Science.gov

Sample records for direct-conversion flat-panel imager

  1. Direct-conversion flat-panel imager with avalanche gain: Feasibility investigation for HARP-AMFPI

    SciTech Connect

    Wronski, M. M.; Rowlands, J. A.

    2008-12-15

    The authors are investigating the concept of a direct-conversion flat-panel imager with avalanche gain for low-dose x-ray imaging. It consists of an amorphous selenium (a-Se) photoconductor partitioned into a thick drift region for x-ray-to-charge conversion and a relatively thin region called high-gain avalanche rushing photoconductor (HARP) in which the charge undergoes avalanche multiplication. An active matrix of thin film transistors is used to read out the electronic image. The authors call the proposed imager HARP active matrix flat panel imager (HARP-AMFPI). The key advantages of HARP-AMFPI are its high spatial resolution, owing to the direct-conversion a-Se layer, and its programmable avalanche gain, which can be enabled during low dose fluoroscopy to overcome electronic noise and disabled during high dose radiography to prevent saturation of the detector elements. This article investigates key design considerations for HARP-AMFPI. The effects of electronic noise on the imaging performance of HARP-AMFPI were modeled theoretically and system parameters were optimized for radiography and fluoroscopy. The following imager properties were determined as a function of avalanche gain: (1) the spatial frequency dependent detective quantum efficiency; (2) fill factor; (3) dynamic range and linearity; and (4) gain nonuniformities resulting from electric field strength nonuniformities. The authors results showed that avalanche gains of 5 and 20 enable x-ray quantum noise limited performance throughout the entire exposure range in radiography and fluoroscopy, respectively. It was shown that HARP-AMFPI can provide the required gain while maintaining a 100% effective fill factor and a piecewise dynamic range over five orders of magnitude (10{sup -7}-10{sup -2} R/frame). The authors have also shown that imaging performance is not significantly affected by the following: electric field strength nonuniformities, avalanche noise for x-ray energies above 1 keV and direct

  2. Direct-conversion flat-panel imager with avalanche gain: feasibility investigation for HARP-AMFPI.

    PubMed

    Wronski, M M; Rowlands, J A

    2008-12-01

    The authors are investigating the concept of a direct-conversion flat-panel imager with avalanche gain for low-dose x-ray imaging. It consists of an amorphous selenium (a-Se) photoconductor partitioned into a thick drift region for x-ray-to-charge conversion and a relatively thin region called high-gain avalanche rushing photoconductor (HARP) in which the charge undergoes avalanche multiplication. An active matrix of thin film transistors is used to read out the electronic image. The authors call the proposed imager HARP active matrix flat panel imager (HARP-AMFPI). The key advantages of HARP-AMFPI are its high spatial resolution, owing to the direct-conversion a-Se layer, and its programmable avalanche gain, which can be enabled during low dose fluoroscopy to overcome electronic noise and disabled during high dose radiography to prevent saturation of the detector elements. This article investigates key design considerations for HARP-AMFPI. The effects of electronic noise on the imaging performance of HARP-AMFPI were modeled theoretically and system parameters were optimized for radiography and fluoroscopy. The following imager properties were determined as a function of avalanche gain: (1) the spatial frequency dependent detective quantum efficiency; (2) fill factor; (3) dynamic range and linearity; and (4) gain nonuniformities resulting from electric field strength nonuniformities. The authors results showed that avalanche gains of 5 and 20 enable x-ray quantum noise limited performance throughout the entire exposure range in radiography and fluoroscopy, respectively. It was shown that HARP-AMFPI can provide the required gain while maintaining a 100% effective fill factor and a piecewise dynamic range over five orders of magnitude (10(-7)-10(-2) R/frame). The authors have also shown that imaging performance is not significantly affected by the following: electric field strength nonuniformities, avalanche noise for x-ray energies above 1 keV and direct interaction

  3. Direct-conversion flat-panel imager with avalanche gain: Feasibility investigation for HARP-AMFPI

    PubMed Central

    Wronski, M. M.; Rowlands, J. A.

    2008-01-01

    The authors are investigating the concept of a direct-conversion flat-panel imager with avalanche gain for low-dose x-ray imaging. It consists of an amorphous selenium (a-Se) photoconductor partitioned into a thick drift region for x-ray-to-charge conversion and a relatively thin region called high-gain avalanche rushing photoconductor (HARP) in which the charge undergoes avalanche multiplication. An active matrix of thin film transistors is used to read out the electronic image. The authors call the proposed imager HARP active matrix flat panel imager (HARP-AMFPI). The key advantages of HARP-AMFPI are its high spatial resolution, owing to the direct-conversion a-Se layer, and its programmable avalanche gain, which can be enabled during low dose fluoroscopy to overcome electronic noise and disabled during high dose radiography to prevent saturation of the detector elements. This article investigates key design considerations for HARP-AMFPI. The effects of electronic noise on the imaging performance of HARP-AMFPI were modeled theoretically and system parameters were optimized for radiography and fluoroscopy. The following imager properties were determined as a function of avalanche gain: (1) the spatial frequency dependent detective quantum efficiency; (2) fill factor; (3) dynamic range and linearity; and (4) gain nonuniformities resulting from electric field strength nonuniformities. The authors results showed that avalanche gains of 5 and 20 enable x-ray quantum noise limited performance throughout the entire exposure range in radiography and fluoroscopy, respectively. It was shown that HARP-AMFPI can provide the required gain while maintaining a 100% effective fill factor and a piecewise dynamic range over five orders of magnitude (10−7–10−2 R∕frame). The authors have also shown that imaging performance is not significantly affected by the following: electric field strength nonuniformities, avalanche noise for x-ray energies above 1 keV and direct

  4. Amorphous and Polycrystalline Photoconductors for Direct Conversion Flat Panel X-Ray Image Sensors

    PubMed Central

    Kasap, Safa; Frey, Joel B.; Belev, George; Tousignant, Olivier; Mani, Habib; Greenspan, Jonathan; Laperriere, Luc; Bubon, Oleksandr; Reznik, Alla; DeCrescenzo, Giovanni; Karim, Karim S.; Rowlands, John A.

    2011-01-01

    In the last ten to fifteen years there has been much research in using amorphous and polycrystalline semiconductors as x-ray photoconductors in various x-ray image sensor applications, most notably in flat panel x-ray imagers (FPXIs). We first outline the essential requirements for an ideal large area photoconductor for use in a FPXI, and discuss how some of the current amorphous and polycrystalline semiconductors fulfill these requirements. At present, only stabilized amorphous selenium (doped and alloyed a-Se) has been commercialized, and FPXIs based on a-Se are particularly suitable for mammography, operating at the ideal limit of high detective quantum efficiency (DQE). Further, these FPXIs can also be used in real-time, and have already been used in such applications as tomosynthesis. We discuss some of the important attributes of amorphous and polycrystalline x-ray photoconductors such as their large area deposition ability, charge collection efficiency, x-ray sensitivity, DQE, modulation transfer function (MTF) and the importance of the dark current. We show the importance of charge trapping in limiting not only the sensitivity but also the resolution of these detectors. Limitations on the maximum acceptable dark current and the corresponding charge collection efficiency jointly impose a practical constraint that many photoconductors fail to satisfy. We discuss the case of a-Se in which the dark current was brought down by three orders of magnitude by the use of special blocking layers to satisfy the dark current constraint. There are also a number of polycrystalline photoconductors, HgI2 and PbO being good examples, that show potential for commercialization in the same way that multilayer stabilized a-Se x-ray photoconductors were developed for commercial applications. We highlight the unique nature of avalanche multiplication in a-Se and how it has led to the development of the commercial HARP video-tube. An all solid state version of the HARP has been

  5. Amorphous and polycrystalline photoconductors for direct conversion flat panel x-ray image sensors.

    PubMed

    Kasap, Safa; Frey, Joel B; Belev, George; Tousignant, Olivier; Mani, Habib; Greenspan, Jonathan; Laperriere, Luc; Bubon, Oleksandr; Reznik, Alla; DeCrescenzo, Giovanni; Karim, Karim S; Rowlands, John A

    2011-01-01

    In the last ten to fifteen years there has been much research in using amorphous and polycrystalline semiconductors as x-ray photoconductors in various x-ray image sensor applications, most notably in flat panel x-ray imagers (FPXIs). We first outline the essential requirements for an ideal large area photoconductor for use in a FPXI, and discuss how some of the current amorphous and polycrystalline semiconductors fulfill these requirements. At present, only stabilized amorphous selenium (doped and alloyed a-Se) has been commercialized, and FPXIs based on a-Se are particularly suitable for mammography, operating at the ideal limit of high detective quantum efficiency (DQE). Further, these FPXIs can also be used in real-time, and have already been used in such applications as tomosynthesis. We discuss some of the important attributes of amorphous and polycrystalline x-ray photoconductors such as their large area deposition ability, charge collection efficiency, x-ray sensitivity, DQE, modulation transfer function (MTF) and the importance of the dark current. We show the importance of charge trapping in limiting not only the sensitivity but also the resolution of these detectors. Limitations on the maximum acceptable dark current and the corresponding charge collection efficiency jointly impose a practical constraint that many photoconductors fail to satisfy. We discuss the case of a-Se in which the dark current was brought down by three orders of magnitude by the use of special blocking layers to satisfy the dark current constraint. There are also a number of polycrystalline photoconductors, HgI(2) and PbO being good examples, that show potential for commercialization in the same way that multilayer stabilized a-Se x-ray photoconductors were developed for commercial applications. We highlight the unique nature of avalanche multiplication in a-Se and how it has led to the development of the commercial HARP video-tube. An all solid state version of the HARP has been

  6. TU-F-18C-02: Increasing Amorphous Selenium Thickness in Direct Conversion Flat-Panel Imagers for Contrast-Enhanced Dual-Energy Breast Imaging

    SciTech Connect

    Scaduto, DA; Hu, Y-H; Zhao, W

    2014-06-15

    Purpose: Contrast-enhanced (CE) breast imaging using iodinated contrast agents requires imaging with x-ray spectra at energies greater than those used in mammography. Optimizing amorphous selenium (a-Se) flat panel imagers (FPI) for this higher energy range may increase lesion conspicuity. Methods: We compare imaging performance of a conventional FPI with 200 μm a-Se conversion layer to a prototype FPI with 300 μm a-Se layer. Both detectors are evaluated in a Siemens MAMMOMAT Inspiration prototype digital breast tomosynthesis (DBT) system using low-energy (W/Rh 28 kVp) and high-energy (W/Cu 49 kVp) x-ray spectra. Detectability of iodinated lesions in dual-energy images is evaluated using an iodine contrast phantom. Effects of beam obliquity are investigated in projection and reconstructed images using different reconstruction methods. The ideal observer signal-to-noise ratio is used as a figure-of-merit to predict the optimal a-Se thickness for CE lesion detectability without compromising conventional full-field digital mammography (FFDM) and DBT performance. Results: Increasing a-Se thickness from 200 μm to 300 μm preserves imaging performance at typical mammographic energies (e.g. W/Rh 28 kVp), and improves the detective quantum efficiency (DQE) for high energy (W/Cu 49 kVp) by 30%. While the more penetrating high-energy x-ray photons increase geometric blur due to beam obliquity in the FPI with thicker a-Se layer, the effect on lesion detectability in FBP reconstructions is negligible due to the reconstruction filters employed. Ideal observer SNR for CE objects shows improvements in in-plane detectability with increasing a-Se thicknesses, though small lesion detectability begins to degrade in oblique projections for a-Se thickness above 500 μm. Conclusion: Increasing a-Se thickness in direct conversion FPI from 200 μm to 300 μm improves lesion detectability in CE breast imaging with virtually no cost to conventional FFDM and DBT. This work was partially

  7. The Usefulness of Three-Dimensional Angiography with a Flat Panel Detector of Direct Conversion Type in a Transcatheter Arterial Chemoembolization Procedure for Hepatocellular Carcinoma: Initial Experience

    SciTech Connect

    Kakeda, Shingo Korogi, Yukunori; Hatakeyama, Yoshihisa; Ohnari, Norihiro; Oda, Nobuhiro; Nishino, Kazuyoshi; Miyamoto, Wataru

    2008-03-15

    The purpose of this study was to assess the usefulness of a three-dimensional (3D) angiography system using a flat panel detector of direct conversion type in treatments with subsegmental transcatheter arterial chemoembolization (TACE) for hepatocellular carcinomas (HCCs). Thirty-six consecutive patients who underwent hepatic angiography were prospectively examined. First, two radiologists evaluated the degree of visualization of the peripheral branches of the hepatic arteries on 3D digital subtraction angiography (DSA). Then the radiologists evaluated the visualization of tumor staining and feeding arteries in 25 patients (30 HCCs) who underwent subsegmental TACE. The two radiologists who performed the TACE assessed whether the additional information provided by 3D DSA was useful for treatments. In 34 (94.4%) of 36 patients, the subsegmental branches of the hepatic arteries were sufficiently visualized. The feeding arteries of HCCs were sufficiently visualized in 28 (93%) of 30 HCCs, whereas tumor stains were sufficiently visualized in 18 (60%). Maximum intensity projection images were significantly superior to volume recording images for visualization of the tumor staining and feeding arteries of HCCs. In 27 (90%) of 30 HCCs, 3D DSA provided additional useful information for subsegmental TACE. The high-quality 3D DSA with flat panel detector angiography system provided a precise vascular road map, which was useful for performing subsegmental TACE .of HCCs.

  8. Solid-state flat panel imager with avalanche amorphous selenium

    NASA Astrophysics Data System (ADS)

    Scheuermann, James R.; Howansky, Adrian; Goldan, Amir H.; Tousignant, Olivier; Levéille, Sébastien; Tanioka, K.; Zhao, Wei

    2016-03-01

    Active matrix flat panel imagers (AMFPI) have become the dominant detector technology for digital radiography and fluoroscopy. For low dose imaging, electronic noise from the amorphous silicon thin film transistor (TFT) array degrades imaging performance. We have fabricated the first prototype solid-state AMFPI using a uniform layer of avalanche amorphous selenium (a-Se) photoconductor to amplify the signal to eliminate the effect of electronic noise. We have previously developed a large area solid-state avalanche a-Se sensor structure referred to as High Gain Avalanche Rushing Photoconductor (HARP) capable of achieving gains of 75. In this work we successfully deposited this HARP structure onto a 24 x 30 cm2 TFT array with a pixel pitch of 85 μm. An electric field (ESe) up to 105 Vμm-1 was applied across the a-Se layer without breakdown. Using the HARP layer as a direct detector, an X-ray avalanche gain of 15 +/- 3 was achieved at ESe = 105 Vμm-1. In indirect mode with a 150 μm thick structured CsI scintillator, an optical gain of 76 +/- 5 was measured at ESe = 105 Vμm-1. Image quality at low dose increases with the avalanche gain until the electronic noise is overcome at a constant exposure level of 0.76 mR. We demonstrate the success of a solid-state HARP X-ray imager as well as the largest active area HARP sensor to date.

  9. Usefulness of direct-conversion flat-panel detector system as a quality assurance tool for high-dose-rate 192Ir source.

    PubMed

    Miyahara, Yoshinori; Kitagaki, Hajime; Nishimura, Tomonori; Itakura, Kanae; Takahashi, Shinobu; Yokokawa, Masaki; Uchida, Nobue; Inomata, Taisuke

    2015-01-01

    The routine quality assurance (QA) procedure for a high-dose-rate (HDR) 192Ir radioactive source is an important task to provide appropriate brachytherapy. Traditionally, it has been difficult to obtain good quality images using the 192Ir source due to irradiation from the high-energy gamma rays. However, a direct-conversion flat-panel detector (d-FPD) has made it possible to confirm the localization and configuration of the 192Ir source. The purpose of the present study was to evaluate positional and temporal accuracy of the 192Ir source using a d-FPD system, and the usefulness of d-FPD as a QA tool. As a weekly verification of source positional accuracy test, we obtained 192Ir core imaging by single-shot radiography for three different positions (1300/1400/1500 mm) of a check ruler. To acquire images for measurement of the 192Ir source movement distance with varying interval steps (2.5/5.0/10.0 mm) and temporal accuracy, we used the high-speed image acquisition technique and digital subtraction. For accuracy of the 192Ir source dwell time, sequential images were obtained using various dwell times ranging from 0.5 to 30.0 sec, and the acquired number of image frames was assessed. Analysis of the data was performed using the measurement analysis function of the d-FPD system. Although there were slight weekly variations in source positional accuracy, the measured positional errors were less than 1.0 mm. For source temporal accuracy, the temporal errors were less than 1.0%, and the correlation between acquired frames and programmed time showed excellent linearity (R2 = 1). All 192Ir core images were acquired clearly without image halation, and the data were obtained quantitatively. All data were successfully stored in the picture archiving and communication system (PACS) for time-series analysis. The d-FPD is considered useful as the QA tool for the 192Ir source. PMID:25679163

  10. Investigation of image lag and modulation transfer function in fluoroscopy images obtained with a dynamic flat-panel detector.

    PubMed

    Kawashima, Hiroki; Tanaka, Rie; Ichikawa, Katsuhiro; Matsubara, Kosuke; Iida, Hiroji; Sanada, Shigeru

    2013-07-01

    Digital imaging with a dynamic flat-panel detector (FPD) is commonly used in clinical practice. However, several factors reduce the accuracy of target tracking in fluoroscopic imaging, including image lag and blurring. There have been several reports focusing on the modulation transfer function (MTF), noise power spectrum (NPS), and detective quantum efficiency (DQE) in different types of FPD. However, there have been no studies comparing image lag and MTF properties in dynamic images obtained with indirect- and direct-conversion FPDs. We investigated the image lag and MTF under several imaging conditions in fluoroscopic images obtained with an indirect-conversion and a direct-conversion FPD system. The measurements of image lag and MTF were obtained under several conditions according to IEC 62220-1-3 standards. We examined whether the image lag and MTF were influenced by the dose level and target movement speed. Indirect-conversion FPD showed dependence on the dose level, which was not observed for direct-conversion FPD. Furthermore, there were large differences in MTF between images of static and moving plate with indirect-conversion FPD in comparison to the differences observed with direct-conversion FPD. These results will be useful for the determination of imaging conditions for target tracking and other types of dynamic imaging. PMID:23568338

  11. Solid-state, flat-panel, digital radiography detectors and their physical imaging characteristics.

    PubMed

    Cowen, A R; Kengyelics, S M; Davies, A G

    2008-05-01

    Solid-state, digital radiography (DR) detectors, designed specifically for standard projection radiography, emerged just before the turn of the millennium. This new generation of digital image detector comprises a thin layer of x-ray absorptive material combined with an electronic active matrix array fabricated in a thin film of hydrogenated amorphous silicon (a-Si:H). DR detectors can offer both efficient (low-dose) x-ray image acquisition plus on-line readout of the latent image as electronic data. To date, solid-state, flat-panel, DR detectors have come in two principal designs, the indirect-conversion (x-ray scintillator-based) and the direct-conversion (x-ray photoconductor-based) types. This review describes the underlying principles and enabling technologies exploited by these designs of detector, and evaluates their physical imaging characteristics, comparing performance both against each other and computed radiography (CR). In standard projection radiography indirect conversion DR detectors currently offer superior physical image quality and dose efficiency compared with direct conversion DR and modern point-scan CR. These conclusions have been confirmed in the findings of clinical evaluations of DR detectors. Future trends in solid-state DR detector technologies are also briefly considered. Salient innovations include WiFi-enabled, portable DR detectors, improvements in x-ray absorber layers and developments in alternative electronic media to a-Si:H. PMID:18374710

  12. Measurement of the electrical properties of a polycrystalline cadmium telluride for direct conversion flat panel x-ray detector

    NASA Astrophysics Data System (ADS)

    Oh, K. M.; kim, D. K.; Shin, J. W.; Heo, S. U.; Kim, J. S.; Park, J. G.; Nam, S. H.

    2014-01-01

    Cadmium telluride (CdTe) is one of the best candidate direct conversion material for medical X-ray application because it satisfies the requirements of direct conversion x-ray material such as high atomic absorption, density, bandgap energy, work fuction, and resistivity. With such properties, single crystal CdTe exhibits high quantum efficiency and charge collection efficiency. However, for the development of low-cost large area detector, the study of the improvement of polycrystalline CdTe property is desirable. In this study, in order to improve the properties of polycrystalline CdTe, we produced polycrystalline CdTe with different kinds of raw materials, high purity Cd and Te powder compounds and bulk CdTe compound synthesized from single crystal CdTe. The electric properties including resistivity, x-ray sensitivity, and charge transport properties were investigated. As a result, polycrystalline CdTe exhibited simular level of resistivity and x-ray sensitivity to single crystal CdTe. The carrier transport properties of polycrystalline CdTe showed poorer properties than those of single crystal CdTe due to significant charge trapping. However, the polycrystalline CdTe fabricated with bulk CdTe compound synthesized from single crystal CdTe showed better charge transport properties than the polycrystalline CdTe fabricated with CdTe powder compounds. This is suitable for diagnostic x-ray detectors, especially for digital fluoroscopy.

  13. X-ray imaging with amorphous silicon active matrix flat-panel imagers (AMFPIs)

    NASA Astrophysics Data System (ADS)

    El-Mohri, Youcef; Antonuk, Larry E.; Jee, Kyung-Wook; Maolinbay, Manat; Rong, Xiujiang; Siewerdsen, Jeffrey H.; Verma, Manav; Zhao, Qihua

    1997-07-01

    Recent advances in thin-film electronics technology have opened the way for the use of flat-panel imagers in a number of medical imaging applications. These novel imagers offer real time digital readout capabilities (˜30 frames per second), radiation hardness (>106cGy), large area (30×40 cm2) and compactness (˜1 cm). Such qualities make them strong candidates for the replacement of conventional x-ray imaging technologies such as film-screen and image intensifier systems. In this report, qualities and potential of amorphous silicon based active matrix flat-panel imagers are outlined for various applications such as radiation therapy, radiography, fluoroscopy and mammography.

  14. Calibration of an amorphous-silicon flat panel portal imager for exit-beam dosimetry

    SciTech Connect

    Chen, Josephine; Chuang, Cynthia F.; Morin, Olivier; Aubin, Michele; Pouliot, Jean

    2006-03-15

    Amorphous-silicon flat panel detectors are currently used to acquire digital portal images with excellent image quality for patient alignment before external beam radiation therapy. As a first step towards interpreting portal images acquired during treatment in terms of the actual dose delivered to the patient, a calibration method is developed to convert flat panel portal images to the equivalent water dose deposited in the detector plane and at a depth of 1.5 cm. The method is based on empirical convolution models of dose deposition in the flat panel detector and in water. A series of calibration experiments comparing the response of the flat panel imager and ion chamber measurements of dose in water determines the model parameters. Kernels derived from field size measurements account for the differences in the production and detection of scattered radiation in the two systems. The dissimilar response as a function of beam energy spectrum is characterized from measurements performed at various off-axis positions and for increasing attenuator thickness in the beam. The flat panel pixel inhomogeneity is corrected by comparing a large open field image with profiles measured in water. To verify the accuracy of the calibration method, calibrated flat panel profiles were compared with measured dose profiles for fields delivered through solid water slabs, a solid water phantom containing an air cavity, and an anthropomorphic head phantom. Open rectangular fields of various sizes and locations as well as a multileaf collimator-shaped field were delivered. For all but the smallest field centered about the central axis, the calibrated flat panel profiles matched the measured dose profiles with little or no systematic deviation and approximately 3% (two standard deviations) accuracy for the in-field region. The calibrated flat panel profiles for fields located off the central axis showed a small -1.7% systematic deviation from the measured profiles for the in-field region

  15. A new x-ray imaging technique for radiography mode of flat-panel imager

    NASA Astrophysics Data System (ADS)

    Suzuki, K.; Ikeda, S.; Ueda, K.; Baba, R.

    2007-03-01

    A digital radiography system using a flat-panel imager, which has a novel imaging technique for a radiography mode, has been developed. A radiographic image captured by the new imaging technique has a wide dynamic range in comparison with conventional radiographic images. The purpose of this presentation is to show the basic performance of the image quality acquired by the new imaging technique and compare it with an image taken by a conventional technique. The flat-panel imager has a gain switching capability, normally used in a dynamic imaging mode for a cone-beam CT study. The gain switching method has two gain settings and switches between them automatically, depending on the incident dose to each pixel of flat-panel imager. As a result of the gain switching method, an image having wide dynamic range is achieved. In this study, we applied the gain switching method to the radiography mode, and achieved a radiographic image with wider dynamic range than a conventional radiograph. Furthermore, we have also developed an algorithm for calibration of the gain switching method in radiography mode.

  16. Flat-panel see-through three-dimensional display based on integral imaging.

    PubMed

    Takaki, Yasuhiro; Yamaguchi, Yuta

    2015-04-15

    This study proposes a technique to construct a flat-panel see-through three-dimensional (3D) display based on integral imaging. This display consists of multiple lens arrays, a transparent flat-panel display, and a light-blocking wall (LBW). Rays behind the display are reconstructed in front of it by combination of the lens arrays and the LBW to provide the see-through function. The combination of one of the lens arrays and the transparent flat-panel display produces full-parallax 3D images, which are superimposed on background images. The experimental system is constructed to verify the proposed technique. The see-through and superposition capabilities of the experimental system are demonstrated. PMID:25872096

  17. Signal, noise, and detective quantum efficiency of amorphous-silicon:hydrogen flat-panel imagers

    NASA Astrophysics Data System (ADS)

    Siewerdsen, Jeffrey Harold

    Flat-panel imagers based upon the technology of thin-film amorphous silicon transistors and photodiodes are under investigation for a wide variety of medical imaging applications. This thesis presents quantitative empirical and theoretical investigations of the imaging performance of such imaging systems. Performance was evaluated in terms of imager signal size, spatial resolution, noise characteristics, and signal-to-noise ratio for a wide variety of imaging system configurations and exposure conditions relevant to medical imaging. A theoretical model based upon cascaded systems analysis allowed prediction of imager signal, noise, and detective quantum efficiency (DQE), and theoretical results were found to agree well with empirical measurements. The empirical and theoretical analyses yielded quantification of the performance of existing imager designs, allowed investigation of the potential performance of future flat-panel imaging systems, and provided a methodology for identifying optimal imager configurations for various applications and imaging tasks. There is every indication that flat-panel imagers could provide performance superior to that of existing clinical imaging technologies. For example, in general x-ray radiography, mammography, and radiotherapy portal imaging, such systems could provide DQE exceeding 60%, 80%, and 1.5%, respectively, approximately twice that of film-based systems. However, for applications involving very low exposures per image, e.g., real-time fluoroscopy, such systems may suffer from reduced signal-to-noise ratio. The analyses developed in this thesis provide an effective means of identifying strategies for improved imager performance and will facilitate the realization of optimized flat-panel imagers that physically achieve their maximum theoretical performance.

