Science.gov

Sample records for direct plasma beam

  1. Direct plasma injection scheme with various ion beams

    SciTech Connect

    Okamura, M.

    2010-09-15

    The laser ion source is one of the most powerful heavy ion sources. However, it is difficult to obtain good stability and to control its intense current. To overcome these difficulties, we proposed a new beam injection scheme called 'direct plasma injection scheme'. Following this it was established to provide various species with desired charge state as an intense accelerated beam. Carbon, aluminum and iron beams have been tested.

  2. Simulation of direct plasma injection for laser ion beam acceleration with a radio frequency quadrupole

    SciTech Connect

    Jin, Q. Y.; Li, Zh. M.; Liu, W.; Zhao, H. Y. Zhang, J. J.; Sha, Sh.; Zhang, Zh. L.; Zhang, X. Zh.; Sun, L. T.; Zhao, H. W.

    2014-07-15

    The direct plasma injection scheme (DPIS) has been being studied at Institute of Modern Physics since several years ago. A C{sup 6+} beam with peak current of 13 mA, energy of 593 keV/u has been successfully achieved after acceleration with DPIS method. To understand the process of DPIS, some simulations have been done as follows. First, with the total current intensity and the relative yields of different charge states for carbon ions measured at the different distance from the target, the absolute current intensities and time-dependences for different charge states are scaled to the exit of the laser ion source in the DPIS. Then with these derived values as the input parameters, the extraction of carbon beam from the laser ion source to the radio frequency quadrupole with DPIS is simulated, which is well agreed with the experiment results.

  3. Enhanced laser beam coupling to a plasma

    DOEpatents

    Steiger, Arno D.; Woods, Cornelius H.

    1976-01-01

    Density perturbations are induced in a heated plasma by means of a pair of oppositely directed, polarized laser beams of the same frequency. The wavelength of the density perturbations is equal to one half the wavelength of the laser beams. A third laser beam is linearly polarized and directed at the perturbed plasma along a line that is perpendicular to the direction of the two opposed beams. The electric field of the third beam is oriented to lie in the plane containing the three beams. The frequency of the third beam is chosen to cause it to interact resonantly with the plasma density perturbations, thereby efficiently coupling the energy of the third beam to the plasma.

  4. Beam-Plasma Interactions

    SciTech Connect

    Cairns, R. A.; Vorgul, I.; Bingham, R.; Ronald, K.; Speirs, D. C.; Phelps, A. D. R.; McConville, S. L.; Gillespie, K. M.; Cross, A. W.; Robertson, C. W.; Whyte, C. G.; Kellett, B. J.

    2009-11-10

    We describe the theory of a cyclotron maser instability which appears to be a likely source of auroral kilometric radiation and its generation in a laboratory experiment. We then outline plans for future development of the experiment to investigate a wider range of instabilities resulting from the existence of electron beams in a plasma. The basic theory theory underlying a few of these is then discussed.

  5. Direct growth of hexagonal boron nitride/graphene heterostructures on cobalt foil substrates by plasma-assisted molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Xu, Zhongguang; Khanaki, Alireza; Tian, Hao; Zheng, Renjing; Suja, Mohammad; Zheng, Jian-Guo; Liu, Jianlin

    2016-07-01

    Graphene/hexagonal boron nitride (G/h-BN) heterostructures have attracted a great deal of attention because of their exceptional properties and wide variety of potential applications in nanoelectronics. However, direct growth of large-area, high-quality, and stacked structures in a controllable and scalable way remains challenging. In this work, we demonstrate the synthesis of h-BN/graphene (h-BN/G) heterostructures on cobalt (Co) foil by sequential deposition of graphene and h-BN layers using plasma-assisted molecular beam epitaxy. It is found that the coverage of h-BN layers can be readily controlled on the epitaxial graphene by growth time. Large-area, uniform-quality, and multi-layer h-BN films on thin graphite layers were achieved. Based on an h-BN (5-6 nm)/G (26-27 nm) heterostructure, capacitor devices with Co(foil)/G/h-BN/Co(contact) configuration were fabricated to evaluate the dielectric properties of h-BN. The measured breakdown electric field showed a high value of ˜2.5-3.2 MV/cm. Both I-V and C-V characteristics indicate that the epitaxial h-BN film has good insulating characteristics.

  6. Directionally positionable neutron beam

    SciTech Connect

    Bumgardner, H.M.; Dance, W.E.

    1981-11-10

    Disclosed is apparatus for forming and directionally positioning a neutron beam. The apparatus includes an enclosed housing rotatable about a first axis with a neutron source axially positionable on the axis of rotation of the enclosed housing but rotationally fixed with respect to the housing. The rotatable housing is carried by a vertically positionable arm carried on a mobile transport. A collimator is supported by the rotatable housing and projects into the housing to orientationally position its inlet window at an adjustably fixed axial and radial spacing from the neutron source so that rotation of the enclosed housing causes the inlet window to rotate about a circle which is a fixed axial distance from the neutron source and has the axis of rotation of the housing as its center.

  7. Direct growth of graphene on in situ epitaxial hexagonal boron nitride flakes by plasma-assisted molecular beam epitaxy

    SciTech Connect

    Xu, Zhongguang; Zheng, Renjing; Khanaki, Alireza; Zuo, Zheng; Liu, Jianlin

    2015-11-23

    Hexagonal boron nitride (h-BN) single-crystal domains were grown on cobalt (Co) substrates at a substrate temperature of 850–900 °C using plasma-assisted molecular beam epitaxy. Three-point star shape h-BN domains were observed by scanning electron microscopy, and confirmed by Raman and X-ray photoelectron spectroscopy. The h-BN on Co template was used for in situ growth of multilayer graphene, leading to an h-BN/graphene heterostructure. Carbon atoms preferentially nucleate on Co substrate and edges of h-BN and then grow laterally to form continuous graphene. Further introduction of carbon atoms results in layer-by-layer growth of graphene on graphene and lateral growth of graphene on h-BN until it may cover entire h-BN flakes.

  8. Beam hosing instability in overdense plasma

    SciTech Connect

    Schroeder, C. B.; Benedetti, C.; Esarey, E.; Gruener, F. J.; Leemans, W. P.

    2012-12-21

    Transverse stability of the drive beam is critical to plasma wakefield accelerators. A long, relativistic particle beam propagating in an overdense plasma is subject to beam envelope modulation and hosing (centroid displacement) instabilities. Coupled equations for the beam centroid and envelope are derived. The growth rate for beam hosing is examined including return current effects (where the beam radius is of order the plasma skin depth) in the long-beam, strongly-coupled, overdense regime.

  9. Regimes of enhanced electromagnetic emission in beam-plasma interactions

    NASA Astrophysics Data System (ADS)

    Timofeev, I. V.; Annenkov, V. V.; Arzhannikov, A. V.

    2015-11-01

    The ways to improve the efficiency of electromagnetic waves generation in laboratory experiments with high-current relativistic electron beams injected into a magnetized plasma are discussed. It is known that such a beam can lose, in a plasma, a significant part of its energy by exciting a high level of turbulence and heating plasma electrons. Beam-excited plasma oscillations may simultaneously participate in nonlinear processes resulting in a fundamental and second harmonic emissions. It is obvious, however, that in the developed plasma turbulence the role of these emissions in the total energy balance is always negligible. In this paper, we investigate whether electromagnetic radiation generated in the beam-plasma system can be sufficiently enhanced by the direct linear conversion of resonant beam-driven modes into electromagnetic ones on preformed regular inhomogeneities of plasma density. Due to the high power of relativistic electron beams, the mechanism discussed may become the basis for the generator of powerful sub-terahertz radiation.

  10. Regimes of enhanced electromagnetic emission in beam-plasma interactions

    SciTech Connect

    Timofeev, I. V.; Annenkov, V. V.; Arzhannikov, A. V.

    2015-11-15

    The ways to improve the efficiency of electromagnetic waves generation in laboratory experiments with high-current relativistic electron beams injected into a magnetized plasma are discussed. It is known that such a beam can lose, in a plasma, a significant part of its energy by exciting a high level of turbulence and heating plasma electrons. Beam-excited plasma oscillations may simultaneously participate in nonlinear processes resulting in a fundamental and second harmonic emissions. It is obvious, however, that in the developed plasma turbulence the role of these emissions in the total energy balance is always negligible. In this paper, we investigate whether electromagnetic radiation generated in the beam-plasma system can be sufficiently enhanced by the direct linear conversion of resonant beam-driven modes into electromagnetic ones on preformed regular inhomogeneities of plasma density. Due to the high power of relativistic electron beams, the mechanism discussed may become the basis for the generator of powerful sub-terahertz radiation.

  11. Direct comparison of the performance of commonly used e-beam resists during nano-scale plasma etching of Si, SiO2, and Cr

    NASA Astrophysics Data System (ADS)

    Goodyear, Andy; Boettcher, Monika; Stolberg, Ines; Cooke, Mike

    2015-03-01

    Electron beam writing remains one of the reference pattern generation techniques, and plasma etching continues to underpin pattern transfer. We report a systematic study of the plasma etch resistance of several e-beam resists, both negative and positive as well as classical and Chemically Amplified Resists: HSQ[1,2] (Dow Corning), PMMA[3] (Allresist GmbH), AR-P6200 (Allresist GmbH), ZEP520 (Zeon Corporation), CAN028 (TOK), CAP164 (TOK), and an additional pCAR (non-disclosed provider). Their behaviour under plasma exposure to various nano-scale plasma etch chemistries was examined (SF6/C4F8 ICP silicon etch, CHF3/Ar RIE SiO2 etch, Cl2/O2 RIE and ICP chrome etch, and HBr ICP silicon etch). Samples of each resist type were etched simultaneously to provide a direct comparison of their etch resistance. Resist thicknesses (and hence resist erosion rates) were measured by spectroscopic ellipsometer in order to provide the highest accuracy for the resist comparison. Etch selectivities (substrate:mask etch rate ratio) are given, with recommendations for the optimum resist choice for each type of etch chemistry. Silicon etch profiles are also presented, along with the exposure and etch conditions to obtain the most vertical nano-scale pattern transfer. We identify one resist that gave an unusually high selectivity for chlorinated and brominated etches which could enable pattern transfer below 10nm without an additional hard mask. In this case the resist itself acts as a hard mask. We also highlight the differing effects of fluorine and bromine-based Silicon etch chemistries on resist profile evolution and hence etch fidelity.

  12. Optical Mixing in the Strong Coupling Regime: A New Method of Beam Conditioning at Hohlraum LEH and Direct Drive ICF Coronal Plasmas

    NASA Astrophysics Data System (ADS)

    Mardirian, Marine; Afeyan, Bedros; Huller, Stefan; Montgomery, David; Froula, Dustin; Kirkwood, Robert

    2012-10-01

    We will present theoretical and computational results on Brillouin interactions between two beams in co-, counter-, and orthogonal propagation geometries. The beams will be structured (with speckle patterns), the plasma will have inhomogeneous flow including the Mach -1 surface. As the growth rate of the instability surpasses the natural frequency of the ion wave, the strong coupling regime (SCR) is reached, where reactive quasi-modes with intensity dependent frequency shifts result. This is especially true in laser hot spots. We trace the consequences of operations in this regime with different damping rates on the ion acoustic waves. We consider convective and absolute instabilities as well as the design of experiments which could examine these new regimes of instability behavior with new 10 psec time resolved diagnostics. Whether well enough conditioned beams can result after 10's or 100's of pairwise crossings in direct and indirect drive ICF configurations, and whether SRS can thus be strongly suppressed downstream, remains to be demonstrated. But the prospects exist for such new paths to instability control in a staged manner before STUD pulses are implemented.-

  13. Plasma lenses for focusing relativistic electron beams

    SciTech Connect

    Govil, R.; Wheeler, S.; Leemans, W.

    1997-04-01

    The next generation of colliders require tightly focused beams with high luminosity. To focus charged particle beams for such applications, a plasma focusing scheme has been proposed. Plasma lenses can be overdense (plasma density, n{sub p} much greater than electron beam density, n{sub b}) or underdense (n{sub p} less than 2 n{sub b}). In overdense lenses the space-charge force of the electron beam is canceled by the plasma and the remaining magnetic force causes the electron beam to self-pinch. The focusing gradient is nonlinear, resulting in spherical aberrations. In underdense lenses, the self-forces of the electron beam cancel, allowing the plasma ions to focus the beam. Although for a given beam density, a uniform underdense lens produces smaller focusing gradients than an overdense lens, it produces better beam quality since the focusing is done by plasma ions. The underdense lens can be improved by tapering the density of the plasma for optimal focusing. The underdense lens performance can be enhanced further by producing adiabatic plasma lenses to avoid the Oide limit on spot size due to synchrotron radiation by the electron beam. The plasma lens experiment at the Beam Test Facility (BTF) is designed to study the properties of plasma lenses in both overdense and underdense regimes. In particular, important issues such as electron beam matching, time response of the lens, lens aberrations and shot-to-shot reproducibility are being investigated.

  14. Plasma/Neutral-Beam Etching Apparatus

    NASA Technical Reports Server (NTRS)

    Langer, William; Cohen, Samuel; Cuthbertson, John; Manos, Dennis; Motley, Robert

    1989-01-01

    Energies of neutral particles controllable. Apparatus developed to produce intense beams of reactant atoms for simulating low-Earth-orbit oxygen erosion, for studying beam-gas collisions, and for etching semiconductor substrates. Neutral beam formed by neutralization and reflection of accelerated plasma on metal plate. Plasma ejected from coaxial plasma gun toward neutralizing plate, where turned into beam of atoms or molecules and aimed at substrate to be etched.

  15. Optical Frequency Domain Visualization of Electron Beam Driven Plasma Wakefields

    NASA Astrophysics Data System (ADS)

    Zgadzaj, Rafal; Downer, M. C.; Muggli, Patric; Yakimenko, Vitaly; Babzien, Marcus; Kusche, Karl; Fedurin, Mikhail

    2010-11-01

    Beam-driven plasma wakefield accelerators (PWFA), such as the ``plasma afterburner,'' are a promising approach for significantly increasing the particle energies of conventional accelerators. The study and optimization of PWFA would benefit from an experimental correlation between the parameters of the drive bunch, the accelerated bunch and the corresponding, accelerating plasma wave structure. However, the plasma wave structure has not yet been observed directly in PWFA. We will report our current work on noninvasive optical Frequency Domain Interferometric (FDI) and Holographic (FDH) visualization of beam-driven plasma waves. Both techniques employ two laser pulses (probe and reference) co-propagating with the particle drive-beam and its plasma wake. The reference pulse precedes the drive bunch, while the probe overlaps the plasma wave and maps its longitudinal and transverse structure. The experiment is being developed at the BNL/ATF Linac to visualize wakes generated by two and multi-bunch drive beams.

  16. Ion-beam Plasma Neutralization Interaction Images

    SciTech Connect

    Igor D. Kaganovich; Edward Startsev; S. Klasky; Ronald C. Davidson

    2002-04-09

    Neutralization of the ion beam charge and current is an important scientific issue for many practical applications. The process of ion beam charge and current neutralization is complex because the excitation of nonlinear plasma waves may occur. Computer simulation images of plasma neutralization of the ion beam pulse are presented.

  17. Amplification of Beam Acceleration in a Plasma by Plasma Instability

    SciTech Connect

    Valeri Lebedev

    1998-09-01

    Although achieving of high accelerating field in a plasma has been demonstrated experimentally, a practical use of such a scheme for building a large accelerator is questionable. A novel scheme of beam acceleration by a plasma wave is considered in this article. The scheme is based on an initial excitation of a plasma wave by a probe beam with comparatively modest intensity. This seed excitation is then amplified by plasma instability, so that the test beam which follows the probe beam with a small delay will be accelerated by the plasma wave with an amplitude significantly exceeding the initial amplitude of the wave. Because of small interaction between the synchronization beam and the plasma, such a scheme allows one to excite a plasma over large length and, consequently, to build a large accelerator.

  18. Electromagnetic radiation from beam-plasma instabilities

    NASA Technical Reports Server (NTRS)

    Stenzel, R. L.; Whelan, D. A.

    1982-01-01

    The mechanism by which unstable electrostatic waves of an electron-beam plasma system are converted into observed electromagnetic waves is of great current interest in space plasma physics. Electromagnetic radiation arises from both natural beam-plasma systems, e.g., type III solar bursts and kilometric radiation, and from man-made electron beams injected from rockets and spacecraft. In the present investigation the diagnostic difficulties encountered in space plasmas are overcome by using a large laboratory plasma. A finite diameter (d approximately equal to 0.8 cm) electron beam is injected into a uniform quiescent magnetized afterglow plasma of dimensions large compared with electromagnetic wavelength. Electrostatic waves grow, saturate and decay within the uniform central region of the plasma volume so that linear mode conversion on density gradients can be excluded as a possible generation mechanism for electromagnetic waves.

  19. Propagation regimes for an electromagnetic beam in magnetized plasma

    SciTech Connect

    Sharma, Ashutosh; Kourakis, Ioannis; Sodha, M. S.

    2008-10-15

    The propagation of a Gaussian electromagnetic beam along the direction of magnetic field in a plasma is investigated. The extraordinary (E{sub x}+iE{sub y}) mode is explicitly considered in the analysis, although the results for the ordinary mode can be obtained upon replacing the electron cyclotron frequency {omega}{sub c} by -{omega}{sub c}. The propagating beam electric field is coupled to the surrounding plasma via the dielectric tensor, taking into account the existence of a stationary magnetic field. Both collisionless and collisional cases are considered, separately. Adopting an established methodological framework for beam propagation in unmagnetized plasmas, we extend to magnetized plasmas by considering the beam profile for points below the critical curve in the beam-power versus beam-width plane, and by employing a relationship among electron concentration and electron temperature, provided by kinetic theory (rather than phenomenology). It is shown that, for points lying above the critical curve in the beam-power versus beam-width plane, the beam experiences oscillatory convergence (self-focusing), while for points between the critical curve and divider curve, the beam undergoes oscillatory divergence and for points on and below the divider curve the beam suffers a steady divergence. For typical values of parameters, numerical results are presented and discussed.

  20. Plasma formed ion beam projection lithography system

    SciTech Connect

    Leung, Ka-Ngo; Lee, Yung-Hee Yvette; Ngo, Vinh; Zahir, Nastaran

    2002-01-01

    A plasma-formed ion-beam projection lithography (IPL) system eliminates the acceleration stage between the ion source and stencil mask of a conventional IPL system. Instead a much thicker mask is used as a beam forming or extraction electrode, positioned next to the plasma in the ion source. Thus the entire beam forming electrode or mask is illuminated uniformly with the source plasma. The extracted beam passes through an acceleration and reduction stage onto the resist coated wafer. Low energy ions, about 30 eV, pass through the mask, minimizing heating, scattering, and sputtering.

  1. Theoretical and Experimental Beam Plasma Physics (TEBPP)

    NASA Technical Reports Server (NTRS)

    Roberts, B.

    1986-01-01

    The theoretical and experimental beam plasma physics (TEBPP) consists of a package of five instruments to measure electric and magnetic fields, plasma density and temperature, neutral density, photometric emissions, and energetic particle spectra during firings of the particle injector (SEPAC) electron beam. The package is developed on a maneuverable boom (or RMS) and is used to measure beam characteristics and induced perturbations field ( 10 m) and mid field ( 10 m to 100 m) along the electron beam. The TEBPP package will be designed to investigate induced oscillations and induced electromagnetic mode waves, neutral and ion density and temperature effects, and beam characteristics as a function of axial distance.

  2. Theoretical and Experimental Beam Plasma Physics (TEBPP)

    NASA Technical Reports Server (NTRS)

    Roberts, W. T.

    1985-01-01

    The theoretical and experimental beam plasma physics (TEBPP) consists of a package of five instruments to measure electric and magnetic fields, plasma density and temperature, neutral density, photometric emissions, and energetic particle spectra during firings of the particle injector (SEPAC) electron beam. The package is deployed on a maneuverable boom (or RMS) and is used to measure beam characteristics and induced perturbations in the near field ( 10 m) and mid field (10 m to 100 m) along the electron beam. The TEBPP package will be designed to investigate induced oscillations and induced electromagnetic mode waves, neutral and ion density and temperature effects, and beam characteristics as a function of axial distance.

  3. Nonlinear plasma and beam physics in plasma wake-fields

    SciTech Connect

    Rosenzweig, J.B.

    1990-02-12

    In experimental studies of the Plasma Wake-field Accelerator performed to date at the Argonne Advanced Accelerator Test Facility, significant nonlinearities in both plasma and beam behavior have been observed. The plasma waves driven in the wake of the intense driving beam in these experiments exhibit three-dimensional nonlinear behavior which has as yet no quantitative theoretical explanation. This nonlinearity is due in part to the self-pinching of the driving beam in the plasma, as the denser self-focused beam can excite larger amplitude plasma waves. The self-pinching is a process with interesting nonlinear aspects: the initial evolution of the beam envelope and the subsequent approach to Bennett equilibrium through phase mixing. 35 refs., 10 figs.

  4. Observations of underdense plasma lens focusing of relativistic electron beams

    SciTech Connect

    Thompson, M.C.; Badakov, H.; Rosenzweig, J.B.; Travish, G.; Fliller, R.; Kazakevich, G.M.; Piot, P.; Santucci, J.; Li, J.; Tikhoplav, R.; /Rochester U.

    2007-06-01

    Focusing of a 15 MeV, 19 nC electron bunch by an underdense plasma lens operated just beyond the threshold of the underdense condition has been demonstrated in experiments at the Fermilab NICADD Photoinjector Laboratory (FNPL). The strong 1.9 cm focal-length plasma-lens focused both transverse directions simultaneously and reduced the minimum area of the beam spot by a factor of 23. Analysis of the beam-envelope evolution observed near the beam waist shows that the spherical aberrations of this underdense lens are lower than those of an overdense plasma lens, as predicted by theory. Correlations between the beam charge and the properties of the beam focus corroborate this conclusion.

  5. Aerosol beam-focus laser-induced plasma spectrometer device

    DOEpatents

    Cheng, Meng-Dawn

    2002-01-01

    An apparatus for detecting elements in an aerosol includes an aerosol beam focuser for concentrating aerosol into an aerosol beam; a laser for directing a laser beam into the aerosol beam to form a plasma; a detection device that detects a wavelength of a light emission caused by the formation of the plasma. The detection device can be a spectrometer having at least one grating and a gated intensified charge-coupled device. The apparatus may also include a processor that correlates the wavelength of the light emission caused by the formation of the plasma with an identity of an element that corresponds to the wavelength. Furthermore, the apparatus can also include an aerosol generator for forming an aerosol beam from bulk materials. A method for detecting elements in an aerosol is also disclosed.

  6. Propagation of realistic beams in underdense plasma

    SciTech Connect

    Hinkel, D.E.; Williams, E.A.; Berger, R.L.; Powers, L.V.; Langdon, A.B.; Still, C.H.

    1997-11-10

    The effect of beam structure on propagation through underdense plasma is examined in two different examples. First, it is shown that the distribution of intensities within a laser beam affects how the beam deflects in the presence of transverse plasma flow. A detailed analysis of beam deflection shows that the rate scales linearly with intensity and plasma density, and inversely with plasma temperature. When the plasma flow is subsonic, the deflection rate is proportional to the ion damping decrement, and scales as M/(1 - M{sup 2}){sup 3/2}, where M is the transverse flow Mach number. When the plasma flow is supersonic, the deflection rate scales as 1/[M(M{sup 2} - 1){sup 1/2}]. Next, the effect of beam structure on channel formation by very intense laser beer is studied. A diffraction-limited beam with 40 TW of input power forms a channel through 4OOpm of plasma, whereas when this beam is phase aberrated, channel formation does not occur.

  7. Simulation of beam-induced plasma for the mitigation of beam-beam effects

    SciTech Connect

    Ma, J.; Wang, G.; Samulyak, R.; Yu, K.; Litvinenko, V.

    2015-05-03

    One of the main challenges in the increase of luminosity of circular colliders is the control of the beam-beam effect. In the process of exploring beam-beam mitigation methods using plasma, we evaluated the possibility of plasma generation via ionization of neutral gas by proton beams, and performed highly resolved simulations of the beam-plasma interaction using SPACE, a 3D electromagnetic particle-in-cell code. The process of plasma generation is modelled using experimentally measured cross-section coefficients and a plasma recombination model that takes into account the presence of neutral gas and beam-induced electromagnetic fields. Numerically simulated plasma oscillations are consistent with theoretical analysis. In the beam-plasma interaction process, high-density neutral gas reduces the mean free path of plasma electrons and their acceleration. A numerical model for the drift speed as a limit of plasma electron velocity was developed. Simulations demonstrate a significant reduction of the beam electric field in the presence of plasma. Preliminary simulations using fully-ionized plasma have also been performed and compared with the case of beam-induced plasma.

  8. Beam-Plasma Interaction and Instabilities in a 2D Yukawa Plasma

    NASA Astrophysics Data System (ADS)

    Kyrkos, S.; Kalman, G.; Rosenberg, M.

    2008-11-01

    In a complex plasma, penetrating charged particle beams may lead to beam-plasma instabilities. When either the plasma, the beam, or both, are strongly interacting [1], the features of the instability are different from those in a weakly coupled plasma. We consider the case when a 2D dusty plasma forms a lattice, and the beam is moving in the lattice plane. Both the grains and the beam particles interact through a Yukawa potential; the beam particles are weakly coupled to each other and to the lattice. The system develops both a longitudinal and a transverse instability. Based on the phonon spectrum of a 2D hexagonal Yukawa lattice [2], we determine and compare the transverse and longitudinal growth rates. As a function of the wavenumber, the growth rates exhibit remarkable gaps, where no instability is excited. The gap locations are governed by the ratio of the lattice and the beam plasma frequencies. The behavior of the growth rates also depends on the direction of the beam and on the relationship between the beam speed and the longitudinal and transverse sound speeds. [1] GJ Kalman, M Rosenberg, JPA 36, 5963 (2003). [2] T Sullivan, GJ Kalman, S Kyrkos, P Bakshi, M Rosenberg, Z Donko, JPA 39, 4607 (2006).

  9. Beam-plasma dielectric tensor with Mathematica

    NASA Astrophysics Data System (ADS)

    Bret, A.

    2007-03-01

    We present a Mathematica notebook allowing for the symbolic calculation of the 3×3 dielectric tensor of an electron-beam plasma system in the fluid approximation. Calculation is detailed for a cold relativistic electron beam entering a cold magnetized plasma, and for arbitrarily oriented wave vectors. We show how one can elaborate on this example to account for temperatures, arbitrarily oriented magnetic field or a different kind of plasma. Program summaryTitle of program: Tensor Catalog identifier: ADYT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADYT_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Computer for which the program is designed and others on which it has been tested: Computers: Any computer running Mathematica 4.1. Tested on DELL Dimension 5100 and IBM ThinkPad T42. Installations: ETSI Industriales, Universidad Castilla la Mancha, Ciudad Real, Spain Operating system under which the program has been tested: Windows XP Pro Programming language used: Mathematica 4.1 Memory required to execute with typical data: 7.17 Mbytes No. of bytes in distributed program, including test data, etc.: 33 439 No. of lines in distributed program, including test data, etc.: 3169 Distribution format: tar.gz Nature of the physical problem: The dielectric tensor of a relativistic beam plasma system may be quite involved to calculate symbolically when considering a magnetized plasma, kinetic pressure, collisions between species, and so on. The present Mathematica notebook performs the symbolic computation in terms of some usual dimensionless variables. Method of solution: The linearized relativistic fluid equations are directly entered and solved by Mathematica to express the first-order expression of the current. This expression is then introduced into a combination of Faraday and Ampère-Maxwell's equations to give the dielectric tensor. Some additional manipulations are needed to express the result in terms of the

  10. Electromagnetic radiation from beam-plasma instabilities

    NASA Technical Reports Server (NTRS)

    Pritchett, P. L.; Dawson, J. M.

    1983-01-01

    A computer simulation is developed for the generation of electromagnetic radiation in an electron beam-plasma interaction. The plasma is treated as a two-dimensional finite system, and effects of a continuous nonrelativistic beam input are accounted for. Three momentum and three field components are included in the simulation, and an external magnetic field is excluded. EM radiation generation is possible through interaction among Langmuir oscillations, ion-acoustic waves, and the electromagnetic wave, producing radiation perpendicular to the beam. The radiation is located near the plasma frequency, and polarized with the E component parallel to the beam. The scattering of Langmuir waves caused by ion-acoustic fluctuations generates the radiation. Comparison with laboratory data for the three-wave interactions shows good agreement in terms of the radiation levels produced, which are small relative to the plasma thermal energy.

  11. Low energy, high power hydrogen neutral beam for plasma heating

    NASA Astrophysics Data System (ADS)

    Deichuli, P.; Davydenko, V.; Ivanov, A.; Korepanov, S.; Mishagin, V.; Smirnov, A.; Sorokin, A.; Stupishin, N.

    2015-11-01

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase the efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction.

  12. Low energy, high power hydrogen neutral beam for plasma heating.

    PubMed

    Deichuli, P; Davydenko, V; Ivanov, A; Korepanov, S; Mishagin, V; Smirnov, A; Sorokin, A; Stupishin, N

    2015-11-01

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase the efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction. PMID:26628137

  13. Low energy, high power hydrogen neutral beam for plasma heating

    SciTech Connect

    Deichuli, P.; Davydenko, V.; Ivanov, A. Mishagin, V.; Sorokin, A.; Stupishin, N.; Korepanov, S.; Smirnov, A.

    2015-11-15

    A high power, relatively low energy neutral beam injector was developed to upgrade of the neutral beam system of the gas dynamic trap device and C2-U experiment. The ion source of the injector produces a proton beam with the particle energy of 15 keV, current of up to 175 A, and pulse duration of a few milliseconds. The plasma emitter of the ion source is produced by superimposing highly ionized plasma jets from an array of four arc-discharge plasma generators. A multipole magnetic field produced with permanent magnets at the periphery of the plasma box is used to increase the efficiency and improve the uniformity of the plasma emitter. Multi-slit grids with 48% transparency are fabricated from bronze plates, which are spherically shaped to provide geometrical beam focusing. The focal length of the Ion Optical System (IOS) is 3.5 m and the initial beam diameter is 34 cm. The IOS geometry and grid potentials were optimized numerically to ensure accurate beam formation. The measured angular divergences of the beam are ±0.01 rad parallel to the slits and ±0.03 rad in the transverse direction.

  14. Plasma neutralization models for intense ion beam transport in plasma

    SciTech Connect

    Kaganovich, Igor D.; Startsev, Edward A.; Davidson, Ronald C.; O'Rourke, Sean; Lee, Edward P.

    2003-05-01

    Plasma neutralization of an intense ion pulse is of interest for many applications, including plasma lenses, heavy ion fusion, cosmic ray propagation, etc. An analytical electron fluid model has been developed based on the assumption of long charge bunches (l{sub b} >> r{sub b}). Theoretical predictions are compared with the results of calculations utilizing a particle-in-cell (PIC) code. The cold electron fluid results agree well with the PIC simulations for ion beam propagation through a background plasma. The analytical predictions for the degree of ion beam charge and current neutralization also agree well with the results of the numerical simulations. The model predicts very good charge neutralization (>99%) during quasi-steady-state propagation, provided the beam pulse duration {tau}{sub b} is much longer than the electron plasma period 2{pi}/{omega}{sub p}, where {omega}{sub p} = (4{pi}e{sup 2}n{sub p}/m){sup 1/2} is the electron plasma frequency, and n{sub p} is the background plasma density. In the opposite limit, the beam pulse excites large-amplitude plasma waves. The analytical formulas derived in this paper can provide an important benchmark for numerical codes, and provide scaling relations for different beam and plasma parameters.

  15. Plasma heating with crossing relativistic electron beams

    NASA Astrophysics Data System (ADS)

    Ratan, Naren; Sircombe, Nathan; Ceurvorst, Luke; Kasim, Muhammad; Sadler, James; Bingham, Robert; Trines, Raoul; Norreys, Peter

    2015-11-01

    Plasma heating by relativistic electron beams is a powerful tool with applications including the heating of inertial confinement fusion targets and the study of matter in extreme conditions. We discuss the use of two relativistic electron beams to efficiently heat the plasma ions where the beams cross by using beam-plasma instabilities and non-linear wave coupling between Langmuir and ion-acoustic waves. Energy from the electron beams is coupled to the plasma ions as the beams become unstable and drive Langmuir waves which couple non-linearly to ion-acoustic waves which are then damped . Results of linear growth rate calculations are presented for the system of two crossing electron beams demonstrating a broad spectrum of unstable modes. Relativistic Vlasov-Maxwell simulations in two space and two momentum dimensions have been performed which demonstrate the non-linear coupling of the electron beam energy into ion-acoustic waves and the energy cascade to the background ions. Time-frequency analysis is applied to analyze the non-linear coupling between Langmuir and ion-acoustic waves in wave phase space. Structural properties of the strong turbulence produced at late times are analyzed.

