Science.gov

Sample records for direct th2 cell

  1. Regulation of Th2 Cell Immunity by Dendritic Cells

    PubMed Central

    Na, Hyeongjin

    2016-01-01

    Th2 cell immunity is required for host defense against helminths, but it is detrimental in allergic diseases in humans. Unlike Th1 cell and Th17 cell subsets, the mechanism by which dendritic cells modulate Th2 cell responses has been obscure, in part because of the inability of dendritic cells to provide IL-4, which is indispensable for Th2 cell lineage commitment. In this regard, immune cells other than dendritic cells, such as basophils and innate lymphoid cells, have been suggested as Th2 cell inducers. More recently, multiple independent researchers have shown that specialized subsets of dendritic cells mediate Th2 cell responses. This review will discuss the current understanding related to the regulation of Th2 cell responses by dendritic cells and other immune cells. PMID:26937227

  2. Two Histone Variants TH2A and TH2B Enhance Human Induced Pluripotent Stem Cell Generation.

    PubMed

    Huynh, Linh My; Shinagawa, Toshie; Ishii, Shunsuke

    2016-02-01

    There are two major methods of reprogramming: generation of induced pluripotent stem cells (iPSCs) by overexpressing embryonic stem cell-specific transcription factors (OCT4, SOX2, KLF4, and c-MYC) and somatic cell nuclear transfer by oocyte-specific factors. Previously, we reported oocyte-enriched histone variants TH2A, TH2B, and the histone chaperone nucleoplasmin (NPM2) enhance the reprogramming by OSKM in mice by inducing open chromatin structure. In this study, we showed that human TH2A, TH2B, and NPM2 enhance the OSKM-induced reprogramming of adult and neonatal human dermal fibroblasts and umbilical vein endothelial cells. Pluripotency of iPSCs generated by coexpressing OSKM, TH2A, TH2B, and NPM2 was shown by in vitro and in vivo differentiation assays. These iPSCs gave rise to highly differentiated teratomas compared to iPSCs induced by OSKM alone. Genome-wide analysis suggests a possibility that TH2A, TH2B, and NPM2 might regulate genes that are involved in naïve stem cell stage. Thus, TH2A, TH2B, and NPM2 enhance reprogramming of human somatic cells and improve the quality of human iPSCs. PMID:26649967

  3. Innate immunological function of TH2 cells in vivo

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Th2 cells produce IL-13 when stimulated by papain or house dust mites (HDM) and induce eosinophilic inflammation. This innate response of cells of the adaptive immune system is dependent on IL-33-, not T cell receptor-, based stimulation. While type 2 innate lymphoid cells (ILC2s) are the dominant ...

  4. Innate Immune Function of TH2 Cells in vivo

    PubMed Central

    Guo, Liying; Huang, Yuefeng; Chen, Xi; Hu-Li, Jane; Urban, Joseph F.; Paul, William E.

    2015-01-01

    Type 2 helper T (TH) cells produce interleukin 13 (IL-13) when stimulated by papain or house dust mites (HDM) and induce eosinophilic inflammation. This innate response is dependent on IL-33 but not T cell antigen receptors (TCRs). While type 2 innate lymphoid cells (ILC2s) are the dominant innate producers of IL-13 in naïve animals, we show here that in helminth-infected mice, TH2 cell numbers increased and became major mediators of innate type II responses. TH2 cells made important contributions to HDM-induced antigen–non-specific eosinophilic inflammation and protected mice recovering from Ascaris suum infection against subsequent infection with the phylogenetically distant nematode Nippostrongylus brasiliensis. Our findings reveal a previously unappreciated role of effector TH2 cells during TCR-independent innate-like immune responses. PMID:26322482

  5. Regulatory T Cells Control Th2-Dominant Murine Autoimmune Gastritis.

    PubMed

    Harakal, Jessica; Rival, Claudia; Qiao, Hui; Tung, Kenneth S

    2016-07-01

    Pernicious anemia and gastric carcinoma are serious sequelae of autoimmune gastritis (AIG). Our study indicates that in adult C57BL/6-DEREG mice expressing a transgenic diphtheria toxin receptor under the Foxp3 promoter, transient regulatory T cell (Treg) depletion results in long-lasting AIG associated with both H(+)K(+)ATPase and intrinsic factor autoantibody responses. Although functional Tregs emerge over time during AIG occurrence, the effector T cells rapidly become less susceptible to Treg-mediated suppression. Whereas previous studies have implicated dysregulated Th1 cell responses in AIG pathogenesis, eosinophils have been detected in gastric biopsy specimens from patients with AIG. Indeed, AIG in DEREG mice is associated with strong Th2 cell responses, including dominant IgG1 autoantibodies, elevated serum IgE, increased Th2 cytokine production, and eosinophil infiltration in the stomach-draining lymph nodes. In addition, the stomachs exhibit severe mucosal and muscular hypertrophy, parietal cell loss, mucinous epithelial cell metaplasia, and massive eosinophilic inflammation. Notably, the Th2 responses and gastritis severity are significantly ameliorated in IL-4- or eosinophil-deficient mice. Furthermore, expansion of both Th2-promoting IFN regulatory factor 4(+) programmed death ligand 2(+) dendritic cells and ILT3(+) rebounded Tregs was detected after transient Treg depletion. Collectively, these data suggest that Tregs maintain physiological tolerance to clinically relevant gastric autoantigens, and Th2 responses can be a pathogenic mechanism in AIG. PMID:27259856

  6. Transcription factor IRF4 drives dendritic cells to promote Th2 differentiation

    NASA Astrophysics Data System (ADS)

    Williams, Jesse W.; Tjota, Melissa Y.; Clay, Bryan S.; Vander Lugt, Bryan; Bandukwala, Hozefa S.; Hrusch, Cara L.; Decker, Donna C.; Blaine, Kelly M.; Fixsen, Bethany R.; Singh, Harinder; Sciammas, Roger; Sperling, Anne I.

    2013-12-01

    Atopic asthma is an inflammatory pulmonary disease associated with Th2 adaptive immune responses triggered by innocuous antigens. While dendritic cells (DCs) are known to shape the adaptive immune response, the mechanisms by which DCs promote Th2 differentiation remain elusive. Herein we demonstrate that Th2-promoting stimuli induce DC expression of IRF4. Mice with conditional deletion of Irf4 in DCs show a dramatic defect in Th2-type lung inflammation, yet retain the ability to elicit pulmonary Th1 antiviral responses. Using loss- and gain-of-function analysis, we demonstrate that Th2 differentiation is dependent on IRF4 expression in DCs. Finally, IRF4 directly targets and activates the Il-10 and Il-33 genes in DCs. Reconstitution with exogenous IL-10 and IL-33 recovers the ability of Irf4-deficient DCs to promote Th2 differentiation. These findings reveal a regulatory module in DCs by which IRF4 modulates IL-10 and IL-33 cytokine production to specifically promote Th2 differentiation and inflammation.

  7. A miRNA upregulated in asthma airway T cells promotes TH2 cytokine production

    PubMed Central

    Simpson, Laura J.; Patel, Sana; Bhakta, Nirav R.; Choy, David F.; Brightbill, Hans D.; Ren, Xin; Wang, Yanli; Pua, Heather H.; Baumjohann, Dirk; Montoya, Misty M.; Panduro, Marisella; Remedios, Kelly A.; Huang, Xiaozhu; Fahy, John V.; Arron, Joseph R.; Woodruff, Prescott G.; Ansel., Karl M.

    2014-01-01

    MicroRNAs (miRNAs) exert powerful effects on immune function by tuning networks of target genes that orchestrate cell behavior. We sought to uncover miRNAs and miRNA-regulated pathways that control the TH2 responses that drive pathogenic inflammation in asthma. Profiling miRNA expression in human airway-infiltrating T cells revealed miR-19a elevation in asthma. Modulating miR-19 activity altered TH2 cytokine production in both human and mouse T cells, and TH2 cell responses were markedly impaired in cells lacking the entire miR-17∼92 cluster. miR-19 promotes TH2 cytokine production and amplifies PI(3)K, JAK-STAT, and NF-κB signaling by direct targeting of PTEN, SOCS1, and A20. Thus, miR-19a up regulation in asthma may be an indicator and a cause of increased TH2 cytokine production in the airways. PMID:25362490

  8. Th1 or Th2 balance regulated by interaction between dendritic cells and NKT cells.

    PubMed

    Onoé, Kazunori; Yanagawa, Yoshiki; Minami, Keita; Iijima, Norifumi; Iwabuchi, Kazuya

    2007-01-01

    If Th1 or Th2 polarization could be artificially manipulated, effective immune responses would be generated depending on nature of the targets. In this study we attempted to regulate CD40 expressions on dendritic cells (DCs) in order to modify the T cell response. It was found that reducing agents selectively inhibited surface expression of CD40 on DCs. This finding may provide a new strategy of DC-mediated modulation of the Th1/Th2 balance. It was also shown that NKT-produced Th1/Th2 cytokine balance was under control of negative feedback loop through DCs. Th1 cytokine-pretreated DCs mainly induced Th2 cytokine production, whereas Th2 cytokine-pretreated DCs induced Th1 cytokine production by alpha-galactosylceramide-stimulated NKT cells. The negative feedback regulation system could be applicable to therapeutics of various diseases based on immunological disorders. PMID:17917039

  9. T-cell-intrinsic Tif1α/Trim24 regulates IL-1R expression on TH2 cells and TH2 cell-mediated airway allergy.

    PubMed

    Perez-Lloret, Jimena; Okoye, Isobel S; Guidi, Riccardo; Kannan, Yashaswini; Coomes, Stephanie M; Czieso, Stephanie; Mengus, Gabrielle; Davidson, Irwin; Wilson, Mark S

    2016-02-01

    There is a paucity of new therapeutic targets to control allergic reactions and forestall the rising trend of allergic diseases. Although a variety of immune cells contribute to allergy, cytokine-secreting αβ(+)CD4(+) T-helper 2 (TH2) cells orchestrate the type-2-driven immune response in a large proportion of atopic asthmatics. To identify previously unidentified putative targets in pathogenic TH2 cells, we performed in silico analyses of recently published transcriptional data from a wide variety of pathogenic TH cells [Okoye IS, et al. (2014) Proc Natl Acad Sci USA 111(30):E3081-E3090] and identified that transcription intermediary factor 1 regulator-alpha (Tif1α)/tripartite motif-containing 24 (Trim24) was predicted to be active in house dust mite (HDM)- and helminth-elicited Il4(gfp+)αβ(+)CD4(+) TH2 cells but not in TH1, TH17, or Treg cells. Testing this prediction, we restricted Trim24 deficiency to T cells by using a mixed bone marrow chimera system and found that T-cell-intrinsic Trim24 is essential for HDM-mediated airway allergy and antihelminth immunity. Mechanistically, HDM-elicited Trim24(-/-) T cells have reduced expression of many TH2 cytokines and chemokines and were predicted to have compromised IL-1-regulated signaling. Following this prediction, we found that Trim24(-/-) T cells have reduced IL-1 receptor (IL-1R) expression, are refractory to IL-1β-mediated activation in vitro and in vivo, and fail to respond to IL-1β-exacerbated airway allergy. Collectively, these data identify a previously unappreciated Trim24-dependent requirement for IL-1R expression on TH2 cells and an important nonredundant role for T-cell-intrinsic Trim24 in TH2-mediated allergy and antihelminth immunity. PMID:26787865

  10. GATA-3 promotes Th2 responses through three different mechanisms: induction of Th2 cytokine production, selective growth of Th2 cells and inhibition of Th1 cell-specific factors.

    PubMed

    Zhu, Jinfang; Yamane, Hidehiro; Cote-Sierra, Javier; Guo, Liying; Paul, William E

    2006-01-01

    Naïve CD4 T cells can differentiate into at least two different types of T helpers, Th1 and Th2 cells. Th2 cells, capable of producing IL-4, IL-5 and IL-13, are involved in humoral immunity against extracellular pathogens and in the induction of asthma and other allergic diseases. In this review, we summarize recent reports regarding the transcription factors involved in Th2 differentiation and cell expansion, including Stat5, Gfi-1 and GATA-3. Stat5 activation is necessary and sufficient for IL-2-mediated function in Th2 differentiation. Enhanced Stat5 signaling induces Th2 differentiation independent of IL-4 signaling; although it does not up-regulate GATA-3 expression, it does require the presence of GATA-3 for its action. Gfi-1, induced by IL-4, promotes the expansion of GATA-3-expressing cells. Analysis of conditional Gata3 knockout mice confirmed the critical role of GATA-3 in Th2 cell differentiation (both IL-4 dependent and IL-4 independent) and in Th2 cell proliferation and also showed the importance of basal GATA-3 expression in inhibiting Th1 differentiation. PMID:16467870

  11. Transcriptional Profiling of Th2 Cells Identifies Pathogenic Features Associated with Asthma.

    PubMed

    Seumois, Grégory; Zapardiel-Gonzalo, Jose; White, Brandie; Singh, Divya; Schulten, Veronique; Dillon, Myles; Hinz, Denize; Broide, David H; Sette, Alessandro; Peters, Bjoern; Vijayanand, Pandurangan

    2016-07-15

    Allergic asthma and rhinitis are two common chronic allergic diseases that affect the lungs and nose, respectively. Both diseases share clinical and pathological features characteristic of excessive allergen-induced type 2 inflammation, orchestrated by memory CD4(+) T cells that produce type 2 cytokines (Th2 cells). However, a large majority of subjects with allergic rhinitis do not develop asthma, suggesting divergence in disease mechanisms. Because Th2 cells play a pathogenic role in both these diseases and are also present in healthy nonallergic subjects, we performed global transcriptional profiling to determine whether there are qualitative differences in Th2 cells from subjects with allergic asthma, rhinitis, and healthy controls. Th2 cells from asthmatic subjects expressed higher levels of several genes that promote their survival as well as alter their metabolic pathways to favor persistence at sites of allergic inflammation. In addition, genes that enhanced Th2 polarization and Th2 cytokine production were also upregulated in asthma. Several genes that oppose T cell activation were downregulated in asthma, suggesting enhanced activation potential of Th2 cells from asthmatic subjects. Many novel genes with poorly defined functions were also differentially expressed in asthma. Thus, our transcriptomic analysis of circulating Th2 cells has identified several molecules that are likely to confer pathogenic features to Th2 cells that are either unique or common to both asthma and rhinitis. PMID:27271570

  12. IL25 elicits a multipotent progenitor cell population that promotes TH2 cytokine responses

    Technology Transfer Automated Retrieval System (TEKTRAN)

    CD4+ T helper 2 (TH2) cells secrete interleukin (IL)4, IL5 and IL13, and are required for immunity to gastrointestinal helminth infections. However, TH2 cells also promote chronic inflammation associated with asthma and allergic disorders. The non-haematopoietic-cell-derived cytokines thymic stromal...

  13. CD4+ T-cell subsets in inflammatory diseases: beyond the Th1/Th2 paradigm.

    PubMed

    Hirahara, Kiyoshi; Nakayama, Toshinori

    2016-04-01

    CD4(+)T cells are crucial for directing appropriate immune responses during host defense and for the pathogenesis of inflammatory diseases. In addition to the classical biphasic model of differentiation of T-helper 1 (Th1) and Th2 cells, unexpected increases in the numbers of CD4(+)T-cell subsets, including Th17, Th9, T follicular-helper (Tfh) and T-regulatory (Treg) cells, have been recognized. In the present review, we focus on how these various T-helper cell subsets contribute to the pathogenesis of immune-mediated inflammatory diseases. In particular, we focus on multiple sclerosis, psoriasis and asthma as typical model diseases in which multiple T-helper cell subsets have recently been suggested to play a role. We will also discuss various unique sub-populations of T-helper cells that have been identified. First, we will introduce the heterogeneous T-helper cell subsets, which are classified by their simultaneous expression of multiple key transcription factors. We will also introduce different kinds of memory-type Th2 cells, which are involved in the pathogenesis of chronic type-2 immune-related diseases. Finally, we will discuss the molecular mechanisms underlying the generation of the plasticity and heterogeneity of T-helper cell subsets. The latest progress in the study of T-helper cell subsets has forced us to reconsider the etiology of immune-mediated inflammatory diseases beyond the model based on the Th1/Th2 balance. To this end, we propose another model--the pathogenic T-helper population disease-induction model--as a possible mechanism for the induction and/or persistence of immune-mediated inflammatory diseases. PMID:26874355

  14. Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control TH2 responses

    PubMed Central

    Zheng, Ye; Chaudhry, Ashutosh; Kas, Arnold; deRoos, Paul; Kim, Jeong M.; Chu, Tin-Tin; Corcoran, Lynn; Treuting, Piper; Klein, Ulf; Rudensky, Alexander Y.

    2010-01-01

    In the course of infection or autoimmunity, particular transcription factors orchestrate the differentiation of TH1, TH2 or TH17 effector cells, the responses of which are limited by a distinct lineage of suppressive regulatory T cells (Treg). Treg cell differentiation and function are guided by the transcription factor Foxp3, and their deficiency due to mutations in Foxp3 results in aggressive fatal autoimmune disease associated with sharply augmented TH1 and TH2 cytokine production1–3. Recent studies suggested that Foxp3 regulates the bulk of the Foxp3-dependent transcriptional program indirectly through a set of transcriptional regulators serving as direct Foxp3 targets4,5. Here we show that in mouse Treg cells, high amounts of interferon regulatory factor-4 (IRF4), a transcription factor essential for TH2 effector cell differentiation, is dependent on Foxp3 expression. We proposed that IRF4 expression endows Treg cells with the ability to suppress TH2 responses. Indeed, ablation of a conditional Irf4 allele in Treg cells resulted in selective dysregulation of TH2 responses, IL4-dependent immunoglobulin isotype production, and tissue lesions with pronounced plasma cell infiltration, in contrast to the mononuclear-cell-dominated pathology typical of mice lacking Treg cells. Our results indicate that Treg cells use components of the transcriptional machinery, promoting a particular type of effector CD4+ T cell differentiation, to efficiently restrain the corresponding type of the immune response. PMID:19182775

  15. IL-10-Expressing Th2 Cells Contribute to the Elevated Antibody Production in Rheumatoid Arthritis.

    PubMed

    Wang, Jinliang; Ma, Liheng; Yang, Shufeng; Wang, Shaohua; Wei, Xuan; Song, Shuchun

    2016-06-01

    Rheumatoid arthritis (RA) is a common autoimmune disease associated with progressive disability, systemic complications, and early death. Multiple lines of evidence have placed adaptive immune responses in the center of RA pathogenesis. However, the functional roles of T helper cells are insufficiently described. Here, we examined the Th2 cell subsets and their functions in RA patients. A downregulation of IL-4(+) cells in CD4(+) T cells were observed in RA patients, indicating a downregulation of Th2 cells, and these results were confirmed by using and CXCR3 and CCR6 surface markers. We then found that CXCR3(-)CCR6(-) Th2 cells can be separated into IL-4(+) (single positive), IL-10(+) (single positive), and IL-4(+)IL-10(+) (double positive) subsets. Further results showed that CXCR5 only expressed on IL-10+ Th2 cells. The CXCR5(+) and CXCR5(-) Th2 cells each exhibited distinctive features in helping B cell antibody secretion. CXCR5(+) Th2 cells were more potent at stimulating total Ig and IgM secretion, while CXCR5(-) Th2 cells were more potent at stimulating IgE. IL-10 was required for helping B cell total Ig, IgM, and IgE production, while IL-4 was required for total Ig and IgE. The frequencies of IL-10(+) and IL-4(+)IL-10(+) Th2 cells were positively correlated with rheumatoid factor titer in vivo. Together, our study demonstrated distinctive subsets within Th2 cells, each with different impacts on antibody production and RA disease. PMID:26956472

  16. Functionally distinct Gata3/Chd4 complexes coordinately establish T helper 2 (Th2) cell identity

    PubMed Central

    Hosokawa, Hiroyuki; Tanaka, Tomoaki; Suzuki, Yutaka; Iwamura, Chiaki; Ohkubo, Shuichi; Endoh, Kanji; Kato, Miki; Endo, Yusuke; Onodera, Atsushi; Tumes, Damon John; Kanai, Akinori; Sugano, Sumio; Nakayama, Toshinori

    2013-01-01

    GATA binding protein 3 (Gata3) is a GATA family transcription factor that controls differentiation of naïve CD4 T cells into T helper 2 (Th2) cells. However, it is unknown how Gata3 simultaneously activates Th2-specific genes while repressing those of other Th lineages. Here we show that chromodomain helicase DNA-binding protein 4 (Chd4) forms a complex with Gata3 in Th2 cells that both activates Th2 cytokine transcription and represses the Th1 cytokine IFN-γ. We define a Gata3/Chd4/p300 transcriptional activation complex at the Th2 cytokine loci and a Gata3/Chd4–nucleosome remodeling histone deacetylase repression complex at the Tbx21 locus in Th2 cells. We also demonstrate a physiological role for Chd4 in Th2-dependent inflammation in an in vivo model of asthmatic inflammation. Thus, Gata3/Chd4 forms functionally distinct complexes, which mediate both positive and negative gene regulation to facilitate Th2 cell differentiation. PMID:23471993

  17. Prostaglandin D2 and leukotriene E4 synergize to stimulate diverse TH2 functions and TH2 cell/neutrophil crosstalk

    PubMed Central

    Xue, Luzheng; Fergusson, Joannah; Salimi, Maryam; Panse, Isabel; Ussher, James E.; Hegazy, Ahmed N.; Vinall, Shân L.; Jackson, David G.; Hunter, Michael G.; Pettipher, Roy; Ogg, Graham; Klenerman, Paul

    2015-01-01

    Background Prostaglandin D2 (PGD2) and cysteinyl leukotrienes (cysLTs) are lipid mediators derived from mast cells, which activate TH2 cells. The combination of PGD2 and cysLTs (notably cysteinyl leukotriene E4 [LTE4]) enhances TH2 cytokine production. However, the synergistic interaction of cysLTs with PGD2 in promoting TH2 cell activation is still poorly understood. The receptors for these mediators are drug targets in the treatment of allergic diseases, and hence understanding their interaction is likely to have clinical implications. Objective We aimed to comprehensively define the roles of PGD2, LTE4, and their combination in activating human TH2 cells and how such activation might allow the TH2 cells to engage downstream effectors, such as neutrophils, which contribute to the pathology of allergic responses. Methods The effects of PGD2, LTE4, and their combination on human TH2 cell gene expression were defined by using a microarray, and changes in specific inflammatory pathways were confirmed by means of PCR array, quantitative RT-PCR, ELISA, Luminex, flow cytometry, and functional assays, including analysis of downstream neutrophil activation. Blockade of PGD2 and LTE4 was tested by using TM30089, an antagonist of chemoattractant receptor-homologous molecule expressed on TH2 cells, and montelukast, an antagonist of cysteinyl leukotriene receptor 1. Results PGD2 and LTE4 altered the transcription of a wide range of genes and induced diverse functional responses in TH2 cells, including cell adhesion, migration, and survival and cytokine production. The combination of these lipids synergistically or additively enhanced TH2 responses and, strikingly, induced marked production of diverse nonclassical TH2 inflammatory mediators, including IL-22, IL-8, and GM-CSF, at concentrations sufficient to affect neutrophil activation. Conclusions PGD2 and LTE4 activate TH2 cells through different pathways but act synergistically to promote multiple downstream effector

  18. Dectin-1 in the control of Th2-type T cell responses

    PubMed Central

    Upchurch, Katherine; Oh, SangKon; Joo, HyeMee

    2016-01-01

    Dendritic cells (DCs) are major antigen-presenting cells (APCs) that can induce and control host immune responses. DCs express pattern recognition receptors (PRRs), which can translate external and internal triggers into different types of T cell responses. The types of CD4+ T cell responses elicited by DCs (e.g., Th1, Th2, Th17, Th21, Th22 and regulatory T cells (Tregs)) are associated with either host immunity or inflammatory diseases, including allergic diseases and autoimmune diseases. In particular, the pathogenic functions of Th2-type T cells in allergic immune disorders have been well documented, although Th2-type T cell responses are crucial for immunity against certain parasite infections. Recent evidence also indicates that the inflammatory Th2 signatures in cancers, including breast and pancreatic cancers, are highly associated with poor clinical outcomes in patients. It is thus important to find cellular/molecular targets expressed in DCs that control such inflammatory Th2-type T cell responses. In a recent paper published in The Journal of Immunology, we demonstrated that Dectin-1 expressed on the two major human DC subsets, myeloid DCs (mDCs) and plasmacytoid DCs (pDCs), has opposing roles in the control of Th2-type CD4+ T cell responses. Dectin-1 expressed on mDCs decreases Th2-type CD4+ T cell responses, while Dectin-1 expressed on pDCs favors Th2-type CD4+ T cell responses. This finding expands our understanding of the roles of DCs and Dectin-1 expressed on DCs in the pathogenesis of Th2-associated diseases and in host immunity to microbial infections and cancers. PMID:27088111

  19. IFNγ and IL-12 Restrict Th2 Responses during Helminth/Plasmodium Co-Infection and Promote IFNγ from Th2 Cells

    PubMed Central

    Coomes, Stephanie M.; Pelly, Victoria S.; Kannan, Yashaswini; Okoye, Isobel S.; Czieso, Stephanie; Entwistle, Lewis J.; Perez-Lloret, Jimena; Nikolov, Nikolay; Potocnik, Alexandre J.; Biró, Judit; Langhorne, Jean; Wilson, Mark S.

    2015-01-01

    Parasitic helminths establish chronic infections in mammalian hosts. Helminth/Plasmodium co-infections occur frequently in endemic areas. However, it is unclear whether Plasmodium infections compromise anti-helminth immunity, contributing to the chronicity of infection. Immunity to Plasmodium or helminths requires divergent CD4+ T cell-driven responses, dominated by IFNγ or IL-4, respectively. Recent literature has indicated that Th cells, including Th2 cells, have phenotypic plasticity with the ability to produce non-lineage associated cytokines. Whether such plasticity occurs during co-infection is unclear. In this study, we observed reduced anti-helminth Th2 cell responses and compromised anti-helminth immunity during Heligmosomoides polygyrus and Plasmodium chabaudi co-infection. Using newly established triple cytokine reporter mice (Il4gfpIfngyfpIl17aFP635), we demonstrated that Il4gfp+ Th2 cells purified from in vitro cultures or isolated ex vivo from helminth-infected mice up-regulated IFNγ following adoptive transfer into Rag1–/– mice infected with P. chabaudi. Functionally, Th2 cells that up-regulated IFNγ were transcriptionally re-wired and protected recipient mice from high parasitemia. Mechanistically, TCR stimulation and responsiveness to IL-12 and IFNγ, but not type I IFN, was required for optimal IFNγ production by Th2 cells. Finally, blockade of IL-12 and IFNγ during co-infection partially preserved anti-helminth Th2 responses. In summary, this study demonstrates that Th2 cells retain substantial plasticity with the ability to produce IFNγ during Plasmodium infection. Consequently, co-infection with Plasmodium spp. may contribute to the chronicity of helminth infection by reducing anti-helminth Th2 cells and converting them into IFNγ-secreting cells. PMID:26147567

  20. Molecular events by which dendritic cells promote Th2 immune protection in helmith infection.

    PubMed

    Méndez-Samperio, Patricia

    2016-10-01

    Helminth parasites are a major cause of global infectious diseases, affecting nearly one quarter of the world's population. The common feature of helminth infections is to skew the immune system towards a T-helper 2 (Th2) response that helps to control disease. Dendritic cells (DCs), which are professional antigen-presenting cells, play a critical role for Th2 skewing against helminth parasites. However, the molecular mechanisms by which helminth antigens activate DCs for Th2 polarization have not yet been clearly defined. This review provides a focused update on the major role of DCs for inducing and/or enhancing Th2 immune responses in helminthic infection and will discuss the main signalling-dependent and independent mechanisms by which helminth antigens activate DCs for Th2 skewing. PMID:27348757

  1. Pleural cavity type 2 innate lymphoid cells precede Th2 expansion in murine Litomosoides sigmodontis infection.

    PubMed

    Boyd, Alexis; Killoran, Kristin; Mitre, Edward; Nutman, Thomas B

    2015-12-01

    Recently, a family of innate cells has been identified that respond to IL-25 and IL-33 in murine intestinal helminths. Termed Type 2 innate lymphoid cells (ILC2s) they facilitate the development of Th2 responses responsible for helminth clearance. We evaluated these cells in a tissue-invasive helminth model. Using Litomosides sigmodontis (a strong Th2 polarizing filarial infection) we observed a robust Th2 response in the pleural cavity, where adult worms reside, marked by increased levels of IL-5 and IL-13 in infected mice. In parallel, ILC2s were expanded in the pleural cavity early in the infection, peaking during the pre-patent period. L. sigmodontis also elicits a strong systemic Th2 response, which includes significantly increased levels of IgG1, IgE and IL-5 in the plasma of infected mice. Although ILC2s were expanded locally, they were not expanded in the spleen, blood, or mediastinal lymph nodes in response to L. sigmodontis infection, suggesting that ILC2s function primarily at the site of infection. The increase in ILC2s in the pleural cavity and the expansion in Th2 responses indicates a probable role for these cells in initiating and maintaining the Th2 response and highlights the importance of these cells in helminth infections and their role in Th2 immunity. PMID:26394284

  2. Accumulation of intraepithelial mast cells with a unique protease phenotype in TH2-high asthma

    PubMed Central

    Dougherty, Ryan H.; Sidhu, Sukhvinder S.; Raman, Kavita; Solon, Margaret; Solberg, Owen D.; Caughey, George H.; Woodruff, Prescott G.; Fahy, John V.

    2010-01-01

    Background Previously, we found that mast cell tryptases and carboxypeptidase A3 (CPA3) are differentially expressed in the airway epithelium in asthmatic subjects. We also found that asthmatic subjects can be divided into 2 subgroups (“TH2 high” and “TH2 low” asthma) based on epithelial cell gene signatures for the activity of TH2 cytokines. Objectives We sought to characterize intraepithelial mast cells (IEMCs) in asthma. Methods We performed gene expression profiling in epithelial brushings and stereology-based quantification of mast cell numbers in endobronchial biopsy specimens from healthy control and asthmatic subjects before and after treatment with inhaled corticosteroids (ICSs). We also performed gene expression and protein quantification studies in cultured airway epithelial cells and mast cells. Results By means of unsupervised clustering, mast cell gene expression in the airway epithelium related closely to the expression of IL-13 signature genes. The levels of expression of mast cell genes correlate positively with lung function improvements with ICSs. IEMC density was 2-fold higher than normal in subjects with TH2-high asthma compared with that seen in subjects with TH2-low asthma or healthy control subjects (P = .015 for both comparisons), and these cells were characterized by expression of tryptases and CPA3 but not chymase. IL-13 induced expression of stem cell factor in cultured airway epithelial cells, and mast cells exposed to conditioned media from IL-13–activated epithelial cells showed downregulation of chymase but no change in tryptase or CPA3 expression. Conclusion IEMC numbers are increased in subjects with TH2-high asthma, have an unusual protease phenotype (tryptase and CPA3 high and chymase low), and predict responsiveness to ICSs. IL-13–stimulated production of stem cell factor by epithelial cells potentially explains mast cell accumulation in TH2-high asthmatic epithelium. PMID:20451039

  3. Dendritic cells and B cells: unexpected partners in Th2 development.

    PubMed

    León, Beatriz; Ballesteros-Tato, André; Lund, Frances E

    2014-08-15

    Although we have known for decades that B cells contribute to immune responses by secreting Ab, it is now clear that they are more than simply factories for Ig production, and they also play key roles as modulators of T cell-dependent immunity. Indeed, the evidence showing that Ag-presenting and cytokine-producing B cells can alter the magnitude and quality of CD4 T cell responses continues to grow. In this article, we review the data showing that B cells, working in partnership with dendritic cells, regulate the development of Th2 cells and the subsequent allergic response. PMID:25086176

  4. Mast Cell-Derived Exosomes Promote Th2 Cell Differentiation via OX40L-OX40 Ligation

    PubMed Central

    Li, Fei; Wang, Yuping; Lin, Lihui; Wang, Juan; Xiao, Hui; Li, Jia; Peng, Xia; Dai, Huirong; Li, Li

    2016-01-01

    Exosomes are nanovesicles released by different cell types, such as dendritic cells (DCs), mast cells (MCs), and tumor cells. Exosomes of different origin play a role in antigen presentation and modulation of immune response to infectious disease. In this study, we demonstrate that mast cells and CD4+ T cells colocated in peritoneal lymph nodes from BALB/c mouse. Further, bone marrow-derived mast cells (BMMCs) constitutively release exosomes, which express CD63 and OX40L. BMMC-exosomes partially promoted the proliferation of CD4+ T cells. BMMC-exosomes significantly enhanced the differentiation of naive CD4+ T cells to Th2 cells in a surface contact method, and this ability was partly inhibited by the addition of anti-OX40L Ab. In conclusion, BMMC-exosomes promoted the proliferation and differentiation of Th2 cells via ligation of OX40L and OX40 between exosomes and T cells. This method represents a novel mechanism, in addition to direct cell surface contacts, soluble mediators, and synapses, to regulate T cell actions by BMMC-exosomes. PMID:27066504

  5. Foxa2 programs Th2 cell-mediated innate immunity in the developing lung.

    PubMed

    Chen, Gang; Wan, Huajing; Luo, Fengming; Zhang, Liqian; Xu, Yan; Lewkowich, Ian; Wills-Karp, Marsha; Whitsett, Jeffrey A

    2010-06-01

    After birth, the respiratory tract adapts to recurrent exposures to pathogens, allergens, and toxicants by inducing the complex innate and acquired immune systems required for pulmonary homeostasis. In this study, we show that Foxa2, expressed selectively in the respiratory epithelium, plays a critical role in regulating genetic programs influencing Th2 cell-mediated pulmonary inflammation. Deletion of the Foxa2 gene, encoding a winged helix/forkhead box transcription factor that is selectively expressed in respiratory epithelial cells, caused spontaneous pulmonary eosinophilic inflammation and goblet cell metaplasia. Loss of Foxa2 induced the recruitment and activation of myeloid dendritic cells and Th2 cells in the lung, causing increased production of Th2 cytokines and chemokines. Loss of Foxa2-induced expression of genes regulating Th2 cell-mediated inflammation and goblet cell differentiation, including IL-13, IL-4, eotaxins, thymus and activation-regulated chemokine, Il33, Ccl20, and SAM pointed domain-containing Ets transcription factor. Pulmonary inflammation and goblet cell differentiation were abrogated by treatment of neonatal Foxa2(Delta/Delta) mice with mAb against IL-4Ralpha subunit. The respiratory epithelium plays a central role in the regulation of Th2-mediated inflammation and innate immunity in the developing lung in a process regulated by Foxa2. PMID:20483781

  6. Th2 cell-specific cytokine expression and allergen-induced airway inflammation depend on JunB

    PubMed Central

    Hartenstein, Bettina; Teurich, Sibylle; Hess, Jochen; Schenkel, Johannes; Schorpp-Kistner, Marina; Angel, Peter

    2002-01-01

    Naïve CD4+ T cells differentiate into effector T helper 1 (Th1) or Th2 cells, which are classified by their specific set of cytokines. Here we demonstrate that loss of JunB in in vitro polarized Th2 cells led to a dysregulated expression of the Th2-specific cytokines IL-4 and IL-5. These cells produce IFN-γ and express T-bet, the key regulator of Th1 cells. In line with the essential role of Th2 cells in the pathogenesis of allergic asthma, mice with JunB-deficient CD4+ T cells exhibited an impaired allergen-induced airway inflammation. This study demonstrates novel functions of JunB in the development of Th2 effector cells, for a normal Th2 cytokine expression pattern and for a complete Th2-dependent immune response in mice. PMID:12456639

  7. CD30 antigen: not a physiological marker for TH2 cells but an important costimulator molecule in the regulation of the balance between TH1/TH2 response.

    PubMed

    Pellegrini, Patrizia; Berghella, Anna Maria; Contasta, Ida; Adorno, Domenico

    2003-01-01

    Understanding the physiological role of CD30 would be an important step forward in transplants because CD30+ T cells can be induced by alloantigens even in the presence of immunosuppressives such as cyclosporine (Csa) and hence can act as regulatory cells in allograft. The results of functional studies on purified T CD30+ cell populations led us to hypothesize that the CD30 costimulator molecule is not a specific marker for TH2 cells in normal conditions, as has been suggested, but rather a marker for an important immunoregulatory subpopulation that regulates the balance between TH1 and TH2 (TH1/TH2) type response. To substantiate this hypothesis we studied the TH1/TH2 cytokine network in peripheral whole blood cultures stimulate with M44 CD30 ligand (CD30L), an agonistic monoclonal antibody (mAb). Four types of whole blood culture were used: the first had been stimulated with anti-CD3 mAb which generates a CD30 cytokine profile similar to alloreactive stimulation; the second with anti-CD3 mAb+M81 (an anti-CD30L mAb) to inhibit CD30/CD30L interaction; the third with anti-CD3+anti-interleukin (IL)4 mAbs to counteract IL4 activity and the fourth with anti-CD3+anti-interferon (IFN)gamma mAbs to counteract IFNgamma activity. Network interactions between soluble CD30 (sCD30, a maker of CD30 expression), sBcl2 (a marker of cell survival) and TH1/TH2 cytokines (IFNgamma, IL2, IL12p70, IL12p40, IL4, IL5 and IL10) were then studied in the supernatants obtained. Our results confirm the hypothesis above by showing that CD30 signals trigger functional mechanisms responsible for changes in levels of production of several important TH1 and TH2 cytokines involved in the regulation of the physiological balance between TH1/TH2 functions. The CD30-stimulated network, in fact, induces IFNgamma production linked to TH1 activity (-->TH1) which is subsequently integrated by IL4 production linked to TH2 activity (-->TH2). This production appears to be regulated, respectively, by IL12p40

  8. The Adenylate Cyclase Toxins of Bacillus anthracis and Bordetella pertussis Promote Th2 Cell Development by Shaping T Cell Antigen Receptor Signaling

    PubMed Central

    Rossi Paccani, Silvia; Benagiano, Marisa; Capitani, Nagaja; Zornetta, Irene; Ladant, Daniel; Montecucco, Cesare; D'Elios, Mario M.; Baldari, Cosima T.

    2009-01-01

    The adjuvanticity of bacterial adenylate cyclase toxins has been ascribed to their capacity, largely mediated by cAMP, to modulate APC activation, resulting in the expression of Th2–driving cytokines. On the other hand, cAMP has been demonstrated to induce a Th2 bias when present during T cell priming, suggesting that bacterial cAMP elevating toxins may directly affect the Th1/Th2 balance. Here we have investigated the effects on human CD4+ T cell differentiation of two adenylate cyclase toxins, Bacillus anthracis edema toxin (ET) and Bordetella pertussis CyaA, which differ in structure, mode of cell entry, and subcellular localization. We show that low concentrations of ET and CyaA, but not of their genetically detoxified adenylate cyclase defective counterparts, potently promote Th2 cell differentiation by inducing expression of the master Th2 transcription factors, c-maf and GATA-3. We also present evidence that the Th2–polarizing concentrations of ET and CyaA selectively inhibit TCR–dependent activation of Akt1, which is required for Th1 cell differentiation, while enhancing the activation of two TCR–signaling mediators, Vav1 and p38, implicated in Th2 cell differentiation. This is at variance from the immunosuppressive toxin concentrations, which interfere with the earliest step in TCR signaling, activation of the tyrosine kinase Lck, resulting in impaired CD3ζ phosphorylation and inhibition of TCR coupling to ZAP-70 and Erk activation. These results demonstrate that, notwithstanding their differences in their intracellular localization, which result in focalized cAMP production, both toxins directly affect the Th1/Th2 balance by interfering with the same steps in TCR signaling, and suggest that their adjuvanticity is likely to result from their combined effects on APC and CD4+ T cells. Furthermore, our results strongly support the key role of cAMP in the adjuvanticity of these toxins. PMID:19266022

  9. Airway epithelial SPDEF integrates goblet cell differentiation and pulmonary Th2 inflammation.

    PubMed

    Rajavelu, Priya; Chen, Gang; Xu, Yan; Kitzmiller, Joseph A; Korfhagen, Thomas R; Whitsett, Jeffrey A

    2015-05-01

    Epithelial cells that line the conducting airways provide the initial barrier and innate immune responses to the abundant particles, microbes, and allergens that are inhaled throughout life. The transcription factors SPDEF and FOXA3 are both selectively expressed in epithelial cells lining the conducting airways, where they regulate goblet cell differentiation and mucus production. Moreover, these transcription factors are upregulated in chronic lung disorders, including asthma. Here, we show that expression of SPDEF or FOXA3 in airway epithelial cells in neonatal mice caused goblet cell differentiation, spontaneous eosinophilic inflammation, and airway hyperresponsiveness to methacholine. SPDEF expression promoted DC recruitment and activation in association with induction of Il33, Csf2, thymic stromal lymphopoietin (Tslp), and Ccl20 transcripts. Increased Il4, Il13, Ccl17, and Il25 expression was accompanied by recruitment of Th2 lymphocytes, group 2 innate lymphoid cells, and eosinophils to the lung. SPDEF was required for goblet cell differentiation and pulmonary Th2 inflammation in response to house dust mite (HDM) extract, as both were decreased in neonatal and adult Spdef(-/-) mice compared with control animals. Together, our results indicate that SPDEF causes goblet cell differentiation and Th2 inflammation during postnatal development and is required for goblet cell metaplasia and normal Th2 inflammatory responses to HDM aeroallergen. PMID:25866971

  10. Inhibition of Th2 cytokine production in T cells by monascin via PPAR-γ activation.

    PubMed

    Hsu, Wei-Hsuan; Lee, Bao-Hong; Hsu, Ya-Wen; Pan, Tzu-Ming

    2013-08-28

    Yellow pigment monascin (MS) is a secondary metabolite isolated from Monascus -fermented products and has numerous physiological activities. However, the potential use of MS for immunomodulation remains unclear. We showed that MS and the synthetic peroxisome proliferator-activated receptor (PPAR)-γ ligand rosiglitazone (RG) significantly inhibited the production of Th2 cytokines, including IL-4, IL-5, and IL-13, in PMA/ionomycin-activated mouse EL-4 T cells. Moreover, we showed that this was due to cellular PPAR-γ translocation. These results indicate that MS and RG promote PPAR-γ-DNA interactions and suggest that the regulatory effects of MS and RG on Th2 cytokine production could be abolished with PPAR-γ antagonist treatment. MS and RG also suppressed Th2 transcription factor translocation (e.g., GATA-3 and nuclear factor of activated T cells) by preventing the phosphorylation of protein kinase C and signal transducer and activator of transcription 6. PMID:23848565

  11. Impaired dendritic cell maturation and increased T(H)2 responses in PIR-B(-/-) mice.

    PubMed

    Ujike, Azusa; Takeda, Kazuhiko; Nakamura, Akira; Ebihara, Shin; Akiyama, Kenichi; Takai, Toshiyuki

    2002-06-01

    Mice deficient for paired immunoglobulin (Ig)-like receptor B (PIR-B) show defective regulation of receptor-mediated activation in antigen-presenting cells. Older PIR-B(-/-) mice had an increased number of peritoneal B1 cells. Splenic PIR-B(-/-) B2 cells were constitutively activated and proliferated much more than those from wild-type mice upon B cell receptor ligation. T helper type 2 (T(H)2)-prone humoral responses were augmented in PIR-B(-/-) mice upon immunization with T-dependent antigens, including increased interleukin 4 and decreased interferon-gamma responses, as well as enhanced IgG1 and IgE production. Impaired maturation of dendritic cells (DCs), possibly due to perturbed intracellular signaling, was responsible for the skewed responses. Thus, PIR-B is critical for B cell suppression, DC maturation and for balancing T(H)1 and T(H)2 immune responses. PMID:12021780

  12. Airway epithelial cells activate Th2 cytokine production in mast cells via IL-1 and thymic stromal lymphopoietin

    PubMed Central

    Nagarkar, Deepti R.; Poposki, Julie A.; Comeau, Michael R.; Biyasheva, Assel; Avila, Pedro C.; Schleimer, Robert P.; Kato, Atsushi

    2012-01-01

    Background Airway epithelial cells are important regulators of innate and adaptive immunity. Although mast cells are known to play a central role in manifestations of allergic inflammation and are found in the epithelium in Th2-related diseases, their role is incompletely understood. Objectives The objective of this study was to investigate the role of airway epithelial cells in production of Th2 cytokines in mast cells. Methods Normal human bronchial epithelial cells (NHBE) were stimulated with TNF, IL-4, IFN-γ, IL -17A and dsRNA alone or in combination. Human mast cells were stimulated with epithelial cell-derived supernatants, or co-cultured with NHBE. Th2 cytokine responses were blocked with neutralizing antibodies. Results Supernatants from IL-4 and dsRNA stimulated NHBE significantly enhanced Th2 cytokine production from mast cells. The combination of IL-4 and dsRNA itself or supernatants from NHBE stimulated with other cytokines did not activate mast cells, suggesting that mast cell responses were induced by epithelial cell factors that were only induced by IL-4 and dsRNA. Epithelial supernatant-dependent Th2 cytokine production in mast cells was suppressed by anti-IL-1 and anti-TSLP, and was enhanced by anti-IL-1Ra. Similar results were observed in co-culture experiments. Finally, we found dsRNA-dependent production of IL-1, TSLP, and IL-1Ra in NHBE was regulated by Th cytokines, and their ratio in NHBE correlated with Th2 cytokine production in mast cells. Conclusions Pathogens producing dsRNA, such as respiratory viral infections, may amplify local Th2 inflammation in asthmatics via the production of TSLP and IL-1 by epithelial cells and subsequent activation of Th2 cytokine production by mast cells in the airways. PMID:22633328

  13. A central role for hepatic conventional dendritic cells in supporting Th2 responses during helminth infection

    PubMed Central

    Lundie, Rachel J; Webb, Lauren M; Marley, Angela K; Phythian-Adams, Alexander T; Cook, Peter C; Jackson-Jones, Lucy H; Brown, Sheila; Maizels, Rick M; Boon, Louis; O'Keeffe, Meredith; MacDonald, Andrew S

    2016-01-01

    Dendritic cells (DCs) are the key initiators of T-helper (Th) 2 immune responses against the parasitic helminth Schistosoma mansoni. Although the liver is one of the main sites of antigen deposition during infection with this parasite, it is not yet clear how distinct DC subtypes in this tissue respond to S. mansoni antigens in vivo, or how the liver microenvironment might influence DC function during establishment of the Th2 response. In this study, we show that hepatic DC subsets undergo distinct activation processes in vivo following murine infection with S. mansoni. Conventional DCs (cDCs) from schistosome-infected mice upregulated expression of the costimulatory molecule CD40 and were capable of priming naive CD4+ T cells, whereas plasmacytoid DCs (pDCs) upregulated expression of MHC class II, CD86 and CD40 but were unable to support the expansion of either naive or effector/memory CD4+ T cells. Importantly, in vivo depletion of pDCs revealed that this subset was dispensable for either maintenance or regulation of the hepatic Th2 effector response during acute S. mansoni infection. Our data provides strong evidence that S. mansoni infection favors the establishment of an immunogenic, rather than tolerogenic, liver microenvironment that conditions cDCs to initiate and maintain Th2 immunity in the context of ongoing antigen exposure. PMID:26657145

  14. Suppression of Th2 and Tfh immune reactions by Nr4a receptors in mature T reg cells.

    PubMed

    Sekiya, Takashi; Kondo, Taisuke; Shichita, Takashi; Morita, Rimpei; Ichinose, Hiroshi; Yoshimura, Akihiko

    2015-09-21

    Regulatory T (T reg) cells are central mediators of immune suppression. As such, T reg cells are characterized by a distinct pattern of gene expression, which includes up-regulation of immunosuppressive genes and silencing of inflammatory cytokine genes. Although an increasing number of transcription factors that regulate T reg cells have been identified, the mechanisms by which the T reg cell-specific transcriptional program is maintained and executed remain largely unknown. The Nr4a family of nuclear orphan receptors, which we recently identified as essential for the development of T reg cells, is highly expressed in mature T reg cells as well, suggesting that Nr4a factors play important roles even beyond T reg cell development. Here, we showed that deletion of Nr4a genes specifically in T reg cells caused fatal systemic immunopathology. Nr4a-deficient T reg cells exhibited global alteration of the expression of genes which specify the T reg cell lineage, including reduction of Foxp3 and Ikzf4. Furthermore, Nr4a deficiency abrogated T reg cell suppressive activities and accelerated conversion to cells with Th2 and follicular helper T (Tfh) effector-like characteristics, with heightened expression of Th2 and Tfh cytokine genes. These findings demonstrate that Nr4a factors play crucial roles in mature T reg cells by directly controlling a genetic program indispensable for T reg cell maintenance and function. PMID:26304965

  15. PIF direct immune regulation: Blocks mitogen-activated PBMCs proliferation, promotes TH2/TH1 bias, independent of Ca(2+).