  18. Using Flat-Panel Perfusion Imaging to Measure Cerebral Hemodynamics

    PubMed Central

    Lin, Chung-Jung; Guo, Wan-Yuo; Chang, Feng-Chi; Hung, Sheng-Che; Chen, Ko-Kung; Yu, Deuerling-Zheng; Wu, Chun-Hsien Frank; Liou, Jy-Kang Adrian

    2016-01-01

    Abstract Flat-detector CT perfusion (FD-CTP) imaging has demonstrated efficacy in qualitatively accessing the penumbra in acute stroke equivalent to that of magnetic resonance perfusion (MRP). The aim of our study was to evaluate the feasibility of quantifying oligemia in the brain in patients with carotid stenosis. Ten patients with unilateral carotid stenosis of >70% were included. All MRPs and FD-CTPs were performed before stenting. Region-of-interests (ROIs) including middle cerebral artery territory at basal ganglia level on both stenotic and contralateral sides were used for quantitative analysis. Relative time to peak (rTTP) was defined as TTP of the stenotic side divided by TTP of the contralateral side, and so as relative cerebral blood volume (rCBV), relative mean transit time (rMTT), and relative cerebral blood flow (rCBF). Absolute and relative TTP, CBV, MTT, CBF between two modalities were compared. For absolute quantitative analysis, the correlation of TTP was highest (r = 0.56), followed by CBV (r = 0.47), MTT (r = 0.47), and CBF (r = 0.43); for relative quantitative analysis, rCBF was the highest (r = 0.79), followed by rTTP (r = 0.75) and rCBV (r = 0.50). We confirmed that relative quantitative assessment of FD-CTP is feasible in chronic ischemic disease. Absolute quantitative measurements between MRP and FD-CTP only expressed moderate correlations. Optimization of acquisitions and algorithms is warranted to achieve better quantification. PMID:27196456

  19. Evaluation of the mechanical stability of a megavoltage imaging system using a new flat panel positioner

    NASA Astrophysics Data System (ADS)

    Morin, O.; Chen, J.; Aubin, M.; Pouliot, J.

    2005-04-01

    Mega-Voltage systems are used in radiation oncology both for external radiation delivery and patient positioning prior to treatment. A pair of portal images compared with digitally reconstructed radiographs is currently the gold standard for positioning but new developments have made possible the use of Mega-Voltage Cone Beam CT for better 3D setup. The non-ideal imaging geometry of the treatment unit has a direct impact on both methods. It led to the use of a reticule attachment as reference for the scale and the isocenter position on the portal images. The reticule has limited precision and occasionally super-imposes anatomical information. As for Cone Beam, the image quality crucially depends on the knowledge of the scan geometry during the acquisition. The reproducibility of the detector position at each angle will affect the image reconstruction and determine how frequently geometrical calibration must be performed. The objectives of this study are to measure the flex of the detector and evaluate its reproducibility. A RID 1640 Perkin Elmer a-Si Flat Panel is installed on a Siemens Primus linear accelerator with a positioner similar the the one used in the Oncor product. Three original methods are used to investigate the behavior in space and time of the imaging system. A reticule and a Plumb Bob tip are placed along the line formed by the isocenter and the source. Their positions projected on the flat panel for different gantry positions are used to calculate the mechanical flex. Projection matrices obtained in a geometrical Cone Beam calibration are also used to quantify the flat panel sagging. Six full sets of data were acquired over a period of 5 months and recorded overall mechanical flexes of 1 and 3 mm for the transversal and longitudinal directions respectively. The absolute magnitude of the flat panel displacement varies slightly with the method used but the discrepancy stays within the laser precision used for alignment. The small standard deviations

  20. Tracking brachytherapy sources using emission imaging with one flat panel detector

    SciTech Connect

    Song Haijun; Bowsher, James; Das, Shiva; Yin Fangfang

    2009-04-15

    This work proposes to use the radiation from brachytherapy sources to track their dwell positions in three-dimensional (3D) space. The prototype device uses a single flat panel detector and a BB tray. The BBs are arranged in a defined pattern. The shadow of the BBs on the flat panel is analyzed to derive the 3D coordinates of the illumination source, i.e., the dwell position of the brachytherapy source. A kilovoltage x-ray source located 3.3 m away was used to align the center BB with the center pixel on the flat panel detector. For a test plan of 11 dwell positions, with an Ir-192 high dose rate unit, one projection was taken for each dwell point, and locations of the BB shadows were manually identified on the projection images. The 3D coordinates for the 11 dwell positions were reconstructed based on two BBs. The distances between dwell points were compared with the expected values. The average difference was 0.07 cm with a standard deviation of 0.15 cm. With automated BB shadow recognition in the future, this technique possesses the potential of tracking the 3D trajectory and the dwell times of a brachytherapy source in real time, enabling real time source position verification.

  1. Tracking brachytherapy sources using emission imaging with one flat panel detector.

    PubMed

    Song, Haijun; Bowsher, James; Das, Shiva; Yin, Fang-Fang

    2009-04-01

    This work proposes to use the radiation from brachytherapy sources to track their dwell positions in three-dimensional (3D) space. The prototype device uses a single flat panel detector and a BB tray. The BBs are arranged in a defined pattern. The shadow of the BBs on the flat panel is analyzed to derive the 3D coordinates of the illumination source, i.e., the dwell position of the brachytherapy source. A kilovoltage x-ray source located 3.3 m away was used to align the center BB with the center pixel on the flat panel detector. For a test plan of 11 dwell positions, with an Ir-192 high dose rate unit, one projection was taken for each dwell point, and locations of the BB shadows were manually identified on the projection images. The 3D coordinates for the 11 dwell positions were reconstructed based on two BBs. The distances between dwell points were compared with the expected values. The average difference was 0.07 cm with a standard deviation of 0.15 cm. With automated BB shadow recognition in the future, this technique possesses the potential of tracking the 3D trajectory and the dwell times of a brachytherapy source in real time, enabling real time source position verification. PMID:19472615

  2. Dynamic flat panel detector versus image intensifier in cardiac imaging: dose and image quality

    NASA Astrophysics Data System (ADS)

    Vano, E.; Geiger, B.; Schreiner, A.; Back, C.; Beissel, J.

    2005-12-01

    The practical aspects of the dosimetric and imaging performance of a digital x-ray system for cardiology procedures were evaluated. The system was configured with an image intensifier (II) and later upgraded to a dynamic flat panel detector (FD). Entrance surface air kerma (ESAK) to phantoms of 16, 20, 24 and 28 cm of polymethyl methacrylate (PMMA) and the image quality of a test object were measured. Images were evaluated directly on the monitor and with numerical methods (noise and signal-to-noise ratio). Information contained in the DICOM header for dosimetry audit purposes was also tested. ESAK values per frame (or kerma rate) for the most commonly used cine and fluoroscopy modes for different PMMA thicknesses and for field sizes of 17 and 23 cm for II, and 20 and 25 cm for FD, produced similar results in the evaluated system with both technologies, ranging between 19 and 589 µGy/frame (cine) and 5 and 95 mGy min-1 (fluoroscopy). Image quality for these dose settings was better for the FD version. The 'study dosimetric report' is comprehensive, and its numerical content is sufficiently accurate. There is potential in the future to set those systems with dynamic FD to lower doses than are possible in the current II versions, especially for digital cine runs, or to benefit from improved image quality.

  3. Integration of flat panel X-ray detector for high resolution diagnostic medical imaging

    NASA Astrophysics Data System (ADS)

    Kim, Min-Woo; Yun, Min-Seok; Kim, Yoon-Suk; Oh, Kyung-Min; Shin, Jung-Wook; Nam, Kyung-Tae; Nam, Sang-Hee

    2011-05-01

    In these days, flat panel X-ray image detectors have shown their potential for replacing traditional screen-film systems. To detect the X-ray photon energy, there are two main methods known as a direct method and an indirect method. The X-rays are converted immediately into electrical signal with the direct method. The indirect method has two conversion steps: the scintillator absorbs the X-rays and converts them to visible light. And then the visible light is converted to electrical signal (e.g. by photodiodes). In this work, the flat panel digital X-ray image detector based on direct method with a high atomic number material was designed and evaluated. The high atomic number material for X-ray conversion is deposited by a rubbing method with about 300 μm. The rubbing method is similar to the screen printing method. It consists of two elements: the screen and the squeegee. The method uses a proper stiff bar stretched tightly over a frame made of wood or metal. Proper tension is essential for proper laminated structure. The detector prototype has 139 μm pixel pitch, total 1280×1536 pixels and 86% fill factor. Twelve readout ICs are installed on digital X-ray detector and simultaneously operated to reach short readout time. The electronics integrated: the preamplifier to amplify generated signal, the Analog to Digital converter and the source of bias voltage (1 V/μm). The system board and interface use an NI-camera program. Finally, we achieved images from this flat panel X-ray image detector.

  4. Indirect flat-panel detector with avalanche gain: Fundamental feasibility investigation for SHARP-AMFPI (scintillator HARP active matrix flat panel imager)

    SciTech Connect

    Zhao Wei; Li Dan; Reznik, Alla; Lui, B.J.M.; Hunt, D.C.; Rowlands, J.A.; Ohkawa, Yuji; Tanioka, Kenkichi

    2005-09-15

    An indirect flat-panel imager (FPI) with avalanche gain is being investigated for low-dose x-ray imaging. It is made by optically coupling a structured x-ray scintillator CsI(Tl) to an amorphous selenium (a-Se) avalanche photoconductor called HARP (high-gain avalanche rushing photoconductor). The final electronic image is read out using an active matrix array of thin film transistors (TFT). We call the proposed detector SHARP-AMFPI (scintillator HARP active matrix flat panel imager). The advantage of the SHARP-AMFPI is its programmable gain, which can be turned on during low dose fluoroscopy to overcome electronic noise, and turned off during high dose radiography to avoid pixel saturation. The purpose of this paper is to investigate the important design considerations for SHARP-AMFPI such as avalanche gain, which depends on both the thickness d{sub Se} and the applied electric field E{sub Se} of the HARP layer. To determine the optimal design parameter and operational conditions for HARP, we measured the E{sub Se} dependence of both avalanche gain and optical quantum efficiency of an 8 {mu}m HARP layer. The results were used in a physical model of HARP as well as a linear cascaded model of the FPI to determine the following x-ray imaging properties in both the avalanche and nonavalanche modes as a function of E{sub Se}: (1) total gain (which is the product of avalanche gain and optical quantum efficiency); (2) linearity; (3) dynamic range; (4) gain nonuniformity resulting from thickness nonuniformity; and (5) effects of direct x-ray interaction in HARP. Our results showed that a HARP layer thickness of 8 {mu}m can provide adequate avalanche gain and sufficient dynamic range for x-ray imaging applications to permit quantum limited operation over the range of exposures needed for radiography and fluoroscopy.

  5. Indirect flat-panel detector with avalanche gain: fundamental feasibility investigation for SHARP-AMFPI (scintillator HARP active matrix flat panel imager).

    PubMed

    Zhao, Wei; Li, Dan; Reznik, Alla; Lui, B J M; Hunt, D C; Rowlands, J A; Ohkawa, Yuji; Tanioka, Kenkichi

    2005-09-01

    An indirect flat-panel imager (FPI) with avalanche gain is being investigated for low-dose x-ray imaging. It is made by optically coupling a structured x-ray scintillator CsI(Tl) to an amorphous selenium (a-Se) avalanche photoconductor called HARP (high-gain avalanche rushing photoconductor). The final electronic image is read out using an active matrix array of thin film transistors (TFT). We call the proposed detector SHARP-AMFPI (scintillator HARP active matrix flat panel imager). The advantage of the SHARP-AMFPI is its programmable gain, which can be turned on during low dose fluoroscopy to overcome electronic noise, and turned off during high dose radiography to avoid pixel saturation. The purpose of this paper is to investigate the important design considerations for SHARP-AMFPI such as avalanche gain, which depends on both the thickness d(Se) and the applied electric field E(Se) of the HARP layer. To determine the optimal design parameter and operational conditions for HARP, we measured the E(Se) dependence of both avalanche gain and optical quantum efficiency of an 8 microm HARP layer. The results were used in a physical model of HARP as well as a linear cascaded model of the FPI to determine the following x-ray imaging properties in both the avalanche and nonavalanche modes as a function of E(Se): (1) total gain (which is the product of avalanche gain and optical quantum efficiency); (2) linearity; (3) dynamic range; (4) gain nonuniformity resulting from thickness nonuniformity; and (5) effects of direct x-ray interaction in HARP. Our results showed that a HARP layer thickness of 8 microm can provide adequate avalanche gain and sufficient dynamic range for x-ray imaging applications to permit quantum limited operation over the range of exposures needed for radiography and fluoroscopy. PMID:16266110

  6. Cone-beam computed tomography with a flat-panel imager: initial performance characterization.

    PubMed

    Jaffray, D A; Siewerdsen, J H

    2000-06-01

    The development and performance of a system for x-ray cone-beam computed tomography (CBCT) using an indirect-detection flat-panel imager (FPI) is presented. Developed as a bench-top prototype for initial investigation of FPI-based CBCT for bone and soft-tissue localization in radiotherapy, the system provides fully three-dimensional volumetric image data from projections acquired during a single rotation. The system employs a 512 x 512 active matrix of a-Si:H thin-film transistors and photodiodes in combination with a luminescent phosphor. Tomographic imaging performance is quantified in terms of response uniformity, response linearity, voxel noise, noise-power spectrum (NPS), and modulation transfer function (MTF), each in comparison to the performance measured on a conventional CT scanner. For the geometry employed and the objects considered, response is uniform to within 2% and linear within 1%. Voxel noise, at a level of approximately 20 HU, is comparable to the conventional CT scanner. NPS and MTF results highlight the frequency-dependent transfer characteristics, confirming that the CBCT system can provide high spatial resolution and does not suffer greatly from additive noise levels. For larger objects and/or low exposures, additive noise levels must be reduced to maintain high performance. Imaging studies of a low-contrast phantom and a small animal (a euthanized rat) qualitatively demonstrate excellent soft-tissue visibility and high spatial resolution. Image quality appears comparable or superior to that of the conventional scanner. These quantitative and qualitative results clearly demonstrate the potential of CBCT systems based upon flat-panel imagers. Advances in FPI technology (e.g., improved x-ray converters and enhanced electronics) are anticipated to allow high-performance FPI-based CBCT for medical imaging. General and specific requirements of kilovoltage CBCT systems are discussed, and the applicability of FPI-based CBCT systems to tomographic

  7. Design and image quality results from volumetric CT with a flat-panel imager

    NASA Astrophysics Data System (ADS)

    Ross, William; Basu, Samit; Edic, Peter M.; Johnson, Mark; Pfoh, Armin H.; Rao, Ramakrishna; Ren, Baorui

    2001-06-01

    Preliminary MTF and LCD results obtained on several volumetric computed tomography (VCT) systems, employing amorphous flat panel technology, are presented. Constructed around 20-cm x 20-cm, 200-mm pitch amorphous silicon x-ray detectors, the prototypes use standard vascular or CT x-ray sources. Data were obtained from closed-gantry, benchtop and C-arm-based topologies, over a full 360 degrees of rotation about the target object. The field of view of the devices is approximately 15 cm, with a magnification of 1.25-1.5, providing isotropic resolution at isocenter of 133-160 mm. Acquisitions have been reconstructed using the FDK algorithm, modified by motion corrections also developed by GE. Image quality data were obtained using both industry standard and custom resolution phantoms as targets. Scanner output is compared on a projection and reconstruction basis against analogous output from a dedicated simulation package, also developed at GE. Measured MTF performance is indicative of a significant advance in isotropic image resolution over commercially available systems. LCD results have been obtained, using industry standard phantoms, spanning a contrast range of 0.3-1%. Both MTF and LCD measurements agree with simulated data.

  8. 2D wavelet-analysis-based calibration technique for flat-panel imaging detectors: application in cone beam volume CT

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang; Ning, Ruola; Yu, Rongfeng; Conover, David L.

    1999-05-01

    The application of the newly developed flat panel x-ray imaging detector in cone beam volume CT has attracted increasing interest recently. Due to an imperfect solid state array manufacturing process, however, defective elements, gain non-uniformity and offset image unavoidably exist in all kinds of flat panel x-ray imaging detectors, which will cause severe streak and ring artifacts in a cone beam reconstruction image and severely degrade image quality. A calibration technique, in which the artifacts resulting from the defective elements, gain non-uniformity and offset image can be reduced significantly, is presented in this paper. The detection of defective elements is distinctively based upon two-dimensional (2D) wavelet analysis. Because of its inherent localizability in recognizing singularities or discontinuities, wavelet analysis possesses the capability of detecting defective elements over a rather large x-ray exposure range, e.g., 20% to approximately 60% of the dynamic range of the detector used. Three-dimensional (3D) images of a low-contrast CT phantom have been reconstructed from projection images acquired by a flat panel x-ray imaging detector with and without calibration process applied. The artifacts caused individually by defective elements, gain non-uniformity and offset image have been separated and investigated in detail, and the correlation with each other have also been exposed explicitly. The investigation is enforced by quantitative analysis of the signal to noise ratio (SNR) and the image uniformity of the cone beam reconstruction image. It has been demonstrated that the ring and streak artifacts resulting from the imperfect performance of a flat panel x-ray imaging detector can be reduced dramatically, and then the image qualities of a cone beam reconstruction image, such as contrast resolution and image uniformity are improved significantly. Furthermore, with little modification, the calibration technique presented here is also applicable

  9. Performance requirements for electronic displays of color moving images using flat panel technology

    NASA Astrophysics Data System (ADS)

    Glenn, William E.

    1994-04-01

    The initial market for flat panel displays has been dominated by the laptop computer. This is a very attractive entry market for the newer technologies. The technical requirements for computer displays are much easier to satisfy then for high definition entertainment displays. While the resolutions are similar, the other requirements of contrast ratio, cost, light output, response time, uniformity, gray scale, size and color purity are all much less demanding than those for the display of real-time moving images for entertainment. However, if the panels being developed for computers could meet the requirements of entertainment television, they could be used as light valves in large screen projectors. In this way the investment in development and in manufacturing facilities can be amortized over a much larger market. This paper will review a comparison of the requirements for both applications.

  10. Point spread function modeling method for x-ray flat panel detector imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Shi, Yikai; Huang, Kuidong; Yu, Qingchao

    2012-10-01

    Flat panel detector (FPD) has been widely used as the imaging unit in the current X-ray digital radiography (DR) systems and Computed Tomography (CT) systems. Point spread function (PSF) is an important indicator of the FPD imaging system, but also the basis for image restoration. For the problem of poor accuracy of the FPD's PSF measurement with the original pinhole imaging for DR systems, a new PSF measuring method with the pinhole imaging based on the image restoration is proposed in this paper. Firstly, some images collected with the pinhole imaging are averaged to one image to reducing the noise. Then, the original pinhole image is calculated according to the energy conservation principle of point spread. Finally, the PSF of the FPD is obtained using the operation of image restoration. On this basis, through the fitting of the characteristic parameters of the PSF on different scan conditions, the computational model of the PSF is established for any scan conditions. Experimental results show that the method can obtain a more accurate PSF of the FPD, and the PSF of the same system under any scan conditions can be directly calculated with the PSF model.

  11. Image quality in two phosphor-based flat panel digital radiographic detectors.

    PubMed

    Samei, Ehsan

    2003-07-01

    Two general types of phosphor screens are currently used in indirect digital radiographic systems: structured phosphor screens and turbid phosphor screens. The purpose of the study was to experimentally compare the image quality characteristics of two flat-panel digital radiography detectors with similar electronics and pixel sizes (0.127 mm), but otherwise equipped with the two types of screens (0.6-mm-thick structured CsI and Lanex Regular). The presampled modulation transfer functions (MTFs) of the detectors were assessed using an edge method. The noise power spectra (NPS) were measured by two-dimensional Fourier analysis of uniformly-exposed radiographs at 50-100 kVp with 19 mm added Al filtration. The detective quantum efficiencies (DQEs) were assessed from the MTF, the NPS, and estimates of the ideal signal-to-noise ratio. The MTF measures of the two detectors were generally similar above a spatial frequency of 2 mm(-1), with approximately 2.5 and approximately 3.8 mm(-1) spatial frequencies corresponding to 0.2 MTF and 0.1 MTF, respectively. Below 2 mm(-1), the MTF for the CsI-based detector was slightly higher by an average of 0.07. At 70 kVp, the measured DQE values in the diagonal (and axial) direction(s) at spatial frequencies of 0.15 mm(-1) and 2.5 mm(-1) were 78% (78%) and 26% (20%) for the CsI-based detector, and 20% (20%) and 7% (6%) for the Lanex-based detector, respectively. The comparative findings experimentally confirm that in indirect flat-panel detectors, structured phosphor screens provide a more favorable tradeoff between resolution and noise compared to turbid-phosphor screens, effectively increasing the detection efficiency of the detector without a negative impact on the detector's spatial resolution response. PMID:12906192

  12. Comparison of ring artifact removal methods using flat panel detector based CT images

    PubMed Central

    2011-01-01

    Background Ring artifacts are the concentric rings superimposed on the tomographic images often caused by the defective and insufficient calibrated detector elements as well as by the damaged scintillator crystals of the flat panel detector. It may be also generated by objects attenuating X-rays very differently in different projection direction. Ring artifact reduction techniques so far reported in the literature can be broadly classified into two groups. One category of the approaches is based on the sinogram processing also known as the pre-processing techniques and the other category of techniques perform processing on the 2-D reconstructed images, recognized as the post-processing techniques in the literature. The strength and weakness of these categories of approaches are yet to be explored from a common platform. Method In this paper, a comparative study of the two categories of ring artifact reduction techniques basically designed for the multi-slice CT instruments is presented from a common platform. For comparison, two representative algorithms from each of the two categories are selected from the published literature. A very recently reported state-of-the-art sinogram domain ring artifact correction method that classifies the ring artifacts according to their strength and then corrects the artifacts using class adaptive correction schemes is also included in this comparative study. The first sinogram domain correction method uses a wavelet based technique to detect the corrupted pixels and then using a simple linear interpolation technique estimates the responses of the bad pixels. The second sinogram based correction method performs all the filtering operations in the transform domain, i.e., in the wavelet and Fourier domain. On the other hand, the two post-processing based correction techniques actually operate on the polar transform domain of the reconstructed CT images. The first method extracts the ring artifact template vector using a homogeneity

  13. Dynamic chest radiography: flat-panel detector (FPD) based functional X-ray imaging.

    PubMed

    Tanaka, Rie

    2016-07-01

    Dynamic chest radiography is a flat-panel detector (FPD)-based functional X-ray imaging, which is performed as an additional examination in chest radiography. The large field of view (FOV) of FPDs permits real-time observation of the entire lungs and simultaneous right-and-left evaluation of diaphragm kinetics. Most importantly, dynamic chest radiography provides pulmonary ventilation and circulation findings as slight changes in pixel value even without the use of contrast media; the interpretation is challenging and crucial for a better understanding of pulmonary function. The basic concept was proposed in the 1980s; however, it was not realized until the 2010s because of technical limitations. Dynamic FPDs and advanced digital image processing played a key role for clinical application of dynamic chest radiography. Pulmonary ventilation and circulation can be quantified and visualized for the diagnosis of pulmonary diseases. Dynamic chest radiography can be deployed as a simple and rapid means of functional imaging in both routine and emergency medicine. Here, we focus on the evaluation of pulmonary ventilation and circulation. This review article describes the basic mechanism of imaging findings according to pulmonary/circulation physiology, followed by imaging procedures, analysis method, and diagnostic performance of dynamic chest radiography. PMID:27294264

  14. Resolution at oblique incidence angles of a flat panel imager for breast tomosynthesis

    SciTech Connect

    Mainprize, James G.; Bloomquist, Aili K.; Kempston, Michael P.; Yaffe, Martin J.

    2006-09-15

    Oblique incidence of x rays on an imaging detector causes blurring that reduces spatial resolution. For simple projection imaging this effect is small and often ignored. However, for breast tomosynthesis, the incidence angle can be larger (>20 deg. ), leading to increased blur for some of the projections. The modulation transfer function (MTF) is measured for a typical phosphor-coupled flat-panel detector versus angular incidence of the x-ray beam for two x-ray spectra: 26 kV Mo/Mo and 40 kV Rh/Al. At an incidence angle of 40 deg. the MTF at 5 mm-1 falls by 35% and 40% for each spectrum, respectively (and 65%/80% at 8 mm-1). Increasing the detector absorber thickness to achieve improved quantum efficiency will cause the blurring effect due to beam obliquity to become greater. The impact of this blur is likely to cause misregistration and increased relative noise in tomosynthesis reconstructed images.

  15. Image quality assessment of a pre-clinical flat-panel volumetric micro-CT scanner

    NASA Astrophysics Data System (ADS)

    Du, Louise Y.; Lee, Ting-Yim; Holdsworth, David W.

    2006-03-01

    Small animal imaging has recently become an area of increased interest because more human diseases can be modeled in transgenic and knockout rodents. Current micro-CT systems are capable of achieving spatial resolution on the order of 10 μm, giving highly detailed anatomical information. However, the speed of data acquisition of these systems is relatively slow, when compared with clinical CT systems. Dynamic CT perfusion imaging has proven to be a powerful tool clinically in detecting and diagnosing cancer, stroke, pulmonary and ischemic heart diseases. In order to perform this technique in mice and rats, quantitative CT images must be acquired at a rate of at least 1 Hz. Recently, a research pre-clinical CT scanner (eXplore Ultra, GE Healthcare) has been designed specifically for dynamic perfusion imaging in small animals. Using an amorphous silicon flat-panel detector and a clinical slip-ring gantry, this system is capable of acquiring volumetric image data at a rate of 1 Hz, with in-plane resolution of 150 μm, while covering the entire thoracic region of a mouse or whole organs of a rat. The purpose of this study was to evaluate the principal imaging performance of the micro-CT system, in terms of spatial resolution, image uniformity, linearity, dose and voxel noise for the feasibility of imaging mice and rats. Our investigations show that 3D images can be obtained with a limiting spatial resolution of 2.7 line pairs per mm and noise of 42 HU, using an acquisition interval of 8 seconds at an entrance dose of 6.4 cGy.

  16. Generalized DQE analysis of radiographic and dual-energy imaging using flat-panel detectors

    SciTech Connect

    Richard, S.; Siewerdsen, J.H.; Jaffray, D.A.; Moseley, D.J.; Bakhtiar, B.

