Science.gov

Sample records for direct surface magnetometry

  1. Direct surface magnetometry with photoemission magnetic x-ray dichroism

    SciTech Connect

    Tobin, J.G.; Goodman, K.W.; Schumann, F.O.

    1997-04-01

    Element specific surface magnetometry remains a central goal of synchrotron radiation based studies of nanomagnetic structures. One appealing possibility is the combination of x-ray absorption dichroism measurements and the theoretical framework provided by the {open_quotes}sum rules.{close_quotes} Unfortunately, sum rule analysis are hampered by several limitations including delocalization of the final state, multi-electronic phenomena and the presence of surface dipoles. An alternative experiment, Magnetic X-Ray Dichroism in Photoelectron Spectroscopy, holds out promise based upon its elemental specificity, surface sensitivity and high resolution. Computational simulations by Tamura et al. demonstrated the relationship between exchange and spin orbit splittings and experimental data of linear and circular dichroisms. Now the authors have developed an analytical framework which allows for the direct extraction of core level exchange splittings from circular and linear dichroic photoemission data. By extending a model initially proposed by Venus, it is possible to show a linear relation between normalized dichroism peaks in the experimental data and the underlying exchange splitting. Since it is reasonable to expect that exchange splittings and magnetic moments track together, this measurement thus becomes a powerful new tool for direct surface magnetometry, without recourse to time consuming and difficult spectral simulations. The theoretical derivation will be supported by high resolution linear and circular dichroism data collected at the Spectromicroscopy Facility of the Advanced Light Source.

  2. X-Ray Dichroism in Photoelectron Spectroscopy for Direct Element Specific Surface Magnetometry of Nanomagnetic Structures

    NASA Astrophysics Data System (ADS)

    Tobin, James G.

    1997-03-01

    Element specific surface magnetometry remains a central goal of synchrotron radiation based studies of nanomagnetic structures. One appealing possibility is the combination of xray absorption dichroism measurements and the theoretical framework provided by the "sum rules."[1] Unfortunately, sum rule analyses are hampered by several limitations [2], including delocalization of the final state, multi-electronic phenomena and the presence of surface dipoles. An alternative experiment, Magnetic Xray Dichroism in Photoelectron Spectroscopy, holds out promise based upon its elemental specificity, surface sensitivity and high resolution. Computational simulations by Tamura et al [3] demonstrated the relationship between exchange and spin orbit splittings and experimental data of linear and circular dichroisms. Now we [4] have developed an analytical framework which allows for the direct extraction of core level exchange splittings from circular and linear dichroic photoemission data. By extending a model initially proposed by Venus [5], it is possible to show a linear relation between normalized dichroism peaks in the experimental data and the underlying exchange splitting. Since it is reasonable to expect that exchange splittings and magnetic moments track together [6], this measurement thus becomes a powerful new tool for direct surface magnetometry, without recourse to time consuming and difficult spectral simulations. The theoretical derivation will be supported by high resolution linear and circular dichroism data collected at the Spectromicroscopy Facility of the Advanced Light Source. [7,8] This work was performed under the auspices of the U.S. Department of Energy by LLNL under contract No. W-7405-ENG-48. 1. B.T. Thole et al, Phys. Rev. Lett. 68,1943 (1992); P. Carra et al. Phys. Rev. Lett. 70, 694 (1993). 2. J.G. Tobin et al Phys. Rev. B 52, 6530 (1995). 3. E. Tamura et al, Phys. Rev. Lett 73, 1533 (1994) 4. J.G. Tobin, K.W. Goodman, F.O. Schumann, R.F. Willis, J

  3. Mercury's Surface Magnetic Field Determined from Proton-Reflection Magnetometry

    NASA Technical Reports Server (NTRS)

    Winslow, Reka M.; Johnson, Catherine L.; Anderson, Brian J.; Gershman, Daniel J.; Raines, Jim M.; Lillis, Robert J.; Korth, Haje; Slavin, James A.; Solomon, Sean C.; Zurbuchen, Thomas H.; Zuber, Maria T.

    2014-01-01

    Solar wind protons observed by the MESSENGER spacecraft in orbit about Mercury exhibit signatures of precipitation loss to Mercury's surface. We apply proton-reflection magnetometry to sense Mercury's surface magnetic field intensity in the planet's northern and southern hemispheres. The results are consistent with a dipole field offset to the north and show that the technique may be used to resolve regional-scale fields at the surface. The proton loss cones indicate persistent ion precipitation to the surface in the northern magnetospheric cusp region and in the southern hemisphere at low nightside latitudes. The latter observation implies that most of the surface in Mercury's southern hemisphere is continuously bombarded by plasma, in contrast with the premise that the global magnetic field largely protects the planetary surface from the solar wind.

  4. Optical Magnetometry

    NASA Astrophysics Data System (ADS)

    Budker, Dmitry; Kimball, Derek F. Jackson

    2013-03-01

    Part I. Principles and Techniques: 1. General principles and characteristics of optical magnetometers D. F. Jackson Kimball, E. B. Alexandrov and D. Budker; 2. Quantum noise in atomic magnetometers M. V. Romalis; 3. Quantum noise, squeezing, and entanglement in radio-frequency optical magnetometers K. Jensen and E. S. Polzik; 4. Mx and Mz magnetometers E. B. Alexandrov and A. K. Vershovskiy; 5. Spin-exchange-relaxation-free (serf) magnetometers I. Savukov and S. J. Seltzer; 6. Optical magnetometry with modulated light D. F. Jackson Kimball, S. Pustelny, V. V. Yashchuk and D. Budker; 7. Microfabricated atomic magnetometers S. Knappe and J. Kitching; 8. Optical magnetometry with nitrogen-vacancy centers in diamond V. M. Acosta, D. Budker, P. R. Hemmer, J. R. Maze and R. L. Walsworth; 9. Magnetometry with cold atoms W. Gawlik and J. M. Higbie; 10. Helium magnetometers R. E. Slocum, D. D. McGregor and A. W. Brown; 11. Surface coatings for atomic magnetometry S. J. Seltzer, M.-A. Bouchiat and M. V. Balabas; 12. Magnetic shielding V. V. Yashchuk, S.-K. Lee and E. Paperno; Part II. Applications: 13. Remote detection magnetometry S. M. Rochester, J. M. Higbie, B. Patton, D. Budker, R. Holzlöhner and D. Bonaccini Calia; 14. Detection of nuclear magnetic resonance with atomic magnetometers M. P. Ledbetter, I. Savukov, S. J. Seltzer and D. Budker; 15. Space magnetometry B. Patton, A. W. Brown, R. E. Slocum and E. J. Smith; 16. Detection of biomagnetic fields A. Ben-Amar Baranga, T. G. Walker and R. T. Wakai; 17. Geophysical applications M. D. Prouty, R. Johnson, I. Hrvoic and A. K. Vershovskiy; Part III. Broader Impact: 18. Tests of fundamental physics with optical magnetometers D. F. Jackson Kimball, S. K. Lamoreaux and T. E. Chupp; 19. Nuclear magnetic resonance gyroscopes E. A. Donley and J. Kitching; 20. Commercial magnetometers and their application D. C. Hovde, M. D. Prouty, I. Hrvoic and R. E. Slocum; Index.

  5. Experimental Investigation of High Temperature Superconducting Imaging Surface Magnetometry

    SciTech Connect

    Espy, M.A.; Matlachov, A.N.; Kraus, R.H., Jr.

    1999-06-21

    The behavior of high temperature superconducting quantum interference devices (SQUIDs) in the presence of high temperature superconducting surfaces has been investigated. When current sources are placed close to a superconducting imaging surface (SIS) an image current is produced due to the Meissner effect. When a SQUID magnetometer is placed near such a surface it will perform in a gradiometric fashion provided the SQUID and source distances to the SIS are much less than the size of the SIS. We present the first ever experimental verification of this effect for a high temperature SIS. Results are presented for two SQUID-SIS configurations, using a 100 mm diameter YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} disc as the SIS. These results indicate that when the current source and sensor coil (SQUID) are close to the SIS, the behavior is that of a first-order gradiometer. The results are compared to analytic solutions as well as the theoretical predictions of a finite element model.

  6. Fault location in SF/sub 6/ insulated conductors using direct fluxgate magnetometry

    SciTech Connect

    Itani, A.M.; Houston, J.M.; Perry, M.P.

    1983-02-01

    Gas insulated substations (GIS) are becoming more popular for substation design largely due to reduced space requirements as well as environmental benefits. Isolated phase designs generally consist of a single cylindrical conductor enclosed in a coaxial aluminum tank (or sheath). Pressurized SF/sub 6/ is usually used for electrical insulation. For increased reliability, instrumentation methods have been developed to detect the location of power arcs which occur within the enclosed containers. The authors have developed a new technique in which the location of a fault is detected by directly measuring the axial component of the 60 Hz magnetic field which appears outside the sheath during the flashover. The instrument is a specialized form of ''fluxgate'' magnetometer modified to allow long life using inexpensive batteries. The magnetometer output is coupled directly to a switching circuit which operates a ''magnetic disc'' indicator. When a fault is registered, the disc indicator exhibits a bright color which can be easily read from a distance of 10-15m. The instrument is proposed for use at areas within the substation which are more prone to flashovers, especially near dielectric spacers which support the inner conductor every few meters. Flashover measurements indicate that the sensor reliably detects a fault current of 4 kA or larger under typical substation conditions. This sensor is attractive for retrofitting existing gas-insulated systems in that installation does not require shutting down the system. Since no penetrations or alterations of an existing system are required, there is no way that sensor installation can compromise system operation.

  7. Magnetometry 101

    NASA Video Gallery

    NASA satellites use very sensitive devices called magnetometers to measure the magnetic fields of planets. Like very sensitive compasses, these devices can measure both direction and strength of pl...

  8. Magnetometry of ingested particles in pulmonary macrophages.

    PubMed

    Valberg, P A

    1984-05-01

    Sensitive magnetometry has shown that, after inhalation of airborne magnetic dust by humans or animals, particles retained within the lungs rotate. A number of mechanisms for this rotation have been proposed, including motions of breathing, particle thermal energy, cardiac pulsations, surface fluid flows, and macrophage cytoplasmic movements. In this study the cellular mechanism was examined by magnetometry and videomicroscopy of pulmonary macrophages removed from hamster lungs 1 day after inhalation of a maghemite (gamma-Fe2O3) aerosol. The field remaining after magnetization was measured in adherent cells and was found to decay rapidly to 30 percent of its initial magnitude within 12 minutes. The remanent-field decay rate was slowed by inhibitors of cytoplasmic motion. Videomicroscopy of pulmonary macrophages with phagocytized gamma-Fe2O3 showed amoeboid motions that rotated the particles away from their original direction of magnetization. The results confirm that macrophage cytoplasmic movement is a primary cause of remanent-field decay in lungs and that magnetometry can be used to quantify intracellular contractile activity. PMID:6710153

  9. Direct heating surface combustor

    NASA Technical Reports Server (NTRS)

    Beremand, D. G.; Shire, L. I.; Mroz, T. S. (Inventor)

    1978-01-01

    The combustor utilizes a non-adiabatic flame to provide low-emission combustion for gas turbines. A fuel-air mixture is directed through a porous wall, the other side of which serves as a combustion surface. A radiant heat sink disposed adjacent to and spaced from the combustion surface controls the combustor flame temperature in order to prevent the formation of oxides of nitrogen. A secondary air flow cools the heat sink. Additionally, up to 100% of secondary air flow is mixed with the combustion products at the direct heating surface combustor to dilute such products thereby reducing exit temperature. However, if less than 100% secondary air is mixed to the combustor, the remainder may be added to the combustion products further downstream.

  10. Micromachined Silicon Cantilever Magnetometry.

    NASA Astrophysics Data System (ADS)

    Chaparala, M. V.

    1998-03-01

    Magnetic torque measurements give us a simple and attractive method for characterizing the anisotropic properties of magnetic materials. Silicon torque and force magnetometers have many advantages over traditional torsion fiber torque magnetometers. We have fabricated micromachined silicon torque and force magnetometers employing both capacitive(``Capacitance platform magnetometer for thin film and small crystal superconductor studies'', M. Chaparala et al.), AIP Conf. Proc. (USA), AIP Conference Proceedings, no.273, p. 407 1993. and strain dependent FET detection(``Strain Dependent Characterstics of Silicon MOSFETs and their Applications'', M. Chaparala et al.), ISDRS Conf. Proc. 1997. schemes which realize some of these gains. We will present the pros and cons of each of the different detection schemes and the associated design constraints. We have developed a feedback scheme which enables null detection thus preserving the integrity of the sample orientation. We will present a method of separating out the torque and force terms in the measured signals and will discuss the errors associated with each of the designs. Finally, we present the static magnetic torque measurements on various materials with these devices, including equilibrium properties on sub microgram specimens of superconductors, and dHvA measurements near H_c2. We will also discuss their usefulness in pulsed magnetic fields(``Cantilever magnetometry in pulsed magnetic fields", M. J. Naughton et al.), Rev. of Sci. Instrum., vol.68, p. 4061 1997..

  11. Crawling on directional surfaces

    NASA Astrophysics Data System (ADS)

    Gidoni, P.; Noselli, G.; DeSimone, A.

    2014-05-01

    In this paper we study crawling locomotion based on directional frictional interactions, namely, frictional forces that are sensitive to the sign of the sliding velocity. Surface interactions of this type are common in biology, where they arise from the presence of inclined hairs or scales at the crawler/substrate interface, leading to low resistance when sliding 'along the grain', and high resistance when sliding 'against the grain'. This asymmetry can be exploited for locomotion, in a way analogous to what is done in cross-country skiing (classic style, diagonal stride). We focus on a model system, namely, a continuous one-dimensional crawler and provide a detailed study of the motion resulting from several strategies of shape change. In particular, we provide explicit formulae for the displacements attainable with reciprocal extensions and contractions (breathing), or through the propagation of extension or contraction waves. We believe that our results will prove particularly helpful for the study of biological crawling motility and for the design of bio-mimetic crawling robots.

  12. Torque magnetometry in unconventional superconductors

    NASA Astrophysics Data System (ADS)

    Li, Lu

    This thesis describes torque magnetometry studies on unconventional superconductors. Torque magnetometry measures the anisotropic magnetization of samples by recording their torque signals in a tilted magnetic field. Applied to superconductors, this method provides a reliable way to measure the field dependence of magnetization with high resolution under extreme conditions: DC magnetic fields from zero to 45.2 T, and temperature from 300 mK to 300K. The results can be used to determine many important parameters, such as the upper critical field H c2, the superconducting condensation energy, the onset temperature of diamagnetic signals, and so on. We carried out the torque magnetometry measurements on unconventional superconductors---high Tc superconductors and the p-wave superconductor Sr2RuO4---and uncovered new features that do not exist in conventional BCS superconductors. In high Tc superconductors, our torque magnetometry studies focus on the properties of the vortex liquid state. First, by comparing the observed magnetization curves with the Nernst effect results in Bi 2Sr2CaCu2O8+delta, we confirm that the unusually large Nernst effect signals originate from the surviving vortex liquid state above Tc. Second, the M-H curves near the critical temperature Tc suggest that the nature of the transition is the Kosterlitz-Thouless transition. Near Tc, the magnetization response at low field is strongly nonlinear, and the T dependence of the magnetic susceptibility in the low-field limit approaches the predicted curve from the Kosterlitz-Thouless transition. Third, the measurements in intense magnetic field up to 45 T reveal the unusual, weak T-dependence of Hc2. These observations strongly support the existence of the vortex liquid state above Tc. The superconducting state is destroyed by the phase fluctuation of the pair condensate, while the pair condensate keeps its amplitude above T c. Further studies in single-layered high Tc superconductors reveal more

  13. Developments in alkali-metal atomic magnetometry

    NASA Astrophysics Data System (ADS)

    Seltzer, Scott Jeffrey

    Alkali-metal magnetometers use the coherent precession of polarized atomic spins to detect and measure magnetic fields. Recent advances have enabled magnetometers to become competitive with SQUIDs as the most sensitive magnetic field detectors, and they now find use in a variety of areas ranging from medicine and NMR to explosives detection and fundamental physics research. In this thesis we discuss several developments in alkali-metal atomic magnetometry for both practical and fundamental applications. We present a new method of polarizing the alkali atoms by modulating the optical pumping rate at both the linear and quadratic Zeeman resonance frequencies. We demonstrate experimentally that this method enhances the sensitivity of a potassium magnetometer operating in the Earth's field by a factor of 4, and we calculate that it can reduce the orientation-dependent heading error to less than 0.1 nT. We discuss a radio-frequency magnetometer for detection of oscillating magnetic fields with sensitivity better than 0.2 fT/ Hz , which we apply to the observation of nuclear magnetic resonance (NMR) signals from polarized water, as well as nuclear quadrupole resonance (NQR) signals from ammonium nitrate. We demonstrate that a spin-exchange relaxation-free (SERF) magnetometer can measure all three vector components of the magnetic field in an unshielded environment with comparable sensitivity to other devices. We find that octadecyltrichlorosilane (OTS) acts as an anti-relaxation coating for alkali atoms at temperatures below 170°C, allowing them to collide with a glass surface up to 2,000 times before depolarizing, and we present the first demonstration of high-temperature magnetometry with a coated cell. We also describe a reusable alkali vapor cell intended for the study of interactions between alkali atoms and surface coatings. Finally, we explore the use of a cesium-xenon SERF comagnetometer for a proposed measurement of the permanent electric dipole moments (EDMs

  14. Torque Magnetometry and Susceptometry using Split-Beam Optomechanical Nanocavities

    NASA Astrophysics Data System (ADS)

    Firdous, Tayyaba; Wu, Nathanael; Wu, Marcelo; Fani Sani, Fatemeh; Losby, Joseph; Barclay, Paul; Freeman, Mark

    A large number of sensitive magnetometry methods are limited to cryogenic operation. We present a highly sensitive torque magnetometer using a photonic crystal optomechanical split-beam nanocavity operating in air at room temperature. The chip-based magnetometer is proficient for probing both the net magnetization and AC susceptibility of individual magnetic microstructures. This is demonstrated through the observation of nanoscale Barkhausen transitions in the magnetic hysteresis of a permalloy thin-film element. Control of the vector direction of the radio frequency drive allows detection of accompanying AC susceptibility terms.

  15. Mx Magnetometry Optimisation in Unshielded Environments

    NASA Astrophysics Data System (ADS)

    Ingleby, Stuart; Griffin, Paul; Arnold, Aidan; Riis, Erling; Hunter, Dominic

    2016-05-01

    Optically pumped magnetometry in unshielded environments is potentially of great advantage in a wide range of surveying and security applications. Optimisation of OPM modulation schemes and feedback in the Mx scheme offers enhanced sensitivity through noise cancellation and decoherence suppression. The work presented demonstrates capability for software-controlled optimisation of OPM performance in ambient fields in the 0 . 5 G range. Effects on magnetometer bandwidth and sensitivity are discussed. Supported by UK National Quantum Technologies Programme.

  16. Directional emittance surface measurement system and process

    NASA Technical Reports Server (NTRS)

    Puram, Chith K. (Inventor); Daryabeigi, Kamran (Inventor); Wright, Robert (Inventor); Alderfer, David W. (Inventor)

    1994-01-01

    Apparatus and process for measuring the variation of directional emittance of surfaces at various temperatures using a radiometric infrared imaging system. A surface test sample is coated onto a copper target plate provided with selective heating within the desired incremental temperature range to be tested and positioned onto a precision rotator to present selected inclination angles of the sample relative to the fixed positioned and optically aligned infrared imager. A thermal insulator holder maintains the target plate on the precision rotator. A screen display of the temperature obtained by the infrared imager, and inclination readings are provided with computer calculations of directional emittance being performed automatically according to equations provided to convert selected incremental target temperatures and inclination angles to relative target directional emittance values. The directional emittance of flat black lacquer and an epoxy resin measurements obtained are in agreement with the predictions of the electromagnetic theory and with directional emittance data inferred from directional reflectance measurements made on a spectrophotometer.

  17. Optimizing phase-estimation algorithms for diamond spin magnetometry

    NASA Astrophysics Data System (ADS)

    Nusran, N. M.; Dutt, M. V. Gurudev

    2014-07-01

    We present a detailed theoretical and numerical study discussing the application and optimization of phase-estimation algorithms (PEAs) to diamond spin magnetometry. We compare standard Ramsey magnetometry, the nonadaptive PEA (NAPEA), and quantum PEA (QPEA) incorporating error checking. Our results show that the NAPEA requires lower measurement fidelity, has better dynamic range, and greater consistency in sensitivity. We elucidate the importance of dynamic range to Ramsey magnetic imaging with diamond spins, and introduce the application of PEAs to time-dependent magnetometry.

  18. Optomechanical Magnetometry with a Macroscopic Resonator

    NASA Astrophysics Data System (ADS)

    Yu, Changqiu; Janousek, Jiri; Sheridan, Eoin; McAuslan, David L.; Rubinsztein-Dunlop, Halina; Lam, Ping Koy; Zhang, Yundong; Bowen, Warwick P.

    2016-04-01

    We demonstrate a centimeter-scale optomechanical magnetometer based on a crystalline whispering-gallery-mode resonator. The large size of the resonator, with a magnetic-field integration volume of 0.45 cm3 , allows high magnetic-field sensitivity to be achieved in the hertz-to-kilohertz frequency range. A peak sensitivity of 131 pT Hz-1 /2 is reported, in a magnetically unshielded noncryogenic environment using optical power levels beneath 100 μ W . Femtotesla-range sensitivity may be possible in future devices with the further optimization of laser noise and the physical structure of the resonator, allowing applications in high-performance magnetometry.

  19. High sensitivity ancilla assisted nanoscale DC magnetometry

    NASA Astrophysics Data System (ADS)

    Liu, Yixiang; Ajoy, Ashok; Marseglia, Luca; Saha, Kasturi; Cappellaro, Paola

    2016-05-01

    Sensing slowly varying magnetic fields are particularly relevant to many real world scenarios, where the signals of interest are DC or close to static. Nitrogen Vacancy (NV) centers in diamond are a versatile platform for such DC magnetometry on nanometer length scales. Using NV centers, the standard technique for measuring DC magnetic fields is via the Ramsey protocol, where sensitivities can approach better than 1 μ T/vHz, but are limited by the sensor fast dephasing time T2*. In this work we instead present a method of sensing DC magnetic fields that is intrinsically limited by the much longer T2 coherence time. The method exploits a strongly-coupled ancillary nuclear spin to achieve high DC field sensitivities potentially exceeding that of the Ramsey method. In addition, through this method we sense the perpendicular component of the DC magnetic field, which in conjunction with the parallel component sensed by the Ramsey method provides a valuable tool for vector DC magnetometry at the nanoscale.

  20. Scanning Cryogenic Magnetometry with a Bose-Einstein Condensate

    NASA Astrophysics Data System (ADS)

    Lev, Benjamin; Straquadine, Joshua; Yang, Fan

    2016-05-01

    Microscopy techniques co-opted from nonlinear optics and high energy physics have complemented solid-state probes in elucidating exotic order manifest in condensed matter systems. We present a novel scanning magnetometer which adds the techniques of ultracold atomic physics to the condensed matter toolbox. Our device, the Scanning Quantum CRyogenic Atom Microscope (SQCRAMscope) uses a one-dimensional Bose-Einstein condensate of 87 Rb to image magnetic and electric fields near surfaces between room and cryogenic temperatures, and allows for rapid sample changes while retaining UHV compatibility for atomic experiments. We present our characterization of the spatial resolution and magnetic field sensitivity of the device, and discuss the advantages and applications of this magnetometry technique. In particular, we will discuss our plans for performing local transport measurements in technologically relevant materials such as Fe-based superconductors and topological insulators.

  1. Mars, Moon, Mercury: Magnetometry Constrains Planetary Evolution

    NASA Astrophysics Data System (ADS)

    Connerney, John E. P.

    2015-04-01

    We have long appreciated that magnetic measurements obtained about a magnetized planet are of great value in probing the deep interior. The existence of a substantial planetary magnetic field implies dynamo action requiring an electrically conducting, fluid core in convective motion and a source of energy to maintain it. Application of the well-known Lowe's spectrum may in some cases identify the dynamo outer radius; where secular variation can be measured, the outer radius can be estimated using the frozen flux approximation. Magnetic induction may be used to probe the electrical conductivity of the mantle and crust. These are useful constraints that together with gravity and/or other observables we may infer the state of the interior and gain insight into planetary evolution. But only recently has it become clear that space magnetometry can do much more, particularly about a planet that once sustained a dynamo that has since disappeared. Mars is the best example of this class: the Mars Global Surveyor spacecraft globally mapped a remanent crustal field left behind after the demise of the dynamo. This map is a magnetic record of the planet's evolution. I will argue that this map may be interpreted to constrain the era of dynamo activity within Mars; to establish the reversal history of the Mars dynamo; to infer the magnetization intensity of Mars crustal rock and the depth of the magnetized crustal layer; and to establish that plate tectonics is not unique to planet Earth, as has so often been claimed. The Lunar magnetic record is in contrast one of weakly magnetized and scattered sources, not easily interpreted as yet in terms of the interior. Magnetometry about Mercury is more difficult to interpret owing to the relatively weak field and proximity to the sun, but MESSENGER (and ultimately Beppi Columbo) may yet map crustal anomalies (induced and/or remanent).

  2. Modification of Surface Energy via Direct Laser Ablative Surface Patterning

    NASA Technical Reports Server (NTRS)

    Wohl, Christopher J., Jr. (Inventor); Belcher, Marcus A. (Inventor); Connell, John W. (Inventor); Hopkins, John W. (Inventor)

    2015-01-01

    Surface energy of a substrate is changed without the need for any template, mask, or additional coating medium applied to the substrate. At least one beam of energy directly ablates a substrate surface to form a predefined topographical pattern at the surface. Each beam of energy has a width of approximately 25 micrometers and an energy of approximately 1-500 microJoules. Features in the topographical pattern have a width of approximately 1-500 micrometers and a height of approximately 1.4-100 micrometers.

  3. Direct mapping of the UV surface plasmons.

    PubMed

    Gan, Qiaoqiang; Zhou, Liangcheng; Dierolf, Volkmar; Bartoli, Filbert J

    2009-05-01

    Researchers employed various well-developed concepts from conventional optics in designing novel plasmonic devices, which allow us to construct a framework to describe the propagation, diffraction, and interference of surface plasmon polaritons (SPPs) on a chip. Here we present what we believe to be the first direct mapping of the UV SPPs on an Al2O3/Al surface using a UV-compatible near-field scanning optical microscope system. UV SPP modes launched by one-dimensional slits or two-dimensional groove arrays and corresponding interference phenomenon were both observed, which may enrich the studies on subwavelength optics on a chip. PMID:19412260

  4. Directional self-cleaning superoleophobic surface.

    PubMed

    Zhao, Hong; Law, Kock-Yee

    2012-08-14

    In this work, we report the creation of a grooved surface comprising 3 μm grooves (height ~4 μm) separated by 3 μm from each other on a silicon wafer by photolithography. The grooved surface was then modified chemically with a fluorosilane layer (FOTS). The surface property was studied by both static and dynamic contact angle measurements using water, hexadecane, and a polyethylene wax ink as the probing liquids. Results show that the grooved surface is both superhydrophobic and superoleophobic. Its observed contact angles agree well with the calculated Cassie-Baxter angles. More importantly, we are able to make a replica of the composite wax ink-air interface and study it by SEM. Microscopy results not only show that the droplet of the wax ink "sits" on air in the composite interface but also further reveal that the ink drop actually pins underneath the re-entrant structure in the side wall of the grooved structure. Contact angle measurement results indicate that wetting on the grooved surface is anisotropic. Although liquid drops are found to have lower static and advancing contact angles in the parallel direction, the drops are found to be more mobile, showing smaller hysteresis and lower sliding angles (as compared to the FOTS wafer surface and a comparable 3-μm-diameter pillar array FOTS surface). The enhanced mobility is attributable to the lowering of the resistance against an advancing liquid because 50% of the advancing area is made of a solid strip where the liquid likes to wet. This also implies that the contact line for advancing is no longer smooth but rather is ragged, having the solid strip area leading the wetting and the air strip area trailing behind. This interpretation is supported by imaging the geometry of the contact lines using molten ink drops recovered from the sliding angle experiments in both the parallel and orthogonal directions. Because the grooved surface is mechanically stronger against mechanical abrasion, the self

  5. Magnetometry and archaeological prospection in Mexico

    NASA Astrophysics Data System (ADS)

    Barba Pingarron, L.; Laboratorio de Prospeccion Arqueologica

    2013-05-01

    Luis Barba Laboratorio de Prospección Arqueológica Instituto de Investigaciones Antropológicas Universidad Nacional Autonoma de México The first magnetic survey in archaeological prospection was published in 1958 in the first number of Archaeometry, in Oxford. That article marked the beginning of this applications to archaeology. After that, magnetic field measurements have become one of the most important and popular prospection tools. Its most outstanding characteristic is the speed of survey that allows to cover large areas in short time. As a consequence, it is usually the first approach to study a buried archaeological site. The first attempts in Mexico were carried out in 196. Castillo and Urrutia, among other geophysical techniques, used a magnetometer to study the northern part of the main plaza, zocalo, in Mexico City to locate some stone Aztec sculptures. About the same time Morrison et al. in La Venta pyramid used a magnetometer to measure total magnetic field trying to find a substructure. Some years later Brainer and Coe made a magnetic survey to locate large stone Olmec heads in San Lorenzo Tenochtitlan, Veracruz. Technology development has provided everyday more portable and accurate instruments to measure the magnetic field. The first total magnetic field proton magnetometers were followed by differential magnetometers and more recently gradiometers. Presently, multiple sensor magnetometers are widely used in European archaeology. The trend has been to remove the environmental and modern interference and to make more sensitive the instruments to the superficial anomalies related to most of the archaeological sites. There is a close relationship between the geology of the region and the way magnetometry works in archaeological sites. Archaeological prospection in Europe usually needs very sensitive instruments to detect slight magnetic contrast of ditches in old sediments. In contrast, volcanic conditions in Mexico produce large magnetic contrast

  6. Single spin magnetometry with nitrogen-vacancy centers in diamond

    NASA Astrophysics Data System (ADS)

    Chisholm, Nicholas Edward Kennedy

    The nitrogen-vacancy (NV) center in diamond is a solid-state point defect with an electronic spin that has accessible quantum mechanical properties. At room temperature, the electronic ground state sub-levels of the NV center can be initialized and read out using optical pumping, as well as coherently controlled using microwave frequency fields. This thesis focuses on using the spin state of the NV center for highly-sensitive magnetometry under ambient conditions. In particular, when the diamond surface is properly prepared, we demonstrate that NV centers can be used to measure the magnetic fluctuations stemming from individual molecules and ions attached or adsorbed to the surface. This thesis begins by introducing the physical and electronic structure of the NV center at room temperature, followed by the fundamental measurements that allow us to use the NV center as a sensitive magnetometer. Combining our sensitive NV center magnetometer with techniques from chemistry and atomic force microscopy (AFM), we demonstrate the all-optical detection of a single-molecule electron spin at room temperature. Finally, we discuss the time-resolved detection of individual electron spins adsorbing onto the surface of nano-diamonds. By extending our techniques to nano-diamonds, we move closer towards textit{in vitro} magnetic field sensing that could be pivotal for better disease diagnosis and drug development.

  7. FORWARD: A toolset for multiwavelength coronal magnetometry

    NASA Astrophysics Data System (ADS)

    Gibson, Sarah; Kucera, Therese; White, Stephen; Dove, James; Fan, Yuhong; Forland, Blake; Rachmeler, Laurel; Downs, Cooper; Reeves, Katharine

    2016-03-01

    Determining the 3D coronal magnetic field is a critical, but extremely difficult problem to solve. Since different types of multiwavelength coronal data probe different aspects of the coronal magnetic field, ideally these data should be used together to validate and constrain specifications of that field. Such a task requires the ability to create observable quantities at a range of wavelengths from a distribution of magnetic field and associated plasma -- i.e., to perform forward calculations. In this paper we describe the capabilities of the FORWARD SolarSoft IDL package, a uniquely comprehensive toolset for coronal magnetometry. FORWARD is a community resource that may be used both to synthesize a broad range of coronal observables, and to access and compare synthetic observables to existing data. It enables forward fitting of specific observations, and helps to build intuition into how the physical properties of coronal magnetic structures translate to observable properties. FORWARD can also be used to generate synthetic test beds from MHD simulations in order to facilitate the development of coronal magnetometric inversion methods, and to prepare for the analysis of future large solar telescope data.

  8. FORWARD: A Toolset for Multiwavelength Coronal Magnetometry

    NASA Technical Reports Server (NTRS)

    Gibson, Sarah E.; Kucera, Therese A.; White, Stephen M.; Dove, James B.; Fan, Yuhong; Forland, Blake C.; Rachmeler, Laurel A.; Downs, Cooper; Reeves, Katharine K.

    2016-01-01

    Determining the 3D coronal magnetic field is a critical, but extremely difficult problem to solve. Since different types of multiwavelength coronal data probe different aspects of the coronal magnetic field, ideally these data should be used together to validate and constrain specifications of that field. Such a task requires the ability to create observable quantities at a range of wavelengths from a distribution of magnetic field and associated plasma i.e., to perform forward calculations. In this paper we describe the capabilities of the FORWARD SolarSoft IDL package, a uniquely comprehensive toolset for coronal magnetometry. FORWARD is a community resource that may be used both to synthesize a broad range of coronal observables, and to access and compare synthetic observables to existing data. It enables forward fitting of specific observations, and helps to build intuition into how the physical properties of coronal magnetic structures translate to observable properties. FORWARD can also be used to generate synthetic test beds from MHD simulations in order to facilitate the development of coronal magnetometric inversion methods, and to prepare for the analysis of future large solar telescope data.

  9. Quantitative magnetometry of ferromagnetic nanorods by microfluidic analytical magnetophoresis

    NASA Astrophysics Data System (ADS)

    Balk, A. L.; Mair, L. O.; Guo, F.; Hangarter, C.; Mathai, P. P.; McMichael, R. D.; Stavis, S. M.; Unguris, J.

    2015-09-01

    We introduce an implementation of magnetophoresis to measure the absolute magnetization of ferromagnetic nanorods dispersed in fluids, by analyzing the velocity of single nanorods under an applied magnetic field gradient. A microfluidic guideway prevents aggregation of nanorods, isolates them, and confines their motion for analysis. We use a three-dimensional imaging system to precisely track nanorod velocity and particle-surface proximity. We test the effect of the guideway on nanorod velocity under field gradient application, finding that it guides magnetophoresis, but imposes insignificant drag beyond that of a planar surface. This result provides insight into the transport of magnetic nanorods at microstructured interfaces and allows the use of an analytical model to accurately determine the reacted viscous drag in the force balance needed for quantitative magnetometry. We also estimate the confining potential of the guideway with Brownian motion measurements and Boltzmann statistics. We use our technique to measure the magnetization of ferromagnetic nanorods with a noise floor of 8.5 × 10-20 A.m2.Hz-½. Our technique is quantitative, rapid, and scalable for determining the absolute magnetization of ferromagnetic nanoparticles with high throughput.

  10. A combined magnetometry and gravity study across Zagros orogeny in Iran

    NASA Astrophysics Data System (ADS)

    Abedi, Maysam; Oskooi, Behrooz

    2015-11-01

    In this work, the structural geology and the tectonic conditions of the Zagros orogeny along the route of Qom to Kermanshah cities were investigated using the combined geophysical methods of the airborne magnetometry and the ground-based gravity data. Airborne magnetometry data of Iran with a line space of survey, 7.5 km, were used to model the magnetic susceptibility property along the route. At first, the airborne magnetic data were stably 500-m downward continued to the ground surface in order to enhance minor changes of the Earth's magnetic field over the studied region. Afterward, 3D inverse modeling of the magnetic data was implemented to the downward continued data, and subsequently the section of magnetic susceptibility variation along the desired route was extracted and imaged at depth. The acquired model could appropriately predict the observed magnetic data, showing low misfit values between the observation and the predicted data. The analytic signal filter was applied to the reduced-to-pole (RTP) magnetic data leading to the determination of the active and probable hidden faults in the structural zones of the Zagros, such as Sanandaj-Sirjan, Central Domain (CD) and Urumieh-Dokhtar based upon the generated peaks along the profile of analytic signal filter. In addition, the density variations of the subsurface geological layers were determined by 3D inverting of the ground-based gravity data over the whole study area, and extracting this property along the route. The joint models of magnetic susceptibility and density variation could appropriately localize the traces of faults along with the geologically and tectonically structural boundaries in the region. The locations of faults correspond well to the variation of geophysical parameters on the inverted sections. Probable direction, slope and extension at depth of these faults were also determined on the sections, indicating a high tectonized zone of the Sanandaj-Sirjan Zone (SSZ) parallel to the zone of

  11. Spin precession by pulsed inductive magnetometry in thin amorphous plates

    SciTech Connect

    Magni, Alessandro; Bottauscio, Oriano; Caprile, Ambra Celegato, Federica; Ferrara, Enzo; Fiorillo, Fausto

    2014-05-07

    Broadband magnetic loss and damping behavior of Co-based amorphous ribbons and thin films have been investigated. The permeability and loss response of the transverse anisotropy ribbon samples in the frequency range DC to 1 GHz is interpreted in terms of combined and distinguishable contributions to the magnetization process by domain wall displacements and magnetization rotations. The latter alone are shown to survive at the highest frequencies, where the losses are calculated via coupled Maxwell and Landau–Lifshitz–Gilbert (LLG) equations. Remarkably high values of the LLG damping coefficient α = 0.1–0.2 are invoked in this theoretical prediction. Direct measurements of α by pulsed inductive microwave magnetometry are thus performed, both in these laminae and in amorphous films of identical composition, obtaining about one order of magnitude increase of the α value upon the 100 nm÷10 μm thickness range. This confirms that dissipation by eddy currents enters the LLG equation via large increase of the damping coefficient.

  12. Spin precession by pulsed inductive magnetometry in thin amorphous plates

    NASA Astrophysics Data System (ADS)

    Magni, Alessandro; Bottauscio, Oriano; Caprile, Ambra; Celegato, Federica; Ferrara, Enzo; Fiorillo, Fausto

    2014-05-01

    Broadband magnetic loss and damping behavior of Co-based amorphous ribbons and thin films have been investigated. The permeability and loss response of the transverse anisotropy ribbon samples in the frequency range DC to 1 GHz is interpreted in terms of combined and distinguishable contributions to the magnetization process by domain wall displacements and magnetization rotations. The latter alone are shown to survive at the highest frequencies, where the losses are calculated via coupled Maxwell and Landau-Lifshitz-Gilbert (LLG) equations. Remarkably high values of the LLG damping coefficient α = 0.1-0.2 are invoked in this theoretical prediction. Direct measurements of α by pulsed inductive microwave magnetometry are thus performed, both in these laminae and in amorphous films of identical composition, obtaining about one order of magnitude increase of the α value upon the 100 nm÷10 μm thickness range. This confirms that dissipation by eddy currents enters the LLG equation via large increase of the damping coefficient.

  13. He I VECTOR MAGNETOMETRY OF FIELD-ALIGNED SUPERPENUMBRAL FIBRILS

    SciTech Connect

    Schad, T. A.; Penn, M. J.; Lin, H.

    2013-05-10

    Atomic-level polarization and Zeeman effect diagnostics in the neutral helium triplet at 10830 A in principle allow full vector magnetometry of fine-scaled chromospheric fibrils. We present high-resolution spectropolarimetric observations of superpenumbral fibrils in the He I triplet with sufficient polarimetric sensitivity to infer their full magnetic field geometry. He I observations from the Facility Infrared Spectropolarimeter are paired with high-resolution observations of the H{alpha} 6563 A and Ca II 8542 A spectral lines from the Interferometric Bidimensional Spectrometer from the Dunn Solar Telescope in New Mexico. Linear and circular polarization signatures in the He I triplet are measured and described, as well as analyzed with the advanced inversion capability of the ''Hanle and Zeeman Light'' modeling code. Our analysis provides direct evidence for the often assumed field alignment of fibril structures. The projected angle of the fibrils and the inferred magnetic field geometry align within an error of {+-}10 Degree-Sign . We describe changes in the inclination angle of these features that reflect their connectivity with the photospheric magnetic field. Evidence for an accelerated flow ({approx}40 m s{sup -2}) along an individual fibril anchored at its endpoints in the strong sunspot and weaker plage in part supports the magnetic siphon flow mechanism's role in the inverse Evershed effect. However, the connectivity of the outer endpoint of many of the fibrils cannot be established.

  14. Direct evidence of the surface track potential

    SciTech Connect

    Nakajima, Kaoru; Sakata, Masakazu; Suzuki, Motofumi; Kimura, Kenji

    2010-08-15

    Angular and energy distributions of fragment protons dissociated from HeH{sup +} during grazing-angle scattering from a KCl (001) surface are measured. The surface of KCl (001) is heated at 180 deg. C and the beam current is kept lower than 1 fA to prevent macroscopic surface charging. The angular distribution of the fragment protons shows a well-defined peak similarly to the grazing-angle scattering of atomic ions. The observed peak, however, is shifted from the specular angle toward larger scattering angles. The observed angular shift for the trailing proton is larger than that for the leading proton. These results clearly indicate that the motion of the fragment protons is affected by the surface track potential induced by the partner He ion.

  15. An airborne magnetometry study across Zagros collision zone along Ahvaz-Isfahan route in Iran

    NASA Astrophysics Data System (ADS)

    Oskooi, Behrooz; Abedi, Maysam

    2015-12-01

    Convergence between the Eurasian and Arabian plates formed the Zagros orogenic belt between Late Cretaceous and Pliocene as a relatively young and active fold-thrust belt in Iran. The structural geology along Ahvaz to Isfahan route across Zagros is investigated employing magnetic data in order to determine the crustal structure in the collision zone of the two Palaeo-continents. Airborne magnetometry data with a line space of survey of 7.5 km have been used to image the variations of the apparent magnetic susceptibility along this route. At first the airborne data were stably 500-m downward continued to the ground surface in order to enhance subtle changes of the Earth's magnetic field. Then 3D inverse modeling of magnetic data was implemented, while the cross section of the magnetic susceptibility variations along the route was mapped down to a depth of 100 km. The acquired magnetic susceptibility model could appropriately predict the observed magnetic data as well. In addition, the analytic signal filter was applied to the reduced-to-pole magnetic data leading to the determination of active faults in Zagros fold-thrust belt (ZFTB) structural zone based upon the generated peaks. Some probable locations of fault events were also suggested in Sanandaj-Sirjan Zone (SSZ). The locations of faults correspond well to the magnetic susceptibility variations on the inverted section. Probable direction, slope and depth extension of these faults were also plotted on the magnetic susceptibility model, showing an intensively tectonized zone of the SSZ. The main difference between two domains is that the Eurasian plate seems to contain high magnetic susceptible materials compared to the Arabian plate. The recovered model of the apparent magnetic susceptibility values indicated that the average thickness of the non-magnetic sedimentary units is about 11 km and the Curie depth locates approximately at depth of 24 km for the whole studied area.

  16. Directional variations in thermal emission from geologic surfaces

    SciTech Connect

    Jakosky, B.M.; Finiol, G.W.; Henderson, B.G. )

    1990-06-01

    The authors investigated the directional emission properties of geologic surfaces using a ground-based, hand-held infrared radiometer and thermistor probe. Field sites involved surfaces ranging from smooth playa and sand surfaces to a very rough aa lava flow in the Lunar Crater Volcanic Field, NV, as part of the Geological Remote Sensing Field Experiment. Large directional variations in thermal emission were found; they result from the presence of surface roughness--at large scales producing spatial variations in kinetic temperature and at small scales producing emissivity variations. These variations are important in remotely determining surface structure and understanding surface energy balance and emission spectra.

  17. Directional variations in thermal emission from geologic surfaces

    NASA Technical Reports Server (NTRS)

    Jakosky, Bruce M.; Finiol, Gary W.; Henderson, Bradley G.

    1990-01-01

    The directional emission properties of geologic surfaces were investigated using a ground-based, hand-held infrared radiometer and thermistor probe. Field sites involved surfaces ranging from smooth playa and sand surfaces to a very rough aa lava flow. Large directional variations in thermal emission were found; they result from the presence of surface roughness at large scales producing spatial variations in kinetic temperature and at small scales producing emissivity variations. These variations are important in remotely determining surface structure and understanding surface energy balance and emission spectra.

  18. Magnetometry with nitrogen-vacancy defects in diamond.

    PubMed

    Rondin, L; Tetienne, J-P; Hingant, T; Roch, J-F; Maletinsky, P; Jacques, V

    2014-05-01

    The isolated electronic spin system of the nitrogen-vacancy (NV) centre in diamond offers unique possibilities to be employed as a nanoscale sensor for detection and imaging of weak magnetic fields. Magnetic imaging with nanometric resolution and field detection capabilities in the nanotesla range are enabled by the atomic-size and exceptionally long spin-coherence times of this naturally occurring defect. The exciting perspectives that ensue from these characteristics have triggered vivid experimental activities in the emerging field of 'NV magnetometry'. It is the purpose of this article to review the recent progress in high-sensitivity nanoscale NV magnetometry, generate an overview of the most pertinent results of the last years and highlight perspectives for future developments. We will present the physical principles that allow for magnetic field detection with NV centres and discuss first applications of NV magnetometers that have been demonstrated in the context of nano magnetism, mesoscopic physics and the life sciences. PMID:24801494

  19. Nuclear magnetometry studies of spin dynamics in quantum Hall systems

    NASA Astrophysics Data System (ADS)

    Fauzi, M. H.; Watanabe, S.; Hirayama, Y.

    2014-12-01

    We performed a nuclear magnetometry study on quantum Hall ferromagnet with a bilayer total filling factor of νtot=2 . We found not only a rapid nuclear relaxation but also a sudden change in the nuclear-spin polarization distribution after a one-second interaction with a canted antiferromagnetic phase. We discuss the possibility of observing cooperative phenomena coming from nuclear-spin ensemble triggered by hyperfine interaction in quantum Hall system.

  20. Finite coplanar waveguide width effects in pulsed inductive microwave magnetometry

    SciTech Connect

    Schneider, M.L.; Kos, A.B.; Silva, T.J.

    2004-07-12

    The effect of finite coplanar waveguide (CPW) width on the measurement of the resonance frequency in thin ferromagnetic films has been characterized for pulsed inductive microwave magnetometry. A shift in resonant frequency is a linear function of the ratio of sample thickness to CPW width. The proportionality constant is experimentally determined to be 0.74{+-}0.1 times the saturation magnetization of the film. The frequency shift may be modeled as arising from an effective magnetic-anisotropy field.

  1. Optimizing the Growth of (111) Diamond for Diamond Based Magnetometry

    NASA Astrophysics Data System (ADS)

    Kamp, Eric; Godwin, Patrick; Samarth, Nitin; Snyder, David; de Las Casas, Charles; Awschalom, David D.

    Magnetometers based on nitrogen vacancy (NV) ensembles have recently achieved sub-picotesla sensitivities [Phys. Rev. X 5, 041001(2015)], putting the technique on par with SQUID and MFM magnetometry.Typically these sensors use (100) oriented diamond with NV centers forming along all four (111) crystal orientations.This allows for vector magnetometry, but is a hindrance to the absolute sensitivity. Diamond grown on (111) oriented substrates through microwave plasma enhanced chemical vapor deposition(MP-CVD) provides a promising route in this context since such films can exhibit preferential orientation greater than 99% [Appl. Phys. Lett.104, 102407 (2014)]. An important challenge though is to achieve sufficiently high NV center densities required for enhancing the sensitivity of an NV ensemble magnetometer.We report systematic studies of the MP-CVD growth and characterization of (111) oriented diamond, where we vary growth temperature, methane concentration, and nitrogen doping. For each film we study the Nitrogen to NV ratio, the NV- to NV0 ratio, and alignment percentage to minimize sources of decoherence and ensure preferential alignment. From these measurements we determine the optimal growth parameters for high sensitivity, NV center ensemble scalar magnetometry. Funded by NSF-DMR.

  2. First demonstration of transcontinental SQUID magnetometry (Invited)

    NASA Astrophysics Data System (ADS)

    Fourie, C.; Febvre, P.; Pozzo di Borgo, E.; Waysand, G.; Gouws, D.; Saunderson, E.; Henry, S.; Gaffet, S.; Janse van Vuuren, L.; Lochner, E. T.; Matladi, T.; Kwisanga, C.

    2013-12-01

    We present the first simultaneous measurements from an ultra-sensitive dual-node transcontinental SQUID magnetometer network, available in real time on the internet. A three-axis low temperature SQUID sensor at LSBB Underground Research Laboratory, Rustrel, France (43.841 N, 5.484 E) and a two-axis high temperature SQUID sensor at SANSA Space Science in Hermanus, South Africa (34.424 S, 19.223 E), form the sensitive nodes of the network. Data are measured and GPS time stamped continuously at 125 Hz. The low-Tc SQUID at LSBB URL (known as a [SQUID]2 system) is inside a shielded steel capsule underneath 500 meters of karstic rock, which allows a low magnetic noise floor. The less sensitive high-Tc SQUID at SANSA Space Science is completely unshielded, and housed only in a magnetically neutral hut, 50 metres from a calibrated fluxgate node of the INTERMAGNET network, to protect it against the weather. The network, which is more sensitive than observatory fluxgate magnetometers, detects Earth's magnetosphere pulsations, Schumann waves, mesopause resonance, breathing modes of the Earth and oceanic swell. Our goal is further to extract directional or polarization information if earthquake precursors are observed again, as with the Sichuan-Wenchuan earthquake on 12 May 2008. In the medium term, we are exploring the possibility to extend the network with more spatially distributed SQUID sensors, such as at the South African National Antarctic Expedition's SANAE IV base in Antarctica.

  3. Mapping of single-site magnetic anisotropy tensors in weakly coupled spin clusters by torque magnetometry.

    PubMed

    Rigamonti, Luca; Cornia, Andrea; Nava, Andrea; Perfetti, Mauro; Boulon, Marie-Emmanuelle; Barra, Anne-Laure; Zhong, Xiaoliang; Park, Kyungwha; Sessoli, Roberta

    2014-08-28

    Single-crystal torque magnetometry performed on weakly-coupled polynuclear systems provides access to a complete description of single-site anisotropy tensors. Variable-temperature, variable-field torque magnetometry was used to investigate triiron(III) complex [Fe3La(tea)2(dpm)6] (Fe3La), a lanthanum(III)-centred variant of tetrairon(III) single molecule magnets (Fe4) (H3tea = triethanolamine, Hdpm = dipivaloylmethane). Due to the presence of the diamagnetic lanthanoid, magnetic interactions among iron(III) ions (si = 5/2) are very weak (<0.1 cm(−1)) and the magnetic response of Fe3La is predominantly determined by single-site anisotropies. The local anisotropy tensors were found to have Di > 0 and to be quasi-axial with |Ei/Di| ~ 0.05. Their hard axes form an angle of approximately 70° with the threefold molecular axis, which therefore corresponds to an easy magnetic direction for the molecule. The resulting picture was supported by a High Frequency EPR investigation and by DFT calculations. Our study confirms that the array of peripheral iron(III) centres provides substantially noncollinear anisotropy contributions to the ground state of Fe4 complexes, which are of current interest in molecular magnetism and spintronics. PMID:25014192

  4. Object silhouettes and surface directions through stereo matching image processing

    NASA Astrophysics Data System (ADS)

    Akiyama, Akira; Kumagai, Hideo

    2015-09-01

    We have studied the object silhouettes and surface direction through the stereo matching image processing to recognize the position, size and surface direction of the object. For this study we construct the pixel number change distribution of the HSI color component level, the binary component level image by the standard deviation threshold, the 4 directional pixels connectivity filter, the surface elements correspondence by the stereo matching and the projection rule relation. We note that the HSI color component level change tendency of the object image near the focus position is more stable than the HSI color component level change tendency of the object image over the unfocused range. We use the HSI color component level images near the fine focused position to extract the object silhouette. We extract the object silhouette properly. We find the surface direction of the object by the pixel numbers of the correspondence surface areas and the projection cosine rule after the stereo matching image processing by the characteristic areas and the synthesized colors. The epipolar geometry is used in this study because a pair of imager is arranged on the same epipolar plane. The surface direction detection results in the proper angle calculation. The construction of the object silhouettes and the surface direction detection of the object are realized.

  5. Directional dependence of surface morphological stability of heteroepitaxial layers

    NASA Astrophysics Data System (ADS)

    Obayashi, Y.; Shintani, K.

    1998-09-01

    Surface morphological stability in coherent heteroepitaxial layers is analyzed focusing on the directional dependence of surface undulations created by surface diffusion. The critical stability condition is defined in terms of the free energy of the system which is assumed to be the sum of the elastic strain energy and the surface free energy. The displacement and stress fields of the semi-infinite anisotropic solid with the slightly undulating surface are calculated by using the surface admittance tensor and the vector complex potential function. Numerical results for the Si1-xGex/Si systems show that the critical wavelength of the <100> surface undulations is smaller than that of the <110> surface undulations, which means that surface undulations are likely to be formed in the <100> directions. It is also found that the critical wavelength decreases with the increase of Ge fraction. These tendencies are in good agreement with the observations in annealing experiments for the Si1-xGex/Si systems in the literature. If the substrate is assumed to be rigid, the range of layer thickness where the system is absolutely stable against a surface undulation of any wavelength exists. Finally, the growth rate of the amplitude of surface undulations is estimated from an evolution equation for the surface shape. It is shown that even if anisotropy is taken into account, the growth rate of the amplitude takes the maximum value when the wavelength is 4/3 times the critical wavelength, which is the same as in the isotropic approximation.

  6. Bioinspired Directional Surfaces for Adhesion, Wetting and Transport

    PubMed Central

    Hancock, Matthew J.; Sekeroglu, Koray

    2013-01-01

    In Nature, directional surfaces on insect cuticle, animal fur, bird feathers, and plant leaves are comprised of dual micro-nanoscale features that tune roughness and surface energy. This feature article summarizes experimental and theoretical approaches for the design, synthesis and characterization of new bioinspired surfaces demonstrating unidirectional surface properties. The experimental approaches focus on bottom-up and top-down synthesis methods of unidirectional micro- and nanoscale films to explore and characterize their anomalous features. The theoretical component of the review focuses on computational tools to predict the physicochemical properties of unidirectional surfaces. PMID:23526120

  7. Plasmon Surface Polariton Dispersion by Direct Optical Observation.

    ERIC Educational Resources Information Center

    Swalen, J. D.; And Others

    1980-01-01

    Describes several simple experiments that can be used to observe directly the dispersion curve of plasmon surface polaritons (PSP) on flat metal surfaces. A method is described of observing the increonental change in the wave vector of the PSP due to coatings that differ in thickness by a few nanometers. (Author/CS)

  8. Chiral cavity ring down polarimetry: Chirality and magnetometry measurements using signal reversals

    SciTech Connect

    Bougas, Lykourgos; Sofikitis, Dimitris; Katsoprinakis, Georgios E.; Spiliotis, Alexandros K.; Rakitzis, T. Peter; Tzallas, Paraskevas; Loppinet, Benoit

    2015-09-14

    We present the theory and experimental details for chiral-cavity-ring-down polarimetry and magnetometry, based on ring cavities supporting counterpropagating laser beams. The optical-rotation symmetry is broken by the presence of both chiral and Faraday birefringence, giving rise to signal reversals which allow rapid background subtractions. We present the measurement of the specific rotation at 800 nm of vapors of α-pinene, 2-butanol, and α-phellandrene, the measurement of optical rotation of sucrose solutions in a flow cell, the measurement of the Verdet constant of fused silica, and measurements and theoretical treatment of evanescent-wave optical rotation at a prism surface. Therefore, these signal-enhancing and signal-reversing methods open the way for ultrasensitive polarimetry measurements in gases, liquids and solids, and at surfaces.

  9. Chiral cavity ring down polarimetry: Chirality and magnetometry measurements using signal reversals.

    PubMed

    Bougas, Lykourgos; Sofikitis, Dimitris; Katsoprinakis, Georgios E; Spiliotis, Alexandros K; Tzallas, Paraskevas; Loppinet, Benoit; Rakitzis, T Peter

    2015-09-14

    We present the theory and experimental details for chiral-cavity-ring-down polarimetry and magnetometry, based on ring cavities supporting counterpropagating laser beams. The optical-rotation symmetry is broken by the presence of both chiral and Faraday birefringence, giving rise to signal reversals which allow rapid background subtractions. We present the measurement of the specific rotation at 800 nm of vapors of α-pinene, 2-butanol, and α-phellandrene, the measurement of optical rotation of sucrose solutions in a flow cell, the measurement of the Verdet constant of fused silica, and measurements and theoretical treatment of evanescent-wave optical rotation at a prism surface. Therefore, these signal-enhancing and signal-reversing methods open the way for ultrasensitive polarimetry measurements in gases, liquids and solids, and at surfaces. PMID:26374026

  10. Surface-directed modulation of supramolecular gel properties.

    PubMed

    Angelerou, Maria Galini Faidra; Sabri, Akmal; Creasey, Rhiannon; Angelerou, Polyxeni; Marlow, Maria; Zelzer, Mischa

    2016-03-10

    Supramolecular materials are widely studied and used for a variety of applications; in most applications, these materials are in contact with surfaces of other materials. Whilst much focus has been placed on elucidating factors that affect supramolecular material properties, the influence of the material surface on gel formation is poorly characterised. Here, we demonstrate that surface properties directly affect the fibre architecture and mechanical properties of self-assembled cytidine based gel films. PMID:26960905

  11. Nonlinear optical magnetometry with accessible in situ optical squeezing

    SciTech Connect

    Otterstrom, N.; Pooser, R. C.; Lawrie, B. J.

    2014-11-14

    In this paper, we demonstrate compact and accessible squeezed-light magnetometry using four-wave mixing in a single hot rubidium vapor cell. The strong intrinsic coherence of the four-wave mixing process results in nonlinear magneto-optical rotation (NMOR) on each mode of a two-mode relative-intensity squeezed state. Finally, this framework enables 4.7 dB of quantum noise reduction while the opposing polarization rotation signals of the probe and conjugate fields add to increase the total signal to noise ratio.

  12. Torque magnetometry of perpendicular anisotropy exchange-spring heterostructures

    NASA Astrophysics Data System (ADS)

    Vallobra, P.; Hauet, T.; Montaigne, F.; Shipton, E. G.; Fullerton, E. E.; Mangin, S.

    2016-07-01

    The field-induced magnetic configurations in a [Co/Pd]15 /TbFeCo exchange-spring system with perpendicular magnetic anisotropy are studied using torque magnetometry. The experimental results are compared to a 1D micromagnetic simulation. The good agreement between experiments and simulations allows us to deduce the evolution of the in-depth magnetic configuration as a function of the applied field orientation and amplitude. The chirality transition of the interfacial domain wall developing in the structure can also be determined with this technique.

  13. Direct mapping of hippocampal surfaces with intrinsic shape context.

    PubMed

    Shi, Yonggang; Thompson, Paul M; de Zubicaray, Greig I; Rose, Stephen E; Tu, Zhuowen; Dinov, Ivo; Toga, Arthur W

    2007-09-01

    We propose in this paper a new method for the mapping of hippocampal (HC) surfaces to establish correspondences between points on HC surfaces and enable localized HC shape analysis. A novel geometric feature, the intrinsic shape context, is defined to capture the global characteristics of the HC shapes. Based on this intrinsic feature, an automatic algorithm is developed to detect a set of landmark curves that are stable across population. The direct map between a source and target HC surface is then solved as the minimizer of a harmonic energy function defined on the source surface with landmark constraints. For numerical solutions, we compute the map with the approach of solving partial differential equations on implicit surfaces. The direct mapping method has the following properties: (1) it has the advantage of being automatic; (2) it is invariant to the pose of HC shapes. In our experiments, we apply the direct mapping method to study temporal changes of HC asymmetry in Alzheimer's disease (AD) using HC surfaces from 12 AD patients and 14 normal controls. Our results show that the AD group has a different trend in temporal changes of HC asymmetry than the group of normal controls. We also demonstrate the flexibility of the direct mapping method by applying it to construct spherical maps of HC surfaces. Spherical harmonics (SPHARM) analysis is then applied and it confirms our results on temporal changes of HC asymmetry in AD. PMID:17625918

  14. Direct Mapping of Hippocampal Surfaces with Intrinsic Shape Context

    PubMed Central

    Shi, Yonggang; Thompson, Paul M.; de Zubicaray, Greig I.; Rose, Stephen E.; Tu, Zhuowen; Dinov, Ivo; Toga, Arthur W.

    2007-01-01

    We propose in this paper a new method for the mapping of hippocampal (HC) surfaces to establish correspondences between points on HC surfaces and enable localized HC shape analysis. A novel geometric feature, the intrinsic shape context, is defined to capture the global characteristics of the HC shapes. Based on this intrinsic feature, an automatic algorithm is developed to detect a set of landmark curves that are stable across population. The direct map between a source and target HC surface is then solved as the minimizer of a harmonic energy function defined on the source surface with landmark constraints. For numerical solutions, we compute the map with the approach of solving partial differential equations on implicit surfaces. The direct mapping method has the following properties: 1) it has the advantage of being automatic; 2) it is invariant to the pose of HC shapes. In our experiments, we apply the direct mapping method to study temporal changes of HC asymmetry in Alzheimer disease (AD) using HC surfaces from 12 AD patients and 14 normal controls. Our results show that the AD group has a different trend in temporal changes of HC asymmetry than the group of normal controls. We also demonstrate the flexibility of the direct mapping method by applying it to construct spherical maps of HC surfaces. Spherical harmonics (SPHARM) analysis is then applied and it confirms our results about temporal changes of HC asymmetry in AD. PMID:17625918

  15. Direct Orthogonal Distance to Quadratic Surfaces in 3D.

    PubMed

    Lott, Gus K

    2014-09-01

    Discovering the orthogonal distance to a quadratic surface is a classic geometric task in vision, modeling, and robotics. I describe a simple, efficient, and stable direct solution for the orthogonal distance (foot-point) to an arbitrary quadratic surface from a general finite 3D point. The problem is expressed as the intersection of three quadratic surfaces, two of which are derived from the requirement of orthogonality of two non-coincident planes with the tangent plane to the quadric. A sixth order single-variable polynomial is directly generated in one coordinate of the surface point. The method detects intersection points at infinity and operates smoothly across all real quadratic surface classes. The method also geometrically detects continuums of orthogonal points (i.e., from the exact center of a sphere). I discuss algorithm performance, compare it to a state-of-the-art estimator, demonstrate the algorithm on synthetic data, and describe extension to arbitrary dimension. PMID:26352239

  16. Direct observation of negative-index microwave surface waves.

    PubMed

    Dockrey, J A; Horsley, S A R; Hooper, I R; Sambles, J R; Hibbins, A P

    2016-01-01

    Waves propagating in a negative-index material have wave-front propagation (wavevector, k) opposite in direction to that of energy flow (Poynting vector, S). Here we present an experimental realisation at microwave frequencies of an analogous surface wave phenomenon whereby a metasurface supports a surface mode that has two possible wavevector eigenstates within a narrow band of frequencies: one that supports surface waves with positive mode index, and another that supports surface waves with negative mode index. Phase sensitive measurements of the near-field of surface waves across the metasurface show the contrasting spatial evolution of the two eigenstates, providing a unique opportunity to directly observe the negative-index phenomenon. PMID:26903284

  17. Direct observation of negative-index microwave surface waves

    NASA Astrophysics Data System (ADS)

    Dockrey, J. A.; Horsley, S. A. R.; Hooper, I. R.; Sambles, J. R.; Hibbins, A. P.

    2016-02-01

    Waves propagating in a negative-index material have wave-front propagation (wavevector, k) opposite in direction to that of energy flow (Poynting vector, S). Here we present an experimental realisation at microwave frequencies of an analogous surface wave phenomenon whereby a metasurface supports a surface mode that has two possible wavevector eigenstates within a narrow band of frequencies: one that supports surface waves with positive mode index, and another that supports surface waves with negative mode index. Phase sensitive measurements of the near-field of surface waves across the metasurface show the contrasting spatial evolution of the two eigenstates, providing a unique opportunity to directly observe the negative-index phenomenon.

  18. Direct observation of negative-index microwave surface waves

    PubMed Central

    Dockrey, J. A.; Horsley, S. A. R.; Hooper, I. R.; Sambles, J. R.; Hibbins, A. P.

    2016-01-01

    Waves propagating in a negative-index material have wave-front propagation (wavevector, k) opposite in direction to that of energy flow (Poynting vector, S). Here we present an experimental realisation at microwave frequencies of an analogous surface wave phenomenon whereby a metasurface supports a surface mode that has two possible wavevector eigenstates within a narrow band of frequencies: one that supports surface waves with positive mode index, and another that supports surface waves with negative mode index. Phase sensitive measurements of the near-field of surface waves across the metasurface show the contrasting spatial evolution of the two eigenstates, providing a unique opportunity to directly observe the negative-index phenomenon. PMID:26903284

  19. MODIS Directional Surface Reflectance Product: Method, Error Estimates and Validation

    NASA Astrophysics Data System (ADS)

    Vermote, Eric; Kotchenova, Svetlana

    The surface bidirectional reflectance factor (BRF) is the ratio between reflected radiance measured in specific observation geometry (zenith and azimuth) within an infinitely small solid angle and irradiance incident on the surface from a direct source of illumination (zenith and azimuth). The BRF is determined from satellite observations through an atmospheric correction (AC) process. When properly retrieved, the surface BRF is fully decoupled from an atmospheric signal, and thus represents the value as measured by an ideal sensor held at the same view geometry and located just above the Earth's surface assuming an absence of atmosphere.

  20. Directional Reflective Surface Formed via Gradient-Impeding Acoustic Meta-Surfaces

    PubMed Central

    Song, Kyungjun; Kim, Jedo; Hur, Shin; Kwak, Jun-Hyuk; Lee, Seong-Hyun; Kim, Taesung

    2016-01-01

    Artificially designed acoustic meta-surfaces have the ability to manipulate sound energy to an extraordinary extent. Here, we report on a new type of directional reflective surface consisting of an array of sub-wavelength Helmholtz resonators with varying internal coiled path lengths, which induce a reflection phase gradient along a planar acoustic meta-surface. The acoustically reshaped reflective surface created by the gradient-impeding meta-surface yields a distinct focal line similar to a parabolic cylinder antenna, and is used for directive sound beamforming. Focused beam steering can be also obtained by repositioning the source (or receiver) off axis, i.e., displaced from the focal line. Besides flat reflective surfaces, complex surfaces such as convex or conformal shapes may be used for sound beamforming, thus facilitating easy application in sound reinforcement systems. Therefore, directional reflective surfaces have promising applications in fields such as acoustic imaging, sonic weaponry, and underwater communication. PMID:27562634

  1. Directional Reflective Surface Formed via Gradient-Impeding Acoustic Meta-Surfaces.

    PubMed

    Song, Kyungjun; Kim, Jedo; Hur, Shin; Kwak, Jun-Hyuk; Lee, Seong-Hyun; Kim, Taesung

    2016-01-01

    Artificially designed acoustic meta-surfaces have the ability to manipulate sound energy to an extraordinary extent. Here, we report on a new type of directional reflective surface consisting of an array of sub-wavelength Helmholtz resonators with varying internal coiled path lengths, which induce a reflection phase gradient along a planar acoustic meta-surface. The acoustically reshaped reflective surface created by the gradient-impeding meta-surface yields a distinct focal line similar to a parabolic cylinder antenna, and is used for directive sound beamforming. Focused beam steering can be also obtained by repositioning the source (or receiver) off axis, i.e., displaced from the focal line. Besides flat reflective surfaces, complex surfaces such as convex or conformal shapes may be used for sound beamforming, thus facilitating easy application in sound reinforcement systems. Therefore, directional reflective surfaces have promising applications in fields such as acoustic imaging, sonic weaponry, and underwater communication. PMID:27562634

  2. Ultrasensitive magnetometry and magnetic resonance imaging using cantilever detection

    NASA Astrophysics Data System (ADS)

    Rugar, Daniel

    2009-03-01

    Micromachined cantilevers make remarkable magnetometers for nanoscale measurements of magnetic materials and for magnetic resonance imaging (MRI). We present various applications of cantilever magnetometry at low temperature using cantilevers capable of attonewton force sensitivity. Small, unexpected magnetic effects can be seen, such as anomalous damping in magnetic field. A key application is magnetic resonance force microscopy (MRFM) of both electron and nuclear spins. In recent experiments with MRFM-based NMR imaging, 3D spatial resolution better than 10 nm was achieved for protons in individual virus particles. The achieved volumetric resolution represents an improvement of 100 million compared to the best conventional MRI. The microscope is sensitive enough to detect NMR signals from adsorbed layers of hydrocarbon contamination, hydrogen in multiwall carbon nanotubes and the phosphorus in DNA. Operating with a force noise on the order of 6 aN per root hertz with a magnetic tip that produces a field gradient in excess of 30 gauss per nanometer, the magnetic moment sensitivity is ˜0.2 Bohr magnetons. The corresponding field sensitivity is ˜3 nT per root hertz. To our knowledge, this combination of high field sensitivity and nanometer spatial resolution is unsurpassed by any other form of nanometer-scale magnetometry.

  3. Magnetometry at Uruk (Iraq): The city of King Gilgamesh

    NASA Astrophysics Data System (ADS)

    Fassbinder, J.; Becker, H.; van Ess, M.

    2003-04-01

    Uruk (Tell Warka) is one of the most famous sites for the early cultural development at Mesopotamia. The Sumerian city state was also important for the origin of writing and Uruk was the scene of action of mans oldest epic, the famous Epic of Gilgamesh (2600 B.C). During the time of the Sassanides, 400 A.D. the city was given up completely. Today the ruin is dominated by shallow hills and wadis, covered by pottery, mudbricks and slags. The area is totally free of modern buildings and far away from the modern village of Warka. Therefore it is an ideal place for uncompensated cesium magnetometry. The most sensational find was the discovery of a canal system inside the city. Furthermore the magnetogram shows the remains of buildings of the Babylonian type as well as garden structures, a middle Babylonian graveyard and the so called "New Years Temple" of the God Anu or Godess Ischtar. The city wall, which we prospected in a length of more than one kilometer, includes a water gate and is nearly 40 meters broad. From magnetometry it is evident that it was build by burned mudbricks as it was described by the Epic. In the west of the "New Years Temple" in the middle of the former Euphrates river we detected the remains of a building which may be interpreted as a burial. But if this building is the grave of the famous King Gilgamesh as it was described by the Epic of Gilgamesh it must remain speculative.

  4. Magnetometry and Ground-Penetrating Radar Studies in the Sihuas Valley, Peru

    NASA Astrophysics Data System (ADS)

    Wisnicki, E.; Papadimitrios, K.; Bank, C.

    2013-12-01

    The Quillcapampa la Antigua site in Peru's Sihuas Valley is a settlement from Peru's Middle Horizon (600-100 A.D.). Archaeological interest in the area stems from the question of whether ancient civilizations were able to have extensive state control of distant groups, or whether state influence occurred through less direct ties (e.g., marriage, religion, or trade). Our geophysical surveys are preliminary to archaeological digging in the area. Ground-penetrating radar and magnetometry attempt to locate areas of interest for focused archaeological excavation, characterize the design of architectural remains and burial mounds in the area, and allow archaeologists to interpret the amount of influence the Wari civilization had on the local residents.