    PubMed

    Barnea, Eytan R; Kirk, David; Todorova, Krassimira; McElhinney, James; Hayrabedyan, Soren; Fernández, Nelson

    2015-07-01

    PreImplantation Factor (PIF(9&15)) secreted by viable embryos exerts an essential transplant acceptance and immune regulatory role in pregnancy. Synthetic PIF replicates endogenous PIF's effect in pregnant and non-pregnant immune disorder models. PIF binds macrophages to regulate CD3/CD28-induced T-cell response. We present evidence that PIF regulates the co-stimulatory T-cell receptor, CD2, which binds to and is activated by phytohemagglutinin (PHA), a potent mitogen, confirming PIF's ability to systemically respond to diverse immune stimulants. PIF's effect on PHA-activated PBMC (male and non-pregnant females) proliferation and cytokine secretion was tested, showing that both PIF(9&15) block PHA-induced PBMC proliferation and promote anti-inflammatory IL10 secretion, while reducing pro-inflammatory IFNγ secretion. Thus favoring a T(H)2 cytokine bias. Surface plasmon resonance spectroscopy, immunocytochemistry and Flex station experiments reveal that PIF effect is direct. PIF targets intracellular targets but does not affect early Ca(2+) mobilization. By promoting the CD2 receptor in activated T-cells and through inhibition of co-ligand CD58 expression, PIF regulates antigen-presenting cell (APC)-T-cell interactions required for PHA action. Structure-based design demonstrated that PIF15 offers improved target specificity as compared to PIF9. Collectively, PIF directly regulates mitogen-induced PBMC activation. Results support PIF translation for therapy of immune disorders. PMID:25766203

  16. Suppression of Th2 and Tfh immune reactions by Nr4a receptors in mature T reg cells

    PubMed Central

    Kondo, Taisuke; Shichita, Takashi; Morita, Rimpei; Ichinose, Hiroshi

    2015-01-01

    Regulatory T (T reg) cells are central mediators of immune suppression. As such, T reg cells are characterized by a distinct pattern of gene expression, which includes up-regulation of immunosuppressive genes and silencing of inflammatory cytokine genes. Although an increasing number of transcription factors that regulate T reg cells have been identified, the mechanisms by which the T reg cell–specific transcriptional program is maintained and executed remain largely unknown. The Nr4a family of nuclear orphan receptors, which we recently identified as essential for the development of T reg cells, is highly expressed in mature T reg cells as well, suggesting that Nr4a factors play important roles even beyond T reg cell development. Here, we showed that deletion of Nr4a genes specifically in T reg cells caused fatal systemic immunopathology. Nr4a-deficient T reg cells exhibited global alteration of the expression of genes which specify the T reg cell lineage, including reduction of Foxp3 and Ikzf4. Furthermore, Nr4a deficiency abrogated T reg cell suppressive activities and accelerated conversion to cells with Th2 and follicular helper T (Tfh) effector-like characteristics, with heightened expression of Th2 and Tfh cytokine genes. These findings demonstrate that Nr4a factors play crucial roles in mature T reg cells by directly controlling a genetic program indispensable for T reg cell maintenance and function. PMID:26304965

  17. Cyclic AMP concentrations in dendritic cells induce and regulate Th2 immunity and allergic asthma

    PubMed Central

    Lee, Jihyung; Kim, Tae Hoon; Murray, Fiona; Li, Xiangli; Choi, Sara S.; Broide, David H.; Corr, Maripat; Lee, Jongdae; Webster, Nicholas J. G.; Insel, Paul A.; Raz, Eyal

    2015-01-01

    The inductive role of dendritic cells (DC) in Th2 differentiation has not been fully defined. We addressed this gap in knowledge by focusing on signaling events mediated by the heterotrimeric GTP binding proteins Gαs, and Gαi, which respectively stimulate and inhibit the activation of adenylyl cyclases and the synthesis of cAMP. We show here that deletion of Gnas, the gene that encodes Gαs in mouse CD11c+ cells (GnasΔCD11c mice), and the accompanying decrease in cAMP provoke Th2 polarization and yields a prominent allergic phenotype, whereas increases in cAMP inhibit these responses. The effects of cAMP on DC can be demonstrated in vitro and in vivo and are mediated via PKA. Certain gene products made by GnasΔCD11c DC affect the Th2 bias. These findings imply that G protein-coupled receptors, the physiological regulators of Gαs and Gαi activation and cAMP formation, act via PKA to regulate Th bias in DC and in turn, Th2-mediated immunopathologies. PMID:25605931

  18. Th1/Th2 cell dichotomy in acquired immunity to Bordetella pertussis: variables in the in vivo priming and in vitro cytokine detection techniques affect the classification of T-cell subsets as Th1, Th2 or Th0.

    PubMed Central

    Barnard, A; Mahon, B P; Watkins, J; Redhead, K; Mills, K H

    1996-01-01

    In studies of the mechanism of immunity to Bordetella pertussis in a murine respiratory infection model, we have previously demonstrated that natural infection of immunization with a whole cell vaccine induces a potent protective immune response, which is mediated by T-helper type-1 (Th1) cells. In contrast an acellular vaccine generates Th2 cells and is associated with delayed bacterial clearance following respiratory challenge. In the present study we have investigated the apparent Th1/Th2 cell dichotomy in acquired immunity and have examined the factors that affect their induction or detection. The cytokine profiles of B. pertussis-specific T cells in immune animals were determined using antigen-stimulated ex vivo spleen cells or CD4+ T-cell lines and clones established in the presence of interleukin-2 (IL-2) or IL-4. Antigen-specific T cells derived from mice immunized with the acellular vaccine were almost exclusively of the Th2 cell type. In contrast, T-cell lines and clones established following respiratory infection or immunization with the whole cell vaccine were predominantly of the Th1 type. However, a proportion of T cells from convalescent mice, especially when cultured in the presence of IL-4, secreted IL-4 and IL-5 with or without detectable IL-2 and interferon-gamma (IFN-gamma), suggesting that Th0 or Th2 cells were also primed during natural infection in vivo. Furthermore, when mice were assessed 6 months after infection, spleen cells produced significant levels of IL-4 and IL-5, which were not evident at 6 weeks. The route of immunization and the genetic background of the mice were also found to influence the preferential priming of Th1 cells, and this was directly related to the level of protection against respiratory or intracerebral (i.c.) challenge. Our findings underline the critical role of CD4+ Th1 cells in immunity to B. pertussis, but also demonstrate that a number of factors in the in vivo priming and in vitro restimulation can skew the

  19. Akt1-mediated Gata3 phosphorylation controls the repression of IFNγ in memory-type Th2 cells

    PubMed Central

    Hosokawa, Hiroyuki; Tanaka, Tomoaki; Endo, Yusuke; Kato, Miki; Shinoda, Kenta; Suzuki, Akane; Motohashi, Shinichiro; Matsumoto, Masaki; Nakayama, Keiichi I.; Nakayama, Toshinori

    2016-01-01

    Th2 cells produce Th2 cytokines such as IL-4, IL-5 and IL-13, but repress Th1 cytokine IFNγ. Recent studies have revealed various distinct memory-type Th2 cell subsets, one of which produces a substantial amount of IFNγ in addition to Th2 cytokines, however it remains unclear precisely how these Th2 cells produce IFNγ. We herein show that phosphorylation of Gata3 at Ser308, Thr315 and Ser316 induces dissociation of a histone deacetylase Hdac2 from the Gata3/Chd4 repressive complex in Th2 cells. We also identify Akt1 as a Gata3-phosphorylating kinase, and the activation of Akt1 induces derepression of Tbx21 and Ifng expression in Th2 cells. Moreover, T-bet-dependent IFNγ expression in IFNγ-producing memory Th2 cells appears to be controlled by the phosphorylation status of Gata3 in human and murine systems. Thus, this study highlights the molecular basis for posttranslational modifications of Gata3 that control the regulation of IFNγ expression in memory Th2 cells. PMID:27053161

  20. Akt1-mediated Gata3 phosphorylation controls the repression of IFNγ in memory-type Th2 cells.

    PubMed

    Hosokawa, Hiroyuki; Tanaka, Tomoaki; Endo, Yusuke; Kato, Miki; Shinoda, Kenta; Suzuki, Akane; Motohashi, Shinichiro; Matsumoto, Masaki; Nakayama, Keiichi I; Nakayama, Toshinori

    2016-01-01

    Th2 cells produce Th2 cytokines such as IL-4, IL-5 and IL-13, but repress Th1 cytokine IFNγ. Recent studies have revealed various distinct memory-type Th2 cell subsets, one of which produces a substantial amount of IFNγ in addition to Th2 cytokines, however it remains unclear precisely how these Th2 cells produce IFNγ. We herein show that phosphorylation of Gata3 at Ser308, Thr315 and Ser316 induces dissociation of a histone deacetylase Hdac2 from the Gata3/Chd4 repressive complex in Th2 cells. We also identify Akt1 as a Gata3-phosphorylating kinase, and the activation of Akt1 induces derepression of Tbx21 and Ifng expression in Th2 cells. Moreover, T-bet-dependent IFNγ expression in IFNγ-producing memory Th2 cells appears to be controlled by the phosphorylation status of Gata3 in human and murine systems. Thus, this study highlights the molecular basis for posttranslational modifications of Gata3 that control the regulation of IFNγ expression in memory Th2 cells. PMID:27053161

  1. Bone marrow-derived mesenchymal stromal cells inhibit Th2-mediated allergic airways inflammation in mice.

    PubMed

    Goodwin, Meagan; Sueblinvong, Viranuj; Eisenhauer, Philip; Ziats, Nicholas P; LeClair, Laurie; Poynter, Matthew E; Steele, Chad; Rincon, Mercedes; Weiss, Daniel J

    2011-07-01

    Bone marrow-derived mesenchymal stromal cells (BMSCs) mitigate inflammation in mouse models of acute lung injury. However, specific mechanisms of BMSC actions on CD4 T lymphocyte-mediated inflammation in vivo remain poorly understood. Limited data suggests promotion of Th2 phenotype in models of Th1-mediated diseases. However, whether this might alleviate or worsen Th2-mediated diseases such as allergic asthma is unknown. To ascertain the effects of systemic administration of BMSCs in a mouse model of Th2-mediated allergic airways inflammation, ovalbumin (OVA)-induced allergic airways inflammation was induced in wild-type C57BL/6 and BALB/c mice as well as in interferon-γ (IFNγ) receptor null mice. Effects of systemic administration during antigen sensitization of either syngeneic or allogeneic BMSC on airways hyperreactivity, lung inflammation, antigen-specific CD4 T lymphocytes, and serum immunoglobulins were assessed. Both syngeneic and allogeneic BMSCs inhibited airways hyperreactivity and lung inflammation through a mechanism partly dependent on IFNγ. However, contrary to existing data, BMSCs did not affect antigen-specific CD4 T lymphocyte proliferation but rather promoted Th1 phenotype in vivo as assessed by both OVA-specific CD4 T lymphocyte cytokine production and OVA-specific circulating immunoglobulins. BMSCs treated to prevent release of soluble mediators and a control cell population of primary dermal skin fibroblasts only partly mimicked the BMSC effects and in some cases worsened inflammation. In conclusion, BMSCs inhibit Th2-mediated allergic airways inflammation by influencing antigen-specific CD4 T lymphocyte differentiation. Promotion of a Th1 phenotype in antigen-specific CD4 T lymphocytes by BMSCs is sufficient to inhibit Th2-mediated allergic airways inflammation through an IFNγ-dependent process. PMID:21544902

  2. The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation.

    PubMed

    Kabat, Agnieszka M; Harrison, Oliver J; Riffelmacher, Thomas; Moghaddam, Amin E; Pearson, Claire F; Laing, Adam; Abeler-Dörner, Lucie; Forman, Simon P; Grencis, Richard K; Sattentau, Quentin; Simon, Anna Katharina; Pott, Johanna; Maloy, Kevin J

    2016-01-01

    A polymorphism in the autophagy gene Atg16l1 is associated with susceptibility to inflammatory bowel disease (IBD); however, it remains unclear how autophagy contributes to intestinal immune homeostasis. Here, we demonstrate that autophagy is essential for maintenance of balanced CD4(+) T cell responses in the intestine. Selective deletion of Atg16l1 in T cells in mice resulted in spontaneous intestinal inflammation that was characterized by aberrant type 2 responses to dietary and microbiota antigens, and by a loss of Foxp3(+) Treg cells. Specific ablation of Atg16l1 in Foxp3(+) Treg cells in mice demonstrated that autophagy directly promotes their survival and metabolic adaptation in the intestine. Moreover, we also identify an unexpected role for autophagy in directly limiting mucosal TH2 cell expansion. These findings provide new insights into the reciprocal control of distinct intestinal TH cell responses by autophagy, with important implications for understanding and treatment of chronic inflammatory disorders. PMID:26910010

  3. Treatment of allergic asthma: Modulation of Th2 cells and their responses

    PubMed Central

    2011-01-01

    Atopic asthma is a chronic inflammatory pulmonary disease characterised by recurrent episodes of wheezy, laboured breathing with an underlying Th2 cell-mediated inflammatory response in the airways. It is currently treated and, more or less, controlled depending on severity, with bronchodilators e.g. long-acting beta agonists and long-acting muscarinic antagonists or anti-inflammatory drugs such as corticosteroids (inhaled or oral), leukotriene modifiers, theophyline and anti-IgE therapy. Unfortunately, none of these treatments are curative and some asthmatic patients do not respond to intense anti-inflammatory therapies. Additionally, the use of long-term oral steroids has many undesired side effects. For this reason, novel and more effective drugs are needed. In this review, we focus on the CD4+ Th2 cells and their products as targets for the development of new drugs to add to the current armamentarium as adjuncts or as potential stand-alone treatments for allergic asthma. We argue that in early disease, the reduction or elimination of allergen-specific Th2 cells will reduce the consequences of repeated allergic inflammatory responses such as lung remodelling without causing generalised immunosuppression. PMID:21867534

  4. A Unique Dermal Dendritic Cell Subset That Skews the Immune Response toward Th2

    PubMed Central

    Hashimoto, Shin-ichi; Nagai, Shigenori; Hattori, Masahira; Irimura, Tatsuro

    2013-01-01

    Dendritic cell (DC) subsets in the skin and draining lymph nodes (LNs) are likely to elicit distinct immune response types. In skin and skin-draining LNs, a dermal DC subset expressing macrophage galactose-type C-type lectin 2 (MGL2/CD301b) was found distinct from migratory Langerhans cells (LCs) or CD103+ dermal DCs (dDCs). Lower expression levels of Th1-promoting and/or cross-presentation-related molecules were suggested by the transcriptome analysis and verified by the quantitative real-time PCR analysis in MGL2+ dDCs than in CD103+ dDCs. Transfer of MGL2+ dDCs but not CD103+ dDCs from FITC-sensitized mice induced a Th2-type immune response in vivo in a model of contact hypersensitivity. Targeting MGL2+ dDCs with a rat monoclonal antibody against MGL2 efficiently induced a humoral immune response with Th2-type properties, as determined by the antibody subclass. We propose that the properties of MGL2+ dDCs, are complementary to those of CD103+ dDCs and skew the immune response toward a Th2-type response. PMID:24039898

  5. Regulatory T cell reprogramming toward a Th2-cell-like lineage impairs oral tolerance and promotes food allergy.

    PubMed

    Noval Rivas, Magali; Burton, Oliver T; Wise, Petra; Charbonnier, Louis-Marie; Georgiev, Peter; Oettgen, Hans C; Rachid, Rima; Chatila, Talal A

    2015-03-17

    Oral immunotherapy has had limited success in establishing tolerance in food allergy, reflecting failure to elicit an effective regulatory T (Treg) cell response. We show that disease-susceptible (Il4ra(F709)) mice with enhanced interleukin-4 receptor (IL-4R) signaling exhibited STAT6-dependent impaired generation and function of mucosal allergen-specific Treg cells. This failure was associated with the acquisition by Treg cells of a T helper 2 (Th2)-cell-like phenotype, also found in peripheral-blood allergen-specific Treg cells of food-allergic children. Selective augmentation of IL-4R signaling in Treg cells induced their reprogramming into Th2-like cells and disease susceptibility, whereas Treg-cell-lineage-specific deletion of Il4 and Il13 was protective. IL-4R signaling impaired the capacity of Treg cells to suppress mast cell activation and expansion, which in turn drove Th2 cell reprogramming of Treg cells. Interruption of Th2 cell reprogramming of Treg cells might thus provide candidate therapeutic strategies in food allergy. PMID:25769611

  6. Regulatory T cell reprogramming towards a Th2 cell-like lineage impairs oral tolerance and promotes food allergy

    PubMed Central

    Rivas, Magali Noval; Burton, Oliver T.; Wise, Petra; Charbonnier, Louis-Marie; Georgiev, Peter; Oettgen, Hans C.; Rachid, Rima; Chatila, Talal

    2015-01-01

    Summary Oral immunotherapy has had limited success in establishing tolerance in food allergy, reflecting failure to elicit an effective regulatory T (Treg) cell response. We show that disease-susceptible mice (Il4raF709) with enhanced IL-4 receptor (IL-4R) signaling exhibited STAT6-dependent impaired generation and function of mucosal allergen-specific Treg cells. This failure was associated with the acquisition by Treg cells of T helper 2 (Th2) cell-like phenotype, also found in peripheral blood allergen-specific Treg cells of food allergic children. Selective augmentation of IL-4R signaling in Treg cells induced their reprogramming into Th2-like cells and disease susceptibility, whereas Treg cell lineage-specific deletion of Il4 and Il13 was protective. IL-4R signaling impaired the capacity of Treg cells to suppress mast cell activation and expansion, which in turn drove Treg cell Th2 cell reprogramming. Interruption of Treg cell Th2 cell reprogramming may thus provide novel therapeutic strategies in food allergy. PMID:25769611

  7. Th1 and Th2 cell-associated cytokines in experimental visceral leishmaniasis.

    PubMed Central

    Miralles, G D; Stoeckle, M Y; McDermott, D F; Finkelman, F D; Murray, H W

    1994-01-01

    In experimental Leishmania donovani infection in BALB/c mice, initial susceptibility gives way to T-cell-dependent acquired resistance and eventual control over visceral infection. Since various cytokines appear to underlie the host response to Leishmania infection, we examined infected liver tissue for gene expression of cytokines associated with Th1 (gamma interferon [IFN-gamma] and interleukin-2 [IL-2]) and Th2 cells (IL-4 and IL-10). By Northern (RNA) blot analysis, only IFN-gamma mRNA expression was detected in livers of infected euthymic mice. To determine whether activation of Th1 cells develops selectively in this model, qualitative PCR analysis was used. These results indicated that mRNAs for IFN-gamma, IL-2, IL-4, and IL-10 were all induced by L. donovani infection. The potentially negative Th2 cell-associated response did not appear to play a functional role, however, since resistance was acquired, anti-IL-4 monoclonal antibody treatment did not accelerate control over visceral infection, and serum immunoglobulin E levels remained low. As judged by PCR analysis, IL-4 and IL-10 mRNAs were also expressed under three other conditions without apparent effect: in naive euthymic mice treated with IL-2, which induces leishmanicidal activity; in rechallenged immune mice, which resist reinfection; and in nude mice, which fail to control L. donovani. These results suggest that, like other Leishmania species, L. donovani infection may trigger a potentially suppressive Th2 cell-associated cytokine response. However, in T-cell-intact mice able to control L. donovani, this response either is insufficient to influence outcome or more likely is overshadowed by the Th1 cell response. Images PMID:8112840

  8. Immunostimulatory oligonucleotides block allergic airway inflammation by inhibiting Th2 cell activation and IgE-mediated cytokine induction

    PubMed Central

    Hessel, Edith M.; Chu, Mabel; Lizcano, Jennifer O.; Chang, Bonnie; Herman, Nancy; Kell, Sariah A.; Wills-Karp, Marsha; Coffman, Robert L.

    2005-01-01

    A single treatment with a CpG-containing immunostimulatory DNA sequence (ISS) given before allergen challenge can inhibit T helper type 2 cell (Th2)–mediated airway responses in animal models of allergic asthma; however, the mechanism of this inhibition remains largely undefined. Here, we demonstrate that airway delivery of ISS before allergen challenge in Th2-primed mice acts in two distinct ways to prevent the allergic responses to this challenge. The first is to prevent induction of cytokines from allergen-specific Th2 cells, as demonstrated by the nearly complete inhibition of Th2 cytokine production, Th2-dependent functional responses, and gene induction patterns. ISS inhibits the Th2 response by rendering lung antigen-presenting cells (APCs) unable to effectively present antigen to Th2 cells, but not to Th1 cells. This loss of APC function correlates with a reduced expression of costimulatory molecules, including programmed cell death ligand (PD-L)1, PD-L2, CD40, CD80, CD86, and inducible T cell costimulator, and of major histocompatibility complex class II on CD11c+APCs from the airways of ISS-treated mice. The second important action of ISS is inhibition of immunoglobulin E–dependent release of Th2 cytokines, especially interleukin 4, from basophils and/or mast cells in the airways of Th2-primed mice. Thus, inhibition by ISS of allergic responses can be explained by two novel mechanisms that culminate in the inhibition of the principal sources of type 2 cytokines in the airways. PMID:16314434

  9. Human B cells induce dendritic cell maturation and favour Th2 polarization by inducing OX-40 ligand

    PubMed Central

    Maddur, Mohan S.; Sharma, Meenu; Hegde, Pushpa; Stephen-Victor, Emmanuel; Pulendran, Bali; Kaveri, Srini V.; Bayry, Jagadeesh

    2015-01-01

    Dendritic cells (DCs) play a critical role in immune homeostasis by regulating the functions of various immune cells, including T and B cells. Notably, DCs also undergo education on reciprocal signalling by these immune cells and environmental factors. Various reports demonstrated that B cells have profound regulatory functions, although only few reports have explored the regulation of human DCs by B cells. Here we demonstrate that activated but not resting B cells induce maturation of DCs with distinct features to polarize Th2 cells that secrete interleukin (IL)-5, IL-4 and IL-13. B-cell-induced maturation of DCs is contact dependent and implicates signalling of B-cell activation molecules CD69, B-cell-activating factor receptor, and transmembrane activator and calcium-modulating cyclophilin ligand interactor. Mechanistically, differentiation of Th2 cells by B-cell-matured DCs is dependent on OX-40 ligand. Collectively, our results suggest that B cells have the ability to control their own effector functions by enhancing the ability of human DCs to mediate Th2 differentiation. PMID:24910129

  10. TH2-Polarized CD4(+) T Cells and Macrophages Limit Efficacy of Radiotherapy.

    PubMed

    Shiao, Stephen L; Ruffell, Brian; DeNardo, David G; Faddegon, Bruce A; Park, Catherine C; Coussens, Lisa M

    2015-05-01

    Radiotherapy and chemotherapy following surgery are mainstays of treatment for breast cancer. Although multiple studies have recently revealed the significance of immune cells as mediators of chemotherapy response in breast cancer, less is known regarding roles for leukocytes as mediating outcomes following radiotherapy. To address this question, we utilized a syngeneic orthotopic murine model of mammary carcinogenesis to investigate if response to radiotherapy could be improved when select immune cells or immune-based pathways in the mammary microenvironment were inhibited. Treatment of mammary tumor-bearing mice with either a neutralizing mAb to colony-stimulating factor-1 (CSF-1) or a small-molecule inhibitor of the CSF-1 receptor kinase (i.e., PLX3397), resulting in efficient macrophage depletion, significantly delayed tumor regrowth following radiotherapy. Delayed tumor growth in this setting was associated with increased presence of CD8(+) T cells and reduced presence of CD4(+) T cells, the main source of the TH2 cytokine IL4 in mammary tumors. Selective depletion of CD4(+) T cells or neutralization of IL4 in combination with radiotherapy phenocopied results following macrophage depletion, whereas depletion of CD8(+) T cells abrogated improved response to radiotherapy following these therapies. Analogously, therapeutic neutralization of IL4 or IL13, or IL4 receptor alpha deficiency, in combination with the chemotherapy paclitaxel, resulted in slowed primary mammary tumor growth by CD8(+) T-cell-dependent mechanisms. These findings indicate that clinical responses to cytotoxic therapy in general can be improved by neutralizing dominant TH2-based programs driving protumorigenic and immune-suppressive pathways in mammary (breast) tumors to improve outcomes. PMID:25716473

  11. TLR ligands of ryegrass pollen microbial contaminants enhance Th1 and Th2 responses and decrease induction of Foxp3(hi) regulatory T cells.

    PubMed

    Mittag, Diana; Varese, Nirupama; Scholzen, Anja; Mansell, Ashley; Barker, Gillian; Rice, Gregory; Rolland, Jennifer M; O'Hehir, Robyn E

    2013-03-01

    Microbial contamination of grass pollens could affect sensitization, subsequent allergic response, and efficacy of allergen-specific immunotherapy. We investigated whether bacterial immunomodulatory substances can direct PBMC responses of allergic and nonatopic subjects against ryegrass pollen (RGP) toward Th1, Th2, or regulatory T (Treg) cells. Aqueous extracts of RGP with high or low LPS were fractionated into large and small molecular weight (MW) components by diafiltration. CFSE-labeled PBMCs from allergic and nonatopic subjects were stimulated with RGP extracts (RGPEs) and analyzed for cytokine secretion and T-cell responses. High LPS RGPE increased IFN-γ(+) Th1 and IL-4(+) Th2 effector cell induction and consistently decreased CD4(+) Foxp3(hi) Treg-cell induction. IL-10-producing T-cell frequency was unaltered, but IL-10 secretion was increased by high LPS RGPE. RGPE-stimulation of TLR-transfected cell lines revealed that high LPS pollen also contained a TLR2-ligand, and both batches a TLR9-ligand. Beta-1,3-glucans were detected in large and small MW fractions and were also T-cell stimulatory. In conclusion, coexposure to allergen and proinflammatory microbial stimuli does not convert an established Th2- into a Th1-response. Instead, proinflammatory responses are exacerbated and Foxp3(hi) Treg-cell induction is decreased. These findings show that adjuvants for specific immunotherapy should enhance Treg cells rather than target immune deviation from Th2 to Th1. PMID:23238878

  12. Accumulation of BDCA1+ Dendritic Cells in Interstitial Fibrotic Lung Diseases and Th2-High Asthma

    PubMed Central

    Greer, Alexandra M.; Matthay, Michael A.; Kukreja, Jasleen; Bhakta, Nirav R.; Nguyen, Christine P.; Wolters, Paul J.; Woodruff, Prescott G.; Fahy, John V.; Shin, Jeoung-Sook

    2014-01-01

    Dendritic cells (DCs) significantly contribute to the pathology of several mouse lung disease models. However, little is known of the contribution of DCs to human lung diseases. In this study, we examined infiltration with BDCA1+ DCs of human lungs in patients with interstitial lung diseases or asthma. Using flow cytometry, we found that these DCs increased by 5∼6 fold in the lungs of patients with idiopathic pulmonary fibrosis or hypersensitivity pneumonitis, which are both characterized by extensive fibrosis in parenchyma. The same DC subset also significantly increased in the lung parenchyma of patients with chronic obstructive pulmonary disease, although the degree of increase was relatively modest. By employing immunofluorescence microscopy using FcεRI and MHCII as the specific markers for BDCA1+ DCs, we found that the numbers of BDCA1+ DCs also significantly increased in the airway epithelium of Th2 inflammation-associated asthma. These findings suggest a potential contribution of BDCA1+ DCs in human lung diseases associated with interstitial fibrosis or Th2 airway inflammation. PMID:24915147

  13. Imperatorin exerts antiallergic effects in Th2-mediated allergic asthma via induction of IL-10-producing regulatory T cells by modulating the function of dendritic cells.

    PubMed

    Lin, Chu-Lun; Hsiao, George; Wang, Ching-Chiung; Lee, Yueh-Lun

    2016-08-01

    Imperatorin is a furanocoumarin compound which exists in many medicinal herbs and possesses various biological activities. Herein, we investigated the antiallergic effects of imperatorin in asthmatic mice and explored the immunomodulatory actions of imperatorin on immune cells. We used a murine model of ovalbumin (OVA)-induced asthma to evaluate the therapeutic potential of imperatorin. Additionally, bone marrow-derived dendritic cells (DCs; BMDCs) were used to clarify whether imperatorin exerts an antiallergic effect through altering the ability of DCs to regulate T cells. Oral administration of imperatorin to OVA-sensitized and -challenged mice decreased serum OVA-specific immunoglobulin E (IgE) production, attenuated the airway hyperresponsiveness (AHR), and alleviated airway inflammation in a dose-dependent manner. Notably, secretions of Th2 cytokines and chemokines were reduced, and numbers of interleukin (IL)-10-producing regulatory T cells (Tregs) increased in imperatorin-treated mice. Imperatorin inhibited proinflammatory cytokines and IL-12 production but enhanced IL-10 secretion by lipopolysaccharide (LPS)-stimulated BMDCs. Compared to fully mature DCs, imperatorin-treated DCs expressed high levels of the inducible costimulatory ligand (ICOSL) and Jagged1 molecules, and had the regulatory capacity to promote the generation of IL-10-producing CD4(+) T cells in vitro. Additionally, imperatorin directly suppressed activated CD4(+) T-cell proliferation and cytokine production. Imperatorin may possess therapeutic potential against Th2-mediated allergic asthma not only via stimulating DC induction of Tregs but also via direct inhibition of Th2 cell activation. These findings provide new insights into how imperatorin affects the Th2 immune response and the development of imperatorin as a Treg-type immunomodulatory agent to treat allergic asthma. PMID:27185659

  14. Mode of dendritic cell activation: the decisive hand in Th2/Th17 cell differentiation. Implications in asthma severity?

    PubMed

    Vroman, Heleen; van den Blink, Bernt; Kool, Mirjam

    2015-02-01

    Asthma is a heterogeneous chronic inflammatory disease of the airways, with reversible airflow limitations and airway remodeling. The classification of asthma phenotypes was initially based on different combinations of clinical symptoms, but they are now unfolding to link biology to phenotype. As such, patients can suffer from a predominant eosinophilic, neutrophilic or even mixed eosinophilic/neutrophilic inflammatory response. In adult asthma patients, eosinophilic inflammation is usually seen in mild-to-moderate disease and neutrophilic inflammation in more severe disease. The underlying T cell response is predominated by T helper (Th) 2, Th17, or a mixed Th2/Th17 cell immune response. Dendritic cells (DCs) are "professional" antigen presenting cells (APCs), since their principal function is to present antigens and induce a primary immune response in resting naive T cells. DCs also drive the differentiation into distinctive Th subsets. The expression of co-stimulatory molecules and cytokines by DCs and surrounding cells determines the outcome of Th cell differentiation. The nature of DC activation will determine the expression of specific co-stimulatory molecules and cytokines, specifically needed for induction of the different Th cell programs. Thus DC activation is crucial for the subsequent effector Th immune responses. In this review, we will discuss underlying mechanisms that initiate DC activation in favor of Th2 differentiation versus Th1/Th17 and Th17 differentiation in the development of mild versus moderate to severe asthma. PMID:25245013

  15. Leukotriene E4 activates human Th2 cells for exaggerated proinflammatory cytokine production in response to prostaglandin D2.

    PubMed

    Xue, Luzheng; Barrow, Anna; Fleming, Vicki M; Hunter, Michael G; Ogg, Graham; Klenerman, Paul; Pettipher, Roy

    2012-01-15

    PGD(2) exerts a number of proinflammatory responses through a high-affinity interaction with chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2) and has been detected at high concentrations at sites of allergic inflammation. Because cysteinyl leukotrienes (cysLTs) are also produced during the allergic response, we investigated the possibility that cysLTs may modulate the response of human Th2 cells to PGD(2). PGD(2) induced concentration-dependent Th2 cytokine production in the absence of TCR stimulation. Leukotrienes D(4) and E(4) (LTE(4)) also stimulated the cytokine production but were much less active than PGD(2). However, when combined with PGD(2), cysLTs caused a greater than additive enhancement of the response, with LTE(4) being most effective in activating Th2 cells. LTE(4) enhanced calcium mobilization in response to PGD(2) in Th2 cells without affecting endogenous PGD(2) production or CRTH2 receptor expression. The effect of LTE(4) was inhibited by montelukast but not by the P2Y(12) antagonist methylthioadenosine 5'-monophosphate. The enhancing effect was also evident with endogenous cysLTs produced from immunologically activated mast cells because inhibition of cysLT action by montelukast or cysLT synthesis by MK886, an inhibitor of 5-lipoxygenase-activating protein, reduced the response of Th2 cells to the levels produced by PGD(2) alone. These findings reveal that cysLTs, in particular LTE(4), have a significant proinflammatory impact on T cells and demonstrate their effects on Th2 cells are mediated by a montelukast-sensitive receptor. PMID:22174450

  16. T cell-derived Act1 is necessary for IL-25-mediated Th2 responses and allergic airway inflammation.

    PubMed

    Swaidani, Shadi; Bulek, Katarzyna; Kang, Zizhen; Gulen, Muhammet Fatih; Liu, Caini; Yin, Weiguo; Abbadi, Amina; Aronica, Mark; Li, Xiaoxia

    2011-09-15

    The cellular and molecular mechanisms driven by IL-25 and its cognate receptor IL-17RB necessary for the promotion of Th2-mediating pathogenic pulmonary inflammation remains to be defined. We have previously reported the critical role of the U-box-type E3 ubiquitin ligase Act1 (1) for the downstream signaling of the IL-17 cytokine family including the Th2-promoting cytokine IL-25 (IL-17E) (2). In this study, we report that IL-25-driven but not conventional IL-4-driven Th2 polarization and cytokine production is impaired in Act1-deficient T cells. Also, Act1 deficiency in the T cell compartment results in the abrogation of eosinophilic airway infiltration as well as airway hyperresponsiveness in mouse models of Ag-induced airway inflammation. The in vivo generation of Ag-specific Th2 cytokine-producing cells is defective in the absence of Act1 expression in T cells after OVA/aluminum hydroxide immunization. Notably, the production of OVA-specific IgG(1) but not IgG(2a) or IgE is also impaired. At the molecular level, we report that IL-25-mediated induction of Th2 master regulator GATA-3 and the transcription factor GFI-1 is attenuated in Act1-deficient T cells. Taken together, our findings indicate that Act1 expression in T cells is required for cellular and humoral Th2-mediated allergic responses and the development of airway hyperresponsiveness, in part, through Act1's function in IL-25-induced development of Th2 T cells. PMID:21856933

  17. The autophagy gene Atg16l1 differentially regulates Treg and TH2 cells to control intestinal inflammation

    PubMed Central

    Kabat, Agnieszka M; Moghaddam, Amin E; Pearson, Claire F; Laing, Adam; Abeler-Dörner, Lucie; Forman, Simon P; Grencis, Richard K; Sattentau, Quentin; Simon, Anna Katharina; Pott, Johanna; Maloy, Kevin J

    2016-01-01

    A polymorphism in the autophagy gene Atg16l1 is associated with susceptibility to inflammatory bowel disease (IBD); however, it remains unclear how autophagy contributes to intestinal immune homeostasis. Here, we demonstrate that autophagy is essential for maintenance of balanced CD4+ T cell responses in the intestine. Selective deletion of Atg16l1 in T cells in mice resulted in spontaneous intestinal inflammation that was characterized by aberrant type 2 responses to dietary and microbiota antigens, and by a loss of Foxp3+ Treg cells. Specific ablation of Atg16l1 in Foxp3+ Treg cells in mice demonstrated that autophagy directly promotes their survival and metabolic adaptation in the intestine. Moreover, we also identify an unexpected role for autophagy in directly limiting mucosal TH2 cell expansion. These findings provide new insights into the reciprocal control of distinct intestinal TH cell responses by autophagy, with important implications for understanding and treatment of chronic inflammatory disorders. DOI: http://dx.doi.org/10.7554/eLife.12444.001 PMID:26910010

  18. Non-MHC-linked Th2 cell development induced by soluble protein administration predicts susceptibility to Leishmania major infection.

    PubMed

    Guéry, J C; Galbiati, F; Smiroldo, S; Adorini, L

    1997-09-01

    Continuous administration of soluble protein Ag followed by immunization with the same Ag in adjuvant results in the selective development of Ag-specific CD4+ Th2 cells in both normal and beta2-microglobulin-deficient BALB/c mice. In addition to chronic administration by mini-osmotic pump, single bolus i.p., but not i.v., injection of protein Ag induces Th2 cell expansion. Strong Th2 cell priming depends on a non-MHC-linked genetic polymorphism. It is observed in all congenic strains on BALB background tested, BALB/c, BALB/b, and BALB/k, but not in MHC-matched strains on disparate genetic background, B10.D2, C57BL/6, and C3H. DBA/2 mice appear to have an intermediate phenotype, as shown by their weaker capacity to mount Th2 responses as compared with BALB/c mice after soluble Ag administered by either mini-osmotic pumps or single bolus i.p. Conversely, induction of Th1 cell unresponsiveness by soluble protein is observed in any mouse strain tested, following any mode of Ag administration. These data demonstrate that non-MHC-linked genetic polymorphism controls the priming of Th2 but not the inhibition of Th1 cells induced by administration of soluble protein. The pattern of Th2 responses in these different strains is predictive of disease outcome following Leishmania major infection and supports the hypothesis that systemic Ag presentation in the absence of strong inflammatory signals may represent an important stimulus leading to selective Th2 cell development in susceptible mouse strains. PMID:9278301

  19. Phosphodiesterase 4B is essential for TH2-cell function and development of airway hyperresponsiveness in allergic asthma

    PubMed Central

    Catherine Jin, S.-L.; Goya, Sho; Nakae, Susumu; Wang, Dan; Bruss, Matthew; Hou, Chiaoyin; Umetsu, Dale; Conti, Marco

    2010-01-01

    Background Cyclic AMP (cAMP) signaling modulates functions of inflammatory cells involved in the pathogenesis of asthma, and type 4 cAMP-specific phosphodiesterases (PDE4s) are essential components of this pathway. Induction of the PDE4 isoform PDE4B is necessary for Toll-like receptor signaling in monocytes and macrophages and is associated with T cell receptor/CD3 in T cells; however, its exact physiological function in the development of allergic asthma remains undefined. Objectives We investigated the role of PDE4B in the development of allergen-induced airway hyperresponsiveness (AHR) and TH2-driven inflammatory responses. Methods Wild-type and PDE4B−/− mice were sensitized and challenged with ovalbumin and AHR measured in response to inhaled methacholine. Airway inflammation was characterized by analyzing leukocyte infiltration and cytokine accumulation in the airways. Ovalbumin-stimulated cell proliferation and TH2 cytokine production were determined in cultured bronchial lymph node cells. Results Mice deficient in PDE4B do not develop AHR. This protective effect was associated with a significant decrease in eosinophils recruitment to the lungs and decreased TH2 cytokine levels in the bronchoalveolar lavage fluid. Defects in T-cell replication, TH2 cytokine production, and dendritic cell migration were evident in cells from the airway-draining lymph nodes. Conversely, accumulation of the TH1 cytokine IFN-γ was not affected in PDE4B−/− mice. Ablation of the orthologous PDE4 gene PDE4A has no impact on airway inflammation. Conclusion By relieving a cAMP-negative constraint, PDE4B plays an essential role in TH2-cell activation and dendritic cell recruitment during airway inflammation. These findings provide proof of concept that PDE4 inhibitors with PDE4B selectivity may have efficacy in asthma treatment. PMID:21047676

  20. Chlamydia pneumoniae enhances the Th2 profile of stimulated peripheral blood mononuclear cells from asthmatic patients.

    PubMed

    Smith-Norowitz, Tamar A; Chotikanatis, Kobkul; Erstein, David P; Perlman, Jason; Norowitz, Yitzchok M; Joks, Rauno; Durkin, Helen G; Hammerschlag, Margaret R; Kohlhoff, Stephan

    2016-05-01

    Chlamydia pneumoniae is a cause of respiratory infection in adults and children. There is evidence for an association between atypical bacterial respiratory pathogens and the pathogenesis of asthma. We compared T helper (Th) responses in C. pneumoniae - infected peripheral blood mononuclear cells (PBMC) in patients with or without asthma. PBMC (1×10(6)/mL) from asthmatic patients (N=11) and non-asthmatic controls (N=12) were infected or mock-infected for 1h +/- C. pneumoniae TW-183 at a multiplicity of infection (MOI)=1 and MOI=0.1, or cultured for 24h +/- Lactobacillus rhamnosus GG (LGG). Interleukin (IL)-4, IL-10, IL-12, Interferon (IFN)-gamma and total IgE levels were measured in supernatants (ELISA). C. pneumoniae infection led to an increase (>50%) of IgE levels in PBMC from asthmatics, compared with mock-infected on day 10; IgE wasn't detected in non-asthmatics. C. pneumoniae - infected PBMC from asthmatics increased levels of IL-4 and IFN-gamma after 24h, compared with PBMC alone; levels of IL-10 and IL-12 were low. When uninfected-PBMC from asthmatics were LGG-stimulated, after 24h, IL-4 was undetectable, but IL-10, IL-12, and IFN-gamma increased, compared with PBMC alone. Thus, C. pneumoniae infection has the ability to induce allergic responses in PBMC of asthmatics, as evidenced by production of Th2 responses and IgE. PMID:26924667

  1. GM-CSF-licensed CD11b+ lung dendritic cells orchestrate Th2 immunity to Blomia tropicalis.

    PubMed

    Zhou, Qian; Ho, Adrian W S; Schlitzer, Andreas; Tang, Yafang; Wong, Kenneth H S; Wong, Fiona H S; Chua, Yen Leong; Angeli, Veronique; Mortellaro, Alessandra; Ginhoux, Florent; Kemeny, David M

    2014-07-15

    The Blomia tropicalis dust mite is prevalent in tropical and subtropical regions of the world. Although it is a leading cause of asthma, little is known how it induces allergy. Using a novel murine asthma model induced by intranasal exposure to B. tropicalis, we observed that a single intranasal sensitization to B. tropicalis extract induces strong Th2 priming in the lung draining lymph node. Resident CD11b(+) dendritic cells (DCs) preferentially transport Ag from the lung to the draining lymph node and are crucial for the initiation of Th2 CD4(+) T cell responses. As a consequence, mice selectively deficient in CD11b(+) DCs exhibited attenuated Th2 responses and more importantly did not develop any allergic inflammation. Conversely, mice deficient in CD103(+) DCs and CCR2-dependent monocyte-derived DCs exhibited similar allergic inflammation compared with their wild-type counterparts. We also show that CD11b(+) DCs constitutively express higher levels of GM-CSF receptor compared with CD103(+) DCs and are thus selectively licensed by lung epithelial-derived GM-CSF to induce Th2 immunity. Taken together, our study identifies GM-CSF-licensed CD11b(+) lung DCs as a key component for induction of Th2 responses and represents a potential target for therapeutic intervention in allergy. PMID:24943219

  2. Immunomodulatory mediators from pollen enhance the migratory capacity of dendritic cells and license them for Th2 attraction.

    PubMed

    Mariani, Valentina; Gilles, Stefanie; Jakob, Thilo; Thiel, Martina; Mueller, Martin J; Ring, Johannes; Behrendt, Heidrun; Traidl-Hoffmann, Claudia

    2007-06-15

    The immune response of atopic individuals against allergens is characterized by increased levels of Th2 cytokines and chemokines. However, the way in which the cytokine/chemokine profile is matched to the type of invading allergen, and why these profiles sometimes derail and lead to disease, is not well understood. We recently demonstrated that pollen modulates dendritic cell (DC) function in a way that results in an enhanced capacity to initiate Th2 responses in vitro. Here, we examined the effects of aqueous birch pollen extracts (Bet.-APE) on chemokine receptor expression and chemokine production by human monocyte-derived DCs. Bet.-APE strongly induced expression and function of CXCR4 and reduced CCR1 and CCR5 expression on immature DCs. In addition, DC treatment with Bet.-APE significantly reduced LPS-induced production of CXCL10/IP-10, CCL5/RANTES; induced CCL22/macrophage-derived chemokine; and did not significantly change release of CCL17/thymus and activation-regulated chemokine. At a functional level, Bet.-APE increased the capacity of LPS-stimulated DCs to attract Th2 cells, whereas the capacity to recruit Th1 cells was reduced. Bet.-APE significantly and dose-dependently enhanced intracellular cAMP, suggesting that water-soluble factors from pollen grains bind a G(alphas)-protein-coupled receptor. E(1)-Phytoprostanes were identified to be one player in the Th2-polarizing potential of aqueous pollen extracts. In summary, our results demonstrate that pollen itself releases regulatory mediators which generate a Th2-promoting micromilieu with preferential recruitment of Th2 cells to the site of pollen exposure. PMID:17548598

  3. Hyperreactive onchocerciasis is characterized by a combination of Th17-Th2 immune responses and reduced regulatory T cells.

    PubMed

    Katawa, Gnatoulma; Layland, Laura E; Debrah, Alex Y; von Horn, Charlotte; Batsa, Linda; Kwarteng, Alexander; Arriens, Sandra; W Taylor, David; Specht, Sabine; Hoerauf, Achim; Adjobimey, Tomabu

    2015-01-01

    Clinical manifestations in onchocerciasis range from generalized onchocerciasis (GEO) to the rare but severe hyperreactive (HO)/sowda form. Since disease pathogenesis is associated with host inflammatory reactions, we investigated whether Th17 responses could be related to aggravated pathology in HO. Using flow cytometry, filarial-specific cytokine responses and PCR arrays, we compared the immune cell profiles, including Th subsets, in individuals presenting the two polar forms of infection and endemic normals (EN). In addition to elevated frequencies of memory CD4+ T cells, individuals with HO showed accentuated Th17 and Th2 profiles but decreased CD4+CD25hiFoxp3+ regulatory T cells. These profiles included increased IL-17A+, IL-4+, RORC2+ and GATA3+CD4+ T cell populations. Flow cytometry data was further confirmed using a PCR array since Th17-related genes (IL-17 family members, IL-6, IL-1β and IL-22) and Th2-related (IL-4, IL-13, STAT6) genes were all significantly up-regulated in HO individuals. In addition, stronger Onchocerca volvulus-specific Th2 responses, especially IL-13, were observed in vitro in hyperreactive individuals when compared to GEO or EN groups. This study provides initial evidence that elevated frequencies of Th17 and Th2 cells form part of the immune network instigating the development of severe onchocerciasis. PMID:25569210

  4. TEC and MAPK Kinase Signalling Pathways in T helper (TH) cell Development, TH2 Differentiation and Allergic Asthma

    PubMed Central

    Kannan, Yashaswini; Wilson, Mark S.

    2013-01-01

    Significant advances in our understanding of the signalling events during T cell development and differentiation have been made in the past few decades. It is clear that ligation of the T cell receptor (TCR) triggers a series of proximal signalling cascades regulated by an array of protein kinases. These orchestrated and highly regulated series of events, with differential requirements of particular kinases, highlight the disparities between αβ+CD4+ T cells. Throughout this review we summarise both new and old studies, highlighting the role of Tec and MAPK in T cell development and differentiation with particular focus on T helper 2 (TH2) cells. Finally, as the allergy epidemic continues, we feature the role played by TH2 cells in the development of allergy and provide a brief update on promising kinase inhibitors that have been tested in vitro, in pre-clinical disease models in vivo and into clinical studies. PMID:24116341

  5. Altered interleukin-12 responsiveness in Th1 and Th2 cells is associated with the differential activation of STAT5 and STAT1.