    2005-05-01

    Analysis of detective quantum efficiency (DQE) is an important component of the investigation of imaging performance for flat-panel detectors (FPDs). Conventional descriptions of DQE are limited, however, in that they take no account of anatomical noise (i.e., image fluctuations caused by overlying anatomy), even though such noise can be the most significant limitation to detectability, often outweighing quantum or electronic noise. We incorporate anatomical noise in experimental and theoretical descriptions of the 'generalized DQE' by including a spatial-frequency-dependent noise-power term, S{sub B}, corresponding to background anatomical fluctuations. Cascaded systems analysis (CSA) of the generalized DQE reveals tradeoffs between anatomical noise and the factors that govern quantum noise. We extend such analysis to dual-energy (DE) imaging, in which the overlying anatomical structure is selectively removed in image reconstructions by combining projections acquired at low and high kVp. The effectiveness of DE imaging in removing anatomical noise is quantified by measurement of S{sub B} in an anthropomorphic phantom. Combining the generalized DQE with an idealized task function to yield the detectability index, we show that anatomical noise dramatically influences task-based performance, system design, and optimization. For the case of radiography, the analysis resolves a fundamental and illustrative quandary: The effect of kVp on imaging performance, which is poorly described by conventional DQE analysis but is clarified by consideration of the generalized DQE. For the case of DE imaging, extension of a generalized CSA methodology reveals a potentially powerful guide to system optimization through the optimal selection of the tissue cancellation parameter. Generalized task-based analysis for DE imaging shows an improvement in the detectability index by more than a factor of 2 compared to conventional radiography for idealized detection tasks.

  17. Transition from image intensifier to flat panel detector in interventional cardiology: Impact of radiation dose

    PubMed Central

    Livingstone, Roshan S.; Chase, David; Varghese, Anna; George, Paul V.; George, Oommen K.

    2015-01-01

    Flat panel detector (FPD) technology in interventional cardiology is on the increase due to its varied advantages compared to the conventional image intensifier (II) systems. It is not clear whether FPD imparts lower radiation doses compared to II systems though a few studies support this finding. This study intends to compare radiation doses from II and FPD systems for coronaryangiography (CAG) and Percutaneous Transluminal Coronary Angioplasty (PTCA) performed in a tertiary referral center. Radiation doses were measured using dose area product (DAP) meter from patients who underwent CAG (n = 222) and PTCA (n = 75) performed using FPD angiography system. The DAP values from FPD were compared with earlier reported data using II systems from the same referral center where the study was conducted. The mean DAP values from FPD system for CAG and PTCA were 24.35 and 63.64 Gycm2 and those from II system were 27.71 and 65.44 Gycm2. Transition from II to FPD system requires stringent dose optimization strategies right from the initial period of installation. PMID:26150684

  18. Lag measurement in an a-Se active matrix flat-panel imager.

    PubMed

    Schroeder, C; Stanescu, T; Rathee, S; Fallone, B G

    2004-05-01

    Lag and residual contrast have been quantified in an amorphous selenium (a-Se) active-matrix flat-panel imager (AMFPI) as a function of frame time, kilovoltage (kV) and megavoltage (MV) x-ray photon energies and amount of radiation incident on the detector. The AMFPI contains a 200 microm thick a-Se layer deposited on a thin film transistor (TFT) array of size 8.7 cm x 8.7 cm with an 85-microm pixel pitch. For all energies, the lag (signal normalized to the signal due to exposure) for the first (n = 1) and second (n = 2) frame after exposure ranges from 0.45% to 0.91% and from 0.29% to 0.51%, respectively. The amount of lag was determined to be a function of the time after the x-ray exposure irrespective of frame time or the magnitude of exposure. The lag for MV photon energies was slightly less than that for kV photon energies. The residual contrast for all energies studied ranges from 0.41% to 0.75% and from 0.219% to 0.41% for the n = 1 and n = 2 frames, respectively. These results show that lag and residual contrast in kV and MV radiographic applications are always less than 1% for the detection system used and only depend on the time after x-ray exposure. PMID:15191310

  19. A flat-panel detector based micro-CT system: performance evaluation for small-animal imaging.

    PubMed

    Lee, Sang Chul; Kim, Ho Kyung; Chun, In Kon; Cho, Myung Hye; Lee, Soo Yeol; Cho, Min Hyoung

    2003-12-21

    A dedicated small-animal x-ray micro computed tomography (micro-CT) system has been developed to screen laboratory small animals such as mice and rats. The micro-CT system consists of an indirect-detection flat-panel x-ray detector with a field-of-view of 120 x 120 mm2, a microfocus x-ray source, a rotational subject holder and a parallel data processing system. The flat-panel detector is based on a matrix-addressed photodiode array fabricated by a CMOS (complementary metal-oxide semiconductor) process coupled to a CsI:T1 (thallium-doped caesium iodide) scintillator as an x-ray-to-light converter. Principal imaging performances of the micro-CT system have been evaluated in terms of image uniformity, voxel noise and spatial resolution. It has been found that the image non-uniformity mainly comes from the structural non-uniform sensitivity pattern of the flat-panel detector and the voxel noise is about 48 CT numbers at the voxel size of 100 x 100 x 200 microm3 and the air kerma of 286 mGy. When the magnification ratio is 2, the spatial resolution of the micro-CT system is about 14 1p/mm (line pairs per millimetre) that is almost determined by the flat-panel detector showing about 7 1p/mm resolving power. Through low-contrast phantom imaging studies, the minimum resolvable contrast has been found to be less than 36 CT numbers at the air kerma of 95 mGy. Some laboratory rat imaging results are presented. PMID:14727760

  20. Dual-Energy Subtraction Imaging for Diagnosing Vocal Cord Paralysis with Flat Panel Detector Radiography

    PubMed Central

    Yoda, Keiko; Arai, Yasuko; Nishida, Suguru; Masukawa, Ai; Asanuma, Masayasu; Yuhara, Toshiyuki; Morita, Satoru; Suzuki, Kazufumi; Ueno, Eiko; Sabol, John M

    2010-01-01

    Objective To investigate the clinical feasibility of dual energy subtraction (DES) imaging to improve the delineation of the vocal cord and diagnostic accuracy of vocal cord paralysis as compared with the anterior-posterior view of flat panel detector (FPD) neck radiography. Materials and Methods For 122 consecutive patients who underwent both a flexible laryngoscopy and conventional/DES FPD radiography, three blinded readers retrospectively graded the radiographs during phonation and inspiration on a scale of 1 (poor) to 5 (excellent) for the delineation of the vocal cord, and in consensus, reviewed the diagnostic accuracy of vocal cord paralysis employing the laryngoscopy as the reference. We compared vocal cord delineation scores and accuracy of vocal cord paralysis diagnosis by both conventional and DES techniques using κ statistics and assessing the area under the receiver operating characteristic curve (AUC). Results Vocal cord delineation scores by DES (mean, 4.2 ± 0.4) were significantly higher than those by conventional imaging (mean, 3.3 ± 0.5) (p < 0.0001). Sensitivity for diagnosing vocal cord paralysis by the conventional technique was 25%, whereas the specificity was 94%. Sensitivity by DES was 75%, whereas the specificity was 96%. The diagnostic accuracy by DES was significantly superior (κ = 0.60, AUC = 0.909) to that by conventional technique (κ = 0.18, AUC = 0.852) (p = 0.038). Conclusion Dual energy subtraction is a superior method compared to the conventional FPD radiography for delineating the vocal cord and accurately diagnosing vocal cord paralysis. PMID:20461186

  1. Cone-beam CT breast imaging with a flat panel detector: a simulation study

    NASA Astrophysics Data System (ADS)

    Chen, Lingyun; Shaw, Chris C.; Tu, Shu-Ju; Altunbas, Mustafa C.; Wang, Tianpeng; Lai, Chao-Jen; Liu, Xinming; Kappadath, S. C.

    2005-04-01

    This paper investigates the feasibility of using a flat panel based cone-beam computer tomography (CT) system for 3-D breast imaging with computer simulation and imaging experiments. In our simulation study, 3-D phantoms were analytically modeled to simulate a breast loosely compressed into cylindrical shape with embedded soft tissue masses and calcifications. Attenuation coefficients were estimated to represent various types of breast tissue, soft tissue masses and calcifications to generate realistic image signal and contrast. Projection images were computed to incorporate x-ray attenuation, geometric magnification, x-ray detection, detector blurring, image pixelization and digitization. Based on the two-views mammography comparable dose level on the central axis of the phantom (also the rotation axis), x-ray kVp/filtration, transmittance through the phantom, detected quantum efficiency (DQE), exposure level, and imaging geometry, the photon fluence was estimated and used to estimate the phantom noise level on a pixel-by-pixel basis. This estimated noise level was then used with the random number generator to produce and add a fluctuation component to the noiseless transmitted image signal. The noise carrying projection images were then convolved with a Gaussian-like kernel, computed from measured 1-D line spread function (LSF) to simulated detector blurring. Additional 2-D Gaussian-like kernel is designed to suppress the noise fluctuation that inherently originates from projection images so that the reconstructed image detectability of low contrast masses phantom can be improved. Image reconstruction was performed using the Feldkamp algorithm. All simulations were performed on a 24 PC (2.4 GHz Dual-Xeon CPU) cluster with MPI parallel programming. With 600 mrads mean glandular dose (MGD) at the phantom center, soft tissue masses as small as 1 mm in diameter can be detected in a 10 cm diameter 50% glandular 50% adipose or fatter breast tissue, and 2 mm or larger

  2. System performance of a prototype flat-panel imager operated under mammographic conditions.

    PubMed

    Jee, Kyung-Wook; Antonuk, Larry E; El-Mohri, Youcef; Zhao, Qihua

    2003-07-01

    The results of an empirical and theoretical investigation of the performance of a high-resolution, active matrix flat-panel imager performed under mammographic conditions are reported. The imager is based upon a prototype, indirect detection active matrix array incorporating a discrete photodiode in each pixel and a pixel-to-pixel pitch of 97 microm. The investigation involved three imager configurations corresponding to the use of three different x-ray converters with the array. The converters were a conventional Gd2O2S-based mammographic phosphor screen (Min-R) and two structured CsI:Tl scintillators: one optimized for high spatial resolution (FOS-HR) and the other for high light output (FOS-HL). Detective quantum efficiency for mammographic exposures ranging from approximately 2 to approximately 40 mR at 26 kVp were determined for each imager configuration through measurements of x-ray sensitivity, modulation transfer function (MTF), and noise power spectrum (NPS). All configurations were found to provide significant presampling MTF at frequencies beyond the Nyquist frequency of the array, approximately 5.2 mm(-1) , consistent with the high spatial resolution of the converters. In addition, the effect of additive electronic noise on the NPS was found to be significantly larger for the configuration with lower system gain (FOS-HR) than for the configurations with higher gain (Min-R, FOS-HL). The maximum DQE values obtained with the CsI:Tl scintillators were considerably greater than those obtained with the Min-R screen due to the significantly lower Swank noise of the scintillators. Moreover, DQE performance was found to degrade with decreasing exposure, although this exposure-dependence was considerably reduced for the higher gain configurations. Theoretical calculations based on the cascaded systems model were found to be in generally good agreement with these empirically determined NPS and DQE values. In this study, we provide an example of how cascaded

  3. Performance of a volumetric CT scanner based upon a flat-panel imager

    NASA Astrophysics Data System (ADS)

    Jaffray, David A.; Siewerdsen, Jeffrey H.; Drake, Douglas G.

    1999-05-01

    To characterize the performance of a cone-beam computed tomography (CBCT) imaging system based upon an indirect- detection, amorphous silicon flat-panel imager (FPI). Tomographic images obtained using the FPI are presented, and the signal and noise characteristics of reconstructed images are quantified. Specifically, the spatial uniformity, CT linearity, contrast performance, noise characteristics, spatial resolution, and soft-tissue visualization are examined. Finally, the performance of the FPI-based CT system is discussed in relation to existing clinical technologies. A table-top measurements system was constructed to allow investigation of FPI performance in CBCT within a precisely controlled and reproducible geometry. The FPI incorporates a 512 X 512 active matrix array of a-Si:H thin-film transistors and photodiodes in combination with an overlying (133 mg/cm2 Gd2O2S:Tb) phosphor. The commercially available prototype FPI has a pixel pitch of 400 micrometer, a fill factor of approximately 80%, can be read at a maximum frame rate of 5 fps, and provides 16 bit digitization. Mounted upon an optical bench are the x-ray tube (in a rigid support frame), the object to be imaged (upon a precision rotation/translation table), and the FPI (mounted upon a precision translation table). The entire setup is directed under computer control, and volumetric imaging is accomplished by rotating the object incrementally over 360 degrees, delivering a radiographic x-ray pulse (e.g., 100 - 130 kVp, approximately 0.1 - 10 mAs), and acquiring a projection image at each increment. Prior to reconstruction, dark and flood- field corrections are applied to account for stationary nonuniformities in detector response and dark current. Tomographic images are reconstructed from the projections using the Feldkamp filtered back-projection algorithm for CBCT. The linearity of the CBCT system was compared to that of a commercial scanner (Philips SR-7000) using materials ranging in CT number from

  4. Using LROC analysis to evaluate detection accuracy of microcalcification clusters imaged with flat-panel CT mammography

    NASA Astrophysics Data System (ADS)

    Gong, Xing; Glick, Stephen J.; Vedula, Aruna A.

    2004-05-01

    The purpose of this study is to investigate the detectability of microcalcification clusters (MCCs) using CT mammography with a flat-panel detector. Compared with conventional mammography, CT mammography can provide improved discrimination between malignant and benign cases as it can provide the radiologist with more accurate morphological information on MCCs. In this study, two aspects of MCC detection with flat-panel CT mammography were examined: (1) the minimal size of MCCs detectable with mean glandular dose (MGD) used in conventional mammography; (2) the effect of different detector pixel size on the detectability of MCCs. A realistic computer simulation modeling x-ray transport through the breast, as well as both signal and noise propagation through the flat-panel imager, was developed to investigate these questions. Microcalcifications were simulated as calcium carbonate spheres with diameters set at the levels of 125, 150 and 175 μm. Each cluster consisted of 10 spheres spread randomly in a 6×6 mm2 region of interest (ROI) and the detector pixel size was set to 100×100, 200×200, or 300×300μm2. After reconstructing 100 projection sets for each case (half with signal present) with the cone-beam Feldkamp (FDK) algorithm, a localization receiver operating characteristic (LROC) study was conducted to evaluate the detectability of MCCs. Five observers chose the locations of cluster centers with correspondent confidence ratings. The average area under the LROC curve suggested that the 175 μm MCCs can be detected at a high level of confidence. Results also indicate that flat-panel detectors with pixel size of 200×200 μm2 are appropriate for detecting small targets, such as MCCs.

  5. An investigation of flat panel equipment variables on image quality with a dedicated cardiac phantom.

    PubMed

    Dragusin, O; Bosmans, H; Pappas, C; Desmet, W

    2008-09-21

    Image quality (IQ) evaluation plays a key role in the process of optimization of new x-ray systems. Ideally, this process should be supported by real clinical images, but ethical issues and differences in anatomy and pathology of patients make it impossible. Phantom studies might overcome these issues. This paper presents the IQ evaluation of 30 cineangiographic films acquired with a cardiac flat panel system. The phantom used simulates the anatomy of the heart and allows the circulation of contrast agent boluses through coronary arteries. Variables investigated with influence on IQ and radiation dose are: tube potential, detector dose, added Copper filters, dynamic density optimization (DDO) and viewing angle. The IQ evaluation consisted of scoring 4 simulated calcified lesions located on different coronary artery segments in terms of degree of visualization. Eight cardiologists rated the lesions using a five-point scale ((1) lesion not visible to (5) very good visibility). Radiation doses associated to the angiograms are expressed in terms of incident air kerma (IAK) and effective dose that has been calculated with PCXMX software (STUK, Finland) from the exposure settings assuming a standard sized patient of 70 Kg. Mean IQ scores ranged from 1.68 to 4.88. The highest IQ scores were obtained for the angiograms acquired with tube potential 80 kVp, no added Cu filters, DDO 60%, RAO and LAO views and the highest entrance detector dose that has been used in the present study, namely 0.17 microGy/im. Radiation doses (IAK approximately 40 mGy and effective dose of 1 mSv) were estimated for angiograms acquired at 15 frames s(-1), detector field-of-view 20 cm, and a length of 5 s. The following parameters improved the IQ factor significantly: a change in tube potential from 96 to 80 kVp, detector dose from 0.10 microGy/im to 0.17 microGy/im, the absence of Copper filtration. DDO variable which is a post-processing parameter should be carefully evaluated because it alters

  6. An investigation of flat panel equipment variables on image quality with a dedicated cardiac phantom

    NASA Astrophysics Data System (ADS)

    Dragusin, O.; Bosmans, H.; Pappas, C.; Desmet, W.

    2008-09-01

    Image quality (IQ) evaluation plays a key role in the process of optimization of new x-ray systems. Ideally, this process should be supported by real clinical images, but ethical issues and differences in anatomy and pathology of patients make it impossible. Phantom studies might overcome these issues. This paper presents the IQ evaluation of 30 cineangiographic films acquired with a cardiac flat panel system. The phantom used simulates the anatomy of the heart and allows the circulation of contrast agent boluses through coronary arteries. Variables investigated with influence on IQ and radiation dose are: tube potential, detector dose, added Copper filters, dynamic density optimization (DDO) and viewing angle. The IQ evaluation consisted of scoring 4 simulated calcified lesions located on different coronary artery segments in terms of degree of visualization. Eight cardiologists rated the lesions using a five-point scale ((1) lesion not visible to (5) very good visibility). Radiation doses associated to the angiograms are expressed in terms of incident air kerma (IAK) and effective dose that has been calculated with PCXMX software (STUK, Finland) from the exposure settings assuming a standard sized patient of 70 Kg. Mean IQ scores ranged from 1.68 to 4.88. The highest IQ scores were obtained for the angiograms acquired with tube potential 80 kVp, no added Cu filters, DDO 60%, RAO and LAO views and the highest entrance detector dose that has been used in the present study, namely 0.17 μGy/im. Radiation doses (IAK ~40 mGy and effective dose of 1 mSv) were estimated for angiograms acquired at 15 frames s-1, detector field-of-view 20 cm, and a length of 5 s. The following parameters improved the IQ factor significantly: a change in tube potential from 96 to 80 kVp, detector dose from 0.10 μGy/im to 0.17 μGy/im, the absence of Copper filtration. DDO variable which is a post-processing parameter should be carefully evaluated because it alters the quality of the

  7. Calibration model of a dual gain flat panel detector for 2D and 3D x-ray imaging

    SciTech Connect

    Schmidgunst, C.; Ritter, D.; Lang, E.

    2007-09-15

    The continuing research and further development in flat panel detector technology have led to its integration into more and more medical x-ray systems for two-dimensional (2D) and three-dimensional (3D) imaging, such as fixed or mobile C arms. Besides the obvious advantages of flat panel detectors, like the slim design and the resulting optimum accessibility to the patient, their success is primarily a product of the image quality that can be achieved. The benefits in the physical and performance-related features as opposed to conventional image intensifier systems (e.g., distortion-free reproduction of imaging information or almost linear signal response over a large dynamic range) can be fully exploited, however, only if the raw detector images are correctly calibrated and postprocessed. Previous procedures for processing raw data contain idealizations that, in the real world, lead to artifacts or losses in image quality. Thus, for example, temperature dependencies or changes in beam geometry, as can occur with mobile C arm systems, have not been taken into account up to this time. Additionally, adverse characteristics such as image lag or aging effects have to be compensated to attain the best possible image quality. In this article a procedure is presented that takes into account the important dependencies of the individual pixel sensitivity of flat panel detectors used in 2D or 3D imaging and simultaneously minimizes the work required for an extensive recalibration. It is suitable for conventional detectors with only one gain mode as well as for the detectors specially developed for 3D imaging with dual gain read-out technology.

  8. Gain Correction for an X-ray Imaging System With a Movable Flat Panel Detector and Intrinsic Localization Crosshair.

    PubMed

    Park, Yang-Kyun; Sharp, Gregory C

    2016-04-01

    Gain calibration for X-ray imaging systems with a movable flat panel detector and an intrinsic crosshair is a challenge due to the geometry-dependent heel effect and crosshair artifact. This study aims to develop a gain correction method for such systems by implementing the Multi-Acquisition Gain Image Correction technique. Flood field images containing crosshair and heel effect were acquired in 4 different flat panel detector positions at fixed exposure parameters. The crosshair region was automatically detected using common image processing algorithms and removed by a simple interpolation procedure, resulting in a crosshair-removed image. A large kernel-based correction was then used to remove the heel effect. Mask filters corresponding to each crosshair region were applied to the resultant heel effect-removed images to invalidate the pixels of the original crosshair region. Finally, a seamless gain map was composed with corresponding valid pixels from the processed images either by the sequential replacement or by the selective averaging techniques developed in this study. Quantitative evaluation was performed based on normalized noise power spectrum and detective quantum efficiency improvement factor for the flood field images corrected by the Multi-Acquisition Gain Image Correction-based gain maps. For comparison purposes, a single crosshair-removed gain map was also tested. As a result, it was demonstrated that the Multi-Acquisition Gain Image Correction technique achieved better image quality than the crosshair-removed technique, showing lower normalized noise power spectrum values over most of spatial frequencies. The improvement was more obvious at the priori-crosshair region of the gain map. The mean detective quantum efficiency improvement factor was 1.09 ± 0.06, 2.46 ± 0.32, and 3.34 ± 0.36 in the priori-crosshair region and 2.35 ± 0.31, 2.33 ± 0.31, and 3.09 ± 0.34 in the normal region, for crosshair-removed, Multi-Acquisition Gain Image

  9. Small animal imaging using a flat panel detector-based cone beam computed tomography (FPD-CBCT) imaging system

    NASA Astrophysics Data System (ADS)

    Conover, David L.; Ning, Ruola; Yu, Yong; Lu, Xianghua; Wood, Ronald W.; Reeder, Jay E.; Johnson, Aimee M.

    2005-04-01

    Flat panel detector-based cone beam CT (FPD-CBCT) imaging system prototypes have been constructed based on modified clinical CT scanners (a modified GE 8800 CT system and a modified GE HighSpeed Advantage (HSA) spiral CT system) each with a Varian PaxScan 2520 imager. The functions of the electromechanical and radiographic subsystems of the CT system were controlled through specially made hardware, software and data acquisition modules to perform animal cone beam CT studies. Small animal (mouse) imaging studies were performed to demonstrate the feasibility of an optimized CBCT imaging system to have the capability to perform longitudinal studies to monitor the progression of cancerous tumors or the efficacy of treatments. Radiographic parameters were optimized for fast (~10 second) scans of live mice to produce good reconstructed image quality with dose levels low enough to avoid any detectable radiation treatment to the animals. Specifically, organs in the pelvic region were clearly imaged and contrast studies showed the feasibility to visualize small vasculature and space-filling bladder tumors. In addition, prostate and mammary tumors were monitored in volume growth studies.

  10. A Rotatable Quality Control Phantom for Evaluating the Performance of Flat Panel Detectors in Imaging Moving Objects.

    PubMed

    Haga, Yoshihiro; Chida, Koichi; Inaba, Yohei; Kaga, Yuji; Meguro, Taiichiro; Zuguchi, Masayuki

    2016-02-01

    As the use of diagnostic X-ray equipment with flat panel detectors (FPDs) has increased, so has the importance of proper management of FPD systems. To ensure quality control (QC) of FPD system, an easy method for evaluating FPD imaging performance for both stationary and moving objects is required. Until now, simple rotatable QC phantoms have not been available for the easy evaluation of the performance (spatial resolution and dynamic range) of FPD in imaging moving objects. We developed a QC phantom for this purpose. It consists of three thicknesses of copper and a rotatable test pattern of piano wires of various diameters. Initial tests confirmed its stable performance. Our moving phantom is very useful for QC of FPD images of moving objects because it enables visual evaluation of image performance (spatial resolution and dynamic range) easily. PMID:26264731

  11. Cone-Beam CT with a Flat-Panel Detector: From Image Science to Image-Guided Surgery

    PubMed Central

    Siewerdsen, Jeffrey H.

    2011-01-01

    The development of large-area flat-panel x-ray detectors (FPDs) has spurred investigation in a spectrum of advanced medical imaging applications, including tomosynthesis and cone-beam CT (CBCT). Recent research has extended image quality metrics and theoretical models to such applications, providing a quantitative foundation for the assessment of imaging performance as well as a general framework for the design, optimization, and translation of such technologies to new applications. For example, cascaded systems models of Fourier domain metrics, such as noise-equivalent quanta (NEQ), have been extended to these modalities to describe the propagation of signal and noise through the image acquisition and reconstruction chain and to quantify the factors that govern spatial resolution, image noise, and detectability. Moreover, such models have demonstrated basic agreement with human observer performance for a broad range of imaging conditions and imaging tasks. These developments in image science have formed a foundation for the knowledgeable development and translation of CBCT to new applications in image-guided interventions - for example, CBCT implemented on a mobile surgical C-arm for intraoperative 3D imaging. The ability to acquire high-quality 3D images on demand during surgical intervention overcomes conventional limitations of surgical guidance in the context of preoperative images alone. A prototype mobile C-arm developed in academic-industry partnership demonstrates CBCT with low radiation dose, sub-mm spatial resolution, and soft-tissue visibility potentially approaching that of diagnostic CT. Integration of the 3D imaging system with real-time tracking, deformable registration, endoscopic video, and 3D visualization offers a promising addition to the surgical arsenal in interventions ranging from head-and-neck / skull base surgery to spine, orthopaedic, thoracic, and abdominal surgeries. Cadaver studies show the potential for significant boosts in surgical

  12. Cone-beam CT with a flat-panel detector: From image science to image-guided surgery

    NASA Astrophysics Data System (ADS)

    Siewerdsen, Jeffrey H.

    2011-08-01

    The development of large-area flat-panel X-ray detectors (FPDs) has spurred investigation in a spectrum of advanced medical imaging applications, including tomosynthesis and cone-beam CT (CBCT). Recent research has extended image quality metrics and theoretical models to such applications, providing a quantitative foundation for the assessment of imaging performance as well as a general framework for the design, optimization, and translation of such technologies to new applications. For example, cascaded systems models of the Fourier domain metrics, such as noise-equivalent quanta (NEQ), have been extended to these modalities to describe the propagation of signal and noise through the image acquisition and reconstruction chain and to quantify the factors that govern spatial resolution, image noise, and detectability. Moreover, such models have demonstrated basic agreement with human observer performance for a broad range of imaging conditions and imaging tasks. These developments in image science have formed a foundation for the knowledgeable development and translation of CBCT to new applications in image-guided interventions—for example, CBCT implemented on a mobile surgical C-arm for intraoperative 3D imaging. The ability to acquire high-quality 3D images on demand during surgical intervention overcomes conventional limitations of surgical guidance in the context of preoperative images alone. A prototype mobile C-arm developed in academic-industry partnership demonstrates CBCT with low radiation dose, sub-mm spatial resolution, and soft-tissue visibility potentially approaching that of diagnostic CT. Integration of the 3D imaging system with real-time tracking, deformable registration, endoscopic video, and 3D visualization offers a promising addition to the surgical arsenal in interventions ranging from head-and-neck/skull base surgery to spine, orthopaedic, thoracic, and abdominal surgeries. Cadaver studies show the potential for significant boosts in

  13. Cone-Beam CT with a Flat-Panel Detector: From Image Science to Image-Guided Surgery.

    PubMed

    Siewerdsen, Jeffrey H

    2011-08-21

    The development of large-area flat-panel x-ray detectors (FPDs) has spurred investigation in a spectrum of advanced medical imaging applications, including tomosynthesis and cone-beam CT (CBCT). Recent research has extended image quality metrics and theoretical models to such applications, providing a quantitative foundation for the assessment of imaging performance as well as a general framework for the design, optimization, and translation of such technologies to new applications. For example, cascaded systems models of Fourier domain metrics, such as noise-equivalent quanta (NEQ), have been extended to these modalities to describe the propagation of signal and noise through the image acquisition and reconstruction chain and to quantify the factors that govern spatial resolution, image noise, and detectability. Moreover, such models have demonstrated basic agreement with human observer performance for a broad range of imaging conditions and imaging tasks. These developments in image science have formed a foundation for the knowledgeable development and translation of CBCT to new applications in image-guided interventions - for example, CBCT implemented on a mobile surgical C-arm for intraoperative 3D imaging. The ability to acquire high-quality 3D images on demand during surgical intervention overcomes conventional limitations of surgical guidance in the context of preoperative images alone. A prototype mobile C-arm developed in academic-industry partnership demonstrates CBCT with low radiation dose, sub-mm spatial resolution, and soft-tissue visibility potentially approaching that of diagnostic CT. Integration of the 3D imaging system with real-time tracking, deformable registration, endoscopic video, and 3D visualization offers a promising addition to the surgical arsenal in interventions ranging from head-and-neck / skull base surgery to spine, orthopaedic, thoracic, and abdominal surgeries. Cadaver studies show the potential for significant boosts in surgical

  14. Imaging performance of amorphous selenium based flat-panel detectors for digital mammography: characterization of a small area prototype detector.

