scintillation tracks. The imaging system generates two-dimensional images of the scintillation patterns and employs track-findingmore » to identify tracks and deduce the rate and direction of incident neutrons. One or more photo-multiplier tubes record the time-profile of the scintillation tracks permitting the determination of the third coordinate.« less

  13. Extracting Neutron Polarizabilities from Compton Scattering on Quasi-Free Neutrons in γd -> γnp

    NASA Astrophysics Data System (ADS)

    Demissie, Berhan

    2017-01-01

    Compton scattering processes are ideal to study electric and magnetic dipole polarizability coefficients of nucleons. These fundamental quantities parametrize the response to a monochromatic photon probe. In this work, the inelastic channel γd -> γnp is treated in χEFT, with a focus on the NQFP - neutron quasi-free peak - kinematic region. In this region, the momentum of the outgoing proton is small enough that it is considered to remain at rest. This provides access to the Compton scattering process γn -> γn from which the neutron scalar polarizabilites α and β are extracted. Using χEFT, differential cross-sections, d3 σ / dEn dΩγ'Ωn , in the photon energy range of 200-400 MeV are computed. The biggest contribution comes from the impulse approximation, with small corrections stemming from final state interaction, meson exchange currents and rescattering. A new extraction of neutron polarizabilities from a two-parameter fit to the Kossert et al. data taken at MAMI in 2002 is presented. This work is supported by the US Department of Energy under contracts DE-FG02- 95ER-40907, and by the Dean's Research Chair programme of the Columbian College of Arts and Sciences of The George Washington University.

  14. System Construction of the Stilbene Compact Neutron Scatter Camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldsmith, John E. M.; Gerling, Mark D.; Brennan, James S.

    This report documents the construction of a stilbene-crystal-based compact neutron scatter camera. This system is essentially identical to the MINER (Mobile Imager of Neutrons for Emergency Responders) system previously built and deployed under DNN R&D funding,1 but with the liquid scintillator in the detection cells replaced by stilbene crystals. The availability of these two systems for side-by-side performance comparisons will enable us to unambiguously identify the performance enhancements provided by the stilbene crystals, which have only recently become commercially available in the large size required (3” diameter, 3” deep).

  15. Primary Data Treatment Software for Position-Sensitive Detector of Small-Angle Neutron Scattering Spectrometer in the Isotropic Pattern Scattering Case

    NASA Astrophysics Data System (ADS)

    Soloviev, Alexei; Kutuzov, Sergei; Ivankov, Olexander; Kuklin, Alexander

    2018-02-01

    A new data converter has been created for the new position-sensitive detector (PSD) of small-angle neutron scattering (SANS) spectrometer YuMO. In the isotropic pattern scattering case, it provides the possibility for processing PSD data with the SAS data processing program that has already been in use.

  16. Introducing single-crystal scattering and optical potentials into MCNPX: Predicting neutron emission from a convoluted moderator

    DOE PAGES

    Gallmeier, F. X.; Iverson, E. B.; Lu, W.; ...

    2016-01-08

    Neutron transport simulation codes are an indispensable tool used for the design and construction of modern neutron scattering facilities and instrumentation. It has become increasingly clear that some neutron instrumentation has started to exploit physics that is not well-modelled by the existing codes. Particularly, the transport of neutrons through single crystals and across interfaces in MCNP(X), Geant4 and other codes ignores scattering from oriented crystals and refractive effects, and yet these are essential ingredients for the performance of monochromators and ultra-cold neutron transport respectively (to mention but two examples). In light of these developments, we have extended the MCNPX codemore » to include a single-crystal neutron scattering model and neutron reflection/refraction physics. Furthermore, we have also generated silicon scattering kernels for single crystals of definable orientation with respect to an incoming neutron beam. As a first test of these new tools, we have chosen to model the recently developed convoluted moderator concept, in which a moderating material is interleaved with layers of perfect crystals to provide an exit path for neutrons moderated to energies below the crystal s Bragg cut off at locations deep within the moderator. Studies of simple cylindrical convoluted moderator systems of 100 mm diameter and composed of polyethylene and single crystal silicon were performed with the upgraded MCNPX code and reproduced the magnitude of effects seen in experiments compared to homogeneous moderator systems. Applying different material properties for refraction and reflection, and by replacing the silicon in the models with voids, we show that the emission enhancements seen in recent experiments are primarily caused by the transparency of the silicon/void layers. Finally the convoluted moderator experiments described by Iverson et al. were simulated and we find satisfactory agreement between the measurement and the results of

  17. Looking at hydrogen motions in confinement. The uniqueness of Quasi-Elastic Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Fischer, J.; Tsapatsaris, N.; de Paula, E.; Bordallo, H. N.

    2014-09-01

    Why in a barren and hot desert, clays can contain a significant fraction of water? Why does concrete crack? How can we demonstrate that complexation of a drug does not alter its conformation in a way that affects its functionality? In this paper we present results on various studies using Quasi-Elastic Neutron Scattering aimed at clarifying these questions. To allow for a better understanding of neutron scattering, a brief introduction to the basics of its theory is presented. Following the theoretical part, experimental results dealing with the effects of confinement on the water dynamics caused by the interfaces in clays and the nano- and micro-pores of concrete are reviewed in detail. At the end, recent Quasi-Elastic Neutron Scattering investigations on the complexation of the local anesthetics Bupivacaine (BVC.HCl, C18H28N20.HCl.H2O) and Ropivacaine (RVC.HCl, C17H26N20.HCl.H2O) into the cyclic β-cyclodextrin oligosaccharide are presented. To conclude, the perspectives that the European Spallation Source brings to this subject are discussed.

  18. CdZnTe γ detector for deep inelastic neutron scattering on the VESUVIO spectrometer

    NASA Astrophysics Data System (ADS)

    Andreani, C.; D'Angelo, A.; Gorini, G.; Imberti, S.; Pietropaolo, A.; Rhodes, N. J.; Schooneveld, E. M.; Senesi, R.; Tardocchi, M.

    In this paper it is shown that solid-state cadmium-zinc-telluride (CZT) is a promising photon detector for neutron spectroscopy in a wide energy interval, ranging from thermal ( 25 meV) to epithermal ( 70 eV) neutron energies. In the present study two CZT detectors were tested as part of the inverse-geometry neutron spectrometer VESUVIO operating at the ISIS pulsed neutron source. The response of the CZT detector to photon emission from radiative neutron capture in 238U was determined by biparametric measurements of neutron time of flight and photon energy. The scattering response function F(y) from a Pb sample has been derived using both CZT and conventional 6Li-glass scintillator detectors. The former showed both an improved signal to background ratio and higher efficiency as compared to 6Li glass, allowing us to measure F(y) up to the fourth 238U absorption energy (Er=66.02 eV). Due to the small size of CZT detectors, their use is envisaged in arrays, with high spatial resolution, for neutron-scattering studies at high energy (ω>1 eV) and low wavevector (q <10 Å-1) transfers.

  19. Biophysical applications of neutron Compton scattering

    NASA Astrophysics Data System (ADS)

    Wanderlingh, U. N.; Albergamo, F.; Hayward, R. L.; Middendorf, H. D.

    Neutron Compton scattering (NCS) can be applied to measuring nuclear momentum distributions and potential parameters in molecules of biophysical interest. We discuss the analysis of NCS spectra from peptide models, focusing on the characterisation of the amide proton dynamics in terms of the width of the H-bond potential well, its Laplacian, and the mean kinetic energy of the proton. The Sears expansion is used to quantify deviations from the high-Q limit (impulse approximation), and line-shape asymmetry parameters are evaluated in terms of Hermite polynomials. Results on NCS from selectively deuterated acetanilide are used to illustrate this approach.

  20. Structured water in polyelectrolyte dendrimers: Understanding small angle neutron scattering results through atomistic simulation

    NASA Astrophysics Data System (ADS)

    Wu, Bin; Kerkeni, Boutheïna; Egami, Takeshi; Do, Changwoo; Liu, Yun; Wang, Yongmei; Porcar, Lionel; Hong, Kunlun; Smith, Sean C.; Liu, Emily L.; Smith, Gregory S.; Chen, Wei-Ren

    2012-04-01

    Based on atomistic molecular dynamics (MD) simulations, the small angle neutron scattering (SANS) intensity behavior of a single generation-4 polyelectrolyte polyamidoamine starburst dendrimer is investigated at different levels of molecular protonation. The SANS form factor, P(Q), and Debye autocorrelation function, γ(r), are calculated from the equilibrium MD trajectory based on a mathematical approach proposed in this work. The consistency found in comparison against previously published experimental findings (W.-R. Chen, L. Porcar, Y. Liu, P. D. Butler, and L. J. Magid, Macromolecules 40, 5887 (2007)) leads to a link between the neutron scattering experiment and MD computation, and fresh perspectives. The simulations enable scattering calculations of not only the hydrocarbons but also the contribution from the scattering length density fluctuations caused by structured, confined water within the dendrimer. Based on our computational results, we explore the validity of using radius of gyration RG for microstructure characterization of a polyelectrolyte dendrimer from the scattering perspective.

  1. Neutron Scattering and the 30 S Ribosomal Subunit of E. Coli

    DOE R&D Accomplishments Database

    Moore, P. B.; Engelman, D. M.; Langer, J. A.; Ramakrishnan, V. R.; Schindler, D. G.; Schoenborn, B. P.; Sillers, I. Y.; Yabuki, S.

    1982-06-01

    This paper reviews the progress made in the study of the internal organization of the 30 S ribosomal subunit of E. coli by neutron scattering since 1975. A map of that particle showing the position of 14 of the subunit's 21 proteins is presented, and the methods currently used for collecting and analyzing such data are discussed. Also discussed is the possibility of extending the interpretation of neutron mapping data beyond the limits practical today.

  2. The magnetic order of GdMn₂Ge₂ studied by neutron diffraction and x-ray resonant magnetic scattering.

    PubMed

    Granovsky, S A; Kreyssig, A; Doerr, M; Ritter, C; Dudzik, E; Feyerherm, R; Canfield, P C; Loewenhaupt, M

    2010-06-09

    The magnetic structure of GdMn₂Ge₂ (tetragonal I4/mmm) has been studied by hot neutron powder diffraction and x-ray resonant magnetic scattering techniques. These measurements, along with the results of bulk experiments, confirm the collinear ferrimagnetic structure with moment direction parallel to the c-axis below T(C) = 96 K and the collinear antiferromagnetic phase in the temperature region T(C) < T < T(N) = 365 K. In the antiferromagnetic phase, x-ray resonant magnetic scattering has been detected at Mn K and Gd L₂ absorption edges. The Gd contribution is a result of an induced Gd 5d electron polarization caused by the antiferromagnetic order of Mn-moments.

  3. A novel approach to neutron scattering instrumentation for probing multiscale dynamics in soft and biological matter

    DOE PAGES

    Mamontov, Eugene

    2016-06-29

    We present a concept and ray-tracing simulation results of a mechanical device that will enable inelastic neutron scattering measurements where the data at energy transfers from a few eV to several hundred meV can be collected in a single, gapless spectrum. Besides covering 5 orders of magnitude on the energy (time) scale, the device provides data over 2 orders of magnitude on the scattering momentum (length) scale in a single measurement. Such capabilities are geared primarily toward soft and biological matter, where the broad dynamical features of relaxation origin largely overlap with vibration features, thus necessitating gapless spectral coverage overmore » several orders of magnitude in time and space. Furthermore, neutron scattering experiments with such a device are performed with a fixed neutron final energy, which enables measurements, with neutron energy loss in the sample, at arbitrarily low temperatures over the same broad spectral range. Lastly, this capability is also invaluable in biological and soft matter research, as the variable temperature dependence of different relaxation components allows their separation in the scattering spectra as a function of temperature.« less

  4. Structure of spontaneously formed solid-electrolyte interphase on lithiated graphite determined using small-angle neutron scattering

    DOE PAGES

    Sacci, Robert L.; Banuelos, Jose Leobardo; Veith, Gabriel M.; ...

    2015-03-25

    We report the first small-angle neutron scattering of a chemically formed solid-electrolyte interphase from LixC6 reacting with ethylene carbonate/dimethyl carbon solvent. This provides a different and perhaps simpler view of SEI formation than the usual electrochemically-driven reaction. We show that an organic layer coats the graphite particles filling in micro-pores and is polymeric in nature being 1-3 nm thick. We used inelastic neutron scattering to probe the chemistry, and we found that the SEI showed similar inelastic scattering to polyethylene oxide.

  5. Future directions in high-pressure neutron diffraction

    NASA Astrophysics Data System (ADS)

    Guthrie, M.

    2015-04-01

    The ability to manipulate structure and properties using pressure has been well known for many centuries. Diffraction provides the unique ability to observe these structural changes in fine detail on lengthscales spanning atomic to nanometre dimensions. Amongst the broad suite of diffraction tools available today, neutrons provide unique capabilities of fundamental importance. However, to date, the growth of neutron diffraction under extremes of pressure has been limited by the weakness of available sources. In recent years, substantial government investments have led to the construction of a new generation of neutron sources while existing facilities have been revitalized by upgrades. The timely convergence of these bright facilities with new pressure-cell technologies suggests that the field of high-pressure (HP) neutron science is on the cusp of substantial growth. Here, the history of HP neutron research is examined with the hope of gleaning an accurate prediction of where some of these revolutionary capabilities will lead in the near future. In particular, a dramatic expansion of current pressure-temperature range is likely, with corresponding increased scope for extreme-conditions science with neutron diffraction. This increase in coverage will be matched with improvements in data quality. Furthermore, we can also expect broad new capabilities beyond diffraction, including in neutron imaging, small angle scattering and inelastic spectroscopy.

  6. Field-induced self-assembly of iron oxide nanoparticles investigated using small-angle neutron scattering.

    PubMed

    Fu, Zhendong; Xiao, Yinguo; Feoktystov, Artem; Pipich, Vitaliy; Appavou, Marie-Sousai; Su, Yixi; Feng, Erxi; Jin, Wentao; Brückel, Thomas

    2016-11-03

    The magnetic-field-induced assembly of magnetic nanoparticles (NPs) provides a unique and flexible strategy in the design and fabrication of functional nanostructures and devices. We have investigated the field-induced self-assembly of core-shell iron oxide NPs dispersed in toluene by means of small-angle neutron scattering (SANS). The form factor of the core-shell NPs was characterized and analyzed using SANS with polarized neutrons. Large-scale aggregates of iron oxide NPs formed above 0.02 T as indicated by very-small-angle neutron scattering measurements. A three-dimensional long-range ordered superlattice of iron oxide NPs was revealed under the application of a moderate magnetic field. The crystal structure of the superlattice has been identified to be face-centred cubic.

  7. Proton dynamics in oxides: insight into the mechanics of proton conduction from quasielastic neutron scattering.

    PubMed

    Karlsson, Maths

    2015-01-07

    This article is concerned with the use of quasielastic neutron scattering as a technique for investigation of the dynamical properties of proton conducting oxides. Currently, the main interest in these materials comes from their promise as electrolytes in future electrochemical devices and particularly through their use as electrolytes in next-generation, intermediate-temperature, fuel cells. However, the realization of such devices depends critically on the development of new, more highly proton conducting oxides. Such a development depends on increasing the current understanding of proton conduction in oxides and for this purpose quasielastic neutron scattering is an important mean. The aim of this article is to introduce the non-specialist reader to the basic principles of quasielastic neutron scattering, its advantages and disadvantages, to summarize the work that has been done on proton conducting oxides using this technique, as well as to discuss future opportunities within this field of research.

  8. EDITORIAL: Instrumentation and Methods for Neutron Scattering—papers from the 4th European Conference on Neutron Scattering in Lund, Sweden, June 2007

    NASA Astrophysics Data System (ADS)

    Rennie, Adrian R.

    2008-03-01

    Neutron scattering is used as a tool to study problems in disciplines that include chemistry, materials science, biology and condensed matter physics as well as problems from neighbouring disciplines such as geology, environmental sciences and archaeology. Equipment for these studies is found at laboratories with research reactors or spallation neutron sources and there are many recent or current developments with new instruments and even entirely new facilities such as the Spallation Neutron Source at Oak Ridge, USA, the OPAL reactor at Lucas Heights, Australia and the second target station at the ISIS facility in the UK. Design and optimization of the instruments at these facilities involves work with many research laboratories and groups in universities. Every four years the European Conference on Neutron Scattering (ECNS) brings together both the specialists in neutron instrumentation and the community of users (in intervening years there are International and American conferences). In June 2007 about 700 delegates came to the 4th ECNS that was held in Lund, Sweden. There were more than 600 presentations as talks and posters. The opportunity to publish papers in Measurement Science and Technology that relate to neutron scattering instrumentation and method development was offered to the participants, and the papers that follow describe some of the recent activity in this field. Accounts of work on condensed matter science and the applications of neutron scattering appear separately in Journal of Physics: Condensed Matter. There are, of course, many features of neutron instrumentation that are specific to this particular field of measurement. However, there are also many elements of apparatus and experiment design that can usefully be shared with a broader community. It is hoped that this issue with papers from ECNS will find a broad community of interest. Apart from descriptions of overall design of diffractometers and spectrometers there are accounts of new

  9. Neutron observables from inclusive lepton scattering on nuclei

    NASA Astrophysics Data System (ADS)

    Rinat, A. S.; Taragin, M. F.

    2010-07-01

    We analyze new data from Thomas Jefferson National Accelerator Facility (JLab) for inclusive electron scattering on various targets. Computed and measured total inclusive cross sections in the range 0.3≲x≲0.95 show reasonable agreement on a logarithmic scale for all targets. However, closer inspection of the quasielastic components reveals serious discrepancies. European Muon Collaboration (EMC) ratios with conceivably smaller systematic errors fare the same. As a consequence, the new data do not enable the extraction of the magnetic form factor GMn and the structure function F2n of the neutron, although the application of exactly the same analysis to older data had been successful. We incorporate in the above analysis older CLAS Collaboration data on F22H. Removal of some scattered points from those makes it appear possible to obtain the desired neutron information. We compare our results with others from alternative sources. Special attention is paid to the A=3 isodoublet cross sections and EMC ratios. Present data exist only for He3, but the available input in combination with charge symmetry enables computations for H3. Their average is the computed isoscalar part and is compared with the empirical modification of He3 EMC ratios toward a fictitious A=3 isosinglet.

  10. High-resolution inelastic neutron scattering and neutron powder diffraction study of the adsorption of dihydrogen by the Cu(II) metal-organic framework material HKUST-1

    NASA Astrophysics Data System (ADS)

    Callear, Samantha K.; Ramirez-Cuesta, Anibal J.; David, William I. F.; Millange, Franck; Walton, Richard I.

    2013-12-01

    We present new high-resolution inelastic neutron scattering (INS) spectra (measured using the TOSCA and MARI instruments at ISIS) and powder neutron diffraction data (measured on the diffractometer WISH at ISIS) from the interaction of the prototypical metal-organic framework HKUST-1 with various dosages of dihydrogen gas. The INS spectra show direct evidence for the sequential occupation of various distinct sites for dihydrogen in the metal-organic framework, whose population is adjusted during increasing loading of the guest. The superior resolution of TOSCA reveals subtle features in the spectra, not previously reported, including evidence for split signals, while complementary spectra recorded on MARI present full information in energy and momentum transfer. The analysis of the powder neutron patterns using the Rietveld method shows a consistent picture, allowing the crystallographic indenisation of binding sites for dihydrogen, thus building a comprehensive picture of the interaction of the guest with the nanoporous host.

  11. PREFACE: 6th Meeting of the Spanish Neutron Scattering Association (SETN2012)

    NASA Astrophysics Data System (ADS)

    2014-11-01

    The bi-annual Meeting of the Spanish Neutron Scattering Association, VI RSETN, took place in the magnificent world heritage ancient city of Segovia, Spain, from 24-27 June 2012, at the historical building ''Palacio de Mansilla''. It was the sixth in a series of successful scientific meetings, beginning in 2002 (San Sebastián), and followed by conferences in Puerto de la Cruz (Canary Islands, 2004), Jaca (Aragón, 2006), Sant Feliú de Guixols (Cataluña, 2008) and Gijón (Asturias, 2010). The conference covered a broad range of topics related to the use of neutron scattering techniques, from soft matter and biosciences to magnetism, condensed matter as well as advanced neutron instrumentation and applications. In addition to those topics, Spanish scientists working at neutron facilities reported recent upgrades of neutron instruments. The VI RSETN was organized by a group of research scientists belonging to different institutions in Madrid: CSIC, Universidad Complutense and Universidad Politécnica de Madrid, in cooperation with the Spanish Society for Neutron Techniques (SETN, 'Sociedad Española de Técnicas Neutrónicas'). The meeting attracted around 90 participants. The total number of oral presentations was 36, including plenary and invited talks, both from domestic and foreign speakers. In addition, the number of posters was around 20. The success of the VI RSETN was due to the efforts of many colleagues involved at all stages of the meeting. We would like to thank the scientific committee, the local organizing committee, the chairs of the conference sessions as well as all the reviewers who agreed generously to help with the process. We would also like to emphasize the excellent scientific quality of all the presentations and posters, and we thank the support received from our sponsors (SETN, ICMM-CSIC, ESS-Bilbao, ILL, Carburos Metálicos), which was really important for the conference success. Finally, we hope that the readers will enjoy the 28

  12. UB Matrix Implementation for Inelastic Neutron Scattering Experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lumsden, Mark D; Robertson, Lee; Yethiraj, Mohana

    The UB matrix approach has been extended to handle inelastic neutron scattering experiments with differing k{sub i} and k{sub f}. We have considered the typical goniometer employed on triple-axis and time-of-flight spectrometers. Expressions are derived to allow for calculation of the UB matrix and for converting from observables to Q-energy space. In addition, we have developed appropriate modes for calculation of angles for a specified Q-energy position.

  13. Ultra-small-angle neutron scattering with azimuthal asymmetry

    DOE PAGES

    Gu, X.; Mildner, D. F. R.

    2016-05-16

    Small-angle neutron scattering (SANS) measurements from thin sections of rock samples such as shales demand as great a scattering vector range as possible because the pores cover a wide range of sizes. The limitation of the scattering vector range for pinhole SANS requires slit-smeared ultra-SANS (USANS) measurements that need to be converted to pinhole geometry. The desmearing algorithm is only successful for azimuthally symmetric data. Scattering from samples cut parallel to the plane of bedding is symmetric, exhibiting circular contours on a two-dimensional detector. Samples cut perpendicular to the bedding show elliptically dependent contours with the long axis corresponding tomore » the normal to the bedding plane. A method is given for converting such asymmetric data collected on a double-crystal diffractometer for concatenation with the usual pinhole-geometry SANS data. Furthermore, the aspect ratio from the SANS data is used to modify the slit-smeared USANS data to produce quasi-symmetric contours. Rotation of the sample about the incident beam may result in symmetric data but cannot extract the same information as obtained from pinhole geometry.« less

  14. Ultra-small-angle neutron scattering with azimuthal asymmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu, X.; Mildner, D. F. R.

    Small-angle neutron scattering (SANS) measurements from thin sections of rock samples such as shales demand as great a scattering vector range as possible because the pores cover a wide range of sizes. The limitation of the scattering vector range for pinhole SANS requires slit-smeared ultra-SANS (USANS) measurements that need to be converted to pinhole geometry. The desmearing algorithm is only successful for azimuthally symmetric data. Scattering from samples cut parallel to the plane of bedding is symmetric, exhibiting circular contours on a two-dimensional detector. Samples cut perpendicular to the bedding show elliptically dependent contours with the long axis corresponding tomore » the normal to the bedding plane. A method is given for converting such asymmetric data collected on a double-crystal diffractometer for concatenation with the usual pinhole-geometry SANS data. Furthermore, the aspect ratio from the SANS data is used to modify the slit-smeared USANS data to produce quasi-symmetric contours. Rotation of the sample about the incident beam may result in symmetric data but cannot extract the same information as obtained from pinhole geometry.« less

  15. Direct Discrete Method for Neutronic Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vosoughi, Naser; Akbar Salehi, Ali; Shahriari, Majid

    The objective of this paper is to introduce a new direct method for neutronic calculations. This method which is named Direct Discrete Method, is simpler than the neutron Transport equation and also more compatible with physical meaning of problems. This method is based on physic of problem and with meshing of the desired geometry, writing the balance equation for each mesh intervals and with notice to the conjunction between these mesh intervals, produce the final discrete equations series without production of neutron transport differential equation and mandatory passing from differential equation bridge. We have produced neutron discrete equations for amore » cylindrical shape with two boundary conditions in one group energy. The correction of the results from this method are tested with MCNP-4B code execution. (authors)« less

  16. On the Paramagnetic Inelastic Scattering of Neutrons due to Ions in the Anisotropic Crystalline Field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Yasusada

    1960-03-15

    The paramagnetic inelastic scattering of neutrons due to ions of3d transition elements in the anisotropic crystalline field was considered. When the orbital momentum of the paramagnetic tons is not quenched, the spin states are no longer degenerate but split into discrete levels. The transition between these levels can occur by mugnetic dipole interaction of ions with neutrons. In the special case of FeCl/sub 2/, an antiferromagnetic crystal whose Neel temperature is 24 deg K, the calculation of the forward scuttering cross-sections of neutrons at various temperatures and wave lengths was carried out which showed that it is possible, under ordinarymore » conditions, to observe the inelastically scattered neutrons and hence to obtain information about the energy level scheme of the atomic spin in the cry stal. (auth)« less

  17. Neutron Reflectometry and Small Angle Neutron Scattering of ABC Miktoarm Terpolymer Thin-Films

    NASA Astrophysics Data System (ADS)

    Arras, Matthias M. L.; Wang, Weiyu; Mahalik, Jyoti P.; Hong, Kunlun; Sumpter, Bobby G.; Smith, Gregory S.; Chernyy, Sergey; Kim, Hyeyoung; Russell, Thomas P.

    Due to the constraint of the junction point in miktoarm terpolymers, where three chains meet, ABC miktoarm terpolymers are promising to obtain nanostructured, long-range ordered materials. We present details of the thin-film structure of ABC miktoarm terpolymers in the poly(styrene), poly(isoprene), poly(2-vinylpyridine) (PS-PI-P2VP) system, investigated by neutron reflectometry and small angle neutron scattering. To this end, we synthesized partially deuterated versions of the PS-PI-P2VP and investigated annealed samples, spin-coated to various thicknesses of the bulk repeat period. Furthermore, we investigated the structural change upon selective blending with homopolymers or fullerenes. We find that thin-film constraints on the morphology can vanish after only twice the repetition period. In addition, it is indicated that nanoparticles improve the ordering in these systems, however, this seems to be not necessarily true for homopolymer blending. This research used resources at the Spallation Neutron Source, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory.

  18. Clustering of water molecules in ultramicroporous carbon: In-situ small-angle neutron scattering

    DOE PAGES

    Bahadur, Jitendra; Contescu, Cristian I.; Rai, Durgesh K.; ...

    2016-10-19

    The adsorption of water is central to most of the applications of microporous carbon as adsorbent material. We report early kinetics of water adsorption in the microporous carbon using in-situ small-angle neutron scattering. It is observed that adsorption of water occurs via cluster formation of molecules. Interestingly, the cluster size remains constant throughout the adsorption process whereas number density of clusters increases with time. The role of surface chemistry of microporous carbon on the early kinetics of adsorption process was also investigated. Lastly, the present study provides direct experimental evidence for cluster assisted adsorption of water molecules in microporous carbonmore » (Do-Do model).« less

  19. SCATTERING OF NEUTRONS BY $alpha$-PARTICLES AT 14.1 Mev

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fasoli, U.; Zago, G.

    1963-12-01

    The angular distribution of 14.1-Mev neutrons elastically scattered by alpha particles was measured by observing the alpha recoils in a helium-filled cloud chamber. The results are in satisfactory agreement with those previously obtained by others. Inspection of the small-angle region of the measured distribution shows that phase shifts of orbital angular momentum higher than L = 1 are not negligible, although, according to the present experiment, quantitative information on D-waves turns out to be somewhat elusive. The azimuthal angular distribution agrees well with the value P = 0.02 of the neutron beam polarization, as measured by Perkins. (auth)

  20. Monte Carlo simulations of neutron-scattering instruments using McStas

    NASA Astrophysics Data System (ADS)

    Nielsen, K.; Lefmann, K.

    2000-06-01

    Monte Carlo simulations have become an essential tool for improving the performance of neutron-scattering instruments, since the level of sophistication in the design of instruments is defeating purely analytical methods. The program McStas, being developed at Risø National Laboratory, includes an extension language that makes it easy to adapt it to the particular requirements of individual instruments, and thus provides a powerful and flexible tool for constructing such simulations. McStas has been successfully applied in such areas as neutron guide design, flux optimization, non-Gaussian resolution functions of triple-axis spectrometers, and time-focusing in time-of-flight instruments.

  1. The γ-ray angular distribution in fast neutron inelastic scattering from iron

    NASA Astrophysics Data System (ADS)

    Beyer, Roland; Dietz, Mirco; Bemmerer, Daniel; Junghans, Arnd R.; Kögler, Toni; Massarczyk, Ralph; Müller, Stefan; Schmidt, Konrad; Schwengner, Ronald; Szücs, Tamás; Takács, Marcell P.; Wagner, Andreas

    2018-04-01

    The angular distribution of γ-rays emitted after inelastic scattering of fast neutrons from iron was determined at the n ELBE neutron time-of-flight facility. An iron sample of natural isotopic composition was irradiated by a continuous photo-neutron spectrum in the energy range from about 0.1 up to 10 MeV. The de-excitation γ-rays of the four lowest excited states of 56Fe and the first excited state of 54Fe were detected using a setup of five high-purity germanium (HPGe) detectors and five LaBr3 scintillation detectors positioned around the sample at 30°, 55°, 90°, 125° and 150° with respect to the incoming neutron beam. The resulting angular distributions were fitted by Legendre polynomials up to 4th order and the angular distribution coefficients a2 and a4 were extracted. The angular distribution coefficients of three transitions in 56Fe are reported here for the first time. The results are applied to a previous measurement of the inelastic scattering cross section determined using a single HPGe detector positioned at 125°. Using the updated γ-ray angular distribution, the previous cross section results are in good agreement with reference data.

  2. Probing the anisotropic vortex lattice in the Fe-based superconductor KFe2As2 using small angle neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debeer-Schmitt, Lisa M; Dewhurst, Charles; Kikuchi, Hiroko

    Using small angle neutron scattering, the anisotropy of the magnetic vortex lattice (VL), in the heavily hole-doped pnictide superconductor, KFe2As2, was studied. Well-ordered VL scattering patterns were measured with elds applied in directions between B k c and the basal plane, rotating either towards [100] or [110]. Slightly distorted hexagonal patterns were observed when B k c. However, the scattering pattern distorted strongly as the eld was rotated away from the c- axis. At low eld, the arrangement of vortices is strongly aected by the anisotropy of penetration depth in the plane perpendicular to the eld. By tting the distortionmore » with the anisotropic London model, we obtained an estimate of 3:4 for the anisotropy factor, , between the in-plane and c-axis penetration depths at the lowest temperature studied. The results further reveal VL phase transitions as a function of eld direction. We discuss these transitions using the "Hairy Ball" theorem.« less

  3. Electron scattering from high-momentum neutrons in deuterium

    NASA Astrophysics Data System (ADS)

    Klimenko, A. V.; Kuhn, S. E.; Butuceanu, C.; Egiyan, K. S.; Griffioen, K. A.; Adams, G.; Ambrozewicz, P.; Anghinolfi, M.; Asryan, G.; Avakian, H.; Bagdasaryan, H.; Baillie, N.; Ball, J. P.; Baltzell, N. A.; Barrow, S.; Batourine, V.; Battaglieri, M.; Bedlinskiy, I.; Bektasoglu, M.; Bellis, M.; Benmouna, N.; Biselli, A. S.; Bouchigny, S.; Boiarinov, S.; Bradford, R.; Branford, D.; Brooks, W. K.; Bültmann, S.; Burkert, V. D.; Calarco, J. R.; Careccia, S. L.; Carman, D. S.; Cazes, A.; Chen, S.; Cole, P. L.; Coltharp, P.; Cords, D.; Corvisiero, P.; Crabb, D.; Cummings, J. P.; Dashyan, N. B.; Devita, R.; Sanctis, E. De; Degtyarenko, P. V.; Denizli, H.; Dennis, L.; Dharmawardane, K. V.; Djalali, C.; Dodge, G. E.; Donnelly, J.; Doughty, D.; Dugger, M.; Dytman, S.; Dzyubak, O. P.; Egiyan, H.; Elouadrhiri, L.; Eugenio, P.; Fatemi, R.; Fedotov, G.; Fersch, R. G.; Feuerbach, R. J.; Funsten, H.; Garçon, M.; Gavalian, G.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gonenc, A.; Gordon, C. I. O.; Gothe, R. W.; Guidal, M.; Guillo, M.; Guler, N.; Guo, L.; Gyurjyan, V.; Hadjidakis, C.; Hakobyan, R. S.; Hardie, J.; Hersman, F. W.; Hicks, K.; Hleiqawi, I.; Holtrop, M.; Hyde-Wright, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Ito, M. M.; Jenkins, D.; Jo, H. S.; Joo, K.; Juengst, H. G.; Kellie, J. D.; Khandaker, M.; Kim, W.; Klein, A.; Klein, F. J.; Kossov, M.; Kramer, L. H.; Kubarovsky, V.; Kuhn, J.; Kuleshov, S. V.; Lachniet, J.; Laget, J. M.; Langheinrich, J.; Lawrence, D.; Li, Ji; Livingston, K.; McAleer, S.; McKinnon, B.; McNabb, J. W. C.; Mecking, B. A.; Mehrabyan, S.; Melone, J. J.; Mestayer, M. D.; Meyer, C. A.; Mibe, T.; Mikhailov, K.; Minehart, R.; Mirazita, M.; Miskimen, R.; Mokeev, V.; Morand, L.; Morrow, S. A.; Mueller, J.; Mutchler, G. S.; Nadel-Turonski, P.; Napolitano, J.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Niczyporuk, B. B.; Niyazov, R. A.; Nozar, M.; O'Rielly, G. V.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Paterson, C.; Pierce, J.; Pivnyuk, N.; Pocanic, D.; Pogorelko, O.; Pozdniakov, S.; Preedom, B. M.; Price, J. W.; Prok, Y.; Protopopescu, D.; Raue, B. A.; Riccardi, G.; Ricco, G.; Ripani, M.; Ritchie, B. G.; Ronchetti, F.; Rosner, G.; Rossi, P.; Sabatié, F.; Salgado, C.; Santoro, J. P.; Sapunenko, V.; Schumacher, R. A.; Serov, V. S.; Sharabian, Y. G.; Skabelin, A. V.; Smith, E. S.; Smith, L. C.; Sober, D. I.; Stavinsky, A.; Stepanyan, S. S.; Stepanyan, S.; Stokes, B. E.; Stoler, P.; Strauch, S.; Taiuti, M.; Tedeschi, D. J.; Thoma, U.; Tkabladze, A.; Tkachenko, S.; Todor, L.; Tur, C.; Ungaro, M.; Vineyard, M. F.; Vlassov, A. V.; Weinstein, L. B.; Weygand, D. P.; Williams, M.; Wolin, E.; Wood, M. H.; Yegneswaran, A.; Zana, L.; Zhang, J.; Zhao, B.

    2006-03-01

    We report results from an experiment measuring the semiinclusive reaction H2(e,e'ps) in which the proton ps is moving at a large angle relative to the momentum transfer. If we assume that the proton was a spectator to the reaction taking place on the neutron in deuterium, the initial state of that neutron can be inferred. This method, known as spectator tagging, can be used to study electron scattering from high-momentum (off-shell) neutrons in deuterium. The data were taken with a 5.765 GeV electron beam on a deuterium target in Jefferson Laboratory's Hall B, using the CEBAF large acceptance spectrometer. A reduced cross section was extracted for different values of final state missing mass W*, backward proton momentum p→s, and momentum transfer Q2. The data are compared to a simple plane wave impulse approximation (PWIA) spectator model. A strong enhancement in the data observed at transverse kinematics is not reproduced by the PWIA model. This enhancement can likely be associated with the contribution of final state interactions (FSI) that were not incorporated into the model. Within the framework of the simple spectator model, a “bound neutron structure function” F2neff was extracted as a function of W* and the scaling variable x* at extreme backward kinematics, where the effects of FSI appear to be smaller. For ps>0.4GeV/c, where the neutron is far off-shell, the model overestimates the value of F2neff in the region of x* between 0.25 and 0.6. A dependence of the bound neutron structure function on the neutron's “off-shell-ness” is one possible effect that can cause the observed deviation.

  4. Flow-through compression cell for small-angle and ultra-small-angle neutron scattering measurements

    NASA Astrophysics Data System (ADS)

    Hjelm, Rex P.; Taylor, Mark A.; Frash, Luke P.; Hawley, Marilyn E.; Ding, Mei; Xu, Hongwu; Barker, John; Olds, Daniel; Heath, Jason; Dewers, Thomas

    2018-05-01

    In situ measurements of geological materials under compression and with hydrostatic fluid pressure are important in understanding their behavior under field conditions, which in turn provides critical information for application-driven research. In particular, understanding the role of nano- to micro-scale porosity in the subsurface liquid and gas flow is critical for the high-fidelity characterization of the transport and more efficient extraction of the associated energy resources. In other applications, where parts are produced by the consolidation of powders by compression, the resulting porosity and crystallite orientation (texture) may affect its in-use characteristics. Small-angle neutron scattering (SANS) and ultra SANS are ideal probes for characterization of these porous structures over the nano to micro length scales. Here we show the design, realization, and performance of a novel neutron scattering sample environment, a specially designed compression cell, which provides compressive stress and hydrostatic pressures with effective stress up to 60 MPa, using the neutron beam to probe the effects of stress vectors parallel to the neutron beam. We demonstrate that the neutron optics is suitable for the experimental objectives and that the system is highly stable to the stress and pressure conditions of the measurements.

  5. Pretransitional diffuse neutron scattering in the mixed perovskite relaxor K1-xLixTaO3

    NASA Astrophysics Data System (ADS)

    Yong, Grace; Toulouse, Jean; Erwin, Ross; Shapiro, Stephen M.; Hennion, Bernard

    2000-12-01

    Several previous studies of K1-xLixTaO3 (KLT) have revealed the presence, above the structural transition, of polar nanoregions. Recently, these have been shown to play an essential role in the relaxor behavior of KLT. In order to characterize these regions, we have performed a neutron-scattering study of KLT crystals with different lithium concentrations, both above and below the critical concentration. This study reveals the existence of diffuse scattering that appears upon formation of these regions. The rodlike distribution of the diffuse scattering along cubic directions indicates that the regions form in the shape of discs in the various cubic planes. From the width of the diffuse scattering we extract values for a correlation length or size of the regions as a function of temperature. Finally, on the basis of the reciprocal lattice points around which the diffuse scattering is most intense, we conclude that the regions have tetragonal symmetry. The large increase in Bragg intensities at the first-order transition suggests that the polar regions freeze to form large structural domains and the transition is triggered by the percolation of strain fields through the crystals.

  6. Measurement of the Neutron Radius of 208Pb Through Parity-Violation in Electron Scattering

    DOE PAGES

    Abrahamyan, Sergey; Albataineh, Hisham; Aniol, Konrad; ...

    2012-03-15

    We report the first measurement of the parity-violating asymmetry A PV in the elastic scattering of polarized electrons from 208Pb. A PV is sensitive to the radius of the neutron distribution (R n). The result A PV = 0.656 ± 0.060 (stat) ± 0.013 (syst) corresponds to a difference between the radii of the neutron and proton distributions R n-R p = 0.33 -0.18 +0.16 fm and provides the first electroweak observation of the neutron skin which is expected in a heavy, neutron-rich nucleus.

  7. Measurement of the neutron radius of 208Pb through parity violation in electron scattering.

    PubMed

    Abrahamyan, S; Ahmed, Z; Albataineh, H; Aniol, K; Armstrong, D S; Armstrong, W; Averett, T; Babineau, B; Barbieri, A; Bellini, V; Beminiwattha, R; Benesch, J; Benmokhtar, F; Bielarski, T; Boeglin, W; Camsonne, A; Canan, M; Carter, P; Cates, G D; Chen, C; Chen, J-P; Hen, O; Cusanno, F; Dalton, M M; De Leo, R; de Jager, K; Deconinck, W; Decowski, P; Deng, X; Deur, A; Dutta, D; Etile, A; Flay, D; Franklin, G B; Friend, M; Frullani, S; Fuchey, E; Garibaldi, F; Gasser, E; Gilman, R; Giusa, A; Glamazdin, A; Gomez, J; Grames, J; Gu, C; Hansen, O; Hansknecht, J; Higinbotham, D W; Holmes, R S; Holmstrom, T; Horowitz, C J; Hoskins, J; Huang, J; Hyde, C E; Itard, F; Jen, C-M; Jensen, E; Jin, G; Johnston, S; Kelleher, A; Kliakhandler, K; King, P M; Kowalski, S; Kumar, K S; Leacock, J; Leckey, J; Lee, J H; LeRose, J J; Lindgren, R; Liyanage, N; Lubinsky, N; Mammei, J; Mammoliti, F; Margaziotis, D J; Markowitz, P; McCreary, A; McNulty, D; Mercado, L; Meziani, Z-E; Michaels, R W; Mihovilovic, M; Muangma, N; Muñoz-Camacho, C; Nanda, S; Nelyubin, V; Nuruzzaman, N; Oh, Y; Palmer, A; Parno, D; Paschke, K D; Phillips, S K; Poelker, B; Pomatsalyuk, R; Posik, M; Puckett, A J R; Quinn, B; Rakhman, A; Reimer, P E; Riordan, S; Rogan, P; Ron, G; Russo, G; Saenboonruang, K; Saha, A; Sawatzky, B; Shahinyan, A; Silwal, R; Sirca, S; Slifer, K; Solvignon, P; Souder, P A; Sperduto, M L; Subedi, R; Suleiman, R; Sulkosky, V; Sutera, C M; Tobias, W A; Troth, W; Urciuoli, G M; Waidyawansa, B; Wang, D; Wexler, J; Wilson, R; Wojtsekhowski, B; Yan, X; Yao, H; Ye, Y; Ye, Z; Yim, V; Zana, L; Zhan, X; Zhang, J; Zhang, Y; Zheng, X; Zhu, P

    2012-03-16

    We report the first measurement of the parity-violating asymmetry A(PV) in the elastic scattering of polarized electrons from 208Pb. A(PV) is sensitive to the radius of the neutron distribution (R(n)). The result A(PV)=0.656±0.060(stat)±0.014(syst) ppm corresponds to a difference between the radii of the neutron and proton distributions R(n)-R(p)=0.33(-0.18)(+0.16) fm and provides the first electroweak observation of the neutron skin which is expected in a heavy, neutron-rich nucleus.

  8. Strain heterogeneity in sheared colloids revealed by neutron scattering

    DOE PAGES

    Chen, Kevin; Wu, Bin; He, Lilin; ...

    2018-02-07

    Recent computational and theoretical studies have shown that the deformation of colloidal suspensions under a steady shear is highly heterogeneous at the particle level and demonstrate a critical influence on the macroscopic deformation behavior. Despite its relevance to a wide variety of industrial applications of colloidal suspensions, scattering studies focusing on addressing the heterogeneity of the non-equilibrium colloidal structure are scarce thus far. Here in this paper, we report the first experimental result using small-angle neutron scattering. From the evolution of strain heterogeneity, we conclude that the shear-induced deformation transforms from nearly affine behavior at low shear rates, to plasticmore » rearrangements when the shear rate is high.« less

  9. Magnetic small-angle neutron scattering of bulk ferromagnets.

    PubMed

    Michels, Andreas

    2014-09-24

    We summarize recent theoretical and experimental work in the field of magnetic small-angle neutron scattering (SANS) of bulk ferromagnets. The response of the magnetization to spatially inhomogeneous magnetic anisotropy and magnetostatic stray fields is computed using linearized micromagnetic theory, and the ensuing spin-misalignment SANS is deduced. Analysis of experimental magnetic-field-dependent SANS data of various nanocrystalline ferromagnets corroborates the usefulness of the approach, which provides important quantitative information on the magnetic-interaction parameters such as the exchange-stiffness constant, the mean magnetic anisotropy field, and the mean magnetostatic field due to jumps ΔM of the magnetization at internal interfaces. Besides the value of the applied magnetic field, it turns out to be the ratio of the magnetic anisotropy field Hp to ΔM, which determines the properties of the magnetic SANS cross-section of bulk ferromagnets; specifically, the angular anisotropy on a two-dimensional detector, the asymptotic power-law exponent, and the characteristic decay length of spin-misalignment fluctuations. For the two most often employed scattering geometries where the externally applied magnetic field H0 is either perpendicular or parallel to the wave vector k0 of the incoming neutron beam, we provide a compilation of the various unpolarized, half-polarized (SANSPOL), and uniaxial fully-polarized (POLARIS) SANS cross-sections of magnetic materials.

  10. Bending moduli of microemulsions; comparison of results from small angle neutron scattering and neutron spin-echo spectroscopy

    NASA Astrophysics Data System (ADS)

    Monkenbusch, M.; Holderer, O.; Frielinghaus, H.; Byelov, D.; Allgaier, J.; Richter, D.

    2005-08-01

    The properties of bicontinuous microemulsions, consisting of water, oil and a surfactant, depend to a large extent on the bending moduli of the surfactant containing oil-water interface. In systems with CiEj as surfactant these moduli can be modified by the addition of diblock copolymers (boosting effect) and homopolymers (inverse boosting effect) or a combination of both. The influence of the addition of homopolymers (PEPX and PEOX, X = 5 or 10 kg/mol molecular weight) on the structure, bending modulus and dynamics of the surfactant layer is studied with small angle neutron scattering (SANS) and neutron spin-echo spectroscopy (NSE). Besides providing information on the microemulsion structure, neutron scattering is a microscopic probe that can be used to measure the local bending modulus κ. The polymer addition gives access to a homologous series of microemulsions with changing κ values. We relate the results obtained by analysis of SANS to those from NSE experiments. Comparison of the bending moduli obtained sheds light on the different renormalization length scales for NSE and SANS. Comparison of SANS and NSE derived κ values yields a consistent picture if renormalization properties are observed. Finally a ready to use method for converting NSE data into reliable values for κ is presented.

  11. Small-angle neutron scattering study of a monoclonal antibody using free-energy constraints.

    PubMed

    Clark, Nicholas J; Zhang, Hailiang; Krueger, Susan; Lee, Hyo Jin; Ketchem, Randal R; Kerwin, Bruce; Kanapuram, Sekhar R; Treuheit, Michael J; McAuley, Arnold; Curtis, Joseph E

    2013-11-14

    Monoclonal antibodies (mAbs) contain hinge-like regions that enable structural flexibility of globular domains that have a direct effect on biological function. A subclass of mAbs, IgG2, have several interchain disulfide bonds in the hinge region that could potentially limit structural flexibility of the globular domains and affect the overall configuration space available to the mAb. We have characterized human IgG2 mAb in solution via small-angle neutron scattering (SANS) and interpreted the scattering data using atomistic models. Molecular Monte Carlo combined with molecular dynamics simulations of a model mAb indicate that a wide range of structural configurations are plausible, spanning radius of gyration values from ∼39 to ∼55 Å. Structural ensembles and representative single structure solutions were derived by comparison of theoretical SANS profiles of mAb models to experimental SANS data. Additionally, molecular mechanical and solvation free-energy calculations were carried out on the ensemble of best-fitting mAb structures. The results of this study indicate that low-resolution techniques like small-angle scattering combined with atomistic molecular simulations with free-energy analysis may be helpful to determine the types of intramolecular interactions that influence function and could lead to deleterious changes to mAb structure. This methodology will be useful to analyze small-angle scattering data of many macromolecular systems.

  12. Direct URCA process in neutron stars

    NASA Technical Reports Server (NTRS)

    Lattimer, James M.; Prakash, Madappa; Pethick, C. J.; Haensel, Pawel

    1991-01-01

    It is shown that the direct URCA process can occur in neutron stars if the proton concentration exceeds some critical value in the range 11-15 percent. The proton concentration, which is determined by the poorly known symmetry energy of matter above nuclear density, exceeds the critical value in many current calculations. If it occurs, the direct URCA process enhances neutrino emission and neutron star cooling rates by a large factor compared to any process considered previously.

  13. New opportunities in quasi elastic neutron scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Mezei, F.; Russina, M.