    PubMed

    Gollob, J A; Murphy, E A; Mahajan, S; Schnipper, C P; Ritz, J; Frank, D A

    1998-02-15

    T-cell activation in response to interleukin-12 (IL-12) is mediated through signaling events that include the tyrosine phosphorylation of STAT4. IL-12 responsiveness and the ability of IL-12 to activate STAT4 is different in T cells induced to differentiate into a Th1 or Th2 phenotype. In this report, we show that STAT5, STAT1alpha, and STAT1beta, in addition to STAT4, are tyrosine phosphorylated in response to IL-12 in phytohemagglutinin (PHA)-activated human T cells. To understand how the activation of these STATs contributes to T-cell IL-12 responsiveness, we analyzed the IL-12-induced activation of STAT5 and STAT1 in T cells stimulated to undergo Th1 or Th2 differentiation. The IL-12-induced tyrosine phosphorylation of STAT5 and STAT1, but not STAT4, is augmented in T cells activated into Th1 cells with PHA + interferon-gamma (IFN-gamma) compared with T cells activated with PHA alone. STAT5 DNA binding induced by IL-12 is also augmented in T cells activated with PHA + IFN-gamma compared with T cells activated with PHA alone, whereas STAT4 DNA binding is not increased. In contrast, the IL-12-induced activation of these STATs is inhibited in T cells activated into Th2 cells with PHA + IL-4. The enhancement of IL-12 signaling by IFN-gamma is not a direct effect of IFN-gamma on T cells, but rather is mediated by IL-12 that is produced by antigen-presenting cells in response to IFN-gamma. This positive autoregulatory effect of IL-12 on the activation of select STATs correlates with an increase in T-cell IFN-gamma production in response to IL-12. These findings suggest that the activation of STAT5 and STAT1 may augment select STAT4-dependent functional responses to IL-12 in Th1 cells. PMID:9454765

  6. Alternaria-Induced Release of IL-18 from Damaged Airway Epithelial Cells: An NF-κB Dependent Mechanism of Th2 Differentiation?

    PubMed Central

    Wild, Jim; Dharajiya, Nilesh; Vaidya, Swapnil; Kalita, Anjana; Bacsi, Attila; Corry, David; Kurosky, Alexander; Brasier, Allan; Boldogh, Istvan; Sur, Sanjiv

    2012-01-01

    Background A series of epidemiologic studies have identified the fungus Alternaria as a major risk factor for asthma. The airway epithelium plays a critical role in the pathogenesis of allergic asthma. These reports suggest that activated airway epithelial cells can produce cytokines such as IL-25, TSLP and IL-33 that induce Th2 phenotype. However the epithelium-derived products that mediate the pro-asthma effects of Alternaria are not well characterized. We hypothesized that exposure of the airway epithelium to Alternaria releasing cytokines that can induce Th2 differentiation. Methodology/Principal Finding We used ELISA to measure human and mouse cytokines. Alternaria extract (ALT-E) induced rapid release of IL-18, but not IL-4, IL-9, IL-13, IL-25, IL-33, or TSLP from cultured normal human bronchial epithelial cells; and in the BAL fluids of naïve mice after challenge with ALT-E. Both microscopic and FACS indicated that this release was associated with necrosis of epithelial cells. ALT-E induced much greater IL-18 release compared to 19 major outdoor allergens. Culture of naïve CD4 cells with rmIL-18 induced Th2 differentiation in the absence of IL-4 and STAT6, and this effect was abrogated by disrupting NF- κB p50 or with a NEMO binding peptide inhibitor. Conclusion/Significance Rapid and specific release of IL-18 from Alternaria-exposed damaged airway epithelial cells can directly initiate Th2 differentiation of naïve CD4+ T-cells via a unique NF-κB dependent pathway. PMID:22347372

  7. Cytokine production in peripheral blood cells of patients with differentiated thyroid cancer: elevated Th2/Th9 cytokine production before and reduced Th2 cytokine production after radioactive iodine therapy.

    PubMed

    Simonovic, Snezana Zivancevic; Mihaljevic, Olgica; Majstorovic, Ivana; Djurdjevic, Predrag; Kostic, Irena; Djordjevic, Olivera Milosevic; Teodorovic, Ljiljana Mijatovic

    2015-01-01

    Cytokines play a key role in the regulation of cells of the immune system and also have been implicated in the pathogenesis of malignant diseases. The aim of this study was to evaluate cytokine profiles in patients with differentiated thyroid cancer (DTC) before and 7 days after radioactive iodine (131-I) therapy. Cytokine levels were determined in supernatants obtained from phytohemagglutinin-stimulated whole blood cultures of 13 patients with DTC and 13 control subjects. The concentrations of selected cytokines: Th1-interferon gamma (IFN-γ), interleukin 2 (IL-2) and tumor necrosis factor alpha (TNF-α); Th2-interleukin 4 (IL-4), interleukin 5 (IL-5), interleukin 13 (IL-13) and interleukin 10 (IL-10); Th9-interleukin-9 (IL-9); and Th17-interleukin 17 (IL-17A) were measured using multiplex cytokine detection systems for Human Th1/Th2/Th9/Th17/Th22. We have shown that peripheral blood cells of DTC patients produce significantly higher concentrations of Th2/Th9 cytokines (IL-5, IL-13 and IL-9) than control subjects. The 131-I therapy led to reduced secretion of Th2 cytokines (IL-4, IL-5 and IL-13). Despite this, the calculated cytokine ratios (Th1/Th2) in DTC patients before and 7 days after 131-I therapy were not different from those in healthy subjects. DTC patients have significantly higher concentrations of Th2/Th9 cytokines (IL-5, IL-13 and IL-9) than control subjects. There is no influence of hypothyroidism or stage of disease on cytokine production in DTC patients before 131-I therapy. The radioactive 131-I therapy leads to reduced secretion of Th2 cytokines (IL-4, IL-5 and IL-13). Additional studies are needed to determine the significance of these findings. PMID:25297452

  8. A dominant role for the methyl-CpG-binding protein Mbd2 in controlling Th2 induction by dendritic cells

    PubMed Central

    Cook, Peter C.; Owen, Heather; Deaton, Aimée M.; Borger, Jessica G.; Brown, Sheila L.; Clouaire, Thomas; Jones, Gareth-Rhys; Jones, Lucy H.; Lundie, Rachel J.; Marley, Angela K.; Morrison, Vicky L.; Phythian-Adams, Alexander T.; Wachter, Elisabeth; Webb, Lauren M.; Sutherland, Tara E.; Thomas, Graham D.; Grainger, John R.; Selfridge, Jim; McKenzie, Andrew N. J.; Allen, Judith E.; Fagerholm, Susanna C.; Maizels, Rick M.; Ivens, Alasdair C.; Bird, Adrian; MacDonald, Andrew S.

    2015-01-01

    Dendritic cells (DCs) direct CD4+ T-cell differentiation into diverse helper (Th) subsets that are required for protection against varied infections. However, the mechanisms used by DCs to promote Th2 responses, which are important both for immunity to helminth infection and in allergic disease, are currently poorly understood. We demonstrate a key role for the protein methyl-CpG-binding domain-2 (Mbd2), which links DNA methylation to repressive chromatin structure, in regulating expression of a range of genes that are associated with optimal DC activation and function. In the absence of Mbd2, DCs display reduced phenotypic activation and a markedly impaired capacity to initiate Th2 immunity against helminths or allergens. These data identify an epigenetic mechanism that is central to the activation of CD4+ T-cell responses by DCs, particularly in Th2 settings, and reveal methyl-CpG-binding proteins and the genes under their control as possible therapeutic targets for type-2 inflammation. PMID:25908537

  9. Generation of rat Th2-like cells in vitro is interleukin-4-dependent and inhibited by interferon-gamma.

    PubMed Central

    Noble, A; Staynov, D Z; Kemeny, D M

    1993-01-01

    Differentiation of naive T cells into effector cells producing T helper type 1 (Th1) and Th2 cytokines is regulated by the presence of specific cytokines in the T-cell microenvironment. The effect of interferon-gamma (IFN-gamma) and interleukin-4 (IL-4) on Th1- and Th2-like cell development was investigated in cultures of mixed rat spleen cells. These cells were cultured for 4 days in medium containing concanavalin A (Con A) with or without additional IL-2, IFN-gamma or IL-4. The cells were then washed and their capacity to produce IL-4, IL-5 and IFN-gamma determined following stimulation with phorbol 12-myristate 13-acetate (PMA) and ionomycin. Freshly isolated cells stimulated with PMA and ionomycin expressed detectable levels of IL-4 and IL-5 mRNA as measured by a quantitative polymerase chain reaction (PCR) procedure and much higher levels of IFN-gamma mRNA. Cells cultured with Con A for 4 days, washed, and restimulated with PMA + ionomycin were unable to express detectable levels of IL-4 and IL-5 mRNA, but produced high levels of IFN-gamma mRNA. Addition of IL-4, or anti-IFN-gamma antibody, to Con A-driven splenocyte cultures restored the ability of restimulated cells to express IL-4 and IL-5. CD4+ T cells isolated from these cultures also showed an increased capacity to secrete IL-4 and IL-5 when anti-IFN-gamma and IL-4 were present in the culture medium. When cultured for 4 days with Con-A, IL-4 and anti-IFN-gamma splenocytes showed an increased capacity to proliferate in response to recombinant IL-2 and proliferated in response to IL-4 alone. IL-2 had no effect on cytokine production by cultured splenocytes. These results indicate that: (1) IL-4 is essential for the generation of Th2-like cells; (2) IFN-gamma inhibits IL-4 production by mixed spleen cells and suppresses generation of IL-4 responsive T cells; (3) in mixed spleen cell cultures mitogenic stimulation favours differentiation of naive rat T cells into effector cells expressing a Th1, and not Th2

  10. The receptor for interleukin-17E is induced by Th2 cytokines in antigen-presenting cells.

    PubMed

    Gratchev, A; Kzhyshkowska, J; Duperrier, K; Utikal, J; Velten, F W; Goerdt, S

    2004-09-01

    Interleukin-17E (IL-17E) (IL-25) is a recently identified cytokine capable to induce Th2-associated cytokine production (IL-5 and IL-13) and T helper 2 (Th2)-type pathologies in animal models. The IL-17E-responsive cell population in vivo was described to be a further uncharacterized non-T-, non-B-splenic accessory cell. Despite the identification of IL-17BR as the receptor for IL-17E, the cell population expressing IL-17BR has hitherto not been identified. Here, we show that human monocyte-derived Th2-skewed antigen-presenting cells (APC2) express membrane-bound and soluble forms of IL-17BR on the mRNA and protein level upon stimulation with IL-4, IL-10, IL-13 or transforming growth factor-betain vitro. These results indicate that IL-17BR-expressing APC2s may mediate the development of the IL-17E-mediated immunological reaction patterns observed in vivo. PMID:15320879

  11. Collaborative interactions between type 2 innate lymphoid cells and antigen-specific CD4+ Th2 cells exacerbate murine allergic airway diseases with prominent eosinophilia.

    PubMed

    Liu, Bo; Lee, Jee-Boong; Chen, Chun-Yu; Hershey, Gurjit K Khurana; Wang, Yui-Hsi

    2015-04-15

    Type-2 innate lymphoid cells (ILC2s) and the acquired CD4(+) Th2 and Th17 cells contribute to the pathogenesis of experimental asthma; however, their roles in Ag-driven exacerbation of chronic murine allergic airway diseases remain elusive. In this study, we report that repeated intranasal rechallenges with only OVA Ag were sufficient to trigger airway hyperresponsiveness, prominent eosinophilic inflammation, and significantly increased serum OVA-specific IgG1 and IgE in rested mice that previously developed murine allergic airway diseases. The recall response to repeated OVA inoculation preferentially triggered a further increase of lung OVA-specific CD4(+) Th2 cells, whereas CD4(+) Th17 and ILC2 cell numbers remained constant. Furthermore, the acquired CD4(+) Th17 cells in Stat6(-/-)/IL-17-GFP mice, or innate ILC2s in CD4(+) T cell-ablated mice, failed to mount an allergic recall response to OVA Ag. After repeated OVA rechallenge or CD4(+) T cell ablation, the increase or loss of CD4(+) Th2 cells resulted in an enhanced or reduced IL-13 production by lung ILC2s in response to IL-25 and IL-33 stimulation, respectively. In return, ILC2s enhanced Ag-mediated proliferation of cocultured CD4(+) Th2 cells and their cytokine production, and promoted eosinophilic airway inflammation and goblet cell hyperplasia driven by adoptively transferred Ag-specific CD4(+) Th2 cells. Thus, these results suggest that an allergic recall response to recurring Ag exposures preferentially triggers an increase of Ag-specific CD4(+) Th2 cells, which facilitates the collaborative interactions between acquired CD4(+) Th2 cells and innate ILC2s to drive the exacerbation of a murine allergic airway diseases with an eosinophilic phenotype. PMID:25780046

  12. Cockroach allergen Bla g 7 promotes TIM4 expression in dendritic cells leading to Th2 polarization.

    PubMed

    Xu, Lingxiao; Zhang, Miaojia; Ma, Wenjing; Jin, Shanshan; Song, Weijuan; He, Shaoheng

    2013-01-01

    As one of the most common sources of indoor aeroallergens worldwide, cockroach is important in causing rhinitis and asthma while the mechanisms underlying remain obscure. Since T helper (Th) type 2 polarization plays an important role in the pathogenesis of allergic diseases, we investigated the effect of Bla g 7, a pan-allergen from Blattella germanica (B. germanica), on Th polarization which is controlled by monocyte-derived dendritic cells (DCs). Challenged by recombinant Bla g 7 (rBla g 7), immature DCs obtained from human exhibited upregulated levels of TIM4, CD80, and CD86 and increased IL-13 secretion. Cocultured with CD4+ T cells, challenged DCs increased the ratio of IL-4+ versus IFN-γ+ of CD4+ T cells, suggesting a balance shift from Th1 to Th2. Moreover, antibodies against TIM4, CD80, and CD86 reversed the enhancement of IL-4+/IFN-γ+ ratio and alleviated the IL-13 release induced by rBla g 7, indicating that the Th2 polarization provoked by rBla g 7 challenged DCs is via TIM4-, CD80-, and CD86-dependent mechanisms. In conclusion, the present findings implied a crucial role of Bla g 7 in the development of cockroach allergy and highlighted an involvement of DCs-induced Th2 polarization in cockroach allergy. PMID:24204099

  13. Granulocytic Myeloid-Derived Suppressor Cells Accumulate in Human Placenta and Polarize toward a Th2 Phenotype.

    PubMed

    Köstlin, Natascha; Hofstädter, Kathrin; Ostermeir, Anna-Lena; Spring, Bärbel; Leiber, Anja; Haen, Susanne; Abele, Harald; Bauer, Peter; Pollheimer, Jürgen; Hartl, Dominik; Poets, Christian F; Gille, Christian

    2016-02-01

    Tolerance induction toward the semiallogeneic fetus is crucial to enable a successful pregnancy; its failure is associated with abortion or preterm delivery. Skewing T cell differentiation toward a Th2-dominated phenotype seems to be pivotal in maternal immune adaption, yet underlying mechanisms are incompletely understood. Myeloid-derived suppressor cells (MDSCs) are innate immune cells that mediate T cell suppression and are increased in cord blood of healthy newborns and in peripheral blood of pregnant women. In this study, we demonstrate that granulocytic MDSCs (GR-MDSCs) accumulate in human placenta of healthy pregnancies but are diminished in patients with spontaneous abortions. Placental GR-MDSCs effectively suppressed T cell responses by expression of arginase I and production of reactive oxygen species and were activated at the maternal-fetal interface through interaction with trophoblast cells. Furthermore, GR-MDSCs isolated from placenta polarized CD4(+) T cells toward a Th2 cytokine response. These results highlight a potential role of GR-MDSCs in inducing and maintaining maternal-fetal tolerance and suggest them as a promising target for therapeutic manipulation of pregnancy complications. PMID:26712947

  14. Notch-ligand expression by NALT dendritic cells regulates mucosal Th1- and Th2-type responses

    SciTech Connect

    Fukuyama, Yoshiko; Tokuhara, Daisuke; Sekine, Shinichi; Kataoka, Kosuke; Markham, Jonathan D.; Irwin, Allyson R.; Moon, Grace H.; Tokuhara, Yuka; Fujihashi, Keiko; Davydova, Julia; Yamamoto, Masato; Gilbert, Rebekah S.; Fujihashi, Kohtaro

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer Nasal Ad-FL effectively up-regulates APC function by CD11c{sup +} DCs in mucosal tissues. Black-Right-Pointing-Pointer Nasal Ad-FL induces Notch ligand (L)-expressing CD11c{sup +} DCs. Black-Right-Pointing-Pointer Notch L-expressing DCs support the induction of Th1- and Th2-type cytokine responses. -- Abstract: Our previous studies showed that an adenovirus (Ad) serotype 5 vector expressing Flt3 ligand (Ad-FL) as nasal adjuvant activates CD11c{sup +} dendritic cells (DCs) for the enhancement of antigen (Ag)-specific IgA antibody (Ab) responses. In this study, we examined the molecular mechanism for activation of CD11c{sup +} DCs and their roles in induction of Ag-specific Th1- and Th2-cell responses. Ad-FL activated CD11c{sup +} DCs expressed increased levels of the Notch ligand (L)-expression and specific mRNA. When CD11c{sup +} DCs from various mucosal and systemic lymphoid tissues of mice given nasal OVA plus Ad-FL were cultured with CD4{sup +} T cells isolated from non-immunized OVA TCR-transgenic (OT II) mice, significantly increased levels of T cell proliferative responses were noted. Furthermore, Ad-FL activated DCs induced IFN-{gamma}, IL-2 and IL-4 producing CD4{sup +} T cells. Of importance, these APC functions by Ad-FL activated DCs were down-regulated by blocking Notch-Notch-L pathway. These results show that Ad-FL induces CD11c{sup +} DCs to the express Notch-ligands and these activated DCs regulate the induction of Ag-specific Th1- and Th2-type cytokine responses.

  15. Prenatal secondhand cigarette smoke promotes Th2 polarization and impairs goblet cell differentiation and airway mucus formation.

    PubMed

    Singh, Shashi P; Gundavarapu, Sravanthi; Peña-Philippides, Juan C; Rir-Sima-ah, Jules; Mishra, Neerad C; Wilder, Julie A; Langley, Raymond J; Smith, Kevin R; Sopori, Mohan L

    2011-11-01

    Parental, particularly maternal, smoking increases the risk for childhood allergic asthma and infection. Similarly, in a murine allergic asthma model, prenatal plus early postnatal exposure to secondhand cigarette smoke (SS) exacerbates airways hyperreactivity and Th2 responses in the lung. However, the mechanism and contribution of prenatal versus early postnatal SS exposure on allergic asthma remain unresolved. To identify the effects of prenatal and/or early postnatal SS on allergic asthma, BALB/c dams and their offspring were exposed gestationally and/or 8-10 wk postbirth to filtered air or SS. Prenatal, but not postnatal, SS strongly increased methacholine and allergen (Aspergillus)-induced airway resistance, Th2 cytokine levels, and atopy and activated the Th2-polarizing pathway GATA3/Lck/ERK1/2/STAT6. Either prenatal and/or early postnatal SS downregulated the Th1-specific transcription factor T-bet and, surprisingly, despite high levels of IL-4/IL-13, dramatically blocked the allergen-induced mucous cell metaplasia, airway mucus formation, and the expression of mucus-related genes/proteins: Muc5ac, γ-aminobutyric acid A receptors, and SAM pointed domain-containing Ets-like factor. Given that SS/nicotine exposure of normal adult mice promotes mucus formation, the results suggested that fetal and neonatal lung are highly sensitive to cigarette smoke. Thus, although the gestational SS promotes Th2 polarization/allergic asthma, it may also impair and/or delay the development of fetal and neonatal lung, affecting mucociliary clearance and Th1 responses. Together, this may explain the increased susceptibility of children from smoking parents to allergic asthma and childhood respiratory infections. PMID:21930963

  16. Differential effects of myelin basic protein-activated Th1 and Th2 cells on the local immune microenvironment of injured spinal cord.

    PubMed

    Hu, Jian-Guo; Shi, Ling-Ling; Chen, Yue-Juan; Xie, Xiu-Mei; Zhang, Nan; Zhu, An-You; Jiang, Zheng-Song; Feng, Yi-Fan; Zhang, Chen; Xi, Jin; Lü, He-Zuo

    2016-03-01

    Myelin basic protein (MBP) activated T cells (MBP-T) play an important role in the damage and repair process of the central nervous system (CNS). However, whether these cells play a beneficial or detrimental role is still a matter of debate. Although some studies showed that MBP-T cells are mainly helper T (Th) cells, their subtypes are still not very clear. One possible explanation for MBP-T immunization leading to conflicting results may be the different subtypes of T cells are responsible for distinct effects. In this study, the Th1 and Th2 type MBP-T cells (MBP-Th1 and -Th2) were polarized in vitro, and their effects on the local immune microenvironment and tissue repair of spinal cord injury (SCI) after adoptive immunization were investigated. In MBP-Th1 cell transferred rats, the high levels of pro-inflammatory cells (Th1 cells and M1 macrophages) and cytokines (IFN-γ, TNF-α, -β, IL-1β) were detected in the injured spinal cord; however, the anti-inflammatory cells (Th2 cells, regulatory T cells, and M2 macrophages) and cytokines (IL-4, -10, and -13) were found in MBP-Th2 cell transferred animals. MBP-Th2 cell transfer resulted in decreased lesion volume, increased myelination of axons, and preservation of neurons. This was accompanied by significant locomotor improvement. These results indicate that MBP-Th2 adoptive transfer has beneficial effects on the injured spinal cord, in which the increased number of Th2 cells may alter the local microenvironment from one primarily populated by Th1 and M1 cells to another dominated by Th2, Treg, and M2 cells and is conducive for SCI repair. PMID:26772636

  17. Tumor-specific Th2 responses inhibit growth of CT26 colon-cancer cells in mice via converting intratumor regulatory T cells to Th9 cells.

    PubMed

    Liu, Jiang-Qi; Li, Xing-Yong; Yu, Hai-Qiong; Yang, Gui; Liu, Zhi-Qiang; Geng, Xiao-Rui; Wang, Shuai; Mo, Li-Hua; Zeng, Lu; Zhao, Miao; Fu, Yun-Ting; Sun, Hong-Zhi; Liu, Zhi-Gang; Yang, Ping-Chang

    2015-01-01

    The abnormality of immune regulation plays a critical role in the pathogenesis of cancer; the underlying mechanism has not been fully understood yet. This study aims to investigate the role of cancer specific T helper (Th)2 response in the inhibition of colon cancer (Cca) cell growth. The results showed that with Cca cell (CT26 cell) extracts as an antigen, the Cca-extract specific Th2 response was induced in the Cca-bearing mice. The Cca mass size was significantly reduced, or radically disappeared (5 out of 10; or 50%); the survival rate was markedly improved in mice immunized with Cca-extract, but not in those immunized with another tumor cell (U87 cell) extracts or to bovine serum albumin. The immunization with Cca-extract also induced Cca cell apoptosis and converted the intra-Cca Tregs to T helper (Th) 9 cells. In conclusion, Cca-specific Th2 responses inhibit Cca growth in a mouse model via inducing Cca cell apoptosis and converting intra-Cca Tregs to Th9 cells. PMID:26035423

  18. STAT6-dependent and -independent mechanisms in Th2 polarization

    PubMed Central

    Maier, Elisabeth; Duschl, Albert; Horejs-Hoeck, Jutta

    2012-01-01

    Th2 cells play a key role in directing immune responses against helminths. Additionally, Th2 cells are crucial for many types of allergic reactions. Whereas the molecular mechanisms underlying the differentiation of other types of Th cells are well understood, Th2 differentiation is still a controversial topic. IL-4 and its downstream transcription factor signal transducer and activator of transcription (STAT)6 are well-known key mediators in Th2 differentiation. The fact that Th2 cells themselves are the most potent source of IL-4 suggests that additional mechanisms promoting the initiation of Th2 differentiation exist. This article gives an overview on STAT6-dependent and -independent mechanisms involved in the process of Th2 polarization, including Notch, mTORC2, IL-2/STAT5, and Wnt. Furthermore, we emphasize the role of STAT6 not only as a transcriptional activator promoting Th2 development, but also in fine-tuning alternative signaling pathways which are involved in the initiation of Th2 polarization. PMID:23041833

  19. Novel function of CRTH2 in preventing apoptosis of human Th2 cells through activation of the phosphatidylinositol 3-kinase pathway.

    PubMed

    Xue, Luzheng; Barrow, Anna; Pettipher, Roy

    2009-06-15

    It is now well established that interaction of PGD(2) with chemoattractant receptor- homologous molecule expressed on Th2 cells (CRTH2) promotes chemotaxis and proinflammatory cytokine production by Th2 lymphocytes. In this study we show a novel function of CRTH2 in mediating an inhibitory effect of PGD(2) on the apoptosis of human Th2 cells induced by cytokine deprivation. This effect was mimicked by the selective CRTH2 agonist 13,14-dihydro-15-keto-PGD(2), inhibited by the CRTH2 antagonists ramatroban and TM30089, and not observed in CRTH2-negative T cells. D prostanoid receptor 1 (DP(1)) or the thromboxane-like prostanoid (TP) receptor did not play a role in mediating the effects of PGD(2) on the apoptosis of Th2 cells because neither the DP(1) antagonist BW868C nor the TP antagonist SQ29548 had any effect on the antiapoptotic effect of PGD(2). Apoptosis of Th2 cells induced by Fas ligation was not suppressed by treatment with PGD(2), illustrating that activation of CRTH2 only inhibits apoptosis induced by cytokine deprivation. Treatment with PGD(2) induced phosphorylation of Akt and BAD, prevented release of cytochrome c from mitochondria, and suppressed cleavage of caspase-3 and poly(ADP-ribose) polymerase in Th2 cells deprived of IL-2. The PI3K inhibitor LY294002 blocked the effect of PGD(2) both on the signaling events and on the apoptotic death of Th2 cells. These data suggest that in addition to promoting the recruitment and activation of Th2 cells, PGD(2) may also impede the resolution of allergic inflammation through inhibiting apoptosis of Th2 cells. PMID:19494281

  20. Lead effects on development and function of bone marrow-derived dendritic cells promote Th2 immune responses

    SciTech Connect

    Gao Donghong; Mondal, Tapan K.; Lawrence, David A. . E-mail: lawrencd@wadsworth.org

    2007-07-01

    Although lead (Pb) has significant effects on the development and function of macrophages, B cells, and T cells and has been suggested to promote allergic asthma in mice and humans, Pb modulation of bone marrow (BM)-derived dendritic cells (DCs) and the resultant DC effects on Th1 and Th2 development have not been examined. Accordingly, we cultured BM cells with murine granulocyte macrophage-colony stimulating factor (mGM-CSF) {+-} PbCl{sub 2}. At day 10, culture supernatant (SN) and non-adherent cells were harvested for analysis. Additionally, day 10 non-adherent BM-DCs were harvested and recultured with mGM-CSF + LPS {+-} Pb for 2 days. The day 10 Pb exposure significantly inhibited BM-DC generation, based on CD11c expression. Although fewer DCs were generated with Pb, the existing Pb-exposed DCs had significantly greater MHC-II expression than did the non-Pb-exposed DCs. However, these differences diminished upon LPS stimulation. After LPS stimulation, CD80, CD86, CD40, CD54, and MHC-II were all up-regulated on both Pb-DCs and DCs, but Pb-DCs expressed significantly less CD80 than did DCs. The CD86:CD80 ratio suggests a Pb-DC potential for Th2 cell development. After LPS stimulation, IL-6, IL-10, IL-12 (p70), and TNF-{alpha} levels significantly increased with both Pb-DCs and DCs, but Pb-DCs produced significantly less cytokines than did DCs, except for IL-10, which further supports Pb-DC preferential skewing toward type-2 immunity. In vitro studies confirm that Pb-DCs have the ability to polarize antigen-specific T cells to Th2 cells. Pb-DCs also enhanced allogeneic and autologous T cell proliferation in vitro, and in vivo studies suggested that Pb-DCs inhibited Th1 effects on humoral and cell-mediated immunity. The Pb effect was mainly on DCs, rather than on T cells, and Pb's modification of DC function appears to be the main cause of Pb's promotion of type-2-related immunity, which may relate to Pb's enhanced activation of the Erk/MAP kinase pathway.

  1. Development and function of invariant natural killer T cells producing T(h)2- and T(h)17-cytokines.

    PubMed

    Watarai, Hiroshi; Sekine-Kondo, Etsuko; Shigeura, Tomokuni; Motomura, Yasutaka; Yasuda, Takuwa; Satoh, Rumi; Yoshida, Hisahiro; Kubo, Masato; Kawamoto, Hiroshi; Koseki, Haruhiko; Taniguchi, Masaru

    2012-02-01

    There is heterogeneity in invariant natural killer T (iNKT) cells based on the expression of CD4 and the IL-17 receptor B (IL-17RB), a receptor for IL-25 which is a key factor in T(H)2 immunity. However, the development pathway and precise function of these iNKT cell subtypes remain unknown. IL-17RB⁺iNKT cells are present in the thymic CD44⁺/⁻ NK1.1⁻ population and develop normally even in the absence of IL-15, which is required for maturation and homeostasis of IL-17RB⁻iNKT cells producing IFN-γ. These results suggest that iNKT cells contain at least two subtypes, IL-17RB⁺ and IL-17RB⁻ subsets. The IL-17RB⁺iNKT subtypes can be further divided into two subtypes on the basis of CD4 expression both in the thymus and in the periphery. CD4⁺ IL-17RB⁺iNKT cells produce T(H)2 (IL-13), T(H)9 (IL-9 and IL-10), and T(H)17 (IL-17A and IL-22) cytokines in response to IL-25 in an E4BP4-dependent fashion, whereas CD4⁻ IL-17RB⁺iNKT cells are a retinoic acid receptor-related orphan receptor (ROR)γt⁺ subset producing T(H)17 cytokines upon stimulation with IL-23 in an E4BP4-independent fashion. These IL-17RB⁺iNKT cell subtypes are abundantly present in the lung in the steady state and mediate the pathogenesis in virus-induced airway hyperreactivity (AHR). In this study we demonstrated that the IL-17RB⁺iNKT cell subsets develop distinct from classical iNKT cell developmental stages in the thymus and play important roles in the pathogenesis of airway diseases. PMID:22346732

  2. Th2 type inflammation promotes the gradual progression of HPV-infected cervical cells to cervical carcinoma

    PubMed Central

    Feng, Qinghua; Wei, Huafeng; Morihara, Janice; Stern, Joshua; Yu, Mujun; Kiviat, Nancy; Hellstrom, Ingegerd; Hellstrom, Karl Erik

    2012-01-01

    Objectives To investigate the role of immunological parameters in tumorigenesis of cervical cancer in women infected with high risk human papillomavirus (hr-HPV), and determine whether key findings with human material can be recapitulated in the mouse TC1 carcinoma model which expresses hr-HPV epitopes. Methods Epithelial and lymphoid cells in cervical tissues were analyzed by immunohistochemistry and serum IL10 levels were determined by ELISA. Tumor draining lymph nodes were analyzed in the mouse TC1 model by flow cytometry. Results The mucosa was infiltrated by CD20+ and CD138+ cells already at cervical intraepithelial neoplasia 1 (CIN1) and infiltration increased in cervical intraepithelial neoplasia 3 (CIN3)/carcinoma in situ (CIS) and invasive cervical cancer (ICC), where it strongly correlated with infiltration by CD32B+ and FoxP3+ lymphocytes. GATA3+ and T-bet+ lymphoid cells were increased in ICC compared to normal, and expression in epithelial cells of the Th2 inflammation-promoting cytokine TSLP and of IDO1 was higher in CIN3/CIS and ICC. As a corollary, serum levels of IL10 were higher in women with CIN3/CIS or ICC than in normals. Finally we demonstrated in the mouse TC1 carcinoma, which expresses hr-HPV epitopes, an increase of cells expressing B cell or plasma cell markers or Fc receptors in tumor-draining than distal lymph nodes or spleen. Conclusions hr-HPV initiates a local Th2 inflammation at an early stage, involving antibody forming cells, and fosters an immunosuppressive microenvironment that aids tumor progression. PMID:22828962

  3. [Dendritic Cells Promote the Proliferation of Peripheral Blood CRTH2 Cells (CD4(+)CD294(+)Th2) and Help B Cells to Secrete Immunoglobulin].

    PubMed

    Tian, Fa-Qing; Li, Juan; Li, Ju-Heng; Tang, Mei-Qin; Cheng, Xiao-Hui; Huang, Ying-Cai; Li, Hui-Qing

    2016-08-01

    Objective:To investigate the promotive effect of dendritic cells(DCs) on proliferation of CRTH2 (CD4(+)CD294(+)Th2) cells and the influence of CRTH2 cells on secretion of immunoglobulin from B cells so as to provide a new approach for amplification and sorting of Th2 cells. Methods:DCs were induced from peripheral blood mononuclear cells, then the loaded-BCGV-Ag-DCs were cocultured with T cells, and the mixed lymphocyte reaction(MLR) was performed by CCK8 method. The phenotypes of DCs and CRTH2 cells were detected by flow cytometry. CRTH2 cells sorted by MACS were co-cultured with B cells for 5 days to detect the secretion of immunoglobulin. Results:The subsets and absolute number CRTH2 cells were significantly increased by loaded-BCGV-Ag-DCs. The levels of IgG, IgA and IgE were higher increased in supernatant of CRTH2 and B cell co-culture system than that in control group or that in transwell group(P<0.05). Conclusion:The proliferation of CRTH2 cells can be greatly promoted by loaded-BCGV-Ag-DCs, and the CRTH2 cells can help B cells to secrete IgG, IgA and IgE. PMID:27531793

  4. Foxp3+ cells control Th2 responses in a murine model of atopic dermatitis.

    PubMed

    Fyhrquist, Nanna; Lehtimäki, Sari; Lahl, Katharina; Savinko, Terhi; Lappeteläinen, Anna-Mari; Sparwasser, Tim; Wolff, Henrik; Lauerma, Antti; Alenius, Harri

    2012-06-01

    The role of Foxp3+ regulatory T (Treg) cells in atopic dermatitis (AD) is still unclear. In a murine AD model, the number of Foxp3+ cells increased in the allergen-exposed skin area and in the secondary lymphoid organs. Both Foxp3+ and Foxp3- IL-10+ T cells accumulated at the site of allergen exposure, and CD103+ effector/memory Foxp3+ Treg cells expanded gradually in the lymph nodes throughout the sensitization protocol. The depletion of Foxp3+ Treg cells led to significantly exacerbated skin inflammation, including increased recruitment of inflammatory cells and expression of T helper type 2 cytokines, as well as elevated serum IgE levels. The effect of depleting Treg cells during epicutaneous sensitization was mirrored off by a stronger inflammatory response also in the lungs following airway challenge. Thus, Treg cells have an important role in controlling AD-like inflammation and the transfer of allergic skin inflammation to the lungs. PMID:22402436

  5. Th1/Th2 Cytokines: An Easy Model to Study Gene Expression in Immune Cells

    PubMed Central

    González-Polo, Rosa A.; Soler, Germán; Fuentes, José M.

    2006-01-01

    This report describes a laboratory exercise that was incorporated into a Cell Biology and Molecular Biology advanced course. The exercise was made for a class size with eight students and was designed to reinforce the understanding of basic molecular biology techniques. Students used the techniques of reverse transcription and arginase activity measurement as well as nitric oxide determination to discover whether two specific genes were expressed by cytokine-stimulated dendritic cells. The experiment served as the basis for discussing the importance of differential gene expression inside the eukaryotic cell and the importance of cytokines in the immune system. PMID:17012221

  6. Multiparameter fluorescence imaging for quantification of TH-1 and TH-2 cytokines at the single-cell level

    NASA Astrophysics Data System (ADS)

    Fekkar, Hakim; Benbernou, N.; Esnault, S.; Shin, H. C.; Guenounou, Moncef

    1998-04-01

    Immune responses are strongly influenced by the cytokines following antigenic stimulation. Distinct cytokine-producing T cell subsets are well known to play a major role in immune responses and to be differentially regulated during immunological disorders, although the characterization and quantification of the TH-1/TH-2 cytokine pattern in T cells remained not clearly defined. Expression of cytokines by T lymphocytes is a highly balanced process, involving stimulatory and inhibitory intracellular signaling pathways. The aim of this study was (1) to quantify the cytokine expression in T cells at the single cell level using optical imaging, (2) and to analyze the influence of cyclic AMP- dependent signal transduction pathway in the balance between the TH-1 and TH-2 cytokine profile. We attempted to study several cytokines (IL-2, IFN-(gamma) , IL-4, IL-10 and IL-13) in peripheral blood mononuclear cells. Cells were prestimulated in vitro using phytohemagglutinin and phorbol ester for 36h, and then further cultured for 8h in the presence of monensin. Cells were permeabilized and then simple-, double- or triple-labeled with the corresponding specific fluorescent monoclonal antibodies. The cell phenotype was also determined by analyzing the expression of each of CD4, CD8, CD45RO and CD45RA with the cytokine expression. Conventional images of cells were recorded with a Peltier- cooled CCD camera (B/W C5985, Hamamatsu photonics) through an inverted microscope equipped with epi-fluorescence (Diaphot 300, Nikon). Images were digitalized using an acquisition video interface (Oculus TCX Coreco) in 762 by 570 pixels coded in 8 bits (256 gray levels), and analyzed thereafter in an IBM PC computer based on an intel pentium processor with an adequate software (Visilog 4, Noesis). The first image processing step is the extraction of cell areas using an edge detection and a binary thresholding method. In order to reduce the background noise of fluorescence, we performed an opening

  7. Th1/Th2 Cytokines: An Easy Model to Study Gene Expression in Immune Cells

    ERIC Educational Resources Information Center

    Moran, Jose M.; Gonzalez-Polo, Rosa A.; Soler, German; Fuentes, Jose M.

    2006-01-01

    This report describes a laboratory exercise that was incorporated into a Cell Biology and Molecular Biology advanced course. The exercise was made for a class size with eight students and was designed to reinforce the understanding of basic molecular biology techniques. Students used the techniques of reverse transcription and arginase activity…

  8. Breast Cancer Cell-Derived GM-CSF Licenses Regulatory Th2 Induction by Plasmacytoid Predendritic Cells in Aggressive Disease Subtypes.

    PubMed

    Ghirelli, Cristina; Reyal, Fabien; Jeanmougin, Marine; Zollinger, Raphaël; Sirven, Philémon; Michea, Paula; Caux, Christophe; Bendriss-Vermare, Nathalie; Donnadieu, Marie-Hélène; Caly, Martial; Fourchotte, Virginie; Vincent-Salomon, Anne; Sigal-Zafrani, Brigitte; Sastre-Garau, Xavier; Soumelis, Vassili

    2015-07-15

    Reciprocal interactions between tumor cells and their microenvironment vitally impact tumor progression. In this study, we show that GM-CSF produced by primary breast tumor cells induced the activation of plasmacytoid predendritic cells (pDC), a cell type critical to anti-viral immunity. pDC that expressed the GM-CSF receptor were increased in breast tumors compared with noninvolved adjacent breast tissue. Tumor-activated pDC acquired naïve CD4(+) T-cell stimulatory capacity and promoted a regulatory Th2 response. Finally, the concomitant increase of GM-CSF and pDC was significantly associated with relatively more aggressive breast cancer subtypes. Our results characterize the first tumor-derived factor that can activate pDC to promote a regulatory Th2 response, with implications for therapeutic targeting of a tumor-immune axis of growing recognition in its significance to cancer. PMID:25977333

  9. Phase 2 clinical trial of rapamycin-resistant donor CD4+ Th2/Th1 (T-Rapa) cells after low-intensity allogeneic hematopoietic cell transplantation

    PubMed Central

    Fowler, Daniel H.; Mossoba, Miriam E.; Steinberg, Seth M.; Halverson, David C.; Stroncek, David; Khuu, Hahn M.; Hakim, Frances T.; Castiello, Luciano; Sabatino, Marianna; Leitman, Susan F.; Mariotti, Jacopo; Gea-Banacloche, Juan C.; Sportes, Claude; Hardy, Nancy M.; Hickstein, Dennis D.; Pavletic, Steven Z.; Rowley, Scott; Goy, Andre; Donato, Michele; Korngold, Robert; Pecora, Andrew; Levine, Bruce L.; June, Carl H.; Gress, Ronald E.; Bishop, Michael R.

    2013-01-01

    In experimental models, ex vivo induced T-cell rapamycin resistance occurred independent of T helper 1 (Th1)/T helper 2 (Th2) differentiation and yielded allogeneic CD4+ T cells of increased in vivo efficacy that facilitated engraftment and permitted graft-versus-tumor effects while minimizing graft-versus-host disease (GVHD). To translate these findings, we performed a phase 2 multicenter clinical trial of rapamycin-resistant donor CD4+ Th2/Th1 (T-Rapa) cells after allogeneic-matched sibling donor hematopoietic cell transplantation (HCT) for therapy of refractory hematologic malignancy. T-Rapa cell products, which expressed a balanced Th2/Th1 phenotype, were administered as a preemptive donor lymphocyte infusion at day 14 post-HCT. After T-Rapa cell infusion, mixed donor/host chimerism rapidly converted, and there was preferential immune reconstitution with donor CD4+ Th2 and Th1 cells relative to regulatory T cells and CD8+ T cells. The cumulative incidence probability of acute GVHD was 20% and 40% at days 100 and 180 post-HCT, respectively. There was no transplant-related mortality. Eighteen of 40 patients (45%) remain in sustained complete remission (range of follow-up: 42-84 months). These results demonstrate the safety of this low-intensity transplant approach and the feasibility of subsequent randomized studies to compare T-Rapa cell-based therapy with standard transplantation regimens. This trial was registered at www.cancer.gov/clinicaltrials as #NCT 00077480. PMID:23426943

  10. A novel function of interferon regulatory factor-1: inhibition of Th2 cells by down-regulating the Il4 gene during Listeria infection.

    PubMed

    Maruyama, Saho; Kanoh, Makoto; Matsumoto, Akira; Kuwahara, Makoto; Yamashita, Masakatsu; Asano, Yoshihiro

    2015-03-01

    Infection with certain pathogens induces a shift of the Th subset balance to a Th1 dominant state. This, in turn, results in the suppression of Th2 responses. We focused on the involvement of interferon regulatory factor-1 (IRF-1) in the suppression of Th2 cells during Listeria infection. We found that the inhibition of IL-4 production by Th2 cells is mediated by a soluble factor (LmSN) produced by Listeria-infected antigen-presenting cells. The inhibition is not observed with T cells from Irf1 gene-targeted mice. IRF-1 suppresses transcription of the Il4 gene in Th2 cells. Under the influence of the LmSN, IRF-1 binds to the 3' untranslated region (UTR) region of the Il4 gene and down-regulates Il4 gene transcription. Finally, we identified IL-1α and IL-1β as the mediator of the LmSN activity. Signaling through IL-1R induces the stabilization and/or nuclear translocation of IRF-1. We propose that IRF-1 functions to induce the T-cell subset shift via a novel mechanism. Under the influence of IL-1, IRF-1 translocates into the nucleus and acts on the 3'UTR region of the Il4 gene, thus inhibiting its transcription in Th2 cells. As a result, the immune system shifts predominantly to a Th1 response during Listeria infection, resulting in effective protection of the host. PMID:25280793

  11. Prostaglandin H2 induces the migration of human eosinophils through the chemoattractant receptor homologous molecule of Th2 cells, CRTH2.

    PubMed

    Schuligoi, Rufina; Sedej, Miriam; Waldhoer, Maria; Vukoja, Anela; Sturm, Eva M; Lippe, Irmgard T; Peskar, Bernhard A; Heinemann, Akos

    2009-01-01

    The major mast cell product PGD2 is released during the allergic response and stimulates the chemotaxis of eosinophils, basophils, and Th2-type T lymphocytes. The chemoattractant receptor homologous molecule of Th2 cells (CRTH2) has been shown to mediate the chemotactic effect of PGD2. PGH2 is the common precursor of all PGs and is produced by several cells that express cyclooxygenases. In this study, we show that PGH2 selectively stimulates human peripheral blood eosinophils and basophils but not neutrophils, and this effect is prevented by the CRTH2 receptor antagonist (+)-3-[[(4-fluorophenyl)sulfonyl] methyl amino]-1,2,3,4-tetrahydro-9H-carbazole-9-acetic acid (Cay10471) but not by the hematopoietic PGD synthase inhibitor 4-benzhydryloxy-1-[3-(1H-tetrazol-5-yl)-propyl]piperidine (HQL79). In chemotaxis assays, eosinophils showed a pronounced migratory response toward PGH2, but eosinophil degranulation was inhibited by PGH2. Moreover, collagen-induced platelet aggregation was inhibited by PGH2 in platelet-rich plasma, which was abrogated in the presence of the D-type prostanoid (DP) receptor antagonist 3-[(2-cyclohexyl-2-hydroxyethyl)amino]-2,5-dioxo-1-(phenylmethyl)-4-imidazolidine-heptanoic acid (BWA868c). Each of these effects of PGH2 was enhanced in the presence of plasma and/or albumin. In eosinophils, PGH2-induced calcium ion (Ca2+) flux was subject to homologous desensitization with PGD2. Human embryo kidney (HEK)293 cells transfected with human CRTH2 or DP likewise responded with Ca2+ flux, and untransfected HEK293 cells showed no response. These data indicate that PGH2 causes activation of the PGD2 receptors CRTH2 and DP via a dual mechanism: by interacting directly with the receptors and/or by giving rise to PGD2 after catalytic conversion by plasma proteins. PMID:18835884

  12. Prostaglandin D2 activates group 2 innate lymphoid cells through chemoattractant receptor-homologous molecule expressed on TH2 cells☆

    PubMed Central

    Xue, Luzheng; Salimi, Maryam; Panse, Isabel; Mjösberg, Jenny M.; McKenzie, Andrew N.J.; Spits, Hergen; Klenerman, Paul; Ogg, Graham

    2014-01-01

    Background Activation of the group 2 innate lymphoid cell (ILC2) population leads to production of the classical type 2 cytokines, thus promoting type 2 immunity. Chemoattractant receptor-homologous molecule expressed on TH2 cells (CRTH2), a receptor for prostaglandin D2 (PGD2), is expressed by human ILC2s. However, the function of CRTH2 in these cells is unclear. Objectives We sought to determine the role of PGD2 and CRTH2 in human ILC2s and compare it with that of the established ILC2 activators IL-25 and IL-33. Methods The effects of PGD2, IL-25, and IL-33 on the cell migration, cytokine production, gene regulation, and receptor expression of ILC2s were measured with chemotaxis, ELISA, Luminex, flow cytometry, quantitative RT-PCR, and QuantiGene assays. The effects of PGD2 under physiologic conditions were evaluated by using the supernatant from activated mast cells. Results PGD2 binding to CRTH2 induced ILC2 migration and production of type 2 cytokines and many other cytokines. ILC2 activation through CRTH2 also upregulated the expression of IL-33 and IL-25 receptor subunits (ST2 and IL-17RA). The effects of PGD2 on ILC2s could be mimicked by the supernatant from activated human mast cells and inhibited by a CRTH2 antagonist. Conclusions PGD2 is an important and potent activator of ILC2s through CRTH2 mediating strong proallergic inflammatory responses. Through IgE-mediated mast cell degranulation, these innate cells can also contribute to adaptive type 2 immunity; thus CRTH2 bridges the innate and adaptive pathways in human ILC2s. PMID:24388011

  13. Mapping post-translational modifications of mammalian testicular specific histone variant TH2B in tetraploid and haploid germ cells and their implications on the dynamics of nucleosome structure.