    PubMed

    Zhao, Wei; Ji, W G; Debrie, Anne; Rowlands, J A

    2003-02-01

    Our work is to investigate and understand the factors affecting the imaging performance of amorphous selenium (a-Se) flat-panel detectors for digital mammography. Both theoretical and experimental methods were developed to investigate the spatial frequency dependent detective quantum efficiency [DQE(f)] of a-Se flat-panel detectors for digital mammography. Since the K edge of a-Se is 12.66 keV and within the energy range of a mammographic spectrum, a theoretical model was developed based on cascaded linear system analysis with parallel processes to take into account the effect of K fluorescence on the modulation transfer function (MTF), noise power spectrum (NPS), and DQE(f) of the detector. This model was used to understand the performance of a small-area prototype detector with 85 microm pixel size. The presampling MTF, NPS, and DQE(f) of the prototype were measured, and compared to the theoretical calculation of the model. The calculation showed that K fluorescence accounted for a 15% reduction in the MTF at the Nyquist frequency (fNy) of the prototype detector, and the NPS at fNy was reduced to 89% of that at zero spatial frequency. The measurement of presampling MTF of the prototype detector revealed an additional source of blurring, which was attributed to charge trapping in the blocking layer at the interface between a-Se and the active matrix. This introduced a drop in both presampling MTF and NPS at high spatial frequency, and reduced aliasing in the NPS. As a result, the DQE(f) of the prototype detector at fNy approached 40% of that at zero spatial frequency. The measured and calculated DQE(f) using the linear system model have reasonable agreement, indicating that the factors controlling image quality in a-Se based mammographic detectors are fully understood, and the model can be used to further optimize detector imaging performance. PMID:12607843

  15. A comparison of lesion detection accuracy using digital mammography and flat-panel CT breast imaging (Honorable Mention Poster Award)

    NASA Astrophysics Data System (ADS)

    Gong, Xing; Vedula, Aruna A.; Thacker, Samta; Glick, Stephen J.

    2005-04-01

    Although conventional mammography is currently the best modality to detect early breast cancer, it is limited in that the recorded image represents the superposition of a 3D object onto a 2D plane. As an alternative, cone-beam CT breast imaging with a CsI based flat-panel imager (CTBI) has been proposed with the ability to provide 3D visualization of breast tissue. To investigate possible improvements in lesion detection accuracy using CTBI over digital mammography (DM), a computer simulation study was conducted using simulated lesions embedded into a structured 3D breast model. The computer simulation realistically modeled x-ray transport through a breast model, as well as the signal and noise propagation through the flat-panel imager. Polyenergetic x-ray spectra of W/Al 50 kVp for CTBI and Mo/Mo 28 kVp for DM were modeled. For the CTBI simulation, the intensity of the x-ray spectra for each projection view was determined so as to provide a total mean glandular dose (MGD) of 4 mGy, which is approximately equivalent to that given in a conventional two-view screening mammography study. Since only one DM view was investigated here, the intensity of the DM x-ray spectra was defined to give 2 mGy MGD. Irregular lesions were simulated by using a stochastic growth algorithm providing lesions with an effective diameter of 5 mm. Breast tissue was simulated by generating an ensemble of backgrounds with a power law spectrum. To evaluate lesion detection accuracy, a receiver operating characteristic (ROC) study was performed with 4 observers reading an ensemble of images for each case. The average area under the ROC curves (Az) was 0.94 for CTBI, and 0.81 for DM. Results indicate that a 5 mm lesion embedded in a structured breast phantom can be detected by CT breast imaging with statistically significant higher confidence than with digital mammography.

  16. SU-E-J-45: The Correlation Between CBCT Flat Panel Misalignment and 3D Image Guidance Accuracy

    SciTech Connect

    Kenton, O; Valdes, G; Yin, L; Teo, B; Brousmiche, S; Wikler, D

    2015-06-15

    Purpose To simulate the impact of CBCT flat panel misalignment on the image quality, the calculated correction vectors in 3D image guided proton therapy and to determine if these calibration errors can be caught in our QA process. Methods The X-ray source and detector geometrical calibration (flexmap) file of the CBCT system in the AdaPTinsight software (IBA proton therapy) was edited to induce known changes in the rotational and translational calibrations of the imaging panel. Translations of up to ±10 mm in the x, y and z directions (see supplemental) and rotational errors of up to ±3° were induced. The calibration files were then used to reconstruct the CBCT image of a pancreatic patient and CatPhan phantom. Correction vectors were calculated for the patient using the software’s auto match system and compared to baseline values. The CatPhan CBCT images were used for quantitative evaluation of image quality for each type of induced error. Results Translations of 1 to 3 mm in the x and y calibration resulted in corresponding correction vector errors of equal magnitude. Similar 10mm shifts were seen in the y-direction; however, in the x-direction, the image quality was too degraded for a match. These translational errors can be identified through differences in isocenter from orthogonal kV images taken during routine QA. Errors in the z-direction had no effect on the correction vector and image quality.Rotations of the imaging panel calibration resulted in corresponding correction vector rotations of the patient images. These rotations also resulted in degraded image quality which can be identified through quantitative image quality metrics. Conclusion Misalignment of CBCT geometry can lead to incorrect translational and rotational patient correction vectors. These errors can be identified through QA of the imaging isocenter as compared to orthogonal images combined with monitoring of CBCT image quality.

  17. Signal, noise power spectrum, and detective quantum efficiency of indirect-detection flat-panel imagers for diagnostic radiology.

    PubMed

    Siewerdsen, J H; Antonuk, L E; el-Mohri, Y; Yorkston, J; Huang, W; Cunningham, I A

    1998-05-01

    The performance of an indirect-detection, active matrix flat-panel imager (FPI) at diagnostic energies is reported in terms of measured and theoretical signal size, noise power spectrum (NPS), and detective quantum efficiency (DQE). Based upon a 1536 x 1920 pixel, 127 microns pitch array of a-Si:H thin-film transistors and photodiodes, the FPI was developed as a prototype for examination of the potential of flat-panel technology in diagnostic x-ray imaging. The signal size per unit exposure (x-ray sensitivity) was measured for the FPI incorporating five commercially available Gd2O2S:Tb converting screens at energies 70-120 kVp. One-dimensional and two-dimensional NPS and DQE were measured for the FPI incorporating three such converters and as a function of the incident exposure. The measurements support the hypothesis that FPIs have significant potential for application in diagnostic radiology. A cascaded systems model that has shown good agreement with measured individual pixel signal and noise properties is employed to describe the performance of various FPI designs and configurations under a variety of diagnostic imaging conditions. Theoretical x-ray sensitivity, NPS, and DQE are compared to empirical results, and good agreement is observed in each case. The model is used to describe the potential performance of FPIs incorporating a recently developed, enhanced array that is commercially available and has been proposed for testing and application in diagnostic radiography and fluoroscopy. Under conditions corresponding to chest radiography, the analysis suggests that such systems can potentially meet or even exceed the DQE performance of existing technology, such as screen-film and storage phosphor systems; however, under conditions corresponding to general fluoroscopy, the typical exposure per frame is such that the DQE is limited by the total system gain and additive electronic noise. The cascaded systems analysis provides a valuable means of identifying the

  18. Flat panel ferroelectric electron emission display system

    DOEpatents

    Sampayan, S.E.; Orvis, W.J.; Caporaso, G.J.; Wieskamp, T.F.

    1996-04-16

    A device is disclosed which can produce a bright, raster scanned or non-raster scanned image from a flat panel. Unlike many flat panel technologies, this device does not require ambient light or auxiliary illumination for viewing the image. Rather, this device relies on electrons emitted from a ferroelectric emitter impinging on a phosphor. This device takes advantage of a new electron emitter technology which emits electrons with significant kinetic energy and beam current density. 6 figs.

  19. Flat panel ferroelectric electron emission display system

    DOEpatents

    Sampayan, Stephen E.; Orvis, William J.; Caporaso, George J.; Wieskamp, Ted F.

    1996-01-01

    A device which can produce a bright, raster scanned or non-raster scanned image from a flat panel. Unlike many flat panel technologies, this device does not require ambient light or auxiliary illumination for viewing the image. Rather, this device relies on electrons emitted from a ferroelectric emitter impinging on a phosphor. This device takes advantage of a new electron emitter technology which emits electrons with significant kinetic energy and beam current density.

  20. High-energy and thermal-neutron imaging and modeling with an amorphous silicon flat-panel detector.

    PubMed

    Claytor, Thomas N; Taddeucci, Terry N; Hills, Charles R; Summa, Deborah A; Davis, Anthony W; McDonald, Thomas E; Schwab, Mark J

    2004-10-01

    The Los Alamos Neutron Science Center (LANSCE) operates two spallation neutron sources dedicated to research in materials science, condensed-matter physics, and fundamental and applied nuclear physics. Prior to 1995, all thermal neutron radiography at Los Alamos was done on a beam port attached to the Omega West reactor, a small 8MW research reactor used primarily for radioisotope production and prompt and delayed neutron activation analysis. After the closure of this facility, two largely independent radiography development efforts were begun at LANSCE using moderated cold and thermal neutrons from the Target-1 source and high-energy neutrons from the Target-4 source. Investigations with cold and thermal neutrons employed a neutron converter and film, a scintillation screen and CCD camera system, and a new high-resolution amorphous silicon (a-Si) flat-panel detector system. Recent work with high-energy neutrons (En > 1 MeV) has involved storage-phosphor image plates. Some comparison high-energy images were obtained with both image plates and the a-Si panel and showed equivalent image quality for approximately equal exposure times. PMID:15246402

  1. Volumetric cone-beam CT system based on a 41x41 cm2 flat-panel imager

    NASA Astrophysics Data System (ADS)

    Jaffray, David A.; Siewerdsen, Jeffrey H.

    2001-06-01

    Cone-beam computed tomography (CBCT) based upon large-area flat-panel imager (FPI) technology is a flexible and adaptable technology that offers large field-of-view (FOV), high spatial resolution, and soft-tissue imaging. The imaging performance of FPI-based cone-beam CT has been evaluated on a computer-controlled bench-top system using an early prototype FPI with a small FOV (20.5 X 20.5 cm2). These investigations demonstrate the potential of this exciting technology. In this report, imaging performance is evaluated using a production grade large-area FPI (41 X 41 cm2) for which the manufacturer has achieved a significant reduction in additive noise. This reduction in additive noise results in a substantial improvement in detective quantum efficiency (DQE) at low exposures. The spatial resolution over the increased FOV of the cone-beam CT system is evaluated by imaging a fine steel wire placed at various locations within the volume of reconstruction. The measured modulation transfer function (MTF) of the system demonstrates spatial frequency pass beyond 1 mm-1 (10% modulation) with a slight degradation at points off the source plane. In addition to investigations of imaging performance, progress has also been made in the integration of this technology with a medical linear accelerator for on-line image-guided radiation therapy. Unlike the bench-top system, this implementation must contend with significant geometric non-idealities caused by gravity-induced flex of the x-ray tube and FPI support assemblies. A method of characterizing and correcting these non-idealities has been developed. Images of an anthropomorphic head phantom qualitatively demonstrate the excellent spatial resolution and large FOV achievable with the cone-beam approach in the clinical implementation.

  2. Optimization of image process parameters through factorial experiments using a flat panel detector

    NASA Astrophysics Data System (ADS)

    Norrman, Eva; Geijer, Håkan; Persliden, Jan

    2007-09-01

    In the optimization process of lumbar spine examinations, factorial experiments were performed addressing the question of whether the effective dose can be reduced and the image quality maintained by adjusting the image processing parameters. A 2k-factorial design was used which is a systematic and effective method of investigating the influence of many parameters on a result variable. Radiographic images of a Contrast Detail phantom were exposed using the default settings of the process parameters for lumbar spine examinations. The image was processed using different settings of the process parameters. The parameters studied were ROI density, gamma, detail contrast enhancement (DCE), noise compensation, unsharp masking and unsharp masking kernel (UMK). The images were computer analysed and an image quality figure (IQF) was calculated and used as a measurement of the image quality. The parameters with the largest influence on image quality were noise compensation, unsharp masking, unsharp masking kernel and detail contrast enhancement. There was an interaction between unsharp masking and kernel indicating that increasing the unsharp masking improved the image quality when combined with a large kernel size. Combined with a small kernel size however the unsharp masking had a deteriorating effect. Performing a factorial experiment gave an overview of how the image quality was influenced by image processing. By adjusting the level of noise compensation, unsharp masking and kernel, the IQF was improved to a 30% lower effective dose.

  3. Determination of the detective quantum efficiency of a prototype, megavoltage indirect detection, active matrix flat-panel imager.

    PubMed

    El-Mohri, Y; Jee, K W; Antonuk, L E; Maolinbay, M; Zhao, Q

    2001-12-01

    After years of aggressive development, active matrix flat-panel imagers (AMFPIs) have recently become commercially available for radiotherapy imaging. In this paper we report on a comprehensive evaluation of the signal and noise performance of a large-area prototype AMFPI specifically developed for this application. The imager is based on an array of 512 x 512 pixels incorporating amorphous silicon photodiodes and thin-film transistors offering a 26 x 26 cm2 active area at a pixel pitch of 508 microm. This indirect detection array was coupled to various x-ray converters consisting of a commercial phosphor screen (Lanex Fast B, Lanex Regular, or Lanex Fine) and a 1 mm thick copper plate. Performance of the imager in terms of measured sensitivity, modulation transfer function (MTF), noise power spectra (NPS), and detective quantum efficiency (DQE) is reported at beam energies of 6 and 15 MV and at doses of 1 and 2 monitor units (MU). In addition, calculations of system performance (NPS, DQE) based on cascaded-system formalism were reported and compared to empirical results. In these calculations, the Swank factor and spatial energy distributions of secondary electrons within the converter were modeled by means of EGS4 Monte Carlo simulations. Measured MTFs of the system show a weak dependence on screen type (i.e., thickness), which is partially due to the spreading of secondary radiation. Measured DQE was found to be independent of dose for the Fast B screen, implying that the imager is input-quantum-limited at 1 MU, even at an extended source-to-detector distance of 200 cm. The maximum DQE obtained is around 1%--a limit imposed by the low detection efficiency of the converter. For thinner phosphor screens, the DQE is lower due to their lower detection efficiencies. Finally, for the Fast B screen, good agreement between calculated and measured DQE was observed. PMID:11797959

  4. Effect of secondary particles on image quality of dynamic flat panels in carbon ion scanning beam treatment

    PubMed Central

    Amano, S; Furukawa, T; Shirai, T; Noda, K

    2015-01-01

    Objective: Real-time markerless tumour tracking using radiographic fluoroscopic imaging is one of the better solutions to improving respiratory-gated radiotherapy. However, particle beams cause secondary particles from patients, which could affect radiographs. Here, we evaluated the quality of radiographs during carbon ion pencil beam scanning (CPBS) irradiation for respiratory gating. Methods: A water phantom and chest phantom were used. The phantoms were irradiated with CPBS at 290 MeV n−1 from orthogonal directions. Dose rates were 3.4 × 108, 1.14 × 108 and 3.79 × 107 particles per second. A dynamic flat panel detector (DFPD) was installed on the upstream (DFPD1) or downstream (DFPD2) side of the vertical irradiation port. DFPD images were acquired during CPBS at 15.00, 7.50 and 3.75 frames per second (fps). Charge on the DFPD was cleaned using fast readout technique every 30 fps. DFPD images were acquired during CPBS with radiographic exposure, and results with and without fast readout technique were compared. Results: Secondary particles were visualized as spots or streak-like shapes. Capture of secondary particles from the horizontal beam direction was lower with fast readout technique than without it. With regard to beam irradiation direction dependency, CPBS from the horizontal direction resulted in a greater magnitude of secondary particles reaching DFPD2 than reaching DFPD1. When CPBS was delivered from the vertical direction, however, the magnitude of secondary particles on both DFPDs was very similar. Conclusion: Fast readout technique minimized the effect of secondary particles on DFPD images during CPBS. Advances in knowledge: This technique may be useful for markerless tumour tracking for respiratory gating. PMID:25536444

  5. Large Area Flat Panel Imaging Detectors for Astronomy and Night Time Sensing

    NASA Astrophysics Data System (ADS)

    Siegmund, O.; McPhate, J.; Frisch, H.; Elam, J.; Mane, A.; Wagner, R.; Varner, G.

    2013-09-01

    Sealed tube photo-sensing detectors for optical/IR detection have applications in astronomy, nighttime remote reconnaissance, and airborne/space situational awareness. The potential development of large area photon counting, imaging, timing detectors has significance for these applications and a number of other areas (High energy particle detection (RICH), biological single-molecule fluorescence lifetime imaging microscopy, neutron imaging, time of flight mass spectroscopy, diffraction imaging). We will present details of progress towards the development of a 20 cm sealed tube optical detector with nanoengineered microchannel plates for photon counting, imaging and sub-ns event time stamping. In the operational scheme of the photodetector incoming light passes through an entrance window and interacts with a semitransparent photocathode on the inside of the window. The photoelectrons emitted are accelerated across a proximity gap and are detected by an MCP pair. The pair of novel borosilicate substrate MCPs are functionalized by atomic layer deposition (ALD), and amplify the signal and the resulting electron cloud is detected by a conductive strip line anode for determination of the event positions and the time of arrival. The physical package is ~ 25 x 25 cm but only 1.5 cm thick. Development of such a device in a square 20 cm format presents challenges: hermetic sealing to a large entrance window, a 20 cm semitransparent photocathode with good efficiency and uniformity, 20 cm MCPs with reasonable cost and performance, robust construction to preserve high vacuum and withstand an atmosphere pressure differential. We will discuss the schemes developed to address these issues and present the results for the first test devices. The novel microchannel plates employing borosilicate micro-capillary arrays provide many performance characteristics typical of conventional MCPs, but have been made in sizes up to 20 cm, have low intrinsic background (0.08 events cm2 s-1) and

  6. Theoretical and Monte Carlo optimization of a stacked three-layer flat-panel x-ray imager for applications in multi-spectral diagnostic medical imaging

    NASA Astrophysics Data System (ADS)

    Lopez Maurino, Sebastian; Badano, Aldo; Cunningham, Ian A.; Karim, Karim S.

    2016-03-01

    We propose a new design of a stacked three-layer flat-panel x-ray detector for dual-energy (DE) imaging. Each layer consists of its own scintillator of individual thickness and an underlying thin-film-transistor-based flat-panel. Three images are obtained simultaneously in the detector during the same x-ray exposure, thereby eliminating any motion artifacts. The detector operation is two-fold: a conventional radiography image can be obtained by combining all three layers' images, while a DE subtraction image can be obtained from the front and back layers' images, where the middle layer acts as a mid-filter that helps achieve spectral separation. We proceed to optimize the detector parameters for two sample imaging tasks that could particularly benefit from this new detector by obtaining the best possible signal to noise ratio per root entrance exposure using well-established theoretical models adapted to fit our new design. These results are compared to a conventional DE temporal subtraction detector and a single-shot DE subtraction detector with a copper mid-filter, both of which underwent the same theoretical optimization. The findings are then validated using advanced Monte Carlo simulations for all optimized detector setups. Given the performance expected from initial results and the recent decrease in price for digital x-ray detectors, the simplicity of the three-layer stacked imager approach appears promising to usher in a new generation of multi-spectral digital x-ray diagnostics.

  7. Application of flat panel digital imaging for improvement of ocular melanoma patient set-up in proton beam therapy

    NASA Astrophysics Data System (ADS)

    Daftari, Inder K.; Essert, Timothy; Phillips, Theodore L.

    2009-01-01

    In order to reduce the dose to surrounding critical tissues and also minimize the probability of recurrence of the tumor the placement of radiation fields relative to patient anatomy is very essential in proton beam therapy of ocular tumors. To achieve this objective, patient setup and field placement have been verified before treatment by analyzing the portal images obtained with Polaroid film-camera system. The Polaroid films are becoming expensive and obsolete, making new methods of verifying the patient treatment position essential. The objective of this study was to implement an orthogonal flat panel digital imaging (FPDI) system as a tool to image-guided radiation therapy (IGRT) on the UC Davis cyclotron proton beam therapy line and to use the system for patient setup verification. The image quality of the system is sufficient to see an air hole with a diameter of 0.5 mm at a depth of 9 mm, in a 10 cm Lucite phantom. The subject contrast of the FPDI system varied from 16% to 29% by varying the size of the air hole in the phantom from 1 to 5 mm and changing the depth from 9 to 15 mm. The subject contrast for 0.5 mm air hole was 11%. The comparison of the setup variations as measured from Polaroid port films and FPDI was 0.1±0.7 mm in the X-direction, 0.2±0.2 mm in the Y-direction and 0.04±0.1 mm in Z-direction, respectively. The day-to-day positional variations in-patient set-ups were studied for 30 patients using the FPDI system. The patient position set-up on first day of treatment [defined by the X, Y, Z coordinates of the chair and head holder] was registered as the reference image. The comparison of day-to-day patient position with reference image indicated net translation along the three orthogonal axes as 0.3±1.88 mm in right-left direction, -0.3±1.78 in superior-inferior direction and -0.6±2.8 mm in anterior-posterior direction. The image quality of the FPDI system was sufficient to clearly reveal the radio-opaque markers on the digital image. In

  8. Impact of flat panel-imager veiling glare on scatter-estimation accuracy and image quality of a commercial on-board cone-beam CT imaging system

    SciTech Connect

    Lazos, Dimitrios; Williamson, Jeffrey F.

    2012-09-15

    Purpose: The purposes of this study is to measure the low frequency drop (LFD) of the modulation transfer function (MTF), associated with the long tails of the detector point spread function (PSF) of an on-board flat panel imager and study its impact on cone-beam CT (CBCT) image quality and scatter measurement accuracy. Methods: Two different experimental methods were used to characterize LFD and its associated PSF of a Varian OBI flat-panel detector system: the edge response function (ERF) method and the disk transfer function (DTF) method. PSF was estimated by fitting parametric models to these measurements for four values of the applied voltage (kVp). The resultant PSF was used to demonstrate the effect of LFD on image contrast and CT number accuracy in CBCT images reconstructed from synthetic datasets, as well as, accuracy of scatter measurements with the beam-stop method. Results: The MTFs derived from the measured ERF data revealed LFDs varying from 8% (at 60 kVp) to 10.5% (at 120 kVp), while the intensity of the long PSF tails was found to increase with increasing kVp. The veiling glare line spread functions derived from the ERF and DTF methods were in excellent agreement. Uncorrected veiling glare reduced contrast and the image intensity in CBCT reconstruction, near the phantom periphery (by 67 Hounsfield units in a 20 cm-in-diameter water phantom) and (to a smaller degree) near inhomogeneities. Use of the bow-tie filter mitigated these effects. Veiling glare also resulted in about 10%-15% overestimation of the scatter-to-primary ratio when measured with the beam-stop or beam-stop array method. Conclusions: The long tails of the detector PSF were found to have a modest dependence of beam spectrum, which is reflected on the MTF curve LFD. Our findings show that uncorrected veiling glare can affect quantitative accuracy and contrast in CBCT imaging, based on flat panel imager. In addition, it results in overestimation of the scatter-to-primary ratio, measured

  9. Impact of flat panel-imager veiling glare on scatter-estimation accuracy and image quality of a commercial on-board cone-beam CT imaging system

    PubMed Central

    Lazos, Dimitrios; Williamson, Jeffrey F.