  5. Surface-directed boundary flow in microfluidic channels.

    PubMed

    Huang, Tom T; Taylor, David G; Lim, Kwan Seop; Sedlak, Miroslav; Bashir, Rashid; Mosier, Nathan S; Ladisch, Michael R

    2006-07-01

    Channel geometry combined with surface chemistry enables a stable liquid boundary flow to be attained along the surfaces of a 12 microm diameter hydrophilic glass fiber in a closed semi-elliptical channel. Surface free energies and triangular corners formed by PDMS/glass fiber or OTS/glass fiber surfaces are shown to be responsible for the experimentally observed wetting phenomena and formation of liquid boundary layers that are 20-50 microm wide and 12 microm high. Viewing this stream through a 20 microm slit results in a virtual optical window with a 5 pL liquid volume suitable for cell counting and pathogen detection. The geometry that leads to the boundary layer is a closed channel that forms triangular corners where glass fiber and the OTS coated glass slide or PDMS touch. The contact angles and surfaces direct positioning of the fluid next to the fiber. Preferential wetting of corner regions initiates the boundary flow, while the elliptical cross-section of the channel stabilizes the microfluidic flow. The Young-Laplace equation, solved using fluid dynamic simulation software, shows contact angles that exceed 105 degrees will direct the aqueous fluid to a boundary layer next to a hydrophilic fiber with a contact angle of 5 degrees. We believe this is the first time that an explanation has been offered for the case of a boundary layer formation in a closed channel directed by a triangular geometry with two hydrophobic wetting edges adjacent to a hydrophilic surface. PMID:16800710

  6. Direct measurement of surface stress of stretched soft solids

    NASA Astrophysics Data System (ADS)

    Xu, Qin; Dufresne, Eric

    The wetting profile of liquid droplets on soft solids is determined by the competition between elasticity and solid surface stress. Near the contact point, the bulk elasticity becomes negligible such that Neumann's classic analysis nicely captures the wetting geometry and provides us an effective approach to directly measure the solid surface stress. Here, we report our experiments using confocal microscopy in studying the wetting of liquids on soft PDMS gels. While the droplets are sitting on the top, the substrates are biaxially strained. We observe that the wetting profiles and the three-phase contact angles are changing dramatically as the substrate is stretched. With Neumann's principle, we obtain the quantitative relation between surface stress of the PDMS and the applied strain. These results suggest a significant strain-dependence of surface energy and surface stress for our PDMS.

  7. Liquid Crystals Indicate Directions Of Surface Shear Stresses

    NASA Technical Reports Server (NTRS)

    Reda, Daniel C.

    1996-01-01

    Report consisting of main text of U.S. Patent 5,394,752 presents detailed information on one aspect of method of using changes in colors of liquid-crystal coatings to indicate instantaneous directions of flow-induced shear stresses (skin friction) on aerodynamic surfaces.

  8. Directional surface enhanced Raman scattering on gold nano-gratings

    NASA Astrophysics Data System (ADS)

    Gillibert, Raymond; Sarkar, Mitradeep; Bryche, Jean-François; Yasukuni, Ryohei; Moreau, Julien; Besbes, Mondher; Barbillon, Grégory; Bartenlian, Bernard; Canva, Michael; Lamy de la Chapelle, Marc

    2016-03-01

    Directional plasmon excitation and surface enhanced Raman scattering (SERS) emission were demonstrated for 1D and 2D gold nanostructure arrays deposited on a flat gold layer. The extinction spectrum of both arrays exhibits intense resonance bands that are redshifted when the incident angle is increased. Systematic extinction analysis of different grating periods revealed that this band can be assigned to a propagated surface plasmon of the flat gold surface that fulfills the Bragg condition of the arrays (Bragg mode). Directional SERS measurements demonstrated that the SERS intensity can be improved by one order of magnitude when the Bragg mode positions are matched with either the excitation or the Raman wavelengths. Hybridized numerical calculations with the finite element method and Fourier modal method also proved the presence of the Bragg mode plasmon and illustrated that the enhanced electric field of the Bragg mode is particularly localized on the nanostructures regardless of their size.

  9. Directional surface enhanced Raman scattering on gold nano-gratings.

    PubMed

    Gillibert, Raymond; Sarkar, Mitradeep; Bryche, Jean-François; Yasukuni, Ryohei; Moreau, Julien; Besbes, Mondher; Barbillon, Grégory; Bartenlian, Bernard; Canva, Michael; Chapelle, Marc Lamy de la

    2016-03-18

    Directional plasmon excitation and surface enhanced Raman scattering (SERS) emission were demonstrated for 1D and 2D gold nanostructure arrays deposited on a flat gold layer. The extinction spectrum of both arrays exhibits intense resonance bands that are redshifted when the incident angle is increased. Systematic extinction analysis of different grating periods revealed that this band can be assigned to a propagated surface plasmon of the flat gold surface that fulfills the Bragg condition of the arrays (Bragg mode). Directional SERS measurements demonstrated that the SERS intensity can be improved by one order of magnitude when the Bragg mode positions are matched with either the excitation or the Raman wavelengths. Hybridized numerical calculations with the finite element method and Fourier modal method also proved the presence of the Bragg mode plasmon and illustrated that the enhanced electric field of the Bragg mode is particularly localized on the nanostructures regardless of their size. PMID:26872242

  10. Direct attachment of DNA to semiconducting surfaces for biosensor applications.

    PubMed

    Fahrenkopf, Nicholas M; Shahedipour-Sandvik, Fatemeh; Tokranova, Natalya; Bergkvist, Magnus; Cady, Nathaniel C

    2010-11-01

    In this work we propose a novel method of immobilizing nucleic acids for field effect or high electron mobility transistor-based biosensors. The naturally occurring 5' terminal phosphate group on nucleic acids was used to coordinate with semiconductor and metal oxide surfaces. We demonstrate that DNA can be directly immobilized onto ZrO(2), AlGaN, GaN, and HfO(2) while retaining its ability to hybridize to target sequences with high specificity. By directly immobilizing the probe molecule to the sensor surface, as opposed to conventional crosslinking strategies, the number of steps in device fabrication is reduced. Furthermore, hybridization to target strands occurs closer to the sensor surface, which has the potential to increase device sensitivity by reducing the impact of the Debye screening length. PMID:20869405

  11. Optical Magnetometry with Nitrogen-Vacancy Centers in Diamond

    NASA Astrophysics Data System (ADS)

    Acosta, Victor Marcel

    Precision measurement of magnetic fields is at the heart of many important analytic techniques in materials, geology, biology, medicine, security, space, and the physical sciences. These applications require operation under a wide range of specifications regarding sensitivity, spatial resolution, bandwidth, scalability, and temperature. In this work we have developed the enabling technology for magnetometers based on nitrogen-vacancy (NV) defects in diamond which promise to cover a wider portion of this parameter space than existing sensors. We have studied how to prepare diamond material optimized for magnetometry, and we observed the basic optical and spin properties of the NV centers. Using a novel scheme inspired by new information about NV centers gathered from these studies, we constructed a sensor which improved on the state-of-the-art in a number of areas. Finally, we outline a plan for improving these sensors to study micro- and nano-scale magnetic phenomena currently inaccessible using existing technology.

  12. Scanning Cryogenic Magnetometry with a 1D Bose Einstein Condensate

    NASA Astrophysics Data System (ADS)

    Straquadine, Joshua; Yang, Fan; Lev, Benjamin

    We present a novel scanning probe magnetometer suitable for cryogenic studies, in which the probe is a Bose-Einstein condensate of 87Rb. The system is designed for rapid sample changes and operation between 35 K and room temperature while remaining compatible with the UHV requirements of ultracold atom experiments. We demonstrate a spatial resolution (FWHM) of 2.6 μm and a repeatability of 1.9 +/- 1.0 nT. We also show that the system is operating close to the fundamental measurement limits set by photon shot noise and atom shot noise. Our scanning quantum cryogenic atom microscope is suitable for fundamental studies of transport and magnetism in condensed matter systems such as high-temperature superconductors and topological insulators. We discuss the advantages and applications of this magnetometry technique.

  13. Directional transport of impinging capillary jet on wettability engineered surfaces

    NASA Astrophysics Data System (ADS)

    Ghosh, Aritra; Chatterjee, Souvick; Sinha Mahapatra, Pallab; Ganguly, Ranjan; Megaridis, Constantine

    2015-11-01

    Impingement of capillary jet on a surface is important for applications like heat transfer, or for liquid manipulation in bio-microfluidic devices. Using wettability engineered surfaces, we demonstrate pump-less and directional transport of capillary jet on a flat surface. Spatial contrast of surface energy and a wedge-shape geometry of the wettability confined track on the substrate facilitate formation of instantaneous spherical bulges upon jet impingement; these bulges are further transported along the superhydrophilic tracks due to Laplace pressure gradient. Critical condition warranted for formation of liquid bulge along the varying width of the superhydrophilic track is calculated analytically and verified experimentally. The work throws light on novel fluid phenomena of unidirectional jet impingement on wettability confined surfaces and provides a platform for innovative liquid manipulation technique for further application. By varying the geometry and wettability contrast on the surface, one can achieve volume flow rates of ~ O(100 μL/sec) and directionally guided transport of the jet liquid, pumplessly at speeds of ~ O(10cm/sec).

  14. Ultra-high sensitivity moment magnetometry of geological samples

    NASA Astrophysics Data System (ADS)

    Andrade Lima, E.; Weiss, B. P.

    2012-12-01

    Scanning SQUID microscopy offers a unique combination of high spatial resolution and magnetic field sensitivity that allows for the detection of magnetic moments as weak as 10^-16 Am2. This opens the possibility of extending paleomagnetic analyses to samples that have not been accessible to standard moment magnetometry, for which the detection limit is 10^-12 Am2. Of particular interest are individual terrestrial and extraterrestrial particles of small size (< 500 μm) that may preserve records of planetary dynamos and early nebular magnetic fields. Example targets include impact melt spherules, zircon and other silicate crystals, micrometeorites, cosmic dust, chondrules and refractory inclusions. These grains may be adequately modeled as small uniformly magnetized volumes, such that retrieving their magnetic moments from measured magnetic field maps does not require solving non-unique inverse problems. As a consequence, SQUID microscopes can be utilized as ultra-high sensitivity moment magnetometers. We show alternating field and thermal demagnetization data for several grains that demonstrate the performance of this technique. In addition, we compare scanning SQUID microscopy data with net moment measurements of the same samples performed by a commercial superconducting rock magnetometer. The results agree for stronger moments, as expected, but rapidly diverge as net moments fall below the lower 10^-10 Am2 range. These studies underscore the inability of conventional instruments not only to detect very weak moments but also to isolate contamination originating from background sources such as sample holders and mounts. We expect ultra-high sensitivity moment magnetometry using scanning SQUID microscopy will be a powerful tool in helping elucidate the formation of the solar system and planetary history.

  15. Directing neuronal cell growth on implant material surfaces by microstructuring.

    PubMed

    Reich, Uta; Fadeeva, Elena; Warnecke, Athanasia; Paasche, Gerrit; Müller, Peter; Chichkov, Boris; Stöver, Timo; Lenarz, Thomas; Reuter, Günter

    2012-05-01

    For best hearing sensation, electrodes of auditory prosthesis must have an optimal electrical contact to the respective neuronal cells. To improve the electrode-nerve interface, microstructuring of implant surfaces could guide neuronal cells toward the electrode contact. To this end, femtosecond laser ablation was used to generate linear microgrooves on the two currently relevant cochlear implant materials, silicone elastomer and platinum. Silicone surfaces were structured by two different methods, either directly, by laser ablation or indirectly, by imprinting using laser-microstructured molds. The influence of surface structuring on neurite outgrowth was investigated utilizing a neuronal-like cell line and primary auditory neurons. The pheochromocytoma cell line PC-12 and primary spiral ganglion cells were cultured on microstructured auditory implant materials. The orientation of neurite outgrowth relative to the microgrooves was determined. Both cell types showed a preferred orientation in parallel to the microstructures on both, platinum and on molded silicone elastomer. Interestingly, microstructures generated by direct laser ablation of silicone did not influence the orientation of either cell type. This shows that differences in the manufacturing procedures can affect the ability of microstructured implant surfaces to guide the growth of neurites. This is of particular importance for clinical applications, since the molding technique represents a reproducible, economic, and commercially feasible manufacturing procedure for the microstructured silicone surfaces of medical implants. PMID:22287482

  16. Direct Measurements of the Surface-Atmosphere Exchange of Ammonia

    NASA Astrophysics Data System (ADS)

    Tevlin, A.; Murphy, J. G.; Wentworth, G.; Gregoire, P.

    2012-12-01

    As the dominant atmospheric base, ammonia plays an important role in the formation and growth of inorganic aerosols. Surface-atmosphere exchange of ammonia has been observed to occur as a bidirectional flux governed by the relative magnitudes of atmospheric gas phase concentration and a temperature-dependent surface compensation point. In order to better characterise the links between gas-particle and surface-atmosphere exchanges, more direct measurements of these exchanges are necessary. Eddy Covariance (EC) can provide the most direct surface-atmosphere flux measurements, but its requirement for high frequency data combined with the reactive nature of ammonia have limited its application for this species. In order to address this lack, an investigation into the instrumental sensitivity and time response requirements for EC ammonia flux measurements was carried out using a Quantum Cascade-Tunable Infrared Laser Differential Absorption Spectrometer (QC-TILDAS) capable of measuring ammonia concentration at 10 Hz. Time response was additionally improved through the use of a heated sample line and custom glass inlet, and the system was deployed over a short grass field in rural Ontario. The ammonia measurements were used along with three dimensional sonic anemometer wind speed data to calculate EC ammonia fluxes. When combined with simultaneous measurements of the inorganic composition of gas and particle phases made by Ambient Ion Monitor - Ion Chromatography (AIM-IC), these flux measurements can provide insight into the links between gas-particle and surface-atmosphere exchange.

  17. Directional Emissivity Effects on Martian Surface Brightness Temperatures

    NASA Astrophysics Data System (ADS)

    Pitman, K. M.; Wolff, M. J.; Bandfield, J. L.; Clancy, R. T.; Clayton, G. C.

    2001-11-01

    The angular dependence of thermal emission from the surface of Mars has not been well characterized. Although nadir sequences constitute most of the MGS/TES Martian surface observations [1,2], a significant number scans of Martian surfaces at multiple emission angles (emission phase function (EPF) sequences) also exist. Such data can provide insight into surface structures, thermal inertias, and non-isotropic corrections to thermal emission measurements [3]. The availability of abundant EPF data as well as the added utility of such observations for atmospheric characterization provide the impetus for examining the phenomenon of directional emissivity. We present examples of directional emissivity effects on brightness temperature spectra for a variety of typical Martian surfaces. We examine the theoretical development by Hapke (1993, 1996) [4,5] and compare his algorithm to that of Mishchenko et al. (1999) [6]. These results are then compared to relevant TES EPF data. This work is supported through NASA grant NAGS-9820 (MJW) and JPL contract no. 961471 (RTC). [1] Smith et al. (1998), AAS-DPS meeting # 30, # 11.P07. [2] Kieffer, Mullins, & Titus (1998), EOS, 79, 533. [3] Jakosky, Finiol, & Henderson (1990), JGR, 17, 985--988. [4] Hapke, B. (1993), Theory of Reflectance & Emittance Spectroscopy, Cambridge Univ. Press, NY. [5] Hapke, B. (1996), JGR, 101, E7, 16817--16831. [6] Mishchenko et al. (1999), JQSRT, 63, 409--432.

  18. Radiative decay engineering 3. Surface plasmon-coupled directional emission

    PubMed Central

    Lakowicz, Joseph R.

    2009-01-01

    A new method of fluorescence detection that promises to increase sensitivity by 20- to 1000-fold is described. This method will also decrease the contribution of sample autofluorescence to the detected signal. The method depends on the coupling of excited fluorophores with the surface plasmon resonance present in thin metal films, typically silver and gold. The phenomenon of surface plasmon-coupled emission (SPCE) occurs for fluorophores 20–250 nm from the metal surface, allowing detection of fluorophores over substantial distances beyond the metal–sample interface. SPCE depends on interactions of the excited fluorophore with the metal surface. This interaction is independent of the mode of excitation; that is, it does not require evanescent wave or surface-plasmon excitation. In a sense, SPCE is the inverse process of the surface plasmon resonance absorption of thin metal films. Importantly, SPCE occurs over a narrow angular distribution, converting normally isotropic emission into easily collected directional emission. Up to 50% of the emission from unoriented samples can be collected, much larger than typical fluorescence collection efficiencies near 1% or less. SPCE is due only to fluorophores near the metal surface and may be regarded as emission from the induced surface plasmons. Autofluorescence from more distal parts of the sample is decreased due to decreased coupling. SPCE is highly polarized and autofluorescence can be further decreased by collecting only the polarized component or only the light propagating with the appropriate angle. Examples showing how simple optical configurations can be used in diagnostics, sensing, or biotechnology applications are presented. Surface plasmon-coupled emission is likely to find widespread applications throughout the biosciences. PMID:14690679

  19. Engineered microtopographies and surface chemistries direct cell attachment and function

    NASA Astrophysics Data System (ADS)

    Magin, Chelsea Marie

    topographically modified surface (R2=0.82). Functionalized PEGDMA hydrogels significantly reduced attachment and attachment strength of Navicula and C. marina. These hydrogels also reduced attachment of zoospores of Ulva compared to PDMSe. Attachment of Ulva to microtopographies in PDMSe and PEGDMA-co-HEMA negatively correlated with ERIII*Re (R2 = 0.94 and R2 = 0.99, respectively). Incorporating a surface energy term into this equation created a correlation between the attachment densities of cells from two evolutionarily diverse groups on substrates of two surface chemistries with an equation that describes the various microtopographies and surface chemistries in terms of surface energy (R2 = 0.80). The current Attachment Model can now be used to design engineered antifouling surface microtopographies and chemistries that inhibit the attachment of organisms from three evoluntionarily diverse groups. Hydrogels based on PEGDMA were also chosen as a substratum material for mammalian cell culture. Capturing endothelial progenitor cells (EPCs) and inducing differentiation into the endothelial cell (EC) phenotype is the ideal way to re-endothelialize a small-diameter vascular graft. Substratum elasticity has been reported to direct stem cell differentiation into specific lineages. Functionalized PEGDMA hydrogels provided good compliance, high fidelity of topographic features and sites for surface modification with biomolecules. Fibronectin grafting and topography both increased EC attachment. This combination of adjustable elasticity, surface chemistry and topography has the potential to promote the capture and differentiation of EPCs into a confluent EC monolayer. Engineered microtopographies replicated in PDMSe directed elongation and alignment of human coronary artery endothelial cells (HCAECs) and human coronary artery smooth muscle cells (HCASMCs) compared to smooth surfaces. Engineered cellular micro-environments were created with specific surface energies defined by chemistry

  20. Site-directed, on-surface assembly of DNA nanostructures.

    PubMed

    Meyer, Rebecca; Saccà, Barbara; Niemeyer, Christof M

    2015-10-01

    Two-dimensional DNA lattices have been assembled from DNA double-crossover (DX) motifs on DNA-encoded surfaces in a site-specific manner. The lattices contained two types of single-stranded protruding arms pointing into opposite directions of the plane. One type of these protruding arms served to anchor the DNA lattice on the solid support through specific hybridization with surface-bound, complementary capture oligomers. The other type of arms allowed for further attachment of DNA-tethered probe molecules on the opposite side of the lattices exposed to the solution. Site-specific lattice assembly and attachment of fluorophore-labeled oligonucleotides and DNA-protein conjugates was demonstrated using DNA microarrays on flat, transparent mica substrates. Owing to their programmable orientation and addressability over a broad dynamic range from the nanometer to the millimeter length scale, such supramolecular architecture might be used for presenting biomolecules on surfaces, for instance, in biosensor applications. PMID:26306556

  1. Direct modification of silicon surface by nanosecond laser interference lithography

    NASA Astrophysics Data System (ADS)

    Wang, Dapeng; Wang, Zuobin; Zhang, Ziang; Yue, Yong; Li, Dayou; Maple, Carsten

    2013-10-01

    Periodic and quasi-periodic structures on silicon surface have numerous significant applications in photoelectronics and surface engineering. A number of technologies have been developed to fabricate the structures in various research fields. In this work, we take the strategy of direct nanosecond laser interference lithography technology, and focus on the silicon material to create different well-defined surface structures based on theoretical analysis of the formation of laser interference patterns. Two, three and four-beam laser interference systems were set up to fabricate the grating, regular triangle and square structures on silicon surfaces, respectively. From the AFM micrographs, the critical features of structures have a dependence on laser fluences. For a relative low laser fluence, grating and dot structures formed with bumps due to the Marangoni Effect. With the increase of laser fluences, melt and evaporation behaviors can be responsible for the laser modification. By properly selecting the process parameters, well-defined grating and dot structures can been achieved. It can be demonstrated that direct laser interference lithography is a facile and efficient technology with the advantage of a single process procedure over macroscale areas for the fabrication of micro and nano structures.

  2. SQUID magnetometry from nanometer to centimeter length scales

    NASA Astrophysics Data System (ADS)

    Hatridge, Michael Jonathan

    Information stored in magnetic fields plays an important role in everyday life. This information exists over a remarkably wide range of sizes, so that magnetometry at a variety of length scales can extract useful information. Examples at centimeter to millimeter length scales include measurement of spatial and temporal character of fields generated in the human brain and heart, and active manipulation of spins in the human body for non-invasive magnetic resonance imaging (MRI). At micron length scales, magnetometry can be used to measure magnetic objects such as flux qubits; at nanometer length scales it can be used to study individual magnetic domains, and even individual spins. The development of Superconducting QUantum Interference Device (SQUID) based magnetometer for two such applications, in vivo prepolarized, ultra-low field MRI of humans and dispersive readout of SQUIDs for micro- and nanoscale magnetometry, are the focus of this thesis. Conventional MRI has developed into a powerful clinical tool for imaging the human body. This technique is based on nuclear magnetic resonance of protons with the addition application of three-dimensional magnetic field gradients to encode spatial information. Most clinical MRI systems involve magnetic fields generated by superconducting magnets, and the current trend is to higher magnetic fields than the widely used 1.5-T systems. Nonetheless, there is ongoing interest in the development of less expensive imagers operating at lower fields. The prepolarized, SQUID detected ultra-low field MRI (ULF MRI) developed by the Clarke group allows imaging in very weak fields (typically 132 muT, corresponding to a resonant frequency of 5.6 kHz). At these low field strengths, there is enhanced contrast in the longitudinal relaxation time of various tissue types, enabling imaging of objects which are not visible to conventional MRI, for instance prostate cancer. We are currently investigating the contrast between normal and cancerous

  3. Vertical directivities of seismic arrays on the ground surface

    NASA Astrophysics Data System (ADS)

    Shiraishi, H.; Asanuma, H.

    2012-12-01

    Microtremor survey method (MSM) is a technique to estimate subsurface velocity structures by inverting phase velocities of the surface waves in the microtremors. We can explorer the S-wave velocity structures at significantly lower expenses by the MSM than the conventional geophysical techniques because of its passive nature. Coherent waves across an array are identified in the MSM, and, therefore, all the existing velocity inversion methods have been deduced under an implicit assumption of horizontal velocity structure. However, it is expected that the development of the 3D inversion theory would drastically enhance applicability and reliability of the MSM. We, hence, investigated the characteristics of vertical directivities of the arrays deployed on the ground surface as an initial step for deriving the 3D MSM. We have firstly examined the response of an elemental two sensor array to which plane waves propagates from the deep crust with a certain angle of incident, and then examined the characteristics of several types of arrays, including triangular and circular arrays to clarify the characteristics of practical arrays. Real part of the complex coherence function, which has been derived to evaluate coherence of the Rayleigh wave between sensors for plane waves (Shiraishi et al., 2006), has been applied for this investigation. Our results showed that the directivity varies according to a parameter kr ( k : wave number, r : separation of the sensors ). A vertical directivity of two sensor array at kr = π shows a rotationally-symmetrical shape (Figure (a)). In contrast, an equilateral triangle array has a conspicuous directivity toward the vertical direction (cf. Figure (b)). This divergence suggests that the shape of the vertical directivity significantly depend on the geometry, and a sharp directivity toward just beneath the array can be realized by designing the vertical directivity. We concluded from this study that 3D MSM is feasible and further study to

  4. Smoothing and roughening of slip surfaces in direct shear experiments

    NASA Astrophysics Data System (ADS)

    Sagy, Amir; Badt, Nir; Hatzor, Yossef H.

    2015-04-01

    Faults in the upper crust contain discrete slip surfaces which have absorbed a significant part of the shear displacement along them. Field measurements demonstrate that these surfaces are rough at all measurable scales and indicate that surfaces of relatively large-slip faults are statistically smoother than those of small-slip faults. However, post faulting and surface erosion process that might affect the geometry of outcrops cannot be discounted in such measurements. Here we present experimental results for the evolution of shear surface topography as function of slip distance and normal stress in direct shear experiments. A single prismatic fine grain limestone block is first fractured in tension mode using the four-point bending test methodology and then the fracture surface topography is scanned using a laser profilometer. We then shear the obtained tensile fracture surfaces in direct shear, ensuring the original fracture surfaces are in a perfectly matching configuration at the beginning of the shear test. First, shearing is conducted to distances varying from 5 to 15 mm under constant normal stress of 2MPa and a constant displacement rate of 0.05 mm/s using two closed-loop servo controlled hydraulic pistons, supplying normal and shear forces (Davidesko et al., 2014). In the tested configuration peak shear stress is typically attained after a shear displacement of about 2-3 mm, beyond which lower shear stress is required to continue shearing at the preset displacement rate of 0.05 mm/s as is typical for initially rough joints. Following some initial compression the interface begins to dilate and continues to do so until the end of the test. The sheared tensile fracture surface is then scanned again and the geometrical evolution, in term of RMS roughness and power spectral density (PSD) is analyzed. We show that shearing smooth the surface along all our measurements scales. The roughness ratio, measured by initial PSD / final PSD for each wavelength

  5. Land-surface studies with a directional neutron detector.

    SciTech Connect

    Desilets, Darin; Brennan, James S.; Mascarenhas, Nicholas; Marleau, Peter

    2009-09-01

    Direct measurements of cosmic-ray neutron intensity were recorded with a neutron scatter camera developed at SNL. The instrument used in this work is a prototype originally designed for nuclear non-proliferation work, but in this project it was used to characterize the response of ambient neutrons in the 0.5-10 MeV range to water located on or above the land surface. Ambient neutron intensity near the land surface responds strongly to the presence of water, suggesting the possibility of an indirect method for monitoring soil water content, snow water equivalent depth, or canopy intercepted water. For environmental measurements the major advantage of measuring neutrons with the scatter camera is the limited (60{sup o}) field of view that can be obtained, which allows observations to be conducted at a previously unattainable spatial scales. This work is intended to provide new measurements of directional fluxes which can be used in the design of new instruments for passively and noninvasively observing land-surface water. Through measurements and neutron transport modeling we have demonstrated that such a technique is feasible.

  6. Detection of bottom ferromagnetic electrode oxidation in magnetic tunnel junctions by magnetometry measurements

    SciTech Connect

    Chen Wei; Nam, Dao N. H.; Lu, Jiwei; Wolf, Stuart A.

    2010-12-01

    Surface oxidation of the bottom ferromagnetic (FM) electrode, one of the major detrimental factors to the performance of a magnetic tunnel junction (MTJ), is difficult to avoid during the fabrication process of the MTJ's tunnel barrier. Since Co rich alloys are commonly used for the FM electrodes in MTJs, overoxidation of the tunnel barrier results in the formation of a CoO antiferromagnetic (AF) interface layer which couples with the bottom FM electrode to form a typical AF/FM exchange bias (EB) system. In this work, surface oxidation of the CoFe and CoFeB bottom electrodes was detected via magnetometry measurements of EB characterizations including the EB field, training effect, uncompensated spin density, and enhanced coercivity. Variations in these parameters were found to be related to the surface oxidation of the bottom electrode, among them the change in coercivity is most sensitive. Annealed samples show evidence for an oxygen migration back to the MgO tunnel barrier by annealing.

  7. High-sensitivity in-plane vector magnetometry using the alternating gradient force method

    NASA Astrophysics Data System (ADS)

    Thomas, Luc; Rahmani, Anas; Renaudin, Patrice; Wack, André

    2003-05-01

    The alternating gradient force magnetometer is a highly sensitive tool particularly suited for thin films magnetometry. The measurement technique is based upon the alternating force generated on a magnetized sample by a set of field-gradient coils. The so-induced sample oscillation is directly proportional to the sample's magnetization. High sensitivity measurements are achieved by mounting the sample at the end of a cantilever attached to a piezoelectric bimorph element, and by tuning the excitation frequency close to the mechanical resonance of the sample-cantilever assembly. Here we describe a new design that allows to measure both in-plane components of the magnetization of a thin film sample, for any direction of the external magnetic field within the sample's plane. By rotating the sample-probe assembly, we find the output signal to be proportional to the projection of the alternating force along the sense axis of the piezoelectric bimorph. Besides, the resonance frequency of the system remains unchanged. Thus, hysteresis loops can be measured accurately for various angles between the applied field and an in-plane anisotropy axis. The signal only vanishes when the alternating force is orthogonal to the bimorph axis. Moreover, we have designed a set of two pairs of gradient coils, whose axis are orthogonal to one another. By varying the excitation current within these two pairs of coils, it is possible to rotate the alternating gradient direction, to detect magnetization components along or perpendicular to the external field.

  8. Magnetism Matters: Coronal Magnetometry Using Multi-Wavelength Polarimetry

    NASA Astrophysics Data System (ADS)

    Gibson, Sarah E.

    2015-08-01

    The solar coronal magnetic field is key both to solving fundamental problems in solar physics such as coronal heating and solar wind acceleration, and to predicting the internal magnetic structure and thus space-weather impact of coronal mass ejections. I will describe the current state of the art in coronal magnetometry, and present results from the Coronal Multichannel Polarimeter (CoMP) at Mauna Loa Solar Observatory (MLSO), which since 2011 has taken polarimetric observations of the solar corona in the near-infrared on a near-daily basis. I will discuss work in progress that utilizes forward modeling to synthesize polarimetric data at multiple heights and vantage points, and at wavelengths from radio to infrared to visible to ultraviolet. The goal is to use such synthetic testbeds to determine the ideal set of observations for constraining the coronal magnetic field, and to establish a Data-Optimized Coronal Field Model (DOC-FM) that efficiently incorporates these data into global magnetic models. This work will provide essential tools and motivation for the planning and implementation of future coronal polarimetric projects and missions spanning a broad range of wavelengths.

  9. Improved Quantum Magnetometry beyond the Standard Quantum Limit

    NASA Astrophysics Data System (ADS)

    Brask, J. B.; Chaves, R.; Kołodyński, J.

    2015-07-01

    Under ideal conditions, quantum metrology promises a precision gain over classical techniques scaling quadratically with the number of probe particles. At the same time, no-go results have shown that generic, uncorrelated noise limits the quantum advantage to a constant factor. In frequency estimation scenarios, however, there are exceptions to this rule and, in particular, it has been found that transversal dephasing does allow for a scaling quantum advantage. Yet, it has remained unclear whether such exemptions can be exploited in practical scenarios. Here, we argue that the transversal-noise model applies to the setting of recent magnetometry experiments and show that a scaling advantage can be maintained with one-axis-twisted spin-squeezed states and Ramsey-interferometry-like measurements. This is achieved by exploiting the geometry of the setup that, as we demonstrate, has a strong influence on the achievable quantum enhancement for experimentally feasible parameter settings. When, in addition to the dominant transversal noise, other sources of decoherence are present, the quantum advantage is asymptotically bounded by a constant, but this constant may be significantly improved by exploring the geometry.

  10. Interpretation of surface and planetary directional albedos for vegetated regions

    NASA Technical Reports Server (NTRS)

    Cess, Robert D.; Vulis, Inna L.

    1989-01-01

    An atmospheric solar radiation model has been coupled with surface reflectance measurements for two vegetation types, pasture land and savannah, in order to address several issues associated with understanding the directional planetary albedo; i.e., the dependence of planetary albedo upon solar zenith angle. These include an elucidation of processes that influence the variation of planetary albedo with solar zenith angle, as well as emphasizing potential problems associated with converting narrowband planetary albedo measurements to broadband quantities. It is suggested that, for vegetated surfaces, this latter task could be somewhat formidable, since the model simulations indicate that narrowband to broadband conversions strongly depend upon vegetation type. A further aspect of this paper is to illustrate a procedure by which reciprocity inconsistencies within a bidirectional reflectance dataset, if they are not too severe, can be circumvented.

  11. Direct numerical simulation of flow past superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Luchini, Paolo; Bottaro, Alessandro

    2014-11-01

    Superhydrophobic surfaces trap a discontinuous air layer through their texture which, in addition to changing the apparent contact angle of water drops, also changes the friction coefficient of a continuous water flow. Locally this effect can be represented through a slip coefficient (e.g. Lauga & Stone, J. Fluid Mech. 489, 55, 2003), or equivalently through an effective displacement of the wall by a distance (different for each different velocity component) comparable to the spacing of the texture. For this reason they are being considered for drag reduction in turbulent flow, more sensitive to this displacement than laminar flow for its intrisic small features. Since the upper limit on texture size imposed by the destruction of the surface-tension-bound air layer eventually constrains the reduction available, to quantify the effect accurately is essential. In its simplest representation, the superhydrophobic surface may be assumed to be flat and composed of alternating patches of no-slip and free-slip wall. Here direct numerical simulations will be presented of turbulent flow past such a surface, and their results compared with those produced by the corresponding effective wall displacement.

  12. Directional excitation of surface plasmons by dielectric resonators

    NASA Astrophysics Data System (ADS)

    Zou, Chengjun; Withayachumnankul, Withawat; Shadrivov, Ilya V.; Kivshar, Yuri S.; Fumeaux, Christophe

    2015-02-01

    An important aim of current research on plasmonics is to develop compact components to manipulate surface plasmon polaritons (SPPs) and specifically to develop efficient SPP couplers. The commonly used metallic resonators are inefficient to couple free-space waves to SPPs and metallic gratings require oblique incidence for achieving unidirectional propagation. In this article, we propose to use nanoscale nonuniform arrays of dielectric resonator antennas (DRAs) to realize unidirectional launching of SPPs. DRAs are made of low-loss high-permittivity nanostructures operating on a metal surface. The applications of metallodielectric nanostructures can produce resonances mainly in the low-loss dielectric parts and hence the power dissipated through oscillating current in metal can be reduced. Similar to metallic resonators, DRAs operating near resonance can provide phase control when coupling incident waves into SPPs, adding degrees of freedom in controlling propagation direction. The theoretical analysis in this article, with numerical validation, shows efficient SPPs launching by nonuniform array of cylindrical DRAs into a predesigned direction. Furthermore, with proper patterning, optimal launching can be achieved by avoiding power leakage via deflection into free space. The SPP launching condition and the influence of propagation loss are also mathematically analyzed from the viewpoint of antenna array theory. The SPPs launchers based on DRAs have a potential for applications in highly efficient integrated optics and optical waveguides.

  13. Surface Chemistry of Nanocellulose Fibers Directs Monocyte/Macrophage Response.

    PubMed

    Hua, Kai; Ålander, Eva; Lindström, Tom; Mihranyan, Albert; Strømme, Maria; Ferraz, Natalia

    2015-09-14

    The effect of surface functionalization of nanofibrillated cellulose (NFC) on monocyte/macrophage (MM) behavior is investigated to understand how the physicochemical properties of nanocelluloses influence the interactions of such materials with biological systems. Films of anionic (a-), cationic (c-), and unmodified (u-) NFC were synthesized and characterized in terms of surface charge. THP-1 monocytes were cultured on the surface of the films for 24 h in the presence and absence of lipopolysaccharide, and the cell response was evaluated in terms of cell adhesion, morphology, and secretion of TNF-α, IL-10, and IL-1ra. The results show that MMs cultured on carboxymethylated-NFC films (a-NFC) are activated toward a proinflammatory phenotype, whereas u-NFC promotes a mild activation of the studied cells. The presence of hydroxypropyltrimethylammonium groups on c-NFC, however, does not promote the activation of MMs, indicating that c-NFC closely behaves as an inert material in terms of MM activation. None of the materials is able to directly activate the MMs toward an anti-inflammatory response. These results may provide a foundation for the design of future NFC-based materials with the ability to control MM activation and may expand the use of NFC in biomedical applications. PMID:26247827

  14. Thermal management of VECSELs by front surface direct liquid cooling

    NASA Astrophysics Data System (ADS)

    Smyth, Conor J. C.; Mirkhanov, Shamil; Quarterman, Adrian H.; Wilcox, Keith G.

    2016-03-01

    Efficient thermal management is vital for VECSELs, affecting the output power and several aspects of performance of the device. Presently there exist two distinct methods of effective thermal management which both possess their merits and disadvantages. Substrate removal of the VECSEL gain chip has proved a successful method in devices emitting at a wavelength near 1μm. However for other wavelengths the substrate removal technique has proved less effective primarily due to the thermal impedance of the distributed Bragg reflectors. The second method of thermal management involves the use of crystalline heat spreaders bonded to the gain chip surface. Although this is an effective thermal management scheme, the disadvantages are additional loss and the etalon effect that filters the gain spectrum, making mode locking more difficult and normally resulting in multiple peaks in the spectrum. There are considerable disadvantages associated with both methods attributed to heatspreader cost and sample processing. It is for these reasons that a proposed alternative, front surface liquid cooling, has been investigated in this project. Direct liquid cooling involves flowing a temperature-controlled liquid over the sample's surface. In this project COMSOL was used to model surface liquid cooling of a VECSEL sample in order to investigate and compare its potential thermal management with current standard thermal management techniques. Based on modelling, experiments were carried out in order to evaluate the performance of the technique. While modelling suggests that this is potentially a mid-performance low cost alternative to existing techniques, experimental measurements to date do not reflect the performance predicted from modelling.

  15. Atomic Magnetometry in the Lab, in the Field, and in the Sky

    NASA Astrophysics Data System (ADS)

    Patton, B.; Versolato, O.; Hovde, C.; Rochester, S.; Higbie, J.; Budker, D.

    2012-12-01

    Atomic magnetometers [1] have played an important role in geophysical research ever since their advent more than fifty years ago. They have been used in near-surface magnetic surveys, aboard ionospheric sounding rockets, and have been critical in satellite missions dedicated to precise geophysical field mapping [2]. Over the past decade, renewed interest in atomic magnetometers has led to dramatically improved sensitivity in laboratory devices. The best alkali-vapor magnetometers, operating in magnetically shielded low-field environments, can now achieve sensitivities better than 1 femtotesla in a one-second measurement [3]. The precision of atomic magnetometers operating at Earth's field, on the other hand, has lagged in comparison. We will review recent efforts to achieve better sensitivity and accuracy in all-optical alkali-vapor magnetometers operating in geophysical field ranges. Advances in laser technology, antirelaxation vapor-cell coatings [4], and optical pumping techniques have resulted in better fundamental precision and dramatically reduced systematic error in these devices. The result is a new generation of compact, low-cost, and low-power sensors which are well suited for geophysical research. In addition to these developments, we will also discuss the potential for fully remote atom-based magnetic measurements [5]. This includes a proposed scheme to measure the magnetic field within the mesospheric sodium layer using existing laser guide star technology [6]. This technique would allow magnetic surveying at length and time scales heretofore inaccessible, and would yield data relevant to magnetic anomaly mapping, ionospheric physics, ocean circulation models, and lithospheric magnetization studies. [1] Budker, D., and M. Romalis (2007), Optical magnetometry, Nat. Phys., 3(4), 227-234. [2] Ravat, D., et al. (1995), Global vector and scalar Magsat magnetic anomaly maps, J. Geophys. Res.-Solid Earth, 100(B10), 20111-20136. [3] Dang, H. B., et al. (2010

  16. New Possibilities of Magnetometry For The Earthss Crust Oil-gas-bearing Prognosis

    NASA Astrophysics Data System (ADS)

    Maksymchuk, V.

    Magnetometry has been used traditionally on a regional stage in a complex of geo- physical methods for oil prospecting mainly for basement structure study, deep fault mapping etc. However, as it was shown by the world experience the possibilities of a modern magnetoprospecting have grown substantially due to application of high- accuracy magnetometers, new methods of treatment and interpretation of geomag- netic data, increase of number of geomagnetic field parameters. It enable to use the geomagnetic method for the solution of new and actual problems for oil prospect- ing:1)detection and tracing of active tectonic faults with which carbon deposits are closely connected; 2)detection of fractured zones and earthSs crust disconsolidations; 3)oil and gas direct prospecting. Usage of magnetometry for the solution of the men- tioned above problems is based on the theoretically and experimentally determined facts of existence of the small-amplitude local DFa (up to 10 nT) anomalies and mag- netic field anomalies temporal variations U dynamic geomagnetic anomalies DDFa up to 2-5 nT over the zones of oil-gas-bearing, separate deposits, active tectonic frac- tures. The mechanisms of these anomalies origin can be rather different: chemical, electrokinetic et al. A series of methodologic investigations over some regions of the Dniepr-Donetsk trough has been carried out to study the possibilities of high-accuracy magnetic prospecting for oil-gas-bearing prognosis on the Selukchy oil deposits, on Pryrichna gas-bearing structure. Local magnetic anomalies with amplitude of 6-7 nT were detected on the Selukchy oil deposit. In both cases a magnetic anomaly max- imum shift relative to the structure arch and its timing with biogerm limestone was observed. On the base of the core magnetic properties study and mathematical simu- lation it was concluded that magnetic inhomogeneities in the upper part of the cut (up to 2 km) that can be considered as a result of epigenetic magnetic

  17. Novel optical directional coupler based on surface plasmon polaritons

    NASA Astrophysics Data System (ADS)

    Zhao, Huawei; Guang, Xu Guang; Huang, Jingtang

    2008-09-01

    In this paper, finite difference time domain (FDTD) method and perfect matching layer (PML) absorbing boundary condition are adopted to simulate and analyze a novel optical directional coupler (ODC) based on surface plasmon polaritons (SPPs). Transmittance at each output port of the novel ODC with different coupling region lengths shows it follows the general regulations of a conventional ODC. Especially, its transverse size is of nanoscale. The extreme power position offset between the two output ports is proved to be connected with the real part of Ag's complex refractive index. The excess loss and isolation of the ODC are, respectively, 0.57 and 25.9 dB for 1550 nm telecommunication wavelength, when the length of the coupling region equals half of its coupling length.

  18. Direct surface-enhanced Raman scattering analysis of DNA duplexes.

    PubMed

    Guerrini, Luca; Krpetić, Željka; van Lierop, Danny; Alvarez-Puebla, Ramon A; Graham, Duncan

    2015-01-19

    The exploration of the genetic information carried by DNA has become a major scientific challenge. Routine DNA analysis, such as PCR, still suffers from important intrinsic limitations. Surface-enhanced Raman spectroscopy (SERS) has emerged as an outstanding opportunity for the development of DNA analysis, but its application to duplexes (dsDNA) has been largely hampered by reproducibility and/or sensitivity issues. A simple strategy is presented to perform ultrasensitive direct label-free analysis of unmodified dsDNA with the means of SERS by using positively charged silver colloids. Electrostatic adhesion of DNA promotes nanoparticle aggregation into stable clusters yielding intense and reproducible SERS spectra at nanogram level. As potential applications, we report the quantitative recognition of hybridization events as well as the first examples of SERS recognition of single base mismatches and base methylations (5-methylated cytosine and N6-methylated Adenine) in duplexes. PMID:25414148

  19. Direct versus hydrogen assisted CO dissociation on metal surfaces

    NASA Astrophysics Data System (ADS)

    Alfonso, Dominic

    2012-02-01

    We present investigations of the formation of precursor hydrocarbon species relevant to production of liquid hydrocarbons on low index surfaces of various important noble and transition metals. The formation could occur via the so-called carbide mechanism where direct CO dissociation takes place, followed by stepwise hydrogenation of C yielding CHx species. Formation of precursor CHx species could also potentially take place through hydrogenated CO intermediates. First-principles calculations of energetics and barriers of CO conversion to hydrocarbons species were performed using plane-wave periodic density functional theory. Our calculations indicate that the two pathways are generally competitive on transition metals. A microkinetic model, with input thermodynamics and kinetic parameters estimated from electronic structure calculations, has been developed. The two pathways will be further examined using microkinetic approach to determine whether the aforementioned finding holds at realistic conditions.

  20. Monoclonal antibodies directed against surface molecules of multicell spheroids

    NASA Technical Reports Server (NTRS)

    Martinez, Andrew O.

    1994-01-01

    The objective of this project is to generate a library of monoclonial antibodies (MAbs) directed against surface molecules of tumor and transformed cells grown as multicell spheroids (MCS). These MCS are highly organized, 3-dimensional multicellular structures which exhibit many characteristics of in vivo organized tissues which are not found in conventional monolayer or suspension culture. In brief, MCS combine the relevance or organized tissues with in vitro methodology making the MCS a good model system to study the interactions of mammalian cells, and thereby provide a functional assay for surface adhesion molecules. This project also involves investigations of cell-cell interactions in a gravity-based environment. It will provide an important base of scientific information for future comparative studies on the effects of hypergravity and simulated microgravity environments on cell-cell interactions. This project also has the potential to yield important materials (e.g. cellular products) which may be useful for the diagnosis and/or treatment of certain human diseases. Moreover, this project supports the training of one undergraduate and one graduate student; thus, it will also assist in developing a pool of future scientists with research experience in gravitational biology research.

  1. Monoclonal antibodies directed against surface molecules of multicell spheroids

    NASA Technical Reports Server (NTRS)

    Martinez, Andrew O.

    1994-01-01

    The objective of this project is to generate a library of monoclonal antibodies (MAbs) directed against surface molecules of tumor and transformed cells grown as multicell spheroids (MCS). These MCS are highly organized, 3-dimensional multicellular structures which exhibit many characteristics of in vivo organized tissues not found in conventional monolayer or suspension culture. Therefore MCS make better in vitro model systems to study the interactions of mammalian cells, and provide a functional assay for surface adhesion molecules. This project also involves investigations of cell-cell interactions in a gravity-based environment. It will provide a base of scientific information necessary to expand the focus of the project in future years to microgravity and hypergravity-based environments. This project also has the potential to yield important materials (e.g., cellular products) which may prove useful in the diagnosis and/or treatment of certain human diseases. Moreover, this project supports the training of both undergraduate and graduate students; thus, it will assist in developing a pool of future scientists with research experience in an area (gravitational biology) of interest to NASA.

  2. Compact magnetic antennas for directional excitation of surface plasmons.

    PubMed

    Liu, Yongmin; Palomba, Stefano; Park, Yongshik; Zentgraf, Thomas; Yin, Xiaobo; Zhang, Xiang

    2012-09-12

    Plasmonics is considered as one of the most promising candidates for implementing the next generation of ultrafast and ultracompact photonic circuits. Considerable effort has been made to scale down individual plasmonic components into the nanometer regime. However, a compact plasmonic source that can efficiently generate surface plasmon polaritons (SPPs) and deliver SPPs to the region of interest is yet to be realized. Here, bridging the optical antenna theory and the recently developed concept of metamaterials, we demonstrate a subwavelength, highly efficient plasmonic source for directional generation of SPPs. The designed device consists of two nanomagnetic resonators with detuned resonant frequencies. At the operating wavelength, incident photons can be efficiently channeled into SPP waves modulated by the electric field polarization. By tailoring the relative phase at resonance and the separation between the two nanoresonators, SPPs can be steered to predominantly propagate along one specific direction. This novel magnetic nanoantenna paves a new way to manipulate photons in the near-field, and also could be useful for SPP-based nonlinear applications, active modulations, and wireless optical communications. PMID:22845720

  3. Surface modification of PVDF membrane via AGET ATRP directly from the membrane surface

    NASA Astrophysics Data System (ADS)

    Meng, Jian-Qiang; Chen, Chun-Lin; Huang, Li-Ping; Du, Qi-Yun; Zhang, Yu-Feng

    2011-05-01

    This contribution demonstrates a method for PVDF microporous membrane modification via surface-initiated activators generated by electron transfer atom transfer radical polymerization (AGET ATRP) directly from the membrane surface. Three hydrophilic polymers, poly(2-(N,N-dimethylamino) ethyl methacrylate) (PDMAEMA), poly(2-oligo (ethylene glycol) monomethyl ether methacrylate) (POEGMA), and poly(2-hydroxyethyl methacrylate) (PHEMA), were grafted from the PVDF membrane surface in aqueous solution at room temperature. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) confirmed the successful covalent tethering of the polymer chains onto the PVDF membrane surface. The gravimetry results indicated an approximately linear increase of the graft yields, up to about 330 μg/cm 2 for DMAEMA and 470 μg/cm 2 for both HEMA and OEGMA, with the polymerization time. Block copolymer brushes were prepared by chain extension. Water contact angle decreased over 50% for high yields, indicating improved surface hydrophilicity. The effects of the graft polymerization on membrane surface morphology, pore structure and permeability were investigated. It was found that the surface roughness was decreased and the pore size distribution was narrowed. The membrane permeability increased at low graft yields due to the enhanced hydrophilicity and decreased at high graft yields due to the overall reduction of the pore diameters.

  4. Interior Characterization of Europa using Magnetometry (ICEMAG): Probing the Europan Ocean and Exosphere

    NASA Astrophysics Data System (ADS)

    Raymond, C. A.; Jia, X.; Joy, S. P.; Khurana, K. K.; Murphy, N.; Russell, C. T.; Strangeway, R. J.; Weiss, B. P.

    2015-12-01

    Magnetic induction is a powerful tool for probing the subsurface. The magnetometer on the Galileo mission to Jupiter found compelling evidence for subsurface oceans on Europa, Ganymede and Callisto; however, the single induction frequency measured did not allow characteristics of the ocean to be discerned. The Interior Characterization of Europa using MAGnetometry (ICEMAG) instrument, selected for NASA's Europa mission payload in May 2015, is designed to measure Europa's induction response at multiple frequencies with high accuracy. ICEMAG definitively assesses the ice shell thickness, and the conductivity and thickness of the subsurface ocean. This knowledge informs models of Europa's thermal evolution and allows evaluation of processes that have cycled material between the depths and the surface. Magnetic field measurements also determine the electrical currents associated with coupling of plumes to the corotating magnetospheric plasma and coupling of Europa to the Jovian ionosphere. ICEMAG utilizes UCLA fluxgate magnetic field sensors as well as JPL helium sensors in an integrated magnetic measurement system. The advent of laser-pumped helium sensors and advances in digital signal sampling enables an innovative multi-sensor magnetometer to be flown that is able to monitor spacecraft fields and maintain absolute accuracy of the measurement at a level of ~1 nT over time scales of years, without special maneuvers such as spacecraft rolls.

  5. Simulating narrow nonlinear resonance features for magnetometry in compact cold atom systems

    NASA Astrophysics Data System (ADS)

    Meyer, David; Robinson, Jenn; Kunz, Paul; Quraishi, Qudsia

    2015-05-01

    We are investigating cold atom magnetometry applications and have developed a numeric model of Electromagnetically Induced Absorption (EIA) and Nonlinear Magneto-Optical Rotation (NMOR) for degenerate two-level systems. While most EIA and NMOR research is done in warm vapors, cold atoms avoid Doppler broadening and better isolate the various optical pumping mechanisms involved. Our model focuses on the effect of transverse magnetic fields on both EIA and NMOR features and shows that critical points of both yield quantitative measures of the magnitude and direction of the transverse field. This dependence reveals the underlying optical pumping mechanisms and makes possible a single, in-situ measurement of the background magnetic field zero to the sub-milligauss level, reducing background fields to enhance sub-Doppler cooling and collectively-enhanced neutral-atom quantum memory lifetimes. Separately, we are pursuing experimental measurements on the relationship between EIA and NMOR in a compact cold atom apparatus. To improve the system's capabilities we are designing our next-generation atom chip to reduce system size and employ versatile geometries enabling multi-site trapping.

  6. Water transport mechanism through open capillaries analyzed by direct surface modifications on biological surfaces.

    PubMed

    Ishii, Daisuke; Horiguchi, Hiroko; Hirai, Yuji; Yabu, Hiroshi; Matsuo, Yasutaka; Ijiro, Kuniharu; Tsujii, Kaoru; Shimozawa, Tateo; Hariyama, Takahiko; Shimomura, Masatsugu

    2013-01-01

    Some small animals only use water transport mechanisms passively driven by surface energies. However, little is known about passive water transport mechanisms because it is difficult to measure the wettability of microstructures in small areas and determine the chemistry of biological surfaces. Herein, we developed to directly analyse the structural effects of wettability of chemically modified biological surfaces by using a nanoliter volume water droplet and a hi-speed video system. The wharf roach Ligia exotica transports water only by using open capillaries in its legs containing hair- and paddle-like microstructures. The structural effects of legs chemically modified with a self-assembled monolayer were analysed, so that the wharf roach has a smart water transport system passively driven by differences of wettability between the microstructures. We anticipate that this passive water transport mechanism may inspire novel biomimetic fluid manipulations with or without a gravitational field. PMID:24149467

  7. Direct measurements of World Ocean tidal currents with surface drifters

    NASA Astrophysics Data System (ADS)

    Poulain, Pierre-Marie; Centurioni, Luca

    2015-10-01

    Velocities of surface drifters are analyzed to study tidal currents throughout the World Ocean. The global drifter data set spanning the period 1979-2013 is used to describe the geographical structure of the surface tidal currents at global scale with a resolution of 2°. Harmonic analysis is performed with two semidiurnal, two diurnal, and four inferred tidal constituents. Tidal current characteristics (amplitude of semimajor axis, rotary coefficient, tidal ellipse inclination, and Greenwich phase) are mapped over the World Ocean from direct observations. The M2 currents dominate on all the shallow continental shelves with magnitude exceeding 60 cm/s. They are also substantial (4-5 cm/s) over the main deep topographic features such as the Mid-Atlantic Ridge, the Southwest Indian Ridge, and the Mariana Ridge. The S2 currents have amplitudes typically half the size of the M2 currents, with a maximum of about 30 cm/s. The K1 and O1 currents are important in many shallow seas. They are large in the vicinity of the turning latitudes near 30°N/S where they merge with inertial motions of the same frequency. They are also substantial in the South China Sea and Philippine Sea. Maps of rotary coefficients indicate that all tidal motions are essentially clockwise (anticlockwise) in the Northern (Southern) Hemisphere. The rotary coefficient of the tidal currents is compared with the theory of freely and meridionally propagating baroclinic inertia-gravity waves. The Greenwich phase of the M2 constituent has large-scale coherent propagation patterns which could be interpreted as the propagation of the barotropic tide.

  8. Gravitational spectra from direct measurements. [of surface field

    NASA Technical Reports Server (NTRS)

    Wagner, C. A.; Colombo, O. L.

    1979-01-01

    A simple rapid method is described for determining the spectrum of a surface field (in spherical harmonics) from harmonic analysis of direct (in situ) measurements along great circle arcs. The method is shown to give excellent overall trends (smoothed spectra) to very high degree from even a few short arcs of satellite data. Three examples are taken with perfect measurements of satellite tracking over a planet made up of hundreds of point masses using (1) altimetric heights from a low-orbiting spacecraft, (2) velocity (range rate) residuals between a low and a high satellite in circular orbits, and (3) range rate data between a station at infinity and a satellite in a highly eccentric orbit. In particular, the smoothed spectrum of the earth's gravitational field is determined to about degree 400(50-km half wavelength) from 1 x 1 deg gravimetry and the equivalent of 11 revolutions of GEOS 3 and Skylab altimetry. This measurement shows that there is about 46 cm of geoid height (rms worldwide) remaining in the field beyond degree 180.

  9. Holographic LEED: A direct method for surface crystallography

    NASA Astrophysics Data System (ADS)

    Vamvakas, John Athanasios

    Since 1960's Low Energy Electron Diffraction (LEED) has been one of the most reliable methods for surface crystallography. It has solved hundreds of structures over the past 20-25 years and continues to be a powerful tool in the hands of crystallographers. Yet, the main disadvantage of the method is the fact that it is very time consuming. The programs that do the multiple scattering calculations can run literally for days! The key part of the method is the initial "guess" of a structure that will be close the one being seeked. A wrong guess would lead to huge amounts of wasted time and effort. We suggest a direct method that can give us a pretty good idea of the structure under determination. We call this method of ours: Holographic LEED (h-LEED) because it is based on the ideas of Dennis Gabor, the inventor of holography. The 3D images h-LEED reconstructs from LEED diffraction patterns can be reliably used to initialize LEED thus reducing the annoying computation time as well as the effort required by the crystallographer. We show that h-LEED produces good images for p(2× 2) reconstruction of adsorbed atoms by testing it on two adsorption systems: O/Ni(001) and K/Ni(001). The images were reconstructed from both diffuse LEED patterns from disordered adsorbates and superstructure Bragg spots from ordered adsorbates.

  10. Bi-directional reflectance studies of prepared compact particulate surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Hao

    Controlled laboratory BRDF and transmission measurements on layers of polymer and glass spheres have been carried out to investigate the connection between single particle optics and the optics of a packed surface. The measurements show that despite being closely packed, significant features of single scattering, such as the rainbow peaks, are preserved even in aggregated sphere layers. The measurements have been compared to 5 radiative transfer model predictions: the Hapke's model and its improved version, the Lumme-Bowell model, Mishchenko et al.'s BRF algorithm and DISORT. It has been found that strict numerical RTE models predict the measurements well in some regions, but have errors in both forward and backward scattering directions. The discrepancies have been attributed to the non-ideal factors such as internal inhomogeneity and surface roughness and may be corrected using Lumme-Bowell's roughness correction factor for oblique incident light. The inadequacy of the semi-empirical models can be partly attributed to the exclusion of a diffraction contribution in the models. In-situ BRDF measurements on submerged sediments with grain sizes ranging from 300 mum to over 1000 mum have been carried out. For normally illuminated small grain size samples the BRDF was nearly Lambertian, but samples with larger grain sizes are less Lambertian, with the BRDF decreasing with increasing view angles. Under oblique incident angles the samples become increasingly non-Lambertian; the dominant feature in the BRDF is enhanced backscattering. An empirical model is presented for each sediment type which represents the data within the standard deviation of the sample variation. This model is well behaved at angles out to 90°, and thus can be incorporated into the radiative transfer models to improve the light field predictions in shallow water. The BRDF of both dry and wet ooid sand layers with different particle size distributions and layer thicknesses on a reflecting mirror have

  11. Novel routes for direct preparation of surface-modifying polyelectrolyte layers and patterned polymer surfaces

    NASA Astrophysics Data System (ADS)

    Sankhe, Amit Y.

    The focus of this research was on the use of surface-confined atom transfer radical polymerization (SC-ATRP) for growing surface-tethered brushes of electrolytic or charged monomers on solid substrates. The use of SC-ATRP to produce well-defined polymer brushes from monomers with non-ionic functionalities in aprotic solvents has been well documented. Although it is possible to produce PE brushes by postpolymerization chemical conversion of some neutral brushes, this approach limits the types of PE brushes that can be produced and uses organic solvents. Thus, to more widely open the design envelope in terms of types of PE brushes that can be made and to reduce the use of organic solvents, it would be beneficial to directly synthesize PE brushes using more environmentally friendly, "green" solvents, such as water, for the reaction media. But the direct ATRP of hydrophilic monomers with ionic groups presents new challenges due to the complex interactions of the charged monomers and water with the ATRP catalyst. In this dissertation, I report findings on SC-ATRP of charged monomers such as itaconic acid (IA), methacrylic acid (MAA) and sodium 4-styrenesulfonate (SS) in aqueous solutions. Surface-tethered polyelectrolyte brushes comprised of poly(itaconic acid) (PIA), poly(methacrylic acid) (PMAA) and poly(4-styrenesulfonate) (PSS) were grown using surface-confined atom transfer radical polymerization (ATRP). The surface-tethered initiator monolayer was formed by self-assembling 2-bromoisobutyryl bromide terminated thiol molecules on gold coated silicon substrates. This polymerization initiator molecule and a copper-based organometallic catalyst allowed tethered polyelectrolyte chains to be grown via radical polymerization at room temperature in aqueous solutions. To suppress consumption of the ATRP deactivator, a halide salt was added to the reaction mixture, which enabled controlled growth of the polyelectrolyte layers. Phase-modulated ellipsometry was used to follow

  12. A direct evidence of vibrationally delocalized response at ice surface

    SciTech Connect

    Ishiyama, Tatsuya; Morita, Akihiro

    2014-11-14

    Surface-specific vibrational spectroscopic responses at isotope diluted ice and amorphous ice are investigated by molecular dynamics (MD) simulations combined with quantum mechanics/molecular mechanics calculations. The intense response specific to the ordinary crystal ice surface is predicted to be significantly suppressed in the isotopically diluted and amorphous ices, demonstrating the vibrational delocalization at the ordinary ice surface. The collective vibration at the ice surface is also analyzed with varying temperature by the MD simulation.

  13. Direct adhesive measurements between wood biopolymer model surfaces.

    PubMed

    Gustafsson, Emil; Johansson, Erik; Wågberg, Lars; Pettersson, Torbjörn

    2012-10-01

    For the first time the dry adhesion was measured for an all-wood biopolymer system using Johnson-Kendall-Roberts (JKR) contact mechanics. The polydimethylsiloxane hemisphere was successfully surface-modified with a Cellulose I model surface using layer-by-layer assembly of nanofibrillated cellulose and polyethyleneimine. Flat surfaces of cellulose were equally prepared on silicon dioxide substrates, and model surfaces of glucomannan and lignin were prepared on silicon dioxide using spin-coating. The measured work of adhesion on loading and the adhesion hysteresis was found to be very similar between cellulose and all three wood polymers, suggesting that the interaction between these biopolymers do not differ greatly. Surface energy calculations from contact angle measurements indicated similar dispersive surface energy components for the model surfaces. The dispersive component was dominating the surface energy for all surfaces. The JKR work of adhesion was lower than that calculated from contact angle measurements, which partially can be ascribed to surface roughness of the model surfaces and overestimation of the surface energies from contact angle determinations. PMID:22924973

  14. Direct chemical vapor deposition of graphene on dielectric surfaces

    DOEpatents

    Zhang, Yuegang; Ismach, Ariel

    2014-04-29

    A substrate is provided that has a metallic layer on a substrate surface of a substrate. A film made of a two dimensional (2-D) material, such as graphene, is deposited on a metallic surface of the metallic layer. The metallic layer is dewet and/or removed to provide the film on the substrate surface.

  15. Direct observation of drops on slippery lubricant-infused surfaces.

    PubMed

    Schellenberger, Frank; Xie, Jing; Encinas, Noemí; Hardy, Alexandre; Klapper, Markus; Papadopoulos, Periklis; Butt, Hans-Jürgen; Vollmer, Doris

    2015-10-14

    For a liquid droplet to slide down a solid planar surface, the surface usually has to be tilted above a critical angle of approximately 10°. By contrast, droplets of nearly any liquid "slip" on lubricant-infused textured surfaces - so termed slippery surfaces - when tilted by only a few degrees. The mechanism of how the lubricant alters the static and dynamic properties of the drop remains elusive because the drop-lubricant interface is hidden. Here, we image the shape of drops on lubricant-infused surfaces by laser scanning confocal microscopy. The contact angle of the drop-lubricant interface with the substrate exceeds 140°, although macroscopic contour images suggest angles as low as 60°. Confocal microscopy of moving drops reveals fundamentally different processes at the front and rear. Drops recede via discrete depinning events from surface protrusions at a defined receding contact angle, whereas the advancing contact angle is 180°. Drops slide easily, as the apparent contact angles with the substrate are high and the drop-lubricant interfacial tension is typically lower than the drop-air interfacial tension. Slippery surfaces resemble superhydrophobic surfaces with two main differences: drops on a slippery surface are surrounded by a wetting ridge of adjustable height and the air underneath the drop in the case of a superhydrophobic surface is replaced by lubricant in the case of a slippery surface. PMID:26291621

  16. Method for measuring surface shear stress magnitude and direction using liquid crystal coatings

    NASA Technical Reports Server (NTRS)

    Reda, Daniel C. (Inventor)

    1995-01-01

    A method is provided for determining surface shear magnitude and direction at every point on a surface. The surface is covered with a shear stress sensitive liquid crystal coating and illuminated by white light from a normal direction. A video camera is positioned at an oblique angle above the surface to observe the color of the liquid crystal at that angle. The shear magnitude and direction are derived from the color information. A method of calibrating the device is also provided.

  17. Direct measurement of surface carbon concentrations for lunar soil breccias

    NASA Technical Reports Server (NTRS)

    Filleux, C.; Spear, R. H.; Tombrello, T. A.; Burnett, D. S.

    1978-01-01

    A nuclear reaction depth profiling technique previously described by Filleux et al. (1977) has been used to measure the depth distribution of C on grain surfaces for Apollo 11, 15, 16 and 17 soil breccias. The surface C concentration of all samples studied lies between 2 and 8 times 10 to the 15th atoms per sq cm, showing no correlation with the volume C, which varies over an order of magnitude. If the observed variation represents the presence of unexposed grains on the surfaces studied, these results indicate a steady state surface C concentration of 5 to 10 times 10 to the 15th atoms per sq cm, accumulated over a time scale short compared with that required for the formation of volume-related C and with the mean lifetime of grains at the lunar surface. About one-third to one-half of the total C in lunar soil seems to be surface-correlated.

  18. Land Surface Albedo from MERIS Reflectances Using MODIS Directional Factors

    NASA Technical Reports Server (NTRS)

    Schaaf, Crystal L. B.; Gao, Feng; Strahler, Alan H.

    2004-01-01

    MERIS Level 2 surface reflectance products are now available to the scientific community. This paper demonstrates the production of MERIS-derived surface albedo and Nadir Bidirectional Reflectance Distribution Function (BRDF) adjusted reflectances by coupling the MERIS data with MODIS BRDF products. Initial efforts rely on the specification of surface anisotropy as provided by the global MODIS BRDF product for a first guess of the shape of the BRDF and then make use all of the coincidently available, partially atmospherically corrected, cloud cleared, MERIS observations to generate MERIS-derived BRDF and surface albedo quantities for each location. Comparisons between MODIS (aerosol-corrected) and MERIS (not-yet aerosol-corrected) surface values from April and May 2003 are also presented for case studies in Spain and California as well as preliminary comparisons with field data from the Devil's Rock Surfrad/BSRN site.

  19. Signal enhancement in cantilever magnetometry based on a co-resonantly coupled sensor.

    PubMed

    Körner, Julia; Reiche, Christopher F; Gemming, Thomas; Büchner, Bernd; Gerlach, Gerald; Mühl, Thomas

    2016-01-01

    Cantilever magnetometry is a measurement technique used to study magnetic nanoparticles. With decreasing sample size, the signal strength is significantly reduced, requiring advances of the technique. Ultrathin and slender cantilevers can address this challenge but lead to increased complexity of detection. We present an approach based on the co-resonant coupling of a micro- and a nanometer-sized cantilever. Via matching of the resonance frequencies of the two subsystems we induce a strong interplay between the oscillations of the two cantilevers, allowing for a detection of interactions between the sensitive nanocantilever and external influences in the amplitude response curve of the microcantilever. In our magnetometry experiment we used an iron-filled carbon nanotube acting simultaneously as nanocantilever and magnetic sample. Measurements revealed an enhancement of the commonly used frequency shift signal by five orders of magnitude compared to conventional cantilever magnetometry experiments with similar nanomagnets. With this experiment we do not only demonstrate the functionality of our sensor design but also its potential for very sensitive magnetometry measurements while maintaining a facile oscillation detection with a conventional microcantilever setup. PMID:27547621

  20. Signal enhancement in cantilever magnetometry based on a co-resonantly coupled sensor

    PubMed Central

    Körner, Julia; Reiche, Christopher F; Gemming, Thomas; Büchner, Bernd; Gerlach, Gerald

    2016-01-01

    Summary Cantilever magnetometry is a measurement technique used to study magnetic nanoparticles. With decreasing sample size, the signal strength is significantly reduced, requiring advances of the technique. Ultrathin and slender cantilevers can address this challenge but lead to increased complexity of detection. We present an approach based on the co-resonant coupling of a micro- and a nanometer-sized cantilever. Via matching of the resonance frequencies of the two subsystems we induce a strong interplay between the oscillations of the two cantilevers, allowing for a detection of interactions between the sensitive nanocantilever and external influences in the amplitude response curve of the microcantilever. In our magnetometry experiment we used an iron-filled carbon nanotube acting simultaneously as nanocantilever and magnetic sample. Measurements revealed an enhancement of the commonly used frequency shift signal by five orders of magnitude compared to conventional cantilever magnetometry experiments with similar nanomagnets. With this experiment we do not only demonstrate the functionality of our sensor design but also its potential for very sensitive magnetometry measurements while maintaining a facile oscillation detection with a conventional microcantilever setup. PMID:27547621

  1. Direct measurement of surface carbon concentrations. [in lunar soil

    NASA Technical Reports Server (NTRS)

    Filleux, C.; Tombrello, T. A.; Burnett, D. S.

    1977-01-01

    Measurements of surface concentrations of carbon in lunar soils and soil breccias provide information on the origin of carbon in the regolith. The reaction C-12 (d, p sub zero) is used to measure 'surface' and 'volume' concentrations in lunar samples. This method has a depth resolution of 1 micron, which permits only a 'surface' and a 'volume' component to be measured. Three of four Apollo 16 double drive tube samples show a surface carbon concentration of about 8 by 10 to the 14th power/sq cm, whereas the fourth sample gave 4 by 10 to the 14th power/sq cm. It can be convincingly shown that the measured concentration does not originate from fluorocarbon or hydrocarbon contaminants. Surface adsorbed layers of CO or CO2 are removed by a sputter cleaning procedure using a 2-MeV F beam. It is shown that the residual C concentration of 8 by 10 to the 14th power/sq cm cannot be further reduced by increased F fluence, and it is therefore concluded that it is truly lunar. If one assumes that the measured surface C concentration is a steady-state concentration determined only by a balance between solar-wind implantation and sputtering, a sputter erosion rate of 0.1 A/yr is obtained. However, it would be more profitable to use an independently derived sputter erosion rate to test the hypothesis of a solar-wind origin of the surface carbon.

  2. Directional BMP-2 for functionalization of titanium surfaces.

    PubMed

    Kashiwagi, Kenji; Tsuji, Toru; Shiba, Kiyotaka

    2009-02-01

    Efficient immobilization of biomacromolecules on material surfaces is a key to development in areas of regenerative medicine and tissue engineering. However, strong and irreversible immobilization of cytokines on surfaces often diminishes their biological functionality. A destructive hydrophobic interaction between the material surface and the biomolecule may underlie this inactivation. Alternatively, dissociation of the cytokine from the material may be necessary for signal transduction. Here we propose a new method for immobilizing cytokines on material surfaces: a material-binding artificial peptide is used to mediate reversible interaction between the cytokine and the material surface. We created artificial proteins that contained three copies of a Ti-binding motif, and fused them to the N-terminal of BMP-2. The engineered BMP-2 showed reversible binding to Ti surfaces and induced BMP signaling activity. When a hydrophobic protein devoid of the Ti-binding motif was fused to BMP-2, the protein tightly bound to Ti surfaces but showed little BMP activity, confirming the importance of the mode of immobilization. PMID:19022501

  3. Monoclonal antibodies directed against surface molecules of multicell spheroids

    NASA Technical Reports Server (NTRS)

    Martinez, Andrew O.

    1993-01-01

    The objective of this project is to generate a library of monoclonal antibodies (MAbs) to surface molecules of mammalian tumor and transformed cells grown as multicell spheroids (MCS). These MCS are highly organized, three dimensional multicellular structures which exhibit many characteristics of in vivo organized tissues not found in conventional monolayer or suspension culture; therefore, MCS make better in vitro model systems to study the interactions of mammalian cells. Additionally, they provide a functional assay for surface adhesion molecules.

  4. DEPTH DEPENDENCE OF DIRECT AND INDIRECT PHOTOLYSIS ON SOIL SURFACES

    EPA Science Inventory

    The photolysis depth of direct and indirect photolysis in soils was determined with use of two agrochemicals. he denitroaniline herbicide flumetralin and a dialkyl thioether organophosphorus insecticide disulfoton were homogeneously applied to four soils and irradiated. lumetrali...