    2001-07-01

    The high energy resolution usually required in quasi elastic neutron scattering (QENS) spectroscopy is commonly achieved by the use of cold neutrons. This is one of the important research areas where the majority of current work is done on instruments on continuous reactor sources. One particular reason for this is the capability of continuous source time-of-flight spectrometers to use instrumental parameters optimally adapted for best data collection efficiency in each experiment. These parameters include the pulse repetition rate and the length of the pulses to achieve optimal balance between resolution and intensity. In addition, the disc chopper systems used provide perfect symmetrical line shapes with no tails and low background. Recent development of a set of novel techniques enhance the efficiency of cold neutron spectroscopy on existing and future spallation sources in a dramatic fashion. These techniques involve the use of extended pulse length, high intensity coupled moderators, disc chopper systems and advanced neutron optical beam delivery, and they will enable Lujan center at Los Alamos to surpass the best existing reactor instruments in time-of-flight QENS work by more than on order of magnitude in terms of beam flux on the sample. Other applications of the same techniques will allow us to combine advantages of backscattering spectroscopy on continuous and pulsed sources in order to deliver μeV resolution in a very broad energy transfer range.

  14. Comparison of the thermal neutron scattering treatment in MCNP6 and GEANT4 codes

    NASA Astrophysics Data System (ADS)

    Tran, H. N.; Marchix, A.; Letourneau, A.; Darpentigny, J.; Menelle, A.; Ott, F.; Schwindling, J.; Chauvin, N.

    2018-06-01

    To ensure the reliability of simulation tools, verification and comparison should be made regularly. This paper describes the work performed in order to compare the neutron transport treatment in MCNP6.1 and GEANT4-10.3 in the thermal energy range. This work focuses on the thermal neutron scattering processes for several potential materials which would be involved in the neutron source designs of Compact Accelerator-based Neutrons Sources (CANS), such as beryllium metal, beryllium oxide, polyethylene, graphite, para-hydrogen, light water, heavy water, aluminium and iron. Both thermal scattering law and free gas model, coming from the evaluated data library ENDF/B-VII, were considered. It was observed that the GEANT4.10.03-patch2 version was not able to account properly the coherent elastic process occurring in crystal lattice. This bug is treated in this work and it should be included in the next release of the code. Cross section sampling and integral tests have been performed for both simulation codes showing a fair agreement between the two codes for most of the materials except for iron and aluminium.

  15. Silicon Photomultipliers for Compact Neutron Scatter Cameras

    NASA Astrophysics Data System (ADS)

    Ruch, Marc L.

    The ability to locate and identify special nuclear material (SNM) is critical for treaty verification and emergency response applications. SNM is used as the nuclear explosive in a nuclear weapon. This material emits neutrons, either spontaneously or when interrogated. The ability to form an image of the neutron source can be used for characterization and/or to confirm that the item is a weapon by determining whether its shape is consistent with that of a weapon. Additionally, treaty verification and emergency response applications might not be conducive to non-portable instruments. In future weapons treaties, for example, it is unlikely that host countries will make great efforts to facilitate large, bulky, and/or fragile inspection equipment. Furthermore, inspectors and especially emergency responders may need to access locations not easily approachable by vehicles. Therefore, there is a considerable need for a compact, human-portable neutron imaging system. Of the currently available neutron imaging technologies, only neutron scatter cameras (NSCs) can be made truly compact because aperture-based imagers, and time-encoded imagers, rely on large amounts of materials to modulate the neutron signal. NSCs, in contrast, can be made very small because most of the volume of the imager can be filled with active detector material. Also, unlike other neutron imaging technologies, NSCs have the inherent ability to act as neutron spectrometers which gives them an additional means of identifying a neutron source. Until recently, NSCs have relied on photomultiplier tubes (PMT) readouts, which are bulky and fragile, require high voltage, and are very sensitive to magnetic fields. Silicon photomultipliers (SiPMs) do not suffer from these drawbacks and are comparable to PMTs in many respects such as gain, and cost with better time resolution. Historically, SiPMs have been too noisy for these applications; however, recent advancements have greatly reduced this issue and they have

  16. Interference effect between neutron direct and resonance capture reactions for neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Minato, Futoshi; Fukui, Tokuro

    2017-11-01

    Interference effect of neutron capture cross section between the compound and direct processes is investigated. The compound process is calculated by resonance parameters and the direct process by the potential model. The interference effect is tested for neutron-rich 82Ge and 134Sn nuclei relevant to r-process and light nucleus 13C which is neutron poison in the s-process and produces long-lived radioactive nucleus 14C (T1/2 = 5700 y). The interference effects in those nuclei are significant around resonances, and low energy region if s-wave neutron direct capture is possible. Maxwellian averaged cross sections at kT = 30 and 300 keV are also calculated, and the interference effect changes the Maxwellian averaged capture cross section largely depending on resonance position.

  17. Nanoscale structure in AgSbTe2 determined by diffuse elastic neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Specht, Eliot D; Ma, Jie; Delaire, Olivier A

    2015-01-01

    Diffuse elastic neutron scattering measurements confirm that AgSbTe2 has a hierarchical structure, with defects on length scales from nanometers to microns. While scattering from mesoscale structure is consistent with previously-proposed structures in which Ag and Sb order on a NaCl lattice, more diffuse scattering from nanoscale structure suggests a structural rearrangement in which hexagonal layers form a combination of (ABC), (ABA), and (AAB) stacking sequences. The AgCrSe2 structure is the best-fitting model for the local atomic arrangements.

  18. The effects of nuclear data library processing on Geant4 and MCNP simulations of the thermal neutron scattering law

    NASA Astrophysics Data System (ADS)

    Hartling, K.; Ciungu, B.; Li, G.; Bentoumi, G.; Sur, B.

    2018-05-01

    Monte Carlo codes such as MCNP and Geant4 rely on a combination of physics models and evaluated nuclear data files (ENDF) to simulate the transport of neutrons through various materials and geometries. The grid representation used to represent the final-state scattering energies and angles associated with neutron scattering interactions can significantly affect the predictions of these codes. In particular, the default thermal scattering libraries used by MCNP6.1 and Geant4.10.3 do not accurately reproduce the ENDF/B-VII.1 model in simulations of the double-differential cross section for thermal neutrons interacting with hydrogen nuclei in a thin layer of water. However, agreement between model and simulation can be achieved within the statistical error by re-processing ENDF/B-VII.I thermal scattering libraries with the NJOY code. The structure of the thermal scattering libraries and sampling algorithms in MCNP and Geant4 are also reviewed.

  19. Assessment of beryllium and molybdenum nuclear data files with the RPI neutron scattering system in the energy region from 0.5 to 20 MeV

    NASA Astrophysics Data System (ADS)

    Daskalakis, Adam; Blain, Ezekiel; Leinweber, Gregory; Rapp, Michael; Barry, Devin; Block, Robert; Danon, Yaron

    2017-09-01

    A series of neutron scattering benchmark measurements were performed on beryllium and molybdenum with the Rensselaer Polytechnic Institute's Neutron Scattering System. The pulsed neutron source was produced by the Rensselaer Polytechnic Institute's Linear Accelerator and a well collimated neutron beam was incident onto the samples located at a distance of 30.07 m. Neutrons that scattered from the sample were measured using the time-of-flight by eight EJ-301 liquid scintillator detectors positioned 0.5 m from the sample of interest. A total of eight experiments were performed with two sample thicknesses each, measured by detectors placed at two sets of angles. All data were processed using pulse shape analysis that separated the neutron and gamma ray events and included a gamma misclassification correction to account for erroneously identified gamma rays. A detailed model of the neutron scattering system simulated each experiment with several current evaluated nuclear data libraries and their predecessors. Results for each evaluation were compared to the experimental data using a figure-of-merit. The neutron scattering system has been used as a means to quantify a library's performance.

  20. Characterization of plastic and boron carbide additive manufactured neutron collimators

    NASA Astrophysics Data System (ADS)

    Stone, M. B.; Siddel, D. H.; Elliott, A. M.; Anderson, D.; Abernathy, D. L.

    2017-12-01

    Additive manufacturing techniques allow for the production of materials with complicated geometries with reduced costs and production time over traditional methods. We have applied this technique to the production of neutron collimators for use in thermal and cold neutron scattering instrumentation directly out of boron carbide. We discuss the design and generation of these collimators. We also provide measurements at neutron scattering beamlines which serve to characterize the performance of these collimators. Additive manufacturing of parts using neutron absorbing material may also find applications in radiography and neutron moderation.

  1. PASTIS2 and CROCODILE: XYZ-wide angle polarisation analysis for thermal neutrons

    NASA Astrophysics Data System (ADS)

    Enderle, Mechthild; Jullien, David; Petoukhov, Alexander; Mouveau, Pascal; Andersen, Ken; Courtois, Pierre

    2017-06-01

    We present a wide-angle device for inelastic neutron scattering with XYZ-polarisation analysis (PASTIS2). PASTIS2 employs a banana-shaped Si-walled 3He-filter for the polarisation analysis and allows pillar-free neutron scattering for horizontal scattering angles 0-100◦. The guide field direction at the sample can be chosen vertical or with 45◦ incremental steps in the horizontal scattering plane. When PASTIS2 is implemented on a polarised neutron beam, the incident neutron spin can be flipped with an easy-to-optimise broad-band adiabatic resonant flipper (CROCODILE) independent of the guide field direction at the sample position. We have tested the performance of this new device on the polarised thermal triple-axis spectrometer IN20 at the Institut Laue-Langevin, equipped with Heusler monochromator and the FlatCone multi-analyser, and discuss its potential for future instruments.

  2. Proton elastic scattering from tin isotopes at 295 MeV and systematic change of neutron density distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terashima, S.; Sakaguchi, H.; Takeda, H.

    Cross sections and analyzing powers for proton elastic scattering from {sup 116,118,120,122,124}Sn at 295 MeV have been measured for a momentum transfer of up to about 3.5 fm{sup -1} to deduce systematic changes of the neutron density distribution. We tuned the relativistic Love-Franey interaction to explain the proton elastic scattering of a nucleus whose density distribution is well known. Then, we applied this interaction to deduce the neutron density distributions of tin isotopes. The result of our analysis shows the clear systematic behavior of a gradual increase in the neutron skin thickness of tin isotopes with mass number.

  3. High-Accuracy Analysis of Compton Scattering in Chiral EFT: Proton and Neutron Polarisabilities

    NASA Astrophysics Data System (ADS)

    Griesshammer, Harald W.; Phillips, Daniel R.; McGovern, Judith A.

    2013-10-01

    Compton scattering from protons and neutrons provides important insight into the structure of the nucleon. A new extraction of the static electric and magnetic dipole polarisabilities αE 1 and βM 1 of the proton and neutron from all published elastic data below 300 MeV in Chiral Effective Field Theory shows that within the statistics-dominated errors, the proton and neutron polarisabilities are identical, i.e. no iso-spin breaking effects of the pion cloud are seen. Particular attention is paid to the precision and accuracy of each data set, and to an estimate of residual theoretical uncertainties. ChiEFT is ideal for that purpose since it provides a model-independent estimate of higher-order corrections and encodes the correct low-energy dynamics of QCD, including, for few-nucleon systems used to extract neutron polarisabilities, consistent nuclear currents, rescattering effects and wave functions. It therefore automatically respects the low-energy theorems for photon-nucleus scattering. The Δ (1232) as active degree of freedom is essential to realise the full power of the world's Compton data.Its parameters are constrained in the resonance region. A brief outlook is provided on what kind of future experiments can improve the database. Supported in part by UK STFC, DOE, NSF, and the Sino-German CRC 110.

  4. Polarized deep inelastic scattering off the neutron from gauge/string duality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao Jianhua; Mou Zonggang; Department of Physics, Shandong University, Jinan, Shandong, 250100

    2010-05-01

    We investigate deep inelastic scattering off the polarized 'neutron' using gauge/string duality. The 'neutron' corresponds to a supergravity mode of the neutral dilatino. Through introducing the Pauli interaction term into the action in AdS{sub 5} space, we calculate the polarized deep inelastic structure functions of the 'neutron' in supergravity approximation at large t' Hooft coupling {lambda} and finite x with {lambda}{sup -1/2}<neutron' are power suppressed at the same order as the ones of themore » ''proton.'' Especially, we find the Burkhardt-Cottingham-like sum rule, which is satisfied in the work by Gao and Xiao, is broken due to the Pauli interaction term. We also illustrate how such a Pauli interaction term can arise naturally from higher dimensional fermion-graviton coupling through the usual Kaluza-Klein reduction.« less

  5. Direct Observation of Quark-Hadron Duality in the Free Neutron {ital F}{sub 2} Structure Function

    DOE PAGES

    Niculescu, I.; Niculescu, G.; Melnitchouk, W.; ...

    2015-05-21

    Using the recently published data from the BONuS(Barely Off-shell Nucleon Structure) experiment at Jefferson Lab, which utilized a spectator tagging technique to extract the inclusive electron-free neutron scattering cross section, we obtain the first direct observation of quark-hadron duality in the neutron F-2 structure function. The data are used to reconstruct the lowest few (N = 2, 4, and 6) moments of F-2 in the three prominent nucleon resonance regions, as well as the moments integrated over the entire resonance region. Comparison with moments computed from global parametrizations of parton distribution functions suggest that quark-hadron duality holds locally for themore » neutron in the second and third resonance regions down to Q(2) approximate to 1 GeV2, with violations possibly up to 20% observed in the first resonance region.« less

  6. Effects of Pressure on Stability of Biomolecules in Solutions Studied by Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Bellissent-Funel, Marie-Claire-; Appavou, Marie-Sousai; Gibrat, Gabriel

    Studies of the pressure dependence on protein structure and dynamics contribute not only to the basic knowledge of biological molecules but have also a considerable relevance in full technology, like in food sterilization and pharmacy. Conformational changes induced by pressure as well as the effects on the protein stability have been mostly studied by optical techniques (optical absorption, fluorescence, phosphorescence), and by NMR. Most optical techniques used so far give information related to the local nature of the used probe (fluorescent or phosphorescent tryptophan). Small angle neutron scattering and quasi-elastic neutron scattering provide essential complementary information to the optical data, giving quantitative data on change of conformation of soluble globular proteins such as bovine pancreatic trypsin inhibitor (BPTI) and on the mobility of protons belonging to the protein surface residues.

  7. Compact turnkey focussing neutron guide system for inelastic scattering investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandl, G., E-mail: g.brandl@fz-juelich.de; Georgii, R.; Dunsiger, S. R.

    2015-12-21

    We demonstrate the performance of a compact neutron guide module which boosts the intensity in inelastic neutron scattering experiments by approximately a factor of 40. The module consists of two housings containing truly curved elliptic focussing guide elements, positioned before and after the sample. The advantage of the module lies in the ease with which it may be reproducibly mounted on a spectrometer within a few hours, on the same timescale as conventional sample environments. It is particularly well suited for samples with a volume of a few mm{sup 3}, thus enabling the investigation of materials which to date wouldmore » have been considered prohibitively small or samples exposed to extreme environments, where there are space constraints. We benchmark the excellent performance of the module by measurements of the structural and magnetic excitations in single crystals of model systems. In particular, we report the phonon dispersion in the simple element lead. We also determine the magnon dispersion in the spinel ZnCr{sub 2}Se{sub 4} (V = 12.5 mm{sup 3}), where strong magnetic diffuse scattering at low temperatures evolves into distinct helical order.« less

  8. Protein hydration in solution: Experimental observation by x-ray and neutron scattering

    PubMed Central

    Svergun, D. I.; Richard, S.; Koch, M. H. J.; Sayers, Z.; Kuprin, S.; Zaccai, G.

    1998-01-01

    The structure of the protein–solvent interface is the subject of controversy in theoretical studies and requires direct experimental characterization. Three proteins with known atomic resolution crystal structure (lysozyme, Escherichia coli thioredoxin reductase, and protein R1 of E. coli ribonucleotide reductase) were investigated in parallel by x-ray and neutron scattering in H2O and D2O solutions. The analysis of the protein–solvent interface is based on the significantly different contrasts for the protein and for the hydration shell. The results point to the existence of a first hydration shell with an average density ≈10% larger than that of the bulk solvent in the conditions studied. Comparisons with the results of other studies suggest that this may be a general property of aqueous interfaces. PMID:9482874

  9. Inter-atomic force constants of BaF{sub 2} by diffuse neutron scattering measurement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakuma, Takashi, E-mail: sakuma@mx.ibaraki.ac.jp; Makhsun,; Sakai, Ryutaro

    2015-04-16

    Diffuse neutron scattering measurement on BaF{sub 2} crystals was performed at 10 K and 295 K. Oscillatory form in the diffuse scattering intensity of BaF{sub 2} was observed at 295 K. The correlation effects among thermal displacements of F-F atoms were obtained from the analysis of oscillatory diffuse scattering intensity. The force constants among neighboring atoms in BaF{sub 2} were determined and compared to those in ionic crystals and semiconductors.

  10. SCATTERING OF SLOW NEUTRONS FROM PROPANE GAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Strong, K.A.; Marshall, G.D.; Brugger, R.M.

    1962-02-01

    Measurements of the partial differential neutron scattering cross sections for room-temperature propane gas are reported. These measurements were made at incident energies of 0.0l01, 0.0254, 0.0736, and 0.102 ev at seven scattering angles between 16.3 and 84.7 deg using the Materials Testing Reactor phased chopper velocity selector. The data are convented to the scattering-law presentation and compared with three theoretical calculations: The ideal gas, using an effective mass obtained from an average of the mass tensors for the three types of H atoms in propane, gives poor agreement. The Krieger-Nelkin approximation, which includes the effect of zero-point vibrations, gives limitedmore » agreement for energy transfer less than 0.5 k/sub b/T at intermediate momentum transfers. At large momentum transfers where vibrational effects become important it underestimates the cross section. A modification of the Krieger- Nelkin theory that includes the effects of single-quantum transitions from the three lowest vibratlonal states gives better agreement. The discrepancies still present at large momentum and energy transfers are attributed to an uncertainty in the methylgroup barrier height for the three lowest energy modes, to the harmonlc oscillator approximation for these modes, and to the approximate molecular orientation averaging used in the calculation. (auth)« less

  11. 3D reconstruction of carbon nanotube networks from neutron scattering experiments

    DOE PAGES

    Mahdavi, Mostafa; Baniassadi, Majid; Baghani, Mostafa; ...

    2015-09-03

    Structure reconstruction from statistical descriptors, such as scattering data obtained using x-rays or neutrons, is essential in understanding various properties of nanocomposites. Scattering based reconstruction can provide a realistic model, over various length scales, that can be used for numerical simulations. In this study, 3D reconstruction of a highly loaded carbon nanotube (CNT)-conducting polymer system based on small and ultra-small angle neutron scattering (SANS and USANS, respectively) data was performed. These light-weight and flexible materials have recently shown great promise for high-performance thermoelectric energy conversion, and their further improvement requires a thorough understanding of their structure-property relationships. The first stepmore » in achieving such understanding is to generate models that contain the hierarchy of CNT networks over nano and micron scales. The studied system is a single walled carbon nanotube (SWCNT)/poly (3,4-ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT: PSS). SANS and USANS patterns of the different samples containing 10, 30, and 50 wt% SWCNTs were measured. These curves were then utilized to calculate statistical two-point correlation functions of the nanostructure. These functions along with the geometrical information extracted from SANS data and scanning electron microscopy images were used to reconstruct a representative volume element (RVE) nanostructure. Generated RVEs can be used for simulations of various mechanical and physical properties. This work, therefore, introduces a framework for the reconstruction of 3D RVEs of high volume faction nanocomposites containing high aspect ratio fillers from scattering experiments.« less

  12. 3D reconstruction of carbon nanotube networks from neutron scattering experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahdavi, Mostafa; Baniassadi, Majid; Baghani, Mostafa

    Structure reconstruction from statistical descriptors, such as scattering data obtained using x-rays or neutrons, is essential in understanding various properties of nanocomposites. Scattering based reconstruction can provide a realistic model, over various length scales, that can be used for numerical simulations. In this study, 3D reconstruction of a highly loaded carbon nanotube (CNT)-conducting polymer system based on small and ultra-small angle neutron scattering (SANS and USANS, respectively) data was performed. These light-weight and flexible materials have recently shown great promise for high-performance thermoelectric energy conversion, and their further improvement requires a thorough understanding of their structure-property relationships. The first stepmore » in achieving such understanding is to generate models that contain the hierarchy of CNT networks over nano and micron scales. The studied system is a single walled carbon nanotube (SWCNT)/poly (3,4-ethylenedioxythiophene): poly (styrene sulfonate) (PEDOT: PSS). SANS and USANS patterns of the different samples containing 10, 30, and 50 wt% SWCNTs were measured. These curves were then utilized to calculate statistical two-point correlation functions of the nanostructure. These functions along with the geometrical information extracted from SANS data and scanning electron microscopy images were used to reconstruct a representative volume element (RVE) nanostructure. Generated RVEs can be used for simulations of various mechanical and physical properties. This work, therefore, introduces a framework for the reconstruction of 3D RVEs of high volume faction nanocomposites containing high aspect ratio fillers from scattering experiments.« less

  13. Design of a facility for the in situ measurement of catalytic reaction by neutron scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Tan, Shuai; Cheng, Yongqiang; Daemen, Luke L.; Lutterman, Daniel A.

    2018-01-01

    Catalysis is a critical enabling science for future energy needs. The next frontier of catalysis is to evolve from catalyst discovery to catalyst design, and for this next step to be realized, we must develop new techniques to better understand reaction mechanisms. To do this, we must connect catalytic reaction rates and selectivities to the kinetics, energetics, and dynamics of individual elementary steps and relate these to the structure and dynamics of the catalytic sites involved. Neutron scattering spectroscopies offer unique capabilities that are difficult or impossible to match by other techniques. The current study presents the development of a compact and portable instrumental design that enables the in situ investigation of catalytic samples by neutron scattering techniques. The developed apparatus was tested at the Spallation Neutron Source (SNS) in Oak Ridge National Laboratory and includes a gas handling panel that allows for computer hookups to control the panel externally and online measurement equipment such as coupled GC-FID/TCD (Gas Chromatography-Flame Ionization Detector/Thermal Conductivity Detector) and MS (Mass Spectrometry) to characterize offgassing while the sample is in the neutron scattering spectrometer. This system is flexible, modular, compact, and portable enabling its use for many types of gas-solid and liquid-solid reactions at the various beamlines housed at the SNS.

  14. γ production and neutron inelastic scattering cross sections for 76Ge

    NASA Astrophysics Data System (ADS)

    Rouki, C.; Domula, A. R.; Drohé, J. C.; Koning, A. J.; Plompen, A. J. M.; Zuber, K.

    2013-11-01

    The 2040.7-keV γ ray from the 69th excited state of 76Ge was investigated in the interest of Ge-based double-β-decay experiments like the Germanium Detector Array (GERDA) experiment. The predicted transition could interfere with valid 0νββ events at 2039.0 keV, creating false signals in large-volume 76Ge enriched detectors. The measurement was performed with the Gamma Array for Inelastic Neutron Scattering (GAINS) at the Geel Electron Linear Accelerator (GELINA) white neutron source, using the (n,n'γ) technique and focusing on the strongest γ rays originating from the level. Upper limits obtained for the production cross section of the 2040.7-keV γ ray showed no possible influence on GERDA data. Additional analysis of the data yielded high-resolution cross sections for the low-lying states of 76Ge and related γ rays, improving the accuracy and extending existing data for five transitions and five levels. The inelastic scattering cross section for 76Ge was determined for incident neutron energies up to 2.23 MeV, significantly increasing the energy range for which experimental data are available. Comparisons with model calculations using the talys code are presented indicating that accounting for the recently established asymmetric rotor structure should lead to an improved description of the data.

  15. Quantum correlations and Bell’s inequality violation in a Heisenberg spin dimer via neutron scattering

    NASA Astrophysics Data System (ADS)

    Cruz, C.

    The characterization of quantum information quantifiers has attracted a considerable attention of the scientific community, since they are a useful tool to verify the presence of quantum correlations in a quantum system. In this context, in the present work we show a theoretical study of some quantifiers, such as entanglement witness, entanglement of formation, Bell’s inequality violation and geometric quantum discord as a function of the diffractive properties of neutron scattering. We provide one path toward identifying the presence of quantum correlations and quantum nonlocality in a molecular magnet as a Heisenberg spin-1/2 dimer, by diffractive properties typically obtained via neutron scattering experiments.

  16. A New On-the-Fly Sampling Method for Incoherent Inelastic Thermal Neutron Scattering Data in MCNP6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlou, Andrew Theodore; Brown, Forrest B.; Ji, Wei

    2014-09-02

    At thermal energies, the scattering of neutrons in a system is complicated by the comparable velocities of the neutron and target, resulting in competing upscattering and downscattering events. The neutron wavelength is also similar in size to the target's interatomic spacing making the scattering process a quantum mechanical problem. Because of the complicated nature of scattering at low energies, the thermal data files in ACE format used in continuous-energy Monte Carlo codes are quite large { on the order of megabytes for a single temperature and material. In this paper, a new storage and sampling method is introduced that ismore » orders of magnitude less in size and is used to sample scattering parameters at any temperature on-the-fly. In addition to the reduction in storage, the need to pre-generate thermal scattering data tables at fine temperatures has been eliminated. This is advantageous for multiphysics simulations which may involve temperatures not known in advance. A new module was written for MCNP6 that bypasses the current S(α,β) table lookup in favor of the new format. The new on-the-fly sampling method was tested for graphite for two benchmark problems at ten temperatures: 1) an eigenvalue test with a fuel compact of uranium oxycarbide fuel homogenized into a graphite matrix, 2) a surface current test with a \\broomstick" problem with a monoenergetic point source. The largest eigenvalue difference was 152pcm for T= 1200K. For the temperatures and incident energies chosen for the broomstick problem, the secondary neutron spectrum showed good agreement with the traditional S(α,β) sampling method. These preliminary results show that sampling thermal scattering data on-the-fly is a viable option to eliminate both the storage burden of keeping thermal data at discrete temperatures and the need to know temperatures before simulation runtime.« less

  17. Analysis of Neutron Production in Passively Scattered Ion-Beam Therapy.

    PubMed

    Heo, Seunguk; Yoo, Seunghoon; Song, Yongkeun; Kim, Eunho; Shin, Jaeik; Han, Soorim; Jung, Wongyun; Nam, Sanghee; Lee, Rena; Lee, Kitae; Cho, Sungho

    2017-07-01

    A new treatment facility for heavy ion therapy since 2010 was constructed. In the broad beam, a range shifter, ridge filter and multi leaf collimator (MLC) for the generation of the spread-out Bragg peak is used. In this case, secondary neutrons produced by the interactions of the ion field with beam-modifying devices (e.g. double-scattering system, beam shaping collimators and range compensators) are very important for patient safety. Therefore, these components must be carefully examined in the context of secondary neutron yield and associated secondary cancer risk. In this article, Monte Carlo simulation has been carried out with the FLUktuierende KAskade particle transport code, the fluence and distribution of neutron generation and the neutron dose equivalent from the broad beam components are compared using carbon and proton beams. As a result, it is confirmed that the yield of neutron production using a carbon beam from all components of the broad beam was higher than using a proton beam. The ambient dose by neutrons per heavy ion and proton ion from the MLC surface was 0.12-0.18 and 0.0067-0.0087 pSv, respectively, which shows that heavy ions generate more neutrons than protons. However, ambient dose per treatment 2 Gy, which means physical dose during treatment by ion beam, is higher than carbon beam because proton therapy needs more beam flux to make 2-Gy prescription dose. Therefore, the neutron production from the MLC, which is closed to the patient, is a very important parameter for patient safety. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. The role of CP violating scatterings in baryogenesis—case study of the neutron portal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baldes, Iason; Bell, Nicole F.; Millar, Alexander

    Many baryogenesis scenarios invoke the charge parity (CP) violating out-of-equilibrium decay of a heavy particle in order to explain the baryon asymmetry. Such scenarios will in general also allow CP violating scatterings. We study the effect of these CP violating scatterings on the final asymmetry in a neutron portal scenario. We solve the Boltzmann equations governing the evolution of the baryon number numerically and show that the CP violating scatterings play a dominant role in a significant portion of the parameter space.

  19. The hydrogen anomaly in neutron Compton scattering: new experiments and a quantitative theoretical explanation

    NASA Astrophysics Data System (ADS)

    Karlsson, E. B.; Hartmann, O.; Chatzidimitriou-Dreismann, C. A.; Abdul-Redah, T.

    2016-08-01

    No consensus has been reached so far about the hydrogen anomaly problem in Compton scattering of neutrons, although strongly reduced H cross-sections were first reported almost 20 years ago. Over the years, this phenomenon has been observed in many different hydrogen-containing materials. Here, we use yttrium hydrides as test objects, YH2, YH3, YD2 and YD3, Y(H x D1-x )2 and Y(H x D1-x )3, for which we observe H anomalies increasing with transferred momentum q. We also observe reduced deuteron cross-sections in YD2 and YD3 and have followed those up to scattering angles of 140° corresponding to high momentum transfers. In addition to data taken using the standard Au-197 foils for neutron energy selection, the present work includes experiments with Rh-103 foils and comparisons were also made with data from different detector setups. The H and D anomalies are discussed in terms of the different models proposed for their interpretation. The ‘electron loss model’ (which assumes energy transfer to excited electrons) is contradicted by the present data, but it is shown here that exchange effects in scattering from two or more protons (or deuterons) in the presence of large zero-point vibrations, can explain quantitatively the reduction of the cross-sections as well as their q-dependence. Decoherence processes also play an essential role. In a scattering time representation, shake-up processes can be followed on the attosecond scale. The theory also shows that large anomalies can appear only when the neutron coherence lengths (determined by energy selection and detector geometry) are about the same size as the distance between the scatterers.

  20. Structural Significance of Lipid Diversity as Studied by Small Angle Neutron and X-ray Scattering

    DOE PAGES

    Kučerka, Norbert; Heberle, Frederick A.; Pan, Jianjun; ...

    2015-09-21

    In this paper, we review recent developments in the rapidly growing field of membrane biophysics, with a focus on the structural properties of single lipid bilayers determined by different scattering techniques, namely neutron and X-ray scattering. The need for accurate lipid structural properties is emphasized by the sometimes conflicting results found in the literature, even in the case of the most studied lipid bilayers. Increasingly, accurate and detailed structural models require more experimental data, such as those from contrast varied neutron scattering and X-ray scattering experiments that are jointly refined with molecular dynamics simulations. This experimental and computational approach producesmore » robust bilayer structural parameters that enable insights, for example, into the interplay between collective membrane properties and its components (e.g., hydrocarbon chain length and unsaturation, and lipid headgroup composition). Finally, from model studies such as these, one is better able to appreciate how a real biological membrane can be tuned by balancing the contributions from the lipid’s different moieties (e.g., acyl chains, headgroups, backbones, etc.).« less

  1. High-pressure/low-temperature neutron scattering of gas inclusion compounds: Progress and prospects

    PubMed Central

    Zhao, Yusheng; Xu, Hongwu; Daemen, Luke L.; Lokshin, Konstantin; Tait, Kimberly T.; Mao, Wendy L.; Luo, Junhua; Currier, Robert P.; Hickmott, Donald D.

    2007-01-01

    Alternative energy resources such as hydrogen and methane gases are becoming increasingly important for the future economy. A major challenge for using hydrogen is to develop suitable materials to store it under a variety of conditions, which requires systematic studies of the structures, stability, and kinetics of various hydrogen-storing compounds. Neutron scattering is particularly useful for these studies. We have developed high-pressure/low-temperature gas/fluid cells in conjunction with neutron diffraction and inelastic neutron scattering instruments allowing in situ and real-time examination of gas uptake/release processes. We studied the formation of methane and hydrogen clathrates, a group of inclusion compounds consisting of frameworks of hydrogen-bonded H2O molecules with gas molecules trapped inside the cages. Our results reveal that clathrate can store up to four hydrogen molecules in each of its large cages with an intermolecular H2–H2 distance of only 2.93 Å. This distance is much shorter than that in the solid/metallic hydrogen (3.78 Å), suggesting a strong densification effect of the clathrate framework on the enclosed hydrogen molecules. The framework-pressurizing effect is striking and may exist in other inclusion compounds such as metal-organic frameworks (MOFs). Owing to the enormous variety and flexibility of their frameworks, inclusion compounds may offer superior properties for storage of hydrogen and/or hydrogen-rich molecules, relative to other types of compounds. We have investigated the hydrogen storage properties of two MOFs, Cu3[Co(CN)6]2 and Cu3(BTC)2 (BTC = benzenetricarboxylate), and our preliminary results demonstrate that the developed neutron-scattering techniques are equally well suited for studying MOFs and other inclusion compounds. PMID:17389387

  2. Ultracold-neutron production and up-scattering in superfluid helium between 1.1 K and 2.4 K

    NASA Astrophysics Data System (ADS)

    Leung, K. K. H.; Ivanov, S.; Piegsa, F. M.; Simson, M.; Zimmer, O.

    2016-02-01

    Ultracold neutrons (UCNs) were produced in superfluid helium using the PF1B cold-neutron beam facility at the Institut Laue-Langevin. A 4-liter beryllium-coated converter volume with a mechanical valve and windowless stainless-steel extraction system were used to accumulate and guide UCNs to a detector at room temperature. At a converter temperature of 1.08 K the total storage time constant in the vessel was (20.3 ±1.2 )s and the number of UCNs counted after accumulated was 91 700 ±300 . From this, we derive a volumetric UCN production rate of (6.9 ±1.7 ) cm-3s-1 , which includes a correction for losses in the converter during UCN extraction caused by the short storage time, but not accounting for UCN transport and detection efficiencies. The up-scattering rate of UCNs caused by excitations in the superfluid was studied by scanning the temperature between 1.2 K and 2.4 K . Using the temperature-dependent UCN production rate calculated from inelastic neutron scattering data, the only UCN up-scattering process found to occur was from two-phonon scattering. Our analysis for T <1.95 K rules out the contributions from roton-phonon scattering to <29 % (95% C.I.) and from one-phonon absorption to <47 % (95% C.I.) of their predicted levels.

  3. Asymptotic neutron scattering laws for anomalously diffusing quantum particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kneller, Gerald R.; Université d’Orléans, Chateau de la Source-Ave. du Parc Floral, 45067 Orléans; Synchrotron-SOLEIL, L’Orme de Merisiers, 91192 Gif-sur-Yvette

    2016-07-28

    The paper deals with a model-free approach to the analysis of quasielastic neutron scattering intensities from anomalously diffusing quantum particles. All quantities are inferred from the asymptotic form of their time-dependent mean square displacements which grow ∝t{sup α}, with 0 ≤ α < 2. Confined diffusion (α = 0) is here explicitly included. We discuss in particular the intermediate scattering function for long times and the Fourier spectrum of the velocity autocorrelation function for small frequencies. Quantum effects enter in both cases through the general symmetry properties of quantum time correlation functions. It is shown that the fractional diffusion constantmore » can be expressed by a Green-Kubo type relation involving the real part of the velocity autocorrelation function. The theory is exact in the diffusive regime and at moderate momentum transfers.« less

  4. A Monte Carlo Library Least Square approach in the Neutron Inelastic-scattering and Thermal-capture Analysis (NISTA) process in bulk coal samples

    NASA Astrophysics Data System (ADS)

    Reyhancan, Iskender Atilla; Ebrahimi, Alborz; Çolak, Üner; Erduran, M. Nizamettin; Angin, Nergis

    2017-01-01

    A new Monte-Carlo Library Least Square (MCLLS) approach for treating non-linear radiation analysis problem in Neutron Inelastic-scattering and Thermal-capture Analysis (NISTA) was developed. 14 MeV neutrons were produced by a neutron generator via the 3H (2H , n) 4He reaction. The prompt gamma ray spectra from bulk samples of seven different materials were measured by a Bismuth Germanate (BGO) gamma detection system. Polyethylene was used as neutron moderator along with iron and lead as neutron and gamma ray shielding, respectively. The gamma detection system was equipped with a list mode data acquisition system which streams spectroscopy data directly to the computer, event-by-event. A GEANT4 simulation toolkit was used for generating the single-element libraries of all the elements of interest. These libraries were then used in a Linear Library Least Square (LLLS) approach with an unknown experimental sample spectrum to fit it with the calculated elemental libraries. GEANT4 simulation results were also used for the selection of the neutron shielding material.

  5. Neutron Scattering Facilities

    Science.gov Websites

    Low Energy Neutron Source (LENS), Indiana University Cyclotron Facility, USA McMaster Nuclear Reactor Research, Gaithersburg, Maryland, USA Peruvian Institute of Nuclear Energy (IPEN), Lima, Peru Spallation Nuclear Science and Technology Organisation, Lucas Heights, Australia High-flux Advanced Neutron

  6. Preparing Monodisperse Macromolecular Samples for Successful Biological Small-Angle X-ray and Neutron Scattering Experiments

    PubMed Central

    Jeffries, Cy M.; Graewert, Melissa A.; Blanchet, Clément E.; Langley, David B.; Whitten, Andrew E.; Svergun, Dmitri I

    2017-01-01

    Small-angle X-ray and neutron scattering (SAXS and SANS) are techniques used to extract structural parameters and determine the overall structures and shapes of biological macromolecules, complexes and assemblies in solution. The scattering intensities measured from a sample contain contributions from all atoms within the illuminated sample volume including the solvent and buffer components as well as the macromolecules of interest. In order to obtain structural information, it is essential to prepare an exactly matched solvent blank so that background scattering contributions can be accurately subtracted from the sample scattering to obtain the net scattering from the macromolecules in the sample. In addition, sample heterogeneity caused by contaminants, aggregates, mismatched solvents, radiation damage or other factors can severely influence and complicate data analysis so it is essential that the samples are pure and monodisperse for the duration of the experiment. This Protocol outlines the basic physics of SAXS and SANS and reveals how the underlying conceptual principles of the techniques ultimately ‘translate’ into practical laboratory guidance for the production of samples of sufficiently high quality for scattering experiments. The procedure describes how to prepare and characterize protein and nucleic acid samples for both SAXS and SANS using gel electrophoresis, size exclusion chromatography and light scattering. Also included are procedures specific to X-rays (in-line size exclusion chromatography SAXS) and neutrons, specifically preparing samples for contrast matching/variation experiments and deuterium labeling of proteins. PMID:27711050

  7. Informing the improvement of forest products durability using small angle neutron scattering

    Treesearch

    Nayomi Plaza Rodriguez; Sai Venkatesh Pingali; Shuo Qian; William T. Heller; Joseph E. Jakes

    2016-01-01

    A better understanding of how wood nanostructure swells with moisture is needed to accelerate the development of forest products with enhanced moisture durability. Despite its suitability to study nanostructures, small angle neutron scattering (SANS) remains an underutilized tool in forest products research. Nanoscale moisture-induced structural changes in intact and...

  8. HEKATE-A novel grazing incidence neutron scattering concept for the European Spallation Source.

    PubMed

    Glavic, Artur; Stahn, Jochen

    2018-03-01

    Structure and magnetism at surfaces and buried interfaces on the nanoscale can only be accessed by few techniques, one of which is grazing incidence neutron scattering. While the technique has its strongest limitation in a low signal and large background, due to the low scattering probability and need for high resolution, it can be expected that the high intensity of the European Spallation Source in Lund, Sweden, will make many more such studies possible, warranting a dedicated beamline for this technique. We present an instrument concept, Highly Extended K range And Tunable Experiment (HEKATE), for surface scattering that combines the advantages of two Selene neutron guides with unique capabilities of spatially separated distinct wavelength frames. With this combination, it is not only possible to measure large specular reflectometry ranges, even on free liquid surfaces, but also to use two independent incident beams with tunable sizes and resolutions that can be optimized for the specifics of the investigated samples. Further the instrument guide geometry is tuned for reduction of high energy particle background and only uses low to moderate supermirror coatings for high reliability and affordable cost.

  9. HEKATE—A novel grazing incidence neutron scattering concept for the European Spallation Source

    NASA Astrophysics Data System (ADS)

    Glavic, Artur; Stahn, Jochen

    2018-03-01

    Structure and magnetism at surfaces and buried interfaces on the nanoscale can only be accessed by few techniques, one of which is grazing incidence neutron scattering. While the technique has its strongest limitation in a low signal and large background, due to the low scattering probability and need for high resolution, it can be expected that the high intensity of the European Spallation Source in Lund, Sweden, will make many more such studies possible, warranting a dedicated beamline for this technique. We present an instrument concept, Highly Extended K range And Tunable Experiment (HEKATE), for surface scattering that combines the advantages of two Selene neutron guides with unique capabilities of spatially separated distinct wavelength frames. With this combination, it is not only possible to measure large specular reflectometry ranges, even on free liquid surfaces, but also to use two independent incident beams with tunable sizes and resolutions that can be optimized for the specifics of the investigated samples. Further the instrument guide geometry is tuned for reduction of high energy particle background and only uses low to moderate supermirror coatings for high reliability and affordable cost.

  10. Detection of vapor nanobubbles by small angle neutron scattering (SANS)

    NASA Astrophysics Data System (ADS)

    Popov, Emilian; He, Lilin; Dominguez-Ontiveros, Elvis; Melnichenko, Yuri

    2018-04-01

    Experiments using boiling water on untreated (roughness 100-300 nm) metal surfaces using small-angle neutron scattering (SANS) show the appearance of structures that are 50-70 nm in size when boiling is present. The scattering signal disappears when the boiling ceases, and no change in the signal is detected at any surface temperature condition below saturation. This confirms that the signal is caused by vapor nanobubbles. Two boiling regimes are evaluated herein that differ by the degree of subcooling (3-10 °C). A polydisperse spherical model with a log-normal distribution fits the SANS data well. The size distribution indicates that a large number of nanobubbles exist on the surface during boiling, and some of them grow into large bubbles.

  11. Secondary neutron spectrum from 250-MeV passively scattered proton therapy: measurement with an extended-range Bonner sphere system.

    PubMed

    Howell, Rebecca M; Burgett, E A

    2014-09-01

    Secondary neutrons are an unavoidable consequence of proton therapy. While the neutron dose is low compared to the primary proton dose, its presence and contribution to the patient dose is nonetheless important. The most detailed information on neutrons includes an evaluation of the neutron spectrum. However, the vast majority of the literature that has reported secondary neutron spectra in proton therapy is based on computational methods rather than measurements. This is largely due to the inherent limitations in the majority of neutron detectors, which are either not suitable for spectral measurements or have limited response at energies greater than 20 MeV. Therefore, the primary objective of the present study was to measure a secondary neutron spectrum from a proton therapy beam using a spectrometer that is sensitive to neutron energies over the entire neutron energy spectrum. The authors measured the secondary neutron spectrum from a 250-MeV passively scattered proton beam in air at a distance of 100 cm laterally from isocenter using an extended-range Bonner sphere (ERBS) measurement system. Ambient dose equivalent H*(10) was calculated using measured fluence and fluence-to-ambient dose equivalent conversion coefficients. The neutron fluence spectrum had a high-energy direct neutron peak, an evaporation peak, a thermal peak, and an intermediate energy continuum between the thermal and evaporation peaks. The H*(10) was dominated by the neutrons in the evaporation peak because of both their high abundance and the large quality conversion coefficients in that energy interval. The H*(10) 100 cm laterally from isocenter was 1.6 mSv per proton Gy (to isocenter). Approximately 35% of the dose equivalent was from neutrons with energies ≥20 MeV. The authors measured a neutron spectrum for external neutrons generated by a 250-MeV proton beam using an ERBS measurement system that was sensitive to neutrons over the entire energy range being measured, i.e., thermal to

  12. Secondary neutron spectrum from 250-MeV passively scattered proton therapy: Measurement with an extended-range Bonner sphere system

    PubMed Central

    Howell, Rebecca M.; Burgett, E. A.

    2014-01-01

    Purpose: Secondary neutrons are an unavoidable consequence of proton therapy. While the neutron dose is low compared to the primary proton dose, its presence and contribution to the patient dose is nonetheless important. The most detailed information on neutrons includes an evaluation of the neutron spectrum. However, the vast majority of the literature that has reported secondary neutron spectra in proton therapy is based on computational methods rather than measurements. This is largely due to the inherent limitations in the majority of neutron detectors, which are either not suitable for spectral measurements or have limited response at energies greater than 20 MeV. Therefore, the primary objective of the present study was to measure a secondary neutron spectrum from a proton therapy beam using a spectrometer that is sensitive to neutron energies over the entire neutron energy spectrum. Methods: The authors measured the secondary neutron spectrum from a 250-MeV passively scattered proton beam in air at a distance of 100 cm laterally from isocenter using an extended-range Bonner sphere (ERBS) measurement system. Ambient dose equivalent H*(10) was calculated using measured fluence and fluence-to-ambient dose equivalent conversion coefficients. Results: The neutron fluence spectrum had a high-energy direct neutron peak, an evaporation peak, a thermal peak, and an intermediate energy continuum between the thermal and evaporation peaks. The H*(10) was dominated by the neutrons in the evaporation peak because of both their high abundance and the large quality conversion coefficients in that energy interval. The H*(10) 100 cm laterally from isocenter was 1.6 mSv per proton Gy (to isocenter). Approximately 35% of the dose equivalent was from neutrons with energies ≥20 MeV. Conclusions: The authors measured a neutron spectrum for external neutrons generated by a 250-MeV proton beam using an ERBS measurement system that was sensitive to neutrons over the entire

  13. Inelastic Neutron Scattering and Magnetisation Investigation of an Exchange-Coupled Dy2 SMM

    NASA Astrophysics Data System (ADS)

    Baker, Michael L.; Zhang, Qing; Sarachik, Myriam P.; Kent, Andrew D.; Chen, Yizhang; Butch, Nicholas; Pineda, Eufemio M.; McInnes, Eric

    The strong spin orbit coupling and weak crystal field energies of simple exchange-coupled rare earth SMMs makes the precise evaluation of their magnetic properties nontrivial. Here we report a detailed investigation of the single molecule magnet hqH2Dy2(hq)4(NO3)3MeOH. Inelastic neutron scattering is used to obtain direct access to several low energy crystal field excitations. The INS results display several features that are not found in earlier FIR absorption experiments, while other features found in the latter are absent. Based on the effective point charge model, numerical calculations are currently underway to resolve these apparent discrepancies using complementary magnetisation measurements to resolve the exchange between Dy ions. Work supported by ARO W911NF-13-1-1025 (CCNY) and NSF-DMR-1309202 (NYU).

  14. Structural studies of Neurospora crassa LPMO9D and redox partner CDHIIA using neutron crystallography and small-angle scattering.

    PubMed

    Bodenheimer, Annette M; O'Dell, William B; Stanley, Christopher B; Meilleur, Flora

    2017-08-07

    Sensitivity to hydrogen/deuterium and lack of observable radiation damage makes cold neutrons an ideal probe the structural studies of proteins with highly photosensitive groups such as the copper center of lytic polysaccharide monooxygenases (LPMOs) and flavin adenine dinucleotide (FAD) and heme redox cofactors of cellobiose dehydrogenases (CDHs). Here, neutron crystallography and small-angle neutron scattering are used to investigate Neurospora crassa LPMO9D (NcLPMO9D) and CDHIIA (NcCDHIIA), respectively. The presence of LPMO greatly enhances the efficiency of commercial glycoside hydrolase cocktails in the depolymerization of cellulose. LPMOs can receive electrons from CDHs to activate molecular dioxygen for the oxidation of cellulose resulting in chain cleavage and disruption of local crystallinity. Using neutron protein crystallography, the hydrogen/deuterium atoms of NcLPMO9D could be located throughout the structure. At the copper active site, the protonation states of the side chains of His1, His84, His157 and Tyr168, and the orientation of water molecules could be determined. Small-angle neutron scattering measurements provided low resolution models of NcCDHIIA with both the dehydrogenase and cytochrome domains in oxidized states that exhibited elongated conformations. This work demonstrates the suitability of neutron diffraction and scattering for characterizing enzymes critical to oxidative cellulose deconstruction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Structural studies of Neurospora crassa LPMO9D and redox partner CDHIIA using neutron crystallography and small-angle scattering

    DOE PAGES

    Bodenheimer, Annette M.; O'Dell, William B.; Stanley, Christopher B.; ...