    2012-01-01

    Purpose: The purposes of this study is to measure the low frequency drop (LFD) of the modulation transfer function (MTF), associated with the long tails of the detector point spread function (PSF) of an on-board flat panel imager and study its impact on cone-beam CT (CBCT) image quality and scatter measurement accuracy. Methods: Two different experimental methods were used to characterize LFD and its associated PSF of a Varian OBI flat-panel detector system: the edge response function (ERF) method and the disk transfer function (DTF) method. PSF was estimated by fitting parametric models to these measurements for four values of the applied voltage (kVp). The resultant PSF was used to demonstrate the effect of LFD on image contrast and CT number accuracy in CBCT images reconstructed from synthetic datasets, as well as, accuracy of scatter measurements with the beam-stop method. Results: The MTFs derived from the measured ERF data revealed LFDs varying from 8% (at 60 kVp) to 10.5% (at 120 kVp), while the intensity of the long PSF tails was found to increase with increasing kVp. The veiling glare line spread functions derived from the ERF and DTF methods were in excellent agreement. Uncorrected veiling glare reduced contrast and the image intensity in CBCT reconstruction, near the phantom periphery (by 67 Hounsfield units in a 20 cm-in-diameter water phantom) and (to a smaller degree) near inhomogeneities. Use of the bow-tie filter mitigated these effects. Veiling glare also resulted in about 10%–15% overestimation of the scatter-to-primary ratio when measured with the beam-stop or beam-stop array method. Conclusions: The long tails of the detector PSF were found to have a modest dependence of beam spectrum, which is reflected on the MTF curve LFD. Our findings show that uncorrected veiling glare can affect quantitative accuracy and contrast in CBCT imaging, based on flat panel imager. In addition, it results in overestimation of the scatter-to-primary ratio

  10. Investigation of the signal behavior at diagnostic energies of prototype, direct detection, active matrix, flat-panel imagers incorporating polycrystalline HgI2

    PubMed Central

    Du, Hong; El-Mohri, Youcef; Zhao, Qihua; Su, Zhong; Yamamoto, Jin; Wang, Yi

    2009-01-01

    Active matrix, flat-panel x-ray imagers based on a-Si:H thin film transistors offer many advantages and are widely utilized in medical imaging applications. Unfortunately, the detective quantum efficiency (DQE) of conventional flat-panel imagers incorporating scintillators or a-Se photoconductors is significantly limited by their relatively modest signal to noise ratio, particularly in applications involving low x-ray exposures or high spatial resolution. For this reason, polycrystalline HgI2 is of considerable interest by virtue of its low effective work function, high atomic number, and the possibility of large-area deposition. In this study, a detailed investigation of the properties of prototype, flat-panel arrays coated with two forms of this high-gain photoconductor are reported. Encouragingly, high x-ray sensitivity, low dark current, and spatial resolution close to the theoretical limits were observed from a number of prototypes. In addition, input-quantum-limited DQE performance was measured from one of the prototypes at relatively low exposures. However, high levels of charge trapping, lag, and polarization, as well as pixel-to-pixel variations in x-ray sensitivity are of concern. While the results of the current study are promising, further development will be required to realize prototypes exhibiting the characteristics necessary to allow practical implementation of this approach. PMID:18296765

  11. Analysis of a free-running synchronization artifact correction for MV-imaging with aSi:H flat panels

    SciTech Connect

    Mooslechner, Michaela; Mitterlechner, Bernhard; Weichenberger, Harald; Sedlmayer, Felix; Deutschmann, Heinz; Huber, Stefan

    2013-03-15

    Purpose: Solid state flat panel electronic portal imaging devices (EPIDs) are widely used for megavolt (MV) photon imaging applications in radiotherapy. In addition to their original purpose in patient position verification, they are convenient to use in quality assurance and dosimetry to verify beam geometry and dose deposition or to perform linear accelerator (linac) calibration procedures. However, native image frames from amorphous silicon (aSi:H) detectors show a range of artifacts which have to be eliminated by proper correction algorithms. When a panel is operated in free-running frame acquisition mode, moving vertical stripes (periodic synchronization artifacts) are a disturbing feature in image frames. Especially for applications in volumetric intensity modulated arc therapy (VMAT) or motion tracking, the synchronization (sync) artifacts are the limiting factor for potential and accuracy since they become even worse at higher frame rates and at lower dose rates, i.e., linac pulse repetition frequencies (PRFs). Methods: The authors introduced a synchronization correction method which is based on a theoretical model describing the interferences of the panel's readout clocking with the linac's dose pulsing. Depending on the applied PRF, a certain number of dose pulses is captured per frame which is readout columnwise, sequentially. The interference of the PRF with the panel readout is responsible for the period and the different gray value levels of the sync stripes, which can be calculated analytically. Sync artifacts can then be eliminated multiplicatively in precorrected frames without additional information about radiation pulse timing. Results: For the analysis, three aSi:H EPIDs of various types were investigated with 6 and 15 MV photon beams at varying PRFs of 25, 50, 100, 200, and 400 pulses per second. Applying the sync correction at panels with gadolinium oxysulfide scintillators improved single frame flood field image quality drastically

  12. The use of modern electronic flat panel devices for image guided radiation therapy:. Image quality comparison, intra fraction motion monitoring and quality assurance applications

    NASA Astrophysics Data System (ADS)

    Nill, S.; Stützel, J.; Häring, P.; Oelfke, U.

    2008-06-01

    With modern radiotherapy delivery techniques like intensity modulated radiotherapy (IMRT) it is possible to delivery a more conformal dose distribution to the tumor while better sparing the organs at risk (OAR) compared to 3D conventional radiation therapy. Due to the theoretically high dose conformity achievable it is very important to know the exact position of the target volume during the treatment. With more and more modern linear accelerators equipped with imaging devices this is now almost possible. These imaging devices are using energies between 120kV and 6MV and therefore different detector systems are used but the vast majority is using amorphous silicon flat panel devices with different scintilator screens and build up materials. The technical details and the image quality of these systems are discussed and first results of the comparison are presented. In addition new methods to deal with motion management and quality assurance procedures are shortly discussed.

  13. High-quality 3D correction of ring and radiant artifacts in flat panel detector-based cone beam volume CT imaging

    NASA Astrophysics Data System (ADS)

    Abu Anas, Emran Mohammad; Kim, Jae Gon; Lee, Soo Yeol; Kamrul Hasan, Md

    2011-10-01

    The use of an x-ray flat panel detector is increasingly becoming popular in 3D cone beam volume CT machines. Due to the deficient semiconductor array manufacturing process, the cone beam projection data are often corrupted by different types of abnormalities, which cause severe ring and radiant artifacts in a cone beam reconstruction image, and as a result, the diagnostic image quality is degraded. In this paper, a novel technique is presented for the correction of error in the 2D cone beam projections due to abnormalities often observed in 2D x-ray flat panel detectors. Template images are derived from the responses of the detector pixels using their statistical properties and then an effective non-causal derivative-based detection algorithm in 2D space is presented for the detection of defective and mis-calibrated detector elements separately. An image inpainting-based 3D correction scheme is proposed for the estimation of responses of defective detector elements, and the responses of the mis-calibrated detector elements are corrected using the normalization technique. For real-time implementation, a simplification of the proposed off-line method is also suggested. Finally, the proposed algorithms are tested using different real cone beam volume CT images and the experimental results demonstrate that the proposed methods can effectively remove ring and radiant artifacts from cone beam volume CT images compared to other reported techniques in the literature.

  14. High-quality 3D correction of ring and radiant artifacts in flat panel detector-based cone beam volume CT imaging.

    PubMed

    Anas, Emran Mohammad Abu; Kim, Jae Gon; Lee, Soo Yeol; Hasan, Md Kamrul

    2011-10-01

    The use of an x-ray flat panel detector is increasingly becoming popular in 3D cone beam volume CT machines. Due to the deficient semiconductor array manufacturing process, the cone beam projection data are often corrupted by different types of abnormalities, which cause severe ring and radiant artifacts in a cone beam reconstruction image, and as a result, the diagnostic image quality is degraded. In this paper, a novel technique is presented for the correction of error in the 2D cone beam projections due to abnormalities often observed in 2D x-ray flat panel detectors. Template images are derived from the responses of the detector pixels using their statistical properties and then an effective non-causal derivative-based detection algorithm in 2D space is presented for the detection of defective and mis-calibrated detector elements separately. An image inpainting-based 3D correction scheme is proposed for the estimation of responses of defective detector elements, and the responses of the mis-calibrated detector elements are corrected using the normalization technique. For real-time implementation, a simplification of the proposed off-line method is also suggested. Finally, the proposed algorithms are tested using different real cone beam volume CT images and the experimental results demonstrate that the proposed methods can effectively remove ring and radiant artifacts from cone beam volume CT images compared to other reported techniques in the literature. PMID:21934193

  15. Preliminary performance of image quality for a low-dose C-arm CT system with a flat-panel detector

    NASA Astrophysics Data System (ADS)

    Kyung Cha, Bo; Seo, Chang-Woo; Yang, Keedong; Jeon, Seongchae; Huh, Young

    2015-06-01

    Digital flat panel imager (FPI)-based cone-beam computed tomography (CBCT) has been widely used in C-arm imaging for spine surgery and interventional procedures. The system provides real-time fluoroscopy with high spatial resolution and three-dimensional (3D) visualization of anatomical structure without the need for patient transportation in interventional suite. In this work, a prototype CBCT imaging platform with continuous single rotation about the gantry was developed by using a large-area flat-panel detector with amorphous Si-based thin film transistor matrix. The different 2D projection images were acquired during constant gantry velocity for reconstructed images at a tube voltage of 80-120 kVp, and different current (10-50 mA) conditions. Various scan protocols were applied to a chest phantom human by changing the number of projection images and scanning angles. The projections were then reconstructed into a volumetric data of sections by using a 3D reconstruction algorithm (e.g., filtered back projection). The preliminary quantitative X-ray performance of our CBCT system was investigated by using the American Association of Physicists in Medicine CT phantom in terms of spatial resolution, contrast resolution, and CT number linearity for mobile or fixed C-arm based CBCT application with limited rotational geometry. The novel results of the projection data with different scanning angles and angular increments in the orbital gantry platform were acquired and evaluated experimentally.

  16. Microgap flat panel display

    DOEpatents

    Wuest, C.R.

    1998-12-08

    A microgap flat panel display is disclosed which includes a thin gas-filled display tube that utilizes switched X-Y ``pixel`` strips to trigger electron avalanches and activate a phosphor at a given location on a display screen. The panel utilizes the principal of electron multiplication in a gas subjected to a high electric field to provide sufficient electron current to activate standard luminescent phosphors located on an anode. The X-Y conductive strips of a few micron widths may for example, be deposited on opposite sides of a thin insulating substrate, or on one side of the adjacent substrates and function as a cathode. The X-Y strips are separated from the anode by a gap filled with a suitable gas. Electrical bias is selectively switched onto X and Y strips to activate a ``pixel`` in the region where these strips overlap. A small amount of a long-lived radioisotope is used to initiate an electron avalanche in the overlap region when bias is applied. The avalanche travels through the gas filled gap and activates a luminescent phosphor of a selected color. The bias is adjusted to give a proportional electron multiplication to control brightness for given pixel. 6 figs.

  17. Microgap flat panel display

    DOEpatents

    Wuest, Craig R.

    1998-01-01

    A microgap flat panel display which includes a thin gas-filled display tube that utilizes switched X-Y "pixel" strips to trigger electron avalanches and activate a phosphor at a given location on a display screen. The panel utilizes the principal of electron multiplication in a gas subjected to a high electric field to provide sufficient electron current to activate standard luminescent phosphors located on an anode. The X-Y conductive strips of a few micron widths may for example, be deposited on opposite sides of a thin insulating substrate, or on one side of the adjacent substrates and function as a cathode. The X-Y strips are separated from the anode by a gap filled with a suitable gas. Electrical bias is selectively switched onto X and Y strips to activate a "pixel" in the region where these strips overlap. A small amount of a long-lived radioisotope is used to initiate an electron avalanche in the overlap region when bias is applied. The avalanche travels through the gas filled gap and activates a luminescent phosphor of a selected color. The bias is adjusted to give a proportional electron multiplication to control brightness for given pixel.

  18. Signal and noise analysis of flat-panel sandwich detectors for single-shot dual-energy x-ray imaging

    NASA Astrophysics Data System (ADS)

    Kim, Dong Woon; Kim, Ho Kyung; Youn, Hanbean; Yun, Seungman; Han, Jong Chul; Kim, Junwoo; Kam, Soohwa; Tanguay, Jesse; Cunningham, Ian A.

    2015-03-01

    We have developed a novel sandwich-style single-shot (single-kV) detector by stacking two indirect-conversion flat-panel detectors for preclinical mouse imaging. In the sandwich detector structure, extra noise due to the direct x-ray absorption in photodiode arrays is inevitable. We develop a simple cascaded linear-systems model to describe signal and noise propagation in the flat-panel sandwich detector considering direct x-ray interactions. The noise-power spectrum (NPS) and detective quantum efficiency (DQE) obtained from the front and rear detectors are analyzed by using the cascaded-systems model. The NPS induced by the absorption of direct x-ray photons that are unattenuated within the photodiode layers is white in the spatial-frequency domain like the additive readout noise characteristic; hence that is harmful to the DQE at higher spatial frequencies at which the number of secondary quanta lessens. The model developed in this study will be useful for determining the optimal imaging techniques with sandwich detectors and their optimal design.

  19. Image Quality of Digital Direct Flat-Panel Mammography Versus an Indirect Small-Field CCD Technique Using a High-Contrast Phantom

    PubMed Central

    Krug, Kathrin Barbara; Stützer, Hartmut; Frommolt, Peter; Boecker, Julia; Bovenschulte, Henning; Sendler, Volker; Lackner, Klaus

    2011-01-01

    Objective. To compare the detection of microcalcifications on mammograms of an anthropomorphic breast phantom acquired by a direct digital flat-panel detector mammography system (FPM) versus a stereotactic breast biopsy system utilizing CCD (charge-coupled device) technology with either a 1024 or 512 acquisition matrix (1024 CCD and 512 CCD). Materials and Methods. Randomly distributed silica beads (diameter 100–1400 μm) and anthropomorphic scatter bodies were applied to 48 transparent films. The test specimens were radiographed on a direct digital FPM and by the indirect 1024 CCD and 512 CCD techniques. Four radiologists rated the monitor-displayed images independently of each other in random order. Results. The rate of correct positive readings for the “number of detectable microcalcifications” for silica beads of 100–199 μm in diameter was 54.2%, 50.0% and 45.8% by FPM, 1024 CCD and 512 CCD, respectively. The inter-rater variability was most pronounced for silica beads of 100–199 μm in diameter. The greatest agreement with the gold standard was observed for beads >400 μm in diameter across all methods. Conclusion. Stereotactic spot images taken by 1024 matrix CCD technique are diagnostically equivalent to direct digital flat-panel mammograms for visualizing simulated microcalcifications >400 μm in diameter. PMID:22332015

  20. Active pixel and photon counting imagers based on poly-Si TFTs: rewriting the rule book on large area flat panel x-ray devices

    NASA Astrophysics Data System (ADS)

    Antonuk, Larry E.; Koniczek, Martin; El-Mohri, Youcef; Zhao, Qihua

    2009-02-01

    The near-ubiquity of large area, active matrix, flat-panel imagers (AMFPIs) in medical x-ray imaging applications is a testament to the usefulness and adaptability of the relatively simple concept of array pixels based on a single amorphous silicon (a-Si:H) TFT coupled to a pixel storage capacitor. Interestingly, the fundamental advantages of a-Si:H thin film electronics (including compatibility with very large area processing, high radiation damage resistance, and continued development driven by interest in mainstream consumer products) are shared by the rapidly advancing technology of polycrystalline silicon (poly-Si) TFTs. Moreover, the far higher mobilities of poly-Si TFTs, compared to those of a- Si:H, facilitate the creation of faster and more complex circuits than are possible with a-Si:H TFTs, leading to the possibility of new classes of large area, flat panel imagers. Given recent progress in the development of initial poly-Si imager prototypes, the creation of increasingly sophisticated active pixel arrays offering pixel-level amplification, variable gain, very high frame rates, and excellent signal-to-noise performance under all fluoroscopic and radiographic conditions (including very low exposures and high spatial frequencies), appears within reach. In addition, it is conceivable that the properties of poly-Si TFTs could allow the development of large area imagers providing single xray photon counting capabilities. In this article, the factors driving the possible realization of clinically practical active pixel and photon counting imagers based on poly-Si TFTs are described and simple calculational estimates related to photon counting imagers are presented. Finally, the prospect for future development of such imagers is discussed.

  1. Investigation on effect of image lag in fluoroscopic images obtained with a dynamic flat-panel detector (FPD) on accuracy of target tracking in radiotherapy.

    PubMed

    Tanaka, Rie; Ichikawa, Katsuhiro; Mori, Shinichiro; Dobashi, Suguru; Kumagai, Motoki; Kawashima, Hiroki; Minohara, Shinichi; Sanada, Sigeru

    2010-01-01

    Real-time tumor tracking in external radiotherapy can be achieved by diagnostic (kV) X-ray imaging with a dynamic flat-panel detector (FPD). The purpose of this study was to address image lag in target tracking and its influence on the accuracy of tumor tracking. Fluoroscopic images were obtained using a direct type of dynamic FPD. Image lag properties were measured without test devices according to IEC 62220-1. Modulation transfer function (MTF) and profile curves were measured on the edges of a moving tungsten plate at movement rate of 10 and 20 mm/s, covering lung tumor movement of normal breathing. A lung tumor and metal sphere with blurred edge due to image lag was simulated using the results and then superimposed on breathing chest radiographs of a patient. The moving target with and without image lag was traced using a template-matching technique. In the results, the image lag for the first frame after X-ray cutoff was 2.0% and decreased to less than 0.1% in the fifth frame. In the measurement of profile curves on the edges of static and moving tungsten material plates, the effect of image lag was seen as blurred edges of the plate. The blurred edges of a moving target were indicated as reduction of MTF. However, the target could be traced within an error of ± 5 mm. The results indicated that there was no effect of image lag on target tracking in usual breathing speed in a radiotherapy situation. PMID:21030796

  2. An alternate line erasure and readout (ALER) method for implementing slot-scan imaging technique with a flat-panel detector--initial experiences.

    PubMed

    Liu, Xinming; Shaw, Chris C; Altunbas, Mustafa C; Wang, Tianpeng

    2006-04-01

    This paper describes and demonstrates an electronic collimation method, referred to as the alternate line erasure and readout (ALER) technique, for implementing slot-scan digital radiography technique with an amorphous silicon (a-Si) thin-film transistor (TFT) array based flat-panel detector. An amorphus selenium (a-Se) flat-panel detector was modified to implement the ALER technique for slot-scan imaging. A stepping-motor driven fore-collimator was mounted in front of an X-ray tube to generate a scanning X-ray fan beam. The scanning speed and magnification were adjusted to synchronize the fan beam motion with the image line readout rate. The image lines on the leading and trailing edges of the fan beam were tracked and alternately reset and read out, respectively. The former operation resulted in the erasure of the scatter signals accumulated in the leading edge image line prior to the arrival of the fan beam. The latter operation resulted in the acquisition of fan beam exposure data integrated in the trailing edge image line right after the fan beam passed. To demonstrate the scatter rejection capability of this technique, an anthropomorphic chest phantom was placed in PA position and scanned at a speed of 576 lines (8.0 cm)/s at 117 kVp and 32 mA. A tungsten bar is placed at the entrance side of the chest phantom to measure the scatter-to-primary ratio (SPR), scatter reduction factor (SRF), and contrast-to-noise ratio degradation factor (CNRDF) in the slot-scan images to evaluate the effectiveness of scatter rejection and the resultant improvement of image quality. SPR and CNRDF in the open-field images were also measured and used as the reference for comparison. A scatter reduction by 86.4 to 95.4% across lower lung and heart regions has been observed with slot-scan imaging. The CNRs have been found to be improved by a factor of 2 in the mediastinum areas over the open-field image as well. PMID:16608064

  3. SU-C-16A-01: In Vivo Source Position Verification in High Dose Rate (HDR) Prostate Brachytherapy Using a Flat Panel Imager: Initial Clinical Experience

    SciTech Connect

    Franich, R; Smith, R; Millar, J; Haworth, A; Taylor, M; McDermott, L

    2014-06-15

    Purpose: We report our initial clinical experience with a novel position-sensitive source-tracking system based on a flat panel imager. The system has been trialled with 4 prostate HDR brachytherapy patients (8 treatment fractions) in this initial study. Methods: The flat panel imaging system was mounted under a customised carbon fibre couch top assembly (Figure 1). Three gold fiducial markers were implanted into the prostate of each patient at the time of catheter placement. X-ray dwell position markers were inserted into three catheters and a radiograph acquired to locate the implant relative to the imaging device. During treatment, as the HDR source dwells were delivered, images were acquired and processed to determine the position of the source in the patient. Source positions measured by the imaging device were compared to the treatment plan for verification of treatment delivery. Results: Measured dwell positions provided verification of relative dwell spacing within and between catheters, in the coronal plane. Measurements were typically within 2.0mm (0.2mm – 3.3mm, s.d. 0.8mm) of the planned positions over 60 dwells (Figure 2). Discrimination between larger dwell intervals and catheter differentiation were clear. This confirms important delivery attributes such as correct transfer tube connection, source step size, relative catheter positions and therefore overall correct plan selection and delivery. The fiducial markers, visible on the radiograph, provided verification of treatment delivery to the correct anatomical location. The absolute position of the dwells was determined by comparing the measured dwell positions with the x-ray markers from the radiograph, validating the programmed treatment indexer length. The total impact on procedure time was less than 5 minutes. Conclusion: The novel, noninvasive HDR brachytherapy treatment verification system was used clinically with minor impact on workflow. The system allows verification of correct treatment

  4. Psychophysical evaluation of the image quality of a dynamic flat-panel digital x-ray image detector using the threshold contrast detail detectability (TCDD) technique

    NASA Astrophysics Data System (ADS)

    Davies, Andrew G.; Cowen, Arnold R.; Bruijns, Tom J. C.

    1999-05-01

    We are currently in an era of active development of the digital X-ray imaging detectors that will serve the radiological communities in the new millennium. The rigorous comparative physical evaluations of such devices are therefore becoming increasingly important from both the technical and clinical perspectives. The authors have been actively involved in the evaluation of a clinical demonstration version of a flat-panel dynamic digital X-ray image detector (or FDXD). Results of objective physical evaluation of this device have been presented elsewhere at this conference. The imaging performance of FDXD under radiographic exposure conditions have been previously reported, and in this paper a psychophysical evaluation of the FDXD detector operating under continuous fluoroscopic conditions is presented. The evaluation technique employed was the threshold contrast detail detectability (TCDD) technique, which enables image quality to be measured on devices operating in the clinical environment. This approach addresses image quality in the context of both the image acquisition and display processes, and uses human observers to measure performance. The Leeds test objects TO[10] and TO[10+] were used to obtain comparative measurements of performance on the FDXD and two digital spot fluorography (DSF) systems, one utilizing a Plumbicon camera and the other a state of the art CCD camera. Measurements were taken at a range of detector entrance exposure rates, namely 6, 12, 25 and 50 (mu) R/s. In order to facilitate comparisons between the systems, all fluoroscopic image processing such as noise reduction algorithms, were disabled during the experiments. At the highest dose rate FDXD significantly outperformed the DSF comparison systems in the TCDD comparisons. At 25 and 12 (mu) R/s all three-systems performed in an equivalent manner and at the lowest exposure rate FDXD was inferior to the two DSF systems. At standard fluoroscopic exposures, FDXD performed in an equivalent

  5. [Flat Panel Detector Philips introduced and its system direction].

    PubMed

    Yamada, Shinichi

    2002-01-01

    We introduced digital X-ray diagnostic systems with Flat panel detector both in general X-ray systems and in Angiography systems. Our introduced Flat Panel Detector has the latest technology and has Cesium Iodide (CsI) that absorbs X-ray energy and generates visible light. Detected light signals make digital X-ray images. CsI is the most important material because its absorption rate of X-ray influences the strength of output digital signal. The purpose in this paper is checking that is latest Flat Panel Detector pulls out enough capability CsI has. Especially the thickness of CsI relates to X-ray absorption. X-ray absorption rate depended on the thickness of CsI was calculated by using simulated X-ray model and the future direction of Flat Panel Detector system was discussed. PMID:12766268

  6. Evaluation for Basic Image Qualities Dependence on the Position in XYZ Directions and Acquisition Parameters of the Cone Beam CT for Angiography System with Flat Panel Detector.

    PubMed

    Tsuda, Norisato; Mitsui, Kota; Oda, Shinichiro

    2016-08-01

    The purpose of this study was to investigate the effect of the position in XYZ directions and acquisition parameters on the basic image qualities of for cone beam computed tomography (CBCT) in an angiography system with flat panel detector. The resolution property (modulation transfer function: MTF) and the noise property (Wiener spectrum: WS) of CBCT images in X-Y plane were measured with different acquisition parameters (scan matrix number and projection number) and the effect of the position in XYZ directions. The MTFs with 1024×1024 matrix were higher than those of 512×512 matrix and decreased in the peripheral areas due to the reduction of projection number. The highest and the lowest MTFs were measured at the X-ray tube side and on the detector side of the position in X-Y plane, respectively. The WS-doubled projection number showed about 50% lesser noise level. There were differences in the Wiener spectra (WS) at the position in XYZ directions. We conclude that the resolution and the noise property of CBCT image in X-Y plane showed dependences on the position in XYZ directions and acquisition parameters of the CBCT. PMID:27546079

  7. Empirical and theoretical investigation of the noise performance of indirect detection, active matrix flat-panel imagers (AMFPIs) for diagnostic radiology.

    PubMed

    Siewerdsen, J H; Antonuk, L E; el-Mohri, Y; Yorkston, J; Huang, W; Boudry, J M; Cunningham, I A

    1997-01-01

    Noise properties of active matrix, flat-panel imagers under conditions relevant to diagnostic radiology are investigated. These studies focus on imagers based upon arrays with pixels incorporating a discrete photodiode coupled to a thin-film transistor, both fabricated from hydrogenated amorphous silicon. These optically sensitive arrays are operated with an overlying x-ray converter to allow indirect detection of incident x rays. External electronics, including gate driver circuits and preamplification circuits, are also required to operate the arrays. A theoretical model describing the signal and noise transfer properties of the imagers under conditions relevant to diagnostic radiography, fluoroscopy, and mammography is developed. This frequency-dependent model is based upon a cascaded systems analysis wherein the imager is conceptually divided into a series of stages having intrinsic gain and spreading properties. Predictions from the model are compared with x-ray sensitivity and noise measurements obtained from individual pixels from an imager with a pixel format of 1536 x 1920 pixels at a pixel pitch of 127 microns. The model is shown to be in excellent agreement with measurements obtained with diagnostic x rays using various phosphor screens. The model is used to explore the potential performance of existing and hypothetical imagers for application in radiography, fluoroscopy, and mammography as a function of exposure, additive noise, and fill factor. These theoretical predictions suggest that imagers of this general design incorporating a CsI: Tl intensifying screen can be optimized to provide detective quantum efficiency (DQE) superior to existing screen-film and storage phosphor systems for general radiography and mammography. For fluoroscopy, the model predicts that with further optimization of a-Si:H imagers, DQE performance approaching that of the best x-ray image intensifier systems may be possible. The results of this analysis suggest strategies for

  8. A real-time flat-panel X-ray pixel imaging system for low-dose medical diagnostics and craniofacial applications.

    PubMed

    Chapuy, S; Dimcovski, D; Dimcovski, Z; Grigoriev, E; Grob, E; Ligier, Y; Pachoud, M; Riondel, F; Rüfenacht, D; Sayegh, C; Terrier, F; Valley, J F; Verdun, F R

    2000-01-01

    The aim of this study was to evaluate on-line performance of a real-time digital imaging system based on amorphous silicon technology and to compare it with conventional film-screen equipment. The digital detecting imager consists of (1) a converter, which transforms the energy of the incident X rays into light; (2) a real-time digital detecting system, capable of producing as many as 10 pictures per second using a large-area pixel matrix (20 x 20 cm2) based on solid-state amorphous silicon sensor technology with a pitch of 400 microns; and (3) appropriate computer tools for control, real-time image treatment, data representation, and off-line analysis. Different phantoms were used for qualitative comparison with the conventional film-screen technique, with images obtained with both systems at the normal dose (used as a reference), as well as with dose reduction by a factor of 10 to 100. Basic image quality parameters evaluated showed that the response of the detector is linear in a wide range of entrance air kerma; the dynamic range is higher compared with the conventional film-screen combination; the spatial resolution is 1.25 lp per millimeter, as expected from the pixel size; and good image quality is ensured at doses substantially lower than for the film-screen technique. The flat-panel X-ray imager based on amorphous silicon technology implemented in standard radiographic equipment permits acquisition of real-time images in radiology (as many as 10 images per second) of diagnostic quality with a marked reduction of dose (as much as 100 times) and better contrast compared with the standard film technique. Preliminary results obtained with a 100-micron pitch imager based on the same technology show better quality but a less substantial dose reduction. Applications in craniofacial surgery look promising. PMID:11314093

  9. Flat panel planar optic display

    SciTech Connect

    Veligdan, J.T.