  5. Surface vibrational structure of colloidal silica and its direct correlation with surface charge density.

    PubMed

    Lagström, Tove; Gmür, Tobias A; Quaroni, Luca; Goel, Alok; Brown, Matthew A

    2015-03-31

    We show that attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy can be used to determine the surface charge density (SCD) of colloidal silica nanoparticles (NPs) in aqueous solution. We identify the Si-O stretch vibrations of neutral surface bound silanol, ≡Si-OH, and of the deprotonated group, ≡Si-O(-). The position of the Si-(OH) stretch vibration is shown to directly correlate with the NPs SCD as determined by traditional potentiometric titrations, shifting to lower wavenumber (cm(-1)) with increasing density of ≡Si-O(-). The origin of this shift is discussed in terms of inductive effects that reduce the ionic character of the Si-(OH) bond after delocalization of the negative charge left on a terminal ≡Si-O(-) group across the atoms within ∼1 nm of the charged site. Using this new methodology, we quantitatively determine the SCD of 9, 14, and 25 nm diameter colloidal silica in varying concentrations of NaCl electrolyte at different bulk pH. This novel spectroscopic approach to investigate SCDs provides several opportunities for in situ coupling, for example, in microfluidic channels or with liquid microjets, and requires only very little sample—all potential advantages over a traditional potentiometric titration. PMID:25761506

  6. Status and directions of modified tribological surfaces by ion processes

    NASA Technical Reports Server (NTRS)

    Spalvins, Talivaldis

    1988-01-01

    An overview is presented of recent advances in modifying contacting surfaces in motion by the various ion assisted surface coating/modification processes to reduce and control tribological failures. The ion assisted coating processes and the surface modification processes offer the greatest potential to custom tailor and optimize the tribological performance. Hard, wear resistant and low shear coatings deposited by the ion assisted processes are discussed. Primarily the recent advances of sputtered MoS2 ion plated Au, Ag, Pb lubricating films and sputtered and ion plated hard, wear resistant TiN, HfN, TiC films are described in terms of structural property performance interrelationships which lead to improved adhesion, cohesion, nucleation, morphological growth, density, film thickness as determined by structural and chemical characterization and frictional and wear behavior. Also, the recent tribological advances using the surface modification processes such as ion implantation, ion beam mixing is discussed with emphasis on the development of lubricous high temperature ceramic surfaces.

  7. Monoclonal antibodies directed against surface molecules of multicell spheroids

    NASA Technical Reports Server (NTRS)

    Martinez, Andrew O.

    1993-01-01

    The objective of this project is to generate a library of monoclonal antibodies (MAb's) to surface molecules involved in the cell-cell interactions of mammalian cells grown as multicell spheroids (MCS). MCS are highly organized 3-dimensional multicellular structures which exhibit many characteristics in vivo tissues not found in conventional monolayer or suspension culture. They also provide a functional assay for surface adhesion molecules. In brief, MCS combine the relevance of organized tissues with the accuracy of in vitro methodology. Further, one can manipulate these MCS experimentally to discern important information about their biology.

  8. Surface control bent sub for directional drilling of petroleum wells

    DOEpatents

    Russell, Larry R.

    1986-01-01

    Directional drilling apparatus for incorporation in a drill string, wherein a lower apparatus section is angularly deviated from vertical by cam action and wherein rotational displacement of the angularly deviated apparatus section is overcome by additional cam action, the apparatus being operated by successive increases and decreases of internal drill string pressure.

  9. West Antarctic Surface Melt: Recent Context, Future Directions

    NASA Astrophysics Data System (ADS)

    Reusch, D. B.; Schneider, D. P.; Lampkin, D. J.; Karmosky, C. C.

    2012-12-01

    Surface melting on ice sheets and ice shelves is a physical threshold of much climatic and geophysical significance. Wetting reduces albedo and encourages additional melt, runoff may contribute to ice-sheet mass loss, and penetration of meltwater to the glacier bed can lubricate faster flow and thereby increase mass loss by calving. Meltwater is also a major factor in ice-shelf collapse through wedging open of crevasses. While fringing ice-shelf collapse along the Antarctic Peninsula is probably the best known example of the cryospheric response to a warming atmosphere (and ocean), surface melting is also present in inland portions of West Antarctica. In addition to potentially contributing to ice sheet dynamics, surface melt occurrence is a valuable proxy for changing atmospheric temperature conditions. Combining satellite remote sensing with atmospheric modeling, we diagnose the meteorological conditions associated with the December 1991/January 1992 surface melt event on the Ross Ice Shelf, the most extensive and longest such event in the period 1987-2008. Through this case study, we examine the utility and skill of our meteorological datasets (reanalyses, Polar WRF, selected CMIP5 GCMs) in the development of diagnostic tools for identifying surface melt as observed by satellite and simulated by regional and global models. To assess GCM model skill in the recent, and to better appraise future predictions to come in later work, we compare warm-season climatologies derived from several CMIP5-class model simulations against observations and the ERA-Interim reanalysis. Sub-daily temperatures are compared where both model output and in-situ observations are available. Trends in the surface climate for the historical period are also examined in order to assess which models simulate the most realistic changes. Self-organizing maps develop grids of generalized patterns organized by similarity to represent the continuum of synoptic weather states found in each model

  10. Direct determination of surface albedos from satellite imagery

    NASA Technical Reports Server (NTRS)

    Mekler, Y.; Joseph, J. H.

    1983-01-01

    An empirical method to measure the spectral surface albedo of surfaces from Landsat imagery is presented and analyzed. The empiricism in the method is due only to the fact that three parameters of the solution must be determined for each spectral photograph of an image on the basis of independently known albedos at three points. The approach is otherwise based on exact solutions of the radiative transfer equation for upwelling intensity. Application of the method allows the routine construction of spectral albedo maps from satelite imagery, without requiring detailed knowledge of the atmospheric aerosol content, as long as the optical depth is less than 0.75, and of the calibration of the satellite sensor.

  11. Directly thiolated modification onto the surface of detonation nanodiamonds.

    PubMed

    Hsu, Ming-Hua; Chuang, Hong; Cheng, Fong-Yu; Huang, Ying-Pei; Han, Chien-Chung; Chen, Jiun-Yu; Huang, Su-Chin; Chen, Jen-Kun; Wu, Dian-Syue; Chu, Hsueh-Liang; Chang, Chia-Ching

    2014-05-28

    An efficient method for modifying the surface of detonation nanodiamonds (5 and 100 nm) with thiol groups (-SH) by using an organic chemistry strategy is presented herein. Thiolated nanodiamonds were characterized by spectroscopic techniques, and the atomic percentage of sulfur was analyzed by elemental analysis and X-ray photoelectron spectroscopy. The conjugation between thiolated nanodiamonds and gold nanoparticles was elucidated by transmission electron microscopy and UV-vis spectrometry. Moreover, the material did not show significant cytotoxicity to the human lung carcinoma cell line and may prospectively be applied in bioconjugated technology. The new method that we elucidated may significantly improve the approach to surface modification of detonation nanodiamonds and build up a new platform for the application of nanodiamonds. PMID:24766528

  12. Calculation of aberration and direction of a normal to aspherical surface

    NASA Astrophysics Data System (ADS)

    Mikš, Antonín; Novák, Pavel; Novák, Jiří

    2013-02-01

    The work deals with the problem of aspherical surfaces in optics. General relations for the calculation of wave aberration, ray aberrations and the influence of change of radius of the reference sphere on the wave aberration of a normal to aspherical surface are derived. Furthermore, general formulas are derived for the calculation of the direction of the normal to the aspherical surface in case that the directions of the incident and the reflected (or refracted) rays are known. These equations are of a high importance for the design and manufacturing process of aspherical surfaces, design and adjustment of compensation optics in interferometric measurements of aspherical surfaces, measurement of aspherical surfaces by deflectometry, etc.

  13. Direct laser fabrication of nanowires on semiconductor surfaces

    NASA Astrophysics Data System (ADS)

    Haghizadeh, Anahita; Yang, Haeyeon

    2016-03-01

    Periodic nanowires are observed from (001) orientation of Si and GaAs when the surfaces are irradiated interferentially by high power laser pulses. These nanowires are self-assembled and can be strain-free while their period is consistent with interference period. The nanowire morphologies are studied by atomic force microscopy. The observed period between nanowires depends on the wavelengths used and interference angle. The nanowire width increases with laser intensity. The narrowest nanowires observed have the width smaller than 20 nm, which is more than 10 times smaller than the interference period.

  14. A direct immunoassay for detecting diatoms in groundwater as an indicator of the direct influence of surface water

    USGS Publications Warehouse

    Walker, C.E.; Schrock, R.M.; Reilly, T.J.; Baehr, A.L.

    2005-01-01

    Groundwater under the direct influence of surface water (GWUDISW) is of concern in communities where growing public demand on groundwater resources has resulted in increased withdrawals and hydraulic stress near surface water bodies. Under these conditions, contaminants such as methyl-tert butyl ether (MTBE) and biological materials have been detected in domestic wells. Other contaminants and pathogens associated with surface water are not routinely tested for in groundwater-supplied systems. To address the need for methods to easily identify potentially vulnerable supplies, a direct immunoassay for the quantitative detection of diatoms in raw water samples was developed as a measure of surface water influence on groundwater. Cell wall preparations from Nitzschia palea Ku??tzing, a freshwater diatom found throughout North America, were used to produce a polyclonal antibody that was applied in a direct enzyme-linked immunosorbent assay (ELISA) developed to detect the presence of N. palea cell wall components. The direct immunoassay allows detection at 500 cells L-1, a level similar to diatom concentrations observed in samples of groundwater collected near the test site. This investigation was the first attempt to utilize an ELISA as an indicator of surface water influence on groundwater. Further research is needed to develop more specific diatom-based monoclonal antibodies, determine cross-reactivity, and optimize sample processing and ELISA procedures for development of a standardized method. ?? Springer 2005.

  15. Directed Growth of Virus Nanofilaments on a Superhydrophobic Surface.

    PubMed

    Marinaro, Giovanni; Burghammer, Manfred; Costa, Luca; Dane, Thomas; De Angelis, Francesco; Di Fabrizio, Enzo; Riekel, Christian

    2015-06-17

    The evaporation of single droplets of colloidal tobacco mosaic virus (TMV) nanoparticles on a superhydrophobic surface with a hexagonal pillar-pattern results in the formation of coffee-ring type residues. We imaged surface features by optical, scanning electron, and atomic force microscopies. Bulk features were probed by raster-scan X-ray nanodiffraction. At ∼100 pg/μL nanoparticle concentration, the rim of the residue connects to neighboring pillars via fibrous extensions containing flow-aligned crystalline domains. At ∼1 pg/μL nanoparticle concentration, nanofilaments of ≥80 nm diameter and ∼20 μm length are formed, extending normal to the residue-rim across a range of pillars. X-ray scattering is dominated by the nanofilament form-factor but some evidence for crystallinity has been obtained. The observation of sheets composed of stacks of self-assembled nanoparticles deposited on pillars suggests that the nanofilaments are drawn from a structured droplet interface. PMID:25602601

  16. Assessment of groundwater under direct influence of surface water.

    PubMed

    Nnadi, Fidelia N; Fulkerson, Mark

    2002-08-01

    Waterborne pathogens are known to reside in surface water systems throughout the U.S. Cryptosporidium outbreaks over recent years are the result of drinking water supplied from such sources. Contamination of aquifers has also led to several reported cases from drinking water wells. With high resistance to typical groundwater treatment procedures, aquifer infiltration by Cryptosporidium poses a serious threat. As groundwater wells are the main source of drinking water supply in the State of Florida, understanding factors that affect the presence of Cryptosporidium would prevent future outbreaks. This study examines karst geology, land use, and hydrogeology in the State of Florida as they influence the risk of groundwater contamination. Microscopic Particulate Analysis (MPA) sampling was performed on 719 wells distributed across Florida. The results of the sampling described each well as having high, moderate, or low risk to surface water influence. The results of this study indicated that the hydrogeology of an area tends to influence the MPA Risk Index (RI) of a well. Certain geologic formations were present for the majority of the high risk wells. Residential land use contained nearly half of the wells sampled. The results also suggested that areas more prone to sinkhole development are likely to contain wells with a positive RI. PMID:15328687

  17. High-resolution vector microwave magnetometry based on solid-state spins in diamond

    PubMed Central

    Wang, Pengfei; Yuan, Zhenheng; Huang, Pu; Rong, Xing; Wang, Mengqi; Xu, Xiangkun; Duan, Changkui; Ju, Chenyong; Shi, Fazhan; Du, Jiangfeng

    2015-01-01

    The measurement of the microwave field is crucial for many developments in microwave technology and related applications. However, measuring microwave fields with high sensitivity and spatial resolution under ambient conditions remains elusive. In this work, we propose and experimentally demonstrate a scheme to measure both the strength and orientation of the microwave magnetic field by utilizing the quantum coherent dynamics of nitrogen vacancy centres in diamond. An angular resolution of 5.7 mrad and a sensitivity of 1.0 μT Hz−1/2 are achieved at a microwave frequency of 2.6000 GHz, and the microwave magnetic field vectors generated by a copper wire are precisely reconstructed. The solid-state microwave magnetometry with high resolution and wide frequency range that can work under ambient conditions proposed here enables unique potential applications over other state-of-art microwave magnetometry. PMID:25799155

  18. Magneto-optical magnetometry of individual 30 nm cobalt nanowires grown by electron beam induced deposition

    SciTech Connect

    Nikulina, E.; Idigoras, O.; Berger, A.; Vavassori, P.; Chuvilin, A.

    2012-04-02

    We show that magnetometry measurements based upon the magneto-optical Kerr effect and high resolution optical microscopy can be used as a noninvasive probe of magnetization reversal for individual nano-structures. Our measurements demonstrate single pass hysteresis loop measurements for sample sizes down to 30 nm width. A quantitative signal-to-noise ratio evaluation shows that our approach achieves an at least 3-fold improvement in sensitivity if compared to focused laser based nano-magnetometry. An analysis of the physical limits of our detection scheme enables us to estimate that measurements for structures with single digit nm widths and magnetic moments of 10{sup -16} Am{sup 2} are feasible.

  19. Electrocatalysis: A Direct Alcohol Fuel Cell and Surface Science Perspective

    SciTech Connect

    Braunchweig, B; Hibbitts, David D; Neurock, Matthew; Wieckowski, A.

    2013-01-01

    In this report, we discuss some of the advances in surface science and theory that have enabled a more detailed understanding of the mechanisms that govern the electrocatalysis. More specifically, we examine in detail the electrooxidation of C-1 and C-2 alcohol molecules in both acidic and basic media. A combination of detailed in situ spectroscopic measurements along with density functional theory calculations have helped to establish the mechanisms that control the reaction paths and the influence of acidic and alkaline media. We discuss some of the synergies and differences between electrocatalysis and aqueous phase heterogeneous catalysis. Such analyses begin to establish a common language and framework by which to compare as well as advance both fields. (C) 2012 Elsevier B.V. All rights reserved.

  20. A spiral plasmonic lens with directional excitation of surface plasmons

    PubMed Central

    Guo, Qingrui; Zhang, Chi; Hu, Xinhua

    2016-01-01

    Conventional plasmonic lenses are composed of curved slits carved through metallic films. Here, we propose a new plasmonic lens based on a metallic slit with an auxiliary groove. When the lens is illumined normally, only inward surface plasmon polaritons (SPPs) can be generated and then focused into a hot spot at the center of the lens. The focusing effect is theoretically investigated by varying the groove parameters and incident polarizations. It is found that this phenomenon exists for both the circular and linear polarizations of incidence. Under optimal groove parameters, the intensity of the focal spot in our lens can be 2.5 times of that in one without grooves for both linearly and circularly polarized illuminations. PMID:27562227

  1. A spiral plasmonic lens with directional excitation of surface plasmons.

    PubMed

    Guo, Qingrui; Zhang, Chi; Hu, Xinhua

    2016-01-01

    Conventional plasmonic lenses are composed of curved slits carved through metallic films. Here, we propose a new plasmonic lens based on a metallic slit with an auxiliary groove. When the lens is illumined normally, only inward surface plasmon polaritons (SPPs) can be generated and then focused into a hot spot at the center of the lens. The focusing effect is theoretically investigated by varying the groove parameters and incident polarizations. It is found that this phenomenon exists for both the circular and linear polarizations of incidence. Under optimal groove parameters, the intensity of the focal spot in our lens can be 2.5 times of that in one without grooves for both linearly and circularly polarized illuminations. PMID:27562227

  2. Electrocatalysis: A direct alcohol fuel cell and surface science perspective

    SciTech Connect

    Braunchweig, B; Neurock, Matthew; Wieckowski, A.; Hibbitts, David D

    2012-01-01

    In this report, we discuss some of the advances in surface science and theory that have ena bled a more detailed understanding of the mechanisms that govern the electrocatalysis.More specifically, we examine in detail the electrooxidation ofC1 and Cz alcohol molecules in both acidic and basic media. A combination of detailed in situ spectroscopic measurements along with density functional theory calculations have helped to establish the mechanisms that control the reaction paths and the innuence of acidic and alkaline media. We discuss some of the synergies and differences between electrocatalysis and aqueous phase heterogeneous catalysis.Such analyses begin to establish a common language and framework by which to compare as well as advance both fields.

  3. Novel surface markers directed against adult human gallbladder

    PubMed Central

    Galivo, Feorillo H.; Dorrell, Craig S.; Grompe, Maria; Zhong, Yong-Ping; Streeter, Philip; Grompe, Markus

    2015-01-01

    Novel cell surface-reactive monoclonal antibodies generated against extrahepatic biliary cells were developed for the isolation and characterization of different cell subsets from normal adult human gallbladder. Eleven antigenically distinct gallbladder subpopulations were isolated by fluorescence-activated cell sorting. They were classified into epithelial, mesenchymal, and pancreatobiliary (PDX1+SOX9+) subsets based on gene expression profiling. These antigenically distinct human gallbladder cell subsets could potentially also reflect different functional properties in regards to bile physiology, cell renewal and plasticity. Three of the novel monoclonal antibodies differentially labeled archival sections of primary carcinoma of human gallbladder relative to normal tissue. The novel monoclonal antibodies described herein enable the identification and characterization of antigenically diverse cell subsets within adult human gallbladder and are putative tumor biomarkers. PMID:26079872

  4. Direct surface structuring of organometallic resists using nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Acikgoz, Canet; Hempenius, Mark A.; Julius Vancso, G.; Huskens, Jurriaan

    2009-04-01

    The availability of suitable resist materials is essential for nanoimprint lithography (NIL). In this work, the application of poly(ferrocenylmethylphenylsilane) (PFMPS) as a new type of imprint resist is reported. As PFMPS contains iron and silicon in the main chain, it possesses a very high resistance to reactive ion etching. Polymer patterns formed after imprinting were transferred into silicon substrates owing to the high etch resistivity of PFMPS. The parameters for imprinting, such as polymer molar mass and initial film thickness, were investigated. A decrease in the initial film thickness facilitated the residual layer removal, as well as the pattern transfer. Only upon complete removal of the residual layer with argon plasma did pattern transfer result in aspect ratios up to 4:1 and less surface roughness.

  5. Single-proton spin detection by diamond magnetometry.

    PubMed

    Loretz, M; Rosskopf, T; Boss, J M; Pezzagna, S; Meijer, J; Degen, C L

    2014-10-16

    Extending magnetic resonance imaging to the atomic scale has been a long-standing aspiration, driven by the prospect of directly mapping atomic positions in molecules with three-dimensional spatial resolution. We report detection of individual, isolated proton spins by a nitrogen-vacancy (NV) center in a diamond chip covered by an inorganic salt. The single-proton identity was confirmed by the Zeeman effect and by a quantum coherent rotation of the weakly coupled nuclear spin. Using the hyperfine field of the NV center as an imaging gradient, we determined proton-NV distances of less than 1 nm. PMID:25323696

  6. Determining eyeball surface area directly exposed to the effects of external factors.

    PubMed

    Juliszewski, Tadeusz; Kadłuczka, Filip; Kiełbasa, Paweł

    2016-01-01

    This article discusses determining the surface area of eyeballs of men and women exposed to the direct effects of external factors in the working environment. For one eye, the mean surface is 172-182 mm(2). The determined surface area can be used in formulas for calculating the exposure of eyeballs to harmful chemical substances in workplace air. PMID:26758027

  7. Anisotropie magnetique du La2NiMnO6 multiferroique par magnetometrie statique et spectroscopie de resonance ferromagnetique

    NASA Astrophysics Data System (ADS)

    Chagnon, Dany

    In this research, magnetic properties of thin films composed of both double- (La2NiMnO6 or LNMOo) and simple-perovskites (LaNi0.5Mn0.5O3 ou LNMOd) are studied. This mixt phase (LNMOm) possesses two magnetic transitions; one for each phase present. It has previously been shown that this phase possesses a higher Curie temperature than LNMOo, approaching room temperature. This property makes room temperature ferromagnetic resonance measurements possible. Angular FMR measurement has already been achieved, but the magnetic anisotropy resulting isn’t completely understood. The goal of this study is to increase our understanding of this anisotropy to get new informations on the structure of the samples. To achieve this goal, thin films of LNMOm have been deposited by PLD on three different substrates; LSAT(001), LSAT(011) and LSAT(111). LSAT has been chosen for his insulating properties limiting the losses in the microwave cavities used for FMR measurements and for his very smooth surface. One sample of LNMOm on LAO(001) was also fabricated by Mangala Singh from the laboratoire des matériaux quantiques during a summer internship of the author. Some of the results obtained on this sample were used in this work. The samples were first characterized using static magnetometry. All samples possess two magnetic transitions, one at low temperature corresponding to the disordered phase and one at high temperature corresponding to the ordered phase. The temperature of these transitions were obtained with precision using the inflection point method. The high temperature transition was then confirmed using magnetocaloric effect, which gave the exact same values. The transition temperature of the ordered phase of all samples was between 268 and 271 K, while the transition of the disordered phase was between 60 and 110 K. A third transition at really low temperature was observed on some samples. The volume and volumic fraction of the ordered and disordered phases were approximated

  8. Femtosecond laser modification of titanium surfaces: direct imprinting of hydroxylapatite nanopowder and wettability tuning via surface microstructuring

    NASA Astrophysics Data System (ADS)

    Ionin, Andrey A.; Kudryashov, Sergey I.; Makarov, Sergey V.; Saltuganov, Pavel N.; Seleznev, Leonid V.; Sinitsyn, Dmitry V.; Golosov, Evgene V.; Goryainov, Artem A.; Kolobov, Yury R.; Kornieieva, Kateryna A.; Skomorokhov, Andrei N.; Ligachev, Alexander E.

    2013-04-01

    Femtosecond laser modification of titanium surfaces was performed to produce microstructured hydrophilic and biocompatible surface layers. Biocompatible nano/microcoatings were prepared for the first time by dry femtosecond laser imprinting of hydroxylapatite nano/micropowder onto VT6 titanium surfaces. In these experiments HAP was first deposited onto the titanium surfaces and then softly imprinted by multiple femtosecond laser pulses into the laser-melted surface metal layer. The surface relief was modified at the nano- and microscales depending on the incident laser fluence and sample scanning speed. Wetting tests demonstrated that the wetting properties of the pristine Ti surface can be tuned through its laser modification in both the hydrophobic and hydrophilic directions.

  9. Chemically directing d-block heterometallics to nanocrystal surfaces as molecular beacons of surface structure

    SciTech Connect

    Rosen, Evelyn L.; Gilmore, Keith; Sawvel, April M.; Hammack, Aaron T.; Doris, Sean E.; Aloni, Shaul; Altoe, Virginia; Nordlund, Dennis; Weng, Tsu -Chien; Sokaras, Dimosthenis; Cohen, Bruce E.; Urban, Jeffrey J.; Ogletree, D. Frank; Milliron, Delia J.; Prendergast, David; Helms, Brett A.

    2015-07-28

    Our understanding of structure and bonding in nanoscale materials is incomplete without knowledge of their surface structure. Needed are better surveying capabilities responsive not only to different atoms at the surface, but also their respective coordination environments. We report here that d-block organometallics, when placed at nanocrystal surfaces through heterometallic bonds, serve as molecular beacons broadcasting local surface structure in atomic detail. This unique ability stems from their elemental specificity and the sensitivity of their d-orbital level alignment to local coordination environment, which can be assessed spectroscopically. Re-surfacing cadmium and lead chalcogenide nanocrystals with iron- or ruthenium-based molecular beacons is readily accomplished with trimethylsilylated cyclopentadienyl metal carbonyls. For PbSe nanocrystals with iron-based beacons, we show how core-level X-ray spectroscopies and DFT calculations enrich our understanding of both charge and atomic reorganization at the surface when beacons are bound.

  10. Chemically directing d-block heterometallics to nanocrystal surfaces as molecular beacons of surface structure

    DOE PAGESBeta

    Rosen, Evelyn L.; Gilmore, Keith; Sawvel, April M.; Hammack, Aaron T.; Doris, Sean E.; Aloni, Shaul; Altoe, Virginia; Nordlund, Dennis; Weng, Tsu -Chien; Sokaras, Dimosthenis; et al

    2015-07-28

    Our understanding of structure and bonding in nanoscale materials is incomplete without knowledge of their surface structure. Needed are better surveying capabilities responsive not only to different atoms at the surface, but also their respective coordination environments. We report here that d-block organometallics, when placed at nanocrystal surfaces through heterometallic bonds, serve as molecular beacons broadcasting local surface structure in atomic detail. This unique ability stems from their elemental specificity and the sensitivity of their d-orbital level alignment to local coordination environment, which can be assessed spectroscopically. Re-surfacing cadmium and lead chalcogenide nanocrystals with iron- or ruthenium-based molecular beacons ismore » readily accomplished with trimethylsilylated cyclopentadienyl metal carbonyls. For PbSe nanocrystals with iron-based beacons, we show how core-level X-ray spectroscopies and DFT calculations enrich our understanding of both charge and atomic reorganization at the surface when beacons are bound.« less

  11. Fabrication of all diamond scanning probes for nanoscale magnetometry.

    PubMed

    Appel, Patrick; Neu, Elke; Ganzhorn, Marc; Barfuss, Arne; Batzer, Marietta; Gratz, Micha; Tschöpe, Andreas; Maletinsky, Patrick

    2016-06-01

    The electronic spin of the nitrogen vacancy (NV) center in diamond forms an atomically sized, highly sensitive sensor for magnetic fields. To harness the full potential of individual NV centers for sensing with high sensitivity and nanoscale spatial resolution, NV centers have to be incorporated into scanning probe structures enabling controlled scanning in close proximity to the sample surface. Here, we present an optimized procedure to fabricate single-crystal, all-diamond scanning probes starting from commercially available diamond and show a highly efficient and robust approach for integrating these devices in a generic atomic force microscope. Our scanning probes consisting of a scanning nanopillar (200 nm diameter, 1-2 μm length) on a thin (<1 μm) cantilever structure enable efficient light extraction from diamond in combination with a high magnetic field sensitivity (ηAC≈50±20nT/Hz). As a first application of our scanning probes, we image the magnetic stray field of a single Ni nanorod. We show that this stray field can be approximated by a single dipole and estimate the NV-to-sample distance to a few tens of nanometer, which sets the achievable resolution of our scanning probes. PMID:27370455

  12. Fabrication of all diamond scanning probes for nanoscale magnetometry

    NASA Astrophysics Data System (ADS)

    Appel, Patrick; Neu, Elke; Ganzhorn, Marc; Barfuss, Arne; Batzer, Marietta; Gratz, Micha; Tschöpe, Andreas; Maletinsky, Patrick

    2016-06-01

    The electronic spin of the nitrogen vacancy (NV) center in diamond forms an atomically sized, highly sensitive sensor for magnetic fields. To harness the full potential of individual NV centers for sensing with high sensitivity and nanoscale spatial resolution, NV centers have to be incorporated into scanning probe structures enabling controlled scanning in close proximity to the sample surface. Here, we present an optimized procedure to fabricate single-crystal, all-diamond scanning probes starting from commercially available diamond and show a highly efficient and robust approach for integrating these devices in a generic atomic force microscope. Our scanning probes consisting of a scanning nanopillar (200 nm diameter, 1-2 μm length) on a thin (<1 μm) cantilever structure enable efficient light extraction from diamond in combination with a high magnetic field sensitivity ( η AC ≈ 50 ± 20 nT / √{ Hz } ). As a first application of our scanning probes, we image the magnetic stray field of a single Ni nanorod. We show that this stray field can be approximated by a single dipole and estimate the NV-to-sample distance to a few tens of nanometer, which sets the achievable resolution of our scanning probes.

  13. Magnetometry of micro-magnets with electrostatically defined Hall bars

    SciTech Connect

    Lachance-Quirion, Dany; Camirand Lemyre, Julien; Bergeron, Laurent; Sarra-Bournet, Christian; Pioro-Ladrière, Michel

    2015-11-30

    Micro-magnets are key components for quantum information processing with individual spins, enabling arbitrary rotations and addressability. In this work, characterization of sub-micrometer sized CoFe ferromagnets is performed with Hall bars electrostatically defined in a two-dimensional electron gas. Due to the ballistic nature of electron transport in the cross junction of the Hall bar, anomalies such as the quenched Hall effect appear near zero external magnetic field, thus hindering the sensitivity of the magnetometer to small magnetic fields. However, it is shown that the sensitivity of the diffusive limit can be almost completely restored at low temperatures using a large current density in the Hall bar of about 10 A/m. Overcoming the size limitation of conventional etched Hall bars with electrostatic gating enables the measurement of magnetization curves of 440 nm wide micro-magnets with a signal-to-noise ratio above 10{sup 3}. Furthermore, the inhomogeneity of the stray magnetic field created by the micro-magnets is directly measured using the gate-voltage-dependent width of the sensitive area of the Hall bar.

  14. Extending the direct statistical approach to include particle bifurcation between the splitting surfaces

    SciTech Connect

    Burn, K.W.

    1995-01-01

    The Direct Statistical Approach (DSA) to surface splitting and Russian Roulette (RR) is one of the current routes toward automatism in Monte Carlo and is currently applied to fixed source particle transport problems. A general volumetric particle bifurcation capability has been inserted into the Direct Statistical Approach (DSA) surface parameter and cell models. The resulting extended DSA describes the second moment and time functions in terms of phase-space surface splitting/Russian roulette parameters (surface parameter model) or phase-space cell importances (cell model) in the presence of volumetric particle bifurcations including both natural events [such as (n,xn) or gamma production from neutron collisions] and artificial events (such as DXTRAN). At the same time, other limitations in the DSA models (concerning tally scores direct from the source and tracks surviving an event at which a tally score occurs) are removed. Given the second moment and time functions, the foregoing surface or cell parameters may then be optimized.

  15. Visualization of Bloch surface waves and directional propagation effects on one-dimensional photonic crystal substrate.

    PubMed

    Hung, Yu-Ju; Lin, I-Sheng

    2016-07-11

    This paper reports a novel approach to the direct observation of Bloch surface waves, wherein a layer of fluorescent material is deposited directly on the surface of a semi-infinite periodic layered cell. A set of surface nano-gratings is used to couple pumping light to Bloch surface waves, while the sample is rotated until the pumping light meets the quasi-phase matching conditions. This study investigated the directional propagation of waves on stripe and circular one-dimensional grating structures by analyzing the dispersion relationship of the first two eigen modes. Our results demonstrate the efficacy of the proposed scheme in visualizing Bloch surface waves, which could be extended to a variety of other devices. PMID:27410869

  16. Direct Measurement of Sub-Debye-Length Attraction between Oppositely Charged Surfaces

    NASA Astrophysics Data System (ADS)

    Kampf, Nir; Ben-Yaakov, Dan; Andelman, David; Safran, S. A.; Klein, Jacob

    2009-09-01

    Using a surface force balance with fast video analysis, we have measured directly the attractive forces between oppositely charged solid surfaces (charge densities σ+, σ-) across water over the entire range of interaction, in particular, at surface separations D below the Debye screening length λS. At very low salt concentration we find a long-ranged attraction between the surfaces (onset ca. 100 nm), whose variation at D<λS agrees well with predictions based on solving the Poisson-Boltzmann theory, when due account is taken of the independently-determined surface charge asymmetry (σ+≠|σ-|).

  17. Liquid extraction surface analysis in-line coupled with capillary electrophoresis for direct analysis of a solid surface sample.

    PubMed

    Sung, In Hye; Lee, Young Woo; Chung, Doo Soo

    2014-08-01

    A surface-sampling technique of liquid extraction surface analysis (LESA) was in-line coupled with capillary electrophoresis (CE) to expand the specimen types for CE to solid surfaces. The new direct surface analysis method of LESA-CE was applied to the determination of organophosphorus pesticides, including glufosinate-ammonium, aminomethylphosphonic acid, and glyphosate on the external surface of a fruit such as apple. Without any sample pretreatment, the analytes sprayed on the surface of a half apple were directly extracted into a liquid microjunction formed by dispensing the extractant from the inlet tip of a separation capillary. After extraction, the analytes were derivatized in-capillary with a fluorophore 4-fluoro-7-nitro-2,1,3-benzoxadiazole and analyzed with CE-laser induced fluorescence (LIF). The limits of detection for glufosinate-ammonium, aminomethylphosphonic acid, and glyphosate were 2.5, 1, and 10ppb, respectively, which are at least 20 times lower than the tolerance limits established by the U.S. Environmental Protection Agency. Thus, we demonstrated that LESA-CE is a quite sensitive and convenient method to determine analytes on a solid surface avoiding the dilution from sample pretreatment procedures including homogenization of a bulk sample. PMID:25064242

  18. Surface-Charge-Based Micro-Models--A Solid Foundation for Learning about Direct Current Circuits

    ERIC Educational Resources Information Center

    Hirvonen, P. E.

    2007-01-01

    This study explores how the use of a surface-charge-based instructional approach affects introductory university level students' understanding of direct current (dc) circuits. The introduced teaching intervention includes electrostatics, surface-charge-based micro-models that explain the existence of an electric field inside the current-carrying…

  19. In-flight scalar calibration and characterisation of the Swarm magnetometry package

    NASA Astrophysics Data System (ADS)

    Tøffner-Clausen, Lars; Lesur, Vincent; Olsen, Nils; Finlay, Christopher C.

    2016-07-01

    We present the in-flight scalar calibration and characterisation of the Swarm magnetometry package consisting of the absolute scalar magnetometer, the vector magnetometer, and the spacecraft structure supporting the instruments. A significant improvement in the scalar residuals between the pairs of magnetometers is demonstrated, confirming the high performance of these instruments. The results presented here, including the characterisation of a Sun-driven disturbance field, form the basis of the correction of the magnetic vector measurements from Swarm which is applied to the Swarm Level 1b magnetic data.[Figure not available: see fulltext.

  20. Rapid prototyping of frequency selective surfaces by laser direct-write

    NASA Astrophysics Data System (ADS)

    Mathews, Scott A.; Mirotznik, Mark; Good, Brandon L.; Piqué, Alberto

    2007-02-01

    In this work we describe the use of laser direct-write for the rapid prototyping of frequency selective surfaces. Frequency selective surfaces are generally described by a periodic array of conducting or dielectric features (i.e. crosses, loops, grids, etc.) that when properly designed can pass or reject specific frequency bands of incoming electromagnetic radiation. While simple frequency selective surfaces are relatively straight forward to design and fabricate, operational demands, particularly military, have motivated the design and fabrication of much more complicated patterns. These new designs combine features of significantly different length scales, randomly dithered patterns and combinations of passive and active elements. We will demonstrate how laser direct-write is an ideal tool for the rapid prototyping of these new more complicated frequency selective surface designs. We will present experimental results for devices fabricated using several different laser direct-write processes.

  1. The effect of microscopic texture on the direct plasma surface passivation of Si solar cells

    NASA Astrophysics Data System (ADS)

    Mehrabian, S.; Xu, S.; Qaemi, A. A.; Shokri, B.; Chan, C. S.; Ostrikov, K.

    2013-04-01

    Textured silicon surfaces are widely used in manufacturing of solar cells due to increasing the light absorption probability and also the antireflection properties. However, these Si surfaces have a high density of surface defects that need to be passivated. In this study, the effect of the microscopic surface texture on the plasma surface passivation of solar cells is investigated. The movement of 105 H+ ions in the texture-modified plasma sheath is studied by Monte Carlo numerical simulation. The hydrogen ions are driven by the combined electric field of the plasma sheath and the textured surface. The ion dynamics is simulated, and the relative ion distribution over the textured substrate is presented. This distribution can be used to interpret the quality of the Si dangling bonds saturation and consequently, the direct plasma surface passivation.

  2. The effect of microscopic texture on the direct plasma surface passivation of Si solar cells

    SciTech Connect

    Mehrabian, S.; Xu, S.; Qaemi, A. A.; Shokri, B.; Chan, C. S.; Ostrikov, K.

    2013-04-15

    Textured silicon surfaces are widely used in manufacturing of solar cells due to increasing the light absorption probability and also the antireflection properties. However, these Si surfaces have a high density of surface defects that need to be passivated. In this study, the effect of the microscopic surface texture on the plasma surface passivation of solar cells is investigated. The movement of 10{sup 5} H{sup +} ions in the texture-modified plasma sheath is studied by Monte Carlo numerical simulation. The hydrogen ions are driven by the combined electric field of the plasma sheath and the textured surface. The ion dynamics is simulated, and the relative ion distribution over the textured substrate is presented. This distribution can be used to interpret the quality of the Si dangling bonds saturation and consequently, the direct plasma surface passivation.

  3. Surface roughness analysis after machining of direct laser deposited tungsten carbide

    NASA Astrophysics Data System (ADS)

    Wojciechowski, S.; Twardowski, P.; Chwalczuk, T.

    2014-03-01

    In this paper, an experimental surface roughness analysis in machining of tungsten carbide is presented. The tungsten carbide was received using direct laser deposition technology (DLD). Experiments carried out included milling of tungsten carbide samples using monolithic torus cubic boron nitride (CBN) tool and grinding with the diamond cup wheel. The effect of machining method on the generated surface topography was analysed. The 3D surface topographies were measured using optical surface profiler. The research revealed, that surface roughness generated after the machining of tungsten carbide is affected by feed per tooth (fz) value related to kinematic-geometric projection only in a minor extent. The main factor affecting machined surface roughness is the occurrence of micro grooves and protuberances on the machined surface, as well as other phenomena connected, inter alia, with the mechanism for material removal.

  4. Torque Magnetometry and Thermomagnetic Capacity Studies on a 2-d Cr^4+ Antiferromagnet

    NASA Astrophysics Data System (ADS)

    Kaur, Narpinder; Nellutla, Saritha; Jo, Youn-Jung; Balicas, Luis; van Tol, Johan; Dalal, Naresh

    2007-03-01

    We report torque magnetometry and magnetic heat capacity measurements on a rare complex, Cr^IV-Diethylenetriamine diperoxo. The motivation here was to search for a simple spin-gap system that could exhibit a Bose-Einstein type condensation (BEC) of magnons. Our earlier reported magnetization and specific heat (Cp) measurements had indicated that this compound is a 2-d antiferromagnet, with a TN of 2.55 K in zero-field [1]. These magnetization and Cp data have now been augmented by use of additional magnetic fields, and the newly found B-T phase diagram is seen to be clearly parabolic. Torque magnetometry confirmed the Cp data and has enabled measurements close to the T -> 0 K, B ˜ 12.5 T region. Measurements in the dilution fridge are planned to extract the critical exponent (α) from the relation kbTc˜ (Bc-B)^α . We surmise that this system will constitute a simple new model for examining the BEC of magnons in detail. [1] C.M. Ramsey, B. Cage, P. Nguyen, K.A. Abboud, N.S. Dalal, Chem. Mater. 15, 92 (2003).

  5. Magnetic properties of nanomagnetic and biomagnetic systems analyzed using cantilever magnetometry.

    PubMed

    Gysin, Urs; Rast, Simon; Aste, Andreas; Speliotis, Thanassis; Werle, Christoph; Meyer, Ernst

    2011-07-15

    Magnetic properties of nanomagnetic and biomagnetic systems are investigated using cantilever magnetometry. In the presence of a magnetic field, magnetic films or particles deposited at the free end of a cantilever give rise to a torque on the mechanical sensor, which leads to frequency shifts depending on the applied magnetic field. From the frequency response, the magnetic properties of a magnetic sample are obtained. The magnetic field dependences of paramagnetic and ferromagnetic thin films and particles are measured in a temperature range of 5-320 K at a pressure below 10(-6) mbar. We present magnetic properties of the ferromagnetic materials Fe, Co and Ni at room temperature and also for the rare earth elements Gd, Dy and Tb at various temperatures. In addition, the magnetic moments of magnetotactic bacteria are measured under vacuum conditions at room temperature. Cantilever magnetometry is a highly sensitive tool for characterizing systems with small magnetic moments. By reducing the cantilever dimensions the sensitivity can be increased by an order of magnitude. PMID:21659684

  6. Composite-pulse magnetometry with a solid-state quantum sensor

    NASA Astrophysics Data System (ADS)

    Aiello, Clarice D.; Hirose, Masashi; Cappellaro, Paola

    2013-01-01

    The sensitivity of quantum magnetometer is challenged by control errors and, especially in the solid state, by their short coherence times. Refocusing techniques can overcome these limitations and improve the sensitivity to periodic fields, but they come at the cost of reduced bandwidth and cannot be applied to sense static or aperiodic fields. Here we experimentally demonstrate that continuous driving of the sensor spin by a composite pulse known as rotary-echo yields a flexible magnetometry scheme, mitigating both driving power imperfections and decoherence. A suitable choice of rotary-echo parameters compensates for different scenarios of noise strength and origin. The method can be applied to nanoscale sensing in variable environments or to realize noise spectroscopy. In a room-temperature implementation, based on a single electronic spin in diamond, composite-pulse magnetometry provides a tunable trade-off between sensitivities in the μTHz-1/2 range, comparable with those obtained with Ramsey spectroscopy, and coherence times approaching T1.

  7. Direct Femtosecond Laser Surface Structuring with Optical Vortex Beams Generated by a q-plate.

    PubMed

    Nivas, Jijil J J; He, Shutong; Rubano, Andrea; Vecchione, Antonio; Paparo, Domenico; Marrucci, Lorenzo; Bruzzese, Riccardo; Amoruso, Salvatore

    2015-01-01

    Creation of patterns and structures on surfaces at the micro- and nano-scale is a field of growing interest. Direct femtosecond laser surface structuring with a Gaussian-like beam intensity profile has already distinguished itself as a versatile method to fabricate surface structures on metals and semiconductors. Here we present an approach for direct femtosecond laser surface structuring based on optical vortex beams with different spatial distributions of the state of polarization, which are easily generated by means of a q-plate. The different states of an optical vortex beam carrying an orbital angular momentum ℓ = ±1 are used to demonstrate the fabrication of various regular surface patterns on silicon. The spatial features of the regular rippled and grooved surface structures are correlated with the state of polarization of the optical vortex beam. Moreover, scattered surface wave theory approach is used to rationalize the dependence of the surface structures on the local state of the laser beam characteristics (polarization and fluence). The present approach can be further extended to fabricate even more complex and unconventional surface structures by exploiting the possibilities offered by femtosecond optical vector fields. PMID:26658307

  8. Direct Femtosecond Laser Surface Structuring with Optical Vortex Beams Generated by a q-plate

    PubMed Central

    JJ Nivas, Jijil; He, Shutong; Rubano, Andrea; Vecchione, Antonio; Paparo, Domenico; Marrucci, Lorenzo; Bruzzese, Riccardo; Amoruso, Salvatore

    2015-01-01

    Creation of patterns and structures on surfaces at the micro- and nano-scale is a field of growing interest. Direct femtosecond laser surface structuring with a Gaussian-like beam intensity profile has already distinguished itself as a versatile method to fabricate surface structures on metals and semiconductors. Here we present an approach for direct femtosecond laser surface structuring based on optical vortex beams with different spatial distributions of the state of polarization, which are easily generated by means of a q-plate. The different states of an optical vortex beam carrying an orbital angular momentum ℓ = ±1 are used to demonstrate the fabrication of various regular surface patterns on silicon. The spatial features of the regular rippled and grooved surface structures are correlated with the state of polarization of the optical vortex beam. Moreover, scattered surface wave theory approach is used to rationalize the dependence of the surface structures on the local state of the laser beam characteristics (polarization and fluence). The present approach can be further extended to fabricate even more complex and unconventional surface structures by exploiting the possibilities offered by femtosecond optical vector fields. PMID:26658307

  9. Illustrating Surface Shape in Volume Data via Principal Direction-Driven 3D Line Integral Convolution

    NASA Technical Reports Server (NTRS)

    Interrante, Victoria

    1997-01-01

    The three-dimensional shape and relative depth of a smoothly curving layered transparent surface may be communicated particularly effectively when the surface is artistically enhanced with sparsely distributed opaque detail. This paper describes how the set of principal directions and principal curvatures specified by local geometric operators can be understood to define a natural 'flow' over the surface of an object, and can be used to guide the placement of the lines of a stroke texture that seeks to represent 3D shape information in a perceptually intuitive way. The driving application for this work is the visualization of layered isovalue surfaces in volume data, where the particular identity of an individual surface is not generally known a priori and observers will typically wish to view a variety of different level surfaces from the same distribution, superimposed over underlying opaque structures. By advecting an evenly distributed set of tiny opaque particles, and the empty space between them, via 3D line integral convolution through the vector field defined by the principal directions and principal curvatures of the level surfaces passing through each gridpoint of a 3D volume, it is possible to generate a single scan-converted solid stroke texture that may intuitively represent the essential shape information of any level surface in the volume. To generate longer strokes over more highly curved areas, where the directional information is both most stable and most relevant, and to simultaneously downplay the visual impact of directional information in the flatter regions, one may dynamically redefine the length of the filter kernel according to the magnitude of the maximum principal curvature of the level surface at the point around which it is applied.

  10. Physical Sensing of Surface Properties by Microswimmers – Directing Bacterial Motion via Wall Slip

    PubMed Central

    Hu, Jinglei; Wysocki, Adam; Winkler, Roland G.; Gompper, Gerhard

    2015-01-01

    Bacteria such as Escherichia coli swim along circular trajectories adjacent to surfaces. Thereby, the orientation (clockwise, counterclockwise) and the curvature depend on the surface properties. We employ mesoscale hydrodynamic simulations of a mechano-elastic model of E. coli, with a spherocylindrical body propelled by a bundle of rotating helical flagella, to study quantitatively the curvature of the appearing circular trajectories. We demonstrate that the cell is sensitive to nanoscale changes in the surface slip length. The results are employed to propose a novel approach to directing bacterial motion on striped surfaces with different slip lengths, which implies a transformation of the circular motion into a snaking motion along the stripe boundaries. The feasibility of this approach is demonstrated by a simulation of active Brownian rods, which also reveals a dependence of directional motion on the stripe width. PMID:25993019

  11. Current-Driven Supramolecular Motor with In Situ Surface Chiral Directionality Switching.

    PubMed

    Mishra, Puneet; Hill, Jonathan P; Vijayaraghavan, Saranyan; Van Rossom, Wim; Yoshizawa, Shunsuke; Grisolia, Maricarmen; Echeverria, Jorge; Ono, Teruo; Ariga, Katsuhiko; Nakayama, Tomonobu; Joachim, Christian; Uchihashi, Takashi

    2015-07-01

    Surface-supported molecular motors are nanomechanical devices of particular interest in terms of future nanoscale applications. However, the molecular motors realized so far consist of covalently bonded groups that cannot be reconfigured without undergoing a chemical reaction. Here we demonstrate that a platinum-porphyrin-based supramolecularly assembled dimer supported on a Au(111) surface can be rotated with high directionality using the tunneling current of a scanning tunneling microscope (STM). Rotational direction of this molecular motor is determined solely by the surface chirality of the dimer, and most importantly, the chirality can be inverted in situ through a process involving an intradimer rearrangement. Our result opens the way for the construction of complex molecular machines on a surface to mimic at a smaller scale versatile biological supramolecular motors. PMID:26098301

  12. Physical Sensing of Surface Properties by Microswimmers--Directing Bacterial Motion via Wall Slip.

    PubMed

    Hu, Jinglei; Wysocki, Adam; Winkler, Roland G; Gompper, Gerhard

    2015-01-01

    Bacteria such as Escherichia coli swim along circular trajectories adjacent to surfaces. Thereby, the orientation (clockwise, counterclockwise) and the curvature depend on the surface properties. We employ mesoscale hydrodynamic simulations of a mechano-elastic model of E. coli, with a spherocylindrical body propelled by a bundle of rotating helical flagella, to study quantitatively the curvature of the appearing circular trajectories. We demonstrate that the cell is sensitive to nanoscale changes in the surface slip length. The results are employed to propose a novel approach to directing bacterial motion on striped surfaces with different slip lengths, which implies a transformation of the circular motion into a snaking motion along the stripe boundaries. The feasibility of this approach is demonstrated by a simulation of active Brownian rods, which also reveals a dependence of directional motion on the stripe width. PMID:25993019

  13. Direct evidence for compressive elastic strain at ground surfaces of nanocomposite ceramics

    NASA Astrophysics Data System (ADS)

    Tanner, B. K.; Wu, H. Z.; Roberts, S. G.

    2005-02-01

    High-resolution grazing incidence x-ray powder diffraction has been used to provide direct evidence for the existence of a uniform compressive strain close to the surface of ground alumina/SiC nanocomposites. No such strain is found in ground surfaces of single-phase alumina or polished surfaces of nanocomposite. The strain in the ground nanocomposite is found to be perpendicular to the grinding direction and disappears on annealing at 1250°C. Such a compressive stress provides a mechanism for enhancing the strength of the nanocomposite, by opposing any tensile loading tending to open surface flaws. The origin of the stresses probably lies in the enhanced grain boundary strength in the nanocomposite alumina-silicon carbide compared to alumina.

  14. Increased efficiency of direct nanoimprinting on planar and curved bulk titanium through surface modification☆

    PubMed Central

    Greer, Andrew I.M.; Seunarine, Krishna; Khokhar, Ali Z.; MacLaren, Ian; Brydone, Alistair S.; Moran, David A.J.; Gadegaard, Nikolaj

    2013-01-01

    In this work the direct transfer of nanopatterns into titanium is demonstrated. The nanofeatures are imprinted at room temperature using diamond stamps in a single step. We also show that the imprint properties of the titanium surface can be altered by anodisation yielding a significant reduction in the required imprint force for pattern transfer. The anodisation process is also utilised for curved titanium surfaces where a reduced imprint force is preferable to avoid sample deformation and damage. We finally demonstrate that our process can be applied directly to titanium rods. PMID:24748699

  15. Surface entropy of liquids via a direct Monte Carlo approach - Application to liquid Si

    NASA Technical Reports Server (NTRS)

    Wang, Z. Q.; Stroud, D.

    1990-01-01

    Two methods are presented for a direct Monte Carlo evaluation of the surface entropy S(s) of a liquid interacting by specified, volume-independent potentials. The first method is based on an application of the approach of Ferrenberg and Swendsen (1988, 1989) to Monte Carlo simulations at two different temperatures; it gives much more reliable results for S(s) in liquid Si than previous calculations based on numerical differentiation. The second method expresses the surface entropy directly as a canonical average at fixed temperature.

  16. Direct epoxidation of propylene over stabilized Cu(+) surface sites on titanium-modified Cu2O.

    PubMed

    Yang, Xiaofang; Kattel, Shyam; Xiong, Ke; Mudiyanselage, Kumudu; Rykov, Sergei; Senanayake, Sanjaya D; Rodriguez, José A; Liu, Ping; Stacchiola, Dario J; Chen, Jingguang G

    2015-10-01

    Direct propylene epoxidation by O2 is a challenging reaction because of the strong tendency for complete combustion. Results from the current study demonstrate that by generating highly dispersed and stabilized Cu(+) active sites in a TiCuOx mixed oxide the epoxidation selectivity can be tuned. The TiCuOx surface anchors the key surface intermediate, an oxametallacycle, leading to higher selectivity for epoxidation of propylene. PMID:26215635

  17. Direct synthesis of sp-bonded carbon chains on graphite surface by femtosecond laser irradiation

    SciTech Connect

    Hu, A.; Rybachuk, M.; Lu, Q.-B.; Duley, W. W.

    2007-09-24

    Microscopic phase transformation from graphite to sp-bonded carbon chains (carbyne) and nanodiamond has been induced by femtosecond laser pulses on graphite surface. UV/surface enhanced Raman scattering spectra and x-ray photoelectron spectra displayed the local synthesis of carbyne in the melt zone while nanocrystalline diamond and trans-polyacetylene chains form in the edge area of gentle ablation. These results evidence possible direct 'writing' of variable chemical bonded carbons by femtosecond laser pulses for carbon-based applications.

  18. Direct Epoxidation of Propylene over Stabilized Cu+ Surface Sites on Ti Modified Cu2O

    DOE PAGESBeta

    Yang, X.; Kattel, S.; Xiong, K.; Mudiyanselage, K.; Rykov, S.; Senanayake, S. D.; Rodriguez, J. A.; Liu, P.; Stacchiola, D. J.; Chen, J. G.

    2015-07-17

    Direct propylene epoxidation by O2 is a challenging reaction because of the strong tendency for complete combustion. Results from the current study demonstrate the feasibility to tune the epoxidation selectivity by generating highly dispersed and stabilized Cu+ active sites in a TiCuOx mixed oxide. The TiCuOx surface anchors the key surface intermediate, oxametallacycle, leading to higher selectivity for epoxidation of propylene.

  19. Direct cortical mapping via solving partial differential equations on implicit surfaces.

    PubMed

    Shi, Yonggang; Thompson, Paul M; Dinov, Ivo; Osher, Stanley; Toga, Arthur W

    2007-06-01

    In this paper, we propose a novel approach for cortical mapping that computes a direct map between two cortical surfaces while satisfying constraints on sulcal landmark curves. By computing the map directly, we can avoid conventional intermediate parameterizations and help simplify the cortical mapping process. The direct map in our method is formulated as the minimizer of a flexible variational energy under landmark constraints. The energy can include both a harmonic term to ensure smoothness of the map and general data terms for the matching of geometric features. Starting from a properly designed initial map, we compute the map iteratively by solving a partial differential equation (PDE) defined on the source cortical surface. For numerical implementation, a set of adaptive numerical schemes are developed to extend the technique of solving PDEs on implicit surfaces such that landmark constraints are enforced. In our experiments, we show the flexibility of the direct mapping approach by computing smooth maps following landmark constraints from two different energies. We also quantitatively compare the metric preserving property of the direct mapping method with a parametric mapping method on a group of 30 subjects. Finally, we demonstrate the direct mapping method in the brain mapping applications of atlas construction and variability analysis. PMID:17379568

  20. Surface formation in direct chill (DC) casting of 6082 aluminium alloys

    NASA Astrophysics Data System (ADS)

    Bayat, N.; Carlberg, T.

    2016-03-01

    Surface defects in aluminium billet production are a real problem for the subsequent extrusion procedure. Extrusion productivity can be influenced by the surface properties, which is defined as surface appearance, surface segregation zone depth and large Mg2Si and β-particles (Al5FeSi). In this research the surface formation during DC casting of 6082 aluminium billets produced by the air slip technology is studied. The surface microstructures of 6082 aluminium alloys with smooth and wavy surface appearances were investigated, including segregation zone depths and phase formation. The results were discussed based on the exudation of liquid metal through the mushy zone. The specific appearance of the wavy surface of 6082 alloys was correlated to how the oxide skin adheres to the underlying mushy zone and coupled to the dendritic coherency and surface tension of the skin. The occurrence of different phases at the very surface and in the layer just below was explained by variations in solidification directions and subsequent segregation patterns.

  1. Direct visualization of surface-plasmon bandgaps in the diffuse background of metallic gratings.

    PubMed

    Depine, Ricardo A; Ledesma, Silvia

    2004-10-01

    When a surface plasmon propagates along a microrough grating, it interacts with the periodic plus the random roughness and emits light into the diffuse background, which can present intensity maxima called diffuse light bands. We reexamine previous studies on these bands within the framework of recent studies on photonic surfaces and show that the phenomenon of diffuse light provides an experimental technique for directly imaging the dispersion relation of surface plasmons, including the gap that, under appropriate circumstances, opens in the reciprocal grating space. PMID:15524359

  2. Direct measurement of the plasma screening length and surface potential near the lunar terminator

    NASA Technical Reports Server (NTRS)

    Benson, J.

    1977-01-01

    Direct measurement of the lunar dayside surface potential and screening length has been made by the suprathermal ion detector experiment (Side) near the terminator. In a region 20-30 deg from the terminator at the Apollo 14 and 15 sites the surface potential is found to be approximately 50 V negative, and the screening length to be about 1 km. This value of the screening length is more than 2 orders of magnitude greater than the solar wind 'Debye' length. The strong negative surface potential in this region may be due to enhanced temperature and density of the solar wind plasma.

  3. New directions in lubrication, materials, wear, and surface interactions - Tribology in the 80's

    NASA Technical Reports Server (NTRS)

    Loomis, W. R. (Editor)

    1985-01-01

    New directions in tribology are described. A range of topics is addressed, extending from fundamental research on tribological materials of all kinds and their surface effects, to final technological applications in mechanical components such as bearings, gears, and seals. The general topics addressed include: importance and definition of materials in tribology; future directions of research in adhesion and friction, wear and wear-resistant materials, and liquid lubricants and additives; status and new directions in elastohydrodynamic lubrication and solid lubricants; and tribological materials for mechanical components of the future.

  4. Amplification and directional emission of surface acoustic waves by a two-dimensional electron gas

    SciTech Connect

    Shao, Lei; Pipe, Kevin P.

    2015-01-12

    Amplification of surface acoustic waves (SAWs) by electron drift in a two-dimensional electron gas (2DEG) is analyzed analytically and confirmed experimentally. Calculations suggest that peak power gain per SAW radian occurs at a more practical carrier density for a 2DEG than for a bulk material. It is also shown that SAW emission with tunable directionality can be achieved by modulating a 2DEG's carrier density (to effect SAW generation) in the presence of an applied DC field that amplifies SAWs propagating in a particular direction while attenuating those propagating in the opposite direction.

  5. Direct measurement of turbulent skin-friction reduction on superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Park, Hyungmin; Sun, Guangyi; Kim, Chang-Jin ``Cj''

    2012-11-01

    Recent advances in superhydrophobic (SHPo) surfaces have spurred a great interest in fluid mechanics because their large slip may result in a significant reduction of skin friction in turbulent flows. However, experimental confirmation of the reduction has been sporadic (only internal flows) and equivocal because most times the surface slip was small and the drag measurement indirect. Here we present a direct measurement of the drag on large-slip surfaces in a turbulent boundary-layer flow. The silicon-micromachined sample has a SHPo (microgrates) next to a reference (smooth) surface, each suspended by identical micro flexure beams. Monolithically fabricated in a batch process and sharing all the variations, the two surfaces shift differently only by the difference in the drag. The drag reduction was measured optically (directly) in a turbulent boundary layer in a water tunnel experiment at a moderate Reynolds number (Reτ ~ 250) over a gas fraction (fraction of the shear-free surface area) of 30 % - 90 % . Unlike other reports, the drag reduction clearly increased with the gas fraction. More than 50 % skin-friction reduction was achieved with 90% gas fraction. During the flow tests, the SHPo surfaces were visually confirmed to contain the air without any loss. Supported by the Office of Naval Research (ONR) Program (N000141110503).

  6. Application of an imaging plate system to the direct measurement of a fixed surface contamination.

    PubMed

    Hirota, Masahiro; Kimura, Keiji; Sato, Rumi; Koike, Yuya; Iimoto, Takeshi; Tanaka, Satoru

    2014-08-01

    An imaging plate (IP) system was used as an effective detector for direct measurement of radioactive surface contamination. The IP system displayed images designating the locations and extent of fixed surface contamination of uranyl acetate. The amount of radioactive waste produced during decontamination was reduced because the contaminated spots could be isolated; furthermore, creation of radioactive dust during removal of contamination was prevented because the contaminated spots could be removed without being pulverized. The images were used in efficiently and safely isolating the location of fixed surface contamination. The IP system surface contamination detection limit for uranyl acetate was 2.5 × 10 Bq cm, a value much lower than the surface contamination limit and the clearance level. PMID:24978288

  7. Evaluation of Schottky barrier diodes fabricated directly on processed 4H-SiC(0001) surfaces.

    PubMed

    Sano, Yasuhisa; Shirasawa, Yuki; Okamoto, Takeshi; Yamauchi, Kazuto

    2011-04-01

    Silicon carbide (SiC) is a suitable substrate for low-power-consumption power devices and high-temperature applications. However, this material is difficult to machine because of its hardness and chemical inertness, and many machining methods have been studied intensively in recent years. In this paper, we present a simple method to evaluate the electrical properties of the processed surface using the ideal factor n of a Schottky barrier diode (SBD) fabricated directly on the processed surface. Upon comparing the values of n for SBDs fabricated on a damaged SiC surface and a non-damaged SiC surface, we found that there is a significant difference in the dispersion and magnitude of n. Furthermore, by combining this technique with slope etching, we were able to estimate the thickness of the damaged sub-surface layer. PMID:21776636

  8. Directional fluorescence emission co-enhanced by localized and propagating surface plasmons for biosensing.

    PubMed

    Wang, Yi; Wu, Lin; Wong, Ten It; Bauch, Martin; Zhang, Qingwen; Zhang, Jinling; Liu, Xiaohu; Zhou, Xiaodong; Bai, Ping; Dostalek, Jakub; Liedberg, Bo

    2016-04-14

    We investigated the simultaneous excitation of localized surface plasmons (LSPs) and propagating surface plasmons (PSPs) on a thin metallic film with an array of nanoholes for the enhancement of fluorescence intensity in heterogeneous bioassays. Experiments supported by simulations reveal that the co-excitation of PSP and LSP modes on the nanohole array in a Kretschmann configuration allows for fluorescence enhancement of about 10(2) as compared to a flat Au surface irradiated off-resonance. Moreover, this fluorescence signal was about 3-fold higher on the substrate supporting both PSPs and LSPs than that on a flat surface where only PSPs were resonantly excited. Simulations also indicated the highly directional fluorescence emission as well as the high fluorescence collection efficiency on the nanohole array substrate. Our contribution attempts to de-convolute the origin of this enhancement and identify further ways to maximize the efficiency of surface plasmon-enhanced fluorescence spectroscopy for implementation in ultra-sensitive bioassays. PMID:27010223

  9. Direct Observation of Transient Surface Species during Ge Nanowire Growth and Their Influence on Growth Stability.

    PubMed

    Sivaram, Saujan V; Shin, Naechul; Chou, Li-Wei; Filler, Michael A

    2015-08-12

    Surface adsorbates are well-established choreographers of material synthesis, but the presence and impact of these short-lived species on semiconductor nanowire growth are largely unknown. Here, we use infrared spectroscopy to directly observe surface adsorbates, hydrogen atoms and methyl groups, chemisorbed to the nanowire sidewall and show they are essential for the stable growth of Ge nanowires via the vapor-liquid-solid mechanism. We quantitatively determine the surface coverage of hydrogen atoms during nanowire growth by comparing ν(Ge-H) absorption bands from operando measurements (i.e., during growth) to those after saturating the nanowire sidewall with hydrogen atoms. This method provides sub-monolayer chemical information at relevant reaction conditions while accounting for the heterogeneity of sidewall surface sites and their evolution during elongation. Our findings demonstrate that changes to surface bonding are critical to understand Ge nanowire synthesis and provide new guidelines for rationally selecting catalysts, forming heterostructures, and controlling dopant profiles. PMID:26147949

  10. Direct visualization of photoinduced glassy dynamics on the amorphous silicon carbide surface by STM movies

    NASA Astrophysics Data System (ADS)

    Nguyen, Duc; Nienhaus, Lea; Haasch, Richard T.; Lyding, Joseph; Gruebele, Martin

    2015-03-01

    Glassy dynamics can be controlled by light irradiation. Sub- and above-bandgap irradiation cause numerous phenomena in glasses including photorelaxation, photoexpansion, photodarkening and pohtoinduced fluidity. We used scanning tunneling microscopy to study surface glassy dynamics of amorphous silicon carbide irradiated with above- bandgap 532 nm light. Surface clusters of ~ 4-5 glass forming unit in diameter hop mostly in a two-state fashion, both without and with irradiation. Upon irradiation, the average surface hopping activity increases by a factor of 3. A very long (~1 day) movie of individual clusters with varying laser power density provides direct evidence for photoinduced enhanced hopping on the glass surfaces. We propose two mechanisms: heating and electronic for the photoenhanced surface dynamics.

  11. Direct fabrication of superhydrophobic ceramic surfaces with ZnO nanowires

    NASA Astrophysics Data System (ADS)

    Chung, Jihoon; Lee, Sukyung; Yong, Hyungseok; Lee, Sangmin; Park, Yong Tae

    2016-02-01

    Super-hydrophobic surfaces having contact angles > 150° for water are of great interest due to their potential use in a wide variety of applications. Although many reports on the wettability of different surfaces have been published, few or no studies have been done on the formation of a super-hydrophobic surface on a ceramic substrate. In this paper, we demonstrate the creation of a super-hydrophobic surface on a ceramic substrate by using zinc oxide nanowires (ZnO NWs) prepared by using a direct hydrothermal method. A self-assembled monolayer of heptadecafluoro- 1,1,2,2-tetrahydrodecyl trichlorosilane (HDFS) lowered the surface energy between the water droplet and the nano-textured surface. The length of the ZnO NWs was found to play a key role in the formation of a nanostructure that increased the surface roughness of the substrate. Furthermore, the length of the ZnO NWs could be controlled by changing the growth time, and HDFS-coated ZnO NWs were found to be super-hydrophobic after a growth time of 3 h. We have demonstrated the potential application of this nanostructure for ceramic tableware by introducing a ZnO-NW-textured surface on a ceramic cup, which resulted in water and alcohol repellency. This method is a simple and practical way to achieve a super-hydrophobic surface; hence, our method is expected to be widely used in various ceramic applications.

  12. Effect of Direct Electric Current on the Cell Surface Properties of Phenol-Degrading Bacteria

    PubMed Central

    Luo, Qishi; Wang, Hui; Zhang, Xihui; Qian, Yi

    2005-01-01

    The change in cell surface properties in the presence of electric currents is of critical concern when the potential to manipulate bacterial movement with electric fields is evaluated. In this study, the effects of different direct electric currents on the cell surface properties involved in bacterial adhesion were investigated by using a mixed phenol-degrading bacterial culture in the exponential growth phase. The traits investigated were surface hydrophobicity (measured by adherence to n-octane), net surface electrostatic charge (determined by measurement of the zeta potential), and the cell surface shape and polymers (determined by scanning electron microscope analysis). The results showed that a lower current (less than 20 mA) induced no significant changes in the surface properties of phenol-degrading bacteria, that an electric current of 20 mA could increase the surface hydrophobicity and flatten the cell shape, and that a higher current (40 mA) could increase the surface extracellular substances and the net negative surface electrostatic charge. The results also revealed that the electric current effects on cell hydrophobicity varied with the suspending medium. We suggest that an electric current greater than 20 mA is not suitable for use in manipulation of the movement of the phenol-degrading bacteria, although such a current might favor the electrophoretic movement of the bacterial species. PMID:15640217

  13. Continuous directional water transport on the peristome surface of Nepenthes alata.

    PubMed

    Chen, Huawei; Zhang, Pengfei; Zhang, Liwen; Liu, Hongliang; Jiang, Ying; Zhang, Deyuan; Han, Zhiwu; Jiang, Lei

    2016-04-01

    Numerous natural systems contain surfaces or threads that enable directional water transport. This behaviour is usually ascribed to hierarchical structural features at the microscale and nanoscale, with gradients in surface energy and gradients in Laplace pressure thought to be the main driving forces. Here we study the prey-trapping pitcher organs of the carnivorous plant Nepenthes alata. We find that continuous, directional water transport occurs on the surface of the 'peristome'--the rim of the pitcher--because of its multiscale structure, which optimizes and enhances capillary rise in the transport direction, and prevents backflow by pinning in place any water front that is moving in the reverse direction. This results not only in unidirectional flow despite the absence of any surface-energy gradient, but also in a transport speed that is much higher than previously thought. We anticipate that the basic 'design' principles underlying this behaviour could be used to develop artificial fluid-transport systems with practical applications. PMID:27078568

  14. Continuous directional water transport on the peristome surface of Nepenthes alata

    NASA Astrophysics Data System (ADS)

    Chen, Huawei; Zhang, Pengfei; Zhang, Liwen; Liu, Hongliang; Jiang, Ying; Zhang, Deyuan; Han, Zhiwu; Jiang, Lei

    2016-04-01

    Numerous natural systems contain surfaces or threads that enable directional water transport. This behaviour is usually ascribed to hierarchical structural features at the microscale and nanoscale, with gradients in surface energy and gradients in Laplace pressure thought to be the main driving forces. Here we study the prey-trapping pitcher organs of the carnivorous plant Nepenthes alata. We find that continuous, directional water transport occurs on the surface of the ‘peristome’—the rim of the pitcher—because of its multiscale structure, which optimizes and enhances capillary rise in the transport direction, and prevents backflow by pinning in place any water front that is moving in the reverse direction. This results not only in unidirectional flow despite the absence of any surface-energy gradient, but also in a transport speed that is much higher than previously thought. We anticipate that the basic ‘design’ principles underlying this behaviour could be used to develop artificial fluid-transport systems with practical applications.

  15. DETECTION OF A GROUND-WATER/SURFACE-WATER INTERFACE WITH DIRECT-PUSH EQUIPMENT

    EPA Science Inventory

    A ground-water/surface-water interface (GSI) was documented at the Thermo Chem CERCLA Site in Muskegon, MI via direct-push (DP) sampling. At that time, contaminated ground water flowed from the upland area of the site into the Black Creek floodplain. DP rods equipped with a 1.5...

  16. Droplets Can Rebound toward Both Directions on Textured Surfaces with a Wettability Gradient.

    PubMed

    Zhang, Bo; Lei, Qing; Wang, Zuankai; Zhang, Xianren

    2016-01-12

    The impact of water droplets on superhydrophobic surfaces with a wettability gradient is studied using the lattice Boltzmann simulation. Droplets impacting such textured surfaces have been previously reported to rebound obliquely following the wettability gradient due to the unbalanced interfacial forces created by the heterogeneous architectures. Here we demonstrate that droplets can rebound toward both directions on textured surfaces with a wettability gradient. Our simulation results indicate that the rebound trajectory of droplets is determined by the competition between the lateral recoil of the liquid and the penetration and capillary emptying of the penetrated liquid from the textures in the vertical direction. When the time scale for the droplet penetration and capillary emptying process is smaller than the time for the lateral spreading, the droplet will rebound following the wettability gradient. By contrast, the droplet will display a bouncing against the wettability gradient direction because of the significant capillary penetration and emptying in the transverse direction. We believe that our study provides important insight for the design of micro/nanotextured surfaces for controlled droplet manipulation. PMID:26669260

  17. Is Agency Skin Deep? Surface Attributes Influence Infants' Sensitivity to Goal-Directed Action

    ERIC Educational Resources Information Center

    Guajardo, Jose J.; Woodward, Amanda L.

    2004-01-01

    Three studies investigated the role of surface attributes in infants' identification of agents, using a habituation paradigm designed to tap infants' interpretation of grasping as goal directed (Woodward, 1998). When they viewed a bare human hand grasping objects, 7- and 12-month-old infants focused on the relation between the hand and its goal.…

  18. Recent near-surface wind directions inferred from mapping sand ripples on Martian dunes

    NASA Astrophysics Data System (ADS)

    Liu, Zac Yung-Chun; Zimbelman, James R.

    2015-11-01

    The High Resolution Imaging Science Experiment (HiRISE) provides the capability to obtain orbital images of Mars that are of sufficient resolution to record wind ripple patterns on the surfaces of sand dunes. Ripple patterns provide valuable insights into aeolian erosion and deposition on Earth and Mars. In this study, we develop a systematic mapping procedure to examine sand ripple orientations and create surface process maps to evaluate the recent wind flow over the dunes, as well as the interplay of wind and dune shape. By carefully examining the morphology of the dunes and the location of grainflow and grainfall on dune slipfaces, the recent near-surface wind direction (short-term wind) can be identified. Results from the analysis of three dune fields on the floors of craters west of Hellas Basin show regional N, NW, SE, and ESE wind directions. In the three adjacent dune fields, surface process and flow maps suggest a complex wind pattern. The comparison of short-term wind with dune-constructing wind (long-term wind) shows NE and ESE winds may be persistent at least for the past thousands of years. The results also show that the orientation of inferred wind direction on linear dunes is correlated with the crestlines, which suggest that form-flow interaction may take place. The results of local wind flow documentation should improve Martian surface wind modeling and advance our understanding of sand transport, as well as the rates of sand mobility on both Mars and Earth.