    2017-03-04

    Sensitivity to hydrogen/deuterium and lack of observable radiation damage makes cold neutrons an ideal probe the structural studies of proteins with highly photosensitive groups such as the copper center of lytic polysaccharide monooxygenases (LPMOs) and flavin adenine dinucleotide (FAD) and heme redox cofactors of cellobiose dehydrogenases (CDHs). In this paper, neutron crystallography and small-angle neutron scattering are used to investigate Neurospora crassa LPMO9D (NcLPMO9D) and CDHIIA (NcCDHIIA), respectively. The presence of LPMO greatly enhances the efficiency of commercial glycoside hydrolase cocktails in the depolymerization of cellulose. LPMOs can receive electrons from CDHs to activate molecular dioxygen for the oxidation ofmore » cellulose resulting in chain cleavage and disruption of local crystallinity. Using neutron protein crystallography, the hydrogen/deuterium atoms of NcLPMO9D could be located throughout the structure. At the copper active site, the protonation states of the side chains of His1, His84, His157 and Tyr168, and the orientation of water molecules could be determined. Small-angle neutron scattering measurements provided low resolution models of NcCDHIIA with both the dehydrogenase and cytochrome domains in oxidized states that exhibited elongated conformations. Finally, this work demonstrates the suitability of neutron diffraction and scattering for characterizing enzymes critical to oxidative cellulose deconstruction.« less

  16. Structural studies of Neurospora crassa LPMO9D and redox partner CDHIIA using neutron crystallography and small-angle scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bodenheimer, Annette M.; O'Dell, William B.; Stanley, Christopher B.

    Sensitivity to hydrogen/deuterium and lack of observable radiation damage makes cold neutrons an ideal probe the structural studies of proteins with highly photosensitive groups such as the copper center of lytic polysaccharide monooxygenases (LPMOs) and flavin adenine dinucleotide (FAD) and heme redox cofactors of cellobiose dehydrogenases (CDHs). In this paper, neutron crystallography and small-angle neutron scattering are used to investigate Neurospora crassa LPMO9D (NcLPMO9D) and CDHIIA (NcCDHIIA), respectively. The presence of LPMO greatly enhances the efficiency of commercial glycoside hydrolase cocktails in the depolymerization of cellulose. LPMOs can receive electrons from CDHs to activate molecular dioxygen for the oxidation ofmore » cellulose resulting in chain cleavage and disruption of local crystallinity. Using neutron protein crystallography, the hydrogen/deuterium atoms of NcLPMO9D could be located throughout the structure. At the copper active site, the protonation states of the side chains of His1, His84, His157 and Tyr168, and the orientation of water molecules could be determined. Small-angle neutron scattering measurements provided low resolution models of NcCDHIIA with both the dehydrogenase and cytochrome domains in oxidized states that exhibited elongated conformations. Finally, this work demonstrates the suitability of neutron diffraction and scattering for characterizing enzymes critical to oxidative cellulose deconstruction.« less

  17. TU-F-CAMPUS-T-02: Risk Assessment of Scattered Neutrons for a Fetus From Proton Therapy of a Brain Tumor During Pregnancy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geng, C; Nanjing University of Aeronautics and Astronautics, Nanjing; Moteabbed, M

    Purpose: To determine the scattered neutron dose and the resulting risk for a fetus from proton therapy for brain tumors during pregnancy. Methods: Using the Monte Carlo platform TOPAS, the ICRP reference parameters based anthropomorphic pregnancy phantoms for three stages (3-, 6-, 9-month) were applied to evaluate the scattered neutron dose and dose equivalent. To calculate the dose equivalent, organ specific linear energy transfer (LET) based quality factor was used. Treatment plans from both passive scattering (PS) and pencil beam scanning (PBS) methods were considered in this study. Results: For pencil beam scanning, the neutron dose equivalent in the softmore » tissue of the fetus increases from 1.53x10−{sup 3} to 2.84x10−{sup 3} mSv per treatment Gy with increasing stage of gestation. This is due to scattered neutrons from the patient as the main contaminant source in PBS and a decrease in distance between the soft tissue of the fetus and GTV with increasing stage of gestation. For passive scattering, neutron dose equivalent to the soft tissue of the fetus shows a decrease from 0.17 to 0.13 mSv per treatment Gy in different stages, while the dose to the brain shows little difference around 0.18 mSv per treatment Gy because scattered neutrons from the treatment head contribute predominantly in passive scattering. Conclusion: The results show that the neutron dose to the fetus assuming a prescribed dose of 52.2 Gy is negligible for PBS, and is comparable to the scattered dose (0–10 mSv) from a head and neck CT scan for PS. It can be concluded that the dose to fetus is far lower than the thresholds of malformation, SMR and lethal death. The excess relative risk of childhood cancer induction would be increased by 0.48 and 0.103 using the Oxford Survey of Childhood Cancers and Japanese atomic model, respectively. Changran Geng is supported by the Chinese Scholarship Council (CSC) and the National Natural Science Foundation of China (Grant No. 11475087)« less

  18. Neutron scattering on solitons in quasi-one-dimensional systems

    NASA Astrophysics Data System (ADS)

    Fedyanin, V. K.

    1983-05-01

    In the framework of the model of an ideal lattice gas of solitons, we obtain the following general formula for the dynamic neutron scattering form factor: S(q, w) = N¯S 1(q, w) , S(q, w) = {p‧(ν 0)δ 22}/{2πqZ 1h }f 2(qδ(ν 0 Here q = k‧ - k and w = E‧ - E are the neutron momentum and energy transfer, respectively, ν0 = wq-1, δ(ν) is the soliton width of velocity ν, p‧( ν0) = d p/d ν| ν0 , p(ν) is the soliton momentum, E(p(ν)) is the soliton energy, N¯ is the average number of solitons at θ = kδT = β-1 and is constructed from the soliton non-linear differential equations. The derivation of the formula is essentially based on (i) specific dependence of these solutions on ξ = x - vt, and (ii) generalization of the averaging over the soliton ensemble, proposed in ref. [1]. The specifi properties of the scattering spectra of polypeptides, DNA molecules and magnetics as functions of the temperature and interaction parameters and of external fields are discussed on the basis of this formula. The contribution to S(q, w) for “slow” solitons in magnetics has been calculated in [2, 3]. (For each concrete model the authors were forced to formulate anew the way of calculation, to assume the small size of ν, etc.)

  19. New Frontier in Probing Fluid Transport in Low-Permeability Geomedia: Applications of Elastic and Inelastic Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Ding, M.; Hjelm, R.; Sussman, A. J.

    2016-12-01

    Low-permeability geomedia are prevalent in subsurface environments. They have become increasingly important in a wide range of applications such as CO2-sequestration, hydrocarbon recovery, enhanced geothermal systems, legacy waste stewardship, high-level radioactive waste disposal, and global security. The flow and transport characteristics of low-permeability geomedia are dictated by their exceedingly low permeability values ranging from 10-6 to 10-12 darcy with porosities dominated by nanoscale pores. Developing new characterization methods and robust computational models that allow estimation of transport properties of low-permeability geomedia has been identified as a critical basic research and technology development need for controlling subsurface and fluids flow. Due to its sensibility to hydrogen and flexible sample environment, neutron based elastic and inelastic scattering can, through various techniques, interrogate all the nanoscale pores in the sample whether they are fluid accessible or not, and readily characterize interfacial waters. In this presentation, we will present two studies revealing the effects of nanoscale pore confinement on fluid dynamics in geomedia. In one study, we use combined (ultra-small)/small-angle elastic neutron scatterings to probe nanoporous features responses in geological materials to transport processes. In the other study, incoherent inelastic neutron scattering was used to distingwish between intergranular pore water and fluid inclusion moisture in bedded rock salt, and to explore their thermal stablibility. Our work demonstrates that neutron based elastic and inelastic scatterings are techniques of choice for in situ probing hydrocarbon and water behavior in nanoporous materials, providing new insights into water-rock interaction and fluids transport in low-permeability geomaterials.

  20. Neutron Compton scattering from selectively deuterated acetanilide

    NASA Astrophysics Data System (ADS)

    Wanderlingh, U. N.; Fielding, A. L.; Middendorf, H. D.

    With the aim of developing the application of neutron Compton scattering (NCS) to molecular systems of biophysical interest, we are using the Compton spectrometer EVS at ISIS to characterize the momentum distribution of protons in peptide groups. In this contribution we present NCS measurements of the recoil peak (Compton profile) due to the amide proton in otherwise fully deuterated acetanilide (ACN), a widely studied model system for H-bonding and energy transfer in biomolecules. We obtain values for the average width of the potential well of the amide proton and its mean kinetic energy. Deviations from the Gaussian form of the Compton profile, analyzed on the basis of an expansion due to Sears, provide data relating to the Laplacian of the proton potential.

  1. nMoldyn: a program package for a neutron scattering oriented analysis of molecular dynamics simulations.

    PubMed

    Róg, T; Murzyn, K; Hinsen, K; Kneller, G R

    2003-04-15

    We present a new implementation of the program nMoldyn, which has been developed for the computation and decomposition of neutron scattering intensities from Molecular Dynamics trajectories (Comp. Phys. Commun 1995, 91, 191-214). The new implementation extends the functionality of the original version, provides a much more convenient user interface (both graphical/interactive and batch), and can be used as a tool set for implementing new analysis modules. This was made possible by the use of a high-level language, Python, and of modern object-oriented programming techniques. The quantities that can be calculated by nMoldyn are the mean-square displacement, the velocity autocorrelation function as well as its Fourier transform (the density of states) and its memory function, the angular velocity autocorrelation function and its Fourier transform, the reorientational correlation function, and several functions specific to neutron scattering: the coherent and incoherent intermediate scattering functions with their Fourier transforms, the memory function of the coherent scattering function, and the elastic incoherent structure factor. The possibility to compute memory function is a new and powerful feature that allows to relate simulation results to theoretical studies. Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 657-667, 2003

  2. Measured Neutron Spectra and Dose Equivalents From a Mevion Single-Room, Passively Scattered Proton System Used for Craniospinal Irradiation.

    PubMed

    Howell, Rebecca M; Burgett, Eric A; Isaacs, Daniel; Price Hedrick, Samantha G; Reilly, Michael P; Rankine, Leith J; Grantham, Kevin K; Perkins, Stephanie; Klein, Eric E

    2016-05-01

    To measure, in the setting of typical passively scattered proton craniospinal irradiation (CSI) treatment, the secondary neutron spectra, and use these spectra to calculate dose equivalents for both internal and external neutrons delivered via a Mevion single-room compact proton system. Secondary neutron spectra were measured using extended-range Bonner spheres for whole brain, upper spine, and lower spine proton fields. The detector used can discriminate neutrons over the entire range of the energy spectrum encountered in proton therapy. To separately assess internally and externally generated neutrons, each of the fields was delivered with and without a phantom. Average neutron energy, total neutron fluence, and ambient dose equivalent [H* (10)] were calculated for each spectrum. Neutron dose equivalents as a function of depth were estimated by applying published neutron depth-dose data to in-air H* (10) values. For CSI fields, neutron spectra were similar, with a high-energy direct neutron peak, an evaporation peak, a thermal peak, and an intermediate continuum between the evaporation and thermal peaks. Neutrons in the evaporation peak made the largest contribution to dose equivalent. Internal neutrons had a very low to negligible contribution to dose equivalent compared with external neutrons, largely attributed to the measurement location being far outside the primary proton beam. Average energies ranged from 8.6 to 14.5 MeV, whereas fluences ranged from 6.91 × 10(6) to 1.04 × 10(7) n/cm(2)/Gy, and H* (10) ranged from 2.27 to 3.92 mSv/Gy. For CSI treatments delivered with a Mevion single-gantry proton therapy system, we found measured neutron dose was consistent with dose equivalents reported for CSI with other proton beamlines. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  3. Dynamics of biopolymers on nanomaterials studied by quasielastic neutron scattering and MD simulations

    NASA Astrophysics Data System (ADS)

    Dhindsa, Gurpreet K.

    Neutron scattering has been proved to be a powerful tool to study the dynamics of biological systems under various conditions. This thesis intends to utilize neutron scattering techniques, combining with MD simulations, to develop fundamental understanding of several biologically interesting systems. Our systems include a drug delivery system containing Nanodiamonds with nucleic acid (RNA), and two specific model proteins, beta-Casein and Inorganic Pyrophosphatase (IPPase). RNA and nanodiamond (ND) both are suitable for drug-delivery applications in nano-biotechnology. The architecturally flexible RNA with catalytic functionality forms nanocomposites that can treat life-threatening diseases. The non-toxic ND has excellent mechanical and optical properties and functionalizable high surface area, and thus actively considered for biomedical applications. In this thesis, we utilized two tools, quasielastic neutron scattering (QENS) and Molecular Dynamics Simulations to probe the effect of ND on RNA dynamics. Our work provides fundamental understanding of how hydrated RNA motions are affected in the RNA-ND nanocomposites. From the experimental and Molecular Dynamics Simulation (MD), we found that hydrated RNA motion is faster on ND surface than a freestanding one. MD Simulation results showed that the failure of Stokes Einstein relation results the presence of dynamic heterogeneities in the biomacromolecules. Radial pair distribution function from MD Simulation confirmed that the hydrophilic nature of ND attracts more water than RNA results the de-confinement of RNA on ND. Therefore, RNA exhibits faster motion in the presence of ND than freestanding RNA. In the second project, we studied the dynamics of a natively disordered protein beta-Casein which lacks secondary structures. In this study, the temperature and hydration effects on the dynamics of beta-Casein are explored by Quasielastic Neutron Scattering (QENS). We investigated the mean square displacement (MSD) of

  4. Molecular dynamics simulations of propane in slit shaped silica nano-pores: direct comparison with quasielastic neutron scattering experiments.

    PubMed

    Gautam, Siddharth; Le, Thu; Striolo, Alberto; Cole, David

    2017-12-13

    Molecular motion under confinement has important implications for a variety of applications including gas recovery and catalysis. Propane confined in mesoporous silica aerogel as studied using quasielastic neutron scattering (QENS) showed anomalous pressure dependence in its diffusion coefficient (J. Phys. Chem. C, 2015, 119, 18188). Molecular dynamics (MD) simulations are often employed to complement the information obtained from QENS experiments. Here, we report an MD simulation study to probe the anomalous pressure dependence of propane diffusion in silica aerogel. Comparison is attempted based on the self-diffusion coefficients and on the time scales of the decay of the simulated intermediate scattering functions. While the self-diffusion coefficients obtained from the simulated mean squared displacement profiles do not exhibit the anomalous pressure dependence observed in the experiments, the time scales of the decay of the intermediate scattering functions calculated from the simulation data match the corresponding quantities obtained in the QENS experiment and thus confirm the anomalous pressure dependence of the diffusion coefficient. The origin of the anomaly in pressure dependence lies in the presence of an adsorbed layer of propane molecules that seems to dominate the confined propane dynamics at low pressure, thereby lowering the diffusion coefficient. Further, time scales for rotational motion obtained from the simulations explain the absence of rotational contribution to the QENS spectra in the experiments. In particular, the rotational motion of the simulated propane molecules is found to exhibit large angular jumps at lower pressure. The present MD simulation work thus reveals important new insights into the origin of anomalous pressure dependence of propane diffusivity in silica mesopores and supplements the information obtained experimentally by QENS data.

  5. Anomalous vibrational modes in acetanilide as studied by inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Barthes, Mariette; Eckert, Juegen; Johnson, Susanna W.; Moret, Jacques; Swanson, Basil I.; Unkefer, Clifford J.

    1992-10-01

    A study of the anomalous modes in acetanilide and five deuterated derivatives by incoherent inelastic neutron scattering is reported. These data show that the dynamics of the amide and methyl groups influence each other. In addition, the anomalous temperature behaviour of the NH out-of-plane bending mode is confirmed. These observations suggest that the self-trapping mechanism in ACN may be more complex than hitherto assumed.

  6. Basis for calculating cross sections for nuclear magnetic resonance spin-modulated polarized neutron scattering.

    PubMed

    Kotlarchyk, Michael; Thurston, George M

    2016-12-28

    In this work we study the potential for utilizing the scattering of polarized neutrons from nuclei whose spin has been modulated using nuclear magnetic resonance (NMR). From first principles, we present an in-depth development of the differential scattering cross sections that would arise in such measurements from a hypothetical target system containing nuclei with non-zero spins. In particular, we investigate the modulation of the polarized scattering cross sections following the application of radio frequency pulses that impart initial transverse rotations to selected sets of spin-1/2 nuclei. The long-term aim is to provide a foundational treatment of the scattering cross section associated with enhancing scattering signals from selected nuclei using NMR techniques, thus employing minimal chemical or isotopic alterations, so as to advance the knowledge of macromolecular or liquid structure.

  7. Neutron scattering measurements in {sup 197}Au from 850 keV to 2.0 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O`Connor, M.; Chen, J.; Egan, J.J.

    1995-10-01

    Differential elastic and inelastic neutron scattering cross-sections for low lying levels in {sup 197}Au have been measured for incident neutron energies of 1.0 MeV, 1.5 MeV and 2.0 MeV. In addition, the total neutron cross sections in {sup 197}Au was measured from 850 keV to 1.5 MeV. For both experiments the UML 5.5 MV Van-de-Graaff accelerator with a Mobley post acceleration compression system, produced subnanosecond proton pulses which generated neutrons via the {sup 7}Li(p,n) {sup 7}Be reaction.

  8. Neutron Scattering and Diffraction Studies of Fluids and Fluid-Solid Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, David R; Herwig, Kenneth W; Mamontov, Eugene

    2006-01-01

    There can be no disputing the fact that neutron diffraction and scattering have made a clear contribution to our current understanding of the structural and dynamical characteristics of liquid water and water containing dissolved ions at ambient conditions and to a somewhat lesser degree other state conditions involving a change in temperature and pressure. Indeed, a molecular-level understanding of how fluids (e.g., water, CO{sub 2}, CH{sub 4}, higher hydrocarbons, etc.) interact with and participate in reactions with other solid earth materials are central to the development of predictive models that aim to quantify a wide array of geochemical processes. Inmore » the context of natural systems, interrogation of fluids and fluid-solid interactions at elevated temperatures and pressures is an area requiring much more work, particularly for complex solutions containing geochemically relevant cations, anions, and other important dissolved species such as CO{sub 2} or CH{sub 4}. We have tried to describe a series of prototypical interfacial and surface problems using neutron scattering to stimulate the thinking of earth scientists interested applying some of these approaches to confined systems of mineralogical importance. Our ability to predict the molecular-level properties of fluids and fluid-solid interactions relies heavily on the synergism between experiments such as neutron diffraction or inelastic neutron scattering and molecular-based simulations. Tremendous progress has been made in closing the gap between experimental observations and predicted behavior based on simulations due to improvements in the experimental methodologies and instrumentation on the one hand, and the development of new potential models of water and other simple and complex fluids on the other. For example there has been an emergence of studies taking advantage of advanced computing power that can accommodate the demands of ab initio molecular dynamics. On the neutron instrumentation

  9. Progesterone and testosterone studies by neutron-scattering methods and quantum chemistry calculations

    NASA Astrophysics Data System (ADS)

    Holderna-Natkaniec, K.; Szyczewski, A.; Natkaniec, I.; Khavryutchenko, V. D.; Pawlukojc, A.

    Inelastic incoherent neutron scattering (IINS) and neutron diffraction spectra of progesterone and testosterone were measured simultaneously on the NERA spectrometer at the IBR-2 pulsed reactor in Dubna. Both studied samples do not indicate any phase transition in the temperature range from 20 to 290K. The IINS spectra have been transformed to the phonon density of states (PDS) in the one-phonon scattering approximation. The PDS spectra display well-resolved peaks of low-frequency internal vibration modes up to 600cm-1. The assignment of these modes was proposed taking into account the results of calculations of the structure and dynamics of isolated molecules of the investigated substances. The quantum chemistry calculations were performed by the semi-empirical PM3 method and at the restricted Hartree-Fock level with the 6-31* basis set. The lower internal modes assigned to torsional vibration of the androstane skeleton mix with the lattice vibrations. The intense bands in the PDS spectra in the frequency range from 150 to 300cm-1 are related to librations of structurally inequivalent methyl groups.

  10. Intense, directed neutron beams from a laser-driven neutron source at PHELIX

    NASA Astrophysics Data System (ADS)

    Kleinschmidt, A.; Bagnoud, V.; Deppert, O.; Favalli, A.; Frydrych, S.; Hornung, J.; Jahn, D.; Schaumann, G.; Tebartz, A.; Wagner, F.; Wurden, G.; Zielbauer, B.; Roth, M.

    2018-05-01

    Laser-driven neutrons are generated by the conversion of laser-accelerated ions via nuclear reactions inside a converter material. We present results from an experimental campaign at the PHELIX laser at GSI in Darmstadt where protons and deuterons were accelerated from thin deuterated plastic foils with thicknesses in the μm and sub-μm range. The neutrons were generated inside a sandwich-type beryllium converter, leading to reproducible neutron numbers around 1011 neutrons per shot. The angular distribution was measured with a high level of detail using up to 30 bubble detectors simultaneously. It shows a laser forward directed component of up to 1.42 × 1010 neutrons per steradian, corresponding to a dose of 43 mrem scaled to a distance of 1 m from the converter.

  11. Dopant effects on 2-ethyl-1-hexanol: A dual-channel impedance spectroscopy and neutron scattering study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, Lokendra P.; Richert, Ranko, E-mail: ranko@asu.edu; Raihane, Ahmed

    2015-01-07

    A two-channel impedance technique has been used to study the relaxation behavior of 2-ethyl-1-hexanol with polar and non-polar dopants at the few percent concentration level over a wide temperature and frequency range. The non-polar dopants shift both the Debye and the primary structural relaxation time in the same direction, to shorter times for 3-methylpentane and to longer times for squalane, consistent with the relative glass transition temperatures (T{sub g}) of the components. By contrast, polar dopants such as water or methanol modify the α-process towards slower dynamics and increased amplitude, while the Debye process is accelerated and with a decreasedmore » amplitude. This effect of adding water to alcohol is explained by water promoting more compact structures with reduced Kirkwood correlation factors. This picture is consistent with a shift in the neutron scattering pre-peak to lower scattering vectors and with simulation work on alcohol-water systems.« less

  12. DESCANT--The DEuterated SCintillator Array for Neutron Tagging

    NASA Astrophysics Data System (ADS)

    Bildstein, Vinzenz; Garrett, P. E.; Bandyopadhay, D.; Bangay, J.; Bianco, L.; Demand, G.; Hadinia, B.; Leach, K. G.; Sumithrarachchi, C.; Wong, J.; Ashley, S. F.; Crider, B. P.; McEllistrem, M. T.; Peters, E. E.; Prados-Estévez, F. M.; Yates, S. W.; Vanhoy, J. R.; Ball, G. C.; Garnsworthy, A. B.; Hackman, G.; Pearson, C. J.; Sarazin, F.

    2014-09-01

    The DESCANT array at TRIUMF is designed to track neutrons from RIB experiments. DESCANT is composed of 70 close-packed deuterated organic liquid scintillators coupled to digital fast read-out ADC modules. This configuration will permit online pulse-shape discrimination between neutron and γ-ray events. The anisotropy of the n - d scattering will allow distinction of higher neutron multiplicities from scattering within the array and determination of the neutron energy spectrum directly from the pulse-height spectrum without using TOF. A prototype detector has been tested with monoenergetic neutrons at the accelerator laboratory of the University of Kentucky and a 24Mg(3He, n)26Si experiment has been performed with eight DESCANT detectors and two HPGe detectors. The results of the tests and the status of DESCANT will be presented.

  13. Neutron scattering in the proximate quantum spin liquid α-RuCl3

    NASA Astrophysics Data System (ADS)

    Banerjee, Arnab; Yan, Jiaqiang; Knolle, Johannes; Bridges, Craig A.; Stone, Matthew B.; Lumsden, Mark D.; Mandrus, David G.; Tennant, David A.; Moessner, Roderich; Nagler, Stephen E.

    2017-06-01

    The Kitaev quantum spin liquid (KQSL) is an exotic emergent state of matter exhibiting Majorana fermion and gauge flux excitations. The magnetic insulator α-RuCl3 is thought to realize a proximate KQSL. We used neutron scattering on single crystals of α-RuCl3 to reconstruct dynamical correlations in energy-momentum space. We discovered highly unusual signals, including a column of scattering over a large energy interval around the Brillouin zone center, which is very stable with temperature. This finding is consistent with scattering from the Majorana excitations of a KQSL. Other, more delicate experimental features can be transparently associated with perturbations to an ideal model. Our results encourage further study of this prototypical material and may open a window into investigating emergent magnetic Majorana fermions in correlated materials.

  14. Influence of single-neutron stripping on near-barrier 6He+208Pb and 8He+208Pb elastic scattering

    NASA Astrophysics Data System (ADS)

    Marquínez-Durán, G.; Keeley, N.; Kemper, K. W.; Mackintosh, R. S.; Martel, I.; Rusek, K.; Sánchez-Benítez, A. M.

    2017-02-01

    The influence of single-neutron stripping on the near-barrier elastic scattering angular distributions for the He,86+208Pb systems is investigated through coupled reaction channels (CRC) calculations fitting recently published data to explore the differences in the absorptive potential found in the scattering of these two neutron-rich nuclei. The inclusion of the coupling reduces the elastic cross section in the Coulomb-nuclear interference region for 8He scattering, whereas for 6He its major impact is on the large-angle elastic scattering. The real and imaginary dynamic polarization potentials are obtained by inverting the CRC elastic scattering S -matrix elements. These show that the main absorptive features occur between 11 and 12 fm for both projectiles, while the attractive features are separated by about 1 fm, with their main structures occurring at 10.5 fm for 6He and 11.5 fm for 8He.

  15. Neutron Inelastic Scattering on 134Xe at En = 5 - 8 MeV

    NASA Astrophysics Data System (ADS)

    Kidd, Mary; Tornow, Werner; Finch, Sean; Krishichayan, Fnu; Bhike, Megha

    2017-09-01

    Neutrinoless double-beta decay (0 νββ) studies are both the best way to determine the Majorana nature of the neutrino and determine its effective mass. The two main experiments searching for 0 νββ -decay of 136Xe (Q value = 2457.8 keV) are Kamland-Zen and EXO-200. Though both experiments have enriched 136Xe targets, these targets still contain significant quantities of 134Xe. Recently, a new nuclear level was discovered in 134Xe that decays to the ground state emitting a 2485.7 keV gamma ray. The γ-ray production cross section for this branch was found to be on the order of 10 mb for incident neutron energies of 2.5-4.5 MeV. Here, we have extended the investigation of this level to higher incident neutron energies, and further explore the potential neutron-induced backgrounds on both 134Xe and 136Xe for extended neutron energies. We will report our preliminary results for neutron inelastic scattering on 134Xe in applications to 0 νββ decay searches. NSF PHY-1614348, DE-FG02-97ER41033.

  16. Surface areas of fractally rough particles studied by scattering

    NASA Astrophysics Data System (ADS)

    Hurd, Alan J.; Schaefer, Dale W.; Smith, Douglas M.; Ross, Steven B.; Le Méhauté, Alain; Spooner, Steven

    1989-05-01

    The small-angle scattering from fractally rough surfaces has the potential to give information on the surface area at a given resolution. By use of quantitative neutron and x-ray scattering, a direct comparison of surface areas of fractally rough powders was made between scattering and adsorption techniques. This study supports a recently proposed correction to the theory for scattering from fractal surfaces. In addition, the scattering data provide an independent calibration of molecular adsorbate areas.

  17. Hydrogen species motion in piezoelectrics: A quasi-elastic neutron scattering study

    NASA Astrophysics Data System (ADS)

    Alvine, K. J.; Tyagi, M.; Brown, C. M.; Udovic, T. J.; Jenkins, T.; Pitman, S. G.

    2012-03-01

    Hydrogen is known to damage or degrade piezoelectric materials, at low pressure for ferroelectric random access memory applications, and at high pressure for hydrogen-powered vehicle applications. The piezoelectric degradation is in part governed by the motion of hydrogen species within the piezoelectric materials. We present here quasi-elastic neutron scattering (QENS) measurements of the local hydrogen species motion within lead zirconate titanate (PZT) and barium titanate (BTO) on samples charged by exposure to high-pressure gaseous hydrogen (≈17 MPa). Neutron vibrational spectroscopy (NVS) studies of the hydrogen-enhanced vibrational modes are presented as well. Results are discussed in the context of theoretically predicted interstitial hydrogen lattice sites and compared to comparable bulk diffusion studies of hydrogen diffusion in lead zirconate titanate.

  18. Bayesian approach to the analysis of neutron Brillouin scattering data on liquid metals

    NASA Astrophysics Data System (ADS)

    De Francesco, A.; Guarini, E.; Bafile, U.; Formisano, F.; Scaccia, L.

    2016-08-01

    When the dynamics of liquids and disordered systems at mesoscopic level is investigated by means of inelastic scattering (e.g., neutron or x ray), spectra are often characterized by a poor definition of the excitation lines and spectroscopic features in general and one important issue is to establish how many of these lines need to be included in the modeling function and to estimate their parameters. Furthermore, when strongly damped excitations are present, commonly used and widespread fitting algorithms are particularly affected by the choice of initial values of the parameters. An inadequate choice may lead to an inefficient exploration of the parameter space, resulting in the algorithm getting stuck in a local minimum. In this paper, we present a Bayesian approach to the analysis of neutron Brillouin scattering data in which the number of excitation lines is treated as unknown and estimated along with the other model parameters. We propose a joint estimation procedure based on a reversible-jump Markov chain Monte Carlo algorithm, which efficiently explores the parameter space, producing a probabilistic measure to quantify the uncertainty on the number of excitation lines as well as reliable parameter estimates. The method proposed could turn out of great importance in extracting physical information from experimental data, especially when the detection of spectral features is complicated not only because of the properties of the sample, but also because of the limited instrumental resolution and count statistics. The approach is tested on generated data set and then applied to real experimental spectra of neutron Brillouin scattering from a liquid metal, previously analyzed in a more traditional way.

  19. Recent applications of small-angle neutron scattering in strongly interacting soft condensed matter

    NASA Astrophysics Data System (ADS)

    Wignall, G. D.; Melnichenko, Y. B.

    2005-08-01

    Before the application of small-angle neutron scattering (SANS) to the study of polymer structure, chain conformation studies were limited to light and small-angle x-ray scattering techniques, usually conducted in dilute solution owing to the difficulties of separating the inter- and intrachain contributions to the structure. The unique role of neutron scattering in soft condensed matter arises from the difference in the coherent scattering length between deuterium (bD = 0.67 × 10-12 cm) and hydrogen (bH = -0.37 × 10-12 cm), which results in a marked difference in scattering power (contrast) between molecules synthesized from normal (hydrogeneous) and deuterated monomer units. Thus, deuterium labelling techniques may be used to 'stain' molecules and make them 'visible' in the condensed state and other crowded environments, such as concentrated solutions of overlapping chains. For over two decades, SANS has proved to be a powerful tool for studies of structure-property relationships in polymeric systems and has made it possible to extract unique information about their size, shape, conformational changes and molecular associations. These applications are now so numerous that an exhaustive review of the field is no longer practical, so the authors propose to focus on the use of SANS for studies of strongly interacting soft matter systems. This paper will therefore discuss basic theory and practical aspects of the technique and will attempt to explain the physics of scattering with the minimum of unnecessary detail and mathematical rigour. Examples will be given to demonstrate the power of SANS and to show how it has helped to unveil universal aspects of the behaviour of macromolecules in such apparently diverse systems as polymer solutions, blends, polyelectrolytes and supercritical mixtures. The aim of the authors is to aid potential users who have a general scientific background, but no specialist knowledge of scattering, to understand the potential of the

  20. Revisiting static and dynamic spin-ice correlations in Ho2Ti2O7 with neutron scattering

    NASA Astrophysics Data System (ADS)

    Clancy, J. P.; Ruff, J. P. C.; Dunsiger, S. R.; Zhao, Y.; Dabkowska, H. A.; Gardner, J. S.; Qiu, Y.; Copley, J. R. D.; Jenkins, T.; Gaulin, B. D.

    2009-01-01

    Elastic and inelastic neutron-scattering studies have been carried out on the pyrochlore magnet Ho2Ti2O7 . Measurements in zero applied magnetic field show that the disordered spin-ice ground state of Ho2Ti2O7 is characterized by a pattern of rectangular diffuse elastic scattering within the [HHL] plane of reciprocal space, which closely resembles the zone-boundary scattering seen in its sister compound Dy2Ti2O7 . Well-defined peaks in the zone-boundary scattering develop only within the spin-ice ground state below ˜2K . In contrast, the overall diffuse-scattering pattern evolves on a much higher-temperature scale of ˜17K . The diffuse scattering at small wave vectors below [001] is found to vanish on going to Q=0 , an explicit signature of expectations for dipolar spin ice. Very high energy-resolution inelastic measurements reveal that the spin-ice ground state below ˜2K is also characterized by a transition from dynamic to static spin correlations on the time scale of 10-9s . Measurements in a magnetic field applied along the [11¯0] direction in zero-field-cooled conditions show that the system can be broken up into orthogonal sets of polarized α chains along [11¯0] and quasi-one-dimensional β chains along [110]. Three-dimensional correlations between β chains are shown to be very sensitive to the precise alignment of the [11¯0] externally applied magnetic field.

  1. The interpretation of polycrystalline coherent inelastic neutron scattering from aluminium

    PubMed Central

    Roach, Daniel L.; Ross, D. Keith; Gale, Julian D.; Taylor, Jon W.

    2013-01-01

    A new approach to the interpretation and analysis of coherent inelastic neutron scattering from polycrystals (poly-CINS) is presented. This article describes a simulation of the one-phonon coherent inelastic scattering from a lattice model of an arbitrary crystal system. The one-phonon component is characterized by sharp features, determined, for example, by boundaries of the (Q, ω) regions where one-phonon scattering is allowed. These features may be identified with the same features apparent in the measured total coherent inelastic cross section, the other components of which (multiphonon or multiple scattering) show no sharp features. The parameters of the model can then be relaxed to improve the fit between model and experiment. This method is of particular interest where no single crystals are available. To test the approach, the poly-CINS has been measured for polycrystalline aluminium using the MARI spectrometer (ISIS), because both lattice dynamical models and measured dispersion curves are available for this material. The models used include a simple Lennard-Jones model fitted to the elastic constants of this material plus a number of embedded atom method force fields. The agreement obtained suggests that the method demonstrated should be effective in developing models for other materials where single-crystal dispersion curves are not available. PMID:24282332

  2. Structural and dynamical trends in alkali-metal silanides characterized by neutron-scattering methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Wan Si; Dimitrievska, Mirjana; Chotard, Jean -Noel

    Structural, vibrational, and dynamical properties of the mono- and mixed-alkali silanides (MSiH 3, where M = K, Rb, Cs, K 0.5Rb 0.5, K 0.5Cs 0.5, and Rb 0.5Cs 0.5) were investigated by various neutron experiments, including neutron powder diffraction (NPD), neutron vibrational spectroscopy (NVS), neutron-scattering fixed-window scans (FWSs), and quasielastic neutron scattering (QENS) measurements. Structural characterization showed that the mixed compounds exhibit disordered (α) and ordered (β) phases for temperatures above and below about 200–250 K, respectively, in agreement with their monoalkali correspondents. Vibrational and dynamical properties are strongly influenced by the cation environment; in particular, there is a redmore » shift in the band energies of the librational and bending modes with increasing lattice size as a result of changes in the bond lengths and force constants. Additionally, slightly broader spectral features are observed in the case of the mixed compounds, indicating the presence of structural disorder caused by the random distribution of the alkali-metal cations within the lattice. FWS measurements upon heating showed that there is a large increase in reorientational mobility as the systems go through the order–disorder (β–α) phase transition, and measurements upon cooling of the α-phase revealed the known strong hysteresis for reversion back to the β-phase. Interestingly, at a given temperature, among the different alkali silanide compounds, the relative reorientational mobilities of the SiH 3 – anions in the α- and β-phases tended to decrease and increase, respectively, with increasing alkali-metal mass. Lastly, this dynamical result might provide some insights concerning the enthalpy–entropy compensation effect previously observed for these potentially promising hydrogen storage materials.« less

  3. Structural and dynamical trends in alkali-metal silanides characterized by neutron-scattering methods

    DOE PAGES

    Tang, Wan Si; Dimitrievska, Mirjana; Chotard, Jean -Noel; ...

    2016-09-02

    Structural, vibrational, and dynamical properties of the mono- and mixed-alkali silanides (MSiH 3, where M = K, Rb, Cs, K 0.5Rb 0.5, K 0.5Cs 0.5, and Rb 0.5Cs 0.5) were investigated by various neutron experiments, including neutron powder diffraction (NPD), neutron vibrational spectroscopy (NVS), neutron-scattering fixed-window scans (FWSs), and quasielastic neutron scattering (QENS) measurements. Structural characterization showed that the mixed compounds exhibit disordered (α) and ordered (β) phases for temperatures above and below about 200–250 K, respectively, in agreement with their monoalkali correspondents. Vibrational and dynamical properties are strongly influenced by the cation environment; in particular, there is a redmore » shift in the band energies of the librational and bending modes with increasing lattice size as a result of changes in the bond lengths and force constants. Additionally, slightly broader spectral features are observed in the case of the mixed compounds, indicating the presence of structural disorder caused by the random distribution of the alkali-metal cations within the lattice. FWS measurements upon heating showed that there is a large increase in reorientational mobility as the systems go through the order–disorder (β–α) phase transition, and measurements upon cooling of the α-phase revealed the known strong hysteresis for reversion back to the β-phase. Interestingly, at a given temperature, among the different alkali silanide compounds, the relative reorientational mobilities of the SiH 3 – anions in the α- and β-phases tended to decrease and increase, respectively, with increasing alkali-metal mass. Lastly, this dynamical result might provide some insights concerning the enthalpy–entropy compensation effect previously observed for these potentially promising hydrogen storage materials.« less

  4. Neutron-proton effective mass splitting in neutron-rich matter at normal density from analyzing nucleon-nucleus scattering data within an isospin dependent optical model

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Hua; Guo, Wen-Jun; Li, Bao-An; Chen, Lie-Wen; Fattoyev, Farrukh J.; Newton, William G.

    2015-04-01

    The neutron-proton effective mass splitting in asymmetric nucleonic matter of isospin asymmetry δ and normal density is found to be mn-p* ≡ (mn* - mp*) / m = (0.41 ± 0.15) δ from analyzing globally 1088 sets of reaction and angular differential cross sections of proton elastic scattering on 130 targets with beam energies from 0.783 MeV to 200 MeV, and 1161 sets of data of neutron elastic scattering on 104 targets with beam energies from 0.05 MeV to 200 MeV within an isospin dependent non-relativistic optical potential model. It sets a useful reference for testing model predictions on the momentum dependence of the nucleon isovector potential necessary for understanding novel structures and reactions of rare isotopes.

  5. Lattice Waves, Spin Waves, and Neutron Scattering

    DOE R&D Accomplishments Database

    Brockhouse, Bertram N.

    1962-03-01

    Use of neutron inelastic scattering to study the forces between atoms in solids is treated. One-phonon processes and lattice vibrations are discussed, and experiments that verified the existence of the quantum of lattice vibrations, the phonon, are reviewed. Dispersion curves, phonon frequencies and absorption, and models for dispersion calculations are discussed. Experiments on the crystal dynamics of metals are examined. Dispersion curves are presented and analyzed; theory of lattice dynamics is considered; effects of Fermi surfaces on dispersion curves; electron-phonon interactions, electronic structure influence on lattice vibrations, and phonon lifetimes are explored. The dispersion relation of spin waves in crystals and experiments in which dispersion curves for spin waves in Co-Fe alloy and magnons in magnetite were obtained and the reality of the magnon was demonstrated are discussed. (D.C.W)

  6. Deep inelastic neutron scattering on 207Pb and NaHF 2 as a test of a detectors array on the VESUVIO spectrometer

    NASA Astrophysics Data System (ADS)

    Pietropaolo, A.; Senesi, R.

    2008-01-01

    A prototype array of resonance detectors for deep inelastic neutron scattering experiments has been installed on the VESUVIO spectrometer, at the ISIS spallation neutron source. Deep inelastic neutron scattering measurements on a reference lead sample and on NaHF 2 molecular system are presented. Despite on an explorative level, the results obtained for the values of mean kinetic energy are found in good agreement with the theoretical predictions, thus assessing the potential capability of the device for a routine use on the instrument.

  7. Magnetic Excitations in Polyoxotungstate-Supported Lanthanoid Single-Molecule Magnets: An Inelastic Neutron Scattering and ab Initio Study.

    PubMed

    Vonci, Michele; Giansiracusa, Marcus J; Van den Heuvel, Willem; Gable, Robert W; Moubaraki, Boujemaa; Murray, Keith S; Yu, Dehong; Mole, Richard A; Soncini, Alessandro; Boskovic, Colette

    2017-01-03

    Inelastic neutron scattering (INS) has been used to investigate the crystal field (CF) magnetic excitations of the analogs of the most representative lanthanoid-polyoxometalate single-molecule magnet family: Na 9 [Ln(W 5 O 18 ) 2 ] (Ln = Nd, Tb, Ho, Er). Ab initio complete active space self-consistent field/restricted active space state interaction calculations, extended also to the Dy analog, show good agreement with the experimentally determined low-lying CF levels, with accuracy better in most cases than that reported for approaches based only on simultaneous fitting to CF models of magnetic or spectroscopic data for isostructural Ln families. In this work we demonstrate the power of a combined spectroscopic and computational approach. Inelastic neutron scattering has provided direct access to CF levels, which together with the magnetometry data, were employed to benchmark the ab initio results. The ab initio determined wave functions corresponding to the CF levels were in turn employed to assign the INS transitions allowed by selection rules and interpret the observed relative intensities of the INS peaks. Ultimately, we have been able to establish the relationship between the wave function composition of the CF split Ln III ground multiplets and the experimentally measured magnetic and spectroscopic properties for the various analogs of the Na 9 [Ln(W 5 O 18 ) 2 ] family.

  8. Observation of Neutron Skyshine from an Accelerator Based Neutron Source

    NASA Astrophysics Data System (ADS)

    Franklyn, C. B.

    2011-12-01

    A key feature of neutron based interrogation systems is the need for adequate provision of shielding around the facility. Accelerator facilities adapted for fast neutron generation are not necessarily suitably equipped to ensure complete containment of the vast quantity of neutrons generated, typically >1011 nṡs-1. Simulating the neutron leakage from a facility is not a simple exercise since the energy and directional distribution can only be approximated. Although adequate horizontal, planar shielding provision is made for a neutron generator facility, it is sometimes the case that vertical shielding is minimized, due to structural and economic constraints. It is further justified by assuming the atmosphere above a facility functions as an adequate radiation shield. It has become apparent that multiple neutron scattering within the atmosphere can result in a measurable dose of neutrons reaching ground level some distance from a facility, an effect commonly known as skyshine. This paper describes a neutron detection system developed to monitor neutrons detected several hundred metres from a neutron source due to the effect of skyshine.

  9. Observation of Neutron Skyshine from an Accelerator Based Neutron Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Franklyn, C. B.

    2011-12-13

    A key feature of neutron based interrogation systems is the need for adequate provision of shielding around the facility. Accelerator facilities adapted for fast neutron generation are not necessarily suitably equipped to ensure complete containment of the vast quantity of neutrons generated, typically >10{sup 11} n{center_dot}s{sup -1}. Simulating the neutron leakage from a facility is not a simple exercise since the energy and directional distribution can only be approximated. Although adequate horizontal, planar shielding provision is made for a neutron generator facility, it is sometimes the case that vertical shielding is minimized, due to structural and economic constraints. It ismore » further justified by assuming the atmosphere above a facility functions as an adequate radiation shield. It has become apparent that multiple neutron scattering within the atmosphere can result in a measurable dose of neutrons reaching ground level some distance from a facility, an effect commonly known as skyshine. This paper describes a neutron detection system developed to monitor neutrons detected several hundred metres from a neutron source due to the effect of skyshine.« less

  10. Characteristic Features of Water Dynamics in Restricted Geometries Investigated with Quasi-Elastic Neutron Scattering

    DOE PAGES

    Osti, Naresh C.; Mamontov, Eugene; Ramirez-cuesta, A.; ...

    2015-12-10

    Understanding the molecular behavior of water in spatially restricted environments is important to better understanding its role in many biological, chemical and geological processes. Here we examine the translational diffusion of water confined to a variety of substrates, from flat surfaces to nanoporous media, in the context of a recently proposed universal scaling law (Chiavazzo 2014) [1]. Using over a dozen previous neutron scattering results, we test the validity of this law, evaluating separately the influence of the hydration amount, and the effects of the size and morphology of the confining medium. Additionally, we investigate the effects of changing instrumentmore » resolutions and fitting models on the applicability of this law. Finally, we perform quasi-elastic neutron scattering measurements on water confined inside nanoporous silica to further evaluate this predictive law, in the temperature range 250≤T≤290 K.« less

  11. Insights into molecular architecture of terpenes using small angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Rai, Durgesh K.; Annamraju, Aparna; Pingali, Sai Venkatesh; O'Neill, Hugh M.; Mewalal, Ritesh; Gunter, Lee E.; Tuskan, Gerald A.

    Understanding macromolecular architectures is vital to engineering prospective terpene candidates for advanced biofuels. Eucalyptus plants store terpenes in specialized cavity-like structures in the leaves called oil glands, which comprises of volatile (VTs) and non-volatile (NVTs) terpenes. Using small-angle neutron scattering, we have investigated the structure and phase behavior of the supramolecular assembly formed by Geranyl beta-D-glucoside (GDG), a NVT and compare the results with that of beta-octyl glucoside (BOG). The formation of micellar structures was observed in the concentration range of 0.5-5 v/v% in water using small angle neutron scattering (SANS) where Schultz sphere model was used in quantifying structural parameters of micelles. SANS studies determine that GDG and BOG behave like amphiphiles forming micellar structures in aqueous solution. The micelles swell upon addition of alpha-Pinene (AP) indicating partition to the core region of the micelles. The general behavior of the micellar growth after partitioning of AP to form thermodynamically stable sizes varies with the NVT concentration. Our studies reveal that the presence of steric hindrance in the GDG via the unsaturated bonds could help stabilize VTs inside the oil glands. LDRD project LOIS ID 7428, SNS, CSMB, HFIR, ORNL, DOE Office of Science User Facilities.

  12. Neutron scattering in the proximate quantum spin liquid α-RuCl3.

    PubMed

    Banerjee, Arnab; Yan, Jiaqiang; Knolle, Johannes; Bridges, Craig A; Stone, Matthew B; Lumsden, Mark D; Mandrus, David G; Tennant, David A; Moessner, Roderich; Nagler, Stephen E

    2017-06-09

    The Kitaev quantum spin liquid (KQSL) is an exotic emergent state of matter exhibiting Majorana fermion and gauge flux excitations. The magnetic insulator α-RuCl 3 is thought to realize a proximate KQSL. We used neutron scattering on single crystals of α-RuCl 3 to reconstruct dynamical correlations in energy-momentum space. We discovered highly unusual signals, including a column of scattering over a large energy interval around the Brillouin zone center, which is very stable with temperature. This finding is consistent with scattering from the Majorana excitations of a KQSL. Other, more delicate experimental features can be transparently associated with perturbations to an ideal model. Our results encourage further study of this prototypical material and may open a window into investigating emergent magnetic Majorana fermions in correlated materials. Copyright © 2017, American Association for the Advancement of Science.

  13. Polarized-neutron-scattering study of the spin-wave excitations in the 3-k ordered phase of uranium antimonide.

    PubMed

    Magnani, N; Caciuffo, R; Lander, G H; Hiess, A; Regnault, L-P

    2010-03-24

    The anisotropy of magnetic fluctuations propagating along the [1 1 0] direction in the ordered phase of uranium antimonide has been studied using polarized inelastic neutron scattering. The observed polarization behavior of the spin waves is a natural consequence of the longitudinal 3-k magnetic structure; together with recent results on the 3-k-transverse uranium dioxide, these findings establish this technique as an important tool to study complex magnetic arrangements. Selected details of the magnon excitation spectra of USb have also been reinvestigated, indicating the need to revise the currently accepted theoretical picture for this material.