  16. Ion Beam Plasma Interactions in the ASTRAL Helicon Plasma Source.

    NASA Astrophysics Data System (ADS)

    Boivin, R. F.; Kesterson, A.; Kamar, O.; Lin, Y.; Munoz, J.; Wang, X.

    2008-11-01

    A 100 KeV NEC duoplasmatron is used to produce an energetic ion beam (10 KeV < E < 100 KeV). The beam is sent through plasmas produced by the ASTRAL helicon plasma source. The beam current and beam size are measured by a device combining Retarding Field Analyzer (RFA) and Faraday Cup (FC) features. ASTRAL produces bright intense He/Ne/Ar plasmas with the following parameters: ne = 1E11 -- 1E13 cm-3 and Te = 2 - 10 eV, B-field < 1.3 kGauss, rf power <= 2 kWatt. RF compensated Langmuir probes are used to measure Te and ne. Depending on the ion beam energy and the ratio of beam density over plasma density different wave instabilities will be generated within the plasmas. A real-time spectrum analyzer will be used to identify the wave instabilities and their evolution in the plasma. We will present early experimental results together with some preliminary theoretical simulation using 2D and 3D hybrid simulation codes. In these codes, ions are treated as fully kinetic particles while electrons are treated as a fluid. Both species are moving in a self-consistent electromagnetic field.

  17. Mutual interaction between parallel Gaussian electromagnetic beams in plasmas

    SciTech Connect

    Sodha, Mahendra Singh; Agarwal, Sujeet Kumar; Sharma, Ashutosh

    2006-10-15

    In this paper, the interaction between two Gaussian electromagnetic beams in a plasma has been investigated, when the axes of the two beams are initially (z=0) parallel along the z axis in the x-z plane; the beams are initially propagating in the z direction. For the three types of nonlinearities (viz., collisional, ponderomotive, and relativistic) the dielectric function has been expressed as a function of the irradiances of the two beams; this expression for the dielectric function has been substituted in the wave equation and a solution of the resulting nonlinear equation obtained in the paraxial approximation. The paraxial approximation is justified since the phenomena of interest occur when the beams are initially close ({radical}(2)x{sub 0}{<=}r{sub 0}). Further, the absorption of the beam in the plasma has been neglected, which is justified when the electron collision frequency is much less than the frequencies of the beams. Second-order coupled ordinary differential equations have been obtained for the distance between the centers of the beams and the beam widths in the x and y directions as a function of the distance of propagation along the z axis. The equations have been solved numerically for a range of parameters and a discussion of the results is presented.

  18. Ion beams from laser-generated plasmas

    NASA Technical Reports Server (NTRS)

    Hughes, R. H.; Anderson, R. J.; Gray, L. G.; Rosenfeld, J. P.; Manka, C. K.; Carruth, M. R.

    1980-01-01

    The paper describes the space-charge-limited beams produced by the plasma blowoffs generated by 20-MW bursts of 1.06-micron radiation from an active Q-switched Nd:YAG laser. Laser power densities near 10 to the 11th/sq cm on solid targets generate thermalized plasma plumes which drift to a 15-kV gridded extraction gap where the ions are extracted, accelerated, and electrostatically focused; the spatially defined ion beams are then magnetically analyzed to determine the charge state content in the beams formed from carbon, aluminum, copper, and lead targets. This technique preserves time-of-flight (TOF) information in the plasma drift region, which permits plasma ion temperatures and mass flow velocities to be determined from the Maxwellian ion curve TOF shapes for the individual charge species.

  19. Gaussian beam evolution in nonlinear inhomogeneous plasma

    NASA Astrophysics Data System (ADS)

    Berczynski, P.; Kravtsov, Yu. A.; Tikhonchuk, V.; Tikhonchuk

    2014-04-01

    The method of nonlinear complex geometrical optics (NCGO) is proposed in this paper for description of the evolution of a spatially narrow Gaussian beam (GB) in an inhomogeneous nonlinear plasma. NCGO method deals with first-order ordinary differential equations for the complex curvature of the wave front and for GB amplitude and for second-order ordinary differential equation for GB width. Thus, NCGO simplifies the description of GB diffraction and self-focusing effects as compared to the known methods of plasma physics and this way it can be assumed to be attractive and comprehensive approach in problems of plasma heating by electromagnetic waves. Moreover, we demonstrate in this paper some regularity for nonlinear inhomogeneous plasma in the framework of which central ray of a GB is not subjected to nonlinear refraction within NCGO method boundary applicability. On the contrary, the beam width, wave front curvature, and GB amplitude are modified by diffraction and self-focusing processes. General properties of the beam propagation are illustrated with results of numerical modeling for two particular cases: GB diffraction and self-focusing along curvilinear trajectory with torsion in axially symmetric plasma column and GB reflection from nonlinear inhomogeneous plasma layer. We prove in this paper that NCGO is new effective method of plasma physics, which can be applied for improvement of ray tracing techniques and plasma diagnostics.

  20. Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction

    NASA Astrophysics Data System (ADS)

    Scisciò, M.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Papaphilippou, Y.; Antici, P.

    2016-03-01

    In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequency (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupoles and solenoids) as an easy implementable solution when the laser-plasma accelerated beam requires optimization. In this paper, we report on a parametric study related to the transport of electron beams accelerated by laser-plasma interaction, using conventional accelerator elements and tools. We focus on both, high energy electron beams in the GeV range, as produced on petawatt (PW) class laser systems, and on lower energy electron beams in the hundreds of MeV range, as nowadays routinely obtained on commercially available multi-hundred TW laser systems. For both scenarios, our study allows understanding what are the crucial parameters that enable laser-plasma accelerators to compete with conventional ones and allow for a beam transport. We show that suitable working points require a tradeoff-combination between low beam divergence and narrow energy spread.

  1. Beam-Plasma Interaction and Nonlinear Effects

    SciTech Connect

    Yoon, Peter H.

    2009-11-10

    This paper presents a survey of perturbative nonlinear plasma theory known as the weak turbulence theory. After the basic concepts and methodology of the weak turbulence theory are outlined in sufficient detail, numerical solutions of the weak turbulence theory obtained in the context of the beam-plasma interaction are compared against particle-in-cell (PIC) numerical simulations. It is demonstrated that theory and PIC simulation are in excellent agreement.

  2. Plasma dark matter direct detection

    NASA Astrophysics Data System (ADS)

    Clarke, J. D.; Foot, R.

    2016-01-01

    Dark matter in spiral galaxies like the Milky Way may take the form of a dark plasma. Hidden sector dark matter charged under an unbroken U(1)' gauge interaction provides a simple and well defined particle physics model realising this possibility. The assumed U(1)' neutrality of the Universe then implies (at least) two oppositely charged dark matter components with self-interactions mediated via a massless "dark photon" (the U(1)' gauge boson). In addition to nuclear recoils such dark matter can give rise to keV electron recoils in direct detection experiments. In this context, the detailed physical properties of the dark matter plasma interacting with the Earth is required. This is a complex system, which is here modelled as a fluid governed by the magnetohydrodynamic equations. These equations are numerically solved for some illustrative examples, and implications for direct detection experiments discussed. In particular, the analysis presented here leaves open the intriguing possibility that the DAMA annual modulation signal is due primarily to electron recoils (or even a combination of electron recoils and nuclear recoils). The importance of diurnal modulation (in addition to annual modulation) as a means of probing this kind of dark matter is also emphasised.

  3. Device and method for electron beam heating of a high density plasma

    DOEpatents

    Thode, L.E.

    A device and method for relativistic electron beam heating of a high density plasma in a small localized region are described. A relativistic electron beam generator produces a high voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10/sup 17/ to 10/sup 20/.

  4. Plasma diagnostic techniques using particle beam probes

    SciTech Connect

    Jennings, W C

    1980-07-01

    A brief overview is given of particle beam probing. The fundamental concepts common to all techniques are discussed as well as the design considerations for choosing a particular diagnostic technique. The capabilities of existing and proposed techniques, and the present status of the techniques in major magnetic confinement geometries is also presented. Techniques which involve the injection of a beam of neutral particles into the plasma are then considered. The techniques of beam attenuation, beam scattering, and active charge exchange using a beam of light particles such as hydrogen or helium are first presented. Optical measurements of the Zeeman splitting of the radiation from a neutral lithium beam is then discussed, including a new proposal for significantly improving this technique through the addition of a dye laser. Two techniques involving the injection of heavy neutral particles are then presented, and the section concludes with two proposed techniques for measuring the properties of the alpha particles produced from actual fusion reactions. The diagnostic techniques which are based upon the injection of a beam of charged particles into the plasma are next described. The advantages and limitations of these techniques in comparison with the neutral techniques are discussed, followed by a description of specific techniques.

  5. Plasma traps for beam dynamics studies

    NASA Astrophysics Data System (ADS)

    Okamoto, Hiromi

    2004-05-01

    The collective motion of a space-charge-dominated beam in an accelerator has been investigated by many researchers for many years mainly through numerical simulations and analytic calculations. The recent interest in applying high-power ion beams to diverse purposes has made the understandings of various "space-charge effects" more and more important than ever. It is, however, extremely difficult to carry out the self-consistent theoretical study of such a multi-particle system exposed to complex external driving fields. In fact, we have always been forced to introduce some assumptions or simplifying models to draw approximate conclusions. Efforts have also been devoted to the experimental study of intense beams, but we encounter many practical difficulties again. As we can easily imagine, it is a tough job to observe and measure a particle beam traveling at great speed. Further, in a real accelerator, key experimental parameters, such as beam density, betatron tunes, magnet arrangements, etc., are not well controllable over a wide range. In order to overcome all these difficulties in conventional approaches, we proposed a novel experimental method utilizing a compact plasma trap system (instead of a huge, very expensive accelerator system) [1]. The basic idea is quite simple; namely, a charged-particle beam in an accelerator, if seen from the rest frame, is physically almost equivalent to a single-species plasma in a trap system. It is thus possible to employ a plasma trap for the systematic experimental study of space-charge-dominated beams. In this talk, a typical trap design is given and its applications to some beam-dynamics problems are discussed. [1] H. Okamoto and H. Tanaka, Nucl. Instr. Meth. A 437 (1999) 178; H. Okamoto, Y. Wada and R. Takai, Nucl. Instr. Meth. A 485 (2002) 244.

  6. Working group report on beam plasmas, electronic propulsion, and active experiments using beams

    NASA Technical Reports Server (NTRS)

    Dawson, J. M.; Eastman, T.; Gabriel, S.; Hawkins, J.; Matossian, J.; Raitt, J.; Reeves, G.; Sasaki, S.; Szuszczewicz, E.; Winkler, J. R.

    1986-01-01

    The JPL Workshop addressed a number of plasma issues that bear on advanced spaceborne technology for the years 2000 and beyond. Primary interest was on the permanently manned space station with a focus on identifying environmentally related issues requiring early clarification by spaceborne plasma experimentation. The Beams Working Group focused on environmentally related threats that platform operations could have on the conduct and integrity of spaceborne beam experiments and vice versa. Considerations were to include particle beams and plumes. For purposes of definition it was agreed that the term particle beams described a directed flow of charged or neutral particles allowing single-particle trajectories to represent the characteristics of the beam and its propagation. On the other hand, the word plume was adopted to describe a multidimensional flow (or expansion) of a plasma or neutral gas cloud. Within the framework of these definitions, experiment categories included: (1) Neutral- and charged-particle beam propagation, with considerations extending to high powers and currents. (2) Evolution and dynamics of naturally occurring and man-made plasma and neutral gas clouds. In both categories, scientific interest focused on interactions with the ambient geoplasma and the evolution of particle densities, energy distribution functions, waves, and fields.

  7. Beam-Plasma Instabilities in Strongly Coupled Plasmas

    NASA Astrophysics Data System (ADS)

    Kalman, Gabor J.; Rosenberg, Marlene

    2001-10-01

    Strongly coupled dusty plasmas under laboratory conditions are permeated by streaming ions: in this scenario beam- plasma instabilities may be excited. The strong coupling between the dust grains, however, fundamentally affects the condition for instability and renders the conventional Vlasov treatment entirely inadequate. Based on the Quasilocalized Charge Approximation [1,2,3] we develop an analysis of instabilities generated by the relative streaming of a weakly coupled and a strongly coupled plasma. The central role in this formalism is played by the Dynamical Matrix D(k), a functional of the equilibrium correlation function, determined in our earlier work [2,3]. Novel physical effects generated by strong coupling alter both the beam resonance condition and the coupling between the beam and the plasma modes. Our analysis covers both resonant and non-resonant, as well as resistive instabilities. [1] Kenneth I. Golden and Gabor J. Kalman, Phys. Plasmas, 7, 14 (2000) [2] M. Rosenberg and G. Kalman, Phys. Rev. E 56, 7166 (1997) [3] G. Kalman, M.Rosenberg and H. E. DeWitt, Phys. Rev Lett. 84, 6030 (2000)

  8. Electron beam, laser beam and plasma arc welding studies

    NASA Technical Reports Server (NTRS)

    Banas, C. M.

    1974-01-01

    This program was undertaken as an initial step in establishing an evaluation framework which would permit a priori selection of advanced welding processes for specific applications. To this end, a direct comparison of laser beam, electron beam and arc welding of Ti-6Al-4V alloy was undertaken. Ti-6Al-4V was selected for use in view of its established welding characteristics and its importance in aerospace applications.

  9. Sawtooth stability in neutral beam heated plasmas in TEXTOR

    NASA Astrophysics Data System (ADS)

    Chapman, I. T.; Pinches, S. D.; Koslowski, H. R.; Liang, Y.; Krämer-Flecken, A.; TEXTOR Team; de Bock, M.

    2008-03-01

    The experimental sawtooth behaviour in neutral beam injection (NBI) heated plasmas in TEXTOR is described. It is found that the sawtooth period is minimized with a low NBI power oriented in the same direction as the plasma current. As the beam power is increased in the opposite direction to the plasma current, the sawtooth period increases to a maximum before it begins to shorten once more. Results from both magnetohydrodynamic stability modelling including toroidal flows and modelling of the kinetic effects of the fast ions resulting from NBI heating are also presented. This model combining the gyroscopic and kinetic effects upon the stability of the n = 1 internal kink mode—thought to be associated with sawtooth oscillations—qualitatively recovers the sawtooth behaviour exhibited in the experiment. It is proposed that the sawtooth period is minimized in the co-NBI direction at the point at which the stabilization of the kink mode due to rotation is weakest. This occurs when the plasma rotation induced by the NBI balances the intrinsic rotation of the plasma. The sawtooth behaviour in the counter-NBI regime is attributed to a subtle balance of the competing stabilization from the toroidal rotation and destabilization from the presence of energetic ions.

  10. Optical Frequency Domain Visualization of Electron Beam Driven Plasma Wakefields

    NASA Astrophysics Data System (ADS)

    Zgadzaj, Rafal; Downer, Michael C.; Muggli, Patric; Yakimenko, Vitaly; Kusche, Karl; Fedurin, Michhail; Babzien, Marcus

    2010-11-01

    Bunch driven plasma wakefield accelerators (PWFA), such as the "plasma afterburner," are a promising emerging method for significantly increasing the energy output of conventional particle accelerators [1]. The study and optimization of this method would benefit from an experimental correlation of the drive bunch parameters and the accelerated particle parameters with the corresponding plasma wave structure. However, the plasma wave structure has not been observed directly so far. We will report ongoing development of a noninvasive optical Frequency Domain Interferometric (FDI) [2] and Holographic (FDH) [3] diagnostics of bunch driven plasma wakes. Both FDI and FDH have been previously demonstrated in the case of laser driven wakes. These techniques employ two laser pulses co-propagating with the drive particle bunch and the trailing plasma wave. One pulse propagates ahead of the drive bunch and serves as a reference, while the second is overlapped with the plasma wave and probes its structure. The multi-shot FDI and single-shot FDH diagnostics permit direct noninvasive observation of longitudinal and transverse structure of the plasma wakes. The experiment is being developed at the 70 MeV Linac in the Accelerator Test Facility at Brookhaven National Laboratory to visualize wakes generated by two [4] and multi-bunch [5] drive beams.

  11. Optical Frequency Domain Visualization of Electron Beam Driven Plasma Wakefields

    SciTech Connect

    Zgadzaj, Rafal; Downer, Michael C.; Muggli, Patric; Yakimenko, Vitaly; Kusche, Karl; Fedurin, Michhail; Babzien, Marcus

    2010-11-04

    Bunch driven plasma wakefield accelerators (PWFA), such as the 'plasma afterburner', are a promising emerging method for significantly increasing the energy output of conventional particle accelerators. The study and optimization of this method would benefit from an experimental correlation of the drive bunch parameters and the accelerated particle parameters with the corresponding plasma wave structure. However, the plasma wave structure has not been observed directly so far. We will report ongoing development of a noninvasive optical Frequency Domain Interferometric (FDI) and Holographic (FDH) diagnostics of bunch driven plasma wakes. Both FDI and FDH have been previously demonstrated in the case of laser driven wakes. These techniques employ two laser pulses co-propagating with the drive particle bunch and the trailing plasma wave. One pulse propagates ahead of the drive bunch and serves as a reference, while the second is overlapped with the plasma wave and probes its structure. The multi-shot FDI and single-shot FDH diagnostics permit direct noninvasive observation of longitudinal and transverse structure of the plasma wakes. The experiment is being developed at the 70 MeV Linac in the Accelerator Test Facility at Brookhaven National Laboratory to visualize wakes generated by two and multi-bunch drive beams.

  12. Spectral signature of the beam plasma discharge

    NASA Technical Reports Server (NTRS)

    Hallinan, T. J.; Deehr, C. S.; Hoch, E.; Viereck, R.; Bernstein, W.; Konradi, A.

    1988-01-01

    The effect of the beam current on the spectrum of a beam plasma discharge (BPD) in N2 at 50, 100, or 400 microtorr is investigated experimentally in the 2.6-m chamber described by Bernstein et al. (1983). The results are presented graphically and discussed in detail. An increase in the ratio of first positive N2 emissions to first negative N2(+) emissions at BPD onset is shown to disappear at currents above the BPD threshold and is attributed to a large population of suprathermal electrons.

  13. Positron Beam Propagation in a Meter Long Plasma Channel

    SciTech Connect

    Marsh, K.A.; Blue, B.E.; Clayton, C.E.; Joshi, C.; Mori, W.B.; Decker, F.-J.; Hogan, M.J.; Iverson, R.; O'Connell, C.; Raimondi, P.; Siemann, Robert H.; Walz, D.; Katsouleas, T.C.; Muggli, P.; /Southern California U.

    2008-03-17

    Recent experiments and simulations have shown that positron beams propagating in plasmas can be focused and also create wakes with large accelerating gradients. For similar parameters, the wakes driven by positron beams are somewhat smaller compared to the case of an electron beam. Simulations have shown that the wake amplitude can be increased if the positron beam is propagated in a hollow plasma channel (Ref. 1). This paper, compares experimentally, the propagation and beam dynamics of a positron beam in a meter scale homogeneous plasma, to a positron beam hollow channel plasma. The results show that positron beams in hollow channels are less prone to distortions and deflections. Hollow channels were observed to guide the positron beam onto the channel axis. Beam energy loss was also observed implying the formation of a large wake amplitude. The experiments were carried out as part of the E-162 plasma wakefield experiments at SLAC.

  14. Simulation of beams or plasmas crossing at relativistic velocity

    SciTech Connect

    Vay, J.-L.

    2008-05-15

    This paper addresses the numerical issues related to the modeling of beams or plasmas crossing at relativistic velocity using the particle-in-cell method. Issues related to the use of the standard Boris particle pusher are identified and a novel pusher which circumvents them is proposed, whose effectiveness is demonstrated on single particle tests. A procedure for solving the fields is proposed, which retains electrostatic, magnetostatic, and inductive field effects in the direction of the mean velocity of the species, is fully explicit and simpler than the full Darwin approximation. Finally, results are given, from a calculation using the novel features, of an ultrarelativistic beam interacting with a background of electrons.

  15. Plasma focus ion beam-scaling laws

    NASA Astrophysics Data System (ADS)

    Saw, S. H.

    2014-08-01

    Measurements on plasma focus ion beams include various advanced techniques producing a variety of data which has yet to produce benchmark numbers. Recent numerical experiments using an extended version of the Lee Code has produced reference numbers and scaling trends for number and energy fluence of deuteron beams as functions of stored energy E0. At the pinch exit the ion number fluence (ions m-2) and energy fluence (J m-2) computed as 2.4-7.8×1020 and 2.2-33×106 respectively were found to be independent of E0 from 0.4 - 486 kJ. This work was extended to the ion beams for various gases. The results show that, for a given plasma focus, the fluence, flux, ion number and ion current decrease from the lightest to the heaviest gas except for trend-breaking higher values for Ar fluence and flux. The energy fluence, energy flux, power flow and damage factors are relatively constant from H2 to N2 but increase for Ne, Ar, Kr and Xe due to radiative cooling and collapse effects. This paper reviews this work and in a concluding section attempts to put the accumulating large amounts of data into the form of a scaling law of beam energy Ebeam versus storage energy E0 taking the form for deuteron as: {Ebeam} = 18.2{E}01.23; where Ebeam is in J and E0 is in kJ. It is hoped that the establishment of such scaling laws places on a firm footing the reference quantitative ideas for plasma focus ion beams.

  16. Investigation of plasma-surface interaction at plasma beam facilities

    NASA Astrophysics Data System (ADS)

    Kurnaev, V.; Vizgalov, I.; Gutorov, K.; Tulenbergenov, T.; Sokolov, I.; Kolodeshnikov, A.; Ignashev, V.; Zuev, V.; Bogomolova, I.; Klimov, N.

    2015-08-01

    The new Plasma Beam Facility (PBF) has been put into operation for assistance in testing of plasma faced components at Material Science Kazakhstan Tokamak (KTM). PBF includes a powerful electron gun (up to 30 kV, 1 A) and a high vacuum chamber with longitudinal magnetic field coils (up to 0.2 T). The regime of high vacuum electron beam transportation is used for thermal tests with power density at the target surface up to 10 GW/m2. The beam plasma discharge (BPD) regime with a gas-puff is used for generation of intensive ion fluxes up to 3 ṡ 1022 m-2 s-1. Initial tests of the KTM PBF's capabilities were carried out: various discharge regimes, carbon deposits cleaning, simultaneous thermal and ion impacts on radiation cooled refractory targets. With a water-cooled target the KTM PBF could be used for high heat flux tests of materials (validated by the experiment with W mock-up at the PR-2 PBF).

  17. Ultrafast Directional Beam Switching in Coupled VCSELs

    NASA Technical Reports Server (NTRS)

    Ning, Cun-Zheng; Goorjian, Peter

    2001-01-01

    We propose a new approach to performing ultrafast directional beam switching using two coupled Vertical-Cavity Surface-Emitting Lasers (VCSELs). The proposed strategy is demonstrated for two VCSELs of 5.6 microns in diameter placed about 1 micron apart from the edges, showing a switching speed of 42 GHz with a maximum far-field angle span of about 10 degrees.

  18. Probe measurements in ion-beam plasma

    SciTech Connect

    Dudin, S.V.

    1994-12-31

    The particularities of the electric probe measurements in the ion-beam plasma (IBP) have been investigated. To find the electron density n{sub e} and temperature T{sub c} as well as electron energy distribution it is necessary to separate electron current from full probe current, because ion part of this current is often large enough to mask the electron part. According to collisionless probe theory, radius of ion layer in strongly non-isothermal plasma (as in their case) and consequently the ion current are determined by Child`s law. However, at presence of ion beam with high enough energy {var_epsilon}{sub b} >> e{var_phi}{sub p}, this law is broken. The author has found the dependence of Langmuir probe ion current I{sub i} on probe potential {var_phi}{sub p} at presence of IB. The constant ion density approach was used in cylindrical and spherical geometry of the probe layer. Dependence of ion current founded experimentally accords with Child`s law when the probe is placed outside the beam and linear--within the beam. Application of only the chemical Langmuir probe is insufficient for energoanalysis of IBP electrons because of ion current interference. To solve this problem combination of the techniques of cylindrical probe, large plate probe (5 x 5mm) and two-grid energoanalyzer was used. Design and parameters of the two-grid analyzer are presented. Measuring system is described for determination of electron energy distribution function in low temperature plasma by double differentiation of the electric probe volt-ampere characteristic by modulation method.

  19. PLASMA WAKE EXCITATION BY LASERS OR PARTICLE BEAMS

    SciTech Connect

    Schroeder, Carl B.; Esarey, Eric; Benedetti, Carlo; Toth, Csaba; Geddes, Cameron; Leemans, Wim

    2011-04-01

    Plasma accelerators may be driven by the ponderomotive force of an intense laser or the space-charge force of a charged particle beam. Plasma wake excitation driven by lasers or particle beams is examined, and the implications of the different physical excitation mechanisms for accelerator design are discussed. Plasma-based accelerators have attracted considerable attention owing to the ultrahigh field gradients sustainable in a plasma wave, enabling compact accelerators. These relativistic plasma waves are excited by displacing electrons in a neutral plasma. Two basic mechanisms for excitation of plasma waves are actively being researched: (i) excitation by the nonlinear ponderomotive force (radiation pressure) of an intense laser or (ii) excitation by the space-charge force of a dense charged particle beam. There has been significant recent experimental success using lasers and particle beam drivers for plasma acceleration. In particular, for laser-plasma accelerators (LPAs), the demonstration at LBNL in 2006 of high-quality, 1 GeV electron beams produced in approximately 3 cm plasma using a 40 TW laser. In 2007, for beam-driven plasma accelerators, or plasma-wakefield accelerators (PWFAs), the energy doubling over a meter to 42 GeV of a fraction of beam electrons on the tail of an electron beam by the plasma wave excited by the head was demonstrated at SLAC. These experimental successes have resulted in further interest in the development of plasma-based acceleration as a basis for a linear collider, and preliminary collider designs using laser drivers and beam drivers are being developed. The different physical mechanisms of plasma wave excitation, as well as the typical characteristics of the drivers, have implications for accelerator design. In the following, we identify the similarities and differences between wave excitation by lasers and particle beams. The field structure of the plasma wave driven by lasers or particle beams is discussed, as well as the

  20. Instability of Interaction of a Coherent Electron Beam and Plasma

    NASA Astrophysics Data System (ADS)

    Matveev, A. I.

    2015-12-01

    Nonlinear interaction of a beam with finite density of electrons, whose velocity is greater than the phase velocity of a plasma wave, with homogeneous collisionless plasma is described. It is shown that a positive feedback arises between plasma oscillations and the wave of longitudinal electron density of the beam if the phase of this wave is 90° ahead of the phase of plasma oscillations. An increase in the energies of plasma and beam oscillations is accompanied by a decrease in the kinetic beam energy until the moment when the beam velocity becomes equal to the plasma wave phase velocity. Since the beam velocity can be greater than the plasma wave phase velocity, such energy conversion is very efficient.

  1. Plasma effects on fast pair beams. III. Oblique electrostatic growth rates for perpendicular Maxwellian pair beams

    SciTech Connect

    Supsar, Markus; Schlickeiser, Reinhard E-mail: rsch@tp4.rub.de

    2014-03-10

    The distant universe is opaque to γ radiation from blazars due to gamma-gamma attenuation with extragalactic background light. This process produces electron-positron pair beams that interact with the intergalactic medium and are unstable to linear instabilities, particularly the electrostatic and Weibel instabilities. The electrostatic instability grows faster and so determines the dissipation of the free energy of the beam. Here, we generalize the calculation of the electrostatic growth rate to a beam plasma system with a Maxwellian perpendicular momentum spread and allow for oblique propagation directions. We show that the growth rate for the oblique electrostatic mode has a maximum value that is even higher than for a cold beam or for one with a constant perpendicular momentum spread.

  2. Multiple-beam laser–plasma interactions in inertial confinement fusion

    SciTech Connect

    Myatt, J. F. Zhang, J.; Maximov, A. V.; Short, R. W.; Seka, W.; Edgell, D. H.; Michel, D. T.; Igumenshchev, I. V.; Froula, D. H.; Hinkel, D. E.; Michel, P.; Moody, J. D.

    2014-05-15

    The experimental evidence for multiple-beam laser-plasma instabilities of relevance to laser driven inertial confinement fusion at the ignition scale is reviewed, in both the indirect and direct-drive approaches. The instabilities described are cross-beam energy transfer (in both indirectly driven targets on the NIF and in direct-drive targets), multiple-beam stimulated Raman scattering (for indirect-drive), and multiple-beam two-plasmon decay instability (in direct drive). Advances in theoretical understanding and in the numerical modeling of these multiple beam instabilities are presented.

  3. Vortex stabilized electron beam compressed fusion grade plasma

    SciTech Connect

    Hershcovitch, Ady

    2014-03-19

    Most inertial confinement fusion schemes are comprised of highly compressed dense plasmas. Those schemes involve short, extremely high power, short pulses of beams (lasers, particles) applied to lower density plasmas or solid pellets. An alternative approach could be to shoot an intense electron beam through very dense, atmospheric pressure, vortex stabilized plasma.

  4. Collisionless relaxation in beam-plasma systems

    SciTech Connect

    Backhaus, Ekaterina Yu.

    2001-05-01

    This thesis reports the results from the theoretical investigations, both numerical and analytical, of collisionless relaxation phenomena in beam-plasma systems. Many results of this work can also be applied to other lossless systems of plasma physics, beam physics and astrophysics. Different aspects of the physics of collisionless relaxation and its modeling are addressed. A new theoretical framework, named Coupled Moment Equations (CME), is derived and used in numerical and analytical studies of the relaxation of second order moments such as beam size and emittance oscillations. This technique extends the well-known envelope equation formalism, and it can be applied to general systems with nonlinear forces. It is based on a systematic moment expansion of the Vlasov equation. In contrast to the envelope equation, which is derived assuming constant rms beam emittance, the CME model allows the emittance to vary through coupling to higher order moments. The CME model is implemented in slab geometry in the absence of return currents. The CME simulation yields rms beam sizes, velocity spreads and emittances that are in good agreement with particle-in-cell (PIC) simulations for a wide range of system parameters. The mechanism of relaxation is also considered within the framework of the CME system. It is discovered that the rapid relaxation or beam size oscillations can be attributed to a resonant coupling between different modes of the system. A simple analytical estimate of the relaxation time is developed. The final state of the system reached after the relaxation is complete is investigated. New and accurate analytical results for the second order moments in the phase-mixed state are obtained. Unlike previous results, these connect the final values of the second order moments with the initial beam mismatch. These analytical estimates are in good agreement with the CME model and PIC simulations. Predictions for the final density and temperature are developed that show

  5. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator.

    PubMed

    Gessner, Spencer; Adli, Erik; Allen, James M; An, Weiming; Clarke, Christine I; Clayton, Chris E; Corde, Sebastien; Delahaye, J P; Frederico, Joel; Green, Selina Z; Hast, Carsten; Hogan, Mark J; Joshi, Chan; Lindstrøm, Carl A; Lipkowitz, Nate; Litos, Michael; Lu, Wei; Marsh, Kenneth A; Mori, Warren B; O'Shea, Brendan; Vafaei-Najafabadi, Navid; Walz, Dieter; Yakimenko, Vitaly; Yocky, Gerald

    2016-01-01

    Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. Here we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel is created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m(-1) is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations. PMID:27250570

  6. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator

    PubMed Central

    Gessner, Spencer; Adli, Erik; Allen, James M.; An, Weiming; Clarke, Christine I.; Clayton, Chris E.; Corde, Sebastien; Delahaye, J. P.; Frederico, Joel; Green, Selina Z.; Hast, Carsten; Hogan, Mark J.; Joshi, Chan; Lindstrøm, Carl A.; Lipkowitz, Nate; Litos, Michael; Lu, Wei; Marsh, Kenneth A.; Mori, Warren B.; O'Shea, Brendan; Vafaei-Najafabadi, Navid; Walz, Dieter; Yakimenko, Vitaly; Yocky, Gerald

    2016-01-01

    Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. Here we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel is created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m−1 is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations. PMID:27250570

  7. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Gessner, Spencer; Adli, Erik; Allen, James M.; An, Weiming; Clarke, Christine I.; Clayton, Chris E.; Corde, Sebastien; Delahaye, J. P.; Frederico, Joel; Green, Selina Z.; Hast, Carsten; Hogan, Mark J.; Joshi, Chan; Lindstrøm, Carl A.; Lipkowitz, Nate; Litos, Michael; Lu, Wei; Marsh, Kenneth A.; Mori, Warren B.; O'Shea, Brendan; Vafaei-Najafabadi, Navid; Walz, Dieter; Yakimenko, Vitaly; Yocky, Gerald

    2016-06-01

    Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. Here we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel is created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m-1 is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations.