    1994-11-01

    A prototype 10 inch flat panel Planar Optic Display, (POD), screen has been constructed and tested. This display screen is comprised of hundreds of planar optic class sheets bonded together with a cladding layer between each sheet where each glass sheet represents a vertical line of resolution. The display is 9 inches wide by 5 inches high and approximately 1 inch thick. A 3 milliwatt HeNe laser is used as the illumination source and a vector scanning technique is employed.

  10. Investigation of the effect of anode/filter materials on the dose and image quality of a digital mammography system based on an amorphous selenium flat panel detector.

    PubMed

    Baldelli, P; Phelan, N; Egan, G

    2010-04-01

    A comparison, in terms of image quality and glandular breast dose, was carried out between two similar digital mammography systems using amorphous selenium flat panel detectors. The two digital mammography systems currently available from Lorad-Hologic were compared. The original system utilises Mo/Mo and Mo/Rh as target/filter combinations, while the new system uses W/Rh and W/Ag. Images of multiple mammography phantoms with simulated compressed breast thicknesses of 4 cm, 5 cm and 6 cm and various glandular tissue equivalency were acquired under different spectral conditions. The contrast of five details, corresponding to five glandular compositions, was calculated and the ratio of the square of the contrast-to-noise ratio to the average glandular dose was used as a figure-of-merit (FOM) to compare results. For each phantom thickness and target/filter combination, there is an optimum voltage that maximises the FOM. Results show that the W/Rh combination is the best choice for all the detection tasks studied, but for thicknesses greater than 6 cm the W/Ag combination would probably be the best choice. In addition, the new system with W filter presents a better optimisation of the automatic exposure control in comparison with the original system with Mo filter. PMID:20019173

  11. Imaging responses of on-site CsI and Gd2O2S flat-panel detectors: Dependence on the tube voltage

    NASA Astrophysics Data System (ADS)

    Jeon, Hosang; Chung, Myung Jin; Youn, Seungman; Nam, Jiho; Lee, Jayoung; Park, Dahl; Kim, Wontaek; Ki, Yongkan; Kim, Ho Kyung

    2015-07-01

    One of the emerging issues in radiography is low-dose imaging to minimize patient's exposure. The scintillating materials employed in most indirect flat-panel detectors show a drastic change of X-ray photon absorption efficiency around their K-edge energies that consequently affects image quality. Using various tube voltages, we investigated the imaging performance of most popular scintillators: cesium iodide (CsI) and gadolinium oxysulfide (Gd2O2S). The integrated detective quantum efficiencies (iDQE) of four detectors installed in the same hospital were evaluated according to the standardized procedure IEC 62220-1 at tube voltages of 40 - 120 kVp. The iDQE values of the Gd2O2S detectors were normalized by those of CsI detectors to exclude the effects of image postprocessing. The contrast-to-noise ratios (CNR) were also evaluated by using an anthropomorphic chest phantom. The iDQE of the CsI detector outperformed that of the Gd2O2S detector over all tube voltages. Moreover, we noted that the iDQE of the Gd2O2S detectors quickly rolled off with decreasing tube voltage under 70 kVp. The CNRs of the two scintillators were similar at 120 kVp. At 60 kVp, however, the CNR of Gd2O2S was about half that of CsI. Compared to the Gd2O2S detectors, variations in the DQE performance of the CsI detectors were relatively immune to variations in the applied tube voltages. Therefore, we claim that Gd2O2S detectors are inappropriate for use in low-tube-voltage imaging (e.g., extremities and pediatrics) with low patient exposure.

  12. MTF characterization in 2D and 3D for a high resolution, large field of view flat panel imager for cone beam CT

    NASA Astrophysics Data System (ADS)

    Shah, Jainil; Mann, Steve D.; Tornai, Martin P.; Richmond, Michelle; Zentai, George

    2014-03-01

    The 2D and 3D modulation transfer functions (MTFs) of a custom made, large 40x30cm2 area, 600- micron CsI-TFT based flat panel imager having 127-micron pixellation, along with the micro-fiber scintillator structure, were characterized in detail using various techniques. The larger area detector yields a reconstructed FOV of 25cm diameter with an 80cm SID in CT mode. The MTFs were determined with 1x1 (intrinsic) binning. The 2D MTFs were determined using a 50.8 micron tungsten wire and a solid lead edge, and the 3D MTF was measured using a custom made phantom consisting of three nearly orthogonal 50.8 micron tungsten wires suspended in an acrylic cubic frame. The 2D projection data was reconstructed using an iterative OSC algorithm using 16 subsets and 5 iterations. As additional verification of the resolution, along with scatter, the Catphan® phantom was also imaged and reconstructed with identical parameters. The measured 2D MTF was ~4% using the wire technique and ~1% using the edge technique at the 3.94 lp/mm Nyquist cut-off frequency. The average 3D MTF measured along the wires was ~8% at the Nyquist. At 50% MTF, the resolutions were 1.2 and 2.1 lp/mm in 2D and 3D, respectively. In the Catphan® phantom, the 1.7 lp/mm bars were easily observed. Lastly, the 3D MTF measured on the three wires has an observed 5.9% RMSD, indicating that the resolution of the imaging system is uniform and spatially independent. This high performance detector is integrated into a dedicated breast SPECT-CT imaging system.

  13. Patient-specific scatter correction for flat-panel detector-based cone-beam CT imaging

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Brunner, Stephen; Niu, Kai; Schafer, Sebastian; Royalty, Kevin; Chen, Guang-Hong

    2015-02-01

    A patient-specific scatter correction algorithm is proposed to mitigate scatter artefacts in cone-beam CT (CBCT). The approach belongs to the category of convolution-based methods in which a scatter potential function is convolved with a convolution kernel to estimate the scatter profile. A key step in this method is to determine the free parameters introduced in both scatter potential and convolution kernel using a so-called calibration process, which is to seek for the optimal parameters such that the models for both scatter potential and convolution kernel is able to optimally fit the previously known coarse estimates of scatter profiles of the image object. Both direct measurements and Monte Carlo (MC) simulations have been proposed by other investigators to achieve the aforementioned rough estimates. In the present paper, a novel method has been proposed and validated to generate the needed coarse scatter profile for parameter calibration in the convolution method. The method is based upon an image segmentation of the scatter contaminated CBCT image volume, followed by a reprojection of the segmented image volume using a given x-ray spectrum. The reprojected data is subtracted from the scatter contaminated projection data to generate a coarse estimate of the needed scatter profile used in parameter calibration. The method was qualitatively and quantitatively evaluated using numerical simulations and experimental CBCT data acquired on a clinical CBCT imaging system. Results show that the proposed algorithm can significantly reduce scatter artefacts and recover the correct CT number. Numerical simulation results show the method is patient specific, can accurately estimate the scatter, and is robust with respect to segmentation procedure. For experimental and in vivo human data, the results show the CT number can be successfully recovered and anatomical structure visibility can be significantly improved.

  14. Evaluation of Effective Dose During Abdominal Three-Dimensional Imaging for Three Flat-Panel-Detector Angiography Systems

    SciTech Connect

    Suzuki, Shigeru; Yamaguchi, Ichiro; Kidouchi, Takashi; Yamamoto, Asako; Masumoto, Tomohiko; Ozaki, Yutaka

    2011-04-15

    The purpose of this study was to evaluate the effective dose during abdominal three-dimensional (3D) imaging on phantoms and estimate the dose-area product (DAP) for effective dose conversion factors for three types of angiographic units. Three-dimensional imaging was performed for three sizes (small, medium, large) of human-shaped phantoms using three types of angiographic units (Allura Xper FD20/10, INNOVA 4100, AXIOM Artis dTA). We calculated 25 organ doses and effective doses using Monte Carlo technique for the three phantoms with a program for a personal computer. As benchmark studies to back up the results by Monte Carlo technique, we measured the organ doses directly on the small phantom using radiophotoluminescent glass dosimeters. The DAP value increased as the phantom size increased. The organ doses and the effective doses during the 3D imaging increased as the phantom size increased. The effective doses for the small phantom by Monte Carlo technique were 1.9, 2.2, and 2.1 mSv for the Allura Xper FD20/10, INNOVA 4100, and AXIOM Artis dTA, respectively, while those by direct measurement were 1.6, 2.0, and 2.6 mSv. The effective doses to DAP ratios by Monte Carlo technique were 0.37-0.45, 0.26-0.32, and 0.13-0.15 (mSv Gy{sup -1}cm{sup -2}) for the Allura Xper FD20/10, INNOVA 4100, and AXIOM Artis dTA, respectively. In conclusion, the effective doses during 3D imaging and the dose-to-DAP ratios differ among angiographic units, and the effective dose can be estimated using a proper conversion factor for each angiographic unit.

  15. Cone-beam CT with a flat-panel detector on a mobile C-arm: preclinical investigation in image-guided surgery of the head and neck

    NASA Astrophysics Data System (ADS)

    Siewerdsen, J. H.; Chan, Y.; Rafferty, M. A.; Moseley, D. J.; Jaffray, D. A.; Irish, J. C.

    2005-04-01

    A promising imaging platform for combined low-dose fluoroscopy and cone-beam CT (CBCT) guidance of interventional procedures has been developed in our laboratory. Based on a mobile isocentric C-arm (Siemens PowerMobil) incorporating a high-performance flat-panel detector (Varian PaxScan 4030CB), the system demonstrates sub-mm 3D spatial resolution and soft-tissue visibility with field of view sufficient for head and body sites. For pre-clinical studies in head neck tumor surgery, we hypothesize that the 3D intraoperative information provided by CBCT permits precise, aggressive techniques with improved avoidance of critical structures. The objectives include: 1) quantify improvement in surgical performance achieved with CBCT guidance compared to open and endoscopic techniques; and 2) investigate specific, challenging surgical tasks under CBCT guidance. Investigations proceed from an idealized phantom model to cadaveric specimens. A novel surgical performance evaluation method based on statistical decision theory is applied to excision and avoidance tasks. Analogous to receiver operating characteristic (ROC) analysis in medical imaging, the method quantifies surgical performance in terms of Lesion-Excised (True-Positve), Lesion-Remaining (False-Negative), Normal-Excised (False-Positive), and Normal-Remaining (True-Negative) fractions. Conservative and aggressive excision and avoidance tasks are executed in 12 cadaveric specimens with and without CBCT guidance, including: dissection through dura, preservation of posterior lamina, ethmoid air cells removal, exposure of peri-orbita, and excision of infiltrated bone in the skull base (clivus). Intraoperative CBCT data was found to dramatically improve surgical performance and confidence in the execution of such tasks. Pre-clinical investigation of this platform in head and neck surgery, as well as spinal, trauma, biopsy, and other nonvascular procedures, is discussed.

  16. Using Flat-Panel Perfusion Imaging to Measure Cerebral Hemodynamics: A Pilot Feasibility Study in Patients With Carotid Stenosis.

    PubMed

    Lin, Chung-Jung; Guo, Wan-Yuo; Chang, Feng-Chi; Hung, Sheng-Che; Chen, Ko-Kung; Yu, Deuerling-Zheng; Wu, Chun-Hsien Frank; Liou, Jy-Kang Adrian

    2016-05-01

    Flat-detector CT perfusion (FD-CTP) imaging has demonstrated efficacy in qualitatively accessing the penumbra in acute stroke equivalent to that of magnetic resonance perfusion (MRP). The aim of our study was to evaluate the feasibility of quantifying oligemia in the brain in patients with carotid stenosis.Ten patients with unilateral carotid stenosis of >70% were included. All MRPs and FD-CTPs were performed before stenting. Region-of-interests (ROIs) including middle cerebral artery territory at basal ganglia level on both stenotic and contralateral sides were used for quantitative analysis. Relative time to peak (rTTP) was defined as TTP of the stenotic side divided by TTP of the contralateral side, and so as relative cerebral blood volume (rCBV), relative mean transit time (rMTT), and relative cerebral blood flow (rCBF). Absolute and relative TTP, CBV, MTT, CBF between two modalities were compared.For absolute quantitative analysis, the correlation of TTP was highest (r = 0.56), followed by CBV (r = 0.47), MTT (r = 0.47), and CBF (r = 0.43); for relative quantitative analysis, rCBF was the highest (r = 0.79), followed by rTTP (r = 0.75) and rCBV (r = 0.50).We confirmed that relative quantitative assessment of FD-CTP is feasible in chronic ischemic disease. Absolute quantitative measurements between MRP and FD-CTP only expressed moderate correlations. Optimization of acquisitions and algorithms is warranted to achieve better quantification. PMID:27196456

  17. Laser illuminated flat panel display

    SciTech Connect

    Veligdan, J.T.

    1995-12-31

    A 10 inch laser illuminated flat panel Planar Optic Display (POD) screen has been constructed and tested. This POD screen technology is an entirely new concept in display technology. Although the initial display is flat and made of glass, this technology lends itself to applications where a plastic display might be wrapped around the viewer. The display screen is comprised of hundreds of planar optical waveguides where each glass waveguide represents a vertical line of resolution. A black cladding layer, having a lower index of refraction, is placed between each waveguide layer. Since the cladding makes the screen surface black, the contrast is high. The prototype display is 9 inches wide by 5 inches high and approximately I inch thick. A 3 milliwatt HeNe laser is used as the illumination source and a vector scanning technique is employed.

  18. SU-E-I-11: Cascaded Linear System Model for Columnar CsI Flat Panel Imagers with Depth Dependent Gain and Blur

    SciTech Connect

    Peng, B; Lubinsky, A; Zheng, H; Zhao, W; Teymurazyan, A

    2014-06-01

    Purpose: To implement a depth dependent gain and blur cascaded linear system model (CLSM) for optimizing columnar structured CsI indirect conversion flat panel imager (FPI) for advanced imaging applications. Methods: For experimental validation, depth dependent escape efficiency, e(z), was extracted from PHS measurement of different CsI scintillators (thickness, substrate and light output). The inherent MTF and DQE of CsI was measured using high resolution CMOS sensor. For CLSM, e(z) and the depth dependent MTF(f,z), were estimated using Monte Carlo simulation (Geant4) of optical photon transport through columnar CsI. Previous work showed that Monte Carlo simulation for CsI was hindered by the non-ideality of its columnar structure. In the present work we allowed variation in columnar width with depth, and assumed diffusive reflective backing and columns. Monte Carlo simulation was performed using an optical point source placed at different depth of the CsI layer, from which MTF(z,f) and e(z) were computed. The resulting e(z) with excellent matching with experimental measurements were then applied to the CLSM, Monte Carlo simulation was repeated until the modeled MTF, DQE(f) also match experimental measurement. Results: For a 150 micron FOS HL type CsI, e(z) varies between 0.56 to 0.45, and the MTF at 14 cycles/mm varies between 62.1% to 3.9%, from the front to the back of the scintillator. The overall MTF and DQE(f) at all frequencies are in excellent agreement with experimental measurements at all frequencies. Conclusion: We have developed a CLSM for columnar CsI scintillators with depth dependent gain and MTF, which were estimated from Monte Carlo simulation with novel optical simulation settings. Preliminary results showed excellent agreement between simulation results and experimental measurements. Future work is aimed at extending this approach to optimize CsI screen optic design and sensor structure for achieving higher DQE(f) in cone-beam CT, which uses

  19. Integrated radiotherapy imaging system (IRIS): design considerations of tumour tracking with linac gantry-mounted diagnostic x-ray systems with flat-panel detectors

    NASA Astrophysics Data System (ADS)

    Berbeco, Ross I.; Jiang, Steve B.; Sharp, Gregory C.; Chen, George T. Y.; Mostafavi, Hassan; Shirato, Hiroki

    2004-01-01

    The design of an integrated radiotherapy imaging system (IRIS), consisting of gantry mounted diagnostic (kV) x-ray tubes and fast read-out flat-panel amorphous-silicon detectors, has been studied. The system is meant to be capable of three main functions: radiographs for three-dimensional (3D) patient set-up, cone-beam CT and real-time tumour/marker tracking. The goal of the current study is to determine whether one source/panel pair is sufficient for real-time tumour/marker tracking and, if two are needed, the optimal position of each relative to other components and the isocentre. A single gantry-mounted source/imager pair is certainly capable of the first two of the three functions listed above and may also be useful for the third, if combined with prior knowledge of the target's trajectory. This would be necessary because only motion in two dimensions is visible with a single imager/source system. However, with previously collected information about the trajectory, the third coordinate may be derived from the other two with sufficient accuracy to facilitate tracking. This deduction of the third coordinate can only be made if the 3D tumour/marker trajectory is consistent from fraction to fraction. The feasibility of tumour tracking with one source/imager pair has been theoretically examined here using measured lung marker trajectory data for seven patients from multiple treatment fractions. The patients' selection criteria include minimum mean amplitudes of the tumour motions greater than 1 cm peak-to-peak. The marker trajectory for each patient was modelled using the first fraction data. Then for the rest of the data, marker positions were derived from the imager projections at various gantry angles and compared with the measured tumour positions. Our results show that, due to the three dimensionality and irregular trajectory characteristics of tumour motion, on a fraction-to-fraction basis, a 'monoscopic' system (single source/imager) is inadequate for

  20. Half-time Tc-99m sestamibi imaging with a direct conversion molecular breast imaging system

    PubMed Central

    2014-01-01

    Background In an effort to reduce necessary acquisition time to perform molecular breast imaging (MBI), we compared diagnostic performance of MBI performed with standard 10-min-per-view acquisitions and half-time 5-min-per-view acquisitions, with and without wide beam reconstruction (WBR) processing. Methods Eighty-two bilateral, two-view MBI studies were reviewed. Studies were performed with 300 MBq Tc-99 m sestamibi and a direct conversion molecular breast imaging (DC-MBI) system. Acquisitions were 10 min-per-view; the first half of each was extracted to create 5-min-per-view datasets, and WBR processing was applied. The 10-min-, 5-min-, and 5-min-per-view WBR studies were independently interpreted in a randomized, blinded fashion by two radiologists. Assessments of 1 to 5 were assigned; 4 and 5 were considered test positive. Background parenchymal uptake, lesion type, distribution of non-mass lesions, lesion intensity, and image quality were described. Results Considering detection of all malignant and benign lesions, 5 min-per-view MBI had lower sensitivity (mean of 70% vs. 85% (p ≤ 0.04) for two readers) and lower area under curve (AUC) (mean of 92.7 vs. 99.6, p ≤ 0.01) but had similar specificity (p = 1.0). WBR processing did not alter sensitivity, specificity, or AUC obtained at 5 min-per-view. Overall agreement in final assessment between 5-min-per-view and 10-min-per-view acquisition types was near perfect (κ = 0.82 to 0.89); however, fair to moderate agreement was observed for assessment category 3 (probably benign) (κ = 0.24 to 0.48). Of 33 malignant lesions, 6 (18%) were changed from assessment of 4 or 5 with 10-min-per-view MBI to assessment of 3 with 5-min-per-view MBI. Image quality of 5-min-per-view studies was reduced compared to 10-min-per-view studies for both readers (3.24 vs. 3.98, p < 0.0001 and 3.60 vs. 3.91, p < 0.0001). WBR processing improved image quality for one reader (3.85 vs. 3.24, p < 0

  1. Scintillator high-gain avalanche rushing photoconductor active-matrix flat panel imager: Zero-spatial frequency x-ray imaging properties of the solid-state SHARP sensor structure

    PubMed Central

    Wronski, M.; Zhao, W.; Tanioka, K.; DeCrescenzo, G.; Rowlands, J. A.

    2012-01-01

    Purpose: The authors are investigating the feasibility of a new type of solid-state x-ray imaging sensor with programmable avalanche gain: scintillator high-gain avalanche rushing photoconductor active matrix flat panel imager (SHARP-AMFPI). The purpose of the present work is to investigate the inherent x-ray detection properties of SHARP and demonstrate its wide dynamic range through programmable gain. Methods: A distributed resistive layer (DRL) was developed to maintain stable avalanche gain operation in a solid-state HARP. The signal and noise properties of the HARP-DRL for optical photon detection were investigated as a function of avalanche gain both theoretically and experimentally, and the results were compared with HARP tube (with electron beam readout) used in previous investigations of zero spatial frequency performance of SHARP. For this new investigation, a solid-state SHARP x-ray image sensor was formed by direct optical coupling of the HARP-DRL with a structured cesium iodide (CsI) scintillator. The x-ray sensitivity of this sensor was measured as a function of avalanche gain and the results were compared with the sensitivity of HARP-DRL measured optically. The dynamic range of HARP-DRL with variable avalanche gain was investigated for the entire exposure range encountered in radiography/fluoroscopy (R/F) applications. Results: The signal from HARP-DRL as a function of electric field showed stable avalanche gain, and the noise associated with the avalanche process agrees well with theory and previous measurements from a HARP tube. This result indicates that when coupled with CsI for x-ray detection, the additional noise associated with avalanche gain in HARP-DRL is negligible. The x-ray sensitivity measurements using the SHARP sensor produced identical avalanche gain dependence on electric field as the optical measurements with HARP-DRL. Adjusting the avalanche multiplication gain in HARP-DRL enabled a very wide dynamic range which encompassed all

  2. Scintillator high-gain avalanche rushing photoconductor active-matrix flat panel imager: Zero-spatial frequency x-ray imaging properties of the solid-state SHARP sensor structure

    SciTech Connect

    Wronski, M.; Zhao, W.; Tanioka, K.; DeCrescenzo, G.; Rowlands, J. A.

    2012-11-15

    Purpose: The authors are investigating the feasibility of a new type of solid-state x-ray imaging sensor with programmable avalanche gain: scintillator high-gain avalanche rushing photoconductor active matrix flat panel imager (SHARP-AMFPI). The purpose of the present work is to investigate the inherent x-ray detection properties of SHARP and demonstrate its wide dynamic range through programmable gain. Methods: A distributed resistive layer (DRL) was developed to maintain stable avalanche gain operation in a solid-state HARP. The signal and noise properties of the HARP-DRL for optical photon detection were investigated as a function of avalanche gain both theoretically and experimentally, and the results were compared with HARP tube (with electron beam readout) used in previous investigations of zero spatial frequency performance of SHARP. For this new investigation, a solid-state SHARP x-ray image sensor was formed by direct optical coupling of the HARP-DRL with a structured cesium iodide (CsI) scintillator. The x-ray sensitivity of this sensor was measured as a function of avalanche gain and the results were compared with the sensitivity of HARP-DRL measured optically. The dynamic range of HARP-DRL with variable avalanche gain was investigated for the entire exposure range encountered in radiography/fluoroscopy (R/F) applications. Results: The signal from HARP-DRL as a function of electric field showed stable avalanche gain, and the noise associated with the avalanche process agrees well with theory and previous measurements from a HARP tube. This result indicates that when coupled with CsI for x-ray detection, the additional noise associated with avalanche gain in HARP-DRL is negligible. The x-ray sensitivity measurements using the SHARP sensor produced identical avalanche gain dependence on electric field as the optical measurements with HARP-DRL. Adjusting the avalanche multiplication gain in HARP-DRL enabled a very wide dynamic range which encompassed all

  3. Flat panel displays in an underwater cockpit

    NASA Astrophysics Data System (ADS)

    Sola, Kenneth E.

    1999-08-01

    This paper reports on a highly unusual application of flat panel displays in a cockpit. The cockpit is found in a mini- submarine of the Advanced SEAL Delivery System (ASDS), a state-of-the-art military platform designed to deliver U.S. Navy SEALs, and other special forces, to their mission locations. For security reasons, the presentation details are intentionally kept minimal.

  4. Flat panels in future ground combat vehicles

    NASA Astrophysics Data System (ADS)

    Gurd, Eric D.; Forest, Coryne A.

    1996-05-01

    The efforts of the design team for the Crewman's Associate Advanced Technology Demonstration (CA ATD) and its use of advanced display concepts is discussed. This team has the responsibility of identifying future technologies with the potential for maximizing human- machine interaction for incorporation into future crew station designs for ground combat vehicles. The design process utilizes extensive user involvement in all stages. This is critical to developing systems that have complex functions, yet are simple to maintain and operate. Described are the needs which have driven the U.S. Army towards the use of flat panels. Ultimately, the army is looking at smaller, lighter, more deployable ground combat vehicles. This goal is driving individual components to have characteristics such as low weight, low power usage, and reduced volume while maintaining ruggedness and functionality. The potential applications for flat panels in ground vehicles is also discussed. The army is looking at applications for out-the-window views (virtual periscopes), multi-functional displays, and head mounted displays to accomplish its goals of designing better crew interfaces. The army's requirements in regards to the technologies that must be developed and supported by flat panel displays are also discussed in this section. In conclusion, future projections of the use of flat panels for the Crewman's Associate ATD will be outlined. Projections will be made in terms of physical numbers and promising technologies that fulfill the goals of the CAATD and achieve the approval of the user community.

  5. Low-dose 2.5 MV cone-beam computed tomography with thick CsI flat-panel imager.

    PubMed

    Tang, Grace; Moussot, Christopher; Morf, Daniel; Seppi, Edward; Amols, Howard

    2016-01-01

    Most of the treatment units, both new and old models, are equipped with a megavoltage portal imager but its use for volumetric imaging is limited. This is mainly due to the poor image quality produced by the high-energy treatment beam (> 6MV). A linac at our center is equipped with a prototype 2.5 MV imaging beam. This study evaluates the feasibility of low-dose megavoltage cone-beam imaging with the 2.5MV beam and a thick cesium iodide detector, which is a high-efficiency imager. Basic imaging properties such as spatial resolution and modulation transfer function were assessed for the 2.5 MV prototype imaging system. For image quality and imaging dose, a series of megavoltage cone-beam scans were acquired for the head, thorax, and pelvis of an anthropomorphic phantom and were compared to kilovoltage cone-beam and 6X megavoltage cone-beam images. To demonstrate the advantage of MV imaging, a phantom with metallic inserts was scanned and the image quality was compared to CT and kilovoltage cone-beam scans. With a lower energy beam and higher detector efficiency, the 2.5 MV imaging system generally yields better image quality than does the 6 MV imaging system with the conventional MV imager. In particular, with the anthropomorphic phantom studies, the contrast to noise of bone to tissue is generally improved in the 2.5 MV images compared to 6 MV. With an image quality sufficient for bony alignment, the imaging dose for 2.5 MV cone-beam images is 2.4-3.4 MU compared to 26 MU in 6 MV cone-beam scans for the head, thorax, and pelvis regions of the phantom. Unlike kilovoltage cone-beam, the 2.5 MV imaging system does not suffer from high-Z image artifacts. This can be very useful for treatment planning in cases where high-Z prostheses are present. PMID:27455493

  6. 360-degree three-dimensional flat panel display using holographic optical elements

    NASA Astrophysics Data System (ADS)

    Yabu, Hirofumi; Takeuchi, Yusuke; Yoshimoto, Kayo; Takahashi, Hideya; Yamada, Kenji

    2015-03-01

    We proposed the 360-degree 3D display system which is composed of a flat panel display, a light control film, and holographic optical element (HOE). The HOE is a diffraction grating which is made by holography technique. HOE lens can be produced on the thin polygonal glass plate. The light control film and HOE lenses are used to control the direction of light from the flat panel display in our system. The size of proposed system depends on the size of the flat panel display is because other parts of proposed system are thin and placed on the screen of the flat panel display. HOE lenses and a light control film are used to control lights from multiple pixels of a flat panel display to multiple viewpoints. To display large 3D images and to increase viewpoints, we divided parallax images into striped images and distributed them on the display for multiple viewpoints. Therefore, observers can see the large 3D image around the system. To verify the effectiveness of the proposed system, we made the experimental system. To verify the effectiveness of the proposed system, we constructed the part of the proposed system. The experimental system is composed of the liquid crystal display (LCD), prototype HOE lenses, and light control films. We confirmed that experimental system can display two images to different viewpoints. This paper describes the configuration of the proposed system, and also describes the experimental result.