    PubMed

    Pentakota, Satya Krishna; Sandhya, Sankaran; P Sikarwar, Arun; Chandra, Nagasuma; Satyanarayana Rao, Manchanahalli R

    2014-12-01

    Histones regulate a variety of chromatin templated events by their post-translational modifications (PTMs). Although there are extensive reports on the PTMs of canonical histones, the information on the histone variants remains very scanty. Here, we report the identification of different PTMs, such as acetylation, methylation, and phosphorylation of a major mammalian histone variant TH2B. Our mass spectrometric analysis has led to the identification of both conserved and unique modifications across tetraploid spermatocytes and haploid spermatids. We have also computationally derived the 3-dimensional model of a TH2B containing nucleosome in order to study the spatial orientation of the PTMs identified and their effect on nucleosome stability and DNA binding potential. From our nucleosome model, it is evident that substitution of specific amino acid residues in TH2B results in both differential histone-DNA and histone-histone contacts. Furthermore, we have also observed that acetylation on the N-terminal tail of TH2B weakens the interactions with the DNA. These results provide direct evidence that, similar to somatic H2B, the testis specific histone TH2B also undergoes multiple PTMs, suggesting the possibility of chromatin regulation by such covalent modifications in mammalian male germ cells. PMID:25252820

  14. Bisphenol A in combination with TNF-α selectively induces Th2 cell-promoting dendritic cells in vitro with an estrogen-like activity

    PubMed Central

    Guo, Hongchuan; Liu, Tianyi; Uemura, Yasushi; Jiao, Shunchang; Wang, Deqing; Lin, Zilin; Narita, Yayoi; Suzuki, Motoharu; Hirosawa, Narumi; Ichihara, Yasuko; Ishihara, Osamu; Kikuchi, Hirosato; Sakamoto, Yasushi; Senju, Satoru; Zhang, Qiuhang; Ling, Feng

    2010-01-01

    Bisphenol A (BPA) is a monomer used in manufacturing a wide range of chemical products, including epoxy resins and polycarbonate. BPA, an important endocrine disrupting chemical that exerts estrogen-like activities, is detectable at nanomolar levels in human serum worldwide. The pregnancy associated doses of 17β-estradiol (E2) plus tumor-necrosis factor-α (TNF-α) induce distorted maturation of human dendritic cells (DCs) that result in an increased capacity to induce T helper (Th) 2 responses. The current study demonstrated that the presence of BPA during DC maturation influences the function of human DCs, thereby polarizing the subsequent Th response. In the presence of TNF-α, BPA treatment enhanced the expression of CC chemokine ligand 1 (CCL1) in DCs. In addition, DCs exposed to BPA/TNF-α produced higher levels of IL-10 relative to those of IL-12p70 on CD40 ligation, and preferentially induced Th2 deviation. BPA exerts the same effect with E2 at the same dose (0.01–0.1 µΜ) with regard to DC-mediated Th2 polarization. These findings imply that DCs exposed to BPA will provide one of the initial signals driving the development and perpetuation of Th2-dominated immune response in allergic reactions. PMID:20383177

  15. Dendritic cells induce Th2-mediated airway inflammatory responses to house dust mite via DNA-dependent protein kinase

    PubMed Central

    Mishra, Amarjit; Brown, Alexandra L.; Yao, Xianglan; Yang, Shutong; Park, Sung-Jun; Liu, Chengyu; Dagur, Pradeep K.; McCoy, J. Philip; Keeran, Karen J.; Nugent, Gayle Z.; Jeffries, Kenneth R.; Qu, Xuan; Yu, Zu-Xi; Levine, Stewart J.; Chung, Jay H.

    2015-01-01

    DNA-dependent protein kinase (DNA-PK) mediates double stranded DNA break repair, V(D)J recombination, and immunoglobulin class switch recombination, as well as innate immune and pro-inflammatory responses. However, there is limited information regarding the role of DNA-PK in adaptive immunity mediated by dendritic cells (DCs), which are the primary antigen-presenting cells in allergic asthma. Here we show that house dust mite induces DNA-PK phosphorylation, which is a marker of DNA-PK activation, in DCs via the generation of intracellular reactive oxygen species. We also demonstrate that pharmacological inhibition of DNA-PK, as well as the specific deletion of DNA-PK in DCs, attenuates the induction of allergic sensitization and Th2 immunity via a mechanism that involves the impaired presentation of mite antigens. Furthermore, pharmacological inhibition of DNA-PK following antigen priming similarly reduces the manifestations of mite-induced airway disease. Collectively, these findings suggest that DNA-PK may be a potential target for treatment of allergic asthma. PMID:25692509

  16. Increased expression of surface CD44 in hypoxia-DCs skews helper T cells toward a Th2 polarization

    PubMed Central

    Yang, Meixiang; Liu, Yanguo; Ren, Guangwen; Shao, Qianqian; Gao, Wenjuan; Sun, Jintang; Wang, Huayang; Ji, Chunyan; Li, Xingang; Zhang, Yun; Qu, Xun

    2015-01-01

    A low partial oxygen pressure (hypoxia) occurs in many pathological environments, such as solid tumors and inflammatory lesions. Understanding the cellular response to hypoxic stress has broad implications for human diseases. As we previously reported, hypoxia significantly altered dendritic cells (DCs) to a DC2 phenotype and promoted a Th2 polarization of naïve T cells with increased IL-4 production. However, the underlying mechanisms still remain largely unknown. In this study, we found the over-expression of surface CD44 in DCs was involved in this process via ligand binding. Further investigation showed hypoxia could reduce the surface expression of membrane type 1 metalloprotease (MT1-MMP) via down-regulating the kinesin-like protein KIF2A, which subsequently alleviated the shedding of CD44 from DCs. Moreover, KIF2A expression was found negatively regulated by HIF-1α in hypoxic microenvironment. These results suggest a previously uncharacterized mechanism by which hypoxia regulates the function of DCs via KIF2A/MT1-MMP/CD44 axis, providing critical information to understand the immune response under hypoxia. PMID:26323509

  17. Correlation between the kinetics of Th1, Th2 cells and pathology in a murine model of experimental pulmonary tuberculosis.

    PubMed Central

    Hernández-Pando, R; Orozcoe, H; Sampieri, A; Pavón, L; Velasquillo, C; Larriva-Sahd, J; Alcocer, J M; Madrid, M V

    1996-01-01

    T-helper 1 (Th1) Th2 kinetics were studied by immunohistochemistry and molecular biology techniques (reverse transcriptase polymerase chain reaction. RT PCR, Southern-blot) during the course of pulmonary tuberculosis induced in BALB/c mice by the intratracheal instillation of the live and virulent strain H-37Rv. The histopathological study clearly showed two phases of the disease. The first one was an acute phase which was characterized by inflammatory infiltrate in the alveolar capillary interstitium, blood vessel and bronchial wall with formation of granulomas. In this acute phase which lasted from 1 to 28 days, a clear predominance of Th1 cells was observed, manifested by a high percentage of interleukin-2 (IL-2) positive cells in the inflammatory infiltrate and granulomas demonstrated by immunohistology, as well as a gradual increment of interferon-gamma (INF-gamma) m-RNA. This was followed by a chronic or advanced phase characterized by pneumonia, focal necrosis and fibrosis, with a Th0 balance due to an equivalent proportion of IL-2 and IL-4 positive cells in the lung lesions, that coincided with the highest level of INF-gamma and IL-4 mRNA. The cytofluorometric analysis of bronchial lavage cells, showed a predominance of CD4 T cells during the acute phase and CD8 T lymphocytes in the chronic phase, gamma-delta T lymphocytes showed two peaks, at the beginning (3 days) and at the end (4 months) of the infection. These results suggest that T-lymphocyte subset kinetics and the pattern of cytokines produced in the lung during tuberculosis infection changed over time and correlate with the type and magnitude of tissue injury. Images Figure 1 Figure 3 Figure 5 PMID:8911136

  18. Lack of Th1 or Th2 polarization of CD4+ T cell response induced by particulate antigen targeted to phagocytic cells.

    PubMed

    Sedlik, C; Dériaud, E; Leclerc, C

    1997-01-01

    Several factors are involved in the selective activation of Th1 or Th2 subset of CD4+ T cells, such as the type of antigen-presenting cells, the dose of antigen, the route of immunization, etc. To analyze the influence of accessory cells on Th1/Th2 cell differentiation, we used a particulate antigen prepared by covalent linkage of hemocyanin (LH) to 1 microns synthetic microspheres. This particulate antigen was efficiently presented to T cells by macrophages but not by B lymphocytes. BALB/c mice immunized either with soluble LH in alum or with particulate LH without adjuvant produced both Th1 (IL-2 and IFN-gamma) and Th2 (IL-4 and IL-5) cytokines. Moreover, mice primed either with soluble or particulate LH secreted higher levels of IgG1- than of IgG2a-specific antibodies. The induction of this cytokine profile response was independent of the route of administration of the antigen, and was observed both in BALB/c and C57BL/6 mice. In contrast, immunization of mice with particulate LH in the presence of poly(I):(C) or of IL-12 induced a strong activation of Th1 cells, as shown by an up-regulated IFN-gamma production, and by decreased IL-4 and IL-5 levels associated to a greatly enhanced IgG2a antibody response. These results therefore demonstrate that targeting the antigen to phagocytic cells is not sufficient to stimulate a polarized Th response and that environmental cytokines play the major role in the selective activation of Th1 cells. This study provides important conclusions for the development of new vaccines and shows that particulate antigen associated with appropriate cofactor can selectively activate Th1 cells. PMID:9043951

  19. Transcription Factor KLF2 in Dendritic Cells Downregulates Th2 Programming via the HIF-1α/Jagged2/Notch Axis

    PubMed Central

    Xiong, Ye; Lingrel, Jerry B.; Wüthrich, Marcel; Klein, Bruce S.; Vasudevan, Neelakantan T.; Jain, Mukesh K.; George, Mariam

    2016-01-01

    ABSTRACT The adaptive immune response is tightly regulated by complex signals in dendritic cells (DCs). Although Th2 polarization is dictated by defined functional DC subsets, the molecular factors that govern the amplitude of these responses are not well understood. Krüppel-like factor 2 (KLF2) is a transcription factor that negatively regulates the activation of numerous immune cells in response to stimuli. Here, we demonstrate that suppression of KLF2 in conditioned DCs preferentially amplifies Th2 responses in two model systems, one of which is a prototypical intracellular pathogen and the other an allergen. This elevation in Th2 responses was dependent on contact-mediated Notch signaling in vitro and in vivo. A deficiency of KLF2 increased the expression of Notch ligand Jagged2 via hypoxia-inducible factor 1α (HIF-1α), which led to Th2 amplification. Our results revealed a novel circuit in DCs for Th2 polarization that is governed by KLF2. PMID:27302755

  20. Elevated Levels of Cytokines Associated with Th2 and Th17 Cells in Vitreous Fluid of Proliferative Diabetic Retinopathy Patients

    PubMed Central

    Takeuchi, Masaru; Sato, Tomohito; Tanaka, Atsushi; Muraoka, Tadashi; Taguchi, Manzo; Sakurai, Yutaka; Karasawa, Yoko; Ito, Masataka

    2015-01-01

    Macrophages are involved in low-grade inflammation in diabetes, and play pathogenic roles in proliferative diabetic retinopathy (PDR) by producing proinflammatory cytokines. T cells as well as other cells are also activated by proinflammatory cytokines, and infiltration into the vitreous of patients with PDR has been shown. In this study, we measured helper T (Th) cell-related cytokines in the vitreous of PDR patients to define the characteristics of Th-mediated immune responses associated with PDR. The study group consisted of 25 type 2 diabetic patients (25 eyes) with PDR. The control group consisted of 27 patients with epiretinal membrane (ERM), 26 patients with idiopathic macular hole (MH), and 26 patients with uveitis associated with sarcoidosis. Vitreous fluid was obtained at the beginning of vitrectomy, and centrifuging for cellular removals was not performed. Serum was also collected from PDR patients. IL-1β, IL-4, IL-6, IL-10, IL-17A, IL-17F, IL-21, IL-22, IL-23, IL-25, IL-31, IL-33, IFN-γ, soluble sCD40L, and TNFα in the vitreous and serum samples were measured. Both percent detectable and levels of IL-4, IL-6, IL-17A, IL-21, IL-22, and TNFα in the vitreous were significantly higher than those in the serum in PDR patients. Vitreous levels of these cytokines and IL-31 were significantly higher in PDR than in ERM or MH patients. Vitreous levels of IL-4, IL-17A, IL-22, IL-31, and TNFα in PDR patients were also significantly higher than those of sarcoidosis patients. In PDR patients, vitreous IL-17A level correlated significantly with vitreous levels of IL-22 and IL-31, and especially with IL-4 and TNFα. Although it is unclear whether these cytokines play facilitative roles or inhibitory roles for the progression of PDR, the present study indicated that Th2- and Th17-related immune responses are involved in the pathogenesis of PDR. PMID:26352837

  1. Effects of transcutaneous acupoint electrical stimulation on the imbalance of Th1, Th2, Th17 and Treg cells following thoracotomy of patients with lung cancer

    PubMed Central

    WU, HUAXING; WANG, KUN; LI, GUIXIAN; MENG, DEXIN; HAN, JIACHENG; WANG, GUONIAN; LI, YU

    2016-01-01

    An imbalance in the various T lymphocytes, including T-helper (Th)1, Th2 and Th17 cells, and regulatory T (Treg) cells, has been associated with immune dysfunction, and may occur following thoracotomy of patients with lung cancer. The use of transcutaneous acupoint electrical stimulation (TAES) has previously been demonstrated to exert immunoregulatory effects; therefore, the present study aimed to evaluate whether TAES was able to attenuate postoperative immune suppression in patients with lung cancer. Thoracic surgical patients with lung cancer (n=27) underwent TAES (frequency, 2/100 Hz; intensity, 4–12 mA) at the bilateral large intestine 4, pericardium 6, small intestine 3 and San Jiao 6 acupuncture points for 30 min, prior to incision, and at 20, 44, 68, 92 and 116 h following thoracotomy. The number of Th1, Th2, Th17 and Treg cells, and the protein and mRNA expression levels of related cytokines were measured by flow cytometry, ELISA and polymerase chain reaction, respectively. The balance of Th1, Th2, Th17 and Treg cells in the peripheral blood of patients with lung cancer was disrupted following thoracotomy. TAES administration increased the percentage of Th1 and Th17 cells, the protein expression levels of interleukin (IL)-2 and interferon-γ, the mRNA expression levels of T-bet and RAR-related orphan receptor-γt, and decreased the percentage of Th2 cells, IL-10 protein expression levels, and GATA binding protein 3 mRNA expression levels. The results of the present study demonstrated that TAES was able to partially attenuate the postoperative immune depression of patients with lung cancer, by regulating the balance of Th1, Th2, Th17 and Treg cells, and the expression levels of related cytokines and transcription factors; therefore, TAES may be considered to be a promising strategy for treating postoperative immune dysfunction in patients with lung cancer. PMID:26893636

  2. Upregulation of Tim-3 on CD4+ T cells is associated with Th1/Th2 imbalance in patients with allergic asthma

    PubMed Central

    Tang, Fei; Wang, Fukun; An, Liyun; Wang, Xianling

    2015-01-01

    T cell Ig and mucin domain-containing molecule-3 (Tim-3) is a negative regulator preferentially expressed on Th1 cells. Allergic asthma is a clinical syndrome well characterized by Th1/Th2 imbalance. To investigate the role of Tim-3 in the pathogenesis of asthma and its relationship with Th1/Th2 imbalance, a total of 40 patients with allergic asthma and 40 healthy controls were enrolled. Expression of Tim-3 and Th1/Th2 imbalance as well as the relationship between them was analyzed by flow cytometry and real-time PCR. Peripheral blood mononuclear cells (PBMCs) were cultured in vitro and anti-Tim-3 was used to block Tim-3 signaling; Th1/Th2 cytokines in the culture supernatant were detected by enzyme linked immunosorbent assay (ELISA). CD4+ T cells and B cells were sorted and co-cultured in vitro, and anti-Tim-3 was used to block Tim-3 signaling; Total IgG/IgE in the culture supernatant was detected by ELISA. The mRNA level of T-bet and IFN-γ were significantly decreased in allergic asthma patients, while GATA-3 and IL-4 were significantly increased. Expression of Tim-3 on CD4+ T cells was much higher in allergic asthma patients and it was negatively correlated with T-bet/GATA-3 ratio or IFN-γ/IL-4 ratio. Blocking of Tim-3 significantly increased Th1 cytokines (TNF-α and IFN-γ) and decreased Th2 cytokines (IL-4, IL-5, IL-13) in the culture supernatant of PBMCs. Blocking of Tim-3 dramatically reduced the production of IgG and IgE in the co-culture supernatant of CD4+ T cells and B cells. In conclusion, Tim-3 was up-regulated in allergic asthma patients and related with the Th1/Th2 imbalance. Blocking of Tim-3 may be of therapeutic benefit by enhancing the Th1 cytokines response, down-regulating the Th2 cytokines response, and reducing IgG/IgE production. PMID:26064278

  3. House Dust Mite-Derived Chitin Enhances Th2 Cell Response to Inhaled Allergens, Mainly via a TNF-α-Dependent Pathway

    PubMed Central

    Choi, Jun-Pyo; Lee, Sang-Min; Choi, Hyun-Il; Kim, Min-Hye; Jeon, Seong Gyu; Jang, Myoung Ho; Jee, Young-Koo; Yang, Sanghwa; Cho, Young-Joo

    2016-01-01

    Purpose Chitin is a potent adjuvant in the development of immune response to inhaled allergens in the airways. According to other studies, chitin is known as multi-faced adjuvants which can induce Th2 responses. Recently, we found that TNF-α is a key mediator in the development of Th2 cell response to inhaled allergens. Here, we evaluated the immunologic mechanisms in the development of airway hypersensitivity to inhaled allergens, enhanced by house dust mite (HDM)-derived chitin. Methods The role of TNF-α and TLRs was evaluated in an airway hypersensitivity mouse model induced by a sensitization with an allergen (ovalbumin, OVA) and HDM-derived chitin using mice with the null mutation of target genes. Results The present study showed that airway sensitization with HDM-derived chitin plus OVA enhanced OVA-induced airway inflammation v. OVA alone. This phenotype was associated with the increased expression of Th1, Th2, and Th17 cytokines and also with the enhanced production of OVA-specific IgE, IgG1, and IgG2a. As for T cell responses, OVA-specific Th2 cell response, enhanced by chitin, was abolished by the treatment of chitinase, whereas Th1 and Th17 cell responses enhanced by this treatment. Moreover, the null mutation of the TNF-α gene revealed similar effects as the chitinase treatment. In contrast, all the OVA-specific T cell responses, enhanced by chitin, were blocked by the absence of TLR2, but not of TLR1, TLR4, or TLR6. Conclusions In conclusion, these data suggest that HDM-derived chitin may enhance airway hypersensitivity to inhaled allergens, via the TLR2-dependent pathway, and that chitin-induced TNF-α can be a key mediator in the development of Th2 cell response to inhaled allergens. PMID:27126730

  4. Thymic irradiation inhibits the rapid recovery of TH1 but not TH2-like functions of CD4+ T cells after total lymphoid irradiation

    SciTech Connect

    Bass, H.; Adkins, B.; Strober, S. )

    1991-10-15

    Four to six weeks after total lymphoid irradiation (TLI), there is a selective deficit in the CD4+ T cells which secrete IL-2, proliferate in the MLR, and induce GVHD (Th1-like functions). A similar deficit in CD4+ T cells which secrete IL-4 and help antibody responses (Th2-like functions) is not observed. In the present study, shielding of the thymus with lead during TLI increased the Th1-like functions of CD4+ cells. Mice without thymus shields showed a marked selective reduction in the medullary stromal cells identified with the monoclonal antibody, MD1, and the severe reduction was prevented with thymus shields. Thus, shielding the thymus prevents the depletion of thymic medullary stromal cells and allows for a rapid recovery of Th1-like functions in the mouse spleen after TLI. Th2-like functions recover rapidly after TLI whether or not the thymus is irradiated.

  5. Antigen-pulsed bone marrow derived and pulmonary dendritic cells promote Th2 cell responses and immunopathology in lungs during the pathogenesis of murine mycoplasma pneumonia1

    PubMed Central

    Dobbs, Nicole A.; Zhou, Xia; Pulse, Mark; Hodge, Lisa M.; Schoeb, Trenton R.; Simecka, Jerry W.

    2014-01-01

    Mycoplasmas are a common cause of pneumonia in humans and animals, and attempts to create vaccines have not only failed to generate protective host responses, but exacerbated the disease. Mycoplasma pulmonis causes a chronic inflammatory lung disease resulting from a persistent infection, similar to other mycoplasma respiratory diseases. Using this model, Th1 subsets promote resistance to mycoplasma disease and infection, while Th2 responses contribute to immunopathology. The purpose of these studies was to evaluate the capacity of cytokine differentiated dendritic cells (DC) populations to influence the generation of protective and/or pathologic immune responses during M. pulmonis respiratory disease in BALB/c mice. We hypothesized that intratracheal inoculation of mycoplasma antigen-pulsed bone marrow derived dendritic cells (BMDC) could result in the generation of protective T cell responses during mycoplasma infection. However, intratracheal inoculation (priming) of mice with antigen-pulsed DCs resulted enhanced pathology in the recipient mice when challenged with mycoplasma. Inoculation of immunodeficient SCID mice with antigen-pulsed DCs demonstrated that this effect was dependent on lymphocyte responses. Similar results were observed when mice were primed with antigen-pulsed pulmonary, but not splenic, DCs. Lymphocytes generated in uninfected mice after the transfer of either antigen-pulsed BMDCs or pulmonary DCs were shown to be IL13+ Th2 cells, known to be associated with immunopathology. Thus, resident pulmonary DC most likely promote the development of immunopathology in mycoplasma disease through the generation of mycoplasma-specific Th2 responses. Vaccination strategies that disrupt or bypass this process could potentially result in a more effective vaccination. PMID:24973442

  6. MyD88-dependent expansion of an immature GR-1+CD11b+ population induces T cell suppression and Th2 polarization in sepsis

    PubMed Central

    Delano, Matthew J.; Scumpia, Philip O.; Weinstein, Jason S.; Coco, Dominique; Nagaraj, Srinivas; Kelly-Scumpia, Kindra M.; O'Malley, Kerri A.; Wynn, James L.; Antonenko, Svetlana; Al-Quran, Samer Z.; Swan, Ryan; Chung, Chun-Shiang; Atkinson, Mark A.; Ramphal, Reuben; Gabrilovich, Dmitry I.; Reeves, Wesley H.; Ayala, Alfred; Phillips, Joseph; LaFace, Drake; Heyworth, Paul G.; Clare-Salzler, Michael; Moldawer, Lyle L.

    2007-01-01

    Polymicrobial sepsis alters the adaptive immune response and induces T cell suppression and Th2 immune polarization. We identify a GR-1+CD11b+ population whose numbers dramatically increase and remain elevated in the spleen, lymph nodes, and bone marrow during polymicrobial sepsis. Phenotypically, these cells are heterogeneous, immature, predominantly myeloid progenitors that express interleukin 10 and several other cytokines and chemokines. Splenic GR-1+ cells effectively suppress antigen-specific CD8+ T cell interferon (IFN) γ production but only modestly suppress antigen-specific and nonspecific CD4+ T cell proliferation. GR-1+ cell depletion in vivo prevents both the sepsis-induced augmentation of Th2 cell–dependent and depression of Th1 cell–dependent antibody production. Signaling through MyD88, but not Toll-like receptor 4, TIR domain–containing adaptor-inducing IFN-β, or the IFN-α/β receptor, is required for complete GR-1+CD11b+ expansion. GR-1+CD11b+ cells contribute to sepsis-induced T cell suppression and preferential Th2 polarization. PMID:17548519

  7. Modulation of Th1/Th2 Immune Responses by Killed Propionibacterium acnes and Its Soluble Polysaccharide Fraction in a Type I Hypersensitivity Murine Model: Induction of Different Activation Status of Antigen-Presenting Cells

    PubMed Central

    Mussalem, Juliana Sekeres; Ishimura, Mayari Eika; Longo-Maugéri, Ieda Maria

    2015-01-01

    Propionibacterium acnes (P. acnes) is a gram-positive anaerobic bacillus present in normal human skin microbiota, which exerts important immunomodulatory effects, when used as heat- or phenol-killed suspensions. We previously demonstrated that heat-killed P. acnes or its soluble polysaccharide (PS), extracted from the bacterium cell wall, suppressed or potentiated the Th2 response to ovalbumin (OVA) in an immediate hypersensitivity model, depending on the treatment protocol. Herein, we investigated the mechanisms responsible for these effects, using the same model and focusing on the activation status of antigen-presenting cells (APCs). We verified that higher numbers of APCs expressing costimulatory molecules and higher expression levels of these molecules are probably related to potentiation of the Th2 response to OVA induced by P. acnes or PS, while higher expression of toll-like receptors (TLRs) seems to be related to Th2 suppression. In vitro cytokines production in cocultures of dendritic cells and T lymphocytes indicated that P. acnes and PS seem to perform their effects by acting directly on APCs. Our data suggest that P. acnes and PS directly act on APCs, modulating the expression of costimulatory molecules and TLRs, and these differently activated APCs drive distinct T helper patterns to OVA in our model. PMID:25973430

  8. Modulation of Th1/Th2 immune responses by killed Propionibacterium acnes and its soluble polysaccharide fraction in a type I hypersensitivity murine model: induction of different activation status of antigen-presenting cells.

    PubMed

    Squaiella-Baptistão, Carla Cristina; Teixeira, Daniela; Mussalem, Juliana Sekeres; Ishimura, Mayari Eika; Longo-Maugéri, Ieda Maria

    2015-01-01

    Propionibacterium acnes (P. acnes) is a gram-positive anaerobic bacillus present in normal human skin microbiota, which exerts important immunomodulatory effects, when used as heat- or phenol-killed suspensions. We previously demonstrated that heat-killed P. acnes or its soluble polysaccharide (PS), extracted from the bacterium cell wall, suppressed or potentiated the Th2 response to ovalbumin (OVA) in an immediate hypersensitivity model, depending on the treatment protocol. Herein, we investigated the mechanisms responsible for these effects, using the same model and focusing on the activation status of antigen-presenting cells (APCs). We verified that higher numbers of APCs expressing costimulatory molecules and higher expression levels of these molecules are probably related to potentiation of the Th2 response to OVA induced by P. acnes or PS, while higher expression of toll-like receptors (TLRs) seems to be related to Th2 suppression. In vitro cytokines production in cocultures of dendritic cells and T lymphocytes indicated that P. acnes and PS seem to perform their effects by acting directly on APCs. Our data suggest that P. acnes and PS directly act on APCs, modulating the expression of costimulatory molecules and TLRs, and these differently activated APCs drive distinct T helper patterns to OVA in our model. PMID:25973430

  9. Exacerbated Th2-mediated airway inflammation and hyperresponsiveness in autoimmune diabetes-prone NOD mice: a critical role for CD1d-dependent NKT cells.

    PubMed

    Araujo, Luiza M; Lefort, Jean; Nahori, Marie-Anne; Diem, Séverine; Zhu, Ren; Dy, Michel; Leite-de-Moraes, Maria C; Bach, J F; Vargaftig, B Boris; Herbelin, André

    2004-02-01

    The NOD mouse has proved to be a relevant model of insulin-dependent diabetes mellitus, closely resembling the human disease. However, it is unknown whether this strain presents a general biastoward Th1-mediated autoimmunity or remains capable of mounting complete Th2-mediated responses. Here, we show that NOD mice have the capacity to develop a typical Th2-mediated disease, namely experimental allergic asthma. In contrast to what might have been expected, they even developed a stronger Th2-mediated pulmonary inflammatory response than BALB/c mice, a strain that shows a typical Th2 bias in this model. Thus, after allergen sensitization and intra-nasal challenge, the typical features of experimental asthma were exacerbated in NOD mice, including enhanced bronchopulmonary responsiveness, mucus production and eosinophilic inflammation in the lungs as well as specific IgE titers in serum. These hallmarks of allergic asthma were associated with increased IL-4, IL-5, IL-13 and eotaxin production in the lungs, as compared with BALB/c mice. Notwithstanding their quantitative and functional defect in NOD mice, CD1d-dependent NKT cells contribute to aggravate the disease, since in OVA-immunized CD1d(-/-) NOD mice, which are deficient in this particular T cell subset, airway eosinophilia was clearly diminished relative to NOD littermates. This is the first evidence that autoimmune diabetes-prone NOD mice can also give rise to enhanced Th2-mediated responses and might thus provide a useful model for the study of common genetic and cellular components, including NKT cells that contribute to both asthma and type 1 diabetes. PMID:14768037

  10. IL-33 Receptor-Expressing Regulatory T Cells Are Highly Activated, Th2 Biased and Suppress CD4 T Cell Proliferation through IL-10 and TGFβ Release

    PubMed Central

    Datsi, Angeliki; Hegazy, Ahmed N.; Varga, Domonkos V.; Holecska, Vivien; Saito, Hirohisa; Nakae, Susumu; Löhning, Max

    2016-01-01

    Immunomodulatory Foxp3+ regulatory T cells (Tregs) form a heterogeneous population consisting of subsets with different activation states, migratory properties and suppressive functions. Recently, expression of the IL-33 receptor ST2 was shown on Tregs in inflammatory settings. Here we report that ST2 expression identifies highly activated Tregs in mice even under homeostatic conditions. ST2+ Tregs preferentially accumulate at non-lymphoid sites, likely mediated by their high expression of several chemokine receptors facilitating tissue homing. ST2+ Tregs exhibit a Th2-biased character, expressing GATA-3 and producing the Th2 cytokines IL-5 and IL-13 –especially in response to IL-33. Yet, IL-33 is dispensable for the generation and maintenance of these cells in vivo. Furthermore, ST2+ Tregs are superior to ST2− Tregs in suppressing CD4+ T cell proliferation in vitro independent of IL-33. This higher suppressive capacity is partially mediated by enhanced production and activation of the anti-inflammatory cytokines IL-10 and TGFβ. Thus, ST2 expression identifies a highly activated, strongly suppressive Treg subset preferentially located in non-lymphoid tissues. Here ST2+ Tregs may be well positioned to immediately react to IL-33 alarm signals. Their specific properties may render ST2+ Tregs useful targets for immunomodulatory therapies. PMID:27548066

  11. Peptidoglycan recognition protein 1 enhances experimental asthma by promoting Th2 and Th17 and limiting regulatory T cell and plasmacytoid dendritic cell responses.

    PubMed

    Park, Shin Yong; Jing, Xuefang; Gupta, Dipika; Dziarski, Roman

    2013-04-01

    Asthma is a common inflammatory disease involving cross-talk between innate and adaptive immunity. We reveal that antibacterial innate immunity protein, peptidoglycan recognition protein (Pglyrp)1, is involved in the development of allergic asthma. Pglyrp1(-/-) mice developed less severe asthma than wild-type (WT) mice following sensitization with house dust mite (allergen) (HDM). HDM-sensitized Pglyrp1(-/-) mice, compared with WT mice, had diminished bronchial hyperresponsiveness (lung airway resistance); numbers of eosinophils, neutrophils, lymphocytes, and macrophages in bronchoalveolar lavage fluid and lungs; inflammatory cell infiltrates in the lungs around bronchi, bronchioles, and pulmonary arteries and veins; lung remodeling (mucin-producing goblet cell hyperplasia and metaplasia and smooth muscle hypertrophy and fibrosis); levels of IgE, eotaxins, IL-4, IL-5, and IL-17 in the lungs; and numbers of Th2 and Th17 cells and expression of their marker genes in the lungs. The mechanism underlying this decreased sensitivity of Pglyrp1(-/-) mice to asthma was increased generation and activation of CD8α(+)β(+) and CD8α(+)β(-) plasmacytoid dendritic cells (pDC) and increased recruitment and activity of regulatory T (Treg) cells in the lungs. In vivo depletion of pDC in HDM-sensitized Pglyrp1(-/-) mice reversed the low responsive asthma phenotype of Pglyrp1(-/-) mice to resemble the more severe WT phenotype. Thus, Pglyrp1(-/-) mice efficiently control allergic asthma by upregulating pDC and Treg cells in the lungs, whereas in WT mice, Pglyrp1 is proinflammatory and decreases pDC and Treg cells and increases proasthmatic Th2 and Th17 responses. Blocking Pglyrp1 or enhancing pDC in the lungs may be beneficial for prevention and treatment of asthma. PMID:23420883

  12. Study of Th1/Th2 balance in peripheral blood mononuclear cells of patients with alopecia areata.

    PubMed

    Sadeghi, Soha; Sanati, Mohammad Hossein; Taghizadeh, Morteza; Mansouri, Parvine; Jadali, Zohreh

    2015-09-01

    Alopecia areata represents an autoimmune pathological process driven primarily by cellular aberrations contained within the immune system, which activates various humoral and cellular elements of the immune response. The aim of this study was to determine the mRNA expression levels of T-bet and GATA-3 as potential inducers of T helper (Th)1 and Th2 differentiation, respectively, as well as Th1(IFN-γ) and Th2(IL-4) cytokine mRNA expression in patients with alopecia areata. Using real-time reverse transcriptase PCR (RT-PCR), the relative amounts of T-bet, GATA-3, IFN-γ, and IL-4 mRNA transcripts were determined in PBMCs from 20 Iranian patients with alopecia areata and compared with those of 20 healthy control subjects. In comparison with the normal group, T-bet and IFN-γ mRNA expression levels were significantly up-regulated in the alopecia areata patients, while GATA-3 and IL-4 mRNA expression levels were down-regulated. Notably, positive correlation (P < 0.05) was found between IFN-γ and T-bet levels in patients and controls. In addition, significant positive correlations existed between GATA-3 and IL-4 (P < 0.05). These results indicate that a Th1/Th2 imbalance exists in alopecia areata, and it may be implicated in the pathogenesis of disease. PMID:26551570

  13. Transcriptome signature for dampened Th2 dominance in acellular pertussis vaccine-induced CD4+ T cell responses through TLR4 ligation

    PubMed Central

    Brummelman, Jolanda; Raeven, René H. M.; Helm, Kina; Pennings, Jeroen L. A.; Metz, Bernard; van Eden, Willem; van Els, Cécile A. C. M.; Han, Wanda G. H.

    2016-01-01

    Current acellular pertussis (aP) vaccines promote a T helper 2 (Th2)-dominated response, while Th1/Th17 cells are protective. As our previous study showed, after adding a non-toxic TLR4 ligand, LpxL1, to the aP vaccine in mice, the Bordetella pertussis-specific Th2 response is decreased and Th1/Th17 responses are increased as measured at the cytokine protein level. However, how this shift in Th response by LpxL1 addition is regulated at the gene expression level remains unclear. Transcriptomics analysis was performed on purified CD4+ T cells of control and vaccinated mice after in vitro restimulation with aP vaccine antigens. Multiple key factors in Th differentiation, including transcription factors, cytokines, and receptors, were identified within the differentially expressed genes. Upregulation of Th2- and downregulation of follicular helper T cell-associated genes were found in the CD4+ T cells of both aP- and aP+LpxL1-vaccinated mice. Genes exclusively upregulated in CD4+ T cells of aP+LpxL1-vaccinated mice included Th1 and Th17 signature cytokine genes Ifng and Il17a respectively. Overall, our study indicates that after addition of LpxL1 to the aP vaccine the Th2 component is not downregulated at the gene expression level. Rather an increase in expression of Th1- and Th17-associated genes caused the shift in Th subset outcome. PMID:27118638

  14. Ferulic Acid Induces Th1 Responses by Modulating the Function of Dendritic Cells and Ameliorates Th2-Mediated Allergic Airway Inflammation in Mice

    PubMed Central

    Lee, Chen-Chen; Wang, Ching-Chiung; Huang, Huei-Mei; Lin, Chu-Lun; Leu, Sy-Jye; Lee, Yueh-Lun

    2015-01-01

    This study investigated the immunomodulatory effects of ferulic acid (FA) on antigen-presenting dendritic cells (DCs) in vitro and its antiallergic effects against ovalbumin- (OVA-) induced Th2-mediated allergic asthma in mice. The activation of FA-treated bone marrow-derived DCs by lipopolysaccharide (LPS) stimulation induced a high level of interleukin- (IL-) 12 but reduced the expression levels of the proinflammatory cytokines IL-1β, IL-6, and tumor necrosis factor- (TNF-) α. Compared to control-treated DCs, FA significantly enhanced the expressions of Notch ligand Delta-like 4 (Dll4), MHC class II, and CD40 molecules by these DCs. Furthermore, these FA-treated DCs enhanced T-cell proliferation and Th1 cell polarization. In animal experiments, oral administration of FA reduced the levels of OVA-specific immunoglobulin E (IgE) and IgG1 and enhanced IgG2a antibody production in serum. It also ameliorated airway hyperresponsiveness and attenuated eosinophilic pulmonary infiltration in dose-dependent manners. In addition, FA treatment inhibited the production of eotaxin, Th2 cytokines (IL-4, IL-5, and IL-13), and proinflammatory cytokines but promoted the Th1 cytokine interferon- (IFN-) γ production in bronchoalveolar lavage fluid (BALF) and the culture supernatant of spleen cells. These findings suggest that FA exhibits an antiallergic effect via restoring Th1/Th2 imbalance by modulating DCs function in an asthmatic mouse model. PMID:26495021

  15. Activation of Pulmonary Dendritic Cells and Th2-Type Inflammatory Responses on Instillation of Engineered, Environmental Diesel Emission Source or Ambient Air Pollutant Particles in vivo

    PubMed Central

    Bezemer, Gillina F.G.; Bauer, Stephen M.; Oberdörster, Günter; Breysse, Patrick N.; Pieters, Raymond H.H.; Georas, Steve N.; Williams, Marc A.

    2011-01-01

    The biological effects of acute particulate air pollution exposure in host innate immunity remain obscure and have relied largely on in vitro models. We hypothesized that single acute exposure to ambient or engineered particulate matter (PM) in the absence of other secondary stimuli would activate lung dendritic cells (DC) in vivo and provide information on the early immunological events of PM exposure and DC activation in a mouse model naïve to prior PM exposure. Activation of purified lung DC was studied following oropharyngeal instillation of ambient particulate matter (APM). We compared the effects of APM exposure with that of diesel-enriched PM (DEP), carbon black particles (CBP) and silver nanoparticles (AgP). We found that PM species induced variable cellular infiltration in the lungs and only APM exposure induced eosinophilic infiltration. Both APM and DEP activated pulmonary DC and promoted a Th2-type cytokine response from naïve CD4+ T cells ex vivo. Cultures of primary peribronchial lymph node cells from mice exposed to APM and DEP also displayed a Th2-type immune response ex vivo. We conclude that exposure of the lower airway to various PM species induces differential immunological responses and immunomodulation of DC subsets. Environmental APM and DEP activated DC in vivo and provoked a Th2 response ex vivo. By contrast, CBP and AgP induced altered lung tissue barrier integrity but failed to stimulate CD4+ T cells as effectively. Our work suggests that respirable pollutants activate the innate immune response with enhanced DC activation, pulmonary inflammation and Th2-immune responsiveness. PMID:21099199

  16. Interferon Regulatory Factor (IRF)-4 regulates the expression of a subset of Th2 cytokines 1

    PubMed Central

    Ahyi, Ayele-Nati N.; Chang, Hua-Chen; Dent, Alexander L.; Nutt, Stephen L.; Kaplan, Mark H.

    2009-01-01

    Th2 cells can be subdivided into subpopulations depending on the level of a cytokine and the subsets of cytokines they produce. We have recently identified the ETS family transcription factor PU.1 as regulating heterogeneity in Th2 populations. To define additional factors that might contribute to Th2 heterogeneity, we examined the PU.1 interacting protein IFN-regulatory factor (IRF)-4. When Th2 cells are separated based on levels of IL-10 secretion, IRF4 expression segregates into the subset of Th2 cells expressing high levels of IL-10. Infection of total Th2 cells, and IL-10 non-secreting cells, with retrovirus expressing IRF4, resulted in increased IL-4 and IL-10 expression, no change in IL-5 or IL-13 production and decreased Il9 transcription. Transfection of an IRF4-specific siRNA into Th2 cells decreases IL-10 production. IRF4 directly binds the Il10 gene as evidenced by ChIP assay, and regulates Il10 control elements in a reporter assay. IRF4 interacts with PU.1, and in PU.1-deficient T cells there was an increase in IRF4 binding to the Il10 gene, and in the ability of IRF4 to induce IL-10 production compared to wild type cells and Il10 promoter activity in a reporter assay. Further heterogeneity of IRF4 expression was observed in Th2 cells analyzed for expression of multiple Th2 cytokines. Thus, IRF4 promotes the expression of a subset of Th2 cytokines and contributes to Th2 heterogeneity. PMID:19592658

  17. IL-25/IL-33–responsive TH2 cells characterize nasal polyps with a default TH17 signature in nasal mucosa

    PubMed Central

    Lam, Emily P.S.; Kariyawasam, Harsha H.; Rana, Batika M.J.; Durham, Stephen R.; McKenzie, Andrew N.J.; Powell, Nicholas; Orban, Nara; Lennartz-Walker, Melissa; Hopkins, Claire; Ying, Sun; Rimmer, Joanne; Lund, Valerie J.; Cousins, David J.; Till, Stephen J.

    2016-01-01

    Background Chronic rhinosinusitis with nasal polyposis (CRSwNP) in Western countries is characterized by eosinophilia, IgE production, and TH2 cytokine expression. Type 2 innate lymphoid cells from polyps produce IL-5 and IL-13 in response to IL-25 and IL-33, although the relevance of this axis to local mucosal T-cell responses is unknown. Objective We sought to investigate the role of the IL-25/IL-33 axis in local mucosal T-cell responses in patients with CRSwNP. Methods Polyp tissue and blood were obtained from patients undergoing nasal polypectomy. Control nasal biopsy specimens and blood were obtained from healthy volunteers. Tissue was cultured in a short-term explant model. T-cell surface phenotype/intracellular cytokines were assessed by means of flow cytometry. T-cell receptor variable β-chain analysis was performed with the immunoSEQ assay. Microarrays were performed for gene expression analysis. Results IL-25 receptor (IL-17RB)–expressing TH2 effector cells were identified in nasal polyp tissue but not the healthy nasal mucosa or periphery. IL-17RB+CD4+ polyp–derived TH2 cells coexpressed ST2 (IL-33 receptor) and responded to IL-25 and IL-33 with enhanced IL-5 and IL-13 production. Within IL-17RB+CD4+ T cells, several identical T-cell receptor variable β-chain complementarity-determining region 3 sequences were identified in different subjects, suggesting clonal expansion driven by a common antigen. Abundant IL-17–producing T cells were observed in both healthy nasal mucosal and polyp populations, with TH17-related genes the most overexpressed compared with peripheral blood T cells. Conclusion IL-25 and IL-33 can interact locally with IL-17RB+ST2+ polyp T cells to augment TH2 responses in patients with CRSwNP. A local TH17 response might be important in healthy nasal mucosal immune homeostasis. PMID:26684290

  18. iNKT Cells Are Responsible for the Apoptotic Reduction of Basophils That Mediate Th2 Immune Responses Elicited by Papain in Mice Following γPGA Stimulation.

    PubMed

    Park, Hyun Jung; Lee, Sung Won; Park, Se-Ho; Hong, Seokmann

    2016-01-01

    Recent studies have demonstrated that Bacillus subtilis-derived poly-gamma glutamic acid (γPGA) treatment suppresses the development of allergic diseases such as atopic dermatitis (AD). Although basophils, an innate immune cell, are known to play critical roles in allergic immune responses and repeated long-term administration of γPGA results in decreased splenic basophils in an AD murine model, the underlying mechanisms by which γPGA regulates basophil frequency remain unclear. To investigate how γPGA modulates basophils, we employed basophil-mediated Th2 induction in vivo model elicited by the allergen papain protease. Repeated injection of γPGA reduced the abundance of basophils and their production of IL4 in mice, consistent with our previous study using NC/Nga AD model mice. The depletion of basophils by a single injection of γPGA was dependent on the TLR4/DC/IL12 axis. CD1d-dependent Vα14 TCR invariant natural killer T (iNKT) cells are known to regulate a variety of immune responses, such as allergy. Because iNKT cell activation is highly sensitive to IL12 produced by DCs, we evaluated whether the effect of γPGA on basophils is mediated by iNKT cell activation. We found that in vivo γPGA treatment did not induce the reduction of basophils in iNKT cell-deficient CD1d KO mice, suggesting the critical role of iNKT cells in γPGA-mediated basophil depletion at the early time points. Furthermore, increased apoptotic basophil reduction triggered by iNKT cells upon γPGA stimulation was mainly attributed to Th1 cytokines such as IFNγ and TNFα, consequently resulting in inhibition of papain-induced Th2 differentiation via diminishing basophil-derived IL4. Taken together, our results clearly demonstrate that γPGA-induced iNKT cell polarization toward the Th1 phenotype induces apoptotic basophil depletion, leading to the suppression of Th2 immune responses. Thus, elucidation of the crosstalk between innate immune cells will contribute to the design and

  19. iNKT Cells Are Responsible for the Apoptotic Reduction of Basophils That Mediate Th2 Immune Responses Elicited by Papain in Mice Following γPGA Stimulation

    PubMed Central

    Park, Se-Ho; Hong, Seokmann

    2016-01-01

    Recent studies have demonstrated that Bacillus subtilis-derived poly-gamma glutamic acid (γPGA) treatment suppresses the development of allergic diseases such as atopic dermatitis (AD). Although basophils, an innate immune cell, are known to play critical roles in allergic immune responses and repeated long-term administration of γPGA results in decreased splenic basophils in an AD murine model, the underlying mechanisms by which γPGA regulates basophil frequency remain unclear. To investigate how γPGA modulates basophils, we employed basophil-mediated Th2 induction in vivo model elicited by the allergen papain protease. Repeated injection of γPGA reduced the abundance of basophils and their production of IL4 in mice, consistent with our previous study using NC/Nga AD model mice. The depletion of basophils by a single injection of γPGA was dependent on the TLR4/DC/IL12 axis. CD1d-dependent Vα14 TCR invariant natural killer T (iNKT) cells are known to regulate a variety of immune responses, such as allergy. Because iNKT cell activation is highly sensitive to IL12 produced by DCs, we evaluated whether the effect of γPGA on basophils is mediated by iNKT cell activation. We found that in vivo γPGA treatment did not induce the reduction of basophils in iNKT cell-deficient CD1d KO mice, suggesting the critical role of iNKT cells in γPGA-mediated basophil depletion at the early time points. Furthermore, increased apoptotic basophil reduction triggered by iNKT cells upon γPGA stimulation was mainly attributed to Th1 cytokines such as IFNγ and TNFα, consequently resulting in inhibition of papain-induced Th2 differentiation via diminishing basophil-derived IL4. Taken together, our results clearly demonstrate that γPGA-induced iNKT cell polarization toward the Th1 phenotype induces apoptotic basophil depletion, leading to the suppression of Th2 immune responses. Thus, elucidation of the crosstalk between innate immune cells will contribute to the design and

  20. Compound A, a Dissociated Glucocorticoid Receptor Modulator, Inhibits T-bet (Th1) and Induces GATA-3 (Th2) Activity in Immune Cells

    PubMed Central

    Ferraz-de-Paula, Viviane; Palermo-Neto, Joao; Castro, Carla N.; Druker, Jimena; Holsboer, Florian; Perone, Marcelo J.; Gerlo, Sarah; De Bosscher, Karolien; Haegeman, Guy; Arzt, Eduardo

    2012-01-01

    Background Compound A (CpdA) is a dissociating non-steroidal glucocorticoid receptor (GR) ligand which has anti-inflammatory properties exerted by down-modulating proinflammatory gene expression. By favouring GR monomer formation, CpdA does not enhance glucocorticoid (GC) response element-driven gene expression, resulting in a reduced side effect profile as compared to GCs. Considering the importance of Th1/Th2 balance in the final outcome of immune and inflammatory responses, we analyzed how selective GR modulation differentially regulates the activity of T-bet and GATA-3, master drivers of Th1 and Th2 differentiation, respectively. Results Using Western analysis and reporter gene assays, we show in murine T cells that, similar to GCs, CpdA inhibits T-bet activity via a transrepressive mechanism. Different from GCs, CpdA induces GATA-3 activity by p38 MAPK-induction of GATA-3 phosphorylation and nuclear translocation. CpdA effects are reversed by the GR antagonist RU38486, proving the involvement of GR in these actions. ELISA assays demonstrate that modulation of T-bet and GATA-3 impacts on cytokine production shown by a decrease in IFN-γ and an increase in IL-5 production, respectively. Conclusions Taken together, through their effect favoring Th2 over Th1 responses, particular dissociated GR ligands, for which CpdA represents a paradigm, hold potential for the application in Th1-mediated immune disorders. PMID:22496903

  1. Differential effects of Th1, monocyte/macrophage and Th2 cytokine mixtures on early gene expression for glial and neural-related molecules in central nervous system mixed glial cell cultures: neurotrophins, growth factors and structural proteins

    PubMed Central

    Lisak, Robert P; Benjamins, Joyce A; Bealmear, Beverly; Nedelkoska, Liljana; Yao, Bin; Land, Susan; Studzinski, Diane

    2007-01-01

    Background In multiple sclerosis, inflammatory cells are found in both active and chronic lesions, and it is increasingly clear that cytokines are involved directly and indirectly in both formation and inhibition of lesions. We propose that cytokine mixtures typical of Th1 or Th2 lymphocytes, or monocyte/macrophages each induce unique molecular changes in glial cells. Methods To examine changes in gene expression that might occur in glial cells exposed to the secreted products of immune cells, we have used gene array analysis to assess the early effects of different cytokine mixtures on mixed CNS glia in culture. We compared the effects of cytokines typical of Th1 and Th2 lymphocytes and monocyte/macrophages (M/M) on CNS glia after 6 hours of treatment. Results In this paper we focus on changes with potential relevance for neuroprotection and axon/glial interactions. Each mixture of cytokines induced a unique pattern of changes in genes for neurotrophins, growth and maturation factors and related receptors; most notably an alternatively spliced form of trkC was markedly downregulated by Th1 and M/M cytokines, while Th2 cytokines upregulated BDNF. Genes for molecules of potential importance in axon/glial interactions, including cell adhesion molecules, connexins, and some molecules traditionally associated with neurons showed significant changes, while no genes for myelin-associated genes were regulated at this early time point. Unexpectedly, changes occurred in several genes for proteins initially associated with retina, cancer or bone development, and not previously reported in glial cells. Conclusion Each of the three cytokine mixtures induced specific changes in gene expression that could be altered by pharmacologic strategies to promote protection of the central nervous system. PMID:18088439

  2. Th1 and Th2 cytokine profiles induced by hepatitis C virus F protein in peripheral blood mononuclear cells from chronic hepatitis C patients.