  8. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator

    DOE PAGESBeta

    Gessner, Spencer; Adli, Erik; Allen, James M.; An, Weiming; Clarke, Christine I.; Clayton, Chris E.; Corde, Sebastien; Delahaye, J. P.; Frederico, Joel; Green, Selina Z.; et al

    2016-06-02

    Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. In this study, we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel ismore » created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m-1 is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations.« less

  9. Plasma ion sources and ion beam technology inmicrofabrications

    SciTech Connect

    Ji, Lili

    2007-01-01

    For over decades, focused ion beam (FIB) has been playing a very important role in microscale technology and research, among which, semiconductor microfabrication is one of its biggest application area. As the dimensions of IC devices are scaled down, it has shown the need for new ion beam tools and new approaches to the fabrication of small-scale devices. In the meanwhile, nanotechnology has also deeply involved in material science research and bioresearch in recent years. The conventional FIB systems which utilize liquid gallium ion sources to achieve nanometer scale resolution can no longer meet the various requirements raised from such a wide application area such as low contamination, high throughput and so on. The drive towards controlling materials properties at nanometer length scales relies on the availability of efficient tools. In this thesis, three novel ion beam tools have been developed and investigated as the alternatives for the conventional FIB systems in some particular applications. An integrated focused ion beam (FIB) and scanning electron microscope (SEM) system has been developed for direct doping or surface modification. This new instrument employs a mini-RF driven plasma source to generate focused ion beam with various ion species, a FEI two-lens electron (2LE) column for SEM imaging, and a five-axis manipulator system for sample positioning. An all-electrostatic two-lens column has been designed to focus the ion beam extracted from the source. Based on the Munro ion optics simulation, beam spot sizes as small as 100 nm can be achieved at beam energies between 5 to 35 keV if a 5 μm-diameter extraction aperture is used. Smaller beam spot sizes can be obtained with smaller apertures at sacrifice of some beam current. The FEI 2LE column, which utilizes Schottky emission, electrostatic focusing optics, and stacked-disk column construction, can provide high-resolution (as small as 20 nm) imaging capability, with fairly long working distance (25

  10. Helicon waves in uniform plasmas. IV. Bessel beams, Gendrin beams, and helicons

    NASA Astrophysics Data System (ADS)

    Urrutia, J. M.; Stenzel, R. L.

    2016-05-01

    Electromagnetic waves in the low frequency whistler mode regime are investigated experimentally and by digital data superposition. The radiation from a novel circular antenna array is shown to produce highly collimated helicon beams in a uniform unbounded plasma. The differences to Bessel beams in free space are remarked upon. Low divergence beams arise from the parallel group velocity of whistlers with phase velocity either along the guide field or at the Gendrin angle. Waves with angular momentum are produced by phasing the array in the circular direction. The differences in the field topologies for positive and negative modes numbers are shown. It is also shown that in uniform plasmas, the radial amplitude profile of the waves depends on the antenna field topology. Thus, there are no helicon "eigenmodes" with radial Bessel function profiles in uniform plasmas. It is pointed out that phase measurements in helicon devices indicate radial wave propagation which is inconsistent with helicon eigenmode theory based on paraxial wave propagation. Trivelpiece-Gould modes also exist in uniform unbounded plasmas.

  11. Electromagnetic radiation and nonlinear energy flow in an electron beam-plasma system

    NASA Technical Reports Server (NTRS)

    Whelan, D. A.; Stenzel, R. L.

    1985-01-01

    It is shown that the unstable electron-plasma waves of a beam-plasma system can generate electromagnetic radiation in a uniform plasma. The generation mechanism is a scattering of the unstable electron plasma waves off ion-acoustic waves, producing electromagnetic waves whose frequency is near the local plasma frequency. The wave vector and frequency matching conditions of the three-wave mode coupling are experimentally verified. The electromagnetic radiation is observed to be polarized with the electric field parallel to the beam direction, and its source region is shown to be localized to the unstable plasma wave region. The frequency spectrum shows negligible intensity near the second harmonic of the plasma frequency. These results suggest that the observed electromagnetic radiation of type III solar bursts may be generated near the local plasma frequency and observed downstream where the wave frequency is near the harmonic of the plasma frequency.

  12. Fundamentals and applications of a plasma-processing system based on electron-beam ionization

    SciTech Connect

    Leonhardt, D.; Walton, S. G.; Fernsler, R. F.

    2007-05-15

    Plasmas generated from moderate energy (2-5 keV) electron beams (e-beam) have unique, attractive characteristics that are ideal for materials processing applications. These plasmas possess low electron temperatures (<0.5 eV), variable plasma densities (10{sup 9}-10{sup 12} cm{sup -3}) with an improved control of plasma species generation, and perhaps most importantly, a direct scalability to processing areas exceeding one square meter. These characteristics are due to the plasma ionization being driven by the e-beam instead of an external electromagnetic field as used in conventional processing plasma sources. Theoretical and experimental system details are discussed in terms of plasma operating conditions applied to three different surface modification approaches: metal nitriding, negative ion etching, and polymer surface energy tailoring.

  13. Direct plasma interaction with living tissue

    NASA Astrophysics Data System (ADS)

    Fridman, Gregory

    For some time, plasma has been used in medicine to cauterize or cut tissue using heat and mechanical energy. In the recent decade, some researchers around the world have started to investigate how gas jets that pass through thermal plasma can be employed in medicine. This thesis presents the first investigation of biomedical uses of non-thermal plasma discharge which comes in direct contact with living tissue. It is demonstrated that the direct application of non-thermal plasma in air can cause rapid deactivation of bacteria on surfaces of tissues without causing any visible tissue damage. Medical need for such a device is discussed. Construction and operation of various types of non-thermal plasma power supplies and many types of treatment electrodes are presented as well. Application of this plasma to living organisms is shown to be safe from both the electrical perspective and from the biological perspective. Biological safety is revealed through a series of differential skin toxicity trials on human cadaver tissue, live hairless mouse skin tissue, live pig skin tissue, and finally in an open wound model on pigs. Direct non-thermal plasma in air is shown to deactivate bacteria about 100 times faster than indirect application using jets. A series of experiments reveal that this effectiveness is due to the ability of direct discharge to bring charges to tissue surfaces. It is demonstrated that neither ultraviolet (UV) radiation nor neutral active species such as hydroxyl radicals or ozone produced in plasma are responsible for the main effect on bacteria. Although much additional work remains on establishing detailed mechanism by which charges from plasma achieve this effect, the work carried out in this thesis clearly demonstrates that direct application of non-thermal plasma in air can be a very useful tool in medicine.

  14. INTERACTION OF MUON BEAM WITH PLASMA DEVELOPED DURING IONIZATION COOLING

    SciTech Connect

    S. Ahmed, D. Kaplan, T. Roberts, L. Spentzouris, K. Beard

    2012-07-01

    Particle-in-cell simulations involving the interaction of muon beam (peak density 10{sup 18} m{sup 3}) with Li plasma (ionized medium) of density 10{sup 16}-10{sup 22} m{sup -3} have been performed. This study aimed to understand the effects of plasma on an incoming beam in order to explore scenario developed during the process of ionization cooling. The computer code takes into account the self-consistent electromagnetic effects of beam interacting with plasma. This study shows that the beam can pass through the plasma of densities four order of magnitude higher than its peak density. The low density plasmas are wiped out by the beam, however, the resonance is observed for densities of similar order. Study reveals the signature of plasma wakefield acceleration.

  15. Suprathermal electrons produced by beam-plasma-discharge

    NASA Technical Reports Server (NTRS)

    Sharp, W. E.

    1982-01-01

    Experiments conducted with a low energy plasma lens, HARP, in the electron beam of the large vacuum chamber at Johnson Space Center indicate that an enhanced population of 50 to 300 volt electrons appear when the beam goes into the Beam-Plasma Discharge (BPD) mode. Below the BPD instability the electron distribution appears to be characterized as non-energized single particle scattering and energy loss. At 100 cm from the beam core in the BPD mode the fluxes parallel to the beam are reduced by a factor of 20 with respect to the fluxes at 25 cm. Some evidence for isotropy near the beam core is presented.

  16. Intense ion beam neutralization using underdense background plasma

    SciTech Connect

    Berdanier, William; Roy, Prabir K.; Kaganovich, Igor

    2015-01-15

    Producing an overdense background plasma for neutralization purposes with a density that is high compared to the beam density is not always experimentally possible. We show that even an underdense background plasma with a small relative density can achieve high neutralization of intense ion beam pulses. Using particle-in-cell simulations, we show that if the total plasma electron charge is not sufficient to neutralize the beam charge, electron emitters are necessary for effective neutralization but are not needed if the plasma volume is so large that the total available charge in the electrons exceeds that of the ion beam. Several regimes of possible underdense/tenuous neutralization plasma densities are investigated with and without electron emitters or dense plasma at periphery regions, including the case of electron emitters without plasma, which does not effectively neutralize the beam. Over 95% neutralization is achieved for even very underdense background plasma with plasma density 1/15th the beam density. We compare results of particle-in-cell simulations with an analytic model of neutralization and find close agreement with the particle-in-cell simulations. Further, we show experimental data from the National Drift Compression experiment-II group that verifies the result that underdense plasma can neutralize intense heavy ion beams effectively.

  17. Device and method for electron beam heating of a high density plasma

    DOEpatents

    Thode, Lester E.

    1981-01-01

    A device and method for relativistic electron beam heating of a high density plasma in a small localized region. A relativistic electron beam generator produces a high voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target plasma is ionized prior to application of the electron beam by means of a laser or other preionization source. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high density target plasma causing the relativistic electron beam to efficiently deposit its energy into a small localized region within the high density plasma target.

  18. Plasma-parameter measurements using neutral-particle-beam attenuation

    SciTech Connect

    Foote, J H; Molvik, A W; Turner, W C

    1982-07-07

    Intense and energetic neutral-particle-beam injection used for fueling or heating magnetically confined, controlled-fusion experimental plasmas can also provide diagnostic measurements of the plasmas. The attenuation of an atomic beam (mainly from charge-exchange and ionization interactions) when passing through a plasma gives the plasma line density. Orthogonal arrays of highly collimated detectors of the secondary-electron-emission type have been used in magnetic-mirror experiments to measure neutral-beam attenuation along chords through the plasma volume at different radial and axial positions. The radial array is used to infer the radial plasma-density profile; the axial array, to infer the axial plasma-density profile and the ion angular distribution at the plasma midplane.

  19. Studies of Ion Beam Charge Neutralization by Ferroelectric Plasma Sources

    NASA Astrophysics Data System (ADS)

    Stepanov, A.; Gilson, E. P.; Grisham, L.; Davidson, R. C.

    2013-10-01

    Space-charge forces limit the possible transverse compression of high perveance ion beams that are used in ion-beam-driven high energy density physics applications; the minimum radius to which a beam can be focused is an increasing function of perveance. The limit can be overcome if a plasma is introduced in the beam path between the focusing element and the target in order to neutralize the space charge of the beam. This concept has been implemented on the Neutralized Drift Compression eXperiment (NDCX) at LBNL using Ferroelectric Plasma Sources (FEPS). In our experiment at PPPL, we propagate a perveance-dominated ion beam through a FEPS to study the effect of the neutralizing plasma on the beam envelope and its evolution in time. A 30-60 keV space-charge-dominated Argon beam is focused with an Einzel lens into a FEPS located at the beam waist. The beam is intercepted downstream from the FEPS by a movable Faraday cup that provides time-resolved 2D current density profiles of the beam spot on target. We report results on: (a) dependence of charge neutralization on FEPS plasma density; (b) effects on beam emittance, and (c) time evolution of the beam envelope after the FEPS pulse. Research supported by the U.S. Department of Energy.

  20. Multisymplectic Integration for Beam and Plasma Simulations

    NASA Astrophysics Data System (ADS)

    Webb, Stephen; RadiaSoft, LLC Team

    2015-11-01

    Particle-in-cell methods are a standard tool for simulating charged particle systems such as fusion plasmas, intense beams, and laser- and beam-driven wakefield accelerators. Conventional methods have been successful in studying short-term dynamics, however numerical instabilities and artifacts such as grid heating make long-time simulations unreliable. A similar issue existed in single particle tracking for storage rings in the 1980s, which led to the development of symplectic algorithms. The essential insight that if the physical equations of motion derive from a least-action principle, then so too should the numerical equations of motion. The resulting update sequence preserves a symplectic 2-form, which is a strong constraint on the numerical solutions. The resulting algorithms are stable and accurate over very long simulation times. This same structure exists for field theories as well as single-particle dynamics. Such multisymplectic integrators have good stability properties and naturally encode conservation laws, making them ideal for simulations over many oscillations of the system. We present here a number of examples where multisymplectic algorithms have been used over very long time scales. This work was sponsored by the Air Force Office of Scientific Research, Young Investigator Program, under contract no. FA9550-15-C-0031. Distribution Statement A. Approved for public release; distribution is unlimited.

  1. Plasma lens experiments at the Final Focus Test Beam

    SciTech Connect

    Barletta, B. |; Chattopadhyay, S.; Chen, P.

    1993-04-01

    We intend to carry out a series of plasma lens experiments at the Final Focus Test Beam facility at SLAC. These experiments will be the first to study the focusing of particle beams by plasma focusing devices in the parameter regime of interest for high energy colliders, and is expected to lead to plasma lens designs capable of unprecedented spot sizes. Plasma focusing of positron beams will be attempted for the first time. We will study the effects of lens aberrations due to various lens imperfections. Several approaches will be applied to create the plasma required including laser ionization and beam ionization of a working gas. At an increased bunch population of 2.5 {times} 10{sup 10}, tunneling ionization of a gas target by an electron beam -- an effect which has never been observed before -- should be significant. The compactness of our device should prove to be of interest for applications at the SLC and the next generation linear colliders.

  2. Enhanced focusing of laser beams in semiconductor plasmas

    NASA Astrophysics Data System (ADS)

    Gupta, D. N.; Suk, H.

    2007-02-01

    The beating of two copropagating laser beams (having frequency difference Δω ≈ωp, where ωp is the plasma frequency) can resonantly excite a large amplitude plasma wave in a narrow-gap semiconductor [V. I. Berezhiani and S. M. Mahajan, Phys. Rev. B 55, 9247 (1997)]. The higher ponderomotive force on the electrons due to the plasma beat wave makes the medium highly nonlinear. As a result, the incident laser beams become self-focused due to the nonlinearity by the ponderomotive force. In this paper, we show the self-focusing and spot size evolution of the laser beams in semiconductor plasmas.

  3. Etching with electron beam generated plasmas

    SciTech Connect

    Leonhardt, D.; Walton, S.G.; Muratore, C.; Fernsler, R.F.; Meger, R.A.

    2004-11-01

    A modulated electron beam generated plasma has been used to dry etch standard photoresist materials and silicon. Oxygen-argon mixtures were used to etch organic resist material and sulfur hexafluoride mixed with argon or oxygen was used for the silicon etching. Etch rates and anisotropy were determined with respect to gas compositions, incident ion energy (from an applied rf bias) and plasma duty factor. For 1818 negative resist and i-line resists the removal rate increased nearly linearly with ion energy (up to 220 nm/min at 100 eV), with reasonable anisotropic pattern transfer above 50 eV. Little change in etch rate was seen as gas composition went from pure oxygen to 70% argon, implying the resist removal mechanism in this system required the additional energy supplied by the ions. With silicon substrates at room temperature, mixtures of argon and sulfur hexafluoride etched approximately seven times faster (1375 nm/min) than mixtures of oxygen and sulfur hexafluoride ({approx}200 nm/min) with 200 eV ions, the difference is attributed to the passivation of the silicon by involatile silicon oxyfluoride (SiO{sub x}F{sub y}) compounds. At low incident ion energies, the Ar-SF{sub 6} mixtures showed a strong chemical (lateral) etch component before an ion-assisted regime, which started at {approx}75 eV. Etch rates were independent of the 0.5%-50% duty factors studied in this work.

  4. A preliminary model of ion beam neutralization. [in thruster plasmas

    NASA Technical Reports Server (NTRS)

    Parks, D. E.; Katz, I.

    1979-01-01

    A theoretical model of neutralized thruster ion beam plasmas has been developed. The basic premise is that the beam forms an electrostatic trap for the neutralizing electrons. A Maxwellian spectrum of electron energies is maintained by collisions between trapped electrons and by collective randomization of velocities of electrons injected from the neutralizer into the surrounding plasma. The theory contains the observed barometric law relationship between electron density and electron temperatures and ion beam spreading in good agreement with measured results.

  5. TEBPP: Theoretical and Experimental study of Beam-Plasma-Physics

    NASA Technical Reports Server (NTRS)

    Anderson, H. R.; Bernstein, W.; Linson, L. M.; Papadopoulos, K.; Kellogg, P. J.; Szuszczewicz, E. P.; Hallinan, T. J.; Leinbach, H.

    1980-01-01

    The interaction of an electron beam (0 to 10 keV, 0 to 1.5 Amp) with the plasma and neutral atmospheres at 200 to 400 km altitude is studied with emphasis on applications to near Earth and cosmical plasmas. The interaction occurs in four space time regions: (1) near electron gun, beam coming into equilibrium with medium; (2) equilibrium propagation in ionosphere; (3) ahead of beam pulse, temporal and spatial precursors; (4) behind a beam pulse. While region 2 is of the greatest interest, it is essential to study Region 1 because it determines the characteristics of the beam as it enters 2 through 4.

  6. Plasma heating with multi-MeV neutral impurity beams

    SciTech Connect

    Grisham, L.R.; Post, D.E.; Eubank, H.P.; Firestone, M.; Mikkelsen, D.R.; Singer, C.E.; Weisheit, J.

    1981-03-01

    The utility of neutral beams of A greater than or equal to 6 AMU formed from negative ions, accelerated to approx. 1 MeV/AMU and neutralized, is explored for heating toroidally confined plasmas. Such beams offer the promise of significant advantages relative to conventional neutral beams based upon positive or negative hydrogen ions at 100 to 200 keV/AMU.

  7. Neutral Beam Current Drive in Spheromak plasma and plasma stability

    NASA Astrophysics Data System (ADS)

    Pearlstein, L. D.; Jayakumar, R. J.; Hudson, B.; Hill, D. N.; Lodestro, L. L.; McLean, H. S.; Fowler, T. K.; Casper, T. A.

    2007-11-01

    A key question for the Sustained Spheromak Physics Experiment (SSPX) is understanding how spheromaks can be sustained by other current drive tools such as neutral beam current drive. Another question is whether the present relationship between current and maximum spheromak magnetic field (plasma beta) is related to Alcator-like ohmic confinement limit or is a stability limit. Using the code CORSICA, the fraction of neutral beam current drive that can be achieved has been calculated for different injection angles with a fixed equilibrium. It is seen that relaxing the equilibrium with this drive simply drives the core safety factor to low values. Other equilibria where the NBI may give aligned current drive are being explored. Free-boundary equilibria calculations are underway to see what hyper-resistivity model gives the observed sustained SSPX performance and include that in the NBI calculations. Work performed under the auspices of the US DOE by University of California Lawrence Livermore National Laboratory under contract W-7405-ENG-48.

  8. Physics of beam self-modulation in plasma wakefield accelerators

    SciTech Connect

    Lotov, K. V.

    2015-10-15

    The self-modulation instability is a key effect that makes possible the usage of nowadays proton beams as drivers for plasma wakefield acceleration. Development of the instability in uniform plasmas and in plasmas with a small density up-step is numerically studied with the focus at nonlinear stages of beam evolution. The step parameters providing the strongest established wakefield are found, and the mechanism of stable bunch train formation is identified.

  9. Shunting arc plasma source for pure carbon ion beam.

    PubMed

    Koguchi, H; Sakakita, H; Kiyama, S; Shimada, T; Sato, Y; Hirano, Y

    2012-02-01

    A plasma source is developed using a coaxial shunting arc plasma gun to extract a pure carbon ion beam. The pure carbon ion beam is a new type of deposition system for diamond and other carbon materials. Our plasma device generates pure carbon plasma from solid-state carbon material without using a hydrocarbon gas such as methane gas, and the plasma does not contain any hydrogen. The ion saturation current of the discharge measured by a double probe is about 0.2 mA∕mm(2) at the peak of the pulse. PMID:22380206

  10. Direct Acceleration of Electrons in a Corrugated Plasma Channel

    SciTech Connect

    Palastro, J. P.; Antonsen, T. M.; Morshed, S.; York, A. G.; Layer, B.; Aubuchon, M.; Milchberg, H. M.; Froula, D. H.

    2009-01-22

    Direct laser acceleration of electrons provides a low power tabletop alternative to laser wakefield accelerators. Until recently, however, direct acceleration has been limited by diffraction, phase matching, and material damage thresholds. The development of the corrugated plasma channel [B. Layer et al., Phys. Rev. Lett. 99, 035001 (2007)] has removed all of these limitations and promises to allow direct acceleration of electrons over many centimeters at high gradients using femtosecond lasers [A. G. York et al., Phys Rev. Lett 100, 195001 (2008), J. P. Palastro et al., Phys. Rev. E 77, 036405 (2008)]. We present a simple analytic model of laser propagation in a corrugated plasma channel and examine the laser-electron beam interaction. Simulations show accelerating gradients of several hundred MeV/cm for laser powers much lower than required by standard laser wakefield schemes. In addition, the laser provides a transverse force that confines the high energy electrons on axis, while expelling low energy electrons.

  11. Nonlinear Plasma Waves Excitation by Intense Ion Beams in Background Plasma

    SciTech Connect

    Igor D. Kaganovich; Edward A. Startsev; Ronald C. Davidson

    2004-04-15

    Plasma neutralization of an intense ion pulse is of interest for many applications, including plasma lenses, heavy ion fusion, cosmic ray propagation, etc. An analytical electron fluid model has been developed to describe the plasma response to a propagating ion beam. The model predicts very good charge neutralization during quasi-steady-state propagation, provided the beam pulse duration {tau}{sub b} is much longer than the electron plasma period 2{pi}/{omega}{sub p}, where {omega}{sub p} = (4{pi}e{sup 2}n{sub p}/m){sup 1/2} is the electron plasma frequency and n{sub p} is the background plasma density. In the opposite limit, the beam pulse excites large-amplitude plasma waves. If the beam density is larger than the background plasma density, the plasma waves break. Theoretical predictions are compared with the results of calculations utilizing a particle-in-cell (PIC) code. The cold electron fluid results agree well with the PIC simulations for ion beam propagation through a background plasma. The reduced fluid description derived in this paper can provide an important benchmark for numerical codes and yield scaling relations for different beam and plasma parameters. The visualization of numerical simulation data shows complex collective phenomena during beam entry and exit from the plasma.

  12. Electron beam directed energy device and methods of using same

    DOEpatents

    Retsky, Michael W.

    2007-10-16

    A method and apparatus is disclosed for an electron beam directed energy device. The device consists of an electron gun with one or more electron beams. The device includes one or more accelerating plates with holes aligned for beam passage. The plates may be flat or preferably shaped to direct each electron beam to exit the electron gun at a predetermined orientation. In one preferred application, the device is located in outer space with individual beams that are directed to focus at a distant target to be used to impact and destroy missiles. The aimings of the separate beams are designed to overcome Coulomb repulsion. A method is also presented for directing the beams to a target considering the variable terrestrial magnetic field. In another preferred application, the electron beam is directed into the ground to produce a subsurface x-ray source to locate and/or destroy buried or otherwise hidden objects including explosive devices.

  13. Electron beam treatment of non-conducting materials by a fore-pump-pressure plasma-cathode electron beam source

    NASA Astrophysics Data System (ADS)

    Burdovitsin, V. A.; Klimov, A. S.; Medovnik, A. V.; Oks, E. M.

    2010-10-01

    In the irradiation of an insulated target by an electron beam produced by a plasma-cathode electron beam source operating in the fore-vacuum pressure range (5-15 Pa), the target potential is much lower than the electron beam energy, offering the possibility of direct electron treatment of insulating materials. It is found that in the electron beam irradiation of a non-conducting target in a moderately high pressure range, the electron charge on the target surface is neutralized mainly by ions from a volume discharge established between the negatively charged target surface and the grounded walls of the vacuum chamber. This allows the possibility of direct electron beam treatment (heating, melting, welding) of ceramics and other non-conducting and semiconductor materials.

  14. Beam head erosion in self-ionized plasma wakefield accelerators

    NASA Astrophysics Data System (ADS)

    Zhou, Miaomiao; Clayton, Chris; Huang, Chengkun; Joshi, Chan; Lu, Wei; Marsh, Ken; Mori, Warren; Katsouleas, Tom; Muggli, Patric; Oz, Erdem; Berry, Melissa; Blumenfeld, Ian; Decker, Franz-Josef; Hogan, Mark; Ischebeck, Rasmus; Iverson, Richard; Kirby, Neil; Siemman, Robert; Walz, Dieter

    2007-11-01

    In the recent plasma wakefield accelerator experiments at SLAC, the energy of the particles in the tail of the 42 GeV electron beam were doubled in less than one meter [1]. Simulations suggest that the acceleration length was limited by a new phenomenon -- beam head erosion in self-ionized plasmas. In vacuum, a particle beam expands transversely in a distance given by beta*. In the blowout regime of a plasma wakefield [2], the majority of the beam is focused by the ion channel, while the beam head slowly spreads since it takes a finite time for the ion channel to form. Beam/plasma parameter scan in a large range using simulations shows that in self-ionized plasmas, the head spreading is exacerbated compared to that in pre-ionized plasmas, causing the ionization front to move backward (erode). A theoretical analysis on the erosion rate dependence on beam/plasma parameters and its implications on future afterburner relevant experiments will be provided. [1] I. Blumenfeld et al., Nature 445, 741(2007) [2] J. B. Rosenzweig et al., Phys. Rev. A 44, R6189 (1991)

  15. Interactive dynamics of two copropagating laser beams in underdense plasmas.

    PubMed

    Wu, Hui-Chun; Sheng, Zheng-Ming; Zhang, Jie

    2004-08-01

    The interaction of two copropagating laser beams with crossed polarization in the underdense plasmas has been investigated analytically with the variational approach and numerically. The coupled envelope equations of the two beams include both the relativistic mass correction and the ponderomotive force effect. It is found that the relativistic effect always plays the role of beam attraction, while the ponderomotive force can play both the beam attraction and beam repulsion, depending upon the beam diameters and their transverse separation. In certain conditions, the two beam centers oscillate transversely around a propagation axis. In this case, the ponderomotive effect can lead to a higher oscillation frequency than that accounting for the relativistic effect only. The interaction of two beams decreases the threshold power for self-focusing of the single beam. A strong self-trapping beam can channel a weak one. PMID:15447601

  16. The Relationship of Ion Beams and Fast Flows in the Plasma Sheet Boundary Layer

    NASA Technical Reports Server (NTRS)

    Parks, G. K.; Reme, H.; Lin, R. P.; Sanderson, T.; Germany, G. A.; Spann, James F., Jr.; Brittnacher, M. J.; McCarthy, M.; Chen, L. J.; Larsen, D.; Phan, T. D.

    1998-01-01

    We report new findings on the behavior of plasmas in the vicinity of the plasma sheet boundary layer (PSBL). A large geometrical factor detector on WIND (3D plasma experiment) has discovered a unidirectional ion beam streaming in the tailward direction missed by previous observations. This tailward beam is as intense as the earthward streaming beam and it is found just inside the outer edge of the PSBL where earthward streaming beams are observed. The region where this tailward beam is observed includes an isotropic plasma component which is absent in the outer edge where earthward streaming beams are found. When these different distributions are convolved to calculate the velocity moments, fast flows (greater than 400 km/s) result in the earthward direction and much slower flows (less than 200 km/s) in the tailward direction. These new findings are substantially different from previous observations. Thus, the interpretation of fast flows and earthward and counterstreaming ion beams in terms of a neutral line model must be reexamined.

  17. Monoenergetic beams of relativistic electrons from intense laser-plasma interactions.

    PubMed

    Mangles, S P D; Murphy, C D; Najmudin, Z; Thomas, A G R; Collier, J L; Dangor, A E; Divall, E J; Foster, P S; Gallacher, J G; Hooker, C J; Jaroszynski, D A; Langley, A J; Mori, W B; Norreys, P A; Tsung, F S; Viskup, R; Walton, B R; Krushelnick, K

    2004-09-30

    High-power lasers that fit into a university-scale laboratory can now reach focused intensities of more than 10(19) W cm(-2) at high repetition rates. Such lasers are capable of producing beams of energetic electrons, protons and gamma-rays. Relativistic electrons are generated through the breaking of large-amplitude relativistic plasma waves created in the wake of the laser pulse as it propagates through a plasma, or through a direct interaction between the laser field and the electrons in the plasma. However, the electron beams produced from previous laser-plasma experiments have a large energy spread, limiting their use for potential applications. Here we report high-resolution energy measurements of the electron beams produced from intense laser-plasma interactions, showing that--under particular plasma conditions--it is possible to generate beams of relativistic electrons with low divergence and a small energy spread (less than three per cent). The monoenergetic features were observed in the electron energy spectrum for plasma densities just above a threshold required for breaking of the plasma wave. These features were observed consistently in the electron spectrum, although the energy of the beam was observed to vary from shot to shot. If the issue of energy reproducibility can be addressed, it should be possible to generate ultrashort monoenergetic electron bunches of tunable energy, holding great promise for the future development of 'table-top' particle accelerators. PMID:15457251

  18. Study on electron beam in a low energy plasma focus

    SciTech Connect

    Khan, Muhammad Zubair; Ling, Yap Seong; San, Wong Chiow

    2014-03-05

    Electron beam emission was investigated in a low energy plasma focus device (2.2 kJ) using copper hollow anode. Faraday cup was used to estimate the energy of the electron beam. XR100CR X-ray spectrometer was used to explore the impact of the electron beam on the target observed from top-on and side-on position. Experiments were carried out at optimized pressure of argon gas. The impact of electron beam is exceptionally notable with two different approaches using lead target inside hollow anode in our plasma focus device.

  19. Transverse laser cooled Lithium atomic beam for plasma edge diagnostics

    NASA Astrophysics Data System (ADS)

    Barthwal, S.; Ajmathulla; Mahender, N.; Vudayagiri, A.; Kumar, A.

    2016-05-01

    We have built a set up to achieve a collimated atomic Lithium beam to be used for plasma edge diagnostics. The collimation is achieved by two-dimensional laser cooling, and such a beam could be very useful to obtain electron density at the edge of a plasma with very high spatial resolution. We present in this manuscript the details of this setup, including details of the oven we designed for the Lithium source. We present the metrics of the beam, including the transverse velocity profile of the atomic beam.

  20. A reflex electron beam discharge as a plasma source for electron beam generation

    SciTech Connect

    Murray, C.S.; Rocca, J.J.; Szapiro, B. )

    1988-10-01

    A reflex electron beam glow discharge has been used as a plasma source for the generation of broad-area electron beams. An electron current of 120 A (12 A/cm/sup 2/) was extracted from the plasma in 10 ..mu..s pulses and accelerated to energies greater than 1 keV in the gap between two grids. The scaling of the scheme for the generation of multikiloamp high-energy beams is discussed.

  1. A Space-Charge-Neutralizing Plasma for Beam Drift Compression

    SciTech Connect

    Roy, P.K.; Seidl, P.A.; Anders, A.; Bieniosek, F.M.; Coleman, J.E.; Gilson, E.P.; Greenway, W.; Grote, D.P.; Jung, J.Y.; Leitner, M.; Lidia, S.M.; Logan, B.G.; Sefkow, A.B.; Waldron, W.L.; Welch, D.R.