  14. Elastic and Inelastic Scattering of Neutrons from Neon and Argon: Impact on Neutrinoless Double-Beta Decay and Dark Matter Experimental Programs

    NASA Astrophysics Data System (ADS)

    MacMullin, Sean Patrick

    In underground physics experiments, such as neutrinoless double-beta decay and dark matter searches, fast neutrons may be the dominant and potentially irreducible source of background. Experimental data for the elastic and inelastic scattering cross sections of neutrons from argon and neon, which are target and shielding materials of interest to the dark matter and neutrinoless double-beta decay communities, were previously unavailable. Unmeasured neutron scattering cross sections are often accounted for incorrectly in Monte-Carlo simulations. Elastic scattering cross sections were measured at the Triangle Universities Nuclear Laboratory (TUNL) using the neutron time-of-flight technique. Angular distributions for neon were measured at 5.0 and 8.0 MeV. One full angular distribution was measured for argon at 6.0 MeV. The cross-section data were compared to calculations using a global optical model. Data were also fit using the spherical optical model. These model fits were used to predict the elastic scattering cross section at unmeasured energies and also provide a benchmark where the global optical models are not well constrained. Partial gamma-ray production cross sections for (n,xngamma ) reactions in natural argon and neon were measured using the broad spectrum neutron beam at the Los Alamos Neutron Science Center (LANSCE). Neutron energies were determined using time of flight and resulting gamma rays from neutron-induced reactions were detected using the GErmanium Array for Neutron Induced Excitations (GEANIE). Partial gamma-ray production cross sections for six transitions in 40Ar, two transitions in 39Ar and the first excited state transitions is 20Ne and 22Ne were measured from threshold to a neutron energy where the gamma-ray yield dropped below the detection sensitivity. Measured (n,xngamma) cross sections were compared with calculations using the TALYS and CoH3 nuclear reaction codes. These new measurements will help to identify potential backgrounds in

  15. Application of Geant4 simulation for analysis of soil carbon inelastic neutron scattering measurements

    USDA-ARS?s Scientific Manuscript database

    Inelastic neutron scattering (INS) was applied to determine soil carbon content. Due to non-uniform soil carbon depth distribution, the correlation between INS signals with some soil carbon content parameter is not obvious; however, a proportionality between INS signals and average carbon weight per...

  16. Measurement of proton momentum distributions using a direct geometry instrument

    NASA Astrophysics Data System (ADS)

    Senesi, R.; Kolesnikov, A. I.; Andreani, C.

    2014-12-01

    We report the results of inelastic neutron scattering measurements on bulk water and ice using the direct geometry SEQUOIA chopper spectrometer at the Spallation Neutron Source (USA), with incident energy Ei= 6 eV. In this set up the measurements allow to access the Deep Inelastic Neutron Scattering regime. The scattering is centred at the proton recoil energy given by the impulse approximation, and the shape of the recoil peak conveys information on the proton momentum distribution in the system. The comparison with the performance of inverse geometry instruments, such as VESUVIO at the ISIS source (UK), shows that complementary information can be accessed by the use of direct and inverse geometry instruments. Analysis of the neutron Compton profiles shows that the proton kinetic energy in ice at 271 K is larger than in room temperature liquid water, in agreement with previous measurements on VESUVIO.

  17. Quasi elastic and inelastic neutron scattering study of vitamin C aqueous solutions

    NASA Astrophysics Data System (ADS)

    Migliardo, F.; Branca, C.; Magazù, S.; Migliardo, P.; Coppolino, S.; Villari, A.; Micali, N.

    2002-02-01

    In this paper, new results obtained by quasi elastic and inelastic neutron scattering experiments performed on vitamin C ( L-ascorbic acid)/H 2O mixtures are reported. The data analysis of the QENS measurements, by a separation of the diffusive dynamics of hydrated L-ascorbic acid from that of water, furnishes quantitative evidences of a random jump diffusion motion of vitamin C and shows that the water dynamics is strongly affected by the presence of L-ascorbic acid. Concerning the INS experiment, we are able, through the behaviour of neutron spectra across the glass transition temperature ( T g≈233 K for the vitamin C/water system), to collocate the investigated system in the Angell “strong-fragile” scheme.

  18. Compton Scattering Cross Sections in Strong Magnetic Fields: Advances for Neutron Star Applications

    NASA Astrophysics Data System (ADS)

    Ickes, Jesse; Gonthier, Peter L.; Eiles, Matthew; Baring, Matthew G.; Wadiasingh, Zorawar

    2014-08-01

    Various telescopes including RXTE, INTEGRAL, Suzaku and Fermi have detected steady non-thermal X-ray emission in the 10 ~ 200 keV band from strongly magnetic neutron stars known as magnetars. Magnetic inverse Compton scattering is believed to be a leading candidate for the production of this intense X-ray radiation. Generated by electrons possessing ultra-relativistic energies, this leads to attractive simplifications of the magnetic Compton cross section. We have recently addressed such a case by developing compact analytic expressions using correct spin-dependent widths acquired through the implementation of Sokolov & Ternov (ST) basis states, focusing specifically on ground state-to-ground state scattering. Such scattering in magnetar magnetospheres can cool electrons down to mildly-relativistic energies. Moreover, soft gamma-ray flaring in magnetars may well involve strong Comptonization in expanding clouds of mildly-relativistic pairs. These situations necessitate the development of more general magnetic scattering cross sections, where the incoming photons acquire substantial incident angles relative to the field in the rest frame of the electron, and the intermediate state can be excited to arbitrary Landau levels. Here, we highlight results from such a generalization using ST formalism. The cross sections treat the plethora of harmonic resonances associated with various cyclotron transitions between Landau states. Polarization dependence of the cross section for the four scattering modes is illustrated and compared with the non-relativistic Thompson cross section with classical widths. Results will find application to various neutron star problems, including computation of Eddington luminosities and polarization mode-switching rates in transient magnetar fireballs.We express our gratitude for the generous support of Michigan Space Grant Consortium, the National Science Foundation (grants AST-0607651, AST-1009725, AST-1009731 and PHY/DMR-1004811), and the

  19. Inelastic neutron scattering experiments with the monochromatic imaging mode of the RITA-II spectrometer

    NASA Astrophysics Data System (ADS)

    Bahl, C. R. H.; Lefmann, K.; Abrahamsen, A. B.; Rønnow, H. M.; Saxild, F.; Jensen, T. B. S.; Udby, L.; Andersen, N. H.; Christensen, N. B.; Jakobsen, H. S.; Larsen, T.; Häfliger, P. S.; Streule, S.; Niedermayer, Ch.

    2006-05-01

    Recently a monochromatic multiple data taking mode has been demonstrated for diffraction experiments using a RITA type cold neutron spectrometer with a multi-bladed analyser and a position-sensitive detector. Here, we show how this mode can be used in combination with a flexible radial collimator to perform real inelastic neutron scattering experiments. We present the results from inelastic powder, single crystal dispersion and single crystal constant energy mapping experiments. The advantages and complications of performing these experiments are discussed along with a comparison between the imaging mode and the traditional monochromatic focussing mode.

  20. Initial characterization of mudstone nanoporosity with small angle neutron scattering using caprocks from carbon sequestration sites.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCray, John; Navarre-Sitchler, Alexis; Mouzakis, Katherine

    Geological carbon sequestration relies on the principle that CO{sub 2} injected deep into the subsurface is unable to leak to the atmosphere. Structural trapping by a relatively impermeable caprock (often mudstone such as a shale) is the main trapping mechanism that is currently relied on for the first hundreds of years. Many of the pores of the caprock are of micrometer to nanometer scale. However, the distribution, geometry and volume of porosity at these scales are poorly characterized. Differences in pore shape and size can cause variation in capillary properties and fluid transport resulting in fluid pathways with different capillarymore » entry pressures in the same sample. Prediction of pore network properties for distinct geologic environments would result in significant advancement in our ability to model subsurface fluid flow. Specifically, prediction of fluid flow through caprocks of geologic CO{sub 2} sequestration reservoirs is a critical step in evaluating the risk of leakage to overlying aquifers. The micro- and nanoporosity was analyzed in four mudstones using small angle neutron scattering (SANS). These mudstones are caprocks of formations that are currently under study or being used for carbon sequestration projects and include the Marine Tuscaloosa Group, the Lower Tuscaloosa Group, the upper and lower shale members of the Kirtland Formation, and the Pennsylvanian Gothic shale. Total organic carbon varies from <0.3% to 4% by weight. Expandable clay contents range from 10% to {approx}40% in the Gothic shale and Kirtland Formation, respectively. Neutrons effectively scatter from interfaces between materials with differing scattering length density (i.e. minerals and pores). The intensity of scattered neutrons, I(Q), where Q is the scattering vector, gives information about the volume of pores and their arrangement in the sample. The slope of the scattering data when plotted as log I(Q) vs. log Q provides information about the fractality or

  1. X-ray and Neutron Scattering Study of the Formation of Core–Shell-Type Polyoxometalates

    DOE PAGES

    Yin, Panchao; Wu, Bin; Mamontov, Eugene; ...

    2016-02-05

    A typical type of core-shell polyoxometalates can be obtained through the Keggin-type polyoxometalate-templated growth of a layer of spherical shell structure of {Mo 72Fe 30}. Small angle X-ray scattering is used to study the structural features and stability of the core-shell structures in aqueous solutions. Time-resolved small angle X-ray scattering is applied to monitor the synthetic reactions and a three-stage formation mechanism is proposed to describe the synthesis of the core-shell polyoxometalates based on the monitoring results. Quasi-elastic and inelastic neutron scattering are used to probe the dynamics of water molecules in the core-shell structures and two different types ofmore » water molecules, the confined and structured water, are observed. These water molecules play an important role in bridging core and shell structures and stabilizing the cluster structures. A typical type of core shell polyoxometalates can be obtained through the Keggin-type polyoxometalate-templated growth of a layer of spherical shell structure of {Mo 72Fe 30}. Small-angle X-ray scattering is used to study the structural features and stability of the core shell structures in aqueous solutions. Time-resolved small-angle X-ray scattering is applied to monitor the synthetic reactions, and a three-stage formation mechanism is proposed to describe the synthesis of the core shell polyoxometalates based on the monitoring results. New protocols have been developed by fitting the X-ray data with custom physical models, which provide more convincing, objective, and completed data interpretation. Quasi-elastic and inelastic neutron scattering are used to probe the dynamics of water molecules in the core shell structures, and two different types of water molecules, the confined and structured water, are observed. These water molecules play an important role in bridging core and shell structures and stabilizing the cluster structures.« less

  2. Quasi-elastic (QENS) and inelastic neutron scattering (INS) on hexamethylbenzene

    NASA Astrophysics Data System (ADS)

    Krawczyk, J.; Mayer, J.; Natkaniec, I.; Nowina Konopka, M.; Pawlukojć; Steinsvoll, O.; Janik, J. A.

    2005-05-01

    The Quasi-elastic Neutron scattering (QENS) spectra of polycrystalline hexamethylbenzene (HMB) were measured for temperatures from 10 K to room temperature (phase III and phase II) for momentum transfer 1.9 Å -1. The Inelastic Neutron scattering (INS) and QENS spectra for momentum transfer 0.5-2.9 Å -1 were measured at T=20, 100 and 130 K for energy transfer up to 200 meV. The low-resolution diffraction patterns, used as the phase indicator, were also obtained. In the phase III (below 117 K), we see practically no quasi-elastic broadening. In phase II, the broadening changes with the temperature are in good agreement with the Arrhenius law. The estimated activation barrier to reorientation is 6 kJ/mol. The fitted mean time between instantaneous 120° jumps of CH 3 groups changes from 10 -11 s at T=130 K to 2×10 -13 s at room temperature. On the basis of EISF versus momentum transfer dependency it is hardly possible to decide what is the geometry of the reorientation. Both reorientation of the CH 3 groups around the three-fold symmetry axis and reorientation of the whole molecule around the six-fold symmetry axis of the benzene ring could describe our results, the former being more probable. The measured INS spectra are compared with the quantum chemical ab initio calculations performed for an isolated HMB molecule.

  3. The role of momentum transfer during incoherent neutron scattering is explained by the energy landscape model

    PubMed Central

    Frauenfelder, Hans; Young, Robert D.; Fenimore, Paul W.

    2017-01-01

    We recently introduced a model of incoherent quasielastic neutron scattering (QENS) that treats the neutrons as wave packets of finite length and the protein as a random walker in the free energy landscape. We call the model ELM for “energy landscape model.” In ELM, the interaction of the wave packet with a proton in a protein provides the dynamic information. During the scattering event, the momentum Q(t) is transferred by the wave packet to the struck proton and its moiety, exerting the force F(t)=dQ(t)/dt. The resultant energy E⋆ is stored elastically and returned to the neutron as it exits. The energy is given by E⋆=kB(T0+χQ), where T0 is the ambient temperature and χ (≈ 91 K Å) is a new elastobaric coefficient. Experiments yield the scattering intensity (dynamic structure factor) S(Q;T) as a function of Q and T. To test our model, we use published data on proteins where only thermal vibrations are active. ELM competes with the currently accepted theory, here called the spatial motion model (SMM), which explains S(Q,T) by motions in real space. ELM is superior to SMM: It can explain the experimental angular and temperature dependence, whereas SMM cannot do so. PMID:28461503

  4. Small-angle neutron scattering investigations of Co-doped iron oxide nanoparticles. Preliminary results

    NASA Astrophysics Data System (ADS)

    Creanga, Dorina; Balasoiu, Maria; Soloviov, Dmitro; Balasoiu-Gaina, Alexandra-Maria; Puscasu, Emil; Lupu, Nicoleta; Stan, Cristina

    2018-03-01

    Preliminary small-angle neutron scattering investigations on aqueous suspensions of several cobalt doped ferrites (CoxFe3-xO4, x=0; 0.5; 1) nanoparticles prepared by chemical co-precipitation method, are reported. The measurements were accomplished at the YuMO instrument in function at the IBR-2 reactor. Results of intermediary data treatment are presented and discussed.

  5. Rhodopsin photoactivation dynamics revealed by quasi-elastic neutron scattering

    DOE PAGES

    Bhowmik, Debsindhu; Shrestha, Utsab; Perera, Suchithranga M.d.c.; ...

    2015-01-27

    Rhodopsin is a G-protein-coupled receptor (GPCR) responsible for vision under dim light conditions. During rhodopsin photoactivation, the chromophore retinal undergoes cis-trans isomerization, and subsequently dissociates from the protein yielding the opsin apoprotein [1]. What are the changes in protein dynamics that occur during the rhodopsin photoactivation process? Here, we studied the microscopic dynamics of the dark-state rhodopsin and the ligand-free opsin using quasi-elastic neutron scattering (QENS). The QENS technique tracks the individual hydrogen atom motions in the protein molecules, because the neutron scattering cross-section of hydrogen is much higher than other atoms [2-4]. We used protein (rhodopsin/opsin) samples with CHAPSmore » detergent hydrated with heavy water. The solvent signal is suppressed due to the heavy water, so that only the signals from proteins and detergents are detected. The activation of proteins is confirmed at low temperatures up to 300 K by the mean-square displacement (MSD) analysis. Our QENS experiments conducted at temperatures ranging from 220 K to 300 K clearly indicate that the protein dynamic behavior increases with temperature. The relaxation time for the ligand-bound protein rhodopsin was longer compared to opsin, which can be correlated with the photoactivation. Moreover, the protein dynamics are orders of magnitude slower than the accompanying CHAPS detergent, which forms a band around the protein molecule in the micelle. Unlike the protein, the CHAPS detergent manifests localized motions that are the same as in the bulk empty micelles. Furthermore QENS provides unique understanding of the key dynamics involved in the activation of the GPCR involved in the visual process.« less

  6. Structure of polyacrylic acid and polymethacrylic acid solutions : a small angle neutron scattering study

    NASA Astrophysics Data System (ADS)

    Moussaid, A.; Schosseler, F.; Munch, J. P.; Candau, S. J.

    1993-04-01

    The intensity scattered from polyacrylic acid and polymethacrylic acid solutions has been measured by small angle neutron scattering experiemnts. The influence of polymer concentration, ionization degree, temperature and salt content has been investigated. Results are in qualitative agreement with a model which predicts the existence of microphases in the unstable region of the phase diagram. Quantitative comparison with the theory is performed by fitting the theoretical structure factor to the experimental data. For a narrow range of ionizaiton degrees nearly quantitative agreement with the theory is found for the polyacrylic acide system.

  7. Quasi-elastic neutron scattering studies of the slow dynamics of supercooled and glassy aspirin

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Tyagi, Madhusudan; Mamontov, Eugene; Chen, Sow-Hsin

    2012-02-01

    Aspirin, also known as acetylsalicylic acid (ASA), is not only a wonderful drug, but also a good glass former. Therefore, it serves as an important molecular system to study the near-arrest and arrested phenomena. In this paper, a high-resolution quasi-elastic neutron scattering (QENS) technique is used to investigate the slow dynamics of supercooled liquid and glassy aspirin from 410 down to 350 K. The measured QENS spectra can be analyzed with a stretched exponential model. We find that (i) the stretched exponent β(Q) is independent of the wavevector transfer Q in the measured Q range and (ii) the structural relaxation time τ(Q) follows a power-law dependence on Q. Consequently, the Q-independent structural relaxation time τ0 can be extracted for each temperature to characterize the slow dynamics of aspirin. The temperature dependence of τ0 can be fitted with the mode-coupling power law, the Vogel-Fulcher-Tammann equation and a universal equation for fragile glass forming liquids recently proposed by Tokuyama in the measured temperature range. The calculated dynamic response function χT(Q, t) using the experimentally determined self-intermediate scattering function of the hydrogen atoms of aspirin shows direct evidence of the enhanced dynamic fluctuations as the aspirin is increasingly supercooled, in agreement with the fixed-time mean squared displacement langx2rang and the non-Gaussian parameter α2 extracted from the elastic scattering.

  8. Quasi-Elastic Neutron Scattering Studies of the Slow Dynamics of Supercooled and Glassy Aspirin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yang; Tyagi, M.; Mamontov, Eugene

    Aspirin, also known as acetylsalicylic acid (ASA), is not only a wonderful drug, but also a good glass former. Therefore, it serves as an important molecular system to study the near-arrest and arrested phenomena. In this paper, a high-resolution quasi-elastic neutron scattering (QENS) technique is used to investigate the slow dynamics of supercooled liquid and glassy aspirin from 410 K down to 350 K. The measured QENS spectra can be analyzed with a stretched exponential model. We find that (i) the stretched exponent (Q) is independent of the wave vector transfer Q in the measured Q-range, and (ii) the structuralmore » relaxation time (Q) follows a power law dependence on Q. Consequently, the Q-independent structural relaxation time 0 can be extracted for each temperature to characterize the slow dynamics of aspirin. The temperature dependence of 0 can be fitted with the mode coupling power law, the Vogel-Fulcher-Tammann equation and a universal equation for fragile glass forming liquids recently proposed by M. Tokuyama in the measured temperature range. The calculated dynamic response function T(Q,t) using the experimentally determined self-intermediate scattering function of the hydrogen atoms of aspirin shows a direct evidence of the enhanced dynamic fluctuations as the aspirin is increasingly supercooled, in agreement with the fixed-time mean squared displacement x2 and non-Gaussian parameter 2 extracted from the elastic scattering.« less

  9. Small-Angle and Ultrasmall-Angle Neutron Scattering (SANS/USANS) Study of New Albany Shale: A Treatise on Microporosity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahadur, Jitendra; Radlinski, Andrzej P.; Melnichenko, Yuri B.

    We applied small-angle neutron scattering (SANS) and ultrasmall-angle neutron scattering (USANS) techniques to study the microstructure of several New Albany shales of different maturity. It has been established that the total porosity decreases with maturity and increases somewhat for post-mature samples. A new method of SANS data analysis was developed, which allows the extraction of information about the size range and number density of micropores from the relatively flat scattering intensity observed in the limit of the large scattering vector Q. Macropores and significant number of mesopores are surface fractals, and their structure can be described in terms of themore » polydisperse spheres (PDSP) model. The model-independent Porod invariant method was employed to estimate total porosity, and the results were compared with the PDSP model results. It has been demonstrated that independent evaluation of incoherent background is crucial for accurate interpretation of the scattering data in the limit of large Q-values. Moreover, pore volumes estimated by the N 2 and CO 2 adsorption, as well as via the mercury intrusion technique, have been compared with those measured by SANS/USANS, and possible reasons for the observed discrepancies are discussed.« less

  10. Small-Angle and Ultrasmall-Angle Neutron Scattering (SANS/USANS) Study of New Albany Shale: A Treatise on Microporosity

    DOE PAGES

    Bahadur, Jitendra; Radlinski, Andrzej P.; Melnichenko, Yuri B.; ...

    2014-12-17

    We applied small-angle neutron scattering (SANS) and ultrasmall-angle neutron scattering (USANS) techniques to study the microstructure of several New Albany shales of different maturity. It has been established that the total porosity decreases with maturity and increases somewhat for post-mature samples. A new method of SANS data analysis was developed, which allows the extraction of information about the size range and number density of micropores from the relatively flat scattering intensity observed in the limit of the large scattering vector Q. Macropores and significant number of mesopores are surface fractals, and their structure can be described in terms of themore » polydisperse spheres (PDSP) model. The model-independent Porod invariant method was employed to estimate total porosity, and the results were compared with the PDSP model results. It has been demonstrated that independent evaluation of incoherent background is crucial for accurate interpretation of the scattering data in the limit of large Q-values. Moreover, pore volumes estimated by the N 2 and CO 2 adsorption, as well as via the mercury intrusion technique, have been compared with those measured by SANS/USANS, and possible reasons for the observed discrepancies are discussed.« less

  11. Double difference method in deep inelastic neutron scattering on the VESUVIO spectrometer

    NASA Astrophysics Data System (ADS)

    Andreani, C.; Colognesi, D.; Degiorgi, E.; Filabozzi, A.; Nardone, M.; Pace, E.; Pietropaolo, A.; Senesi, R.

    2003-02-01

    The principles of the Double Difference (DD) method, applied to the neutron spectrometer VESUVIO, are discussed. VESUVIO, an inverse geometry spectrometer operating at the ISIS pulsed neutron source in the eV energy region, has been specifically designed to measure the single particle dynamical properties in condensed matter. The width of the nuclear resonance of the absorbing filter, used for the neutron energy analysis, provides the most important contribution to the energy resolution of the inverse geometry instruments. In this paper, the DD method, which is based on a linear combination of two measurements recorded with filter foils of the same resonance material but of different thickness, is shown to improve significantly the instrumental energy resolution, as compared with the Single Difference (SD) method. The asymptotic response functions, derived through Monte-Carlo simulations for polycrystalline Pb and ZrH 2 samples, are analysed in both DD and SD methods, and compared with the experimental ones for Pb sample. The response functions have been modelled for two distinct experimental configurations of the VESUVIO spectrometer, employing 6Li-glass neutron detectors and NaI γ detectors revealing the γ-ray cascade from the ( n,γ) reaction, respectively. The DD method appears to be an effective experimental procedure for Deep Inelastic Neutron Scattering measurements on VESUVIO spectrometer, since it reduces the experimental resolution of the instrument in both 6Li-glass neutron detector and γ detector configurations.

  12. Multi-Group Formulation of the Temperature-Dependent Resonance Scattering Model and its Impact on Reactor Core Parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghrayeb, Shadi Z.; Ougouag, Abderrafi M.; Ouisloumen, Mohamed

    2014-01-01

    A multi-group formulation for the exact neutron elastic scattering kernel is developed. It incorporates the neutron up-scattering effects, stemming from lattice atoms thermal motion and accounts for it within the resulting effective nuclear cross-section data. The effects pertain essentially to resonant scattering off of heavy nuclei. The formulation, implemented into a standalone code, produces effective nuclear scattering data that are then supplied directly into the DRAGON lattice physics code where the effects on Doppler Reactivity and neutron flux are demonstrated. The correct accounting for the crystal lattice effects influences the estimated values for the probability of neutron absorption and scattering,more » which in turn affect the estimation of core reactivity and burnup characteristics. The results show an increase in values of Doppler temperature feedback coefficients up to -10% for UOX and MOX LWR fuels compared to the corresponding values derived using the traditional asymptotic elastic scattering kernel. This paper also summarizes the results done on this topic to date.« less

  13. Dynamics of lipid saccharide nanoparticles by quasielastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Di Bari, M. T.; Gerelli, Y.; Sonvico, F.; Deriu, A.; Cavatorta, F.; Albanese, G.; Colombo, P.; Fernandez-Alonso, F.

    2008-04-01

    Nano- and microparticles composed of saccharide and lipid systems are extensively investigated for applications as highly biocompatible drug carriers. A detailed understanding of particle-solvent interactions is of key importance in order to tailor their characteristics for delivering drugs with specific chemical properties. Here we report results of a quasielastic neutron scattering (QENS) investigation on lecithin/chitosan nanoparticles prepared by autoassembling the two components in an aqueous solution. The measurements were performed at room temperature on lyophilized and H 2O hydrated nanoparticles ( h = 0.47 w H 2O/w hydrated sample). In the latter, hydration water is mostly enclosed inside the nanoparticles; its dynamics is similar to that of bulk water but with a significant decrease in diffusivity. The scattering from the nanoparticles can be described by a simple model of confined diffusion. In the lyophilized state only hydrogens belonging to the polar heads are seen as mobile within the experimental time-window. In the hydrated sample the diffusive dynamics involves also a significant part of the hydrogens in the lipid tails.

  14. Developing Structure-Property Relationships in Branched Wormlike Micelles via Advanced Rheological and Neutron Scattering Techniques

    NASA Astrophysics Data System (ADS)

    Calabrese, Michelle A.

    Surfactant wormlike micelles (WLMs) are of particular scientific interest due to their ability to branch, break, and reform under shear, which can lead to shear banding flow instabilities. The tunable self-assembly of WLMs makes them ubiquitous in applications ranging from consumer products to energy recovery fluids. Altering the topology of WLMs by inducing branching provides a microstructural pathway to design and optimize the flow properties for such targeted applications. The goal of this thesis is to understand the role of micellar branching on the resulting equilibrium and non-equilibrium properties, while advancing instrumentation and analysis methods in rheology and neutron scattering. The degree of branching in the mixed cationic/anionic surfactant solutions is controlled by the addition of sodium tosylate. The equilibrium properties are characterized via small angle neutron scattering (SANS), linear viscoelastic rheology, neutron spin echo, and dynamic light scattering. Combining rheology with spatiotemporally-resolved SANS enables unambiguous identification of non-equilibrium rheological and scattering signatures of branching and shear banding. The nonlinear WLM response is characterized via flow-SANS under steady shear, shear startup, and large amplitude oscillatory shear. New methods of time-resolved data analysis are developed, which improve experimental resolution by several-fold. Shear-induced orientation is a complex function of branching level, radial position, and deformation type. The structural mechanisms behind shear band formation are elucidated for steady and dynamic flows, which depend on branching level. Shear banding disappears at high branching levels for all deformation types. These responses are used to validate constitutive modeling predictions of dynamic shear banding for the first time. Finally, quantitative metrics to predict shear banding from rheology or flow-induced orientation are developed. Together, advanced rheological and

  15. Probing the structure of the stable Xe isotopes with inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Peters, Erin E.; Ross, Timothy J.; Crider, Benjamin P.; Yates, Steven W.

    2018-05-01

    The stable isotopes of xenon, which have attracted interest for a number of reasons, span a transitional region that evolves from γ-soft structures for the lighter mass isotopes to nearly spherical 136Xe with a closed neutron shell. The nature of this transition, which is gradual, is not well understood. To provide detailed spectroscopic information on the Xe isotopes, we have studied 130,132,134,136Xe at the University of Kentucky Accelerator Laboratory using inelastic neutron scattering and γ-ray detection. These measurements yielded γ-ray angular distributions, branching ratios, multipole mixing ratios, and level lifetimes (from the Doppler-shift attenuation method), which allowed the determination of reduced transition probabilities and provided insight into the structure of these nuclei.

  16. A biophysical study of clathrin utilizing light scattering, neutron scattering and structure based computer modeling

    NASA Astrophysics Data System (ADS)

    Ferguson, Matthew Lee

    A principal component in the protein coats of certain post-golgi and endocytic vesicles is clathrin, which appears as a three-legged heteropolymer (known as a triskelion) that assembles into polyhedral baskets principally made up of pentagonal and hexagonal faces. In vitro, this assembly depends on the pH, with baskets forming more readily at low pH and less readily at high pH. We have developed procedures, based on static and dynamic light scattering, to determine the radius of gyration, Rg, and hydrodynamic radius, RH, of isolated triskelia under conditions where basket assembly occurs. Calculations based on rigid molecular bead models of a triskelion show that the measured values can be accounted for by bending of the legs and a puckering at the vertex. We also show that the values of Rg and R H measured for clathrin triskelia in solution are qualitatively consistent with the conformation of an individual triskelion that is part of a "D6 barrel" basket assembly measured by cryo-EM tomography. We extended this study by performing small angle neutron scattering (SANS) experiments on isolated triskelia in solution under conditions where baskets do not assemble. SANS experiments were consistent with previous static light scattering experiments but showed a shoulder in the scattering function at intermediate q-values just beyond the central diffraction peak (the Guinier regime). Theoretical calculations based on rigid bead models of a triskelion showed well-defined features in this region different from the experiment. A flexible bead-spring model of a triskelion and Brownian dynamics simulations were used to generate a time averaged scattering function. This model adequately described the experimental data for flexibilities close to previous estimates from the analysis of electron micrographs.

  17. PREFACE: 7th Meeting of the Spanish Neutron Scattering Association (SETN)

    NASA Astrophysics Data System (ADS)

    Pérez-Landazábal, J. I.; Recarte, V.

    2015-11-01

    The VII th Meeting of the Spanish Neutron Scattering Association was held on the campus of the Public University of Navarra (UPNa) in Pamplona (Spain) during 22-25 June 2014. It was the seventh edition of a series of biennial meetings that began in San Sebastian in 2002, which followed the meetings of Puerto de La Cruz (2004), Jaca (2006), Sant Feliu de Guixols (2008), Gijón (2010) and Segovia (2012). It is the largest meeting and discussion forum for Spanish scientific users of neutron scattering techniques, whatever the branch of science or technology development their research activity concerns. Throughout these years, the Spanish community of neutron techniques has been consolidating, increasing every year both in the number of users and in the diversity of techniques and topics analyzed. In this sense, the series of biennial meetings of the Society aims to give visibility and summarize the activity taking place in this field. Ongoing with the initiative undertaken in the last two editions, some selected works shown in the conference are published in this edition of Journal of Physics: Conference Series. The conference consisted of plenary lectures issued by relevant researchers in neutron science techniques, as well as invited lectures in which the most significant recent results achieved by Spanish scientists from fundamental science to applied technology were shown. To encourage the participation of as many research groups as possible and in particular young researchers, oral and poster presentations were also included. The VII th SETN meeting was organized by the Physics Department of the Public University of Navarra in collaboration with the Spanish Society for Neutron Techniques (SETN, Sociedad Española de Técnicas Neutrónicas). The meeting attracted around 70 participants from all over the country and foreign researchers were also invited to the conference. We want to emphasize the excellent quality of the presentations and want to thank the support

  18. Neutron Scattering for Materials Science. Materials Research Society Symposium Proceedings, Volume 166

    DTIC Science & Technology

    1990-01-01

    NEUTRON SCATTERING STUDY OF SHORT-RANGE ORDER IN Fe 0 .8Al0.2 ALLOY 249 Werner Schweika *Invited Paper vN |- __-_ LATTICE MISFIT AND DECOMPOSITION IN...thermodifiractometric measurenmen of this sequence of dehydration and reconstructive phase transformation shows that the Initial dehydration transforrmton reaction...occurs In two steps (see figure 5). Firstly, the dehydration reaction occurs (note in figure 5 the decrease in the incoherent hydrogen background

  19. Design of the Next Generation Target at the Lujan Neutron Scattering Center, LANSCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferres, Laurent

    Los Alamos National Laboratory (LANL) supports scientific research in many diverse fields such as biology, chemistry, and nuclear science. The Laboratory was established in 1943 during the Second World War to develop nuclear weapons. Today, LANL is one of the largest laboratories dedicated to nuclear defense and operates an 800 MeV proton linear accelerator for basic and applied research including: production of high- and low-energy neutrons beams, isotope production for medical applications and proton radiography. This accelerator is located at the Los Alamos Neutron Science Center (LANSCE). The work performed involved the redesign of the target for the low-energy neutronmore » source at the Lujan Neutron Scattering Center, which is one of the facilities built around the accelerator. The redesign of the target involves modeling various arrangements of the moderator-reflector-shield for the next generation neutron production target. This is done using Monte Carlo N-Particle eXtended (MCNPX), and ROOT analysis framework, a C++ based-software, to analyze the results.« less

  20. Quasielastic and inelastic neutron scattering study of the hydration of monoclinic and triclinic tricalcium silicate

    NASA Astrophysics Data System (ADS)

    Peterson, Vanessa K.; Brown, Craig M.; Livingston, Richard A.

    2006-08-01

    The hydration of Mg-stabilized triclinic and monoclinic tricalcium silicate samples were studied using quasielastic neutron scattering to follow the fixation of hydrogen into the reaction products and by applying hydration models to the data. The quantity of Ca(OH) 2 produced during hydration was also determined using inelastic neutron scattering. The monoclinic form was found to be intrinsically less reactive that the triclinic form. The monoclinic form was also confirmed to produce more product than the triclinic form after 50 h, a process found to occur through a longer, rather than earlier, nucleation and growth regime. Results indicated an increase in the permeability of the hydration layer product relative to the triclinic form and the increase in the length of the nucleation and growth regime was thus attributed to an alteration in morphology or structure of the hydration layer product, extending the time for diffusion limited mechanics to be reached.

  1. The very low angle detector for high-energy inelastic neutron scattering on the VESUVIO spectrometer

    NASA Astrophysics Data System (ADS)

    Perelli Cippo, E.; Gorini, G.; Tardocchi, M.; Pietropaolo, A.; Andreani, C.; Senesi, R.; Rhodes, N. J.; Schooneveld, E. M.

    2008-05-01

    The Very Low Angle Detector (VLAD) bank has been installed on the VESUVIO spectrometer at the ISIS spallation neutron source. The new device allows for high-energy inelastic neutron scattering measurements, at energies above 1 eV, maintaining the wave vector transfer lower than 10Å-1. This opens a still unexplored region of the kinematical (q, ω) space, enabling new and challenging experimental investigations in condensed matter. This paper describes the main instrumental features of the VLAD device, including instrument design, detector response, and calibration procedure.

  2. Influence of beam efficiency through the patient-specific collimator on secondary neutron dose equivalent in double scattering and uniform scanning modes of proton therapy.

    PubMed

    Hecksel, D; Anferov, V; Fitzek, M; Shahnazi, K

    2010-06-01

    Conventional proton therapy facilities use double scattering nozzles, which are optimized for delivery of a few fixed field sizes. Similarly, uniform scanning nozzles are commissioned for a limited number of field sizes. However, cases invariably occur where the treatment field is significantly different from these fixed field sizes. The purpose of this work was to determine the impact of the radiation field conformity to the patient-specific collimator on the secondary neutron dose equivalent. Using a WENDI-II neutron detector, the authors experimentally investigated how the neutron dose equivalent at a particular point of interest varied with different collimator sizes, while the beam spreading was kept constant. The measurements were performed for different modes of dose delivery in proton therapy, all of which are available at the Midwest Proton Radiotherapy Institute (MPRI): Double scattering, uniform scanning delivering rectangular fields, and uniform scanning delivering circular fields. The authors also studied how the neutron dose equivalent changes when one changes the amplitudes of the scanned field for a fixed collimator size. The secondary neutron dose equivalent was found to decrease linearly with the collimator area for all methods of dose delivery. The relative values of the neutron dose equivalent for a collimator with a 5 cm diameter opening using 88 MeV protons were 1.0 for the double scattering field, 0.76 for rectangular uniform field, and 0.6 for the circular uniform field. Furthermore, when a single circle wobbling was optimized for delivery of a uniform field 5 cm in diameter, the secondary neutron dose equivalent was reduced by a factor of 6 compared to the double scattering nozzle. Additionally, when the collimator size was kept constant, the neutron dose equivalent at the given point of interest increased linearly with the area of the scanned proton beam. The results of these experiments suggest that the patient-specific collimator is a

  3. SPEAR — ToF neutron reflectometer at the Los Alamos Neutron Science Center

    NASA Astrophysics Data System (ADS)

    Dubey, M.; Jablin, M. S.; Wang, P.; Mocko, M.; Majewski, J.

    2011-11-01

    This article discusses the Surface ProfilE Analysis Reflectometer (SPEAR), a vertical scattering geometry time-of-flight reflectometer, at the Los Alamos National Laboratory Lujan Neutron Scattering Center. SPEAR occupies flight path 9 and receives spallation neutrons from a polychromatic, pulsed (20Hz) source that pass through a liquid-hydrogen moderator at 20K coupled with a Be filter to shift their energy spectrum. The spallation neutrons are generated by bombarding a tungsten target with 800MeV protons obtained from an accelerator. The process produces an integrated neutron flux of ˜ 3.4×106 cm-2 s-1 at a proton current of 100 μA. SPEAR employs choppers and frame overlap mirrors to obtain a neutron wavelength range of 4.5-16 Å. SPEAR uses a single 200mm long 3He linear position-sensitive detector with ˜ 2 mm FWHM resolution for simultaneous studies of both specular and off-specular scattering. SPEAR's moderated neutrons are collimated into a beam which impinges from above upon a level sample with an average angle of 0.9° to the horizontal, to facilitate air-liquid interface studies. In the vertical direction, the beam converges at the sample position. The neutrons can be further collimated to the desired divergence by finely slitting the beam using a set of two 10B4C slit packages. The instrument is ideally suited to study organic and inorganic thin films with total thicknesses between 5 and 3000 Å in a variety of environments. Specifically designed sample chambers available at the instrument provide the opportunity to study biological systems at the solid-liquid interface. SPEAR's unique experimental capabilities are demonstrated by specific examples in this article. Finally, an outlook for SPEAR and perspectives on future instrumentation are discussed.

  4. Neutron-scattering-based evidence for interacting magnetic excitons in LaCo O 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Khatib, S.; Phelan, D.; Barker, J. G.

    Recent progress with the thermally-driven spin-state crossover in LaCoO3 has made it increasingly apparent that the nominally non-magnetic low spin ground state of this material actually hosts novel defect-'based magnetism. This is investigated here via a small-angle neutron scattering (SANS) study of LaCoO3-s crystals. The results provide: (i) the surprising finding that the spin-state crossover is clearly reflected in SANS via quasielastic/inelastic scattering from paramagnetic spin fluctuations/excitations, and (ii) evidence for the formation, likely around oxygen defects, of local entities known as magnetic excitons. The latter generate distinct magnetic scattering below 60 K, providing valuable quantitative information on exciton densitiesmore » and interactions. Potential relevance to the unexpected ferromagnetism recently discovered in epitaxial LaCoO3 films is discussed.« less

  5. Time gating for energy selection and scatter rejection: High-energy pulsed neutron imaging at LANSCE

    NASA Astrophysics Data System (ADS)

    Swift, Alicia; Schirato, Richard; McKigney, Edward; Hunter, James; Temple, Brian

    2015-09-01

    The Los Alamos Neutron Science Center (LANSCE) is a linear accelerator in Los Alamos, New Mexico that accelerates a proton beam to 800 MeV, which then produces spallation neutron beams. Flight path FP15R uses a tungsten target to generate neutrons of energy ranging from several hundred keV to ~600 MeV. The beam structure has micropulses of sub-ns width and period of 1.784 ns, and macropulses of 625 μs width and frequency of either 50 Hz or 100 Hz. This corresponds to 347 micropulses per macropulse, or 1.74 x 104 micropulses per second when operating at 50 Hz. Using a very fast, cooled ICCD camera (Princeton Instruments PI-Max 4), gated images of various objects were obtained on FP15R in January 2015. Objects imaged included blocks of lead and borated polyethylene; a tungsten sphere; and a tungsten, polyethylene, and steel cylinder. Images were obtained in 36 min or less, with some in as little as 6 min. This is novel because the gate widths (some as narrow as 10 ns) were selected to reject scatter and other signal not of interest (e.g. the gamma flash that precedes the neutron pulse), which has not been demonstrated at energies above 14 MeV. This proof-of-principle experiment shows that time gating is possible above 14MeV and is useful for selecting neutron energy and reducing scatter, thus forming clearer images. Future work (simulation and experimental) is being undertaken to improve camera shielding and system design and to precisely determine optical properties of the imaging system.

  6. Ambient neutron dose equivalent during proton therapy using wobbling scanning system: Measurements and calculations

    NASA Astrophysics Data System (ADS)

    Lin, Yung-Chieh; Lee, Chung-Chi; Chao, Tsi-Chian; Tsai, Hui-Yu

    2017-11-01

    Neutron production is a concern in proton therapy, particularly in scattering proton beam delivery systems. Despite this fact, little is known about the effects of secondary neutron exposure around wobbling scattered proton treatment nozzles. The objective of this study was to estimate the neutron dose level resulting from the use of a wobbling scattered proton treatment unit. We applied the Monte Carlo method for predict the ambient neutron dose equivalent, H*(10), per absorbed dose at the treatment isocenter, D, in the proton therapy center of Chang Gung Memorial Hospital, Linkou, Taiwan. For a 190-MeV proton beam, H* (10) / D values typically decreased with the distance from the isocenter, being 1.106 mSv/Gy at the isocenter versus 0.112 mSv/Gy at a distance of 150 cm from the isocenter. The H* (10) / D values generally decreased as the neutron receptors moved away from the isocenter, and increased when the angle from the initial beam axis increased. The ambient neutron dose equivalents were observed to be slightly lower in the direction of multileaf collimator movement. For radiation protection, the central axis of a proton-treated patient is suggested to be at the 0° angle of the beam. If the beam direction at the 90° angle is necessary, the patient axis is suggested to be along with the direction of MLC movement. Our study provides the neutron dose level and neutron energy fluence for the first wobbling proton system at the proton therapy center of Chang Gung Memorial Hospital.

  7. Neutron production from beam-modifying devices in a modern double scattering proton therapy beam delivery system.

    PubMed

    Pérez-Andújar, Angélica; Newhauser, Wayne D; Deluca, Paul M

    2009-02-21

    In this work the neutron production in a passive beam delivery system was investigated. Secondary particles including neutrons are created as the proton beam interacts with beam shaping devices in the treatment head. Stray neutron exposure to the whole body may increase the risk that the patient develops a radiogenic cancer years or decades after radiotherapy. We simulated a passive proton beam delivery system with double scattering technology to determine the neutron production and energy distribution at 200 MeV proton energy. Specifically, we studied the neutron absorbed dose per therapeutic absorbed dose, the neutron absorbed dose per source particle and the neutron energy spectrum at various locations around the nozzle. We also investigated the neutron production along the nozzle's central axis. The absorbed doses and neutron spectra were simulated with the MCNPX Monte Carlo code. The simulations revealed that the range modulation wheel (RMW) is the most intense neutron source of any of the beam spreading devices within the nozzle. This finding suggests that it may be helpful to refine the design of the RMW assembly, e.g., by adding local shielding, to suppress neutron-induced damage to components in the nozzle and to reduce the shielding thickness of the treatment vault. The simulations also revealed that the neutron dose to the patient is predominated by neutrons produced in the field defining collimator assembly, located just upstream of the patient.

  8. Determination of wood grain direction from laser light scattering pattern

    NASA Astrophysics Data System (ADS)

    Simonaho, Simo-Pekka; Palviainen, Jari; Tolonen, Yrjö; Silvennoinen, Raimo

    2004-01-01

    Laser light scattering patterns from the grains of wood are investigated in detail to gain information about the characteristics of scattering patterns related to the direction of the grains. For this purpose, wood samples of Scots pine ( Pinus sylvestris L.) and silver birch ( Betula pubescens) were investigated. The orientation and shape of the scattering pattern of laser light in wood was found to correlate well with the direction of grain angles in a three-dimensional domain. The proposed method was also experimentally verified.

  9. Ligand-induced dynamical change of G-protein-coupled receptor revealed by neutron scattering

    NASA Astrophysics Data System (ADS)

    Shrestha, Utsab R.; Bhowmik, Debsindhu; Mamontov, Eugene; Chu, Xiang-Qiang

    Light activation of the visual G-protein-coupled receptor rhodopsin leads to the significant change in protein conformation and structural fluctuations, which further activates the cognate G-protein (transducin) and initiates the biological signaling. In this work, we studied the rhodopsin activation dynamics using state-of-the-art neutron scattering technique. Our quasi-elastic neutron scattering (QENS) results revealed a broadly distributed relaxation rate of the hydrogen atom in rhodopsin on the picosecond to nanosecond timescale (beta-relaxation region), which is crucial for the protein function. Furthermore, the application of mode-coupling theory to the QENS analysis uncovers the subtle changes in rhodopsin dynamics due to the retinal cofactor. Comparing the dynamics of the ligand-free apoprotein, opsin versus the dark-state rhodopsin, removal of the retinal cofactor increases the relaxation time in the beta-relaxation region, which is due to the possible open conformation. Moreover, we utilized the concept of free-energy landscape to explain our results for the dark-state rhodopsin and opsin dynamics, which can be further applied to other GPCR systems to interpret various dynamic behaviors in ligand-bound and ligand-free protein.

  10. Applying nonlinear diffusion acceleration to the neutron transport k-Eigenvalue problem with anisotropic scattering

    DOE PAGES

    Willert, Jeffrey; Park, H.; Taitano, William

    2015-11-01

    High-order/low-order (or moment-based acceleration) algorithms have been used to significantly accelerate the solution to the neutron transport k-eigenvalue problem over the past several years. Recently, the nonlinear diffusion acceleration algorithm has been extended to solve fixed-source problems with anisotropic scattering sources. In this paper, we demonstrate that we can extend this algorithm to k-eigenvalue problems in which the scattering source is anisotropic and a significant acceleration can be achieved. Lastly, we demonstrate that the low-order, diffusion-like eigenvalue problem can be solved efficiently using a technique known as nonlinear elimination.

  11. On scattered waves and lipid domains: detecting membrane rafts with X-rays and neutrons

    DOE PAGES

    Marquardt, Drew; Heberle, Frederick A.; Nickels, Jonathan D.; ...

    2015-09-21

    In order to understand the biological role of lipids in cell membranes, it is necessary to determine the mesoscopic structure of well-defined model membrane systems. Neutron and X-ray scattering are non-invasive, probe-free techniques that have been used extensively in such systems to probe length scales ranging from angstroms to microns, and dynamics occurring over picosecond to millisecond time scales. Finally, recent developments in the area of phase separated lipid systems mimicking membrane rafts will be presented, and the underlying concepts of the different scattering techniques used to study them will be discussed in detail.

  12. Molecular Dynamics and Neutron Scattering Studies of Mixed Solutions of Caffeine and Pyridine in Water.

    PubMed

    Tavagnacco, Letizia; Mason, Philip E; Neilson, George W; Saboungi, Marie-Louise; Cesàro, Attilio; Brady, John W

    2018-05-31

    Insight into the molecular interactions of homotactic and heterotactic association of caffeine and pyridine in aqueous solution is given on the basis of both experimental and simulation studies. Caffeine is about 5 times more soluble in a 3 m aqueous pyridine solution than it is in pure water (an increase from ∼0.1 m to 0.5 m). At this elevated concentration the system becomes suitable for neutron scattering study. Caffeine-pyridine interactions were studied by neutron scattering and molecular dynamics simulations, allowing a detailed characterization of the spatial and orientational structure of the solution. It was found that while pyridine-caffeine interactions are not as strong as caffeine-caffeine interactions, the pyridine-caffeine interactions still significantly disrupted caffeine-caffeine stacking. The alteration of the caffeine-caffeine stacking, occasioned by the presence of pyridine molecules in solution and the consequent formation of heterotactic interactions, leads to the experimentally detected increase in caffeine solubility.

  13. In-situ Neutron Scattering Determination of 3D Phase-Morphology Correlations in Fullerene Block Copolymer Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karim, Alamgir; Bucknall, David; Raghavan, Dharmaraj

    2015-02-23

    mostly a fundamental study that does not set out to evaluate new materials or produce devices, but rather we wish to understand from first principles how the molecular structure of polymer-fullerene mixtures determined using neutron scattering (small angle neutron scattering and neutron reflection) affects device characteristics and consequently performance. While this seems a very obvious question to ask, this critical understanding is far from being realized despite the wealth of studies into OPV’s and is severely limiting organic PV devices from achieving their theoretical potential. Despite the fundamental nature of proposed work, it is essential to remain technologically relevant and therefore to ensure we address these issues we have developed relationships on the fundamental nature of structure-processing-property paradigm as applied to future need for large area, flexible OPV devices. Nanoscale heterojunction systems consisting of fullerenes dispersed in conjugated polymers are promising materials candidates for achieving high performance organic photovoltaic (OPV) devices. In order to understand the phase behavior in these devices, neutron reflection is used to determine the behavior of model conjugated polymer-fullerene mixtures. Neutron reflection is particularly useful for these types of thin film studies since the fullerene generally have a high scattering contrast with respect to most polymers. We are studying model bulk heterojunction (BHJ) films based on mixtures of poly(3-hexyl thiophene)s (P3HT), a widely used photoconductive polymer, and different fullerenes (C60, PCBM and bis-PCBM). The characterization technique of neutron reflectivity measurements have been used to determine film morphology in a direction normal to the film surfaces. The novelty of the approach over previous studies is that the BHJ layer is sandwiched between a PEDOT/PSS and Al layers in real device configuration. Using this model system, the effect of typical thermal annealing

  14. Workshop on Probing Frontiers in Matter with Neutron Scattering, Wrap-up Session Chaired by John C. Browne on December 14, 1997, at Fuller Lodge, Los Alamos, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mezei, F.; Thompson, J.