  7. Ultrasonic scanner for radial and flat panels

    NASA Technical Reports Server (NTRS)

    Spencer, R. L.; Hill, E. K. (Inventor)

    1973-01-01

    An ultrasonic scanning mechanism is described that scans panels of honeycomb construction or with welded seams. It incorporates a device which by simple adjustment is adapted to scan either a flat panel or a radial panel. The supporting structure takes the form of a pair of spaced rails. An immersion tank is positioned between the rails and below their level. A work holder is mounted in the tank and is adapted to hold the flat or radial panel. A traveling bridge is movable along the rails and a carriage is mounted on the bridge.

  8. Design and feasibility of active matrix flat panel detector using avalanche amorphous selenium for protein crystallography.

    PubMed

    Sultana, Afrin; Reznik, Alla; Karim, Karim S; Rowlands, J A

    2008-10-01

    Protein crystallography is the most important technique for resolving the three-dimensional atomic structure of protein by measuring the intensity of its x-ray diffraction pattern. This work proposes a large area flat panel detector for protein crystallography based on direct conversion x-ray detection technique using avalanche amorphous selenium (a-Se) as the high gain photoconductor, and active matrix readout using amorphous silicon (a-Si:H) thin film transistors. The detector employs avalanche multiplication phenomenon of a-Se to make the detector sensitive to each incident x ray. The advantages of the proposed detector over the existing imaging plate and charge coupled device detectors are large area, high dynamic range coupled to single x-ray detection capability, fast readout, high spatial resolution, and inexpensive manufacturing process. The optimal detector design parameters (such as detector size, pixel size, and thickness of a-Se layer), and operating parameters (such as electric field across the a-Se layer) are determined based on the requirements for protein crystallography application. The performance of the detector is evaluated in terms of readout time (<1 s), dynamic range (approximately 10(5)), and sensitivity (approximately 1 x-ray photon), thus validating the detector's efficacy for protein crystallography. PMID:18975678

  9. CT with a CMOS flat panel detector integrated on the YAP-(S)PET scanner for in vivo small animal imaging

    NASA Astrophysics Data System (ADS)

    Di Domenico, Giovanni; Cesca, Nicola; Zavattini, Guido; Auricchio, Natalia; Gambaccini, Mauro

    2007-02-01

    Several research groups are pursuing multimodality simultaneous functional and morphological imaging. In this line of research the high resolution YAP-(S)PET small animal integrated PET-SPECT imaging system, constructed by our group of medical physics at the University of Ferrara, is being upgraded with a computed tomography (CT). In this way it will be possible to perform in vivo molecular and genomic imaging studies on small animals (such as mice and rats) and at the same time obtain morphological information necessary for both attenuation correction and accurate localization of the region under investigation. We have take simultaneous PET-CT and SPECT-CT images of phantoms obtained with a single scanner.

  10. X-ray flat-panel imager (FPI)-based cone-beam volume CT (CBVCT) under a circle-plus-two-arc data acquisition orbit

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang; Ning, Ruola; Yu, Rongfeng; Conover, David L.

    2001-06-01

    The potential of cone beam volume CT (CBVCT) to improve the data acquisition efficiency for volume tomographic imaging is well recognized. A novel x-ray FPI based CBVCT prototype and its preliminary performance evaluation are presented in this paper. To meet the data sufficiency condition, the CBVCT prototype employs a circle-plus-two-arc orbit accomplished by a tiltable circular gantry. A cone beam filtered back-projection (CB-FBP) algorithm is derived for this data acquisition orbit, which employs a window function in the Radon domain to exclude the redundancy between the Radon information obtained from the circular cone beam (CB) data and that from the arc CB data. The number of projection images along the circular sub-orbit and each arc sub-orbit is 512 and 43, respectively. The reconstruction exactness of the prototype x-ray FPI based CBVCT system is evaluated using a disc phantom in which seven acrylic discs are stacked at fixed intervals. Images reconstructed with this algorithm show that both the contrast and geometric distortion existing in the disc phantom images reconstructed by the Feldkamp algorithm are substantially reduced. Meanwhile, the imaging performance of the prototype, such as modulation transfer function (MTF) and low contrast resolution, are quantitatively evaluated in detail through corresponding phantom studies. Furthermore, the capability of the prototype to reconstruct an ROI within a longitudinally unbounded object is verified. The results obtained from this preliminary performance evaluation encourage an expectation of medical applications of the x-ray FPI based CBVCT under the circle-plus-two-arc data acquisition, particularly the application in image-guided interventional procedures and radiotherapy where the movement of a patient table is to be avoided.

  11. Diffractive optics for compact flat panel displays. Final report

    SciTech Connect

    Sweeney, D.; DeLong, K.

    1997-04-29

    Three years ago LLNL developed a practical method to dramatically reduce the chromatic aberration in single element diffractive imaging lenses. High efficiency, achromatic imaging lenses have been fabricated for human vision correction. This LDRD supported research in applying our new methods to develop a unique, diffraction-based optical interface with solid state, microelectronic imaging devices. Advances in microelectronics have led to smaller, more efficient components for optical systems. There have, however, been no equivalent advances in the imaging optics associated with these devices. The goal of this project was to replace the bulky, refractive optics in typical head-mounted displays with micro-thin diffractive optics to directly image flat-panel displays into the eye. To visualize the system think of the lenses of someone`s eyeglasses becoming flat-panel displays. To realize this embodiment, we needed to solve the problems of large chromatic aberrations and low efficiency that are associated with diffraction. We have developed a graceful tradeoff between chromatic aberrations and the diffractive optic thickness. It turns out that by doubling the thickness of a micro-thin diffractive lens we obtain nearly a two-times improvement in chromatic performance. Since the human eye will tolerate one diopter of chromatic aberration, we are able to achieve an achromatic image with a diffractive lens that is only 20 microns thick, versus 3 mm thickness for the comparable refractive lens. Molds for the diffractive lenses are diamond turned with sub-micron accuracy; the final lenses are cast from these molds using various polymers. We thus retain both the micro- thin nature of the diffractive optics and the achromatic image quality of refractive optics. During the first year of funding we successfully extended our earlier technology from 1 cm diameter optics required for vision applications up to the 5 cm diameter optics required for this application. 3 refs., 6 figs.

  12. The Dexela 2923 CMOS X-ray detector: A flat panel detector based on CMOS active pixel sensors for medical imaging applications

    NASA Astrophysics Data System (ADS)

    Konstantinidis, Anastasios C.; Szafraniec, Magdalena B.; Speller, Robert D.; Olivo, Alessandro

    2012-10-01

    Complementary metal-oxide-semiconductors (CMOS) active pixel sensors (APS) have been introduced recently in many scientific applications. This work reports on the performance (in terms of signal and noise transfer) of an X-ray detector that uses a novel CMOS APS which was developed for medical X-ray imaging applications. For a full evaluation of the detector's performance, electro-optical and X-ray characterizations were carried out. The former included measuring read noise, full well capacity and dynamic range. The latter, which included measuring X-ray sensitivity, presampling modulation transfer function (pMTF), noise power spectrum (NPS) and the resulting detective quantum efficiency (DQE), was assessed under three beam qualities (28 kV, 50 kV (RQA3) and 70 kV (RQA5) using W/Al) all in accordance with the IEC standard. The detector features an in-pixel option for switching the full well capacity between two distinct modes, high full well (HFW) and low full well (LFW). Two structured CsI:Tl scintillators of different thickness (a “thin” one for high resolution and a thicker one for high light efficiency) were optically coupled to the sensor array to optimize the performance of the system for different medical applications. The electro-optical performance evaluation of the sensor results in relatively high read noise (∼360 e-), high full well capacity (∼1.5×106 e-) and wide dynamic range (∼73 dB) under HFW mode operation. When the LFW mode is used, the read noise is lower (∼165) at the expense of a reduced full well capacity (∼0.5×106 e-) and dynamic range (∼69 dB). The maximum DQE values at low frequencies (i.e. 0.5 lp/mm) are high for both HFW (0.69 for 28 kV, 0.71 for 50 kV and 0.75 for 70 kV) and LFW (0.69 for 28 kV and 0.7 for 50 kV) modes. The X-ray performance of the studied detector compares well to that of other mammography and general radiography systems, obtained under similar experimental conditions. This demonstrates the suitability

  13. Radiation Exposure in Biliary Procedures Performed to Manage Anastomotic Strictures in Pediatric Liver Transplant Recipients: Comparison Between Radiation Exposure Levels Using an Image Intensifier and a Flat-Panel Detector-Based System

    SciTech Connect

    Miraglia, Roberto Maruzzelli, Luigi; Tuzzolino, Fabio; Indovina, Pietro Luigi; Luca, Angelo

    2013-12-15

    Purpose: The aim of this study was to estimate radiation exposure in pediatric liver transplants recipients who underwent biliary interventional procedures and to compare radiation exposure levels between biliary interventional procedures performed using an image intensifier-based angiographic system (IIDS) and a flat panel detector-based interventional system (FPDS). Materials and Methods: We enrolled 34 consecutive pediatric liver transplant recipients with biliary strictures between January 2008 and March 2013 with a total of 170 image-guided procedures. The dose-area product (DAP) and fluoroscopy time was recorded for each procedure. The mean age was 61 months (range 4-192), and mean weight was 17 kg (range 4-41). The procedures were classified into three categories: percutaneous transhepatic cholangiography and biliary catheter placement (n = 40); cholangiography and balloon dilatation (n = 55); and cholangiography and biliary catheter change or removal (n = 75). Ninety-two procedures were performed using an IIDS. Seventy-eight procedures performed after July 2010 were performed using an FPDS. The difference in DAP between the two angiographic systems was compared using Wilcoxon rank-sum test and a multiple linear regression model. Results: Mean DAP in the three categories was significantly greater in the group of procedures performed using the IIDS compared with those performed using the FPDS. Statistical analysis showed a p value = 0.001 for the PTBD group, p = 0.0002 for the cholangiogram and balloon dilatation group, and p = 0.00001 for the group with cholangiogram and biliary catheter change or removal. Conclusion: In our selected cohort of patients, the use of an FPDS decreases radiation exposure.

  14. ELECTROLUMINESCENT MATERIAL FOR FLAT PANEL DISPLAY

    SciTech Connect

    Smith, D.B.

    2000-11-13

    The purpose of this Cooperative Research and Development Agreement (CRADA) was to develop a new-generation electroluminescent (EL) material for flat panel displays and related applications by using unique and complementary research capabilities at Oak Ridge National Laboratory and OSRAM Sylvania, Inc. The goal was to produce an EL material with a luminance 10 times greater than conventional EL phosphors. An EL material with this increased luminance would have immediate applications for flat panel display devices (e.g., backlighting for liquid-crystal diodes) and for EL lamp technology. OSRAM Sylvania proposed that increased EL phosphor luminance could be obtained by creating composite EL materials capable of alignment under an applied electric field and capable of concentrating the applied electric field. Oak Ridge National Laboratory used pulsed laser deposition as a method for making these composite EL materials. The materials were evaluated for electroluminescence at laboratory facilities at OSRAM Sylvania, Inc. Many composite structures were thus made and evaluated, and it was observed that a composite structure based on alternating layers of a ferroelectric and a phosphor yielded electroluminescence. An enabling step that was not initially proposed but was conceived during the cooperative effort was found to be crucial to the success of the composite structure. The CRADA period expired before we were able to make quantitative measurements of the luminance and efficiency of the composite EL material. Future cooperative work, outside the scope of the CRADA, will focus on making these measurements and will result in the production of a prototype composite EL device.

  15. A novel compact gamma camera based on flat panel PMT

    NASA Astrophysics Data System (ADS)

    Pani, R.; Pellegrini, R.; Cinti, M. N.; Trotta, C.; Trotta, G.; Scafè, R.; Betti, M.; Cusanno, F.; Montani, Livia; Iurlaro, Giorgia; Garibaldi, F.; Del Guerra, A.

    2003-11-01

    Over the last ten years the strong technological advances in position sensitive detectors have encouraged the scientific community to develop dedicated imagers for new diagnostic techniques in the field of isotope functional imaging. The main feature of the new detectors is the compactness that allows suitable detection geometry fitting the body anatomy. Position sensitive photomultiplier tubes (PSPMTs) have been showing very good features with continuous improvement. In 1997 a novel gamma camera was proposed based on a closely packed array of second generation 1 in PSPMTs. The main advantage is the potentially unlimited detection area but with the disadvantage of a relatively large non-active area (30%). The Hamamatsu H8500 Flat Panel PMT represents the last generation of PSPMT. Its extreme compactness allows array assembly with an improved effective area up to 97%. This paper, evaluates the potential improvement of imaging performances of a gamma camera based on the new PSPMT, compared with the two previous generation PSPMTs. To this aim the factors affecting the gamma camera final response, like PSPMT gain anode variation and position resolution, are analyzed and related to the uniformity counting response, energy resolution, position linearity, detection efficiency and intrinsic spatial resolution. The results show that uniformity of pulse height response seems to be the main parameter that provides the best imaging performances. Furthermore an extreme identification of pixels seems to be not effective to a full correction of image uniformity counting and gain response. However, considering the present technological limits, Flat Panel PSPMTs could be the best trade off between gamma camera imaging performances, compactness and large detection area.

  16. Design and construction of a flat-panel-based cone-beam computed tomography (FPD-CBCT) imaging system through the adaptation of a commercially available CT system: recent data

    NASA Astrophysics Data System (ADS)

    Conover, David L.; Ning, Ruola

    2004-05-01

    The purpose of this presentation is to show how a commercially available spiral CT has been modified for use as the electro-mechanical scanner hardware for a prototype flat panel detector-based cone beam computed tomography (FPD-CBCT) imaging system. FPD-CBCT has the benefits of isotropic high resolution, low contrast sensitivity and 3D visualization. In contrast to spiral CT, which acquires a series of narrow slices, FPD-CBCT acquires a full volume of data (limited by the cone angle and the FPD active area) in one <= 360° scan. Our goal was to use a GE HighSpeed Advantage (HSA) CT system as the basis for an FPD-CBVCT imaging prototype for performing phantom, animal and patient imaging studies. Specific electromechanical and radiographic subsystems controlled include: gantry rotation and tilt, patient table positioning, rotor control, mA control, the high frequency generator (kVp, exposure time, repetition rate) and image data acquisition. Also, a 2D full field FPD replaced the 1D detector, as well as the existing slit collimator was retrofitted to a full field collimator to allow x-ray exposure over the entire active area of the FPD. In addition, x-ray projection data was acquired at 30 fps. Power and communication signals to control modules on the rotating part of the gantry were transmitted through integrated slip rings on the gantry. A stationary host computer controlled mechanical motion of the gantry and sent trigger signals to on-board electronic interface modules to control data acquisition and radiographic functions. Acquired image data was grabbed to the system memory of an on-board industrial computer, saved to hard disk and downloaded through a network connection to the stationary computer for 3D reconstruction. Through the synchronized control of the pulsed x-ray exposures, data acquisition, and gantry rotation the system achieved a circle cone beam image acquisition protocol. With integrated control of the gantry tilt and of the position and

  17. Multiple-Flat-Panel System Displays Multidimensional Data

    NASA Technical Reports Server (NTRS)

    Gundo, Daniel; Levit, Creon; Henze, Christopher; Sandstrom, Timothy; Ellsworth, David; Green, Bryan; Joly, Arthur

    2006-01-01

    The NASA Ames hyperwall is a display system designed to facilitate the visualization of sets of multivariate and multidimensional data like those generated in complex engineering and scientific computations. The hyperwall includes a 77 matrix of computer-driven flat-panel video display units, each presenting an image of 1,280 1,024 pixels. The term hyperwall reflects the fact that this system is a more capable successor to prior computer-driven multiple-flat-panel display systems known by names that include the generic term powerwall and the trade names PowerWall and Powerwall. Each of the 49 flat-panel displays is driven by a rack-mounted, dual-central-processing- unit, workstation-class personal computer equipped with a hig-hperformance graphical-display circuit card and with a hard-disk drive having a storage capacity of 100 GB. Each such computer is a slave node in a master/ slave computing/data-communication system (see Figure 1). The computer that acts as the master node is similar to the slave-node computers, except that it runs the master portion of the system software and is equipped with a keyboard and mouse for control by a human operator. The system utilizes commercially available master/slave software along with custom software that enables the human controller to interact simultaneously with any number of selected slave nodes. In a powerwall, a single rendering task is spread across multiple processors and then the multiple outputs are tiled into one seamless super-display. It must be noted that the hyperwall concept subsumes the powerwall concept in that a single scene could be rendered as a mosaic image on the hyperwall. However, the hyperwall offers a wider set of capabilities to serve a different purpose: The hyperwall concept is one of (1) simultaneously displaying multiple different but related images, and (2) providing means for composing and controlling such sets of images. In place of elaborate software or hardware crossbar switches, the

  18. Sarnoff JND Vision Model for Flat-Panel Design

    NASA Technical Reports Server (NTRS)

    Brill, Michael H.; Lubin, Jeffrey

    1998-01-01

    This document describes adaptation of the basic Sarnoff JND Vision Model created in response to the NASA/ARPA need for a general-purpose model to predict the perceived image quality attained by flat-panel displays. The JND model predicts the perceptual ratings that humans will assign to a degraded color-image sequence relative to its nondegraded counterpart. Substantial flexibility is incorporated into this version of the model so it may be used to model displays at the sub-pixel and sub-frame level. To model a display (e.g., an LCD), the input-image data can be sampled at many times the pixel resolution and at many times the digital frame rate. The first stage of the model downsamples each sequence in time and in space to physiologically reasonable rates, but with minimum interpolative artifacts and aliasing. Luma and chroma parts of the model generate (through multi-resolution pyramid representation) a map of differences-between test and reference called the JND map, from which a summary rating predictor is derived. The latest model extensions have done well in calibration against psychophysical data and against image-rating data given a CRT-based front-end. THe software was delivered to NASA Ames and is being integrated with LCD display models at that facility,

  19. Single shot x-ray phase contrast imaging using a direct conversion microstrip detector with single photon sensitivity

    NASA Astrophysics Data System (ADS)

    Kagias, M.; Cartier, S.; Wang, Z.; Bergamaschi, A.; Dinapoli, R.; Mozzanica, A.; Schmitt, B.; Stampanoni, M.

    2016-06-01

    X-ray phase contrast imaging enables the measurement of the electron density of a sample with high sensitivity compared to the conventional absorption contrast. This is advantageous for the study of dose-sensitive samples, in particular, for biological and medical investigations. Recent developments relaxed the requirement for the beam coherence, such that conventional X-ray sources can be used for phase contrast imaging and thus clinical applications become possible. One of the prominent phase contrast imaging methods, Talbot-Lau grating interferometry, is limited by the manufacturing, alignment, and photon absorption of the analyzer grating, which is placed in the beam path in front of the detector. We propose an alternative improved method based on direct conversion charge integrating detectors, which enables a grating interferometer to be operated without an analyzer grating. Algorithms are introduced, which resolve interference fringes with a periodicity of 4.7 μm recorded with a 25 μm pitch Si microstrip detector (GOTTHARD). The feasibility of the proposed approach is demonstrated by an experiment at the TOMCAT beamline of the Swiss Light Source on a polyethylene sample.

  20. Optimization of the presampling modulation transfer function of flat-panel detectors for digital radiology

    NASA Astrophysics Data System (ADS)

    Rowlands, John A.; Ji, Winston G.

    1999-05-01

    Large area, flat panel solid state detectors are being investigated for digital radiography and fluoroscopy. These detectors employ an x-ray imaging layer of either photoconductor ('direct' conversion method) or phosphor ('indirect' conversion method) to detect x-rays. In both cases the image formed at the surface of the layer is read out in situ using an active matrix array. Depending upon the resolution of the layer compared to the pixel size, undersampling of the image and hence aliasing may occur. Aliasing is always present regardless of the pixel size in direct detectors based on amorphous selenium because of its high intrinsic resolution. Aliasing gives rise to increased noise which results in reduction of detective quantum efficiency DQE at high spatial frequencies. The aliasing can be reduced or even eliminated by blurring prior to pixel sampling (e.g., by scattering in a phosphor layer). However, blurring, which may be quantified by the spatial frequency f dependent modulation transfer function MTF(f), also has a deleterious effect: the imaging system becomes much more susceptible to noise for example that arising in the charge amplifiers or secondary quantum statistics. Note that in principle, the system MTF can be corrected to any desired values in a digital system thus MTF has no predictive value for the quality of an imaging system, rather it is the DQE(f) which determines the overall signal to noise ratio independently of the MTF enhancement chosen. Nevertheless, determining the ideal level of presampling blurring (i.e., the Presampling Modulation Transfer function) is not straightforward. A problem caused by blurring is that the degree of blurring often depends on the depth of absorption of the x-ray in the imaging layer. In such cases (as pointed out by Lubberts) additional noise is transferred to the image. The predictions of a Lubberts model will be compared with published measurements of DQE for both direct and indirect detectors. A preliminary

  1. Focal spot measurements using a digital flat panel detector

    PubMed Central

    Jain, Amit; Panse, A.; Bednarek, Daniel R.; Rudin, Stephen

    2014-01-01

    Focal spot size is one of the crucial factors that affect the image quality of any x-ray imaging system. It is, therefore, important to measure the focal spot size accurately. In the past, pinhole and slit measurements of x-ray focal spots were obtained using direct exposure film. At present, digital detectors are replacing film in medical imaging so that, although focal spot measurements can be made quickly with such detectors, one must be careful to account for the generally poorer spatial resolution of the detector and the limited usable magnification. For this study, the focal spots of a diagnostic x-ray tube were measured with a 10-μm pinhole using a 194-μm pixel flat panel detector (FPD). The two-dimensional MTF, measured with the Noise Response (NR) Method was used for the correction for the detector blurring. The resulting focal spot sizes based on the FWTM (Full Width at Tenth Maxima) were compared with those obtained with a very high resolution detector with 8-μm pixels. This study demonstrates the possible effect of detector blurring on the focal spot size measurements with digital detectors with poor resolution and the improvement obtained by deconvolution. Additionally, using the NR method for measuring the two-dimensional MTF, any non-isotropies in detector resolution can be accurately corrected for, enabling routine measurement of non-isotropic x-ray focal spots. This work presents a simple, accurate and quick quality assurance procedure for measurements of both digital detector properties and x-ray focal spot size and distribution in modern x-ray imaging systems. PMID:25302004

  2. Separating the uncorrelated noise from the correlated detector noise of flat panel systems in order to quantify flat panel noise easily

    NASA Astrophysics Data System (ADS)

    Hoeschen, Christoph; Tischenko, Oleg; Renger, Bernhard; Jungnickel, Kerstin

    2005-04-01

    One big advantage in terms of image quality of modern flat panel detector systems compared to CR systems beside the better DQE of these systems is the possibility to correct for inhomogeneities of the X-ray beam and the detector (flat field correction) as well as for bad pixels. However, the used correction methods are taking a lot of time or do not cover all possible combinations of radiation quality and exposure used for patient imaging. A method is presented to achieve these correction images very easily by using a proposed method for comparing two images. This method, which has so far been used for certain noise measurements and in some cases noise reduction, can also be used for separating correlated from uncorrelated noise by correlating in frequency sub-bands the information of two images. In this study it is proven, that the uncorrelated noise image of two expositions is very similar to the correction image gained just before the two exposures. That allows to calibrate a detector quite more often and for much more beam qualities/exposures than before to achieve a better correction and another possibility of constancy testing for flat panel detectors, because the proposed method is so sensitive that it will detect single pixel changes within the detector.

  3. Motion-compensated defect interpolation for flat-panel detectors

    NASA Astrophysics Data System (ADS)

    Aach, Til; Barth, Erhardt; Mayntz, Claudia

    2004-05-01

    One advantage of flat-panel X-ray detectors is the immediate availability of the acquired images for display. Current limitations in large-area active-matrix manufacturing technology, however, require that the images read out from such detectors be processed to correct for inactive pixels. In static radiographs, these defects can only be interpolated by spatial filtering. Moving X-ray image modalities, such as fluoroscopy or cine-angiography, permit to use temporal information as well. This paper describes interframe defect interpolation algorithms based on motion compensation and filtering. Assuming the locations of the defects to be known, we fill in the defective areas from past frames, where the missing information was visible due to motion. The motion estimator is based on regularized block matching, with speedup obtained by successive elimination and related measures. To avoid the motion estimator locking on to static defects, these are cut out of each block during matching. Once motion is estimated, three methods are available for defect interpolation: direct filling-in by the motion-compensated predecessor, filling-in by a 3D-multilevel median filtered value, and spatiotemporal mean filtering. Results are shown for noisy fluoroscopy sequences acquired in clinical routine with varying amounts of motion and simulated defects up to six lines wide. They show that the 3D-multilevel median filter appears as the method of choice since it causes the least blur of the interpolated data, is robust with respect to motion estimation errors and works even in non-moving areas.

  4. High-resolution secondary reconstructions with the use of flat panel CT in the clinical assessment of patients with cochlear implants.

    PubMed

    Pearl, M S; Roy, A; Limb, C J

    2014-06-01

    Radiologic assessment of cochlear implants can be limited because of metallic streak artifacts and the high attenuation of the temporal bones. We report on 14 patients with 18 cochlear implants (17 Med-El standard 31.5-mm arrays, 1 Med-El medium 24-mm array) who underwent flat panel CT with the use of high-resolution secondary reconstruction techniques. Flat panel CT depicted the insertion site, cochlear implant course, and all 216 individual electrode contacts. The calculated mean angular insertion depth for standard arrays was 591.9° (SD = 70.9; range, 280°). High-resolution secondary reconstructions of the initial flat panel CT dataset, by use of a manually generated field of view, Hounsfield unit kernel type, and sharp image characteristics, provided high-quality images with improved spatial resolution. Flat panel CT is a promising imaging tool for the postoperative evaluation of cochlear implant placement. PMID:24371026

  5. Flat panel display development activities at Sandia National Laboratories

    SciTech Connect

    DiBello, E.G.; Worobey, W.; Burchett, S.; Hareland, W.; Felter, T.; Mays, B.