    2008-08-01

    Simultaneous radial focusing and longitudinal compression of intense ion beams are being studied to heat matter to the warm dense matter, or strongly coupled plasma regime. Higher compression ratios can be achieved if the beam compression takes place in a plasma-filled drift region in which the space-charge forces of the ion beam are neutralized. Recently, a system of four cathodic arc plasma sources has been fabricated and the axial plasma density has been measured. A movable plasma probe array has been developed to measure the radial and axial plasma distribution inside and outside of a {approx} 10 cm long final focus solenoid (FFS). Measured data show that the plasma forms a thin column of diameter {approx} 5 mm along the solenoid axis when the FFS is powered with an 8T field. Measured plasma density of {ge} 1 x 10{sup 13} cm{sup -3} meets the challenge of n{sub p}/Zn{sub b} > 1, where n{sub p} and n{sub b} are the plasma and ion beam density, respectively, and Z is the mean ion charge state of the plasma ions.

  2. Neutral beam heating of detached plasmas in TFTR

    SciTech Connect

    Bush, C.E.; Strachan, J.D.; Schivell, J.; Mansfield, D.K.; Taylor, G.; Grek, B.; Budny, R.; McNeill, D.H.; Bell, M.G.; Boody, F.P.

    1989-05-01

    Detached plasmas on TFTR have been heated with neutral beam auxiliary power for the first time. At beam powers above 2 MW the detached plasmas in TFTR expand and reattach to the limiters. Deuterium and/or impurity gas puffing can be used to maintain plasmas in the detached state at powers of over 5 MW. Transient events were observed in a number of these plasmas, including a confinement-related delay in evolution of the edge emissivity and some phenomena which appear similar to those seen in the H-mode. 16 refs., 5 figs.

  3. ALCBEAM - Neutral beam formation and propagation code for beam-based plasma diagnostics

    NASA Astrophysics Data System (ADS)

    Bespamyatnov, I. O.; Rowan, W. L.; Liao, K. T.

    2012-03-01

    ALCBEAM is a new three-dimensional neutral beam formation and propagation code. It was developed to support the beam-based diagnostics installed on the Alcator C-Mod tokamak. The purpose of the code is to provide reliable estimates of the local beam equilibrium parameters: such as beam energy fractions, density profiles and excitation populations. The code effectively unifies the ion beam formation, extraction and neutralization processes with beam attenuation and excitation in plasma and neutral gas and beam stopping by the beam apertures. This paper describes the physical processes interpreted and utilized by the code, along with exploited computational methods. The description is concluded by an example simulation of beam penetration into plasma of Alcator C-Mod. The code is successfully being used in Alcator C-Mod tokamak and expected to be valuable in the support of beam-based diagnostics in most other tokamak environments. Program summaryProgram title: ALCBEAM Catalogue identifier: AEKU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEKU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 66 459 No. of bytes in distributed program, including test data, etc.: 7 841 051 Distribution format: tar.gz Programming language: IDL Computer: Workstation, PC Operating system: Linux RAM: 1 GB Classification: 19.2 Nature of problem: Neutral beams are commonly used to heat and/or diagnose high-temperature magnetically-confined laboratory plasmas. An accurate neutral beam characterization is required for beam-based measurements of plasma properties. Beam parameters such as density distribution, energy composition, and atomic excited populations of the beam atoms need to be known. Solution method: A neutral beam is initially formed as an ion beam which is extracted from

  4. Excitation of Accelerating Plasma Waves by Counter-Propagating Laser Beams

    SciTech Connect

    Shvets, Gennady; Fisch, Nathaniel J; Pukhov, Alexander

    2002-04-05

    The conventional approach to exciting high phase velocity waves in plasmas is to employ a laser pulse moving in the direction of the desired particle acceleration. Photon downshifting then causes momentum transfer to the plasma and wave excitation. Novel approaches to plasma wake excitation, colliding-beam accelerator (CBA), which involve photon exchange between the long and short counter-propagating laser beams, are described. Depending on the frequency detuning Dw between beams and duration tL of the short pulse, there are two approaches to CBA. The first approach assumes tL ª 2/wp. Photons exchanged between the beams deposit their recoil momentum in the plasma driving the plasma wake. Frequency detuning between the beams determines the direction of the photon exchange, thereby controlling the phase of the plasma wake. This phase control can be used for reversing the slippage of the accelerated particles with respect to the wake. A variation on the same theme, super-beatwave accelerator, is also described. In the second approach, a short pulse with tL >> 2/wp1 detuned by Dw ~ 2wp from the counter-propagating beam is employed. While parametric excitation of plasma waves by the electromagnetic beatwave at 2wp of two co-propagating lasers was first predicted by Rosenbluth and Liu [M.N. Rosenbluth, C.S. Liu, Phys. Rev. Lett. 29 (1972) 701], it is demonstrated that the two excitation beams can be counter-propagating. The advantages of using this geometry (higher instability growth rate, insensitivity to plasma inhomogeneity) are explained, and supporting numerical simulations presented.

  5. E-beam direct write is free

    NASA Astrophysics Data System (ADS)

    Glasser, Lance A.

    2007-10-01

    In this paper we discuss four business concepts that will impact the adoption of e-beam direct write (EbDW). They are: (1) The economically advantageous region for EbDW. At what costs and volumes EbDW is economically advantageous is controlled by a two-sided constraint involving the cost of reticles on one hand and the cost of design on the other. (2) The important role of product derivatives and other markets that can be satisfied by designs with heavy IP reuse. The natural long tail in demand for differentiated products is today chopped off by the high costs of reticles. We show data on the elasticity of the product derivative market with respect to certain costs. (3) That because reticle prices typically decline at a 30% per year for the first few years after a new node is introduced, delaying the fabrication of that first reticle set for a new product can save millions, more than paying for EbDW. The applicability of this technique is, however, limited by the need for product requalifaction. (4) Finally, we introduce the business concept of the virtual reticle as a possible component in EbDW pricing.

  6. Beam Head Erosion in Self-Ionized Plasma Wakefield Accelerators

    SciTech Connect

    Berry, M.K.; Blumenfeld, I.; Decker, F.J.; Hogan, M.J.; Ischebeck, R.; Iverson, R.H.; Kirby, N.A.; Siemann, Robert H.; Walz, D.R.; Clayton, C.E.; Huang, C.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.B.; Zhou, M.; Katsouleas, T.C.; Muggli, P.; Oz, E.; /Southern California U.

    2008-01-28

    In the recent plasma wakefield accelerator experiments at SLAC, the energy of the particles in the tail of the 42 GeV electron beam were doubled in less than one meter [1]. Simulations suggest that the acceleration length was limited by a new phenomenon--beam head erosion in self-ionized plasmas. In vacuum, a particle beam expands transversely in a distance given by {beta}*. In the blowout regime of a plasma wakefield [2], the majority of the beam is focused by the ion channel, while the beam head slowly spreads since it takes a finite time for the ion channel to form. It is observed that in self-ionized plasmas, the head spreading is exacerbated compared to that in pre-ionized plasmas, causing the ionization front to move backward (erode). A simple theoretical model is used to estimate the upper limit of the erosion rate for a bi-gaussian beam by assuming free expansion of the beam head before the ionization front. Comparison with simulations suggests that half this maximum value can serve as an estimate for the erosion rate. Critical parameters to the erosion rate are discussed.

  7. Beam loading in a laser-plasma accelerator using a near-hollow plasma channel

    SciTech Connect

    Schroeder, C. B.; Benedetti, C.; Esarey, E.; Leemans, W. P.

    2013-12-15

    Beam loading in laser-plasma accelerators using a near-hollow plasma channel is examined in the linear wake regime. It is shown that, by properly shaping and phasing the witness particle beam, high-gradient acceleration can be achieved with high-efficiency, and without induced energy spread or emittance growth. Both electron and positron beams can be accelerated in this plasma channel geometry. Matched propagation of electron beams can be achieved by the focusing force provided by the channel density. For positron beams, matched propagation can be achieved in a hollow plasma channel with external focusing. The efficiency of energy transfer from the wake to a witness beam is calculated for single ultra-short bunches and bunch trains.

  8. Beam loading in a laser-plasma accelerator using a near-hollow plasma channel

    NASA Astrophysics Data System (ADS)

    Schroeder, C. B.; Benedetti, C.; Esarey, E.; Leemans, W. P.

    2013-12-01

    Beam loading in laser-plasma accelerators using a near-hollow plasma channel is examined in the linear wake regime. It is shown that, by properly shaping and phasing the witness particle beam, high-gradient acceleration can be achieved with high-efficiency, and without induced energy spread or emittance growth. Both electron and positron beams can be accelerated in this plasma channel geometry. Matched propagation of electron beams can be achieved by the focusing force provided by the channel density. For positron beams, matched propagation can be achieved in a hollow plasma channel with external focusing. The efficiency of energy transfer from the wake to a witness beam is calculated for single ultra-short bunches and bunch trains.

  9. Laser-wakefield acceleration of monoenergetic electron beams in the first plasma-wave period.

    PubMed

    Mangles, S P D; Thomas, A G R; Kaluza, M C; Lundh, O; Lindau, F; Persson, A; Tsung, F S; Najmudin, Z; Mori, W B; Wahlström, C-G; Krushelnick, K

    2006-06-01

    Beam profile measurements of laser-wakefield accelerated electron bunches reveal that in the monoenergetic regime the electrons are injected and accelerated at the back of the first period of the plasma wave. With pulse durations ctau >or= lambda(p), we observe an elliptical beam profile with the axis of the ellipse parallel to the axis of the laser polarization. This increase in divergence in the laser polarization direction indicates that the electrons are accelerated within the laser pulse. Reducing the plasma density (decreasing ctau/lambda(p)) leads to a beam profile with less ellipticity, implying that the self-injection occurs at the rear of the first period of the plasma wave. This also demonstrates that the electron bunches are less than a plasma wavelength long, i.e., have a duration <25 fs. This interpretation is supported by 3D particle-in-cell simulations. PMID:16803242

  10. Interplay of electrostatic and electromagnetic instabilities for relativistic electron beams in a plasma

    NASA Astrophysics Data System (ADS)

    Ryutov, D. D.

    2008-11-01

    The physics of relativistic electron particle beams propagating through the plasma is of a significant interest for laboratory astrophysics, fast ignition, and Z-pinch research. Most attention has been directed towards the analysis of electromagnetic filamentation instabilities. On the other hand, there exists a broad class of very powerful electrostatic instabilities, e.g., the Buneman instability. The author considers in a unified fashion linear theory for both types of instabilities under conditions where there is no magnetic field in an unperturbed state (i.e., the beam current is fully neutralized by the plasma current). The following factors are taken into account: the beam energy and angular spread; plasma non-uniformity; particle collisions in the background plasma. The areas of the parameter domain where particular instability is prevalent are identified; the results are presented in the form of several easy-to-use diagrams. Prepared by LLNL under contract DE-AC52-07NA27344.

  11. Dense Metal Plasma in a Solenoid for Ion Beam Neutralization

    SciTech Connect

    Anders, Andre; Kauffeldt, Marina; Oks, Efim M.; Roy, Prabir K.

    2010-10-30

    Space-charge neutralization is required to compress and focus a pulsed, high-current ion beam on a target for warm dense matter physics or heavy ion fusion experiments. We described approaches to produce dense plasma in and near the final focusing solenoid through which the ion beam travels, thereby providing an opportunity for the beam to acquire the necessary space-charge compensating electrons. Among the options are plasma injection from pulsed vacuum arc sources located outside the solenoid, and using a high current (> 4 kA) pulsed vacuum arc plasma from a ring cathode near the edge of the solenoid. The plasma distribution is characterized by photographic means, by an array of movable Langmuir probes, by a small single probe, and by evaluating Stark broadening of the Balmer H beta spectral line. In the main approach described here, the plasma is produced at several cathode spots distributed azimuthally on the ring cathode. It is shown that the plasma is essentially hollow, as determined by the structure of the magnetic field, though the plasma density exceeds 1014 cm-3 in practically all zones of the solenoid volume if the ring electrode is placed a few centimeters off the center of the solenoid. The plasma is non-uniform and fluctuating, however, since its density exceeds the ion beam density it is believed that this approach could provide a practical solution to the space charge neutralization challenge.

  12. Modeling of direct beam extraction for a high-charge-state fusion driver

    NASA Astrophysics Data System (ADS)

    Anderson, O. A.; Grant Logan, B.

    A newly proposed type of multicharged ion source offers the possibility of an economically advantageous high-charge-state fusion driver. Multiphoton absorption in an intense uniform laser focus can give multiple charge states of high purity, simplifying or eliminating the need for charge-state separation downstream. Very large currents (hundreds of amperes) can be extracted from this type of source. Several arrangements are possible. For example, the laser plasma could be tailored for storage in a magnetic bucket, with beam extracted from the bucket. A different approach, described in this report, is direct beam extraction from the expanding laser plasma. We discuss extraction and focusing for the particular case of a 4.1 MV beam of Xe 16+ ions. The maximum duration of the beam pulse is limited by the total charge in the plasma, while the practical pulse length is determined by the range of plasma radii over which good beam optics can be achieved. The extraction electrode contains a solenoid for beam focusing. Our design studies were carried out first with an envelope code and then with a self-consistent particle code. Results from our initial model showed that hundreds of amperes could be extracted, but that most of this current missed the solenoid entrance or was intercepted by the wall and that only a few amperes were able to pass through. We conclude with an improved design which increases the surviving beam to more than 70 A.

  13. Effect of beam emittance on self-modulation of long beams in plasma wakefield accelerators

    SciTech Connect

    Lotov, K. V.

    2015-12-15

    The initial beam emittance determines the maximum wakefield amplitude that can be reached as a result of beam self-modulation in the plasma. The wakefield excited by the fully self-modulated beam decreases linearly with the increase in the beam emittance. There is a value of initial emittance beyond which the self-modulation does not develop even if the instability is initiated by a strong seed perturbation. The emittance scale at which the wakefield is suppressed by a factor of two with respect to the zero-emittance case (the so called critical emittance) is determined by inability of the excited wave to confine beam particles radially and is related to beam and plasma parameters by a simple formula. The effect of beam emittance can be observed in several discussed self-modulation experiments.

  14. Toroidal midplane neutral beam armor and plasma limiter

    DOEpatents

    Kugel, Henry W.; Hand Jr, Samuel W.; Ksayian, Haig

    1986-02-04

    For use in a tokamak fusion reactor having a midplane magnetic coil on the inner wall of an evacuated toriodal chamber within which a neutral beam heated, fusing plasma is magnetically confined, a neutral beam armor shield and plasma limiter is provided on the inner wall of the toroidal chamber to shield the midplane coil from neutral beam shine-thru and plasma deposition. The armor shield/plasma limiter forms a semicircular enclosure around the midplane coil with the outer surface of the armor shield/plasma limiter shaped to match, as closely as practical, the inner limiting magnetic flux surface of the toroidally confined, indented, bean-shaped plasma. The armor shield/plasma limiter includes a plurality of semicircular graphite plates each having a pair of coupled upper and lower sections with each plate positioned in intimate contact with an adjacent plate on each side thereof so as to form a closed, planar structure around the entire outer periphery of the circular midplane coil. The upper and lower plate sections are adapted for coupling to heat sensing thermocouples and to a circulating water conduit system for cooling the armor shield/plasma limiter.The inner center portion of each graphite plate is adapted to receive and enclose a section of a circular diagnostic magnetic flux loop so as to minimize the power from the plasma confinement chamber incident upon the flux loop.

  15. Toroidal midplane neutral beam armor and plasma limiter

    DOEpatents

    Kugel, Henry W.; Hand, Jr, Samuel W.; Ksayian, Haig

    1986-01-01

    For use in a tokamak fusion reactor having a midplane magnetic coil on the inner wall of an evacuated toriodal chamber within which a neutral beam heated, fusing plasma is magnetically confined, a neutral beam armor shield and plasma limiter is provided on the inner wall of the toroidal chamber to shield the midplane coil from neutral beam shine-thru and plasma deposition. The armor shield/plasma limiter forms a semicircular enclosure around the midplane coil with the outer surface of the armor shield/plasma limiter shaped to match, as closely as practical, the inner limiting magnetic flux surface of the toroidally confined, indented, bean-shaped plasma. The armor shield/plasma limiter includes a plurality of semicircular graphite plates each having a pair of coupled upper and lower sections with each plate positioned in intimate contact with an adjacent plate on each side thereof so as to form a closed, planar structure around the entire outer periphery of the circular midplane coil. The upper and lower plate sections are adapted for coupling to heat sensing thermocouples and to a circulating water conduit system for cooling the armor shield/plasma limiter.The inner center portion of each graphite plate is adapted to receive and enclose a section of a circular diagnostic magnetic flux loop so as to minimize the power from the plasma confinement chamber incident upon the flux loop.

  16. RF wave observations in beam-plasma discharge

    NASA Technical Reports Server (NTRS)

    Bernstein, W.

    1986-01-01

    The Beam Plasma Discharge (BPD) was produced in the large vacuum chamber at Johnson Space Center (20 x 30 m) using an energetic electron beam of moderately high perveance. A more complete expression of the threshold current I sub c taking into account the pitch angle injection dependence is given. Ambient plasma density inferred from wave measurements under various beam conditions are reported. Maximum frequency of the excited RF band behaves differently than the frequency of the peak amplitude. The latter shows signs of parabolic saturation consistent with the light data. Beam plasma state (pre-BPD or BPD) does not affect the pitch angle dependence. Unexpected strong modulation of the RF spectrum at half odd integer of the electron cyclotron frequency (n + 1/2)f sub ce is reported (5 n 10). Another new feature, the presence of wave emission around 3/2 f sub ce for I sub b is approximate I sub c is reported.

  17. Collaborative Research: Instability and transport of laser beam in plasma

    SciTech Connect

    Rose, Harvey Arnold; Lushnikov, Pavel

    2014-11-18

    Our goal was to determine the onset of laser light scattering due to plasma wave instabilities. Such scatter is usually regarded as deleterious since laser beam strength is thereby diminished. While this kind of laser-plasma-instability (LPI) has long been understood for the case of coherent laser light, the theory of LPI onset for a laser beam with degraded coherence is recent. Such a laser beam fills plasma with a mottled intensity distribution, which has large fluctuations. The key question is: do the exceptionally large fluctuations control LPI onset or is it controlled by the relatively quiescent background laser intensity? We have answered this question. This is significant because LPI onset power in the former case is typically small compared to that of the latter. In addition, if large laser intensity fluctuations control LPI onset, then nonlinear effects become significant for less powerful laser beams than otherwise estimated.

  18. Inverse time-of-flight spectrometer for beam plasma research

    SciTech Connect

    Yushkov, Yu. G. Zolotukhin, D. B.; Tyunkov, A. V.; Oks, E. M.

    2014-08-15

    The paper describes the design and principle of operation of an inverse time-of-flight spectrometer for research in the plasma produced by an electron beam in the forevacuum pressure range (5–20 Pa). In the spectrometer, the deflecting plates as well as the drift tube and the primary ion beam measuring system are at high potential with respect to ground. This provides the possibility to measure the mass-charge constitution of the plasma created by a continuous electron beam with a current of up to 300 mA and electron energy of up to 20 keV at forevacuum pressures in the chamber placed at ground potential. Research results on the mass-charge state of the beam plasma are presented and analyzed.

  19. Editorial: Focus on Laser- and Beam-Driven Plasma Accelerators

    NASA Astrophysics Data System (ADS)

    Joshi, Chan; Malka, Victor

    2010-04-01

    The ability of short but intense laser pulses to generate high-energy electrons and ions from gaseous and solid targets has been well known since the early days of the laser fusion program. However, during the past decade there has been an explosion of experimental and theoretical activity in this area of laser-matter interaction, driven by the prospect of realizing table-top plasma accelerators for research, medical and industrial uses, and also relatively small and inexpensive plasma accelerators for high-energy physics at the frontier of particle physics. In this focus issue on laser- and beam-driven plasma accelerators, the latest advances in this field are described. Focus on Laser- and Beam-Driven Plasma Accelerators Contents Slow wave plasma structures for direct electron acceleration B D Layer, J P Palastro, A G York, T M Antonsen and H M Milchberg Cold injection for electron wakefield acceleration X Davoine, A Beck, A Lifschitz, V Malka and E Lefebvre Enhanced proton flux in the MeV range by defocused laser irradiation J S Green, D C Carroll, C Brenner, B Dromey, P S Foster, S Kar, Y T Li, K Markey, P McKenna, D Neely, A P L Robinson, M J V Streeter, M Tolley, C-G Wahlström, M H Xu and M Zepf Dose-dependent biological damage of tumour cells by laser-accelerated proton beams S D Kraft, C Richter, K Zeil, M Baumann, E Beyreuther, S Bock, M Bussmann, T E Cowan, Y Dammene, W Enghardt, U Helbig, L Karsch, T Kluge, L Laschinsky, E Lessmann, J Metzkes, D Naumburger, R Sauerbrey, M. Scḧrer, M Sobiella, J Woithe, U Schramm and J Pawelke The optimum plasma density for plasma wakefield excitation in the blowout regime W Lu, W An, M Zhou, C Joshi, C Huang and W B Mori Plasma wakefield acceleration experiments at FACET M J Hogan, T O Raubenheimer, A Seryi, P Muggli, T Katsouleas, C Huang, W Lu, W An, K A Marsh, W B Mori, C E Clayton and C Joshi Electron trapping and acceleration on a downward density ramp: a two-stage approach R M G M Trines, R Bingham, Z Najmudin

  20. Laser-and Beam-Driven Plasma Accelerators

    NASA Astrophysics Data System (ADS)

    Joshi, Chandrashekhar

    2006-10-01

    Scientists have been trying to use the tremendous electric fields in relativistic plasma waves to accelerate charged particles, and are now making substantial progress. If they succeed, future high energy accelerators will use plasma waves rather than microwave cavities as accelerating structures.Some accelerators, such as those used for radiation therapy will fit on a tabletop. Research on using plasma waves to accelerate particles began in earnest following the suggestion by John Dawson and his colleagues [1-3] that a relativistically propagating plasma wave or a wake field could be excited by using a powerful but short laser -or electron -beam as a driver pulse.Since their original suggestion the research on plasma --based accelerators has spread worldwide A series of experiments by the UCLA/USC/SLAC collaboration ,using the 30 GeV beam of the Stanford Linear Accelerator Center (SLAC), has demonstrated high-gradient acceleration of electrons and positrons using the the wake left by the SLAC beam as it passes through a lithium plasma. Electrons have been accelerated by more than 30 GeV in less than one meter. This acceleration gradient is about a thousand times larger than in conventional microwave-driven accelerators. It is a first step toward a ``plasma afterburner,'' which would be placed at the end of a kilometers-long conventional accelerator and double its beam energy in a few tens of meters. In addition to the acceleration of particle beams, these experiments have demonstrated the rich physics bounty to be reaped from relativistic beam-plasma interactions. This includes the generation of intense and narrowly collimated x-ray beams, refraction of particles at a plasma interface, and the creation of intense beams of positrons. These results are leading the way to similar tabletop accelerators based on plasma wakes excited by lasers rather than electron beams. Applications for tabletop accelerators include gamma radiography, radiation therapy, and ultra

  1. Ignition of beam plasma discharge in the electron beam experiment in space

    NASA Technical Reports Server (NTRS)

    Sasaki, S.; Kawashima, N.; Kuriki, K.; Yanagisawa, M.; Roberts, W. T.; Taylor, W. W. L.

    1985-01-01

    An ignition of beam plasma discharge (BPD) in space was observed in a neutral gas-electron beam interaction experiment by Space Shuttle/Spacelab-1 in 1983. An electron beam of 8 kV 100 mA was injected into a high dense nitrogen gas cloud of 10 to the 23rd molecules which was released during 100 msec from the Orbiter. The appearance of the beam and its surroundings observed by a low-light-level TV camera showed a local ignition of the beam plasma discharge in the gas cloud. The enhanced plasma production, generation of auroral emission, and associated wave emission were also detected by onboard diagnostic instruments.

  2. Beam-plasma instability in charged plasma in the absence of ions

    NASA Astrophysics Data System (ADS)

    Dubinov, Alexander E.; Petrik, Alexey G.; Kurkin, Semen A.; Frolov, Nikita S.; Koronovskii, Alexey A.; Hramov, Alexander E.

    2016-04-01

    We report on the possibility of the beam-plasma instability development in the system with electron beam interacting with the single-component hot electron plasma without ions. As considered system, we analyse the interaction of the low-current relativistic electron beam (REB) with squeezed state in the high-current REB formed in the relativistic magnetically insulated two-section vircator drift space. The numerical analysis is provided by means of 3D electromagnetic simulation in CST Particle Studio. We have conducted an extensive study of characteristic regimes of REB dynamics determined by the beam-plasma instability development in the absence of ions. As a result, the dependencies of instability increment and wavelength on the REB current value have been obtained. The considered process brings the new mechanism of controlled microwave amplification and generation to the device with a virtual cathode. This mechanism is similar to the action of the beam-plasma amplifiers and oscillators.

  3. Halo Formation And Emittance Growth of Positron Beams in Plasmas

    SciTech Connect

    Muggli, P.; Blue, B.E.; Clayton, C.E.; Decker, F.J.; Hogan, M.J.; Huang, C.; Joshi, C.; Katsouleas, Thomas C.; Lu, W.; Mori, W.B.; O'Connell, C.L.; Siemann, R.H.; Walz, D.; Zhou, M.; /UCLA

    2011-10-25

    An ultrarelativistic 28.5 GeV, 700-{micro}m-long positron bunch is focused near the entrance of a 1.4-m-long plasma with a density n{sub e} between {approx}10{sup 13} and {approx}5 x 10{sup 14} cm{sup -3}. Partial neutralization of the bunch space charge by the mobile plasma electrons results in a reduction in transverse size by a factor of {approx}3 in the high emittance plane of the beam {approx}1 m downstream from the plasma exit. As n{sub e} increases, the formation of a beam halo containing {approx}40% of the total charge is observed, indicating that the plasma focusing force is nonlinear. Numerical simulations confirm these observations. The bunch with an incoming transverse size ratio of {approx}3 and emittance ratio of {approx}5 suffers emittance growth and exits the plasma with approximately equal sizes and emittances.

  4. Studies on Neutral Beam Injection into the SSPX Spheromak Plasma

    SciTech Connect

    Jayakumar, R; Pearlstein, L D; Casper, T A; Fowler, T K; Hill, D N; Hudson, B; McLean, H; Moller, J

    2007-10-19

    In the Sustained Spheromak Physics Experiment, (SSPX) ['Improved operation of the SSPX spheromak', R.D. Wood, D.N. Hill, E.B. Hooper, S. Woodruff1, H.S. McLean and B.W. Stallard, Nucl. Fusion 45 1582-1588 (2005)], plasmas with core electron temperatures reaching up to 500 eV at densities of 10{sup 20}/m{sup 3} have been sustained for several milliseconds, making them suitable as targets for neutral beam injection. High performance and further progress in understanding Spheromak plasma physics are expected if neutral beams are injected into the plasma. This paper presents the results of numerical 1.5 D modeling of the plasma to calculate neutral beam current drive and ion and electron heating. The results are presented for varying initial conditions of density, temperatures and profiles and beam energy, injection angle and power. Current drive efficiency (Ampere/Watt of absorbed power) of up to 0.08 can be achieved with best performance SSPX shots as target. Analyses of neutral beam heating indicate that ion temperatures of up to 1.5 keV and electron temperatures of up to 750 eV can be obtained with injection of about 1 MW of neutral beam for 5-10 ms and with diffusivities typically observed in SSPX. Injection targeting near the magnetic axis appears to be the best for heating and current drive. Effect of the current drive and evolution of SSPX equilibrium are discussed.

  5. High energy density plasma science with an ultrarelativistic electron beam

    NASA Astrophysics Data System (ADS)

    Joshi, C.; Blue, B.; Clayton, C. E.; Dodd, E.; Huang, C.; Marsh, K. A.; Mori, W. B.; Wang, S.; Hogan, M. J.; O'Connell, C.; Siemann, R.; Watz, D.; Muggli, P.; Katsouleas, T.; Lee, S.

    2002-05-01

    An intense, high-energy electron or positron beam can have focused intensities rivaling those of today's most powerful laser beams. For example, the 5 ps (full-width, half-maximum), 50 GeV beam at the Stanford Linear Accelerator Center (SLAC) at 1 kA and focused to a 3 micron rms spot size gives intensities of >1020 W/cm-2 at a repetition rate of >10 Hz. Unlike a ps or fs laser pulse which interacts with the surface of a solid target, the particle beam can readily tunnel through tens of cm of steel. However, the same particle beam can be manipulated quite effectively by a plasma that is a million times less dense than air! This is because of the incredibly strong collective fields induced in the plasma by the Coulomb force of the beam. The collective fields in turn react back onto the beam leading to many clearly observable phenomena. The beam paraticles can be: (1) Deflected leading to focusing, defocusing, or even steering of the beam; (2) undulated causing the emission of spontaneous betatron x-ray radiation and; (3) accelerated or decelerated by the plasma fields. Using the 28.5 GeV electron beam from the SLAC linac a series of experiments have been carried out that demonstrate clearly many of the above mentioned effects. The results can be compared with theoretical predictions and with two-dimensional and three-dimensional, one-to-one, particle-in-cell code simulations. These phenomena may have practical applications in future technologies including optical elements in particle beam lines, synchrotron light sources, and ultrahigh gradient accelerators.

  6. Dynamics of ion beam charge neutralization by ferroelectric plasma sources

    NASA Astrophysics Data System (ADS)

    Stepanov, Anton D.; Gilson, Erik P.; Grisham, Larry R.; Kaganovich, Igor D.; Davidson, Ronald C.

    2016-04-01

    Ferroelectric Plasma Sources (FEPSs) can generate plasma that provides effective space-charge neutralization of intense high-perveance ion beams, as has been demonstrated on the Neutralized Drift Compression Experiment NDCX-I and NDCX-II. This article presents experimental results on charge neutralization of a high-perveance 38 keV Ar+ beam by a plasma produced in a FEPS discharge. By comparing the measured beam radius with the envelope model for space-charge expansion, it is shown that a charge neutralization fraction of 98% is attainable with sufficiently dense FEPS plasma. The transverse electrostatic potential of the ion beam is reduced from 15 V before neutralization to 0.3 V, implying that the energy of the neutralizing electrons is below 0.3 eV. Measurements of the time-evolution of beam radius show that near-complete charge neutralization is established ˜5 μs after the driving pulse is applied to the FEPS and can last for 35 μs. It is argued that the duration of neutralization is much longer than a reasonable lifetime of the plasma produced in the sub-μs surface discharge. Measurements of current flow in the driving circuit of the FEPS show the existence of electron emission into vacuum, which lasts for tens of μs after the high voltage pulse is applied. It is argued that the beam is neutralized by the plasma produced by this process and not by a surface discharge plasma that is produced at the instant the high-voltage pulse is applied.

  7. Dynamics of ion beam charge neutralization by ferroelectric plasma sources

    DOE PAGESBeta

    Stepanov, Anton D.; Gilson, Erik P.; Grisham, Larry R.; Kaganovich, Igor D.; Davidson, Ronald C.

    2016-04-27

    Ferroelectric Plasma Sources (FEPSs) can generate plasma that provides effective space-charge neutralization of intense high-perveance ion beams, as has been demonstrated on the Neutralized Drift Compression Experiment NDCX-I and NDCX-II. This article presents experimental results on charge neutralization of a high-perveance 38 keV Ar+ beam by a plasma produced in a FEPS discharge. By comparing the measured beam radius with the envelope model for space-charge expansion, it is shown that a charge neutralization fraction of 98% is attainable with sufficiently dense FEPS plasma. The transverse electrostatic potential of the ion beam is reduced from 15V before neutralization to 0.3 V,more » implying that the energy of the neutralizing electrons is below 0.3 eV. Measurements of the time-evolution of beam radius show that near-complete charge neutralization is established similar to –5 μs after the driving pulse is applied to the FEPS and can last for 35 μs. It is argued that the duration of neutralization is much longer than a reasonable lifetime of the plasma produced in the sub-mu s surface discharge. Measurements of current flow in the driving circuit of the FEPS show the existence of electron emission into vacuum, which lasts for tens of mu s after the high voltage pulse is applied. Lastly, it is argued that the beam is neutralized by the plasma produced by this process and not by a surface discharge plasma that is produced at the instant the high-voltage pulse is applied.« less

  8. Cylindrical plasmas generated by an annular beam of ultraviolet light

    SciTech Connect

    Thomas, D. M.; Allen, J. E.