    1998-12-01

    The Workshop on Probing Frontiers in Matter with Neutron Scattering consisted of a series of lectures and discussions about recent highlights in neutron scattering. In this report, we present the transcript of the concluding discussion session (wrap-up session) chaired by John C. Browne, Director of Los Alamos National Laboratory. The workshop had covered a spectrum of topics ranging from high T{sub c} superconductivity to polymer science, from glasses to molecular biology, a broad review aimed at identifying trends and future needs in condensed matter research. The focus of the wrap-up session was to summarize the workshop participants' views on developmentsmore » to come. Most of the highlights presented during the workshop were the result of experiments performed at the leading reactor-based neutron scattering facilities. However, recent advances with very high power accelerators open up opportunities to develop new approaches to spallation technique that could decisively advance neutron scattering research in areas for which reactor sources are today by far the best choice. The powerful combination of neutron scattering and increasingly accurate computer modeling emerged as another area of opportunity for research in the coming decades.« less

  15. Quasielastic neutron scattering measurements and ab initio MD-simulations on single ion motions in molten NaF

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demmel, F.; Mukhopadhyay, S.; Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ

    2016-01-07

    The ionic stochastic motions in the molten alkali halide NaF are investigated by quasielastic neutron scattering and first principles molecular dynamics simulation. Quasielastic neutron scattering was employed to extract the diffusion behavior of the sodium ions in the melt. An extensive first principles based simulation on a box of up to 512 particles has been performed to complement the experimental data. From that large box, a smaller 64-particle box has then been simulated over a runtime of 60 ps. A good agreement between calculated and neutron data on the level of spectral shape has been obtained. The obtained sodium diffusionmore » coefficients agree very well. The simulation predicts a fluorine diffusion coefficient similar to the sodium one. Applying the Nernst-Einstein equation, a remarkable large cross correlation between both ions can be deduced. The velocity cross correlations demonstrate a positive correlation between the ions over a period of 0.1 ps. That strong correlation is evidence that the unlike ions do not move completely statistically independent and have a strong association over a short period of time.« less

  16. Indigenous design and development of multiPSD array for time of flight neutron spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desai, Shraddha S., E-mail: ssdesai@barc.gov.in; Devan, Shylaja; Das, Amrita

    Time of Flight neutron Spectrometer for inelastic neutron scattering studies is being commissioned at Dhruva reactor. Neutron pulse tagging is carried out using the Fermi chopper. Scattered neutrons at maximum possible scattered solid angle are needed to be detected along with the time information at detector. Precise and efficient detection system is essential for measurement of spatial and temporal distribution. Detection area is optimized to cover an angle of 70° in horizontal direction and 23° in vertical direction. Position sensitive detectors (PSDs) are designed with judicial use of precious {sup 3}He gas and a few PSDs with BF{sub 3} gasmore » as suitable alternative for {sup 3}He gas. An array of vertically arranged 1 m long, 50 PSDs, covers the arc length of 2.5 m and detection area 2.5 m{sup 2}. The design of the BF{sub 3} PSDs is supported by investigations on the gas purity, fill gas pressure, drift region, drift field and neutron absorption in cathode wall. Design details and performance of the PSDs are presented in the paper.« less

  17. Compton Scattering Cross Sections in Strong Magnetic Fields: Advances for Neutron Star Applications

    NASA Astrophysics Data System (ADS)

    Eiles, Matthew; Gonthier, P. L.; Baring, M. G.; Wadiasingh, Z.

    2013-04-01

    Various telescopes including RXTE, INTEGRAL and Suzaku have detected non-thermal X-ray emission in the 10 - 200 keV band from strongly magnetic neutron stars. Inverse Compton scattering, a quantum-electrodynamical process, is believed to be a leading candidate for the production of this intense X-ray radiation. Magnetospheric conditions are such that electrons may well possess ultra-relativistic energies, which lead to attractive simplifications of the cross section. We have recently addressed such a case by developing compact analytic expressions using correct spin-dependent widths and Sokolov & Ternov (ST) basis states, focusing specifically on ground state-to-ground state scattering. However, inverse Compton scattering can cool electrons down to mildly-relativistic energies, necessitating the development of a more general case where the incoming photons acquire nonzero incident angles relative to the field in the rest frame of the electron, and the intermediate state can be excited to arbitrary Landau levels. In this paper, we develop results pertaining to this general case using ST formalism, and treating the plethora of harmonic resonances associated with various cyclotron transitions between Landau states. Four possible scattering modes (parallel-parallel, perpendicular-perpendicular, parallel-perpendicular, and perpendicular-parallel) encapsulate the polarization dependence of the cross section. We present preliminary analytic and numerical investigations of the magnitude of the extra Landau state contributions to obtain the full cross section, and compare these new analytic developments with the spin-averaged cross sections, which we develop in parallel. Results will find application to various neutron star problems, including computation of Eddington luminosities in the magnetospheres of magnetars. We express our gratitude for the generous support of the Michigan Space Grant Consortium, of the National Science Foundation (REU and RUI), and the NASA

  18. Quasiparticle Interactions in Neutron Matter for Applications in Neutron Stars

    NASA Technical Reports Server (NTRS)

    Wambach, J; Ainsworth, T. L.; Pines, D.

    1993-01-01

    A microscopic model for the quasiparticle interaction in neutron matter is presented. Both-particle (pp) and particle-hole (ph) correlations are included. The pp correlations are treated in semi-empirical way, while ph correlations are incorporated by solving coupled two-body equations for particle-hole interaction and the scattering amplitude of the Fermi sphere. The resulting integral equations self-consistently sum the ph reducible diagrams. Antisymmetry is kept at all stages and hence the forward-scattering sum rules for the scattering amplitude are obeyed. Results for Landau parameters and transport coefficients in a density regime representing the crust of a neutron star are presented. We also estimate the (1)S(sub 0) gap parameter for neutron superfluidity and comment briefly on neutron-star implications.

  19. Stabilization of Model Membrane Systems by Disaccharides. Quasielastic Neutron Scattering Experiments and Atomistic Simulations

    NASA Astrophysics Data System (ADS)

    Doxastakis, Emmanouil; Garcia Sakai, Victoria; Ohtake, Satoshi; Maranas, Janna K.; de Pablo, Juan J.

    2006-03-01

    Trehalose, a disaccharide of glucose, is often used for the stabilization of cell membranes in the absence of water. This work studies the effects of trehalose on model membrane systems as they undergo a melting transition using a combination of experimental methods and atomistic molecular simulations. Quasielastic neutron scattering experiments on selectively deuterated samples provide the incoherent dynamic structure over a wide time range. Elastic scans probing the lipid tail dynamics display clear evidence of a main melting transition that is significantly lowered in the presence of trehalose. Lipid headgroup mobility is considerably restricted at high temperatures and directly associated with the dynamics of the sugar in the mixture. Molecular simulations provide a detailed overview of the dynamics and their spatial and time dependence. The combined simulation and experimental methodology offers a unique, molecular view of the physics of systems commonly employed in cryopreservation and lyophilization processes.

  20. Neutron Scattering Studies of Nano-Scale Wood-Water Interactions

    NASA Astrophysics Data System (ADS)

    Plaza Rodriguez, Nayomi Z.

    Understanding and controlling water in wood is critical to both improving forest products moisture durability and developing new sustainable forest products-based technologies. While wood is known to be hygroscopic, there is still a lack of understanding on the nanoscale wood-water interactions necessary for increased moisture-durability and dimensional stability. My PhD thesis focuses on the development and implementation of neutron scattering methods that can provide insight on both the structural and dynamical changes associated with these interactions so that products with improved moisture durability can be developed efficiently. Using small angle neutron scattering (SANS) and a custom-built in situ relative humidity chamber I studied the anisotropic moisture-induced swelling of wood nanostructure. First, I studied the effects of sample preparation by comparing SANS patterns of wiley milled wood and intact latewood cell walls, and found that scattering from intact wood provide more information about the spatial arrangement of the wood nanostructures inside the cell wall. Comparisons between SANS patterns from earlywood and latewood, also showed that the higher cell wall density of latewood cell walls results in patterns with more pronounced anisotropic features. Then, by measuring latewood loblolly pine sections obtained from the same growth ring and prepared in each of the primary wood planes, I tracked the cellulose elementary fibril spacing as a function of humidity in both intact and partially cut cell walls. These studies showed that even though swelling at the elementary fibril spacing is responsible for the majority of the transverse swelling observed at the S2 level, it is not primary plane dependent. Additionally, there were no differences in the elementary fibril spacing between partially-cut and intact cell walls, except at high humidity where the spacing in partially-cut cells was higher. SANS was also used to study the effects of two chemical

  1. Neutron density distributions of {sup 204,206,208}Pb deduced via proton elastic scattering at E{sub p}=295 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zenihiro, J.; Sakaguchi, H.; Murakami, T.

    Cross sections and analyzing powers for polarized proton elastic scattering from {sup 58}Ni, and {sup 204,206,208}Pb were measured at intermediate energy E{sub p}=295 MeV. An effective relativistic Love-Franey interaction is tuned to reproduce {sup 58}Ni scattering data within the framework of the relativistic impulse approximation. The neutron densities of the lead isotopes are deduced using model-independent sum-of-Gaussians distributions. Their error envelopes are estimated by a new {chi}{sup 2} criterion including uncertainties associated with the reaction model. The systematic behaviors of extracted error envelopes of the neutron density distributions in {sup 204,206,208}Pb are presented. The extracted neutron and proton density distributionmore » of {sup 208}Pb gives a neutron skin thickness of {Delta}r{sub np}=0.211{sub -0.063}{sup +0.054} fm.« less

  2. High-pressure cells for study of condensed matter by diffraction and inelastic neutron scattering at low temperatures and in strong magnetic fields

    NASA Astrophysics Data System (ADS)

    Sadykov, R. A.; Strassle, Th; Podlesnyak, A.; Keller, L.; Fak, B.; Mesot, J.

    2017-12-01

    We have developed and implemented series of new original clamp high-pressure cells for neutron diffraction and inelastic neutron scattering at low temperatures. The cells design allows one to place them in the standard cryostats or cryomagnets used on neutron sources. Some results obtained for ZnCr2Se4 are demonstrated as an example.

  3. C-Phycocyanin Hydration Water Dynamics in the Presence of Trehalose: An Incoherent Elastic Neutron Scattering Study at Different Energy Resolutions

    PubMed Central

    Gabel, Frank; Bellissent-Funel, Marie-Claire

    2007-01-01

    We present a study of C-phycocyanin hydration water dynamics in the presence of trehalose by incoherent elastic neutron scattering. By combining data from two backscattering spectrometers with a 10-fold difference in energy resolution we extract a scattering law S(Q,ω) from the Q-dependence of the elastic intensities without sampling the quasielastic range. The hydration water is described by two dynamically different populations—one diffusing inside a sphere and the other diffusing quasifreely—with a population ratio that depends on temperature. The scattering law derived describes the experimental data from both instruments excellently over a large temperature range (235–320 K). The effective diffusion coefficient extracted is reduced by a factor of 10–15 with respect to bulk water at corresponding temperatures. Our approach demonstrates the benefits and the efficiency of using different energy resolutions in incoherent elastic neutron scattering over a large angular range for the study of biological macromolecules and hydration water. PMID:17350998

  4. Spin disorder in maghemite nanoparticles investigated using polarized neutrons and nuclear resonant scattering

    NASA Astrophysics Data System (ADS)

    Herlitschke, M.; Disch, S.; Sergueev, I.; Schlage, K.; Wetterskog, E.; Bergström, L.; Hermann, R. P.

    2016-04-01

    The manuscript reports the investigation of spin disorder in maghemite nanoparticles of different shape by a combination of polarized small-angle neutron scattering (SANSPOL) and nuclear forward scattering (NFS) techniques. Both methods are sensitive to magnetization on the nanoscale. SANSPOL allows for investigation of the particle morphology and spatial magnetization distribution and NFS extends this nanoscale information to the atomic scale, namely the orientation of the hyperfine field experienced by the iron nuclei. The studied nanospheres and nanocubes with diameters of 7.4 nm and 10.6 nm, respectively, exhibit a significant spin disorder. This effect leads to a reduction of the magnetization to 44% and 58% of the theoretical maghemite bulk value, observed consistently by both techniques.

  5. Diffusive properties of Vitamin C aqueous solutions by quasielastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Migliardo, F.; Magazù, S.; Migliardo, P.

    2001-07-01

    Quasi elastic neutron scattering (QENS) results on aqueous solutions of L-ascorbic acid (Vitamin C) are reported. Data, collected by the IRIS spectrometer at the ISIS facility on partially deuterated L-ascorbic acid in D 2O and on hydrogenated L-ascorbic acid in H 2O, allow to characterize the diffusive dynamics of both hydrated Vitamin C and water, revealing that this latter is strongly affected by the presence of L-ascorbic acid and furnishing a hydration number value of ∼5 at T=33°C.

  6. Neutron production from beam-modifying devices in a modern double scattering proton therapy beam delivery system

    PubMed Central

    Pérez-Andújar, Angélica; Newhauser, Wayne D; DeLuca, Paul M

    2014-01-01

    In this work the neutron production in a passive beam delivery system was investigated. Secondary particles including neutrons are created as the proton beam interacts with beam shaping devices in the treatment head. Stray neutron exposure to the whole body may increase the risk that the patient develops a radiogenic cancer years or decades after radiotherapy. We simulated a passive proton beam delivery system with double scattering technology to determine the neutron production and energy distribution at 200 MeV proton energy. Specifically, we studied the neutron absorbed dose per therapeutic absorbed dose, the neutron absorbed dose per source particle and the neutron energy spectrum at various locations around the nozzle. We also investigated the neutron production along the nozzle's central axis. The absorbed doses and neutron spectra were simulated with the MCNPX Monte Carlo code. The simulations revealed that the range modulation wheel (RMW) is the most intense neutron source of any of the beam spreading devices within the nozzle. This finding suggests that it may be helpful to refine the design of the RMW assembly, e.g., by adding local shielding, to suppress neutron-induced damage to components in the nozzle and to reduce the shielding thickness of the treatment vault. The simulations also revealed that the neutron dose to the patient is predominated by neutrons produced in the field defining collimator assembly, located just upstream of the patient. PMID:19147903

  7. Neutron scattering from 208Pb at 30.4 and 40.0 MeV and isospin dependence of the nucleon optical potential

    NASA Astrophysics Data System (ADS)

    Devito, R. P.; Khoa, Dao T.; Austin, Sam M.; Berg, U. E. P.; Loc, Bui Minh

    2012-02-01

    Background: Analysis of data involving nuclei far from stability often requires the optical potential (OP) for neutron scattering. Because neutron data are seldom available, whereas proton scattering data are more abundant, it is useful to have estimates of the difference of the neutron and proton optical potentials. This information is contained in the isospin dependence of the nucleon OP. Here we attempt to provide it for the nucleon-208Pb system.Purpose: The goal of this paper is to obtain accurate n+208Pb scattering data and use it, together with existing p+208Pb and 208Pb(p,n)208BiIAS* data, to obtain an accurate estimate of the isospin dependence of the nucleon OP at energies in the 30-60-MeV range.Method: Cross sections for n+208Pb scattering were measured at 30.4 and 40.0 MeV, with a typical relative (normalization) accuracy of 2-4% (3%). An angular range of 15∘ to 130∘ was covered using the beam-swinger time-of-flight system at Michigan State University. These data were analyzed by a consistent optical-model study of the neutron data and of elastic p+208Pb scattering at 45 and 54 MeV. These results were combined with a coupled-channel analysis of the 208Pb(p,n) reaction at 45 MeV, exciting the 0+ isobaric analog state (IAS) in 208Bi.Results: The new data and analysis give an accurate estimate of the isospin impurity of the nucleon-208Pb OP at 30.4 MeV caused by the Coulomb correction to the proton OP. The corrections to the real proton OP given by the CH89 global systematics were found to be only a few percent, whereas for the imaginary potential it was greater than 20% at the nuclear surface. On the basis of the analysis of the measured elastic n+208Pb data at 40 MeV, a Coulomb correction of similar strength and shape was also predicted for the p+208Pb OP at energies around 54 MeV.Conclusions: Accurate neutron scattering data can be used in combination with proton scattering data and (p,n) charge exchange data leading to the IAS to obtain reliable

  8. Sensitivity studies of beam directionality, beam size, and neutron spectrum for a fission converter-based epithermal neutron beam for boron neutron capture therapy.

    PubMed

    Sakamoto, S; Kiger, W S; Harling, O K

    1999-09-01

    Sensitivity studies of epithermal neutron beam performance in boron neutron capture therapy are presented for realistic neutron beams with varying filter/moderator and collimator/delimiter designs to examine the relative importance of neutron beam spectrum, directionality, and size. Figures of merit for in-air and in-phantom beam performance are calculated via the Monte Carlo technique for different well-optimized designs of a fission converter-based epithermal neutron beam with head phantoms as the irradiation target. It is shown that increasing J/phi, a measure of beam directionality, does not always lead to corresponding monotonic improvements in beam performance. Due to the relatively low significance, for most configurations, of its effect on in-phantom performance and the large intensity losses required to produce beams with very high J/phi, beam directionality should not be considered an important figure of merit in epithermal neutron beam design except in terms of its consequences on patient positioning and collateral dose. Hardening the epithermal beam spectrum, while maintaining the specific fast neutron dose well below the inherent hydrogen capture dose, improves beam penetration and advantage depth and, as a desirable by-product, significantly increases beam intensity. Beam figures of merit are shown to be strongly dependent on beam size relative to target size. Beam designs with J/phi approximately 0.65-0.7, specific fast neutron doses of 2-2.6x10(-13) Gy cm2/n and beam sizes equal to or larger than the size of the head target produced the deepest useful penetration, highest therapeutic ratios, and highest intensities.

  9. Scattering from fractals

    NASA Astrophysics Data System (ADS)

    Hurd, Alan J.

    The realization that structures in Nature often can be described by Mandelbrot's fractals has led to a revolution in many areas of physics. The interaction of waves with fractal systems has, understandably, become intensely studied since scattering is the method of choice to probe delicate fractal structures such as chainlike particle aggregates. Not all of these waves are electromagnetic. Neutron scattering, for example, is an important complementary tool to structural studies by X-ray and light scattering. Since the phenomenology of small-angle neutron scattering (SANS), as it is applied to fractal systems, is identical to that of small-angle X-ray scattering (SAXS), it falls within the scope of this paper.

  10. Inelastic neutron scattering and molecular simulation of the dynamics of interlayer water in smectite clay minerals

    DOE PAGES

    Cygan, Randall T.; Daemen, Luke L.; Ilgen, Anastasia G.; ...

    2015-11-16

    The study of mineral–water interfaces is of great importance to a variety of applications including oil and gas extraction, gas subsurface storage, environmental contaminant treatment, and nuclear waste repositories. Understanding the fundamentals of that interface is key to the success of those applications. Confinement of water in the interlayer of smectite clay minerals provides a unique environment to examine the interactions among water molecules, interlayer cations, and clay mineral surfaces. Smectite minerals are characterized by a relatively low layer charge that allows the clay to swell with increasing water content. Montmorillonite and beidellite varieties of smectite were investigated to comparemore » the impact of the location of layer charge on the interlayer structure and dynamics. Inelastic neutron scattering of hydrated and dehydrated cation-exchanged smectites was used to probe the dynamics of the interlayer water (200–900 cm –1 spectral region) and identify the shift in the librational edge as a function of the interlayer cation. Molecular dynamics simulations of equivalent phases and power spectra, derived from the resulting molecular trajectories, indicate a general shift in the librational behavior with interlayer cation that is generally consistent with the neutron scattering results for the monolayer hydrates. Both neutron scattering and power spectra exhibit librational structures affected by the location of layer charge and by the charge of the interlayer cation. Furthermore, divalent cations (Ba 2+ and Mg 2+) characterized by large hydration enthalpies typically exhibit multiple broad librational peaks compared to monovalent cations (Cs + and Na +), which have relatively small hydration enthalpies.« less

  11. Neutron and x-ray scattering study of phonon dispersion and diffuse scattering in (Na ,Bi ) Ti O3-x BaTi O3 single crystals near the morphotropic phase boundary

    NASA Astrophysics Data System (ADS)

    Luo, Chengtao; Bansal, Dipanshu; Li, Jiefang; Viehland, Dwight; Winn, Barry; Ren, Yang; Li, Xiaobing; Luo, Haosu; Delaire, Olivier

    2017-11-01

    Neutron and x-ray scattering measurements were performed on (N a1 /2B i1 /2 ) Ti O3-x at %BaTi O3 (NBT-x BT ) single crystals (x =4 , 5, 6.5, and 7.5) across the morphotropic phase boundary (MPB), as a function of both composition and temperature, and probing both structural and dynamical aspects. In addition to the known diffuse scattering pattern near the Γ points, our measurements revealed new, faint superlattice peaks, as well as an extensive diffuse scattering network, revealing a short-range ordering of polar nanoregions (PNR) with a static stacking morphology. In samples with compositions closest to the MPB, our inelastic neutron scattering investigations of the phonon dynamics showed two unusual features in the acoustic phonon branches, between the superlattice points, and between the superlattice points and Γ points, respectively. These critical elements are not present in the other compositions away from the MPB, which suggests that these features may be related to the tilt modes coupling behavior near the MPB.

  12. Small Angle Neutron Scattering experiments on ``side-on fixed"" liquid crystal polyacrylates

    NASA Astrophysics Data System (ADS)

    Leroux, N.; Keller, P.; Achard, M. F.; Noirez, L.; Hardouin, F.

    1993-08-01

    Small Angle Neutron Scattering experiments were carried out on liquid crystalline “side-on fixed” polyacrylates : we observe that the polymer backbone adopts a prolate conformation in the nematic phase. Such anisotropy of the global backbone is larger for smaller spacer length. In every case we measure at low temperatures a large chain extension as previously described in polysiloxanes. Par diffusion des neutrons aux petits angles nous observons que la chaîne de polyacrylates “en haltère” adopte une conformation type prolate en phase nématique. Son anisotropie est d'autant plus grande que l'espaceur est plus court. Dans tous les cas, nous retrouvons à basse température la forte extension de la chaîne polymère qui fut d'abord révélée dans les polysiloxanes.

  13. NEUTRON SCATTERING STUDY OF THE HIGH-Tc SUPERCONDUCTING SYSTEM YBa2Cu3O6+x

    NASA Astrophysics Data System (ADS)

    Rossat-Mignod, J.; Regnault, L. P.; Bourges, P.; Burlet, P.; Vettier, C.; Henry, J. Y.

    The following sections are included: * Introduction * The neutron scattering technique * Phase diagrams of high-Tc superconductors * The undoped AF-doped * The doped AF-state * The weakly-doped metallic state * The heavily-doped metallic state * The overdoped metallic state * Discussion and concluding remarks * Acknowledgements * References

  14. Neutron Scattering Measurements of Carbon Dioxide Adsorption in Pores within the Marcellus Shale: Implications for Sequestration.

    PubMed

    Stefanopoulos, Konstantinos L; Youngs, Tristan G A; Sakurovs, Richard; Ruppert, Leslie F; Bahadur, Jitendra; Melnichenko, Yuri B

    2017-06-06

    Shale is an increasingly viable source of natural gas and a potential candidate for geologic CO 2 sequestration. Understanding the gas adsorption behavior on shale is necessary for the design of optimal gas recovery and sequestration projects. In the present study neutron diffraction and small-angle neutron scattering measurements of adsorbed CO 2 in Marcellus Shale samples were conducted on the Near and InterMediate Range Order Diffractometer (NIMROD) at the ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory along an adsorption isotherm of 22 °C and pressures of 25 and 40 bar. Additional measurements were conducted at approximately 22 and 60 °C at the same pressures on the General-Purpose Small-Angle Neutron Scattering (GP-SANS) instrument at Oak Ridge National Laboratory. The structures investigated (pores) for CO 2 adsorption range in size from Å level to ∼50 nm. The results indicate that, using the conditions investigated densification or condensation effects occurred in all accessible pores. The data suggest that at 22 °C the CO 2 has liquid-like properties when confined in pores of around 1 nm radius at pressures as low as 25 bar. Many of the 2.5 nm pores, 70% of 2 nm pores, most of the <1 nm pores, and all pores <0.25 nm, are inaccessible or closed to CO 2 , suggesting that despite the vast numbers of micropores in shale, the micropores will be unavailable for storage for geologic CO 2 sequestration.

  15. Gate-opening effect in ZIF-8: the first experimental proof using inelastic neutron scattering

    DOE PAGES

    Casco, M. E.; Cheng, Y. Q.; Daemen, L. L.; ...

    2016-01-28

    In order to understand the behavior of industrial molecular separations, the gate-opening phenomenon in ZIFs are of paramount importance. We show for the first time using in situ inelastic neutron scattering (INS) the swinging of the -CH 3 groups and the imidazolate linkers in the prototypical ZIF-8 and ZIF-8@AC hybrid materials upon exposure to mild N 2 pressure.

  16. The frustrated fcc antiferromagnet Ba 2 YOsO 6: Structural characterization, magnetic properties and neutron scattering studies

    DOE PAGES

    Kermarrec, E.; Marjerrison, Casey A.; Thompson, C. M.; ...

    2015-02-26

    Here we report the crystal structure, magnetization, and neutron scattering measurements on the double perovskite Ba 2 YOsO 6. The Fmmore » $$\\bar{3}$$m space group is found both at 290 K and 3.5 K with cell constants a 0=8.3541(4) Å and 8.3435(4) Å, respectively. Os 5+ (5d 3) ions occupy a nondistorted, geometrically frustrated face-centered-cubic (fcc) lattice. A Curie-Weiss temperature θ ~₋700 K suggests the presence of a large antiferromagnetic interaction and a high degree of magnetic frustration. A magnetic transition to long-range antiferromagnetic order, consistent with a type-I fcc state below T N~69 K, is revealed by magnetization, Fisher heat capacity, and elastic neutron scattering, with an ordered moment of 1.65(6) μ B on Os 5+. The ordered moment is much reduced from either the expected spin-only value of ~3 μ B or the value appropriate to 4d 3 Ru 5+ in isostructural Ba 2 YRuO 6 of 2.2(1) μ B, suggesting a role for spin-orbit coupling (SOC). Triple-axis neutron scattering measurements of the order parameter suggest an additional first-order transition at T=67.45 K, and the existence of a second-ordered state. We find time-of-flight inelastic neutron results reveal a large spin gap Δ~17 meV, unexpected for an orbitally quenched, d 3 electronic configuration. In conclusion, we discuss this in the context of the ~5 meV spin gap observed in the related Ru 5+,4d 3 cubic double perovskite Ba 2YRuO 6, and attribute the ~3 times larger gap to stronger SOC present in this heavier, 5d, osmate system.« less

  17. Investigation of the structure of unilamellar dimyristoylphosphatidylcholine vesicles in aqueous sucrose solutions by small-angle neutron and X-ray scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kiselev, M. A., E-mail: elena@jinr.ru; Zemlyanaya, E. V.; Zhabitskaya, E. I.

    2015-01-15

    The structure of a polydispersed population of unilamellar dimyristoylphosphatidylcholine (DMPC) vesicles in sucrose solutions has been investigated by small-angle neutron scattering (SANS) and small-angle X-ray scattering (SAXS). Calculations within the model of separated form factors (SFF) show that the structure of the vesicle system depends strongly on the sucrose concentration.

  18. Spin disorder in maghemite nanoparticles investigated using polarized neutrons and nuclear resonant scattering

    DOE PAGES

    Herlitschke, Marcus; Disch, Sabrina; Sergueev, I.; ...

    2016-05-11

    The manuscript reports the investigation of spin disorder in maghemite nanoparticles of different shape by a combination of polarized small-angle neutron scattering (SANSPOL) and nuclear forward scattering (NFS) techniques. Both methods are sensitive to magnetization on the nanoscale. SANSPOL allows for investigation of the particle morphology and spatial magnetization distribution and NFS extends this nanoscale information to the atomic scale, namely the orientation of the hyperfine field experienced by the iron nuclei. The studied nanospheres and nanocubes with diameters of 7.4nm and 10.6 nm, respectively, exhibit a significant spin disorder. This effect leads to a reduction of the magnetization tomore » 44% and 58% of the theoretical maghemite bulk value, observed consistently by both techniques.« less

  19. Investigations of homologous disaccharides by elastic incoherent neutron scattering and wavelet multiresolution analysis

    NASA Astrophysics Data System (ADS)

    Magazù, S.; Migliardo, F.; Vertessy, B. G.; Caccamo, M. T.

    2013-10-01

    In the present paper the results of a wavevector and thermal analysis of Elastic Incoherent Neutron Scattering (EINS) data collected on water mixtures of three homologous disaccharides through a wavelet approach are reported. The wavelet analysis allows to compare both the spatial properties of the three systems in the wavevector range of Q = 0.27 Å-1 ÷ 4.27 Å-1. It emerges that, differently from previous analyses, for trehalose the scalograms are constantly lower and sharper in respect to maltose and sucrose, giving rise to a global spectral density along the wavevector range markedly less extended. As far as the thermal analysis is concerned, the global scattered intensity profiles suggest a higher thermal restrain of trehalose in respect to the other two homologous disaccharides.

  20. Spin disorder in maghemite nanoparticles investigated using polarized neutrons and nuclear resonant scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herlitschke, Marcus; Disch, Sabrina; Sergueev, I.

    The manuscript reports the investigation of spin disorder in maghemite nanoparticles of different shape by a combination of polarized small-angle neutron scattering (SANSPOL) and nuclear forward scattering (NFS) techniques. Both methods are sensitive to magnetization on the nanoscale. SANSPOL allows for investigation of the particle morphology and spatial magnetization distribution and NFS extends this nanoscale information to the atomic scale, namely the orientation of the hyperfine field experienced by the iron nuclei. The studied nanospheres and nanocubes with diameters of 7.4nm and 10.6 nm, respectively, exhibit a significant spin disorder. This effect leads to a reduction of the magnetization tomore » 44% and 58% of the theoretical maghemite bulk value, observed consistently by both techniques.« less

  1. Users guide to finger, thumb, and triple axis real time experiment control programs. [Neutron scattering spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pinter, T.G.; Notis, E.M.

    1977-04-01

    This manual provides the user with instructions for using the real time control system for the neutron scattering spectrometers: finger, thumb, and triple axis. The input requirements of the various programs are described in detail. Logging on procedures, program loading, and data set organization are also discussed.

  2. Multiphonon: Phonon Density of States tools for Inelastic Neutron Scattering Powder Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y. Y. Lin, Jiao; Islam, Fahima; Kresh, Max

    The multiphonon python package calculates phonon density of states, a reduced representation of vibrational property of condensed matter (see, for example, Section “Density of Normal Modes” in Chapter 23 “Quantum Theory of the Harmonic Crystal” of (Ashcroft and Mermin 2011)), from inelastic neutron scattering (see, for example (B. Fultz et al. 2006–2016)) spectrum from a powder sample. Inelastic neutron spectroscopy (INS) is a probe of excitations in solids of vibrational or magnetic origins. In INS, neutrons can lose(gain) energy to(from) the solid in the form of quantized lattice vibrations – phonons. Measuring phonon density of states is usually the firstmore » step in determining the phonon properties of a material experimentally. Phonons play a very important role in understanding the physical properties of a solid, including thermal conductivity and electrical conductivity. Hence, INS is an important tool for studying thermoelectric materials (Budai et al. 2014, Li et al. (2015)), where low thermal conductivity and high electrical conductivity are desired. Study of phonon entropy also made important contributions to the research of thermal dynamics and phase stability of materials (B. Fultz 2010, bogdanoff2002phonon, swan2006vibrational).« less

  3. Multiphonon: Phonon Density of States tools for Inelastic Neutron Scattering Powder Data

    DOE PAGES

    Y. Y. Lin, Jiao; Islam, Fahima; Kresh, Max

    2018-01-29

    The multiphonon python package calculates phonon density of states, a reduced representation of vibrational property of condensed matter (see, for example, Section “Density of Normal Modes” in Chapter 23 “Quantum Theory of the Harmonic Crystal” of (Ashcroft and Mermin 2011)), from inelastic neutron scattering (see, for example (B. Fultz et al. 2006–2016)) spectrum from a powder sample. Inelastic neutron spectroscopy (INS) is a probe of excitations in solids of vibrational or magnetic origins. In INS, neutrons can lose(gain) energy to(from) the solid in the form of quantized lattice vibrations – phonons. Measuring phonon density of states is usually the firstmore » step in determining the phonon properties of a material experimentally. Phonons play a very important role in understanding the physical properties of a solid, including thermal conductivity and electrical conductivity. Hence, INS is an important tool for studying thermoelectric materials (Budai et al. 2014, Li et al. (2015)), where low thermal conductivity and high electrical conductivity are desired. Study of phonon entropy also made important contributions to the research of thermal dynamics and phase stability of materials (B. Fultz 2010, bogdanoff2002phonon, swan2006vibrational).« less

  4. Detection of submicron-sized raft-like domains in membranes by small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Pencer, J.; Mills, T.; Anghel, V.; Krueger, S.; Epand, R. M.; Katsaras, J.

    2005-12-01

    Using coarse grained models of heterogeneous vesicles we demonstrate the potential for small-angle neutron scattering (SANS) to detect and distinguish between two different categories of lateral segregation: 1) unilamellar vesicles (ULV) containing a single domain and 2) the formation of several small domains or “clusters” (~10 nm in radius) on a ULV. Exploiting the unique sensitivity of neutron scattering to differences between hydrogen and deuterium, we show that the liquid ordered (lo) DPPC-rich phase can be selectively labeled using chain deuterated dipalymitoyl phosphatidylcholine (dDPPC), which greatly facilitates the use of SANS to detect membrane domains. SANS experiments are then performed in order to detect and characterize, on nanometer length scales, lateral heterogeneities, or so-called “rafts”, in ~30 nm radius low polydispersity ULV made up of ternary mixtures of phospholipids and cholesterol. For 1:1:1 DOPC:DPPC:cholesterol (DDC) ULV we find evidence for the formation of lateral heterogeneities on cooling below 30 °C. These heterogeneities do not appear when DOPC is replaced by SOPC. Fits to the experimental data using coarse grained models show that, at room temperature, DDC ULV each exhibit approximately 30 domains with average radii of ~10 nm.

  5. The LANL/LLNL Program to Measure Prompt Fission Neutron Spectra at LANSCE

    NASA Astrophysics Data System (ADS)

    Haight, Robert; Wu, Ching Yen; Lee, Hye Young; Taddeucci, Terry; Mosby, Shea; O'Donnell, John; Fotiades, Nikolaos; Devlin, Mattew; Ullmann, John; Nelson, Ronald; Wender, Stephen; White, Morgan; Solomon, Clell; Neudecker, Denise; Talou, Patrick; Rising, Michael; Bucher, Brian; Buckner, Matthew; Henderson, Roger

    2015-10-01

    Accurate data on the spectrum of neutrons emitted in neutron-induced fission are needed for applications and for a better understanding of the fission process. At LANSCE we have made important progress in understanding systematic uncertainties and in obtaining data for 235U on the low-energy part of the prompt fission neutron spectra (PFNS), a particularly difficult region because down-scattered neutrons go in this direction. We use a double time-of-flight technique to determine energies of incoming and outgoing neutrons. With data acquisition via waveform digitizers, accidental coincidences between fission chamber and neutron detector are measured to high statistical accuracy and then subtracted from measured events. Monte Carlo simulations with high performance computers have proven to be essential in the design to minimize neutron scattering and in calculating detector response. Results from one of three approaches to analyzing the data will be presented. This work is funded by the US Department of Energy, National Nuclear Security Administration and Office of Nuclear Physics.

  6. Dynamics of supercooled confined water measured by deep inelastic neutron scattering

    NASA Astrophysics Data System (ADS)

    De Michele, Vincenzo; Romanelli, Giovanni; Cupane, Antonio

    2018-02-01

    In this paper, we present the results of deep inelastic neutron scattering (DINS) measurements on supercooled water confined within the pores (average pore diameter 20 Å) of a disordered hydrophilic silica matrix obtained through hydrolysis and polycondensation of the alkoxide precursor Tetra-Methyl-Ortho-Silicate via the sol-gel method. Experiments were performed at two temperatures (250 K and 210 K, i.e., before and after the putative liquid-liquid transition of supercooled confined water) on a "wet" sample with hydration h 40% w/w, which is high enough to have water-filled pores but low enough to avoid water crystallization. A virtually "dry" sample at h 7% was also investigated to measure the contribution of the silica matrix to the neutron scattering signal. As is well known, DINS measurements allow the determination of the mean kinetic energy and the momentum distribution of the hydrogen atoms in the system and therefore, allow researchers to probe the local structure of supercooled confined water. The main result obtained is that at 210 K the hydrogen mean kinetic energy is equal or even slightly higher than at 250 K. This is at odds with the predictions of a semiempirical harmonic model recently proposed to describe the temperature dependence of the kinetic energy of hydrogen in water. This is a new and very interesting result, which suggests that at 210 K, the water hydrogens experience a stiffer intermolecular potential than at 250 K. This is in agreement with the liquid-liquid transition hypothesis.

  7. Neutron and X-ray total scattering study of hydrogen disorder in fully hydrated hydrogrossular, Ca3Al2(O4H4)3

    NASA Astrophysics Data System (ADS)

    Keen, David A.; Keeble, Dean S.; Bennett, Thomas D.

    2018-04-01

    The structure of fully hydrated grossular, or katoite, contains an unusual arrangement of four O-H bonds within each O4 tetrahedra. Neutron and X-ray total scattering from a powdered deuterated sample have been measured to investigate the local arrangement of this O4D4 cluster. The O-D bond length determined directly from the pair distribution function is 0.954 Å, although the Rietveld-refined distance between average O and D positions was slightly smaller. Reverse Monte Carlo refinement of supercell models to the total scattering data show that other than the consequences of this correctly determined O-D bond length, there is little to suggest that the O4D4 structure is locally significantly different from that expected based on the average structure determined solely from Bragg diffraction.

  8. A Study of Cross-linked Regions of Poly(Vinyl Alcohol) Gels by Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Lawrence, Mathias B.; Desa, J. A. E.; Aswal, V. K.

    2011-07-01

    A poly(vinyl alcohol)-borax cross-linked hydrogel has been studied by Small Angle Neutron Scattering as a function of borax concentration in the wave-vector transfer (Q) range of 0.017 Å-1 to 0.36 Å-1. It is found that as the concentration of borax increases, so does the intensity of scattering in this range. Beyond a borax concentration of 2 mg/ml, the increase in cross-linked PVA chains leads to cross-linked units larger than 150 Å as evidenced by a reduction in intensity in the lower Q region.

  9. Small angle neutron scattering applications in fuel science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thiyagarajan, P.; Cody, G.D.; Hunt, J.E.

    1995-08-01

    A wide range of physical and chemical methods have been used to study complex, multicomponent systems in fuel chemistry (crude oil, coal), and we are still far from complete understanding. Since chemical modification and/or solvent extraction of coal result in a number of different systems, it is important to understand the products in terms of their colloidal properties as a function of the solvent type, as well as other physical conditions. This would be helpful in design of processing techniques. Another area of research where SANS can be useful is characterization of the synthetic and modified clays being developed formore » processing in the petroleum industry. Major limitations for performing SANS experiments are nonavailability/high cost sof certain deuterated solvents and the paucity of beam time at the neutron scattering centers. This paper reports briefly on analysis of coal and asphaltenes.« less

  10. Picosecond molecular motions in bacteriorhodopsin from neutron scattering.

    PubMed Central

    Fitter, J; Lechner, R E; Dencher, N A

    1997-01-01

    The characteristics of internal molecular motions of bacteriorhodopsin in the purple membrane have been studied by quasielastic incoherent neutron scattering. Because of the quasihomogeneous distribution of hydrogen atoms in biological molecules, this technique enables one to study a wide variety of intramolecular motions, especially those occurring in the picosecond to nanosecond time scale. We performed measurements at different energy resolutions with samples at various hydration levels within a temperature range of 10-300 K. The analysis of the data revealed a dynamical transition at temperatures Td between 180 K and 220 K for all motions resolved at time scales ranging from 0.1 to a few hundred picoseconds. Whereas below Td the motions are purely vibrational, they are predominantly diffusive above Td, characterized by an enormously broad distribution of correlation times. The variation of the hydration level, on the other hand, mainly affects motions slower than a few picoseconds. PMID:9336208

  11. Joint small-angle X-ray and neutron scattering data analysis of asymmetric lipid vesicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eicher, Barbara; Heberle, Frederick A.; Marquardt, Drew T.

    2017-02-28

    Low- and high-resolution models describing the internal transbilayer structure of asymmetric lipid vesicles have been developed. These models can be used for the joint analysis of small-angle neutron and X-ray scattering data. The models describe the underlying scattering length density/electron density profiles either in terms of slabs or through the so-called scattering density profile, previously applied to symmetric lipid vesicles. Both models yield structural details of asymmetric membranes, such as the individual area per lipid, and the hydrocarbon thickness of the inner and outer bilayer leaflets. The scattering density profile model, however, comes at a cost of increased computational effortmore » but results in greater structural resolution, showing a slightly lower packing of lipids in the outer bilayer leaflet of ~120 nm diameter palmitoyloleoyl phosphatidylcholine (POPC) vesicles, compared to the inner leaflet. Here, analysis of asymmetric dipalmitoyl phosphatidylcholine/POPC vesicles did not reveal evidence of transbilayer coupling between the inner and outer leaflets at 323 K, i.e.above the melting transition temperature of the two lipids.« less

  12. A microstructural comparison of two nuclear-grade martensitic steels using small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Coppola, R.; Fiori, F.; Little, E. A.; Magnani, M.

    1997-06-01

    Results are presented of a small-angle neutron scattering (SANS) study on two 10-13% Cr martensitic stainless steels of interest for nuclear applications, viz. DIN 1.4914 (MANET specification, for fusion reactors) and AISI 410. The investigation has focussed principally on microstructural effects associated with the differences in chromium content between the two alloys. The size distribution functions determined from nuclear and magnetic SANS components for the two steels given identical heat treatments are in accord with an interpretation based on the presence of ˜ 1 nm size CCr aggregates in the microstructure. Much larger (˜ 10 nm) scattering inhomogeneities with different magnetic contrast are also present and tentatively identified as carbides.

  13. Microscopic description of elastic and direct inelastic nucleon scattering off spherical nuclei

    NASA Astrophysics Data System (ADS)

    Dupuis, M.

    2017-05-01

    The purpose of this study is to improve the modeling of nucleon direct inelastic scattering to the continuum using a microscopic and parameter-free approach. For the first time, direct elastic scattering, inelastic scattering to discrete excitations and to the continuum are described within a microscopic approach without adjustable parameters. Proton scattering off 90Zr and 208Pb are the reactions used as test case examples of the calculations. The model uses the Melbourne g-matrix and the Random Phase Approximation description of nuclear states, implemented with the Gogny D1S interaction. The relevant optical and transition potentials in a finite nucleus are calculated within a local density approximation. As we use the nuclear matter approach we limit our study to incident energies above 40 MeV. We first checked that this model provides an accurate account of measured cross sections for elastic scattering and inelastic scattering to discrete states. It is then applied to the direct inelastic scattering to the continuum considering all one-phonon excitations predicted within the RPA approach. This accounts for a part of the direct pre-equilibrium emission, often labeled as the one-step direct process in quantum-based approaches. Our approach provides a very accurate description of angular distributions where the one-step process dominates. The impact of collective excitations is shown to be non negligible for energy transfer to the target up to 20 MeV, decreasing as the incident energy increases. For incident energies above 80 MeV, our modeling provides a good account of direct proton emission for an energy transfer to the target up to 30 MeV. However, the proton emission we predict underestimates the measured cross sections for incident energies below 80 MeV. We compare our prediction to those of the phenomenological exciton model to help interpret this result. Directions that may improve our modeling are discussed.

  14. Neutron scattering study of yttrium iron garnet

    NASA Astrophysics Data System (ADS)

    Shamoto, Shin-ichi; Ito, Takashi U.; Onishi, Hiroaki; Yamauchi, Hiroki; Inamura, Yasuhiro; Matsuura, Masato; Akatsu, Mitsuhiro; Kodama, Katsuaki; Nakao, Akiko; Moyoshi, Taketo; Munakata, Koji; Ohhara, Takashi; Nakamura, Mitsutaka; Ohira-Kawamura, Seiko; Nemoto, Yuichi; Shibata, Kaoru

    2018-02-01

    The nuclear and magnetic structure and full magnon dispersions of yttrium iron garnet Y3Fe5O12 have been studied using neutron scattering. The refined nuclear structure is distorted to a trigonal space group of R 3 ¯ . The highest-energy dispersion extends up to 86 meV. The observed dispersions are reproduced by a simple model with three nearest-neighbor-exchange integrals between 16 a (octahedral) and 24 d (tetrahedral) sites, Ja a, Ja d, and Jd d, which are estimated to be 0.00 ±0.05 , -2.90 ±0.07 , and -0.35 ±0.08 meV, respectively. The lowest-energy dispersion below 14 meV exhibits a quadratic dispersion as expected from ferromagnetic magnons. The imaginary part of q -integrated dynamical spin susceptibility χ″(E ) exhibits a square-root energy dependence at low energies. The magnon density of state is estimated from χ″(E ) obtained on an absolute scale. The value is consistent with the single chirality mode for the magnon branch expected theoretically.

  15. Elastic, quasielastic, and inelastic neutron-scattering studies on the charge-transfer hexamethylbenzene-tetracyanoquinodimethane complex

    NASA Astrophysics Data System (ADS)

    Sawka-Dobrowolska, Wanda; Bator, GraŻyna; Sobczyk, Lucjan; Pawlukojć, Andrzej; Ptasiewicz-Bak, Halina; Rundlöf, Hâkan; Krawczyk, Jan; Nowina-Konopka, Małgorzata; Jagielski, Piotr; Janik, Jerzy A.; Prager, Michael; Steinsvoll, Olav; Grech, Eugeniusz; Nowicka-Scheibe, Joanna

    2005-09-01

    The 1:1 hexamethylbenzene (HMB)-tetracyanoquinodimethane (TCNQ) complex shows a first-order phase transition at 230/218K (heating/cooling) with no change of the space group. The neutron-diffraction studies reveal that this transition is related to a freezing of the rotation of methyl groups. The results for 100K enabled precise determination of configuration of HMB ṡTCNQ complexes. The planes of HMB and TCNQ molecules from small angle (6°) so that the dicyanomethylene group approaches the HMB molecule to a distance of 3.34Å. The conformation of methyl groups was exactly determined. The quasielastic neutron-scattering spectra can be interpreted in terms of 120° jumps with different activation barrier in low- and high-temperature phases, equal to 3.7 and 1.8kJ /mol, respectively. These values are lower than that for neat HMB (6kJ /mol). The conclusion can be drawn that the methyl groups can reorient more freely in the complex. This conclusion is in agreement with the results of inelastic neutron-scattering studies of low-frequency modes assigned to torsional vibrations of methyl groups. These frequencies are lower than those for neat HMB. The analyzed increase of frequencies of these modes as compared with free molecules can be interpreted as due to formation of unconventional C -H…Y hydrogen bonds which are more pronounced in crystals of neat HMB than in those of HMB ṡTCNQ. The low-frequency librational modes can be treated as a sensitive measure of unconventional hydrogen bonds formed by the CH3 groups.

  16. Neutron scattering measurements of carbon dioxide adsorption in pores within the Marcellus Shale: Implications for sequestration

    USGS Publications Warehouse

    Stefanopoulos, Konstantinos L.; Youngs, Tristan G. A.; Sakurovs, Richard; Ruppert, Leslie F.; Bahadur, Jitendra; Melnichenko, Yuri B.