  19. The DIPSI (Direct Implicit Plasma Surface Interactions) computer code user's manual

    SciTech Connect

    Procassini, R.J. . Dept. of Nuclear Engineering); Cohen, B.I. )

    1990-06-01

    DIPSI (Direct Implicit Plasma Surface Interactions) is a one-dimensional, bounded particle-in-cell (PIC) simulation code designed to investigate the interaction of plasma with a solid surface, such as a limiter or divertor plate in a tokamak fusion device. Plasma confinement and transport may be studied in a system which includes an applied magnetic field (oriented normal to the solid surface) and/or a self-consistent electrostatic potential. The PIC code DIPSI is an offshoot of the PIC code TESS (Tandem Experiment Simulation Studies) which was developed to study plasma confinement in mirror devices. The codes DIPSI and TESS are direct descendants of the PIC code ES1 that was created by A. B. Langdon. This document provides the user with a brief description of the methods used in the code and a tutorial on the use of the code. 11 refs., 2 tabs.

  20. Multisensor satellite data integration for sea surface wind speed and direction determination

    NASA Technical Reports Server (NTRS)

    Glackin, D. L.; Pihos, G. G.; Wheelock, S. L.

    1984-01-01

    Techniques to integrate meteorological data from various satellite sensors to yield a global measure of sea surface wind speed and direction for input to the Navy's operational weather forecast models were investigated. The sensors were launched or will be launched, specifically the GOES visible and infrared imaging sensor, the Nimbus-7 SMMR, and the DMSP SSM/I instrument. An algorithm for the extrapolation to the sea surface of wind directions as derived from successive GOES cloud images was developed. This wind veering algorithm is relatively simple, accounts for the major physical variables, and seems to represent the best solution that can be found with existing data. An algorithm for the interpolation of the scattered observed data to a common geographical grid was implemented. The algorithm is based on a combination of inverse distance weighting and trend surface fitting, and is suited to combing wind data from disparate sources.

  1. A direct measurement of the energy flux density in plasma surface interaction

    NASA Astrophysics Data System (ADS)

    Dussart, Remi; Thomann, Anne-Lise; Semmar, Nadjib; Pichon, Laurianne; Bedra, Larbi; Mathias, Jacky; Tessier, Yves; Lefaucheux, Philippe

    2008-10-01

    The energy flux transferred from a plasma to a surface is a key issue for materials processing (sputtering, etching). We present direct measurements made with a Heat Flux Microsensor (HFM) in an Ar plasma interacting with the surface of the sensor. The HFM is a thermopile of about one thousand metal couples mounted in parallel. An Inductively Coupled Plasma in Argon was used to make the experiments. Langmuir probe and tuneable laser diode absorption measurements were carried out to estimate the contribution of ions, neutrals (conduction) and metastables. In order to evaluate the ability of the HFM to measure the part due to chemical reactions, a Si surface in contact with the HFM was submitted to an SF6 plasma. The direct measurements are in good agreement with the estimation we made knowing the etch rate and the enthalpy of the reaction. Finally, tests were performed on a sputtering reactor. Additional energy flux provided by condensing atoms (Pt) was also measured.

  2. Nanometer-scale scanning magnetometry of spin structures and excitations using Nitrogen-vacancy centers

    NASA Astrophysics Data System (ADS)

    Dovzhenko, Yuliya

    The development of increasingly sensitive scanning techniques has led to new insights into the physics of interacting condensed matter systems. Recently, Nitrogen-Vacancy (NV) centers in diamond emerged as a promising scanning magnetic imaging platform capable of operating in a broad range of temperatures and magnetic fields, with sensitivity and resolution capable of imaging a single electron spin with sub-nanometer resolution under ambient conditions. In this talk we will review some of the recent developments in this new scanning platform. We will describe our recent progress in using a single NV center in a scanning diamond nano-pillar to study condensed matter magnetism at both room and low temperatures. In particular, we demonstrate the use of scanning NV magnetometry to image stray fields originating from static chiral spin structures, as well as to detect resonant and off-resonant low-energy spin excitations.

  3. Vector magnetometry based on electromagnetically induced transparency in linearly polarized light

    SciTech Connect

    Yudin, V. I.; Taichenachev, A. V.; Dudin, Y. O.; Velichansky, V. L.; Zibrov, A. S.; Zibrov, S. A.

    2010-09-15

    We develop a generalized principle of electromagnetically induced transparency (EIT) vector magnetometry based on high-contrast EIT resonances and the symmetry of atom-light interaction in the linearly polarized bichromatic fields. Operation of such vector magnetometer on the D{sub 1} line of {sup 87}Rb has been demonstrated. The proposed compass-magnetometer has an increased immunity to shifts produced by quadratic Zeeman and ac-Stark effects, as well as by atom-buffer gas and atom-atom collisions. In our proof-of-principle experiment the detected angular sensitivity to magnetic field orientation is 10{sup -3} deg/Hz{sup 1/2}, which is limited by laser intensity fluctuations, light polarization quality, and magnitude of the magnetic field.

  4. Statistical magnetometry on isolated NiCo nanowires and nanowire arrays: a comparative study

    NASA Astrophysics Data System (ADS)

    Sergelius, Philip; Garcia Fernandez, Javier; Martens, Stefan; Zocher, Michael; Böhnert, Tim; Vega Martinez, Victor; de la Prida, Victor Manuel; Görlitz, Detlef; Nielsch, Kornelius

    2016-04-01

    The first-order reversal curve (FORC) method can be used to extract information about the interaction and switching field distribution of ferromagnetic nanowire arrays, yet it remains challenging to acquire reliable values. Within ordered pores of anodic alumina templates we electrochemically synthesize eight different Ni x Co1-x samples with x varying between 0.05 and 1. FORC diagrams are acquired using vibrating sample magnetometry. By dissolving the template and using the magneto-optical Kerr effect, we measure the hysteresis loops of up to 100 different and isolated nanowires for each sample to gain precise information about the intrinsic switching field distribution. Values of the interaction field are extracted from a deshearing of the major hysteresis loop. We present a comparative study between all methods in order to evaluate and reinforce current FORC theory with experimental findings.

  5. High-sensitivity single NV magnetometry by spin-to-charge state mapping

    NASA Astrophysics Data System (ADS)

    Jaskula, Jean-Christophe; Shields, Brendan; Bauch, Erik; Lukin, Mikhail; Walsworth, Ronald; Trifonov, Alexei

    2015-05-01

    Nitrogen-Vacancy (NV) centers in diamond are atom-like quantum system in a solid state matrix whom its structure allows optical readout of the electronic spin. However, the optimal duration of optical readout is limited by a singlet state lifetime making single shot spin readout out of reach. On the other side, the NV center charge state readout can be extremely efficient (up to 99% fidelity) by using excitation at 594 nm. We will present a new method of spin readout utilizing a spin-depending photoionization process to map the electronic spin state of the NV onto the its charge state. Moreover, pre-selection on the charged state allows to minimize data acquisition time. This scheme improves single NV AC magnetometry by a factor of 5 and will benefit other single NV center experiments as well.

  6. Exchange coupling in hybrid anisotropy magnetic multilayers quantified by vector magnetometry

    SciTech Connect

    Morrison, C. Miles, J. J.; Thomson, T.; Anh Nguyen, T. N.; Fang, Y.; Dumas, R. K.; Åkerman, J.

    2015-05-07

    Hybrid anisotropy thin film heterostructures, where layers with perpendicular and in-plane anisotropy are separated by a thin spacer, are novel materials for zero/low field spin torque oscillators and bit patterned media. Here, we report on magnetization reversal and exchange coupling in a archetypal Co/Pd (perpendicular)-NiFe (in-plane) hybrid anisotropy system studied using vector vibrating sample magnetometry. This technique allows us to quantify the magnetization reversal in each individual magnetic layer, and measure of the interlayer exchange as a function of non-magnetic spacer thickness. At large (>1 nm) spacer thicknesses Ruderman-Kittel-Kasuya-Yosida-like exchange dominates, with orange-peel coupling providing a significant contribution only for sub-nm spacer thickness.

  7. Broadband magnetometry by infrared-absorption detection of nitrogen-vacancy ensembles in diamond

    SciTech Connect

    Acosta, V. M.; Bauch, E.; Jarmola, A.; Zipp, L. J.; Ledbetter, M. P.; Budker, D.

    2010-10-25

    We demonstrate magnetometry by detection of the spin state of high-density nitrogen-vacancy ensembles in diamond using optical absorption at 1042 nm. With this technique, measurement contrast, and collection efficiency can approach unity, leading to an increase in magnetic sensitivity compared to the more common method of collecting red fluorescence. Working at 75 K with a sensor with effective volume 50x50x300 {mu}m{sup 3}, we project photon shot-noise limited sensitivity of 5 pT in one second of acquisition and bandwidth from dc to a few megahertz. Operation in a gradiometer configuration yields a noise floor of 7 nT{sub rms} at {approx}110 Hz in one second of acquisition.

  8. Exchange coupling in hybrid anisotropy magnetic multilayers quantified by vector magnetometry

    NASA Astrophysics Data System (ADS)

    Morrison, C.; Miles, J. J.; Anh Nguyen, T. N.; Fang, Y.; Dumas, R. K.; Åkerman, J.; Thomson, T.

    2015-05-01

    Hybrid anisotropy thin film heterostructures, where layers with perpendicular and in-plane anisotropy are separated by a thin spacer, are novel materials for zero/low field spin torque oscillators and bit patterned media. Here, we report on magnetization reversal and exchange coupling in a archetypal Co/Pd (perpendicular)-NiFe (in-plane) hybrid anisotropy system studied using vector vibrating sample magnetometry. This technique allows us to quantify the magnetization reversal in each individual magnetic layer, and measure of the interlayer exchange as a function of non-magnetic spacer thickness. At large (>1 nm) spacer thicknesses Ruderman-Kittel-Kasuya-Yosida-like exchange dominates, with orange-peel coupling providing a significant contribution only for sub-nm spacer thickness.

  9. Detection of magnetically enhanced cancer tumors using SQUID magnetometry: A feasibility study

    NASA Astrophysics Data System (ADS)

    Kenning, G. G.; Rodriguez, R.; Zotev, V. S.; Moslemi, A.; Wilson, S.; Hawel, L.; Byus, C.; Kovach, J. S.

    2005-01-01

    Nanoparticles bound to various biological molecules and pharmacological agents can be administered systemically, to humans without apparent toxicity. This opens an era in the targeting of specific tissues and disease processes for noninvasive imaging and treatment. An important class of particles used predominantly for magnetic resonance imaging is based on iron-oxide ferrites. We performed computer simulations using experimentally determined values for concentrations of superparamagnetic particles achievable in specific tissues of the mouse in vivo and concentrations of particles linked to monoclonal antibodies specific to antigens of two human cancer cell lines in vitro. An instrument to target distance of 12cm, into the body, was selected as relevant to our goal of developing a rapid inexpensive method of scanning the body for occult disease. The simulations demonstrate the potential feasibility of superconducting quantum interference device magnetometry to detect induced magnetic fields in focal concentrations of superparamagnetic particles targeted, in vivo, to sites of disease.

  10. Local magnetometry at high fields and low temperatures using InAs Hall sensors

    NASA Astrophysics Data System (ADS)

    Pugel, E.; Shung, E.; Rosenbaum, T. F.; Watkins, S. P.

    1997-10-01

    We characterize the temperature (0.3⩽T⩽300 K), magnetic field (0⩽H⩽80 kOe), and thickness (0.1, 0.5, and 2.5 μm) dependence of the Hall response of high purity InAs epilayers grown using metalorganic chemical vapor deposition. The high sensitivity, linearity, and temperature independence of the response make them attractive for local Hall probe magnetometry, and uniquely qualified for high field applications below liquid helium temperatures. As a stringent test of performance, we use a six element micron-sized array to monitor the internal field gradient during vortex avalanches at milliKelvin temperatures in a single crystal of YBa2Cu3O7-δ.

  11. Improving Ku-band Scatterometer Ocean Surface Wind Direction Retrievals in Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Foster, R. C.; Zhang, J.; Black, P. G.

    2014-12-01

    Tropical cyclones are regions of very strong rain and very high winds, both of which present major challenges to surface wind vector retrieval from Ku-band scatterometers. Wind speed and wind direction retrievals can incur severe errors in regions of high rain rates. One particular signature of rain contamination is wind directions in the across-swath direction, which often leads to displaced circulation centers. Recently, Stiles et al. (2014) developed a method for retrieving QuikSCAT tropical cyclone wind speeds using a neural network approach that was tuned using H*WIND surface wind analyses and passive microwave-estimated rain rates from satellites. We are developing a scene-wide methodology by which a set of dynamically-consistent wind directions can be estimated from these wind speeds. The method is based on an iterative use of a tropical cyclone-specific sea-level pressure retrieval technique that we developed. The sea-level pressure analysis uses a boundary layer model that includes the dynamical shallowing of the tropical cyclone boundary layer toward the storm center, a roll-off in surface drag at high wind speeds, and, storm motion-corrected nonlinear mean flow advection effects. Scene-wide consistency is enforced by the integral nature (with respect to the surface wind vector field) of the derived surface pressure pattern and a constraint that the geostrophic contribution to the total flow is non-divergent. We are currently developing methods to evaluate the retrieved wind directions based on HRD aircraft observations and a limited-domain wind vector partitioning of the retrieved wind vectors into irrotational, non-divergent, and, background flow deformation contributions.

  12. Directly mapping the surface charge density of lipid bilayers under physiological conditions

    NASA Astrophysics Data System (ADS)

    Fuhs, Thomas; Klausen, Lasse Hyldgaard; Besenbacher, Flemming; Dong, Mingdong

    2015-03-01

    The surface charge density of lipid bilayers governs the cellular uptake of charged particles and guides cell-cell and cell-surface interactions. Direct probing of the potential requires sub nanometer distances as the electrostatic potential is screened by high physiological salt concentrations. This prevented direct measurement of the SCD under physiological conditions. In this study we investigate supported bilayers of lipid mixtures that form domains of distinct surface charges, submerged in 150mM NaCl. We use a scanning ion-conductance microscope (SICM) setup to measure the ionic current through a nanopipette as the pipette is scanned several nanometers above the sample. The charged headgroups of the lipids attract counter ions leading to a charge dependent enhancement of the ion concentration near the surface. This creates a measurable change of conductivity in the vicinity of the surface. As the dependency of the current on the SCD and pipette potential is non-trivial we characterized it using numerical solutions to Poisson and Nernst-Planck equations. Based on the simulation results we propose an imaging method. We confirm feasibility of the proposed method by experimentally mapping the local surface charge density of phase separated lipid bilayers.

  13. Surface preparation for high purity alumina ceramics enabling direct brazing in hydrogen atmospheres

    DOEpatents

    Cadden, Charles H.; Yang, Nancy Yuan Chi; Hosking, Floyd M.

    2001-01-01

    The present invention relates to a method for preparing the surface of a high purity alumina ceramic or sapphire specimen that enables direct brazing in a hydrogen atmosphere using an active braze alloy. The present invention also relates to a method for directly brazing a high purity alumina ceramic or sapphire specimen to a ceramic or metal member using this method of surface preparation, and to articles produced by this brazing method. The presence of silicon, in the form of a SiO.sub.2 -containing surface layer, can more than double the tensile bond strength in alumina ceramic joints brazed in a hydrogen atmosphere using an active Au-16Ni-0.75 Mo-1.75V filler metal. A thin silicon coating applied by PVD processing can, after air firing, produce a semi-continuous coverage of the alumina surface with a SiO.sub.2 film. Room temperature tensile strength was found to be proportional to the fraction of air fired surface covered by silicon-containing films. Similarly, the ratio of substrate fracture versus interface separation was also related to the amount of surface silicon present prior to brazing. This process can replace the need to perform a "moly-manganese" metallization step.

  14. Radial Wettable Gradient of Hot Surface to Control Droplets Movement in Directions

    PubMed Central

    Feng, Shile; Wang, Sijie; Tao, Yuanhao; Shang, Weifeng; Deng, Siyan; Zheng, Yongmei; Hou, Yongping

    2015-01-01

    A radial wettable gradient was fabricated on the surface of graphite plate by a simple one-step anodic oxidation process. It was found that the direction and value of the wettable gradient could be easily controlled by adjusting current and oxidation time gradient. With the increase of surface temperature, droplets on surface not only exhibited the transition of boiling mode, but also showed the controlled radial spreading, evaporation and movement behaviors. These phenomena could be attributed to the cooperation of wettability force, hysteresis force and vapor pressure (Leidenfrost effect). Especially, the controlled radial convergence or divergence of droplets with high velocity were realized on the surfaces with either inside or outside radial gradient, which would have crucial applications in the design of microfluidic devices and the exploration of the biotechnology. PMID:25975722

  15. Radial Wettable Gradient of Hot Surface to Control Droplets Movement in Directions

    NASA Astrophysics Data System (ADS)

    Feng, Shile; Wang, Sijie; Tao, Yuanhao; Shang, Weifeng; Deng, Siyan; Zheng, Yongmei; Hou, Yongping

    2015-05-01

    A radial wettable gradient was fabricated on the surface of graphite plate by a simple one-step anodic oxidation process. It was found that the direction and value of the wettable gradient could be easily controlled by adjusting current and oxidation time gradient. With the increase of surface temperature, droplets on surface not only exhibited the transition of boiling mode, but also showed the controlled radial spreading, evaporation and movement behaviors. These phenomena could be attributed to the cooperation of wettability force, hysteresis force and vapor pressure (Leidenfrost effect). Especially, the controlled radial convergence or divergence of droplets with high velocity were realized on the surfaces with either inside or outside radial gradient, which would have crucial applications in the design of microfluidic devices and the exploration of the biotechnology.

  16. Efficient directional excitation of surface plasmons by a single-element nanoantenna

    NASA Astrophysics Data System (ADS)

    Yao, Wenjie; Liu, Shang; Liao, Huimin; Li, Zhi; Sun, Chengwei; Chen, Jianjun; Gong, Qihuang

    Directional light scattering is important in basic research and real applications. This area has been successfully downscaled to wavelength and subwavelength scales with the development of optical antennas, especially single-element nanoantennas. Here we show, by adding an auxiliary resonant structure to a single-element plasmonic nanoantenna, the highly efficient lowest-order antenna mode can be effectively transferred into inactive higher-order modes. Based on this mode conversion, scattered optical fields can be well manipulated by utilizing the interference between different antenna modes. Both broadband directional excitation of surface plasmon polaritons (SPPs) and inversion of SPP launching direction at different wavelengths are experimentally demonstrated as typical examples. The proposed strategy based on mode conversion and mode interference provides new opportunities for the design of nanoscale optical devices, especially directional nanoantennas.

  17. NOx Direct Decomposition: Potentially Enhanced Thermodynamics and Kinetics on Chemically Modified Ferroelectric Surfaces

    NASA Astrophysics Data System (ADS)

    Kakekhani, Arvin; Ismail-Beigi, Sohrab

    2014-03-01

    NOx are regulated pollutants produced during automotive combustion. As part of an effort to design catalysts for NOx decomposition that operate in oxygen rich environment and permit greater fuel efficiency, we study chemistry of NOx on (001) ferroelectric surfaces. Changing the polarization at such surfaces modifies electronic properties and leads to switchable surface chemistry. Using first principles theory, our previous work has shown that addition of catalytic RuO2 monolayer on ferroelectric PbTiO3 surface makes direct decomposition of NO thermodynamically favorable for one polarization. Furthermore, the usual problem of blockage of catalytic sites by strong oxygen binding is overcome by flipping polarization that helps desorb the oxygen. We describe a thermodynamic cycle for direct NO decomposition followed by desorption of N2 and O2. We provide energy barriers and transition states for key steps of the cycle as well as describing their dependence on polarization direction. We end by pointing out how a switchable order parameter of substrate,in this case ferroelectric polarization, allows us to break away from some standard compromises for catalyst design(e.g. the Sabatier principle). This enlarges the set of potentially catalytic metals. Primary support from Toyota Motor Engineering and Manufacturing, North America, Inc.

  18. Surface modification of polypropylene battery separator by direct fluorination with different gas components

    NASA Astrophysics Data System (ADS)

    Li, Baoyin; Gao, Jie; Wang, Xu; Fan, Cong; Wang, Huina; Liu, Xiangyang

    2014-01-01

    Improvement in hydrophilicity of polypropylene (PP) separator and its stability is essential for enhancing the comprehensive performance of battery. In this study, the PP separators were surface modified by direct fluorination with F2/N2 and F2/O2/N2 gas atmosphere. The alkali absorption ratios (AARs) of these two kinds of fluorinated separators are 302.7% and 418.4%, respectively, which is about nine and twelve times than that of the virgin PP separator. At the same time, the AARs of the fluorinated separators stored for 90 days at ambient temperature in air environment still remain. The surface energy of PP separators is increased from 37.8 mN/m to 47.7 mN/m and 48.9 mN/m determined by contact angle measurement after direct fluorination. X-ray photoelectron spectroscopy (XPS) and attenuated total reflection infrared spectroscopy (ATR-FTIR) results indicate that polar groups, such as sbnd Cdbnd O(OH) and sbnd Csbnd Fx, are introduced into the polymeric structures of the two fluorinated separator surfaces. Larger quantity of polar groups, especially sbnd Cdbnd O(OH), are introduced on separator surface by the F2/O2/N2 modified route, which results in the difference of the AARs and behavior of alkali absorption. Scanning electron microscope (SEM) demonstrates that the size and shape of micropores of PP separators remain almost unchanged after direct fluorination.

  19. Direct investigation of (sub-) surface preparation artifacts in GaAs based materials by FIB sectioning.

    PubMed

    Belz, Jürgen; Beyer, Andreas; Torunski, Torsten; Stolz, Wolfgang; Volz, Kerstin

    2016-04-01

    The introduction of preparation artifacts is almost inevitable when producing samples for (scanning) transmission electron microscopy ((S)TEM). These artifacts can be divided in extrinsic artifacts like damage processes and intrinsic artifacts caused by the deviations from the volume strain state in thin elastically strained material systems. The reduction and estimation of those effects is of great importance for the quantitative analysis of (S)TEM images. Thus, optimized ion beam preparation conditions are investigated for high quality samples. Therefore, the surface topology is investigated directly with atomic force microscopy (AFM) on the actual TEM samples. Additionally, the sectioning of those samples by a focused ion beam (FIB) is used to investigate the damage depth profile directly in the TEM. The AFM measurements show good quantitative agreement of sample height modulation due to strain relaxation to finite elements simulations. Strong indications of (sub-) surface damage by ion beams are observed. Their influence on high angle annular dark field (HAADF) imaging is estimated with focus on thickness determination by absolute intensity methods. Data consolidation of AFM and TEM measurements reveals a 3.5nm surface amorphization, negligible surface roughness on the scale of angstroms and a sub-surface damage profile in the range of up to 8.0nm in crystalline gallium arsenide (GaAs) and GaAs-based ternary alloys. A correction scheme for thickness evaluation of absolute HAADF intensities is proposed and applied for GaAs based materials. PMID:26855206

  20. Surface hopping dynamics of direct trans --> cis photoswitching of an azobenzene derivative in constrained adsorbate geometries

    NASA Astrophysics Data System (ADS)

    Floß, Gereon; Granucci, Giovanni; Saalfrank, Peter

    2012-12-01

    With ongoing miniaturization of electronic devices, the need for individually addressable, switchable molecules arises. An example are azobenzenes on surfaces which have been shown to be switchable between trans and cis forms. Here, we examine the "direct" (rather than substrate-mediated) channel of the trans → cis photoisomerization after ππ* excitation of tetra-tert-butyl-azobenzene physisorbed on surfaces mimicking Au(111) and Bi(111), respectively. In spirit of the direct channel, the electronic structure of the surface is neglected, the latter merely acting as a rigid platform which weakly interacts with the molecule via Van-der-Waals forces. Starting from thermal ensembles which represent the trans-form, sudden excitations promote the molecules to ππ*-excited states which are non-adiabatically coupled among themselves and to a nπ*-excited and the ground state, respectively. After excitation, relaxation to the ground state by internal conversion takes place, possibly accompanied by isomerization. The process is described here by "on the fly" semiclassical surface hopping dynamics in conjunction with a semiempirical Hamiltonian (AM1) and configuration-interaction type methods. It is found that steric constraints imposed by the substrate lead to reduced but non-vanishing, trans → cis reaction yields and longer internal conversion times than for the isolated molecule. Implications for recent experiments for azobenzenes on surfaces are discussed.

  1. Surface Structure Formation in Direct Chill (DC) Casting of Al Alloys

    NASA Astrophysics Data System (ADS)

    Bayat, Nazlin; Carlberg, Torbjörn

    2014-05-01

    The aim of this study is to increase the understanding of the surface zone formation during direct chill (DC) casting of aluminum billets produced by the air slip technology. The depth of the shell zone, with compositions deviating from the bulk, is of large importance for the subsequent extrusion productivity and quality of final products. The surface microstructures of 6060 and 6005 aluminum alloys in three different surface appearances—defect free, wavy surface, and spot defects—were studied. The surface microstructures and outer appearance, segregation depth, and phase formation were investigated for the mentioned cases. The results were discussed and explained based on the exudation of liquid metal through the mushy zone and the fact that the exudated liquid is contained within a surface oxide skin. Outward solidification in the surface layer was quantitatively analyzed, and the oxide skin movements explained meniscus line formation. Phases forming at different positions in the segregation zone were analyzed and coupled to a cellular solidification in the exudated layer.

  2. Generating grids directly on CAD database surfaces using a parametric evaluator approach

    NASA Technical Reports Server (NTRS)

    Gatzhe, Timothy D.; Melson, Thomas G.

    1995-01-01

    A very important, but often overlooked step in grid generation is acquiring a suitable geometry definition of the vehicle to be analyzed. In the past, geometry was usually obtained by generating a number of cross-sections of each component. A number of recent efforts have focussed on non-uniform rational B-spline surfaces (NURBS) to provide as single type of analytic surface to deal with inside the grid generator. This approach has required the development of tools to read other types of surfaces and convert them, either exactly or by approximation, into a NURBS surface. This paper describes a more generic parametric evaluator approach, which does not rely on a particular surface type internal to the grid generation system and is less restrictive in the number of surface types that can be represented exactly. This approach has been implemented in the McDonnell Douglas grid generation system, MACGS, and offers direct access to all types of surfaces from a Unigraphics part file.

  3. Surface-relief gratings with high spatial frequency fabricated using direct glass imprinting process.

    PubMed

    Mori, T; Hasegawa, K; Hatano, T; Kasa, H; Kintaka, K; Nishii, J

    2008-03-01

    Surface-relief gratings with high spatial frequencies were first fabricated using a direct imprinting process with a glassy carbon mold at the softening temperature of phosphate glass. A grating with maximum height of 730 nm and 500 nm period was formed on the glass surface by the pressing at the softening temperature of glass under constant pressure of 0.4 kN/cm(2). Phase retardation of 0.1 lambda was observed between TE-polarized and TM-polarized light at 600 nm wavelength. PMID:18311281

  4. Directional surface plasmon coupled chemiluminescence from nickel thin films: Fixed angle observation

    NASA Astrophysics Data System (ADS)

    Weisenberg, Micah; Aslan, Kadir; Hortle, Elinor; Geddes, Chris D.

    2009-04-01

    Directional surface plasmon coupled chemiluminescence (SPCC) from nickel thin films is demonstrated. Free-space and angular-dependent SPCC emission from blue, green and turquoise chemiluminescent solutions placed onto nickel thin films attached to a hemispherical prism were measured. SPCC emission was found to be highly directional and preferentially p-polarized, in contrast to the unpolarized and isotropic chemiluminescence emission. The largest SPCC emission for all chemiluminescence solutions was observed at a fixed observation angle of 60°, which was also predicted by theoretical Fresnel calculations. It was found that nickel thin films did not have a catalytic effect on chemiluminescence emission.

  5. Laser desorption with corona discharge ion mobility spectrometry for direct surface detection of explosives.

    PubMed

    Sabo, M; Malásková, M; Matejčík, S

    2014-10-21

    We present a new highly sensitive technique for the detection of explosives directly from the surface using laser desorption-corona discharge-ion mobility spectrometry (LD-CD-IMS). We have developed LD based on laser diode modules (LDM) and the technique was tested using three different LDM (445, 532 and 665 nm). The explosives were detected directly from the surface without any further preparation. We discuss the mechanism of the LD and the limitations of this technique such as desorption time, transport time and desorption area. After the evaluation of experimental data, we estimated the potential limits of detection of this method to be 0.6 pg for TNT, 2.8 pg for RDX and 8.4 pg for PETN. PMID:25118619

  6. Five-vertex Archimedean surface tessellation by lanthanide-directed molecular self-assembly

    PubMed Central

    Écija, David; Urgel, José I.; Papageorgiou, Anthoula C.; Joshi, Sushobhan; Auwärter, Willi; Seitsonen, Ari P.; Klyatskaya, Svetlana; Ruben, Mario; Fischer, Sybille; Vijayaraghavan, Saranyan; Reichert, Joachim; Barth, Johannes V.

    2013-01-01

    The tessellation of the Euclidean plane by regular polygons has been contemplated since ancient times and presents intriguing aspects embracing mathematics, art, and crystallography. Significant efforts were devoted to engineer specific 2D interfacial tessellations at the molecular level, but periodic patterns with distinct five-vertex motifs remained elusive. Here, we report a direct scanning tunneling microscopy investigation on the cerium-directed assembly of linear polyphenyl molecular linkers with terminal carbonitrile groups on a smooth Ag(111) noble-metal surface. We demonstrate the spontaneous formation of fivefold Ce–ligand coordination motifs, which are planar and flexible, such that vertices connecting simultaneously trigonal and square polygons can be expressed. By tuning the concentration and the stoichiometric ratio of rare-earth metal centers to ligands, a hierarchic assembly with dodecameric units and a surface-confined metal–organic coordination network yielding the semiregular Archimedean snub square tiling could be fabricated. PMID:23576764

  7. Molecular simulation of protein-surface interactions: Benefits, problems, solutions, and future directions (Review)

    PubMed Central

    Latour, Robert A.

    2009-01-01

    While the importance of protein adsorption to materials surfaces is widely recognized, little is understood at this time regarding how to design surfaces to control protein adsorption behavior. All-atom empirical force field molecular simulation methods have enormous potential to address this problem by providing an approach to directly investigate the adsorption behavior of peptides and proteins at the atomic level. As with any type of technology, however, these methods must be appropriately developed and applied if they are to provide realistic and useful results. Three issues that are particularly important for the accurate simulation of protein adsorption behavior are the selection of a valid force field to represent the atomic-level interactions involved, the accurate representation of solvation effects, and system sampling. In this article, each of these areas is addressed and future directions for continued development are presented. PMID:19809597

  8. Directed aerosol writing of ordered silica nanostructures on arbitrary surfaces with self-assembling inks.

    PubMed

    Pang, Jiebin; Stuecker, John N; Jiang, Yingbing; Bhakta, Ajay J; Branson, Eric D; Li, Peng; Cesarano, Joseph; Sutton, David; Calvert, Paul; Brinker, C Jeffrey

    2008-07-01

    This paper reports the fabrication of micro- and macropatterns of ordered mesostructured silica on arbitrary flat and curved surfaces using a facile robot-directed aerosol printing process. Starting with a homogenous solution of soluble silica, ethanol, water, and surfactant as a self-assembling ink, a columnated stream of aerosol droplets is directed to the substrate surface. For deposition at room temperature droplet coalescence on the substrates and attendant solvent evaporation result in continuous, highly ordered mesophases. The pattern profiles are varied by changing any number of printing parameters such as material deposition rate, printing speed, and aerosol-head temperature. Increasing the aerosol temperature results in a decrease of the mesostructure ordering, since faster solvent evaporation and enhanced silica condensation at higher temperatures kinetically impede the molecular assembly process. This facile technique provides powerful control of the printed materials at both the nanoscale and microscale through chemical self-assembly and robotic engineering, respectively. PMID:18581410

  9. Computationally Efficient Numerical Model for the Evolution of Directional Ocean Surface Waves

    NASA Astrophysics Data System (ADS)

    Malej, M.; Choi, W.; Goullet, A.

    2011-12-01

    The main focus of this work has been the asymptotic and numerical modeling of weakly nonlinear ocean surface wave fields. In particular, a development of an efficient numerical model for the evolution of nonlinear ocean waves, including extreme waves known as Rogue/Freak waves, is of direct interest. Due to their elusive and destructive nature, the media often portrays Rogue waves as unimaginatively huge and unpredictable monsters of the sea. To address some of these concerns, derivations of reduced phase-resolving numerical models, based on the small wave steepness assumption, are presented and their corresponding numerical simulations via Fourier pseudo-spectral methods are discussed. The simulations are initialized with a well-known JONSWAP wave spectrum and different angular distributions are employed. Both deterministic and Monte-Carlo ensemble average simulations were carried out. Furthermore, this work concerns the development of a new computationally efficient numerical model for the short term prediction of evolving weakly nonlinear ocean surface waves. The derivations are originally based on the work of West et al. (1987) and since the waves in the ocean tend to travel primarily in one direction, the aforementioned new numerical model is derived with an additional assumption of a weak transverse dependence. In turn, comparisons of the ensemble averaged randomly initialized spectra, as well as deterministic surface-to-surface correlations are presented. The new model is shown to behave well in various directional wave fields and can potentially be a candidate for computationally efficient prediction and propagation of extreme ocean surface waves - Rogue/Freak waves.

  10. Feature, design intention and constraint preservation for direct modeling of 3D freeform surfaces

    NASA Astrophysics Data System (ADS)

    Fu, Luoting; Kara, Levent Burak; Shimada, Kenji

    2012-06-01

    Direct modeling has recently emerged as a suitable approach for 3D free-form shape modeling in industrial design. It has several advantages over the conventional, parametric modeling techniques, including natural user interactions, as well as the underlying, automatic feature-preserving shape deformation algorithms. However, current direct modeling packages still lack several capabilities critical for product design, such as managing aesthetic design intentions, and enforcing dimensional, geometric constraints. In this paper, we describe a novel 3D surface editing system capable of jointly accommodating aesthetic design intentions expressed in the form of surface painting and color-coded annotations, as well as engineering constraints expressed as dimensions. The proposed system is built upon differential coordinates and constrained least squares, and is intended for conceptual design that involves frequent shape tuning and explorations. We also provide an extensive review of the state-of-the-art direct modeling approaches for 3D mesh-based, freeform surfaces, with an emphasis on the two broad categories of shape deformation algorithms developed in the relevant field of geometric modeling. [Figure not available: see fulltext.

  11. Spin-controlled directional launching of surface plasmons at the subwavelength scale

    NASA Astrophysics Data System (ADS)

    Huang, Tao; Wang, Jia-jian; Li, Zi-wei; Liu, Wei; Lin, Feng; Fang, Zhe-yu; Zhu, Xing

    2016-08-01

    In this paper, we demonstrate a spin-controlled directional launching of surface plasmons at the subwavelength scale. Based on the principle of optical spin’s effect for the geometric phase of light, the nanostructures were designed. The inclination of the structures decides the spin-related geometric phase and their relative positions decide the distance-related phase. Hence, the propagation direction of the generated surface plasmon polaritons (SPPs) can be controlled by the spin of photons. Numerical simulations by the finite difference time domain (FDTD) method have verified our theoretical prediction. Our structure is fabricated on the Au film by using a focused ion beam etching technique. The total size of the surface plasmon polariton (SPP) launcher is 320 nm by 180 nm. The observation of the SPP launching by using scanning near-field optical microscopy is in agreement with our theory and simulations. This result may provide a new way of spin-controlled directional launching of SPP. Project supported by the National Natural Science Foundation of China (Grant Nos. 61176120, 61378059, 60977015, 61422501, and 11374023), the National Basic Research Program of China (Grant Nos. 2012CB933004 and 2015CB932403), and Beijing Natural Science Foundation (Grant No. L140007).

  12. Direct transfer of multilayer graphene grown on a rough metal surface using PDMS adhesion engineering

    NASA Astrophysics Data System (ADS)

    Jang, Heejun; Kang, Il-Suk; Lee, Youngbok; Cha, Yun Jeong; Yoon, Dong Ki; Ahn, Chi Won; Lee, Wonhee

    2016-09-01

    The direct transfer of graphene using polydimethylsiloxane (PDMS) stamping has advantages such as a ‘pick-and-place’ capability and no chemical residue problems. However, it is not easy to apply direct PDMS stamping to graphene grown via chemical vapor deposition on rough, grainy metal surfaces due to poor contact between the PDMS and graphene. In this study, graphene consisting of a mixture of monolayers and multiple layers grown on a rough Ni surface was directly transferred without the use of an adhesive layer. Liquid PDMS was cured on graphene to effect a conformal contact with the graphene. A fast release of graphene from substrate was achieved by carrying out wet-etching-assisted mechanical peeling. We also carried out a thermal post-curing of PDMS to control the level of adhesion between PDMS and graphene and hence facilitate a damage-free release of the graphene. Characterization of the transferred graphene by micro-Raman spectroscopy, SEM/EDS and optical microscopy showed neither cracks nor contamination from the transfer. This technique allows a fast and simple transfer of graphene, even for multilayer graphene grown on a rough surface.

  13. Surface Plasmon-Coupled Directional Enhanced Raman Scattering by Means of the Reverse Kretschmann Configuration.

    PubMed

    Huo, Si-Xin; Liu, Qian; Cao, Shuo-Hui; Cai, Wei-Peng; Meng, Ling-Yan; Xie, Kai-Xin; Zhai, Yan-Yun; Zong, Cheng; Yang, Zhi-Lin; Ren, Bin; Li, Yao-Qun

    2015-06-01

    Surface-enhanced Raman scattering (SERS) is a unique analytical technique that provides fingerprint spectra, yet facing the obstacle of low collection efficiency. In this study, we demonstrated a simple approach to measure surface plasmon-coupled directional enhanced Raman scattering by means of the reverse Kretschmann configuration (RK-SPCR). Highly directional and p-polarized Raman scattering of 4-aminothiophenol (4-ATP) was observed on a nanoparticle-on-film substrate at 46° through the prism coupler with a sharp angle distribution (full width at half-maximum of ∼3.3°). Because of the improved collection efficiency, the Raman scattering signal was enhanced 30-fold over the conventional SERS mode; this was consistent with finite-difference time-domain simulations. The effect of nanoparticles on the coupling efficiency of propagated surface plasmons was investigated. Possessing straightforward implementation and directional enhancement of Raman scattering, RK-SPCR is anticipated to simplify SERS instruments and to be broadly applicable to biochemical assays. PMID:26266494

  14. Novel surface treatment materials for aligning block-co-polymer in directed self-assembly processes

    NASA Astrophysics Data System (ADS)

    Someya, Yasunobu; Wakayama, Hiroyuki; Endo, Takafumi; Sakamoto, Rikimaru

    2014-03-01

    Directed Self-Assembly (DSA) process is one of the attractive processes for creating the very fine pitch pattern. Especially, the contact hole shrink processes with block-co-polymer (BCP) or polymer blend materials were attractive processes for creating very small size hole patterns with better CD uniformity compare to general photo-lithography patterning. In general contact hole shrink process, the pattern of Spin-on Carbon Hardmask (SOC) or the photo Resist pattern created by Negative-Tone Development (NTD) process were selected for guide patterns. Since the alignment property of BCP was affected by the surface of these guide materials, it is important to control the surface condition of guide in order to obtain good shrunk contact hole patterns. In this study, we will report the surface treatment materials to control the surface condition of guide patterns such as SOC or NTD resist to achieve the better contact hole shrink performance. These materials were attached to guide pattern surface and controlled the surface energy.

  15. Direct numerical simulation of a turbulent stably stratified air flow above a wavy water surface

    NASA Astrophysics Data System (ADS)

    Druzhinin, O. A.; Troitskaya, Yu. I.; Zilitinkevich, S. S.

    2016-01-01

    The influence of the roughness of the underlaying water surface on turbulence is studied in a stably stratified boundary layer (SSBL). Direct numerical simulation (DNS) is conducted at various Reynolds (Re) and Richardson (Ri) numbers and the wave steepness ka. It is shown that, at constant Re, the stationary turbulent regime is set in at Ri below the threshold value Ri c depending on Re. At Ri > Ri c , in the absence of turbulent fluctuations near the wave water surface, three-dimensional quasiperiodical structures are identified and their threshold of origin depends on the steepness of the surface wave on the water surface. This regime is called a wave pumping regime. The formation of three-dimensional structures is explained by the development of parametric instability of the disturbances induced by the surface water in the air flow. The DNS results are quite consistent with prediction of the theoretical model of the SSBL flow, in which solutions for the disturbances of the fields of velocity and temperature in the wave pumping regime are found to be a solution of a two-dimensional linearized system with the heterogeneous boundary condition, which is caused by the presence of the surface wave. In addition to the turbulent fluctuations, the three-dimensional structures in the wave pumping regime provide for the transfer of impulse and heat, i.e., the increase in the roughness of the water-air boundary caused by the presence of waves intensifies the exchange in the SSBL.

  16. Direct visualization of surface acoustic waves along substrates using smoke particles

    NASA Astrophysics Data System (ADS)

    Tan, Ming K.; Friend, James R.; Yeo, Leslie Y.

    2007-11-01

    Smoke particles (SPs) are used to directly visualize surface acoustic waves (SAWs) propagating on a 128°-rotated Y-cut X-propagating lithium niobate (LiNbO3) substrate. By electrically exciting a SAW device in a compartment filled with SP, the SP were found to collect along the regions where the SAW propagates on the substrate. The results of the experiments show that SPs are deposited adjacent to regions of large vibration amplitude and form a clear pattern corresponding to the surface wave profile on the substrate. Through an analysis of the SAW-induced acoustic streaming in the air adjacent to the substrate and the surface acceleration measured with a laser Doppler vibrometer, we postulate that the large transverse surface accelerations due to the SAW ejects SP from the surface and carries them aloft to relatively quiescent regions nearby via acoustic streaming. Offering finer detail than fine powders common in Chladni figures [E. Chladni, Entdeckungen über die Theorie des Klanges (Weidmanns, Erben und Reich, Leipzig, Germany, 1787)] the approach is an inexpensive and a quick counterpart to laser interferometric techniques, presenting a means to explore the controversial phenomena of particle agglomeration on surfaces.

  17. Directional fluorescence emission co-enhanced by localized and propagating surface plasmons for biosensing

    NASA Astrophysics Data System (ADS)

    Wang, Yi; Wu, Lin; Wong, Ten It; Bauch, Martin; Zhang, Qingwen; Zhang, Jinling; Liu, Xiaohu; Zhou, Xiaodong; Bai, Ping; Dostalek, Jakub; Liedberg, Bo

    2016-04-01

    We investigated the simultaneous excitation of localized surface plasmons (LSPs) and propagating surface plasmons (PSPs) on a thin metallic film with an array of nanoholes for the enhancement of fluorescence intensity in heterogeneous bioassays. Experiments supported by simulations reveal that the co-excitation of PSP and LSP modes on the nanohole array in a Kretschmann configuration allows for fluorescence enhancement of about 102 as compared to a flat Au surface irradiated off-resonance. Moreover, this fluorescence signal was about 3-fold higher on the substrate supporting both PSPs and LSPs than that on a flat surface where only PSPs were resonantly excited. Simulations also indicated the highly directional fluorescence emission as well as the high fluorescence collection efficiency on the nanohole array substrate. Our contribution attempts to de-convolute the origin of this enhancement and identify further ways to maximize the efficiency of surface plasmon-enhanced fluorescence spectroscopy for implementation in ultra-sensitive bioassays.We investigated the simultaneous excitation of localized surface plasmons (LSPs) and propagating surface plasmons (PSPs) on a thin metallic film with an array of nanoholes for the enhancement of fluorescence intensity in heterogeneous bioassays. Experiments supported by simulations reveal that the co-excitation of PSP and LSP modes on the nanohole array in a Kretschmann configuration allows for fluorescence enhancement of about 102 as compared to a flat Au surface irradiated off-resonance. Moreover, this fluorescence signal was about 3-fold higher on the substrate supporting both PSPs and LSPs than that on a flat surface where only PSPs were resonantly excited. Simulations also indicated the highly directional fluorescence emission as well as the high fluorescence collection efficiency on the nanohole array substrate. Our contribution attempts to de-convolute the origin of this enhancement and identify further ways to maximize

  18. Cu-Cu direct bonding achieved by surface method at room temperature

    NASA Astrophysics Data System (ADS)

    Utsumi, Jun; Ichiyanagi, Yuko

    2014-02-01

    The metal bonding is a key technology in the processes for the microelectromechanical systems (MEMS) devices and the semiconductor devices to improve functionality and higher density integration. Strong adhesion between surfaces at the atomic level is crucial; however, it is difficult to achieve close bonding in such a system. Cu films were deposited on Si substrates by vacuum deposition, and then, two Cu films were bonded directly by means of surface activated bonding (SAB) at room temperature. The two Cu films, with the surface roughness Ra about 1.3nm, were bonded by using SAB at room temperature, however, the bonding strength was very weak in this method. In order to improve the bonding strength between the Cu films, samples were annealed at low temperatures, between 323 and 473 K, in air. As the result, the Cu-Cu bonding strength was 10 times higher than that of the original samples without annealing.

  19. Cu-Cu direct bonding achieved by surface method at room temperature

    SciTech Connect

    Utsumi, Jun; Ichiyanagi, Yuko

    2014-02-20

    The metal bonding is a key technology in the processes for the microelectromechanical systems (MEMS) devices and the semiconductor devices to improve functionality and higher density integration. Strong adhesion between surfaces at the atomic level is crucial; however, it is difficult to achieve close bonding in such a system. Cu films were deposited on Si substrates by vacuum deposition, and then, two Cu films were bonded directly by means of surface activated bonding (SAB) at room temperature. The two Cu films, with the surface roughness Ra about 1.3nm, were bonded by using SAB at room temperature, however, the bonding strength was very weak in this method. In order to improve the bonding strength between the Cu films, samples were annealed at low temperatures, between 323 and 473 K, in air. As the result, the Cu-Cu bonding strength was 10 times higher than that of the original samples without annealing.

  20. NASA Workshop on future directions in surface modeling and grid generation

    NASA Technical Reports Server (NTRS)

    Vandalsem, W. R.; Smith, R. E.; Choo, Y. K.; Birckelbaw, L. D.; Vogel, A. A.

    1992-01-01

    Given here is a summary of the paper sessions and panel discussions of the NASA Workshop on Future Directions in Surface Modeling and Grid Generation held a NASA Ames Research Center, Moffett Field, California, December 5-7, 1989. The purpose was to assess U.S. capabilities in surface modeling and grid generation and take steps to improve the focus and pace of these disciplines within NASA. The organization of the workshop centered around overviews from NASA centers and expert presentations from U.S. corporations and universities. Small discussion groups were held and summarized by group leaders. Brief overviews and a panel discussion by representatives from the DoD were held, and a NASA-only session concluded the meeting. In the NASA Program Planning Session summary there are five recommended steps for NASA to take to improve the development and application of surface modeling and grid generation.

  1. Direct coupling of photonic modes and surface plasmon polaritons observed in 2-photon PEEM.

    PubMed

    Word, Robert C; Fitzgerald, Joseph P S; Könenkamp, Rolf

    2013-12-16

    We report the direct microscopic observation of optical energy transfer from guided photonic modes in an indium tin oxide (ITO) thin film to surface plasmon polaritons (SPP) at the surfaces of a single crystalline gold platelet. The photonic and SPP modes appear as an interference pattern in the photoelectron emission yield across the surface of the specimen. We explore the momentum match between the photonic and SPP modes in terms of simple waveguide theory and the three-layer slab model for bound SPP modes of thin metal films. We show that because the gold is thin (30-40 nm), two SPP modes exist and that momentum of the spatially confined asymmetric field mode coincides with the dominant mode of the ITO waveguide. The results demonstrate that photoemission electron microscopy (PEEM) can be an important tool for the observation of photonic to SPP interactions in the study of integrated photonic circuits. PMID:24514628

  2. Analysis of hydrogen adsorption and surface binding configuration on tungsten using direct recoil spectrometry

    SciTech Connect

    Kolasinski, R. D.; Hammond, K. D.; Whaley, J. A.; Buchenauer, D. A.; Wirth, B. D.

    2014-12-03

    In our work, we apply low energy ion beam analysis to examine directly how the adsorbed hydrogen concentration and binding configuration on W(1 0 0) depend on temperature. We exposed the tungsten surface to fluxes of both atomic and molecular H and D. We then probed the H isotopes adsorbed along different crystal directions using 1–2 keV Ne+ ions. At saturation coverage, H occupies two-fold bridge sites on W(1 0 0) at 25 °C. Moreover, the H coverage dramatically changes the behavior of channeled ions, as does reconstruction of the surface W atoms. For the exposure conditions examined here, we find that surface sites remain populated with H until the surface temperature reaches 200 °C. Then, we observe H rapidly desorbing until only a residual concentration remains at 450 °C. Development of an efficient atomistic model that accurately reproduces the experimental ion energy spectra and azimuthal variation of recoiled H is underway.

  3. Analysis of hydrogen adsorption and surface binding configuration on tungsten using direct recoil spectrometry

    DOE PAGESBeta

    Kolasinski, R. D.; Hammond, K. D.; Whaley, J. A.; Buchenauer, D. A.; Wirth, B. D.

    2014-12-03

    In our work, we apply low energy ion beam analysis to examine directly how the adsorbed hydrogen concentration and binding configuration on W(1 0 0) depend on temperature. We exposed the tungsten surface to fluxes of both atomic and molecular H and D. We then probed the H isotopes adsorbed along different crystal directions using 1–2 keV Ne+ ions. At saturation coverage, H occupies two-fold bridge sites on W(1 0 0) at 25 °C. Moreover, the H coverage dramatically changes the behavior of channeled ions, as does reconstruction of the surface W atoms. For the exposure conditions examined here, wemore » find that surface sites remain populated with H until the surface temperature reaches 200 °C. Then, we observe H rapidly desorbing until only a residual concentration remains at 450 °C. Development of an efficient atomistic model that accurately reproduces the experimental ion energy spectra and azimuthal variation of recoiled H is underway.« less

  4. Topcoat approaches for directed-assembly of copolymer films with blocks exhibiting differences in surface energy

    NASA Astrophysics Data System (ADS)

    Suh, Hyo Seon; in Lee, Jeong; Ramirez-Hernandez, Abelardo; Tada, Yasuhiko; Yoshida, Hiroshi; Wan, Lei; Ruiz, Ricardo; de Pablo, Juan; Nealey, Paul

    2013-03-01

    Fabricating patterns with feature dimensions smaller than 10 nm scale using block copolymer lithography requires the use of materials with large Flory-Huggins interaction parameters. Because such block copolymers (BCPs) typically show the large differences in surface energy between the blocks, one block (with lower surface energy) tends to segregate to the free surface of films and precludes the assembly of the desired through-film perpendicularly oriented structures. Here we describe a generalizable strategy to overcome this limitation. By coating the BCP film with an additional layer, a topcoat, thermodynamically favorable boundary conditions at the top surface of the film can be engineered for directed self-assembly. The allowable properties of the topcoats depend on the interfacial energies of the layer with the blocks of the copolymer, and the block-block interfacial energy. The strategy is demonstrated experimentally by directing the assembly of polystyrene-block-poly-2-vinylpyridine (PS- b-P2VP) films on chemically nanopatterned substrates with different topcoat materials.

  5. Using Surface Observations to Constrain the Direction and Magnitude of Mantle Flow Beneath Western North America

    NASA Astrophysics Data System (ADS)

    Holt, W. E.; Silver, P. G.

    2001-12-01

    While the motions of the surface tectonic plates are well determined, the accompanying horizontal mantle flow is not. Observations of surface deformation (GPS velocities and Quaternary fault slip rates) and upper mantle seismic anisotropy are combined for the first time, to provide a direct estimate of this flow field. We apply our investigation to western North America where seismic tomography shows a relatively thin lithosphere. Here the likely source of shear wave anisotropy results from a deformation fabric associated with the differential horizontal motion between the base of the lithosphere and the underlying mantle. For a vertically propagating shear wave recorded at a single station, and for mantle strains of order unity, the fast polarization direction, φ , of a split shear wave will be parallel to the direction of progressive simple shear, defined by this differential motion between lithosphere and underlying mantle. If the motion of the overlying lithospehre is known both within and across a plate boundary zone, such as western North America, then the direction and magnitude of mantle flow beneath the plate boundary zone can be uniquely determined with three or more observations of fast polarization directions. Within the Pacific-North American Plate boundary zone in western North America we find that the mantle velocity is 5.0+/-1.5 cm/yr and directed E-NE in a hotspot frame, nearly opposite to the direction of North American plate motion (WSW). The flow is only weakly coupled to the motion of the surface plates, producing a weak drag force. This flow field is most likely due to mantle density heterogeneity associated with the sinking of the old Farallon slab beneath North America. The last few decades have seen the development of two basically incompatible views of the plate-mantle system. The tectonophysical view assumes effective decoupling between the plate and a stationary mantle by a well developed asthenosphere. The plates are essentially 'self

  6. Direct laser beam interference patterning technique for fast high aspect ratio surface structuring

    NASA Astrophysics Data System (ADS)

    Indrisiunas, Simonas; Voisiat, Bogdan; Žukauskas, Airidas; Račiukaitis, Gediminas

    2015-03-01

    New results on development of the Direct Laser Interference Patterning (DLIP) technique using the interference of several beams to directly ablate the material are presented. The method is capable of producing sub-wavelength features not limited by a beam spot size and is an effective method of forming two-dimensional periodic structures on relatively large area with just a single laser shot. Surface texturing speed of DLIP method and the direct laser writing was compared. Fabrication time reduction up to a few orders of magnitude using DLIP was evaluated. The sub-period scanning technique was applied for formation of the complex periodic structures. A new method of laser scanning for fabrication of periodic structures on large areas without any visible stitching signs between laser irradiation spots was tested.

  7. Effects of rock wool on the lungs evaluated by magnetometry and biopersistence test

    PubMed Central

    Kudo, Yuichiro; Kotani, Makoto; Tomita, Masayuki; Aizawa, Yoshiharu

    2009-01-01

    Background Asbestos has been reported to cause pulmonary fibrosis, and its use has been banned all over the world. The related industries are facing an urgent need to develop a safer fibrous substance. Rock wool (RW), a kind of asbestos substitute, is widely used in the construction industry. In order to evaluate the safety of RW, we performed a nose-only inhalation exposure study in rats. After one-month observation period, the potential of RW fibers to cause pulmonary toxicity was evaluated based on lung magnetometry findings, pulmonary biopersistence, and pneumopathology. Methods Using the nose-only inhalation exposure system, 6 male Fischer 344 rats (6 to 10 weeks old) were exposed to RW fibers at a target fiber concentration of 100 fibers/cm3 (length [L] > 20 μm) for 6 hours daily, for 5 consecutive days. As a magnetometric indicator, 3 mg of triiron tetraoxide suspended in 0.2 mL of physiological saline was intratracheally administered after RW exposure to these rats and 6 unexposed rats (controls). During one second magnetization in 50 mT external magnetic field, all magnetic particles were aligned, and immediately afterwards the strength of their remanent magnetic field in the rat lungs was measured in both groups. Magnetization and measurement of the decay (relaxation) of this remanent magnetic field was performed over 40 minutes on 1, 3, 14, and 28 days after RW exposure, and reflected cytoskeleton dependent intracellular transport within macrophages in the lung. Similarly, 24 and 12 male Fisher 344-rats were used for biopersistence test and pathologic evaluation, respectively. Results In the lung magnetometric evaluation, biopersistence test and pathological evaluation, the arithmetic mean value of the total fiber concentration was 650.2, 344.7 and 390.7 fibers/cm3, respectively, and 156.6, 93.1 and 95.0 fibers/cm3 for fibers with L > 20 μm, respectively. The lung magnetometric evaluation revealed that impaired relaxation indicating cytoskeletal

  8. Direct measurement of desorption and diffusion energies of O and N atoms physisorbed on amorphous surfaces

    NASA Astrophysics Data System (ADS)

    Minissale, M.; Congiu, E.; Dulieu, F.

    2016-01-01

    Context. Physisorbed atoms on the surface of interstellar dust grains play a central role in solid state astrochemistry. Their surface reactivity is one source of the observed molecular complexity in space. In experimental astrophysics, the high reactivity of atoms also constitutes an obstacle to measuring two of the fundamental properties in surface physics, namely desorption and diffusion energies, and so far direct measurements are non-existent for O and N atoms. Aims: We investigated the diffusion and desorption processes of O and N atoms on cold surfaces in order to give boundary conditions to astrochemical models. Methods: Here we propose a new technique for directly measuring the N- and O-atom mass signals. Including the experimental results in a simple model allows us to almost directly derive the desorption and diffusion barriers of N atoms on amorphous solid water ice (ASW) and O atoms on ASW and oxidized graphite. Results: We find a strong constraint on the values of desorption and thermal diffusion energy barriers. The measured barriers for O atoms are consistent with recent independent estimations and prove to be much higher than previously believed ( Edes = 1410-160+290; Edif = 990 -360+530 K on ASW). As for oxygen atoms, we propose that the combination Edes - Edif = 1320-750 K is a sensible choice among the possible pairs of solutions. Also, we managed to measure the desorption and diffusion energy of N atoms for the first time (Edes = 720-80+160; Edif = 525-200+260 K on ASW) in the thermal hopping regime and propose that the combination Edes-Edif = 720-400 K can be reasonably adopted in models. The value of Edif for N atoms is slightly lower than previously suggested, which implies that the N chemistry on dust grains might be richer.

  9. Direct imaging of CdTe(001) surface reconstructions by high-resolution electron microscopy

    NASA Astrophysics Data System (ADS)

    Lu, Ping; Smith, David J.

    1991-08-01

    Novel reconstructions of the CdTe(001) surface have been directly observed using high-resolution electron microscopy in the profile-imaging geometry. The CdTe(001) surface, obtained by in situ annealing under ultrahigh vacuum conditions, is found to have a (2 × 1) structure at temperatures of less than about 200° C, but it transforms reversibly into a (3 × 1) structure at temperatures above 200 °C. Structural models for the reconstructions have been proposed and confirmed by extensive computer simulations. The (2 × 1) reconstruction, stabilized by Cd atoms, consists of a {1}/{2} monolayer of Cd vacancies and a large inward relaxation of the remaining surface Cd atoms, similar to the (2 × 1) reconstruction previously proposed for the GaAs(001) surface. The (3 × 1) reconstruction, stabilized by Te atoms, involves formation of surface dimers and the presence of vacancies. In both reconstructions, atomic displacements are observed that extend a few layers into the bulk and serve to reduce the strain energy.

  10. Direct numerical simulation of turbulent flows over superhydrophobic surfaces with gas pockets using linearized boundary conditions

    NASA Astrophysics Data System (ADS)

    Seo, Jongmin; Bose, Sanjeeb; Garcia-Mayoral, Ricardo; Mani, Ali

    2012-11-01

    Superhydrophobic surfaces are shown to be effective for surface drag reduction under laminar regime by both experiments and simulations (see for example, Ou and Rothstein, Phys. Fluids 17:103606, 2005). However, such drag reduction for fully developed turbulent flow maintaining the Cassie-Baxter state remains an open problem due to high shear rates and flow unsteadiness of turbulent boundary layer. Our work aims to develop an understanding of mechanisms leading to interface breaking and loss of gas pockets due to interactions with turbulent boundary layers. We take advantage of direct numerical simulation of turbulence with slip and no-slip patterned boundary conditions mimicking the superhydrophobic surface. In addition, we capture the dynamics of gas-water interface, by deriving a proper linearized boundary condition taking into account the surface tension of the interface and kinematic matching of interface deformation and normal velocity conditions on the wall. We will show results from our simulations predicting the dynamical behavior of gas pocket interfaces over a wide range of dimensionless surface tensions. Supported by the Office of Naval Research and the Kwanjeong Educational Scholarship Foundation.

  11. Directed block copolymer self-assembly implemented via surface-embedded electrets

    NASA Astrophysics Data System (ADS)

    Wu, Mei-Ling; Wang, Dong; Wan, Li-Jun

    2016-02-01

    Block copolymer (BCP) nanolithography is widely recognized as a promising complementary approach to circumvent the feature size limits of conventional photolithography. The directed self-assembly of BCP thin film to form ordered nanostructures with controlled orientation and localized pattern has been the key challenge for practical nanolithography applications. Here we show that BCP nanopatterns can be directed on localized surface electrets defined by electron-beam irradiation to realize diverse features in a simple, effective and non-destructive manner. Charged electrets can generate a built-in electric field in BCP thin film and induce the formation of perpendicularly oriented microdomain of BCP film. The electret-directed orientation control of BCP film can be either integrated with mask-based patterning technique or realized by electron-beam direct-writing method to fabricate microscale arbitrary lateral patterns down to single BCP cylinder nanopattern. The electret-directed BCP self-assembly could provide an alternative means for BCP-based nanolithography, with high resolution.

  12. Directed block copolymer self-assembly implemented via surface-embedded electrets

    PubMed Central

    Wu, Mei-Ling; Wang, Dong; Wan, Li-Jun

    2016-01-01

    Block copolymer (BCP) nanolithography is widely recognized as a promising complementary approach to circumvent the feature size limits of conventional photolithography. The directed self-assembly of BCP thin film to form ordered nanostructures with controlled orientation and localized pattern has been the key challenge for practical nanolithography applications. Here we show that BCP nanopatterns can be directed on localized surface electrets defined by electron-beam irradiation to realize diverse features in a simple, effective and non-destructive manner. Charged electrets can generate a built-in electric field in BCP thin film and induce the formation of perpendicularly oriented microdomain of BCP film. The electret-directed orientation control of BCP film can be either integrated with mask-based patterning technique or realized by electron-beam direct-writing method to fabricate microscale arbitrary lateral patterns down to single BCP cylinder nanopattern. The electret-directed BCP self-assembly could provide an alternative means for BCP-based nanolithography, with high resolution. PMID:26876792

  13. Directed block copolymer self-assembly implemented via surface-embedded electrets.

    PubMed

    Wu, Mei-Ling; Wang, Dong; Wan, Li-Jun

    2016-01-01

    Block copolymer (BCP) nanolithography is widely recognized as a promising complementary approach to circumvent the feature size limits of conventional photolithography. The directed self-assembly of BCP thin film to form ordered nanostructures with controlled orientation and localized pattern has been the key challenge for practical nanolithography applications. Here we show that BCP nanopatterns can be directed on localized surface electrets defined by electron-beam irradiation to realize diverse features in a simple, effective and non-destructive manner. Charged electrets can generate a built-in electric field in BCP thin film and induce the formation of perpendicularly oriented microdomain of BCP film. The electret-directed orientation control of BCP film can be either integrated with mask-based patterning technique or realized by electron-beam direct-writing method to fabricate microscale arbitrary lateral patterns down to single BCP cylinder nanopattern. The electret-directed BCP self-assembly could provide an alternative means for BCP-based nanolithography, with high resolution. PMID:26876792

  14. Derivation of martian surface slope characteristics from directional thermal infrared radiometry

    NASA Astrophysics Data System (ADS)

    Bandfield, Joshua L.; Edwards, Christopher S.

    2008-01-01

    Directional thermal infrared measurements of the martian surface is one of a variety of methods that may be used to characterize surface roughness and slopes at scales smaller than can be obtained by orbital imagery. Thermal Emission Spectrometer (TES) emission phase function (EPF) observations show distinct apparent temperature variations with azimuth and emission angle that are consistent with the presence of warm, sunlit and cool, shaded slopes at typically ˜0.1 m scales. A surface model of a Gaussian distribution of azimuth independent slopes (described by θ-bar) is combined with a thermal model to predict surface temperature from each viewing angle and azimuth of the TES EPF observation. The models can be used to predict surface slopes using the difference in measured apparent temperature from 2 separate 60-70° emission angle observations taken ˜180° in azimuth relative to each other. Most martian surfaces are consistent with low to moderate slope distributions. The slope distributions display distinct correlations with latitude, longitude, and albedo. Exceptionally smooth surfaces are located at lower latitudes in both the southern highlands as well as in high albedo dusty terrains. High slopes are associated with southern high-latitude patterned ground and north polar sand dunes. There is little apparent correlation between high resolution imagery and the derived θ-bar, with exceptions such as duneforms. This method can be used to characterize potential landing sites by assuming fractal scaling behavior to meter scales. More precisely targeted thermal infrared observations from other spacecraft instruments are capable of significantly reducing uncertainty as well as reducing measurement spot size from 10s of kilometers to sub-kilometer scales.

  15. Surface electromyogram analysis of the direction of isometric torque generation by the first dorsal interosseous muscle

    NASA Astrophysics Data System (ADS)

    Zhou, Ping; Suresh, Nina L.; Zev Rymer, William

    2011-06-01

    The objective of this study was to determine whether a novel technique using high density surface electromyogram (EMG) recordings can be used to detect the directional dependence of muscle activity in a multifunctional muscle, the first dorsal interosseous (FDI). We used surface EMG recordings with a two-dimensional electrode array to search for inhomogeneous FDI activation patterns with changing torque direction at the metacarpophalangeal joint, the locus of action of the FDI muscle. The interference EMG distribution across the whole FDI muscle was recorded during isometric contraction at the same force magnitude in five different directions in the index finger abduction-flexion plane. The electrode array EMG activity was characterized by contour plots, interpolating the EMG amplitude between electrode sites. Across all subjects the amplitude of the flexion EMG was consistently lower than that of the abduction EMG at the given force. Pattern recognition methods were used to discriminate the isometric muscle contraction tasks with a linear discriminant analysis classifier, based on the extraction of two different feature sets of the surface EMG signal: the time domain (TD) feature set and a combination of autoregressive coefficients and the root mean square amplitude (AR+RMS) as a feature set. We found that high accuracies were obtained in the classification of different directions of the FDI muscle isometric contraction. With a monopolar electrode configuration, the average overall classification accuracy from nine subjects was 94.1 ± 2.3% for the TD feature set and 95.8 ± 1.5% for the AR+RMS feature set. Spatial filtering of the signal with bipolar electrode configuration improved the average overall classification accuracy to 96.7 ± 2.7% for the TD feature set and 98.1 ± 1.6% for the AR+RMS feature set. The distinct EMG contour plots and the high classification accuracies obtained from this study confirm distinct interference EMG pattern distributions as a

  16. Direct determination of the local Hamaker constant of inorganic surfaces based on scanning force microscopy

    SciTech Connect

    Krajina, Brad A.; Kocherlakota, Lakshmi S.; Overney, René M.

    2014-10-28

    The energetics involved in the bonding fluctuations between nanometer-sized silicon dioxide (SiO{sub 2}) probes and highly oriented pyrolytic graphite (HOPG) and molybdenum disulfide (MoS{sub 2}) could be quantified directly and locally on the submicron scale via a time-temperature superposition analysis of the lateral forces between scanning force microscopy silicon dioxide probes and inorganic sample surfaces. The so-called “intrinsic friction analysis” (IFA) provided direct access to the Hamaker constants for HOPG and MoS{sub 2}, as well as the control sample, calcium fluoride (CaF{sub 2}). The use of scanning probe enables nanoscopic analysis of bonding fluctuations, thereby overcoming challenges associated with larger scale inhomogeneity and surface roughness common to conventional techniques used to determine surface free energies and dielectric properties. A complementary numerical analysis based on optical and electron energy loss spectroscopy and the Lifshitz quantum electrodynamic theory of van der Waals interactions is provided and confirms quantitatively the IFA results.

  17. Surface-Directed Synthesis of Erbium-Doped Yttrium Oxide Nanoparticles within Organosilane Zeptoliter Containers

    PubMed Central

    2015-01-01

    We introduce an approach to synthesize rare earth oxide nanoparticles using high temperature without aggregation of the nanoparticles. The dispersity of the nanoparticles is controlled at the nanoscale by using small organosilane molds as reaction containers. Zeptoliter reaction vessels prepared from organosilane self-assembled monolayers (SAMs) were used for the surface-directed synthesis of rare earth oxide (REO) nanoparticles. Nanopores of octadecyltrichlorosilane were prepared on Si(111) using particle lithography with immersion steps. The nanopores were filled with a precursor solution of erbium and yttrium salts to confine the crystallization step to occur within individual zeptoliter-sized organosilane reaction vessels. Areas between the nanopores were separated by a matrix film of octadecyltrichlorosilane. With heating, the organosilane template was removed by calcination to generate a surface array of erbium-doped yttria nanoparticles. Nanoparticles synthesized by the surface-directed approach retain the periodic arrangement of the nanopores formed from mesoparticle masks. While bulk rare earth oxides can be readily prepared by solid state methods at high temperature (>900 °C), approaches for preparing REO nanoparticles are limited. Conventional wet chemistry methods are limited to low temperatures according to the boiling points of the solvents used for synthesis. To achieve crystallinity of REO nanoparticles requires steps for high-temperature processing of samples, which can cause self-aggregation and dispersity in sample diameters. The facile steps for particle lithography address the problems of aggregation and the requirement for high-temperature synthesis. PMID:25163977

  18. Surface-directed synthesis of erbium-doped yttrium oxide nanoparticles within organosilane zeptoliter containers.

    PubMed

    Englade-Franklin, Lauren E; Morrison, Gregory; Verberne-Sutton, Susan D; Francis, Asenath L; Chan, Julia Y; Garno, Jayne C

    2014-09-24

    We introduce an approach to synthesize rare earth oxide nanoparticles using high temperature without aggregation of the nanoparticles. The dispersity of the nanoparticles is controlled at the nanoscale by using small organosilane molds as reaction containers. Zeptoliter reaction vessels prepared from organosilane self-assembled monolayers (SAMs) were used for the surface-directed synthesis of rare earth oxide (REO) nanoparticles. Nanopores of octadecyltrichlorosilane were prepared on Si(111) using particle lithography with immersion steps. The nanopores were filled with a precursor solution of erbium and yttrium salts to confine the crystallization step to occur within individual zeptoliter-sized organosilane reaction vessels. Areas between the nanopores were separated by a matrix film of octadecyltrichlorosilane. With heating, the organosilane template was removed by calcination to generate a surface array of erbium-doped yttria nanoparticles. Nanoparticles synthesized by the surface-directed approach retain the periodic arrangement of the nanopores formed from mesoparticle masks. While bulk rare earth oxides can be readily prepared by solid state methods at high temperature (>900 °C), approaches for preparing REO nanoparticles are limited. Conventional wet chemistry methods are limited to low temperatures according to the boiling points of the solvents used for synthesis. To achieve crystallinity of REO nanoparticles requires steps for high-temperature processing of samples, which can cause self-aggregation and dispersity in sample diameters. The facile steps for particle lithography address the problems of aggregation and the requirement for high-temperature synthesis. PMID:25163977

  19. Directional Surface Plasmon Coupled Luminescence for Analytical Sensing Applications: Which Metal, What Wavelength, What Observation Angle?

    PubMed Central

    Aslan, Kadir; Geddes, Chris D.

    2009-01-01

    The ability of luminescent species in the near-field to both induce and couple to surface plasmons has been known for many years, with highly directional emission from films (Surface Plasmon Coupled Luminescence, SPCL) facilitating the development of sensitive near-field assay sensing platforms, to name but just one application. Because of the near-field nature of the effect, only luminescent species (fluorescence, chemiluminescence and phosphorescence) within a few hundred nanometers from the surface play a role in coupling, which in terms of biosensing, provides for limited penetration into optically dense media, such as in whole blood. Another attractive feature is the highly polarized and angular dependent emission which allows both fixed angle and wavelength dependent emission angles to be realized at high polarization ratios. In this paper, a generic procedure based on theoretical Fresnel calculations, which outlines the step-by-step selection of an appropriate metal for SPCL applications is presented. It is also shown that 11 different metals have differing properties in different spectral regions and offer either fixed angle or wavelength-dependent angular shifts in emission. In addition, it is shown that both chemiluminescence and phosphorescence can also be observed in a highly directional manner similar to coupled fluorescence. PMID:19601619

  20. Efficient route to high-bandwidth nanoscale magnetometry using single spins in diamond

    NASA Astrophysics Data System (ADS)

    Puentes, Graciana; Waldherr, Gerald; Neumann, Philipp; Balasubramanian, Gopalakrishnan; Wrachtrup, Jörg

    2014-04-01

    Nitrogen-vacancy (NV) center in diamond is a promising quantum metrology tool finding applications across disciplines. The spin sensor measures magnetic fields, electric fields and temperature with nano-scale precision and is fully operable under ambient conditions. Moreover, it achieves precision scaling inversely with total measurement time σB ~ 1/T (Heisenberg scaling) rather than as the inverse of the square root of T, with the Shot-Noise limit. This scaling can be achieved by means of phase estimation algorithms (PEAs), in combination with single-shot read-out. Despite their accuracy, the range of applicability of PEAs is limited to sensing single frequencies with negligible temporal fluctuations. Nuclear Magnetic Resonance (NMR) signals from molecules often contain multifrequency components and sensing them using PEA is ruled out. Here we propose an alternative method for precision magnetometry in frequency multiplexed signals via compressive sensing (CS) techniques focusing on nanoscale NMR. We show that CS can provide for precision scaling approximately as σB ~ 1/T, as well as for a 5-fold increase in sensitivity over dynamic-range gain, in addition to reducing the total number of resources required. We illustrate our method by taking model solid-state spectra of Glycine acquired under Magic Angle Spinning conditions.