    2015-07-15

    We investigate a cylindrical plasma system with ionization, by an annular beam of ultraviolet light, taking place only in the cylinder's outer region. In the steady state, both the outer and inner regions contain a plasma, with that in the inner region being uniform and field-free. At the interface between the two regions, there is an infinitesimal jump in ion density, the magnitude approaching zero in the quasi-neutral (λ{sub D} → 0) limit. The system offers the possibility of producing a uniform stationary plasma in the laboratory, hitherto obtained only with thermally produced alkali plasmas.

  9. Electron Beam Transport in Advanced Plasma Wave Accelerators

    SciTech Connect

    Williams, Ronald L

    2013-01-31

    The primary goal of this grant was to develop a diagnostic for relativistic plasma wave accelerators based on injecting a low energy electron beam (5-50keV) perpendicular to the plasma wave and observing the distortion of the electron beam's cross section due to the plasma wave's electrostatic fields. The amount of distortion would be proportional to the plasma wave amplitude, and is the basis for the diagnostic. The beat-wave scheme for producing plasma waves, using two CO2 laser beam, was modeled using a leap-frog integration scheme to solve the equations of motion. Single electron trajectories and corresponding phase space diagrams were generated in order to study and understand the details of the interaction dynamics. The electron beam was simulated by combining thousands of single electrons, whose initial positions and momenta were selected by random number generators. The model was extended by including the interactions of the electrons with the CO2 laser fields of the beat wave, superimposed with the plasma wave fields. The results of the model were used to guide the design and construction of a small laboratory experiment that may be used to test the diagnostic idea.

  10. Designing Neutralized Drift Compression for Focusing of Intense Ion Beam Pulses in a Background Plasma

    SciTech Connect

    Kaganovich, I.D.; Davidson, R.C.; Dorf, M.; Startsev, E.A.; Barnard, J.J.; Friedman, A.; Lee, E.P.; Lidia, S.M.; Logan, B.G.; Roy, P.K.; Seidl, P.A.; Welch, D.R.; Sefkow, A.B.

    2009-04-28

    Neutralized drift compression offers an effective method for particle beam focusing and current amplification. In neutralized drift compression, a linear radial and longitudinal velocity drift is applied to a beam pulse, so that the beam pulse compresses as it drifts in the drift-compression section. The beam intensity can increase more than a factor of 100 in both the radial and longitudinal directions, resulting in more than 10,000 times increase in the beam number density during this process. The self-electric and self-magnetic fields can prevent tight ballistic focusing and have to be neutralized by supplying neutralizing electrons. This paper presents a survey of the present theoretical understanding of the drift compression process and plasma neutralization of intense particle beams. The optimal configuration of focusing and neutralizing elements is discussed in this paper.

  11. Resonant excitation of waves by a spiraling ion beam on the large plasma device

    NASA Astrophysics Data System (ADS)

    Tripathi, Shreekrishna

    2015-11-01

    The resonant interaction between energetic-ions and plasma waves is a fundamental topic of importance in the space, controlled magnetic-fusion, and laboratory plasma physics. We report new results on the spontaneous generation of traveling shear Alfvén waves and high-harmonic beam-modes in the lower-hybrid range of frequencies by an intense ion beam. In particular, the role of Landau and Doppler-shifted ion-cyclotron resonances (DICR) in extracting the free-energy from the ion-beam and destabilizing Alfvén waves was explored on the Large Plasma Device (LAPD). In these experiments, single and dual-species magnetized plasmas (n ~1010 -1012 cm-3, Te ~ 5.0-10.0 eV, B = 0.6-1.8 kG, He+ and H+ ions, 19.0 m long, 0.6 m diameter) were produced and a spiraling hydrogen ion beam (5-15 keV, 2-10 A, beam-speed/Alfvén-speed = 0.2-1.5, J ~ 50-150 mA/cm2, pitch-angle ~53°) was injected into the plasma. The interaction of the beam with the plasma was diagnosed using a retarding-field energy analyzer, three-axis magnetic-loop, and Langmuir probes. The resonance conditions for the growth of shear Alfvén waves were examined by varying the parameters of the ion-beam and ambient plasma. The experimental results demonstrate that the DICR process is particularly effective in exciting left-handed polarized shear Alfvén waves that propagate in the direction opposite to the ion beam. The high-harmonic beam modes were detected in the vicinity of the spiraling ion beam and contained more than 80 harmonics of Doppler-shifted gyro-frequency of the beam. Work jointly supported by US DOE and NSF and performed at the Basic Plasma Science Facility, UCLA.

  12. New observations of ion beams in the plasma sheet boundary layer

    NASA Astrophysics Data System (ADS)

    Parks, G.; Chen, L. J.; McCarthy, M.; Larson, D.; Lin, R. P.; Phan, T.; Reme, H.; Sanderson, T.

    The Wind perigee passes covered tail distances from 6-24 RE. By use of bulk quantities and the parent distributions, we have found new features in the PSBL that had been missed previously. The PSBL consists of a unidirectional earthward streaming ion beam at the edge and another unidirectional beam inside this edge streaming in the tailward direction. Bidirectional beams are observed with higher densities, further inside the PSBL. The plasma in the region supporting the tailward streaming beams consists of the beam distribution plus an isotropic component, whereas the earthward streaming beams consists mainly of the beam distribution. These distributions yield fast flows (>400 km/s) in the earthward direction and slower flows (≈ 150 km/s) in the tailward direction. Both regions support counter streaming electron beams superposed on an isotropic component. These new findings are substantially different from previous observations and the interpretation of fast flows and ion beams in terms of a neutral line model needs to be reexamined.

  13. Strong terahertz radiation generation by beating of two spatial-triangular beams in collisional magnetized plasma

    NASA Astrophysics Data System (ADS)

    Hematizadeh, Ayoob; Bakhtiari, Farhad; Jazayeri, Seyed Masud; Ghafary, Bijan

    2016-05-01

    A scheme of terahertz (THz) radiation generation is proposed by beating of two spatial-triangular laser beams in plasma with a spatially periodic density when electron-neutral collisions have taken into account. In this process, the laser beams exert a ponderomotive force on the electrons of the plasma and impart the oscillatory velocity at the difference frequency in the presence of a static magnetic field which is applied parallel to the direction of the lasers. We show that higher efficiency and stronger THz radiation are achieved when the parallel magnetic field is used to compare the perpendicular magnetic field. The effects of beam width of lasers, collision frequency, periodicity of density ripples, and magnetic field strength are analyzed for strong THz radiation generation. The THz field of the emitted radiations is found to be highly sensitive to collision frequency and magnetic field strength. In this scheme with the optimization of plasma parameters, the efficiency of order 21% is achieved.

  14. Ferroelectric Plasma Source for Heavy Ion Beam ChargeNeutralization

    SciTech Connect

    Efthimion, Philip C.; Gilson, Erik P.; Grisham, Larry; Davidson,Ronald C.; Yu, Simon; Waldron, William; Logan, B. Grant

    2005-10-01

    Plasmas are employed as a source of unbound electrons for charge neutralizing heavy ion beams to allow them to focus to a small spot size. Calculations suggest that plasma at a density of 1-100 times the ion beam density and at a length {approx} 0.1-1 m would be suitable. To produce one-meter plasma, large-volume plasma sources based upon ferroelectric ceramics are being developed. These sources have the advantage of being able to increase the length of the plasma and operate at low neutral pressures. The source utilizes the ferroelectric ceramic BaTiO{sub 3} to form metal plasma. The drift tube inner surface of the Neutralized Drift Compression Experiment (NDCX) will be covered with ceramic, and high voltage ({approx} 1-5 kV) applied between the drift tube and the front surface of the ceramic by placing a wire grid on the front surface. A prototype ferroelectric source 20 cm long has produced plasma densities of 5 x 10{sup 11} cm{sup -3}. The source was integrated into the previous Neutralized Transport Experiment (NTX), and successfully charge neutralized the K{sup +} ion beam. Presently, the one-meter source is being fabricated. The source is being characterized and will be integrated into NDCX for charge neutralization experiments.

  15. Neutralization of beam-emitting spacecraft by plasma injection

    NASA Technical Reports Server (NTRS)

    Sasaki, S.; Kawashima, N.; Kuriki, K.; Yanagisawa, M.; Obayashi, T.; Roberts, W. T.; Reasoner, D. L.; Taylor, W. W. L.

    1987-01-01

    An impulsive plasma injection has been used to study charge neutralization of the Space Shuttle Orbiter while it was emitting an electron beam into space. This investigation was performed by Space Experiments with Particle Accelerators on Spacelab-1. A plasma consisting of 10 to the 19th argon ion-electron pairs was injected into space for 1 ms while an electron beam was also being emitted into space. The electron beam energy and current were as high as 5 keV and 300 mA. While the orbiter potential was positive before the plasma injection and began to decrease during the plasma injection, it was near zero for 6 to 20 ms after the plasma injection. The recovery time to the initial level of charging varied from 10 to 100 ms. In a laboratory test in a large space chamber using the same flight hardware, the neutralization time was 8-17 ms and the recovery time was 11-20 ms. The long duration of the neutralization effect in space can be explained by a model of diffusion of the cold plasma which is produced near the Orbiter by charge exchange between the neutral argon atoms and the energetic argon ions during plasma injection.

  16. Acceleration of electrons in strong beam-plasma interactions

    NASA Technical Reports Server (NTRS)

    Wilhelm, K.; Bernstein, W.; Kellogg, P. J.; Whalen, B. A.

    1984-01-01

    The effects of strong beam-plasma interactions on the electron population of the upper atmosphere have been investigated in an electron acceleration experiment performed with a sounding rocket. The rocket carried the Several Complex Experiments (SCEX) payload which included an electron accelerator, three disposable 'throwaway' detectors (TADs), and a stepped electron energy analyzer. The payload was launched in an auroral arc over the rocket at altitudes of 157 and 178 km, respectively. The performance characteristics of the instruments are discussed in detail. The data are combined with the results of laboratory measurements and show that electrons with energies of at least two and probably four times the injection energy of 2 keV were observed during strong beam-plasma interaction events. The interaction events occurred at pitch angles of 54 and 126 degrees. On the basis of the data it is proposed that the superenergization of the electrons is correlated with the length of the beam-plasma interaction region.

  17. Staging laser plasma accelerators for increased beam energy

    SciTech Connect

    Panasenko, Dmitriy; Shu, Anthony; Schroeder, Carl; Gonsalves, Anthony; Nakamura, Kei; Matlis, Nicholas; Cormier-Michel, Estelle; Plateau, Guillaume; Lin, Chen; Toth, Csaba; Geddes, Cameron; Esarey, Eric; Leemans, Wim

    2008-09-29

    Staging laser plasma accelerators is an efficient way of mitigating laser pump depletion in laser driven accelerators and necessary for reaching high energies with compact laser systems. The concept of staging includes coupling of additional laser energy and transporting the electron beam from one accelerating module to another. Due to laser damage threshold constraints, in-coupling laser energy with conventional optics requires distances between the accelerating modules of the order of 10m, resulting in decreased average accelerating gradient and complicated e-beam transport. In this paper we use basic scaling laws to show that the total length of future laser plasma accelerators will be determined by staging technology. We also propose using a liquid jet plasma mirror for in-coupling the laser beam and show that it has the potential to reduce distance between stages to the cm-scale.

  18. Staging Laser Plasma Accelerators for Increased Beam Energy

    SciTech Connect

    Panasenko, D.; Shu, A. J.; Schroeder, C. B.; Gonsalves, A. J.; Nakamura, K.; Matlis, N. H.; Cormier-Michel, E.; Plateau, G.; Lin, C.; Toth, C.; Geddes, C. G. R.; Esarey, E.; Leemans, W. P.

    2009-01-22

    Staging laser plasma accelerators is an efficient way of mitigating laser pump depletion in laser driven accelerators and necessary for reaching high energies with compact laser systems. The concept of staging includes coupling of additional laser energy and transporting the electron beam from one accelerating module to another. Due to laser damage threshold constraints, in-coupling laser energy with conventional optics requires distances between the accelerating modules of the order of 10 m, resulting in decreased average accelerating gradient and complicated e-beam transport. In this paper we use basic scaling laws to show that the total length of future laser plasma accelerators will be determined by staging technology. We also propose using a liquid jet plasma mirror for in-coupling the laser beam and show that it has the potential to reduce distance between stages to the cm-scale.

  19. Strongly turbulent stabilization of electron beam-plasma interactions

    NASA Technical Reports Server (NTRS)

    Freund, H. P.; Haber, I.; Palmadesso, P.; Papadopoulos, K.

    1980-01-01

    The stabilization of electron beam interactions due to strongly turbulent nonlinearities is studied analytically and numerically for a wide range of plasma parameters. A fluid mode coupling code is described in which the effects of electron and ion Landau damping and linear growth due to the energetic electron beam are included in a phenomenological manner. Stabilization of the instability is found to occur when the amplitudes of the unstable modes exceed the threshold of the oscillating two-stream instability. The coordinate space structure of the turbulent spectrum which results clearly shows that soliton-like structures are formed by this process. Phenomenological models of both the initial stabilization and the asymptotic states are developed. Scaling laws between the beam-plasma growth rate and the fluctuations in the fields and plasma density are found in both cases, and shown to be in good agreement with the results of the simulation.

  20. Images of Complex Interactions of an Intense Ion Beam with Plasma Electrons

    SciTech Connect

    Igor D. Kaganovich; Edward Startsev; Ronald C. Davidson

    2004-08-03

    Ion beam propagation in a background plasma is an important scientific issue for many practical applications. The process of ion beam charge and current neutralization is complex because plasma electrons move in strong electric and magnetic fields of the beam. Computer simulation images of plasma interaction with an intense ion beam pulse are presented.

  1. Terahertz generation by two cross focused Gaussian laser beams in magnetized plasma

    SciTech Connect

    Singh, Ram Kishor Sharma, R. P.

    2014-11-15

    This paper presents a theoretical model for terahertz (THz) radiation generation by two cross-focused Gaussian laser beams in a collisionless magnetoplasma. The plasma is redistributed due to the ponderomotive nonlinearity which leads to the cross focusing of the laser beams. The focusing of the copropagating laser beams increases with increasing the externally applied static magnetic field which is perpendicular to the wave propagation direction. The nonlinear current at THz frequency arises on account of nonlinear ponderomotive force as a result of beating of the two lasers. The generated THz radiation amplitude increases significantly with increasing magnetic field. The cross focusing of two laser beams enhances the THz yield. Optimization of laser-plasma parameters gives the radiated normalized THz power of the order of 10 kW.

  2. Shining a gluon beam through quark-gluon plasma

    NASA Astrophysics Data System (ADS)

    Chesler, Paul M.; Ho, Ying-Yu; Rajagopal, Krishna

    2012-06-01

    We compute the energy density radiated by a quark undergoing circular motion in strongly coupled N=4 supersymmetric Yang-Mills plasma. If it were in vacuum, this quark would radiate a beam of strongly coupled radiation whose angular distribution has been characterized and is very similar to that of synchrotron radiation produced by an electron in circular motion in electrodynamics. Here, we watch this beam of gluons getting quenched by the strongly coupled plasma. We find that a beam of gluons of momenta ˜q≫πT is attenuated rapidly, over a distance ˜q1/3(πT)-4/3 in a plasma with temperature T. As the beam propagates through the plasma at the speed of light, it sheds trailing sound waves with momenta ≲πT. Presumably these sound waves would thermalize in the plasma if they were not hit soon after their production by the next pulse of gluons from the lighthouselike rotating quark. At larger and larger q, the trailing sound wave becomes less and less prominent. The outward-going beam of gluon radiation itself shows no tendency to spread in angle or to shift toward larger wavelengths, even as it is completely attenuated. In this regard, the behavior of the beam of gluons which we analyze is reminiscent of the behavior of jets produced in heavy ion collisions at the LHC which lose a significant fraction of their energy without appreciable change in their angular distribution or their momentum distribution as they plow through the strongly coupled quark-gluon plasma produced in these collisions.

  3. Plasma heating, plasma flow and wave production around an electron beam injected into the ionosphere

    NASA Technical Reports Server (NTRS)

    Winckler, J. R.; Erickson, K. N.

    1986-01-01

    A brief historical summary of the Minnesota ECHO series and other relevant electron beam experiments is given. The primary purpose of the ECHO experiments is the use of conjugate echoes as probes of the magnetosphere, but beam-plasma and wave studies were also made. The measurement of quasi-dc electric fields and ion streaming during the ECHO 6 experiment has given a pattern for the plasma flow in the hot plasma region extending to 60m radius about the ECHO 6 electron beam. The sheath and potential well caused by ion orbits is discussed with the aid of a model which fits the observations. ELF wave production in the plasma sheath around the beam is briefly discussed. The new ECHO 7 mission to be launched from the Poker Flat range in November 1987 is described.

  4. 3-D Simulations of Plasma Wakefield Acceleration with Non-Idealized Plasmas and Beams

    SciTech Connect

    Deng, S.; Katsouleas, T.; Lee, S.; Muggli, P.; Mori, W.B.; Hemker, R.; Ren, C.; Huang, C.; Dodd, E.; Blue, B.E.; Clayton, C.E.; Joshi, C.; Wang, S.; Decker, F.J.; Hogan, M.J.; Iverson, R.H.; O'Connell, C.; Raimondi, P.; Walz, D.; /SLAC

    2005-09-27

    3-D Particle-in-cell OSIRIS simulations of the current E-162 Plasma Wakefield Accelerator Experiment are presented in which a number of non-ideal conditions are modeled simultaneously. These include tilts on the beam in both planes, asymmetric beam emittance, beam energy spread and plasma inhomogeneities both longitudinally and transverse to the beam axis. The relative importance of the non-ideal conditions is discussed and a worst case estimate of the effect of these on energy gain is obtained. The simulation output is then propagated through the downstream optics, drift spaces and apertures leading to the experimental diagnostics to provide insight into the differences between actual beam conditions and what is measured. The work represents a milestone in the level of detail of simulation comparisons to plasma experiments.

  5. Device and method for relativistic electron beam heating of a high-density plasma to drive fast liners

    DOEpatents

    Thode, Lester E.

    1981-01-01

    A device and method for relativistic electron beam heating of a high-density plasma in a small localized region. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises DT, DD, hydrogen boron or similar thermonuclear gas at a density of 10.sup.17 to 10.sup.20 electrons per cubic centimeter. The target gas is ionized prior to application of the electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 MeV, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy and momentum into a small localized region of the high-density plasma target. Fast liners disposed in the high-density target plasma are explosively or ablatively driven to implosion by a heated annular plasma surrounding the fast liner which is generated by an annular relativistic electron beam. An azimuthal magnetic field produced by axial current flow in the annular plasma, causes the energy in the heated annular plasma to converge on the fast liner.

  6. Transferring the Energy of Hadron Beams to Lepton Beams via Plasma Wakes

    NASA Astrophysics Data System (ADS)

    Mori, W. B.; Lu, W.; An, W.; Joshi, C.; Huang, C.; Vieira, J.; Fonseca, R. A.; Silva, L. O.

    2010-11-01

    Hadron beams (p^- & p^+) exist at Fermilab and CERN could be used to drive high gradient plasma wakefields for accelerating trailing lepton (e^- & e^+) beams. We consider what would be possible if the existing hadron beams could be compressed and if existing beams excite wakes via self-modulation instabilities. A compressed p^- beam drives an identical wake as an electron beam [1] with the same current. However, for this case dephasing (not pump depletion) limits the acceleration length. Simulation results show that a witness electron bunch can gain more than 600 GeV in a 1 TeV p^- beam driven PWFA during 50 meters acceleration. For the p^+ beam, driving a similar wake by using a short p^+ beam for accelerating electrons has been proposed recently [2]. Although p^+ beam available at CERN is much longer, a train of short bunches may be generated through self-modulation as the long bunch propagates in the plasma [3]. Preliminary simulation results for such interactions will be presented. [1] I. Blumenfeld et al., Nature 445, 741 (2007) [2] A. Caldwell et al., Nature Phys. 5, 363 (2009) [3] N. Kumar et al., Phys. Rev. Lett. 104, 255003 (2010)

  7. Solitons and beam reflection in an ion-beam plasma system

    SciTech Connect

    Kono, M.

    1986-04-01

    Reflection and acceleration of resonant particles by solitons have been studied numerically in an ion-beam plasma system based on a hybrid code. A soliton whose velocity is less than the beam velocity is amplified first in a self-similar way because of the beam bunching up to the onset of reflection and then is supplied with energy lost by the reflected beam. The soliton is saturated by emission of a baby soliton, which in turn grows again until it emits another baby soliton. These processes repeat themselves. A soliton with a velocity larger than that of the beam initiates beam acceleration. The beam reflection associated with the collision processes of solitons is also observed.

  8. Development of rf plasma generators for neutral beams

    SciTech Connect

    Vella, M.C.; Ehlers, K.W.; Kippenhan, D.; Pincosy, P.A.; Pyle, R.V.; DiVergilio, W.F.; Fosnight, V.V.

    1984-10-01

    The development of low frequency (1-2 MHz) rf plasma generators for high power neutral beam applications is summarized. Immersed couplers from one to three turns were used. Acceptable plasma profiles, less than or equal to 15% max/min, were obtained in a variety of field-free magnetic bucket and magnetic filter-bucket sources, with 10 x 10 cm or 10 x 40 cm extraction areas. Hydrogen beam properties were measured with a 7 x 10 cm accelerator operated at 80 kV. Atomic fraction and power efficiency were at least as high as with arc plasmas in similar chambers. The potential advantages of an rf plasma source are: ease of operation; reliability; and extended service lifetime.

  9. Particle Simulations for Electron Beam-Plasma Interactions

    NASA Astrophysics Data System (ADS)

    Zhou, Guo-cheng; G, Zhou C.; Li, Yang; Cao, Jin-bin; J, Cao B.; Wang, Xue-yi; X, Wang Y.

    1998-12-01

    The computer simulations of high-frequency instabilities excited by the high density electron beam and their nonlinear effect are presented. One-dimensional electromagnetic particle simulations are performed with different values of the electron beam-to-plasma density ratio. The results show that for the high electron beam-to-background plasma density ratio, all the Langmuir waves and two electromagnetic waves with left-hand and right-hand circular polarizations (i.e., the "L-O mode" and the "R-X mode") propagating parallel to the magnetic field can be generated and the maximum values of wave electric fields are nearly the same. The electron beam and background plasma are diffused and a part of energetic background electrons are obviously accelerated by the wave-particle interactions. The heating of the beam and background plasma is mainly due to the electrostatic (Langmuir) wave-particle interactions, but the accelerations of a part of energetic background electrons may be mainly due to the electromagnetic wave-particle interactions.

  10. MHD Induced Neutral Beam Ion Loss from NSTX Plasmas

    SciTech Connect

    D.S. Darrow, E.D. Fredrickson, N.N. Gorelenkov, A.L. Roquemore, and K. Shinohara

    2007-12-13

    Bursts of ~60 kHz activity on Mirnov coils occur frequently in NSTX plasmas and these are accompanied by bursts of neutral beam ion loss over a range in pitch angles. These losses have been measured with a scintillator type loss probe imaged with a high speed (>10,000 frames/s) video camera, giving the evolution of the energy and pitch angle distributions of the lost neutral beam ions over the course of the events. The instability occurs below the TAE frequency in NSTX (~100 kHz) in high beta plasmas and may be a beta driven Alfvén acoustic (BAAE) mode.

  11. Harmonic generation by circularly polarized laser beams propagating in plasma

    SciTech Connect

    Agrawal, Ekta; Hemlata,; Jha, Pallavi

    2015-04-15

    An analytical theory is developed for studying the phenomenon of generation of harmonics by the propagation of an obliquely incident, circularly polarized laser beam in homogeneous, underdense plasma. The amplitudes of second and third harmonic radiation as well as detuning distance have been obtained and their variation with the angle of incidence is analyzed. The amplitude of harmonic radiation increases with the angle of incidence while the detuning distance decreases, for a given plasma electron density. It is observed that the generated second and third harmonic radiation is linearly and elliptically polarized, respectively. The harmonic radiation vanishes at normal incidence of the circularly polarized laser beam.

  12. Plasma shield for in-air beam processes

    SciTech Connect

    Hershcovitch, Ady

    2008-05-15

    A novel concept/apparatus, the Plasma Shield, is introduced in this paper. The purpose of the Plasma Shield is designed to shield a target object chemically and thermally by engulfing an area subjected to beam treatment with inert plasma. The shield consists of a vortex-stabilized arc that is employed to shield beams and workpiece area of interaction from an atmospheric or liquid environment. A vortex-stabilized arc is established between a beam generating device (laser, ion or electron gun) and a target object. The arc, which is composed of a pure noble gas, engulfs the interaction region and shields it from any surrounding liquids like water or reactive gases. The vortex is composed of a sacrificial gas or liquid that swirls around and stabilizes the arc. The successful Plasma Shield was experimentally established and very high-quality electron beam welding with partial plasma shielding was performed. The principle of the operation and experimental results are discussed in the paper.

  13. Plasma shield for in-air beam processesa)

    NASA Astrophysics Data System (ADS)

    Hershcovitch, Ady

    2008-05-01

    A novel concept/apparatus, the Plasma Shield, is introduced in this paper. The purpose of the Plasma Shield is designed to shield a target object chemically and thermally by engulfing an area subjected to beam treatment with inert plasma. The shield consists of a vortex-stabilized arc that is employed to shield beams and workpiece area of interaction from an atmospheric or liquid environment. A vortex-stabilized arc is established between a beam generating device (laser, ion or electron gun) and a target object. The arc, which is composed of a pure noble gas, engulfs the interaction region and shields it from any surrounding liquids like water or reactive gases. The vortex is composed of a sacrificial gas or liquid that swirls around and stabilizes the arc. The successful Plasma Shield was experimentally established and very high-quality electron beam welding with partial plasma shielding was performed. The principle of the operation and experimental results are discussed in the paper.

  14. Beam-driven acceleration in ultra-dense plasma media

    DOE PAGESBeta

    Shin, Young-Min

    2014-09-15

    Accelerating parameters of beam-driven wakefield acceleration in an extremely dense plasma column has been analyzed with the dynamic framed particle-in-cell plasma simulator, and compared with analytic calculations. In the model, a witness beam undergoes a TeV/m scale alternating potential gradient excited by a micro-bunched drive beam in a 1025 m-3 and 1.6 x 1028 m-3 plasma column. The acceleration gradient, energy gain, and transformer ratio have been extensively studied in quasi-linear, linear-, and blowout-regimes. The simulation analysis indicated that in the beam-driven acceleration system a hollow plasma channel offers 20 % higher acceleration gradient by enlarging the channel radius (r)more » from 0.2 Ap to 0.6 .Ap in a blowout regime. This paper suggests a feasibility of TeV/m scale acceleration with a hollow crystalline structure (e.g. nanotubes) of high electron plasma density.« less

  15. Beam-driven acceleration in ultra-dense plasma media

    SciTech Connect

    Shin, Young-Min

    2014-09-15

    Accelerating parameters of beam-driven wakefield acceleration in an extremely dense plasma column has been analyzed with the dynamic framed particle-in-cell plasma simulator, and compared with analytic calculations. In the model, a witness beam undergoes a TeV/m scale alternating potential gradient excited by a micro-bunched drive beam in a 1025 m-3 and 1.6 x 1028 m-3 plasma column. The acceleration gradient, energy gain, and transformer ratio have been extensively studied in quasi-linear, linear-, and blowout-regimes. The simulation analysis indicated that in the beam-driven acceleration system a hollow plasma channel offers 20 % higher acceleration gradient by enlarging the channel radius (r) from 0.2 Ap to 0.6 .Ap in a blowout regime. This paper suggests a feasibility of TeV/m scale acceleration with a hollow crystalline structure (e.g. nanotubes) of high electron plasma density.

  16. Stopping Power for Strong Beam-Plasma Coupling

    NASA Astrophysics Data System (ADS)

    Gericke, Dirk O.

    2001-10-01

    The slowing down process of charged particles in plasma targets is investigated for the case of strong beam-plasma coupling. Strong beam-plasma correlations can be considered using the collision operator of the quantum Boltzmann equation. As a first step, dynamic screening is included in the first Born approximation. This approach gives good results for moderate beam-plasma coupling (Zb Γ^3/2 < 0.2) but fails for strong coupling. In the latter regime, one has to include dynamic screening effects also in terms beyound the first Born approximation. This can be done approximately applying a velocity dependent screening length. A comparison with other models, e.g. the Bethe-formula, the standard model of the stopping power (Bethe plus Bloch corrections and Barkas terms), the Li & Petrasso formula and simulation data (MD and PIC), is given. This comparison clearly shows the advantage of the proposed model: it smoothly interpolates between the classical low velocity regime, where strong coupling effects occur, and the high velocity quantum regime, where collective modes are important. In the latter case, the experimentally proven Bethe-formula is obtained. Furthermore, it matches the simulation data for moderate as well as strong beam-plasma coupling.

  17. Beam-driven acceleration in ultra-dense plasma media

    SciTech Connect

    Shin, Young-Min

    2014-09-15

    Accelerating parameters of beam-driven wakefield acceleration in an extremely dense plasma column has been analyzed with the dynamic framed particle-in-cell plasma simulator, and compared with analytic calculations. In the model, a witness beam undergoes a TeV/m scale alternating potential gradient excited by a micro-bunched drive beam in a 10{sup 25 }m{sup −3} and 1.6 × 10{sup 28 }m{sup −3} plasma column. The acceleration gradient, energy gain, and transformer ratio have been extensively studied in quasi-linear, linear-, and blowout-regimes. The simulation analysis indicated that in the beam-driven acceleration system a hollow plasma channel offers ∼20% higher acceleration gradient by enlarging the channel radius (r) from 0.2 λ{sub p} to 0.6 λ{sub p} in a blowout regime. This paper suggests a feasibility of TeV/m scale acceleration with a hollow crystalline structure (e.g., nanotubes) of high electron plasma density.

  18. The functionalization of graphene using electron-beam generated plasmas

    SciTech Connect

    Baraket, M.; Walton, S. G.; Lock, E. H.; Robinson, J. T.; Perkins, F. K.

    2010-06-07

    A plasmas-based, reversible functionalization of graphene is discussed. Using electron-beam produced plasmas, oxygen and fluorine functionalities have been added by changing the processing gas mixtures from Ar/O{sub 2} to Ar/SF{sub 6}, respectively. The reversibility of the functionalization was investigated by annealing the samples. The chemical composition and structural changes were studied by x-ray photoelectron spectroscopy and Raman spectroscopy.

  19. Plasma heating with multi-MeV neutral atom beams

    SciTech Connect

    Grisham, L.R.; Post, D.E.; Mikkelsen, D.R.; Eubank, H.P.

    1981-10-01

    We explore the utility and feasibility of neutral beams of greater than or equal to 6 AMU formed from negative ions, and also of D/sup 0/ formed from D/sup -/. The negative ions would be accelerated to approx. 1 to 2 MeV/AMU and neutralized, whereupon the neutral atoms would be used to heat and, perhaps, to drive current in magnetically confined plasmas. Such beams appear feasible and offer the promise of significant advantages relative to conventional neutral beams based on positive deuterium ions at approx. 150 keV.

  20. High-quality electron beams from beam-driven plasma accelerators by wakefield-induced ionization injection.

    PubMed

    Martinez de la Ossa, A; Grebenyuk, J; Mehrling, T; Schaper, L; Osterhoff, J

    2013-12-13

    We propose a new and simple strategy for controlled ionization-induced trapping of electrons in a beam-driven plasma accelerator. The presented method directly exploits electric wakefields to ionize electrons from a dopant gas and capture them into a well-defined volume of the accelerating and focusing wake phase, leading to high-quality witness bunches. This injection principle is explained by example of three-dimensional particle-in-cell calculations using the code OSIRIS. In these simulations a high-current-density electron-beam driver excites plasma waves in the blowout regime inside a fully ionized hydrogen plasma of density 5×10(17)cm-3. Within an embedded 100  μm long plasma column contaminated with neutral helium gas, the wakefields trigger ionization, trapping of a defined fraction of the released electrons, and subsequent acceleration. The hereby generated electron beam features a 1.5 kA peak current, 1.5  μm transverse normalized emittance, an uncorrelated energy spread of 0.3% on a GeV-energy scale, and few femtosecond bunch length. PMID:24483670

  1. Beam-plasma amplifiers based on nonhomogeneous plasma-cavity slow-wave structure

    SciTech Connect

    Perevodchikov, V.I.; Mitin, L.A.; Shapiro, A.L.; Zavjalov, M.A.