    PubMed

    Yue, Ming; Deng, Xiaozhao; Zhai, Xiangjun; Xu, Ke; Kong, Jing; Zhang, Jinhai; Zhou, Zhenxian; Yu, Xiaojie; Xu, Xiaodong; Liu, Yunxi; Zhu, Danyan; Zhang, Yun

    2013-05-01

    Th1 and Th2 cytokine response has been confirmed to be correlated with the pathogenesis of HCV infection. The aim of the study is to investigate the Th1 and Th2 cytokine profiles induced by HCV alternate reading frame protein (F protein) in chronic hepatitis C patients. We assessed the immune responses specific to HCV F protein in 55 chronic HCV patients. IFN-γ, IL-2, IL-4 and IL-5 secretion by peripheral blood mononuclear cells (PBMC) post F protein stimulation were compared among HCV patients and healthy donors. Finally, the associations between HCV F protein and HLA class II alleles were explored. We found that the seroprevalence of anti-F antibodies in HCV-related hepatocellular carcinoma (HCC) patients was significantly higher than that of patients without HCC, but such a significant difference in humoral immune responses to F protein was not observed in HCV 1b-infected- and non-HCV 1b-infected-patients. Additionally, the PBMC proliferation of HCC patients was significantly lower than that of patients without HCC. Furthermore, F protein stimulation of PBMCs from F-seropositive patients resulted in Th2 biased cytokine responses (significantly decreased IFN-γ and/or IL-2 and significantly increased IL-4 and/or IL-5 levels) that reportedly may contribute to HCC progression and pathogenesis. However, no significant difference in the association between HCV F protein and HLA-DRB1*0201, 0301, 0405, 1001 and HLA-DQB1*0201, 0401, 0502, 0602 was observed in this study. These findings suggest that F protein may contribute to the HCV-associated bias in Th1/Th2 responses of chronic hepatitis C patients including the progress of HCC pathogenesis. PMID:23680070

  3. D prostanoid receptor 2 (chemoattractant receptor–homologous molecule expressed on TH2 cells) protein expression in asthmatic patients and its effects on bronchial epithelial cells

    PubMed Central

    Stinson, Sally E.; Amrani, Yassine; Brightling, Christopher E.

    2015-01-01

    Background The D prostanoid receptor 2 (DP2; also known as chemoattractant receptor–homologous molecule expressed on TH2 cells) is implicated in the pathogenesis of asthma, but its expression within bronchial biopsy specimens is unknown. Objectives We sought to investigate the bronchial submucosal DP2 expression in asthmatic patients and healthy control subjects and to explore its functional role in epithelial cells. Methods DP2 protein expression was assessed in bronchial biopsy specimens from asthmatic patients (n = 22) and healthy control subjects (n = 10) by using immunohistochemistry and in primary epithelial cells by using flow cytometry, immunofluorescence, and quantitative RT-PCR. The effects of the selective DP2 agonist 13, 14-dihydro-15-keto prostaglandin D2 on epithelial cell migration and differentiation were determined. Results Numbers of submucosal DP2+ cells were increased in asthmatic patients compared with those in healthy control subjects (mean [SEM]: 78 [5] vs 22 [3]/mm2 submucosa, P < .001). The bronchial epithelium expressed DP2, but its expression was decreased in asthmatic patients compared with that seen in healthy control subjects (mean [SEM]: 21 [3] vs 72 [11]/10 mm2 epithelial area, P = .001), with similar differences observed in vitro by primary epithelial cells. Squamous metaplasia of the bronchial epithelium was increased in asthmatic patients and related to decreased DP2 expression (rs = 0.69, P < .001). 13, 14-Dihydro-15-keto prostaglandin D2 promoted epithelial cell migration and at air-liquid interface cultures increased the number of MUC5AC+ and involucrin-positive cells, which were blocked with the DP2-selective antagonist AZD6430. Conclusions DP2 is expressed by the bronchial epithelium, and its activation drives epithelial differentiation, suggesting that in addition to its well-characterized role in inflammatory cell migration, DP2 might contribute to airway remodeling in asthmatic patients. PMID:25312757

  4. Exposure to Bisphenol A Prenatally or in Adulthood Promotes TH2 Cytokine Production Associated with Reduction of CD4+CD25+ Regulatory T Cells

    PubMed Central

    Yan, Huimin; Takamoto, Masaya; Sugane, Kazuo

    2008-01-01

    Background Bisphenol A (BPA) is a widespread endocrine-disrupting chemical that can affect humans and animals. Objectives We investigated the effects of adult or prenatal exposure to BPA on T-helper (TH)1/TH2 immune responses and the mechanisms underlying these effects. Methods To evaluate the effects of exposure to BPA in adulthood, male Leishmania major–susceptible BALB/c and –resistant C57BL/6 mice were subcutaneously injected with 0.625, 1.25, 2.5, and 5 μmol BPA 1 week before being infected with L. major. To evaluate prenatal exposure, female mice were given BPA-containing drinking water at concentrations of 1, 10, and 100 nM for 2 weeks, then mated, and given BPA for another week. Male 10-week-old offspring were infected with L. major. Footpad swelling was assessed as a measure of the course of infection. Results Mice exposed to BPA prenatally or in adulthood showed a dose-dependent increase in footpad swelling after being infected with L. major. Exposure to BPA in adulthood significantly promoted antigen-stimulated production of interleukin (IL)-4, IL-10, and IL-13 but not interferon-γ (IFN-γ). However, mice prenatally exposed to BPA showed increased production of not only IL-4 but also IFN-γ. The percentages of CD4+CD25+ cells were decreased in mice exposed to BPA either prenatally or in adulthood. Effects of prenatal BPA exposure were far more pronounced than effects of exposure in adulthood. Conclusion BPA promotes the development of TH2 cells in adulthood and both TH1 and TH2 cells in prenatal stages by reducing the number of regulatory T cells. PMID:18414636

  5. Prevention of Th2-like cell responses by coadministration of IL-12 and IL-18 is associated with inhibition of antigen-induced airway hyperresponsiveness, eosinophilia, and serum IgE levels.

    PubMed

    Hofstra, C L; Van Ark, I; Hofman, G; Kool, M; Nijkamp, F P; Van Oosterhout, A J

    1998-11-01

    Allergic asthma is thought to be regulated by Th2 cells, and inhibiting this response is a promising mode of intervention. Many studies have focused on differentiation of Th cells to the Th1 or Th2 subset in vitro. IL-4 is essential for Th2 development, while IL-12 induces Th1 development, which can be enhanced by IL-18. In the present study, we investigated whether IL-12 and IL-18 were able to interfere in Th2 development and the associated airway symptoms in a mouse model of allergic asthma. Mice were sensitized with OVA using a protocol that induces IgE production. Repeated challenges by OVA inhalation induced elevated serum levels of IgE, airway hyperresponsiveness, and a predominantly eosinophilic infiltrate in the bronchoalveolar lavage concomitant with the appearance of Ag-specific Th2-like cells in lung tissue and lung-draining lymph nodes. Whereas treatments with neither IL-12 nor IL-18 during the challenge period were effective, combined treatment of IL-12 and IL-18 inhibited Ag-specific Th2-like cell development. This inhibition was associated with an absence of IgE up-regulation, airway hyperresponsiveness, and cellular infiltration in the lavage. These data show that, in vivo, the synergistic action of IL-12 and IL-18 is necessary to prevent Th2-like cell differentiation, and consequently inhibits the development of airway symptoms in a mouse model of allergic asthma. PMID:9794443

  6. Matrix MTM adjuvanted virosomal H5N1 vaccine induces balanced Th1/Th2 CD4+ T cell responses in man

    PubMed Central

    Pedersen, Gabriel K; Sjursen, Haakon; Nøstbakken, Jane K; Jul-Larsen, Åsne; Hoschler, Katja; Cox, Rebecca J

    2014-01-01

    T cellular responses play a significant role in mediating protective immune responses against influenza in humans. In the current study, we evaluated the ability of a candidate virosomal H5N1 vaccine adjuvanted with Matrix MTM to induce CD4+ and CD8+ T cell responses in a phase 1 clinical trial. We vaccinated 60 healthy adult volunteers (at days 0 and 21) with 30 μg haemagglutinin (HA) alone or 1.5, 7.5, or 30 μg HA formulated with Matrix MTM. To evaluate the T cellular responses, lymphocytes were stimulated in vitro with homologous (A/Vietnam/1194/2004 [H5N1]) and heterologous H5N1 (A/Anhui/1/05 or A/Bar-headed Goose/Qinghai/1A/05) antigens. The antigen-specific cytokine responses were measured by intracellular cytokine staining and by multiplex (Luminex) assays. An increase in CD4+ Th1 and Th2 cytokines was detected 21 days after the first vaccine dose. No increase in Th cytokine responses was observed after the second dose, although it is possible that the cytokine levels peaked earlier than sampling point at day 42. Formulation with the Matrix MTM adjuvant augmented both the homologous and cross-reactive cytokine response. Antigen-specific CD8+ T cell responses were detected only in a few vaccinated individuals. The concentrations of Th1 and to a lesser extent, Th2 cytokines at 21 days post-vaccination correlated moderately with subsequent days 35 and 180 serological responses as measured by the microneutralisation, haemagglutination inhibition, and single radial hemolysis assays. Results presented here show that the virosomal H5N1 vaccine induced balanced Th1/Th2 cytokine responses and that Matrix MTM is a promising adjuvant for future development of candidate pandemic influenza vaccines. PMID:25424948

  7. A phase trial of the oral Lactobacillus casei vaccine polarizes Th2 cell immunity against transmissible gastroenteritis coronavirus infection.

    PubMed

    Jiang, Xinpeng; Hou, Xingyu; Tang, Lijie; Jiang, Yanping; Ma, Guangpeng; Li, Yijing

    2016-09-01

    Transmissible gastroenteritis coronavirus (TGEV) is a member of the genus Coronavirus, family Coronaviridae, order Nidovirales. TGEV is an enteropathogenic coronavirus that causes highly fatal acute diarrhoea in newborn pigs. An oral Lactobacillus casei (L. casei) vaccine against anti-transmissible gastroenteritis virus developed in our laboratory was used to study mucosal immune responses. In this L. casei vaccine, repetitive peptides expressed by L. casei (specifically the MDP and tuftsin fusion protein (MT)) were repeated 20 times and the D antigenic site of the TGEV spike (S) protein was repeated 6 times. Immunization with recombinant Lactobacillus is crucial for investigations of the effect of immunization, such as the first immunization time and dose. The first immunization is more important than the last immunization in the series. The recombinant Lactobacillus elicited specific systemic and mucosal immune responses. Recombinant L. casei had a strong potentiating effect on the cellular immunity induced by the oral L. casei vaccine. However, during TGEV infection, the systemic and local immune responses switched from Th1 to Th2-based immune responses. The systemic humoral immune response was stronger than the cellular immune response after TGEV infection. We found that the recombinant Lactobacillus stimulated IL-17 expression in both the systemic and mucosal immune responses against TGEV infection. Furthermore, the Lactobacillus vaccine stimulated an anti-TGEV infection Th17 pathway. The histopathological examination showed tremendous potential for recombinant Lactobacillus to enable rapid and effective treatment for TGEV with an intestinal tropism in piglets. The TGEV immune protection was primarily dependent on mucosal immunity. PMID:27020282

  8. Selective development of T helper (Th)2 cells induced by continuous administration of low dose soluble proteins to normal and beta(2)-microglobulin-deficient BALB/c mice.

    PubMed

    Guery, J C; Galbiati, F; Smiroldo, S; Adorini, L

    1996-02-01

    Continuous administration of soluble proteins, delivered over a 10-d period by a mini-osmotic pump implanted subcutaneously, induces a long-lasting inhibition of antigen-specific T cell proliferation in lymph node cells from BALB/c mice subsequently primed with antigen in adjuvant. The decreased T cell proliferative response is associated with a down-regulation of the T helper cell (Th)1 cytokines interleukin (IL)-2 and interferon (IFN)-gamma and with a strong increase in the secretion of the Th2 cytokines IL-4 and IL-5 by antigen specific CD4+ T cells. This is accompanied by predominant inhibition of antigen-specific antibody production of IgG2a and IgG2b, rather than IgG1 isotype. Interestingly, inhibition of Th1 and priming of Th2 cells is also induced in beta(2) microglobulin-deficient BALB/c mice, indicating that neither CD8+ nor CD4+ NK1.1+ T cells, respectively, are required. The polarization in Th2 cells is stably maintained by T cell lines, all composed of CD4+/CD8- cells expressing T cell receptor for antigen (TCR) alpha/beta chains, derived from BALB/c mice treated with continuous antigen administration, indicating that they originate from Th2 cells fully differentiated in vivo. This polarization is induced in BALB/c mice by continuous administration of any protein antigen tested, including soluble extracts from pathogenic microorganisms. Priming of Th2 cells is dose dependent and it is optimal for low rather than high doses of protein. Blocking endogenous IL-4 in vivo inhibits expansion of antigen-specific Th2 cells, but does not restore IFN-gamma production by T cells from mice treated with soluble antigen-specific Th2 cells, but does not restore IFN-gamma production by T cells from mice treated with soluble antigen, indicating the involvement of two independent mechanisms. Consistent with this, Th2 cell development, but not inhibition of Th1 cells, depends on non-major histocompatibility complex genetic predisposition, since the Th2 response is

  9. Genetically engineered Newcastle disease virus expressing human interferon-λ1 induces apoptosis in gastric adenocarcinoma cells and modulates the Th1/Th2 immune response.

    PubMed

    Bu, Xuefeng; Li, Mi; Zhao, Yinghai; Liu, Sha; Wang, Mubin; Ge, Jinying; Bu, Zhigao; Yan, Yulan

    2016-09-01

    Interferon-λ1 (IFN-λ1), a recently discovered cytokine of the type III IFN family, was found to be a therapeutic alternative to type I IFN in terms of tumors. Using reverse genetics technique, we generated a recombinant Newcastle disease virus (NDV) LaSota strains named as human IFN‑λ1 recombinant adenovirus (rL-hIFN-λ1) containing human IFN-λ1 gene and further evaluated the expressing of IFN-λ1 in human gastric adenocarcinoma cell line SGC-7901 after infected with rL-hIFN-λ1 by using western blot analysis, RT-PCR and immunofluorescence analyses. IFN-λl specific receptor IFNLR1 was detected on several gastric tumor cell lines including SGC-7901 and AGS and on PBMCs.The expression of the IFN-λ1 proteins reached a high level detected in the supernatant harvested 24 h after the infection of tumor cells. The proliferation changes of SGC infected with rL-hIFN-λ1 was significantly inhibited compared with NDV-infected group. Apoptosis was significantly induced by rL-hIFN-λ1 in gastric cancer cells compared with NDV virus tested by TUNEL assay, western blot analysis and Annexin V flow cytometry. Due to the high dose of IFN-λ1 expressed by the rL-hIFN-λ1-infected tumor cells, the immune study showed that rL-hIFN-λ1 increased IFN-γ production [the T helper cell subtype 1 (Th1) response] and inhibited interleukin (IL)-13 production [the T helper cell subtype 2 (Th2) response] to change the Th1/Th2 response of tumor microenvironment which inhibited tumor growth. This study aims at building recombinant NDV rL-hIFN-λ1 as an efficient antitumor agent. PMID:27430534

  10. Decidual stromal cell-derived IL-33 contributes to Th2 bias and inhibits decidual NK cell cytotoxicity through NF-κB signaling in human early pregnancy.

    PubMed

    Hu, Wen-Ting; Huang, Li-Li; Li, Ming-Qing; Jin, Li-Ping; Li, Da-Jin; Zhu, Xiao-Yong

    2015-06-01

    Decidual stromal cells (DSCs) are an important component of decidual tissues where they are in strict proximity with immune cells. Although previous research has indicated that DSCs participate in the regulation of immune cells during pregnancy, the crosstalk between DSCs and decidual NK cells (dNKs) has not been fully elucidated. The aim of this study was to ascertain the effect of DSC-derived IL-33 on dNK function and explore the underlying mechanism. Flow cytometry showed a considerable increase in ST2 expression on dNKs compared with peripheral NKs (pNKs). Subsequent research found that perforin production, granzyme A production, and the cytolytic activity of dNKs were impaired by DSC media. Furthermore, the addition of DSC media induced an increase in Th2 cytokine production (IL-4, IL-13, and IL-10) with a concomitant decrease in Th1 cytokine expression (TNF-α) of dNKs. However, IFN-γ, another member of the Th1 cytokine family that is thought to be necessary during early gestation increased after IL-33 stimulation. DSC media sharply inhibited the expression of major activating receptors (NKp30, NKG2D) while up-regulating the levels of inhibitory receptor (KIR2DL1) on dNKs. The biological effect of DSC media on dNKs was abrogated by the administration of sST2. Moreover, Western blot analysis suggested that the NF-κB pathway was involved in the IL-33-induced changes in the phenotype and function of dNKs, which was further confirmed by pharmacological inhibition with the NF-κB inhibitor BAY 11-7082. Our results suggest that the crosstalk between DSCs and dNKs might play a crucial role in maintaining successful pregnancy. PMID:25712540

  11. Airway epithelial cells initiate the allergen response through transglutaminase 2 by inducing IL-33 expression and a subsequent Th2 response

    PubMed Central

    2013-01-01

    Background Transglutaminase 2 (TG2) is a post-translational protein-modifying enzyme that catalyzes the transamidation reaction, producing crosslinked or polyaminated proteins. Increased TG2 expression and activity have been reported in various inflammatory conditions, such as rheumatoid arthritis, inflammation-associated pulmonary fibrosis, and autoimmune encephalitis. In particular, TG2 from epithelial cells is important during the initial inflammatory response in the lung. In this study, we evaluated the role of TG2 in the pathogenesis of allergic asthma, particularly whether TG2 affects initial activation signaling leading to Th2 differentiation against antigens. Methods We induced allergic asthma by ovalbumin sensitization and intranasal challenge in wild-type (WT) BALB/c and TG2-deficient mice. Broncheoalveolar lavage fluid cells and intracellular cytokine production were analyzed by flow cytometry. Interleukin (IL)-33 and TG2 expression in lung epithelial cells was detected by confocal microscopy. Results Airway responsiveness was attenuated in TG2-deficient mice compared to that in the WT control. In addition, recruitment of eosinophils and Th2 and Th17 differentiation decreased in TG2-deficient mice. Treatment with cysteamine, a transglutaminase inhibitor, also reduced airway hypersensitivity, inflammatory cell recruitment, and T helper cell differentiation. TG2-deficient mice showed reduced IL-33 expression following induction of allergic asthma compared to those in the WT control. Conclusions We found that pulmonary epithelial cells damaged by allergens triggered TG2-mediated IL-33 expression leading to type 2 responses by recruiting both innate and adaptive arms of the immune system. PMID:23496815

  12. Raising the Roof: The Preferential Pharmacological Stimulation of Th1 and Th2 Responses Mediated by NKT Cells

    PubMed Central

    East, James E.; Kennedy, Andrew J.; Webb, Tonya J.

    2014-01-01

    Natural killer T (NKT) cells serve as a bridge between the innate and adaptive immune systems, and manipulating their effector functions can have therapeutic significances in the treatment of autoimmunity, transplant biology, infectious disease, and cancer. NKT cells are a subset of T cells that express cell-surface markers characteristic of both natural killer cells and T cells. These unique immunologic cells have been demonstrated to serve as a link between the innate and adaptive immune systems through their potent cytokine production following the recognition of a range of lipid antigens, mediated through presentation of the major histocompatibility complex (MHC) class I like CD1d molecule, in addition to the NKT cell′s cytotoxic capabilities upon activation. Although a number of glycolipid antigens have been shown to complex with CD1d molecules, most notably the marine sponge derived glycolipid alpha-galactosylceramide (α-GalCer), there has been debate as to the identity of the endogenous activating lipid presented to the T-cell receptor (TCR) via the CD1d molecule on antigen-presenting cells (APCs). This review aims to survey the use of pharmacological agents and subsequent structure–activity relationships (SAR) that have given insight into the binding interaction of glycolipids with both the CD1d molecules as well as the TCR and the subsequent immunologic response of NKT cells. These studies not only elucidate basic binding interactions but also pave the way for future pharmacological modulation of NKT cell responses. PMID:23239102

  13. Hydroxypropyl-β-cyclodextrin spikes local inflammation that induces Th2 cell and T follicular helper cell responses to the coadministered antigen.

    PubMed

    Onishi, Motoyasu; Ozasa, Koji; Kobiyama, Kouji; Ohata, Keiichi; Kitano, Mitsutaka; Taniguchi, Keiichi; Homma, Tomoyuki; Kobayashi, Masanori; Sato, Akihiko; Katakai, Yuko; Yasutomi, Yasuhiro; Wijaya, Edward; Igarashi, Yoshinobu; Nakatsu, Noriyuki; Ise, Wataru; Inoue, Takeshi; Yamada, Hiroshi; Vandenbon, Alexis; Standley, Daron M; Kurosaki, Tomohiro; Coban, Cevayir; Aoshi, Taiki; Kuroda, Etsushi; Ishii, Ken J

    2015-03-15

    Cyclodextrins are commonly used as a safe excipient to enhance the solubility and bioavailability of hydrophobic pharmaceutical agents. Their efficacies and mechanisms as drug-delivery systems have been investigated for decades, but their immunological properties have not been examined. In this study, we reprofiled hydroxypropyl-β-cyclodextrin (HP-β-CD) as a vaccine adjuvant and found that it acts as a potent and unique adjuvant. HP-β-CD triggered the innate immune response at the injection site, was trapped by MARCO(+) macrophages, increased Ag uptake by dendritic cells, and facilitated the generation of T follicular helper cells in the draining lymph nodes. It significantly enhanced Ag-specific Th2 and IgG Ab responses as potently as did the conventional adjuvant, aluminum salt (alum), whereas its ability to induce Ag-specific IgE was less than that of alum. At the injection site, HP-β-CD induced the temporary release of host dsDNA, a damage-associated molecular pattern. DNase-treated mice, MyD88-deficient mice, and TBK1-deficient mice showed significantly reduced Ab responses after immunization with this adjuvant. Finally, we demonstrated that HP-β-CD-adjuvanted influenza hemagglutinin split vaccine protected against a lethal challenge with a clinically isolated pandemic H1N1 influenza virus, and the adjuvant effect of HP-β-CD was demonstrated in cynomolgus macaques. Our results suggest that HP-β-CD acts as a potent MyD88- and TBK1-dependent T follicular helper cell adjuvant and is readily applicable to various vaccines. PMID:25681338

  14. Hydroxypropyl-β-Cyclodextrin Spikes Local Inflammation That Induces Th2 Cell and T Follicular Helper Cell Responses to the Coadministered Antigen

    PubMed Central

    Onishi, Motoyasu; Ozasa, Koji; Kobiyama, Kouji; Ohata, Keiichi; Kitano, Mitsutaka; Taniguchi, Keiichi; Homma, Tomoyuki; Kobayashi, Masanori; Sato, Akihiko; Katakai, Yuko; Yasutomi, Yasuhiro; Wijaya, Edward; Igarashi, Yoshinobu; Nakatsu, Noriyuki; Ise, Wataru; Inoue, Takeshi; Yamada, Hiroshi; Vandenbon, Alexis; Standley, Daron M.; Kurosaki, Tomohiro; Coban, Cevayir; Aoshi, Taiki; Kuroda, Etsushi

    2015-01-01

    Cyclodextrins are commonly used as a safe excipient to enhance the solubility and bioavailability of hydrophobic pharmaceutical agents. Their efficacies and mechanisms as drug-delivery systems have been investigated for decades, but their immunological properties have not been examined. In this study, we reprofiled hydroxypropyl-β-cyclodextrin (HP-β-CD) as a vaccine adjuvant and found that it acts as a potent and unique adjuvant. HP-β-CD triggered the innate immune response at the injection site, was trapped by MARCO+ macrophages, increased Ag uptake by dendritic cells, and facilitated the generation of T follicular helper cells in the draining lymph nodes. It significantly enhanced Ag-specific Th2 and IgG Ab responses as potently as did the conventional adjuvant, aluminum salt (alum), whereas its ability to induce Ag-specific IgE was less than that of alum. At the injection site, HP-β-CD induced the temporary release of host dsDNA, a damage-associated molecular pattern. DNase-treated mice, MyD88-deficient mice, and TBK1-deficient mice showed significantly reduced Ab responses after immunization with this adjuvant. Finally, we demonstrated that HP-β-CD–adjuvanted influenza hemagglutinin split vaccine protected against a lethal challenge with a clinically isolated pandemic H1N1 influenza virus, and the adjuvant effect of HP-β-CD was demonstrated in cynomolgus macaques. Our results suggest that HP-β-CD acts as a potent MyD88- and TBK1-dependent T follicular helper cell adjuvant and is readily applicable to various vaccines. PMID:25681338

  15. Th2 polarization by Der p 1--pulsed monocyte-derived dendritic cells is due to the allergic status of the donors.

    PubMed

    Hammad, H; Charbonnier, A S; Duez, C; Jacquet, A; Stewart, G A; Tonnel, A B; Pestel, J

    2001-08-15

    The polarization of the immune response toward a Th2 or a Th1 profile can be mediated by dendritic cells (DCs) following antigen presentation and interaction with T cells. Costimulatory molecules such as CD80 and CD86 expressed by DCs, the polarizing cytokine environment during DC--T-cell interaction, and also the nature of the antigen are critical in the orientation of the immune response. In this study, the effect of the cysteine protease Der p 1, one of the major allergens of the house dust mite Dermatophagoides pteronyssinus, on these different parameters was evaluated comparatively on monocyte-derived DCs obtained from healthy donors, from pollen-sensitive patients, or from patients sensitive to Dermatophagoides pteronyssinus. Results showed that Der p 1 induced an increase in CD86 expression only on DCs from house dust mite--sensitive patients. This was also associated with a higher capacity to induce T-cell proliferation, a rapid increase in the production of proinflammatory cytokines, tumor necrosis factor--alpha and interleukin (IL)-1 beta, and the type 2 cytokine IL-10. No changes in the release of IL-12 p70 were induced by Der p 1. Finally, purified T cells from house dust mite-sensitive patients stimulated by autologous Der p 1--pulsed DCs preferentially produced IL-4 rather than interferon-gamma. These effects were abolished in the presence of the inactive precursor of Der p 1 (ProDer p 1). Taken together, these data suggest that DCs from house dust mite--sensitive patients, in contrast to DCs from healthy donors and from pollen-sensitive patients, exposed to Der p 1 play a pivotal role in the enhancement of the Th2 response associated with the allergic reaction developed in response to house dust mite exposure. (Blood. 2001;98:1135-1141) PMID:11493462

  16. Preventing and curing citrulline-induced autoimmune arthritis in a humanized mouse model using a Th2-polarizing iNKT cell agonist.

    PubMed

    Walker, Kyle M; Rytelewski, Mateusz; Mazzuca, Delfina M; Meilleur, Shannon A; Mannik, Lisa A; Yue, David; Brintnell, William C; Welch, Ian; Cairns, Ewa; Haeryfar, S M Mansour

    2012-07-01

    Invariant natural killer T (iNKT) cells are innate lymphocytes with unique reactivity to glycolipid antigens bound to non-polymorphic CD1d molecules. They are capable of rapidly releasing pro- and/or anti-inflammatory cytokines and constitute attractive targets for immunotherapy of a wide range of diseases including autoimmune disorders. In this study, we have explored the beneficial effects of OCH, a Th2-polarizing glycolipid agonist of iNKT cells, in a humanized mouse model of rheumatoid arthritis (RA) in which citrullinated human proteins are targeted by autoaggressive immune responses in mice expressing an RA susceptibility human leukocyte antigen (HLA) DR4 molecule. We found for the first time that treatment with OCH both prevents and cures citrulline-induced autoimmune arthritis as evidenced by resolved ankle swelling and reversed histopathological changes associated with arthritis. Also importantly, OCH treatment blocked the arthritogenic capacity of citrullinated antigen-experienced splenocytes without compromising their global responsiveness or altering the proportion of splenic naturally occurring CD4(+)CD25(+)FoxP3(+) regulatory T cells. Interestingly, administering the Th1-promoting iNKT cell glycolipid ligand α-C-galactosylceramide into HLA-DR4 transgenic mice increased the incidence of arthritis in these animals and exacerbated their clinical symptoms, strongly suggesting a role for Th1 responses in the pathogenesis of citrulline-induced arthritis. Therefore, our findings indicate a role for Th1-mediated immunopathology in citrulline-induced arthritis and provide the first evidence that iNKT cell manipulation by Th2-skewing glycolipids may be of therapeutic value in this clinically relevant model, a finding that is potentially translatable to human RA. PMID:21912419

  17. The bioactivity of teleost IL-6: IL-6 protein in orange-spotted grouper (Epinephelus coioides) induces Th2 cell differentiation pathway and antibody production.

    PubMed

    Chen, Hsin-Hung; Lin, Han-Tso; Foung, Yi-Fan; Han-You Lin, John

    2012-10-01

    Interleukin 6 (IL-6) is a protein secreted by T cells and macrophages and plays an important role in immune response. IL-6 regulates the proliferation and differentiation of T cells, and elicits immunoglobulin production in B cells. In this study, the cDNA il-6 (gil-6) sequence of the orange spotted grouper (Epinephelus coioides) was obtained. The deduced IL-6 (gIL-6) protein comprised 223 amino acids, the sequence shared approximately 30% similarity with mammalian IL-6, and between 47% and 69% similarity with other available teleost IL-6. The protein comprises the signal peptide, the IL-6 family signature, and conserved amino acid residues found in IL-6 sequences of other teleost. In order to understand the bioactivity and influence of gIL-6 on humoral immune response, recombinant gIL-6 (rgIL-6) synthesized by prokaryotes was injected into orange spotted groupers, and the immune-related gene expression at various times in various organs was observed. Our results revealed that the Th1 specific transcription factor t-bet was down-regulated and Th2 specific transcription factors gata3, and c-maf were up-regulated in immune organs, following IL-6 stimulation. Additionally, higher levels of igm mRNA and translated protein were detected in rgIL-6 stimulated fish. These results indicate that IL-6 in groupers regulates the differentiation of naїve T helper cells into Th2 cells and elicits the production of antibodies. PMID:22858412

  18. Airway Surface Mycosis in Chronic Th2-Associated Airway Disease

    PubMed Central

    Porter, Paul; Lim, Dae Jun; Maskatia, Zahida Khan; Mak, Garbo; Tsai, Chu-Lin; Citardi, Martin J; Fakhri, Samer; Shaw, Joanne L.; Fothergil, Annette; Kheradmand, Farrah; Corry, David B; Luong, Amber

    2014-01-01

    Background Environmental fungi have been linked to T helper type 2 (Th2) cell-related airway inflammation and the Th2-associated chronic airway diseases asthma, chronic rhinosinusitis with nasal polyps (CRSwNP) and allergic fungal rhinosinusitis (AFRS), but whether these organisms participate directly or indirectly in disease pathology remains unknown. Objective To determine the frequency of fungus isolation and fungus-specific immunity in Th2-associated and non-associated airway disease patients. Methods Sinus lavage fluid and blood were collected from sinus surgery patients (n=118) including CRS patients with and without nasal polyps and AFRS and non-CRS/non-asthmatic control patients. Asthma status was deteremined from medical history. Sinus lavage fluids were cultured and directly examined for evidence of viable fungi. Peripheral blood mononuclear cells were restimulated with fungal antigens in an enzyme linked immunocell spot (ELISpot) assay to determine total memory fungus-specific IL-4-secreting cells. These data were compared to fungus-specific IgE levels measured from plasma by ELISA. Results Filamentous fungi were significantly more commonly cultured from Th2-associated airway disease subjects (asthma, CRSwNP, or AFRS: n=68) compared to non-Th2-associated control patients (n=31); 74% vs 16% respectively, p<0.001. Both fungus-specific IL-4 ELISpot (n=48) and specific IgE (n=70) data correlated with Th2-associated diseases (sensitivity 73% and specificity 100% vs. 50% and 77%, respectively). Conclusions The frequent isolation of fungi growing directly within the airways accompanied by specific immunity to these organisms only in patients with Th2-associated chronic airway diseases suggests that fungi participate directly in the pathogenesis of these conditions. Efforts to eradicate airway fungi from the airways should be considered in selected patients. Clinical Implications Airway fungi may contribute to the expression of sinusitis with nasal polyps and

  19. The Retinoic Acid Receptor-a Mediates Human T-Cell Activation and Th2 Cytokine Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have recently demonstrated that all-trans-retinoic acid (ATRA) and 9-cis-retinoic acid (9-cis RA) promote IL-4, IL-5 and IL-13 synthesis, while decreasing IFN-g and TNF-a expression by activated human T cells and reducing the synthesis of IL-12p70 from accessory cells. Here, we have demonstrated ...

  20. Oral administration of an immunodominant T-cell epitope downregulates Th1/Th2 cytokines and prevents experimental myasthenia gravis

    PubMed Central

    Baggi, Fulvio; Andreetta, Francesca; Caspani, Elisabetta; Milani, Monica; Longhi, Renato; Mantegazza, Renato; Cornelio, Ferdinando; Antozzi, Carlo

    1999-01-01

    The mucosal administration of the native antigen or peptide fragments corresponding to immunodominant regions is effective in preventing or treating several T cell–dependent models of autoimmune disease. No data are yet available on oral tolerance with immunodominant T-cell peptides in experimental autoimmune myasthenia gravis (EAMG), an animal model of B cell–dependent disease. We report that oral administration of the T-cell epitope α146-162 of the Torpedo californica acetylcholine receptor (TAChR) α-subunit suppressed T-cell responses to AChR and ameliorated the disease in C57Bl/6 (B6) mice. Protection from EAMG was associated with reduced serum Ab’s to mouse AChR and reduced AChR loss in muscle. The effect of Tα146-162 feeding was specific; treatment with a control peptide did not affect EAMG manifestations. The protective effect induced by peptide Tα146-162 was mediated by reduced production of IFN-γ, IL-2, and IL-10 by TAChR-reactive cells, suggesting T-cell anergy. TGF-β–secreting Th3 cells did not seem to be involved in tolerance induction. We therefore demonstrate that feeding a single immunodominant epitope can prevent an Ab-mediated experimental model of autoimmune disease. PMID:10545527

  1. The Retinoic Acid Receptor-α mediates human T-cell activation and Th2 cytokine and chemokine production

    PubMed Central

    Dawson, Harry D; Collins, Gary; Pyle, Robert; Key, Michael; Taub, Dennis D

    2008-01-01

    Background We have recently demonstrated that all-trans-retinoic acid (ATRA) and 9-cis-retinoic acid (9-cis RA) promote IL-4, IL-5 and IL-13 synthesis, while decreasing IFN-γ and TNF-α expression by activated human T cells and reduces the synthesis of IL-12p70 from accessory cells. Here, we have demonstrated that the observed effects using ATRA and 9-cis RA are shared with the clinically useful RAR ligand, 13-cis retinoic acid (13-cis RA), and the retinoic acid receptor-α (RAR-α)-selective agonist, AM580 but not with the RAR-β/γ ligand, 4-hydroxyphenylretinamide (4-HPR). Results The increase in type 2 cytokine production by these retinoids correlated with the expression of the T cell activation markers, CD69 and CD38. The RAR-α-selective agonist, AM580 recapitulated all of the T cell activation and type 2 cytokine-inducing effects of ATRA and 9-cis-RA, while the RAR-α-selective antagonist, RO 41–5253, inhibited these effects. Conclusion These results strongly support a role for RAR-α engagement in the regulation of genes and proteins involved with human T cell activation and type 2 cytokine production. PMID:18416830

  2. The formation of titan cells in Cryptococcus neoformans depends on the mouse strain and correlates with induction of Th2-type responses.

    PubMed

    García-Barbazán, Irene; Trevijano-Contador, Nuria; Rueda, Cristina; de Andrés, Belén; Pérez-Tavárez, Raquel; Herrero-Fernández, Inés; Gaspar, María Luisa; Zaragoza, Oscar

    2016-01-01

    Cryptococcus neoformans is a pathogenic yeast that can form titan cells in the lungs, which are fungal cells of abnormal enlarged size. Little is known about the factors that trigger titan cells. In particular, it is not known how the host environment influences this transition. In this work, we describe the formation of titan cells in two mouse strains, CD1 and C57BL/6J. We found that the proportion of C. neoformans titan cells was significantly higher in C57BL/6J mice than in CD1. This higher proportion of titan cells was associated with a higher dissemination of the yeasts to the brain. Histology sections demonstrated eosinophilia in infected animals, although it was significantly lower in the CD1 mice which presented infiltration of lymphocytes. Both mouse strains presented infiltration of granulocytes, but the amount of eosinophils was higher in C57BL/6J. CD1 mice showed a significant accumulation of IFN-γ, TNF-α and IL17, while C57BL/BL mice had an increase in the anti-inflammatory cytokine IL-4. IgM antibodies to the polysaccharide capsule and total IgE were more abundant in the sera from C57BL/6J, confirming that these animals present a Th2-type response. We conclude that titan cell formation in C. neoformans depends, not only on microbe factors, but also on the host environment. PMID:26243235

  3. Th2-polarised PrP-specific transgenic T-cells confer partial protection against murine scrapie.

    PubMed

    Iken, Saci; Bachy, Véronique; Gourdain, Pauline; Lim, Annick; Grégoire, Sylvie; Chaigneau, Thomas; Aucouturier, Pierre; Carnaud, Claude

    2011-09-01

    Several hurdles must be overcome in order to achieve efficient and safe immunotherapy against conformational neurodegenerative diseases. In prion diseases, the main difficulty is that the prion protein is tolerated as a self protein, which prevents powerful immune responses. Passive antibody therapy is effective only during early, asymptomatic disease, well before diagnosis is made. If efficient immunotherapy of prion diseases is to be achieved, it is crucial to understand precisely how immune tolerance against the prion protein can be overcome and which effector pathways may delay disease progression. To this end, we generated a transgenic mouse that expresses the ß-chain of a T cell receptor recognizing a PrP epitope presented by the class II major histocompatibility complex. The fact that the constraint is applied to only one TCR chain allows adaptation of the other chain according to the presence or absence of tolerogenic PrP. We first show that transgene-bearing T cells, pairing with rearranged α-chains conferring anti-PrP specificity, are systematically eliminated during ontogeny in PrP+ mice, suggesting that precursors with good functional avidity are rare in a normal individual. Second, we show that transgene-bearing T cells with anti-PrP specificity are not suppressed when transferred into PrP+ recipients and proliferate more extensively in a prion-infected host. Finally, such T cells provide protection through a cell-mediated pathway involving IL-4 production. These findings support the idea that cell-mediated immunity in neurodegenerative conditions may not be necessarily detrimental and may even contribute, when properly controlled, to the resolution of pathological processes. PMID:21909267

  4. Transcription Factors Oct-1 and GATA-3 Cooperatively Regulate Th2 Cytokine Gene Expression via the RHS5 within the Th2 Locus Control Region

    PubMed Central

    Kim, Kiwan; Kim, Najung; Lee, Gap Ryol

    2016-01-01

    The T helper type 2 (Th2) locus control region (LCR) regulates Th2 cell differentiation. Several transcription factors bind to the LCR to modulate the expression of Th2 cytokine genes, but the molecular mechanisms behind Th2 cytokine gene regulation are incompletely understood. Here, we used database analysis and an oligonucleotide competition/electrophoretic mobility shift assays to search for transcription factors binding to RHS5, a DNase I hypersensitive site (DHS) within the Th2 LCR. Consequently, we demonstrated that GATA-binding protein-3 (GATA-3), E26 transformation-specific protein 1 (Ets-1), octamer transcription factor-1 (Oct-1), and Oct-2 selectively associate with RHS5. Furthermore, chromatin immunoprecipitation and luciferase reporter assays showed that Oct-1 and Oct-2 bound within the Il4 promoter region and the Th2 LCR, and that Oct-1 and GATA-3 or Oct-2 synergistically triggered the transactivational activity of the Il4 promoter through RHS5. These results suggest that Oct-1 and GATA-3/Oct-2 direct Th2 cytokine gene expression in a cooperative manner. PMID:26840450

  5. Reciprocal Regulation of Th1- and Th2-Cytokine-Producing T Cells during Clearance of Parasitemia in Plasmodium falciparum Malaria

    PubMed Central

    Winkler, Stefan; Willheim, Martin; Baier, Karin; Schmid, Daniela; Aichelburg, Alexander; Graninger, Wolfgang; Kremsner, Peter G.

    1998-01-01

    Flow cytometry for the intracellular detection of T-cell cytokines was performed for 15 Gabonese patients during acute uncomplicated Plasmodium falciparum malaria. A striking expansion of CD4+ and CD8+ T cells producing gamma interferon (IFN-γ) was found during drug-induced clearance of parasitemia, paralleled by a decrease of interleukin-2 (IL-2) production. The frequency of IL-4- and IL-13-producing CD4+ cells gradually decreased, whereas the frequency of T cells producing IL-2+–IFN-γ+, IL-4−–IL-5+, and IL-4+–IL-5+ cytokines as well as IL-4+–IFN-γ+ and IL-13+–IFN-γ+ cytokines was not significantly altered. The capacity for IL-10 production within the CD4+ subset increased due to an expansion of both IL-10+–IFN-γ− and IL-10+–IFN-γ+ cytokine-expressing cells. Thus, a more pronounced Th2-driven immune response during acute untreated P. falciparum infection with a shift towards Th1 responsiveness induced by parasite clearance is suggested. PMID:9826394

  6. Mucosal Immunization with the Live Attenuated Vaccine SPY1 Induces Humoral and Th2-Th17-Regulatory T Cell Cellular Immunity and Protects against Pneumococcal Infection

    PubMed Central

    Xu, Xiuyu; Wang, Hong; Liu, Yusi; Wang, Yiping; Zeng, Lingbing; Wu, Kaifeng; Wang, Jianmin; Ma, Feng; Xu, Wenchun; Yin, Yibing

    2014-01-01

    Mucosal immunization with attenuated vaccine can protect against pneumococcal invasion infection, but the mechanism was unknown. Our study found that mucosal delivery with the live attenuated SPY1 vaccine strain can confer T cell- and B cell-dependent protection against pneumococcal colonization and invasive infection; yet it is still unclear which cell subsets contribute to the protection, and their roles in pneumococcal colonization and invasion remain elusive. Adoptive transfer of anti-SPY1 antibody conferred protection to naive μMT mice, and immune T cells were indispensable to protection examined in nude mice. A critical role of interleukin 17A (IL-17A) in colonization was demonstrated in mice lacking IL-17A, and a vaccine-specific Th2 immune subset was necessary for systemic protection. Of note, we found that SPY1 could stimulate an immunoregulatory response and that SPY1-elicited regulatory T cells participated in protection against colonization and lethal infection. The data presented here aid our understanding of how live attenuated strains are able to function as effective vaccines and may contribute to a more comprehensive evaluation of live vaccines and other mucosal vaccines. PMID:25312946

  7. The cAMP response element modulator (CREM) regulates TH2 mediated inflammation

    PubMed Central

    Verjans, Eva; Ohl, Kim; Reiss, Lucy K.; van Wijk, Femke; Toncheva, Antonaneta A.; Wiener, Anastasia; Yu, Yin; Rieg, Annette D.; Gaertner, Vincent D.; Roth, Johannes; Knol, Edward; Kabesch, Michael; Wagner, Norbert; Uhlig, Stefan; Martin, Christian; Tenbrock, Klaus

    2015-01-01

    A characteristic feature of allergic diseases is the appearance of a subset of CD4+ cells known as TH2 cells, which is controlled by transcriptional and epigenetic mechanisms. We aimed to analyze the role of CREM, a known transcriptional activator of T cells, with regard to TH2 responses and allergic diseases in men and mice. Here we demonstrate that T cells of asthmatic children and PBMCs of adults with atopy express lower mRNA levels of the transcription factor CREM compared to cells from healthy controls. CREM deficiency in murine T cells results in enhanced TH2 effector cytokines in vitro and in vivo and CREM−/− mice demonstrate stronger airway hyperresponsiveness in an OVA-induced asthma model. Mechanistically, both direct CREM binding to the IL-4 and IL-13 promoter as well as a decreased IL-2 dependent STAT5 activation suppress the TH2 response. Accordingly, mice selectively overexpressing CREMα in T cells display decreased TH2 type cytokines in vivo and in vitro, and are protected in an asthma model. Thus, we provide evidence that CREM is a negative regulator of the TH2 response and determines the outcome of allergic asthma. PMID:26459392

  8. Human CD8+ T-cells recognizing peptides from Mycobacterium tuberculosis (Mtb) presented by HLA-E have an unorthodox Th2-like, multifunctional, Mtb inhibitory phenotype and represent a novel human T-cell subset.