  1. Laterally patterned spin-valve superlattice: Magnetometry and polarized neutron scattering study

    SciTech Connect

    Brüssing, F.; Devishvili, A.; Zabel, H.; Toperverg, B. P.; Badini Confalonieri, G. A.; Theis-Bröhl, K.

    2015-04-07

    The magnetization reversal of magnetic multilayers with spin-valve like characteristics, patterned into an array of parallel stripes, was structurally and magnetically analyzed, in detail, via x-ray scattering, magnetometry, and polarized neutron reflectivity. Each stripe contains a multiple repetition of the layer sequence [Fe/Cr/Co/Cr]. X-ray and neutron scattering maps of the patterned multilayer show rich details resulting from the superposition of Bragg peaks representing the lateral in-plane periodicity and the out-of-plane multilayer period. Detailed analysis of specular and off-specular polarized neutron intensity was used to ascertain the antiparallel alignment of the Co and Fe magnetization within the kink region of their combined hysteresis loop between the coercive fields of Fe and Co layers. This includes also an examination of domain formation and inter- as well as intra-stripe correlation effects upon magnetization reversal. Our combined study shows that the shape induced anisotropy via patterning is capable of overriding the four-fold crystal anisotropy but is unable to eliminate the ripple domain state of the Co layers, already present in the continuous multilayer.

  2. Efficient route to high-bandwidth nanoscale magnetometry using single spins in diamond.

    PubMed

    Puentes, Graciana; Waldherr, Gerald; Neumann, Philipp; Balasubramanian, Gopalakrishnan; Wrachtrup, Jörg

    2014-01-01

    Nitrogen-vacancy (NV) center in diamond is a promising quantum metrology tool finding applications across disciplines. The spin sensor measures magnetic fields, electric fields and temperature with nano-scale precision and is fully operable under ambient conditions. Moreover, it achieves precision scaling inversely with total measurement time σB ∝ 1/T (Heisenberg scaling) rather than as the inverse of the square root of T, with σB = √T the Shot-Noise limit. This scaling can be achieved by means of phase estimation algorithms (PEAs), in combination with single-shot read-out. Despite their accuracy, the range of applicability of PEAs is limited to sensing single frequencies with negligible temporal fluctuations. Nuclear Magnetic Resonance (NMR) signals from molecules often contain multifrequency components and sensing them using PEA is ruled out. Here we propose an alternative method for precision magnetometry in frequency multiplexed signals via compressive sensing (CS) techniques focusing on nanoscale NMR. We show that CS can provide for precision scaling approximately as σB ≈ 1/T, as well as for a 5-fold increase in sensitivity over dynamic-range gain, in addition to reducing the total number of resources required. We illustrate our method by taking model solid-state spectra of Glycine acquired under Magic Angle Spinning conditions. PMID:24728454

  3. Efficient route to high-bandwidth nanoscale magnetometry using single spins in diamond

    PubMed Central

    Puentes, Graciana; Waldherr, Gerald; Neumann, Philipp; Balasubramanian, Gopalakrishnan; Wrachtrup, Jörg

    2014-01-01

    Nitrogen-vacancy (NV) center in diamond is a promising quantum metrology tool finding applications across disciplines. The spin sensor measures magnetic fields, electric fields and temperature with nano-scale precision and is fully operable under ambient conditions. Moreover, it achieves precision scaling inversely with total measurement time σB ∝ 1/T (Heisenberg scaling) rather than as the inverse of the square root of T, with the Shot-Noise limit. This scaling can be achieved by means of phase estimation algorithms (PEAs), in combination with single-shot read-out. Despite their accuracy, the range of applicability of PEAs is limited to sensing single frequencies with negligible temporal fluctuations. Nuclear Magnetic Resonance (NMR) signals from molecules often contain multifrequency components and sensing them using PEA is ruled out. Here we propose an alternative method for precision magnetometry in frequency multiplexed signals via compressive sensing (CS) techniques focusing on nanoscale NMR. We show that CS can provide for precision scaling approximately as σB ≈ 1/T, as well as for a 5-fold increase in sensitivity over dynamic-range gain, in addition to reducing the total number of resources required. We illustrate our method by taking model solid-state spectra of Glycine acquired under Magic Angle Spinning conditions. PMID:24728454

  4. Laterally patterned spin-valve superlattice: Magnetometry and polarized neutron scattering study

    NASA Astrophysics Data System (ADS)

    Brüssing, F.; Toperverg, B. P.; Devishvili, A.; Badini Confalonieri, G. A.; Theis-Bröhl, K.; Zabel, H.

    2015-04-01

    The magnetization reversal of magnetic multilayers with spin-valve like characteristics, patterned into an array of parallel stripes, was structurally and magnetically analyzed, in detail, via x-ray scattering, magnetometry, and polarized neutron reflectivity. Each stripe contains a multiple repetition of the layer sequence [Fe/Cr/Co/Cr]. X-ray and neutron scattering maps of the patterned multilayer show rich details resulting from the superposition of Bragg peaks representing the lateral in-plane periodicity and the out-of-plane multilayer period. Detailed analysis of specular and off-specular polarized neutron intensity was used to ascertain the antiparallel alignment of the Co and Fe magnetization within the kink region of their combined hysteresis loop between the coercive fields of Fe and Co layers. This includes also an examination of domain formation and inter- as well as intra-stripe correlation effects upon magnetization reversal. Our combined study shows that the shape induced anisotropy via patterning is capable of overriding the four-fold crystal anisotropy but is unable to eliminate the ripple domain state of the Co layers, already present in the continuous multilayer.

  5. Torque magnetometry study of Fe and Ni doped SmB6

    NASA Astrophysics Data System (ADS)

    Tinsman, Colin; Li, Gang; Lawson, Benjamin; Yu, Fan; Asaba, Tomoya; Wang, Xiangfeng; Paglione, Johnpierre; Li, Lu

    2015-03-01

    There has been renewed interest in the past few years regarding Samarium Hexaboride, a promising candidate to be a topological Kondo insulator. Work on this material represents an extension of the categorization of materials by the topology of their electronic band structure into systems with strong correlation effects. It is known that by introducing magnetic impurities, such as Iron, Nickel, and Europium, the magnetic ground state of SmB6 could be greatly altered. In this study we will present our torque magnetometry data of Fe and Ni doped SmB6, down to 20 mK, and up to 45 Tesla. It is found that the overall symmetry of the angular dependence of torque with respect to magnetic field changed for both Fe-doped SmB6 and Ni-doped SmB6. For pure SmB6, the angular dependence is proportional to sin (2 θ) , as expected for a paramagnetic material. By contrast, for Fe-doped SmB6 and Ni-doped SmB6, the torque vs. tilt angle profile becomes sin (4 θ) . Furthermore, for FexSmB6 the field dependence of torque shows a sharp bend feature around 9 Tesla, which softens with elevating temperature, and could be related to magnetic moment re-alignment.

  6. Calibration Technique Using Nonlinear Region in Cantilever Magnetometry Experiments and Presence of Universal Curve

    NASA Astrophysics Data System (ADS)

    Torizuka, Kiyoshi; Tajima, Hiroyuki; Yoshida, Gosuke; Inoue, Munenori

    2013-06-01

    We have presented a calibration technique for commercially available atomic force microscopy (AFM) cantilevers used in torque magnetometry experiments. The absolute values (J/rad) of the torque can be derived against the output signal, which is the change in piezoresistivity due to the deflection of the cantilever beam. The calibration has been performed using the susceptibility of a graphite plane. The linearity between the output signal and the torque is confirmed up to +/-1×10-8 J/rad of the torque. More importantly, since the nonlinear response of the cantilever is reproducible, we have also utilized the nonlinear region, so that the calibration range has been pushed up to +/-4 ×10-8 J/rad. In the nonlinear range, an important finding is that any curve (torque vs output signal curve) that is cantilever-dependent reduces to a single universal curve, after multiplying an appropriate factor. This factor is cantilever-dependent, but can be derived by rotating the sample-mounted cantilever in a zero magnetic field. We have also proposed a simple model regarding the presence of this universal curve.

  7. In vitro toxicity of gallium arsenide in alveolar macrophages evaluated by magnetometry, cytochemistry and morphology.

    PubMed

    Okada, M; Karube, H; Niitsuya, M; Aizawa, Y; Okayasu, I; Kotani, M

    1999-12-01

    Gallium arsenide (GaAs), a chemical compound of gallium and arsenic, causes various toxic effects including pulmonary diseases in animals. Since the toxicity is not completely investigated, GaAs has been used in workplaces as the material of various semiconductor products. The present study was conducted to clarify the toxicity of GaAs particles in the alveolar macrophages of hamsters using magnetometry, enzyme release assays and morphological examinations. Alveolar macrophages obtained from hamsters by tracheobronchial lavage and adhered to the disks in the bottom of wells were exposed to ferrosoferric oxide and GaAs particles. Ferrosoferric oxide particles were magnetized externally and the remanent magnetic field was measured. Relaxation, a fast decline of the remanent magnetic fields radiated from the alveolar macrophages, was delayed and decay constants were decreased dose-dependently due to exposure to GaAs. Because the relaxation is thought to be associated with cytoskeleton, the exposure of GaAs may have impaired the motor function of them. Enzyme release assay and morphological findings indicated the damage to the macrophages. Thus the cytotoxicity causes cytostructural changes and cell death. According to DNA electrophoresis and the TUNEL method, necrotic changes occur more frequently than apoptotic changes. PMID:10739163

  8. Atomic-scale magnetometry of distant nuclear spin clusters via nitrogen-vacancy spin in diamond.

    PubMed

    Zhao, Nan; Hu, Jian-Liang; Ho, Sai-Wah; Wan, Jones T K; Liu, R B

    2011-04-01

    The detection of single nuclear spins is an important goal in magnetic resonance spectroscopy. Optically detected magnetic resonance can detect single nuclear spins that are strongly coupled to an electron spin, but the detection of distant nuclear spins that are only weakly coupled to the electron spin has not been considered feasible. Here, using the nitrogen-vacancy centre in diamond as a model system, we numerically demonstrate that it is possible to detect two or more distant nuclear spins that are weakly coupled to a centre electron spin if these nuclear spins are strongly bonded to each other in a cluster. This cluster will stand out from other nuclear spins by virtue of characteristic oscillations imprinted onto the electron spin decoherence profile, which become pronounced under dynamical decoupling control. Under many-pulse dynamical decoupling, the centre electron spin coherence can be used to measure nuclear magnetic resonances of single molecules. This atomic-scale magnetometry should improve the performance of magnetic resonance spectroscopy for applications in chemical, biological, medical and materials research, and could also have applications in solid-state quantum computing. PMID:21358646

  9. Ferromagnetic nanocylinders electrodeposited into nanoporous alumina template: A magnetometry and Brillouin light scattering study

    SciTech Connect

    Cherif, S. M.; Roussigne, Y.; Stashkevich, A. A.; Darques, M.; Bouziane, K.; Piraux, L.

    2011-05-15

    The static magnetization experimental behavior of cobalt (Co), Permalloy (Py), and nickel (Ni) nanocylinders is obtained from vibrating sample magnetometry while the dynamic behavior for the Co and Py ones is analyzed by means of Brillouin light scattering spectroscopy. Assuming the presence at remanence of two populations of cylinders with up and down magnetizations and including the dipolar coupling between the cylinders, a single analytical model based on a mean-field approach allowed us to satisfactorily analyze both series of experimental results. The model requires three physical parameters, allowing us to derive the in-plane saturation field, the eigenfrequency in the absence of applied field, and the eigenfrequency at the in-plane saturation field; these parameters enable us to adjust the whole variation of the eigenfrequency versus the applied field. Moreover, the effect of the magnetocrystalline anisotropy on the softening of the frequency in the nonsaturated state is clearly evidenced: it is more pronounced when the magnetocrystalline anisotropy is not vanishing and adds to the shape anisotropy (Co c-axis parallel to the cylinder axis); the softening being weak in the other cases (Co c-axis perpendicular to the cylinder axis or Permalloy).

  10. Molecular Order in Buried Layers of TbPc2 Single-Molecule Magnets Detected by Torque Magnetometry.

    PubMed

    Perfetti, Mauro; Serri, Michele; Poggini, Lorenzo; Mannini, Matteo; Rovai, Donella; Sainctavit, Philippe; Heutz, Sandrine; Sessoli, Roberta

    2016-08-01

    Cantilever torque magnetometry is used to elucidate the orientation of magnetic molecules in thin films. The technique allows depth-resolved investigations by intercalating a layer of anisotropic magnetic molecules in a film of its isotropic analogues. The proof-of-concept is here demonstrated with the single-molecule magnet TbPc2 evidencing also an exceptional long-range templating effect on substrates coated by the organic molecule perylene-3,4,9,10-tetracarboxylic dianhydride. PMID:27232580

  11. Biomimetic integrin-specific surfaces to direct osteoblastic function and tissue healing

    NASA Astrophysics Data System (ADS)

    Petrie, Timothy Andrew

    Current orthopedic implant technologies used suffer from slow rates of osseointegration, short lifetime, and lack of mechanical integrity as a result of poorly controlled cell-surface interactions. Recent biologically-inspired surface strategies (biomimetic) have focused on mimicking the biofunctionality of the extracellular matrix (ECM) by using short, adhesive oligopeptides, such as arginine-glycine-aspartic acid (RGD) present in numerous ECM components. However, these strategies have yielded mixed results in vivo and marginal bone healing responses. The central goal of this dissertation project was to engineer bioactive surfaces that specifically target integrin receptors important for osteogenic functions in order to improve bone tissue repair. In order to create integrin-specific interfaces, integrin-specific ligands reconstituting the fibronectin (FN) secondary/tertiary structure were first engineered and functionalized on material surfaces using several robust presentation schemes. We demonstrated that FN-mimetic-functionalized surfaces that directed alpha 5beta1 binding enhanced osteoblast and stromal cell integrin binding and adhesion, osteogenic signaling, and osteoblastic differentiation compared to various other RGD-based ligand-functionalized surfaces. Next, we investigated the effect of integrin-specific biointerfaces to modulate bone healing in a rat tibia implant bone model. We demonstrated, using a robust polymer brush system, that bioactive coatings on titanium implants that conferred high alpha5beta1 integrin specificity in vitro enhanced bone formation and implant integration in vivo. Moreover, we showed that integrin specificity can be engineered using different immobilization schemes, including clinically-relevant ligand dip-coating, and promote the same robust in vivo effect. Furthermore, we investigate the synergistic roles of integrin specificity and ligand clustering on cell response by engineering biointerfaces presenting trimeric and

  12. Development of high-rate electro-fluidic directed assembly of nanoelements on insulating surfaces

    NASA Astrophysics Data System (ADS)

    Sirman, Asli

    Directed assembly of nanoelements has been used to fabricate devices for diverse applications including electronics, energy and materials. The challenge in using such techniques consists of developing highly scalable, high-rate assembly techniques for precisely placing nanoelements. Two promising examples are template-directed fluidic assembly and electric field induced assembly. In template-directed fluidic assembly, the substrate is vertically dipped into a nanoelement solution and slowly withdrawn creating a capillary force at the air-liquid interface. The withdrawal speed of the substrate needs to be slow to achieve the necessary nanoelement concentration near the template. On the other hand, electric field induced assembly techniques are very fast and robust. In this technique, two electrodes are utilized to create an electric field to direct nanoelements to the assembly region. Thus, assembly inherently results on conducting surfaces. We enhanced the previously described techniques and developed a new nanomanufacturing method called electro-fluidic directed assembly, which places nanoelements on insulating surfaces in a very short time. The electro-fluidic directed assembly is conducted on an insulating layer by having a thin conductive film underneath. The conductive layer serves to create an electrophoretic force on the suspended nanoelements. The applied electric field attracts charged nanoelements toward the template and quickly replenishes the concentration in the assembly region as a consequence fast pulling speeds results in higher assembly efficiencies. In this study, governing parameters and important process kinetics, such as applied voltage and pH of the solution, were studied to establish a repeatable and robust assembly technique. A generalized assembly efficiency graph was obtained for different pulling speeds. We were also able to examine monolayer and multilayer assemblies with different geometries down to 100 nm scale. We have demonstrated

  13. Surface plasmon resonance biosensor for direct detection of antibodies against human growth hormone.

    PubMed

    Kausaite-Minkstimiene, Asta; Ramanaviciene, Almira; Ramanavicius, Arunas

    2009-10-01

    A direct, label-free detection method of antibodies against the human growth hormone (anti-HGH) using a surface plasmon resonance (SPR) biosensor is reported. The sensing surface of the surface plasmon resonance biosensor chip (SPR-chip) was modified by covalent coupling of the human growth hormone (HGH) to the self-assembled monolayer of 11-mercaptoundecanoic acid (MUA). HGH was immobilized via primary amine groups after activation of the MUA carboxyl groups with a mixture of N-hydroxysuccinimide (NHS), and N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC). The specific binding of monoclonal anti-HGH antibody on the HGH-modified surface was examined in the concentration range from 0.25 nM to 10 microM. The experimentally observed detection minimum for anti-HGH was 2.47 nM. A single immunoassay cycle could be done within 30 min including the HGH and anti-HGH association, HGH/anti-HGH complex dissociation and surface regeneration steps. The SPR biosensor response for repeatable detections of anti-HGH was highly reproducible and very stable. On the SPR-chip the formed HGH and anti-HGH complex (HGH/anti-HGH) could be gently dissociated and the sensing surface might be regenerated by 50 mM NaOH and 0.5% sodium dodecylsulfate (SDS) solution. Any changes in the original baseline level were detected during the 40 detection-regeneration cycles. This means that damage of the immobilized HGH-based sensitive layer during regeneration was minimal. It was demonstrated that the developed SPR-chip could be stored for at least 21 days before use without considerable loss of sensitivity towards anti-HGH. PMID:19768212

  14. DIRECT COMPARISON OF KINETIC AND LOCAL EQUILIBRIUM FORMULATIONS FOR SOLUTE TRANSPORT AFFECTED BY SURFACE REACTIONS.

    USGS Publications Warehouse

    Bahr, Jean M.; Rubin, Jacob

    1987-01-01

    Modeling transport of reacting solutes in porous media often requires a choice between models based on the local equilibrium assumption (LEA) and models involving reaction kinetics. Direct comparison of the mathematical formulations for these two types of transport models can aid in this choice. For cases of transport affected by surface reaction, such a comparison is made possible by a new derivation procedure. This procedure yields a kinetics-based formulation that is the sum of the LEA formulation and one or more kinetically influenced terms. The dimensionless form of the new kinetics-based formulation facilitates identification of critical parameter groupings which control the approach to transport behavior consistent with LEA model predictions. Results of numerical experiments demonstrate that criteria for LEA applicability can be expressed conveniently in terms of these parameter groupings. The derivation procedure is demonstrated for examples of surface reactions including first-order reversible sorption, Langmuir-type kinetics and binary, homovalent ion exchange.

  15. An Optical Sensor for Measuring the Position and Slanting Direction of Flat Surfaces.

    PubMed

    Chen, Yu-Ta; Huang, Yen-Sheng; Liu, Chien-Sheng

    2016-01-01

    Automated optical inspection is a very important technique. For this reason, this study proposes an optical non-contact slanting surface measuring system. The essential features of the measurement system are obtained through simulations using the optical design software Zemax. The actual propagation of laser beams within the measurement system is traced by using a homogeneous transformation matrix (HTM), the skew-ray tracing method, and a first-order Taylor series expansion. Additionally, a complete mathematical model that describes the variations in light spots on photoelectric sensors and the corresponding changes in the sample orientation and distance was established. Finally, a laboratory prototype system was constructed on an optical bench to verify experimentally the proposed system. This measurement system can simultaneously detect the slanting angles (x, z) in the x and z directions of the sample and the distance (y) between the biconvex lens and the flat sample surface. PMID:27409619

  16. An Optical Sensor for Measuring the Position and Slanting Direction of Flat Surfaces

    PubMed Central

    Chen, Yu-Ta; Huang, Yen-Sheng; Liu, Chien-Sheng

    2016-01-01

    Automated optical inspection is a very important technique. For this reason, this study proposes an optical non-contact slanting surface measuring system. The essential features of the measurement system are obtained through simulations using the optical design software Zemax. The actual propagation of laser beams within the measurement system is traced by using a homogeneous transformation matrix (HTM), the skew-ray tracing method, and a first-order Taylor series expansion. Additionally, a complete mathematical model that describes the variations in light spots on photoelectric sensors and the corresponding changes in the sample orientation and distance was established. Finally, a laboratory prototype system was constructed on an optical bench to verify experimentally the proposed system. This measurement system can simultaneously detect the slanting angles (x, z) in the x and z directions of the sample and the distance (y) between the biconvex lens and the flat sample surface. PMID:27409619

  17. Liquid Phase Exfoliation of Two-Dimensional Materials by Directly Probing and Matching Surface Tension Components.

    PubMed

    Shen, Jianfeng; He, Yongmin; Wu, Jingjie; Gao, Caitian; Keyshar, Kunttal; Zhang, Xiang; Yang, Yingchao; Ye, Mingxin; Vajtai, Robert; Lou, Jun; Ajayan, Pulickel M

    2015-08-12

    Exfoliation of two-dimensional (2D) materials into mono- or few layers is of significance for both fundamental studies and potential applications. In this report, for the first time surface tension components were directly probed and matched to predict solvents with effective liquid phase exfoliation (LPE) capability for 2D materials such as graphene, h-BN, WS2, MoS2, MoSe2, Bi2Se3, TaS2, and SnS2. Exfoliation efficiency is enhanced when the ratios of the surface tension components of the applied solvent is close to that of the 2D material in question. We enlarged the library of low-toxic and common solvents for LPE. Our study provides distinctive insight into LPE and has pioneered a rational strategy for LPE of 2D materials with high yield. PMID:26200657

  18. Inferring the thermal-infrared hemispheric emission from a sparsely-vegetated surface by directional measurements

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Susskind, J.; Brakke, T.; Kimes, D.; Pielke, R.; Lee, T. J.

    1995-01-01

    The thermal-infrared (longwave) emission from a vegetated terrain is generally anisotropic, i.e., the emission temperature varies with the view direction. If a directional measurement of temperature is considered to be equal to the effective temperature of the hemispheric emission, then the estimate of the latter can be significantly in error. The view-direction (zenith angle theta(sub eq) at which the emission equivalence does hold is determined in our modeling study. In a two-temperature field-of-view (soil and plants), theta(sub eq) falls in a narrow range depending on plant density and canopy architecture. Theta(sub eq) does not depend on soil and (uniform) plant temperatures nor on their ratio, even though the pattern of emission vs. the view direction depends crucially on this ratio. For a sparse canopy represented as thin, vertical cylindrical stalks (or vertical blades uniformly distributed in azimuth) with horizontal facets, theta(sub eq) ranges from 48 to 53 deg depending on the optical density of the vertical elements alone. When plant elements are modeled as small spheres, theta(sub eq) lies between 53 to 57 deg (for the same values of the canopy optical density). Only for horizontal leaves (a truly planophile canopy) is the temperature measured from any direction equal to the temperature of the hemispheric emission. When the emission temperature changes with optical depth within the canopy at a specified rate, theta(sub eq) depends to some extent on that rate. For practically any sparsely vegetated surface, a directional measurement at the zenith angle of 50 deg offers an appropriate evaluation of the hemispheric emission, since the error in the estimate will, at most, only slightly exceed 1% (around 4 W/sq m). Estimates of the hemispheric emission through a nadir measurement, on the other hand, can be in error in some cases by about 10%, i.e., on the order of 40 W/sq m.

  19. Performance improvement of passive direct methanol fuel cells with surface-patterned Nafion® membranes

    NASA Astrophysics Data System (ADS)

    Pu, Longjuan; Jiang, Jingjing; Yuan, Ting; Chai, Jieshi; Zhang, Haifeng; Zou, Zhiqing; Li, Xue-Mei; Yang, Hui

    2015-02-01

    Nafion® 115 membrane, patterned by thermal imprint lithography on the anode side, is used for passive direct methanol fuel cells (DMFCs). The membrane roughness factor, defined as the ratio between the actual and projected membrane surface area, was investigated for its effects on the performance of the DMFCs. When the anode Pt-Ru (1:1) catalyst loading is 1.0 mg cm-2, the maximum power density of the DMFC with a surface-patterned membrane (roughness factor: 5.4) using 3.0 M methanol as the fuel at 25 ± 1 °C reaches 27.2 ± 0.3 mW cm-2, an increase of ∼57.2% in comparison to DMFC using the pristine membrane (roughness factor: ∼1.0). Further, electrochemical characterization indicates that increased roughness factor of the membrane results in increased electrochemically active surface area and reduced charge transfer resistance in the cell. These performance improvements are ascribed to the increased surface roughness which enlarges the membrane/catalyst interface, possibly facilitating mass transport of the fuel and improving anode catalyst utilization. Thus, patterned membranes have great potential in improving the performance of fuel cells and reducing catalyst loading.

  20. UV Direct Laser Interference Patterning of polyurethane substrates as tool for tuning its surface wettability

    NASA Astrophysics Data System (ADS)

    Estevam-Alves, Regina; Günther, Denise; Dani, Sophie; Eckhardt, Sebastian; Roch, Teja; Mendonca, Cleber R.; Cestari, Ismar N.; Lasagni, Andrés F.

    2016-06-01

    Direct Laser Interference Patterning (DLIP) is a versatile tool for the fabrication of micro and sub-micropatterns on different materials. In this work, DLIP was used to produce periodic surface structures on polyurethane (PU) substrates with spatial periods ranging from 0.5 to 5.0 μm. The influence of the laser energy density on the quality and topographical characteristics of the produced micropatterns was investigated. To characterize the surface topography of the produced structures, Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and Confocal Microscopy (CFM) were utilized. It was found that high quality and defect free periodic line-like patterns with spatial periods down to 500 nm could be fabricated, with structure depths between 0.88 up to 1.25 μm for spatial periods larger than 2.0 μm and up to 270 nm for spatial periods between 500 nm and 1.0 μm. Measurements of the contact angle of water on the treated surface allowed to identify an anisotropic wetting behavior depending mainly on the spatial period and filling factor of the structured surfaces.

  1. Direct Numerical Simulation of turbulent flows over superhydrophobic surfaces: capillary waves on gas-liquid interface

    NASA Astrophysics Data System (ADS)

    Seo, Jongmin; García-Mayoral, Ricardo; Mani, Ali

    2015-11-01

    Superhydrophobic surfaces under liquid flow can produce significant slip, and thus drag reduction, when they entrap gas bubbles within their roughness elements. Our work aims to explore the onset mechanism to the failure of drag reduction by superhydrophobic surfaces when they are exposed to turbulent boundary layers. We focus on the effect of finite surface tension to the dynamic response of deformable interfaces between overlying water flow and the gas pockets. To this end, we conduct direct numerical simulations of turbulent flows over superhydrophobic surfaces allowing deformable gas-liquid interface. DNS results show that spanwise-coherent, upstream-traveling waves develop on the gas-liquid interface as a result of its interactions with turbulence. We study the nature and scaling of the upstream-traveling waves through semi-analytical modeling. We will show that the traveling waves are well described by a Weber number based on the slip velocity at the interface. In higher Weber number, the stability of gas pocket decreases as the amplitude of interface deformation and the magnitude of pressure fluctuations are augmented. Supported by Office of Naval Research and the Kwanjeong Educational Scholarship Foundation.

  2. Direct Transfection of Dendritic Cells in the Epidermis After Plasmid Delivery Enhanced by Surface Electroporation

    PubMed Central

    Amante, Dinah H.; Smith, Trevor R.F.; Kiosses, Bill B.; Sardesai, Niranjan Y.; Humeau, Laurent M.P.F.

    2014-01-01

    Abstract The skin is rich in antigen-presenting cells and as such is an excellent target tissue for vaccination strategies. Electroporation is a physical delivery method that potentiates the uptake of DNA vaccines into target cells. Intradermal electroporation offers a minimally invasive solution to DNA delivery in the clinic. Here we describe the direct transfection of dendritic cells in the epidermis, using a surface dermal electroporation device, and specifically show a dendritic cell transfected with plasmid expressing green fluorescent protein. The dendritic cell has used its motile capabilities after transfection to move from the epidermis into the dermis, making its way to the lymphatic system. PMID:25470335

  3. Direct transfection of dendritic cells in the epidermis after plasmid delivery enhanced by surface electroporation.

    PubMed

    Amante, Dinah H; Smith, Trevor R F; Kiosses, Bill B; Sardesai, Niranjan Y; Humeau, Laurent M P F; Broderick, Kate E

    2014-12-01

    The skin is rich in antigen-presenting cells and as such is an excellent target tissue for vaccination strategies. Electroporation is a physical delivery method that potentiates the uptake of DNA vaccines into target cells. Intradermal electroporation offers a minimally invasive solution to DNA delivery in the clinic. Here we describe the direct transfection of dendritic cells in the epidermis, using a surface dermal electroporation device, and specifically show a dendritic cell transfected with plasmid expressing green fluorescent protein. The dendritic cell has used its motile capabilities after transfection to move from the epidermis into the dermis, making its way to the lymphatic system. PMID:25470335

  4. Direct observation of surface plasmons in YBCO by attenuated total reflection of light in the infrared

    NASA Astrophysics Data System (ADS)

    Walmsley, D. G.; Smyth, C. C.; Sellai, A.; McCafferty, P. G.; Dawson, P.; Morrow, T.; Graham, W. G.

    1994-02-01

    Surface plasmons have been observed directly in YBCO films in an Otto-geometry attenuated total reflection measurement at a wavelength of 3.392 μm. The laser deposited films are c-axis oriented on an MgO substrate. This observation confirms theoretical deductions from complex dielectric function data. Measured data have been fitted to a theoretical model and are compared with the optical constants determined by Bozovic [1]. The investigations have been extended to films with other orientations to investigate whether material anisotropy is reflected in the results and non-metallic behaviour is found.

  5. Highly directive Fabry-Perot leaky-wave nanoantennas based on optical partially reflective surfaces

    SciTech Connect

    Lorente-Crespo, M.; Mateo-Segura, C.

    2015-05-04

    Nanoantennas enhance the conversion between highly localized electromagnetic fields and far-field radiation. Here, we investigate the response of a nano-patch partially reflective surface backed with a silver mirror to an optical source embedded at the centre of the structure. Using full wave simulations, we demonstrate a two orders of magnitude increased directivity compared to the isotropic radiator, 50% power confinement to a 13.8° width beam and a ±16 nm bandwidth. Our antenna does not rely on plasmonic phenomena thus reducing non-radiative losses and conserving source coherence.

  6. Electroporation mediated DNA vaccination directly to a mucosal surface results in improved immune responses

    PubMed Central

    Kichaev, Gleb; Mendoza, Janess M; Amante, Dinah; Smith, Trevor RF; McCoy, Jay R; Sardesai, Niranjan Y; Broderick, Kate E

    2013-01-01

    In vivo electroporation (EP) has been shown to be a highly efficient non-viral method for enhancing DNA vaccine delivery and immunogenicity, when the site of immunization is the skin or muscle of animals and humans. However, the route of entry for many microbial pathogens is via the mucosal surfaces of the human body. We have previously reported on minimally invasive, surface and contactless EP devices for enhanced DNA delivery to dermal tissue. Robust antibody responses were induced following vaccine delivery in several tested animal models using these devices. Here, we investigated extending the modality of the surface device to efficiently deliver DNA vaccines to mucosal tissue. Initially, we demonstrated reporter gene expression in the epithelial layer of buccal mucosa in a guinea pig model. There was minimal tissue damage in guinea pig mucosal tissue resulting from EP. Delivery of a DNA vaccine encoding influenza virus nucleoprotein (NP) of influenza H1N1 elicited robust and sustained systemic IgG antibody responses following EP-enhanced delivery in the mucosa. Upon further analysis, IgA antibody responses were detected in vaginal washes and sustained cellular immune responses were detected in animals immunized at the oral mucosa with the surface EP device. This data confirms that DNA delivery and EP targeting mucosal tissue directly results in both robust and sustainable humoral as well as cellular immune responses without tissue damage. These responses are seen both in the mucosa and systemically in the blood. Direct DNA vaccine delivery enhanced by EP in mucosa may have important clinical applications for delivery of prophylactic and therapeutic DNA vaccines against diseases such as HIV, HPV and pneumonia that enter at mucosal sites and require both cellular and humoral immune responses for protection. PMID:23954979

  7. Electroporation mediated DNA vaccination directly to a mucosal surface results in improved immune responses.

    PubMed

    Kichaev, Gleb; Mendoza, Janess M; Amante, Dinah; Smith, Trevor R F; McCoy, Jay R; Sardesai, Niranjan Y; Broderick, Kate E

    2013-10-01

    In vivo electroporation (EP) has been shown to be a highly efficient non-viral method for enhancing DNA vaccine delivery and immunogenicity, when the site of immunization is the skin or muscle of animals and humans. However, the route of entry for many microbial pathogens is via the mucosal surfaces of the human body. We have previously reported on minimally invasive, surface and contactless EP devices for enhanced DNA delivery to dermal tissue. Robust antibody responses were induced following vaccine delivery in several tested animal models using these devices. Here, we investigated extending the modality of the surface device to efficiently deliver DNA vaccines to mucosal tissue. Initially, we demonstrated reporter gene expression in the epithelial layer of buccal mucosa in a guinea pig model. There was minimal tissue damage in guinea pig mucosal tissue resulting from EP. Delivery of a DNA vaccine encoding influenza virus nucleoprotein (NP) of influenza H1N1 elicited robust and sustained systemic IgG antibody responses following EP-enhanced delivery in the mucosa. Upon further analysis, IgA antibody responses were detected in vaginal washes and sustained cellular immune responses were detected in animals immunized at the oral mucosa with the surface EP device. This data confirms that DNA delivery and EP targeting mucosal tissue directly results in both robust and sustainable humoral as well as cellular immune responses without tissue damage. These responses are seen both in the mucosa and systemically in the blood. Direct DNA vaccine delivery enhanced by EP in mucosa may have important clinical applications for delivery of prophylactic and therapeutic DNA vaccines against diseases such as HIV, HPV and pneumonia that enter at mucosal sites and require both cellular and humoral immune responses for protection. PMID:23954979

  8. Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission

    PubMed Central

    Gryczynski, Ignacy; Malicka, Joanna; Gryczynski, Zygmunt; Lakowicz, Joseph R.

    2009-01-01

    Fluorescence is typically isotropic in space and collected with low efficiency. In this paper we describe surface plasmon-coupled emission (SPCE), which displays unique optical properties and can be collected with an efficiency near 50%. SPCE occurs for fluorophores within about 200 nm of a thin metallic film, in our case a 50-nm-thick silver film on a glass substrate. We show that fluorophore proximity to this film converts the normally isotropic emission into highly directional emission through the glass substrate at a well-defined angle from the normal axis. Depending on the thickness of the polyvinyl alcohol (PVA) film on the silver, the coupling efficiency of sulforhodamine 101 in PVA ranged from 30 to 49%. Directional SPCE was observed whether the fluorophore was excited directly or by the evanescent field due to the surface plasmon resonance. The emission is always polarized perpendicular to the plane of incidence, irrespective of the polarization of the incident light. The lifetimes are not substantially changed, indicating a mechanism somewhat different from that observed previously for the effects of silver particles on fluorophores. Remarkably, the directional emission shows intrinsic spectral resolution because the coupling angles depend on wavelength. The distances over which SPCE occurs, 10 to 200 nm, are useful because a large number of fluorophores can be localized within this volume. The emission of more distant fluorophores does not couple into the glass, allowing background suppression from biological samples. SPCE can be expected to become rapidly useful in a variety of analytical and medical sensing applications. PMID:14690680

  9. Investigation of statistical parameters of turbulent air flow over waved water surface by direct numerical simulation

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Druzhinin, Oleg

    2013-04-01

    Interaction of surface water waves with the wind flow is of primary importance for the wave modeling. The most difficult case for modeling is that of steep waves, when the strongly non-linear effects (e.g. sheltering, flow separation, vortex formation etc.) are encountered in the airflow over waves. Of special interest is also the influence of the wind flow stratification on the wind-wave interaction. In this work the preliminary results of direct numerical simulation (DNS)of structure and statistical characteristics of a turbulent, stably stratified atmospheric boundary layer over waved water surface are presented. In the experiments two-dimensional water waves with different wave age parameters (c/u* = 0-10, where u* is the friction velocity and c is the wave celerity), wave slope ka = 0-0.2 and at a bulk Reynolds number Re = 15000 and different values of the bulk Richardson number Ri (based on the buoyancy jump, bulk velocity and the surface wave length) are considered. The shape of the water wave is prescribed and does not evolve under the action of the wind. The full, 3D Navier-Stokes equations under the Boussinesq approximation are solved in curvilinear coordinates in a frame of reference moving the phase velocity of the wave. The shear driving the flow is created by an upper plane boundary moving horizontally with a bulk velocity in the x-direction. Periodic boundary conditions are considered in the horizontal (x) and lateral (y) directions, and no-slip boundary condition is considered in the vertical z-direction. The grid of nodes in the x, y, and z directions is used. The Adams-Bashforth method is employed to advance the integration in time and the equation for the pressure is solved iteratively by using FFT in the x and y directions and the Gauss method in the z-direction. Ensemble-averaged velocity and pressure fields are evaluated by averaging over time and the spanwise coordinate. Profiles of the mean velocity and turbulent stresses are obtained by

  10. Near-surface hydrogen depletion of diamond-like carbon films produced by direct ion deposition

    NASA Astrophysics Data System (ADS)

    Markwitz, Andreas; Gupta, Prasanth; Mohr, Berit; Hübner, René; Leveneur, Jerome; Zondervan, Albert; Becker, Hans-Werner

    2016-03-01

    Amorphous atomically flat diamond-like carbon (DLC) coatings were produced by direct ion deposition using a system based on a Penning ion source, butane precursor gas and post acceleration. Hydrogen depth profiles of the DLC coatings were measured with the 15N R-NRA method using the resonant nuclear reaction 1H(15N, αγ)12C (Eres = 6.385 MeV). The films produced at 3.0-10.5 kV acceleration voltage show two main effects. First, compared to average elemental composition of the film, the near-surface region is hydrogen depleted. The increase of the hydrogen concentration by 3% from the near-surface region towards the bulk is attributed to a growth model which favours the formation of sp2 hybridised carbon rich films in the film formation zone. Secondly, the depth at which the maximum hydrogen concentration is measured increases with acceleration voltage and is proportional to the penetration depth of protons produced by the ion source from the precursor gas. The observed effects are explained by a deposition process that takes into account the contributions of ion species, hydrogen effusion and preferential displacement of atoms during direct ion deposition.

  11. CDK5 interacts with Slo and affects its surface expression and kinetics through direct phosphorylation

    PubMed Central

    Bai, Jun-Ping; Surguchev, Alexei; Joshi, Powrnima; Gross, Liza

    2012-01-01

    Large-conductance calcium-activated potassium (BK) channels are ubiquitous and play an important role in a number of diseases. In hair cells of the ear, they play a critical role in electrical tuning, a mechanism of frequency discrimination. These channels show variable kinetics and expression along the tonotopic axis. Although the molecular underpinnings to its function in hair cells are poorly understood, it is established that BK channels consist of a pore-forming α-subunit (Slo) and a number of accessory subunits. Here we identify CDK5, a member of the cyclin-dependent kinase family, as an interacting partner of Slo. We show CDK5 to be present in hair cells and expressed in high concentrations in the cuticular plate and in the circumferential zone. In human embryonic kidney cells, we show that CDK5 inhibits surface expression of Slo by direct phosphorylation of Slo. Similarly, we note that CDK5 affects Slo voltage activation and deactivation kinetics, by a direct phosphorylation of T847. Taken together with its increasing expression along the tonotopic axis, these data suggest that CDK5 likely plays a critical role in electrical tuning and surface expression of Slo in hair cells. PMID:22094329

  12. Exploiting imperfections in the bulk to direct assembly of surface colloids

    PubMed Central

    Cavallaro, Marcello; Gharbi, Mohamed A.; Beller, Daniel A.; Čopar, Simon; Shi, Zheng; Baumgart, Tobias; Yang, Shu; Kamien, Randall D.; Stebe, Kathleen J.

    2013-01-01

    We exploit the long-ranged elastic fields inherent to confined nematic liquid crystals (LCs) to assemble colloidal particles trapped at the LC interface into reconfigurable structures with complex symmetries and packings. Spherical colloids with homeotropic anchoring trapped at the interface between air and the nematic LC 4-cyano-4′-pentylbiphenyl create quadrupolar distortions in the director field causing particles to repel and consequently form close-packed assemblies with a triangular habit. Here, we report on complex open structures organized via interactions with defects in the bulk. Specifically, by confining the nematic LC in an array of microposts with homeotropic anchoring conditions, we cause defect rings to form at well-defined locations in the bulk of the sample. These defects source elastic deformations that direct the assembly of the interfacially trapped colloids into ring-like assemblies, which recapitulate the defect geometry even when the microposts are completely immersed in the nematic. When the surface density of the colloids is high, they form a ring near the defect and a hexagonal lattice far from it. Because topographically complex substrates are easily fabricated and LC defects are readily reconfigured, this work lays the foundation for a versatile, robust mechanism to direct assembly dynamically over large areas by controlling surface anchoring and associated bulk defect structure. PMID:24191037

  13. Remote sensing of directional wave spectra using the surface contour radar

    NASA Technical Reports Server (NTRS)

    Walsh, E. J.; Hancock, D. W., III; Hines, D. E.; Kenney, J. E.

    1985-01-01

    A unique radio-oceanographic remote sensing instrument was developed. The 36 GHz airborne Surface Contour Radar (SCR) remotely produces a real-time topographical map of the sea surface beneath the aircraft. It can routinely produce ocean directional wave spectra with off-line data processing. The transmitter is a coherent dual-frequency device that uses pulse compression to compensate for the limited available power at Ka band. The radar has selectable pulse widths of 1, 2, 4, and 10 nanoseconds. The transmitting antenna is a 58 lambda horn fed dielectric lens whose axis is parallel to the longitudinal axis of the aircraft. It illuminates an elliptical mirror which is oriented 45 deg to the lens' longitudinal axis to deflect the beam towards the region beneath the aircraft. The mirror is oscillated in a sinusoidal fashion through mechanical linkages driven to a variable speed motor to scan the transmitter beam (1.2 deg X 1.2 deg) with + or - 16 deg of the perpendicular to the aircraft wings in the plane perpendicular to the aircraft flight direction.

  14. Surface analytical studies of ion-implanted uni-directionally aligned silicon nitride for tribological applications

    NASA Astrophysics Data System (ADS)

    Nakamura, Naoki; Hirao, Kiyoshi; Yamauchi, Yukihiko

    2004-03-01

    Uni-directionally aligned silicon nitride, which exhibits both high strength and high toughness, was implanted with B +, N +, Si + and Ti + ions at a fluence of 2 × 10 17 ions/cm 2 and an energy of 200 keV. The effect of ion implantation on the surface structure of the uni-directionally aligned silicon nitride has been studied, in terms of surface analyses such as atomic force microscopy (AFM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), secondary ion mass spectroscopy (SIMS) and X-ray absorption near edge structure (XANES). It was clarified that the ion-implanted layer was amorphized and the implantation profile showed good agreement with that estimated from a TRIM simulation. It was found that BN and TiN were formed in B +- and Ti +-implanted Si 3N 4, respectively. There was a slight difference in ion implantation depth among different structures of Si 3N 4, considered to be due to differences in ion channeling.

  15. Direct Addition Mechanism during the Catalytic Hydrogenation of Olefins over Platinum Surfaces.

    PubMed

    Dong, Yujung; Ebrahimi, Maryam; Tillekaratne, Aashani; Zaera, Francisco

    2016-07-01

    The mechanism of the hydrogenation of olefins catalyzed by metal surfaces was probed by using isotope labeling in conjunction with a high-flux effusive molecular beam setup capable of sustaining steady-state conversion under well-controlled ultrahigh vacuum (UHV). The unique conditions afforded by this instrument, namely, a single collision regime and impinging frequencies equivalent to pressures in the mTorr range, led to the clear identification of two competing pathways: a multiple H-D isotope exchange channel explained by the well-known Horiuti-Polanyi mechanism but with an unusually high probability for β-hydride elimination from the alkyl surface intermediate (versus its reductive elimination to the alkane), and a direct addition route that produces dideuterated alkanes selectively. The latter may follow an Eley-Rideal mechanism involving an adsorbate (either the olefin or the hydrogen/deuterium atoms resulting from dissociative adsorption of H2/D2) and a gas-phase molecule (the other reactant), or, alternatively, it could reflect the limited diffusion of the hydrogen atoms on the surface under catalytic conditions because of site blocking by the islands of strongly bonded carbonaceous (alkylidyne) layers present during catalysis. Regardless, our data clearly show that the distribution of alkane isotopologues obtained from the conversion of olefins with deuterium can deviate significantly from statistical expectations. PMID:27309969

  16. Direct numerical simulation of current-induced convection near an ion-selective surface

    NASA Astrophysics Data System (ADS)

    Druzgalski, Clara; Andersen, Mathias B.; Mani, Ali

    2012-11-01

    Understanding fundamentals of electrokinetic transport and fluid flow phenomena near ion-selective surfaces provides insight to improve systems such as electrodialysis for water deionization. The work of Rubinstein and Zaltzman [e.g. Phys Rev E 62, 2238 (2000)] have clarified qualitative aspects of how development of current-induced space-charge layers near ion-selective surfaces can lead to the onset of electro-osmotic instabilities. We expand on this work through multidimensional numerical simulation of the full nonlinear Poisson-Nernst-Planck and Navier-Stokes equations with ideally selective membrane boundary conditions. Our numerical scheme is optimized by exploiting the periodicity in the system parallel to the ion-selective surface, using a spectral method in these coordinates. In the wall normal direction a finite difference approach accurately captures the strongly nonlinear nested boundary layer structure. Our numerical scheme fully resolves the concentration profiles throughout the system including the numerically stiff electric double layer and extended space charge layer. Our simulations enable prediction of the full continuous current versus voltage curves showing overlimiting current without resorting to any adjustable parameter.

  17. Inbound waves in the solar corona: A direct indicator of Alfvén surface location

    SciTech Connect

    DeForest, C. E.; Howard, T. A.; McComas, D. J.

    2014-06-01

    The tenuous supersonic solar wind that streams from the top of the corona passes through a natural boundary—the Alfvén surface—that marks the causal disconnection of individual packets of plasma and magnetic flux from the Sun itself. The Alfvén surface is the locus where the radial motion of the accelerating solar wind passes the radial Alfvén speed, and therefore any displacement of material cannot carry information back down into the corona. It is thus the natural outer boundary of the solar corona and the inner boundary of interplanetary space. Using a new and unique motion analysis to separate inbound and outbound motions in synoptic visible-light image sequences from the COR2 coronagraph on board the STEREO-A spacecraft, we have identified inbound wave motion in the outer corona beyond 6 solar radii for the first time and used it to determine that the Alfvén surface is at least 12 solar radii from the Sun over the polar coronal holes and 15 solar radii in the streamer belt, well beyond the distance planned for NASA's upcoming Solar Probe Plus mission. To our knowledge, this is the first measurement of inbound waves in the outer solar corona and the first direct measurement of lower bounds for the Alfvén surface.

  18. Luminescence evolution from alumina ceramic surface before flashover under direct and alternating current voltage in vacuum

    NASA Astrophysics Data System (ADS)

    Su, Guo-Qiang; Wang, Yi-Bo; Song, Bai-Peng; Mu, Hai-Bao; Zhang, Guan-Jun; Li, Feng; Wang, Meng

    2016-06-01

    The luminescence evolution phenomena from alumina ceramic surface in vacuum under high voltage of direct and alternating current are reported, with the voltage covering a large range from far below to close to the flashover voltage. Its time resolved and spatial distributed behaviors are examined by a photon counting system and an electron-multiplying charge-coupled device (EMCCD) together with a digital camera, respectively. The luminescence before flashover exhibits two stages as voltage increasing, i.e., under a relative low voltage (Stage A), the luminescence is ascribed to radiative recombination of hetero-charges injected into the sample surface layer by Schottky effect; under a higher voltage (Stage B), a stable secondary electron emission process, resulting from the Fowler-Nordheim emission at the cathode triple junction (CTJ), is responsible for the luminescence. Spectrum analysis implies that inner secondary electrons within the surface layer of alumina generated during the SSEE process also participate in the luminescence of Stage B. A comprehensive interpretation of the flashover process is formulated, which might promote a better understanding of flashover issue in vacuum.

  19. Hybrid optical (freeform) components--functionalization of nonplanar optical surfaces by direct picosecond laser ablation.

    PubMed

    Kleindienst, Roman; Kampmann, Ronald; Stoebenau, Sebastian; Sinzinger, Stefan

    2011-07-01

    The performance of optical systems is typically improved by increasing the number of conventionally fabricated optical components (spheres, aspheres, and gratings). This approach is automatically connected to a system enlargement, as well as potentially higher assembly and maintenance costs. Hybrid optical freeform components can help to overcome this trade-off. They merge several optical functions within fewer but more complex optical surfaces, e.g., elements comprising shallow refractive/reflective and high-frequency diffractive structures. However, providing the flexibility and precision essential for their realization is one of the major challenges in the field of optical component fabrication. In this article we present tailored integrated machining techniques suitable for rapid prototyping as well as the fabrication of molding tools for low-cost mass replication of hybrid optical freeform components. To produce the different feature sizes with optical surface quality, we successively combine mechanical machining modes (ultraprecision micromilling and fly cutting) with precisely aligned direct picosecond laser ablation in an integrated fabrication approach. The fabrication accuracy and surface quality achieved by our integrated fabrication approach are demonstrated with profilometric measurements and experimental investigations of the optical performance. PMID:21743521

  20. Large-scale dynamics of directed self-assembly defects on chemically pre-patterned surface

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Kenji; Taniguchi, Takashi

    2013-03-01

    Morphological defects of block copolymers are dynamically formed during the annealing step of directed self­ assembly (DSA) process. Understanding the dynamics of such defects is crucial to manufacture defect-free wafers, however it is not well-understood due to difficulties in in-situ measurements. In order to provide some insights into this problem, we have performed dynamic simulations of symmetric diblock copolymers on chemically pre-patterned surface. A simplified model, so-called the Ohta-Kawasaki (OK) model was employed in this study, whose free energy and chemical potential were expressed as a function of the local order parameters. Time evolution of the local order parameters were calculated numerically and iteratively from the equation of continuity. As a test case, the two-dimensional (2D) dynamic simulations were performed including thermal fluctuations. The time evolution of the lamella defects was successfully characterized as a function of the interactive strength between the diblock copolymers and the chemically pre-patterned surface. In the three­ dimensional (3D) dynamic simulations, some complicated morphologies formed on the chemically pre-patterned surface were found to be similar to those obtained from Monte Carlo simulations. Our preliminary simulation data prove that for small χNs, dynamic simulations of diblock copolymers with OK model could be a powerful method to predict DSA defects with reasonable accuracy and with small computational cost.

  1. Direct Measurement of Surface Dissolution Rates in Potential Nuclear Waste Forms: The Example of Pyrochlore.

    PubMed

    Fischer, Cornelius; Finkeldei, Sarah; Brandt, Felix; Bosbach, Dirk; Luttge, Andreas

    2015-08-19

    The long-term stability of ceramic materials that are considered as potential nuclear waste forms is governed by heterogeneous surface reactivity. Thus, instead of a mean rate, the identification of one or more dominant contributors to the overall dissolution rate is the key to predict the stability of waste forms quantitatively. Direct surface measurements by vertical scanning interferometry (VSI) and their analysis via material flux maps and resulting dissolution rate spectra provide data about dominant rate contributors and their variability over time. Using pyrochlore (Nd2Zr2O7) pellet dissolution under acidic conditions as an example, we demonstrate the identification and quantification of dissolution rate contributors, based on VSI data and rate spectrum analysis. Heterogeneous surface alteration of pyrochlore varies by a factor of about 5 and additional material loss by chemo-mechanical grain pull-out within the uppermost grain layer. We identified four different rate contributors that are responsible for the observed dissolution rate range of single grains. Our new concept offers the opportunity to increase our mechanistic understanding and to predict quantitatively the alteration of ceramic waste forms. PMID:26186697

  2. Direct numerical simulation of turbulent flows over superhydrophobic surfaces: gas-liquid interface dynamics

    NASA Astrophysics Data System (ADS)

    Seo, Jongmin; García-Mayoral, Ricardo; Mani, Ali

    2013-11-01

    Superhydrophobic surfaces can induce large slip velocities for liquid flows, reducing the skin friction on walls, by entrapping gas pockets within the surface roughness. This work explores the onset mechanism leading to gas depletion through interface breakage under turbulent conditions. We conduct direct numerical simulations of flows over superhydrophobic walls. The superhydrophobic texture is conventionally modeled as a pattern of slip/no-slip boundary conditions for the wall-parallel velocities but, to take into account the dynamic deformation of the gas-liquid interface, we also introduce non-zero boundary conditions for the wall-normal velocity. These conditions are derived from the deformation of the interface in response to the overlying turbulent pressure fluctuations, following the Young-Laplace equation. Surface protrusions in the form of posts and streamwise-aligned ridges are studied, and results are presented as a function of the ``deformability'' of the gas-liquid interfaces, expressed as a Weber number. We will also discuss results for misaligned ridges. Supported by the Office of Naval Research and the Kwanjeong Educational Scholarship Foundation.

  3. Ion-Beam-Directed Self-Ordering of Ga Nanodroplets on GaAs Surfaces

    NASA Astrophysics Data System (ADS)

    Xu, Xingliang; Wu, Jiang; Wang, Xiaodong; Zhang, Mingliang; Li, Juntao; Shi, Zhigui; Li, Handong; Zhou, Zhihua; Ji, Haining; Niu, Xiaobin; Wang, Zhiming M.

    2016-01-01

    Ordered nanodroplet arrays and aligned nanodroplet chains are fabricated using ion-beam-directed self-organization. The morphological evolution of nanodroplets formed on GaAs (100) substrates under ion beam bombardment is characterized by scanning electron microscopy and atomic force microscopy. Ordered Ga nanodroplets are self-assembled under ion beam bombardment at off-normal incidence angles. The uniformity, size, and density of Ga nanodroplets can be tuned by the incident angles of ion beam. The ion beam current also plays a critical role in the self-ordering of Ga nanodroplets, and it is found that the droplets exhibit a similar droplet size but higher density and better uniformity with increasing the ion beam current. In addition, more complex arrangements of nanodroplets are achieved via in situ patterning and ion-beam-directed migration of Ga atoms. Particularly, compared to the destructive formation of nanodroplets through direct ion beam bombardment, the controllable assembly of nanodroplets on intact surfaces can be used as templates for fabrication of ordered semiconductor nanostructures by droplet epitaxy.

  4. Tailored frictional properties by Penrose inspired surfaces produced by direct laser interference patterning

    NASA Astrophysics Data System (ADS)

    Gachot, Carsten; Rosenkranz, Andreas; Buchheit, Roman; Souza, Nicolas; Mücklich, Frank

    2016-03-01

    In this work, periodic line-like and quasi-periodic Penrose-like patterns were produced on polyimide samples by direct laser inference patterning. The homogeneity and symmetry of the produced patterns were characterised with white light interferometry, light microscopy and. Fourier-transformation of the acquired images thus confirmed good quality of the Penrose-like pattern. Infrared spectroscopy was used to study the chemical changes after the laser treatment. No significant influences could be detected after irradiating the polyimide surfaces. Tribological experiments (polyimide substrate versus steel ball) under dry sliding conditions were performed using ball-on-disk tribometer in linear reciprocating sliding mode as a function of the relative alignment of the sliding direction with respect to the pattern orientation. The measured coefficient of friction strongly depends on the patterning. The periodic line-patterns with an orientation parallel to the sliding direction showed the highest COF of all samples. After a running-in of approximately 50 sliding cycles the Penrose-like patterns with a 0° orientation showed the lowest coefficient of friction.

  5. Ion-Beam-Directed Self-Ordering of Ga Nanodroplets on GaAs Surfaces.

    PubMed

    Xu, Xingliang; Wu, Jiang; Wang, Xiaodong; Zhang, Mingliang; Li, Juntao; Shi, Zhigui; Li, Handong; Zhou, Zhihua; Ji, Haining; Niu, Xiaobin; Wang, Zhiming M

    2016-12-01

    Ordered nanodroplet arrays and aligned nanodroplet chains are fabricated using ion-beam-directed self-organization. The morphological evolution of nanodroplets formed on GaAs (100) substrates under ion beam bombardment is characterized by scanning electron microscopy and atomic force microscopy. Ordered Ga nanodroplets are self-assembled under ion beam bombardment at off-normal incidence angles. The uniformity, size, and density of Ga nanodroplets can be tuned by the incident angles of ion beam. The ion beam current also plays a critical role in the self-ordering of Ga nanodroplets, and it is found that the droplets exhibit a similar droplet size but higher density and better uniformity with increasing the ion beam current. In addition, more complex arrangements of nanodroplets are achieved via in situ patterning and ion-beam-directed migration of Ga atoms. Particularly, compared to the destructive formation of nanodroplets through direct ion beam bombardment, the controllable assembly of nanodroplets on intact surfaces can be used as templates for fabrication of ordered semiconductor nanostructures by droplet epitaxy. PMID:26815607

  6. Method and means of directing an ion beam onto an insulating surface for ion implantation or sputtering

    DOEpatents

    Gruen, Dieter M.; Krauss, Alan R.; Siskind, Barry

    1981-01-01

    A beam of ions is directed under control onto an insulating surface by supplying simultaneously a stream of electrons directed at the same surface in a quantity sufficient to neutralize the overall electric charge of the ion beam and result in a net zero current flow to the insulating surface. The ion beam is adapted particularly both to the implantation of ions in a uniform areal disposition over the insulating surface and to the sputtering of atoms or molecules of the insulator onto a substrate.

  7. Label-free direct surface-enhanced Raman scattering (SERS) of nucleic acids (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Guerrini, Luca; Morla-Folch, Judit; Gisbert-Quilis, Patricia; Xie, Hainan; Alvarez-Puebla, Ramon

    2016-03-01

    Recently, plasmonic-based biosensing has experienced an unprecedented level of attention, with a particular focus on the nucleic acid detection, offering efficient solutions to engineer simple, fast, highly sensitive sensing platforms while overcoming important limitations of PCR and microarray techniques. In the broad field of plasmonics, surface-enhanced Raman scattering (SERS) spectroscopy has arisen as a powerful analytical tool for detection and structural characterization of biomolecules. Today applications of SERS to nucleic acid analysis largely rely on indirect strategies, which have been demonstrated very effective for pure sensing purposes but completely dismiss the exquisite structural information provided by the direct acquisition of the biomolecular vibrational fingerprint. Contrarily, direct label-free SERS of nucleic acid shows an outstanding potential in terms of chemical-specific information which, however, remained largely unexpressed mainly because of the inherent poor spectral reproducibility and/or limited sensitivity. To address these limitations, we developed a fast and affordable high-throughput screening direct SERS method for gaining detailed genomic information on nucleic acids (DNA and RNA) and for the characterization and quantitative recognition of DNA interactions with exogenous agents. The simple strategy relies on the electrostatic adhesion of DNA/RNA onto positively-charged silver colloids that promotes the nanoparticle aggregation into stable clusters yielding intense and reproducible SERS spectra at picogram level (i.e. the analysis can be performed without the necessity of amplification steps thus providing realistic direct information of the nucleic acid in its native state). We anticipate this method to gain a vast impact and set of applications in different fields, including medical diagnostics, genomic screening, drug discovery, forensic science and even molecular electronics.

  8. A genetically encoded alkyne directs palladium-mediated protein labeling on live mammalian cell surface.

    PubMed

    Li, Nan; Ramil, Carlo P; Lim, Reyna K V; Lin, Qing

    2015-02-20

    The merging of site-specific incorporation of small bioorthogonal functional groups into proteins via amber codon suppression with bioorthogonal chemistry has created exciting opportunities to extend the power of organic reactions to living systems. Here we show that a new alkyne amino acid can be site-selectively incorporated into mammalian proteins via a known orthogonal pyrrolysyl-tRNA synthetase/tRNACUA pair and directs an unprecedented, palladium-mediated cross-coupling reaction-driven protein labeling on live mammalian cell surface. A comparison study with the alkyne-encoded proteins in vitro indicated that this terminal alkyne is better suited for the palladium-mediated cross-coupling reaction than the copper-catalyzed click chemistry. PMID:25347611

  9. Direct analysis of solids by graphite furnace atomic absorption spectrometry using a second surface atomizer

    SciTech Connect

    Rettberg, T.M.; Holcombe, J.A.

    1986-06-01

    The direct graphite furnace atomic absorption spectrometric analysis of solids using the second surface atomizer has been investigated. The atomizer features a gas-cooled Ta insert within the graphite furnace onto which the analyte can be condensed, after which atomization is performed by raising the furnace to a higher temperature and shutting off the coolant gas. The analyses were conducted on standard reference material fly ash, river sediment, and citrus leaves, in addition to filter paper samples. All analyses were conducted without sample pretreatment or use of matrix modifiers. Quantitation was done by using simple aqueous standards. By use of peak heights, the recoveries varied from 81% to 127%, although several determinations were within the certified concentration range. The procedures typically gave low background absorbances and peak shapes that were relatively independent of the original sample matrix.

  10. Laser Direct Writing of Conductive Silver Film on Polyimide Surface from Decomposition of Organometallic Ink

    NASA Astrophysics Data System (ADS)

    Cai, Zhixiang; Zeng, Xiaoyan; Liu, Jianguo

    2011-03-01

    Laser direct writing of organometallic ink to manufacture silver films was investigated by using a continuous-wave, Yb-doped fiber laser beam at a wavelength of 1071 nm. The organometallic ink consisted of an organometallic silver complex and a carrier vehicle, which was prepared by reaction of silver oxide with ammonium carbamates in methanol. The organometallic silver decomposed at a laser power of 0.1 W. The electrical resistivity values of silver conductors that were fabricated at a laser power of 0.5 W were about four times that of bulk silver. The morphology and electrical properties of the silver film were observed to be controllable as a function of laser processing parameters. The fabricated silver film exhibited excellent adherence to the polyimide substrate surface according to evaluation using the peel-off testing method.

  11. Effects of the type and direction of support surface perturbation on postural responses

    PubMed Central

    2014-01-01

    Background Postural control is organized around a task goal. The two most frequently used types of tasks for postural control research are translational (translation along the anterior-posterior axis) and rotational (rotation in sagittal plane) surface perturbations. These types of perturbations rotate the ankle joint, causing different magnitudes and directions of body sway. The purpose of this study was to investigate the effects of the type (translation vs. rotation) and direction (forward/toe up vs. backward/toe down) of the perturbation on postural responses. Method Nineteen healthy subjects were tested with four perturbations, i.e., forward and backward translation and toe up and toe down rotation. The onset latency and magnitude of muscle activations, angular changes, and COM displacements were measured. In addition, the kinematic data were divided into two phases. The initial phase reflected the balance disturbance induced by the platform movement, and the reversal phase reflected the balance reaction. Results The results showed that, in the initial phase, rotational perturbation induced earlier ankle movement and faster and larger vertical COM displacement, while translational and forward/toe up perturbations induced larger head and trunk angular change and faster and larger horizontal COM displacement. In the reversal phase, balance reaction was attained by multi-joint movements. Translational and forward/toe up perturbations that induced larger upper body instability evoked faster muscle activation as well as faster and larger hip or knee joint movements. Conclusions These findings provide insights into an appropriate support surface perturbation for the evaluation and training of balance. PMID:24708582

  12. Direct growth of carbon nanotubes on metal surfaces without an external catalyst and nanocomposite production

    NASA Astrophysics Data System (ADS)

    Baddour, Carole Emilie

    The research work presented in this thesis deals with carbon nanotubes (CNTs), an allotrope of carbon with a cylindrical structure consisting of a rolled up graphene sheet. CNTs are generally produced by the decomposition of a carbon source in the presence of a metal catalyst at elevated temperatures. CNTs have outstanding properties and have attracted immense attention in both industry and academia. However, the development of commercial applications of CNTs is slow due to limitations in the large scale production of CNTs and their high cost. Another limitation is the interface resistance generated by external catalyst nanoparticles used in traditional CNT growth methods. In order to eliminate the interface resistance and simultaneously provide CNT growth over large surfaces and varying geometries, a method called direct CNT growth is established to enable the extraction of the CNT structure directly from the metal surface. The novel process for the production of CNTs developed in the present thesis is applied to planar surfaces and spherical particles made of stainless steel (SS) 304. The method is based on the establishment of nanometer scale structures at the surface which act as catalyst nanoparticles while at the same time being integral parts of the material. It uses first a mild chemical etching of the surface, followed by a specific heat treatment performed using either standard chemical vapour deposition (standard-CVD) or fluidized bed CVD (FBCVD) techniques. Acetylene (C2H2) is used as the carbon source and SS 304 acts as both the catalyst and the substrate in the growth process. This direct CNT growth with this substrate dual function eliminates the need of external catalyst nanoparticles deposited onto the surface. The active sites necessary for CNT growth are tailored on the SS itself by means of the two-step treatment process. MWNTs of 20-70 nm in diameter are produced. The CNTs are characterized by Raman Spectroscopy, Thermogravimetric analysis (TGA

  13. Data fusion analysis of a surface direct-current resistivity and well pick data set

    SciTech Connect

    Clayton, E.A.; Lewis, R.E.

    1995-09-01

    Pacific Northwest Laboratory (PNL) has been tasked with testing, debugging, and refining the Hanford Site data fusion workstation (DFW), with the assistance of Coleman Research Corporation (CRC), before delivering the DFW to the environmental restoration client at the Hanford Site. Data fusion is the mathematical combination (or fusion) of disparate data sets into a single interpretation. The data fusion software used in this study was developed by CRC. This report discusses the results of evaluating a surface direct-current (dc) resistivity and well-pick data set using two methods: data fusion technology and commercially available software (i.e., RESIX Plus from Interpex Ltd., Golden, Colorado), the conventional method of analysis. The report compares the two technologies; describes the survey, procedures, and results; and includes conclusions and recommendations. The surface dc resistivity and well-pick data set had been acquired by PNL from a study performed in May 1993 at Eielson Air Force Base near Fairbanks, Alaska. The resistivity survey data were acquired to map the top of permafrost in support of a hydrogeologic study. This data set provided an excellent opportunity to test and refine the dc resistivity capabilities of the DFW; previously, the data fusion software was untested on dc resistivity data. The DFW was used to evaluate the dc resistivity survey data and to produce a 3-dimensional earth model of the study area.

  14. Aptamer selection by direct microfluidic recovery and surface plasmon resonance evaluation.

    PubMed

    Dausse, Eric; Barré, Aurélien; Aimé, Ahissan; Groppi, Alexis; Rico, Alain; Ainali, Chrysanthi; Salgado, Gilmar; Palau, William; Daguerre, Emilie; Nikolski, Macha; Toulmé, Jean-Jacques; Di Primo, Carmelo

    2016-06-15

    A surface plasmon resonance (SPR)-based SELEX approach has been used to raise RNA aptamers against a structured RNA, derived from XBP1 pre-mRNA, that folds as two contiguous hairpins. Thanks to the design of the internal microfluidic cartridge of the instrument, the selection was performed during the dissociation phase of the SPR analysis by recovering the aptamer candidates directly from the target immobilized onto the sensor chip surface. The evaluation of the pools was performed by SPR, simultaneously, during the association phase, each time the amplified and transcribed candidates were injected over the immobilized target. SPR coupled with SELEX from the first to the last round allowed identifying RNA aptamers that formed highly stable loop-loop complexes (KD equal to 8nM) with the hairpin located on the 5' side of the target. High throughput sequencing of two key rounds confirmed the evolution observed by SPR and also revealed the selection of hairpins displaying a loop not fully complementary to the loop of its target. These candidates were selected mainly because they bound 79 times faster to the target than those having a complementary loop. SELEX coupled with SPR is expected to speed up the selection process because selection and evaluation are performed simultaneously. PMID:26874109

  15. MaterialVis: material visualization tool using direct volume and surface rendering techniques.

    PubMed

    Okuyan, Erhan; Güdükbay, Uğur; Bulutay, Ceyhun; Heinig, Karl-Heinz

    2014-05-01

    Visualization of the materials is an indispensable part of their structural analysis. We developed a visualization tool for amorphous as well as crystalline structures, called MaterialVis. Unlike the existing tools, MaterialVis represents material structures as a volume and a surface manifold, in addition to plain atomic coordinates. Both amorphous and crystalline structures exhibit topological features as well as various defects. MaterialVis provides a wide range of functionality to visualize such topological structures and crystal defects interactively. Direct volume rendering techniques are used to visualize the volumetric features of materials, such as crystal defects, which are responsible for the distinct fingerprints of a specific sample. In addition, the tool provides surface visualization to extract hidden topological features within the material. Together with the rich set of parameters and options to control the visualization, MaterialVis allows users to visualize various aspects of materials very efficiently as generated by modern analytical techniques such as the Atom Probe Tomography. PMID:24739396

  16. Direct numerical simulation of turbulent flows over superhydrophobic surfaces with periodic posts: effect of texture size

    NASA Astrophysics Data System (ADS)

    Seo, Jongmin; Garcia-Mayoral, Ricardo; Mani, Ali

    2014-11-01

    Superhydrophobic surfaces submerged in water can produce slip on the wall and thus result in drag reduction by entrapping gas pockets between the roughness elements. This work aims to generate insights into the failure mechanism of such surfaces under turbulent conditions. We perform direct numerical simulations of channels with patterned slip/no-slip boundary conditions, for fixed gas fraction and texture wavelengths, L+, ranging from 6 to 150 wall units, which include the regime of practical application. The rms pressure at the wall is found to have a fluctuating contribution, caused by the overlying turbulence, and a stationary contribution, caused by the stagnation of flow when encountering downstream solid posts. While the turbulence contribution remains essentially unmodified, the stationary pressure increases with the texture size, and can be responsible for the breakup of the entrapped gas bubbles. We present results revealing the scaling of the induced pressure and the consequent deformations of the air-water interface. Supported by Office of Naval Research and the Kwanjeong Educational Scholarship Foundation.