    1995-11-01

    The investigation of interaction of E-beam with hybrid waves of nonhomogeneous plasma-cavity slow-wave structure have been carried out. It`s shown that depression of external magnetic field at out-put part of plasma-cavity structure may be used for decreasing of phase velocity of active waves and phase space synchronization ones with space charge fields, induced in plasma. This mode of operation of plasma TWT was calculated. The investigations carried out theoretically has been supported by experiments with plasma TWT.

  2. Electron beam manipulation, injection and acceleration in plasma wakefield accelerators by optically generated plasma density spikes

    NASA Astrophysics Data System (ADS)

    Wittig, Georg; Karger, Oliver S.; Knetsch, Alexander; Xi, Yunfeng; Deng, Aihua; Rosenzweig, James B.; Bruhwiler, David L.; Smith, Jonathan; Sheng, Zheng-Ming; Jaroszynski, Dino A.; Manahan, Grace G.; Hidding, Bernhard

    2016-09-01

    We discuss considerations regarding a novel and robust scheme for optically triggered electron bunch generation in plasma wakefield accelerators [1]. In this technique, a transversely propagating focused laser pulse ignites a quasi-stationary plasma column before the arrival of the plasma wake. This localized plasma density enhancement or optical "plasma torch" distorts the blowout during the arrival of the electron drive bunch and modifies the electron trajectories, resulting in controlled injection. By changing the gas density, and the laser pulse parameters such as beam waist and intensity, and by moving the focal point of the laser pulse, the shape of the plasma torch, and therefore the generated trailing beam, can be tuned easily. The proposed method is much more flexible and faster in generating gas density transitions when compared to hydrodynamics-based methods, and it accommodates experimentalists needs as it is a purely optical process and straightforward to implement.

  3. Beam excited acoustic instability in semiconductor quantum plasmas

    SciTech Connect

    Rasheed, A.; Siddique, M.; Huda, F.; Jamil, M.; Jung, Y.-D.

    2014-06-15

    The instability of hole-Acoustic waves due to electron beam in semiconductor quantum plasmas is examined using the quantum hydrodynamic model. The quantum effects are considered including Bohm potential, Fermi degenerate pressure, and exchange potential of the semiconductor quantum plasma species. Our model is applied to nano-sized GaAs semiconductor plasmas. The variation of the growth rate of the unstable mode is obtained over a wide range of system parameters. It is found that the thermal effects of semiconductor species have significance over the hole-Acoustic waves.

  4. Analysis of plasma channels in mm-scale plasmas formed by high intensity laser beams

    NASA Astrophysics Data System (ADS)

    Murakami, R.; Habara, H.; Ivancic, S.; Anderson, K.; Haberberger, D.; Iwawaki, T.; Sakagami, H.; Stoeckl, C.; Theobald, W.; Uematsu, Y.; Tanaka, K. A.

    2016-05-01

    A plasma channel created by a high intensity infrared laser beam was observed in a long scale-length plasma (L ∼ 240 μm) with the angular filter refractometry technique, which indicated a stable channel formation up to the critical density. We analyzed the observed plasma channel using a rigorous ray-tracing technique, which provides a deep understanding of the evolution of the channel formation.

  5. Ion beam control in laser plasma interaction

    NASA Astrophysics Data System (ADS)

    Kawata, S.; Izumiyama, T.; Sato, D.; Nagashima, T.; Takano, M.; Barada, D.; Gu, Y. J.; Ma, Y. Y.; Kong, Q.; Wang, P. X.; Wang, W. M.

    2016-03-01

    By a two-stage successive acceleration in laser ion acceleration, our 2.5-dimensional particle-in-cell simulations demonstrate a remarkable increase in ion energy by a few hundreds of MeV; the maximum proton energy reaches about 250MeV. The ions are accelerated by the inductive continuous post-acceleration in a laser plasma interaction together with the target normal sheath acceleration and the breakout afterburner mechanism. An intense short-pulse laser generates a strong current by high-energy electrons accelerated, when an intense short- pulse laser illuminates a plasma target. The strong electric current creates a strong magnetic field along the high-energy electron current in the plasma. During the increase phase in the magnetic field strength, the moving longitudinal inductive electric field is induced by the Faraday law, and accelerates the forward-moving ions continously. The multi-stage acceleration provides a unique controllability in the ion energy and its quality.

  6. Active Plasma Lensing for Relativistic Laser-Plasma-Accelerated Electron Beams.

    PubMed

    van Tilborg, J; Steinke, S; Geddes, C G R; Matlis, N H; Shaw, B H; Gonsalves, A J; Huijts, J V; Nakamura, K; Daniels, J; Schroeder, C B; Benedetti, C; Esarey, E; Bulanov, S S; Bobrova, N A; Sasorov, P V; Leemans, W P

    2015-10-30

    Compact, tunable, radially symmetric focusing of electrons is critical to laser-plasma accelerator (LPA) applications. Experiments are presented demonstrating the use of a discharge-capillary active plasma lens to focus 100-MeV-level LPA beams. The lens can provide tunable field gradients in excess of 3000 T/m, enabling cm-scale focal lengths for GeV-level beam energies and allowing LPA-based electron beams and light sources to maintain their compact footprint. For a range of lens strengths, excellent agreement with simulation was obtained. PMID:26565471

  7. Mono-Energetic Beams from Laser Plasma Interactions

    SciTech Connect

    Geddes, C.G.R.; Esarey, E.; Leemans, W.P.; Schroeder, C.B.; Toth,Cs.; van Tilborg, J.; Cary, John R.; Bruhwiler, David L.; Nieter, Chet

    2005-05-09

    A laser driven wakefield accelerator has been tuned to produce high energy electron bunches with low emittance and energy spread by extending the interaction length using a plasma channel. Wakefield accelerators support gradients thousands of times those achievable in RF accelerators, but short acceleration distance, limited by diffraction, has resulted in low energy beams with 100 percent electron energy spread. In the present experiments on the L'OASIS laser, the relativistically intense drive pulse was guided over 10 diffraction ranges by a plasma channel. At a drive pulse power of 9 TW, electrons were trapped from the plasma and beams of percent energy spread containing > 200 pC charge above 80 MeV and with normalized emittance estimated at< 2pi-mm-mrad were produced. Data and simulations (VORPAL code) show the high quality bunch was formed when beam loading turned off injection after initial trapping, and when the particles were extracted as they dephased from the wake. Up to 4TW was guided without trapping, potentially providing a platform for controlled injection. The plasma channel technique forms the basis of a new class of accelerators, with high gradients and high beam quality.

  8. Population inversions in ablation plasmas generated by intense electron beams

    NASA Astrophysics Data System (ADS)

    Gilgenbach, R. M.; Kammash, T.; Brake, M. L.

    1988-11-01

    Experiments during the past three years have concerned the generation and spectroscopic study of electron beam-driven carbon plasmas in order to explore the production of optical and ultraviolet radiation from nonequilibrium populations. The output of MELBA (Michigan Electron Long Beam Accelerator), has been connected to an electron beam diode consisting of an aluminum (or brass) cathode stalk and a carbon anode. Magnetic field coils have been designed, procured, and utilized to focus the electron beam. A side viewing port permitted spectroscopic diagnostics to view across the surface of the anode. Spectroscopic diagnosis has been performed using a 1 m spectrograph capable of operation from the vacuum ultraviolet through the visible. This spectrograph is coupled to a 1024 channel optical multichannel analyzer. Spectra taken during the initial 400 ns period of the e-beam pulse showed a low effective charge plasma with primarily molecular components (C2, CH) as well as atomic hydrogen and singly ionized carbon (CII). When the generator pulse was crowbarred after the first 400 ns, the spectra revealed a continuation of the low charge state plasma.

  9. The Marshall Magnetic Mirror Beam-Plasma Experiment

    NASA Technical Reports Server (NTRS)

    Schneider, Todd A.; Carruth, M. R., Jr.; Vaughn, Jason A.; Edwards, David L.; Munafo, Paul (Technical Monitor)

    2001-01-01

    Plasma propulsion is an advanced propulsion concept with the potential to realize very high specific impulse. Present designs for plasma propulsion devices share a common feature, the incorporation of a magnetic mirror. A magnetic mirror is a plasma confinement scheme whereby charged particles are trapped (or reflected) between two regions of high magnetic field strength. A cylindrical geometry is most often employed to create a magnetic mirror, which is a natural geometry for propulsion devices. To utilize the magnetic mirror configuration in a plasma propulsion device, however, will require efficient coupling of power into the system. With the development of compact and efficient electron sources, such as hollow cathode sources, coupling power into a magnetic mirror using electron beams may be an attractive approach. A system, the Marshall Magnetic Mirror (M3), has been constructed to study the coupling of an electron beam into a magnetic mirror. A description of the M3 device will be provided as well as data from initial beam-plasma coupling experiments.

  10. Long Plasma Source for Heavy Ion Beam Charge Neutralization

    SciTech Connect

    Efthimion, P.C.; Gilson, E.P.; Grisham, L.; Davidson, R.C.; Logan, B.G.; Seidl, P.A.; Waldron, W.

    2008-06-01

    Plasmas are a source of unbound electrons for charge neutralizing intense heavy ion beams to focus them to a small spot size and compress their axial length. The plasma source should operate at low neutral pressures and without strong externally-applied fields. To produce long plasma columns, sources based upon ferroelectric ceramics with large dielectric coefficients have been developed. The source utilizes the ferroelectric ceramic BaTiO{sub 3} to form metal plasma. The drift tube inner surface of the Neutralized Drift Compression Experiment (NDCX) is covered with ceramic material. High voltage ({approx} 8 kV) is applied between the drift tube and the front surface of the ceramics. A BaTiO{sub 3} source comprised of five 20-cm-long sources has been tested and characterized, producing relatively uniform plasma in the 5 x 10{sup 10} cm{sup -3} density range. The source was integrated into the NDCX device for charge neutralization and beam compression experiments, and yielded current compression ratios {approx} 120. Present research is developing multi-meter-long and higher density sources to support beam compression experiments for high energy density physics applications.

  11. Plasma-wall interaction in an electrostatic sheath of plasma containing a monoenergetic electron beam

    NASA Astrophysics Data System (ADS)

    Ou, Jing; Zhao, Xiaoyun; Gan, Chunyun

    2016-04-01

    The plasma-wall interaction in the presence of a monoenergetic electron beam has been studied by taking into account the self-consistency among plasma transport in a collisionless electrostatic sheath, deposited energy flux at the wall and material thermal response for carbon and tungsten as wall materials. The variations of the potential drop across the sheath, ion velocity at the sheath edge, and surface temperature of material as a function of electron beam flux are explored in the presence of the electron emission. It is found that when electron beam does not dominate the sheath, potential drop across the sheath depends strongly on the material properties due to the impact of electron emission while the surface temperature of material shows monotonic variation. In the case of carbon wall, the electron beam may dominate the sheath at a certain electron beam concentration or energy. Under this circumstance, both the potential drop across the sheath and surface temperature of material demonstrate the sharp increasing transition. The development of local hot spot on the plasma facing material is caused by the enhanced ion energy flux instead of the electron beam energy flux. If the electron emission is not taken into account, as a smaller electron beam flux, both the potential drop across the sheath and surface temperature of material display the significant change and then it may be easier to develop for the local hot spot on the plasma facing material.

  12. Study on beam emittance evolution in a nonlinear plasma wake field accelerator with mobile plasma ions

    NASA Astrophysics Data System (ADS)

    An, Weiming; Joshi, Chan; Mori, Warren; Lu, Wei

    2014-10-01

    We study the electron beam evolution in a nonlinear blowout PWFA when the accelerated beam has a very small matched spot size that can cause the plasma ions collapsing towards the beam. Contrary to the common belief, very small emittance growth of the accelerated electron beam is found when the plasma ion collapsing destroys the perfect linear focusing force in the plasma wake field. The improved quasi-static PIC code QuickPIC also allows us to use very high resolution and to model asymmetric spot sizes. Simulation results show that the accelerated beam will reach a steady state after several cm propagation in the plasma (which is why we can do simulations and not let the drive beam evolve). We find that for round beams the ion density (which is Li+) enhancement is indeed by factors of 100, but that the emittance only grows by around 20 percent. For asymmetric spot sizes, the ion collapse is less and emittance growth is zero in the plane with the largest emittance and about 20 percent in the other plane.

  13. Plasma heating, electric fields and plasma flow by electron beam ionospheric injection

    NASA Technical Reports Server (NTRS)

    Winckler, J. R.; Erickson, K. N.

    1990-01-01

    The electric fields and the floating potentials of a Plasma Diagnostics Payload (PDP) located near a powerful electron beam injected from a large sounding rocket into the auroral zone ionosphere have been studied. As the PDP drifted away from the beam laterally, it surveyed a region of hot plasma extending nearly to 60 m radius. Large polarization electric fields transverse to B were imbedded in this hot plasma, which displayed large ELF wave variations and also an average pattern which has led to a model of the plasma flow about the negative line potential of the beam resembling a hydrodynamic vortex in a uniform flow field. Most of the present results are derived from the ECHO 6 sounding rocket mission.

  14. Directional velocity analyzer for measuring electron distribution functions in plasmas

    NASA Technical Reports Server (NTRS)

    Stenzel, R. L.; Gekelman, W.; Wild, N.; Urrutia, J. M.; Whelan, D.

    1983-01-01

    A directional velocity analyzer has been developed for measuring electron distribution functions in plasmas. It contains a collimating aperture which selects particles from a narrow cone in velocity space and a retarding potential analyzer. The distribution function f(v, theta, phi) is obtained from a large number of analyzer traces taken at different angles theta, phi. In addition, the small analyzer can be moved in space and the measurements are time resolved so as to obtain the complete phase space information f(v,r,t). The large data flow of this seven-variable function is processed with a high-speed digital data-acquisition system. The new electron velocity analyzer is applicable over a wide parameter range in electron energies and densities. Various cases of anisotropic distributions such as beams, shells, tails, and drifts have been successfully investigated.

  15. Investigation of beam-plasma interactions

    NASA Technical Reports Server (NTRS)

    Olsen, Richard C.

    1987-01-01

    Data from the SCATHA satellite was analyzed to solve the problems of establishing electrical contact between a satellite and the ambient plasma. The original focus of the work was the electron gun experiments conducted near the geosynchronous orbit, which resulted in observations which bore a startling similarity to observations of the SEPAC experiments on SPACELAB 1. The study has evolved to include the ion gun experiments on SCATHA, a modest laboratory effort in hollow cathode performance, and preparation for flight experiments pertinent to tether technology. These areas are addressed separately.

  16. Self-effect in expanding electron beam plasma

    SciTech Connect

    Garcia, M

    1999-05-07

    An analytical model of plasma flow from a metal plate hit by an intense, pulsed, electron beam aims to bridge the gap between radiation-hydrodynamics simulations and experiments, and to quantify the self-effect of the electron beam penetrating the flow. Does the flow disrupt the tight focus of the initial electron bunch, or later pulses in a train? This work aims to model the spatial distribution of plasma speed, density, degree of ionization, and magnetization to inquire. The initial solid density, several eV plasma expands to 1 cm and 10{sup {minus}4} relative density by 2 {micro}s, beyond which numerical simulations are imprecise. Yet, a Faraday cup detector at the ETA-II facility is at 25 cm from the target and observes the flow after 50 {micro}s. The model helps bridge this gap. The expansion of the target plasma into vacuum is so rapid that the ionized portion of the flow departs from local thermodynamic equilibrium. When the temperature (in eV) in a parcel of fluid drops below V{sub i} x [(2{gamma} - 2)/(5{gamma} + 17)], where V{sub i} is the ionization potential of the target metal (7.8 eV for tantalum), and {gamma} is the ratio of specific heats (5/3 for atoms), then the fractional ionization and electron temperature in that parcel remain fixed during subsequent expansion. The freezing temperature as defined here is V{sub i}/19. The balance between the self-pinching force and the space charge repulsion of an electron beam changes on penetrating a flow: (i) the target plasma cancels the space-charge field, (ii) internal eddy currents arise to counter the magnetization of relativistic electrons, and (iii) electron beam heating alters the flow magnetization by changing the plasma density gradient and the magnitude of the conductivity.

  17. Experimental investigations of plasma lens focusing and plasma channel transport of heavy ion beams

    SciTech Connect

    Tauschwitz, T.; Yu, S.S.; Eylon, S.; Reginato, L.; Leemans, W.; Rasmussen, J.O.; Bangerter, R.O.

    1995-04-01

    Final focusing of ion beams and propagation in a reactor chamber are crucial questions for heavy ion beam driven Fusion. An alternative solution to ballistic quadrupole focusing, as it is proposed in most reactor studies today, is the utilization of the magnetic field produced by a high current plasma discharge. This plasma lens focusing concept relaxes the requirements for low emittance and energy spread of the driver beam significantly and allows to separate the issues of focusing, which can be accomplished outside the reactor chamber, and of beam transport inside the reactor. For focusing a tapered wall-stabilized discharge is proposed, a concept successfully demonstrated at GSI, Germany. For beam transport a laser pre-ionized channel can be used.

  18. Beam Phase Space of an Intense Ion Beam in a Neutralizing Plasma

    NASA Astrophysics Data System (ADS)

    Seidl, Peter A.; Bazouin, Guillaume; Beneytout, Alice; Lidia, Steven M.; Vay, Jean-Luc; Grote, David P.

    2011-10-01

    The Neutralized Drift Compression Experiment (NDCX-I) generates high intensity ion beams to explore warm dense matter physics. Transverse final focusing is accomplished with an 8-Tesla, 10-cm long pulsed solenoid magnet combined with a background neutralizing plasma to effectively cancel the space charge field of the ion beam. We report on phase space measurements of the beam before the neutralization channel and of the focused ion beam at the target plane. These are compared to WARP particle-in-cell simulations of the ion beam propagation through the focusing system and neutralizing plasma. Due to the orientation of the plasma sources with respect to the focusing magnet, the plasma distribution within the final focusing lens is strongly affected by the magnetic field, an effect which can influence the peak intensity at the target and which is included in the model of the experiment. Work performed under auspices of U.S. DoE by LLNL, LBNL under Contracts DE-AC52-07NA27344, DE-AC02-05CH1123.

  19. Study of beam optics and beam halo by integrated modeling of negative ion beams from plasma meniscus formation to beam acceleration

    SciTech Connect

    Miyamoto, K.; Okuda, S.; Hatayama, A.; Hanada, M.; Kojima, A.

    2013-01-14

    To understand the physical mechanism of the beam halo formation in negative ion beams, a two-dimensional particle-in-cell code for simulating the trajectories of negative ions created via surface production has been developed. The simulation code reproduces a beam halo observed in an actual negative ion beam. The negative ions extracted from the periphery of the plasma meniscus (an electro-static lens in a source plasma) are over-focused in the extractor due to large curvature of the meniscus.

  20. Improvement of a plasma uniformity of the 2nd ion source of KSTAR neutral beam injector

    NASA Astrophysics Data System (ADS)

    Jeong, S. H.; Kim, T. S.; Lee, K. W.; Chang, D. H.; In, S. R.; Bae, Y. S.

    2014-02-01

    The 2nd ion source of KSTAR (Korea Superconducting Tokamak Advanced Research) NBI (Neutral Beam Injector) had been developed and operated since last year. A calorimetric analysis revealed that the heat load of the back plate of the ion source is relatively higher than that of the 1st ion source of KSTAR NBI. The spatial plasma uniformity of the ion source is not good. Therefore, we intended to identify factors affecting the uniformity of a plasma density and improve it. We estimated the effects of a direction of filament current and a magnetic field configuration of the plasma generator on the plasma uniformity. We also verified that the operation conditions of an ion source could change a uniformity of the plasma density of an ion source.

  1. Improvement of a plasma uniformity of the 2nd ion source of KSTAR neutral beam injector.

    PubMed

    Jeong, S H; Kim, T S; Lee, K W; Chang, D H; In, S R; Bae, Y S

    2014-02-01

    The 2nd ion source of KSTAR (Korea Superconducting Tokamak Advanced Research) NBI (Neutral Beam Injector) had been developed and operated since last year. A calorimetric analysis revealed that the heat load of the back plate of the ion source is relatively higher than that of the 1st ion source of KSTAR NBI. The spatial plasma uniformity of the ion source is not good. Therefore, we intended to identify factors affecting the uniformity of a plasma density and improve it. We estimated the effects of a direction of filament current and a magnetic field configuration of the plasma generator on the plasma uniformity. We also verified that the operation conditions of an ion source could change a uniformity of the plasma density of an ion source. PMID:24593593

  2. Laser plasma acceleration of electrons: Towards the production of monoenergetic beams

    SciTech Connect

    Krushelnick, K.; Najmudin, Z.; Mangles, S.P.D.; Thomas, A.G.R.; Wei, M.S.; Walton, B.; Gopal, A.; Clark, E.L.; Dangor, A.E.; Fritzler, S.; Murphy, C.D.; Norreys, P.A.; Mori, W.B.; Gallacher, J.; Jaroszynski, D.; Viskup, R.

    2005-05-15

    The interaction of high intensity laser pulses with underdense plasma is investigated experimentally using a range of laser parameters and energetic electron production mechanisms are compared. It is clear that the physics of these interactions changes significantly depending not only on the interaction intensity but also on the laser pulse length. For high intensity laser interactions in the picosecond pulse duration regime the production of energetic electrons is highly correlated with the production of plasma waves. However as intensities are increased the peak electron acceleration increases beyond that which can be produced from single stage plasma wave acceleration and direct laser acceleration mechanisms must be invoked. If, alternatively, the pulse length is reduced such that it approaches the plasma period of a relativistic electron plasma wave, high power interactions can be shown to enable the generation of quasimonoenergetic beams of relativistic electrons.

  3. Progress on Direct Plasma Water Treatments

    NASA Astrophysics Data System (ADS)

    Yasuoka, Koichi

    Various types of discharge plasmas in water or along water surface have been studied since 1973 due to the importance of plasma-chemical reactions utilized in the applications of water purification, deactivating microorganisms, material synthesis, and so on. This paper reviews the history and the current status of water-plasma studies, especially for water purification and wastewater treatment.

  4. Transformer ratio improvement for beam based plasma accelerators

    SciTech Connect

    O'Shea, Brendan; Rosenzweig, James; Barber, Samuel; Fukasawa, Atsushi; Williams, Oliver; Muggli, Patric; Yakimenko, Vitaly; Kusche, Karl

    2012-12-21

    Increasing the transformer ratio of wakefield accelerating systems improves the viability of present novel accelerating schemes. The use of asymmetric bunches to improve the transformer ratio of beam based plasma systems has been proposed for some time[1, 2] but suffered from lack appropriate beam creation systems. Recently these impediments have been overcome [3, 4] and the ability now exists to create bunches with current profiles shaped to overcome the symmetric beam limit of R {<=} 2. We present here work towards experiments designed to measure the transformer ratio of such beams, including theoretical models and simulations using VORPAL (a 3D capable PIC code) [5]. Specifically we discuss projects to be carried out in the quasi-nonlinear regime [6] at the UCLA Neptune Laboratory and the Accelerator Test Facility at Brookhaven National Lab.

  5. Diagnostics of ion beam generated from a Mather type plasma focus device

    SciTech Connect

    Lim, L. K. Ngoi, S. K. Wong, C. S. Yap, S. L.

    2014-03-05

    Diagnostics of ion beam emission from a 3 kJ Mather-type plasma focus device have been performed for deuterium discharge at low pressure regime. Deuterium plasma focus was found to be optimum at pressure of 0.2 mbar. The energy spectrum and total number of ions per shot from the pulsed ion beam are determined by using biased ion collectors, Faraday cup, and solid state nuclear track detector CR-39. Average energy of the ion beam obtained is about 60 keV. Total number of the ions has been determined to be in the order of 10{sup 11} per shot. Solid state nuclear track detectors (SSNTD) CR39 are employed to measure the particles at all angular direction from end on (0°) to side on (90°). Particle tracks are registered by SSNTD at 30° to 90°, except the one at the end-on 0°.

  6. Generation of metal ions in the beam plasma produced by a forevacuum-pressure electron beam source

    SciTech Connect

    Tyunkov, A. V.; Yushkov, Yu. G. Zolotukhin, D. B.; Klimov, A. S.; Savkin, K. P.

    2014-12-15

    We report on the production of metal ions of magnesium and zinc in the beam plasma formed by a forevacuum-pressure electron source. Magnesium and zinc vapor were generated by electron beam evaporation from a crucible and subsequently ionized by electron impact from the e-beam itself. Both gaseous and metallic plasmas were separately produced and characterized using a modified RGA-100 quadrupole mass-spectrometer. The fractional composition of metal isotopes in the plasma corresponds to their fractional natural abundance.

  7. The LICPA accelerator of dense plasma and ion beams

    NASA Astrophysics Data System (ADS)

    Badziak, J.; Jabloński, S.; Pisarczyk, T.; Chodukowski, T.; Parys, P.; Raczka, P.; Rosiński, M.; Krousky, E.; Ullschmied, J.; Liska, R.; Kucharik, M.; Torrisi, L.

    2014-04-01

    Laser-induced cavity pressure acceleration (LICPA) is a novel scheme of acceleration of dense matter having a potential to accelerate plasma projectiles with the energetic efficiency much higher than the achieved so far with other methods. In this scheme, a projectile placed in a cavity is irradiated by a laser beam introduced into the cavity through a hole and accelerated along a guiding channel by the thermal pressure created in the cavity by the laser-produced plasma or by the photon pressure of the ultraintense laser radiation trapped in the cavity. This paper summarizes briefly the main results of our recent LICPA studies, in particular, experimental investigations of ion beam generation and heavy macroparticle acceleration in the hydrodynamic LICPA regime (at moderate laser intensities ~ 1015W/cm2) and numerical, particle-in-cell (PIC) studies of production of ultraintense ion beams and fast macroparticles using the photon pressure LICPA regime (at high laser intensities > 1020 W/cm2). It is shown that in both LICPA regimes the macroparticles and ion beams can be accelerated much more efficiently than in other laser-based acceleration scheme commonly used and the accelerated plasma/ion bunches can have a wide variety of parameters. It creates a prospect for a broad range of applications of the LICPA accelerator, in particular in such domains as high energy density physics, ICF research (ion fast ignition, impact ignition) or nuclear physics.

  8. Survey of Collective Instabilities and Beam-Plasma Interactions in Intense Heavy Ion Beams

    SciTech Connect

    Davidson, Ronald C.; Dorf, Mikhail A.; Kaganovich, Igor D.; Qin, Hong; Startsev, Edward A.; Rose, David V.; Lund, Steven M.; Welch, Dale R.; Sefkow, Adam

    2008-06-19

    This paper presents a survey of the present theoretical understanding based on advanced analytical and numerical studies of collective processes and beam-plasma interactions in intense heavy ion beams for applications to ion-beam-driven high energy density physics and heavy ion fusion. The topics include: discussion of the conditions for quiescent beam propagation over long distances; and the electrostatic Harris instability and the transverse electromagnetic Weibel instability in highly anisotropic, intense one-component ion beams. In the longitudinal drift compression and transverse compression regions, collective processes associated with the interaction of the intense ion beam with a charge-neutralizing background plasma are described, including the electrostatic electron-ion two-stream instability, the multispecies electromagnetic Weibel instability, and collective excitations in the presence of a solenoidal magnetic field. The effects of a velocity tilt on reducing two-stream instability growth rates are also discussed. Operating regimes are identified where the possible deleterious effects of collective processes on beam quality are minimized.

  9. RF plasma source for heavy ion beam charge neutralization

    SciTech Connect

    Efthimion, Philip C.; Gilson, Erik; Grisham, Larry; Davidson, Ronald C.; Yu, Simon S.; Logan, B. Grant

    2003-05-01

    Highly ionized plasmas are being used as a medium for charge neutralizing heavy ion beams in order to focus the ion beam to a small spot size. A radio frequency (RF) plasma source has been built at the Princeton Plasma Physics Laboratory (PPPL) in support of the joint Neutralized Transport Experiment (NTX) at the Lawrence Berkeley National Laboratory (LBNL) to study ion beam neutralization with plasma. The goal is to operate the source at pressures {approx} 10{sup -5} Torr at full ionization. The initial operation of the source has been at pressures of 10{sup -4}-10{sup -1} Torr and electron densities in the range of 10{sup 8}-10{sup 11} cm{sup -3}. Recently, pulsed operation of the source has enabled operation at pressures in the 10{sup -6} Torr range with densities of 10{sup 11} cm{sup -3}. Near 100% ionization has been achieved. The source has been integrated with the NTX facility and experiments have begun.

  10. A microwave plasma cathode electron gun for ion beam neutralization

    NASA Astrophysics Data System (ADS)

    Fusellier, C.; Wartski, L.; Aubert, J.; Schwebel, C.; Coste, Ph.; Chabrier, A.

    1998-02-01

    It is well known that there exist two distinct types of ion beam neutralization, viz., charge and current neutralization. We have designed and studied a versatile and compact microwave plasma (MP) cathode electron gun dedicated to charge as well as current neutralization. Unlike the conventional hot cathode neutralizer, this MP cathode allows operation of the electron gun in a reactive gaseous environment when it is eventually associated with an electron cyclotron resonance (ECR) ion gun. Charge neutralization can be easily carried out by extracting from the MP cathode through a 1 mm diameter hole, a 35 mA electron beam under a 20 V voltage; the MP cathode being fed with a 75 W microwave power at 2.45 GHz. Higher beam intensities could be obtained using a multiaperture thin plate. Electron beam intensities as high as 300 mA and energies of 2 keV needed for current neutralization, e.g., when an ion beam impinges onto a thick dielectric surface, are obtained via a two-stage arrangement including an anodic chamber associated with a set of three monoaperture plates for the electron beam extraction. Transport of 200-2000 eV electron beams is ensured using focusing optics composed of three aligned tubes 6 cm in diameter and unsymmetrically polarized.

  11. Radiation from long pulse train electron beams in space plasmas

    NASA Technical Reports Server (NTRS)

    Harker, K. J.; Banks, P. M.

    1985-01-01

    A previous study of electromagnetic radiation from a finite train of electron pulses is extended to an infinite train of such pulses. The electrons are assumed to follow an idealized helical path through a space plasma in such a manner as to retain their respective position within the beam. This leads to radiation by coherent spontaneous emission. The waves of interest in this region are the whistler slow (compressional) and fast (torsional) Alfven waves. Although a general theory is developed, analysis is then restricted to two approximations, the short and long electron beam. Formulas for the radiation per unit solid angle from the short beam are presented as a function of both propagation and ray angles, electron beam pulse width and separation and beam current, voltage, and pitch angle. Similar formulas for the total power radiated from the long beam are derived as a function of frequency, propagation angle, and ray angle. Predictions of the power radiated are presented for representative examples as determined by the long beam theory.

  12. Experimental evidence of beam-foil plasma creation during ion-solid interaction

    NASA Astrophysics Data System (ADS)

    Sharma, Prashant; Nandi, Tapan

    2016-08-01

    Charge state evolution of the energetic projectile ions during the passage through thin carbon foils has been revisited using the X-ray spectroscopy technique. Contributions from the bulk and the solid surface in the charge changing processes have been segregated by measuring the charge state distribution of the projectile ions in the bulk of the target during the ion-solid interaction. Interestingly, the charge state distribution measured in the bulk exhibits Lorentzian profile in contrast to the well-known Gaussian structure observed using the electromagnetic methods and the theoretical predictions. The occurrence of such behavior is a direct consequence of the imbalance between charge changing processes, which has been seen in various cases of the laboratory plasma. It suggests that the ion-solid collisions constitute high-density, localized plasma in the bulk of the solid target, called the beam-foil plasma. This condensed beam-foil plasma is similar to the high-density solar and stellar plasma which may have practical implementations in various fields, in particular, plasma physics and nuclear astrophysics. The present work suggests further modification in the theoretical charge state distribution calculations by incorporating the plasma coupling effects during the ion-solid interactions. Moreover, the multi-electron capture from the target exit surface has been confirmed through comparison between experimentally measured and theoretically predicted values of the mean charge state of the projectile ions.