    2017-01-01

    Shale is an increasingly viable source of natural gas and a potential candidate for geologic CO2sequestration. Understanding the gas adsorption behavior on shale is necessary for the design of optimal gas recovery and sequestration projects. In the present study neutron diffraction and small-angle neutron scattering measurements of adsorbed CO2 in Marcellus Shale samples were conducted on the Near and InterMediate Range Order Diffractometer (NIMROD) at the ISIS Pulsed Neutron and Muon Source, STFC Rutherford Appleton Laboratory along an adsorption isotherm of 22 °C and pressures of 25 and 40 bar. Additional measurements were conducted at approximately 22 and 60 °C at the same pressures on the General-Purpose Small-Angle Neutron Scattering (GP-SANS) instrument at Oak Ridge National Laboratory. The structures investigated (pores) for CO2 adsorption range in size from Å level to ∼50 nm. The results indicate that, using the conditions investigated densification or condensation effects occurred in all accessible pores. The data suggest that at 22 °C the CO2 has liquid-like properties when confined in pores of around 1 nm radius at pressures as low as 25 bar. Many of the 2.5 nm pores, 70% of 2 nm pores, most of the <1 nm pores, and all pores <0.25 nm, are inaccessible or closed to CO2, suggesting that despite the vast numbers of micropores in shale, the micropores will be unavailable for storage for geologic CO2 sequestration.

  17. Inelastic Neutron Scattering Study of the Specific Features of the Phase Transitions in (NH4)2WO2F4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smirnov, Lev S; Kolesnikov, Alexander I; Flerov, I. N.

    2009-01-01

    Oxyfluoride (NH4)2WO2F4 has been studied by the inelastic neutron scattering method over a wide temperature range 10 300 K at two initial neutron energies of 15 and 60 meV. The role of tetrahedral ammonium groups in the mechanism of sequential phase transitions at T1 = 201 K and T2 = 160 K has been discussed.

  18. SONTRAC: A High Efficiency Solar Neutron Telescope

    NASA Astrophysics Data System (ADS)

    Wunderer, C. B.; Macri, J.; McConnell, M. L.; Ryan, J. M.; Baltgalvis, J.; Holslin, D.; Polichar, A.; Jenkins, T.

    1997-05-01

    Solar flare neutron emission between 20 and 100 MeV comes from a portion of the energetic proton spectrum that is poorly sampled by both nuclear-line and pion- decay gamma rays. SONTRAC is a new generation solar neutron telescope/spectrometer consisting of densely packed, alternating orthogonal layers of scintillating plastic fibers. The fibers in both dimensions are viewed by image intensifiers and CCD cameras. Incident neutrons scatter off hydrogen in the plastic scintillator. The resulting ionizing proton tracks can be reconstructed in three dimensions using the two planar CCD track images. Two neutron-proton scatters provide sufficient information to reconstruct the energy and direction of the incident neutron. Photomultiplier tubes view the other sides of the fiber scintillator array. The signals from the PMTs are used to give an additional measure of the proton energies and to provide a trigger for the CCD cameras. Recent technological advances have allowed us to construct an affordable working prototype instrument that consists of all the essential technical elements mentioned above. We will present images of tracks produced by minimum ionizing muons and energetic neutrons. We will also present efficiency estimates for SONTRAC's ability to detect and measure gamma rays above 10 MeV.

  19. Neutron Scattering Software

    Science.gov Websites

    Array Manipulation Program (LAMP): IDL-based data analysis and visualization Open Genie: interactive -ray powder data ORTEP: Oak Ridge Thermal Ellipsoid Plot program for crystal structure illustrations structure VRML generator aClimax: modeling of inelastic neutron spectroscopy using Density Functional Theory

  20. APPLICATION OF THE CLASSICAL SELFCORRELATION FUNCTION TO DETERMINE THE SLOW NEUTRON SCATTERING CROSS-SECTION OF FREE MOLECULES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parlinski, K.

    1962-06-01

    A classical selfcorrelation function is found for an atom in the molecule by considering the translation of the free molecule, its rotation and oscillation. The Krieger-Nelkin formula for the differential cross section of incoherent neutron scattering by molecules is derived from the correlation. (auth)

  1. Estimation and modeling of coal pore accessibility using small angle neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Rui; Liu, Shimin; Bahadur, Jitendra

    Gas diffusion in coal is controlled by nano-structure of the pores. The interconnectivity of pores not only determines the dynamics of gas transport in the coal matrix but also influences the mechanical strength. In this study, small angle neutron scattering (SANS) was employed to quantify pore accessibility for two coal samples, one of sub-bituminous rank and the other of anthracite rank. Moreover, a theoretical pore accessibility model was proposed based on scattering intensities under both vacuum and zero average contrast (ZAC) conditions. Our results show that scattering intensity decreases with increasing gas pressure using deuterated methane (CD 4) at lowmore » Q values for both coals. Pores smaller than 40 nm in radius are less accessible for anthracite than sub-bituminous coal. On the contrary, when the pore radius is larger than 40 nm, the pore accessibility of anthracite becomes larger than that of sub-bituminous coal. Only 20% of pores are accessible to CD 4 for anthracite and 37% for sub-bituminous coal, where the pore radius is 16 nm. For these two coals, pore accessibility and pore radius follows a power-law relationship.« less

  2. Estimation and modeling of coal pore accessibility using small angle neutron scattering

    DOE PAGES

    Zhang, Rui; Liu, Shimin; Bahadur, Jitendra; ...

    2015-09-04

    Gas diffusion in coal is controlled by nano-structure of the pores. The interconnectivity of pores not only determines the dynamics of gas transport in the coal matrix but also influences the mechanical strength. In this study, small angle neutron scattering (SANS) was employed to quantify pore accessibility for two coal samples, one of sub-bituminous rank and the other of anthracite rank. Moreover, a theoretical pore accessibility model was proposed based on scattering intensities under both vacuum and zero average contrast (ZAC) conditions. Our results show that scattering intensity decreases with increasing gas pressure using deuterated methane (CD 4) at lowmore » Q values for both coals. Pores smaller than 40 nm in radius are less accessible for anthracite than sub-bituminous coal. On the contrary, when the pore radius is larger than 40 nm, the pore accessibility of anthracite becomes larger than that of sub-bituminous coal. Only 20% of pores are accessible to CD 4 for anthracite and 37% for sub-bituminous coal, where the pore radius is 16 nm. For these two coals, pore accessibility and pore radius follows a power-law relationship.« less

  3. On the line-shape analysis of Compton profiles and its application to neutron scattering

    NASA Astrophysics Data System (ADS)

    Romanelli, G.; Krzystyniak, M.

    2016-05-01

    Analytical properties of Compton profiles are used in order to simplify the analysis of neutron Compton scattering experiments. In particular, the possibility to fit the difference of Compton profiles is discussed as a way to greatly decrease the level of complexity of the data treatment, making the analysis easier, faster and more robust. In the context of the novel method proposed, two mathematical models describing the shapes of differenced Compton profiles are discussed: the simple Gaussian approximation for harmonic and isotropic local potential, and an analytical Gauss-Hermite expansion for an anharmonic or anisotropic potential. The method is applied to data collected by VESUVIO spectrometer at ISIS neutron and muon pulsed source (UK) on Copper and Aluminium samples at ambient and low temperatures.

  4. Search for elemental and mineral biomarkers using inelastic neutron scattering spectroscopy (INSS)

    NASA Astrophysics Data System (ADS)

    Wielopolski, Lucian; Hoover, Richard B.; Mitra, Sudeep

    2004-02-01

    Life on Earth is characterized by a select group of low Z elements: C, H, N, O, P, K, S, Na, Cl. The presence of these elements and their ratios can provide indications of possible biogenicity and thus they may constitute valuable biomarkers that may help determine the best locations to seek more definitive evidence of life. We discuss the possible applications and significance of the inelastic neutron scattering induced gamma spectroscopy (INSGS) for future Astrobiology Missions to Mars or other solar System bodies. The general requirements and capabilities of the proposed approach are presented.

  5. Quasi-elastic neutron scattering study of a re-entrant side-chain liquid-crystal polyacrylate

    NASA Astrophysics Data System (ADS)

    Benguigui, L.; Noirez, L.; Kahn, R.; Keller, P.; Lambert, M.; Cohen de Lara, E.

    1991-04-01

    We present a first investigation of the dynamics of a side chain liquid crystal polyacrylate in the isotropic (I), nematic (N), smectic A (SA), and re-entrant nematic (NRe) phases by means of quasi-elastic neutron scattering. The motion or/and the mobility of the mesogen protons decreases as soon as the temperature decreases after the isotropic-nematic transition. The I-N and SA-NRe transitions corrspond to a jump in the curve of the Elastic Incoherent Structure Factor (ratio: elastic scattering/ total scattering) versus temperature, on the other hand the transition N-SA occurs without any change of slope. We conclude that the local order is very similar in the nematic and the smectic A phases. Nous présentons une première étude dynamique par diffusion quasi-élastique des neutrons, d'un échantillon de polyacrylate mésomorphe en peigne dans chacune des phases : isotrope, nématique, smectique et nématique rentrante. On montre que le mouvement et/ou la mobilité des protons du mésogène se restreint à mesure que la température diminue après la transition isotrope-nématique. Contrairement à la transition N-SA, les transitions I-N et SA-NRe correspondent à une discontinuité dans la courbe du Facteur de Structure Incohérent Elastique (rapport : intensité élastique/intensité totale) en fonction de la température ; l'ordre local semble donc très proche pour les phases nématique et smectique.

  6. Internal dynamics of F-actin and myosin subfragment-1 studied by quasielastic neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuo, Tatsuhito; Arata, Toshiaki; Oda, Toshiro

    2015-04-10

    Various biological functions related to cell motility are driven by the interaction between the partner proteins, actin and myosin. To obtain insights into how this interaction occurs, the internal dynamics of F-actin and myosin subfragment-1 (S1) were characterized by the quasielastic neutron scattering measurements on the solution samples of F-actin and S1. Contributions of the internal motions of the proteins to the scattering spectra were separated from those of the global macromolecular diffusion. Analysis of the spectra arising from the internal dynamics showed that the correlation times of the atomic motions were about two times shorter for F-actin than formore » S1, suggesting that F-actin fluctuates more rapidly than S1. It was also shown that the fraction of the immobile atoms is larger for S1 than for F-actin. These results suggest that F-actin actively facilitates the binding of myosin by utilizing the more frequent conformational fluctuations than those of S1. - Highlights: • We studied the internal dynamics of F-actin and myosin S1 by neutron scattering. • The correlation times of the atomic motions were smaller for F-actin than for S1. • The fraction of the immobile atoms was also smaller for F-actin than for S1. • Our results suggest that mobility of atoms in F-actin is higher than that in S1. • We propose that high flexibility of F-actin facilitates the binding of myosin.« less

  7. Linking CO 2 Sorption Performance to Polymer Morphology in Aminopolymer/Silica Composites through Neutron Scattering

    DOE PAGES

    Holewinski, Adam; Sakwa-Novak, Miles A.; Jones, Christopher W.

    2015-08-26

    Composites of poly(ethylenimine) (PEI) and mesoporous silica are effective, reversible adsorbents for CO 2, both from flue gas and in direct air-capture applications. The morphology of the PEI within the silica can strongly impact the overall carbon capture efficiency and rate of saturation. Here, we directly probe the spatial distribution of the supported polymer through small-angle neutron scattering (SANS). Combined with textural characterization from physisorption analysis, the data indicate that PEI first forms a thin conformal coating on the pore walls, but all additional polymer aggregates into plug(s) that grow along the pore axis. This model is consistent with observedmore » trends in amine-efficiency (CO 2/N binding ratio) and pore size distributions, and points to a trade-off between achieving high chemical accessibility of the amine binding sites, which are inaccessible when they strongly interact with the silica, and high accessibility for mass transport, which can be hampered by diffusion through PEI plugs. In conclusion, we illustrate this design principle by demonstrating higher CO 2 capacity and uptake rate for PEI supported in a hydrophobically modified silica, which exhibits repulsive interactions with the PEI, freeing up binding sites.« less

  8. Measurement of the structure function of the nearly free neutron using spectator tagging in inelastic 2H(e ,e'ps )X scattering with CLAS

    NASA Astrophysics Data System (ADS)

    Tkachenko, S.; Baillie, N.; Kuhn, S. E.; Zhang, J.; Arrington, J.; Bosted, P.; Bültmann, S.; Christy, M. E.; Fenker, H.; Griffioen, K. A.; Kalantarians, N.; Keppel, C. E.; Melnitchouk, W.; Tvaskis, V.; Adhikari, K. P.; Aghasyan, M.; Amaryan, M. J.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Bedlinskiy, I.; Biselli, A. S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Cole, P. L.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dodge, G. E.; Doughty, D.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fleming, J. A.; Garillon, B.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Golovatch, E.; Gothe, R. W.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Ho, D.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jo, H. S.; Keller, D.; Khandaker, M.; Kim, A.; Kim, W.; King, P. M.; Klein, A.; Klein, F. J.; Koirala, S.; Kubarovsky, V.; Kuleshov, S. V.; Lenisa, P.; Lewis, S.; Livingston, K.; Lu, H.; MacCormick, M.; MacGregor, I. J. D.; Markov, N.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moutarde, H.; Munoz Camacho, C.; Nadel-Turonski, P.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Puckett, A. J. R.; Rimal, D.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Schott, D.; Schumacher, R. A.; Seder, E.; Senderovich, I.; Sharabian, Y. G.; Simonyan, A.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S.; Stepanyan, S. S.; Strauch, S.; Tang, W.; Ungaro, M.; Vlassov, A. V.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Zana, L.; Zonta, I.; CLAS Collaboration

    2014-04-01

    Background: Much less is known about neutron structure than that of the proton due to the absence of free neutron targets. Neutron information is usually extracted from data on nuclear targets such as deuterium, requiring corrections for nuclear binding and nucleon off-shell effects. These corrections are model dependent and have significant uncertainties, especially for large values of the Bjorken scaling variable x . As a consequence, the same data can lead to different conclusions, for example, about the behavior of the d quark distribution in the proton at large x . Purpose: The Barely Off-shell Nucleon Structure experiment at Jefferson Lab measured the inelastic electron-deuteron scattering cross section, tagging spectator protons in coincidence with the scattered electrons. This method reduces nuclear binding uncertainties significantly and has allowed for the first time a (nearly) model-independent extraction of the neutron structure function F2(x ,Q2) in the resonance and deep-inelastic regions. Method: A novel compact radial time projection chamber was built to detect protons with momentum between 70 and 150 MeV/c and over a nearly 4 π angular range. For the extraction of the free-neutron structure function F2n, spectator protons at backward angles (>100∘ relative to the momentum transfer) and with momenta below 100 MeV/c were selected, ensuring that the scattering took place on a nearly free neutron. The scattered electrons were detected with Jefferson Lab's CLAS spectrometer, with data taken at beam energies near 2, 4, and 5 GeV. Results: The extracted neutron structure function F2n and its ratio to the inclusive deuteron structure function F2d are presented in both the resonance and the deep-inelastic regions for momentum transfer squared Q2 between 0.7 and 5 GeV2/c2 , invariant mass W between 1 and 2.7 GeV/c2 , and Bjorken x between 0.25 and 0.6 (in the deep-inelastic scattering region). The dependence of the semi-inclusive cross section on the

  9. Structure and dynamics of reverse micelles containing supercooled water investigated by neutron scattering

    NASA Astrophysics Data System (ADS)

    Spehr, Tinka; Frick, Bernhard; Grillo, Isabelle; Falus, Peter; Müller, Martin; Stühn, Bernd

    2009-03-01

    We present a detailed neutron scattering study of the structure, shape fluctuations, and translational diffusion of microemulsion droplets at low temperatures. We investigate the ternary microemulsion D2O , AOT [bis(2-ethyl-hexyl) sulfosuccinate], and toluene-d8 (or heptane-d16) which forms spherical water droplets surrounded by a monolayer of AOT dispersed in oil around room temperature. At T=290K , varying the molar ratio ω of water to AOT between 3 and 12, we find using small angle neutron scattering water core radii Rc between 7 and 18Å , respectively. We characterize the structure at low temperatures down to T=220K . Upon cooling the droplet structure is maintained and Rc stays roughly constant down to temperatures where the confined water is deeply supercooled. At an ω -dependent temperature Ts we observe for all compositions a shrinking of the droplets, which depends on the initial droplet size: the smaller the initial radii, the lower the Ts is. At the lowest investigated temperature T=220K we find an ω -independent remaining water core corresponding to a number of about 2 water molecules per AOT molecule. Neutron spin-echo spectroscopy is used to monitor shape fluctuations and translational diffusion for one microemulsion ( ω=8 , Rw=12Å ) from T=300K down to temperatures below the corresponding shrinking temperature Ts . Thereby we determine the bending elasticity to be κ=0.3kBT over the whole investigated temperature range where the droplets are stable. From these results we cannot establish a link between surfactant membrane elasticity and low temperature structural instability of the droplets. Moreover, our results show that reverse AOT micelles are an excellent tool for the study of soft confined water over a broad range of confining sizes and temperatures down to the supercooled state.

  10. Fusion-neutron-yield, activation measurements at the Z accelerator: design, analysis, and sensitivity.

    PubMed

    Hahn, K D; Cooper, G W; Ruiz, C L; Fehl, D L; Chandler, G A; Knapp, P F; Leeper, R J; Nelson, A J; Smelser, R M; Torres, J A

    2014-04-01

    We present a general methodology to determine the diagnostic sensitivity that is directly applicable to neutron-activation diagnostics fielded on a wide variety of neutron-producing experiments, which include inertial-confinement fusion (ICF), dense plasma focus, and ion beam-driven concepts. This approach includes a combination of several effects: (1) non-isotropic neutron emission; (2) the 1/r(2) decrease in neutron fluence in the activation material; (3) the spatially distributed neutron scattering, attenuation, and energy losses due to the fielding environment and activation material itself; and (4) temporally varying neutron emission. As an example, we describe the copper-activation diagnostic used to measure secondary deuterium-tritium fusion-neutron yields on ICF experiments conducted on the pulsed-power Z Accelerator at Sandia National Laboratories. Using this methodology along with results from absolute calibrations and Monte Carlo simulations, we find that for the diagnostic configuration on Z, the diagnostic sensitivity is 0.037% ± 17% counts/neutron per cm(2) and is ∼ 40% less sensitive than it would be in an ideal geometry due to neutron attenuation, scattering, and energy-loss effects.

  11. Solution Structure of an Intramembrane Aspartyl Protease via Small Angle Neutron Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naing, Swe-Htet; Oliver, Ryan C.; Weiss, Kevin L.

    Intramembrane aspartyl proteases (IAPs) comprise one of four families of integral membrane proteases that hydrolyze substrates within the hydrophobic lipid bilayer. IAPs include signal peptide peptidase, which processes remnant signal peptides from nascent polypeptides in the endoplasmic reticulum, and presenilin, the catalytic component of the γ-secretase complex that processes Notch and amyloid precursor protein. Despite their broad biomedical reach, basic structure-function relationships of IAPs remain active areas of research. Characterization of membrane-bound proteins is notoriously challenging due to their inherently hydrophobic character. For IAPs, oligomerization state in solution is one outstanding question, with previous proposals for monomer, dimer, tetramer, andmore » octamer. Here we used small angle neutron scattering (SANS) to characterize n-dodecyl-β-D-maltopyranoside (DDM) detergent solutions containing and absent a microbial IAP ortholog. A unique feature of SANS is the ability to modulate the solvent composition to mask all but the enzyme of interest. The signal from the IAP was enhanced by deuteration and, uniquely, scattering from DDM and buffers were matched by the use of both tail-deuterated DDM and D 2O. The radius of gyration calculated for IAP and the corresponding ab initio consensus model are consistent with a monomer. The model is slightly smaller than the crystallographic IAP monomer, suggesting a more compact protein in solution compared with the crystal lattice. In conclusion, our study provides direct insight into the oligomeric state of purified IAP in surfactant solution, and demonstrates the utility of fully contrast-matching the detergent in SANS to characterize other intramembrane proteases and their membrane-bound substrates.« less

  12. Solution Structure of an Intramembrane Aspartyl Protease via Small Angle Neutron Scattering

    DOE PAGES

    Naing, Swe-Htet; Oliver, Ryan C.; Weiss, Kevin L.; ...

    2018-02-06

    Intramembrane aspartyl proteases (IAPs) comprise one of four families of integral membrane proteases that hydrolyze substrates within the hydrophobic lipid bilayer. IAPs include signal peptide peptidase, which processes remnant signal peptides from nascent polypeptides in the endoplasmic reticulum, and presenilin, the catalytic component of the γ-secretase complex that processes Notch and amyloid precursor protein. Despite their broad biomedical reach, basic structure-function relationships of IAPs remain active areas of research. Characterization of membrane-bound proteins is notoriously challenging due to their inherently hydrophobic character. For IAPs, oligomerization state in solution is one outstanding question, with previous proposals for monomer, dimer, tetramer, andmore » octamer. Here we used small angle neutron scattering (SANS) to characterize n-dodecyl-β-D-maltopyranoside (DDM) detergent solutions containing and absent a microbial IAP ortholog. A unique feature of SANS is the ability to modulate the solvent composition to mask all but the enzyme of interest. The signal from the IAP was enhanced by deuteration and, uniquely, scattering from DDM and buffers were matched by the use of both tail-deuterated DDM and D 2O. The radius of gyration calculated for IAP and the corresponding ab initio consensus model are consistent with a monomer. The model is slightly smaller than the crystallographic IAP monomer, suggesting a more compact protein in solution compared with the crystal lattice. In conclusion, our study provides direct insight into the oligomeric state of purified IAP in surfactant solution, and demonstrates the utility of fully contrast-matching the detergent in SANS to characterize other intramembrane proteases and their membrane-bound substrates.« less

  13. Pulsed-neutron monochromator

    DOEpatents

    Mook, H.A. Jr.

    1984-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The waves are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  14. Pulsed-neutron monochromator

    DOEpatents

    Mook, Jr., Herbert A.

    1985-01-01

    In one aspect, the invention is an improved pulsed-neutron monochromator of the vibrated-crystal type. The monochromator is designed to provide neutron pulses which are characterized both by short duration and high density. A row of neutron-reflecting crystals is disposed in a neutron beam to reflect neutrons onto a common target. The crystals in the row define progressively larger neutron-scattering angles and are vibrated sequentially in descending order with respect to the size of their scattering angles, thus generating neutron pulses which arrive simultaneously at the target. Transducers are coupled to one end of the crystals to vibrate them in an essentially non-resonant mode. The transducers propagate transverse waves in the crystal which progress longitudinally therein. The wave are absorbed at the undriven ends of the crystals by damping material mounted thereon. In another aspect, the invention is a method for generating neutron pulses characterized by high intensity and short duration.

  15. Research and development of a dedicated collimator for 14.2 MeV fast neutrons for imaging using a D-T generator

    NASA Astrophysics Data System (ADS)

    Sabo-Napadensky, I.; Weiss-Babai, R.; Gayer, A.; Vartsky, D.; Bar, D.; Mor, I.; Chacham-Zada, R.; Cohen, M.; Tamim, N.

    2012-06-01

    One of the main problems in neutron imaging is the scattered radiation that accompanies the direct neutrons that reach the imaging detectors and affect the image quality. We have developed a dedicated collimator for 14.2 MeV fast neutrons. The collimator optimizes the amount of scattered radiation to primary neutrons that arrive at the imaging plane. We have used different materials within the collimator in order to lower the scattered radiation that arrives at the scanned object. The image quality and the signal to noise ratios that are measured show that a mixture of BORAX (Na2B4O7ṡ10H2O) and water in the experimental beam collimator give the best results. We have used GEANT4 to simulate the collimator performance, the simulations predict the optimized material looking on the ratios of the scattered to primary neutrons that contribute in the detector. We present our experimental setup, report the results of the experimental and related simulation studies with neutrons beam generated by a 14.2 MeV D-T neutron generator.

  16. The Role of the Isospin 3/2 Component in Elastic Neutron-Deuteron Scattering and in the Deuteron Breakup Reaction

    NASA Astrophysics Data System (ADS)

    Witała, H.; Golak, J.; Skibiński, R.; Topolnicki, K.; Kamada, H.

    We discuss the importance of the three-nucleon isospin T = 3/2 component in elastic neutron-deuteron scattering and in the deuteron breakup reaction. The contribution of this amplitude originates from charge-independence breaking of the nucleon-nucleon potential. We study the magnitude of that contribution to the elastic scattering and breakup observables, taking the Av18 nucleon-nucleon potential alone or combined with the Urbana IX three-nucleon force as well as the locally regularized chiral N4LO nucleon-nucleon potential alone or supplemented by the chiral N2LO three-nucleon force. We find that the isospin T = 3/2 component is important for the breakup reaction and the proper treatment of charge-independence breaking in this case requires the inclusion of the 1S 0 state with isospin T = 3/2. For neutron-deuteron elastic scattering the T = 3/2 contributions are insignificant and charge-independence breaking can be accounted for by neglecting T = 3/2 component and using the effective t-matrix generated with the so-called “2/3 ‑ 1/3″ rule.

  17. Radiative neutron capture as a counting technique at pulsed spallation neutron sources: a review of current progress

    NASA Astrophysics Data System (ADS)

    Schooneveld, E. M.; Pietropaolo, A.; Andreani, C.; Perelli Cippo, E.; Rhodes, N. J.; Senesi, R.; Tardocchi, M.; Gorini, G.

    2016-09-01

    Neutron scattering techniques are attracting an increasing interest from scientists in various research fields, ranging from physics and chemistry to biology and archaeometry. The success of these neutron scattering applications is stimulated by the development of higher performance instrumentation. The development of new techniques and concepts, including radiative capture based neutron detection, is therefore a key issue to be addressed. Radiative capture based neutron detectors utilize the emission of prompt gamma rays after neutron absorption in a suitable isotope and the detection of those gammas by a photon counter. They can be used as simple counters in the thermal region and (simultaneously) as energy selector and counters for neutrons in the eV energy region. Several years of extensive development have made eV neutron spectrometers operating in the so-called resonance detector spectrometer (RDS) configuration outperform their conventional counterparts. In fact, the VESUVIO spectrometer, a flagship instrument at ISIS serving a continuous user programme for eV inelastic neutron spectroscopy measurements, is operating in the RDS configuration since 2007. In this review, we discuss the physical mechanism underlying the RDS configuration and the development of associated instrumentation. A few successful neutron scattering experiments that utilize the radiative capture counting techniques will be presented together with the potential of this technique for thermal neutron diffraction measurements. We also outline possible improvements and future perspectives for radiative capture based neutron detectors in neutron scattering application at pulsed neutron sources.

  18. FINAL REPORT: DOE CONTRACT NUMBER FG0205ER64026 Biological Neutron Scattering: A Collaboration with the Oak Ridge Center for Structural Molecular Biology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trewhella, Jill

    2011-01-12

    The overarching goal of this project was to promote applications of small-angle scattering in structural molecular biology by providing model examples of cutting edge applications that demonstrate the unique capabilities and potential of the DOE national user facilities at Oak Ridge, especially the newly commissioned BioSANS. The approach taken was three-fold: (1) to engage in high impact collaborative research projects that would benefit from small-angle neutron scattering to both demonstrate the power of the technique while expanding the potential user community; (2) to provide access to scattering facilities established at the University of Utah to as broad a set ofmore » researchers as possible to increase the expertise in small-angle scattering generally; and (3) to develop new methods and tools for small-angle scattering. To these ends, three major research collaborations were pursued that resulted in a significant body of published work where neutron scattering and contrast variation played a major role. These major collaborations involved studies of protein complexes involved in (1) bacterial transcription regulation and adaptive response (a DOE/BER priority area); (2) regulation of cardiac muscle; and (3) neuronal disorders. In addition, to broaden the impact of the project, smaller collaborative efforts were supported that used either small-angle X-ray or neutron scattering. Finally, the DOE supported facilities at the University of Utah were made available to researchers on a service basis and a number of independent groups took advantage of this opportunity. In all of this work, there was an emphasis on the training of students and post docs in scattering techniques, and a set of publications (a book chapter, a review, and an encyclopedia article) were produced to guide the non-specialist potential user of scattering techniques in successful applications of the techniques. We also developed a suite of user friendly web-based computational tools

  19. Functional materials analysis using in situ and in operando X-ray and neutron scattering

    PubMed Central

    Peterson, Vanessa K.; Papadakis, Christine M.

    2015-01-01

    In situ and in operando studies are commonplace and necessary in functional materials research. This review highlights recent developments in the analysis of functional materials using state-of-the-art in situ and in operando X-ray and neutron scattering and analysis. Examples are given covering a number of important materials areas, alongside a description of the types of information that can be obtained and the experimental setups used to acquire them. PMID:25866665

  20. Fractal Structures on Fe3O4 Ferrofluid: A Small-Angle Neutron Scattering Study

    NASA Astrophysics Data System (ADS)

    Giri Rachman Putra, Edy; Seong, Baek Seok; Shin, Eunjoo; Ikram, Abarrul; Ani, Sistin Ari; Darminto

    2010-10-01

    A small-angle neutron scattering (SANS) which is a powerful technique to reveal the large scale structures was applied to investigate the fractal structures of water-based Fe3O4ferrofluid, magnetic fluid. The natural magnetite Fe3O4 from iron sand of several rivers in East Java Province of Indonesia was extracted and purified using magnetic separator. Four different ferrofluid concentrations, i.e. 0.5, 1.0, 2.0 and 3.0 Molar (M) were synthesized through a co-precipitation method and then dispersed in tetramethyl ammonium hydroxide (TMAH) as surfactant. The fractal aggregates in ferrofluid samples were observed from their SANS scattering distributions confirming the correlations to their concentrations. The mass fractal dimension changed from about 3 to 2 as ferrofluid concentration increased showing a deviation slope at intermediate scattering vector q range. The size of primary magnetic particle as a building block was determined by fitting the scattering profiles with a log-normal sphere model calculation. The mean average size of those magnetic particles is about 60 - 100 Å in diameter with a particle size distribution σ = 0.5.

  1. Polyhydroxyalkanoate-based natural synthetic hybrid copolymer films: A small-angle neutron scattering study

    NASA Astrophysics Data System (ADS)

    Foster, L. John R.; Knott, Robert; Sanguanchaipaiwong, Vorapat; Holden, Peter J.

    2006-11-01

    Polyhydroxyalkanoates have attracted attention as biodegradable alternatives to conventional thermoplastics and as biomaterials. Through modification of their biosynthesis using Pseudomonas oleovorans, we have manipulated the material properties of these biopolyesters and produced a natural-synthetic hybrid copolymer of polyhydroxyoctanoate- block-diethylene glycol (PHO- b-DEG). A mixture of PHO and PHO-DEG were solvent cast from analytical grade chloroform and analysed using small-angle neutron scattering. A scattering pattern, easily distinguished above the background, was displayed by the films with a diffraction ring at q∼0.12 Å -1. This narrow ring of intensity is suggestive of a highly ordered system. Analysis of the diffraction pattern supported this concept and showed a d-spacing of approximately 50 Å. In addition, conformation of the hybrid polymer chains can be manipulated to support their self-assembly into ordered microporous films.

  2. The Small-Angle Neutron Scattering Data Analysis of the Phospholipid Transport Nanosystem Structure

    NASA Astrophysics Data System (ADS)

    Zemlyanaya, E. V.; Kiselev, M. A.; Zhabitskaya, E. I.; Aksenov, V. L.; Ipatova, O. M.; Ivankov, O. I.

    2018-05-01

    The small-angle neutron scattering technique (SANS) is employed for investigation of structure of the phospholipid transport nanosystem (PTNS) elaborated in the V.N.Orekhovich Institute of Biomedical Chemistry (Moscow, Russia). The SANS spectra have been measured at the YuMO small-angle spectrometer of IBR-2 reactor (Joint Institute of Nuclear Research, Dubna, Russia). Basic characteristics of polydispersed population of PTNS unilamellar vesicles (average radius of vesicles, polydispersity, thickness of membrane, etc.) have been determined in three cases of the PTNS concentrations in D2O: 5%, 10%, and 25%. Numerical analysis is based on the separated form factors method (SFF). The results are discussed in comparison with the results of analysis of the small-angle X-ray scattering spectra collected at the Kurchatov Synchrotron Radiation Source of the National Research Center “Kurchatov Institute” (Moscow, Russia).

  3. Neutron and x-ray scattering study of phonon dispersion and diffuse scattering in ( Na , Bi ) Ti O 3 - x BaTi O 3 single crystals near the morphotropic phase boundary

    DOE PAGES

    Luo, Chengtao; Bansal, Dipanshu; Li, Jiefang; ...

    2017-11-10

    Neutron and x-ray scattering measurements were performed on (Na 1/2Bi 1/2)TiO 3-x at % BaTiO 3 (NBT-xBT) single crystals (x = 4, 5, 6.5, and 7.5) across the morphotropic phase boundary (MPB), as a function of both composition and temperature, and probing both structural and dynamical aspects. In addition to the known diffuse scattering pattern near the gamma points, our measurements revealed new, faint superlattice peaks, as well as an extensive diffuse scattering network, revealing a short-range ordering of polar nanoregions (PNR) with a static stacking morphology. Furthermore, in samples with compositions closest to the MPB, our inelastic neutron scatteringmore » investigations of the phonon dynamics showed two unusual features in the acoustic phonon branches, between the superlattice points, and between the superlattice points and gamma points, respectively. Finally, these critical elements are not present in the other compositions away from the MPB, which suggests that these features may be related to the tilt modes coupling behavior near the MPB.« less

  4. Neutron and x-ray scattering study of phonon dispersion and diffuse scattering in ( Na , Bi ) Ti O 3 - x BaTi O 3 single crystals near the morphotropic phase boundary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Chengtao; Bansal, Dipanshu; Li, Jiefang

    Neutron and x-ray scattering measurements were performed on (Na 1/2Bi 1/2)TiO 3-x at % BaTiO 3 (NBT-xBT) single crystals (x = 4, 5, 6.5, and 7.5) across the morphotropic phase boundary (MPB), as a function of both composition and temperature, and probing both structural and dynamical aspects. In addition to the known diffuse scattering pattern near the gamma points, our measurements revealed new, faint superlattice peaks, as well as an extensive diffuse scattering network, revealing a short-range ordering of polar nanoregions (PNR) with a static stacking morphology. Furthermore, in samples with compositions closest to the MPB, our inelastic neutron scatteringmore » investigations of the phonon dynamics showed two unusual features in the acoustic phonon branches, between the superlattice points, and between the superlattice points and gamma points, respectively. Finally, these critical elements are not present in the other compositions away from the MPB, which suggests that these features may be related to the tilt modes coupling behavior near the MPB.« less

  5. SMALL-ANGLE NEUTRON SCATTERING CHARACTERIZATION OF THE STRUCTURE OF NANOPOROUS CARBONS FOR ENERGY-RELATED APPLICATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Lilin; Mavila Chathoth, Suresh; Melnichenko, Yuri B

    2011-01-01

    We used small-angle neutron scattering (SANS) and neutron contrast variation to study the structure of four nanoporouscarbons prepared by thermo-chemical etching of titanium carbide TiC in chlorine at 300, 400, 600, and 800 C with pore diameters ranging between -4 and -11 {angstrom}. SANS patterns were obtained from dry samples and samples saturated with deuterium oxide (D{sub 2}O) in order to delineate origin of the power law scattering in the low Q domain as well as to evaluate pore accessibility for D{sub 2}O molecules. SANS cross section of all samples was fitted to Debye-Anderson-Brumberger (DAB), DAB-Kirste-Porod models as well asmore » to the Guinier and modified Guinier formulae for cylindrical objects, which allowed for evaluating the radii of gyration as well as the radii and lengths of the pores under cylindrical shape approximation. SANS data from D{sub 2}O-saturated samples indicate that strong upturn in the low Q limit usually observed in the scattering patterns from microporous carbon powders is due to the scattering from outer surface of the powder particles. Micropores are only partially filled with D{sub 2}O molecules due to geometrical constraints and or partial hydrophobicity of the carbon matrix. Structural parameters of the dry carbons obtained using SANS are compared with the results of the gas sorption measurements and the values agree for carbide-derived carbons (CDCs) obtained at high chlorination temperatures (>600 C). For lower chlorination temperatures, pore radii obtained from gas sorption overestimate the actual pore size as calculated from SANS for two reasons: inaccessible small pores are present and the model-dependent fitting based on density functional theory models assumes non-spherical pores, whereas SANS clearly indicates that the pore shape in microporous CDC obtained at low chlorination temperatures is nearly spherical.« less

  6. Direct Neutron Spectroscopy Observation of Cerium Hydride Species on a Cerium Oxide Catalyst

    DOE PAGES

    Wu, Zili; Cheng, Yongqiang; Tao, Franklin; ...

    2017-06-27

    Ceria has recently shown intriguing hydrogenation reactivity in catalyzing alkyne selectively to alkenes. However, the mechanism of the hydrogenation reaction, especially the activation of H 2, remains experimentally elusive. In this paper, we report the first direct spectroscopy evidence for the presence of both surface and bulk Ce–H species upon H 2 dissociation over ceria via in situ inelastic neutron scattering spectroscopy. Combined with in situ ambient-pressure X-ray photoelectron spectroscopy, IR, and Raman spectroscopic studies, the results together point to a heterolytic dissociation mechanism of H 2 over ceria, leading to either homolytic products (surface OHs) on a close-to-stoichiometric ceriamore » surface or heterolytic products (Ce–H and OH) with the presence of induced oxygen vacancies in ceria. Finally, the finding of this work has significant implications for understanding catalysis by ceria in both hydrogenation and redox reactions where hydrogen is involved.« less

  7. Direct Neutron Spectroscopy Observation of Cerium Hydride Species on a Cerium Oxide Catalyst

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Zili; Cheng, Yongqiang; Tao, Franklin

    Ceria has recently shown intriguing hydrogenation reactivity in catalyzing alkyne selectively to alkenes. However, the mechanism of the hydrogenation reaction, especially the activation of H 2, remains experimentally elusive. In this paper, we report the first direct spectroscopy evidence for the presence of both surface and bulk Ce–H species upon H 2 dissociation over ceria via in situ inelastic neutron scattering spectroscopy. Combined with in situ ambient-pressure X-ray photoelectron spectroscopy, IR, and Raman spectroscopic studies, the results together point to a heterolytic dissociation mechanism of H 2 over ceria, leading to either homolytic products (surface OHs) on a close-to-stoichiometric ceriamore » surface or heterolytic products (Ce–H and OH) with the presence of induced oxygen vacancies in ceria. Finally, the finding of this work has significant implications for understanding catalysis by ceria in both hydrogenation and redox reactions where hydrogen is involved.« less

  8. Beta-Delayed Neutron Spectroscopy with Trapped Fission Products

    NASA Astrophysics Data System (ADS)

    Czeszumska, A.; Scielzo, N. D.; Norman, E. B.; Savard, G.; Aprahamian, A.; Burkey, M.; Caldwell, S. A.; Chiara, C. J.; Clark, J. A.; Harker, J.; Marley, S. T.; Morgan, G.; Orford, R.; Padgett, S.; Perez Galvan, A.; Segel, R. E.; Sharma, K. S.; Siegl, K.; Strauss, S.; Yee, R. M.

    2014-09-01

    Characterizing β-delayed neutron emission (βn) is of importance in reactor safety modeling, understanding of r-process nucleosynthesis, and nuclear structure studies. A newly developed technique enables a reliable measurement of βn branching ratios and neutron energy spectra without directly detecting neutrons. Ions of interest are loaded into a Paul trap surrounded by an array of radiation detectors. Upon decay, recoiling daughter nuclei and emitted particles emerge from the center of the trap with minimal scattering. The neutron energy is then determined from the time-of-flight, and hence momentum, of the recoiling ions. I will explain the details of the technique, and present the results from the most recent experimental campaign at the CARIBU facility at Argonne National Laboratory. Characterizing β-delayed neutron emission (βn) is of importance in reactor safety modeling, understanding of r-process nucleosynthesis, and nuclear structure studies. A newly developed technique enables a reliable measurement of βn branching ratios and neutron energy spectra without directly detecting neutrons. Ions of interest are loaded into a Paul trap surrounded by an array of radiation detectors. Upon decay, recoiling daughter nuclei and emitted particles emerge from the center of the trap with minimal scattering. The neutron energy is then determined from the time-of-flight, and hence momentum, of the recoiling ions. I will explain the details of the technique, and present the results from the most recent experimental campaign at the CARIBU facility at Argonne National Laboratory. This work was supported under contracts DE-NA0000979 (NSSC), DE-AC52-07NA27344 (LLNL), DE-AC02-06CH11357 (ANL), DE-FG02-94ER40834 (U. Maryland), DE-FG02-98ER41086 (Northwestern U.), NSERC, Canada, under Application No. 216974, and DHS.

  9. Vacuum System Upgrade for Extended Q-Range Small-Angle Neutron Scattering Diffractometer (EQ-SANS) at SNS

    DOE PAGES

    Stone, Christopher M.; Williams, Derrick C.; Price, Jeremy P.

    2016-09-23

    The Extended Q-Range Small-Angle Neutron Scattering Diffractometer (EQ-SANS) instrument at the Spallation Neutron Source (SNS), Oak Ridge, Tennessee, incorporates a 69m3 detector vessel with a vacuum system which required an upgrade with respect to performance, ease of operation, and maintenance. The upgrade focused on improving pumping performance as well as optimizing system design to minimize opportunity for operational error. This upgrade provided the following practical contributions: Reduced time required to evacuate from atmospheric pressure to 2mTorr from 500-1,000 minutes to 60-70 minutes Provided turn-key automated control with a multi-faceted interlock for personnel and machine safety.

  10. Vacuum System Upgrade for Extended Q-Range Small-Angle Neutron Scattering Diffractometer (EQ-SANS) at SNS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stone, Christopher M.; Williams, Derrick C.; Price, Jeremy P.

    The Extended Q-Range Small-Angle Neutron Scattering Diffractometer (EQ-SANS) instrument at the Spallation Neutron Source (SNS), Oak Ridge, Tennessee, incorporates a 69m3 detector vessel with a vacuum system which required an upgrade with respect to performance, ease of operation, and maintenance. The upgrade focused on improving pumping performance as well as optimizing system design to minimize opportunity for operational error. This upgrade provided the following practical contributions: Reduced time required to evacuate from atmospheric pressure to 2mTorr from 500-1,000 minutes to 60-70 minutes Provided turn-key automated control with a multi-faceted interlock for personnel and machine safety.

  11. Study of the dynamics of poly(ethylene oxide) by combining molecular dynamic simulations and neutron scattering experiments

    NASA Astrophysics Data System (ADS)

    Brodeck, M.; Alvarez, F.; Arbe, A.; Juranyi, F.; Unruh, T.; Holderer, O.; Colmenero, J.; Richter, D.

    2009-03-01

    We performed quasielastic neutron scattering experiments and atomistic molecular dynamics simulations on a poly(ethylene oxide) (PEO) homopolymer system above the melting point. The excellent agreement found between both sets of data, together with a successful comparison with literature diffraction results, validates the condensed-phase optimized molecular potentials for atomistic simulation studies (COMPASS) force field used to produce our dynamic runs and gives support to their further analysis. This provided direct information on magnitudes which are not accessible from experiments such as the radial probability distribution functions of specific atoms at different times and their moments. The results of our simulations on the H-motions and different experiments indicate that in the high-temperature range investigated the dynamics is Rouse-like for Q-values below ≈0.6 Å-1. We then addressed the single chain dynamic structure factor with the simulations. A mode analysis, not possible directly experimentally, reveals the limits of applicability of the Rouse model to PEO. We discuss the possible origins for the observed deviations.

  12. Study of the dynamics of poly(ethylene oxide) by combining molecular dynamic simulations and neutron scattering experiments.

    PubMed

    Brodeck, M; Alvarez, F; Arbe, A; Juranyi, F; Unruh, T; Holderer, O; Colmenero, J; Richter, D

    2009-03-07

    We performed quasielastic neutron scattering experiments and atomistic molecular dynamics simulations on a poly(ethylene oxide) (PEO) homopolymer system above the melting point. The excellent agreement found between both sets of data, together with a successful comparison with literature diffraction results, validates the condensed-phase optimized molecular potentials for atomistic simulation studies (COMPASS) force field used to produce our dynamic runs and gives support to their further analysis. This provided direct information on magnitudes which are not accessible from experiments such as the radial probability distribution functions of specific atoms at different times and their moments. The results of our simulations on the H-motions and different experiments indicate that in the high-temperature range investigated the dynamics is Rouse-like for Q-values below approximately 0.6 A(-1). We then addressed the single chain dynamic structure factor with the simulations. A mode analysis, not possible directly experimentally, reveals the limits of applicability of the Rouse model to PEO. We discuss the possible origins for the observed deviations.

  13. Micro-focused Small Angle Neutron Scattering and Imaging for Science and Engineering Using RTP--A Preliminary Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, Abdul Aziz; Al Rashid Megat Ahmad, Megat Harun; Md Idris, Faridah

    2010-01-05

    Malaysian Nuclear Agency's (Nuclear Malaysia) Small Angle Neutron Scattering (SANS) facility--(MYSANS)--is utilizing low flux of thermal neutron at the agency's 1 MW TRIGA reactor. As the design nature of the 8 m SANS facility can allow object resolution in the range between 5 and 80 nm to be obtained. It can be used to study alloys, ceramics and polymers in certain area of problems that relate to samples containing strong scatterers or contrast. The current SANS system at Malaysian Nuclear Agency is only capable to measure Q in limited range with a PSD (128x128) fixed at 4 m from themore » sample. The existing reactor hall that incorporate this MYSANS facility has a layout that prohibits the rebuilding of MYSANS therefore the position between the wavelength selector (HOPG) and sample and the PSD cannot be increased for wider Q range. The flux of the neutron at current sample holder is very low which around 10{sup 3} n/cm{sup 2}/sec. Thus it is important to rebuild the MYSANS to maximize the utilization of neutron. Over the years, the facility has undergone maintenance and some changes have been made. Modification on secondary shutter and control has been carried out to improve the safety level of the instrument. A compact micro-focus SANS method can suit this objective together with an improve cryostat system. This paper will explain some design concept and approaches in achieving higher flux and the modification needs to establish the micro-focused SANS.« less

  14. Analysis of the applicability of the modified kinematic approximation to describe the off-specular neutron scattering from the surface of micro- and nanostructured objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belushkin, A. V., E-mail: belushk@nf.jinr.ru; Manoshin, S. A., E-mail: manoshin@nf.jinr.ru; Rikhvitskiy, V. S.

    2016-09-15

    The applicability of the modified kinematic approximation to describe the off-specular neutron scattering from interfaces between media is analyzed. It is demonstrated that in some cases one can expect not only a qualitative but also a quantitative agreement between the data and the results of experiments and calculations based on more accurate techniques. Diffuse scattering from rough surfaces and thin films with correlated and noncorrelated roughness of the upper and lower interfaces and the neutron diffraction by stripe magnetic domains and magnetic domains with a random size distribution (magnetic roughness) are considered as examples.

  15. Lattice dynamics in magnetic superelastic Ni-Mn-In alloys. Neutron scattering and ultrasonic experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moya, Xavier; Gonzalez-Alonso, David; Manosa, Lluis

    2009-01-01

    Neutron scattering and ultrasonic methods have been used to study the lattice dynamics of two single crystals of Ni-Mn-In Heusler alloys close to Ni50Mn34In16 magnetic superelastic composition. The paper reports the experimental determination of the low-lying phonon dispersion curves and the elastic constants for this alloy system. We found that the frequencies of the TA2 branch are relatively low and it exhibits a small dip anomaly at a wave number n= 1/3, which softens with decreasing temperature. Associated with the softening of this phonon, we also observed the softening of the shear elastic constant C0 = (C11 C12)=2. Both temperaturemore » softenings are typical for bcc based solids which undergo martensitic transformations and re ect the dynamical instability of the cubic lattice against shearing of f110g planes along h1 10i directions. Additionally, we measured low-lying phonon dispersion branches and elastic constants in applied magnetic fields aimed to characterize the magnetoelastic coupling.« less

  16. Small-Angle Neutron Scattering and Neutron Spin Echo Characterization of Monoclonal Antibody Self-Associations at High Concentrations

    NASA Astrophysics Data System (ADS)

    Yearley, Eric; Zarraga, Isidro (Dan); Godfrin, Paul (Doug); Perevozchikova, Tatiana; Wagner, Norman; Liu, Yun

    2013-03-01

    Concentrated therapeutic protein formulations offer numerous delivery and stability challenges. In particular, it has been found that several therapeutic proteins exhibit a large increase in viscosity as a function of concentration that may be dependent on the protein-protein interactions. Small-Angle Neutron Scattering (SANS) and Neutron Spin Echo (NSE) investigations have been performed to probe the protein-protein interactions and diffusive properties of highly concentrated MAbs. The SANS data demonstrate that the inter-particle interactions for a highly viscous MAb at high concentrations (MAb1) are highly attractive, anisotropic and change significantly with concentration while the viscosity and interactions do not differ considerably for MAb2. The NSE results furthermore indicate that MAb1 and MAb2 have strong concentration dependencies of dynamics at high Q that are correlated to the translational motion of the proteins. Finally, it has also been revealed that the individual MAb1 proteins form small clusters at high concentrations in contrast to the MAb2 proteins, which are well-dispersed. It is proposed that the formation of these clusters is the primary cause of the dramatic increase in viscosity of MAb1 in crowded or concentrated environments.