  17. Error analysis of a direct current electromagnetic tracking system in digitizing 3-dimensional surface geometries.

    PubMed

    Milne, A D; Lee, J M

    1999-01-01

    The direct current electromagnetic tracking device has seen increasing use in biomechanics studies of joint kinematics and anatomical surface geometry. In these applications, a stylus is attached to a sensor to measure the spatial location of three-dimensional landmarks. Stylus calibration is performed by rotating the stylus about a fixed point in space and using regression analysis to determine the tip offset vector. Measurement errors can be induced via several pathways, including; intrinsic system errors in sensor position or angle and tip offset calibration errors. A detailed study was performed to determine the errors introduced in digitizing small surfaces with different stylus lengths (35, 55, and 65 mm) and approach angles (30 and 45 degrees) using a plastic calibration board and hemispherical models. Two-point discrimination errors increased to an average of 1.93 mm for a 254 mm step size. Rotation about a single point produced mean errors of 0.44 to 1.18 mm. Statistically significant differences in error were observed with increasing approach angles (p < 0.001). Errors of less than 6% were observed in determining the curvature of a 19 mm hemisphere. This study demonstrates that the "Flock of Birds" can be used as a digitizing tool with accuracy better than 0.76% over 254 mm step sizes. PMID:11143353

  18. Surface-enhanced Raman spectroscopy: a direct method to identify colorants in various artist media.

    PubMed

    Brosseau, Christa L; Rayner, Kari S; Casadio, Francesca; Grzywacz, Cecily M; Van Duyne, Richard P

    2009-09-01

    Surface-enhanced Raman spectroscopy (SERS) has been developed as a direct, extractionless, nonhydrolysis tool to detect lake pigments and colorants of various classes used in a variety of artist materials. Presented first is the SERS analysis of the natural colorant turmeric (Curcuma longa L.), main component curcumin, as present in dry lake pigment grains, dyed textile yarns, and reference paint layers containing the lake pigment bound in animal glue painted on glass. This experiment demonstrated that it is possible to detect the chromophore in various matrixes of increasing complexity, allowing its unambiguous identification in a wide range of artists' materials, even at very low concentration and in the presence of binders such as glue. In addition, removal of the colorant from the complex with the inorganic substrate or mordanted yarn was not necessary for identification. This proof-of-concept study was then extended to include analysis of several pastel sticks from a historical pastel box and two samples from a pastel artwork, both attributed to American painter Mary Cassatt (1844-1926). This study represents the first extractionless, nonhydrolysis direct SERS study of multiple artist materials, including identification of natural and synthetic colorants and organic pigments contained in historic artists' pastels spanning a broad range of chemical classes: polyphenols, rhodamines, azo pigments, and anthraquinones. Successful identification is demonstrated on samples as small as a single grain of pigment. PMID:19637904

  19. Interface for Online Coupling of Surface Plasmon Resonance to Direct Analysis in Real Time Mass Spectrometry.

    PubMed

    Zhang, Yiding; Li, Xianjiang; Nie, Honggang; Yang, Li; Li, Ze; Bai, Yu; Niu, Li; Song, Daqian; Liu, Huwei

    2015-07-01

    The online coupling of surface plasmon resonance (SPR) with mass spectrometry (MS) has been highly desired for the complementary information provided by each of the two techniques. In this work, a novel interface for direct and online coupling of SPR to direct analysis in real time (DART) MS was developed. A spray tip connected with the outlet of the SPR flow solution was conducted as the sampling part of the DART-MS, with which the online coupling interface of SPR-MS was realized. Four model samples, acetaminophen, metronidazole, quinine, and hippuric acid, dissolved in three kinds of common buffers were used in the SPR-DART-MS experiments for performance evaluation of the interface and the optimization of DART conditions. The results showed consistent signal changes and high tolerance of nonvolatile salts of this SPR-MS system, demonstrating the feasibility of the interface for online coupling of SPR with MS and the potential application in the characterization of interaction under physiological conditions. PMID:26067340

  20. Direct Observation of Photoinduced Tautomerization in Single Molecules at a Metal Surface.

    PubMed

    Böckmann, H; Liu, S; Mielke, J; Gawinkowski, S; Waluk, J; Grill, L; Wolf, M; Kumagai, T

    2016-02-10

    Molecular switches are of fundamental importance in nature, and light is an important stimulus to selectively drive the switching process. However, the local dynamics of a conformational change in these molecules remain far from being completely understood at the single-molecule level. Here, we report the direct observation of photoinduced tautomerization in single porphycene molecules on a Cu(111) surface by using a combination of low-temperature scanning tunneling microscopy and laser excitation in the near-infrared to ultraviolet regime. It is found that the thermodynamically stable trans configuration of porphycene can be converted to the metastable cis configuration in a unidirectional fashion by photoirradiation. The wavelength dependence of the tautomerization cross section exhibits a steep increase around 2 eV and demonstrates that excitation of the Cu d-band electrons and the resulting hot carriers play a dominant role in the photochemical process. Additionally, a pronounced isotope effect in the cross section (∼100) is observed when the transferred hydrogen atoms are substituted with deuterium, indicating a significant contribution of zero-point energy in the reaction. Combined with the study of inelastic tunneling electron-induced tautomerization with the STM, we propose that tautomerization occurs via excitation of molecular vibrations after photoexcitation. Interestingly, the observed cross section of ∼10(-19) cm(2) in the visible-ultraviolet region is much higher than that of previously studied molecular switches on a metal surface, for example, azobenzene derivatives (10(-23)-10(-22) cm(2)). Furthermore, we examined a local environmental impact on the photoinduced tautomerization by varying molecular density on the surface and find substantial changes in the cross section and quenching of the process due to the intermolecular interaction at high density. PMID:26796945

  1. Room temperature GaN-GaAs direct bonding by argon-beam surface activation

    NASA Astrophysics Data System (ADS)

    Higurashi, Eiji; Tokuda, Yuichiro; Akaike, Masatake; Suga, Tadatomo

    2007-10-01

    A room temperature direct bonding using surface activation by argon (Ar)-beam sputtering was applied to the bonding between gallium nitride (GaN) and gallium arsenide (GaAs). The silicon doped n-type GaN films used in this experiment were grown by metal organic chemical vapor deposition on (0001) sapphire substrates. The GaN film thickness is 3 μm with a surface roughness of approximately 0.22 nm (R a) as measured by atomic force microscopy. The silicon doped n-type GaAs (100) wafers with a surface roughness of approximately 0.34 nm (R a) were used as GaAs substrates. The GaN and GaAs samples were cleaned by sputtering with a 1.5 keV Ar-fast atom beam with 15 mA in the vacuum chamber (background pressure: 1.3×10 -5~4.0×10 -4 Pa). Then, the samples were brought into contact as quickly as possible with a load of 735 N at room temperature. After this process, GaN films were successfully bonded to GaAs substrates without any heat treatment. Cross-sectional scanning electron microscopy showed that most of the interface area was well bonded. The bonding strength was evaluated by die-shear tests. Although all samples were visibly separated from the interface rather than in the bulk region after die-shear tests, the estimated die-shear strength of GaN/GaAs structures was 1.5 -7 MPa. The advantage of our process is free from the various problems caused by the large thermal expansion mismatch during heat treatment in the conventional fusion bonding.

  2. Aqueous dispersion, surface thiolation, and direct self-assembly of carbon nanotubes on gold.

    PubMed

    Kocharova, Natalia; Aäritalo, Timo; Leiro, Jarkko; Kankare, Jouko; Lukkari, Jukka

    2007-03-13

    We report the efficient aqueous dispersion of pristine HiPco single-walled carbon nanotubes (SWNTs) with ionic liquid (IL)-based surfactants 1-dodecyl-3-methylimidazolium bromide (1) and 1-(12-mercaptododecyl)-3-methylimidazolium bromide (2), the thiolation of nanotube sidewalls with 2, and the controlled self-assembly of positively charged SWNT-1,2 composites on gold. Optical absorption spectra and resonance Raman (RR) data of obtained aqueous SWNT-1,2 dispersions are consistent with debundled and noncovalently functionalized nanotubes whose electronic properties have not been disturbed. Additionally, the dispersion of pristine nanotube material with surfactants 1 and 2 leads to a high degree of purification from carbonaceous particles. The chiralities of the 14 smallest semiconducting HiPco SWNTs in resonance with Raman excitation at 1064 nm (1.165 eV) were determined in SWNT-2 aqueous dispersion using UV-vis-NIR and RR spectra. X-ray photoelectron spectroscopy (XPS) and surface-enhanced resonance Raman scattering (SERRS) spectroscopy of SWNT-2 submonolayers on gold verified the encapsulation of individualized SWNTs with IL surfactants, the cleavage of S-S disulfide bonds formed in aqueous SWNT-2 suspensions, and the direct chemisorption of the SWNT-2 composite on bare gold via the Au-S bond. Aqueous dispersions of SWNTs with IL-based surfactants add biofunctionality to carbon nanotubes by imparting the positive surface charge necessary for interactions with cell membranes. Our technique, which purifies pristine nanotube material and produces water-soluble, positively charged nanotubes with pendent surface-active thiol groups, may also be translated to other carbon nanotubes and carbon nanostructures. Self-assembled, positively charged submonolayers of SWNTs can be further used for applications in cell biology and sensor technology. PMID:17291020

  3. Integrin-mediated cell surface recruitment of autotaxin promotes persistent directional cell migration

    PubMed Central

    Wu, Tao; Kooi, Craig Vander; Shah, Pritom; Charnigo, Richard; Huang, Cai; Smyth, Susan S.; Morris, Andrew J.

    2014-01-01

    Autotaxin (ATX) is a secreted lysophospholipase D (lysoPLD) that binds to integrin adhesion receptors. We dissected the roles of integrin binding and lysoPLD activity in stimulation of human breast cancer and mouse aortic vascular smooth muscle cell migration by ATX. We compared effects of wild-type human ATX, catalytically inactive ATX, an integrin binding-defective ATX variant with wild-type lysoPLD activity, the isolated ATX integrin binding N-terminal domain, and a potent ATX selective lysoPLD inhibitor on cell migration using transwell and single-cell tracking assays. Stimulation of transwell migration was reduced (18 or 27% of control, respectively) but not ablated by inactivation of integrin binding or inhibition of lysoPLD activity. The N-terminal domain increased transwell migration (30% of control). ATX lysoPLD activity and integrin binding were necessary for a 3.8-fold increase in the fraction of migrating breast cancer cell step velocities >0.7 μm/min. ATX increased the persistent directionality of single-cell migration 2-fold. This effect was lysoPLD activity independent and recapitulated by the integrin binding N-terminal domain. Integrin binding enables uptake and intracellular sequestration of ATX, which redistributes to the front of migrating cells. ATX binding to integrins and lysoPLD activity therefore cooperate to promote rapid persistent directional cell migration.—Wu, T., Kooi, C. V., Shah, P., Charnigo, R., Huang, C., Smyth, S. S., Morris, A. J. Integrin-mediated cell surface recruitment of autotaxin promotes persistent directional cell migration. PMID:24277575

  4. Determination of unit normal vectors of aspherical surfaces given unit directional vectors of incoming and outgoing rays.

    PubMed

    Lin, Psang Dain; Tsai, Chung-Yu

    2012-02-01

    Snell's law describes the relationship between the incidence angle and reflection (or refraction) angle of a light ray impinging on the interface between two different isotropic media. In this paper, Snell's law is used to derive the unit normal vectors of an aspherical surface given a knowledge of the unit directional vectors of the incoming and outgoing rays. The proposed method has important applications in the design and fabrication of aspherical surfaces since the surface normal vectors determine not only the optical performance of the surface but also the cutting tool angles required to machine the surfaces. PMID:22330362

  5. Copper foils with gradient structure in thickness direction and different roughnesses on two surfaces fabricated by double rolling

    NASA Astrophysics Data System (ADS)

    Wang, Xi-yong; Liu, Xue-feng; Zou, Wen-jiang; Xie, Jian-xin

    2013-12-01

    Copper foils with gradient structure in thickness direction and different roughnesses on two surfaces were fabricated by double rolling. The two surface morphologies of double-rolled copper foils are quite different, and the surface roughness values are 61 and 1095 nm, respectively. The roughness value of matt surface can meet the requirement for bonding the resin matrix with copper foils used for flexible printed circuit boards, thus may omit traditional roughening treatment; the microstructure of double-rolled copper foils demonstrates an obviously asymmetric gradient feature. From bright surface to matt surface in thickness direction, the average grain size first increases from 2.3 to 7.4 μm and then decreases to 3.6 μm; compared with conventional rolled copper foils, the double-rolled copper foils exhibit a remarkably increased bending fatigue life, and the increased range is about 16.2%.

  6. Directional Auger electron spectroscopy (DAES) and directional elastic peak electron spectroscopy (DEPES) in the investigation of the crystalline structure of surface layers: the Ag/Cu(111) interface

    NASA Astrophysics Data System (ADS)

    Mróz, S.; Nowicki, M.

    1993-11-01

    Dependence of the Auger signal (directional Auger electron spectroscopy — DAES) and the elastically scattered electron intensity (directional elastic peak electron spectroscopy — DEPES) on the direction of the primary electron beam ( E = 600-1500 eV) was measured using a retarding field analyser (LEED optics) for the Cu(111) face, both clean and covered with silver up to 12 ML. Well-developed maxima of DAES and DEPES signals appear when the primary beam is parallel to one of the close-packed rows of atoms in the sample surface layer, while the angular distribution of the emitted electrons is averaged over the large acceptance angle of the RFA and does not influence appreciably the DAES and DEPES profiles. From the positions of the maxima mentioned above the atomic structure of a few surface layers can be determined. The silver layer was found to be rotated for 60° with respect to the Cu(111) substrate.

  7. Application of soil magnetometry on urban and industrial areas affected by different sources of pollution

    NASA Astrophysics Data System (ADS)

    Magiera, T.; Szuszkiewicz, M.; Rachwał, M.

    2012-04-01

    Soil magnetometry as a proxy screening method has proven to be a suitable method for outlining soil pollution, connected with industrial and urban dust deposition as well as qualitative and semi-quantitative evaluation of potentially contaminated areas with considerably high concentration of technogenic iron particles and related heavy metals. In combination with geochemical method it could be also used for better targeting the geochemical sampling and reducing the number of chemical analysis. During this study the method was applied on areas dominated by 3 different sources of pollution: urban (mostly related to coal combustion), metallurgical and coke production. The three analyzed forest complexes were artificially planted and grow on anthroposols with different stage of transformation. During the study analysis of vertical distribution of magnetic susceptibility (κ) in 40 topsoil profiles taken in 3 above mentioned forest areas were performed. Additionally, soil samples taken from horizons with increased magnetic susceptibility (mostly organic horizon) and from mineral horizons (considered as a background) were selected to chemical analysis of 9 heavy metal content (Fe, Mn, Co, Ni, Cu, Zn, As, Cd and Pb). X-ray fluorescence method was applied for geochemical study. The highest κ values up to 1200 × 10-5 SI units were measured in the vicinity of metallurgical plant but the correlation between κ values and heavy metal content was there very low and statistically not significant. The considerably high correlation between magnetic susceptibility and some heavy metals (Pb, Zn, Cd, Cu, As) were observed on 2 other areas of study. On the base of these study in combination with former mineralogical study of industrial dusts and topsoils, the following conclusions have been drown: Steelworks - emit strongly magnetic technogenic magnetic particles (TMPs) including metallic iron (α-Fe) that is strong ferromagnetic (giving high κ values) but do not contain heavy

  8. Magnetism of σ-phase Fe-Mo alloys: Its characterization by magnetometry and Mo¨ssbauer spectrometry

    NASA Astrophysics Data System (ADS)

    Cieślak, J.; Dubiel, S. M.; Reissner, M.

    2016-03-01

    Sigma-phase Fe100-xMox alloys (x=45-53) were revealed to exhibit a low temperature magnetism. Its characterization has been done using vibrating sample magnetometry and Mössbauer spectroscopy techniques. The magnetic ordering temperature was determined to lie in the range of ∼46 K for x=45 and ∼22 K for x=53, and the irreversibility of the magnetization process carried out in zero-field cooled (ZFC) and in field cooled (FC) conditions is in line with the spin-glass being the ground magnetic state of the samples.

  9. Giardia Flagellar Motility Is Not Directly Required to Maintain Attachment to Surfaces

    PubMed Central

    House, Susan A.; Richter, David J.; Pham, Jonathan K.; Dawson, Scott C.

    2011-01-01

    Giardia trophozoites attach to the intestinal microvilli (or inert surfaces) using an undefined “suction-based” mechanism, and remain attached during cell division to avoid peristalsis. Flagellar motility is a key factor in Giardia's pathogenesis and colonization of the host small intestine. Specifically, the beating of the ventral flagella, one of four pairs of motile flagella, has been proposed to generate a hydrodynamic force that results in suction-based attachment via the adjacent ventral disc. We aimed to test this prevailing “hydrodynamic model” of attachment mediated by flagellar motility. We defined four distinct stages of attachment by assessing surface contacts of the trophozoite with the substrate during attachment using TIRF microscopy (TIRFM). The lateral crest of the ventral disc forms a continuous perimeter seal with the substrate, a cytological indication that trophozoites are fully attached. Using trophozoites with two types of molecularly engineered defects in flagellar beating, we determined that neither ventral flagellar beating, nor any flagellar beating, is necessary for the maintenance of attachment. Following a morpholino-based knockdown of PF16, a central pair protein, both the beating and morphology of flagella were defective, but trophozoites could still initiate proper surface contacts as seen using TIRFM and could maintain attachment in several biophysical assays. Trophozoites with impaired motility were able to attach as well as motile cells. We also generated a strain with defects in the ventral flagellar waveform by overexpressing a dominant negative form of alpha2-annexin::GFP (D122A, D275A). This dominant negative alpha2-annexin strain could initiate attachment and had only a slight decrease in the ability to withstand normal and shear forces. The time needed for attachment did increase in trophozoites with overall defective flagellar beating, however. Thus while not directly required for attachment, flagellar motility is

  10. Direct Measurements of Fermi Level Pinning at the Surface of Intrinsically n-Type InGaAs Nanowires.

    PubMed

    Speckbacher, Maximilian; Treu, Julian; Whittles, Thomas J; Linhart, Wojciech M; Xu, Xiaomo; Saller, Kai; Dhanak, Vinod R; Abstreiter, Gerhard; Finley, Jonathan J; Veal, Tim D; Koblmüller, Gregor

    2016-08-10

    Surface effects strongly dominate the intrinsic properties of semiconductor nanowires (NWs), an observation that is commonly attributed to the presence of surface states and their modification of the electronic band structure. Although the effects of the exposed, bare NW surface have been widely studied with respect to charge carrier transport and optical properties, the underlying electronic band structure, Fermi level pinning, and surface band bending profiles are not well explored. Here, we directly and quantitatively assess the Fermi level pinning at the surfaces of composition-tunable, intrinsically n-type InGaAs NWs, as one of the prominent, technologically most relevant NW systems, by using correlated photoluminescence (PL) and X-ray photoemission spectroscopy (XPS). From the PL spectral response, we reveal two dominant radiative recombination pathways, that is, direct near-band edge transitions and red-shifted, spatially indirect transitions induced by surface band bending. The separation of their relative transition energies changes with alloy composition by up to more than ∼40 meV and represent a direct measure for the amount of surface band bending. We further extract quantitatively the Fermi level to surface valence band maximum separation using XPS, and directly verify a composition-dependent transition from downward to upward band bending (surface electron accumulation to depletion) with increasing Ga-content x(Ga) at a crossover near x(Ga) ∼ 0.2. Core level spectra further demonstrate the nature of extrinsic surface states being caused by In-rich suboxides arising from the native oxide layer at the InGaAs NW surface. PMID:27458736

  11. Evaluating a direct swabbing method for screening pesticides on fruit and vegetable surfaces using Direct Analysis in Real Time (DART) coupled to an Exactive benchtop orbitrap mass spectrometer.

    PubMed

    Crawford, Elizabeth; Musselman, Brian

    2012-07-01

    Rapid screening of pesticides present on the surfaces of fruits and vegetables has been facilitated by using a Direct Analysis in Real Time (DART(®)) open air surface desorption ionization source coupled to an Exactive(®) high-resolution accurate mass benchtop orbitrap mass spectrometer. The use of cotton and polyester cleaning swabs to collect and retain pesticides for subsequent open air desorption ionization is demonstrated by sampling the surface of various produce to which solutions of pesticides have been applied at levels 10 and 100 times below the tolerance levels established by the United States Environmental Protection Agency (US EPA). Samples analyzed include cherry tomatoes, oranges, peaches and carrots each chosen for their surface characteristics which include: smooth, pitted, fuzzy, and rough respectively. Results from the direct analysis of fungicides on store-bought oranges are also described. In all cases, the swabs were introduced directly into the heated ionizing gas of the DART source resulting in production of protonated pesticide molecules within seconds of sampling. Operation of the orbitrap mass spectrometer at 25,000 full-width half maximum resolution was sufficient to generate high-quality accurate mass data. Stable external mass calibration eliminated the need for addition of standards typically required for mass calibration, thus allowing multiple analyses to be completed without instrument recalibration. PMID:22362280

  12. Quantifying surface albedo and other direct biogeophysical climate forcings of forestry activities.

    PubMed

    Bright, Ryan M; Zhao, Kaiguang; Jackson, Robert B; Cherubini, Francesco

    2015-09-01

    By altering fluxes of heat, momentum, and moisture exchanges between the land surface and atmosphere, forestry and other land-use activities affect climate. Although long recognized scientifically as being important, these so-called biogeophysical forcings are rarely included in climate policies for forestry and other land management projects due to the many challenges associated with their quantification. Here, we review the scientific literature in the fields of atmospheric science and terrestrial ecology in light of three main objectives: (i) to elucidate the challenges associated with quantifying biogeophysical climate forcings connected to land use and land management, with a focus on the forestry sector; (ii) to identify and describe scientific approaches and/or metrics facilitating the quantification and interpretation of direct biogeophysical climate forcings; and (iii) to identify and recommend research priorities that can help overcome the challenges of their attribution to specific land-use activities, bridging the knowledge gap between the climate modeling, forest ecology, and resource management communities. We find that ignoring surface biogeophysics may mislead climate mitigation policies, yet existing metrics are unlikely to be sufficient. Successful metrics ought to (i) include both radiative and nonradiative climate forcings; (ii) reconcile disparities between biogeophysical and biogeochemical forcings, and (iii) acknowledge trade-offs between global and local climate benefits. We call for more coordinated research among terrestrial ecologists, resource managers, and coupled climate modelers to harmonize datasets, refine analytical techniques, and corroborate and validate metrics that are more amenable to analyses at the scale of an individual site or region. PMID:25914206

  13. Anaplasma marginale major surface protein 1a directs cell surface display of tick BM95 immunogenic peptides on Escherichia coli.

    PubMed

    Canales, Mario; Almazán, Consuelo; Pérez de la Lastra, José M; de la Fuente, José

    2008-07-31

    The surface display of heterologous proteins on live Escherichia coli using anchoring motifs from outer membranes proteins has impacted on many areas of biochemistry, molecular biology and biotechnology. The Anaplasma marginale major surface protein 1a (MSP1a) contains N-terminal surface-exposed repeated peptides (28-289 amino acids) that are involved in pathogen interaction with host cell receptors and is surface-displayed when the recombinant protein is expressed in E. coli. Therefore, it was predicted that MSP1a would surface display on E. coli peptides inserted in the N-terminal repeats region of the protein. The Rhipicephalus (Boophilus) microplus BM86 and BM95 glycoproteins are homologous proteins that protect cattle against tick infestations. In this study, we demonstrated that a recombinant protein comprising tick BM95 immunogenic peptides fused to the A. marginale MSP1a N-terminal region is displayed on the E. coli surface and is recognized by anti-BM86 and anti-MSP1a antibodies. This system provides a novel approach to the surface display of heterologous antigenic proteins on live E. coli and suggests the possibility to use the recombinant bacteria for immunization studies against cattle tick infestations. PMID:18582976

  14. Deriving the velocity distribution of meteoroids from the measured meteoroid impact directionality on the various LDEF surfaces

    NASA Technical Reports Server (NTRS)

    Zook, Herbert A.

    1992-01-01

    Because of spacecraft orbital motion about the Earth, a much higher flux of meteoroids is expected to strike spacecraft surfaces that face in the direction of spacecraft motion (apex direction) than would strike apex facing or trailing edge surfaces. Impact velocities are also higher on apex facing surfaces compared to antapex facing surfaces which futher increases the apex/antapex ratio of spatial density of impact craters of a given size. Measurements of the areal densities of impact craters on the different LDEF surfaces should give important clues about the velocity distribution, and therefore the origins, of meteoroids. Preliminary results appear to support the meteoroid velocity distributions derived by Erickson and by Kessler, which would lead to a mean impact velocity on the LDEF spacecraft of about 19 km/s.

  15. Direct measurement of energy barriers on rough and heterogeneous solid surfaces

    SciTech Connect

    Lloyd, T.B.; LaGow, J.; Connelly, G.M.

    1996-12-31

    This paper will deal with the phenomenon of energy barriers to the spread of liquids on solids. These barriers often manifest themselves as a {open_quotes}pinning{close_quotes} of a sessile drop as liquid is added to it. That is, the volume of the drop increases, but the diameter does not. Thus the advancing contact angle ({theta}{sub a}) increases to a maximum. At the point where the hydrostatic pressure in the drop overcomes the {open_quotes}pinning{close_quotes} force the diameter suddenly increases and the drop relaxes to a metastable configuration which has a lower {theta}{sub a}. Energy barriers should be considered in many applications such as the spreading of liquid adhesives where thorough wetting is the goal. The interfacial forces involved are both long-range Lifshitz-van der Waals (LW) forces and short-range acid-base (AB) forces. The authors will describe how they measure the energy barriers on real surfaces directly and resolve them into their LW and AB components.

  16. Direct formation of gold nanorods on surfaces using polymer-immobilised gold seeds

    PubMed Central

    Parisse, Pietro; Casalis, Loredana

    2016-01-01

    Summary Herein, we present the formation of gold nanorods (GNRs) on novel gold–poly(methyl methacrylate) (Au–PMMA) nanocomposite substrates with unprecedented growth control through the polymer molecular weight (M w) and gold-salt-to-polymer weight ratio. For the first time, GNRs have been produced by seed-mediated direct growth on surfaces that were pre-coated with polymer-immobilised gold seeds. A Au–PMMA nanocomposite formed by UV photoreduction has been used as the gold seed. The influence of polymer M w and gold concentration on the formation of GNRs has been investigated and discussed. The polymer nanocomposite formed with a lower M w PMMA and 20 wt % gold salt provides a suitable medium for growing well-dispersed GNRs. In this sample, the average dimension of produced GNRs is 200 nm in length with aspect ratios up to 10 and a distribution of GNRs to nanoparticles of nearly 22%. Suitable characterization techniques such as AFM and SEM have been used to support concept of the proposed growth method. PMID:27547597

  17. HFE and transferrin directly compete for transferrin receptor in solution and at the cell surface.

    PubMed

    Giannetti, Anthony M; Björkman, Pamela J

    2004-06-11

    Transferrin receptor (TfR) is a dimeric cell surface protein that binds both the serum iron transport protein transferrin (Fe-Tf) and HFE, the protein mutated in patients with the iron overload disorder hereditary hemochromatosis. HFE and Fe-Tf can bind simultaneously to TfR to form a ternary complex, but HFE binding to TfR lowers the apparent affinity of the Fe-Tf/TfR interaction. This apparent affinity reduction could result from direct competition between HFE and Fe-Tf for their overlapping binding sites on each TfR polypeptide chain, from negative cooperativity, or from a combination of both. To explore the mechanism of the affinity reduction, we constructed a heterodimeric TfR that contains mutations such that one TfR chain binds only HFE and the other binds only Fe-Tf. Binding studies using a heterodimeric form of soluble TfR demonstrate that TfR does not exhibit cooperativity in heterotropic ligand binding, suggesting that some or all of the effects of HFE on iron homeostasis result from competition with Fe-Tf for TfR binding. Experiments using transfected cell lines demonstrate a physiological role for this competition in altering HFE trafficking patterns. PMID:15056661

  18. In Situ Chemical Characterization of Organic Aerosol Surfaces using Direct Analysis in Real Time

    NASA Astrophysics Data System (ADS)

    Chan, M.; Nah, T.; Wilson, K. R.

    2012-12-01

    Obtaining in situ information on the molecular composition of atmospheric aerosol is important for understanding the sources, formation mechanisms, aging and physiochemical properties of atmospheric aerosol. Most recently, we have used Direct Analysis in Real Time (DART), which is a "soft" atmospheric pressure ionization technique, for in situ chemical characterization of a variety of laboratory generated organic aerosol and heterogeneous processing oleic acid aerosol. A stream of aerosol particles is crossed with a thermal flow of metastable He atoms (produced by the DART source) in front of an inlet of a mass spectrometer. The thermally desorbed analytes are subsequently ionized with minimal fragmentation by reactive species in the DART ionization source (e.g., metastable He atoms). The ion signal scales with the aerosol surface area rather than aerosol volume, suggesting that aerosol particles are not completely vaporized in the ionization region. The DART can thus measure the chemical composition as a function of aerosol depth. Probing aerosol depth is determined by the thermal desorption rates of aerosol particles. Here, we investigate how the experimental parameters (e.g., DART gas temperature and residence time) and the physiochemical properties of aerosol particles (e.g., enthalpy of vaporization) affect the probing aerosol depth and the desorption-ionization mechanism of aerosol particles in the DART using a series of model organic compounds. We also demonstrate the potential application of DART for in situ chemically analyzing wet aerosol particles undergoing oxidation reactions.

  19. Elucidation of Peptide-Directed Palladium Surface Structure for Biologically Tunable Nanocatalysts

    SciTech Connect

    Bedford, Nicholas M.; Ramezani-Dakhel, Hadi; Slocik, Joseph M.; Briggs, Beverly D.; Ren, Yang; Frenkel, Anatoly I.; Petkov, Valeri; Heinz, Hendrik; Naik, Rajesh R.; Knecht, Mark R.

    2015-05-01

    Peptide-enabled synthesis of inorganic nanostructures represents an avenue to access catalytic materials with tunable and optimized properties. This is achieved via peptide complexity and programmability that is missing in traditional ligands for catalytic nanomaterials. Unfortunately, there is limited information available to correlate peptide sequence to particle structure and catalytic activity to date. As such, the application of peptide-enabled nanocatalysts remains limited to trial and error approaches. In this paper, a hybrid experimental and computational approach is introduced to systematically elucidate biomolecule-dependent structure/function relationships for peptide-capped Pd nanocatalysts. Synchrotron X-ray techniques were used to uncover substantial particle surface structural disorder, which was dependent upon the amino acid sequence of the peptide capping ligand. Nanocatalyst configurations were then determined directly from experimental data using reverse Monte Carlo methods and further refined using molecular dynamics simulation, obtaining thermodynamically stable peptide-Pd nanoparticle configurations. Sequence-dependent catalytic property differences for C-C coupling and olefin hydrogenation were then eluddated by identification of the catalytic active sites at the atomic level and quantitative prediction of relative reaction rates. This hybrid methodology provides a clear route to determine peptide-dependent structure/function relationships, enabling the generation of guidelines for catalyst design through rational tailoring of peptide sequences

  20. Direct formation of gold nanorods on surfaces using polymer-immobilised gold seeds.

    PubMed

    Abyaneh, Majid K; Parisse, Pietro; Casalis, Loredana

    2016-01-01

    Herein, we present the formation of gold nanorods (GNRs) on novel gold-poly(methyl methacrylate) (Au-PMMA) nanocomposite substrates with unprecedented growth control through the polymer molecular weight (M w) and gold-salt-to-polymer weight ratio. For the first time, GNRs have been produced by seed-mediated direct growth on surfaces that were pre-coated with polymer-immobilised gold seeds. A Au-PMMA nanocomposite formed by UV photoreduction has been used as the gold seed. The influence of polymer M w and gold concentration on the formation of GNRs has been investigated and discussed. The polymer nanocomposite formed with a lower M w PMMA and 20 wt % gold salt provides a suitable medium for growing well-dispersed GNRs. In this sample, the average dimension of produced GNRs is 200 nm in length with aspect ratios up to 10 and a distribution of GNRs to nanoparticles of nearly 22%. Suitable characterization techniques such as AFM and SEM have been used to support concept of the proposed growth method. PMID:27547597

  1. Direct evidence and generation conditions of triggered slow slip event by teleseismic surface waves

    NASA Astrophysics Data System (ADS)

    Itaba, S.; Ando, R.; Takeda, N.

    2011-12-01

    In recent years slow slip events (SSE) have been observed to occur at regular intervals on the deep portions of subduction zone interfaces. There are many evidence of triggered tremor with only transient excitation by the passage of seismic waves from distant earthquakes, however SSEs, which are much larger in sizes and continue longer after the transient excitation, have been yet to be identified. Here we found, for the first time, robust and direct geodetic evidence of an interplate SSE with tremor activity in southwest Japan triggered by an earthquake in strain records from our highly sensitive strainmeter network. This SSE, in southwest Japan, which had an equivalent magnitude Mw 5.3 and duration of 1.5 days, was triggered by the surface waves of a Mw 7.6 earthquake in Tonga. The triggered SSE occurred on a place on the plate interface where the recurrence time for such events had almost expired, whereas other regions, at up to 90% of the recurrence time, were not triggered. Therefore, it is suggested that the overall segment of the triggered SSE had been necessarily very close to the critical stress level due to tectonic loading, and the seismic wave gave only the last push. Our results provide physical constraints to elucidate how earthquakes start and growth not only for the slow earthquakes but also for regular earthquakes.

  2. Direct molecular simulation of nitrogen dissociation based on an ab initio potential energy surface

    SciTech Connect

    Valentini, Paolo Schwartzentruber, Thomas E. Bender, Jason D. Nompelis, Ioannis Candler, Graham V.

    2015-08-15

    The direct molecular simulation (DMS) approach is used to predict the internal energy relaxation and dissociation dynamics of high-temperature nitrogen. An ab initio potential energy surface (PES) is used to calculate the dynamics of two interacting nitrogen molecules by providing forces between the four atoms. In the near-equilibrium limit, it is shown that DMS reproduces the results obtained from well-established quasiclassical trajectory (QCT) analysis, verifying the validity of the approach. DMS is used to predict the vibrational relaxation time constant for N{sub 2}–N{sub 2} collisions and its temperature dependence, which are in close agreement with existing experiments and theory. Using both QCT and DMS with the same PES, we find that dissociation significantly depletes the upper vibrational energy levels. As a result, across a wide temperature range, the dissociation rate is found to be approximately 4–5 times lower compared to the rates computed using QCT with Boltzmann energy distributions. DMS calculations predict a quasi-steady-state distribution of rotational and vibrational energies in which the rate of depletion of high-energy states due to dissociation is balanced by their rate of repopulation due to collisional processes. The DMS approach simulates the evolution of internal energy distributions and their coupling to dissociation without the need to precompute rates or cross sections for all possible energy transitions. These benchmark results could be used to develop new computational fluid dynamics models for high-enthalpy flow applications.

  3. Mixing of two co-directional Rayleigh surface waves in a nonlinear elastic material.

    PubMed

    Morlock, Merlin B; Kim, Jin-Yeon; Jacobs, Laurence J; Qu, Jianmin

    2015-01-01

    The mixing of two co-directional, initially monochromatic Rayleigh surface waves in an isotropic, homogeneous, and nonlinear elastic solid is investigated using analytical, finite element method, and experimental approaches. The analytical investigations show that while the horizontal velocity component can form a shock wave, the vertical velocity component can form a pulse independent of the specific ratios of the fundamental frequencies and amplitudes that are mixed. This analytical model is then used to simulate the development of the fundamentals, second harmonics, and the sum and difference frequency components over the propagation distance. The analytical model is further extended to include diffraction effects in the parabolic approximation. Finally, the frequency and amplitude ratios of the fundamentals are identified which provide maximum amplitudes of the second harmonics as well as of the sum and difference frequency components, to help guide effective material characterization; this approach should make it possible to measure the acoustic nonlinearity of a solid not only with the second harmonics, but also with the sum and difference frequency components. Results of the analytical investigations are then confirmed using the finite element method and the experimental feasibility of the proposed technique is validated for an aluminum specimen. PMID:25618059

  4. Direct design of two freeform optical surfaces for wide field of view line imaging applications

    NASA Astrophysics Data System (ADS)

    Nie, Yunfeng; Thienpont, Hugo; Duerr, Fabian

    2016-04-01

    In this paper, we propose a multi-fields direct design method aiming to calculate two freeform surfaces with an entrance pupil incorporated for wide field of view on-axis line imaging applications. Both infinite and finite conjugate objectives can be designed with this approach. Since a wide angle imaging system requires more than few discrete perfect imaging points, the multi-fields design approach is based on partial coupling of multiple fields, which guarantees a much more balanced imaging performance over the full field of view. The optical path lengths (OPLs) and image points of numerous off-axis fields are calculated during the procedure, thus very few initial parameters are needed. The procedure to calculate such a freeform lens is explained in detail. We have designed an exemplary monochromatic single lens to demonstrate the functionality of the design method. A rotationally symmetric counterpart following the same specifications is compared in terms of RMS spot radius to demonstrate the clear benefit that freeform lens brings to on-axis line imaging systems. In addition, a practical achromatic wide angle objective is designed by combining our multi-fields design method with classic optical design strategies, serving as a very good starting point for further optimization in a commercial optical design program. The results from the perspective of aberrations plots and MTF values show a very good and well balanced performance over the full field of view.

  5. Facile surface glycosylation of PVDF microporous membrane via direct surface-initiated AGET ATRP and improvement of antifouling property and biocompatibility

    NASA Astrophysics Data System (ADS)

    Yuan, Jing; Meng, Jian-qiang; Kang, Yin-lin; Du, Qi-yun; Zhang, Yu-feng

    2012-01-01

    This paper describes a facile and novel approach for the surface glycosylation of poly(vinylidene difluoride) (PVDF) microporous membrane. A glycopolymer poly(D-gluconamidoethyl methacrylate) (PGAMA) was tethered onto the membrane surface via activators generated by electron transfer atom transfer radical polymerization (AGET ATRP) directly initiated from the PVDF surface. Chemical changes of membrane surface were characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). It was revealed that PGAMA was successfully grafted onto the membrane surface and its grafting density can be modulated in a wide range up to 2.4 μmol/cm2. The effects of glycosylation on membrane morphology, flux and surface hydrophilicity were investigated. Field emission scanning electron microscopy (FESEM) results indicated shrinkage of the surface pore diameters and the growth of the glycopolymer layer on the membrane surface. The static water contact angle (WCA) of the membrane surface decreased from 110° to 30.4° with the increase of grafting density, indicating that the PGAMA grafts dramatically improved the surface hydrophilicity. The protein adsorption and platelets adhesion experiments indicated that the grafted PGAMA could effectively improve the membrane antifouling property and biocompatibility.

  6. Hole Fermi surface in Bi2Se3 probed by quantum oscillations

    NASA Astrophysics Data System (ADS)

    Piot, B. A.; Desrat, W.; Maude, D. K.; Orlita, M.; Potemski, M.; Martinez, G.; Hor, Y. S.

    2016-04-01

    Transport and torque magnetometry measurements are performed at high magnetic fields and low temperatures in a series of p-type (Ca-doped) Bi2Se3 crystals. The angular dependence of the Shubnikov-de Haas and de Haas-van Alphen quantum oscillations enables us to determine the Fermi surface of the bulk valence band states as a function of the carrier density. At low density, the angular dependence exhibits a downturn in the oscillations frequency between 0∘ and 90∘, reflecting a bag-shaped hole Fermi surface. The detection of a single frequency for all tilt angles rules out the existence of a Fermi surface with different extremal cross sections down to 24 meV. There is therefore no signature of a camelback in the valence band of our bulk samples, in accordance with the direct band gap predicted by G W calculations.

  7. A computational study of multiple surface-directed phase separation in polymer blends under a temperature gradient

    NASA Astrophysics Data System (ADS)

    Tabatabaieyazdi, Mohammad; Chan, Philip K.; Wu, Jiangning

    2015-10-01

    The surface-directed phase separation (SDPS) phenomena of a model binary polymer blend quenched into the unstable region of its binary symmetric upper critical solution temperature phase diagram is numerically investigated using a mathematical model composed of the nonlinear Cahn-Hilliard (CH) theory for phase separation along with the Flory-Huggins-de Gennes (FHdG) free energy functional. The SDPS occurs in a square domain with a linear temperature gradient along the horizontal direction and with all sides having short range surface potential h 1. The effects of different quench depth, diffusion coefficient, surface potential, and temperature gradient were studied numerically. The numerical results indicate that there is a simultaneous competition between the four surfaces in attracting the preferred polymer. The side with a higher surface potential would win the competition against the side with a lower surface attraction in the case of a uniform quench. The numerical results also indicated a later transition time for higher values of h 1. As surface potential increased, the transition time from complete wetting to partial wetting occurred at a later time on the surface. The impact of different temperature gradient ΔT*/Δx* values on the surface enrichment rate with fixed temperature {{T}1}* at one surface and higher temperature {{T}2}* at the opposite surface was studied for the first time within a multiple surface potential set up. The results showed that higher values of ΔT*/Δx* increased the growth rate of the preferred polymer on the surface adding to the thickness of the wetting layer. The transition time from complete wetting to partial wetting occurred slightly later at the lower temperature side.

  8. Direct Patterning of Organic Self-Assembled Monolayer (SAM) on GaAs Surfaces via Dip-Pen Nanolithography (DPN)

    NASA Astrophysics Data System (ADS)

    Xiong, Peng; Keiper, Timothy; Wang, Xiaolei; Zhao, Jianhua

    2015-03-01

    Hybrid structures of functional molecules and solid-state (SS) materials have attracted extensive interest in surface nanoscience and molecular electronics. The formation and micro/nano patterning of organic SAMs on SS surfaces are a key step in fabricating such devices. Here we report realization of high quality MHA SAMs on GaAs and direct formation of micro/nanoscale patterns of MHA SAM on the surface by micro-contact printing (μ CP) and DPN. The process begins with the preparation of an oxide-free surface of GaAs, for which we employed treatment by an ammonium polysulfide ((NH4)2 Sx) solution. The treatment strips native oxides from GaAs creating an atomic layer of sulfur covalently bonded to the fresh surface. Formation of high-quality SAMs of thiol molecules on GaAs then proceeds through exchange of the sulfur and the thiol terminal of the molecules. The effects of the sulfur-passivation and formation of MHA SAM on the treated surface were confirmed by XPS, HRTEM, and DPN. To the best of our knowledge, this is a first realization of direct DPN of nanoscale organic SAM on a semiconductor free of surface oxide. We further evidence the utility of the hybrid platform by demonstrating directed self-assembly of Au nanoparticles onto MHA/ODT SAM templates on GaAs.

  9. Multi-directional plasmonic surface-wave splitters with full bandwidth isolation

    NASA Astrophysics Data System (ADS)

    Gao, Zhen; Gao, Fei; Zhang, Baile

    2016-03-01

    We present a multidirectional plasmonic surface-wave splitter with full bandwidth isolation experimentally based on coupled defect surface modes in a surface-wave photonic crystal. In contrast to conventional plasmonic surface-wave frequency splitters with polaritonic dispersion relations that overlap at low frequencies, this multidirectional plasmonic surface-wave splitter based on coupled defect surface modes can split different frequency bands into different waveguide branches without bandwidth overlap. Transmission spectra and near-field imaging measurements have been implemented in the microwave frequencies to verify the performance of the multidirectional plasmonic surface-wave splitter. This surface wave structure can be used as a plasmonic wavelength-division multiplexer that may find potential applications in the surface-wave integrated circuits from microwave to terahertz frequencies.

  10. Design of a surface-scanning coil detector for direct bacteria detection on food surfaces using a magnetoelastic biosensor

    NASA Astrophysics Data System (ADS)

    Chai, Yating; Wikle, Howard C.; Wang, Zhenyu; Horikawa, Shin; Best, Steve; Cheng, Zhongyang; Dyer, Dave F.; Chin, Bryan A.

    2013-09-01

    The real-time, in-situ bacteria detection on food surfaces was achieved by using a magnetoelastic biosensor combined with a surface-scanning coil detector. This paper focuses on the coil design for signal optimization. The coil was used to excite the sensor's vibration and detect its resonant frequency signal. The vibrating sensor creates a magnetic flux change around the coil, which then produces a mutual inductance. In order to enhance the signal amplitude, a theory of the sensor's mutual inductance with the measurement coil is proposed. Both theoretical calculations and experimental data showed that the working length of the coil has a significant effect on the signal amplitude. For a 1 mm-long sensor, a coil with a working length of 1.3 mm showed the best signal amplitude. The real-time detection of Salmonella bacteria on a fresh food surface was demonstrated using this new technology.

  11. Angular dependence of the disorder crossover in the vortex lattice of Bi{sub 2.15}Sr{sub 1.85}CaCu{sub 2}O{sub 8+{delta}} by muon spin rotation and torque magnetometry

    SciTech Connect

    Aegerter, C.M.; Hofer, J.; Savic, I.M.; Keller, H.; Lee, S.L.; Ager, C.; Lloyd, S.H.; Forgan, E.M.

    1998-01-01

    Using the techniques of muon spin rotation and torque magnetometry, we investigate the crossover field B{sub cr} in Bi{sub 2.15}Sr{sub 1.85}Ca{sub 1}Cu{sub 2}O{sub 8+{delta}} at which the vortex lattice becomes disordered along the field direction. It is found that B{sub cr} scales as the projection of the applied field along the perpendicular to the superconducting planes. This has the implication that a field large enough to give a disordered lattice when applied perpendicular to the planes, can give a well-ordered vortex-line lattice for angles of the field to the c axis greater than a critical value. {copyright} {ital 1998} {ital The American Physical Society}

  12. Atomic force microscopic study of directional SrSO 4(001) surface and its etching property

    NASA Astrophysics Data System (ADS)

    Seo, Akihiro; Shindo, Hitoshi

    1994-12-01

    Different step structures were observed with atomic force microscopy (AFM) on SrSO 4(001) cleaved in air in two ways. Monolayer steps were observed when the crystal was cleaved by wedging open a crack. On the other hand, bilayer steps were observed when it was cleaved by giving a blow on a knife edge placed along the a-axis on a crystal face. In the latter case, the cleavage proceeded under slightly misoriented tensile stress, favoring formation of bilayer cleavage steps due to alternating directions of the bonds connecting (001) ionic layers. Directionality in the arrangement of the ions at the (001) surface was reflected on the shape of etch pits formed by dissolving the surface in electrolyte solutions. Relative stabilities of the steps surrounding the bow-shaped pits are discussed. The directionality of the surface has potential application in constructing two-dimensional assemblies of functional molecules.

  13. Provenance study of obsidians from the archaeological site of La Maná (Ecuador) by electron spin resonance (ESR), SQUID magnetometry and 57Fe Mössbauer spectroscopy

    NASA Astrophysics Data System (ADS)

    Duttine, M.; Scorzelli, R. B.; Poupeau, G.; Bustamante, A.; Bellido, A. V.; Lattini, R. M.; Guillaume-Gentil, N.

    2007-02-01

    Obsidians from major Ecuadorian sources (outcrops) were analyzed by electron spin resonance, SQUID magnetometry and 57Fe Mössbauer spectroscopy. If the last technique allows to discriminate obsidians from the Quiscatola source, an association of ESR with SQUID magnetometry permits to differentiate obsidians from the sources of Cotopaxi volcano, from the Quiscatola and Mullumica-Callejones sources of the Chacana caldera and to infer that the 12 analyzed obsidians from the pre-Hispanic site of La Maná come from the Mullumica-Callejones source.

  14. Vector magnetometry and lightwave defect imaging sensor technologies for internal pipe inspection systems: Phase 1 and 2 feasibility study, conceptual design, and prototype development

    NASA Astrophysics Data System (ADS)

    Carroll, Steven; Fowler, Thomas; Peters, Edward; Power, Wendy; Reed, Michael

    1994-01-01

    The Gas Research Institute (GRI) has been sponsoring the development of a vehicle and sensors for an integrated nondestructive internal inspection system for natural gas distribution pipes. Arthur D. Little has developed two sensor technologies; Vector Magnetometry (VM) and Lightwave Defect Imaging (LDI) for the system.The Vector Magnetometry sensor utilizes multiple arrays of miniature detection coils (fluxgate magnetometer elements): a three-axis array measures both the amplitude and phase of the magnetic leakage field that occurs in the vicinity of pipe wall defects. This technology is applicable to both cast iron and steel pipe.

  15. Direct releases to the surface and associated complementary cumulative distribution functions in the 1996 performance assessments for the Waste Isolation Pilot Plant: Direct brine release

    SciTech Connect

    STOELZEL,D.M.; O'BRIEN,D.G.; GARNER,J.W.; HELTON,JON CRAIG; JOHNSON,J.D.; SCOTT,L.N.

    2000-05-19

    The following topics related to the treatment of direct brine releases to the surface environment in the 1996 performance assessment for the Waste Isolation Pilot Plant (WIPP) are presented (1) mathematical description of models, (2) uncertainty and sensitivity analysis results arising from subjective (i.e., epistemic) uncertainty for individual releases, (3) construction of complementary cumulative distribution functions (CCDFs) arising from stochastic (i.e., aleatory) uncertainty, and (4) uncertainty and sensitivity analysis results for CCDFs. The presented analyses indicate that direct brine releases do not constitute a serious threat to the effectiveness of the WIPP as a disposal facility for transuranic waste. Even when the effects of uncertain analysis inputs are taken into account, the CCDFs for direct brine releases fall substantially to the left of the boundary line specified in the US Environmental Protection Agency's standard for the geologic disposal of radioactive waste (4O CFR 191.40 CFR 194).

  16. A theoretical and numerical study of polarimetric scattering and emission from random rough surfaces with anisotropic directional spectrum

    NASA Technical Reports Server (NTRS)

    Yueh, S. H.; Kwok, R.

    1993-01-01

    In this paper, theoretical and numerical results of the polarimetric scattering and emission from random rough surfaces with anisotropic directional spectrum are presented for the remote sensing of ocean and soil surfaces. The polarimetric scattered field for rough dielectric surfaces is derived to the second order by the small perturbation method (SPM). It is found that the second-order scattered field is coherent in nature, and its coefficients for different polarizations present the lowest-order corrections to the Fresnel reflection coefficients of the surfaces. In addition, the cross-polarized (HV and VH) components of the coherent fields are reciprocal and not zero for surfaces with anisotropic directional spectrum when the azimuth angle of the incident direction is not aligned with the symmetry directions of surfaces. In order to verify the energy conservation condition of the theoretical results, which is important if the theory is to be applied to the passive polarimetry of rough surfaces, a Monte Carlo simulation is performed to numerically calculate the polarimetric reflectivities of one-dimensional random rough surfaces which are generated with a prescribed power-law spectrum in the spectral domain and transformed to the spatial domain by the FFT. The surfaces simulated by this approach are periodic with the period corresponding to the low-wavenumber cutoff. To calculate the scattering from periodic dielectric surfaces, the authors present a new numerical technique which applies the Floquet theorem to reduce the problem to one period and does not require the evaluation of one-dimensional periodic Green's function used in the conventional method of moment formulation. Once the scattering coefficients are obtained, the polarimetric Stokes vectors for the emission from the random surfaces are then calculated according to the Kirchhoff's law and are illustrated as functions of relative azimuth observation and row directions. The second-order SPM is also

  17. Low-temperature direct copper-to-copper bonding enabled by creep on (111) surfaces of nanotwinned Cu

    NASA Astrophysics Data System (ADS)

    Liu, Chien-Min; Lin, Han-Wen; Huang, Yi-Sa; Chu, Yi-Cheng; Chen, Chih; Lyu, Dian-Rong; Chen, Kuan-Neng; Tu, King-Ning

    2015-05-01

    Direct Cu-to-Cu bonding was achieved at temperatures of 150-250 °C using a compressive stress of 100 psi (0.69 MPa) held for 10-60 min at 10-3 torr. The key controlling parameter for direct bonding is rapid surface diffusion on (111) surface of Cu. Instead of using (111) oriented single crystal of Cu, oriented (111) texture of extremely high degree, exceeding 90%, was fabricated using the oriented nano-twin Cu. The bonded interface between two (111) surfaces forms a twist-type grain boundary. If the grain boundary has a low angle, it has a hexagonal network of screw dislocations. Such network image was obtained by plan-view transmission electron microscopy. A simple kinetic model of surface creep is presented; and the calculated and measured time of bonding is in reasonable agreement.

  18. Low-temperature direct copper-to-copper bonding enabled by creep on (111) surfaces of nanotwinned Cu

    PubMed Central

    Liu, Chien-Min; Lin, Han-Wen; Huang, Yi-Sa; Chu, Yi-Cheng; Chen, Chih; Lyu, Dian-Rong; Chen, Kuan-Neng; Tu, King-Ning

    2015-01-01

    Direct Cu-to-Cu bonding was achieved at temperatures of 150–250 °C using a compressive stress of 100 psi (0.69 MPa) held for 10–60 min at 10−3 torr. The key controlling parameter for direct bonding is rapid surface diffusion on (111) surface of Cu. Instead of using (111) oriented single crystal of Cu, oriented (111) texture of extremely high degree, exceeding 90%, was fabricated using the oriented nano-twin Cu. The bonded interface between two (111) surfaces forms a twist-type grain boundary. If the grain boundary has a low angle, it has a hexagonal network of screw dislocations. Such network image was obtained by plan-view transmission electron microscopy. A simple kinetic model of surface creep is presented; and the calculated and measured time of bonding is in reasonable agreement. PMID:25962757

  19. Direct Observation of the Fermi Arc Surface State in the Three-Dimensional Dirac Semimetal Na3Bi

    NASA Astrophysics Data System (ADS)

    Liang, Aiji; Wang, Zhijun; Chen, Chaoyu; Shi, Youguo; Yi, Hemian; Feng, Ya; Xie, Zhuojin; He, Shaolong; He, Junfeng; Peng, Yingying; Liu, Xu; Liu, Yan; Zhao, Lin; Liu, Guodong; Zhang, Jun; Nakatake, M.; Arita, M.; Shimada, K.; Namatame, H.; Taniguchi, M.; Xu, Zuyan; Chen, Chuangtian; Dai, Xi; Fang, Zhong; Zhou, Xingjiang

    2015-03-01

    The three dimensional (3D) Dirac semimetals have linearly dispersive 3D Dirac nodes where the conduction and valence bands connect to each other. Here we report the direct observation of the linearly dispersive 3D bulk Dirac points at the natural (001) cleaving surface of Na3Bi single crystal by high resolution ARPES. In addition, we have directly observed two separated 3D bulk Dirac nodes by elaborately cleaving Na3Bi samples at a non-natural-cleavage (100) crystalline surface. We further unveil the unusual Fermi-arc surface states connecting the two 3D Dirac nodes. At this unique (100) crystalline surface, the identification of the 3D Dirac semimetal state in Na3Bi paves the way for systematically exploring rich exotic topological physics such as topological insulator and Weyl semimetal state.

  20. A study of direct-current surface discharge plasma for a Mach 3 supersonic flow control

    NASA Astrophysics Data System (ADS)

    Shin, Jichul

    A direct-current, non-equilibrium surface glow discharge plasma in the presence of a Mach 2.85 flow is studied experimentally for flow control applications. The discharge is generated with pin-like electrodes flush mounted on a ceramic plate with sustaining currents from 25 mA to 300 mA. In the presence of a supersonic flow, two distinct discharge modes - diffuse and constricted - are observed depending on the flow and discharge operating conditions. In cathode upstream location, both diffuse and constricted discharges are observed while in cathode downstream location, the discharge mostly exhibits either constricted mode or bistable mixed mode. The effect of the discharge on the flow ("plasma actuation'') is characterized by the appearance of a weak shock wave in the vicinity of the discharge. The shock is observed at low powers (˜10 W) for the diffuse discharge mode but is absent for the higher power (˜100 W) constricted mode. High speed laser schlieren imaging suggests that the diffuse mode plasma actuation is rapid as it occurs on a time scale that is less than 100 microsec. Rotational (gas) and vibrational temperatures within the discharge are estimated by emission spectral line fits of N 2 and N+2 rovibronic bands near 365-395 nm. The electronic temperatures are estimated by using the Boltzmann plot method for Fe(I) atomic lines. Rotational temperatures are found to be high (˜1500 K) in the absence of a flow but drop sharply (˜500 K) in the presence of a supersonic flow for both the diffuse and constricted discharge modes. The vibrational and electronic temperatures are measured to be about 3000 K and 1.25 eV (14500 K), respectively, and these temperatures are the same with and without flow. The gas (rotational) temperature spatial profiles above the cathode surface are found to be similar for the diffuse and constricted modes indicating that dilatational effects due to gas heating are similar. However, complete absence of flow actuation for the

  1. World record in high speed laser surface microstructuring of polymer and steel using direct laser interference patterning

    NASA Astrophysics Data System (ADS)

    Lang, Valentin; Roch, Teja; Lasagni, Andrés. F.

    2016-03-01

    Periodic surfaces structures with micrometer or submicrometer resolution produced on the surface of components can be used to improve their mechanical, biological or optical properties. In particular, these surfaces can control the tribological performance of parts, for instance in the automotive industry. In the last years, substantial efforts have been made to develop new technologies capable to produce functionalized surfaces. One of these technologies is the Direct Laser Interference Patterning (DLIP) technology, which permits to combine high fabrication speed with high resolution even in the sub-micrometer range. In DLIP, a laser beam is split into two or more coherent beams which are guided to interfere on the work piece surface. This causes modulated laser intensities over the component's surface, enabling the direct fabrication of a periodic pattern based on selective laser ablation or melting. Depending on the angle between the laser beams and the wavelength of the laser, the pattern's spatial period can be perfectly controlled. In this study, we introduce new modular DLIP optical heads, developed at the Fraunhofer IWS and the Technische Universität Dresden for high-speed surface laser patterning of polymers and metals. For the first time it is shown that effective patterning speeds of up to 0.90 m2/min and 0.36 m2/min are possible on polymer and metals, respectively. Line- and dot-like surface architectures with spatial periods between 7 μm and 22 μm are shown.

  2. Direct calibration of colloidal probe cantilevers via Derjaguin, Landau, Verwey, and Overbeek surface forces in electrolyte solution

    NASA Astrophysics Data System (ADS)

    Hong, Xiaoting; Willing, Gerold A.

    2008-12-01

    The development of colloidal probe microscopy has made it possible to directly measure the interaction forces between two different surfaces in solution. Cantilever calibration is presently a subject of intense experimental and theoretical interest due to the need for accurate force measurement. We developed a novel and direct calibration method for colloidal probe cantilevers to which a silica microsphere has been previously attached based on fitting experimental force curves for the interaction between the silica sphere and a silica flat in dilute KBr solutions to the theoretical Derjaguin, Landau, Verwey, and Overbeek force curves using the measured zeta potential of the silica surfaces.

  3. Key techniques of laser direct writing of fine lines on the spherical surface

    NASA Astrophysics Data System (ADS)

    Liang, Fengchao; Hu, Jun

    2006-01-01

    The main principles of laser direct writing (LDW) system for lines on the spherical surface (SS) are discussed. It is pointed out that line profile is determined by the exposure dose distribution, which lies on the light intensity distribution of focus plane and the scanning speed. To improve the quality of line profile on the SS, several key techniques as follows are introduced. Firstly, the unique system configuration, four axes mutually intersecting at the center of the SS, is adopted, which ensures the shape of the focus be maintained circular during the writing period. Secondly, an automatic focus system (AFS) with the function of automatic focus in a certain range is introduced. Thirdly, to guarantee the linear velocity to accord with the exposure character of the photoresist all the time, an efficient arithmetic that controls motors run at appropriate angular velocity in different latitude is developed. Finally, to achieve a stable and well-behaved system so as to compensate the velocity instability resulting from unavoidable errors of mechanical and electronics factor, a powerful programmable multi-axis controller (PMAC) is utilized as the kernel element of the servocontrol system, and the curves of step response and parabolic response achieved by feedforward and PID loop tuning indicate that the location precision and velocity stability have reached a high level. The experimental results of LDW of lines on the SS work piece with a diameter 30 mm and a radius equal to 100 mm are given. The section analysis of the lines on the photoresist by the atomic force microscope (AFM) after exposure and development is performed. The results show that line width is about 3.0 μm, and the steep sides of the lines are parallel to each other.

  4. Surface enhanced Raman spectroscopic direct determination of low molecular weight biothiols in umbilical cord whole blood.

    PubMed

    Kuligowski, Julia; El-Zahry, Marwa R; Sánchez-Illana, Ángel; Quintás, Guillermo; Vento, Máximo; Lendl, Bernhard

    2016-03-21

    Biothiols play an essential role in a number of biological processes in living organisms including detoxification and metabolism. Fetal to neonatal transition poses a pro-oxidant threat for newborn infants, especially those born prematurely. A reliable and rapid tool for the direct determination of thiols in small volume whole blood (WB) samples would be desirable for its application in clinical practice. This study shows the feasibility of Surface Enhanced Raman Spectroscopy (SERS) using a silver colloid prepared by reduction of silver nitrate using hydroxylamine, as the SERS substrate for the quantification of thiols in WB samples after a simple precipitation step for protein removal. Bands originating from biothiols (790, 714 and 642 cm(-1)) were enhanced by the employed SERS substrate and the specificity of the detected SERS signal was tested for molecules presenting -SH functional groups. A statistically significant correlation between the obtained SERS signals and the thiol concentration measured using a chromatographic reference method in umbilical cord WB samples could be demonstrated. Using WB GSH concentrations obtained from the chromatographic reference procedure, a Partial Least Squares (PLS) regression model covering GSH concentrations from 13 to 2200 μM was calculated obtaining a root mean square error of prediction (RMSEP) of 381 μM when applied to an external test set. The developed approach uses small blood sample volumes (50 μL), which is important for clinical applications, especially in the field of neonatology. This feasibility study shows that the present approach combines all the necessary characteristics for its potential application in clinical practice. PMID:26911321

  5. Evidence for Direct Transfer of Carbon from Surface Litter to Subsoil in Well-Developed Spodosols of Northern Michigan, USA

    NASA Astrophysics Data System (ADS)

    Rothstein, D.; Toosi, E. R.; Schaetzl, R.; Grandy, S.

    2014-12-01

    Traditionally, dissolved organic carbon (DOC) derived from surface litter has been thought to make a major contribution to mineral soil C stores; however, several recent studies have argued that little of the DOC solubilized from surface litter reaches the subsoil directly. We investigated the potential for surface-litter C to contribute to deep-soil C stores in coarse-textured forest soils in northern Michigan, USA. We instrumented six soil profiles, three under coniferous vegetation and three under deciduous vegetation, and measured the quantity and composition of DOC percolating through soil for two years. We used spectroscopic (specific UV absorbance), stable-isotope (natural abundance 13C) and pyrolysis-gas chromatography-mass spectrometry (pyGCMS) analysis of DOC and solid soil samples to assess the degree to which surface-litter C was transported directly through soil vs. the degree to which it exchanged with DOC derived from in situ soil organic C (SOC). All three approaches indicated that surface organic horizons were the source of the majority of DOC entering the B horizon, with little contribution from desorbed SOC en route. Over two years of measurement, we estimate the direct transfer of surface-litter C to the B horizon ranged from 25 g m-2 to 48 g m-2. Interestingly, we observed a strong relationship between the degree of soil development and the composition of DOC entering the B horizon: surface-litter derived C contributed approximately 80% of the DOC entering the B horizon in the most weakly developed profile compared to >95% in the most well-developed profile. This occurred despite the increasing pathlength (i.e. thicker E horizons) associated with increasing spodic development. These findings indicate that the loss of reactive minerals and organic C in the upper profile of well-developed Spodosols promotes the direct transfer of surface C to depth, with little potential for dynamic exchange with in situ SOC.

  6. Direct visualization of surface phase of oxygen molecules physisorbed on Ag(111) surface: A two-dimensional quantum spin system

    NASA Astrophysics Data System (ADS)

    Yamamoto, Shunji; Yoshida, Yasuo; Imada, Hiroshi; Kim, Yousoo; Hasegawa, Yukio

    2016-02-01

    We report on the real-space observation of the two-dimensional distorted triangular lattice of physisorbed oxygen (O2) molecules on an Ag(111) surface by low-temperature scanning tunneling microscopy. The physisorbed state of the O2 monolayers was confirmed by measuring their thermal stability, which showed good agreement with previous thermal desorption spectroscopy. The distortion of the observed lattice was reproduced quantitatively by considering the intermolecular exchange interaction in Monte Carlo calculations, indicating a critical role of antiferromagnetic ordering of O2 spins. In tunneling spectra, the Kondo resonance was not observed on the O2 layer at 4.7 K unlike the case of physisorbed O2 on Ag(110). These results indicate that an intrinsic S =1 spin of the O2 molecules was preserved to form a two-dimensional antiferromagnetic quantum spin system on the surface.

  7. Laboratory investigation and direct numerical simulation of wind effect on steep surface waves

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Sergeev, Daniil; Druzhinin, Oleg; Ermakova, Olga

    2015-04-01

    particles 20 μm in diameter were injected into the airflow. The images of the illuminated particles were photographed with a digital CCD video camera at a rate of 1000 frames per second. For the each given parameters of wind and waves, a statistical ensemble of 30 movies with duration from 200 to 600 ms was obtained. Individual flow realizations manifested the typical features of flow separation, while the average vector velocity fields obtained by the phase averaging of the individual vector fields were smooth and slightly asymmetrical, with the minimum of the horizontal velocity near the water surface shifted to the leeward side of the wave profile, but do not demonstrate the features of flow separation. The wave-induced pressure perturbations, averaged over the turbulent fluctuations, were retrieved from the measured velocity fields, using the Reynolds equations. It ensures sufficient accuracy for study of the dependence of the wave increment on the wave amplitude. The dependences of the wave growth rate on the wave steepness are weakly decreasing, serving as indirect proof of the non-separated character of flow over waves. Also direct numerical simulation of the airflow over finite amplitude periodic surface wave was performed. In the experiments the primitive 3-dimensional fluid mechanics equations were solved in the airflow over curved water boundary for the following parameters: the Reynolds number Re=15000, the wave steepness ka=0-0.2, the parameter c/u*=0-10 (where u* is the friction velocity and c is the wave celerity). Similar to the physical experiment the instant realizations of the velocity field demonstrate flow separation at the crests of the waves, but the ensemble averaged velocity fields had typical structures similar to those excising in shear flows near critical levels, where the phase velocity of the disturbance coincides with the flow velocity. The wind growth rate determined by the ensemble averaged wave-induced pressure component in phase of the

  8. Correlation between surface morphology and electrical properties of VO2 films grown by direct thermal oxidation method

    NASA Astrophysics Data System (ADS)

    Yoon, Joonseok; Park, Changwoo; Park, Sungkyun; Mun, Bongjin Simon; Ju, Honglyoul

    2015-10-01

    We investigate surface morphology and electrical properties of VO2 films fabricated by direct thermal oxidation method. The VO2 film prepared with oxidation temperature at 580 °C exhibits excellent qualities of VO2 characteristics, e.g. a metal-insulator transition (MIT) near 67 °C, a resistivity ratio of ∼2.3 × 104, and a bandgap of 0.7 eV. The analysis of surface morphology with electrical resistivity of VO2 films reveals that the transport properties of VO2 films are closely related to the grain size and surface roughness that vary with oxidation annealing temperatures.

  9. Highly directional emission via coupled surface-plasmon tunneling from electroluminescence in organic light-emitting devices

    NASA Astrophysics Data System (ADS)

    Feng, Jing; Okamoto, Takayuki; Kawata, Satoshi

    2005-12-01

    We report that highly directional electroluminescence from top-emitting organic light-emitting devices (TEOLEDs) can be achieved by using a two-dimensionally periodically corrugated silver film as a cathode and an organic dye with a narrow bandwidth of emission spectrum as an emitting material. The resonant excitation of surface plasmons on the silver film interfaces contributes to the light transmission through the silver cathode and to the directional emission. The TEOLEDs with a europium complex as an emissive layer show beam divergence of less than 4° and the beam direction is controlled by periodicity of the corrugation.

  10. Direct observation of the field-stimulated exoemission sites at tungsten surfaces using field ion microscopy

    NASA Astrophysics Data System (ADS)

    Shiota, T.; Umeno, M.; Dohkuni, K.; Tagawa, M.; Ohmae, N.

    2001-05-01

    The spatial distribution of the field-stimulated exoemission (FSEE) from the W tip surface annealed at 800 K for 600 s and the atomic arrangement of the emitting surface were correlated using field ion microscopy (FIM) and field emission microscopy. The FSEE was observed at around the (111) plane of the annealed W tip surface. FIM observation of the annealed W tip revealed the existence of a pyramid-like protrusion at the W(111) surface. From these experimental results, a new emission model of the FSEE was proposed relating to the field-assisted surface structural change. This model deals with the buildup/collapse of the pyramid-like protrusion at the W(111) surface under the effect of negative high electric field. The temperature dependence of the FSEE reported previously [Shiota et al., J. Appl. Phys. 85, 6811 (1999)] was qualitatively explained by this emission model.

  11. Laboratory investigation and direct numerical simulation of wind effect on steep surface waves

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Sergeev, Daniil; Druzhinin, Oleg; Ermakova, Olga

    2015-04-01

    particles 20 μm in diameter were injected into the airflow. The images of the illuminated particles were photographed with a digital CCD video camera at a rate of 1000 frames per second. For the each given parameters of wind and waves, a statistical ensemble of 30 movies with duration from 200 to 600 ms was obtained. Individual flow realizations manifested the typical features of flow separation, while the average vector velocity fields obtained by the phase averaging of the individual vector fields were smooth and slightly asymmetrical, with the minimum of the horizontal velocity near the water surface shifted to the leeward side of the wave profile, but do not demonstrate the features of flow separation. The wave-induced pressure perturbations, averaged over the turbulent fluctuations, were retrieved from the measured velocity fields, using the Reynolds equations. It ensures sufficient accuracy for study of the dependence of the wave increment on the wave amplitude. The dependences of the wave growth rate on the wave steepness are weakly decreasing, serving as indirect proof of the non-separated character of flow over waves. Also direct numerical simulation of the airflow over finite amplitude periodic surface wave was performed. In the experiments the primitive 3-dimensional fluid mechanics equations were solved in the airflow over curved water boundary for the following parameters: the Reynolds number Re=15000, the wave steepness ka=0-0.2, the parameter c/u*=0-10 (where u* is the friction velocity and c is the wave celerity). Similar to the physical experiment the instant realizations of the velocity field demonstrate flow separation at the crests of the waves, but the ensemble averaged velocity fields had typical structures similar to those excising in shear flows near critical levels, where the phase velocity of the disturbance coincides with the flow velocity. The wind growth rate determined by the ensemble averaged wave-induced pressure component in phase of the

  12. ZnO nanostructures directly grown on paper and bacterial cellulose substrates without any surface modification layer.

    PubMed

    Costa, Saionara V; Gonçalves, Agnaldo S; Zaguete, Maria A; Mazon, Talita; Nogueira, Ana F

    2013-09-21

    In this report, hierarchical ZnO nano- and microstructures were directly grown for the first time on a bacterial cellulose substrate and on two additional different papers by hydrothermal synthesis without any surface modification layer. Compactness and smoothness of the substrates are two important parameters that allow the growth of oriented structures. PMID:23912253

  13. Solvent Separating Secondary Metabolites Directly from Biosynthetic Tissue for Surface-Assisted Laser Desorption Ionisation Mass Spectrometry

    PubMed Central

    Rudd, David; Benkendorff, Kirsten; Voelcker, Nicolas H.

    2015-01-01

    Marine bioactive metabolites are often heterogeneously expressed in tissues both spatially and over time. Therefore, traditional solvent extraction methods benefit from an understanding of the in situ sites of biosynthesis and storage to deal with heterogeneity and maximize yield. Recently, surface-assisted mass spectrometry (MS) methods namely nanostructure-assisted laser desorption ionisation (NALDI) and desorption ionisation on porous silicon (DIOS) surfaces have been developed to enable the direct detection of low molecular weight metabolites. Since direct tissue NALDI-MS or DIOS-MS produce complex spectra due to the wide variety of other metabolites and fragments present in the low mass range, we report here the use of “on surface” solvent separation directly from mollusc tissue onto nanostructured surfaces for MS analysis, as a mechanism for simplifying data annotation and detecting possible artefacts from compound delocalization during the preparative steps. Water, ethanol, chloroform and hexane selectively extracted a range of choline esters, brominated indoles and lipids from Dicathais orbita hypobranchial tissue imprints. These compounds could be quantified on the nanostructured surfaces by comparison to standard curves generated from the pure compounds. Surface-assisted MS could have broad utility for detecting a broad range of secondary metabolites in complex marine tissue samples. PMID:25786067

  14. Constructive, Collaborative, Contextual, and Self-Directed Learning in Surface Anatomy Education

    ERIC Educational Resources Information Center

    Bergman, Esther M.; Sieben, Judith M.; Smailbegovic, Ida; de Bruin, Anique B. H.; Scherpbier, Albert J. J. A.; van der Vleuten, Cees P. M.

    2013-01-01

    Anatomy education often consists of a combination of lectures and laboratory sessions, the latter frequently including surface anatomy. Studying surface anatomy enables students to elaborate on their knowledge of the cadaver's static anatomy by enabling the visualization of structures, especially those of the musculoskeletal system, move and…

  15. Simulation of surface solidification in direct-chill 6xxx aluminum billets

    NASA Astrophysics Data System (ADS)

    Erdegren, M.; Ullah, M. W.; Carlberg, T.