  13. Role of beam absorption in plasma during laser welding

    SciTech Connect

    SEMAK,V.V.; STEELE,R.J.; FUERSCHBACH,PHILLIP W.; DAMKROGER,BRIAN K.

    2000-05-15

    The relationship between beam focus position and penetration depth in CW laser welding was studied numerically and experimentally for different welding conditions. Calculations were performed using a transient hydrodynamic model that incorporates the effect of evaporation recoil pressure and the associated melt expulsion. The simulation results are compared with measurements made on a series of test welds obtained using a 1650 W CO{sub 2} laser. The simulations predict, and the experiments confirm, that maximum penetration occurs with a specific location of the beam focus, with respect to the original sample surface, and that this relationship depends on the processing conditions. In particular, beam absorption in the plasma has a significant effect on the relationship between penetration and focus position. When the process parameters result in strong beam absorption in the keyhole plasma, the maximum penetration will occur when the laser focus is at or above the sample surface. In a case of weak absorption however, the penetration depth reaches its maximum value when the beam focus is located below the sample surface. In all cases, the numerical results are in good agreement with the experimental measurements.

  14. Coulomb repulsion and the electron beam directed energy weapon

    NASA Astrophysics Data System (ADS)

    Retsky, Michael W.

    2004-09-01

    Mutual repulsion of discrete charged particles or Coulomb repulsion is widely considered to be an ultimate hard limit in charged particle optics. It prevents the ability to finely focus high current beams into small spots at large distances from defining apertures. A classic example is the 1970s era "Star Wars" study of an electron beam directed energy weapon as an orbiting antiballistic missile device. After much analysis, it was considered physically impossible to focus a 1000-amp 1-GeV beam into a 1-cm diameter spot 1000-km from the beam generator. The main reason was that a 1-cm diameter beam would spread to 5-m diameter at 1000-km due to Coulomb repulsion. Since this could not be overcome, the idea was abandoned. But is this true? What if the rays were reversed? That is, start with a 5-m beam converging slightly with the same nonuniform angular and energy distribution as the electrons from the original problem were spreading at 1000-km distance. Could Coulomb repulsion be overcome? Looking at the terms in computational studies, some are reversible while others are not. Based on estimates, the nonreversible terms should be small - of the order of 0.1 mm. If this is true, it is possible to design a practical electron beam directed weapon not limited by Coulomb repulsion.

  15. Beam-Plasma Instabilities in a 2D Yukawa Lattice

    SciTech Connect

    Kyrkos, S.; Kalman, G. J.; Rosenberg, M.

    2009-06-05

    We consider a 2D Yukawa lattice of grains, with a beam of other charged grains moving in the lattice plane. In contrast to Vlasov plasmas, where the electrostatic instability excited by the beam is only longitudinal, here both longitudinal and transverse instabilities of the lattice phonons can develop. We determine and compare the transverse and longitudinal growth rates. The growth rate spectrum in wave number space exhibits remarkable gaps where no instability can develop. Depending on the system parameters, the transverse instability can be selectively excited.

  16. Betatron Radiation from a Beam Driven Plasma Source

    SciTech Connect

    Litos, M.; Corde, S.; /SLAC

    2012-08-13

    Photons produced by the betatron oscillation of electrons in a beam-driven plasma wake provide a uniquely intense and high-energy source of hard X-rays and gamma rays. This betatron radiation is interesting not only for its high intensity and spectral characteristics, but also because it can be used as a diagnostic for beam matching into the plasma, which is critical for maximizing the energy extraction efficiency of a plasma accelerator stage. At SLAC, gamma ray detection devices have been installed at the dump area of the FACET beamline where the betatron radiation from the plasma source used in the E200 plasma wakefield acceleration experiment may be observed. The ultra-dense, high-energy beam at FACET (2 x 10{sup 10} electrons, 20 x 20 {micro}m{sup 2} spot, 20-100 {micro}m length, 20 GeV energy) when sent into a plasma source with a nominal density of {approx} 1 x 10{sup 17} cm{sup -3} will generate synchrotron-like spectra with critical energies well into the tens of MeV. The intensity of the radiation can be increased by introducing a radial offset to the centroid of the witness bunch, which may be achieved at FACET through the use of a transverse deflecting RF cavity. The E200 gamma ray detector has two main components: a 30 x 35 cm{sup 2} phosphorescent screen for observing the transverse extent of the radiation, and a sampling electromagnetic calorimeter outfitted with photodiodes for measuring the on-axis spectrum. To estimate the spectrum, the observed intensity patterns across the calorimeter are fit with a Gaussian-integrated synchrotron spectrum and compared to simulations. Results and observations from the first FACET user run (April-June 2012) are presented.

  17. Betatron radiation from a beam driven plasma source

    SciTech Connect

    Litos, M.; Corde, S.

    2012-12-21

    Photons produced by the betatron oscillation of electrons in a beam-driven plasma wake provide a uniquely intense and high-energy source of hard X-rays and gamma rays. This betatron radiation is interesting not only for its high intensity and spectral characteristics, but also because it can be used as a diagnostic for beam matching into the plasma, which is critical for maximizing the energy extraction efficiency of a plasma accelerator stage. At SLAC, gamma ray detection devices have been installed at the dump area of the FACET beamline where the betatron radiation from the plasma source used in the E200 plasma wakefield acceleration experiment may be observed. The ultra-dense, high-energy beam at FACET (2 Multiplication-Sign 10{sup 10} electrons, 20 Multiplication-Sign 20{mu}m{sup 2} spot, 20 - 100{mu}m length, 20GeV energy) when sent into a plasma source with a nominal density of {approx} 1 Multiplication-Sign 10{sup 17} cm{sup -3} will generate synchrotron-like spectra with critical energies well into the tens of MeV. The intensity of the radiation can be increased by introducing a radial offset to the centroid of the witness bunch, which may be achieved at FACET through the use of a transverse deflecting RF cavity. The E200 gamma ray detector has two main components: a 30 Multiplication-Sign 35cm{sup 2} phosphorescent screen for observing the transverse extent of the radiation, and a sampling electromagnetic calorimeter outfitted with photodiodes for measuring the on-axis spectrum. To estimate the spectrum, the observed intensity patterns across the calorimeter are fit with a Gaussian-integrated synchrotron spectrum and compared to simulations. Results and observations from the first FACET user run (April-June 2012) are presented.

  18. Beam Anisotropy Effect on Alfven Eigenmode Stability in ITER-like Plasma

    SciTech Connect

    N.N. Gorelenkov; H.L. Berk; R.V. Budny

    2004-08-18

    This work studies the stability of the toroidicity-induced Alfven Eigenmodes (TAE) in the proposed ITER burning plasma experiment, which can be driven unstable by two groups of energetic particles, the 3.5-MeV {alpha}-particle fusion products and the tangentially injected 1-MeV beam ions. Both species are super-Alfvenic but they have different pitch-angle distributions and the drive for the same pressure gradients is typically stronger from co-injected beam ions as compared with the isotropically distributed {alpha}-particles. This study includes the effect of anisotropy of the beam-ion distribution function on TAE growth rate directly via the additional velocity space drive and indirectly in terms of the enhanced effect of the resonant particle phase space density. For near parallel injection, TAEs are marginally unstable if the injection aims at the plasma center where the ion Landau damping is strong, whereas with the off-axis neutral-beam injection the instability is stronger with the growth rate near 0.5% of TAE mode frequency. In contrast, for perpendicular beam injection TAEs are predicted to be stabilized in nominal ITER discharges. In addition, the effect of TAEs on the fast-ion beta profiles is evaluated on the bases of a quasi-linear diffusion model which makes use of analytic expressions for the local growth and damping rates. These results illustrate the parameter window that is available for plasma burn when TAE modes are excited.

  19. Laser-beam zooming to mitigate crossed-beam energy losses in direct-drive implosions.

    PubMed

    Igumenshchev, I V; Froula, D H; Edgell, D H; Goncharov, V N; Kessler, T J; Marshall, F J; McCrory, R L; McKenty, P W; Meyerhofer, D D; Michel, D T; Sangster, T C; Seka, W; Skupsky, S

    2013-04-01

    Spherically symmetric direct-drive-ignition designs driven by laser beams with a focal-spot size nearly equal to the target diameter suffer from energy losses due to crossed-beam energy transfer (CBET). Significant reduction of CBET and improvements in implosion hydrodynamic efficiency can be achieved by reducing the beam diameter. Narrow beams increase low-mode perturbations of the targets because of decreased illumination uniformity that degrades implosion performance. Initiating an implosion with nominal beams (equal in size to the target diameter) and reducing the beam diameter by ∼ 30%-40% after developing a sufficiently thick target corona, which smooths the perturbations, mitigate CBET while maintaining low-mode target uniformity in ignition designs with a fusion gain ≫ 1. PMID:25166997

  20. Use of molecular beams to support microspheres during plasma coating

    SciTech Connect

    Crane, J.K.; Smith, R.D.; Johnson, W.L.; Letts, S.A.; Korbel, G.R.; Krenick, R.M.

    1980-08-26

    Spherical laser fusion targets can be levitated on beams of Ar or other gas atoms. This is an especially useful and reliable technique for supporting microspheres during plasma coating or plasma etching. The reliability of this technique is principally the result of two things: the success of a special centering device which provides a lateral, stabilizing force on the levitated microspheres; and a gas handling system which is capable of controlling levitation gas flow in the microtorr liter/sec range. We have determined that the operational regime of this device is that of Knudsen's flow. This knowledge of the flow characteristics has been important in developing this device.

  1. Evaluation of two-beam spectroscopy as a plasma diagnostic

    SciTech Connect

    Billard, B.D.

    1980-04-01

    A two-beam spectroscopy (TBS) system is evaluated theoretically and experimentally. This new spectroscopic technique uses correlations between components of emitted light separated by a small difference in angle of propagation. It is thus a non-perturbing plasma diagnostic which is shown to provide local (as opposed to line-of-sight averaged) information about fluctuations in the density of light sources within a plasma - information not obtainable by the usual spectroscopic methods. The present design is an improvement on earlier systems proposed in a thesis by Rostler.

  2. Toroidal midplane neutral beam armor and plasma limiter

    DOEpatents

    Kugel, H.W.; Hand, S.W. Jr.; Ksayian, H.

    1985-05-31

    This invention contemplates an armor shield/plasma limiter positioned upon the inner wall of a toroidal vacuum chamber within which is magnetically confined an energetic plasma in a tokamak nuclear fusion reactor. The armor shield/plasma limiter is thus of a general semi-toroidal shape and is comprised of a plurality of adjacent graphite plates positioned immediately adjacent to each other so as to form a continuous ring upon and around the toroidal chamber's inner wall and the reactor's midplane coil. Each plate has a generally semi-circular outer circumference and a recessed inner portion and is comprised of upper and lower half sections positioned immediately adjacent to one another along the midplane of the plate. With the upper and lower half sections thus joined, a channel or duct is provided within the midplane of the plate in which a magnetic flux loop is positioned. The magnetic flux loop is thus positioned immediately adjacent to the fusing toroidal plasma and serves as a diagnostic sensor with the armor shield/plasma limiter minimizing the amount of power from the energetic plasma as well as from the neutral particle beams heating the plasma incident upon the flux loop.

  3. Neutral Beam Injection for Plasma and Magnetic FieldDiagnostics

    SciTech Connect

    Vainionpaa, Jaakko Hannes; Leung, Ka Ngo; Kwan, Joe W.; Levinton,Fred

    2007-08-01

    At the Lawrence Berkeley National Laboratory (LBNL) adiagnostic neutral beam injection system for measuring plasma parameters,flow velocity, and local magnetic field is being developed. High protonfraction and small divergence is essential for diagnostic neutral beams.In our design, a neutral hydrogen beam with an 8 cm x 11 cm (or smaller)elliptical beam spot at 2.5 m from the end of the extraction column isproduced. The beam will deliver up to 5 A of hydrogen beam to the targetwith a pulse width of ~;1 s, once every 1 - 2 min. The H1+ ion species ofthe hydrogen beamwill be over 90 percent. For this application, we havecompared two types of RF driven multicusp ion sources operating at 13.56MHz. The first one is an ion source with an external spiral antennabehind a dielectric RF-window. The second one uses an internal antenna insimilar ion source geometry. The source needs to generate uniform plasmaover a large (8 cm x 5 cm) extraction area. We expect that the ion sourcewith internal antenna will be more efficient at producing the desiredplasma density but might have the issue of limited antenna lifetime,depending on the duty factor. For both approaches there is a need forextra shielding to protect the dielectric materials from the backstreaming electrons. The source walls will be made of insulator materialsuch as quartz that has been observed to generate plasma with higheratomic fraction than sources with metal walls. The ion beam will beextracted and accelerated by a set of grids with slits, thus forming anarray of 6 sheet-shaped beamlets. The multiple grid extraction will beoptimized using computer simulation programs. Neutralization of the beamwill be done in neutralization chamber, which has over 70 percentneutralization efficiency.

  4. Strategies for mitigating the ionization-induced beam head erosion problem in an electron-beam-driven plasma wakefield accelerator

    NASA Astrophysics Data System (ADS)

    An, W.; Zhou, M.; Vafaei-Najafabadi, N.; Marsh, K. A.; Clayton, C. E.; Joshi, C.; Mori, W. B.; Lu, W.; Adli, E.; Corde, S.; Litos, M.; Li, S.; Gessner, S.; Frederico, J.; Hogan, M. J.; Walz, D.; England, J.; Delahaye, J. P.; Muggli, P.

    2013-10-01

    Strategies for mitigating ionization-induced beam head erosion in an electron-beam-driven plasma wakefield accelerator (PWFA) are explored when the plasma and the wake are both formed by the transverse electric field of the beam itself. Beam head erosion can occur in a preformed plasma because of a lack of focusing force from the wake at the rising edge (head) of the beam due to the finite inertia of the electrons. When the plasma is produced by field ionization from the space charge field of the beam, the head erosion is significantly exacerbated due to the gradual recession (in the beam frame) of the 100% ionization contour. Beam particles in front of the ionization front cannot be focused (guided) causing them to expand as in vacuum. When they expand, the location of the ionization front recedes such that even more beam particles are completely unguided. Eventually this process terminates the wake formation prematurely, i.e., well before the beam is depleted of its energy. Ionization-induced head erosion can be mitigated by controlling the beam parameters (emittance, charge, and energy) and/or the plasma conditions. In this paper we explore how the latter can be optimized so as to extend the beam propagation distance and thereby increase the energy gain. In particular we show that, by using a combination of the alkali atoms of the lowest practical ionization potential (Cs) for plasma formation and a precursor laser pulse to generate a narrow plasma filament in front of the beam, the head erosion rate can be dramatically reduced. Simulation results show that in the upcoming “two-bunch PWFA experiments” on the FACET facility at SLAC national accelerator laboratory the energy gain of the trailing beam can be up to 10 times larger for the given parameters when employing these techniques. Comparison of the effect of beam head erosion in preformed and ionization produced plasmas is also presented.

  5. Energetic Ion Beam Production by a Low-Pressure Plasma Focus Discharge

    SciTech Connect

    Lim, L. K.; Yap, S. L.; Wong, C. S.

    2011-03-30

    Energetic ion beam emissions in a 3 kJ Mather type plasma focus operating at low-pressure regime are investigated. Deuterium gas is used and the discharge is operated in a low-pressure regime of below 1 mbar. Formation of the current sheath during the breakdown phase at the back wall is assisted by a set delayed trigger pulse. Energetic and intense ion beams with good reproducibility have been obtained for the operating pressure ranging from 0.05 mbar to 0.5 mbar. Deuteron beam is determined by time resolved measurement by making use of three biased ion collectors placed at the end on direction. The average energies of deuteron beams are resolved by using time-of flight method. Correlation between the ion emissions and the current sheath dynamics is also discussed.

  6. Application of electron beam plasma for biopolymers modification

    NASA Astrophysics Data System (ADS)

    Vasilieva, T. M.

    2012-06-01

    The effects of the Electron Beam Plasma treatment on natural polysaccharide chitosan were studied experimentally. Low molecular water-soluble products of chitosan and chitooligosaccharides were obtained by treating the original polymers in the Electron Beam Plasma of oxygen and water vapor. The molecular mass of the products varied from 18 kDa to monomeric fragments. The degradation of the original polymers was due to the action of active oxygen particles (atomic and singlet oxygen) and the particles of the water plasmolysis (hydroxyl radicals, hydrogen peroxides). The 95% yield of low molecular weight chitosans was attained by optimizing the treatment conditions. The studies of the antimicrobial activity of low molecular products showed that they strongly inhibit the multiplication of colon bacillus, aurococcus and yeast-like fungi. The EBP-stimulated degradation of polysaccharides and proteins were found to result from breaking β-1,4 glycosidic bounds and peptide bonds, respectively.

  7. Excitation of Accelerating Plasma Waves by Counter-propagating Laser Beams

    SciTech Connect

    Gennady Shvets; Nathaniel J. Fisch; and Alexander Pukhov

    2001-08-30

    Generation of accelerating plasma waves using two counter-propagating laser beams is considered. Colliding-beam accelerator requires two laser pulses: the long pump and the short timing beam. We emphasize the similarities and differences between the conventional laser wakefield accelerator and the colliding-beam accelerator (CBA). The highly nonlinear nature of the wake excitation is explained using both nonlinear optics and plasma physics concepts. Two regimes of CBA are considered: (i) the short-pulse regime, where the timing beam is shorter than the plasma period, and (ii) the parametric excitation regime, where the timing beam is longer than the plasma period. Possible future experiments are also outlined.

  8. Plasma charge current for controlling and monitoring electron beam welding with beam oscillation.

    PubMed

    Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy

    2012-01-01

    Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process. PMID:23242276

  9. Plasma Charge Current for Controlling and Monitoring Electron Beam Welding with Beam Oscillation

    PubMed Central

    Trushnikov, Dmitriy; Belenkiy, Vladimir; Shchavlev, Valeriy; Piskunov, Anatoliy; Abdullin, Aleksandr; Mladenov, Georgy

    2012-01-01

    Electron beam welding (EBW) shows certain problems with the control of focus regime. The electron beam focus can be controlled in electron-beam welding based on the parameters of a secondary signal. In this case, the parameters like secondary emissions and focus coil current have extreme relationships. There are two values of focus coil current which provide equal value signal parameters. Therefore, adaptive systems of electron beam focus control use low-frequency scanning of focus, which substantially limits the operation speed of these systems and has a negative effect on weld joint quality. The purpose of this study is to develop a method for operational control of the electron beam focus during welding in the deep penetration mode. The method uses the plasma charge current signal as an additional informational parameter. This parameter allows identification of the electron beam focus regime in electron-beam welding without application of additional low-frequency scanning of focus. It can be used for working out operational electron beam control methods focusing exactly on the welding. In addition, use of this parameter allows one to observe the shape of the keyhole during the welding process. PMID:23242276

  10. Plasma and ion barrier for electron beam spot stability

    SciTech Connect

    Kwan, T.J.T.; Snell, C.M.

    1999-04-01

    The concept of a self-biased target to spatially confine the ions generated by the bombardment of intense electron beams on bremsstrahlung conversion targets has been predicted by computer simulation and further verified by experiments at the Integrated Test Stand for DARHT at Los Alamos National Laboratory. This technical article reports an alternative method of containing the plasmas and ions from the bremsstrahlung conversion target if the energy density of the electron beam is below a certain threshold. With the proposed changes of the electron beam parameters of the second axis of DARHT, the authors are able to show that a thin (0.5 mm) metallic barrier such as pure beryllium, or boron carbide with desirable thermal properties, is sufficiently transparent to the 20 MeV DARHT beam and at the same time able to confine the ions between the target and the barrier foil. The temperature rise in the foil due to energy deposited by the electron beam is expected to be below the melting point of the materials for the first three pulses. More important, they have shown in their time dependent particle-in-cell simulations that the deployment of a barrier situated 1 to 2 cm away from the converter target can achieve the ion confinement needed for the stability of the electron beam spot.

  11. Radio Spectroscopic Imaging of Bi-directional Electron Beam Pairs in a Solar Flare

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Wang, Zhitao; Gary, Dale E.

    2016-05-01

    In solar flares, energetic electrons are believed to be accelerated at or near the magnetic reconnection site. They propagate outward along newly reconnected field lines usually in the form of electron beams. These beams can emit radio waves commonly known as type III radio bursts. An important feature of these bursts is that they are emitted near the local plasma frequency or its harmonic, which is only a function of the ambient plasma density. In particular, an electron beam propagating upward in the corona encounters plasma with lower and lower density, producing a radio burst with a “normal” frequency slope (whose frequency decreases in time). Similarly, a downward propagating beam produces a reverse-slope burst. Sometimes both the normal- and reverse-slope type III bursts are observed simultaneously. These type III burst with opposite slopes have been considered to be the signature of a pair of bi-directional electron beams emerging from a common acceleration site. However, previous studies had no imaging capability to locate these bursts and put them in the flare context. Here we report observations of decimetric type III burst pairs by the Karl G. Jansky Very Large Array (VLA) during the impulsive phase of a C5.6 flare. Using VLA’s unprecedented ultra-high-cadence spectroscopic imaging capability, we demonstrate that the type III burst pairs indeed correspond to high speed (~0.1c), bi-directional electron beams emerging from a common site in the corona where post-flare loops appeared later on. Implications of our results on magnetic reconnection and particle acceleration will be briefly discussed.

  12. Two-dimensional studies of relativistic electron beam plasma instabilities in an inhomogeneous plasma

    SciTech Connect

    Shukla, Chandrasekhar; Das, Amita; Patel, Kartik

    2015-11-15

    Relativistic electron beam propagation in plasma is fraught with several micro instabilities like two stream, filamentation, etc., in plasma. This results in severe limitation of the electron transport through a plasma medium. Recently, however, there has been an experimental demonstration of improved transport of Mega Ampere of electron currents (generated by the interaction of intense laser with solid target) in a carbon nanotube structured solid target [G. Chatterjee et al., Phys. Rev. Lett. 108, 235005 (2012)]. This then suggests that the inhomogeneous plasma (created by the ionization of carbon nanotube structured target) helps in containing the growth of the beam plasma instabilities. This manuscript addresses this issue with the help of a detailed analytical study and 2-D Particle-In-Cell simulations. The study conclusively demonstrates that the growth rate of the dominant instability in the 2-D geometry decreases when the plasma density is chosen to be inhomogeneous, provided the scale length 1/k{sub s} of the inhomogeneous plasma is less than the typical plasma skin depth (c/ω{sub 0}) scale. At such small scale lengths channelization of currents is also observed in simulation.

  13. Two-dimensional studies of relativistic electron beam plasma instabilities in an inhomogeneous plasma

    NASA Astrophysics Data System (ADS)

    Shukla, Chandrasekhar; Das, Amita; Patel, Kartik

    2015-11-01

    Relativistic electron beam propagation in plasma is fraught with several micro instabilities like two stream, filamentation, etc., in plasma. This results in severe limitation of the electron transport through a plasma medium. Recently, however, there has been an experimental demonstration of improved transport of Mega Ampere of electron currents (generated by the interaction of intense laser with solid target) in a carbon nanotube structured solid target [G. Chatterjee et al., Phys. Rev. Lett. 108, 235005 (2012)]. This then suggests that the inhomogeneous plasma (created by the ionization of carbon nanotube structured target) helps in containing the growth of the beam plasma instabilities. This manuscript addresses this issue with the help of a detailed analytical study and 2-D Particle-In-Cell simulations. The study conclusively demonstrates that the growth rate of the dominant instability in the 2-D geometry decreases when the plasma density is chosen to be inhomogeneous, provided the scale length 1/ks of the inhomogeneous plasma is less than the typical plasma skin depth (c/ω0) scale. At such small scale lengths channelization of currents is also observed in simulation.

  14. Excitation of Plasma Waves in Aurora by Electron Beams

    NASA Technical Reports Server (NTRS)

    daSilva, C. E.; Vinas, A. F.; deAssis, A. S.; deAzevedo, C. A.

    1996-01-01

    In this paper, we study numerically the excitation of plasma waves by electron beams, in the auroral region above 2000 km of altitude. We have solved the fully kinetic dispersion relation, using numerical method and found the real frequency and the growth rate of the plasma wave modes. We have examined the instability properties of low-frequency waves such as the Electromagnetic Ion Cyclotron (EMIC) wave as well as Lower-Hybrid (LH) wave in the range of high-frequency. In all cases, the source of free energy are electron beams propagating parallel to the geomagnetic field. We present some features of the growth rate modes, when the cold plasma parameters are changed, such as background electrons and ions species (H(+) and O(+)) temperature, density or the electron beam density and/or drift velocity. These results can be used in a test-particle simulation code, to investigate the ion acceleration and their implication in the auroral acceleration processes, by wave-particle interaction.

  15. Electron beam charge diagnostics for laser plasma accelerators

    NASA Astrophysics Data System (ADS)

    Nakamura, K.; Gonsalves, A. J.; Lin, C.; Smith, A.; Rodgers, D.; Donahue, R.; Byrne, W.; Leemans, W. P.

    2011-06-01

    A comprehensive study of charge diagnostics is conducted to verify their validity for measuring electron beams produced by laser plasma accelerators (LPAs). First, a scintillating screen (Lanex) was extensively studied using subnanosecond electron beams from the Advanced Light Source booster synchrotron, at the Lawrence Berkeley National Laboratory. The Lanex was cross calibrated with an integrating current transformer (ICT) for up to the electron energy of 1.5 GeV, and the linear response of the screen was confirmed for charge density and intensity up to 160pC/mm2 and 0.4pC/(psmm2), respectively. After the radio-frequency accelerator based cross calibration, a series of measurements was conducted using electron beams from an LPA. Cross calibrations were carried out using an activation-based measurement that is immune to electromagnetic pulse noise, ICT, and Lanex. The diagnostics agreed within ±8%, showing that they all can provide accurate charge measurements for LPAs.

  16. Plasma Emission by Counter-streaming Electron Beams

    NASA Astrophysics Data System (ADS)

    Ziebell, L. F.; Petruzzellis, L. T.; Yoon, P. H.; Gaelzer, R.; Pavan, J.

    2016-02-01

    The radiation emission mechanism responsible for both type-II and type-III solar radio bursts is commonly accepted as plasma emission. Recently Ganse et al. suggested that type-II radio bursts may be enhanced when the electron foreshock geometry of a coronal mass ejection contains a double hump structure. They reasoned that the counter-streaming electron beams that exist between the double shocks may enhance the nonlinear coalescence interaction, thereby giving rise to more efficient generation of radiation. Ganse et al. employed a particle-in-cell simulation to study such a scenario. The present paper revisits the same problem with EM weak turbulence theory, and show that the fundamental (F) emission is not greatly affected by the presence of counter-streaming beams, but the harmonic (H) emission becomes somewhat more effective when the two beams are present. The present finding is thus complementary to the work by Ganse et al.

  17. Ion beam and plasma methods of producing diamondlike carbon films

    NASA Technical Reports Server (NTRS)

    Swec, Diane M.; Mirtich, Michael J.; Banks, Bruce A.

    1988-01-01

    A variety of plasma and ion beam techniques was employed to generate diamondlike carbon films. These methods included the use of RF sputtering, dc glow discharge, vacuum arc, plasma gun, ion beam sputtering, and both single and dual ion beam deposition. Since films were generated using a wide variety of techniques, the physico-chemical properties of these films varied considerably. In general, these films had characteristics that were desirable in a number of applications. For example, the films generated using both single and dual ion beam systems were evaluated for applications including power electronics as insulated gates and protective coatings on transmitting windows. These films were impervious to reagents which dissolve graphitic and polymeric carbon structures. Nuclear reaction and combustion analysis indicated hydrogen to carbon ratios to be 1.00, which allowed the films to have good transmittance not only in the infrared, but also in the visible. Other evaluated properties of these films include band gap, resistivity, adherence, density, microhardness, and intrinsic stress. The results of these studies and those of the other techniques for depositing diamondlike carbon films are presented.

  18. Probabilistic model of beam-plasma interaction and electromagnetic radioemission

    NASA Astrophysics Data System (ADS)

    Krasnoselskikh, Vladimir; Volokitin, Alexander; Krafft, Catherine; Voshchepynets, Andrii

    2016-07-01

    In this presentation we describe the effects of plasma density fluctuations in the solar wind on the relaxation of the electron beams accelerated in the bow shock front. The density fluctuations are supposed to be responsible for the changes in the local phase velocity of the Langmuir waves generated by the beam instability. Changes in the wave phase velocity during the wave propagation can be described in terms of probability distribution function determined by distribution of the density fluctuations. Using these probability distributions we describe resonant wave particle interactions by a system of equations, similar to well known quasi-linear approximation, where the conventional velocity diffusion coefficient and the wave growth rate are replaced by the averaged in the velocity space. It was shown that the process of relaxation of electron beam is accompanied by transformation of significant part of the beam kinetic energy to energy of the accelerated particles via generation and absorption of the Langmuir waves. Generated Langmuir waves are transformed into electromagnetic waves in the vicinity of the reflection points when the level of density fluctuations is large enough. We evaluate the level of the radiowaves intensity, and the emissivity diagram of radiowaves emission around plasma frequency and its harmonics.

  19. Energy characteristics of beam-plasma interaction in a closed volume

    NASA Astrophysics Data System (ADS)

    Klykov, I. L.; Tarakanov, V. P.; Shustin, E. G.

    2012-03-01

    Energy exchange between an electron beam and plasma during a beam-plasma discharge in a closed cavity excited by the electron beam is analyzed using computer simulations by the KARAT code. A method allowing one to analyze the beam-plasma interaction in the quasi-steady stage of the discharge is proposed. Qualitative characteristics of energy exchange (such as beam energy losses and the energy distributions of beam electrons and plasma particles leaving the discharge) both during spontaneous discharge excitation and in the presence of initial beam modulation by regular or noiselike signals are determined. The results obtained enable one to estimate the energy characteristics of a plasma processing reactor based on a beam-plasma discharge.

  20. Crossed-beam energy transfer in direct-drive implosions

    SciTech Connect

    Seka, W; Edgell, D H; Michel, D T; Froula, D H; Goncharov, V N; Craxton, R S; Divol, L; Epstein, R; Follett, R; Kelly, J H; Kosc, T Z; Maximov, A V; McCrory, R L; Meyerhofer, D D; Michel, P; Myatt, J F; Sangster, T C; Shvydky, A; Skupsky, S; Stoeckl, C

    2012-05-22

    Direct-drive-implosion experiments on the OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1997)] have showed discrepancies between simulations of the scattered (non-absorbed) light levels and measured ones that indicate the presence of a mechanism that reduces laser coupling efficiency by 10%-20%. This appears to be due to crossed-beam energy transfer (CBET) that involves electromagnetic-seeded, low-gain stimulated Brillouin scattering. CBET scatters energy from the central portion of the incoming light beam to outgoing light, reducing the laser absorption and hydrodynamic efficiency of implosions. One-dimensional hydrodynamic simulations including CBET show good agreement with all observables in implosion experiments on OMEGA. Three strategies to mitigate CBET and improve laser coupling are considered: the use of narrow beams, multicolor lasers, and higher-Z ablators. Experiments on OMEGA using narrow beams have demonstrated improvements in implosion performance.

  1. Quasi-Airy beams along tunable propagation trajectories and directions.

    PubMed

    Qian, Yixian; Zhang, Site

    2016-05-01

    We present a theoretical and experimental exhibit that accelerates quasi-Airy beams propagating along arbitrarily appointed parabolic trajectories and directions in free space. We also demonstrate that such quasi-Airy beams can be generated by a tunable phase pattern, where two disturbance factors are introduced. The topological structures of quasi-Airy beams are readily manipulated with tunable phase patterns. Quasi-Airy beams still possess the characteristics of non-diffraction, self-healing to some extent, although they are not the solutions for paraxial wave equation. The experiments show the results are consistent with theoretical predictions. It is believed that the property of propagation along arbitrarily desired parabolic trajectories will provide a broad application in trapping atom and living cell manipulation. PMID:27137563

  2. Comparison endpoint study of process plasma and secondary electron beam exciter optical emission spectroscopy

    SciTech Connect

    Stephan Thamban, P. L.; Yun, Stuart; Padron-Wells, Gabriel; Hosch, Jimmy W.; Goeckner, Matthew J.