  17. Effects of polarization direction on laser-assisted free-free scattering

    NASA Astrophysics Data System (ADS)

    deHarak, B. A.; Kim, B. N.; Weaver, C. M.; Martin, N. L. S.; Siavashpouri, Mahsa; Nosarzewski, Benjamin

    2016-06-01

    This work will detail the effects of laser polarization direction (relative to the momentum transfer direction) on laser-assisted free-free scattering. Such processes play a role in the gas breakdown that occurs in electric discharges as well as providing a method for the laser heating of a plasma (Musa et al 2010 J. Phys. B: At. Mol. Opt. Phys. 43 175201, Mason 1993 Rep. Prog. Phys. 56 1275). Experimental results will be presented for electron-helium scattering in the presence of an Nd:YAG laser field (hν =1.17 eV) where the polarization direction was varied in a plane that is perpendicular to the scattering plane. To date, all of our experimental results are well described by the Kroll-Watson approximation (KWA) (Kroll and Watson 1973 Phys. Rev. A 8 804). The good agreement between our experiments and calculations using the KWA includes the case where the polarization is perpendicular to the momentum transfer direction, for which the KWA predicts vanishing cross section; other workers have found that the KWA tends to be inaccurate for cases where it predicts small cross sections (e.g. Musa et al 2010 J. Phys. B: At. Mol. Opt. Phys. 43 175201). We also present simulations of the effects that multiple scattering might have on experimental measurements. In particular, we examine conditions that are expected to be similar to those of the experiments reported by Wallbank and Holmes (Wallbank and Holmes 1993 Phys. Rev. A 48 R2515).

  18. Porous material neutron detector

    DOEpatents

    Diawara, Yacouba [Oak Ridge, TN; Kocsis, Menyhert [Venon, FR

    2012-04-10

    A neutron detector employs a porous material layer including pores between nanoparticles. The composition of the nanoparticles is selected to cause emission of electrons upon detection of a neutron. The nanoparticles have a maximum dimension that is in the range from 0.1 micron to 1 millimeter, and can be sintered with pores thereamongst. A passing radiation generates electrons at one or more nanoparticles, some of which are scattered into a pore and directed toward a direction opposite to the applied electrical field. These electrons travel through the pore and collide with additional nanoparticles, which generate more electrons. The electrons are amplified in a cascade reaction that occurs along the pores behind the initial detection point. An electron amplification device may be placed behind the porous material layer to further amplify the electrons exiting the porous material layer.

  19. Neutron Scattering Studies of the Interplay of Amyloid β Peptide(1–40) and An Anionic Lipid 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol

    DOE PAGES

    Rai, Durgesh K.; Sharma, Veerendra K.; Anunciado, Divina; ...

    2016-08-09

    The interaction between lipid bilayers and Amyloid β peptide (Aβ) plays a critical role in proliferation of Alzheimer’s disease (AD). AD is expected to affect one in every 85 humans by 2050, and therefore, deciphering the interplay of Aβ and lipid bilayers at the molecular level is of profound importance. In this work, we applied an array of neutron scattering methods to study the structure and dynamics of Aβ(1–40) interacting 1,2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG) bilayers. In the structural investigations of lipid bilayer’s response to Aβ binding, Small Angle Neutron Scattering and Neutron Membrane Diffraction revealed that the Aβ anchors firmly to themore » highly charged DMPG bilayers in the interfacial region between water and hydrocarbon chain, and it doesn’t penetrate deeply into the bilayer. This association mode is substantiated by the dynamics studies with high resolution Quasi-Elastic Neutron Scattering experiments, showing that the addition of Aβ mainly affects the slower lateral motion of lipid molecules, especially in the fluid phase, but not the faster internal motion. The results revealed that Aβ associates with the highly charged membrane in surface with limited impact on the structure, but the altered membrane dynamics could have more influence on other membrane processes.« less

  20. Quasiparticle Interactions in Neutron Matter for Applications in Neutron Stars

    NASA Technical Reports Server (NTRS)

    Wambach, J.; Anisworth, T. L.; Pines, D.

    1993-01-01

    A microscopic model for the quaisiparticle interaction in neutron matter is presented. Both particle-particle (pp) and particle-hole (ph) correlation are are included. The pp correlations are treated in semi-empirical way, while ph correlations are incorporated by solving coupled two-body equations for the particle hole interaction and the scattering amplitude on the Fermi sphere. The resulting integral equations self-consistently sum the ph reducible diagrams. Antisymmetry is kept at all stages and hence the forward-scattering sum rules are obeyed. Results for Landau parameters and transport coefficients in a density regime representing the crust of a neutron star are presented. We also estimate the S-1 gap parameter for neutron superfluidity and comment briefly on neutron-star implications.

  1. The effect of amphiphilic polymers with a continuous amphiphilicity profile on the membrane properties in a bicontinuous microemulsions studied by neutron scattering

    NASA Astrophysics Data System (ADS)

    Klemmer, Helge F. M.; Frielinghaus, Henrich; Allgaier, Jürgen; Ohl, Michael; Holderer, Olaf

    2017-06-01

    Microemulsion systems consisting of oil, water and surfactant have been studied with neutron scattering techniques. The amount of surfactant needed to form a microemulsion can be dramatically reduced by the addition of small amounts of amphiphilic block copolymers (boosting effect). Here, we studied the influence of block copolymers with gradually changing amphiphilicity from hydrophilic to hydrophobic. Small angle neutron scattering (SANS), neutron spin echo spectroscopy (NSE) and phase diagram measurements in combination give access to the elastic properties of the membrane. The underlying NSE experiments for this interpretation rely on smallest changes of the relaxation curves (of ca. 1% steps) for still small changes of the bending rigidity (of ca. 10% steps). This high reliability of the experiments conducted at the SNS-NSE displays the accuracy of the instrument itself and the latest developments of the evaluation software, which were necessary to interpret such tiny changes of the bending rigidity reliably.

  2. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1958-04-22

    A nuclear reactor for isotope production is described. This reactor is designed to provide a maximum thermal neutron flux in a region adjacent to the periphery of the reactor rather than in the center of the reactor. The core of the reactor is generally centrally located with respect tn a surrounding first reflector, constructed of beryllium. The beryllium reflector is surrounded by a second reflector, constructed of graphite, which, in tune, is surrounded by a conventional thermal shield. Water is circulated through the core and the reflector and functions both as a moderator and a coolant. In order to produce a greatsr maximum thermal neutron flux adjacent to the periphery of the reactor rather than in the core, the reactor is designed so tbat the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the materials in the reflector is approximately twice the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the material of the core of the reactor.

  3. Neutron-scattering evidence for a periodically modulated superconducting phase in the underdoped cuprate La 1.905Ba 0.095CuO 4

    DOE PAGES

    Xu, Zhijun; Stock, C.; Chi, Songxue; ...

    2014-10-01

    The role of antiferromagnetic spin correlations in high-temperature superconductors remains a matter of debate. We present inelastic neutron-scattering evidence that gapless spin fluctuations coexist with superconductivity in La 1.905Ba 0.095CuO 4. Furthermore, we observe that both the low-energy magnetic spectral weight and the spin incommensurability are enhanced with the onset of superconducting correlations. We propose that the coexistence occurs through intertwining of spatial modulations of the pair wave function and the antiferromagnetic correlations. This proposal is also directly relevant to sufficiently underdoped La 2-xSr xCuO 4 and YBa 2Cu 3O 6+x.

  4. Neutron scattering shows a droplet of oleic acid at the center of the BAMLET complex.

    PubMed

    Rath, Emma M; Duff, Anthony P; Gilbert, Elliot P; Doherty, Greg; Knott, Robert B; Church, W Bret

    2017-07-01

    The anti-cancer complex, Bovine Alpha-lactalbumin Made LEthal to Tumors (BAMLET), has intriguing broad-spectrum anti-cancer activity. Although aspects of BAMLET's anti-cancer mechanism are still not known, it is understood that it involves the oleic acid or oleate component of BAMLET being preferentially released into cancer cell membranes leading to increased membrane permeability and lysis. The structure of the protein component of BAMLET has previously been elucidated by small angle X-ray scattering (SAXS) to be partially unfolded and dramatically enlarged. However, the structure of the oleic acid component of BAMLET and its disposition with respect to the protein component was not revealed as oleic acid has the same X-ray scattering length density (SLD) as water. Employing the difference in the neutron SLDs of hydrogen and deuterium, we carried out solvent contrast variation small angle neutron scattering (SANS) experiments of hydrogenated BAMLET in deuterated water buffers, to reveal the size, shape, and disposition of the oleic acid component of BAMLET. Our resulting analysis and models generated from SANS and SAXS data indicate that oleic acid forms a spherical droplet of oil incompletely encapsulated by the partially unfolded protein component. This model provides insight into the anti-cancer mechanism of this cache of lipid. The model also reveals a protein component "tail" not associated with the oleic acid component that is able to interact with the tail of other BAMLET molecules, providing a plausible explanation of how BAMLET readily forms aggregates. Proteins 2017; 85:1371-1378. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  5. An efficient 14-MeV neutron detector for use in mixed 2. 5- and 14-MeV neutron beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croft, S.; Bond, D.S.; Hawkes, N.P.

    1993-06-01

    A neutron detector capable of measuring the time-dependent yield of 14-MeV neutrons from a D--D plasma producing predominantly 2.5-MeV neutrons has been developed. The detector consists of a thick polythene recoil proton radiator backed by a graphite foil attached to a large area totally depleted ion-implanted diode. Protons scattered in the forward direction by 14-MeV neutrons pass through the graphite foil and are registered in the diode. Recoil protons from 2.5-MeV neutrons, however, are prevented from reaching the diode by the foil. When operated with a 1.5-MeV energy bias, the measured neutron detection efficiency for 15-MeV neutrons is 3.2[times]10[sup [minus]3]more » per neutron. The corresponding figure for 3.1-MeV neutrons is a factor of 540 lower. The neutron detector and its laboratory calibration are described, as is its deployment at the Joint European Torus where it serves as a triton burn-up monitor.« less

  6. Periodic magnetic field as a polarized and focusing thermal neutron spectrometer and monochromator.

    PubMed

    Cremer, J T; Williams, D L; Fuller, M J; Gary, C K; Piestrup, M A; Pantell, R H; Feinstein, J; Flocchini, R G; Boussoufi, M; Egbert, H P; Kloh, M D; Walker, R B

    2010-01-01

    A novel periodic magnetic field (PMF) optic is shown to act as a prism, lens, and polarizer for neutrons and particles with a magnetic dipole moment. The PMF has a two-dimensional field in the axial direction of neutron propagation. The PMF alternating magnetic field polarity provides strong gradients that cause separation of neutrons by wavelength axially and by spin state transversely. The spin-up neutrons exit the PMF with their magnetic spins aligned parallel to the PMF magnetic field, and are deflected upward and line focus at a fixed vertical height, proportional to the PMF period, at a downstream focal distance that increases with neutron energy. The PMF has no attenuation by absorption or scatter, as with material prisms or crystal monochromators. Embodiments of the PMF include neutron spectrometer or monochromator, and applications include neutron small angle scattering, crystallography, residual stress analysis, cross section measurements, and reflectometry. Presented are theory, experimental results, computer simulation, applications of the PMF, and comparison of its performance to Stern-Gerlach gradient devices and compound material and magnetic refractive prisms.

  7. Periodic magnetic field as a polarized and focusing thermal neutron spectrometer and monochromator

    PubMed Central

    Cremer, J. T.; Williams, D. L.; Fuller, M. J.; Gary, C. K.; Piestrup, M. A.; Pantell, R. H.; Feinstein, J.; Flocchini, R. G.; Boussoufi, M.; Egbert, H. P.; Kloh, M. D.; Walker, R. B.

    2010-01-01

    A novel periodic magnetic field (PMF) optic is shown to act as a prism, lens, and polarizer for neutrons and particles with a magnetic dipole moment. The PMF has a two-dimensional field in the axial direction of neutron propagation. The PMF alternating magnetic field polarity provides strong gradients that cause separation of neutrons by wavelength axially and by spin state transversely. The spin-up neutrons exit the PMF with their magnetic spins aligned parallel to the PMF magnetic field, and are deflected upward and line focus at a fixed vertical height, proportional to the PMF period, at a downstream focal distance that increases with neutron energy. The PMF has no attenuation by absorption or scatter, as with material prisms or crystal monochromators. Embodiments of the PMF include neutron spectrometer or monochromator, and applications include neutron small angle scattering, crystallography, residual stress analysis, cross section measurements, and reflectometry. Presented are theory, experimental results, computer simulation, applications of the PMF, and comparison of its performance to Stern–Gerlach gradient devices and compound material and magnetic refractive prisms. PMID:20113108

  8. Biomembranes research using thermal and cold neutrons

    DOE PAGES

    Heberle, Frederick A.; Myles, Dean A. A.; Katsaras, John

    2015-08-01

    In 1932 James Chadwick discovered the neutron using a polonium source and a beryllium target (Chadwick, 1932). In a letter to Niels Bohr dated February 24, 1932, Chadwick wrote: “whatever the radiation from Be may be, it has most remarkable properties.” Where it concerns hydrogen-rich biological materials, the “most remarkable” property is the neutron’s differential sensitivity for hydrogen and its isotope deuterium. Such differential sensitivity is unique to neutron scattering, which unlike X-ray scattering, arises from nuclear forces. Consequently, the coherent neutron scattering length can experience a dramatic change in magnitude and phase as a result of resonance scattering, impartingmore » sensitivity to both light and heavy atoms, and in favorable cases to their isotopic variants. Furthermore, this article describes recent biomembranes research using a variety of neutron scattering techniques.« less

  9. Neutron scattering studies of molecular conformations in liquid crystal polymers

    NASA Astrophysics Data System (ADS)

    Noirez, L.; Moussa, F.; Cotton, J. P.; Keller, P.; Pépy, G.

    1991-03-01

    A comblike liquid crystal polymer (LPC) is a polymer on which mesogenic molecules have been grafted. It exhibits a succession of liquid crystal phases. Usually the equilibrium conformation of an ordinary polymeric chain corresponds to a maximum entropy, i.e., to an isotropic spherical coil. How does the backbone of a LCP behave in the nematic and smectic field? Small-angle neutron scattering may answer this question. Such measurements are presented here on four different polymers as a function of temperature. An anisotropy of the backbone conformation is found in all these studied compounds, much more pronounced in the smectic phase than in the nematic phase: the backbone spreads more or less perpendicularly to its hanging cores. A comparison with existing theories and a discussion of these results is outlined.

  10. Quasielastic neutron scattering study of water confined in carbon nanopores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mavila Chathoth, Suresh; Mamontov, Eugene; Kolesnikov, Alexander I

    2011-01-01

    Microscopic dynamics of water confined in nanometer and sub-nanometer pores of carbide-derived carbon (CDC) were investigated using quasielastic neutron scattering (QENS). The temperature dependence of the average relaxation time, {tau}, exhibits super-Arrhenius behavior that could be described by Vogel-Fulcher-Tammann (VFT) law in the range from 250 K to 190 K; below this temperature, {tau} follows Arrhenius temperature dependence. The temperature of the dynamic crossover between the two regimes in water confined in the CDC pores is similar to that observed for water in hydrophobic confinement of the larger size, such as 14 {angstrom} ordered mesoporous carbon (CMK) and 16 {angstrom}more » double-wall carbon nanotubes. Thus, the dynamical behavior of water remains qualitatively unchanged even in the very small hydrophobic pores.« less

  11. Investigation of neutron interactions with Ge detectors

    NASA Astrophysics Data System (ADS)

    Baginova, Miloslava; Vojtyla, Pavol; Povinec, Pavel P.

    2018-07-01

    Interactions of neutrons with a high-purity germanium detector were studied experimentally and by simulations using the GEANT4 tool. Elastic and inelastic scattering of fast neutrons as well as neutron capture on Ge nuclei were observed. Peaks induced by inelastic scattering of neutrons on 70Ge, 72Ge, 73Ge, 74Ge and 76Ge were well visible in the γ-ray spectra. In addition, peaks due to inelastic scattering of neutrons on copper and lead nuclei, including the well-known peak of 208Pb at 2614.51 keV, were detected. The GEANT4 simulations showed that the simulated spectrum was in a good agreement with the experimental one. Differences between the simulated and the measured spectra were due to the high γ-ray intensity of the used neutron source, physics implemented in GEANT4 and contamination of the neutron source.

  12. Hydrogen adsorption in HKUST-1: a combined inelastic neutron scattering and first-principles study.

    PubMed

    Brown, Craig M; Liu, Yun; Yildirim, Taner; Peterson, Vanessa K; Kepert, Cameron J

    2009-05-20

    Hydrogen adsorption in high surface area nanoporous coordination polymers has attracted a great deal of interest in recent years due to the potential applications in energy storage. Here we present combined inelastic neutron scattering measurements and detailed first-principles calculations aimed at unraveling the nature of hydrogen adsorption in HKUST-1 (Cu3(1,3,5-benzenetricarboxylate)2), a metal-organic framework (MOF) with unsaturated metal centers. We reveal that, in this system, the major contribution to the overall binding comes from the classical Coulomb interaction which is not screened due to the open metal site; this explains the relatively high binding energies and short H2-metal distances observed in MOFs with exposed metal sites as compared to traditional ones. Despite the short distances, there is no indication of an elongation of the H-H bond for the bound H2 molecule at the metal site. We find that both the phonon and rotational energy levels of the hydrogen molecule are closely similar, making the interpretation of the inelastic neutron scattering data difficult. Finally, we show that the orientation of H2 has a surprisingly large effect on the binding potential, reducing the classical binding energy by almost 30%. The implication of these results for the development of MOF materials for better hydrogen storage is discussed.

  13. Hydrogen adsorption in HKUST-1: a combined inelastic neutron scattering and first-principles study

    NASA Astrophysics Data System (ADS)

    Brown, Craig M.; Liu, Yun; Yildirim, Taner; Peterson, Vanessa K.; Kepert, Cameron J.

    2009-05-01

    Hydrogen adsorption in high surface area nanoporous coordination polymers has attracted a great deal of interest in recent years due to the potential applications in energy storage. Here we present combined inelastic neutron scattering measurements and detailed first-principles calculations aimed at unraveling the nature of hydrogen adsorption in HKUST-1 (Cu3(1,3,5-benzenetricarboxylate)2), a metal-organic framework (MOF) with unsaturated metal centers. We reveal that, in this system, the major contribution to the overall binding comes from the classical Coulomb interaction which is not screened due to the open metal site; this explains the relatively high binding energies and short H2-metal distances observed in MOFs with exposed metal sites as compared to traditional ones. Despite the short distances, there is no indication of an elongation of the H-H bond for the bound H2 molecule at the metal site. We find that both the phonon and rotational energy levels of the hydrogen molecule are closely similar, making the interpretation of the inelastic neutron scattering data difficult. Finally, we show that the orientation of H2 has a surprisingly large effect on the binding potential, reducing the classical binding energy by almost 30%. The implication of these results for the development of MOF materials for better hydrogen storage is discussed.

  14. Aggregation in concentrated protein solutions: Insights from rheology, neutron scattering and molecular simulations

    NASA Astrophysics Data System (ADS)

    Castellanos, Maria Monica

    Aggregation of therapeutic proteins is currently one of the major challenges in the bio-pharmaceutical industry, because aggregates could induce immunogenic responses and compromise the quality of the product. Current scientific efforts, both in industry and academia, are focused on developing rational approaches to screen different drug candidates and predict their stability under different conditions. Moreover, aggregation is promoted in highly concentrated protein solutions, which are typically required for subcutaneous injection. In order to gain further understanding about the mechanisms that lead to aggregation, an approach that combined rheology, neutron scattering, and molecular simulations was undertaken. Two model systems were studied in this work: Bovine Serum Albumin in surfactant-free Phosphate Buffered Saline at pH = 7.4 at concentrations from 11 mg/mL up to ˜519 mg/mL, and a monoclonal antibody in 20 mM Histidine/Histidine Hydrochloride at pH = 6.0 with 60 mg/mL trehalose and 0.2 mg/mL polysorbate-80 at concentrations from 53 mg/mL up to ˜220 mg/mL. The antibody used here has three mutations in the CH2 domain, which result in lower stability upon incubation at 40 °C with respect to the wild-type protein, based on size-exclusion chromatography assays. This temperature is below 49 °C, where unfolding of the least stable, CH2 domain occurs, according to differential scanning calorimetry. This dissertation focuses on identifying the role of aggregation on the viscosity of protein solutions. The protein solutions of this work show an increase in the low shear viscosity in the absence of surfactants, because proteins adsorb at the air/water interface forming a viscoelastic film that affects the measured rheology. Stable surfactant-laden protein solutions behave as simple Newtonian fluids. However, the surfactant-laden antibody solution also shows an increase in the low shear viscosity from bulk aggregation, after prolonged incubation at 40 °C. Small

  15. The Los ALamos Neutron Science Center Hydrogen Moderator System

    NASA Astrophysics Data System (ADS)

    Jarmer, J. J.; Knudson, J. N.

    2006-04-01

    At the Los Alamos Neutron Science Center (LANSCE), spallation neutrons are produced by an 800-MeV proton beam interacting with tungsten targets. Gun-barrel-type penetrations through the heavy concrete and steel shielding that surround the targets collimate neutrons to form neutron beams used for scattering experiments. Two liquid hydrogen moderators of one-liter volume each are positioned adjacent to the neutron-production targets. Some of the neutrons that pass through a moderator interact with or scatter from protons in the hydrogen. The neutron-proton interaction reduces the energy or moderates neutrons to lower energies. Lower energy "moderated" neutrons are the most useful for some neutron scattering experiments. We provide a description of the LANSCE hydrogen-moderator system and its cryogenic performance with proton beams of up to 125 micro-amp average current.

  16. High Precision Measurement of the Neutron Polarizabilities via Compton Scattering on Deuterium at Eγ=65 MeV

    NASA Astrophysics Data System (ADS)

    Sikora, Mark; Compton@HIGS Team

    2017-01-01

    The electric (αn) and magnetic (βn) polarizabilities of the neutron are fundamental properties arising from its internal structure which describe the nucleon's response to applied electromagnetic fields. Precise measurements of the polarizabilities provide crucial constraints on models of Quantum Chromodynamics (QCD) in the low energy regime such as Chiral Effective Field Theories as well as emerging ab initio calculations from lattice-QCD. These values also contribute the most uncertainty to theoretical determinations of the proton-neutron mass difference. Historically, the experimental challenges to measuring αn and βn have been due to the difficulty in obtaining suitable targets and sufficiently intense beams, leading to significant statistical uncertainties. To address these issues, a program of Compton scattering experiments on the deuteron is underway at the High Intensity Gamma Source (HI γS) at Duke University with the aim of providing the world's most precise measurement of αn and βn. We report measurements of the Compton scattering differential cross section obtained at an incident photon energy of 65 MeV and discuss the sensitivity of these data to the polarizabilities.

  17. Directional Antineutrino Detection

    NASA Astrophysics Data System (ADS)

    Safdi, B. R.; Suerfu, J.

    2014-12-01

    We propose the first truly directional antineutrino detector for antineutrinos near the threshold for the inverse beta decay (IBD) of hydrogen, with potential applications including the spatial mapping of geo-neutrinos, searches for stellar antineutrinos, and the monitoring of nuclear reactors. The detector consists of adjacent and separated target and neutron-capture layers. The IBD events, which result in a neutron and a positron, take place in the target layers. These layers are thin enough so that the neutrons escape without scattering elastically. The neutrons are detected in the thicker neutron-capture layers. The location of the IBD event is determined from the energy deposited by the positron as it slows in the medium and from the two gamma rays that come from the positron annihilation. Since the neutron recoils in the direction of the antineutrino's motion, a line may then be drawn between the IBD event location and the neutron-capture location to approximate the antineutrino's velocity. In some events, we may even measure the positron's velocity, which further increases our ability to reconstruct the antineutrino's direction of motion. Our method significantly improves upon previous methods by allowing the neutron to freely travel a long distance before diffusing and being captured. Moreover, our design is a straightforward modification of existing antineutrino detectors; a prototype could easily be built with existing technology. We verify our design through Monte Carlo simulations in Geant4, using commercially-available boron-loaded plastic scintillators for the target and neutron-capture layer materials. We are able to discriminate from background using multiple coincidence signatures within a short, ~microsecond time interval. We conclude that the detector could likely operate above ground with minimal shielding.

  18. High Precision Measurement of the Neutron Polarizabilities via Compton Scattering on Deuterium at HI γS

    NASA Astrophysics Data System (ADS)

    Sikora, Mark

    2016-09-01

    The electric (αn) and magnetic (βn) polarizabilities of the neutron are fundamental properties arising from its internal structure which describe the nucleon's response to applied electromagnetic fields. Precise measurements of the polarizabilities provide crucial constraints on models of Quantum Chromodynamics (QCD) in the low energy regime such as Chiral Effective Field Theories as well as emerging ab initio calculations from lattice-QCD. These values also contribute the most uncertainty to theoretical determinations of the proton-neutron mass difference. Historically, the experimental challenges to measuring αn and βn have been due to the difficulty in obtaining suitable targets and sufficiently intense beams, leading to significant statistical uncertainties. To address these issues, a program of Compton scattering experiments on the deuteron is underway at the High Intensity Gamma Source (HI γS) at Duke University with the aim of providing the world's most precise measurement of αn and βn. We report measurements of the Compton scattering differential cross section obtained at incident photon energies of 65 and 85 MeV and discuss the sensitivity of these data to the polarizabilities.

  19. Tunable multiband directional electromagnetic scattering from spoof Mie resonant structure.

    PubMed

    Wu, Hong-Wei; Chen, Hua-Jun; Xu, Hua-Feng; Fan, Ren-Hao; Li, Yang

    2018-06-11

    We demonstrate that directional electromagnetic scattering can be realized in an artificial Mie resonant structure that supports electric and magnetic dipole modes simultaneously. The directivity of the far-field radiation pattern can be switched by changing wavelength of the incident light as well as tailoring the geometric parameters of the structure. In addition, we further design a quasiperiodic spoof Mie resonant structure by alternately inserting two materials into the slits. The results show that multi-band directional light scattering is realized by exciting multiple electric and magnetic dipole modes with different frequencies in the quasiperiodic structure. The presented design concept is suitable for microwave to terahertz region and can be applied to various advanced optical devices, such as antenna, metamaterial and metasurface.

  20. Characterization of nano-sized oxides in Fe-12Cr oxide-dispersion-strengthened ferritic steel using small-angle neutron scattering

    NASA Astrophysics Data System (ADS)

    Han, Young-Soo; Mao, Xiaodong; Jang, Jinsung; Kim, Tae-Kyu

    2015-04-01

    The ferritic ODS steel was manufactured by hot isostatic pressing and heat treatment. The nano-sized microstructures such as yttrium oxides and Cr oxides were quantitatively analyzed by small-angle neutron scattering (SANS). The effects of the fabrication conditions on the nano-sized microstructure were investigated in relation to the quantitative analysis results obtained by SANS. The ratio between magnetic and nuclear scattering components was calculated, and the characteristics of the nano-sized yttrium oxides are discussed based on the SANS analysis results.

  1. Light output response of EJ-309 liquid organic scintillator to 2.86-3.95 MeV carbon recoil ions due to neutron elastic and inelastic scatter

    NASA Astrophysics Data System (ADS)

    Norsworthy, Mark A.; Ruch, Marc L.; Hamel, Michael C.; Clarke, Shaun D.; Hausladen, Paul A.; Pozzi, Sara A.

    2018-03-01

    We present the first measurements of energy-dependent light output from carbon recoils in the liquid organic scintillator EJ-309. For this measurement, neutrons were produced by an associated particle deuterium-tritium generator and scattered by a volume of EJ-309 scintillator into stop detectors positioned at four fixed angles. Carbon recoils in the scintillator were isolated using triple coincidence among the associated particle detector, scatter detector, and stop detectors. The kinematics of elastic and inelastic scatter allowed data collection at eight specific carbon recoil energies between 2.86 and 3.95 MeV. We found the light output caused by carbon recoils in this energy range to be approximately 1.14% of that caused by electrons of the same energy, which is comparable to the values reported for other liquid organic scintillators. A comparison of the number of scattered neutrons at each angle to a Monte Carlo N-Particle eXtended simulation indicates that the ENDF/B-VII.1 evaluation of differential cross sections for 14.1 MeV neutrons on carbon has discrepancies with the experiment as large as 55%, whereas those reported in the JENDL-4.0u evaluation agree with experiment.

  2. Partial-wave analysis of nucleon-nucleon elastic scattering data

    DOE PAGES

    Workman, Ron L.; Briscoe, William J.; Strakovsky, Igor I.

    2016-12-19

    Energy-dependent and single-energy fits to the existing nucleon-nucleon database have been updated to incorporate recent measurements. The fits cover a region from threshold to 3 GeV, in the laboratory kinetic energy, for proton-proton scattering, with an upper limit of 1.3 GeV for neutron-proton scattering. Experiments carried out at the COSY-WASA and COSY-ANKE facilities have had a significant impact on the partial-wave solutions. Lastly, results are discussed in terms of both partial-wave and direct reconstruction amplitudes.

  3. Structures and interactions among globular proteins above the isoelectric point in the presence of divalent ions: A small angle neutron scattering and dynamic light scattering study

    NASA Astrophysics Data System (ADS)

    Kundu, Sarathi; Pandit, Subhankar; Abbas, Sohrab; Aswal, V. K.; Kohlbrecher, J.

    2018-02-01

    Small angle neutron scattering study reveals that at pD ≈ 7.0, above the isoelectric point of the globular protein Bovine Serum Albumin (BSA), in the presence of different divalent ions (Mg2+, Ca2+, Sr2+ and Ba2+), the short-range attractive interaction remains nearly constant and the intermediate-range repulsive interaction decreases with increasing salt concentration up to a certain concentration value but after that remains unchanged. However, for the monovalent ion (Na+), repulsive interaction decreases gradually up to 1 M salt concentration. Dynamic light scattering study shows that for all ions, diffusion coefficient of BSA decreases with increasing salt concentration and then nearly saturates.

  4. Preliminary neutron crystallographic analysis of selectively CH3-protonated, deuterated rubredoxin from Pyrococcus furiosus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiss, Kevin L; Meilleur, Flora; Blakeley, Matthew

    2008-01-01

    Neutron crystallography is used to locate hydrogen atoms in biological materials and can distinguish between negatively scattering hydrogen and positively scattering deuterium substituted positions in isomorphous neutron structures. Recently, Hauptman and Langs (2003) have shown that neutron diffraction data can be used to solve macromolecular structures by direct methods and that solution is aided by the presence of negatively scattering hydrogen atoms in the structure. Selective labeling protocols allow the design and production of H/D-labeled macromolecular structures in which the ratio of hydrogen to deuterium atoms can be precisely controlled. We have applied methyl-selective labeling protocols to introduce (1H-delta methyl)-leucinemore » and (1H-gamma methyl)-valine into deuterated rubredoxin from Pyrococcus furiosus (PfRd). Here we report on the production, crystallization, and preliminary neutron analysis of the selectively CH3-protonated, deuterated PfRd sample, which provided a high quality neutron data set extending to 1.75 resolution at the new LADI-III instrument at the Insititut Laue-Langevin. Preliminary analysis of neutron density maps allows unambiguous assignment of the positions of hydrogen atoms at the methyl groups of the valine and leucine residues in the otherwise deuterated rubredoxin structure.« less

  5. A new apparatus design for high temperature (up to 950°C) quasi-elastic neutron scattering in a controlled gaseous environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    al-Wahish, Amal; Armitage, D.; al-Binni, U.

    Our design for a sample cell system suitable for high temperature Quasi-Elastic Neutron Scattering (QENS) experiments is presented. The apparatus was developed at the Spallation Neutron Source in Oak Ridge National Lab where it is currently in use. The design provides a special sample cell environment under controlled humid or dry gas flow over a wide range of temperature up to 950°C. Using such a cell, chemical, dynamical, and physical changes can be studied in situ under various operating conditions. And while the cell combined with portable automated gas environment system is especially useful for in situ studies of microscopicmore » dynamics under operational conditions that are similar to those of solid oxide fuel cells, it can additionally be used to study a wide variety of materials, such as high temperature protonconductors. The cell can also be used in many different neutron experiments when a suitable sample holder material is selected. Finally, the sample cell system has recently been used to reveal fast dynamic processes in quasi-elastic neutron scattering experiments, which standard probes (such as electrochemical impedance spectroscopy) could not detect. In this work, we outline the design of the sample cell system and present results demonstrating its abilities in high temperature QENS experiments.« less

  6. A new apparatus design for high temperature (up to 950°C) quasi-elastic neutron scattering in a controlled gaseous environment.

    PubMed

    al-Wahish, Amal; Armitage, D; al-Binni, U; Hill, B; Mills, R; Jalarvo, N; Santodonato, L; Herwig, K W; Mandrus, D

    2015-09-01

    A design for a sample cell system suitable for high temperature Quasi-Elastic Neutron Scattering (QENS) experiments is presented. The apparatus was developed at the Spallation Neutron Source in Oak Ridge National Lab where it is currently in use. The design provides a special sample cell environment under controlled humid or dry gas flow over a wide range of temperature up to 950 °C. Using such a cell, chemical, dynamical, and physical changes can be studied in situ under various operating conditions. While the cell combined with portable automated gas environment system is especially useful for in situ studies of microscopic dynamics under operational conditions that are similar to those of solid oxide fuel cells, it can additionally be used to study a wide variety of materials, such as high temperature proton conductors. The cell can also be used in many different neutron experiments when a suitable sample holder material is selected. The sample cell system has recently been used to reveal fast dynamic processes in quasi-elastic neutron scattering experiments, which standard probes (such as electrochemical impedance spectroscopy) could not detect. In this work, we outline the design of the sample cell system and present results demonstrating its abilities in high temperature QENS experiments.

  7. Investigating the Defect Structures in Transparent Conducting Oxides Using X-ray and Neutron Scattering Techniques

    PubMed Central

    González, Gabriela B.

    2012-01-01

    Transparent conducting oxide (TCO) materials are implemented into a wide variety of commercial devices because they possess a unique combination of high optical transparency and high electrical conductivity. Created during the processing of the TCOs, defects within the atomic-scale structure are responsible for their desirable optical and electrical properties. Therefore, studying the defect structure is essential to a better understanding of the behavior of transparent conductors. X-ray and neutron scattering techniques are powerful tools to investigate the atomic lattice structural defects in these materials. This review paper presents some of the current developments in the study of structural defects in n-type TCOs using x-ray diffraction (XRD), neutron diffraction, extended x-ray absorption fine structure (EXAFS), pair distribution functions (PDFs), and x-ray fluorescence (XRF). PMID:28817010

  8. A neutron scattering study on the stability of trehalose mycolates under thermal stress

    NASA Astrophysics Data System (ADS)

    Migliardo, F.; Salmeron, C.; Bayan, N.

    2013-10-01

    The present paper is focused on the study of the dynamics of mycolic acids, which are fundamental components of the outer membrane (mycomembrane) of Mycobacterium tuberculosis. An elastic neutron scattering study of mycolic acid/H2O and lecithin/H2O mixtures as a function of temperature and exchanged wavevector Q has been carried out. This study provides an effective way for characterizing the dynamical properties, furnishing a set of parameters characterizing the different flexibility and rigidity of the investigated lipids. The behavior of the elastically scattered intensity profiles and the derived mean square displacements as a function of temperature shows a more marked temperature dependence for lecithin lipids in comparison with mycolic acids, so revealing a higher thermal stability of these latter. These findings could be useful for understanding the dynamics-function relation in the mycomembrane and then to relate it to the low permeability and high resistance of mycobacteria to many antibiotics.

  9. The structure of liquid water by polarized neutron diffraction and reverse Monte Carlo modelling.

    PubMed

    Temleitner, László; Pusztai, László; Schweika, Werner

    2007-08-22

    The coherent static structure factor of water has been investigated by polarized neutron diffraction. Polarization analysis allows us to separate the huge incoherent scattering background from hydrogen and to obtain high quality data of the coherent scattering from four different mixtures of liquid H(2)O and D(2)O. The information obtained by the variation of the scattering contrast confines the configurational space of water and is used by the reverse Monte Carlo technique to model the total structure factors. Structural characteristics have been calculated directly from the resulting sets of particle coordinates. Consistency with existing partial pair correlation functions, derived without the application of polarized neutrons, was checked by incorporating them into our reverse Monte Carlo calculations. We also performed Monte Carlo simulations of a hard sphere system, which provides an accurate estimate of the information content of the measured data. It is shown that the present combination of polarized neutron scattering and reverse Monte Carlo structural modelling is a promising approach towards a detailed understanding of the microscopic structure of water.

  10. New sources and instrumentation for neutron science

    NASA Astrophysics Data System (ADS)

    Gil, Alina

    2011-04-01

    Neutron-scattering research has a lot to do with our everyday lives. Things like medicine, food, electronics, cars and airplanes have all been improved by neutron-scattering research. Neutron research also helps scientists improve materials used in a multitude of different products, such as high-temperature superconductors, powerful lightweight magnets, stronger, lighter plastic products etc. Neutron scattering is one of the most effective ways to obtain information on both, the structure and the dynamics of condensed matter. Most of the world's neutron sources were built decades ago, and although the uses and demand for neutrons have increased throughout the years, few new sources have been built. The new construction, accelerator-based neutron source, the spallation source will provide the most intense pulsed neutron beams in the world for scientific research and industrial development. In this paper it will be described what neutrons are and what unique properties make them useful for science, how spallation source is designed to produce neutron beams and the experimental instruments that will use those beams. Finally, it will be described how past neutron research has affected our everyday lives and what we might expect from the most exciting future applications.

  11. An elongated model of the Xenopus laevis transcription factor IIIA-5S ribosomal RNA complex derived from neutron scattering and hydrodynamic measurements.

    PubMed Central

    Timmins, P A; Langowski, J; Brown, R S

    1988-01-01

    The precise molecular composition of the Xenopus laevis TFIIIA-5S ribosomal RNA complex (7S particle) has been established from small angle neutron and dynamic light scattering. The molecular weight of the particle was found to be 95,700 +/- 10,000 and 86,700 +/- 9000 daltons from these two methods respectively. The observed match point of 54.4% D2O obtained from contrast variation experiments indicates a 1:1 molar ratio. It is concluded that only a single molecule of TFIIIA, a zinc-finger protein, and of 5S RNA are present in this complex. At high neutron scattering contrast radius of gyration of 42.3 +/- 2 A was found for the 7S particle. In addition a diffusion coefficient of 4.4 x 10(-11) [m2 s-1] and a sedimentation coefficient of 6.2S were determined. The hydrodynamic radius obtained for the 7S particle is 48 +/- 5 A. A simple elongated cylindrical model with dimensions of 140 A length and 59 A diameter is compatible with the neutron results. A globular model can be excluded by the shallow nature of the neutron scattering curves. It is proposed that the observed difference of 15 A in length between the 7S particle and isolated 5S RNA most likely indicates that part(s) of the protein protrudes from the end(s) of the RNA molecule. There is no biochemical evidence for any gross alteration in 5S RNA conformation upon binding to TFIIIA. PMID:3419928

  12. Neutron transmission measurements of poly and pyrolytic graphite crystals

    NASA Astrophysics Data System (ADS)

    Adib, M.; Abbas, Y.; Abdel-Kawy, A.; Ashry, A.; Kilany, M.; Kenawy, M. A.

    The total neutron cross-section measurements of polycrystalline graphite have been carried out in a neutron wavelength from 0.04 to 0.78 nm. This work also presents the neutron transmission measurements of pyrolytic graphite (PG) crystal in a neutron wavelength band from 0.03 to 0.50 nm, at different orientations of the PG crystal with regard to the beam direction. The measurements were performed using three time-of-flight (TOF) spectrometers installed in front of three of the ET-RR-1 reactor horizontal channels. The average value of the coherent scattering amplitude for polycrystalline graphite was calculated and found to be bcoh = (6.61 ± 0.07) fm. The behaviour of neutron transmission through the PG crystal, while oriented at different angles with regard to the beam direction, shows dips at neutron wavelengths corresponding to the reflections from (hkl) planes of hexagonal graphite structure. The positions of the observed dips are found to be in good agreement with the calculated ones. It was also found that a 40 mm thick PG crystal is quite enough to reduce the second-order contamination of the neutron beam from 2.81 to 0.04, assuming that the incident neutrons have a Maxwell distribution with neutron gas temperature 330 K.

  13. Neutron densities from a global analysis of medium-energy proton-nucleus elastic scattering

    NASA Astrophysics Data System (ADS)

    Clark, B. C.; Kerr, L. J.; Hama, S.

    2003-05-01

    A new method for extracting neutron densities from intermediate-energy elastic proton-nucleus scattering observables uses a global Dirac phenomenological approach based on the relativistic impulse approximation. Datasets for 40Ca, 48Ca, and 208Pb in the energy range from 500 MeV to 1040 MeV are considered. The global fits are successful in reproducing the data and in predicting datasets not included in the analysis. Using this global approach, energy-independent neutron densities are obtained. The vector point proton density distribution ρpv is determined from the empirical charge density after unfolding the proton form factor. The other densities, ρnv, ρps, ρns, are parametrized. This work provides energy-independent values for the rms neutron radius Rn and the neutron skin thickness Sn, in contrast to the energy-dependent values obtained by previous studies. In addition, the results presented in this paper show that the expected rms neutron radius and the skin thickness for 40Ca are accurately reproduced. The values of Rn and Sn obtained from the global fits that we consider to be the most reliable are given as follows: for 40Ca, 3.314>Rn>3.310 fm and -0.063>Sn >-0.067 fm; for 48Ca, 3.459>Rn>3.413 fm and 0.102>Sn>0.056 fm; and for 208Pb, 5.550>Rn>5.522 fm and 0.111>Sn>0.083 fm. These values are in reasonable agreement with nonrelativistic Skyrme-Hartree-Fock models and with relativistic Hartree-Bogoliubov models with density-dependent meson-nucleon couplings. The results from the global fits for 48Ca and 208Pb are generally not in agreement with the usual relativistic mean-field models.

  14. Quasielastic neutron scattering study of water confined in carbon nanopores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chathoth, S. M.; Mamontov, E.; Kolesnikov, A. I.

    2011-07-26

    Microscopic dynamics of water confined in nanometer and sub-nanometer pores of carbide-derived carbon (CDC) were investigated using quasielastic neutron scattering (QENS). The temperature dependence of the average relaxation time, ‹τ›, exhibits super-Arrhenius behavior that could be described by Vogel-Fulcher-Tammann (VFT) law in the range from 250 K to 190 K; below this temperature, ‹τ› follows Arrhenius temperature dependence. The temperature of the dynamic crossover between the two regimes in water confined in the CDC pores is similar to that observed for water in hydrophobic confinement of the larger size, such as 14 Å ordered mesoporous carbon (CMK) and 16 Åmore » double-wall carbon nanotubes. Thus, the dynamical behavior of water remains qualitatively unchanged even in the very small hydrophobic pores.« less

  15. Digenetic Changes in Macro- to Nano-Scale Porosity in the St. Peter Sandstone:L An (Ultra) Small Angle Neutron Scattering and Backscattered Electron Imagining Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anovitz, Lawrence; Cole, David; Rother, Gernot

    2013-01-01

    Small- and Ultra-Small Angle Neutron Scattering (SANS and USANS) provide powerful tools for quantitative analysis of porous rocks, yielding bulk statistical information over a wide range of length scales. This study utilized (U)SANS to characterize shallowly buried quartz arenites from the St. Peter Sandstone. Backscattered electron imaging was also used to extend the data to larger scales. These samples contain significant volumes of large-scale porosity, modified by quartz overgrowths, and neutron scattering results show significant sub-micron porosity. While previous scattering data from sandstones suggest scattering is dominated by surface fractal behavior over many orders of magnitude, careful analysis of ourmore » data shows both fractal and pseudo-fractal behavior. The scattering curves are composed of subtle steps, modeled as polydispersed assemblages of pores with log-normal distributions. However, in some samples an additional surface-fractal overprint is present, while in others there is no such structure, and scattering can be explained by summation of non-fractal structures. Combined with our work on other rock-types, these data suggest that microporosity is more prevalent, and may play a much more important role than previously thought in fluid/rock interactions.« less

  16. Elastic and inelastic neutron scattering cross sections for 12C at En = 5.9, 6.1, and 7.0 MeV

    NASA Astrophysics Data System (ADS)

    Lyons, Elizabeth; Hicks, Sally; Morin, Theodore; Derdeyn, Elizabeth; Peters, Erin

    2017-09-01

    Measurements of neutron elastic and inelastic scattering differential cross sections from 12C have been performed at incident neutron energies of 5.9, 6.1, and 7.0 MeV. Comparisons of existing experimental cross sections (NNDC) at these incident neutron energies reveal large discrepancies. Accurate measurements of 12C cross sections are vital to facilitate precise calculations regarding criticality conditions for nuclear reactors, advances in security screening methods, and better understanding astrophysical and nuclear phenomenon. During preliminary measurements of 12C cross sections at the University of Kentucky Accelerator Laboratory (UKAL), we realized the relative efficiency of the deuterated benzene (main) detector was needed over an unusually large range of neutron energies due to the high Q value of the first excited state of 12C. Those experiments were repeated during the summer of 2017 to measure in situ the relative detector efficiency with better beam conditions and a better understanding of background observed from the 2H(d, n)3He source reaction. The resulting improved detector efficiency was used in determining the neutron elastic and inelastic scattering cross sections. While the former were found to be in excellent agreement with evaluated cross sections from ENDF, the latter show some discrepancies, especially at 6.1 MeV. Our results will be presented. Research is supported by USDOE-NNSA-SSAP: NA0002931, NSF: PHY-1606890, and the Donald A. Cowan Physics Institute at the University of Dallas.

  17. Design of the radiation shielding for the time of flight enhanced diagnostics neutron spectrometer at Experimental Advanced Superconducting Tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, T. F.; Chen, Z. J.; Peng, X. Y.

    A radiation shielding has been designed to reduce scattered neutrons and background gamma-rays for the new double-ring Time Of Flight Enhanced Diagnostics (TOFED). The shielding was designed based on simulation with the Monte Carlo code MCNP5. Dedicated model of the EAST tokamak has been developed together with the emission neutron source profile and spectrum; the latter were simulated with the Nubeam and GENESIS codes. Significant reduction of background radiation at the detector can be achieved and this satisfies the requirement of TOFED. The intensities of the scattered and direct neutrons in the line of sight of the TOFED neutron spectrometermore » at EAST are studied for future data interpretation.« less

  18. Neutron scattering characterization of homopolymers and graft-copolymer micelles in supercritical carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chillura-Martino, D; Triolo, R.; McClain, J.B.

    1995-12-31

    Supercritical fluids are becoming an attractive alternative to the liquid solvents traditionally used as polymerization media. As the synthesis proceeds, a wide range of colloidal aggregates form, but there has hitherto been no way to measure such structures directly. We have applied small-angle neutron scattering (SANS) to characterize such systems, and although SCF polymerizations are carried out at high pressures, the penetrating power of the neutron beam means that typical cell windows are virtually transparent. Systems studied include molecules soluble in CO{sub 2} (e.g. polyfluoro-octyl acrylate or PFOA) and this polymer has previously been shown to exhibit a positive secondmore » virial coefficient (A{sub 2}). Other CO{sub 2}-soluble polymers include hexafluoro-polypropylene oxide (HFPPO), which appears to have a second virial coefficient which is close to zero (10{sup 4}A{sub 2} {approx_equal} 0 +{+-} 0.2 cm{sup 3} g{sup -2} mol). Polydimethylsiloxane (PDMS), is soluble on the molecular level only in the limit of dilute solution and seems to form aggregates as the concentration increases (c > 0.01 g cm{sup -3}). Other polymers (e.g. polystyrene) are insoluble in CO{sub 2}, though polymerizations may be accomplished via the use of PS-PFOA blockcopolymer stabilizers, which are also amenable to SANS characterization, and have been shown to form micelles in CO{sub 2}. Other amphiphilic surfactant molecules that form micelles include PFOA-polyethylene oxide (PFOA-PEO) graft copolymers, which swell as the CO{sub 2} medium is saturated with water. These systems have been characterized by SANS, by taking advantage of the different contrast options afforded by substituting D{sub 2}O for H{sub 2}O. This paper illustrates the utility of SANS to measure molecular dimensions, thermodynamic variables, molecular weights, micelle structures etc. in supercritical CO{sub 2}.« less

  19. Neutron crosstalk between liquid scintillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verbeke, J. M.; Prasad, M. K.; Snyderman, N. J.