    PubMed

    van Meijgaarden, Krista E; Haks, Mariëlle C; Caccamo, Nadia; Dieli, Francesco; Ottenhoff, Tom H M; Joosten, Simone A

    2015-03-01

    Mycobacterial antigens are not exclusively presented to T-cells by classical HLA-class Ia and HLA-class II molecules, but also through alternative antigen presentation molecules such as CD1a/b/c, MR1 and HLA-E. We recently described mycobacterial peptides that are presented in HLA-E and recognized by CD8+ T-cells. Using T-cell cloning, phenotyping, microbiological, functional and RNA-expression analyses, we report here that these T-cells can exert cytolytic or suppressive functions, inhibit mycobacterial growth, yet express GATA3, produce Th2 cytokines (IL-4,-5,-10,-13) and activate B-cells via IL-4. In TB patients, Mtb specific cells were detectable by peptide-HLA-E tetramers, and IL-4 and IL-13 were produced following peptide stimulation. These results identify a novel human T-cell subset with an unorthodox, multifunctional Th2 like phenotype and cytolytic or regulatory capacities, which is involved in the human immune response to mycobacteria and demonstrable in active TB patients' blood. The results challenge the current dogma that only Th1 cells are able to inhibit Mtb growth and clearly show that Th2 like cells can strongly inhibit outgrowth of Mtb from human macrophages. These insights significantly expand our understanding of the immune response in infectious disease. PMID:25803478

  9. Human CD8+ T-cells Recognizing Peptides from Mycobacterium tuberculosis (Mtb) Presented by HLA-E Have an Unorthodox Th2-like, Multifunctional, Mtb Inhibitory Phenotype and Represent a Novel Human T-cell Subset

    PubMed Central

    van Meijgaarden, Krista E.; Haks, Mariëlle C.; Caccamo, Nadia; Dieli, Francesco; Ottenhoff, Tom H. M.; Joosten, Simone A.

    2015-01-01

    Mycobacterial antigens are not exclusively presented to T-cells by classical HLA-class Ia and HLA-class II molecules, but also through alternative antigen presentation molecules such as CD1a/b/c, MR1 and HLA-E. We recently described mycobacterial peptides that are presented in HLA-E and recognized by CD8+ T-cells. Using T-cell cloning, phenotyping, microbiological, functional and RNA-expression analyses, we report here that these T-cells can exert cytolytic or suppressive functions, inhibit mycobacterial growth, yet express GATA3, produce Th2 cytokines (IL-4,-5,-10,-13) and activate B-cells via IL-4. In TB patients, Mtb specific cells were detectable by peptide-HLA-E tetramers, and IL-4 and IL-13 were produced following peptide stimulation. These results identify a novel human T-cell subset with an unorthodox, multifunctional Th2 like phenotype and cytolytic or regulatory capacities, which is involved in the human immune response to mycobacteria and demonstrable in active TB patients’ blood. The results challenge the current dogma that only Th1 cells are able to inhibit Mtb growth and clearly show that Th2 like cells can strongly inhibit outgrowth of Mtb from human macrophages. These insights significantly expand our understanding of the immune response in infectious disease. PMID:25803478

  10. Mycobacterium tuberculosis PE25/PPE41 protein complex induces activation and maturation of dendritic cells and drives Th2-biased immune responses.

    PubMed

    Chen, Wei; Bao, Yige; Chen, Xuerong; Burton, Jeremy; Gong, Xueli; Gu, Dongqing; Mi, Youjun; Bao, Lang

    2016-04-01

    Mycobacterium tuberculosis evades innate host immune responses by parasitizing macrophages and causes significant morbidity and mortality around the world. A mycobacterial antigen that can activate dendritic cells (DCs) and elicit effective host innate immune responses will be vital to the development of an effective TB vaccine. The M. tuberculosis genes PE25/PPE41 encode proteins which have been associated with evasion of the host immune response. We constructed a PE25/PPE41 complex gene via splicing by overlapping extension and expressed it successfully in E. coli. We investigated whether this protein complex could interact with DCs to induce effective host immune responses. The PE25/PPE41 protein complex induced maturation of isolated mouse DCs in vitro, increasing expression of cell surface markers (CD80, CD86 and MHC-II), thereby promoting Th2 polarization via secretion of pro-inflammatory cytokines IL-4 and IL-10. In addition, PE25/PPE41 protein complex-activated DCs induced proliferation of mouse CD4(+) and CD8(+) T cells, and a strong humoral response in immunized mice. The sera of five TB patients were also highly reactive to this antigen. These findings suggest that interaction of the PE25/PPE41 protein complex with DCs may be of great immunological significance. PMID:26318856

  11. Inhibition of antigen-induced airway inflammation and hyperresponsiveness in guinea pigs by a selective antagonist of "chemoattractant receptor homologous molecule expressed on Th2 cells" (CRTH2).

    PubMed

    Tasaki, Mamoru; Kobayashi, Miki; Tenda, Yoshiyuki; Tsujimoto, Susumu; Nakazato, Shoko; Numazaki, Mako; Hirano, Yasuno; Matsuda, Hiroshi; Terasaka, Tadashi; Miyao, Yasuhiro; Shimizu, Yasuaki; Hirayama, Yoshitaka

    2013-06-14

    Chemoattractant receptor homologous molecule expressed on T helper type 2 cells (CRTH2) is a PGD2 receptor found on eosinophils, basophils, and Th2 type T cells which exhibits chemotaxis and functions in activation cascades. However, while a number of CRTH2 antagonists, including ramatroban, are known to exert activity in certain animal models, activity in a guinea pig model of EA-induced airway hyperresponsiveness has not been demonstrated. The newly developed CRTH2 antagonist ASP5642 has shown antagonistic activity against human and guinea pig CRTH2 in previous studies and has also been found effective in treating guinea pig models of airway inflammation and airway hyperresponsiveness. While previous studies have used animals such as rats and mice to evaluate CRTH2 antagonist effects, ours is the first attempt to evaluate CRTH2 function in a guinea pig asthma model, which may prove useful in evaluating the compound's effects in humans, given the comparable airway function between the two species taken together, these data from the present study strongly suggest the utility of ASP5642 in investigating the role of CRTH2 in inflammatory responses and as a drug treatment for human asthma. PMID:23624353

  12. Direct hydrocarbon fuel cells

    DOEpatents

    Barnett, Scott A.; Lai, Tammy; Liu, Jiang

    2010-05-04

    The direct electrochemical oxidation of hydrocarbons in solid oxide fuel cells, to generate greater power densities at lower temperatures without carbon deposition. The performance obtained is comparable to that of fuel cells used for hydrogen, and is achieved by using novel anode composites at low operating temperatures. Such solid oxide fuel cells, regardless of fuel source or operation, can be configured advantageously using the structural geometries of this invention.

  13. The effect of combined IL10 siRNA and CpG ODN as pathogen-mimicking microparticles on Th1/Th2 cytokine balance in dendritic cells and protective immunity against B cell lymphoma

    PubMed Central

    Pradhan, Pallab; Qin, Hong; Leleux, Jardin; Gwak, Dongho; Sakamaki, Ippei; Kwak, Larry W.; Roy, Krishnendu

    2014-01-01

    Success of an immunotherapy for cancer often depends on the critical balance of T helper 1 (Th1) and T helper 2 (Th2) responses driven by antigen presenting cells, specifically dendritic cells (DCs). Th1-driven cytotoxic T cell (CTL) responses are key to eliminating tumor cells. It is well established that CpG oligonucleotides (ODN), a widely studied Toll-like receptor 9 (TLR9) agonist, used to enhance Th1 response, also induces high levels of the anti-inflammatory, Th2-promoting cytokine IL10, which could dampen the resulting Th1 response. Biomaterials-based immunomodulatory strategies that can reduce IL10 production while maintaining IL12 levels during CpG delivery could further enhance the Th1/Th2 cytokine balance and improve anti-tumor immune response. Here we report that dual-delivery of IL10-silencing siRNA along with CpG ODN to the same DCs using pathogen-mimicking microparticles (PMPs), significantly enhances their Th1/Th2 cytokine ratio through concurrent inhibition of CpG-induced IL10 production. Co-delivery of poly(I:C), a TLR3 agonist had only minor effects on IL10 levels. Further, simultaneous immunotherapy with CpG ODN and IL10 siRNA enhanced immune protection of an idiotype DNA vaccine in a prophylactic murine model of B cell lymphoma whereas co-delivery of poly(I:C) and CpG did not enhance protection. These results suggest that PMPs can be used to precisely modulate TLR ligand-mediated immune-stimulation in DCs, through co-delivery of cytokine-silencing siRNAs and thereby boost antitumor immunity. PMID:24720881

  14. Analysis of Cytokine Production by Peanut-Reactive T Cells Identifies Residual Th2 Effectors in Highly Allergic Children Who Received Peanut Oral Immunotherapy

    PubMed Central

    Wisniewski, Julia A.; Commins, Scott P.; Agrawal, Rachana; Hulse, Kathryn E.; Yu, Mingxi D.; Cronin, Julia; Heymann, Peter W.; Pomes, Anna; Platts-Mills, Thomas; Workman, Lisa; Woodfolk, Judith A.

    2015-01-01

    Background Only limited evidence is available regarding the cytokine repertoire of effector T cells associated with peanut allergy, and how these responses relate to IgE antibodies to peanut components. Objective To interrogate T-cell effector cytokine populations induced by Ara h 1 and Ara h 2 among peanut allergic (PA) children in the context of IgE, and to evaluate their modulation during oral immunotherapy (OIT). Methods Peanut-reactive effector T cells were analyzed in conjunction with specific IgE profiles in PA children using intracellular staining and multiplex assay. Cytokine-expressing T cell subpopulations were visualized using SPICE. Results Ara h 2 dominated the antibody response to peanut as judged by prevalence and quantity among a cohort of children with IgE to peanut. High IgE (>15 kUA/L) was almost exclusively associated with dual sensitization to Ara h 1 and Ara h 2, and was age-independent. Among PA children, IL-4-biased responses to both major allergens were induced, regardless of whether IgE antibodies to Ara h 1 were present. Among subjects receiving OIT in whom high IgE was maintained, Th2 reactivity to peanut components persisted despite clinical desensitization and modulation of allergen-specific immune parameters including augmented specific IgG4 antibodies, Th1 skewing and enhanced IL-10. The complexity of cytokine-positive subpopulations within peanut-reactive IL-4+ and IFN-γ+ T cells was similar to that observed in those who received no OIT, but was modified with extended therapy. Nonetheless, high Foxp3 expression was a distinguishing feature of peanut-reactive IL-4+ T cells irrespective of OIT, and a correlate of their ability to secrete type 2 cytokines. Conclusion Though total numbers of peanut-reactive IL-4+ and IFN-γ+ T cells are modulated by OIT in highly allergic children, complex T-cell populations with pathogenic potential persist in the presence of recognized immune markers of successful immunotherapy. [Clinical

  15. Effect of iodine excess on Th1, Th2, Th17, and Treg cell subpopulations in the thyroid of NOD.H-2h4 mice.

    PubMed

    Yang, Xiao; Gao, Tianshu; Shi, Rui; Zhou, Xiyu; Qu, Jinqiao; Xu, Jia; Shan, Zhongyan; Teng, Weiping

    2014-06-01

    Iodine is an indispensable micronutrient for thyroid hormone synthesis and metabolism. Iodine excess may trigger and exacerbate autoimmune thyroiditis (AIT). The pathogenetic mechanism of iodine excess-induced AIT is partly regarded as T helper type 1 (Th1) cell and/or T helper type 17 (Th17) cell dominant autoimmune disease. It is still unknown whether other cluster of differentiation 4+ T (CD4+T) cell subpopulations are involved. Therefore, we studied the profile of all the CD4+T cell subpopulations of the thyroid in iodine excess-induced nonobese diabetic-H2h4 (NOD.H-2h4) mice to explore the potential immunologic mechanism of iodine excess-induced AIT. A total of 40 healthy 8-week-old NOD.H-2h4 mice were randomly allocated into the normal group (NG, n=20) and the test group (TG, n=20), which were fed with double-distilled water and 0.05% sodium iodine (NaI) for 8 weeks, respectively. Compared to the NG, in the TG, the incidence of AIT was significantly higher, the expressions of interleukin-17 (IL-17), interleukin-23 (IL-23), interleukin-6 (IL-6), and transforming growth factor-β (TGF-β) remarkably increased by immunohistochemistry, which were further verified by reverse transcription polymerase chain reaction (RT-PCR), while the protein and mRNA expressions of interleukin-4 (IL-4) and interferon-γ (INF-γ) decreased markedly. In the AIT mice, the expressions of retinoic acid-related orphan receptor gamma t (RORγt), retinoic acid-related orphan receptor alpha (RORα), and signal transducer and activator of transcription 3 (STAT3) were much higher, the expression of forkhead/winged helix transcription factor p3 (Foxp3) significantly lower by western blot, and the proportion of Th17 cells by flow cytometry method (FCM) much larger compared to those of the NG group. In conclusion, Th17 cells may promote an inflammatory reaction in the development of iodine-excess-induced AIT, which is negatively regulated by Th1, T helper type 2 (Th2), and regulatory T (Treg

  16. Expression Pattern of Transcription Factors and Intracellular Cytokines Reveals That Clinically Cured Tuberculosis Is Accompanied by an Increase in Mycobacterium-Specific Th1, Th2, and Th17 Cells

    PubMed Central

    da Silva, Marcos V.; Massaro Junior, Vladimir J.; Machado, Juliana R.; Silva, Djalma A. A.; Castellano, Lúcio R.; Alexandre, Patricia B. D.; Rodrigues, Denise B. R.; Rodrigues, Virmondes

    2015-01-01

    Tuberculosis (TB) remains a major global health problem and is the second biggest cause of death by infectious disease worldwide. Here, we investigate in vitro the Th1, Th2, Th17, and Treg cytokines and transcriptional factors produced after Mycobacterium-specific antigen stimulation in patients with active pulmonary tuberculosis, clinically cured pulmonary tuberculosis, and healthy donors with a positive tuberculin skin test (TST+). Together, our data indicate that clinical cure after treatment increases the percentages of Mycobacterium-specific Th1, Th2, and Th17 cells compared with those found in active-TB and TST+ healthy donors. These results show that the host-parasite equilibrium in latent TB breaks in favor of the microorganism and that the subsequent clinical recovery posttreatment does not return the percentage levels of such cells to those observed in latent tuberculosis. Additionally, our results indicate that rather than showing an increase in the percentage of Mycobacterium-specific Tregs, active-TB patients display lower Th1 : Treg and Th17 : Treg ratios. These data, together with lower Th1 : Th2 and Th17 : Th2 ratios, may indicate a mechanism by which the breakdown of the host-parasite equilibrium leads to active-TB and changes in the repertoire of Mycobacterium-specific Th cells that are associated with clinical cure after treatment of pulmonary tuberculosis. PMID:26000298

  17. Phenytoin promotes Th2 type immune response in mice

    PubMed Central

    Okada, K; Sugiura, T; Kuroda, E; Tsuji, S; Yamashita, U

    2001-01-01

    The effects of chronic administration of phenytoin, a common anticonvulsive drug, on immune responses were studied in mice. Anti-keyhole limpet haemocyanin (KLH) IgE antibody response after KLH-immunization was enhanced in phenytoin-treated mice. Proliferative responses of spleen cells induced with KLH, concanavalin A (ConA), lipopolysaccharide and anti-CD3 antibody were reduced in phenytoin-treated mice. Accessory function of spleen adherent cells on ConA-induced T cell proliferative response was reduced in phenytoin-treated mice. KLH-induced IL-4 production of spleen cells was enhanced, while IFN-γ production was reduced in phenytoin-treated mice. In addition, production of IL-1α, but not IL-6 and IL-12 by spleen adherent cells from phenytoin-treated mice was reduced. Natural killer cell activity was reduced in phenytoin-treated mice. These results suggest that phenytoin treatment preferentially induces a Th2 type response. We also observed that plasma ACTH and corticosterone levels were increased in phenytoin-treated mice, and speculated that phenytoin might act directly and indirectly, through HPA axis activation, on the immune system to modulate Th1/Th2 balance. PMID:11472401

  18. Crucial Role of Gamma Interferon-Producing CD4+ Th1 Cells but Dispensable Function of CD8+ T Cell, B Cell, Th2, and Th17 Responses in the Control of Brucella melitensis Infection in Mice

    PubMed Central

    Vitry, Marie-Alice; De Trez, Carl; Goriely, Stanislas; Dumoutier, Laure; Akira, Shizuo; Ryffel, Bernhard; Carlier, Yves

    2012-01-01

    Brucella spp. are facultative intracellular bacterial pathogens responsible for brucellosis, a worldwide zoonosis that causes abortion in domestic animals and chronic febrile disease associated with serious complications in humans. There is currently no approved vaccine against human brucellosis, and antibiotic therapy is long and costly. Development of a safe protective vaccine requires a better understanding of the roles played by components of adaptive immunity in the control of Brucella infection. The importance of lymphocyte subsets in the control of Brucella growth has been investigated separately by various research groups and remains unclear or controversial. Here, we used a large panel of genetically deficient mice to compare the importance of B cells, transporter associated with antigen processing (TAP-1), and major histocompatibility complex class II-dependent pathways of antigen presentation as well as T helper 1 (Th1), Th2, and Th17-mediated responses on the immune control of Brucella melitensis 16 M infection. We clearly confirmed the key function played by gamma interferon (IFN-γ)-producing Th1 CD4+ T cells in the control of B. melitensis infection, whereas IFN-γ-producing CD8+ T cells or B cell-mediated humoral immunity plays only a modest role in the clearance of bacteria during primary infection. In the presence of a Th1 response, Th2 or Th17 responses do not really develop or play a positive or negative role during the course of B. melitensis infection. On the whole, these results could improve our ability to develop protective vaccines or therapeutic treatments against brucellosis. PMID:23006848

  19. Developmental control of integrin expression regulates Th2 effector homing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Integrin CD18, a component of the LFA-1 complex that also includes CD11a, is essential for Th2, but not Th1, cell homing, but the explanation for this phenomenon remains obscure. In this study, we investigate the mechanism by which Th2 effector responses require the LFA-1 complex. CD11a-deficient T ...

  20. Novel immunostimulators with a thiazolidin-4-one ring promote the immunostimulatory effect of human iNKT cells on the stimulation of Th2-like immune responsiveness via GATA3 activation in vitro.

    PubMed

    Meng, Ming; Li, Chunxiao; Yang, Fei; Chen, Hua; Li, Xiaoliu; Yang, Yongbin; Chen, Dongzhi

    2016-10-01

    Invariant natural killer T cells (iNKTs) are important innate immune cells which get involved in various immune responses in both mice and humans. These immune reactions range from self-tolerance to development of autoimmunity and responses to pathogens and tumor development. In this study, we aimed to explore the effects of the novel immunostimulators (CH1b and CH2b) containing thiazolidin-4-one on the functions of human invariant natural killer T cells (iNKTs). First of all, iNKTs in peripheral blood mononuclear cells were expanded with α-Galactosylceramide (α-Galcer) in vitro. Then, the highly purified iNKTs were isolated from PBMCs using magnetic cells sorting (MACS). Next, we investigated the impacts of CH1b and CH2b on proliferation, cytokines production, cytotoxicity, and the associated signaling pathways in iNKT cells. Finally, we found that CH2b could significantly promote the activated iNKTs proliferation, increase the production of Th2 cytokines, and induce Th0 differentiation into Th2 subset via GATA 3 signaling pathway. Besides, CH2b could markedly enhance the cytotoxic ability of the activated iNKTs. Therefore, we concluded that CH2b, a promising candidate immunostimulator, might be used for the treatment of infections, tumors, autoimmune and allergic diseases, and for the correction of Th1/Th2 balance disorders in future. PMID:27543853

  1. Relationships between Th1 or Th2 iNKT Cell Activity and Structures of CD1d-Antigen Complexes: Meta-analysis of CD1d-Glycolipids Dynamics Simulations

    PubMed Central

    Laurent, Xavier; Renault, Nicolas; Farce, Amaury; Chavatte, Philippe; Hénon, Eric

    2014-01-01

    A number of potentially bioactive molecules can be found in nature. In particular, marine organisms are a valuable source of bioactive compounds. The activity of an α-galactosylceramide was first discovered in 1993 via screening of a Japanese marine sponge (Agelas mauritanius). Very rapidly, a synthetic glycololipid analogue of this natural molecule was discovered, called KRN7000. Associated with the CD1d protein, this α-galactosylceramide 1 (KRN7000) interacts with the T-cell antigen receptor to form a ternary complex that yields T helper (Th) 1 and Th2 responses with opposing effects. In our work, we carried out molecular dynamics simulations (11.5 µs in total) involving eight different ligands (conducted in triplicate) in an effort to find out correlation at the molecular level, if any, between chemical modulation of 1 and the orientation of the known biological response, Th1 or Th2. Comparative investigations of human versus mouse and Th1 versus Th2 data have been carried out. A large set of analysis tools was employed including free energy landscapes. One major result is the identification of a specific conformational state of the sugar polar head, which could be correlated, in the present study, to the biological Th2 biased response. These theoretical tools provide a structural basis for predicting the very different dynamical behaviors of α-glycosphingolipids in CD1d and might aid in the future design of new analogues of 1. PMID:25376021

  2. New drugs targeting Th2 lymphocytes in asthma

    PubMed Central

    Caramori, Gaetano; Groneberg, David; Ito, Kazuhiro; Casolari, Paolo; Adcock, Ian M; Papi, Alberto

    2008-01-01

    Asthma represents a profound worldwide public health problem. The most effective anti-asthmatic drugs currently available include inhaled β2-agonists and glucocorticoids and control asthma in about 90-95% of patients. The current asthma therapies are not cures and symptoms return soon after treatment is stopped even after long term therapy. Although glucocorticoids are highly effective in controlling the inflammatory process in asthma, they appear to have little effect on the lower airway remodelling processes that appear to play a role in the pathophysiology of asthma at currently prescribed doses. The development of novel drugs may allow resolution of these changes. In addition, severe glucocorticoid-dependent and resistant asthma presents a great clinical burden and reducing the side-effects of glucocorticoids using novel steroid-sparing agents is needed. Furthermore, the mechanisms involved in the persistence of inflammation are poorly understood and the reasons why some patients have severe life threatening asthma and others have very mild disease are still unknown. Drug development for asthma has been directed at improving currently available drugs and findings new compounds that usually target the Th2-driven airway inflammatory response. Considering the apparently central role of T lymphocytes in the pathogenesis of asthma, drugs targeting disease-inducing Th2 cells are promising therapeutic strategies. However, although animal models of asthma suggest that this is feasible, the translation of these types of studies for the treatment of human asthma remains poor due to the limitations of the models currently used. The myriad of new compounds that are in development directed to modulate Th2 cells recruitment and/or activation will clarify in the near future the relative importance of these cells and their mediators in the complex interactions with the other pro-inflammatory/anti-inflammatory cells and mediators responsible of the different asthmatic

  3. New drugs targeting Th2 lymphocytes in asthma.

    PubMed

    Caramori, Gaetano; Groneberg, David; Ito, Kazuhiro; Casolari, Paolo; Adcock, Ian M; Papi, Alberto

    2008-02-27

    Asthma represents a profound worldwide public health problem. The most effective anti-asthmatic drugs currently available include inhaled beta2-agonists and glucocorticoids and control asthma in about 90-95% of patients. The current asthma therapies are not cures and symptoms return soon after treatment is stopped even after long term therapy. Although glucocorticoids are highly effective in controlling the inflammatory process in asthma, they appear to have little effect on the lower airway remodelling processes that appear to play a role in the pathophysiology of asthma at currently prescribed doses. The development of novel drugs may allow resolution of these changes. In addition, severe glucocorticoid-dependent and resistant asthma presents a great clinical burden and reducing the side-effects of glucocorticoids using novel steroid-sparing agents is needed. Furthermore, the mechanisms involved in the persistence of inflammation are poorly understood and the reasons why some patients have severe life threatening asthma and others have very mild disease are still unknown. Drug development for asthma has been directed at improving currently available drugs and findings new compounds that usually target the Th2-driven airway inflammatory response. Considering the apparently central role of T lymphocytes in the pathogenesis of asthma, drugs targeting disease-inducing Th2 cells are promising therapeutic strategies. However, although animal models of asthma suggest that this is feasible, the translation of these types of studies for the treatment of human asthma remains poor due to the limitations of the models currently used. The myriad of new compounds that are in development directed to modulate Th2 cells recruitment and/or activation will clarify in the near future the relative importance of these cells and their mediators in the complex interactions with the other pro-inflammatory/anti-inflammatory cells and mediators responsible of the different asthmatic

  4. Th1 versus Th2 T cell polarization by whole-cell and acellular childhood pertussis vaccines persists upon re-immunization in adolescence and adulthood.

    PubMed

    Bancroft, Tara; Dillon, Myles B C; da Silva Antunes, Ricardo; Paul, Sinu; Peters, Bjoern; Crotty, Shane; Lindestam Arlehamn, Cecilia S; Sette, Alessandro

    2016-01-01

    The recent increase in cases of whooping cough among teenagers in the US suggests that the acellular Bordetella pertussis vaccine (aP) that became standard in the mid 1990s might be relatively less effective than the whole-bacteria formulation (wP) previously used since the 1950s. To understand this effect, we compared antibody and T cell responses to a booster immunization in subjects who received either the wP or aP vaccine as their initial priming dose in childhood. Antibody responses in wP- and aP-primed donors were similar. Magnitude of T cell responses was higher in aP-primed individuals. Epitope mapping revealed the T cell immunodominance patterns were similar for both vaccines. Further comparison of the ratios of IFNγ and IL-5 revealed that IFNγ strongly dominates the T cell response in wP-primed donors, while IL-5 is dominant in aP primed individuals. Surprisingly, this differential pattern is maintained after booster vaccination, at times from eighteen years to several decades after the original aP/wP priming. These findings suggest that childhood aP versus wP vaccination induces functionally different T cell responses to pertussis that become fixed and are unchanged even upon boosting. PMID:27212461

  5. p(⁷⁰S⁶K¹) in the TORC1 pathway is essential for the differentiation of Th17 Cells, but not Th1, Th2, or Treg cells in mice.

    PubMed

    Sasaki, Carl Y; Chen, Gang; Munk, Rachel; Eitan, Erez; Martindale, Jennifer; Longo, Dan L; Ghosh, Paritosh

    2016-01-01

    The TORC1 pathway is necessary for ribosomal biogenesis and initiation of protein translation. Furthermore, the differentiation of Th1 and Th17 cells requires TORC1 activity. To investigate the role of the TORC1 pathway in the differentiation of Th1 and/or Th17 cells in more detail, we compared the differentiation capacity of naïve T cells from wild type and p70(S6K1) knockout mice. Expression of many of the genes associated with Th17-cell differentiation, such as IL17a, IL17f, and IL-23R, were reduced in p70(S6K1) knockout mice. In contrast, the development of Th1, Th2, and Treg cells was unaffected in the absence of p70(S6K1) . Furthermore, expression of the major transcription factor in Th17-cell differentiation, retinoic acid receptor-related orphan receptor gamma T, remained unchanged. However, the acetylation of histone 3 at the promoters of IL17a and IL17f was reduced in the absence of p70(S6K1) . In accordance with the in vitro data, the kinetics, but not the development, of EAE was affected with the loss of p70(S6K1) expression. Collectively, our findings suggested that both in vitro and in vivo differentiation of Th17 cells were positively regulated by p70(S6K1) . PMID:26514620

  6. Differential regulation of IL-13 and IL-4 production by human CD8+ and CD4+ Th0, Th1 and Th2 T cell clones and EBV-transformed B cells.

    PubMed

    de Waal Malefyt, R; Abrams, J S; Zurawski, S M; Lecron, J C; Mohan-Peterson, S; Sanjanwala, B; Bennett, B; Silver, J; de Vries, J E; Yssel, H

    1995-09-01

    In the present study, the requirements and characteristics for the production of IL-13 by human T cells, T cell clones and B cells were determined and compared with those of IL-4. IL-13 was produced by human CD4+ and CD8+ T lymphocyte subsets isolated from peripheral blood mononuclear cells and by CD4+ and CD8+ T cell clones. CD4+ T cell clones belonging to Th0, Th1-like and Th2-like subsets produced IL-13 following antigen-specific or polyclonal activation. In addition, EBV-transformed B cell lines expressed IL-13 mRNA and produced small amounts of IL-13 protein. Expression of IL-13 mRNA and production of IL-13 protein by peripheral blood T cells and T cell clones was induced rapidly and was relatively long lasting, whereas IL-4 production by these cells was transient. In addition, IL-13 mRNA expression was induced by modes of activation that failed to induce IL-4 mRNA expression. IL-13 shares many biological activities with IL-4 which is compatible with the notion that the IL-13 and IL-4 receptors share a common component required for signal transduction. However, IL-13 lacks the T cell-activating properties of IL-4. Here we have shown that this is related to the fact that T cells fail to bind radiolabeled IL-13 and do not express the IL-13-specific receptor component. Taken together, these results indicate that the differences in expression and biological activities of IL-4 and IL-13 on T cells may have consequences for the relative roles of these cytokines in the immune response. PMID:7495748

  7. Oral immunization of interleukin-4 (IL-4) knockout mice with a recombinant Salmonella strain or cholera toxin reveals that CD4+ Th2 cells producing IL-6 and IL-10 are associated with mucosal immunoglobulin A responses.

    PubMed Central

    Okahashi, N; Yamamoto, M; Vancott, J L; Chatfield, S N; Roberts, M; Bluethmann, H; Hiroi, T; Kiyono, H; McGhee, J R

    1996-01-01

    Mucosal immunoglobulin A (IgA) responses are often associated with Th2-type cells and derived cytokines, and interleukin-4 (IL-4) knockout (IL-4-/-) mice with impaired Th2 cells respond poorly to oral antigens. However, we have noted that IL-4-/- mice have normal mucosal IgA levels, which led us to query whether different oral delivery systems could elicit mucosal immunity. Two oral regimens were used: (i) a live recombinant Salmonella strain which expresses fragment C (ToxC) of tetanus toxin, and (ii) soluble tetanus toxoid (TT) with cholera toxin (CT) as an adjuvant. Oral immunization of IL-4-/- mice with recombinant Salmonella vaccine expressing ToxC induced brisk mucosal IgA and serum IgG (mainly IgG2a) anti-TT antibody responses. TT-specific CD4+ T cells from spleen or Peyer's patches produced gamma interferon, indicative of Th1 responses; however, IL-6 and IL-10 were also seen. Oral immunization of IL-4-/- mice with TT and CT induced weak mucosal IgA to TT; however, brisk IgA anti-CT-B responses and CT-B-specific CD4+ T cells producing IL-6 and IL-10 were also noted. These results show that although IL-4-dependent antibody responses are impaired, mucosal IgA responses are induced in IL-4-/- mice. These result suggest that certain cytokines, i.e., IL-6 and IL-10 from Th2-type cells, play an important compensatory role in the induction and regulation of mucosal IgA responses. PMID:8613355

  8. CD4+CD25+Foxp3+ T regulatory cells, Th1 (CCR5, IL-2, IFN-γ) and Th2 (CCR4, IL-4, Il-13) type chemokine receptors and intracellular cytokines in children with common variable immunodeficiency.

    PubMed

    Kutukculer, Necil; Azarsiz, Elif; Aksu, Guzide; Karaca, Neslihan Edeer

    2016-06-01

    Common variable immunodeficiency (CVID) is a heterogeneous group of primary antibody deficiencies characterized by decreased serum immunoglobulin G along with a decrease in serum IgA and/or IgM, defective specific antibody production, and recurrent bacterial infections. Abnormal lymphocyte trafficking, dysregulated cellular responses to chemokines, and uncontrolled T cell polarization may be involved in the pathogenesis and may help to understand the clinical complications. We evaluated T helper cell subsets (chemokine receptors CCR4, CCR5, and CCR7), expressions on T lymphocytes, intracellular cytokines - IL-2, IL-4, IL-13, IFN- γ-on CD4(+) T cells, and expression of CD4(+)CD25(+)Foxp3(+) regulatory T cells of 20 CVID patients and 26 healthy controls. Autoimmune clinical findings and other complications were also determined. Percentages and absolute numbers of CD4(+)CD25(+) Foxp3(+) cells did not show any significant difference between CVID cases and healthy controls nor between severe and moderate disease patients. The only significant difference regarding Th1 and Th2 type intracellular cytokines was the decreased absolute numbers of CD3(+)CD4(+)IL4(+) cells in CVID cases. There were some findings about T helper cell type dominance in CVID patients such as positive correlation between hepatomegaly and high IL-2 and IFN-γ in CD3(+)CD4(+) cells and very high expression of CCR5 (Th1) on CD3(+)CD4(+) cells in patients with granuloma. Th1 (CCR5) and Th2 (CCR4) type chemokine receptors did not show any dominance in CVID cases. However, frequencies of CCR7 expressing CD3(+) T cells, CD3(+)CD4(+) T helper cells and CD3(+)CD8(+) T cytotoxic cells were significantly lower in severe CVID patients. In addition, presence of autoimmune clinical findings was negatively correlated with CCR7(+) cells. As CCR7 is a key mediator balancing immunity and tolerance in the immune system, the abnormality of this mediator may contribute to the profound immune dysregulation seen in CVID

  9. Elimination of IgE regulatory rat CD8+ T cells in vivo increases the co-ordinate expression of Th2 cytokines IL-4, IL-5 and IL-10.

    PubMed Central

    Noble, A; Staynov, D Z; Diaz-Sanchez, D; Lee, T H; Kemeny, D M

    1993-01-01

    Immunization of rats with soluble antigen (ovalbumin) and the castor bean toxin, ricin, eliminates a subpopulation of CD8+ T cells which suppress IgE responses in vivo. This treatment also reduces the ability of splenic T cells to produce interferon-gamma (IFN-gamma) and enhances their capacity to make interleukin-4 (IL-4). In this report we describe the effect of immunization with ricin and antigen on the expression of mRNA for other T-helper type 2 (Th2) cytokines--IL-5 and IL-10--and their relationship to serum IgE and IL-4 mRNA expression. Splenocytes were taken from rats at different times after immunization with antigen or ricin and antigen and activated in vitro with phorbol myristate acetate (PMA) and ionomycin for 6 hr and total RNA extracted and reverse transcribed. Cytokine gene expression was detected using a quantitative polymerase chain reaction (PCR). Expression of IL-4, IL-5, and IL-10 was increased 7-20-fold 11 days after immunization with ricin and antigen (from 0.107% to 0.769% beta-actin for IL-4, from 0.0167% to 0.381% beta-actin for IL-5, and from 0.0581% to 0.954% beta-actin for IL-10), and preceded maximum serum IgE levels by 4-5 days. There was no increase in IgE or mRNA for these cytokines in rats immunized with antigen alone. The level of IL-4, IL-5, and IL-10 expression declined rapidly after 12 days. Our results suggest that immunization with antigen and ricin preferentially induces a Th2 response, and that CD8+ T cells may play a part in down-regulating the development of Th2 T cells. PMID:8262562

  10. Mutants of Escherichia coli Heat-Labile Toxin Act as Effective Mucosal Adjuvants for Nasal Delivery of an Acellular Pertussis Vaccine: Differential Effects of the Nontoxic AB Complex and Enzyme Activity on Th1 and Th2 Cells

    PubMed Central

    Ryan, Elizabeth J.; McNeela, Edel; Murphy, Geraldine A.; Stewart, Helen; O'hagan, Derek; Pizza, Mariagrazia; Rappuoli, Rino; Mills, Kingston H. G.

    1999-01-01

    Mucosal delivery of vaccines is dependent on the identification of safe and effective adjuvants that can enhance the immunogenicity of protein antigens administered by nasal or oral routes. In this study we demonstrate that two mutants of Escherichia coli heat-labile toxin (LT), LTK63, which lacks ADP-ribosylating activity, and LTR72, which has partial enzyme activity, act as potent mucosal adjuvants for the nasal delivery of an acellular pertussis (Pa) vaccine. Both LTK63 and LTR72 enhanced antigen-specific serum immunoglobulin G (IgG), secretory IgA, and local and systemic T-cell responses. Furthermore, using the murine respiratory challenge model for infection with Bordetella pertussis, we demonstrated that a nasally delivered diphtheria, tetanus, and acellular pertussis (DTPa) combination vaccine formulated with LTK63 as an adjuvant conferred a high level of protection, equivalent to that generated with a parenterally delivered DTPa vaccine formulated with alum. This study also provides significant new information on the roles of the binding and enzyme components of LT in the modulation of Th1 and Th2 responses. LTK63, which lacks enzyme activity, promoted T-cell responses with a mixed Th1–Th2 profile, but LTR72, which retains partial enzyme activity, and the wild-type toxin, especially at low dose, induced a more polarized Th2-type response and very high IgA and IgG antibody titers. Our findings suggest that the nontoxic AB complex has broad adjuvant activity for T-cell responses and that the ADP-ribosyltransferase activity of the A subunit also appears to modulate cytokine production, but its effect on T-cell subtypes, as well as enhancing, may be selectively suppressive. PMID:10569737

  11. Mutants of Escherichia coli heat-labile toxin act as effective mucosal adjuvants for nasal delivery of an acellular pertussis vaccine: differential effects of the nontoxic AB complex and enzyme activity on Th1 and Th2 cells.

    PubMed

    Ryan, E J; McNeela, E; Murphy, G A; Stewart, H; O'hagan, D; Pizza, M; Rappuoli, R; Mills, K H

    1999-12-01

    Mucosal delivery of vaccines is dependent on the identification of safe and effective adjuvants that can enhance the immunogenicity of protein antigens administered by nasal or oral routes. In this study we demonstrate that two mutants of Escherichia coli heat-labile toxin (LT), LTK63, which lacks ADP-ribosylating activity, and LTR72, which has partial enzyme activity, act as potent mucosal adjuvants for the nasal delivery of an acellular pertussis (Pa) vaccine. Both LTK63 and LTR72 enhanced antigen-specific serum immunoglobulin G (IgG), secretory IgA, and local and systemic T-cell responses. Furthermore, using the murine respiratory challenge model for infection with Bordetella pertussis, we demonstrated that a nasally delivered diphtheria, tetanus, and acellular pertussis (DTPa) combination vaccine formulated with LTK63 as an adjuvant conferred a high level of protection, equivalent to that generated with a parenterally delivered DTPa vaccine formulated with alum. This study also provides significant new information on the roles of the binding and enzyme components of LT in the modulation of Th1 and Th2 responses. LTK63, which lacks enzyme activity, promoted T-cell responses with a mixed Th1-Th2 profile, but LTR72, which retains partial enzyme activity, and the wild-type toxin, especially at low dose, induced a more polarized Th2-type response and very high IgA and IgG antibody titers. Our findings suggest that the nontoxic AB complex has broad adjuvant activity for T-cell responses and that the ADP-ribosyltransferase activity of the A subunit also appears to modulate cytokine production, but its effect on T-cell subtypes, as well as enhancing, may be selectively suppressive. PMID:10569737

  12. As2 O3 combined with leflunomide prolongs heart xenograft survival via suppressing the response of Th1, Th2, and B cells in a rat model.

    PubMed

    Jiao, Zhi-Xing; Leng, Yun; Xia, Jun-Jie; Wu, Hai-Qiao; Jin, Ning; Fu, Jia-Zhao; Cheng, Lian-Na; Wang, Jin-Hua; Ni, Shao-Bin; Qi, Zhong-Quan

    2016-05-01

    Xenotransplantation remits the severe shortage of human organs and tissues for transplantation, which is a problem that severely limits the application of transplantation to the treatment of human disease. However, severe immune rejection significantly limits the efficacy of xenotransplantation. In this study, we systematically investigated the immunosuppressive effect and mechanism of action of As2 O3 and leflunomide using a hamster-to-rat heart xenotransplantation model. We initially examined heart xenograft survival following As2 O3 and leflunomide treatment alone or combined treatment. We found that treatment with As2 O3 combined with leflunomide can significantly prolong the survival of heart xenograft by inhibiting Th1 and Th2 differentiation and reducing the production of IgG and IgM. Interestingly, As2 O3 and leflunomide showed low toxicity to the organs of the recipient. Taken together, these observations indicate that treatment with As2 O3 combined with leflunomide may be a promising immunosuppressive schedule for xenotransplantation. PMID:27188662

  13. Clinical association of baseline levels of conjugated dienes in low-density lipoprotein and nitric oxide with aggressive B-cell non-Hodgkin lymphoma and their relationship with immunoglobulins and Th1-to-Th2 ratio

    PubMed Central

    Haddouche, Mustapha; Meziane, Warda; Hadjidj, Zeyneb; Mesli, Naima; Aribi, Mourad

    2016-01-01

    Objective The aim of this study was to highlight the clinical association of baseline levels of conjugated dienes in low-density lipoprotein (LDL-BCD) and nitric oxide (NO) with immunoglobulins (Igs) and T helper (Th)1/Th2 ratio in patients with newly diagnosed B-cell non-Hodgkin lymphoma (NHL). Patients and methods Thirty-two newly diagnosed patients with aggressive B-cell NHL and 25 age-, sex-, and body-mass-index-matched healthy controls were randomly selected for a cross-sectional case–control study conducted at the Hematology Department of Tlemcen Medical Centre University (northwest of Algeria). Results Circulating levels of LDL-BCD and NO and those of IgA and IgM were significantly higher in patients than in controls. The levels of Th1/Th2 ratio and plasma total antioxidant capacity were significantly lower in patients compared with controls, while malondialdehyde and protein carbonyl levels were significantly higher in patients. B-cell NHL was significantly associated with high levels of LDL-BCD from 25th to 75th percentile (25th percentile: relative risk [RR] =2.26, 95% confidence interval [CI] 1.42–3.59, P=0.014; 50th percentile: RR =2.84, 95% CI 1.72–4.68, P<0.001; 75th percentile: RR =5.43, 95% CI 2.58–11.42, P<0.001). Similarly, the disease was significantly associated with high levels of NO production from 25th to 75th percentile (25th percentile: RR =2.07, 95% CI 1.25–3.44, P=0.024; 50th percentile: RR =2.78, 95% CI 1.63–4.72, P<0.001; 75th percentile: RR =4.68, 95% CI 2.21–9.91, P<0.001). Moreover, LDL-BCD levels were positively and significantly correlated with interferon (IFN)-γ, whereas NO levels were inversely and significantly correlated with IFN-γ and Th1/Th2 ratio. Conclusion LDL-BCD and NO production seem to be associated with aggressive B-cell NHL and alteration of Th1/Th2 ratio. Our results have to be examined using ex vivo mechanistic studies leading to further investigations of these parameters, with an interest in the

  14. Th2 and eosinophil responses suppress inflammatory arthritis

    PubMed Central

    Chen, Zhu; Andreev, Darja; Oeser, Katharina; Krljanac, Branislav; Hueber, Axel; Kleyer, Arnd; Voehringer, David; Schett, Georg; Bozec, Aline

    2016-01-01

    Th2–eosinophil immune responses are well known for mediating host defence against helminths. Herein we describe a function of Th2–eosinophil responses in counteracting the development of arthritis. In two independent models of arthritis, Nippostrongylus brasiliensis infection leads to Th2 and eosinophil accumulation in the joints associated with robust inhibition of arthritis and protection from bone loss. Mechanistically, this protective effect is dependent on IL-4/IL-13-induced STAT6 pathway. Furthermore, we show that eosinophils play a central role in the modulation of arthritis probably through the increase of anti-inflammatory macrophages into arthritic joints. The presence of these pathways in human disease is confirmed by detection of GATA3-positive cells and eosinophils in the joints of rheumatoid arthritis patients. Taken together, these results demonstrate that eosinophils and helminth-induced activation of the Th2 pathway axis effectively mitigate the course of inflammatory arthritis. PMID:27273006

  15. Th2 and eosinophil responses suppress inflammatory arthritis.

    PubMed

    Chen, Zhu; Andreev, Darja; Oeser, Katharina; Krljanac, Branislav; Hueber, Axel; Kleyer, Arnd; Voehringer, David; Schett, Georg; Bozec, Aline

    2016-01-01

    Th2-eosinophil immune responses are well known for mediating host defence against helminths. Herein we describe a function of Th2-eosinophil responses in counteracting the development of arthritis. In two independent models of arthritis, Nippostrongylus brasiliensis infection leads to Th2 and eosinophil accumulation in the joints associated with robust inhibition of arthritis and protection from bone loss. Mechanistically, this protective effect is dependent on IL-4/IL-13-induced STAT6 pathway. Furthermore, we show that eosinophils play a central role in the modulation of arthritis probably through the increase of anti-inflammatory macrophages into arthritic joints. The presence of these pathways in human disease is confirmed by detection of GATA3-positive cells and eosinophils in the joints of rheumatoid arthritis patients. Taken together, these results demonstrate that eosinophils and helminth-induced activation of the Th2 pathway axis effectively mitigate the course of inflammatory arthritis. PMID:27273006

  16. Cellular networks controlling Th2 polarization in allergy and immunity.

    PubMed

    Kool, Mirjam; Hammad, Hamida; Lambrecht, Bart N

    2012-01-01

    In contrast to the development of Th1 (type 1 T helper cells), Th17 and Treg (regulatory T cells), little is known of the mechanisms governing Th2 development, which is important for immunity to helminths and for us to understand the pathogenesis of allergy. A picture is emerging in which mucosal epithelial cells instruct dendritic cells to promote Th2 responses in the absence of IL-12 (interleukin 12) production and provide instruction through thymic stromal lymphopoieitin (TSLP) or granulocyte-macrophage colony stimulating factor (GM-CSF). At the same time, allergens, helminths and chemical adjuvants elicit the response of innate immune cells like basophils, which provide more polarizing cytokines and IL-4 and reinforce Th2 immunity. This unique communication between cells will only be fully appreciated if we study Th2 immunity in vivo and in a tissue-specific context, and can only be fully understood if we compare several models of Th2 immune response induction. PMID:22403589

  17. Geometric friction directs cell migration.

    PubMed

    Le Berre, M; Liu, Yan-Jun; Hu, J; Maiuri, Paolo; Bénichou, O; Voituriez, R; Chen, Y; Piel, M

    2013-11-01

    In the absence of environmental cues, a migrating cell performs an isotropic random motion. Recently, the breaking of this isotropy has been observed when cells move in the presence of asymmetric adhesive patterns. However, up to now the mechanisms at work to direct cell migration in such environments remain unknown. Here, we show that a nonadhesive surface with asymmetric microgeometry consisting of dense arrays of tilted micropillars can direct cell motion. Our analysis reveals that most features of cell trajectories, including the bias, can be reproduced by a simple model of active Brownian particle in a ratchet potential, which we suggest originates from a generic elastic interaction of the cell body with the environment. The observed guiding effect, independent of adhesion, is therefore robust and could be used to direct cell migration both in vitro and in vivo. PMID:24266490

  18. A cell's sense of direction.

    PubMed

    Parent, C A; Devreotes, P N

    1999-04-30

    In eukaryotic cells directional sensing is mediated by heterotrimeric guanine nucleotide-binding protein (G protein)-linked signaling pathways. In Dictyostelium discoideum amoebae and mammalian leukocytes, the receptors and G-protein subunits are uniformly distributed around the cell perimeter. Chemoattractants induce the transient appearance of binding sites for several pleckstrin homology domain-containing proteins on the inner face of the membrane. In gradients of attractant these sites are persistently present on the side of the cell facing the higher concentration, even in the absence of a functional actin cytoskeleton or cell movement. Thus, the cell senses direction by spatially regulating the activity of the signal transduction pathway. PMID:10221901

  19. Th1/Th2 cytokine expression in diabetic retinopathy.

    PubMed

    Cao, Y L; Zhang, F Q; Hao, F Q

    2016-01-01

    Diabetic retinopathy (DR), an important complication of diabetes mellitus (DM), is not well understood. T helper cell balance (Th1/Th2) is involved in various autoimmune diseases; however, its role in DR is not understood. This study explores changes in Th1 and Th2 cytokine expression during DR. Blood samples were collected from 25 healthy volunteers (normal control group), 35 patients with type 2 DM (T2DM group) without DR, and 30 cases of T2DM patients with DR (DR group). Real-time PCR was used to measure mRNA expression of IL-2 and TNF-α, secreted from Th1 cells, and of IL-4 and IL-10, secreted from Th2 cells. We used ELISA to detect cytokine expression in serum to analyze the correlation between Th1 and Th2 cytokines. IL-2 and TNF-αmRNA and protein expression levels in the T2DM and DR groups were significantly higher than in the normal control group (P < 0.05). Compared with the T2DM group, the DR group had higher IL-2 and TNF-αlevels (P < 0.05). IL-4 and IL-10 levels were lower in the DR group compared with the normal and T2DM groups (P < 0.05), while T2DM showed no difference compared with the normal control (P > 0.05). IL-2 and TNF-αwere negatively correlated with IL-4 and IL-10 in the DR group, respectively. We found that Th1 cytokine secretion was higher and Th2 cytokines secretion was lower during DR, leading to a Th1/ Th2 imbalance, suggesting that Th1/Th2 imbalance is a side effect for DR occurrence and development. PMID:27525838

  20. Bach2-Batf interactions control Th2-type immune response by regulating the IL-4 amplification loop.

    PubMed

    Kuwahara, Makoto; Ise, Wataru; Ochi, Mizuki; Suzuki, Junpei; Kometani, Kohei; Maruyama, Saho; Izumoto, Maya; Matsumoto, Akira; Takemori, Nobuaki; Takemori, Ayako; Shinoda, Kenta; Nakayama, Toshinori; Ohara, Osamu; Yasukawa, Masaki; Sawasaki, Tatsuya; Kurosaki, Tomohiro; Yamashita, Masakatsu

    2016-01-01

    Although Bach2 has an important role in regulating the Th2-type immune response, the underlying molecular mechanisms remain unclear. We herein demonstrate that Bach2 associates with Batf and binds to the regulatory regions of the Th2 cytokine gene loci. The Bach2-Batf complex antagonizes the recruitment of the Batf-Irf4 complex to AP-1 motifs and suppresses Th2 cytokine production. Furthermore, we find that Bach2 regulates the Batf and Batf3 expressions via two distinct pathways. First, Bach2 suppresses the maintenance of the Batf and Batf3 expression through the inhibition of IL-4 production. Second, the Bach2-Batf complex directly binds to the Batf and Batf3 gene loci and reduces transcription by interfering with the Batf-Irf4 complex. These findings suggest that IL-4 and Batf form a positive feedback amplification loop to induce Th2 cell differentiation and the subsequent Th2-type immune response, and Bach2-Batf interactions are required to prevent an excessive Th2 response. PMID:27581382

  1. Chromatin-to-nucleoprotamine transition is controlled by the histone H2B variant TH2B

    PubMed Central

    Montellier, Emilie; Boussouar, Fayçal; Rousseaux, Sophie; Zhang, Kai; Buchou, Thierry; Fenaille, François; Shiota, Hitoshi; Debernardi, Alexandra; Héry, Patrick; Curtet, Sandrine; Jamshidikia, Mahya; Barral, Sophie; Holota, Hélène; Bergon, Aurélie; Lopez, Fabrice; Guardiola, Philippe; Pernet, Karin; Imbert, Jean; Petosa, Carlo; Tan, Minjia; Zhao, Yingming; Gérard, Matthieu; Khochbin, Saadi

    2013-01-01

    The conversion of male germ cell chromatin to a nucleoprotamine structure is fundamental to the life cycle, yet the underlying molecular details remain obscure. Here we show that an essential step is the genome-wide incorporation of TH2B, a histone H2B variant of hitherto unknown function. Using mouse models in which TH2B is depleted or C-terminally modified, we show that TH2B directs the final transformation of dissociating nucleosomes into protamine-packed structures. Depletion of TH2B induces compensatory mechanisms that permit histone removal by up-regulating H2B and programming nucleosome instability through targeted histone modifications, including lysine crotonylation and arginine methylation. Furthermore, after fertilization, TH2B reassembles onto the male genome during protamine-to-histone exchange. Thus, TH2B is a unique histone variant that plays a key role in the histone-to-protamine packing of the male genome and guides genome-wide chromatin transitions that both precede and follow transmission of the male genome to the egg. PMID:23884607

  2. Immune modulatory treatment of trinitrobenzene sulfonic acid colitis with calcitriol is associated with a change of a T helper (Th) 1/Th17 to a Th2 and regulatory T cell profile.