    2012-01-01

    Using the Bridgman technique, the solidification of aluminum alloys of types 6005, 6063, and 6082, was studied. The solidification process differs both between the alloys and between billet surface and bulk, due to higher concentrations of Fe, Si, Mn and Mg near the surface. Previously determined surface concentrations were used to calculate the Fe, Si, Mn and Mg additions needed for Bridgman experiments that simulate surface region solidification. Microstructures were studied and grain size, secondary dendrite arm spacing, intermetallic particles, segregation, and coarsening were evaluated. The increased alloy element concentrations at the surface were found to influence both the structure coarseness and the kind of intermetallic precipitation. In addition, clear differences could be determined between the alloy types, depending on their pull rate in the furnace.

  16. Femtosecond laser direct inscription of surface skimming waveguides in bulk glass.

    PubMed

    Bérubé, Jean-Philippe; Vallée, Réal

    2016-07-01

    We present a detailed study of waveguide inscription near the surface of bulk glass using a femtosecond laser. Three silicate glasses used extensively as hosts for photo-induced photonic devices were examined. Our results show that near-surface waveguides generally present a low-index contrast, as the pulse energy damage threshold decreases sharply at close proximity to the surface. We devised a novel method to allow the formation of optical waveguides that exhibit a high-index contrast up to the surface of any transparent material. As a proof of concept, the inscription of near-surface single-mode waveguides operating at a wavelength of 405 nm is demonstrated. PMID:27367105

  17. The dynamic surface of dividing cyanelles and ultrastructure of the region directly below the surface in Cyanophora paradoxa.

    PubMed

    Sato, Mayuko; Mogi, Yuko; Nishikawa, Toshikazu; Miyamura, Shinichi; Nagumo, Tamotsu; Kawano, Shigeyuki

    2009-03-01

    The cyanelles of glaucocystophytes are probably the most primitive of known extant plastids and the closest to cyanobacteria. Their kidney shape and FtsZ arc during the early stage of division define cyanelle division. In order to deepen and expand earlier results (Planta 227:177-187, 2007), cells of Cyanophora paradoxa were fixed with two different chemical and two different freeze-fixation methods. In addition, cyanelles from C. paradoxa were isolated to observe the surface structure of dividing cyanelles using field emission scanning electron microscopy (FE-SEM). A shallow furrow started on one side of the division plane. The furrow subsequently extended, covering the entire division circle, and then invaginated deeply, becoming clearly visible. The typical FtsZ arc was 2.3-3.4 microm long. This length matches that of the cleavage furrow observed using FE-SEM. The cyanelle cleavage furrows are from one-fourth to one-half of the circumference of the division plane. The shallow furrow that appears on the cyanelle outer surface effectively changes the division plane. Using freeze-fixation methods, the electron-dense stroma and peptidoglycan could be distinguished. In addition, an electron-dense belt structure (the cyanelle ring) was observed inside the leading edge at the cyanelle division plane. The FtsZ arc is located at the division plane ahead of the cyanelle ring. Immunogold-TEM localization shows that FtsZ is located interiorly of the cyanelle ring. The lack of an outer PD ring, together with the arch-shaped furrow, suggests that the mechanical force of the initial (arch shaped) septum furrow constriction comes from inside the cyanelle. PMID:19096871

  18. Quantitative surface topography assessment of directly compressed and roller compacted tablet cores using photometric stereo image analysis.

    PubMed

    Allesø, Morten; Holm, Per; Carstensen, Jens Michael; Holm, René

    2016-05-25

    Surface topography, in the context of surface smoothness/roughness, was investigated by the use of an image analysis technique, MultiRay™, related to photometric stereo, on different tablet batches manufactured either by direct compression or roller compaction. In the present study, oblique illumination of the tablet (darkfield) was considered and the area of cracks and pores in the surface was used as a measure of tablet surface topography; the higher a value, the rougher the surface. The investigations demonstrated a high precision of the proposed technique, which was able to rapidly (within milliseconds) and quantitatively measure the obtained surface topography of the produced tablets. Compaction history, in the form of applied roll force and tablet punch pressure, was also reflected in the measured smoothness of the tablet surfaces. Generally it was found that a higher degree of plastic deformation of the microcrystalline cellulose resulted in a smoother tablet surface. This altogether demonstrated that the technique provides the pharmaceutical developer with a reliable, quantitative response parameter for visual appearance of solid dosage forms, which may be used for process and ultimately product optimization. PMID:26542346

  19. Direct monophasic replacement of fatty acid by DMSA on SPION surface

    NASA Astrophysics Data System (ADS)

    Gogoi, M.; Deb, P.; Vasan, G.; Keil, P.; Kostka, A.; Erbe, A.

    2012-10-01

    Tailoring the surface and understanding the surface characteristics is necessary for biomedical applications of superparamagnetic nanoparticles. In this paper, superparamagnetic iron oxide nanoparticles (SPIONs) were prepared by thermal decomposition of iron nitrate in presence of stearic acid as surfactant. Due to the multilayer organization of surfactant molecules over the nanoparticle surface, the surface potential can be tuned by pH changes and hence the nanoparticles can be made dispersible in nonpolar as well as in polar solvents. We have presented a simple, facile procedure for controlled replacement of stearic acid from maghemite surface and subsequent derivatization by biocompatible dimercaptosuccinic acid (DMSA) to obtain ultrastable hydrophilic nanoparticles with unaltered morphology, phase and properties. The surface chemistry of the functionalized SPIONs was analyzed by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS) revealing the presence of bound and unbound thiol groups and disulfides, leading to its prolonged stability in aqueous medium. The consequence of spatially selective functionalization on the stability and solubility of surface hydrophilic SPION has also been realized.

  20. Mathematical Modeling of Surface Roughness of Castings Produced Using ZCast Direct Metal Casting

    NASA Astrophysics Data System (ADS)

    Chhabra, M.; Singh, R.

    2015-04-01

    Aim of this investigation is to develop a mathematical model for predicting surface roughness of castings produced using ZCast process by employing Buckingham's π-theorem. A relationship has been proposed between surface roughness of castings and shell wall thickness of the shell moulds fabricated using 3D printer. Based on model, experiments were performed to obtain the surface roughness of aluminium, brass and copper castings produced using ZCast process based on 3D printing technique. Based on experimental data, three best fitted third-degree polynomial equations have been established for predicting the surface roughness of castings. The predicted surface roughness values were then calculated using established best fitted equations. An error analysis was performed to compare the experimental and predicted data. The average prediction errors obtained for aluminium, brass and copper castings are 10.6, 2.43 and 3.12 % respectively. The obtained average surface roughness (experimental and predicted) values of castings produced are acceptable with the sand cast surface roughness values range (6.25-25 µm).

  1. Direct observation of silicon surface etching by water with scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Pietsch, G. J.; Köhler, U.; Henzler, M.

    1992-09-01

    One of the key processes in wet chemical preparation of silicon surfaces for device fabrication is a final rinsing step with water after oxide removal and hydrogen-termination with hydrofluoric acid. On rinsing at elevated temperature (boiling water) the slow statistical oxidation of the surface known from conventional treatment with water at room temperature is replaced by a rapid anisotropic etching attack. On Si(111) scanning tunneling microscopy shows characteristic triangular etch defects and flat (111) terraces separated by monatomic steps along <0 overline11>. The resulting surface is chemically homogeneous without any oxide. Structure and removal mechanism are compared to NH 4F-etched samples.

  2. Direct observation of the binding process between protein and quantum dots by in situ surface plasmon resonance measurements

    NASA Astrophysics Data System (ADS)

    Xiao, Qi; Zhou, Bo; Huang, Shan; Tian, Fangfang; Guan, Hongliang; Ge, Yushu; Liu, Xiaorong; He, Zhike; Liu, Yi

    2009-08-01

    A layer-by-layer surface decoration technique has been developed to anchor quantum dots (QDs) onto a gold substrate and an in situ surface plasmon resonance technique has been used to study interactions between the QDs and different proteins. Direct observation of the binding of the protein onto the QDs and the kinetics of the adsorption and dissociation of different proteins on the QDs has been achieved. This would be helpful for the identification of particle-associated proteins and may offer a fundamental prerequisite for nanobiology, nanomedicine and nanotoxicology. The combination of the novel layer-by-layer surface modification method and in situ surface plasmon resonance would be powerful in studying biological systems such as DNA and cells.

  3. Direct first-principles simulation of a high-performance electron emitter: Lithium-oxide-coated diamond surface

    SciTech Connect

    Miyamoto, Yoshiyuki Miyazaki, Takehide; Takeuchi, Daisuke; Yamasaki, Satoshi

    2014-09-28

    We examined the field emission properties of lithium(Li)/oxygen(O)-co-terminated diamond (001) surface [C(001)-LiO] through real-time electron dynamics simulation under an applied field. The current emitted from this surface was found to be more than four-fold that emitted by an H-terminated (001) surface, the latter being a typical negative electron affinity system. This high performance is attributed to the Li layer, which bends the potential wall of O-induced electron pockets down in the direction of vacuum, thus facilitating electron emission. Detailed analysis of the emitted electrons and the profile of the self-consistent potential elucidated that the role of O atoms changes from an electron barrier on OH-terminated diamond surfaces to an outlet for electron emission on C(001)-LiO.

  4. Surface properties of plasma-functionalized graphite-encapsulated gold nanoparticles prepared by a direct current arc discharge method

    NASA Astrophysics Data System (ADS)

    Yang, Enbo; Chou, Han; Tsumura, Shun; Nagatsu, Masaaki

    2016-05-01

    The graphite-encapsulated gold nanoparticles (Au@C NPs) fabricated by a direct current arc discharge method were surface-functionalized by an inductively-coupled radio frequency ammonia plasma with a particle explosion technique for enhancing surface modification efficiency. To investigate the structural and surface properties of Au@C NPs, characterizations using x-ray diffraction, high resolution transmission electron microscopy and x-ray photoelectron spectroscopy have been conducted on the untreated and plasma treated Au@C NPs. Based on the experimental results, we give insight into the possible formation of Au ions in the interface between the graphite layers and gold core particles of the Au@C NPs. Finally, the role of the plasma treatment on the surface functionalization of Au@C NPs with amino groups is discussed.

  5. Two-frequency microwave resonance measurements from an aircraft - A quantitative estimate of the directional ocean surface spectrum

    NASA Technical Reports Server (NTRS)

    Johnson, J. W.; Weissman, D. E.

    1984-01-01

    The use of the two-frequency microwave-resonance technique for airborne measurements of ocean surface-wave spectral components is examined in a summary of experiments conducted with a coherent Ku-band radar flown on a P-3 aircraft in the 1979 MARSEN and 1980 ARSLOE projects. The 1D theoretical formulation used in the analysis of the MARSEN data by Johnson et al. (1982) is extended to the 2D case; the experimental conditions are described in detail; and typical data are presented graphically, analyzed, and compared with independent measurements obtained with a surface-contour radar. The 3.5-deg pencil-beam configuration used in ARSLOE is shown to produce spectra with good directional characteristics (strong resonances at angles of incidence 13-48 deg). It is found that the proper inversion of radar data to surface-elevation spectra requires surface-reflectivity-modulation sources in addition to the long-wave orbital velocity.

  6. The influence of laser and powder defocusing characteristics on the surface quality in laser direct metal deposition

    NASA Astrophysics Data System (ADS)

    Zhu, Gangxian; Li, Dichen; Zhang, Anfeng; Pi, Gang; Tang, Yiping

    2012-03-01

    To investigate the influencing rules of the variations of powder and laser defocusing distance on surface quality and obtain the smooth surface of parts in laser direct metal deposition, the thin-walled metal parts were fabricated under three different powder defocusing distances and three different laser defocusing distances conditions. The experimental results show that a high surface quality can be obtained with the powder focussed below the substrate and laser focussed above the substrate process, and the variation in which the powder focus moves from above to below the melt pool plays a leading role and the variation in which the laser focus moves from above to below the melt pool plays a supplementary role in the influence on the surface quality. To explain the experimental results, a simple model of the track height is established.

  7. Direct observation of ultrafast surface transport of laser-driven fast electrons in a solid target

    NASA Astrophysics Data System (ADS)

    Singh, Prashant Kumar; Cui, Y. Q.; Chatterjee, Gourab; Adak, Amitava; Wang, W. M.; Ahmed, Saima; Lad, Amit D.; Sheng, Z. M.; Ravindra Kumar, G.

    2013-11-01

    We demonstrate rapid spread of surface ionization on a glass target excited by an intense, ultrashort laser pulse at an intensity of 3 × 1017 W cm-2. Time- and space-resolved reflectivity of the target surface indicates that the initial plasma region created by the pump pulse expands at c/7. The measured quasi-static megagauss magnetic field is found to expand in a manner very similar to that of surface ionization. Two-dimensional particle-in-cell simulations reproduce measurements of surface ionization and magnetic fields. Both the experiment and simulation convincingly demonstrate the role of self-induced electric and magnetic fields in confining fast electrons along the target-vacuum interface.

  8. Native Liquid Extraction Surface Analysis Mass Spectrometry: Analysis of Noncovalent Protein Complexes Directly from Dried Substrates

    NASA Astrophysics Data System (ADS)

    Martin, Nicholas J.; Griffiths, Rian L.; Edwards, Rebecca L.; Cooper, Helen J.

    2015-08-01

    Liquid extraction surface analysis (LESA) mass spectrometry is a promising tool for the analysis of intact proteins from biological substrates. Here, we demonstrate native LESA mass spectrometry of noncovalent protein complexes of myoglobin and hemoglobin from a range of surfaces. Holomyoglobin, in which apomyoglobin is noncovalently bound to the prosthetic heme group, was observed following LESA mass spectrometry of myoglobin dried onto glass and polyvinylidene fluoride surfaces. Tetrameric hemoglobin [(αβ)2 4H] was observed following LESA mass spectrometry of hemoglobin dried onto glass and polyvinylidene fluoride (PVDF) surfaces, and from dried blood spots (DBS) on filter paper. Heme-bound dimers and monomers were also observed. The `contact' LESA approach was particularly suitable for the analysis of hemoglobin tetramers from DBS.

  9. Direct observation of ultrafast surface transport of laser-driven fast electrons in a solid target

    SciTech Connect

    Singh, Prashant Kumar; Chatterjee, Gourab; Adak, Amitava; Ahmed, Saima; Lad, Amit D.; Ravindra Kumar, G.; Cui, Y. Q.; Wang, W. M.; Sheng, Z. M.

    2013-11-15

    We demonstrate rapid spread of surface ionization on a glass target excited by an intense, ultrashort laser pulse at an intensity of 3 × 10{sup 17} W cm{sup −2}. Time- and space-resolved reflectivity of the target surface indicates that the initial plasma region created by the pump pulse expands at c/7. The measured quasi-static megagauss magnetic field is found to expand in a manner very similar to that of surface ionization. Two-dimensional particle-in-cell simulations reproduce measurements of surface ionization and magnetic fields. Both the experiment and simulation convincingly demonstrate the role of self-induced electric and magnetic fields in confining fast electrons along the target-vacuum interface.

  10. Direct ambient noise tomography for 3-D near surface shear velocity structure: methodology and applications

    NASA Astrophysics Data System (ADS)

    Yao, H.; Fang, H.; Li, C.; Liu, Y.; Zhang, H.; van der Hilst, R. D.; Huang, Y. C.

    2014-12-01

    Ambient noise tomography has provided essential constraints on crustal and uppermost mantle shear velocity structure in global seismology. Recent studies demonstrate that high frequency (e.g., ~ 1 Hz) surface waves between receivers at short distances can be successfully retrieved from ambient noise cross-correlation and then be used for imaging near surface or shallow crustal shear velocity structures. This approach provides important information for strong ground motion prediction in seismically active area and overburden structure characterization in oil and gas fields. Here we propose a new tomographic method to invert all surface wave dispersion data for 3-D variations of shear wavespeed without the intermediate step of phase or group velocity maps.The method uses frequency-dependent propagation paths and a wavelet-based sparsity-constrained tomographic inversion. A fast marching method is used to compute, at each period, surface wave traveltimes and ray paths between sources and receivers. This avoids the assumption of great-circle propagation that is used in most surface wave tomographic studies, but which is not appropriate in complex media. The wavelet coefficients of the velocity model are estimated with an iteratively reweighted least squares (IRLS) algorithm, and upon iterations the surface wave ray paths and the data sensitivity matrix are updated from the newly obtained velocity model. We apply this new method to determine the 3-D near surface wavespeed variations in the Taipei basin of Taiwan, Hefei urban area and a shale and gas production field in China using the high-frequency interstation Rayleigh wave dispersion data extracted from ambient noisecross-correlation. The results reveal strong effects of off-great-circle propagation of high-frequency surface waves in these regions with above 30% shear wavespeed variations. The proposed approach is more efficient and robust than the traditional two-step surface wave tomography for imaging complex

  11. Surface contour radar observations of the directional wave spectrum during Fasinex

    NASA Technical Reports Server (NTRS)

    Walsh, E. J.; Hancock, D. W., III; Hines, D. E.; Swift, R. N.; Scott, J. F.

    1988-01-01

    The surface control radar (SCR), a 36-GHz computer-controlled airborne radar which generates a false-color coded elevation map of the sea surface below the aircraft in real time, is described. The SCR turned out to be ideal for documenting the wave spectra during Fasinex (the Frontal Air-Sea Interaction Experiment) due to its high spatial resolution and rapid mapping capability over extensive areas. Synoptic weather maps for February 15-18, 1986 are presented.

  12. Direct retrieval of ocean surface evaporation and latent heat flux from the spacebased observations

    NASA Technical Reports Server (NTRS)

    Liu, W. T.; Tang, W.

    2000-01-01

    The Tropical Rain Measuring Mission (TRMM) provides the opportunity to improve the spacebased estimation of evaporation. An algorithm for retrieving evaporation directly from the radiances observed by the TRMM Microwave Imager and its validation results are described.

  13. Direct Adsorption of Anti-CD34 Antibodies on the Nano-Porous Stent Surface to Enhance Endothelialization

    PubMed Central

    Fu, Guowei; Yu, Zhanjiang; Chen, Yongqiang; Chen, Yundai; Tian, Feng; Yang, Xiaoda

    2016-01-01

    Background In-stent restenosis following the insertion of conventional drug-eluting stent has become an extremely serious problem due to coating techniques, with polymer matrices used to bind biological ingredients to the stent surface. However, several studies have indicated that new pro-healing technique could prevent stent thrombosis that can be caused by conventional drug-eluting stents. Methods A novel method of attaching anti-CD34 antibodies directly on the porous surface of a 316L stainless steel bare metal stent was developed in this study, which achieved both high stability of attached anti-CD34 antibodies on the metal stent surface and high antibody activity for stem cell capture. Results The in vitro and in vivo experimental results indicated that the new stent with directly coupled anti-CD34 antibodies can efficiently enhance stent endothelialization. Conclusions This study indicates that we have developed a unique method of attaching anti-CD34 antibodies directly on the porous surface of a 316L stainless steel bare metal stent, which provides a novel polymer-free approach for developing pro-healing stents. PMID:27274167

  14. A novel optical biosensor for direct and selective determination of serotonin in serum by Solid Surface-Room Temperature Phosphorescence.

    PubMed

    Ramon-Marquez, Teresa; Medina-Castillo, Antonio L; Fernandez-Gutierrez, Alberto; Fernandez-Sanchez, Jorge F

    2016-08-15

    This paper describes a novel biosensor which combines the use of nanotechnology (non-woven nanofibre mat) with Solid Surface-Room Temperature Phosphorescence (SS-RTP) measurement for the determination of serotonin in human serum. The developed biosensor is simple and can be directly applied in serum; only requires a simple clean-up protocol. Therefore it is the first time that serotonin is analysed directly in serum with a non-enzymatic technique. This new approach is based on the covalent immobilization of serotonin directly from serum on a functional nanofibre material (Tiss®-Link) with a preactivated surface for direct covalent immobilization of primary and secondary amines, and the subsequent measurement of serotonin phosphorescent emission from the solid surface. The phosphorescent detection allows avoiding the interference from any fluorescence emission or scattering light from any molecule present in the serum sample which can be also immobilised on the nanofibre material. The determination of serotonin with this SS-RTP sensor overcomes some limitations, such as large interference from the matrix and high cost and complexity of many of the methods widely used for serotonin analysis. The potential applicability of the sensor in the clinical diagnosis was demonstrated by analysing serum samples from seven healthy volunteers. The method was validated with an external reference laboratory, obtaining a correlation coefficient of 0.997 which indicates excellent correlation between the two methods. PMID:27085954

  15. Direct Covalent Grafting of Phytate to Titanium Surfaces through Ti-O-P Bonding Shows Bone Stimulating Surface Properties and Decreased Bacterial Adhesion.

    PubMed

    Córdoba, Alba; Hierro-Oliva, Margarita; Pacha-Olivenza, Miguel Ángel; Fernández-Calderón, María Coronada; Perelló, Joan; Isern, Bernat; González-Martín, María Luisa; Monjo, Marta; Ramis, Joana M

    2016-05-11

    Myo-inositol hexaphosphate, also called phytic acid or phytate (IP6), is a natural molecule abundant in vegetable seeds and legumes. Among other functions, IP6 inhibits bone resorption. It is adsorbed on the surface of hydroxyapatite, inhibiting its dissolution and decreasing the progressive loss of bone mass. We present here a method to directly functionalize Ti surfaces covalently with IP6, without using a cross-linker molecule, through the reaction of the phosphate groups of IP6 with the TiO2 layer of Ti substrates. The grafting reaction consisted of an immersion in an IP6 solution to allow the physisorption of the molecules onto the substrate, followed by a heating step to obtain its chemisorption, in an adaptation of the T-Bag method. The reaction was highly dependent on the IP6 solution pH, only achieving a covalent Ti-O-P bond at pH 0. We evaluated two acidic pretreatments of the Ti surface, to increase its hydroxylic content, HNO3 30% and HF 0.2%. The structure of the coated surfaces was characterized by X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, and ellipsometry. The stability of the IP6 coating after three months of storage and after sterilization with γ-irradiation was also determined. Then, we evaluated the biological effect of Ti-IP6 surfaces in vitro on MC3T3-E1 osteoblastic cells, showing an osteogenic effect. Finally, the effect of the surfaces on the adhesion and biofilm viability of oral microorganisms S. mutans and S. sanguinis was also studied, and we found that Ti-IP6 surfaces decreased the adhesion of S. sanguinis. A surface that actively improves osseointegration while decreasing the bacterial adhesion could be suitable for use in bone implants. PMID:27088315

  16. Comparing the shear bond strength of direct and indirect composite inlays in relation to different surface conditioning and curing techniques

    PubMed Central

    Zorba, Yahya Orcun; Ilday, Nurcan Ozakar; Bayındır, Yusuf Ziya; Demirbuga, Sezer

    2013-01-01

    Objective: The aim of this study was to test the null hypothesis that different surface conditioning (etch and rinse and self-etch) and curing techniques (light cure/dual cure) had no effect on the shear bond strength of direct and indirect composite inlays. Materials and Methods: A total of 112 extracted human molar teeth were horizontally sectioned and randomly divided into two groups according to restoration technique (direct and indirect restorations). Each group was further subdivided into seven subgroups (n = 8) according to bonding agent (etch and rinse adhesives Scotchbond multi-purpose plus, All-Bond 3, Adper Single Bond and Prime Bond NT; and self-etch adhesives Clearfil Liner Bond, Futurabond DC and G bond). Indirect composites were cemented to dentin surfaces using dual-curing luting cement. Shear bond strength of specimens was tested using a Universal Testing Machine. Two samples from each subgroup were evaluated under Scanning electron microscopy to see the failing modes. Data was analyzed using independent sample t-tests and Tukey's tests. Results: Surface conditioning and curing of bonding agents were all found to have significant effects on shear bond strength (P < 0.05) of both direct and indirect composite inlays. With direct restoration, etch and rinse systems and dual-cured bonding agents yielded higher bond strengths than indirect restoration, self-etch systems and light-cured bonding agents. Conclusions: The results of the present study indicated that direct restoration to be a more reliable method than indirect restoration. Although etch and rinse bonding systems showed higher shear bond strength to dentin than self-etch systems, both systems can be safely used for the adhesion of direct as well as indirect restorations. PMID:24932118

  17. Surface hopping dynamics of direct trans → cis photoswitching of an azobenzene derivative in constrained adsorbate geometries.

    PubMed

    Floß, Gereon; Granucci, Giovanni; Saalfrank, Peter

    2012-12-21

    With ongoing miniaturization of electronic devices, the need for individually addressable, switchable molecules arises. An example are azobenzenes on surfaces which have been shown to be switchable between trans and cis forms. Here, we examine the "direct" (rather than substrate-mediated) channel of the trans → cis photoisomerization after ππ∗ excitation of tetra-tert-butyl-azobenzene physisorbed on surfaces mimicking Au(111) and Bi(111), respectively. In spirit of the direct channel, the electronic structure of the surface is neglected, the latter merely acting as a rigid platform which weakly interacts with the molecule via Van-der-Waals forces. Starting from thermal ensembles which represent the trans-form, sudden excitations promote the molecules to ππ∗-excited states which are non-adiabatically coupled among themselves and to a nπ∗-excited and the ground state, respectively. After excitation, relaxation to the ground state by internal conversion takes place, possibly accompanied by isomerization. The process is described here by "on the fly" semiclassical surface hopping dynamics in conjunction with a semiempirical Hamiltonian (AM1) and configuration-interaction type methods. It is found that steric constraints imposed by the substrate lead to reduced but non-vanishing, trans → cis reaction yields and longer internal conversion times than for the isolated molecule. Implications for recent experiments for azobenzenes on surfaces are discussed. PMID:23267492

  18. A method for the direct measurement of surface tension of collected atmospherically relevant aerosol particles using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Hritz, Andrew D.; Raymond, Timothy M.; Dutcher, Dabrina D.

    2016-08-01

    Accurate estimates of particle surface tension are required for models concerning atmospheric aerosol nucleation and activation. However, it is difficult to collect the volumes of atmospheric aerosol required by typical instruments that measure surface tension, such as goniometers or Wilhelmy plates. In this work, a method that measures, ex situ, the surface tension of collected liquid nanoparticles using atomic force microscopy is presented. A film of particles is collected via impaction and is probed using nanoneedle tips with the atomic force microscope. This micro-Wilhelmy method allows for direct measurements of the surface tension of small amounts of sample. This method was verified using liquids, whose surface tensions were known. Particles of ozone oxidized α-pinene, a well-characterized system, were then produced, collected, and analyzed using this method to demonstrate its applicability for liquid aerosol samples. It was determined that oxidized α-pinene particles formed in dry conditions have a surface tension similar to that of pure α-pinene, and oxidized α-pinene particles formed in more humid conditions have a surface tension that is significantly higher.

  19. Direct surface analysis coupled to high-resolution mass spectrometry reveals heterogeneous composition of the cuticle of Hibiscus trionum petals.

    PubMed

    Giorio, Chiara; Moyroud, Edwige; Glover, Beverley J; Skelton, Paul C; Kalberer, Markus

    2015-10-01

    Plant cuticle, which is the outermost layer covering the aerial parts of all plants including petals and leaves, can present a wide range of patterns that, combined with cell shape, can generate unique physical, mechanical, or optical properties. For example, arrays of regularly spaced nanoridges have been found on the dark (anthocyanin-rich) portion at the base of the petals of Hibiscus trionum. Those ridges act as a diffraction grating, producing an iridescent effect. Because the surface of the distal white region of the petals is smooth and noniridescent, a selective chemical characterization of the surface of the petals on different portions (i.e., ridged vs smooth) is needed to understand whether distinct cuticular patterns correlate with distinct chemical compositions of the cuticle. In the present study, a rapid screening method has been developed for the direct surface analysis of Hibiscus trionum petals using liquid extraction surface analysis (LESA) coupled with high-resolution mass spectrometry. The optimized method was used to characterize a wide range of plant metabolites and cuticle monomers on the upper (adaxial) surface of the petals on both the white/smooth and anthocyanic/ridged regions, and on the lower (abaxial) surface, which is entirely smooth. The main components detected on the surface of the petals are low-molecular-weight organic acids, sugars, and flavonoids. The ridged portion on the upper surface of the petal is enriched in long-chain fatty acids, which are constituents of the wax fraction of the cuticle. These compounds were not detected on the white/smooth region of the upper petal surface or on the smooth lower surface. PMID:26335385

  20. The direct and precursor mediated dissociation rates of H2 on a Ni(111) surface.

    PubMed

    Wang, Wenji; Zhao, Yi

    2015-02-28

    The dissociation and recombination rates of physisorbed H2, and the direct and steady state dissociation (i.e., the precursor mediated dissociation) rates of gas phase H2 on Ni(111), as well as the corresponding kinetic isotope effects, are calculated using the quantum instanton method, together with path integral Monte Carlo and adaptive umbrella sampling techniques. All these rates except the recombination one first decrease and then increase with the increasing temperature, and their minimum values appear at about 250, 300 and 250 K, respectively. These non-monotonic behaviors reveal that the quantum effect of H2 should be very remarkable at low temperatures. The steady state rates are smaller than the direct rates at low temperatures, however, they become larger than the direct ones at high temperatures, these two kinds of rates become equal at about 400 and 300 K on the rigid and quantum lattices, respectively. The quantum motion of the lattice can enhance the direct and steady state rates, and it increases the steady state rate much more than the direct one, for instance, the direct and steady state rates on the quantum lattice are 1.30 and 2.08 times larger than that on the rigid one at 300 K. The calculated kinetic isotope effects are much larger than 1, which reveals that H2 always has a larger rate than that of D2, and the direct process predicts much larger kinetic isotope effects than the steady state process at low temperatures. In addition, the kinetic isotope effects are not affected by the lattice motion. PMID:25630487

  1. The effect of nanoscratching direction on the plastic deformation and surface morphology of InP crystals

    SciTech Connect

    Huang, J. Y.; Ponce, F. A.; Caldas, P. G.; Prioli, R.; Almeida, C. M.

    2013-11-28

    The microstructure of (001) InP crystals scratched with a sharp diamond tip depends strongly on the scratching direction. The scratch surface is found to conform to the radius of curvature of the tip (∼60 nm) by the formation of atomic crystal steps produced by dislocation glide along (111) planes. 〈110〉 scratches lead to coherent local crystal lattice movement and rotation causing deep dislocation propagation into the crystal and irregular pileups at the sides of the scratch surface. 〈100〉 scratches lead to incoherent lattice movement causing dislocation locking that inhibits their propagation and results in regular pileups.

  2. Direct imaging of electron recombination and transport on a semiconductor surface by femtosecond time-resolved photoemission electron microscopy

    SciTech Connect

    Fukumoto, Keiki Yamada, Yuki; Koshihara, Shin-ya; Onda, Ken

    2014-02-03

    Much effort has been devoted to the development of techniques to probe carrier dynamics, which govern many semiconductor device characteristics. We report direct imaging of electron dynamics on semiconductor surfaces by time-resolved photoemission electron microscopy using femtosecond laser pulses. The experiments utilized a variable-repetition-rate femtosecond laser system to suppress sample charging problems. The recombination of photogenerated electrons and the lateral motion of the electrons driven by an external electric field on a GaAs surface were visualized. The mobility was estimated from a linear relationship between the drift velocity and the potential gradient.

  3. Estimation of directional surface wave spectra from a towed research catamaran

    USGS Publications Warehouse

    Hanson, K.A.; Hara, T.; Bock, E.J.; Karachintsev, A.B.

    1997-01-01

    During the High-Resolution Remote Sensing Main Experiment (1993), wave height was estimated from a moving catamaran using pitch-rate and roll-rate sensors, a three-axis accelerometer, and a capacitive wave wire. The wave spectrum in the frequency band ranging roughly from 0.08 to 0.3 Hz was verified by independent buoy measurements. To estimate the directional frequency spectrum from a wave-wire array, the Data-Adaptive Spectral Estimator is extended to include the Doppler shifting effects of a moving platform. The method is applied to data obtained from a fixed platform during the Ris?? Air-Sea Experiment (1994) and to data obtained from a moving platform during the Coastal Ocean Processes Experiment (1995). Both results show that the propagation direction of the peak wind waves compares well with the measured wind direction. When swells and local wind waves are not aligned, the method can resolve the difference of propagation directions. Using the fixed platform data a numerical test is conducted that shows that the method is able to distinguish two wave systems propagating at the same frequency but in two different directions.

  4. A Study of an Optical Lunar Surface Communications Network with High Bandwidth Direct to Earth Link

    NASA Technical Reports Server (NTRS)

    Wilson, K.; Biswas, A.; Schoolcraft, J.

    2011-01-01

    A lunar surface systems study explores the application of optical communications to support a high bandwidth data link from a lunar relay satellite and from fixed lunar assets. The results show that existing 1-m ground stations could provide more than 99% coverage of the lunar terminal at 100Mb/s data rates from a lunar relay satellite and in excess of 200Mb/s from a fixed terminal on the lunar surface. We have looked at the effects of the lunar regolith and its removal on optical samples. Our results indicate that under repeated dust removal episodes sapphire rather than fused silica would be a more durable material for optical surfaces. Disruption tolerant network protocols can minimize the data loss due to link dropouts. We report on the preliminary results of the DTN protocol implemented over the optical carrier.

  5. Lattice-Directed Formation of Covalent and Organometallic Molecular Wires by Terminal Alkynes on Ag Surfaces.

    PubMed

    Liu, Jing; Chen, Qiwei; Xiao, Lianghong; Shang, Jian; Zhou, Xiong; Zhang, Yajie; Wang, Yongfeng; Shao, Xiang; Li, Jianlong; Chen, Wei; Xu, Guo Qin; Tang, Hao; Zhao, Dahui; Wu, Kai

    2015-06-23

    Surface reactions of 2,5-diethynyl-1,4-bis(phenylethynyl)benzene on Ag(111), Ag(110), and Ag(100) were systematically explored and scrutinized by scanning tunneling microscopy, molecular mechanics simulations, and density functional theory calculations. On Ag(111), Glaser coupling reaction became dominant, yielding one-dimensional molecular wires formed by covalent bonds. On Ag(110) and Ag(100), however, the terminal alkynes reacted with surface metal atoms, leading to one-dimensional organometallic nanostructures. Detailed experimental and theoretical analyses revealed that such a lattice dependence of the terminal alkyne reaction at surfaces originated from the matching degree between the periodicities of the produced molecular wires and the substrate lattice structures. PMID:25990647

  6. 3D Micropatterned Surface Inspired by Salvinia molesta via Direct Laser Lithography

    PubMed Central

    2015-01-01

    Biomimetic functional surfaces are attracting increasing attention for their relevant technological applications. Despite these efforts, inherent limitations of microfabrication techniques prevent the replication of complex hierarchical microstructures. Using a 3D laser lithography technique, we fabricated a 3D patterned surface bioinspired to Salvinia molesta leaves. The artificial hairs, with crownlike heads, were reproduced by scaling down (ca. 100 times smaller) the dimensions of natural features, so that microscale hairs with submicrometric resolution were attained. The micropatterned surface, in analogy with the natural model, shows interesting properties in terms of hydrophobicity and air retention when submerged by water, even if realized with a hydrophilic material. Furthermore, we successfully demonstrated the capability to promote localized condensation of water droplets from moisture in the atmosphere. PMID:26558410

  7. Thermocapillary migration of a gas bubble in an arbitrary direction with respect to a plane surface

    NASA Technical Reports Server (NTRS)

    Meyyappan, M.; Shankar Subramanian, R.

    1987-01-01

    The thermocapillary migration of a gas bubble in an unbounded fluid in the presence of a neighboring rigid plane surface is considered in the limit of negligible Reynolds and Marangoni numbers. Results are given for a scalar interaction parameter defined as the ratio of the speed of the bubble in the presence of the plane surface to the speed in its absence. It is suggested that the weaker interaction effects noted for the case of thermocapillary migration relative to the case of motion due to a body force such as that caused by a gravitational field is attributable to the more rapid decay, away from the bubble, of the disturbance velocity and temperature gradient fields. The surface is found to exert the greatest influence in the case of motion normal to it, and the weakest influence in the case of parallel motion.

  8. Direct experimental evidence of back-surface ion acceleration from laser-irradiated gold foils.

    PubMed

    Allen, Matthew; Patel, Pravesh K; Mackinnon, Andrew; Price, Dwight; Wilks, Scott; Morse, Edward

    2004-12-31

    Au foils were irradiated with a 100-TW, 100-fs laser at intensities greater than 10(20) W/cm2 producing proton beams with a total yield of approximately 10(11) and maximum proton energy of >9 MeV. Removing contamination from the back surface of Au foils with an Ar-ion sputter gun reduced the total yield of accelerated protons to less than 1% of the yield observed without removing contamination. Removing contamination from the front surface (laser-interaction side) of the target had no observable effect on the proton beam. We present a one-dimensional particle-in-cell simulation that models the experiment. Both experimental and simulation results are consistent with the back-surface acceleration mechanism described in the text. PMID:15697987

  9. Direct observation of spin-resolved full and empty electron states in ferromagnetic surfaces

    SciTech Connect

    Berti, G. Calloni, A.; Brambilla, A.; Bussetti, G.; Duò, L.; Ciccacci, F.

    2014-07-15

    We present a versatile apparatus for the study of ferromagnetic surfaces, which combines spin-polarized photoemission and inverse photoemission spectroscopies. Samples can be grown by molecular beam epitaxy and analyzed in situ. Spin-resolved photoemission spectroscopy analysis is done with a hemispherical electron analyzer coupled to a 25 kV-Mott detector. Inverse photoemission spectroscopy experiments are performed with GaAs crystals as spin-polarized electron sources and a UV bandpass photon detector. As an example, measurements on the oxygen passivated Fe(100)-p(1×1)O surface are presented.

  10. Direct surface force measurements of polyelectrolyte multilayer films containing nanocrystalline cellulose.

    PubMed

    Cranston, Emily D; Gray, Derek G; Rutland, Mark W

    2010-11-16

    Polyelectrolyte multilayer films containing nanocrystalline cellulose (NCC) and poly(allylamine hydrochloride) (PAH) make up a new class of nanostructured composite with applications ranging from coatings to biomedical devices. Moreover, these materials are amenable to surface force studies using colloid-probe atomic force microscopy (CP-AFM). For electrostatically assembled films with either NCC or PAH as the outermost layer, surface morphology was investigated by AFM and wettability was examined by contact angle measurements. By varying the surrounding ionic strength and pH, the relative contributions from electrostatic, van der Waals, steric, and polymer bridging interactions were evaluated. The ionic cross-linking in these films rendered them stable under all solution conditions studied although swelling at low pH and high ionic strength was inferred. The underlying polymer layer in the multilayered film was found to dictate the dominant surface forces when polymer migration and chain extension were facilitated. The precontact normal forces between a silica probe and an NCC-capped multilayer film were monotonically repulsive at pH values where the material surfaces were similarly and fully charged. In contrast, at pH 3.5, the anionic surfaces were weakly charged but the underlying layer of cationic PAH was fully charged and attractive forces dominated due to polymer bridging from extended PAH chains. The interaction with an anionic carboxylic acid probe showed similar behavior to the silica probe; however, for a cationic amine probe with an anionic NCC-capped film, electrostatic double-layer attraction at low pH, and electrostatic double-layer repulsion at high pH, were observed. Finally, the effect of the capping layer was studied with an anionic probe, which indicated that NCC-capped films exhibited purely repulsive forces which were larger in magnitude than the combination of electrostatic double-layer attraction and steric repulsion, measured for PAH

  11. Direct visualization of Ni-Nb bulk metallic glasses surface: From initial nucleation to full crystallization

    NASA Astrophysics Data System (ADS)

    Oreshkin, A. I.; Mantsevich, V. N.; Savinov, S. V.; Oreshkin, S. I.; Panov, V. I.; Maslova, N. S.; Louzguine-Luzgin, D. V.

    2012-10-01

    This article is devoted to in situ investigation of the Ni-based bulk metallic glass structural evolution and crystallization behavior by scanning tunneling microscopy/spectroscopy. The possibility of different surface nanostructures formation is shown by annealing of an original bulk glassy alloy in ultra high vacuum. Atomic locations in these surface nanostructures are completely different from those formed according to Ni-Nb binary phase diagram in the bulk area of the sample. The validity of the results is also verified by transmission electron microscopy and nano-beam diffraction measurements.

  12. Predictions of solar radiation distribution: Global, direct and diffuse light on horizontal surface

    NASA Astrophysics Data System (ADS)

    Chabane, Foued; Moummi, Noureddine; Brima, Abdelhafid

    2016-04-01

    Solar radiation models for predicting the average daily and hourly global radiation, direct and diffuse radiation are discussed in this paper. The average daily global radiation in Ghardaia (32.38 N latitude, 3.82 E longitude) is predicted. Estimations of monthly average hourly global radiation are considered. We have developed this correlation using the sunlight and global radiation data from one year location around the weather station in Ghardaia. Two predictions of solar radiation distribution: direct and diffuse light on a horizontal area models, are reviewed to predict the hourly irradiation of Ghardaia utilizing the approach such as regression models. Comparisons between model predictions with measured data are made.

  13. Direct writing of continuous and discontinuous sub-wavelength periodic surface structures on single-crystalline silicon using femtosecond laser

    SciTech Connect

    Kuladeep, Rajamudili; Sahoo, Chakradhar; Narayana Rao, Desai E-mail: dnr-laserlab@yahoo.com

    2014-06-02

    Laser-induced ripples or uniform arrays of continuous near sub-wavelength or discontinuous deep sub-wavelength structures are formed on single-crystalline silicon (Si) by femtosecond (fs) laser direct writing technique. Laser irradiation was performed on Si wafers at normal incidence in air and by immersing them in dimethyl sulfoxide using linearly polarized Ti:sapphire fs laser pulses of ∼110 fs pulse duration and ∼800 nm wavelength. Morphology studies of laser written surfaces reveal that sub-wavelength features are oriented perpendicular to laser polarization, while their morphology and spatial periodicity depend on the surrounding dielectric medium. The formation mechanism of the sub-wavelength features is explained by interference of incident laser with surface plasmon polaritons. This work proves the feasibility of fs laser direct writing technique for the fabrication of sub-wavelength features, which could help in fabrication of advanced electro-optic devices.

  14. Nano-structured surfaces by laser interference lithography and fs-laser direct writing as substrates for surface-enhanced Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Ben Mohammadi, L.; Hundertmark, N.; Kullmann, F.; Fleissner, F.; Klotzbücher, T.

    2012-03-01

    Nano-structured surfaces were generated by laser interference lithography and femtosecond-laser direct writing of photo resists that subsequently were metallized by electroless plating or sputter deposition of silver. Laser lithography was performed with a 405 nm coherent diode laser in AZ9260, using two-beam interference with double illumination by 90° rotating of the substrate, leading to 2D periodic surface patterns with smallest features of the order of 200 nm. With fs-laser direct writing using a Ti-sapphire oscillator of 800 nm and 15 fs pulse length, feature sizes down to 100 nm were realized in SU8, even with aspect ratios much larger than 1. Metallization with electroless plating delivered either grainy silver coatings with a grain size around 100 nm or needle-like silver coatings with a needle length around 100 nm and a width of around 10 nm. The metallized substrates were exposed to aqueous solutions of Rhodamine 6G (Rh6G) of different concentrations and the corresponding Raman signals were recorded with a Raman micro-probe spectrometer. The nano-structured surfaces lead to formation of Raman bands attributable to Rh6G. In case of the grainy silver coatings, surfaces without nano-structures did not show Raman activity, indicating that grating-coupled surface plasmons play the dominant role for Raman enhancement. In case of substrates coated with the needle-shaped silver crystallites, Raman activity was also seen in regions without laser-generated nano-structures, indicating that localized particle plasmons play the dominant role for Raman enhancement. A comparison with Raman spectra measured with conventional Raman spectrometer showed that the enhancement factor achieved by the laser-generated nano-structures themself, is of the order of 6×104. Raman intensity as a function of Rh6G concentration revealed a regular behaviour, as expected from a Langmuir isotherm.

  15. Determination of unit normal vectors of aspherical surfaces given unit directional vectors of incoming and outgoing rays: comment.

    PubMed

    Mikš, Antonín; Novák, Pavel

    2012-07-01

    In a recent paper by Lin and Tsai [J. Opt. Soc. Am. A 29, 174 (2012)] there is presented a rather complicated method for derivation of the unit normal vectors of an aspherical surface given the knowledge of the unit directional vectors of the incoming and outgoing rays. In our comment we present a much simpler method that leads to compact equations suitable for practical implementation. PMID:22751399

  16. Stimulated Raman signals at conical intersections: Ab initio surface hopping simulation protocol with direct propagation of the nuclear wave function

    SciTech Connect

    Kowalewski, Markus Mukamel, Shaul

    2015-07-28

    Femtosecond Stimulated Raman Spectroscopy (FSRS) signals that monitor the excited state conical intersections dynamics of acrolein are simulated. An effective time dependent Hamiltonian for two C—H vibrational marker bands is constructed on the fly using a local mode expansion combined with a semi-classical surface hopping simulation protocol. The signals are obtained by a direct forward and backward propagation of the vibrational wave function on a numerical grid. Earlier work is extended to fully incorporate the anharmonicities and intermode couplings.

  17. Stimulated Raman signals at conical intersections: Ab initio surface hopping simulation protocol with direct propagation of the nuclear wave function

    NASA Astrophysics Data System (ADS)

    Kowalewski, Markus; Mukamel, Shaul

    2015-07-01

    Femtosecond Stimulated Raman Spectroscopy (FSRS) signals that monitor the excited state conical intersections dynamics of acrolein are simulated. An effective time dependent Hamiltonian for two C—H vibrational marker bands is constructed on the fly using a local mode expansion combined with a semi-classical surface hopping simulation protocol. The signals are obtained by a direct forward and backward propagation of the vibrational wave function on a numerical grid. Earlier work is extended to fully incorporate the anharmonicities and intermode couplings.

  18. Combined surface-activated bonding technique for low-temperature hydrophilic direct wafer bonding

    NASA Astrophysics Data System (ADS)

    He, Ran; Fujino, Masahisa; Yamauchi, Akira; Suga, Tadatomo

    2016-04-01

    A combined surface-activated bonding technique is studied for surface activation and water management to improve the hydrophilic SiO2-SiO2 bonding quality. Prebonding treatment involving a Si-containing Ar beam bombardment and prebonding attach-detach is employed prior to wafer bonding in vacuum. The results of bonding strength measurement, Monte Carlo simulation, and surface analysis by Fourier transform infrared spectroscopy are reported. A mechanism is proposed to better understand the nature of the hydrophilic bonding at low temperatures of no more than 200 °C. We suggest that the Si-containing Ar beam modifies the SiO2 surfaces by Si enrichment to make them more reactive for OH adsorption, while the prebonding attach and detach facilitate a further increase in the number of OH and the removal of excess trapped H2O prior to bonding, respectively. As a consequence, SiO2-SiO2 bonding strength close to the Si bulk fracture energy can be achieved after low-temperature annealing.

  19. Directed surface attachment of nanomaterials via coiled-coil-driven self-assembly

    NASA Astrophysics Data System (ADS)

    White, Simon J.; Johnson, Steven; Szymonik, Michal; Wardingley, Richard A.; Pye, Douglas; Davies, A. Giles; Wälti, Christoph; Stockley, Peter G.

    2012-12-01

    Numerous nanoscale devices and materials have been fabricated in recent years using a variety of biological scaffolds. However, the interfacing of these devices and materials into existing circuits and ordered arrays has proved problematic. Here, we describe a simple solution to this problem using self-assembly of the peptide coiled-coil heterodimer ACID:BASE to immobilize M13 bacteriophage particles to specific locations on a patterned gold surface. Surface plasmon resonance demonstrated that free ACID peptides will assemble onto a surface derivatized with BASE. We then displayed the ACID peptide on the pIX coat protein of M13 and showed that these phage particles permit formation of the coiled-coil resulting in specific surface attachment. The ACID:immobilized BASE affinities appear to be similar for free peptide and phage-displayed ACID. Finally, we fabricated two gold electrodes, separated by a 200 nm gap, coated one of them with BASE and showed that this allows localization of the M13:ACID onto the functionalized electrode.

  20. Directed surface attachment of nanomaterials via coiled-coil-driven self-assembly.

    PubMed

    White, Simon J; Johnson, Steven; Szymonik, Michal; Wardingley, Richard A; Pye, Douglas; Davies, A Giles; Wälti, Christoph; Stockley, Peter G

    2012-12-14

    Numerous nanoscale devices and materials have been fabricated in recent years using a variety of biological scaffolds. However, the interfacing of these devices and materials into existing circuits and ordered arrays has proved problematic. Here, we describe a simple solution to this problem using self-assembly of the peptide coiled-coil heterodimer ACID:BASE to immobilize M13 bacteriophage particles to specific locations on a patterned gold surface. Surface plasmon resonance demonstrated that free ACID peptides will assemble onto a surface derivatized with BASE. We then displayed the ACID peptide on the pIX coat protein of M13 and showed that these phage particles permit formation of the coiled-coil resulting in specific surface attachment. The ACID:immobilized BASE affinities appear to be similar for free peptide and phage-displayed ACID. Finally, we fabricated two gold electrodes, separated by a 200 nm gap, coated one of them with BASE and showed that this allows localization of the M13:ACID onto the functionalized electrode. PMID:23154792

  1. Toward Understanding Whether Interactive Surface Area Could Direct Ordered Macroscopic Supramolecular Self-Assembly.

    PubMed

    Akram, Raheel; Cheng, Mengjiao; Guo, Fengli; Iqbal, Saleem; Shi, Feng

    2016-04-19

    The mismatching phenomena are ubiquitous in complex and advanced self-assembly, such as hierarchical assembly, macroscopic supramolecular assembly, and so on. Recently, for macroscopic supramolecular assembly, the strategy of maximizing the interactive surface area was used and supposed to handle this problem; however, now there is little understanding of whether interactive surface area is the dominant factor to guide the assembly patterns. Herein by taking millimeter cylinder building blocks with different diameter/height (d/h) ratios as model systems, we have investigated the interactive-surface-area-dependent assembling behaviors in macroscopic supramolecular assembly. The results showed that the increasing d/h ratio of cylinders contributed to selectivity of face-to-face assembled pattern over face-to-side or side-to-side geometries, thus having improved the ordering degree of the assembled structures; however, the mismatching phenomena could not be totally avoided due to high colliding chances in kinetics and the thermally favorable stability of these structures. We further confirmed the above hypothesis by in situ measurements of interactive forces of building blocks with different assembled patterns. This work of macroscopic supramolecular assembly provides an in situ visible platform, which is significant to clarify the influences of interactive surface area on the assembly behaviors. PMID:27029028

  2. Directed assembly of nanodiamond nitrogen-vacancy centers on a chemically modified patterned surface.

    PubMed

    Rao, Saleem G; Karim, Altaf; Schwartz, Julian; Antler, Natania; Schenkel, Thomas; Siddiqi, Irfan

    2014-08-13

    Nitrogen-vacancy (NV) centers in nanodiamond (ND) particles are an attractive material for photonic, quantum information, and biological sensing technologies due to their optical properties-bright single photon emission and long spin coherence time. To harness these features in practical devices, it is essential to realize efficient methods to assemble and pattern NDs at the micro-/nanoscale. In this work, we report the large scale patterned assembly of NDs on a Au surface by creating hydrophobic and hydrophilic regions using self-assembled monolayer (SAM). Hydrophobic regions are created using a methyl (-CH3) terminated SAM of octadecanethiol molecules. Evaporating a water droplet suspension of NDs on the SAM patterned surface assembles the NDs in the bare Au, hydrophilic regions. Using this procedure, we successfully produced a ND structures in the shape of dots, lines, and rectangles. Subsequent photoluminescence imaging of the patterned NDs confirmed the presence of optically active NV centers. Experimental evidence in conjunction with computational analysis indicates that the surface wettability of the SAM modified Au surface plays a dominant role in the assembly of NDs as compared to van der Waals and other substrate-ND interactions. PMID:25029262

  3. Eley-Rideal surface chemistry: Direct reactivity of gas phase atomic hydrogen with adsorbed species

    SciTech Connect

    Weinberg, W.H.

    1996-10-01

    Selected examples of Eley-Rideal surface chemistry are presented in order to review this field. Reactions on Ru(100) only are considered. The specific examples employed are: (i) hydrogenation of oxygen atoms, (ii) hydrogenation of CO, (iii) formation of dihydrogen, and (iv) hydrogenation of formate. 80 refs., 8 figs.

  4. Air-directed attachment of coccoid bacteria to the surface of superhydrophobic lotus-like titanium.

    PubMed

    Truong, V K; Webb, H K; Fadeeva, E; Chichkov, B N; Wu, A H F; Lamb, R; Wang, J Y; Crawford, R J; Ivanova, E P

    2012-01-01

    Superhydrophobic titanium surfaces fabricated by femtosecond laser ablation to mimic the structure of lotus leaves were assessed for their ability to retain coccoid bacteria. Staphylococcus aureus CIP 65.8T, S. aureus ATCC 25923, S. epidermidis ATCC 14990T and Planococcus maritimus KMM 3738 were retained by the surface, to varying degrees. However, each strain was found to preferentially attach to the crevices located between the microscale surface features. The upper regions of the microscale features remained essentially cell-free. It was hypothesised that air entrapped by the topographical features inhibited contact between the cells and the titanium substratum. Synchrotron SAXS revealed that even after immersion for 50 min, nano-sized air bubbles covered 45% of the titanium surface. After 1 h the number of cells of S. aureus CIP 65.8T attached to the lotus-like titanium increased to 1.27×10(5) mm(-2), coinciding with the replacement of trapped air by the incubation medium. PMID:22686938

  5. A Simple Nanoscale Interface Directs Alignment of a Confluent Cell Layer on Oxide and Polymer Surfaces

    PubMed Central

    Donnelly, Patrick E.; Jones, Casey M.; Bandini, Stephen B.; Singh, Shivani; Schwartz, Jeffrey; Schwarzbauer, Jean E.

    2013-01-01

    Templating of cell spreading and proliferation is described that yields confluent layers of cells aligned across an entire two-dimensional surface. The template is a reactive, two-component interface that is synthesized in three steps in nanometer thick, micron-scaled patterns on silicon and on several biomaterial polymers. In this method, a volatile zirconium alkoxide complex is first deposited at reduced pressure onto a surface pattern that is prepared by photolithography; the substrate is then heated to thermolyze the organic ligands to form surface-bound zirconium oxide patterns. The thickness of this oxide layer ranges from 10 to 70 nanometers, which is controlled by alkoxide complex deposition time. The oxide layer is treated with 1,4-butanediphosphonic acid to give a monolayer pattern whose composition and spatial conformity to the photolithographic mask are determined spectroscopically. NIH 3T3 fibroblasts and human bone marrow-derived mesenchymal stem cells attach and spread in alignment with the pattern without constraint by physical means or by arrays of cytophilic and cytophobic molecules. Cell alignment with the pattern is maintained as cells grow to form a confluent monolayer across the entire substrate surface. PMID:23936630

  6. Direct electron beam writing of gallium oxide on GaAs(111) As surfaces

    NASA Astrophysics Data System (ADS)

    Alonso, M.; Sacedón, J. L.; Soria, F.

    1984-07-01

    In this letter we show the possibility of a direct electron beam writing on GaAs (111) As by electron stimulated oxidation. An estimate of the writing velocity is also given. The analysis of the profiles of the oxide spots by Auger spectroscopy indicates the stability of the gallium oxide formed, and the post-oxidation formation of an As-rich interface.

  7. DIRECT-SEEDING OF COMMERCIAL TREES ON SURFACE-MINE SPOIL

    EPA Science Inventory

    Two small-seeded species, Paulownia (Paulownia tomentosa), and European alder (Alnus glutinosa) and three large seeded species, northern red oak (Quercus rubra), pin oak (Quercus palustris), and bur oak (Quercus macrocarpa) were direct-seeded on three aspects on minesoil in easte...

  8. Implementation and use of direct-flow connections in a coupled ground-water and surface-water model

    USGS Publications Warehouse

    Swain, Eric D.

    1994-01-01

    The U.S. Geological Survey's MODFLOW finite-difference ground-water flow model has been coupled with three surface-water packages - the MODBRANCH, River, and Stream packages - to simulate surface water and its interaction with ground water. Prior to the development of the coupling packages, the only interaction between these modeling packages was that leakage values could be passed between MODFLOW and the three surface-water packages. To facilitate wider and more flexible uses of the models, a computer program was developed and added to MODFLOW to allow direct flows or stages to be passed between any of the packages and MODFLOW. The flows or stages calculated in one package can be set as boundary discharges or stages to be used in another package. Several modeling packages can be used in the same simulation depending upon the level of sophistication needed in the various reaches being modeled. This computer program is especially useful when any of the River, Stream, or MODBRANCH packages are used to model a river flowing directly into or out of wetlands in direct connection with the aquifer and represented in the model as an aquifer block. A field case study is shown to illustrate an application.

  9. Direct surface analysis of pesticides on soil, leaves, grass, and stainless steel by static secondary ion mass spectrometry

    SciTech Connect

    Ingram, J.C.; Groenewold, G.S.; Appelhans, A.D.; Delmore, J.E.; Olson, J.E.; Miller, D.L.

    1997-02-01

    Direct surface analyses by static secondary ion mass spectrometry (SIMS) were performed for the following pesticides adsorbed on dandelion leaves, grass, soil, and stainless steel samples: alachlor, atrazine, captan, carbofuran, chlorpyrifos, chlorosulfuron, chlorthal-dimethyl, cypermethrin, 2,4-D, diuron, glyphosate, malathion, methomyl, methyl arsonic acid, mocap, norflurazon, oxyfluorfen, paraquat, temik, and trifluralin. The purpose of this study was to evaluate static SIMS as a tool for pesticide analysis, principally for use in screening samples for pesticides. The advantage of direct surface analysis compared with conventional pesticide analysis methods is the elimination of sample pretreatment including extraction, which streamlines the analysis substantially; total analysis time for SIMS analysis was ca. 10 min/sample. Detection of 16 of the 20 pesticides on all four substrates was achieved. Of the remaining four pesticides, only one (trifluralin) was not detected on any of the samples. The minimum detectable quantity was determined for paraquat on soil in order to evaluate the efficacy of using SIMS as a screening tool. Paraquat was detected at 3 pg/mm{sup 2} (c.a. 0.005 monolayers). The results of these studies suggest that SIMS is capable of direct surface detection of a range of pesticides, with low volatility, polar pesticides being the most easily detected. 25 refs., 2 figs., 2 tabs.

  10. Fabrication of hydrophobic structures on coronary stent surface based on direct three-beam laser interference lithography

    NASA Astrophysics Data System (ADS)

    Gao, Long-yue; Zhou, Wei-qi; Wang, Yuan-bo; Wang, Si-qi; Bai, Chong; Li, Shi-ming; Liu, Bin; Wang, Jun-nan; Cui, Cheng-kun; Li, Yong-liang

    2016-05-01

    To solve the problems with coronary stent implantation, coronary artery stent surface was directly modified by three-beam laser interference lithography through imitating the water-repellent surface of lotus leaf, and uniform micro-nano structures with the controllable period were fabricated. The morphological properties and contact angle (CA) of the microstructure were measured by scanning electron microscope (SEM) and CA system. The water repellency of stent was also evaluated by the contact and then separation between the water drop and the stent. The results show that the close-packed concave structure with the period of about 12 μm can be fabricated on the stent surface with special parameters (incident angle of 3°, laser energy density of 2.2 J·cm-2 and exposure time of 80 s) by using the three-beam laser at 1 064 nm, and the structure has good water repellency with CA of 120°.

  11. Flight paths of seabirds soaring over the ocean surface enable measurement of fine-scale wind speed and direction

    PubMed Central

    Yonehara, Yoshinari; Goto, Yusuke; Yoda, Ken; Watanuki, Yutaka; Young, Lindsay C.; Weimerskirch, Henri; Bost, Charles-André; Sato, Katsufumi

    2016-01-01

    Ocean surface winds are an essential factor in understanding the physical interactions between the atmosphere and the ocean. Surface winds measured by satellite scatterometers and buoys cover most of the global ocean; however, there are still spatial and temporal gaps and finer-scale variations of wind that may be overlooked, particularly in coastal areas. Here, we show that flight paths of soaring seabirds can be used to estimate fine-scale (every 5 min, ∼5 km) ocean surface winds. Fine-scale global positioning system (GPS) positional data revealed that soaring seabirds flew tortuously and ground speed fluctuated presumably due to tail winds and head winds. Taking advantage of the ground speed difference in relation to flight direction, we reliably estimated wind speed and direction experienced by the birds. These bird-based wind velocities were significantly correlated with wind velocities estimated by satellite-borne scatterometers. Furthermore, extensive travel distances and flight duration of the seabirds enabled a wide range of high-resolution wind observations, especially in coastal areas. Our study suggests that seabirds provide a platform from which to measure ocean surface winds, potentially complementing conventional wind measurements by covering spatial and temporal measurement gaps. PMID:27457932

  12. Flight paths of seabirds soaring over the ocean surface enable measurement of fine-scale wind speed and direction.

    PubMed

    Yonehara, Yoshinari; Goto, Yusuke; Yoda, Ken; Watanuki, Yutaka; Young, Lindsay C; Weimerskirch, Henri; Bost, Charles-André; Sato, Katsufumi

    2016-08-01

    Ocean surface winds are an essential factor in understanding the physical interactions between the atmosphere and the ocean. Surface winds measured by satellite scatterometers and buoys cover most of the global ocean; however, there are still spatial and temporal gaps and finer-scale variations of wind that may be overlooked, particularly in coastal areas. Here, we show that flight paths of soaring seabirds can be used to estimate fine-scale (every 5 min, ∼5 km) ocean surface winds. Fine-scale global positioning system (GPS) positional data revealed that soaring seabirds flew tortuously and ground speed fluctuated presumably due to tail winds and head winds. Taking advantage of the ground speed difference in relation to flight direction, we reliably estimated wind speed and direction experienced by the birds. These bird-based wind velocities were significantly correlated with wind velocities estimated by satellite-borne scatterometers. Furthermore, extensive travel distances and flight duration of the seabirds enabled a wide range of high-resolution wind observations, especially in coastal areas. Our study suggests that seabirds provide a platform from which to measure ocean surface winds, potentially complementing conventional wind measurements by covering spatial and temporal measurement gaps. PMID:27457932

  13. Surface-Directed Assembly of Sequence-Defined Synthetic Polymers into Networks of Hexagonally Patterned Nanoribbons with Controlled Functionalities.

    PubMed

    Chen, Chun-Long; Zuckermann, Ronald N; DeYoreo, James J

    2016-05-24

    The exquisite self-assembly of proteins and peptides in nature into highly ordered functional materials has inspired innovative approaches to the design and synthesis of biomimetic materials. While sequence-defined polymers hold great promise to mimic proteins and peptides for functions, controlled assembly of them on surfaces still remains underdeveloped. Here, we report the assembly of 12-mer peptoids containing alternating acidic and aromatic monomers into networks of hexagonally patterned nanoribbons on mica surfaces. Ca(2+)-carboxylate coordination creates peptoid-peptoid and peptoid-mica interactions that control self-assembly. In situ atomic force microscopy (AFM) shows that peptoids first assemble into discrete nanoparticles; these particles then transform into hexagonally patterned nanoribbons on mica surfaces. AFM-based dynamic force spectroscopy studies show that peptoid-mica interactions are much stronger than peptoid-peptoid interactions, illuminating the driving forces for mica-directed peptoid assembly. We further demonstrate the display of functional domains at the N-terminus of assembling peptoids to produce extended networks with similar hierarchical structures. This research demonstrates that surface-directed peptoid assembly can be used as a robust platform to develop biomimetic coating materials for applications. PMID:27136277

  14. Time-of-flight direct recoil spectrometry: Application to liquid surfaces and steps toward quantification

    NASA Astrophysics Data System (ADS)

    Tassotto, Michael

    2001-08-01

    Liquid surfaces are very abundant in nature. Despite the importance of the liquid interface in general, experimental molecular-level data was almost completely lacking prior to the last decade and a half. The intent of this work is to provide a means by which experimental data on the composition of liquid surfaces and the average orientation of their constituent molecules can be obtained in order to supplement data from molecular dynamics and related computational techniques. To this end, a unique time-of-flight (TOF) spectrometer, which constitutes the backbone of a new method to study liquid surfaces, was constructed and commissioned. The performance of the spectrometer is demonstrated in a number of exemplary TOF spectra obtained from liquid glycerol. Moving from mere qualitative to quantitative surface analysis necessitates the ability to relate physical quantities such as detection efficiencies, accurate signal intensities, and interaction cross-sections for all elements to one another. As a first step, the absolute detection efficiency of a channel electron multiplier, used as particle detector in the spectrometer, was measured for the noble gas ions He+, Ar+, and Xe +. The data obtained led to an empirically derived, general expression of the detection efficiency that is applicable to particles of any atomic number. The results also show that the threshold velocity, below which a multiplier does not respond to impinging ions, cannot be regarded as independent of the ion's atomic number as previously reported in the literature. The second step involved a comprehensive investigation of ion-atom interactions and spectral features that are crucial for the processing of experimental signal intensities for quantitative analysis. For this purpose, the binary collision code MARLOWE was used in extensive trajectory calculations simulating TOF spectra. The simulation results confirm the high surface sensitivity of the technique and reveal the strong dependence of the

  15. Design of LD in-band direct-pumping side surface polished micro-rod Nd:YVO4 laser

    NASA Astrophysics Data System (ADS)

    Wen-Qi, Zhang; Fei, Wang; Qiang, Liu; Ma-Li, Gong

    2016-02-01

    To diminish the thermal load, two ways, that is, in-band direct pumping and micro-rod crystal, could be adopted at the same time. The efficiency of LD in-band direct-pumping side surface polished micro-rod Nd:YVO4 laser is numerically analyzed. By optimizing parameters such as crystal length, laser mode radius, pump beam radius, doping concentration and crystal cross-section size, the overall efficiency can reach over 50%. It is found that with micro-rod crystal implemented in the laser oscillator, high overall efficiency LD in-band direct-pumping Nd:YVO4 laser could be realized. High efficiency combined with low thermal load makes this laser an outstanding scheme for building high-power Nd:YVO4 lasers.

  16. Hole Surface Trapping Dynamics Directly Monitored by Electron Spin Manipulation in CdS Nanocrystals.

    PubMed

    Li, Xiao; Feng, Donghai; Tong, Haifang; Jia, Tianqing; Deng, Li; Sun, Zhenrong; Xu, Zhizhan

    2014-12-18

    A new detection technique, pump-spin orientation-probe ultrafast spectroscopy, is developed to study the hole trapping dynamics in colloidal CdS nanocrystals. The hole surface trapping process spatially separates the electron-hole pairs excited by the pump pulse, leaves the core negatively charged, and thus enhances the electron spin signal generated by the orientation pulse. The spin enhancement transients as a function of the pump-orientation delay reveal a fast and a slow hole trapping process with respective time constants of sub-10 ps and sub-100 ps, orders of magnitude faster than that of carrier recombination. The power dependence of hole trapping dynamics elucidates the saturation process and relative number of traps, and suggests that there are three subpopulations of nanoparticles related to hole surface trapping, one with the fast trapping pathway only, another with the slow trapping pathway only, and the third with both pathways together. PMID:26273979

  17. Direct laser writing of 3D polymer micro/nanostructures on metallic surfaces

    NASA Astrophysics Data System (ADS)

    Rekštytė, Sima; Žukauskas, Albertas; Purlys, Vytautas; Gordienko, Yuri; Malinauskas, Mangirdas

    2013-04-01

    Spectra of fields for applications of polymeric 3D micro/nanostructures are rapidly widening thus demanding the development of versatile precise and efficient fabrication methods that can be used to process a variety of materials and could be implemented to form tiny devices on a variety of surfaces without influencing their structural quality. We present the latest results obtained using laser lithography approach: 3D polymeric structures with submicrometer spatial resolution on different opaque surfaces such as semiconductors (Si) and various metals (Cr, Al, Fe and Ti). The photostructuring was performed using a range of photosensitive materials such as acrylate based AKRE23, acrylated biodegradable PEG-DA-258, epoxy based mr-NIL 6000, hybrid organic-inorganic SZ2080 and Ormocore b59.

  18. Direct laser writing of 3D micro/nanostructures on opaque surfaces

    NASA Astrophysics Data System (ADS)

    Rekštytė, Sima; Žukauskas, Albertas; Purlys, Vytautas; Gordienko, Yuri; Malinauskas, Mangirdas

    2012-06-01

    Spectra of fields for applications of polymeric 3D micro/nanostructures is rapidly widening thus demanding the development of versatile precise and efficient fabrication methods that can be used to process a variety of materials and could be implemented to form tiny devices on a variety of surfaces without influencing their structural quality. We present the latest results obtained using laser lithography approach: 3D polymeric structures with submicrometer spatial resolution on different opaque surfaces such as semiconductors (Si) and various metals (Cr, Al, Fe, Ti). The photostructuring was performed using a range of photosensitive materials such as acrylate based AKRE23, acrylated biodegradable PEG-DA-258, epoxy based mr-NIL 6000, hybrid organic-inorganic SZ2080 and Ormocore b59.

  19. Direct Measurement of Surface Defect Level Distribution Associated with GaAs Antiphase Boundaries

    SciTech Connect

    Xu, Q.; Hsu, J.W.

    1999-01-01

    Using an electrostatic force microscope, we measure surface contact potential (SCP) variations across antiphase boundaries (APBs) on GaAs films grown on Ge substrates. The SCP at the APBs is consistently and reproducibly measured to be 30 mV higher than that at GaAs domains. This is due to Fermi levels being pinned at different surface states. The identical electrical behavior observed for all APBs indicates that they are the lowest energy {l_brace}110{r_brace} orientation. The sign of observed Fermi level shift is consistent with a prevalence of Ga-Ga bonds at real {l_brace}110{r_brace} APBs. {copyright} {ital 1999} {ital The American Physical Society}

  20. Atmospheric Pressure Surface Sampling/Ionization Techniques for Direct Coupling of Planar Separations with Mass Spectrometry

    SciTech Connect

    Pasilis, Sofie P; Van Berkel, Gary J

    2010-01-01

    Planar separations, which include thin layer chromatography and gel electrophoresis, are in widespread use as important and powerful tools for conducting separations of complex mixtures. To increase the utility of planar separations, new methods are needed that allow in-situ characterization of the individual components of the separated mixtures. A large number of atmospheric pressure surface sampling and ionization techniques for use with mass spectrometry have emerged in the past several years, and several have been investigated as a means for mass spectrometric read-out of planar separations. In this article, we review the atmospheric pressure surface sampling and ionization techniques that have been used for the read-out of planar separation media. For each technique, we briefly explain the operational basics and discuss the analyte type for which it is appropriate and some specific applications from the literature.

  1. A Study of Surface Directional Reflectance Properties To Enhance Aerosol Retrieval Capability Over Land Using MISR Data

    NASA Astrophysics Data System (ADS)

    Martonchik, J.; Bull, M.; Dang, V. T.

    2007-12-01

    The nearly-simultaneous multiangle, multispectral,radiometrically calibrated imagery of the Multi-angle Imaging SpectroRadiometer (MISR) has a nominal spatial resolution of 1.1 km and covers the globe in about 9 days. Once the imagery is co-located and co-registered, an aerosol retrieval is performed, over both land and ocean, using an aerosol model look-up database. The technique for aerosol retrieval over ocean is conventional, namely assuming that measurements in the red and near-IR spectral bands are measurements of radiance scattered only within the atmosphere. Over land, however, the radiance measurements generally are a combination of atmosphereric and surface scattering events, the proportions which vary with wavelength and usually are not known a priori. This makes the retrieval of aersosls over land a much more intractable process. In fact any retrieval of aerosol properties over land from space with a passive instrument requires some constraints to be placed on the surface reflectance properties so that atmospheric radiance can be effectively separated from surface reflected radiance in the measurements. To facilitate the MISR standard aerosol retrieval process over land, it is assumed that the surface directional reflectance at any given location has the same (or very similar) angular form or shape in the different spectral bands. There is some theoretical basis for this assumption, especially when the surface spectral albedos have similar values, but an empirical verification in the context of multiangle remote sensing data is necessary if further progress in aerosol retrieval quality over land is to be made. This poster presents some results of a study to test the surface directional reflectance spectral similarity assumption. It focuses on MISR data taken over a number of AERONET sunphotometer sites with different surface conditions, ranging from urban areas to forested regions, at a spatial scale of 1.1 km. In contrast to MISR data alone, the

  2. Metal delocalization and surface decoration in direct-write nanolithography by electron beam induced deposition

    SciTech Connect

    Gopal, Vidyut; Stach, Eric A.; Radmilovic, Velimir R.; Mowat, Ian A.