    2015-05-01

    We propose a method to quantify the fractions of neutrons scattering between liquid scintillators. Using a spontaneous fission source, this method can be utilized to quickly characterize an array of liquid scintillators in terms of crosstalk. The point model theory due to Feynman is corrected to account for these multiple scatterings. Using spectral information measured by the liquid scintillators, fractions of multiple scattering can be estimated, and mass reconstruction of fissile materials under investigation can be improved. Monte Carlo simulations of mono-energetic neutron sources were performed to estimate neutron crosstalk. A californium source in an array of liquid scintillators wasmore » modeled to illustrate the improvement of the mass reconstruction.« less

  20. The neutronic design and performance of the Indiana University Cyclotron Facility (IUCF) Low Energy Neutron Source (LENS)

    NASA Astrophysics Data System (ADS)

    Lavelle, Christopher M.

    Neutron scattering research is performed primarily at large-scale facilities. However, history has shown that smaller scale neutron scattering facilities can play a useful role in education and innovation while performing valuable materials research. This dissertation details the design and experimental validation of the LENS TMR as an example for a small scale accelerator driven neutron source. LENS achieves competitive long wavelength neutron intensities by employing a novel long pulse mode of operation, where the neutron production target is irradiated on a time scale comparable to the emission time of neutrons from the system. Monte Carlo methods have been employed to develop a design for optimal production of long wavelength neutrons from the 9Be(p,n) reaction at proton energies ranging from 7 to 13 MeV proton energy. The neutron spectrum was experimentally measured using time of flight, where it is found that the impact of the long pulse mode on energy resolution can be eliminated at sub-eV neutron energies if the emission time distribution of neutron from the system is known. The emission time distribution from the TMR system is measured using a time focussed crystal analyzer. Emission time of the fundamental cold neutron mode is found to be consistent with Monte Carlo results. The measured thermal neutron spectrum from the water reflector is found to be in agreement with Monte Carlo predictions if the scattering kernels employed are well established. It was found that the scattering kernels currently employed for cryogenic methane are inadequate for accurate prediction of the cold neutron intensity from the system. The TMR and neutronic modeling have been well characterized and the source design is flexible, such that it is possible for LENS to serve as an effective test bed for future work in neutronic development. Suggestions for improvements to the design that would allow increased neutron flux into the instruments are provided.

  1. Signatures of Earth-scattering in the direct detection of Dark Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kavanagh, Bradley J.; Catena, Riccardo; Kouvaris, Chris, E-mail: bkavanagh@lpthe.jussieu.fr, E-mail: catena@chalmers.se, E-mail: kouvaris@cp3.sdu.dk

    Direct detection experiments search for the interactions of Dark Matter (DM) particles with nuclei in terrestrial detectors. But if these interactions are sufficiently strong, DM particles may scatter in the Earth, affecting their distribution in the lab. We present a new analytic calculation of this 'Earth-scattering' effect in the regime where DM particles scatter at most once before reaching the detector. We perform the calculation self-consistently, taking into account not only those particles which are scattered away from the detector, but also those particles which are deflected towards the detector. Taking into account a realistic model of the Earth andmore » allowing for a range of DM-nucleon interactions, we present the EARTHSHADOW code, which we make publicly available, for calculating the DM velocity distribution after Earth-scattering. Focusing on low-mass DM, we find that Earth-scattering reduces the direct detection rate at certain detector locations while increasing the rate in others. The Earth's rotation induces a daily modulation in the rate, which we find to be highly sensitive to the detector latitude and to the form of the DM-nucleon interaction. These distinctive signatures would allow us to unambiguously detect DM and perhaps even identify its interactions in regions of the parameter space within the reach of current and future experiments.« less

  2. MCViNE- An object oriented Monte Carlo neutron ray tracing simulation package

    DOE PAGES

    Lin, J. Y. Y.; Smith, Hillary L.; Granroth, Garrett E.; ...

    2015-11-28

    MCViNE (Monte-Carlo VIrtual Neutron Experiment) is an open-source Monte Carlo (MC) neutron ray-tracing software for performing computer modeling and simulations that mirror real neutron scattering experiments. We exploited the close similarity between how instrument components are designed and operated and how such components can be modeled in software. For example we used object oriented programming concepts for representing neutron scatterers and detector systems, and recursive algorithms for implementing multiple scattering. Combining these features together in MCViNE allows one to handle sophisticated neutron scattering problems in modern instruments, including, for example, neutron detection by complex detector systems, and single and multiplemore » scattering events in a variety of samples and sample environments. In addition, MCViNE can use simulation components from linear-chain-based MC ray tracing packages which facilitates porting instrument models from those codes. Furthermore it allows for components written solely in Python, which expedites prototyping of new components. These developments have enabled detailed simulations of neutron scattering experiments, with non-trivial samples, for time-of-flight inelastic instruments at the Spallation Neutron Source. Examples of such simulations for powder and single-crystal samples with various scattering kernels, including kernels for phonon and magnon scattering, are presented. As a result, with simulations that closely reproduce experimental results, scattering mechanisms can be turned on and off to determine how they contribute to the measured scattering intensities, improving our understanding of the underlying physics.« less

  3. Characterisation of large scale structures in starch granules via small-angle neutron and X-ray scattering.

    PubMed

    Doutch, James; Gilbert, Elliot P

    2013-01-02

    Small angle scattering (SAS) techniques have a distinguished track record in illuminating the semi-crystalline lamellar structure of the starch granule. To date, there have been few attempts to use SAS techniques to characterise larger-scale structures reported from imaging techniques such as growth rings, blocklets or pores, nor how these structures would modulate the well-known scattering arising from the semi-crystalline lamellar structure. In this study, SAS data collected over an extended q range were gathered from dry and hydrated starch powders from varied botanical sources. The use of neutrons and X-rays, as well as comparing dry and hydrated granules, allowed different levels of contrast in scattering length density to be probed and therefore selected structural regions to be highlighted. The lowest q range, 0.002-0.04 Å(-1), was found to be dominated by scattering from the starch granules themselves, especially in the dry powders; however an inflection point from a low contrast structure was observed at 0.035 Å(-1). The associated scattering was interpreted within a unified scattering framework with the inflexion point correlating with a structure with radius of gyration ~90 Å - a size comparable to small blocklets or superhelices. In hydrated starches, it is observed that there is an inflection point between lamellar and q(-4) power-law scattering regions at approximately 0.004 Å(-1) which may correlate with growth rings and large blocklets. The implications of these findings on existing models of starch lamellar scattering are discussed. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  4. Peeling Off Neutron Skins from Neutron-Rich Nuclei: Constraints on the Symmetry Energy from Neutron-Removal Cross Sections

    NASA Astrophysics Data System (ADS)

    Aumann, T.; Bertulani, C. A.; Schindler, F.; Typel, S.

    2017-12-01

    An experimentally constrained equation of state of neutron-rich matter is fundamental for the physics of nuclei and the astrophysics of neutron stars, mergers, core-collapse supernova explosions, and the synthesis of heavy elements. To this end, we investigate the potential of constraining the density dependence of the symmetry energy close to saturation density through measurements of neutron-removal cross sections in high-energy nuclear collisions of 0.4 to 1 GeV /nucleon . We show that the sensitivity of the total neutron-removal cross section is high enough so that the required accuracy can be reached experimentally with the recent developments of new detection techniques. We quantify two crucial points to minimize the model dependence of the approach and to reach the required accuracy: the contribution to the cross section from inelastic scattering has to be measured separately in order to allow a direct comparison of experimental cross sections to theoretical cross sections based on density functional theory and eikonal theory. The accuracy of the reaction model should be investigated and quantified by the energy and target dependence of various nucleon-removal cross sections. Our calculations explore the dependence of neutron-removal cross sections on the neutron skin of medium-heavy neutron-rich nuclei, and we demonstrate that the slope parameter L of the symmetry energy could be constrained down to ±10 MeV by such a measurement, with a 2% accuracy of the measured and calculated cross sections.

  5. Study of water diffusion on single-supported bilayer lipid membranes by quasielastic neutron scattering

    NASA Astrophysics Data System (ADS)

    Bai, M.; Miskowiec, A.; Hansen, F. Y.; Taub, H.; Jenkins, T.; Tyagi, M.; Diallo, S. O.; Mamontov, E.; Herwig, K. W.; Wang, S.-K.

    2012-05-01

    High-energy-resolution quasielastic neutron scattering has been used to elucidate the diffusion of water molecules in proximity to single bilayer lipid membranes supported on a silicon substrate. By varying sample temperature, level of hydration, and deuteration, we identify three different types of diffusive water motion: bulk-like, confined, and bound. The motion of bulk-like and confined water molecules is fast compared to those bound to the lipid head groups (7-10 H2O molecules per lipid), which move on the same nanosecond time scale as H atoms within the lipid molecules.

  6. Surface Plasmon-Coupled Directional Enhanced Raman Scattering by Means of the Reverse Kretschmann Configuration.

    PubMed

    Huo, Si-Xin; Liu, Qian; Cao, Shuo-Hui; Cai, Wei-Peng; Meng, Ling-Yan; Xie, Kai-Xin; Zhai, Yan-Yun; Zong, Cheng; Yang, Zhi-Lin; Ren, Bin; Li, Yao-Qun

    2015-06-04

    Surface-enhanced Raman scattering (SERS) is a unique analytical technique that provides fingerprint spectra, yet facing the obstacle of low collection efficiency. In this study, we demonstrated a simple approach to measure surface plasmon-coupled directional enhanced Raman scattering by means of the reverse Kretschmann configuration (RK-SPCR). Highly directional and p-polarized Raman scattering of 4-aminothiophenol (4-ATP) was observed on a nanoparticle-on-film substrate at 46° through the prism coupler with a sharp angle distribution (full width at half-maximum of ∼3.3°). Because of the improved collection efficiency, the Raman scattering signal was enhanced 30-fold over the conventional SERS mode; this was consistent with finite-difference time-domain simulations. The effect of nanoparticles on the coupling efficiency of propagated surface plasmons was investigated. Possessing straightforward implementation and directional enhancement of Raman scattering, RK-SPCR is anticipated to simplify SERS instruments and to be broadly applicable to biochemical assays.

  7. A new apparatus design for high temperature (up to 950 °C) quasi-elastic neutron scattering in a controlled gaseous environment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Wahish, Amal; Armitage, D.; Hill, B.

    A design for a sample cell system suitable for high temperature Quasi-Elastic Neutron Scattering (QENS) experiments is presented. The apparatus was developed at the Spallation Neutron Source in Oak Ridge National Lab where it is currently in use. The design provides a special sample cell environment under controlled humid or dry gas flow over a wide range of temperature up to 950 °C. Using such a cell, chemical, dynamical, and physical changes can be studied in situ under various operating conditions. While the cell combined with portable automated gas environment system is especially useful for in situ studies of microscopic dynamicsmore » under operational conditions that are similar to those of solid oxide fuel cells, it can additionally be used to study a wide variety of materials, such as high temperature proton conductors. The cell can also be used in many different neutron experiments when a suitable sample holder material is selected. The sample cell system has recently been used to reveal fast dynamic processes in quasi-elastic neutron scattering experiments, which standard probes (such as electrochemical impedance spectroscopy) could not detect. In this work, we outline the design of the sample cell system and present results demonstrating its abilities in high temperature QENS experiments.« less

  8. Cyclotron line resonant transfer through neutron star atmospheres

    NASA Technical Reports Server (NTRS)

    Wang, John C. L.; Wasserman, Ira M.; Salpeter, Edwin E.

    1988-01-01

    Monte Carlo methods are used to study in detail the resonant radiative transfer of cyclotron line photons with recoil through a purely scattering neutron star atmosphere for both the polarized and unpolarized cases. For each case, the number of scatters, the path length traveled, the escape frequency shift, the escape direction cosine, the emergent frequency spectra, and the angular distribution of escaping photons are investigated. In the polarized case, transfer is calculated using both the cold plasma e- and o-modes and the magnetic vacuum perpendicular and parallel modes.

  9. Small angle neutron scattering study of the gemini nonionic surfactant in heavy water solutions

    NASA Astrophysics Data System (ADS)

    Rajewska, A.

    2012-03-01

    The nonionic gemini surfactant α α'-[2,4,7,9-tetramethyl-5-decyne-4,7diyl]bis[ω hydroxyl-polyoxyethylene] (S-10) was investigated in heavy water solutions only for concentrations: 2.3%, 2.5%,3%, 3.4%, 4% and 5% at temperature 25°C with small angle neutron scattering (SANS) method. All of surfactants solutions were prepared using D2O (99.9% deuterated, Prikladnaia Chimia, St. Petersburg, Russia) as a solvent. The nonionic gemini surfactant S-10 was obtained from Air Products & Chemicals, Inc., and used without further purification. All SANS measurements were performed on V-4 SANS spectrometer at BENSC, Berlin (Germany). Neutrons were used in wavelength range of 0.02 - 4 nm-1. For the measurements quartz cells of were used during experiment. Up to 14 such cells were placed in a holder. Results from experiment was calculated and evaluated with PCG 2.0 program from Graz University (Austria). In the investigated solutions two axis ellipsoidal micelles was observed.

  10. Neutron-19C scattering: Emergence of universal properties in a finite range potential

    NASA Astrophysics Data System (ADS)

    Shalchi, M. A.; Yamashita, M. T.; Hadizadeh, M. R.; Frederico, T.; Tomio, Lauro

    2017-01-01

    The low-energy properties of the elastic s-wave scattering for the n-19C are studied near the critical condition for the occurrence of an excited Efimov state in n-n-18C. It is established to which extent the universal scaling laws, strictly valid in the zero-range limit, survive when finite range potentials are considered. By fixing the two-neutrons separation energy in 20C with available experimental data, it is studied the scaling of the real (δ0R) and imaginary parts of the s-wave phase-shift with the variation of the n-18C binding energy. We obtain some universal characteristics given by the pole-position of kcot ⁡ (δ0R) and effective-range parameters. By increasing the n-18C binding energy, it was verified that the excited state of 20C goes to a virtual state, resembling the neutron-deuteron behavior in the triton. It is confirmed that the analytical structure of the unitary cut is not affected by the range of the potential or mass asymmetry of the three-body system.

  11. Single crystal to polycrystal neutron transmission simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dessieux, Luc Lucius; Stoica, Alexandru Dan; Bingham, Philip R.

    A collection of routines for calculation of the total cross section that determines the attenuation of neutrons by crystalline solids is presented. The total cross section is calculated semi-empirically as a function of crystal structure, neutron energy, temperature, and crystal orientation. The semi-empirical formula includes the contribution of parasitic Bragg scattering to the total cross section using both the crystal’s mosaic spread value and its orientation with respect to the neutron beam direction as parameters. These routines allow users to enter a distribution of crystal orientations for calculation of total cross sections of user defined powder or pseudo powder distributions,more » which enables simulation of non-uniformities such as texture and strain. In conclusion, the spectra for neutron transmission simulations in the neutron thermal energy range (2 meV–100 meV) are presented for single crystal and polycrystal samples and compared to measurements.« less

  12. Single crystal to polycrystal neutron transmission simulation

    DOE PAGES

    Dessieux, Luc Lucius; Stoica, Alexandru Dan; Bingham, Philip R.

    2018-02-02

    A collection of routines for calculation of the total cross section that determines the attenuation of neutrons by crystalline solids is presented. The total cross section is calculated semi-empirically as a function of crystal structure, neutron energy, temperature, and crystal orientation. The semi-empirical formula includes the contribution of parasitic Bragg scattering to the total cross section using both the crystal’s mosaic spread value and its orientation with respect to the neutron beam direction as parameters. These routines allow users to enter a distribution of crystal orientations for calculation of total cross sections of user defined powder or pseudo powder distributions,more » which enables simulation of non-uniformities such as texture and strain. In conclusion, the spectra for neutron transmission simulations in the neutron thermal energy range (2 meV–100 meV) are presented for single crystal and polycrystal samples and compared to measurements.« less

  13. How mobile are dye adsorbates and acetonitrile molecules on the surface of TiO2 nanoparticles? A quasi-elastic neutron scattering study

    PubMed Central

    Vaissier, Valerie; Sakai, Victoria Garcia; Li, Xiaoe; Cabral, João T.; Nelson, Jenny; Barnes, Piers R. F.

    2016-01-01

    Motions of molecules adsorbed to surfaces may control the rate of charge transport within monolayers in systems such as dye sensitized solar cells. We used quasi-elastic neutron scattering (QENS) to evaluate the possible dynamics of two small dye moieties, isonicotinic acid (INA) and bis-isonicotinic acid (BINA), attached to TiO2 nanoparticles via carboxylate groups. The scattering data indicate that moieties are immobile and do not rotate around the anchoring groups on timescales between around 10 ps and a few ns (corresponding to the instrumental range). This gives an upper limit for the rate at which conformational fluctuations can assist charge transport between anchored molecules. Our observations suggest that if the conformation of larger dye molecules varies with time, it does so on longer timescales and/or in parts of the molecule which are not directly connected to the anchoring group. The QENS measurements also indicate that several layers of acetonitrile solvent molecules are immobilized at the interface with the TiO2 on the measurement time scale, in reasonable agreement with recent classical molecular dynamics results. PMID:27991538

  14. How mobile are dye adsorbates and acetonitrile molecules on the surface of TiO2 nanoparticles? A quasi-elastic neutron scattering study

    NASA Astrophysics Data System (ADS)

    Vaissier, Valerie; Sakai, Victoria Garcia; Li, Xiaoe; Cabral, João T.; Nelson, Jenny; Barnes, Piers R. F.

    2016-12-01

    Motions of molecules adsorbed to surfaces may control the rate of charge transport within monolayers in systems such as dye sensitized solar cells. We used quasi-elastic neutron scattering (QENS) to evaluate the possible dynamics of two small dye moieties, isonicotinic acid (INA) and bis-isonicotinic acid (BINA), attached to TiO2 nanoparticles via carboxylate groups. The scattering data indicate that moieties are immobile and do not rotate around the anchoring groups on timescales between around 10 ps and a few ns (corresponding to the instrumental range). This gives an upper limit for the rate at which conformational fluctuations can assist charge transport between anchored molecules. Our observations suggest that if the conformation of larger dye molecules varies with time, it does so on longer timescales and/or in parts of the molecule which are not directly connected to the anchoring group. The QENS measurements also indicate that several layers of acetonitrile solvent molecules are immobilized at the interface with the TiO2 on the measurement time scale, in reasonable agreement with recent classical molecular dynamics results.

  15. Neutrons on a surface of liquid helium

    NASA Astrophysics Data System (ADS)

    Grigoriev, P. D.; Zimmer, O.; Grigoriev, A. D.; Ziman, T.

    2016-08-01

    We investigate the possibility of ultracold neutron (UCN) storage in quantum states defined by the combined potentials of the Earth's gravity and the neutron optical repulsion by a horizontal surface of liquid helium. We analyze the stability of the lowest quantum state, which is most susceptible to perturbations due to surface excitations, against scattering by helium atoms in the vapor and by excitations of the liquid, comprised of ripplons, phonons, and surfons. This is an unusual scattering problem since the kinetic energy of the neutron parallel to the surface may be much greater than the binding energies perpendicular. The total scattering time of these UCNs at 0.7 K is found to exceed 1 h, and rapidly increases with decreasing temperature. Such low scattering rates should enable high-precision measurements of the sequence of discrete energy levels, thus providing improved tests of short-range gravity. The system might also be useful for neutron β -decay experiments. We also sketch new experimental propositions for level population and trapping of ultracold neutrons above a flat horizontal mirror.

  16. Determination of the pion-nucleon coupling constant and scattering lengths

    NASA Astrophysics Data System (ADS)

    Ericson, T. E.; Loiseau, B.; Thomas, A. W.

    2002-07-01

    We critically evaluate the isovector Goldberger-Miyazawa-Oehme (GMO) sum rule for forward πN scattering using the recent precision measurements of π-p and π-d scattering lengths from pionic atoms. We deduce the charged-pion-nucleon coupling constant, with careful attention to systematic and statistical uncertainties. This determination gives, directly from data, g2c(GMO)/ 4π=14.11+/-0.05(statistical)+/-0.19(systematic) or f2c/4π=0.0783(11). This value is intermediate between that of indirect methods and the direct determination from backward np differential scattering cross sections. We also use the pionic atom data to deduce the coherent symmetric and antisymmetric sums of the pion-proton and pion-neutron scattering lengths with high precision, namely, (aπ-p+aπ-n)/2=[- 12+/-2(statistical)+/-8(systematic)]×10-4 m-1π and (aπ-p-aπ- n)/2=[895+/-3(statistical)+/-13 (systematic)]×10-4 m-1π. For the need of the present analysis, we improve the theoretical description of the pion-deuteron scattering length.

  17. Method for measuring multiple scattering corrections between liquid scintillators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verbeke, J. M.; Glenn, A. M.; Keefer, G. J.

    2016-04-11

    In this study, a time-of-flight method is proposed to experimentally quantify the fractions of neutrons scattering between scintillators. An array of scintillators is characterized in terms of crosstalk with this method by measuring a californium source, for different neutron energy thresholds. The spectral information recorded by the scintillators can be used to estimate the fractions of neutrons multiple scattering. With the help of a correction to Feynman's point model theory to account for multiple scattering, these fractions can in turn improve the mass reconstruction of fissile materials under investigation.

  18. Aggregation of concentrated monoclonal antibody solutions studied by rheology and neutron scattering

    NASA Astrophysics Data System (ADS)

    Castellanos, Maria Monica; Pathak, Jai; Colby, Ralph

    2013-03-01

    Protein solutions are studied using rheology and scattering techniques to investigate aggregation. Here we present a monoclonal antibody (mAb) that aggregates after incubation at 40 °C (below its unfolding temperature), with a decrease in monomer purity of 6% in 10 days. The mAb solution contains surfactant and behaves as a Newtonian fluid when reconstituted into solution from the lyophilized form (before incubation at 40 °C). In contrast, mAb solutions incubated at 40 °C for 1 month exhibit shear yielding in torsional bulk rheometers. Interfacial rheology reveals that interfacial properties are controlled by the surfactant, producing a negligible surface contribution to the bulk yield stress. These results provide evidence that protein aggregates formed in the bulk are responsible for the yield stress. Small-angle neutron scattering (SANS) measurements show an increase in intensity at low wavevectors (q < 4*10-2 nm-1) that we attribute to protein aggregation, and is not observed in solutions stored at 4 °C for 3 days before the measurement. This work suggests a correlation between the aggregated state of the protein (stability) and the yield stress from rheology. Research funded by MedImmune

  19. Diffraction in neutron imaging-A review

    NASA Astrophysics Data System (ADS)

    Woracek, Robin; Santisteban, Javier; Fedrigo, Anna; Strobl, Markus

    2018-01-01

    Neutron imaging is a highly successful experimental technique ever since adequate neutron sources were available. In general, neutron imaging is performed with a wide wavelength spectrum for best flux conditions in transmission geometry. Neutrons provide outstanding features in the penetration of many structural materials, which often makes them more suited for bulk sample studies than other forms of radiation, often in particular as they are also highly sensitive to some light elements, especially Hydrogen. In contrast to neutron scattering applications, imaging resolves macroscopic structures, nowadays down to, in the best case, below 10 micrometre, directly in real space. However, since more than a decade there is a growing number of techniques and applications in neutron imaging that - supported by powerful neutron sources - are taking advantage of wavelength resolved measurements. In this review we summarize and discuss this outstanding development and how wavelength resolved transmission neutron imaging is successfully exploiting diffraction mechanisms to access crystal structure information in the Angstrom regime, which conventionally is probed in reciprocal space by diffraction techniques. In particular the combination of information gained in real space and on crystallographic length scales makes this neutron imaging technique a valuable tool for a wide range of new applications, while it also qualifies neutron imaging to fully profit from the new generation of powerful pulsed neutron sources.

  20. Cation dynamics in the pyridinium based ionic liquid 1-N-butylpyridinium bis((trifluoromethyl)sulfonyl) as seen by quasielastic neutron scattering.

    PubMed

    Embs, Jan P; Burankova, Tatsiana; Reichert, Elena; Hempelmann, Rolf

    2012-11-08

    Quasielastic neutron scattering (QENS) has been used to study the cation dynamics in the pyridinium based ionic liquid (IL) 1-N-butylpyridinium bis((trifluoromethyl)sulfonyl)imide (BuPy-Tf(2)N). This IL allows for a detailed investigation of the dynamics of the cations only, due to the huge incoherent scattering cross section of the cation (σ(inc)(cation) > σ(inc)(anion)). The measured spectra can be decomposed into two Lorentzian lines, indicative of two distinct dynamic processes. The slower of these two processes is diffusive in nature, whereas the faster one can be attributed to localized motions. The temperature dependence of the diffusion coefficient of the slow process follows an Arrhenius law, with an activation energy of E(A) = 14.8 ± 0.3 kJ/mol. Furthermore, we present here results from experiments with polarized neutrons. These experiments clearly show that the slower of the two observed processes is coherent, while the faster one is incoherent in nature.

  1. Myelin basic protein reduces molecular motions in DMPA, an elastic neutron scattering study

    NASA Astrophysics Data System (ADS)

    Natali, F.; Gliozzi, A.; Rolandi, R.; Cavatorta, P.; Deriu, A.; Fasano, A.; Riccio, P.

    2001-07-01

    We have studied the effect of physiological amounts of myelin basic protein (MBP) on pure dimyristoyl L- α-phosphatidic acid (DMPA) vesicles using the elastic neutron scattering technique. Elastic scans have been performed in a wide temperature range (20-300 K). In the lower temperature region the behaviour of the integrated elastic intensity was the typical one of harmonic systems. The analysis of the Q and T dependence performed in terms of an asymmetric double well potential clearly showed that the effect of the protein consisted in a significant reduction of the conformational mobility of the DMPA bilayers and in the stabilisation of the membrane.

  2. Inelastic neutron scattering of large molecular systems: The case of the original benzylic amide [2]catenane

    NASA Astrophysics Data System (ADS)

    Caciuffo, Roberto; Esposti, Alessandra Degli; Deleuze, Michael S.; Leigh, David A.; Murphy, Aden; Paci, Barbara; Parker, Stewart F.; Zerbetto, Francesco

    1998-12-01

    The inelastic neutron scattering (INS) spectrum of the original benzylic amide [2]catenane is recorded and simulated by a semiempirical quantum chemical procedure coupled with the most comprehensive approach available to date, the CLIMAX program. The successful simulation of the spectrum indicates that the modified neglect of differential overlap (MNDO) model can reproduce the intramolecular vibrations of a molecular system as large as a catenane (136 atoms). Because of the computational costs involved and some numerical instabilities, a less expensive approach is attempted which involves the molecular mechanics-based calculation of the INS response in terms of the most basic formulation for the scattering activity. The encouraging results obtained validate the less computationally intensive procedure and allow its extension to the calculation of the INS spectrum for a second, theoretical, co-conformer, which, although structurally and energetically reasonable, is not, in fact, found in the solid state. The second structure was produced by a Monte Carlo simulated annealing method run in the conformational space (a procedure that would have been prohibitively expensive at the semiempirical level) and is characterized by a higher degree of intramolecular hydrogen bonding than the x-ray structure. The two alternative structures yield different simulated spectra, only one of which, the authentic one, is compatible with the experimental data. Comparison of the two simulated and experimental spectra affords the identification of an inelastic neutron scattering spectral signature of the correct hydrogen bonding motif in the region slightly above 700 cm-1. The study illustrates that combinations of simulated INS data and experimental results can be successfully used to discriminate between different proposed structures or possible hydrogen bonding motifs in large functional molecular systems.

  3. New generation non-stationary portable neutron generators for biophysical applications of Neutron Activation Analysis.

    PubMed

    Marchese, N; Cannuli, A; Caccamo, M T; Pace, C

    2017-01-01

    Neutron sources are increasingly employed in a wide range of research fields. For some specific purposes an alternative to existing large-scale neutron scattering facilities, can be offered by the new generation of portable neutron devices. This review reports an overview for such recently available neutron generators mainly addressed to biophysics applications with specific reference to portable non-stationary neutron generators applied in Neutron Activation Analysis (NAA). The review reports a description of a typical portable neutron generator set-up addressed to biophysics applications. New generation portable neutron devices, for some specific applications, can constitute an alternative to existing large-scale neutron scattering facilities. Deuterium-Deuterium pulsed neutron sources able to generate 2.5MeV neutrons, with a neutron yield of 1.0×10 6 n/s, a pulse rate of 250Hz to 20kHz and a duty factor varying from 5% to 100%, when combined with solid-state photon detectors, show that this kind of compact devices allow rapid and user-friendly elemental analysis. "This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo". Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Universality of the helimagnetic transition in cubic chiral magnets: Small angle neutron scattering and neutron spin echo spectroscopy studies of FeCoSi

    NASA Astrophysics Data System (ADS)

    Bannenberg, L. J.; Kakurai, K.; Falus, P.; Lelièvre-Berna, E.; Dalgliesh, R.; Dewhurst, C. D.; Qian, F.; Onose, Y.; Endoh, Y.; Tokura, Y.; Pappas, C.

    2017-04-01

    We present a comprehensive small angle neutron scattering and neutron spin echo spectroscopy study of the structural and dynamical aspects of the helimagnetic transition in Fe1 -xCoxSi with x =0.30 . In contrast to the sharp transition observed in the archetype chiral magnet MnSi, the transition in Fe1 -xCoxSi is gradual, and long-range helimagnetic ordering coexists with short-range correlations over a wide temperature range. The dynamics are more complex than in MnSi and involve long relaxation times with a stretched exponential relaxation which persists even under magnetic field. These results in conjunction with an analysis of the hierarchy of the relevant length scales show that the helimagnetic transition in Fe1 -xCoxSi differs substantially from the transition in MnSi and question the validity of a universal approach to the helimagnetic transition in chiral magnets.

  5. Determination of functional collective motions in a protein at atomic resolution using coherent neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Liang; Jain, Nitin; Cheng, Xiaolin

    Protein function often depends on global, collective internal motions. However, the simultaneous quantitative experimental determination of the forms, amplitudes, and time scales of these motions has remained elusive. We demonstrate that a complete description of these large-scale dynamic modes can be obtained using coherent neutron-scattering experiments on perdeuterated samples. With this approach, a microscopic relationship between the structure, dynamics, and function in a protein, cytochrome P450cam, is established. The approach developed here should be of general applicability to protein systems.

  6. Determination of functional collective motions in a protein at atomic resolution using coherent neutron scattering

    DOE PAGES

    Hong, Liang; Jain, Nitin; Cheng, Xiaolin; ...

    2016-10-14

    Protein function often depends on global, collective internal motions. However, the simultaneous quantitative experimental determination of the forms, amplitudes, and time scales of these motions has remained elusive. We demonstrate that a complete description of these large-scale dynamic modes can be obtained using coherent neutron-scattering experiments on perdeuterated samples. With this approach, a microscopic relationship between the structure, dynamics, and function in a protein, cytochrome P450cam, is established. The approach developed here should be of general applicability to protein systems.

  7. Direct Detection of Polarized, Scattered Light from Exoplanets

    NASA Astrophysics Data System (ADS)

    Laughlin, Gregory

    We propose to radically advance the state of exoplanet characterization, which lags dramatically behind exoplanet discovery. We propose to directly detect scattered light from the atmospheres of close-in, highly eccentric, and extended/non-spherical exoplanets and thereby determine the following: orbital inclination (and therefore masses free of the M sin i mass ambiguity), geometric albedo, presence or lack of hazes and cloud layers, and scattering particle size and composition. Such measurements are crucial to the understanding of exoplanet atmospheres, because observations with NASA s Hubble, Spitzer, and Kepler space telescopes present the following questions: 1) Do exoplanets have highly reflective haze layers? 2) How does the upper atmospheric composition differ between exoplanets with and without thermal inversions? 3) What are the optical manifestations of the extreme heating of highly eccentric exoplanets? 4) Are the atmospheres of certain exoplanets truly escaping their Roche lobes? Using the POLISH2 polarimeter developed by the Postdoctoral Associate (Wiktorowicz) for the Lick 3-m telescope, we propose to monitor the linear polarization state of exoplanet host stars at the part per million level. POLISH2 consistently delivers nearly photon shot noise limited measurements with this precision. In addition, the simultaneous full-Stokes measurements of POLISH2 and the equatorial mount of the Lick 3-m telescope ensure that systematic effects are mitigated to the part per million level. Indeed, we find the accuracy of the POLISH2 polarimeter to be 0.1 parts per million. This instrument and telescope represent the highest precision polarimeter in the world for exoplanet research. We present potential detection of polarized, scattered light from the HD 189733b, Tau Boo b, and WASP-12b exoplanets. We propose to observe hot Jupiters on circular orbits, highly eccentric exoplanets, exoplanets with extended or non-spherical scattering surfaces, and 55 Cnc e, the

  8. The MONDO project: A secondary neutron tracker detector for particle therapy

    NASA Astrophysics Data System (ADS)

    Valle, S. M.; Battistoni, G.; Patera, V.; Pinci, D.; Sarti, A.; Sciubba, A.; Spiriti, E.; Marafini, M.

    2017-02-01

    During Particle Therapy treatments the patient irradiation produces, among different types of secondary radiation, an abundant flux of neutrons that can release a significant dose far away from the tumour region. A precise measurement of their flux, energy and angle distributions is eagerly needed in order to improve the Treatment Planning Systems software and to properly take into account the risk of late complications in the whole body. The technical challenges posed by a neutron detector aiming for high detection efficiency and good backtracking precision will be addressed within the MONDO project, whose main goal is to develop a tracking detector targeting fast and ultra-fast secondary neutrons. The neutron tracking principle is based on the reconstruction of two consequent elastic scattering interactions of a neutron with a target material. Reconstructing the recoiling protons it is hence possible to measure the energy and incoming direction of the neutron. Plastic scintillators will be used as scattering and detection media: the tracker is being developed as a matrix of squared scintillating fibres of 250 μm side. The light produced and collected in fibres will be amplified using a triple GEM-based image intensifier and acquired using CMOS Single Photon Avalanche Diode arrays. Using therapeutic beams, the principal detector goal will be the measurement of the neutron production yields, as a function of production angle and energy.

  9. The ultrastructure and flexibility of thylakoid membranes in leaves and isolated chloroplasts as revealed by small-angle neutron scattering.

    PubMed

    Unnep, R; Zsiros, O; Solymosi, K; Kovács, L; Lambrev, P H; Tóth, T; Schweins, R; Posselt, D; Székely, N K; Rosta, L; Nagy, G; Garab, G

    2014-09-01

    We studied the periodicity of the multilamellar membrane system of granal chloroplasts in different isolated plant thylakoid membranes, using different suspension media, as well as on different detached leaves and isolated protoplasts-using small-angle neutron scattering. Freshly isolated thylakoid membranes suspended in isotonic or hypertonic media, containing sorbitol supplemented with cations, displayed Bragg peaks typically between 0.019 and 0.023Å(-1), corresponding to spatially and statistically averaged repeat distance values of about 275-330 Å⁻¹. Similar data obtained earlier led us in previous work to propose an origin from the periodicity of stroma thylakoid membranes. However, detached leaves, of eleven different species, infiltrated with or soaked in D2O in dim laboratory light or transpired with D2O prior to measurements, exhibited considerably smaller repeat distances, typically between 210 and 230 Å⁻¹, ruling out a stromal membrane origin. Similar values were obtained on isolated tobacco and spinach protoplasts. When NaCl was used as osmoticum, the Bragg peaks of isolated thylakoid membranes almost coincided with those in the same batch of leaves and the repeat distances were very close to the electron microscopically determined values in the grana. Although neutron scattering and electron microscopy yield somewhat different values, which is not fully understood, we can conclude that small-angle neutron scattering is a suitable technique to study the periodic organization of granal thylakoid membranes in intact leaves under physiological conditions and with a time resolution of minutes or shorter. We also show here, for the first time on leaves, that the periodicity of thylakoid membranes in situ responds dynamically to moderately strong illumination. This article is part of a special issue entitled: photosynthesis research for sustainability: keys to produce clean energy. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Forming images with thermal neutrons

    NASA Astrophysics Data System (ADS)

    Vanier, Peter E.; Forman, Leon

    2003-01-01

    Thermal neutrons passing through air have scattering lengths of about 20 meters. At further distances, the majority of neutrons emanating from a moderated source will scatter multiple times in the air before being detected, and will not retain information about the location of the source, except that their density will fall off somewhat faster than 1/r2. However, there remains a significant fraction of the neutrons that will travel 20 meters or more without scattering and can be used to create an image of the source. A few years ago, a proof-of-principle "camera" was demonstrated that could produce images of a scene containing sources of thermalized neutrons and could locate a source comparable in strength with an improvised nuclear device at ranges over 60 meters. The instrument makes use of a coded aperture with a uniformly redundant array of openings, analogous to those used in x-ray and gamma cameras. The detector is a position-sensitive He-3 proportional chamber, originally used for neutron diffraction. A neutron camera has many features in common with those designed for non-focusable photons, as well as some important differences. Potential applications include detecting nuclear smuggling, locating non-metallic land mines, assaying nuclear waste, and surveying for health physics purposes.

  11. Reaction-in-Flight neutrons as a test of stopping power in degenerate plasmas

    NASA Astrophysics Data System (ADS)

    Hayes, A. C.; Cerjan, C. J.; Jungman, G.; Fowler, M. M.; Gooden, M. E.; Grim, G. P.; Henry, E.; Rundberg, R. S.; Sepke, S. M.; Schneider, D. H. G.; Singleton, R. L.; Tonchev, A. P.; Wilhelmy, J. B.; Yeamans, C. B.

    2016-05-01

    Cryogenically cooled inertial confinement fusion capsule designs are suitable for studies of reaction-in-flight (RIF) neutrons. RIF neutrons occur when energetically up-scattered ions undergo DT reactions with a thermal ion in the plasma, producing neutrons in the energy range 9-30 MeV. The knock-on ions lose energy as they traverse the plasma, which directly affects the spectrum of the produced RIF neutrons. Here we present measurements from the National Ignition Facility (NIF) of RIF neutrons produced in cryogenic capsules, with energies above 15 MeV. We show that the measured RIFs probe stopping under previously unexplored degenerate plasma conditions and constrain stopping models in warm dense plasma conditions.

  12. Relativistic direct Urca processes in cooling neutron stars

    NASA Astrophysics Data System (ADS)

    Leinson, L. B.; Pérez, A.

    2001-10-01

    We derive a relativistic expression for neutrino energy losses caused by the direct Urca processes in degenerate baryon matter of neutron stars. We use two different ways to calculate the emissivity caused by the reactions to our interest. First we perform a standard calculation by Fermi's ``golden'' rule. The second calculation, resulting in the same expression, is performed with the aid of polarization functions of the medium. Our result for neutrino energy losses strongly differs from previous nonrelativistic results. We also discuss nonconservation of the baryon vector current in reactions through weak charged currents in the medium, when the asymmetry between protons and neutrons is considered. The above effects, not discussed in the literature before, substantially modify the polarization functions responsible for the induced weak charged currents in baryon matter.

  13. Dynamics in poly vinyl alcohol (PVA) based hydrogel: Neutron scattering study

    NASA Astrophysics Data System (ADS)

    Prabhudesai, S. A.; Lawrence, Mathias B.; Mitra, S.; Desa, J. A. E.; Mukhopadhyay, R.

    2015-06-01

    Results of quasielastic neutron scattering measurements carried out on Poly Vinyl Alcohol (PVA) based hydrogels are reported here. PVA hydrogels are formed using Borax as a cross-linking agent in D2O solvent. This synthetic polymer can be used for obtaining the hydrogels with potential use in the field of biomaterials. The aim of this paper is to study the dynamics of polymer chain in the hydrogel since it is known that polymer mobility influences the kinetics of loading and release of drugs. It is found that the dynamics of hydrogen atoms in the polymer chain could be described by a model where the diffusion of hydrogen atoms is limited within a spherical volume of radius 3.3 Å. Average diffusivity estimated from the behavior of quasielastic width is found to be 1.2 × 10-5 cm2/sec.

  14. SUSANS With Polarized Neutrons.

    PubMed

    Wagh, Apoorva G; Rakhecha, Veer Chand; Strobl, Makus; Treimer, Wolfgang

    2005-01-01

    Super Ultra-Small Angle Neutron Scattering (SUSANS) studies over wave vector transfers of 10(-4) nm(-1) to 10(-3) nm(-1) afford information on micrometer-size agglomerates in samples. Using a right-angled magnetic air prism, we have achieved a separation of ≈10 arcsec between ≈2 arcsec wide up- and down-spin peaks of 0.54 nm neutrons. The SUSANS instrument has thus been equipped with the polarized neutron option. The samples are placed in a uniform vertical field of 8.8 × 10(4) A/m (1.1 kOe). Several magnetic alloy ribbon samples broaden the up-spin neutron peak significantly over the ±1.3 × 10(-3) nm(-1) range, while leaving the down-spin peak essentially unaltered. Fourier transforms of these SUSANS spectra corrected for the instrument resolution, yield micrometer-range pair distribution functions for up- and down-spin neutrons as well as the nuclear and magnetic scattering length density distributions in the samples.

  15. SUSANS With Polarized Neutrons

    PubMed Central

    Wagh, Apoorva G.; Rakhecha, Veer Chand; Strobl, Makus; Treimer, Wolfgang

    2005-01-01

    Super Ultra-Small Angle Neutron Scattering (SUSANS) studies over wave vector transfers of 10–4 nm–1 to 10–3 nm–1 afford information on micrometer-size agglomerates in samples. Using a right-angled magnetic air prism, we have achieved a separation of ≈10 arcsec between ≈2 arcsec wide up- and down-spin peaks of 0.54 nm neutrons. The SUSANS instrument has thus been equipped with the polarized neutron option. The samples are placed in a uniform vertical field of 8.8 × 104 A/m (1.1 kOe). Several magnetic alloy ribbon samples broaden the up-spin neutron peak significantly over the ±1.3 × 10–3 nm–1 range, while leaving the down-spin peak essentially unaltered. Fourier transforms of these SUSANS spectra corrected for the instrument resolution, yield micrometer-range pair distribution functions for up- and down-spin neutrons as well as the nuclear and magnetic scattering length density distributions in the samples. PMID:27308127

  16. Grazing-Incidence Neutron Optics based on Wolter Geometries

    NASA Technical Reports Server (NTRS)

    Gubarev, M. V.; Ramsey, B. D.; Mildner, D. F. R.

    2008-01-01

    The feasibility of grazing-incidence neutron imaging optics based on the Wolter geometries have been successfully demonstrated. Biological microscopy, neutron radiography, medical imaging, neutron crystallography and boron neutron capture therapy would benefit from high resolution focusing neutron optics. Two bounce optics can also be used to focus neutrons in SANS experiments. Here, the use of the optics would result in lower values of obtainable scattering angles. The high efficiency of the optics permits a decrease in the minimum scattering vector without lowering the neutron intensity on sample. In this application, a significant advantage of the reflective optics over refractive optics is that the focus is independent of wavelength, so that the technique can be applied to polychromatic beams at pulsed neutron sources.

  17. Investigation of Monodisperse Dendrimeric Polysaccharide Nanoparticle Dispersions Using Small Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Atkinson, John; Nickels, Jonathan; Papp-Szabo, Erzsi; Katsaras, John; Dutcher, John

    2015-03-01

    Phytoglycogen is a highly branched polysaccharide that is very similar to the energy storage molecule glycogen. We have isolated monodisperse phytoglycogen nanoparticles from corn and these particles are attractive for applications in the cosmetic, food and beverage, and biomedical industries. Many of these promising applications are due to the special interaction between the nanoparticles and water, which results in: (1) high solubility; (2) low viscosity and high stability in aqueous dispersions; and (3) a remarkable capacity to sequester and retain water. Our rheology measurements indicate that the nanoparticles behave like hard spheres in water, with the viscosity diverging for concentrations >25% (w/w). Because of this, aqueous suspensions of phytoglycogen provide an ideal platform for detailed testing of theories of colloidal glasses and jamming. To further explore the interaction of the phytoglycogen particles and water, we have performed small angle neutron scattering (SANS) measurements on the Extended Q-Range SANS (EQ-SANS) diffractometer at the Spallation Neutron Source at Oak Ridge National Laboratory. Measurements performed on phytoglycogen dispersions in mixtures of hydrogenated and deuterated water have allowed us to determine the particle size and average particle spacing as a function of the phytoglycogen concentration in the limits of dilute and concentrated dispersions.

  18. Neutron-fragment and Neutron-neutron Correlations in Low-energy Fission

    NASA Astrophysics Data System (ADS)

    Lestone, J. P.

    2016-01-01

    A computational method has been developed to simulate neutron emission from thermal-neutron induced fission of 235U and from spontaneous fission of 252Cf. Measured pre-emission mass-yield curves, average total kinetic energies and their variances, both as functions of mass split, are used to obtain a representation of the distribution of fragment velocities. Measured average neutron multiplicities as a function of mass split and their dependence on total kinetic energy are used. Simulations can be made to reproduce measured factorial moments of neutron-multiplicity distributions with only minor empirical adjustments to some experimental inputs. The neutron-emission spectra in the rest-frame of the fragments are highly constrained by ENDF/B-VII.1 prompt-fission neutron-spectra evaluations. The n-f correlation measurements of Vorobyev et al. (2010) are consistent with predictions where all neutrons are assumed to be evaporated isotropically from the rest frame of fully accelerated fragments. Measured n-f and n-n correlations of others are a little weaker than the predictions presented here. These weaker correlations could be used to infer a weak scission-neutron source. However, the effect of neutron scattering on the experimental results must be studied in detail before moving away from a null hypothesis that all neutrons are evaporated from the fragments.

  19. Inelastic neutron scattering study of icosahedral AlFeCu quasicrystal

    NASA Astrophysics Data System (ADS)

    Quilichini, M.; Hennion, B.; Heger, G.; Lefebvre, S.; Quivy, A.

    1992-02-01

    Dynamical properties of quasiperiodic structures are rather tricky and far from being understood. For quasicrystals only little information is available both theoretically and experimentally. In this paper we present new experimental results obtained by inelastic neutron scattering on a monodomain quasicrystal of Al{63}Cu{25}Fe{12} already investigated in a previous study [1]. In section 1 we recall the basic features of the quasiperiodic structures and briefly review theoretical works on the dynamics of quasicrystals which can be of some help to appreciate the experimental data presented in section 2 and discussed in section 3. Les propriétés dynamiques des structures quasipériodiques sont complexes et pas encore complètement comprises. Pour les quasicristaux on ne possède que peu d'études dynamiques tant du point de vue théorique qu'expérimental. Dans cette lettre nous présentons des nouveaux résultats obtenus par diffusion inélastique de neutrons avec un quasicristal monodomaine de Al{63}Cu{25}Fe{12} que nous avions déjà étudié [1]. Dans la partie 1 nous rappelons quelques propriétés spécifiques des structures quasipériodiques et nous résumons brièvement les travaux théoriques qui nous permettent une interprétation qualitative des données expérimentales présentées dans la partie 2 et discutées dans la partie 3.

  20. Biomolecular Deuteration for Neutron Structural Biology and Dynamics.

    PubMed

    Haertlein, Michael; Moulin, Martine; Devos, Juliette M; Laux, Valerie; Dunne, Orla; Forsyth, V Trevor

    2016-01-01

    Neutron scattering studies provide important information in structural biology that is not accessible using other approaches. The uniqueness of the technique, and its complementarity with X-ray scattering, is greatest when full use is made of deuterium labeling. The ability to produce tailor-made deuterium-labeled biological macromolecules allows neutron studies involving solution scattering, crystallography, reflection, and dynamics to be optimized in a manner that has major impact on the scope, quality, and throughput of work in these areas. Deuteration facilities have now been developed at many neutron centres throughout the world; these are having a crucial effect on neutron studies in the life sciences and on biologically related studies in soft matter. This chapter describes methods that have been developed for the efficient production of deuterium-labeled samples for a wide range of neutron scattering applications. Examples are given that illustrate the use of these samples for each of the main techniques. Perspectives for biological deuterium labeling are discussed in relation to developments at current facilities and those that are planned in the future. © 2016 Elsevier Inc. All rights reserved.