    PubMed

    Daniel, Carolin; Sartory, Nico A; Zahn, Nadine; Radeke, Heinfried H; Stein, Jürgen M

    2008-01-01

    A number of recent studies testify that calcitriol alone or in combination with corticosteroids exerts strong immune modulatory activity. As a new approach, we evaluated the protolerogenic potential of calcitriol and dexamethasone in acute T helper (Th)1-mediated colitis in mice. A rectal enema of trinitrobenzene sulfonic acid (TNBS) (100 mg/kg) was applied to BALB/c mice. Calcitriol and/or dexamethasone were administered i.p. from days 0 to 3 or 3 to 5 following the instillation of the haptenating agent. Assessment of colitis severity was performed daily. Colon tissue was analyzed macroscopically and microscopically, and myeloperoxidase activity, as well as cytokine levels [tumor necrosis factor-alpha, interferon-gamma, interleukin (IL)-12p70, IL-1beta, IL-10, IL-4] were determined by enzyme-linked immunosorbent assay, T-bet, GATA family of transcription factors 3, a Th2 master regulator (GATA3), Foxp3, cytotoxic T-lymphocyte-associated antigen 4 (CTLA4), IL-23p19 and IL-17 expression by immunoblot analysis. The combination of the steroids most effectively reduced the clinical and histopathologic severity of TNBS colitis. Th1-related parameters were down-regulated, whereas Th2 markers like IL-4 and GATA3 were up-regulated. Apart from known steroid effects, calcitriol in particular promoted regulatory T cell profiles as indicated by a marked increase of IL-10, TGFbeta, FoxP3, and CTLA4. Furthermore, analysis of dendritic cell mediators responsible for a proinflammatory differentiation of T cells revealed a significant reduction of IL-12p70 and IL23p19 as well as IL-6 and IL-17. Thus, our data support a rationale for a steroid-sparing, clinical application of calcitriol derivatives in inflammatory bowel disease. Furthermore they suggest that early markers of inflammatory dendritic cell and Th17 differentiation qualify as new target molecules for both calcitriol and highly selective immune-modulating vitamin D analogs. PMID:17911375

  3. The histamine H4 receptor mediates inflammation and pruritus in Th2-dependent dermal inflammation.

    PubMed

    Cowden, Jeffery M; Zhang, Mai; Dunford, Paul J; Thurmond, Robin L

    2010-04-01

    The role of histamine H(4) receptor (H(4)R) was investigated in a T-helper type 2 (Th2)-cell-mediated mouse skin inflammation model that mimics several of the features of atopic dermatitis. Treatment with two specific H(4)R antagonists before challenge with FITC led to a significant reduction in ear edema, inflammation, mast cell, and eosinophil infiltration. This was accompanied by a reduction in the levels of several cytokines and chemokines in the ear tissue. Upon ex vivo antigen stimulation of lymph nodes, H(4)R antagonism reduced lymphocyte proliferation and IL-4, IL-5, and IL-17 levels. One explanation for this finding is that lymph nodes from animals dosed with the H(4)R antagonist, JNJ 7777120, contained a lower number of FITC-positive dendritic cells. The effect of H(4)R antagonism on dendritic cell migration in vivo may be an indirect result of the reduction in tissue cytokines and chemokines or a direct effect on chemotaxis. In addition to anti-inflammatory effects, JNJ 7777120 also significantly inhibited the pruritus shown in the model. Therefore, the dual effects of H(4)R antagonists on pruritus and Th2-cell-mediated inflammation point to their therapeutic potential for the treatment of Th2-mediated skin disorders, including atopic dermatitis. PMID:19907432

  4. Immunotherapeutic vitamin E nanoemulsion synergies the antiproliferative activity of paclitaxel in breast cancer cells via modulating Th1 and Th2 immune response.

    PubMed

    Pawar, Vivek K; Panchal, Samir B; Singh, Yuvraj; Meher, Jaya Gopal; Sharma, Komal; Singh, Pankaj; Bora, Himangshu K; Singh, Akhilesh; Datta, Dipak; Chourasia, Manish K

    2014-12-28

    Paclitaxel (PTX) is used as first line treatment for metastatic breast cancer but the relief comes at a heavy cost in terms of accompanying adverse effects. The pharmaceutical credentials of PTX are further dampened by the intrinsically low aqueous solubility. In order to sideline such insidious tendencies, PTX was incorporated in a vitamin E nanoemulsion using high pressure homogenization. The encapsulation efficiency of PTX in nanoemulsion was 97.81±2.7% and a sustained drug release profile was obtained. PTX loaded nanoemulsion exhibited higher cytotoxicity in breast cancer cell line (MCF-7) when compared to free PTX and marketed formulation (Taxol). Cell cycle arrest study depicted that MCF-7 cells treated with PTX loaded nanoemulsion showed high arrest in G2-M phase. Moreover blank nanoemulsion induced additional apoptosis in breast cancer cells through G1-S arrest by disrupting mitochondrial membrane potential. Cytokine estimation study in macrophages showed that both PTX loaded nanoemulsion and blank nanoemulsion enhanced secretion of IL-12 and downregulated secretion of IL-4 and IL-10. Results suggest that inclusion of vitamin E in nanoemulsion opened multiple complementary molecular effects which not only magnified the principle antiproliferative activity of PTX but also independently showcased potential in restoring the proactive nature of the breast cancer slackened chronic immune response. In-vivo anticancer activity showed significantly improved efficacy of PTX loaded nanoemlsion compare to Taxol and free PTX. The list of plausible advantages of PTX nanoemulsification was further substantiated by acceptable haemolytic potential, reduced in-vivo toxicity and conveniently modified pharmacokinetic profile in which the AUC and MRT were extended considerably. Overall, there were strong evidences that developed formulation can serve as a viable alternative to currently available PTX options. PMID:25459427

  5. Localized Th1-, Th2-, T Regulatory Cell-, and Inflammation-Associated Hepatic and Pulmonary Immune Responses in Ascaris suum-Infected Swine Are Increased by Retinoic Acid▿ †

    PubMed Central

    Dawson, Harry; Solano-Aguilar, Gloria; Beal, Madeline; Beshah, Ethiopia; Vangimalla, Vandana; Jones, Eudora; Botero, Sebastian; Urban, Joseph F.

    2009-01-01

    Pigs infected with Ascaris suum or controls were given 100 μg (low-dose) or 1,000 μg (high-dose) all-trans retinoic acid (ATRA)/kg body weight in corn oil or corn oil alone per os on days after inoculation (DAI) −1, +1, and +3 with infective eggs. Treatment with ATRA increased interleukin 4 (IL4) and IL12p70 in plasma of infected pigs at 7 DAI and augmented bronchoalveolar lavage (BAL) eosinophilia observed at 7 and 14 DAI. To explore potential molecular mechanisms underlying these observations, a quantitative real-time reverse transcription (RT)-PCR array was used to examine mRNA expression in tissue. Ascaris-infected pigs had increased levels of liver mRNA for T-helper-2 (Th2)-associated cytokines, mast cell markers, and T regulatory (Treg) cells, while infected pigs given ATRA had higher IL4, IL13, CCL11, CCL26, CCL17, CCL22, and TPSB1 expression. Gene expression for Th1-associated markers (IFNG, IL12B, and TBX21), the CXCR3 ligand (CXCL9), IL1B, and the putative Treg marker TNFRSF18 was also increased. Expression of IL4, IL13, IL1B, IL6, CCL11, and CCL26 was increased in the lungs of infected pigs treated with ATRA. To determine a putative cellular source of eosinophil chemoattractants, alveolar macrophages were treated with IL4 and/or ATRA in vitro. IL4 induced CCL11, CCL17, CCL22, and CCL26 mRNA, and ATRA increased the basal and IL4-stimulated expression of CCL17 and CCL22. Thus, ATRA augments a diverse Th1-, Th2-, Treg-, and inflammation-associated response in swine infected with A. suum, and the increased BAL eosinophilia may be related to enhanced induction of eosinophil chemokine activity by alveolar macrophages. PMID:19332534

  6. PLD1 activation mediates Amb a 1-induced Th2-associated cytokine expression via the JNK/ATF-2 pathway in BEAS-2B cells.

    PubMed

    Kim, Joo-Hwa; Choi, Hye-Jin; Oh, Cheong-Hae; Oh, Jae-Won; Han, Joong-Soo

    2015-01-01

    The purpose of this study was to identify the role of phospholipase D1 (PLD1) in Amb a 1-induced IL-5 and IL-13 expression. When BEAS-2B cells were stimulated with Amb a 1, PLD activity increased, and knockdown of PLD1 decreased Amb a 1-induced IL-5 and IL-13 expression. Amb a 1 also activated the PLCγ/p70S6K/JNK pathway. Furthermore, Amb a 1-induced PLD activation was also attenuated by PLCγ inhibition, and knockdown of PLD1 decreased Amb a 1-induced activation of P70S6K and JNK. When ATF-2 activity was blocked with ATF-2 siRNA, Amb a 1-induced IL-5 and IL-13 expression was completely abolished, indicating that ATF-2 is a transcriptional factor required for the expression of IL-5 and IL-13 in response to Amb a 1. Taken together, we suggest that PLD1 acts as an important regulator in Amb a 1-induced expression of IL-5 and IL-13 via a PLCγ/p70S6K/JNK/ATF-2 pathway in BEAS-2B cells. PMID:26302934

  7. Role of HLA-G in tumor escape through expansion of myeloid-derived suppressor cells and cytokinic balance in favor of Th2 versus Th1/Th17.

    PubMed

    Agaugué, Sophie; Carosella, Edgardo D; Rouas-Freiss, Nathalie

    2011-06-30

    The expression of HLA-G by malignant cells has been proposed as a tumor escape mechanism from immunosurveillance. However, although the inhibitory effect of HLA-G on antitumoral immune effectors has been documented in vitro, it remains to be resolved in vivo. In this context, the development of an animal model is now a priority to establish the proof of concept that an HLA-G(+) tumor cell develops and tolerizes the host antitumor immune response in vivo. In the present study, we provide the first in vivo evidence of such a role by a xenotumor model in mice based on the interactions between human HLA-G and the murine paired immunoglobulin-like receptor-B (PIR-B). We demonstrate that human tumor cells expressing HLA-G grow in an immunocompetent host by affecting both innate and adaptive immunity. Expansion of blood myeloid-derived CD11b(+)Gr1(+)PIR-B(+) suppressor cells, loss of peripheral T cells, and cytokinic balance in favor of Th2 versus Th1/Th17 constitute the main mechanisms by which HLA-G promotes tumor expansion. These data demonstrate for the first time that HLA-G plays a crucial role in in vivo tumor evasion. Finally, blocking HLA-G function by a specific Ab inhibits the in vivo development of the tumor, offering a new innovative therapeutic strategy in cancer. PMID:21482709

  8. Amphiregulin-a Th2 cytokine enhancing resistance to nematodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intestinal nematode infections remain a major health threat to humans despite improved sanitation. Protection is mainly mediated by Type 2-biased immune responses, characterized by Th2 lymphocytes and other cells secreting a set of cytokines including Interleukin 4 (IL-4), IL-5, IL-10, and IL-13. I...

  9. Short communication: Urea induces T helper 2 (Th2) type environment at transcriptional level and prostaglandin E2 secretion in bovine oviduct epithelial cells in culture.

    PubMed

    Kowsar, R; Marey, M A; Shimizu, T; Miyamoto, A

    2016-07-01

    Excess dietary protein intake in early lactation dairy cows resulting in blood urea nitrogen of greater than 19 to 20mg/dL is associated with decreased fertility. Little is known about the local interference of urea in the normal immunological environment of the oviduct that provides optimal conditions for early reproductive events. A bovine oviduct epithelial cell (BOEC) culture was used to determine how urea influences immune environment. The BOEC monolayer was supplemented with low (20mg/dL) and high (40mg/dL) concentrations of urea together with ovarian steroids, estradiol (1ng/mL) and progesterone (1ng/mL), and LH (10ng/mL) at concentrations observed during the preovulatory period. The urea values used in this study were equivalent to 9.3 and 18.7mg/dL of blood urea nitrogen, which are typically common in lactating dairy cows with low or high protein intake, respectively. Stimulation of BOEC with 40mg/dL of urea induced gene expression of IL10 and IL4, epithelial-derived T helper type 2-driving (anti-inflammatory) cytokines as well as mPGES-1 expression and prostaglandin E2 (PGE2) secretion. However, urea concentrations of both 20 and 40mg/dL failed to alter the expression of IL1B and TNFA, Th1-driving cytokines, and the gene expression of TLR4. However, a concentration of 40mg/dL of urea stimulated α 1-acid glycoprotein expression, an acute phase protein. Data from this in vitro study suggest that urea, at least in part, contributes to influence the expression of some immune-related genes toward T helper type 2 type and prostaglandin E2 secretion, leading to disruption in local environment for fertilization and early embryonic development. PMID:27132094

  10. Glucocorticoids Induce a TH2 Response In Vitro

    PubMed Central

    Ramírez, Francisco

    1998-01-01

    Purified rat CD4+ T cells were activated in vitro, by the polyclonal mitogen Concanavalin A (Con A) or by mixed lymphocyte reaction (MLR), in the presence or absence of the glucocorticoid dexamethasone (DEX). They were then expanded in IL-2 and subsequently restimulated, this time in the absence of the hormone. The results indicate that the exposure of the cells to DEX in the primary stimulation changed the cytokine synthesis induced by the secondary stimulation. IL-4 production was increased by the pretreatment whereas synthesis of IFN-γ was diminished. Addition of DEX in the second activation suppressed all cytokine production. In brief, the transient presence of glucocorticoids in the culture induces a change in the pattern of cytokine production but the continuous presence causes inhibition of cytokine synthesis. Further studies in which IL-4 was used together with DEX showed that the cytokine potentiated the effect of the hormone. The data here presented suggest that glucocorticoids and the neuroendocrine system may be expected to have long-term immunological effects as well as short-lived immunosuppressive ones. High concentration of glucocorticoids suppress cytokine production but when steroids return to basal levels the immune response is directed in a way that favors Th2-type reactions. Possible implications regarding the immune response to pathogens and autoantigens are discussed. PMID:9814597

  11. Reduction of IL-17A might suppress the Th1 response and promote the Th2 response by boosting the function of Treg cells during silica-induced inflammatory response in vitro.

    PubMed

    Tang, Wen; Liu, Fangwei; Chen, Ying; Song, Laiyu; Dai, Wujing; Li, Chao; Weng, Dong; Chen, Jie

    2014-01-01

    Silica inhalation can induce chronic lung inflammation and fibrosis. Upon silica stimulation, activated macrophages trigger the T-lymphocyte which can differentiate into many different types of Th cells, including the recently discovered Th17 cells. IL-17A, the typical Th17 cytokine, is reported in some inflammatory diseases. However, the role of IL-17A in silica-induced inflammatory response is still not clear. The regulatory mechanism of silica-induced Th17 response also needs to be investigated. So we established a mice primary cell coculture system (macrophage and lymphocyte) to investigate the role of IL-17A in silica-induced inflammatory response in vitro, by using anti-IL-17A mAb and IL-1Ra. Both anti-IL-17A mAb and IL-1Ra decreased the level of IL-17A and increased the function of Treg cells. The Th1 response was suppressed and the Th2 response was promoted by the addition of anti-IL-17A mAb or IL-1Ra. IL-1Ra treatment decreased the level of IL-6, whereas the levels of IL-23 and ROR- γ t were increased. Our study demonstrated that IL-17A reduction altered the pattern of silica-induced Th responses by boosting the function of Treg cells in vitro. Blocking the function of IL-1 signal pathway could suppress the level of IL-17A, which played the major role in modulating silica-induced Th responses in vitro. PMID:24692850

  12. Th1, Th2 and Treg/T17 cytokines in two types of proliferative glomerulonephritis.

    PubMed

    Stangou, M; Bantis, C; Skoularopoulou, M; Korelidou, L; Kouloukouriotou, D; Scina, M; Labropoulou, I T; Kouri, N M; Papagianni, A; Efstratiadis, G

    2016-01-01

    IgA nephropathy (IgAN) and focal segmental necrotizing glomerulonephritis (FSNGN) are characterized by proliferation of native glomerular cells and infiltration by inflammatory cells. Several cytokines act as mediators of kidney damage in both diseases. The aim of the present study was to investigate the role of Th1, Th2 and Treg/T17 cytokines in these types of proliferative glomerulonephritis. Simultaneous measurement of Th1 interleukin (IL-2, IL-12, tumor necrosis factor-alpha [TNF-α], interferon-gamma [INF-γ]), Th2 (IL-4, IL-5, IL-6, IL-10, IL-13), Treg/T17 transforming growth factor-beta 1 (TGF-β1, granulocyte-macrophage colony-stimulating factor [GM-CSF], IL-17) cytokines and C-C chemokines Monocyte chemoattractant protein-1 (MCP-1, macrophage inflammatory protein-1 [MIP-1] β) was performed in first-morning urine samples, at the day of renal biopsy, using a multiplex cytokine assay. Cytokine concentrations were correlated with histological findings and renal function outcome. Urinary excretion of Th1, Th2 and Treg/Th17 cytokines were significantly higher in FSNGN compared to IgAN patients. In IgAN patients (n = 50, M/F: 36/14, M age: 40.7 [17-67] years), Th1, Th2 and T17 cytokines correlated significantly with the presence of endocapillary proliferation, while in FSNGN patients (n = 40, M/F: 24/16, M age: 56.5 [25-80] years), MCP-1 and TGF-β1 had a positive correlation with severe extracapillary proliferation (P = 0.001 and P = 0.002, respectively). Urinary IL-17 was the only independent parameter associated with endocapillary proliferation in IgAN and with MCP-1 urinary excretion in FSNGN. Response to treatment was mainly predicted by IL-6 in IgAN, and by Th2 (IL-4, IL-6), Treg (GM-CSF) cytokines and MIP-1 β in FSNGN. Th1, Th2 and T17 cytokines were directly implicated in renal pathology in IgAN and possibly through MCP-1 production in FSNGN. IL-17 and IL-6 seem to have a central role in inflammation and progression of kidney injury. PMID:27194829

  13. Th1, Th2 and Treg/T17 cytokines in two types of proliferative glomerulonephritis

    PubMed Central

    Stangou, M.; Bantis, C.; Skoularopoulou, M.; Korelidou, L.; Kouloukouriotou, D.; Scina, M.; Labropoulou, I. T.; Kouri, N. M.; Papagianni, A.; Efstratiadis, G.

    2016-01-01

    IgA nephropathy (IgAN) and focal segmental necrotizing glomerulonephritis (FSNGN) are characterized by proliferation of native glomerular cells and infiltration by inflammatory cells. Several cytokines act as mediators of kidney damage in both diseases. The aim of the present study was to investigate the role of Th1, Th2 and Treg/T17 cytokines in these types of proliferative glomerulonephritis. Simultaneous measurement of Th1 interleukin (IL-2, IL-12, tumor necrosis factor-alpha [TNF-α], interferon-gamma [INF-γ]), Th2 (IL-4, IL-5, IL-6, IL-10, IL-13), Treg/T17 transforming growth factor-beta 1 (TGF-β1, granulocyte-macrophage colony-stimulating factor [GM-CSF], IL-17) cytokines and C-C chemokines Monocyte chemoattractant protein-1 (MCP-1, macrophage inflammatory protein-1 [MIP-1] β) was performed in first-morning urine samples, at the day of renal biopsy, using a multiplex cytokine assay. Cytokine concentrations were correlated with histological findings and renal function outcome. Urinary excretion of Th1, Th2 and Treg/Th17 cytokines were significantly higher in FSNGN compared to IgAN patients. In IgAN patients (n = 50, M/F: 36/14, M age: 40.7 [17–67] years), Th1, Th2 and T17 cytokines correlated significantly with the presence of endocapillary proliferation, while in FSNGN patients (n = 40, M/F: 24/16, M age: 56.5 [25–80] years), MCP-1 and TGF-β1 had a positive correlation with severe extracapillary proliferation (P = 0.001 and P = 0.002, respectively). Urinary IL-17 was the only independent parameter associated with endocapillary proliferation in IgAN and with MCP-1 urinary excretion in FSNGN. Response to treatment was mainly predicted by IL-6 in IgAN, and by Th2 (IL-4, IL-6), Treg (GM-CSF) cytokines and MIP-1 β in FSNGN. Th1, Th2 and T17 cytokines were directly implicated in renal pathology in IgAN and possibly through MCP-1 production in FSNGN. IL-17 and IL-6 seem to have a central role in inflammation and progression of kidney injury. PMID:27194829

  14. Prophylactic effects of the histamine H1 receptor antagonist epinastine and the dual thromboxane A2 receptor and chemoattractant receptor-homologous molecule expressed on Th2 cells antagonist ramatroban on allergic rhinitis model in mice.

    PubMed

    Suzuki, Yuh; Inoue, Toshio; Yamamoto, Atsuki; Sugimoto, Yukio

    2011-01-01

    The prophylactic use of anti-allergic drugs has been proposed to be effective in the treatment of seasonal allergic rhinitis in humans. However, there is little information regarding the prophylactic effect of thromboxane A(2) (TXA(2)) receptor antagonist on allergic rhinitis. Recent studies revealed that a TXA(2) receptor antagonist ramatroban could block the prostaglandin D(2) (PGD(2)) receptor and chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2). In the present study, we investigated the prophylactic effects of the histamine H(1) receptor antagonist epinastine and the TXA(2) receptor antagonist ramatroban and seratrodast on mouse models of allergic rhinitis. Female BALB/c mice were sensitized by an intraperitoneal injection of ovalbumin and alum on days 0, 5, 14 and 21. Seven days later, mice were sensitized by intranasal application of ovalbumin thrice a week. Drugs were administered once a day from day 22. The severity of allergic rhinitis was assessed by determining the extent of 2 nasal allergic symptoms (sneezing and nasal rubbing). Histamine sensitivity and eosinophil infiltration into the nasal mucosa were also determined. Epinastine and ramatroban significantly reduced nasal symptoms and the number of eosinophils in the nasal mucosa. Seratrodast showed no effect on nasal symptoms and eosinophil infiltration into the nasal mucosa. In addition, histamine sensitivity was reduced by epinastine and ramatroban. These results indicate that epinastine and ramatroban induce the prophylactic effect on allergic rhinitis. PMID:21467637

  15. The direct methanol fuel cell

    SciTech Connect

    Halpert, G.; Narayanan, S.R.; Frank, H.

    1995-08-01

    This presentation describes the approach and progress in the ARPA-sponsored effort to develop a Direct Methanol, Liquid-Feed Fuel Cell (DMLFFC) with a solid Polymer Electrolyte Membrane (PEM) for battery replacement in small portable applications. Using Membrane Electrode Assemblies (MEAs) developed by JPL and Giner, significant voltage was demonstrated at relatively high current densities. The DMLFFC utilizes a 3 percent aqueous solution of methanol that is oxidized directly in the anode (fuel) chamber and oxygen (air) in the cathode chamber to produce water and significant power. The only products are water and CO{sub 2}. The ARPA effort is aimed at replacing the battery in the BA 5590 military radio.

  16. The essential role of SIGIRR/TIR8 in regulation of Th2 immune response1

    PubMed Central

    Bulek, Katarzyna; Swaidani, Shadi; Qin, Jinzhong; Lu, Yi; Gulen, Muhammet F.; Herjan, Tomasz; Min, Booki; Kastelein, Robert A.; Aronica, Mark; Kosz-Vnenchak, Magdalena; Li, Xiaoxia

    2010-01-01

    A novel cytokine IL-33, an IL-1 family member, signals via ST2 receptor and promotes T helper type 2 (Th2) responses, through the activation of NFκB and MAP kinases. Previous studies reported that SIGIRR (single immunoglobulin IL-1R-related molecule)/TIR8 (Toll IL-1R8) acts as negative regulator for TLR-IL-1R-mediated signaling. We now found that SIGIRR formed a complex with ST2 upon IL-33 stimulation and specifically inhibited IL-33/ST2-mediated signaling in cell culture model. Furthermore, IL-33-induced Th2 response was enhanced in SIGIRR-deficient mice compared to that in wild-type control mice, suggesting a negative regulatory role of SIGIRR in IL-33/ST2 signaling in vivo. Similar to ST2, SIGIRR was highly expressed in in vitro polarized Th2 cells, but not Th1 cells. SIGIRR-deficient Th2 cells produce higher levels of “Th2 cytokines”, including IL-5, IL-4 and IL-13 than that in wild-type cells. Moreover, SIGIRR-deficient mice developed stronger Th2 immune response in OVA-challenged asthma model. Taken together, our results suggest that SIGIRR plays an important role in the regulation of Th2 response in vivo, possibly through its impact on IL-33-ST2-mediated signaling. PMID:19234154

  17. TPL-2 Regulates Macrophage Lipid Metabolism and M2 Differentiation to Control TH2-Mediated Immunopathology

    PubMed Central

    Entwistle, Lewis J.; Khoury, Hania; Papoutsopoulou, Stamatia; Mahmood, Radma; Mansour, Nuha R.; Ching-Cheng Huang, Stanley; Pearce, Edward J.; Pedro S. de Carvalho, Luiz; Ley, Steven C.

    2016-01-01

    Persistent TH2 cytokine responses following chronic helminth infections can often lead to the development of tissue pathology and fibrotic scarring. Despite a good understanding of the cellular mechanisms involved in fibrogenesis, there are very few therapeutic options available, highlighting a significant medical need and gap in our understanding of the molecular mechanisms of TH2-mediated immunopathology. In this study, we found that the Map3 kinase, TPL-2 (Map3k8; Cot) regulated TH2-mediated intestinal, hepatic and pulmonary immunopathology following Schistosoma mansoni infection or S. mansoni egg injection. Elevated inflammation, TH2 cell responses and exacerbated fibrosis in Map3k8–/–mice was observed in mice with myeloid cell-specific (LysM) deletion of Map3k8, but not CD4 cell-specific deletion of Map3k8, indicating that TPL-2 regulated myeloid cell function to limit TH2-mediated immunopathology. Transcriptional and metabolic assays of Map3k8–/–M2 macrophages identified that TPL-2 was required for lipolysis, M2 macrophage activation and the expression of a variety of genes involved in immuno-regulatory and pro-fibrotic pathways. Taken together this study identified that TPL-2 regulated TH2-mediated inflammation by supporting lipolysis and M2 macrophage activation, preventing TH2 cell expansion and downstream immunopathology and fibrosis. PMID:27487182

  18. TPL-2 Regulates Macrophage Lipid Metabolism and M2 Differentiation to Control TH2-Mediated Immunopathology.

    PubMed

    Kannan, Yashaswini; Perez-Lloret, Jimena; Li, Yanda; Entwistle, Lewis J; Khoury, Hania; Papoutsopoulou, Stamatia; Mahmood, Radma; Mansour, Nuha R; Ching-Cheng Huang, Stanley; Pearce, Edward J; Pedro S de Carvalho, Luiz; Ley, Steven C; Wilson, Mark S

    2016-08-01

    Persistent TH2 cytokine responses following chronic helminth infections can often lead to the development of tissue pathology and fibrotic scarring. Despite a good understanding of the cellular mechanisms involved in fibrogenesis, there are very few therapeutic options available, highlighting a significant medical need and gap in our understanding of the molecular mechanisms of TH2-mediated immunopathology. In this study, we found that the Map3 kinase, TPL-2 (Map3k8; Cot) regulated TH2-mediated intestinal, hepatic and pulmonary immunopathology following Schistosoma mansoni infection or S. mansoni egg injection. Elevated inflammation, TH2 cell responses and exacerbated fibrosis in Map3k8-/-mice was observed in mice with myeloid cell-specific (LysM) deletion of Map3k8, but not CD4 cell-specific deletion of Map3k8, indicating that TPL-2 regulated myeloid cell function to limit TH2-mediated immunopathology. Transcriptional and metabolic assays of Map3k8-/-M2 macrophages identified that TPL-2 was required for lipolysis, M2 macrophage activation and the expression of a variety of genes involved in immuno-regulatory and pro-fibrotic pathways. Taken together this study identified that TPL-2 regulated TH2-mediated inflammation by supporting lipolysis and M2 macrophage activation, preventing TH2 cell expansion and downstream immunopathology and fibrosis. PMID:27487182

  19. Air Breathing Direct Methanol Fuel Cell

    DOEpatents

    Ren; Xiaoming

    2003-07-22

    A method for activating a membrane electrode assembly for a direct methanol fuel cell is disclosed. The method comprises operating the fuel cell with humidified hydrogen as the fuel followed by running the fuel cell with methanol as the fuel.

  20. Directional summation in non-direction selective retinal ganglion cells.

    PubMed

    Abbas, Syed Y; Hamade, Khaldoun C; Yang, Ellen J; Nawy, Scott; Smith, Robert G; Pettit, Diana L

    2013-01-01

    Retinal ganglion cells receive inputs from multiple bipolar cells which must be integrated before a decision to fire is made. Theoretical studies have provided clues about how this integration is accomplished but have not directly determined the rules regulating summation of closely timed inputs along single or multiple dendrites. Here we have examined dendritic summation of multiple inputs along On ganglion cell dendrites in whole mount rat retina. We activated inputs at targeted locations by uncaging glutamate sequentially to generate apparent motion along On ganglion cell dendrites in whole mount retina. Summation was directional and dependent13 on input sequence. Input moving away from the soma (centrifugal) resulted in supralinear summation, while activation sequences moving toward the soma (centripetal) were linear. Enhanced summation for centrifugal activation was robust as it was also observed in cultured retinal ganglion cells. This directional summation was dependent on hyperpolarization activated cyclic nucleotide-gated (HCN) channels as blockade with ZD7288 eliminated directionality. A computational model confirms that activation of HCN channels can override a preference for centripetal summation expected from cell anatomy. This type of direction selectivity could play a role in coding movement similar to the axial selectivity seen in locust ganglion cells which detect looming stimuli. More generally, these results suggest that non-directional retinal ganglion cells can discriminate between input sequences independent of the retina network. PMID:23516351

  1. Directional Summation in Non-direction Selective Retinal Ganglion Cells

    PubMed Central

    Abbas, Syed Y.; Hamade, Khaldoun C.; Yang, Ellen J.; Nawy, Scott; Smith, Robert G.; Pettit, Diana L.

    2013-01-01

    Retinal ganglion cells receive inputs from multiple bipolar cells which must be integrated before a decision to fire is made. Theoretical studies have provided clues about how this integration is accomplished but have not directly determined the rules regulating summation of closely timed inputs along single or multiple dendrites. Here we have examined dendritic summation of multiple inputs along On ganglion cell dendrites in whole mount rat retina. We activated inputs at targeted locations by uncaging glutamate sequentially to generate apparent motion along On ganglion cell dendrites in whole mount retina. Summation was directional and dependent13 on input sequence. Input moving away from the soma (centrifugal) resulted in supralinear summation, while activation sequences moving toward the soma (centripetal) were linear. Enhanced summation for centrifugal activation was robust as it was also observed in cultured retinal ganglion cells. This directional summation was dependent on hyperpolarization activated cyclic nucleotide-gated (HCN) channels as blockade with ZD7288 eliminated directionality. A computational model confirms that activation of HCN channels can override a preference for centripetal summation expected from cell anatomy. This type of direction selectivity could play a role in coding movement similar to the axial selectivity seen in locust ganglion cells which detect looming stimuli. More generally, these results suggest that non-directional retinal ganglion cells can discriminate between input sequences independent of the retina network. PMID:23516351

  2. Immunomodulation of TH2 biased immunity with mucosal administration of nanoemulsion adjuvant.

    PubMed

    Bielinska, Anna U; O'Konek, Jessica J; Janczak, Katarzyna W; Baker, James R

    2016-07-25

    TH2-biased immune responses are associated with inadequate protection against some pathogens and with cancer, colitis, asthma and allergy. Since most currently used vaccine adjuvants induce a TH2-biased response, this has led to interest in developing adjuvants capable of activating TH1 immunity and modulating existing TH2 responses. Immunotherapies to shift immune responses from TH2 to TH1 have generally required prolonged immunization protocols and have not induced effective TH1 responses. We have demonstrated that nanoscale emulsions (NE), a novel mucosal adjuvant, induce robust IgA and IgG antibody responses and TH1/TH17 cellular immunity resulting in protection against a variety of respiratory and mucosal infections. Because intranasal (i.n.) delivery of NE adjuvant consistently induces TH1/TH17 biased responses, we hypothesized that NE could be used as a therapeutic vaccine to redirect existing TH2 polarized immunity towards a more balanced TH1/TH2 profile. To test this, a TH2 immune response was established by intramuscular immunization of mice with alum-adjuvanted hepatitis B surface antigen (HBs), followed by a single subsequent i.n. immunization with NE-HBs. These animals exhibited increased TH1 associated immune responses and IL-17, and decreased TH2 cytokines (IL-4 and IL-5) and IgG1. NE immunization induced regulatory T cells and IL-10, and IL-10 was required for the suppression of TH2 immunity. These data demonstrate that NE-based vaccines can modulate existing TH2 immune responses to promote TH1/TH17 immunity and suggest the potential therapeutic use of NE vaccines for diseases associated with TH2 immunity. PMID:27317451

  3. Describing Directional Cell Migration with a Characteristic Directionality Time

    PubMed Central

    Loosley, Alex J.; O’Brien, Xian M.; Reichner, Jonathan S.; Tang, Jay X.

    2015-01-01

    Many cell types can bias their direction of locomotion by coupling to external cues. Characteristics such as how fast a cell migrates and the directedness of its migration path can be quantified to provide metrics that determine which biochemical and biomechanical factors affect directional cell migration, and by how much. To be useful, these metrics must be reproducible from one experimental setting to another. However, most are not reproducible because their numerical values depend on technical parameters like sampling interval and measurement error. To address the need for a reproducible metric, we analytically derive a metric called directionality time, the minimum observation time required to identify motion as directionally biased. We show that the corresponding fit function is applicable to a variety of ergodic, directionally biased motions. A motion is ergodic when the underlying dynamical properties such as speed or directional bias do not change over time. Measuring the directionality of nonergodic motion is less straightforward but we also show how this class of motion can be analyzed. Simulations are used to show the robustness of directionality time measurements and its decoupling from measurement errors. As a practical example, we demonstrate the measurement of directionality time, step-by-step, on noisy, nonergodic trajectories of chemotactic neutrophils. Because of its inherent generality, directionality time ought to be useful for characterizing a broad range of motions including intracellular transport, cell motility, and animal migration. PMID:25992908

  4. Citrus Tachibana Leaf Extract Mitigates Symptoms of Food Allergy by Inhibiting Th2-Associated Responses.

    PubMed

    Chung, Min-Yu; Shin, Hee Soon; Choi, Dae Woon; Shon, Dong-Hwa

    2016-06-01

    Although the incidence of food allergy continues to rise, there have been no effective therapeutic strategies. Citrus fruits contain a number of bioactive flavonoids with immune-regulatory functions. The objective of this study was to determine whether Citrus tachibana (fruit body with peel, leaves, and branch) can protect against the development of food allergy and the mechanism behind it, and to identify the active compound(s) responsible. We found that C. tachibana leaf extract (CLE) mitigated ovalbumin (OVA)-induced food allergy symptoms including increased rectal temperature, diarrhea, and anaphylaxis. This mitigation was likely due to CLE-mediated decreases in cytokine release from T-helper 2 cells (Th2 cells) in mesenteric lymph nodes. Moreover, higher levels of CLE attenuated systemic Th2 cell-mediated responses in mouse splenocytes sensitized with OVA+Alum. This was evidenced by CLE-mediated reductions in Th2 cytokine release, including interleukin (IL)-4, IL-5, and IL-13, but not the Th1 cytokines IL-12 and interferon (IFN)-γ, which was attributable to decreased gene expression levels. We also identified kaempferol as the most potent compound for reducing Th2-associated responses in splenocytes. The findings of this study suggest that CLE suppresses Th2-cell-mediated immune responses, contributing to alleviation of food allergy symptoms, and that kaempferol is a flavonoid with potential antiallergenic activity that targets Th2 cell-induced responses. PMID:27121925

  5. IL-23 signaling enhances Th2 polarization and regulates allergic airway inflammation

    PubMed Central

    Peng, Juan; Yang, Xuexian O.; Chang, Seon Hee; Yang, Jiong; Dong, Chen

    2009-01-01

    IL-23/IL-17 axis is an important regulator in various inflammatory diseases. However, the role of IL-23 in allergic airway inflammation is not well understood. In this study, we show that in an allergen-induced asthma model, mice with transgenic overexpression of IL-23R exhibited increased airway infiltration of eosinophils and Th2 cytokine production, whereas those deficient in IL-23 displayed reduced airway inflammation. In vitro, IL-23-IL-23R signaling promoted GATA-3 expression and enhanced Th2 cytokine expression. Conversely, in the absence of this signal, Th2 cell differentiation was partially inhibited. Therefore, IL-23 signaling may regulate allergic asthma through modulation of Th2 cell differentiation. PMID:19935773

  6. Lck Mediates Th2 Differentiation through Effects on T-bet and GATA-3

    PubMed Central

    Kemp, Kyeorda L.; Levin, Steven D.; Bryce, Paul J.; Stein, Paul L.

    2016-01-01

    The Src family kinase Lck has been shown to be crucial in T cell signaling and development. However, its role in Th effector functions is not well understood. Lck has previously been shown to play a role in the cytokine expression of Th2 cells, but the mechanism by which Lck influences Th2 effector functions is unknown. Using a mouse model, we report that Lck is important in regulating the expression of IL-4 in Th2 skewed cells but is not as necessary for the expression of Th2 cytokines IL-5, IL-10, and IL-13. Furthermore, in the absence of Lck, T-bet and GATA-3 expression is aberrant. Moreover, this atypical expression pattern of T-bet and GATA-3 correlates with increased histone 3 acetylation at the Ifng locus and production of the Th1 cytokine IFN-γ. We find overexpression of GATA-3 restores IL-4 expression in lck−/− Th2 cells; this indicates that the decreased IL-4 expression is due in part to reduced amounts of GATA-3. Taken together, these data imply that Lck mediates Th2 differentiation through effects on T-bet and GATA-3. PMID:20237292

  7. Air breathing direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source. Water loss from the cell is minimized by making the conductive cathode assembly hydrophobic and the conductive anode assembly hydrophilic.

  8. Air breathing direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source.

  9. Mycobacterial antigen-induced T helper type 1 (Th1) and Th2 reactivity of peripheral blood mononuclear cells from diabetic and non-diabetic tuberculosis patients and Mycobacterium bovis bacilli Calmette–Guérin (BCG)-vaccinated healthy subjects

    PubMed Central

    Al-Attiyah, R J; Mustafa, A S

    2009-01-01

    Patients with diabetes mellitus are more susceptible to tuberculosis (TB), and the clinical conditions of diabetic TB patients deteriorate faster than non-diabetic TB patients, but the immunological basis for this phenomenon is not understood clearly. Given the role of cell-mediated immunity (CMI) in providing protection against TB, we investigated whether CMI responses in diabetic TB patients are compromised. Peripheral blood mononuclear cells (PBMC) obtained from diabetic TB patients, non-diabetic TB patients and Mycobacterium bovis bacilli Calmette–Guérin (BCG)-vaccinated healthy subjects were cultured in the presence of complex mycobacterial antigens and pools of M. tuberculosis regions of difference (RD)1, RD4, RD6 and RD10 peptides. The PBMC were assessed for antigen-induced cell proliferation and secretion of T helper 1 (Th1) [interferon (IFN)-γ, interleukin (IL)-2, tumour necrosis factor (TNF)-β], and Th2 (IL-4, IL-5, IL-10) cytokines as CMI parameters. All the complex mycobacterial antigens and RD1pool stimulated strong proliferation of PBMC of all groups, except moderate responses to RD1pool in healthy subjects. In response to complex mycobacterial antigens, both IFN-γ and TNF-β were secreted by PBMC of all groups whereas diabetic TB patients secreted IL-10 with concentrations higher than the other two groups. Furthermore, in response to RD peptides, IFN-γ and IL-10 were secreted by PBMC of diabetic TB patients only. The analyses of data in relation to relative cytokine concentrations showed that diabetic TB patients had lower Th1 : Th2 cytokines ratios, and a higher Th2 bias. The results demonstrate a shift towards Th2 bias in diabetic TB patients which may explain, at least in part, a faster deterioration in their clinical conditions. PMID:19737232

  10. Nestin(+) cells direct inflammatory cell migration in atherosclerosis.

    PubMed

    Del Toro, Raquel; Chèvre, Raphael; Rodríguez, Cristina; Ordóñez, Antonio; Martínez-González, José; Andrés, Vicente; Méndez-Ferrer, Simón

    2016-01-01

    Atherosclerosis is a leading death cause. Endothelial and smooth muscle cells participate in atherogenesis, but it is unclear whether other mesenchymal cells contribute to this process. Bone marrow (BM) nestin(+) cells cooperate with endothelial cells in directing monocyte egress to bloodstream in response to infections. However, it remains unknown whether nestin(+) cells regulate inflammatory cells in chronic inflammatory diseases, such as atherosclerosis. Here, we show that nestin(+) cells direct inflammatory cell migration during chronic inflammation. In Apolipoprotein E (ApoE) knockout mice fed with high-fat diet, BM nestin(+) cells regulate the egress of inflammatory monocytes and neutrophils. In the aorta, nestin(+) stromal cells increase ∼30 times and contribute to the atheroma plaque. Mcp1 deletion in nestin(+) cells-but not in endothelial cells only- increases circulating inflammatory cells, but decreases their aortic infiltration, delaying atheroma plaque formation and aortic valve calcification. Therefore, nestin expression marks cells that regulate inflammatory cell migration during atherosclerosis. PMID:27586429

  11. Shallow cells in directional solidification

    NASA Technical Reports Server (NTRS)

    Merchant, G. J.; Davis, S. H.

    1989-01-01

    The existing theory on two-dimensional transitions (appropriate to thin parallel-plate geometries) is presented in such a way that it is possible to identify easily conditions for the onset of shallow cells. Conditions are given under which succinonitrile-acetone mixtures should undergo supercritical bifurcation in experimentally accessible ranges. These results suggest a means for the quantitative test of the Mullins and Sekerka (1964) model and its weakly nonlinear extensions.

  12. Effect of ultra violet irradiation on the interplay between Th1 and Th2 lymphocytes

    PubMed Central

    Abo Elnazar, Salma Y.; Ghazy, Amany A.; Ghoneim, Hossam E.; Taha, Abdul-Rahman M.; Abouelella, Amira M.