    2012-11-15

    Traditionally process plasmas are often studied and monitored by optical emission spectroscopy. Here, the authors compare experimental measurements from a secondary electron beam excitation and direct process plasma excitation to discuss and illustrate its distinctiveness in the study of process plasmas. They present results that show excitations of etch process effluents in a SF{sub 6} discharge and endpoint detection capabilities in dark plasma process conditions. In SF{sub 6} discharges, a band around 300 nm, not visible in process emission, is observed and it can serve as a good indicator of etch product emission during polysilicon etches. Based on prior work reported in literature the authors believe this band is due to SiF{sub 4} gas phase species.

  3. Generation of narrow divergence electron beams in relativistic laser-plasma interactions

    NASA Astrophysics Data System (ADS)

    Nakamura, H.; Hicks, G.; Najmudin, Z.; Vranic, M.; Silva, L. O.; Borghesi, M.; Doria, D.; Kar, Satya; Sarri, G.; Heathcote, R.; Scott, R.; Trines, R.; Guillaume, E.; Higson, E.; Swain, J.; Tang, K.; Weston, J.; Zak, P.; Tanaka, K. A.; Amano, Y.; Habara, H.; Skramic, M.; Bingham, B.; Norreys, P. A.

    2013-10-01

    The evacuation of plasma from channels formed during the interaction of intense laser pulses with under-dense plasma is attractive for a number of applications, particularly fast ignition inertial fusion. We investigated the channel formation using proton radiography as the diagnostic tool. We observed the interactions of ultra-intense laser pulse (120 J/ 15 ps/ 1053 nm) with a large scale-length plasma which was formed by the expansion of a plastic foil target by preheating with a laser pulse comprising 200 J/ 1 ns/ 527 nm, focused to 400-diameter. This experiment was set-up to mimic the coronal plasma experienced during the compression phase of a directly driven implosion. The results showed that laser-induced electron beam were guided by self-generated magnetic field. JSPS Postdoctoral Fellowships for Research Abroad.

  4. Directed Plasma Flow across Magnetic Field

    NASA Astrophysics Data System (ADS)

    Presura, R.; Stepanenko, Y.; Neff, S.; Sotnikov, V. I.

    2008-04-01

    The Hall effect plays a significant role in the penetration of plasma flows across magnetic field. For example, its effect may become dominant in the solar wind penetration into the magnetosphere, in the magnetic field advection in wire array z-pinch precursors, or in the arcing of magnetically insulated transmission lines. An experiment performed at the Nevada Terawatt Facility explored the penetration of plasma with large Hall parameter (˜10) across ambient magnetic field. The plasma was produced by ablation with the short pulse high intensity laser Leopard (0.35 ps, 10^17W/cm^2) and the magnetic field with the pulsed power generator Zebra (50 T). The expanding plasma assumed a jet configuration and propagated beyond a distance consistent with a diamagnetic bubble model. Without magnetic field, the plasma expansion was close to hemispherical. The ability to produce the plasma and the magnetic field with distinct generators allows a controlled, quasi-continuous variation of the Hall parameter and other plasma parameters making the experiments useful for benchmarking numerical simulations.

  5. Numerical model of the plasma formation at electron beam welding

    SciTech Connect

    Trushnikov, D. N.; Mladenov, G. M.

    2015-01-07

    The model of plasma formation in the keyhole in liquid metal as well as above the electron beam welding zone is described. The model is based on solution of two equations for the density of electrons and the mean electron energy. The mass transfer of heavy plasma particles (neutral atoms, excited atoms, and ions) is taken into account in the analysis by the diffusion equation for a multicomponent mixture. The electrostatic field is calculated using the Poisson equation. Thermionic electron emission is calculated for the keyhole wall. The ionization intensity of the vapors due to beam electrons and high-energy secondary and backscattered electrons is calibrated using the plasma parameters when there is no polarized collector electrode above the welding zone. The calculated data are in good agreement with experimental data. Results for the plasma parameters for excitation of a non-independent discharge are given. It is shown that there is a need to take into account the effect of a strong electric field near the keyhole walls on electron emission (the Schottky effect) in the calculation of the current for a non-independent discharge (hot cathode gas discharge). The calculated electron drift velocities are much bigger than the velocity at which current instabilities arise. This confirms the hypothesis for ion-acoustic instabilities, observed experimentally in previous research.

  6. Current interruption and particle beam generation by a plasma focus

    NASA Astrophysics Data System (ADS)

    Gerdin, G.; Venneri, F.

    1982-11-01

    Through collaboration with Dr. K. H. Schoenbach of Texas Tech University the plasma focus opening switch (PFOS) was revised to answer basic questions as to utility of the concept. To estimate the plasma temperature and classical resistivity a soft X-ray spectrometer and X-ray pinhole camera were developed. The temperature was estimated from a coronal model to range between 0.4 to 0.5 keV for either a nitrogen or neon impurity (1 to 2%) in deuterium at 3 torr. Strong pinches were observed in pure neon (0.6 torr) with an electron temperature in the same range. The corresponding classical resistance of the pinch is 9 m omega whereas 500 m omega is more consistent with output voltage pulse and current flow at interruption indicating anomalous resistivity is present. A one-dimensional two-fluid computer code has been developed to model anomalous resistivity in the pinch phase and preliminary results are consistent with the snowplow model. The final analysis of the plasma focus particle beam generation experiments was completed and a strong correlation was found for the beam-target model as the mechanism for neutron production in the Illinois plasma focus device.

  7. Physics data base for the Beam Plasma Neutron Source (BPNS)

    NASA Astrophysics Data System (ADS)

    Coensgen, F. H.; Casper, T. A.; Correll, D. L.; Damm, C. C.; Futch, A. H.; Molvik, A. W.

    1990-10-01

    A 14-MeV deuterium-tritium (D-T) neutron source for accelerated end-of-life testing of fusion reactor materials has been designed on the basis of a linear two-component collisional plasma system. An intense flux (up to 5 x 10(exp 18)/sq m sec) of 14 MeV neutrons is produced in a fully ionized high-density (n sub e approx. = 3 x 10(exp 21) per cu m) tritium target by transverse injection of 60 MW of neutral beam power. Power deposited in the target is removed by thermal electron conduction to large end chambers, where it is deposited in gaseous plasma collectors. We show in this paper that the major physics issues have now been experimentally demonstrated. These include magnetohydrodynamic (MHD) equilibrium and stability, microstability, startup, fueling, Spitzer electron thermal conductivity, and power deposition in a gaseous plasma collector. However, an integrated system was not demonstrated.

  8. Cross focusing of two laser beams and plasma wave excitation

    SciTech Connect

    Gupta, M.K.; Sharma, R.P.; Gupta, V.L.

    2005-12-15

    This article presents the cross focusing of two high power laser beams in a plasma when relativistic and ponderomotive nonlinearities are operative. The effect of electron density modification changes the critical power significantly in contrast to (only) relativistic case. The plasma wave generation at the difference frequency and particle acceleration has also been studied. In a typical case when laser wavelengths are 1047 and 1064 nm and electron density 1.9x10{sup 19} cm{sup -3}, the maximum electron plasma wave power flux comes out to be 6x10{sup 17} W/cm{sup 2} (laser power P{sub 1}=3.6x10{sup 18} W/cm{sup 2} and P{sub 2}=3.2x10{sup 18} W/cm{sup 2})

  9. Direct write electron beam lithography: a historical overview

    NASA Astrophysics Data System (ADS)

    Pfeiffer, Hans C.

    2010-09-01

    Maskless pattern generation capability in combination with practically limitless resolution made probe-forming electron beam systems attractive tools in the semiconductor fabrication process. However, serial exposure of pattern elements with a scanning beam is a slow process and throughput presented a key challenge in electron beam lithography from the beginning. To meet this challenge imaging concepts with increasing exposure efficiency have been developed projecting ever larger number of pixels in parallel. This evolution started in the 1960s with the SEM-type Gaussian beam systems writing one pixel at a time directly on wafers. During the 1970s IBM pioneered the concept of shaped beams containing multiple pixels which led to higher throughput and an early success of e-beam direct write (EBDW) in large scale manufacturing of semiconductor chips. EBDW in a mix-and match approach with optical lithography provided unique flexibility in part number management and cycle time reduction and proved extremely cost effective in IBM's Quick-Turn-Around-Time (QTAT) facilities. But shaped beams did not keep pace with Moore's law because of limitations imposed by the physics of charged particles: Coulomb interactions between beam electrons cause image blur and consequently limit beam current and throughput. A new technology approach was needed. Physically separating beam electrons into multiple beamlets to reduce Coulomb interaction led to the development of massively parallel projection of pixels. Electron projection lithography (EPL) - a mask based imaging technique emulating optical steppers - was pursued during the 1990s by Bell Labs with SCALPEL and by IBM with PREVAIL in partnership with Nikon. In 2003 Nikon shipped the first NCR-EB1A e-beam stepper based on the PREVAIL technology to Selete. It exposed pattern segments containing 10 million pixels in single shot and represented the first successful demonstration of massively parallel pixel projection. However the window

  10. Ion energy distribution near a plasma meniscus with beam extraction for multi element focused ion beams

    SciTech Connect

    Mathew, Jose V.; Paul, Samit; Bhattacharjee, Sudeep

    2010-05-15

    An earlier study of the axial ion energy distribution in the extraction region (plasma meniscus) of a compact microwave plasma ion source showed that the axial ion energy spread near the meniscus is small ({approx}5 eV) and comparable to that of a liquid metal ion source, making it a promising candidate for focused ion beam (FIB) applications [J. V. Mathew and S. Bhattacharjee, J. Appl. Phys. 105, 96101 (2009)]. In the present work we have investigated the radial ion energy distribution (IED) under the influence of beam extraction. Initially a single Einzel lens system has been used for beam extraction with potentials up to -6 kV for obtaining parallel beams. In situ measurements of IED with extraction voltages upto -5 kV indicates that beam extraction has a weak influence on the energy spread ({+-}0.5 eV) which is of significance from the point of view of FIB applications. It is found that by reducing the geometrical acceptance angle at the ion energy analyzer probe, close to unidirectional distribution can be obtained with a spread that is smaller by at least 1 eV.

  11. High-Directivity Emissions with Flexible Beam Numbers and Beam Directions Using Gradient-Refractive-Index Fractal Metamaterial

    NASA Astrophysics Data System (ADS)

    Xu, He-Xiu; Wang, Guang-Ming; Tao, Zui; Cui, Tie Jun

    2014-07-01

    A three-dimensional (3D) highly-directive emission system is proposed to enable beam shaping and beam steering capabilities in wideband frequencies. It is composed of an omnidirectional source antenna and several 3D gradient-refractive-index (GRIN) lenses. To engineer a broadband impedance match, the design method for these 3D lenses is established under the scenario of free-space excitation by using a planar printed monopole. For realizations and demonstrations, a kind of GRIN metamaterial is proposed, which is constructed by non-uniform fractal geometries. Due to the non-resonant and deep-subwavelength features of the fractal elements, the resulting 3D GRIN metamaterial lenses have extra wide bandwidth (3 to 7.5 GHz), and are capable of manipulating electromagnetic wavefronts accurately, advancing the state of the art of available GRIN lenses. The proposal for the versatile highly-directive emissions has been confirmed by simulations and measurements, showing that not only the number of beams can be arbitrarily tailored but also the beam directions can be steerable. The proposal opens a new way to control broadband highly-directive emissions with pre-designed directions, promising great potentials in modern wireless communication systems.

  12. High-Directivity Emissions with Flexible Beam Numbers and Beam Directions Using Gradient-Refractive-Index Fractal Metamaterial

    PubMed Central

    Xu, He-Xiu; Wang, Guang-Ming; Tao, Zui; Cui, Tie Jun

    2014-01-01

    A three-dimensional (3D) highly-directive emission system is proposed to enable beam shaping and beam steering capabilities in wideband frequencies. It is composed of an omnidirectional source antenna and several 3D gradient-refractive-index (GRIN) lenses. To engineer a broadband impedance match, the design method for these 3D lenses is established under the scenario of free-space excitation by using a planar printed monopole. For realizations and demonstrations, a kind of GRIN metamaterial is proposed, which is constructed by non-uniform fractal geometries. Due to the non-resonant and deep-subwavelength features of the fractal elements, the resulting 3D GRIN metamaterial lenses have extra wide bandwidth (3 to 7.5 GHz), and are capable of manipulating electromagnetic wavefronts accurately, advancing the state of the art of available GRIN lenses. The proposal for the versatile highly-directive emissions has been confirmed by simulations and measurements, showing that not only the number of beams can be arbitrarily tailored but also the beam directions can be steerable. The proposal opens a new way to control broadband highly-directive emissions with pre-designed directions, promising great potentials in modern wireless communication systems. PMID:25034268

  13. High-directivity emissions with flexible beam numbers and beam directions using gradient-refractive-index fractal metamaterial.

    PubMed

    Xu, He-Xiu; Wang, Guang-Ming; Tao, Zui; Cui, Tie Jun

    2014-01-01

    A three-dimensional (3D) highly-directive emission system is proposed to enable beam shaping and beam steering capabilities in wideband frequencies. It is composed of an omnidirectional source antenna and several 3D gradient-refractive-index (GRIN) lenses. To engineer a broadband impedance match, the design method for these 3D lenses is established under the scenario of free-space excitation by using a planar printed monopole. For realizations and demonstrations, a kind of GRIN metamaterial is proposed, which is constructed by non-uniform fractal geometries. Due to the non-resonant and deep-subwavelength features of the fractal elements, the resulting 3D GRIN metamaterial lenses have extra wide bandwidth (3 to 7.5 GHz), and are capable of manipulating electromagnetic wavefronts accurately, advancing the state of the art of available GRIN lenses. The proposal for the versatile highly-directive emissions has been confirmed by simulations and measurements, showing that not only the number of beams can be arbitrarily tailored but also the beam directions can be steerable. The proposal opens a new way to control broadband highly-directive emissions with pre-designed directions, promising great potentials in modern wireless communication systems. PMID:25034268

  14. Electron velocity distributions and plasma waves associated with the injection of an electron beam into the ionosphere

    SciTech Connect

    Frank, L. A.; Paterson, W. R.; Ashour-Abdalla, M.; Schriver, D.; Kurth, W. S.; Gurnett, D. A.

    1989-06-01

    An electron beam was injected into Earth's ionosphere on August 1, 1985, the flight of the space shuttle /ital Challenger/ as part of the objectives of the Spacelab 2 mission. In the wake of the space shuttle a magnetically aligned sheet of electrons returning from the direction of propagation of the beam was detected with the free-flying plasma Diagnostics Package. The thickness of this sheet of returning electrons was about 20 m. Large intensifications of broadband electrostatic noise were also observed within this sheet of electrons. A numerical simulation of the interaction of the electron beam with the ambient ionospheric plasmas is employed to show that the electron beam excites electron plasma oscillations and that it is possible for the ion ascoustic instability to provide a returning flux of hot electorns by means of quasi-linear diffusion. /copyright/ American Geophysical Union 1989

  15. Electron velocity distributions and plasma waves associated with the injection of an electron beam into the ionosphere

    NASA Astrophysics Data System (ADS)

    Frank, L. A.; Paterson, W. R.; Kurth, W. S.; Ashour-Abdalla, M.; Schriver, D.

    1989-06-01

    An electron beam was injected into earth's ionosphere on August 1, 1985, during the flight of the Space Shuttle Challenger as part of the objectives of the Spacelab 2 mission. In the wake of the Space Shuttle a magnetically aligned sheet of electrons returning from the direction of propagation of the beam was detected with the free-flying Plasma Diagnostics Package. The thickness of this sheet of returning electrons was about 20 m. Large intensifications of broadband electrostatic noise were also observed within this sheet of electrons. A numerical simulation of the interaction of the electron beam with the ambient ionospheric plasmas is employed to show that the electron beam excites electron plasma oscillations and that it is possible for the ion acoustic instability to provide a returning flux of hot electrons by means of quasi-linear diffusion.

  16. Stabilization of sawteeth with third harmonic deuterium ICRF-accelerated beam in JET plasmas

    NASA Astrophysics Data System (ADS)

    Girardo, Jean-Baptiste; Sharapov, Sergei; Boom, Jurrian; Dumont, Rémi; Eriksson, Jacob; Fitzgerald, Michael; Garbet, Xavier; Hawkes, Nick; Kiptily, Vasily; Lupelli, Ivan; Mantsinen, Mervi; Sarazin, Yanick; Schneider, Mireille

    2016-01-01

    Sawtooth stabilisation by fast ions is investigated in deuterium (D) and D-helium 3 (He3) plasmas of JET heated by deuterium Neutral Beam Injection combined in synergy with Ion Cyclotron Resonance Heating (ICRH) applied on-axis at 3rd beam cyclotron harmonic. A very significant increase in the sawtooth period is observed, caused by the ICRH-acceleration of the beam ions born at 100 keV to the MeV energy range. Four representative sawteeth from four different discharges are compared with Porcelli's model. In two discharges, the sawtooth crash appears to be triggered by core-localized Toroidal Alfvén Eigenmodes inside the q = 1 surface (also called "tornado" modes) which expel the fast ions from within the q = 1 surface, over time scales comparable with the sawtooth period. Two other discharges did not exhibit fast ion-driven instabilities in the plasma core, and no degradation of fast ion confinement was found in both modelling and direct measurements of fast ion profile with the neutron camera. The developed sawtooth scenario without fast ion-driven instabilities in the plasma core is of high interest for the burning plasmas. Possible causes of the sawtooth crashes on JET are discussed.

  17. Guiding of Laser Beams in Plasmas by Radiation Cascade Compression

    NASA Astrophysics Data System (ADS)

    Kalmykov, Serguei; Shvets, Gennady

    2006-11-01

    The near-resonant heatwave excitation of an electron plasma wave (EPW) can be employed for generating trains of few-fs electromagnetic pulses in rarefied plasmas. The EPW produces a co-moving index grating that induces a laser phase modulation at the beat frequency. Consequently, the cascade of sidebands red- and blue-shifted from the fundamental by integer multiples of the beat frequency is generated in the laser spectrum. When the beat frequency is lower than the electron plasma frequency, the phase chirp enables laser beatnote compression by the group velocity dispersion [S. Kalmykov and G. Shvets, Phys. Rev. E 73, 046403 (2006)]. In the 3D cylindrical geometry, the frequency-downshifted EPW not only modulates the laser frequency, but also causes the pulse to self-focus [P. Gibbon, Phys. Fluids B 2, 2196 (1990)]. After self-focusing, the multi-frequency laser beam inevitably diverges. Remarkably, the longitudinal beatnote compression can compensate the intensity drop due to diffraction. A train of high-intensity radiation spikes with continually evolving longitudinal profile can be self-guided over several Rayleigh lengths in homogeneous plasmas. High amplitude of the EPW is maintained over the entire propagation length. Numerical experiments on the electron acceleration in the cascade-driven (cascade-guided) EPW [using the code WAKE by P. Mora and T. M. Antonsen Jr., Phys. Plasmas 4, 217 (1997)] show that achieving GeV electron energy is possible under realistic experimental parameters.

  18. Guiding of Laser Beams in Plasmas by Radiation Cascade Compression

    SciTech Connect

    Kalmykov, Serguei; Shvets, Gennady

    2006-11-27

    The near-resonant heatwave excitation of an electron plasma wave (EPW) can be employed for generating trains of few-fs electromagnetic pulses in rarefied plasmas. The EPW produces a co-moving index grating that induces a laser phase modulation at the beat frequency. Consequently, the cascade of sidebands red- and blue-shifted from the fundamental by integer multiples of the beat frequency is generated in the laser spectrum. When the beat frequency is lower than the electron plasma frequency, the phase chirp enables laser beatnote compression by the group velocity dispersion [S. Kalmykov and G. Shvets, Phys. Rev. E 73, 046403 (2006)]. In the 3D cylindrical geometry, the frequency-downshifted EPW not only modulates the laser frequency, but also causes the pulse to self-focus [P. Gibbon, Phys. Fluids B 2, 2196 (1990)]. After self-focusing, the multi-frequency laser beam inevitably diverges. Remarkably, the longitudinal beatnote compression can compensate the intensity drop due to diffraction. A train of high-intensity radiation spikes with continually evolving longitudinal profile can be self-guided over several Rayleigh lengths in homogeneous plasmas. High amplitude of the EPW is maintained over the entire propagation length. Numerical experiments on the electron acceleration in the cascade-driven (cascade-guided) EPW [using the code WAKE by P. Mora and T. M. Antonsen Jr., Phys. Plasmas 4, 217 (1997)] show that achieving GeV electron energy is possible under realistic experimental parameters.

  19. Growth and phase velocity of self-modulated beam-driven plasma waves.

    PubMed

    Schroeder, C B; Benedetti, C; Esarey, E; Grüner, F J; Leemans, W P

    2011-09-30

    A long, relativistic particle beam propagating in an overdense plasma is subject to the self-modulation instability. This instability is analyzed and the growth rate is calculated, including the phase relation. The phase velocity of the wake is shown to be significantly less than the beam velocity. These results indicate that the energy gain of a plasma accelerator driven by a self-modulated beam will be severely limited by dephasing. In the long-beam, strongly coupled regime, dephasing is reached in a homogeneous plasma in less than four e foldings, independent of beam-plasma parameters. PMID:22107202

  20. Growth and Phase Velocity of Self-Modulated Beam-Driven Plasma Waves

    SciTech Connect

    Schroeder, C. B.; Benedetti, C.; Esarey, E.; Leemans, W. P.; Gruener, F. J.

    2011-09-30

    A long, relativistic particle beam propagating in an overdense plasma is subject to the self-modulation instability. This instability is analyzed and the growth rate is calculated, including the phase relation. The phase velocity of the wake is shown to be significantly less than the beam velocity. These results indicate that the energy gain of a plasma accelerator driven by a self-modulated beam will be severely limited by dephasing. In the long-beam, strongly coupled regime, dephasing is reached in a homogeneous plasma in less than four e foldings, independent of beam-plasma parameters.

  1. Growth and phase velocity of self-modulated beam-driven plasma waves

    SciTech Connect

    Benedetti, Carlo; Esarey, Eric; Gruener, Florian; Leemans, Wim

    2011-09-20

    A long, relativistic particle beam propagating in an overdense plasma is subject to the self-modulation instability. This instability is analyzed and the growth rate is calculated, including the phase relation. The phase velocity of the wake is shown to be significantly less than the beam velocity. These results indicate that the energy gain of a plasma accelerator driven by a self-modulated beam will be severely limited by dephasing. In the long-beam, strongly-coupled regime, dephasing is reached in a homogeneous plasma in less than four e-foldings, independent of beam-plasma parameters.

  2. Numerical Simulation of the Self-Heating Effect Induced by Electron Beam Plasma in Atmosphere

    NASA Astrophysics Data System (ADS)

    Deng, Yongfeng; Tan, Chang; Han, Xianwei; Tan, Yonghua

    2012-02-01

    For exploiting advantages of electron beam air plasma in some unusual applications, a Monte Carlo (MC) model coupled with heat transfer model is established to simulate the characteristics of electron beam air plasma by considering the self-heating effect. Based on the model, the electron beam induced temperature field and the related plasma properties are investigated. The results indicate that a nonuniform temperature field is formed in the electron beam plasma region and the average temperature is of the order of 600 K. Moreover, much larger volume pear-shaped electron beam plasma is produced in hot state rather than in cold state. The beam ranges can, with beam energies of 75 keV and 80 keV, exceed 1.0 m and 1.2 m in air at pressure of 100 torr, respectively. Finally, a well verified formula is obtained for calculating the range of high energy electron beam in atmosphere.

  3. Ion Beam Analysis applied to laser-generated plasmas

    NASA Astrophysics Data System (ADS)

    Cutroneo, M.; Macková, A.; Havranek, V.; Malinsky, P.; Torrisi, L.; Kormunda, M.; Barchuk, M.; Ullschmied, J.; Dudzak, R.

    2016-04-01

    This paper presents the research activity on Ion Beam Analysis methods performed at Tandetron Laboratory (LT) of the Institute of Nuclear Physics AS CR, Rez, Czech Republic. Recently, many groups are paying attention to implantation by laser generated plasma. This process allows to insert a controllable amount of energetic ions into the surface layers of different materials modifying the physical and chemical properties of the surface material. Different substrates are implanted by accelerated ions from plasma through terawatt iodine laser, at nominal intensity of 1015 W/cm2, at the PALS Research Infrastructure AS CR, in the Czech Republic. This regime of the laser matter interaction generates, multi-MeV proton beams, and multi-charged ions that are tightly confined in time (hundreds ps) and space (source radius of a few microns). These ion beams have a much lower transverse temperature, a much shorter duration and a much higher current than those obtainable from conventional accelerators. The implementation of protons and ions acceleration driven by ultra-short high intensity lasers is exhibited by adopting suitable irradiation conditions as well as tailored targets. An overview of implanted targets and their morphological and structural characterizations is presented and discussed.

  4. Ultracold electron bunch generation via plasma photocathode emission and acceleration in a beam-driven plasma blowout.

    PubMed

    Hidding, B; Pretzler, G; Rosenzweig, J B; Königstein, T; Schiller, D; Bruhwiler, D L

    2012-01-20

    Beam-driven plasma wakefield acceleration using low-ionization-threshold gas such as Li is combined with laser-controlled electron injection via ionization of high-ionization-threshold gas such as He. The He electrons are released with low transverse momentum in the focus of the copropagating, nonrelativistic-intensity laser pulse directly inside the accelerating or focusing phase of the Li blowout. This concept paves the way for the generation of sub-μm-size, ultralow-emittance, highly tunable electron bunches, thus enabling a flexible new class of an advanced free electron laser capable high-field accelerator. PMID:22400749

  5. Nonlinear Interaction of Elliptical Laser Beam with Collisional Plasma: Effect of Linear Absorption

    NASA Astrophysics Data System (ADS)

    Keshav, Walia; Sarabjit, Kaur

    2016-01-01

    In the present work, nonlinear interaction of elliptical laser beam with collisional plasma is studied by using paraxial ray approximation. Nonlinear differential equations for the beam width parameters of semi-major axis and semi-minor axis of elliptical laser beam have been set up and solved numerically to study the variation of beam width parameters with normalized distance of propagation. Effects of variation in absorption coefficient and plasma density on the beam width parameters are also analyzed. It is observed from the analysis that extent of self-focusing of beam increases with increase/decrease in plasma density/absorption coefficient.

  6. Study of second harmonic generation by high power laser beam in magneto plasma

    SciTech Connect

    Sharma, Prerana; Sharma, R. P.

    2012-12-15

    This paper examines the problem of nonlinear generation of second harmonic of a high power laser pulse propagating in magnetized plasma. The propagation of strong laser beam is proposed in the direction perpendicular to a relatively weak static magnetic field. The laser pulse is taken to be linearly polarized, with the orientation of its electric field that corresponds to an ordinary electromagnetic wave. Besides the standard ponderomotive nonlinearity, the appropriate wave equation also contains the nonlinearity that arises from the relativistic electron jitter velocities. During its propagation, the laser beam gets filamented on account of relativistic and pondermotive nonlinearities present in the plasma. The generated plasma wave gets coupled into the filamentary structures of the pump beam. Due to the expected presence of the beam filamentation, the work has been carried out by considering modified paraxial approximation (i.e., beyond the standard paraxial approximation of a very broad beam). It is found that the power of the plasma wave is significantly affected by the magnetic field strength in the presence of both relativistic and pondermotive nonlinearities. It is investigated that the second harmonic generation is also considerably modified by altering the strength of magnetic field. To see the effect of static magnetic field on the harmonic generation, a key parameter, i.e., the ratio of the cyclotron frequency {omega}{sub c}=eB{sub 0}/mc over the laser frequency {omega}{sub 0} has been used, where c is the velocity of light, m and e are the mass and charge of the electron and B{sub 0} is the externally applied magnetic field.

  7. Study of second harmonic generation by high power laser beam in magneto plasma

    NASA Astrophysics Data System (ADS)

    Sharma, Prerana; Sharma, R. P.

    2012-12-01

    This paper examines the problem of nonlinear generation of second harmonic of a high power laser pulse propagating in magnetized plasma. The propagation of strong laser beam is proposed in the direction perpendicular to a relatively weak static magnetic field. The laser pulse is taken to be linearly polarized, with the orientation of its electric field that corresponds to an ordinary electromagnetic wave. Besides the standard ponderomotive nonlinearity, the appropriate wave equation also contains the nonlinearity that arises from the relativistic electron jitter velocities. During its propagation, the laser beam gets filamented on account of relativistic and pondermotive nonlinearities present in the plasma. The generated plasma wave gets coupled into the filamentary structures of the pump beam. Due to the expected presence of the beam filamentation, the work has been carried out by considering modified paraxial approximation (i.e., beyond the standard paraxial approximation of a very broad beam). It is found that the power of the plasma wave is significantly affected by the magnetic field strength in the presence of both relativistic and pondermotive nonlinearities. It is investigated that the second harmonic generation is also considerably modified by altering the strength of magnetic field. To see the effect of static magnetic field on the harmonic generation, a key parameter, i.e., the ratio of the cyclotron frequency ωc=eB0/mc over the laser frequency ω0 has been used, where c is the velocity of light, m and e are the mass and charge of the electron and B0 is the externally applied magnetic field.

  8. Ion species control in high flux deuterium plasma beams produced by a linear plasma generator

    SciTech Connect

    Luo, G.-N.; Shu, W.M.; Nakamura, H.; O'Hira, S.; Nishi, M.

    2004-11-01

    The ion species ratios in low energy high flux deuterium plasma beams formed in a linear plasma generator were measured by a quadrupole mass spectrometer. And the species control in the plasma generator was evaluated by changing the operational parameters like neutral pressure, arc current, and axial magnetic confinement to the plasma column. The measurements reveal that the lower pressures prefer to form more D{sup +} ions, and the medium magnetic confinement at the higher pressures results in production of more D{sub 2}{sup +}, while the stronger confinement and/or larger arc current are helpful to D{sub 2}{sup +} conversion into D{sub 3}{sup +}. Therefore, the ion species can be controlled by adjusting the operational parameters of the plasma generator. With suitable adjustment, we can achieve plasma beams highly enriched with a single species of D{sup +}, D{sub 2}{sup +}, or D{sub 3}{sup +}, to a ratio over 80%. It has been found that the axial magnetic configuration played a significant role in the formation of D{sub 3}{sup +} within the experimental pressure range.

  9. Positron deposition in plasmas by positronium beam ionization and transport of positrons in tokamak plasmas

    SciTech Connect

    Murphy, T.J.

    1986-11-01

    In a recently proposed positron transport experiment, positrons would be deposited in a fusion plasma by forming a positronium (Ps) beam and passing it through the plasma. Positrons would be deposited as the beam is ionized by plasma ions and electrons. Radial transport of the positrons to the limiter could then be measured by detecting the gamma radiation produced by annihilation of positrons with electrons in the limiter. This would allow measurements of the transport of electron-mass particles and might shed some light on the mechanisms of electron transport in fusion plasmas. In this paper, the deposition and transport of positrons in a tokamak are simulated and the annihilation signal determined for several transport models. Calculations of the expected signals are necessary for the optimal design of a positron transport experiment. There are several mechanisms for the loss of positrons besides transport to the limiter. Annihilation with plasma electrons and reformation of positronium in positron-hydrogen collisions are two such processes. These processes can alter the signal and place restrictions ons on the plasma conditions in which positron transport experiments can be effectively performed.

  10. Engineering of beam direct conversion for a 120-kV, 1-MW ion beam

    NASA Technical Reports Server (NTRS)

    Barr, W. L.; Doggett, J. N.; Hamilton, G. W.; Kinney, J. D.; Moir, R. W.

    1977-01-01

    Practical systems for beam direct conversion are required to recover the energy from ion beams at high efficiency and at very high beam power densities in the environment of a high-power neutral-injection system. Such an experiment is now in progress using a 120-kV beam with a maximum total current of 20 A. After neutralization, the H(+) component to be recovered will have a power of approximately 1 MW. A system testing these concepts has been designed and tested at 15 kV, 2 kW in preparation for the full-power tests. The engineering problems involved in the full-power tests affect electron suppression, gas pumping, voltage holding, diagnostics, and measurement conditions. Planning for future experiments at higher power includes the use of cryopumping and electron suppression by a magnetic field rather than by an electrostatic field. Beam direct conversion for large fusion experiments and reactors will save millions of dollars in the cost of power supplies and electricity and will dispose of the charged beam under conditions that may not be possible by other techniques.