    2004-07-05

    The ability to interconnect different nanostructures is crucial to nanocircuit fabrication efforts. A simple and versatile direct-write nanolithography technique for the fabrication of interconnects is presented. Decomposition of a metalorganic precursor gas by a focused electron beam resulted in the deposition of conductive platinum nanowires. The combination of in situ secondary electron imaging with deposition allows for the simultaneous identification and interconnection of nanoscale components. However, the deposition was not entirely localized to the electron beam raster area, as shown by secondary ion mass spectrometry measurements. The electrical impact of the metallic spread was quantified by measuring the leakage current between closely spaced wires. The origins of the spread and strategies for minimizing it are discussed. These results indicate that, while this direct-write methodology is a convenient one for rapid prototyping of nanocircuits, caution must be used to avoid unwanted decoration of nanostructures by metallic species.

  3. Tangible display systems: direct interfaces for computer-based studies of surface appearance

    NASA Astrophysics Data System (ADS)

    Darling, Benjamin A.; Ferwerda, James A.

    2010-02-01

    When evaluating the surface appearance of real objects, observers engage in complex behaviors involving active manipulation and dynamic viewpoint changes that allow them to observe the changing patterns of surface reflections. We are developing a class of tangible display systems to provide these natural modes of interaction in computer-based studies of material perception. A first-generation tangible display was created from an off-the-shelf laptop computer containing an accelerometer and webcam as standard components. Using these devices, custom software estimated the orientation of the display and the user's viewing position. This information was integrated with a 3D rendering module so that rotating the display or moving in front of the screen would produce realistic changes in the appearance of virtual objects. In this paper, we consider the design of a second-generation system to improve the fidelity of the virtual surfaces rendered to the screen. With a high-quality display screen and enhanced tracking and rendering capabilities, a secondgeneration system will be better able to support a range of appearance perception applications.

  4. Direct electrospray deposition of graphene onto paper and effect of binder on its surface resistance.

    PubMed

    Lee, Chang Kee; Park, Kwan Woo; Hwang, Sung Wook; Lee, Sang Bong; Shim, Jin Kie

    2013-10-01

    The electrospray-deposited patterns of graphene onto filter paper were characterized to study the effect of cellulose acetate phthalate (CAP) binder on the surface resistance of the resulting paper. The amount of CAP determines the extent of penetration of graphene into the heterogeneous networks, because graphene gets anchored and crowded into the network with CAP. A graphene-dispersed ink was prepared in water using sodium dodecylbenzenesulfonate, and this ink was used to fabricate graphene-coated paper (GCP) by electrospray deposition technique. The SEM images of the GCP revealed the impregnation of graphene into the filter paper. The mechanical properties and surface resistance of the GCP were studied using a universal testing machine (UTM) and indigenous four-probe meter, respectively. The low-cost GCP prepared in this study showed relatively low surface resistance (96.2 omega/sq) owing to the effective electro-conducting pathway provided by the crowded and impregnated deposition of grapheme onto the filter paper. Consequently, CAP improved the electrical and mechanical characteristics of GCP, even though only a small amount of graphene was used during deposition. PMID:24245203

  5. Delineating the pathways for the site-directed synthesis of individual nanoparticles on surfaces

    PubMed Central

    Liu, Guoliang; Eichelsdoerfer, Daniel J.; Rasin, Boris; Zhou, Yu; Brown, Keith A.; Liao, Xing; Mirkin, Chad A.

    2013-01-01

    Although nanoparticles with exquisite properties have been synthesized for a variety of applications, their incorporation into functional devices is challenging owing to the difficulty in positioning them at specified sites on surfaces. In contrast with the conventional synthesis-then-assembly paradigm, scanning probe block copolymer lithography can pattern precursor materials embedded in a polymer matrix and synthesize desired nanoparticles on site, offering great promise for incorporating nanoparticles into devices. This technique, however, is extremely limited from a materials standpoint. To develop a materials-general method for synthesizing nanoparticles on surfaces for broader applications, a mechanistic understanding of polymer-mediated nanoparticle formation is crucial. Here, we design a four-step synthetic process that enables independent study of the two most critical steps for synthesizing single nanoparticles on surfaces: phase separation of precursors and particle formation. Using this process, we elucidate the importance of the polymer matrix in the diffusion of metal precursors to form a single nanoparticle and the three pathways that the precursors undergo to form nanoparticles. Based on this mechanistic understanding, the synthetic process is generalized to create metal (Au, Ag, Pt, and Pd), metal oxide (Fe2O3, Co2O3, NiO, and CuO), and alloy (AuAg) nanoparticles. This mechanistic understanding and resulting process represent a major advance in scanning probe lithography as a tool to generate patterns of tailored nanoparticles for integration with solid-state devices. PMID:23277538

  6. Directed Self-assembly of Nanoparticles at the Polymer Surface by Highly Compressible Supercritical Carbon Dioxide

    SciTech Connect

    M Asada; P Gin; M Endoh; S Satija; T Taniguchi; T Koga

    2011-12-31

    We report a versatile route for self-assembly of polymer-soluble nanoparticles at the polymer surface using highly compressible supercritical carbon dioxide (scCO{sub 2}). Polystyrene and poly(methyl methacrylate)-based nanocomposite thin films with functionalized polyhedral oligomeric silsesquioxane and phenyl C{sub 61} butyric acid methyl ester nanoparticles were prepared on Si substrates and exposed to scCO{sub 2} at different pressures under the isothermal condition of 36 C. The resultant structures could be then preserved by the vitrification process of the glassy polymers via quick pressure quench to atmospheric pressure and subsequently characterized by using various surface sensitive experimental techniques in air. We found that the surface segregation of these nanoparticles is induced in the close vicinity of P = 8.2 MPa where the excess absorption of the fluid into the polymers maximizes. However, when the film thickness becomes less than about 4R{sub g} thick (where R{sub g} is the radius of polymer gyration), the uniform dispersion of the nanoparticles is favorable instead even at the same CO{sub 2} conditions. We clarify that the phase transition is correlated with the emergence of a concentration gradient of the fluid at the polymer/CO{sub 2} interface and is a general phenomenon for different polymer-nanoparticle interactions.

  7. Direct observation of DNA motions into solid state nanopore under applied electrical potentials on conductive surface

    NASA Astrophysics Data System (ADS)

    Hayashi, Yoshitaka; Ando, Genki; Idutsu, Ichiro; Mitsui, Toshiyuki

    2011-03-01

    Solid state nanopore is one of emerging methods for rapid single DNA molecule detection because the translocation of the DNA though nanopore produces ionic current changes. One of issues in this method is clogging long DNA molecules. Once DNA molecules clogged, the molecules are rarely removed by varying or switching the polarity of applied bias voltages across the nanopore. We develop a modified nanopore by 50nm Au coating on top of the nanopore surface to be able to remove the clogged DNA molecules during the DNA translocation experiment. Fluorescence microscopy was implemented for observation of stained DNA molecules. The nanopores with diameters near 100 nm can be used initially. DNA translocation rates changes dramatically by tuning the applied electrical potentials on surface higher or lower than the potentials across the nanopore. Furthermore, the Au potentials modifies IV characteristic of the ionic current across the nanopore which is similar to the gate voltages controlling the SD current in FET. We will discuss the influence of surface potential on DNA motion and translocation and clogged DNA molecules. Finally, we will present the recent results of DNA translocation into the SiN-Au-SiO2 nanopore and discuss the effect of applied voltages on Au.

  8. Surface-modified Y zeolite-filled chitosan membrane for direct methanol fuel cell

    NASA Astrophysics Data System (ADS)

    Wu, Hong; Zheng, Bin; Zheng, Xiaohong; Wang, Jingtao; Yuan, Weikang; Jiang, Zhongyi

    Hybrid membranes composed of chitosan (CS) as organic matrix and surface-modified Y zeolite as inorganic filler are prepared and their applicability for DMFC is demonstrated by methanol permeability, proton conductivity and swelling property. Y zeolite is modified using silane coupling agents, 3-aminopropyl-triethoxysilane (APTES) and 3-mercaptopropyl-trimethoxysilane (MPTMS), to improve the organic-inorganic interfacial morphology. The mercapto group on MPTMS-modified Y zeolite is further oxidized into sulfonic group. Then, the resultant surface-modified Y zeolites with either aminopropyl groups or sulfonicpropyl groups are mixed with chitosan in acetic acid solution and cast into membranes. The transitional phase generated between chitosan matrix and zeolite filler reduces or even eliminates the nonselective voids commonly exist at the interface. The hybrid membranes exhibit a significant reduction in methanol permeability compared with pure chitosan and Nafion117 membranes, and this reduction extent becomes more pronounced with the increase of methanol concentration. By introducing -SO 3H groups onto zeolite surface, the conductivity of hybrid membranes is increased up to 2.58 × 10 -2 S cm -1. In terms of the overall selectivity index (β = σ/ P), the hybrid membrane is comparable with Nafion117 at low methanol concentration (2 mol L -1) and much better (three times) at high methanol concentration (12 mol L -1).

  9. Phase transformations on the surface of YAG composite ceramics under the action of directed laser treatment

    NASA Astrophysics Data System (ADS)

    Vlasova, M.; Márquez Aguilar, P. A.; Escobar Martinez, A.; Kakazey, M.; Guardian Tapia, R.; Trujillo Estrada, A.

    2016-07-01

    The laser treatment of composite ceramics based on Y3Al5O12 with Y2Ti2O7, Al2Y4O9, and Al2O3 additives is accompanied by the melting of the surface layer and formation of tracks. In the volume of tracks, the partial dissociation of Y3Al5O12, Y2Ti2O7, and Al2Y4O9, and the formation of new phases such as YAlO3 of orthorhombic and hexagonal modifications along with the appearance of additional content of Y3Al5O12 and Al2O3 are observed. The content of all these phases depends on the irradiation mode and the phase composition of the ceramics. With increase in the corundum content in ceramic specimens, in the tracks, the Al2O3 content increases, and the Y3Al5O12 content decreases. In the volume of tracks, Y3Al5O12 crystallites are textured. The size of YAG crystallites and their crystallographic texturing depend on the irradiation mode and Y3Al5O12/Al2O3 phase ratio. On the surface of tracks, a layer enriched in YAlO3 forms. Thus, as a result of laser treatment, on the surface of the ceramics, a two-layer coating with a radically new phase composition and specific texture of Y3Al5O12 crystallites forms.

  10. Directed Nanoparticle Assembly onto Random Copolymer Templates: Kinetics and Surface Considerations

    NASA Astrophysics Data System (ADS)

    McConnell, Marla; Yang, Shu; Composto, Russell

    2008-03-01

    Recent efforts have focused on the development of nanoparticle arrays with controlled spacing. In this study, poly(styrene-ran-acrylic acid) films were prepared by spin-casting poly(styrene-ran-t-butyl acrylate), followed by thermal deprotection. Silica nanoparticles (10-15 nm in diameter) coated with self-assembled monolayers (SAMs) of (3-aminopropyl)triethoxysilane were covalently attached to the PS-ran-PAA films with an EDC/NHS coupling reaction. To measure the kinetics of nanoparticle attachment, films of either 25 or 50 weight percent acrylic acid were reacted with nanoparticle suspensions from 0.005 to 0.1 weight percent for varying lengths of time. SEM imaging of the nanoparticle surfaces showed that the particles were well dispersed, and that particle coverage increased with increasing AA and nanoparticle concentration, and time. SAMs containing an acrylic acid moiety were used as a non-swelling control surface, and particle attachment to these surfaces follow different kinetics than those observed for the polymeric substrates. The swelling of the polymeric substrates under the reaction conditions was found to influence the observed coverage kinetics, so film swelling was monitored with environmental AFM.

  11. High sensitivity of diamond resonant microcantilevers for direct detection in liquids as probed by molecular electrostatic surface interactions.

    PubMed

    Bongrain, Alexandre; Agnès, Charles; Rousseau, Lionel; Scorsone, Emmanuel; Arnault, Jean-Charles; Ruffinatto, Sébastien; Omnès, Franck; Mailley, Pascal; Lissorgues, Gaëlle; Bergonzo, Philippe

    2011-10-01

    millinewtons/meter, thus opening the way for diamond microcantilevers to direct sensing applications in liquids. The evolution of the diamond surface chemistry was also investigated using X-ray photoelectron spectroscopy. PMID:21805979

  12. Nanostructured surface modification of ceramic-based microelectrodes to enhance biocompatibility for a direct brain-machine interface.

    PubMed

    Moxon, Karen A; Kalkhoran, Nader M; Markert, Mathew; Sambito, Marisa A; McKenzie, J L; Webster, J Thomas

    2004-06-01

    Many different types of microelectrodes have been developed for use as a direct Brain-Machine Interface (BMI) to chronically recording single neuron action potentials from ensembles of neurons. Unfortunately, the recordings from these microelectrode devices are not consistent and often last for only a few weeks. For most microelectrode types, the loss of these recordings is not due to failure of the electrodes but most likely due to damage to surrounding tissue that results in the formation of nonconductive glial-scar. Since the extracellular matrix consists of nanostructured microtubules, we have postulated that neurons may prefer a more complex surface structure than the smooth surface typical of thin-film microelectrodes. We, therefore, investigated the suitability of a nano-porous silicon surface layer to increase the biocompatibility of our thin film ceramic-insulated multisite electrodes. In-vitro testing demonstrated, for the first time, decreased adhesion of astrocytes and increased extension of neurites from pheochromocytoma cells on porous silicon surfaces compared to smooth silicon sufaces. Moreover, nano-porous surfaces were more biocompatible than macroporous surfaces. Collectively, these results support our hypothesis that nano-porous silicon may be an ideal material to improve biocompatibility of chronically implanted microelectrodes. We next developed a method to apply nano-porous surfaces to ceramic insulated, thin-film, microelectrodes and tested them in vivo. Chronic testing demonstrated that the nano-porous surface modification did not alter the electrical properties of the recording sites and did not interfere with proper functioning of the microelectrodes in vivo. PMID:15188854

  13. The role of direct photolysis and indirect photochemistry in the environmental fate of ethylhexyl methoxy cinnamate (EHMC) in surface waters.

    PubMed

    Vione, D; Calza, P; Galli, F; Fabbri, D; Santoro, V; Medana, C

    2015-12-15

    The aquatic environmental fate of ethylhexyl methoxy cinnamate (EHMC), one of the most used UVB filters worldwide, was studied by assessing its environmental persistence and photoinduced transformations. The role of direct and indirect photolysis was evaluated. Direct photolysis was shown to play a key role, and this process is expected to be the main attenuation route of EHMC in sunlit surface waters. In contrast, the reaction with OH radicals would be negligible and that with (3)CDOM* would at most be a secondary process. The measurement of the quantum yield of direct photolysis and of the rate constants of reaction with photogenerated transient species (or, sometimes, the use of reasonable values for the latter) allowed the prediction of the EHMC half-life time in surface waters, by means of a validated photochemical model. The predicted EHMC lifetime is of the order of hours to a few days in fair-weather summertime, and the main factors controlling the EHMC phototransformation in sunlit surface waters would be the water depth and the dissolved organic carbon (DOC) content. The formation of transformation products (TPs) was followed as well via HPLC/HRMS. Three TPs were detected in the samples exposed to UVA radiation, while one additional TP was detected in the samples exposed to UVB radiation. The detected TPs comprised 4-methoxybenzaldehyde, a hydroxylated derivative and dimeric species. Through the use of heterogeneous photocatalysis with TiO2, seven additional TPs were identified, most of them resulting from the further degradation of primary TPs formed through direct photolysis and that might be detected in aquatic systems as well. The photodegradation of EHMC in the presence of TiO2 yielded more toxic TPs than the parent compound (as determined with the Vibrio fischeri Microtox assay). The increased toxicity is partially accounted for by the formation of 4-methoxybenzaldehyde. PMID:26282740

  14. Direct mapping of ion diffusion times on LiCoO2 surfaces with nanometer resolution

    SciTech Connect

    Guo, Senli; Jesse, Stephen; Kalnaus, Sergiy; Balke, Nina; Daniel, Claus; Kalinin, Sergei V

    2011-01-01

    The strong coupling between the molar volume and mobile ion concentration in ionically-conductive solids is used for spatially-resolved studies of ionic transport on the polycrystalline LiCoO2 surface by time-resolved spectroscopy. Strong variability between ionic transport at the grain boundaries and within the grains is observed, and the relationship between relaxation and hysteresis loop formation is established. The use of the strain measurements allows ionic transport be probed on the nanoscale, and suggests enormous potential for probing ionic materials and devices.

  15. Direct observation of interaction between proteins and blood-compatible polymer surfaces.

    PubMed

    Hayashi, Tomohiro; Tanaka, Masaru; Yamamoto, Sadaaki; Shimomura, Masatsugu; Hara, Masahiko

    2007-12-01

    The adhesion force between blood-compatible polymer (poly(2-methoxyethyl acrylate: PMEA) and proteins (fibrinogen and bovine serum albumin (BSA)) were measured by atomic force microscopy. The PMEA surface showed almost no adhesion to native protein molecules, whereas non-blood-compatible poly(n-butyl acrylate): PBA strongly adhered to proteins. Interestingly, adhesion did appear between PMEA and proteins when the proteins were denatured. In all cases, these trends were not affected by the conditions of the solution. Combining the results with previous reports, the authors conclude that interfacial water molecules play a critical role in the protein resistance of PMEA. PMID:20408647

  16. Direct Quantification of DNA Base Composition by Surface-Enhanced Raman Scattering Spectroscopy.

    PubMed

    Morla-Folch, Judit; Alvarez-Puebla, Ramon A; Guerrini, Luca

    2016-08-01

    Design of ultrasensitive DNA sensors based on the unique physical properties of plasmonic nanostructures has become one of the most exciting areas in nanomedicine. However, despite the vast number of proposed applications, the determination of the base composition in nucleic acids, a fundamental parameter in genomic analyses and taxonomic classification, is still restricted to time-consuming and poorly sensitive conventional methods. Herein, we demonstrate the possibility of determining the base composition in single- and double-stranded DNA by using a simple, low-cost, high-throughput, and label-free surface-enhanced Raman scattering (SERS) method in combination with cationic nanoparticles. PMID:27441814

  17. Direct On-Surface Patterning of a Crystalline Laminar Covalent Organic Framework Synthesized at Room Temperature.

    PubMed

    de la Peña Ruigómez, Alejandro; Rodríguez-San-Miguel, David; Stylianou, Kyriakos C; Cavallini, Massimiliano; Gentili, Denis; Liscio, Fabiola; Milita, Silvia; Roscioni, Otello Maria; Ruiz-González, Maria Luisa; Carbonell, Carlos; Maspoch, Daniel; Mas-Ballesté, Rubén; Segura, José Luis; Zamora, Félix

    2015-07-20

    We report herein an efficient, fast, and simple synthesis of an imine-based covalent organic framework (COF) at room temperature (hereafter, RT-COF-1). RT-COF-1 shows a layered hexagonal structure exhibiting channels, is robust, and is porous to N2 and CO2 . The room-temperature synthesis has enabled us to fabricate and position low-cost micro- and submicropatterns of RT-COF-1 on several surfaces, including solid SiO2 substrates and flexible acetate paper, by using lithographically controlled wetting and conventional ink-jet printing. PMID:26095511

  18. Simultaneous Retrieval of Aerosol and Surface Optical Properties from Combined Airborne- and Ground-Based Direct and Diffuse Radiometric Measurements

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; Dubovik, O.; King, M. D.; Sinyuk, A.

    2010-01-01

    This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET) method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR) and AERONET data). A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34-2.30 m) and angular range (180 ) of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a) the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b) the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c) Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM) Central Facility, Oklahoma, USA, and (d) the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  19. Real-time monitoring of the progress of polymerization reactions directly on surfaces at open atmosphere by ambient mass spectrometry.

    PubMed

    Nørgaard, Asger W; Vaz, Boniek G; Lauritsen, Frants R; Eberlin, Marcos N

    2010-12-15

    The progress of an on-surface polymerization process involving alkyl and perfluoroalkyl silanes and siloxanes was monitored in real-time via easy ambient sonic spray ionization mass spectrometry (EASI-MS). When sprayed on surfaces, the organosilicon compounds present in commercially available nanofilm products (NFPs) react by condensation to form a polymeric coating. A NFP for coating of floor materials (NFP-1) and a second NFP for coating tiles and ceramics (NFP-2) were applied to glass, filter paper or cotton surfaces and the progress of the polymerization was monitored by slowly scanning the surface. Via EASI(+)-MS monitoring, significant changes in the composition of hydrolysates and condensates of 1H,1H,2H,2H-perfluorooctyl triisopropoxysilane (NFP-1) and hexadecyl triethoxysilane (NFP-2) were observed over time. The abundances of the hydrolyzed species decreased compared with those of the non-hydrolysed species for both NFP-1 and NFP-2 and the heavier oligomers became relatively more abundant over a period of 15-20 min. A similar tendency favouring the heavier oligomers was observed via EASI(-)-MS. This work illustrates the potential of ambient mass spectrometry for the direct monitoring of polymerization reactions on surfaces. PMID:21072800

  20. Simultaneous retrieval of aerosol and surface optical properties from combined airborne- and ground-based direct and diffuse radiometric measurements

    NASA Astrophysics Data System (ADS)

    Gatebe, C. K.; Dubovik, O.; King, M. D.; Sinyuk, A.

    2010-03-01

    This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET) method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR) and AERONET data). A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34-2.30 μm) and angular range (180°) of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a) the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b) the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c) Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM) Central Facility, Oklahoma, USA, and (d) the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  1. Simultaneous retrieval of aerosol and surface optical properties from combined airborne- and ground-based direct and diffuse radiometric measurements

    NASA Astrophysics Data System (ADS)

    Gatebe, C. K.; Dubovik, O.; King, M. D.; Sinyuk, A.

    2009-12-01

    This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET) method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer, CAR, and AERONET data). A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34-2.30 μm) and angular range (180°) of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a) the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b) the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c) Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM) Central Facility, Oklahoma, USA, and (d) the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  2. Direct inversion of surface wave dispersion for three-dimensional shallow crustal structure based on ray tracing: methodology and application

    NASA Astrophysics Data System (ADS)

    Fang, Hongjian; Yao, Huajian; Zhang, Haijiang; Huang, Yu-Chih; van der Hilst, Robert D.

    2015-06-01

    We propose a method to invert surface wave dispersion data directly for 3-D variations of shear wave speed, that is, without the intermediate step of phase or group velocity maps, using frequency-dependent ray tracing and a wavelet-based sparsity-constrained tomographic inversion. A fast marching method is used to compute, at each period, surface wave traveltimes and ray paths between sources and receivers. This avoids the assumption of great-circle propagation that is used in most surface wave tomographic studies, but which is not appropriate in complex media. To simplify the problem we consider quasi-stratified media with smoothly varying seismic properties. We represent the 3-D shear wave speed model by means of 1-D profiles beneath grid points, which are determined from all dispersion data simultaneously using a wavelet-based sparsity-constrained tomographic method. The wavelet coefficients of the wave speed model are estimated with an iteratively reweighted least squares algorithm, and upon iteration the surface wave ray paths and the data sensitivity matrix are updated using the newly obtained wave speed model. To demonstrate its feasibility, we apply the method to determine the 3-D shallow crustal shear wave speed variations in the Taipei basin of Taiwan using short period interstation Rayleigh wave phase velocity dispersion measurements extracted from the ambient noise cross-correlation method. The results are consistent with previous studies and reveal strong shallow crustal heterogeneity that correlates with surface geology.

  3. Effect of antenna geometry and plasma surface impedance on the directivity of fast wave antenna radiation

    SciTech Connect

    Heikkinen, J.A.; Pavlov, I.P.

    1996-02-01

    The fairly large poloidal directivity of a radiated fast wave spectrum related to the wave polarization relative to the ion gyration can be further enhanced by the nonperpendicular angle between the antenna current strap and the magnetic field. The latter is shown to be responsible also for the asymmetry in the parallel wavenumber spectrum of an unphased antenna, and can lead to deviations of order {le}30{percent} in the corresponding spectrum of a phased antenna array. The consequences of the observed effects to the antenna performance in the current drive applications as well as in excitation of poloidally asymmetric spectra are discussed. {copyright} {ital 1996 American Institute of Physics.}

  4. Detection of explosives as negative ions directly from surfaces using a miniature mass spectrometer.

    PubMed

    Sanders, Nathaniel L; Kothari, Sameer; Huang, Guangming; Salazar, Gary; Cooks, R Graham

    2010-06-15

    A miniature mass spectrometer was modified by incorporating a conversion dynode detector system and the appropriate electronics to allow the detection of negatively charged ions. The system was fitted with a discontinuous atmospheric pressure interface to allow external ionization by desorption electrospray ionization (DESI). It was used to identify the explosives 2,4,6-trinitrotoluene (TNT), 2,4,6-trinitrophenyl-N-methylnitramine (Tetryl), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX) present in trace amounts on surfaces (500 pg/cm(2) to 1 microg/cm(2)) both individually and as components of mixtures. Detection of explosives was demonstrated in the presence of an interfering matrix. A large surface (5 cm x15 cm) on which 1 microg/cm(2) samples of TNT, Tetryl, and HMX had been spotted randomly was interrogated in 22 s in the full scan mode, and signals characteristic of each of the explosives were observed in the DESI mass spectrum. PMID:20496904

  5. Surface acoustic wave amplification by direct current-voltage supplied to graphene film

    SciTech Connect

    Insepov, Z.; Emelin, E.; Kononenko, O.; Roshchupkin, D. V.; Tnyshtykbayev, K. B.; Baigarin, K. A.

    2015-01-12

    Using a high-resolution X-Ray diffraction measurement method, the surface acoustic wave (SAW) propagation in a graphene film on the surface of a Ca{sub 3}TaGa{sub 3}Si{sub 2}O{sub 14} (CTGS) piezoelectric crystal was investigated, where an external current was driven across the graphene film. Here, we show that the application of the DC field leads to a significant enhancement of the SAW magnitude and, as a result, to amplification of the diffraction satellites. Amplification of 33.2 dB/cm for the satellite +1, and of 13.8 dB/cm for the satellite +2, at 471 MHz has been observed where the external DC voltage of +10 V was applied. Amplification of SAW occurs above a DC field much smaller than that of a system using bulk semiconductor. Theoretical estimates are in reasonable agreement with our measurements and analysis of experimental data for other materials.

  6. Different Sialoside Epitopes on Collagen Film Surfaces Direct Mesenchymal Stem Cell Fate.

    PubMed

    Sgambato, Antonella; Russo, Laura; Montesi, Monica; Panseri, Silvia; Marcacci, Maurilio; Caravà, Elena; Raspanti, Mario; Cipolla, Laura

    2016-06-22

    3'-Sialyllactose and 6'-sialyllactose have been covalently linked to collagen films. Preliminary in vitro study on the behavior of mesenchymal stem cells (MSCs) in terms of cell viability, proliferation and induction of osteogenic and chondrogenic related genes has been performed. Results indicate that sialoside epitopes on collagen surface represent a suitable support for MSCs adhesion and cell proliferation, moreover, the neoglycosylation provide MSCs with different and specific stimuli, saccharide-type depending, in term of expression of osteogenic and chondrogenic related genes. In particular, 3'-sialyllactose significantly upregulate the expression of RUNX2 and ALP, well-known markers of osteogenesis, whereas 6'-sialyllactose up-regulate the expression of chondrocyte marker ACAN. Because no osteogenic or chondrogenic supplements in culture media were added, the inductive effect in terms of increased gene expression has to be ascribed uniquely to collagen surface functionalization. These results support the promising role of sialosides in the regulation of stem cells fate and open brilliant perspective for the future use of the presented approach toward osteochondral tissue engineering applications. PMID:26697920

  7. Direct UV/Optical Imaging of Stellar Surfaces: The Stellar Imager (SI) Vision Mission

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Lyon, Richard G.; Schrijver, Carolus; Karovska, Margarita; Mozurkewich, David

    2007-01-01

    The Stellar Imager (SI) is a UV/optical, space-based interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives, in support of the Living with a Star program in the Exploration Era. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in thc Universe. SI is a "Flagship and Landmark Discovery Mission" in the 2005 Sun Solar System Connection (SSSC) Roadmap and a candidate for a "Pathways to Life Observatory" in the Exploration of the Universe Division (EUD) Roadmap. We discuss herein the science goals of the SI Mission, a mission architecture that could meet those goals, and the technologies needed to enable this mission. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/.

  8. Effects of piston surface treatments on performance and emissions of a methanol-fueled, direct injection, stratified charge engine

    SciTech Connect

    West, B.; Green, J.B.

    1994-07-01

    The purpose of this study was to investigate the effects of thermal barrier coatings and/or surface treatments on the performance and emissions of a methanol-fueled, direct-injection, stratified-charge (DISC) engine. A Ricardo Hydra Mark III engine was used for this work and in previous experiments at Oak Ridge National Laboratory (ORNL). The primary focus of the study was to examine the effects of various piston insert surface treatments on hydrocarbon (HC) and oxides of nitrogen (NO{sub x}) emissions. Previous studies have shown that engines of this class have a tendency to perform poorly at low loads and have high unburned fuel emissions. A blank aluminum piston was modified to employ removable piston bowl inserts. Four different inserts were tested in the experiment: aluminum, stainless steel with a 1.27-mm (0.050-in.) air gap (to act as a thermal barrier), and two stainless steel/air-gap inserts with coatings. Two stainless steel inserts were dimensionally modified to account for the coating thickness (1.27-mm) and coated identically with partially stabilized zirconia (PSZ). One of the coated inserts then had an additional seal-coat applied. The coated inserts were otherwise identical to the stainless steel/air-gap insert (i.e., they employed the same 1.27-mm air gap). Thermal barrier coatings were employed in an attempt to increase combustion chamber surface temperatures, thereby reducing wall quenching and promoting more complete combustion of the fuel in the quench zone. The seal-coat was applied to the zirconia to reduce the surface porosity; previous research suggested that despite the possibly higher surface temperatures obtainable with a ceramic coating, the high surface area of a plasma-sprayed coating may actually allow fuel to adhere to the surface and increase the unburned fuel emissions and fuel consumption.

  9. Templating Biomineralization: Surface Directed Protein Self-assembly and External Magnetic Field Stimulation of Osteoblasts

    NASA Astrophysics Data System (ADS)

    Ba, Xiaolan

    biomineralization is investigated by SEM, GIXRD and energy dispersive X-ray spectroscopy (EDXS). Gene expression during the exposure of SMF is also studies by RT-PCR. The results indicated that exposure to SMF induces osteoblasts to produce larger quantities of HA, with higher degree of crystalline order. The controlling and understanding of protein on the surface is of great interest in biomedical application such as implant medicine, biosensor design, food processing, and chromatographic separations. The adsorbed protein onto the surface significantly determines the performance of biomaterials in a biological environment. Recent studies have suggested that the preservation of the native secondary structure of protein adsorbed is essential for biological application. In order to manipulate protein adsorption and design biocompatible materials, the mechanisms underlying protein-surface interactions, especially how surface properties of materials induce conformational changes of adsorbed proteins, needs to be well understood. Here we demonstrated that even though SPS is a necessary condition, it is not sufficient. We show that low substrate conductivity as well as proper salt concentration are also critical in sustained protein adsorption continuously. These factors allow one to pattern regions of different conducting properties and for the first time patterns physiologically relevant protein structures. Here we show that we can achieve patterned biomineralized regimes, both with plasma proteins in a simple and robust manner without additional functionalization or application of electrochemical gradients. Since the data indicate that the patterns just need to differ in electrical conductivity, rather than surface chemistry, we propose that the creation of transient image charges, due to incomplete charge screening, may be responsible for sustain the driving force for continual protein absorption.

  10. Elucidation of direct competition and allosteric modulation of small-molecular-weight protein ligands using surface plasmon resonance methods.

    PubMed

    Huber, Walter; Sinopoli, Alessandro; Kohler, Josiane; Hug, Melanie; Ruf, Armin; Huber, Sylwia

    2015-08-01

    The present work introduces a surface plasmon resonance-based method for the discrimination of direct competition and allosteric effects that occur in ternary systems comprising a receptor protein and two small-molecular-weight ligands that bind to it. Fatty acid binding protein 4, fructose-1,6-bisphosphatase and human serum albumin were used as model receptor molecules to demonstrate the performance of the method. For each of the receptor molecules, pairs of ligand molecules were selected for which either direct competition or an allosteric effect had already been determined by other methods. The method of discrimination introduced here is based on the surface plasmon resonance responses observed at equilibrium when an immobilized receptor protein is brought into contact with binary mixtures of interacting ligands. These experimentally determined responses are compared with the responses calculated using a theoretical model that considers both direct competition and allosteric ligand interaction modes. This study demonstrates that the allosteric ternary complex model, which enables calculation of the fractional occupancy of the protein by each ligand in such ternary systems, is well suited for the theoretical calculation of these types of responses. For all of the ternary systems considered in this work, the experimental and calculated responses in the chosen concentration ratio range were identical within a five-σ confidence interval when the calculations considered the correct interaction mode of the ligands (direct competition or different types of allosteric regulation), and in case of allosteric modulation, also the correct strength of this effect. This study also demonstrates that the allosteric ternary complex model-based calculations are well suited to predict the ideal concentration ratio range or even single concentration ratios that can serve as hot spots for discrimination, and such hot spots can drastically reduce the numbers of measurements needed

  11. Directional short wind wave spectra derived from the sea surface photography

    NASA Astrophysics Data System (ADS)

    Dulov, Vladimir; Yurovskaya, Maria; Chapron, Bertrand; Kudryavtsev, Vladimir

    2014-05-01

    New field measurements of 2-D wave number short wind wave spectra in the wavelength range from few millimeters to few decimeters are reported and discussed. The measurement method proposed by [Kosnik and Dulov, 2011] is based on stereophotography and image brightness contrast processing. The method strongly builds on the brightness cross-spectral analysis to reduce the noise within this short wave gravity and capillary range. Field measurements of wind wave spectra are still rare, and the reported data thus provide valuable information to bring new evidences on the 2-D spectral distribution of short wind waves in the wavelength range from decimeters to millimeters. As found, the folded spectra of decimeter waves are very weakly dependent on the wind speed and its direction. Wind speed and direction sensitivity only starts to appear in the short wavelength range, more precisely in the vicinity of the wave number 100 rad/m, where the wind exponent grows from 0.5 to 1.5-2.5 at 800 rad/m, and angular anisotropy parameter introduced by [Elfouhaily et al., 1997] amounts the value of 0.5. These aspects are consistent with other previously reported optical and radar data. For the latter, we solely extracted the polarization sensitivity to best isolate the contribution associated to the wave saturation spectrum around the Bragg resonant wave number. For the former, mean-squared slope statistics were used to assess the integrated shortscale directional spectral properties. As revealed, observed direction spectral distributions are significantly different from those previously suggested [Elfouhaily et al., 1997; Kudryavtsev et al., 2003, 2005]. On the basis of these new in situ measurements, we then propose to revise the semiempirical analytical model of short wind wave spectra developed by [Kudryavtsev et al., 2003, 2005]. In this model the key parameter is exponent n governing the nonlinear dissipation rate as D ~ Bn+1, where B is saturation spectrum. Accordingly, new

  12. A fast direct matrix solver for surface integral equation methods for electromagnetic wave scattering from non-penetrable targets

    NASA Astrophysics Data System (ADS)

    Wei, Jian-Gong; Peng, Zhen; Lee, Jin-Fa

    2012-10-01

    The implementation details of a fast direct solver is described herein for solving dense matrix equations from the application of surface integral equation methods for electromagnetic field scatterings from non-penetrable targets. The proposed algorithm exploits the smoothness of the far field and computes a low rank decomposition of the off-diagonal coupling blocks of the matrices through a set of skeletonization processes. Moreover, an artificial surface (the Huygens' surface) is introduced for each clustering group to efficiently account for the couplings between well-separated groups. Furthermore, a recursive multilevel version of the algorithm is presented. Although asymptotically the algorithm would not alter the bleak outlook of the complexity of the worst case scenario,O(N3) for required CPU time where N denotes the number of unknowns, for electrically large electromagnetic (EM) problems; through numerical examples, we found that the proposed multilevel direct solver can scale as good as O(N1.3) in memory consumption and O(N1.8) in CPU time for moderate-sized EM problems. Note that our conclusions are drawn based on a few sample examples that we have conducted and should not be taken as a true complexity analysis for general electrodynamic applications. However, for the fixed frequency (h-refinement) scenario, where the discretization size decreases, the computational complexities observed agree well with the theoretical predictions. Namely, the algorithm exhibits O(N) and O(N1.5) complexities for memory consumption and CPU time, respectively.

  13. Self-Aspirated Atmospheric Pressure Chemical Ionization Source for Direct Sampling of Analytes on Surfaces and in Liquid Solutions

    SciTech Connect

    Asano, Keiji G; Ford, Michael J; Tomkins, Bruce A; Van Berkel, Gary J

    2005-01-01

    A self-aspirating heated nebulizer probe is described and demonstrated for use in the direct analysis of analytes on surfaces and in liquid samples by atmospheric pressure chemical ionization (APCI) mass spectrometry. Functionality and performance of the probe as a self-aspirating APCI source is demonstrated using reserpine and progesterone as test compounds. The utility of the probe to sample analytes directly from surfaces was demonstrated first by scanning development lanes of a reversed-phase thin-layer chromatography plate in which a three-component dye mixture, viz., Fat Red 7B, Solvent Green 3, and Solvent Blue 35, was spotted and the components were separated. Development lanes were scanned by the sampling probe operated under computer control (x, y plane) while full-scan mass spectra were recorded using a quadrupole ion trap mass spectrometer. In addition, the ability to sample the surface of pharmaceutical tablets (viz., Extra Strength Tylenol(reg. sign) and Evista(reg. sign) tablets) and to detect the active ingredients (acetaminophen and raloxifene, respectively) selectively was demonstrated using tandem mass spectrometry (MS/MS). Finally, the capability to sample analyte solutions from the wells of a 384-well microtiter plate and to perform quantitative analyses using MS/MS detection was illustrated with cotinine standards spiked with cotinine-d{sub 3} as an internal standard.

  14. Directed self-assembly of colloidal particles onto the chemically anchoring patterned surface in a nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Li, Xiao; Armas-Pérez, Julio; Hernandez-Ortiz, Juan; de Pablo, Juan; Nealey, Paul

    The defects assisted assembly of colloidal particles works are more focused on the defects created in the bulk or the interface of nematic liquid crystal, which usually observe a group of particles spontaneously forming a chain or aggregating over the defects. The confining surface with specific 3D sculptured structures, such as pyramid or zig-zag grooves, offers the opportunity to isolate the trapped particles into certain position. Here, we explore a new method to direct self-assemble the colloidal particles through manipulating defects on the 2D geometry confined anchoring surface. Since the director of the preferred planar orientation of LCs could be manipulated by the pattern geometry and dimension, the topological defects could be engineered based on multi-stable orientation by designed 2D geometry pattern of different controllable direction at sub-micrometer dimension. We demonstrate that the designed one single middle straight stripe with disjoint two groups of straight stripe array on both side of the middle stripe as 45 angle of different orientation director could control the distortion of the disjoint gap space thus acting as defects template to trap the colloidal particles directed self-assembly at the designed positions. Through anchoring distribution on the pattern areas, geometry design of pattern, and also the external electric field applied on the system, those defects areas could be generate, erase, resume or even correct.

  15. The Direct Calculation of Fluxes and Profiles in the Marine Surface Layer Using Measurements from a Single Atmospheric Level.

    NASA Astrophysics Data System (ADS)

    Kou-Fang Lo, Aloysius

    1993-12-01

    This study presents a method that can directly determine the boundary-layer fluxes of heat and momentum, as well as both extrapolated wind and temperature profiles to the surface of a water body. The only input information that is required is a single level of wind and temperature in addition to the water surface skin temperature. The present study features a method that enables one to determine boundary-layer flux parameters directly without having to resort to the use of tabulations or nomograms. Therefore, the present method can be a valuable tool in many practical applications especially for marine boundary layer studies using buoy data as input. In essence, the present method determines the Monin-Obukhov length directly from the bulk Richardson number instead of indirectly through nomograms or being considered as a known input. Thus, the present method is an improvement over the conventional bulk method. Results of the present study agree well with those that appear in the literature.

  16. Unraveling brackish groundwater - surface water interaction in an agricultural field using direct measurements at the field scale

    NASA Astrophysics Data System (ADS)

    Delsman, Joost; Waterloo, Maarten; Groen, Michel; Groen, Koos

    2014-05-01

    Understanding the interaction between groundwater and surface water is important for a myriad of reasons, including flow forecasting, nutrient transport, and water allocation for agriculture and other water users. This understanding is especially important in deep polder areas in the Netherlands, where brackish groundwater seepage (upward flowing regional groundwater) results in a significant salt load to surface water, and may damage crops if salts reach the rootzone in dry summers. Research on groundwater - surface water interaction historically focused on relatively pristine headwater catchments, only recently shifting somewhat to agricultural catchments. The latter pose specific research challenges, as agricultural activities and active water management can have a significant influence on hydrology. A brackish seepage flux, with a different density as precipitation, may significantly influence flow paths to surface water. Research on this specific topic is, however, lacking. We therefore investigated the interaction between groundwater and surface water in an agricultural catchment with a significant brackish seepage flux. In addition, we investigated the effects of intake of fresh water during periods of precipitation deficits, a common management strategy in lowland regions. We instrumented an agricultural ditch to enable direct, 15 min interval measurements of water fluxes and salinity to both agricultural drains and the ditch separately. These measurements are supported by piezometer nests, soil moisture sensors, temperature sensors, geophysics and a meteorological tower. Measurements focused on the summer period and were taken during two measurement periods: May 2012 - November 2012, and April 2013 - October 2013. Our measurements allowed for a direct, high-frequency separation of hydrological flow routes on this agricultural field between flow to agricultural drains and the ditch. The salinity of seepage water allowed for a relatively easy separation of

  17. TECHNICAL NOTE: Optimized fabrication of curved surfaces by a FIB for direct focusing with glass fibres

    NASA Astrophysics Data System (ADS)

    Callegari, Victor; Iwaniuk, Daniel; Bronnimann, Rolf; Schmid, Emanuel; Sennhauser, Urs

    2009-10-01

    A focused ion beam (FIB) was used to fabricate Fresnel phase lenses on optical fibre tips. The influence of dwell time and the scanning strategy to produce parabolic structures in silicon was investigated, because these parameters have a strong influence on the shape of the fabricated structures. The lens shape was characterized by atomic force microscopy and it was shown that the FIB does not roughen the surfaces. The optical performance of the lenses was characterized by scanning near field optical microscopy (SNOM) and the results were compared to simulations taking into account fabrication imperfections of the Fresnel lenses. At a wavelength of 840 nm a spot size of 740 nm FWHM was achieved.

  18. Advances in High-Resolution Magnetometry for Mapping Unexploded Ordnance (UXO) and the Challenge of Geologic Noise

    NASA Astrophysics Data System (ADS)

    Nyquist, J. E.; Boufadel, M. C.; Doll, W. E.

    2005-05-01

    We discuss recent advances in the application of high-resolution magnetometry to UXO site characterization, focusing specifically on large-area assessment using helicopter-based magnetic surveys with flight lines only a few meters apart at heights of 1-2 meters above ground level. Motivating this work is the estimated cost of UXO clean-up: roughly 50 billion dollars for military bases in the U.S., involving some 1400 sites and over 10 million acres of land. Excavation is the principal remediation cost because setting detection thresholds low enough to minimize the risk of overlooking UXO generates numerous false positives, each of which must be treated as potentially explosive. The current U.S. Defense Department goal is to reduce the false-positive ratio from 100:1 down to 10:1 using improved geophysical sensors systems coupled with sophisticated discrimination algorithms. Discrimination involves not just sorting the bombs from the scrap metal, but also identification of UXO in the presence of geologic noise. Geologic noise at UXO sites can range from minimal (Badlands Bombing Range, South Dakota) to severe (Pueblo of Isleta bombing targets, New Mexico) and can change dramatically at a given site as a function of the survey scale. We discuss research to characterize geologic noise scaling using a multifractal approach with the eventual goal of simulating the affect of geologic noise on UXO discrimination algorithms.

  19. Trace element content and magnetic properties of commercial HOPG samples studied by ion beam microscopy and SQUID magnetometry

    SciTech Connect

    Spemann, D. Esquinazi, P. Setzer, A.; Böhlmann, W.

    2014-10-15

    In this study, the impurity concentration and magnetic response of nine highly oriented pyrolytic graphite (HOPG) samples with different grades and from different providers were determined using ion beam microscopy and SQUID magnetometry. Apart from sideface contaminations in the as-received state, bulk contamination of the samples in most cases consists of disk-shaped micron-sized particles made of Ti and V with an additional Fe contamination around the grain perimeter. The saturation magnetization typically increases with Fe concentration, however, there is no simple correlation between Fe content and magnetic moment. The saturation magnetization of one, respectively six, out of nine samples clearly exceeds the maximum contribution from pure Fe or Fe{sub 3}C. For most samples the temperature dependence of the remanence decreases linearly with T – a dependence found previously for defect-induced magnetism (DIM) in HOPG. We conclude that apart from magnetic impurities, additional contribution to the ferromagnetic magnetization exists in pristine HOPG in agreement with previous studies. A comparative study between the results of ion beam microscopy and the commonly used EDX analysis shows clearly that EDX is not a reliable method for quantitative trace elemental analysis in graphite, clarifying weaknesses and discrepancies in the element concentrations given in the recent literature.

  20. Localization of Interictal Epileptiform Activity Using Magnetoencephalography with Synthetic Aperture Magnetometry in Patients with a Vagus Nerve Stimulator

    PubMed Central

    Stapleton-Kotloski, Jennifer R.; Kotloski, Robert J.; Boggs, Jane A.; Popli, Gautam; O’Donovan, Cormac A.; Couture, Daniel E.; Cornell, Cassandra; Godwin, Dwayne W.

    2014-01-01

    Magnetoencephalography (MEG) provides useful and non-redundant information in the evaluation of patients with epilepsy, and in particular, during the pre-surgical evaluation of pharmaco-resistant epilepsy. Vagus nerve stimulation (VNS) is a common treatment for pharmaco-resistant epilepsy. However, interpretation of MEG recordings from patients with a VNS is challenging due to the severe magnetic artifacts produced by the VNS. We used synthetic aperture magnetometry (g2) [SAM(g2)], an adaptive beamformer that maps the excessive kurtosis, to map interictal spikes to the coregistered MRI image, despite the presence of contaminating VNS artifact. We present a series of eight patients with a VNS who underwent MEG recording. Localization of interictal epileptiform activity by SAM(g2) is compared to invasive electrophysiologic monitoring and other localizing approaches. While the raw MEG recordings were uninterpretable, analysis of the recordings with SAM(g2) identified foci of peak kurtosis and source signal activity that was unaffected by the VNS artifact. SAM(g2) analysis of MEG recordings in patients with a VNS produces interpretable results and expands the use of MEG for the pre-surgical evaluation of epilepsy. PMID:25505894

  1. Direct one-pot synthesis of chemically anisotropic particles with tunable morphology, dimensions, and surface roughness.

    PubMed

    Liu, Yanan; Liu, Wang; Ma, Yuhong; Liu, Lianying; Yang, Wantai

    2015-01-27

    Previously, synthesis of anisotropic particles by seeded polymerizations has involved multiple process steps. In conventional one-pot dispersion polymerization (Dis.P) with a cross-linker added, only spherical particles are produced due to rapid and high cross-linking. In this Article, a straightforward one-pot preparation of monodisperse anisotropic particles with tunable morphology, dimensions, surface roughness, and asymmetrically distributed functional groups is described. With a cross-linker of divinylbenzene (DVB, 8%), ethylene glycol dimethacrylate (EGDMA, 6%), or dimethacryloyloxybenzophenone (DMABP, 5%) added at 40 min, shortly after the end of nucleation stage in Dis.P of styrene (St) in methanol and water (6/4, vol), the swollen growing particles are inhomogeneously cross-linked at first. Then, at low gel contents of 59%, 49%, and 69%, corresponding to the cases using DVB, EGDMA, and DMABP, respectively, the growing particle phase separates and snowman- or dumbbell-like particles are generated. Thermodynamic and kinetic analyses reveal that moderate cross-linking and sufficient swelling of growing particles determine the formation and growth of anisotropic particles during polymerization. Morphology, surface roughness, sizes, and cross-linking degrees of each domain of final particles are tuned continuously by varying start addition time and contents of cross-linkers. The snowman-like particles fabricated with DVB have a gradient cross-linking and asymmetrical distribution of pendant vinyl groups from their body to head. The dumbbell-like particles prepared using DMABP have only one domain cross-linked; i.e., only one domain contains photosensitive benzophenone (BP) groups. With addition of glycidyl methacrylate (GMA) or propargyl methacrylate (PMA) together with DVB or EGDMA, epoxy or alkynyl groups are asymmetrically incorporated. With the aid of these functional groups, carboxyl, amino, or thiol groups and PEG (200) are attached by thiol-ene (yne

  2. Directly heated high surface area solid phase microextraction sampler for rapid field forensic analyses.

    PubMed

    Ramsey, Scott A; Mustacich, Robert V; Smith, Philip A; Hook, Gary L; Eckenrode, Brian A

    2009-11-01

    A high-surface area solid phase microextraction (HSA-SPME) sampler is described for dynamic sampling at high air velocities (up to several hundred centimeters per second). The sampling device consists of a thin wire coated with carboxen/polydimethylsiloxane (carboxen/PDMS) material, wound in the annular space between two concentric glass tubes, providing a large trapping surface from which analytes may then be thermally desorbed with little power consumption upon resistive heating of the wire. Desorbed analytes are focused and reconcentrated on a microtrap that is subsequently resistively heated to introduce analytes for GC or GC/MS analysis. Benzene, toluene, ethylbenzene, and xylenes (BTEX) included in a 39-component toxic organics (TO-14) gas mixture were used to evaluate the efficiency of the HSA-SPME sampler. Quantitation of trace-level BTEX compounds present during weapons cleaning was completed using stepwise calibration. Detection limits of 0.2-6.9 pptr(v) were observed for these analytes using single ion monitoring GC/MS analysis, and an improvement in sensitivity of several orders of magnitude was achieved when compared to standard dynamic flow SPME with a commercially available 10 mm carboxen/PDMS fiber. The potential for rapid analyte uptake and improved sensitivity using the HSA-SPME design will make it possible to rapidly collect and analyze VOC samples in field settings using a portable hand-held pump and a small, low power GC/MS instrument. This system will be especially useful for situations involving forensics, public safety, and military defensive or intelligence needs where rapid, sensitive detection of airborne analytes is required. PMID:19795869

  3. Effect of spectrally varying albedo of vegetation surfaces on shortwave radiation fluxes and direct aerosol forcing

    NASA Astrophysics Data System (ADS)

    Zhu, L.; Martins, J. V.; Yu, H.

    2012-06-01

    This study develops an algorithm for the representation of large spectral variations of albedo over vegetation surfaces based on Moderate Resolution Imaging Spectrometer (MODIS) observations at 7 discrete channels centered at 0.47, 0.55, 0.67, 0.86, 1.24, 1.63, and 2.11 μm. The MODIS 7-channel observations miss several major features of vegetation albedo including the vegetation red edge near 0.7 μm and vegetation absorption features at 1.48 and 1.92 μm. We characterize these features by investigating aerosol forcing in different spectral ranges. We show that the correction at 0.7 μm is the most sensitive and important due to the presence of the red edge and strong solar radiation; the other two corrections are less sensitive due to the weaker solar radiation and strong atmospheric water absorption. Four traditional approaches for estimating the reflectance spectrum and the MODIS enhanced vegetation albedo (MEVA) are tested against various vegetation types: dry grass, green grass, conifer, and deciduous from the John Hopkins University (JHU) spectral library; aspens from the US Geological Survey (USGS) digital spectral library; and Amazon vegetation types. Compared to traditional approaches, MEVA improves the accuracy of the outgoing flux at the top of the atmosphere by over 60 W m-2 and aerosol forcing by over 10 W m-2. Specifically, for Amazon vegetation types, MEVA can improve the accuracy of daily averaged aerosol forcing at equator at equinox by 3.7 W m-2 (about 70% of the aerosol forcing calculated with high spectral resolution surface reflectance). These improvements indicate that MEVA can contribute to vegetation covered regional climate studies, and help to improve understanding of climate processes and climate change.

  4. Direct Surface Analysis of Fungal Species by Matrix-assisted Laser Desorption/Ionization Mass Spectrometry

    SciTech Connect

    Valentine, Nancy B. ); Wahl, Jon H. ); Kingsley, Mark T. ); Wahl, Karen L. )

    2001-12-01

    Intact spores and/or hyphae of Aspergillus niger, Rhizopus oryzae, Trichoderma reesei and Phanerochaete chrysosporium are analyzed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). This study investigates various methods of sample preparation and matrices to determine optimum collection and analysis criteria for fungal analysis by MALDI-MS. Fungi are applied to the MALDI sample target as untreated, sonicated, acid/heat treated, or blotted directly from the fungal culture with double-stick tape. Ferulic acid or sinapinic acid matrix solution is layered over the dried samples and analyzed by MALDI-MS. Statistical analysis of the data show that simply using double stick tape to collect and transfer to a MALDI sample plate typically worked as well as the other preparation methods, but requires the least sample handling.

  5. Advanced leading edge thermal-structure concept. Direct bond reusable surface insulation to a composite structure

    NASA Technical Reports Server (NTRS)

    Riccitiello, S. R.; Figueroa, H.; Coe, C. F.; Kuo, C. P.

    1984-01-01

    An advanced leading-edge concept was analyzed using the space shuttle leading edge system as a reference model. The comparison indicates that a direct-bond system utilizing a high temperature (2700 F) fibrous refractory composite insulation tile bonded to a high temperature (PI/graphite) composite structure can result in a weight savings of up to 800 lb. The concern that tile damage or loss during ascent would result in adverse entry aerodynamics if a leading edge tile system were used is addressed. It was found from experiment that missing tiles (as many as 22) on the leading edge would not significantly affect the basic force-and-moment aerodynamic coefficients. Additionally, this concept affords a degree of redundancy to a thermal protection system in that the base structure (being a composite material) ablates and neither melts nor burns through when subjected to entry heating in the event tiles are actually lost or damaged during ascent.

  6. A Study of an Optical Lunar Surface Communications Network with High Bandwidth Direct to Earth Link

    NASA Technical Reports Server (NTRS)

    Wilson, K.; Biswas, A.; Schoolcraft, J.

    2011-01-01

    Analyzed optical DTE (direct to earth) and lunar relay satellite link analyses, greater than 200 Mbps downlink to 1-m Earth receiver and greater than 1 Mbps uplink achieved with mobile 5-cm lunar transceiver, greater than 1Gbps downlink and greater than 10 Mpbs uplink achieved with 10-cm stationary lunar transceiver, MITLL (MIT Lincoln Laboratory) 2013 LLCD (Lunar Laser Communications Demonstration) plans to demonstrate 622 Mbps downlink with 20 Mbps uplink between lunar orbiter and ground station; Identified top five technology challenges to deploying lunar optical network, Performed preliminary experiments on two of challenges: (i) lunar dust removal and (ii)DTN over optical carrier, Exploring opportunities to evaluate DTN (delay-tolerant networking) over optical link in a multi-node network e.g. Desert RATS.

  7. Direct measurement of colloidal interactions between polyaniline surfaces in a UV-curable coating formulation: the effect of surface hydrophilicity/hydrophobicity and resin composition.

    PubMed

    Jafarzadeh, Shadi; Claesson, Per M; Pan, Jinshan; Thormann, Esben

    2014-02-01

    The interactions between polyaniline particles and polyaniline surfaces in polyester acrylate resin mixed with 1,6-hexanediol diacrylate monomer have been investigated using contact angle measurements and the atomic force microscopy colloidal probe technique. Polyaniline with different characteristics (hydrophilic and hydrophobic) were synthesized directly on spherical polystyrene particles of 10 μm in diameter. Surface forces were measured between core/shell structured polystyrene/polyaniline particles (and a pure polystyrene particle as reference) mounted on an atomic force microscope cantilever and a pressed pellet of either hydrophilic or hydrophobic polyaniline powders, in resins of various polymer:monomer ratios. A short-range purely repulsive interaction was observed between hydrophilic polyaniline (doped with phosphoric acid) surfaces in polyester acrylate resin. In contrast, interactions between hydrophobic polyaniline (doped with n-decyl phosphonic acid) were dominated by attractive forces, suggesting less compatibility and higher tendency for aggregation of these particles in liquid polyester acrylate compared to hydrophilic polyaniline. Both observations are in agreement with the conclusions from the interfacial energy studies performed by contact angle measurements. PMID:24400981

  8. Development of a high resolution beta camera for a direct measurement of positron distribution on brain surface

    SciTech Connect

    Yamamoto, S.; Seki, C.; Kashikura, K.

    1996-12-31

    We have developed and tested a high resolution beta camera for a direct measurement of positron distribution on brain surface of animals. The beta camera consists of a thin CaF{sub 2}(Eu) scintillator, a tapered fiber optics plate (taper fiber) and a position sensitive photomultiplier tube (PSPMT). The taper fiber is the key component of the camera. We have developed two types of beta cameras. One is 20mm diameter field of view camera for imaging brain surface of cats. The other is 10mm diameter camera for that of rats. Spatial resolutions of beta camera for cats and rats were 0.8mm FWHM and 0.5mm FWHM, respectively. We confirmed that developed beta cameras may overcome the limitation of the spatial resolution of the positron emission tomography (PET).

  9. Analysis of Direct Recordings from the Surface of the Human Brain

    NASA Astrophysics Data System (ADS)

    Towle, Vernon L.

    2006-03-01

    Recording electrophysiologic signals directly from the cortex of patients with chronically implanted subdural electrodes provides an opportunity to map the functional organization of human cortex. In addition to using direct cortical stimulation, sensory evoked potentials, and electrocorticography (ECoG) can also be used. The analysis of ECoG power spectrums and inter-electrode lateral coherence patterns may be helpful in identifying important eloquent cortical areas and epileptogenic regions in cortical multifocal epilepsy. Analysis of interictal ECoG coherence can reveal pathological cortical areas that are functionally distinct from patent cortex. Subdural ECoGs have been analyzed from 50 medically refractive pediatric epileptic patients as part of their routine surgical work-up. Recording arrays were implanted over the frontal, parietal, occipital or temporal lobes for 4-10 days, depending on the patient's seizure semiology and imaging studies. Segments of interictal ECoG ranging in duration from 5 sec to 45 min were examined to identify areas of increased local coherence. Ictal records were examined to identify the stages and spread of the seizures. Immediately before a seizure began, lateral coherence values decreased, reorganized, and then increased during the late ictal and post-ictal periods. When computed over relatively long interictal periods (45 min) coherence patterns were found to be highly stable (r = 0.97, p < .001), and only changed gradually over days. On the other hand, when calculated over short periods of time (5 sec) coherence patterns were highly dynamic. Coherence patterns revealed a rich topography, with reduced coherence across sulci and major fissures. Areas that participate in receptive and expressive speech can be mapped through event-related potentials and analysis of task-specific changes in power spectrums. Information processing is associated with local increases in high frequency activity, with concomitant changes in coherence

  10. Grafting Poly(3-hexylthiophene) from Silicon Nanocrystal Surfaces: Synthesis and Properties of a Functional Hybrid Material with Direct Interfacial Contact.

    PubMed

    Islam, Muhammad Amirul; Purkait, Tapas K; Mobarok, Md Hosnay; Hoehlein, Ignaz M D; Sinelnikov, Regina; Iqbal, Muhammad; Azulay, Doron; Balberg, Isaac; Millo, Oded; Rieger, Bernhard; Veinot, Jonathan G C

    2016-06-20

    Hybrid functional materials (HFMs) comprised of semiconductor nanoparticles and conjugated polymers offer the potential of synergetic photophysical properties. We have developed HFMs based upon silicon nanocrystals (SiNCs) and the conductive polymer poly(3-hexylthiophene) (SiNC@P3HT) by applying surface-initiated Kumada catalyst transfer polycondensation (SI-KCTP). One unique characteristic of the developed SiNC@P3HT is the formation of a direct covalent bonding between SiNCs and P3HT. The presented method for obtaining direct interfacial attachment, which is not accessible using other methods, may allow for the development of materials with efficient electronic communication at the donor-acceptor interfaces. Systematic characterization provides evidence of a core-shell structure, enhanced interfacial electron and/or energy transfer between the P3HT and SiNC components, as well as formation of a type-II heterostructure. PMID:27144670

  11. The effect of surface contact activation and temperature on plasma coagulation with an RNA aptamer directed against factor IXa.

    PubMed

    Krishnan, Anandi; Vogler, Erwin A; Sullenger, Bruce A; Becker, Richard C

    2013-01-01

    The anticoagulant properties of a novel RNA aptamer that binds FIXa depend collectively on the intensity of surface contact activation of human blood plasma, aptamer concentration, and its binding affinity for FIXa. Accordingly, anticoagulation efficiency of plasma containing any particular aptamer concentration is low when coagulation is strongly activated by hydrophilic surfaces compared to the anticoagulation efficiency in plasma that is weakly activated by hydrophobic surfaces. Anticoagulation efficiency is lower at hypothermic temperatures possibly because aptamer-FIXa binding decreases with decreasing temperatures. Experimental results demonstrating these trends are qualitatively interpreted in the context of a previously established model of anticoagulation efficiency of thrombin-binding DNA aptamers that exhibit anticoagulation properties similar to the FIXa aptamer. In principle, FIXa aptamer anticoagulants should be more efficient and therefore more clinically useful than thrombin-binding aptamers because aptamer binding to FIXa competes only with FX that is at much lower blood concentration than fibrinogen (FI) that competes with thrombin-binding aptamers. Our findings may have translatable relevance in the application of aptamer anticoagulants for clinical conditions in which blood is in direct contact with non-biological surfaces such as those encountered in cardiopulmonary bypass circuits. PMID:23054460

  12. Reorganisation of the large-scale structures in turbulent boundary layers using highly ordered and directional surface roughness

    NASA Astrophysics Data System (ADS)

    Kevin, -; Nugroho, Bagus; Pathikonda, Gokul; Barros, Julio; Christensen, Kenneth; Monty, Jason; Hutchins, Nicholas; UoM-UIUC riblets study Collaboration

    2014-11-01

    The potential of riblet-type surface roughness with converging-diverging (herring-bone type) arrangements to reorganise the large-scale coherent structures that populate the logarithmic region of turbulent boundary layers is investigated at moderate Reynolds number. The ability of this transitionally rough surface to generate large-scale counter rotating roll-modes suggests that a preferential arrangement of the naturally occurring large-scale structures may have been introduced. Prior analysis of the pre-multiplied energy spectra of streamwise velocity fluctuation indicates an increase (or decrease) in the large-scale streamwise turbulence energy over the converging region (or diverging) of the riblets. In this study we examine this possible spanwise redistribution of the coherent structures using instantaneous planar Particle Image Velocimetry (PIV) in the wall-parallel plane (within the logarithmic region) as well as cross-plane Stereoscopic PIV. The characteristics of the large-scale structure over the converging-diverging surface are compared with those of the corresponding smooth-wall case, revealing pronounced modification of the size, strength and alignment of these features over the directional surface. Collaboration between University of Melbourne and University of Illinois on converging-diverging riblets study.

  13. Vertical coherence and forward scattering from the sea surface and the relation to the directional wave spectrum.

    PubMed

    Dahl, Peter H; Plant, William J; Dall'Osto, David R

    2013-09-01

    Results of an experiment to measure vertical spatial coherence from acoustic paths interacting once with the sea surface but at perpendicular azimuth angles are presented. The measurements were part of the Shallow Water 2006 program that took place off the coast of New Jersey in August 2006. An acoustic source, frequency range 6-20 kHz, was deployed at depth 40 m, and signals were recorded on a 1.4 m long vertical line array centered at depth 25 m and positioned at range 200 m. The vertical array consisted of four omni-directional hydrophones and vertical coherences were computed between pairs of these hydrophones. Measurements were made over four source-receiver bearing angles separated by 90°, during which sea surface conditions remained stable and characterized by a root-mean-square wave height of 0.17 m and a mixture of swell and wind waves. Vertical coherences show a statistically significant difference depending on source-receiver bearing when the acoustic frequency is less than about 12 kHz, with results tending to fade at higher frequencies. This paper presents field observations and comparisons of these observations with two modeling approaches, one based on bistatic forward scattering and the other on a rough surface parabolic wave equation utilizing synthetic sea surfaces. PMID:23967918

  14. A Conceptual Study for the Autonomous Direct Forming of Lunar Regolith into Flexlock (Trademark) Geomats for Lunar Surface Operations

    NASA Technical Reports Server (NTRS)

    Robertson, Luke B.; Hintze, Paul; OConnor, Gregory W.

    2009-01-01

    We describe the conceptual method of an autonomously operable Direct Forming machine that would consume regolith or regolith slag to mold intimately, interlinked elements in a continuous process. The resulting product, one to three meter wide geomats, would be deployed over commonly traversed areas to isolate the astronauts and equipment from underlying dust. The porous geotextile would provide areas for dust settling, thereby mitigating dust impingement on astronaut suits or surface structures. Because of their self-supporting yet flexible structure, these geomats could be assembled into shields and buttresses to protect lunar habitants from radiation, forming a "flexoskeleton" from in situ materials.

  15. Underwater imaging using a hybrid Kirchhoff migration: direction of arrival method and a sparse surface sensor array.

    PubMed

    Dord, Jean-Francois; Farhat, Charbel

    2010-08-01

    This paper considers the problem of imaging a complex object submerged in shallow waters using a sparse surface sensor array and a hybrid signal processing method. This method is constructed by refining the Kirchhoff migration technique to incorporate a zoning of the sensors and an analysis of multiple reflections, and combining it with the direction of arrival estimation method. Its performance is assessed and analyzed with the shape identification of a mockup submarine by numerical simulation. The obtained numerical results highlight the potential of this approach for identifying underwater intruders. PMID:20707441

  16. Characterization of anti-theft devices directly from the surface of banknotes via easy ambient sonic spray ionization mass spectrometry.

    PubMed

    Schmidt, Eduardo Morgado; Franco, Marcos Fernando; Cuelbas, Claudio José; Zacca, Jorge Jardim; de Carvalho Rocha, Werickson Fortunato; Borges, Rodrigo; de Souza, Wanderley; Sawaya, Alexandra Christine Helena Frankland; Eberlin, Marcos Nogueira; Correa, Deleon Nascimento

    2015-09-01

    Using Brazilian banknotes as a test case, forensic examination and identification of Rhodamine B dye anti-theft device (ATD) staining on banknotes were performed. Easy ambient sonic spray ionization mass spectrometry (EASI-MS) was used since it allows fast and simple analysis with no sample preparation providing molecular screening of the surface with direct desorption and ionization of the security dye. For a more accurate molecular characterization of the ATD dye, Q Exactive Orbitrap™ Fourier transform (tandem) mass spectrometry using eletrospray ionization (ESI-HRMS/MS) was also applied. PMID:26385709

  17. Estimation of land surface directional emissivity in mid-infrared channel around 4.0 microm from MODIS data.

    PubMed

    Tang, Bo-Hui; Li, Zhao-Liang; Bi, Yuyun

    2009-03-01

    This work addressed the estimate of the directional emissivity in the mid-infrared (MIR) channel around 4.0 microm from MODIS data. A series of bidirectional reflectances in MODIS channel 22 (3.97 mum) were retrieved using the method developed by Tang and Li (Int. J. Remote Sens. 29, 4907, 2008) and then were used to estimate the directional emissivity in this channel with the aid of the BRDF model modified by Jiang and Li (Opt. Express 16, 19310, 2008). To validate the estimated directional emissivity, a cross-comparison of MODIS derived emissivities in channel 22 using the proposed method were performed with those provided by the MODIS land surface temperature/emissivity product MYD11B1 data. The results show that the proposed method for estimating the directional emissivity in MIR channel gives results comparable to those of MYD11B1 product with a Mean Error of -0.007 and a Root Mean Square Error of 0.024. PMID:19259154

  18. DIRECT IMAGE PROCESSING OF CORRODING SURFACES APPLIED TO FRICTION STIR WELDING.

    SciTech Connect

    ISAACS,H.S.ET AL.

    2003-10-12

    An in situ process for visually locating corrosion is presented. The process visually displays image differences obtained by subtracting one digitized image from another. The difference image shows only where changes have taken place during period between the recording of the two images. Changes are due to both corrosion attack of the surface and concentration changes of dissolved corrosion products in solution. Indicators added to the solution assist by decorating sites of corrosion as diffusion and convection of the dissolved products increase the size of the affected region. A study of the initial stages of corrosion of a friction stir welded Al alloy 7075 has been performed using this imaging technique. Pitting potential measurements suggest that there was an initial increased sensitivity to corrosion. The difference image technique demonstrated that it was due to a reformation of the passive film that occurs with Zn containing Al alloys which occurs preferentially along flow protected regions. The most susceptible region of the weld was found to be where both limited deformation and thermal transients are produced during welding.

  19. Analysis of Antibodies Directed against Merozoite Surface Protein 1 of the Human Malaria Parasite Plasmodium falciparum

    PubMed Central

    Woehlbier, Ute; Epp, Christian; Kauth, Christian W.; Lutz, Rolf; Long, Carole A.; Coulibaly, Boubacar; Kouyaté, Bocar; Arevalo-Herrera, Myriam; Herrera, Sócrates; Bujard, Hermann

    2006-01-01

    The 190-kDa merozoite surface protein 1 (MSP-1) of Plasmodium falciparum, an essential component in the parasite's life cycle, is a primary candidate for a malaria vaccine. Rabbit antibodies elicited by the heterologously produced MSP-1 processing products p83, p30, p38, and p42, derived from strain 3D7, were analyzed for the potential to inhibit in vitro erythrocyte invasion by the parasite and parasite growth. Our data show that (i) epitopes recognized by antibodies, which inhibit parasite replication, are distributed throughout the entire MSP-1 molecule; (ii) when combined, antibodies specific for different regions of MSP-1 inhibit in a strictly additive manner; (iii) anti-MSP-1 antibodies interfere with erythrocyte invasion as well as with the intraerythrocytic growth of the parasite; and (iv) antibodies raised against MSP-1 of strain 3D7 strongly cross-inhibit replication of the heterologous strain FCB-1. Accordingly, anti-MSP-1 antibodies appear to be capable of interfering with parasite multiplication at more than one level. Since the overall immunogenicity profile of MSP-1 in rabbits closely resembles that found in sera of Aotus monkeys immunized with parasite-derived MSP-1 and of humans semi-immune to malaria from whom highly inhibiting antigen-specific antibodies were recovered, we consider the findings reported here to be relevant for the development of MSP-1-based vaccines against malaria. PMID:16428781

  20. Direct and high throughput (HT) interactions on the ribosomal surface by iRIA

    PubMed Central

    Pesce, Elisa; Minici, Claudia; Baβler, Jochen; Hurt, Ed; Degano, Massimo; Calamita, Piera; Biffo, Stefano

    2015-01-01

    Ribosomes function as platforms for binding of other molecules, but technologies for studying this process are lacking. Therefore we developed iRIA (in vitro Ribosomes Interaction Assay). In approach I, Artemia salina ribosomes spotted on solid phase are used for binding picomoles of analytes; in approach II, cellular extracts allow the measurement of ribosome activity in different conditions. We apply the method to analyze several features of eIF6 binding to 60S subunits. By approach I, we show that the off-rate of eIF6 from preribosomes is slower than from mature ribosomes and that its binding to mature 60S occurs in the nM affinity range. By approach II we show that eIF6 binding sites on 60S are increased with mild eIF6 depletion and decreased in cells that are devoid of SBDS, a ribosomal factor necessary for 60S maturation and involved in Swachman Diamond syndrome. We show binding conditions to immobilized ribosomes adaptable to HT and quantify free ribosomes in cell extracts. In conclusion, we suggest that iRIA will greatly facilitate the study of interactions on the ribosomal surface. PMID:26486184