    2015-01-01

    Although ultraviolet (UV) radiation is used to treat several types of diseases, including rickets, psoriasis, eczema, and jaundice, the prolonged exposure to its radiation may result in acute and chronic health effects particularly on the skin, eyes, and the immune system. Aim: This study was carried out to show the effect of UV on both of the lymphoproliferative response and their capacity to produce IL-12 and IL-10 in mice. Methods: Mice were exposed to whole body UVB and tested for the effect of recovery times on lymphocyte proliferation and cytokine production. In addition, direct irradiation of spleens and lymphocyte suspension was carried out. Basal and mitogens-stimulated lymphocyte proliferation was assessed by MTT assay while IL-10 and IL-12 were measured using ELISA. Results: There was a significant suppression in lymphocyte proliferation in comparison with control. IL-12 level was significantly reduced while the level of IL-10 was increased. Con A and PWM mitogens had no significant changes in IL-10 while Con A caused a highly significant increase in IL-12 at day 6 of recovery in UVB body irradiation. Conclusion: Exposure to UVB radiation could cause a state of immune suppression and shifts Th1/Th2 cell response. This effect is closely associated with the reduction of Th1 cytokines’ expression and increase in Th2 cytokines’ levels. PMID:25852558

  13. Development of a functional cDNA array for evaluation of the Th1/Th2 balance.

    PubMed

    Yamaguchi, Aki; Koda, Toshiaki; Abe, Hiroyuki; Sato, Masayoshi; Li, Jie; Sakai, Tomoaki; Togashi, Yuji; Shinohara, Yukito; Ikeda, Hiroaki; Nishimura, Takashi

    2005-10-15

    The immune balance controlled by CD4(+) helper T cell subsets (T helper 1 (Th1) and T helper 2 (Th2)) is crucial for immunoregulation and its imbalance causes various immune diseases including infections, allergic disorders and autoimmune diseases. Therefore, it is of great importance to develop a system of diagnosing Th1/Th2 imbalances for curing immune diseases. Here we developed a functional cDNA array filter useful for assessing the Th1/Th2 balance in mice. To overcome the disadvantages of conventional microarrays carrying thousands of genes, we prepared an array filter containing 40 Th1-specific and 32 Th2-specific genes, which were selected from over 8700 genes based on (i) the specificity of expression in Th1 or Th2 cells and (ii) an expression level which is high enough for detection using a DNA array. This array filter provided a prompt and precise evaluation for the skewing of the Th1/Th2 balance combined with our calculation algorithm. The bias toward Th1 or Th2 was evaluated visually at a glance by aligning the genes on the filter. Moreover, we succeeded in evaluating the skewing of the Th1/Th2 balance in vivo during acute graft versus host disease (GVHD). Thus, this array filter will provide a novel tool for evaluation of the Th1/Th2 balance in a variety of immune diseases. PMID:15993951

  14. Methods of conditioning direct methanol fuel cells

    DOEpatents

    Rice, Cynthia; Ren, Xiaoming; Gottesfeld, Shimshon

    2005-11-08

    Methods for conditioning the membrane electrode assembly of a direct methanol fuel cell ("DMFC") are disclosed. In a first method, an electrical current of polarity opposite to that used in a functioning direct methanol fuel cell is passed through the anode surface of the membrane electrode assembly. In a second method, methanol is supplied to an anode surface of the membrane electrode assembly, allowed to cross over the polymer electrolyte membrane of the membrane electrode assembly to a cathode surface of the membrane electrode assembly, and an electrical current of polarity opposite to that in a functioning direct methanol fuel cell is drawn through the membrane electrode assembly, wherein methanol is oxidized at the cathode surface of the membrane electrode assembly while the catalyst on the anode surface is reduced. Surface oxides on the direct methanol fuel cell anode catalyst of the membrane electrode assembly are thereby reduced.

  15. Deficiency in Th2 cytokine responses exacerbate orthopoxvirus infection.

    PubMed

    Sakala, Isaac G; Chaudhri, Geeta; Eldi, Preethi; Buller, R Mark; Karupiah, Gunasegaran

    2015-01-01

    Ectromelia virus (ECTV) causes mousepox in mice, a disease very similar to smallpox in humans. ECTV and variola virus (VARV), the agent of smallpox, are closely related orthopoxviruses. Mousepox is an excellent small animal model to study the genetic and immunologic basis for resistance and susceptibility of humans to smallpox. Resistance to mousepox is dependent on a strong polarized type 1 immune response, associated with robust natural killer (NK) cell, cytotoxic T lymphocyte (CTL) and gamma interferon (IFN-γ) responses. In contrast, ECTV-susceptible mice generate a type 2 response, associated with weak NK cell, CTL and IFN-γ responses but robust IL-4 responses. Nonetheless, susceptible strains infected with mutant ECTV lacking virus-encoded IFN-γ binding protein (vIFN-γbp) (ECTV-IFN-γbpΔ) control virus replication through generation of type 1 response. Since the IL-4/IL-13/STAT-6 signaling pathways polarize type 2/T helper 2 (Th2) responses with a corresponding suppression of IFN-γ production, we investigated whether the combined absence of vIFN-γbp, and one or more host genes involved in Th2 response development, influence generation of protective immunity. Most mutant mouse strains infected with wild-type (WT) virus succumbed to disease more rapidly than WT animals. Conversely, the disease outcome was significantly improved in WT mice infected with ECTV-IFN-γbpΔ but absence of IL-4/IL-13/STAT-6 signaling pathways did not provide any added advantage. Deficiency in IL-13 or STAT-6 resulted in defective CTL responses, higher mortality rates and accelerated deaths. Deficiencies in IL-4/IL-13/STAT-6 signaling pathways significantly reduced the numbers of IFN-γ producing CD4 and CD8 T cells, indicating an absence of a switch to a Th1-like response. Factors contributing to susceptibility or resistance to mousepox are far more complex than a balance between Th1 and Th2 responses. PMID:25751266

  16. Deficiency in Th2 Cytokine Responses Exacerbate Orthopoxvirus Infection

    PubMed Central

    Sakala, Isaac G.; Chaudhri, Geeta; Eldi, Preethi; Buller, R. Mark; Karupiah, Gunasegaran

    2015-01-01

    Ectromelia virus (ECTV) causes mousepox in mice, a disease very similar to smallpox in humans. ECTV and variola virus (VARV), the agent of smallpox, are closely related orthopoxviruses. Mousepox is an excellent small animal model to study the genetic and immunologic basis for resistance and susceptibility of humans to smallpox. Resistance to mousepox is dependent on a strong polarized type 1 immune response, associated with robust natural killer (NK) cell, cytotoxic T lymphocyte (CTL) and gamma interferon (IFN-γ) responses. In contrast, ECTV-susceptible mice generate a type 2 response, associated with weak NK cell, CTL and IFN-γ responses but robust IL-4 responses. Nonetheless, susceptible strains infected with mutant ECTV lacking virus-encoded IFN-γ binding protein (vIFN-γbp) (ECTV-IFN-γbpΔ) control virus replication through generation of type 1 response. Since the IL-4/IL-13/STAT-6 signaling pathways polarize type 2/T helper 2 (Th2) responses with a corresponding suppression of IFN-γ production, we investigated whether the combined absence of vIFN-γbp, and one or more host genes involved in Th2 response development, influence generation of protective immunity. Most mutant mouse strains infected with wild-type (WT) virus succumbed to disease more rapidly than WT animals. Conversely, the disease outcome was significantly improved in WT mice infected with ECTV-IFN-γbpΔ but absence of IL-4/IL-13/STAT-6 signaling pathways did not provide any added advantage. Deficiency in IL-13 or STAT-6 resulted in defective CTL responses, higher mortality rates and accelerated deaths. Deficiencies in IL-4/IL-13/STAT-6 signaling pathways significantly reduced the numbers of IFN-γ producing CD4 and CD8 T cells, indicating an absence of a switch to a Th1-like response. Factors contributing to susceptibility or resistance to mousepox are far more complex than a balance between Th1 and Th2 responses. PMID:25751266

  17. Expression of Th1- Th2- and Th17-associated cytokines in laryngeal carcinoma

    PubMed Central

    Xu, Xiaoqun; Wang, Rui; Su, Qinghong; Huang, Haiyan; Zhou, Peng; Luan, Junwen; Liu, Jingsheng; Wang, Junfu; Chen, Xuemei

    2016-01-01

    T-helper (Th) 0 cell differentiation into Th1 or Th2 cells is dependent on a number of transcription factors that act at specific time points to regulate gene expression. Th17 cells, a subset of interleukin (IL)-17-producing T cells distinct from Th1 or Th2 cells, are considered to exhibit a critical function in inflammation and autoimmune diseases, as well as cancer development. In the present study, the expression of Th1-, Th2- and Th17-associated cytokines in laryngeal cancer and pericarcinoma tissues obtained from 57 laryngeal carcinoma patients was investigated. The association between Th1, Th2 and Th17 infiltration and tumor development was also evaluated. Reverse transcription-polymerase chain reaction and western blotting results revealed that the mRNA and protein expression of Th2 cytokines was lower, while the expression of Th1 and Th17 cytokines was higher in tumor tissues than in pericarcinoma tissues. Furthermore, the early stage cancer patients exhibited a higher level of interferon-γ, IL-2 and IL-17 mRNA expression than those at advanced stages. Cancer tissues exhibited higher Th17 cytokine expression than pericarcinoma tissues. By contrast, Th1 cytokine expression was increased in pericarcinoma tissues compared with cancer tissues. These results indicate that high expression of Th1- and Th17-associated cytokines in laryngeal carcinoma may contribute to suppression of cancer development and a relatively good prognosis. PMID:27588143

  18. STAT5-induced lunatic fringe during Th2 development alters delta-like 4-mediated Th2 cytokine production in respiratory syncytial virus-exacerbated airway allergic disease.

    PubMed

    Mukherjee, Sumanta; Rasky, Andrew J; Lundy, Phil A; Kittan, Nicolai A; Kunkel, Steven L; Maillard, Ivan P; Kowalski, Paul E; Kousis, Philaretos C; Guidos, Cynthia J; Lukacs, Nicholas W

    2014-02-01

    Notch activation plays an important role in T cell development and mature T cell differentiation. In this study, we investigated the role of Notch activation in a mouse model of respiratory syncytial virus (RSV)-exacerbated allergic airway disease. During RSV exacerbation, in vivo neutralization of a specific Notch ligand, Delta-like ligand (Dll)-4, significantly decreased airway hyperreactivity, mucus production, and Th2 cytokines. Lunatic Fringe (Lfng), a glycosyltransferase that enhances Notch activation by Dll4, was increased during RSV exacerbation. Lfng loss of function in Th2-skewed cells inhibited Dll4-Notch activation and subsequent IL-4 production. Further knockdown of Lfng in T cells in CD4Cre(+)Lfng(fl/fl) mice showed reduced Th2 response and disease pathology during RSV exacerbation. Finally, we identified STAT5-binding cis-acting regulatory element activation as a critical driver of Lfng transcriptional activation. These data demonstrate that STAT5-dependent amplification of Notch-modifying Lfng augments Th2 response via Dll4 and is critical for amplifying viral exacerbation during allergic airway disease. PMID:24367028

  19. Direct lineage reprogramming to neural cells

    PubMed Central

    Kim, Janghwan; Ambasudhan, Rajesh; Ding, Sheng

    2016-01-01

    Recently we have witnessed an array of studies on direct reprogramming that describe induced inter conversion of mature cell types from higher organisms including human. While these studies reveal an unexpected level of plasticity of differentiated somatic cells, they also provide unprecedented opportunities to develop regenerative therapies for many debilitating disorders and model these ‘diseases-in-a-dish’ for studying their pathophysiology. Here we review the current state of the art in direct lineage reprogramming to neural cells, and discuss the challenges that need to be addressed toward achieving the full potential of this exciting new technology. PMID:22652035

  20. Sex-Based Selectivity of PPARγ Regulation in Th1, Th2, and Th17 Differentiation

    PubMed Central

    Park, Hong-Jai; Park, Hyeon-Soo; Lee, Jae-Ung; Bothwell, Alfred L. M.; Choi, Je-Min

    2016-01-01

    Peroxisome proliferator-activated receptor gamma (PPARγ) has recently been recognized to regulate adaptive immunity through Th17 differentiation, Treg functions, and TFH responses. However, its role in adaptive immunity and autoimmune disease is still not clear, possibly due to sexual differences. Here, we investigated in vitro treatment study with the PPARγ agonist pioglitazone to compare Th1, Th2, and Th17 differentiation in male and female mouse splenic T cells. Pioglitazone treatment significantly inhibited various effector T cell differentiations including Th1, Th2, and Th17 cells from female naïve T cells, but it selectively reduced IL-17 production in male Th17 differentiation. Interestingly, pioglitazone and estradiol (E2) co-treatment of T cells in males inhibited differentiation of Th1, Th2, and Th17 cells, suggesting a mechanism for the greater sensitivity of PPARγ to ligand treatment in the regulation of effector T cell differentiation in females. Collectively, these results demonstrate that PPARγ selectively inhibits Th17 differentiation only in male T cells and modulates Th1, Th2, and Th17 differentiation in female T cells based on different level of estrogen exposure. Accordingly, PPARγ could be an important immune regulator of sexual differences in adaptive immunity. PMID:27548145

  1. Lightweight Stacks of Direct Methanol Fuel Cells

    NASA Technical Reports Server (NTRS)

    Narayanan, Sekharipuram; Valdez, Thomas

    2004-01-01

    An improved design concept for direct methanol fuel cells makes it possible to construct fuel-cell stacks that can weigh as little as one-third as much as do conventional bipolar fuel-cell stacks of equal power. The structural-support components of the improved cells and stacks can be made of relatively inexpensive plastics. Moreover, in comparison with conventional bipolar fuel-cell stacks, the improved fuel-cell stacks can be assembled, disassembled, and diagnosed for malfunctions more easily. These improvements are expected to bring portable direct methanol fuel cells and stacks closer to commercialization. In a conventional bipolar fuel-cell stack, the cells are interspersed with bipolar plates (also called biplates), which are structural components that serve to interconnect the cells and distribute the reactants (methanol and air). The cells and biplates are sandwiched between metal end plates. Usually, the stack is held together under pressure by tie rods that clamp the end plates. The bipolar stack configuration offers the advantage of very low internal electrical resistance. However, when the power output of a stack is only a few watts, the very low internal resistance of a bipolar stack is not absolutely necessary for keeping the internal power loss acceptably low.

  2. Th2 cytokine-induced alterations in intestinal smooth muscle function depend on alternatively activated macrophages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Enteric nematode infection induces a strong Th2 cytokine response and is characterized by increased infiltration of various immune cells including macrophages. The role of these immune cells in host defense against enteric nematode infection, however, remains poorly defined. The present study invest...

  3. Matrix elasticity directs stem cell lineage specification

    NASA Astrophysics Data System (ADS)

    Discher, Dennis

    2010-03-01

    Adhesion of stem cells - like most cells - is not just a membrane phenomenon. Most tissue cells need to adhere to a ``solid'' for viability, and over the last decade it has become increasingly clear that the physical ``elasticity'' of that solid is literally ``felt'' by cells. Here we show that Mesenchymal Stem Cells (MSCs) specify lineage and commit to phenotypes with extreme sensitivity to the elasticity typical of tissues [1]. In serum only media, soft matrices that mimic brain appear neurogenic, stiffer matrices that mimic muscle are myogenic, and comparatively rigid matrices that mimic collagenous bone prove osteogenic. Inhibition of nonmuscle myosin II activity blocks all elasticity directed lineage specification, which indicates that the cytoskeleton pulls on matrix through adhesive attachments. Results have significant implications for `therapeutic' stem cells and have motivated development of a proteomic-scale method to identify mechano-responsive protein structures [2] as well as deeper physical studies of matrix physics [3] and growth factor pathways [4]. [4pt] [1] A. Engler, et al. Matrix elasticity directs stem cell lineage specification. Cell (2006).[0pt] [2] C.P. Johnson, et al. Forced unfolding of proteins within cells. Science (2007).[0pt] [3] A.E.X. Brown, et al. Multiscale mechanics of fibrin polymer: Gel stretching with protein unfolding and loss of water. Science (2009).[0pt] [4] D.E. Discher, et al. Growth factors, matrices, and forces combine and control stem cells. Science (2009).

  4. Protease-Activated Receptor 2 Is Involved in Th2 Responses against Trichinella spiralis Infection

    PubMed Central

    Park, Mi Kyung; Cho, Min Kyoung; Kang, Shin Ae; Park, Hye-Kyung; Kim, Yun Seong; Kim, Ki Uk; Ahn, Soon Cheol; Kim, Dong-Hee

    2011-01-01

    In order to get a better understanding of the role of protease-activated receptor 2 (PAR2) in type 2 helper T (Th2) cell responses against Trichinella spiralis infection, we analyzed Th2 responses in T. spiralis-infected PAR2 knockout (KO) mice. The levels of the Th2 cell-secreted cytokines, IL-4, IL-5, and IL-13 were markedly reduced in the PAR2 KO mice as compared to the wild type mice following infection with T. spiralis. The serum levels of parasite-specific IgE increased significantly in the wild type mice as the result of T. spiralis infection, but this level was not significantly increased in PAR2 KO mice. The expression level of thymic stromal lymphopoietin, IL-25, and eotaxin gene (the genes were recently known as Th2 response initiators) of mouse intestinal epithelial cells were increased as the result of treatment with T. spiralis excretory-secretory proteins. However, the expression of these chemokine genes was inhibited by protease inhibitor treatments. In conclusion, PAR2 might involve in Th2 responses against T. spiralis infection. PMID:22072823

  5. Proprotein convertase FURIN constrains Th2 differentiation and is critical for host resistance against Toxoplasma gondii.

    PubMed

    Oksanen, Anna; Aittomäki, Saara; Jankovic, Dragana; Ortutay, Zsuzsanna; Pulkkinen, Kati; Hämäläinen, Sanna; Rokka, Anne; Corthals, Garry L; Watford, Wendy T; Junttila, Ilkka; O'Shea, John J; Pesu, Marko

    2014-12-01

    The proprotein convertase subtilisin/kexin enzymes proteolytically convert immature proproteins into bioactive molecules, and thereby they serve as key regulators of cellular homeostasis. The archetype proprotein convertase subtilisin/kexin, FURIN, is a direct target gene of the IL-12/STAT4 pathway and it is upregulated in Th1 cells. We have previously demonstrated that FURIN expression in T cells critically regulates the maintenance of peripheral immune tolerance and the functional maturation of pro-TGF-β1 in vivo, but FURIN's role in cell-mediated immunity and Th polarization has remained elusive. In this article, we show that T cell-expressed FURIN is essential for host resistance against a prototypic Th1 pathogen, Toxoplasma gondii, and for the generation of pathogen-specific Th1 lymphocytes, including Th1-IL-10 cells. FURIN-deficient Th cells instead show elevated expression of IL-4R subunit α on cell surface, sensitized IL-4/STAT6 signaling, and a propensity to polarize toward the Th2 phenotype. By exploring FURIN-interacting proteins in Jurkat T cells with Strep-Tag purification and mass spectrometry, we further identify an association with a cytoskeleton modifying Ras-related C3 botulinum toxin substrate/dedicator of cytokinesis 2 protein complex and unravel that FURIN promotes F-actin polymerization, which has previously been shown to downregulate IL-4R subunit α cell surface expression and promote Th1 responses. In conclusion, our results demonstrate that in addition to peripheral immune tolerance, T cell-expressed FURIN is also a central regulator of cell-mediated immunity and Th1/2 cell balance. PMID:25355923

  6. Proprotein convertase FURIN constrains Th2 differentiation and is critical for host resistance against Toxoplasma gondii

    PubMed Central

    Oksanen, Anna; Aittomäki, Saara; Jankovic, Dragana; Ortutay, Zsuzsanna; Pulkkinen, Kati; Hämäläinen, Sanna; Rokka, Anne; Corthals, Garry L.; Watford, Wendy T.; Junttila, Ilkka; O’Shea, John J.; Pesu, Marko

    2014-01-01

    The proprotein convertase subtilisin/kexin (PCSK) enzymes proteolytically convert immature proproteins into bioactive molecules and thereby they serve as key regulators of cellular homeostasis. The archetype PCSK, FURIN is a direct target gene of the IL-12/STAT4 pathway and it is upregulated in T helper 1 type cells. We have previously demonstrated that FURIN expression in T cells critically regulates the maintenance of peripheral immune tolerance and the functional maturation of pro-TGFβ-1 in vivo, but FURIN’s role in cell-mediated immunity and Th polarization has remained elusive. Here, we show that T-cell-expressed FURIN is essential for host resistance against a prototypic Th1 pathogen, Toxoplasma gondii and for the generation of pathogen-specific Th1 lymphocytes, including Th1-IL-10 cells. FURIN-deficient Th cells instead show elevated expression of IL-4 receptor subunit alpha (IL-4Rα) on cell surface, sensitized IL-4/STAT6 signaling and a propensity to polarize towards the Th2 phenotype. By exploring FURIN-interacting proteins in Jurkat T cells with Strep-Tag purification and mass-spectrometry we further identify an association with a cytoskeleton modifying RAC/DOCK2 protein complex and unravel that FURIN promotes F-actin polymerization, which has previously been shown to down-regulate IL-4Rα cell surface expression and promote Th1 responses. In conclusion, our results demonstrate that in addition to peripheral immune tolerance, T-cell-expressed FURIN is also a central regulator of cell-mediated immunity and Th1/2 cell balance. PMID:25355923

  7. Designing Biomaterials To Direct Stem Cell Fate

    PubMed Central

    Cha, Chaenyung; Liechty, William B.; Khademhosseini, Ali; Peppas, Nicholas A.

    2012-01-01

    As stem cells are a cornerstone of regenerative medicine, research efforts have been extensively focused on controlling their self-renewal and differentiation. It is well known that stem cells are tightly regulated by a combination of physical and chemical factors from their complex extracellular surroundings; thus, conventional cell culture approaches based purely on using soluble factors to direct stem cell fate have resulted in limited success. To account for the complexities of native stem-cell niches, biomaterials are actively investigated as artificial extracellular matrices in order to mimic the natural microenvironment. This Perspective highlights important areas related to the design of biomaterials to control stem cell behavior, such as cell-responsive ligands, mechanical signals, and delivery of soluble factors. PMID:23136849

  8. Designing biomaterials to direct stem cell fate.

    PubMed

    Cha, Chaenyung; Liechty, William B; Khademhosseini, Ali; Peppas, Nicholas A

    2012-11-27

    As stem cells are a cornerstone of regenerative medicine, research efforts have been extensively focused on controlling their self-renewal and differentiation. It is well-known that stem cells are tightly regulated by a combination of physical and chemical factors from their complex extracellular surroundings; thus, conventional cell culture approaches based purely on using soluble factors to direct stem cell fate have resulted in limited success. To account for the complexities of native stem-cell niches, biomaterials are actively investigated as artificial extracellular matrices in order to mimic the natural microenvironment. This Perspective highlights important areas related to the design of biomaterials to control stem cell behavior, such as cell-responsive ligands, mechanical signals, and delivery of soluble factors. PMID:23136849

  9. Modulating the Th1/Th2 balance in inflammatory arthritis.

    PubMed

    Müller, B; Gimsa, U; Mitchison, N A; Radbruch, A; Sieper, J; Yin, Z

    1998-01-01

    The balance between Th1 and Th2 cells regulates the choice between inflammatory and antibody-mediated immune responses. To an increasing extent this balance is thought to involve the participation of antigen-presenting cells, rather than the entirely autonomous activity of T cells and their cytokines. Here we survey current opinion concerning the working of this balance, and its condition in rheumatoid arthritis and the other inflammatory arthritides. The contrast between Lyme arthritis and reactive arthritis is particularly illuminating, since one is triggered by extracellular and the other by intracellular infection. We describe current approaches to the modulation of this balance. Guided by the principles that genetic polymorphism is likely to identify relevant genes, that any cytokine gene picked up by a virus must matter and that natural immunosuppressive activity at mucosal surfaces should be worth exploiting, we identify as particularly worthy of attention: (i) IL-10, (ii) inhibitors of IL-12 production, (iii) inhibitors of CD40 ligand expression and (iv) oral and nasal tolerance. Other protective T cell subsets are touched on, and the impact of oligonucleotide arrays mentioned. PMID:9836376

  10. Advances in direct oxidation methanol fuel cells

    NASA Technical Reports Server (NTRS)

    Surampudi, S.; Narayanan, S. R.; Vamos, E.; Frank, H.; Halpert, G.; Laconti, Anthony B.; Kosek, J.; Prakash, G. K. Surya; Olah, G. A.

    1993-01-01

    Fuel cells that can operate directly on fuels such as methanol are attractive for low to medium power applications in view of their low weight and volume relative to other power sources. A liquid feed direct methanol fuel cell has been developed based on a proton exchange membrane electrolyte and Pt/Ru and Pt catalyzed fuel and air/O2 electrodes, respectively. The cell has been shown to deliver significant power outputs at temperatures of 60 to 90 C. The cell voltage is near 0.5 V at 300 mA/cm(exp 2) current density and an operating temperature of 90 C. A deterrent to performance appears to be methanol crossover through the membrane to the oxygen electrode. Further improvements in performance appear possible by minimizing the methanol crossover rate.

  11. Direct formate fuel cells: A review

    NASA Astrophysics Data System (ADS)

    An, L.; Chen, R.

    2016-07-01

    Direct formate fuel cells (DFFC), which convert the chemical energy stored in formate directly into electricity, are recently attracting more attention, primarily because of the use of the carbon-neutral fuel and the low-cost electrocatalytic and membrane materials. As an emerging energy technology, the DFFC has made a rapid progress in recent years (currently, the state-of-the-art power density is 591 mW cm-2 at 60 °C). This article provides a review of past research on the development of this type of fuel cell, including the working principle, mechanisms and materials of the electrocatalytic oxidation of formate, singe-cell designs and performance, as well as innovative system designs. In addition, future perspectives with regard to the development of this fuel cell system are also highlighted.

  12. Direct Numerical Simulation of Cell Printing

    NASA Astrophysics Data System (ADS)

    Qiao, Rui; He, Ping

    2010-11-01

    Structural cell printing, i.e., printing three dimensional (3D) structures of cells held in a tissue matrix, is gaining significant attention in the biomedical community. The key idea is to use desktop printer or similar devices to print cells into 3D patterns with a resolution comparable to the size of mammalian cells, similar to that in living organs. Achieving such a resolution in vitro can lead to breakthroughs in areas such as organ transplantation and understanding of cell-cell interactions in truly 3D spaces. Although the feasibility of cell printing has been demonstrated in the recent years, the printing resolution and cell viability remain to be improved. In this work, we investigate one of the unit operations in cell printing, namely, the impact of a cell-laden droplet into a pool of highly viscous liquids using direct numerical simulations. The dynamics of droplet impact (e.g., crater formation and droplet spreading and penetration) and the evolution of cell shape and internal stress are quantified in details.

  13. Contribution of Basophils to Cutaneous Immune Reactions and Th2-Mediated Allergic Responses

    PubMed Central

    Otsuka, Atsushi; Kabashima, Kenji

    2015-01-01

    Basophils are potent effector cells of innate immunity and also play a role in T helper 2 (Th2)-mediated allergic responses. But, although their in vitro functions are well studied, their in vivo functions remain largely unknown. However, several mouse models of basophil depletion have recently been developed and used to investigate basophil functions. For example, in a croton oil-induced model of irritant contact dermatitis in conditionally basophil-depleted transgenic mice, we found that basophils rapidly infiltrate inflamed skin and subsequently induce infiltration of eosinophils. We also showed that basophils induce Th2 skewing upon epicutaneous sensitization with various haptens and peptide antigens. Intriguingly, basophils also promoted Th2 polarization upon protein antigen exposure in the presence of dendritic cells (DCs). The dermal DC subset associated with Th2 skewing was recently identified as CD301b+ DC. Such studies with basophil-deficient mouse models have significantly improved our understanding of the mechanisms involved in human immune-related diseases. In this review, we will focus on the relative contribution of basophils and DCs to Th2-mediated allergic responses. PMID:26284076

  14. Alignment of cell division axes in directed epithelial cell migration

    NASA Astrophysics Data System (ADS)

    Marel, Anna-Kristina; Podewitz, Nils; Zorn, Matthias; Oskar Rädler, Joachim; Elgeti, Jens

    2014-11-01

    Cell division is an essential dynamic event in tissue remodeling during wound healing, cancer and embryogenesis. In collective migration, tensile stresses affect cell shape and polarity, hence, the orientation of the cell division axis is expected to depend on cellular flow patterns. Here, we study the degree of orientation of cell division axes in migrating and resting epithelial cell sheets. We use microstructured channels to create a defined scenario of directed cell invasion and compare this situation to resting but proliferating cell monolayers. In experiments, we find a strong alignment of the axis due to directed flow while resting sheets show very weak global order, but local flow gradients still correlate strongly with the cell division axis. We compare experimental results with a previously published mesoscopic particle based simulation model. Most of the observed effects are reproduced by the simulations.

  15. Allergenic Can f 1 and its human homologue Lcn-1 direct dendritic cells to induce divergent immune responses

    PubMed Central

    Posch, Beate; Irsara, Christian; Gamper, Fabian S; Herrmann, Martin; Bindreither, Daniel; Fuchs, Dietmar; Reider, Norbert; Redl, Bernhard; Heufler, Christine

    2015-01-01

    Why and when the immune system skews to Th2 mediated allergic immune responses is still poorly characterized. With two homologous lipocalins, the major respiratory dog allergen Can f 1 and the human endogenous, non-allergenic Lipocalin-1, we investigated their impact on human monocyte-derived dendritic cells (DC). The two lipocalins had differential effects on DC according to their allergenic potential. Compared to Lipocalin-1, Can f 1 persistently induced lower levels of the Th1 skewing maturation marker expression, tryptophan breakdown and interleukin (IL)-12 production in DC. As a consequence, T cells stimulated by DC treated with Can f 1 produced more of the Th2 signature cytokine IL-13 and lower levels of the Th1 signature cytokine interferon-γ than T cells stimulated by Lipocalin-1 treated DC. These data were partially verified by a second pair of homologous lipocalins, the cat allergen Fel d 4 and its putative human homologue major urinary protein. Our data indicate that the crosstalk of DC with lipocalins alone has the potential to direct the type of immune response to these particular antigens. A global gene expression analysis further supported these results and indicated significant differences in intracellular trafficking, sorting and antigen presentation pathways when comparing Can f 1 and Lipocalin-1 stimulated DC. With this study we contribute to a better understanding of the induction phase of a Th2 immune response. PMID:26218644

  16. CCL5-Mediated Th2 Immune Polarization Promotes Metastasis in Luminal Breast Cancer.

    PubMed

    Zhang, Qianfei; Qin, Jilong; Zhong, Lin; Gong, Lei; Zhang, Bing; Zhang, Yan; Gao, Wei-Qiang

    2015-10-15

    The tumor-promoting chemokine CCL5 has been implicated in malignant transformation of breast epithelial cells, with studies to date focusing mainly on basal-type breast cancers. In this study, we investigated the consequences of CCL5 deletion in the MMTV-PyMT transgenic mouse model of luminal breast cancer. In this model, primary tumor burden and pulmonary metastases were reduced significantly in CCL5-deficient subjects, an effect found to be associated with a deficit of Th2 (IL4⁺CD4⁺ T) cells. Mechanistic investigations revealed that CCL5 activates CCR3, a highly expressed chemokine receptor on CD4⁺ T cells, and also boosts Gfi1 expression to promote the differentiation of Th2 cells, which enhance the prometastatic activity of tumor-associated myeloid cells. Clinically, polarization toward this immunosuppressive Th2 phenotype was also evident in patients with advanced luminal breast cancer. Thus, our findings showed that CCL5/CCR3 signaling promotes metastasis by inducing Th2 polarization of CD4⁺ T cells, with implications for prognosis and immunotherapy of luminal breast cancer. PMID:26249173

  17. Improved Direct Methanol Fuel Cell Stack

    DOEpatents

    Wilson, Mahlon S.; Ramsey, John C.

    2005-03-08

    A stack of direct methanol fuel cells exhibiting a circular footprint. A cathode and anode manifold, tie-bolt penetrations and tie-bolts are located within the circular footprint. Each fuel cell uses two graphite-based plates. One plate includes a cathode active area that is defined by serpentine channels connecting the inlet and outlet cathode manifold. The other plate includes an anode active area defined by serpentine channels connecting the inlet and outlet of the anode manifold, where the serpentine channels of the anode are orthogonal to the serpentine channels of the cathode. Located between the two plates is the fuel cell active region.

  18. Immunomodulation Mechanism of Antidepressants: Interactions between Serotonin/Norepinephrine Balance and Th1/Th2 Balance

    PubMed Central

    Martino, Matteo; Rocchi, Giulio; Escelsior, Andrea; Fornaro, Michele

    2012-01-01

    Neurotransmitters and hormones regulate major immune functions, including the selection of T helper (Th)1 or Th2 cytokine responses, related to cell-mediated and humoral immunity, respectively. A role of imbalance and dynamic switching of Th1/Th2 system has been proposed, with relative displacement of the immune reserve in relation to complex interaction between Th1/Th2 and neuro-hormonal balance fluctuations, in the pathogenesis of various chronic human diseases, probably also including psychiatric disorders. Components of the stress system such as norepinephrine (NE) and glucocorticoids appear to mediate a Th2 shift, while serotonin (5-HT) and melatonin might mediate a Th1 shift. Some antidepressants would occur affecting these systems, acting on neurotransmitter balance (especially the 5-HT/NE balance) and expression levels of receptor subtypes, which in turn affect cytokine production and relative Th1/Th2 balance. It could be therefore hypothesized that the antidepressant-related increase in NE tone enhances the Th2 response, while the decrease in NE tone or the increase in 5-HT tone enhances the Th1 response. However, the neurotransmitter and Th1/Th2 balance modulation could be relative, aiming to restore physiological levels a previous imbalance in receptor sensitivity and cytokine production. The considerations on neuro-immunomodulation could represent an additional aid in the study of pathophysiology of psychiatric disorders and in the choice of specific antidepressants in specific clusters of symptoms, especially in comorbidity with internal pathologies. Furthermore limited data, reviewed here, have shown the effectiveness of some antidepressants as pure immunomodulators. However, these considerations are tentative and require experimental confirmation or refutation by future studies. PMID:23204981

  19. DIRECT FUEL/CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2004-05-01

    This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha DFC/T hybrid power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Also, the preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed.

  20. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2004-11-01

    This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. The operation of sub-MW hybrid Direct FuelCell/Turbine power plant test facility with a Capstone C60 microturbine was initiated in March 2003. The inclusion of the C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in previous tests using a 30kW microturbine. The design of multi-MW DFC/T hybrid systems, approaching 75% efficiency on natural gas, was initiated. A new concept was developed based on clusters of One-MW fuel cell modules as the building blocks. System analyses were performed, including systems for near-term deployment and power plants with long-term ultra high efficiency objectives. Preliminary assessment of the fuel cell cluster concept, including power plant layout for a 14MW power plant, was performed.

  1. Th2 differentiation in distinct lymph nodes influences the site of mucosal Th2 immune-inflammatory responses.

    PubMed

    Alvarez, David; Arkinson, Janine L; Sun, Jiangfeng; Fattouh, Ramzi; Walker, Tina; Jordana, Manel

    2007-09-01

    Allergic individuals rarely present with concurrent multiple-organ disease but, rather, with manifestations that privilege a specific site such as the lung, skin, or gastrointestinal tract. Whether the site of allergic sensitization influences the localization of Th2 immune-inflammatory responses and, ultimately, the organ-specific expression of disease, remains to be determined. In this study, we investigated whether both the site of initial Ag exposure and concomitant Th2 differentiation in specific lymph nodes (LNs) privileges Th2 memory responses to mucosal and nonmucosal sites, and whether this restriction is associated with a differential expression in tissue-specific homing molecules. In mice exposed to Ag (OVA) via the peritoneum, lung, or skin, we examined several local and distal LNs to determine the site of Ag-specific proliferation and Th2 differentiation. Whereas respiratory and cutaneous Ag exposure led to Ag-specific proliferation and Th2 differentiation exclusively in lung- and skin-draining LNs, respectively, Ag delivery to the peritoneum evoked responses in gut-associated, as well as distal thoracic, LNs. Importantly, only mice that underwent Th2 differentiation in thoracic- or gut-associated LNs mounted Th2 immune-inflammatory responses upon respiratory or gastric Ag challenge, respectively, whereas cutaneous Th2 recall responses were evoked irrespective of the site of initial sensitization. In addition, we observed the differential expression of gut homing molecules (CCR9, alpha(4), beta(7)) in gut-associated LNs and, unexpectedly, a universal induction of skin-related homing molecules (CCR4, CCR10) in all LNs. These data suggest that the site of initial Th2 differentiation and differential homing molecule expression restricts Th2 immune-inflammatory responses to mucosal, but not cutaneous, tissues. PMID:17709545

  2. Chrysler Pentastar direct hydrogen fuel cell program

    SciTech Connect

    Kimble, M.; Deloney, D.

    1995-08-01

    The Chrysler Pentastar Electronics, Inc. Direct Hydrogen Fueled PEM Fuel Cell Hybrid Vehicle Program (DPHV) was initiated 1 July, 1994 with the following mission, {open_quotes}Design, fabricate, and test a Direct Hydrogen Fueled Proton Exchange Membrane (PEM) Fuel Cell System including onboard hydrogen storage, an efficient lightweight fuel cell, a gas management system, peak power augmentation and a complete system controls that can be economically mass produced and comply with all safety environmental and consumer requirements for vehicle applications for the 21st century.{close_quotes} The Conceptual Design for the entire system based upon the selection of an applicable vehicle and performance requirements that are consistent with the PNGV goals will be discussed. A Hydrogen Storage system that has been selected, packaged, and partially tested in accordance with perceived Hydrogen Safety and Infrastructure requirements will be discussed in addition to our Fuel Cell approach along with design of the {open_quotes}real{close_quotes} module. The Gas Management System and the Load Leveling System have been designed and the software programs have been developed and will be discussed along with a complete fuel cell test station that has the capability to test up to a 60 kW fuel cell system.

  3. Direct fuel cell product design improvement

    SciTech Connect

    Maru, H.C.; Farooque, M.

    1996-12-31

    Significant milestones have been attained towards the technology development field testing and commercialization of direct fuel cell power plant since the 1994 Fuel Cell Seminar. Under a 5-year cooperative agreement with the Department of Energy signed in December 1994, Energy Research Corporation (ERC) has been developing the design for a MW-scale direct fuel cell power plant with input from previous technology efforts and the Santa Clara Demonstration Project. The effort encompasses product definition in consultation with the Fuel Cell Commercialization Group, potential customers, as well as extensive system design and packaging. Manufacturing process improvements, test facility construction, cell component scale up, performance and endurance improvements, stack engineering, and critical balance-of-plant development are also addressed. Major emphasis of this product design improvement project is on increased efficiency, compactness and cost reduction to establish a competitive place in the market. A 2.85 MW power plant with an efficiency of 58% and a footprint of 420 m{sup 2} has been designed. Component and subsystem testing is being conducted at various levels. Planning and preparation for verification of a full size prototype unit are in progress. This paper presents the results obtained since the last fuel cell seminar.

  4. Indigenous enteric eosinophils control DCs to initiate a primary Th2 immune response in vivo

    PubMed Central

    Chu, Derek K.; Jimenez-Saiz, Rodrigo; Verschoor, Christopher P.; Walker, Tina D.; Goncharova, Susanna; Llop-Guevara, Alba; Shen, Pamela; Gordon, Melissa E.; Barra, Nicole G.; Bassett, Jennifer D.; Kong, Joshua; Fattouh, Ramzi; McCoy, Kathy D.; Bowdish, Dawn M.; Erjefält, Jonas S.; Pabst, Oliver; Humbles, Alison A.; Kolbeck, Roland; Waserman, Susan

    2014-01-01

    Eosinophils natively inhabit the small intestine, but a functional role for them there has remained elusive. Here, we show that eosinophil-deficient mice were protected from induction of Th2-mediated peanut food allergy and anaphylaxis, and Th2 priming was restored by reconstitution with il4+/+ or il4−/− eosinophils. Eosinophils controlled CD103+ dendritic cell (DC) activation and migration from the intestine to draining lymph nodes, events necessary for Th2 priming. Eosinophil activation in vitro and in vivo led to degranulation of eosinophil peroxidase, a granule protein whose enzymatic activity promoted DC activation in mice and humans in vitro, and intestinal and extraintestinal mouse DC activation and mobilization to lymph nodes in vivo. Further, eosinophil peroxidase enhanced responses to ovalbumin seen after immunization. Thus, eosinophils can be critical contributors to the intestinal immune system, and granule-mediated shaping of DC responses can promote both intestinal and extraintestinal adaptive immunity. PMID:25071163

  5. Indigenous enteric eosinophils control DCs to initiate a primary Th2 immune response in vivo.

    PubMed

    Chu, Derek K; Jimenez-Saiz, Rodrigo; Verschoor, Christopher P; Walker, Tina D; Goncharova, Susanna; Llop-Guevara, Alba; Shen, Pamela; Gordon, Melissa E; Barra, Nicole G; Bassett, Jennifer D; Kong, Joshua; Fattouh, Ramzi; McCoy, Kathy D; Bowdish, Dawn M; Erjefält, Jonas S; Pabst, Oliver; Humbles, Alison A; Kolbeck, Roland; Waserman, Susan; Jordana, Manel

    2014-07-28

    Eosinophils natively inhabit the small intestine, but a functional role for them there has remained elusive. Here, we show that eosinophil-deficient mice were protected from induction of Th2-mediated peanut food allergy and anaphylaxis, and Th2 priming was restored by reconstitution with il4(+/+) or il4(-/-) eosinophils. Eosinophils controlled CD103(+) dendritic cell (DC) activation and migration from the intestine to draining lymph nodes, events necessary for Th2 priming. Eosinophil activation in vitro and in vivo led to degranulation of eosinophil peroxidase, a granule protein whose enzymatic activity promoted DC activation in mice and humans in vitro, and intestinal and extraintestinal mouse DC activation and mobilization to lymph nodes in vivo. Further, eosinophil peroxidase enhanced responses to ovalbumin seen after immunization. Thus, eosinophils can be critical contributors to the intestinal immune system, and granule-mediated shaping of DC responses can promote both intestinal and extraintestinal adaptive immunity. PMID:25071163

  6. Direct transesterification of fresh microalgal cells.

    PubMed

    Liu, Jiao; Liu, Yanan; Wang, Haitao; Xue, Song

    2015-01-01

    Transesterification of lipids is a vital step during the processes of both biodiesel production and fatty acid analysis. By comparing the yields and fatty acid profiles obtained from microalgal oil and dry microalgal cells, the reliability of method for the transesterification of micro-scale samples was tested. The minimum amount of microalgal cells needed for accurate analysis was found to be approximately 300μg dry cells. This direct transesterification method of fresh cells was applied to eight microalgal species, and the results indicate that the efficiency of the developed method is identical to that of conventional method, except for Spirulina whose lipid content is very low, which means the total lipid content should been considered. PMID:25467001

  7. Persistent neural activity in head direction cells

    NASA Technical Reports Server (NTRS)

    Taube, Jeffrey S.; Bassett, Joshua P.; Oman, C. M. (Principal Investigator)

    2003-01-01

    Many neurons throughout the rat limbic system discharge in relation to the animal's directional heading with respect to its environment. These so-called head direction (HD) cells exhibit characteristics of persistent neural activity. This article summarizes where HD cells are found, their major properties, and some of the important experiments that have been conducted to elucidate how this signal is generated. The number of HD and angular head velocity cells was estimated for several brain areas involved in the generation of the HD signal, including the postsubiculum, anterior dorsal thalamus, lateral mammillary nuclei and dorsal tegmental nucleus. The HD cell signal has many features in common with what is known about how neural integration is accomplished in the oculomotor system. The nature of the HD cell signal makes it an attractive candidate for using neural network models to elucidate the signal's underlying mechanisms. The conditions that any network model must satisfy in order to accurately represent how the nervous system generates this signal are highlighted and areas where key information is missing are discussed.

  8. Direct FuelCell/Turbine Power Plant

    SciTech Connect

    Hossein Ghezel-Ayagh

    2004-11-19

    This report includes the progress in development of Direct Fuel Cell/Turbine. (DFC/T.) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. FCE successfully completed testing of the pre-alpha sub-MW DFC/T power plant. This power plant was constructed by integration of a 250kW fuel cell stack and a microturbine. Following these proof-of-concept tests, a stand-alone test of the microturbine verified the turbine power output expectations at an elevated (representative of the packaged unit condition) turbine inlet temperature. Preliminary design of the packaged sub-MW alpha DFC/T unit has been completed and procurement activity has been initiated. The preliminary design of a 40 MW power plant including the key equipment layout and the site plan was completed. A preliminary cost estimate for the 40 MW DFC/T plant has also been prepared. The tests of the cascaded fuel cell concept for achieving high fuel utilizations were completed. The tests demonstrated that the concept results in higher power plant efficiency. Alternate stack flow geometries for increased power output/fuel utilization capabilities are also being evaluated.

  9. Prostaglandin D2 pathway upregulation: Relation to asthma severity, control, and TH2 inflammation

    PubMed Central

    Fajt, Merritt L.; Gelhaus, Stacy L.; Freeman, Bruce; Uvalle, Crystal E.; Trudeau, John B.; Holguin, Fernando; Wenzel, Sally E.

    2013-01-01

    Background Bronchoalveolar lavage (BAL) fluid prostaglandin D2 (PGD2) levels are increased in patients with severe, poorly controlled asthma in association with epithelial mast cells (MCs). PGD2, which is generated by hematopoietic prostaglandin D synthase (HPGDS), acts on 3 G protein–coupled receptors, including chemoattractant receptor–homologous molecule expressed on TH2 lymphocytes (CRTH2) and PGD2 receptor 1 (DP1). However, much remains to be understood regarding the presence and activation of these pathway elements in asthmatic patients. Objective We sought to compare the expression and activation of PGD2 pathway elements in bronchoscopically obtained samples from healthy control subjects and asthmatic patients across a range of disease severity and control, as well as in relation to TH2 pathway elements. Methods Epithelial cells and BAL fluid were evaluated for HPGDS (quantitative real-time PCR/immunohistochemistry [IHC]) and PGD2 (ELISA/liquid chromatography mass spectrometry) in relation to levels of MC proteases. Expression of the 2 inflammatory cell receptors DP1 and CRTH2 was evaluated on luminal cells. These PGD2 pathway markers were then compared with asthma severity, level of control, and markers of TH2 inflammation (blood eosinophils and fraction of exhaled nitric oxide). Results Confirming previous results, BAL fluid PGD2 levels were highest in patients with severe asthma (overall P = .0001). Epithelial cell compartment HPGDS mRNA and IHC values differed among groups (P = .008 and P < .0001, respectively) and correlated with MC protease mRNA. CRTH2 mRNA and IHC values were highest in patients with severe asthma (P = .001 and P = .0001, respectively). Asthma exacerbations, poor asthma control, and TH2 inflammatory markers were associated with higher PGD2, HPGDS, and CRTH2 levels. Conclusion The current study identifies coordinated upregulation of the PGD2 pathway in patients with severe, poorly controlled, TH2-high asthma despite corticosteroid

  10. Th2 differentiation is necessary for soft tissue fibrosis and lymphatic dysfunction resulting from lymphedema

    PubMed Central

    Avraham, Tomer; Zampell, Jamie C.; Yan, Alan; Elhadad, Sonia; Weitman, Evan S.; Rockson, Stanley G.; Bromberg, Jacqueline; Mehrara, Babak J.

    2013-01-01

    Lymphedema is a dreaded complication of cancer treatment. However, despite the fact that >5 million Americans are affected by this disorder, the development of effective treatments is limited by the fact that the pathology of lymphedema remains unknown. The purpose of these studies was to determine the role of inflammatory responses in lymphedema pathology. Using mouse models of lymphedema, as well as clinical lymphedema specimens, we show that lymphatic stasis results in a CD4+ T-cell inflammation and T-helper 2 (Th2) differentiation. Using mice deficient in T cells or CD4+ cells, we show that this inflammatory response is necessary for the pathological changes of lymphedema, including fibrosis, adipose deposition, and lymphatic dysfunction. Further, we show that inhibition of Th2 differentiation using interleukin-4 (IL-4) or IL-13 blockade prevents initiation and progression of lymphedema by decreasing tissue fibrosis and significantly improving lymphatic function, independent of lymphangiogenic growth factors. We show that CD4+ inflammation is a critical regulator of tissue fibrosis and lymphatic dysfunction in lymphedema and that inhibition of Th2 differentiation markedly improves lymphatic function independent of lymphangiogenic cytokine expression. Notably, preventing and/or reversing the development of pathological tissue changes that occur in lymphedema may be a viable treatment strategy for this disorder.—Avraham, T., Zampell, J. C., Yan, A., Elhadad, S., Weitman, E. S., Rockson, S. G., Bromberg, J., Mehrara, B. J. Th2 differentiation is necessary for soft tissue fibrosis and lymphatic dysfunction resulting from lymphedema. PMID:23193171