    1994-12-31

    The flat panel display development activities underway at Sandia National Laboratories are described. Research is being conducted in the areas of glass substrates, phosphors, large area processes, and electron emissions. Projects are focused on improving process yield, developing large area processes, and using modeling techniques to predict design performance.

  6. Flat Panel Space Based Space Surveillance Sensor

    NASA Astrophysics Data System (ADS)

    Kendrick, R.; Duncan, A.; Wilm, J.; Thurman, S. T.; Stubbs, D. M.; Ogden, C.

    2013-09-01

    Traditional electro-optical (EO) imaging payloads consist of an optical telescope to collect the light from the object scene and map the photons to an image plane to be digitized by a focal plane detector array. The size, weight, and power (SWaP) for the traditional EO imager is dominated by the optical telescope, driven primarily by the large optics, large stiff structures, and the thermal control needed to maintain precision free-space optical alignments. We propose a non-traditional Segmented Planar Imaging Detector for EO Reconnaissance (SPIDER) imager concept that is designed to substantially reduce SWaP, by at least an order of magnitude. SPIDER maximizes performance by providing a larger effective diameter (resolution) while minimizing mass and cost. SPIDER replaces the traditional optical telescope and digital focal plane detector array with a densely packed interferometer array based on emerging photonic integrated circuit (PIC) technologies. Lenslets couple light from the object into a set of waveguides on a PIC. Light from each lenslet is distributed among different waveguides by both field angle and optical frequency, and the lenslets are paired up to form unique interferometer baselines by combining light from different waveguides. The complex spatial coherence of the object (for each field angle, frequency, and baseline) is measured with a balanced four quadrature detection scheme. By the Van-Cittert Zernike Theorem, each measurement corresponds to a unique Fourier component of the incoherent object intensity distribution. Finally, an image reconstruction algorithm is used to invert all the data and form an image. Our approach replaces the large optics and structures required by a conventional telescope with PICs that are accommodated by standard lithographic fabrication techniques (e.g., CMOS fabrication). The standard EO payload integration and test process which involves precision alignment and test of optical components to form a diffraction

  7. Direct conversion technology

    SciTech Connect

    Massier, P.F.; Back, L.H.; Ryan, M.A.; Fabris, G.

    1992-01-07

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC) and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1, 1991 through December 31, 1991. Research on AMTEC and on LMMHD was initiated during October 1987. Reports prepared on previous occasions (Refs. 1--5) contain descriptive and performance discussions of the following direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (Nitionol heat engine); and also, more complete descriptive discussions of AMTEC and LMMHD systems.

  8. Direct conversion technology

    NASA Astrophysics Data System (ADS)

    Massier, Paul F.; Bankston, C. P.; Williams, R.; Underwood, M.; Jeffries-Nakamura, B.; Fabris, G.

    1989-12-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC), and on the Two-Phase Liquid-Metal Magnetohydrodynamic Electrical Generator (LMMHD) for the period January 1, 1989 through December 31, 1989. Research on these concepts was initiated during October 1987. Reports prepared on previous occasions contain discussions on the following other direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (nitinol heat engines); and also, more complete discussions of AMTEC and LMMHD systems.

  9. Direct conversion technology

    NASA Technical Reports Server (NTRS)

    Massier, Paul F.; Bankston, C. P.; Williams, R.; Underwood, M.; Jeffries-Nakamura, B.; Fabris, G.

    1989-01-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC), and on the Two-Phase Liquid-Metal Magnetohydrodynamic Electrical Generator (LMMHD) for the period January 1, 1989 through December 31, 1989. Research on these concepts was initiated during October 1987. Reports prepared on previous occasions contain discussions on the following other direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (nitinol heat engines); and also, more complete discussions of AMTEC and LMMHD systems.

  10. Software Simulates Sight: Flat Panel Mura Detection

    NASA Technical Reports Server (NTRS)

    2008-01-01

    In the increasingly sophisticated world of high-definition flat screen monitors and television screens, image clarity and the elimination of distortion are paramount concerns. As the devices that reproduce images become more and more sophisticated, so do the technologies that verify their accuracy. By simulating the manner in which a human eye perceives and interprets a visual stimulus, NASA scientists have found ways to automatically and accurately test new monitors and displays. The Spatial Standard Observer (SSO) software metric, developed by Dr. Andrew B. Watson at Ames Research Center, measures visibility and defects in screens, displays, and interfaces. In the design of such a software tool, a central challenge is determining which aspects of visual function to include while accuracy and generality are important, relative simplicity of the software module is also a key virtue. Based on data collected in ModelFest, a large cooperative multi-lab project hosted by the Optical Society of America, the SSO simulates a simplified model of human spatial vision, operating on a pair of images that are viewed at a specific viewing distance with pixels having a known relation to luminance. The SSO measures the visibility of foveal spatial patterns, or the discriminability of two patterns, by incorporating only a few essential components of vision. These components include local contrast transformation, a contrast sensitivity function, local masking, and local pooling. By this construction, the SSO provides output in units of "just noticeable differences" (JND) a unit of measure based on the assumed smallest difference of sensory input detectable by a human being. Herein is the truly amazing ability of the SSO, while conventional methods can manipulate images, the SSO models human perception. This set of equations actually defines a mathematical way of working with an image that accurately reflects the way in which the human eye and mind behold a stimulus. The SSO is

  11. Direct Conversion Technology

    SciTech Connect

    Back, L.H.; Fabris, G.; Ryan, M.A.

    1992-07-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. Initially, two systems were selected for exploratory research and advanced development. These are Alkali Metal Thermal-to-Electric Converter (AMTEC) and Two-Phase Liquid Metal MD Generator (LMMHD). This report describes progress that has been made during the first six months of 1992 on research activities associated with these two systems. (GHH)

  12. Flat panel planar optic display. Revision 4/95

    SciTech Connect

    Veligdan, J.T.

    1995-05-01

    A prototype 10 inch flat panel Planar Optic display, (POD), screen has been constructed and tested. This display screen is comprised of hundreds of planar optic glass sheets bonded together with a cladding layer between each sheet where each glass sheet represents a vertical line of resolution. The display is 9 inches wide by 5 inches high and approximately 1 inch thick. A 3 milliwatt HeNe laser is used as the illumination source and a vector scanning technique is employed.

  13. Diffractive flat panel solar concentrators of a novel design.

    PubMed

    de Jong, Ties M; de Boer, Dick K G; Bastiaansen, Cees W M

    2016-07-11

    A novel design for a flat panel solar concentrator is presented which is based on a light guide with a grating applied on top that diffracts light into total internal reflection. By combining geometrical and diffractive optics the geometrical concentration ratio is optimized according to the principles of nonimaging optics, while the thickness of the device is minimized due to the use of total internal reflection. PMID:27410900

  14. Dual-exposure technique for extending the dynamic range of x-ray flat panel detectors

    NASA Astrophysics Data System (ADS)

    Sisniega, A.; Abella, M.; Desco, M.; Vaquero, J. J.

    2014-01-01

    This work presents an approach to extend the dynamic range of x-ray flat panel detectors by combining two acquisitions of the same sample taken with two different x-ray photon flux levels and the same beam spectral configuration. In order to combine both datasets, the response of detector pixels was modelled in terms of mean and variance using a linear model. The model was extended to take into account the effect of pixel saturation. We estimated a joint probability density function (j-pdf) of the pixel values by assuming that each dataset follows an independent Gaussian distribution. This j-pdf was used for estimating the final pixel value of the high-dynamic-range dataset using a maximum likelihood method. The suitability of the pixel model for the representation of the detector signal was assessed using experimental data from a small-animal cone-beam micro-CT scanner equipped with a flat panel detector. The potential extension in dynamic range offered by our method was investigated for generic flat panel detectors using analytical expressions and simulations. The performance of the proposed dual-exposure approach in realistic imaging environments was compared with that of a regular single-exposure technique using experimental data from two different phantoms. Image quality was assessed in terms of signal-to-noise ratio, contrast, and analysis of profiles drawn on the images. The dynamic range, measured as the ratio between the exposure for saturation and the exposure equivalent to instrumentation noise, was increased from 76.9 to 166.7 when using our method. Dual-exposure results showed higher contrast-to-noise ratio and contrast resolution than the single-exposure acquisitions for the same x-ray dose. In addition, image artifacts were reduced in the combined dataset. This technique to extend the dynamic range of the detector without increasing the dose is particularly suited to image samples that contain both low and high attenuation regions.

  15. Advantages of using flat-panel LCD for projection displays

    NASA Astrophysics Data System (ADS)

    Wu, Dean C.

    1995-04-01

    The advantages of applying flat panel Liquid CRystal Displays (LCD) for Projection Displays will be extensively discussed. The selection and fabrication of flat panel LCD in order to meet the specific requirements of projection displays through various technologies will be suggested and explored in detail. The compact, flexible size and easy portability of flat panel LCDs are well known. For practical reasons, it is desirable to take advantages some of these useful properties in Projection Displays. With the recent popularity of large format display sizes, high information content and practicality all increases the demand of projection enlargement for high level performance and comfortable viewing. As a result, Projection Displays are becoming the chosen technological option for effective presentation of visual information. In general, the Liquid Crystal Light Valves (LCLV) used in Projection Displays are simply transmissive flat panel liquid crystal displays. For example at the low end, the monochromatic LCD projection panels are simply transmissive LCDs to be used in combination with laptops or PCs and light sources such as overhead projectors. These projection panels are getting popular for their portability, readability and low cost. However, due to the passive nature of the LCD used in these projector panels, the response time, contrast ratio and color gamut are relatively limited. Whether the newly developed Active Addressing technology will be able to improve the response time, contrast ratio and color gamut of these passive matrix LCDs remain to be proven. In the middle range of projection displays, Liquid Crystal Light Valves using color Active Matrix LCDs are rapidly replacing the dominant CRT based projectors. LCLVs have a number of advantages including portability, easy set-up and data readability. There are several new developments using single crystal, polysilicon as active matrix for LCDs with improved performance. Since single crystal active matrix

  16. An iterative algorithm for soft tissue reconstruction from truncated flat panel projections

    NASA Astrophysics Data System (ADS)

    Langan, D.; Claus, B.; Edic, P.; Vaillant, R.; De Man, B.; Basu, S.; Iatrou, M.

    2006-03-01

    The capabilities of flat panel interventional x-ray systems continue to expand, enabling a broader array of medical applications to be performed in a minimally invasive manner. Although CT is providing pre-operative 3D information, there is a need for 3D imaging of low contrast soft tissue during interventions in a number of areas including neurology, cardiac electro-physiology, and oncology. Unlike CT systems, interventional angiographic x-ray systems provide real-time large field of view 2D imaging, patient access, and flexible gantry positioning enabling interventional procedures. However, relative to CT, these C-arm flat panel systems have additional technical challenges in 3D soft tissue imaging including slower rotation speed, gantry vibration, reduced lateral patient field of view (FOV), and increased scatter. The reduced patient FOV often results in significant data truncation. Reconstruction of truncated (incomplete) data is known an "interior problem", and it is mathematically impossible to obtain an exact reconstruction. Nevertheless, it is an important problem in 3D imaging on a C-arm to address the need to generate a 3D reconstruction representative of the object being imaged with minimal artifacts. In this work we investigate the application of an iterative Maximum Likelihood Transmission (MLTR) algorithm to truncated data. We also consider truncated data with limited views for cardiac imaging where the views are gated by the electrocardiogram(ECG) to combat motion artifacts.

  17. View-dependent geometric calibration for offset flat-panel cone beam computed tomography systems

    NASA Astrophysics Data System (ADS)

    Nguyen, Van-Giang

    2016-04-01

    Geometric parameters that define the geometry of imaging systems are crucial for image reconstruction and image quality in x-ray computed tomography (CT). The problem of determining geometric parameters for an offset flat-panel cone beam CT (CBCT) system, a recently introduced modality with a large field of view, with the assumption of an unstable mechanism and geometric parameters that vary in each view, is considered. To accurately and rapidly find the geometric parameters for each projection view, we use the projection matrix method and design a dedicated phantom that is partially visible in all projection views. The phantom consists of balls distributed symmetrically in a cylinder to ensure the inclusion of the phantom in all views, and a large portion of the phantom is covered in the projection image. To efficiently use calibrated geometric information in the reconstruction process and get rid of approximation errors, instead of decomposing the projection matrix into actual geometric parameters that are manually corrected before being used in reconstruction, as in conventional methods, we directly use the projection matrix and its pseudo-inverse in projection and backprojection operations of reconstruction algorithms. The experiments illustrate the efficacy of the proposed method with a real offset flat-panel CBCT system in dental imaging.

  18. Direct conversion technology

    NASA Astrophysics Data System (ADS)

    Massier, P. F.; Bankston, C. P.; Fabris, G.; Kirol, L. D.

    1988-12-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct thermal-to-electric energy conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC), and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1988 through December 1988. Research on these concepts was initiated during October 1987. In addition, status reviews and assessments are presented for thermomagnetic converter concepts and for thermoelastic converters (Nitinol heat engines). Reports prepared on previous occasions contain discussions on the following other direct conversion concepts: thermoelectric, pyroelectric, thermionic thermophotovoltaic and thermoacoustic; and also, more complete discussions of AMTEC and LMMHD systems. A tabulated summary of the various systems which have been reviewed thus far has been prepared. Some of the important technical research needs are listed and a schematic of each system is shown.

  19. Direct conversion technology

    NASA Technical Reports Server (NTRS)

    Massier, P. F.; Bankston, C. P.; Fabris, G.; Kirol, L. D.

    1988-01-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct thermal-to-electric energy conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC), and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1988 through December 1988. Research on these concepts was initiated during October 1987. In addition, status reviews and assessments are presented for thermomagnetic converter concepts and for thermoelastic converters (Nitinol heat engines). Reports prepared on previous occasions contain discussions on the following other direct conversion concepts: thermoelectric, pyroelectric, thermionic thermophotovoltaic and thermoacoustic; and also, more complete discussions of AMTEC and LMMHD systems. A tabulated summary of the various systems which have been reviewed thus far has been prepared. Some of the important technical research needs are listed and a schematic of each system is shown.

  20. Dose rate and beam profile measurement of proton beam using a flat panel detector

    NASA Astrophysics Data System (ADS)

    Park, Jeong-Min

    2015-10-01

    A 20-MeV or 100-MeV proton beam is provided to users for their proton beam irradiation experiments at KOrea Multi-Purpose Accelerator Complex. Radiochromic film (Gafchromic / HDV2) has been used to measure the dose rate and the profile of an incident proton beam during irradiation experiments. However, such measurements using radiochromic film have some inconveniences because an additional scanning process of is required to quantify the film's image. Therefore, we tried to measure the dose rate and beam profile by using a flat panel detector (FPD), which was developed for X-ray radiography as a substitute for radiochromic film because the FPD can measure the beam profile and the dose rate directly through a digitized image with a high spatial resolution. In this work, we investigated the feasibility of using a FPD as a substitute for radiochromic film. The preliminary results for the beam profile and the dose rate measured by using the flat panel detector are reported in the paper.

  1. Transmission type flat-panel X-ray source using ZnO nanowire field emitters

    SciTech Connect

    Chen, Daokun; Song, Xiaomeng; Zhang, Zhipeng; Chen, Jun; Li, Ziping; She, Juncong; Deng, Shaozhi; Xu, Ningsheng

    2015-12-14

    A transmission type flat-panel X-ray source in diode structure was fabricated. Large-scale patterned ZnO nanowires grown on a glass substrate by thermal oxidation were utilized as field emitters, and tungsten thin film coated on silica glass was used as the transmission anode. Uniform distribution of X-ray generation was achieved, which benefited from the uniform electron emission from ZnO nanowires. Self-ballasting effect induced by the intrinsic resistance of ZnO nanowire and decreasing of screening effect caused by patterned emitters account for the uniform emission. Characteristic X-ray peaks of W-L lines and bremsstrahlung X-rays have been observed under anode voltages at a range of 18–20 kV, the latter of which were the dominant X-ray signals. High-resolution X-ray images with spatial resolution less than 25 μm were obtained by the flat-panel X-ray source. The high resolution was attributed to the small divergence angle of the emitted X-rays from the transmission X-ray source.

  2. Transmission type flat-panel X-ray source using ZnO nanowire field emitters

    NASA Astrophysics Data System (ADS)

    Chen, Daokun; Song, Xiaomeng; Zhang, Zhipeng; Li, Ziping; She, Juncong; Deng, Shaozhi; Xu, Ningsheng; Chen, Jun

    2015-12-01

    A transmission type flat-panel X-ray source in diode structure was fabricated. Large-scale patterned ZnO nanowires grown on a glass substrate by thermal oxidation were utilized as field emitters, and tungsten thin film coated on silica glass was used as the transmission anode. Uniform distribution of X-ray generation was achieved, which benefited from the uniform electron emission from ZnO nanowires. Self-ballasting effect induced by the intrinsic resistance of ZnO nanowire and decreasing of screening effect caused by patterned emitters account for the uniform emission. Characteristic X-ray peaks of W-L lines and bremsstrahlung X-rays have been observed under anode voltages at a range of 18-20 kV, the latter of which were the dominant X-ray signals. High-resolution X-ray images with spatial resolution less than 25 μm were obtained by the flat-panel X-ray source. The high resolution was attributed to the small divergence angle of the emitted X-rays from the transmission X-ray source.

  3. Flat panel detectors--closing the (digital) gap in chest and skeletal radiology.

    PubMed

    Reiff, K J

    1999-08-01

    In the radiological department today the majority of all X-ray procedures on chest and skeletal radiography is performed with classical film-screen-systems. Using digital luminescence radiography (DLR or CR, which stands for Computed Radiography) as a technique has shown a way to replace this 100-year-old procedure of doing general radiography work by acquiring the X-rays digitally via phosphor screens, but this approach has faced criticism from lots of radiologists world wide and therefore has not been widely accepted except in the intensive care environment. A new technology is now rising based on the use of so called flat panel X-ray (FD) detectors. Semi-conducting material detects the X-rays in digital form directly and creates an instantaneous image for display, distribution and diagnosis. This ability combined with a large field of view and compared to existing methods--excellent detective quantum efficiency represents a revolutionary step for chest and skeletal radiography and will put basic X-ray-work back into the focus of radiological solutions. This paper will explain the basic technology of flat panel detectors, possible system solutions based on this new technology, aspects of the user interface influencing the system utilization and versatility as well as the possibility to redefine the patient examination process for chest and skeletal radiography. Furthermore the author discusses limitations for the first released systems, upgrades for the installed base and possible scenarios for the future, e.g. fluoroscopy or angiography application. PMID:10565511

  4. Physical properties of a new flat panel detector with cesium-iodide technology

    NASA Astrophysics Data System (ADS)

    Hahn, Andreas; Penchev, Petar; Fiebich, Martin

    2016-03-01

    Flat panel detectors have become the standard technology in projection radiography. Further progress in detector technology will result in an improvement of MTF and DQE. The new detector (DX-D45C; Agfa; Mortsel/Belgium) is based on cesium-iodine crystals and has a change in the detector material and the readout electronics. The detector has a size of 30 cm x 24 cm and a pixel matrix of 2560 x 2048 with a pixel pitch of 124 μm. The system includes an automatic exposure detector, which enables the use of the detector without a connection to the x-ray generator. The physical properties of the detector were determined following IEC 62220-1-1 in a laboratory setting. The MTF showed an improvement compared to the previous version of cesium-iodine based flat-panel detectors. Thereby the DQE is also improved especially for the higher frequencies. The new detector showed an improvement in the physical properties compared to the previous versions. This enables a potential for further dose reductions in clinical imaging.

  5. Advances in infrastructure support for flat panel display manufacturing

    NASA Astrophysics Data System (ADS)

    Bardsley, James N.; Ciesinski, Michael F.; Pinnel, M. Robert

    1997-07-01

    The success of the US display industry, both in providing high-performance displays for the US Department of Defense at reasonable cost and in capturing a significant share of the global civilian market, depends on maintaining technological leadership and on building efficient manufacturing capabilities. The US Display Consortium (USDC) was set up in 1993 by the US Government and private industry to guide the development of the infrastructure needed to support the manufacturing of flat panel displays. This mainly involves the supply of equipment and materials, but also includes the formation of partnerships and the training of a skilled labor force. Examples are given of successful development projects, some involving USDC participation, others through independent efforts of its member companies. These examples show that US-based companies can achieve leadership positions in this young and rapidly growing global market.

  6. Improving the diversity of manufacturing electroluminescent flat panel displays

    SciTech Connect

    Moss, T.S.; Samuels, J.A.; Smith, D.C.

    1995-09-01

    Crystalline calcium thiogallate with a cerium dopant has been deposited by metal-organic chemical vapor deposition (MOCVD) at temperatures below 600{degrees}C on a low cost glass substrate. An EL luminance of 1.05 fL was observed 40 volts above threshold at 60 Hz. This is more than an order of magnitude improvement over earlier crystalline-as-deposited thiogallate materials. These results pave the way for the use of MOCVD as a potential method for processing full color thin-film electroluminescent (TFEL) flat panel displays. The formation of the CaGa{sub 2}S{sub 4}:Ce phosphor requires precise control over a number of deposition parameters including flow rates, substrate temperature, and reactor pressure. The influence of these parameters will be discussed in terms of structure, uniformity, and TFEL device performance.

  7. EMI investigation and modeling of a flat panel display

    NASA Astrophysics Data System (ADS)

    Shinde, Satyajeet

    It is often important to carry out EMI analysis in the design phase of an electronic product to predict the radiated emissions. An EMI analysis is important to predict if the product complies with the FCC regulations as well as to gain an understanding of the noise coupling and radiation mechanisms. EMI analysis and prediction of radiated emissions in electronic products that have an electrically large chassis, pose a challenge due to the presence of multiple resonant structures and noise-coupling mechanisms. The study focusses on the investigation of the main noise coupling mechanisms, the approach and methods used for the modeling of a flat panel display. Full-wave simulation models are a powerful tool for the prediction of radiated emissions and the visualization of coupling paths within the product. The first part deals with the measurement of radiated emissions from the display under standard test conditions and the identification of the main noise sources using near-field scanning. The contribution of the chassis components - frame, back cover and the back panel, to the radiated emission is analyzed using shielding measurements. Noise coupling from the main board, flex cables, display driver boards and the display is analyzed from measurements. The second part deals with the full-wave modeling of the components - main board, flex cables, chassis and the display driver boards. The modeling approach is demonstrated by highlighting some of the challenges in modeling larger structures having many details. The simulation model contains the main components of the TV that contribute to far-field radiation. The full-wave modeling is done using the CST Microwave Studio. Two sets of simulation models are described - the common mode models and the complete models. The use of the common mode models for the identification of the resonant structures is demonstrated. The far-field radiated emissions along with the coupling mechanism within the flat panel display can be

  8. Hysterosalpingography using a flat panel unit: Evaluation and optimization of ovarian radiation dose

    SciTech Connect

    Messaris, Gerasimos A. T.; Abatzis, Ilias; Kagadis, George C.; Samartzis, Alexandros P.; Athanasopoulou, Panagiota; Christeas, Nikolaos; Katsanos, Konstantinos; Karnabatidis, Dimitrios; Nikiforidis, George C.

    2012-07-15

    Purpose: The aim of the present study was the evaluation and optimization of radiation dose to the ovaries (D) in hysterosalpingography (HSG). Methods: The study included a phantom study and a clinical one. In the phantom study, we evaluated imaging results for different geometrical setups and irradiation conditions. In the clinical study, 34 women were assigned into three different fluoroscopy modes and D was estimated with direct cervical TLD measurements. Results: In the phantom study, we used a source-to-image-distance (SID) of 110 cm and a field diagonal of 48 cm, and thus decreased air KERMA rate (KR) by 19% and 70%, respectively, for beam filtration: 4 mm Al and 0.9 mm Cu (Low dose). The least radiation exposure was accomplished by using the 3.75 pps fluoroscopy mode in conjunction with beam filtration: Low dose. In the clinical study, D normalized to 50 s of fluoroscopy time with a 3.75 pps fluoroscopy mode reached a value of 0.45 {+-} 0.04 mGy. Observers' evaluation of diagnostic image quality did not significantly differ for the three different modes of acquisition that were compared. Conclusions: Digital spot radiographs could be omitted in modern flat panel systems during HSG. Fluoroscopy image acquisitions in a modern flat panel unit at 3.75 pps and a beam filtration of 4 mm Al and 0.9 mm Cu demonstrate acceptable image quality with an average D equal to 0.45 mGy. This value is lower compared to the studied literature. For these reasons, the proposed method may be recommended for routine HSG examination in order to limit radiation exposure to the ovaries.

  9. Low Scatter, High Kilovolt, A-Si Flat Panel X-Ray Detector

    NASA Astrophysics Data System (ADS)

    Smith, Peter D.; Claytor, Thomas N.; Berry, Phillip C.; Hills, Charles R.; Keating, Scott C.; Phillips, David H.; Setoodeh, Shariar

    2009-03-01

    We have been using amorphous silicon (a-Si) flat panel detectors in high energy (>400 kV) cone beam computed tomography (CT) applications for a number of years. We have found that these detectors have a significant amount of internal scatter that degrades the accuracy of attenuation images. The scatter errors cause cupping and streaking artifacts that are practically indistinguishable from beam hardening artifacts. Residual artifacts remain after beam hardening correction and over correction increases noise in CT reconstructions. Another important limitation of existing detectors is that they have a high failure rate, especially when operating at megavolt x-ray energies even with a well collimated beam. Due to the limitations of the current detectors, we decided to design a detector specifically for high energies that has significantly reduced scatter. In collaboration with IMTEC, we have built a prototype amorphous silicon flat panel detector that has both improved imaging response and increased lifetime. LANL's contribution is the "transparent panel concept" (patent pending), in which structures in the x-ray beam path are either eliminated or made as transparent to x-rays as practical (low atomic number and low areal density). This reduces scatter, makes attenuation measurements more accurate, improves the ability to make corrections for beam hardening, and increases signal to noise ratio in DR images and CT reconstructions. IMTEC's contribution is an improved shielding design that will increase the lifetime of the panel. Preliminary results showing the dramatic reduction in self scatter from the panel will be presented as well as the effect of this improvement on CT images.

  10. LOW SCATTER, HIGH KILOVOLT, A-SI FLAT PANEL X-RAY DETECTOR

    SciTech Connect

    Smith, Peter D.; Claytor, Thomas N.; Berry, Phillip C.; Hills, Charles R.; Keating, Scott C.; Phillips, David H.; Setoodeh, Shariar

    2009-03-03

    We have been using amorphous silicon (a-Si) flat panel detectors in high energy (>400 kV) cone beam computed tomography (CT) applications for a number of years. We have found that these detectors have a significant amount of internal scatter that degrades the accuracy of attenuation images. The scatter errors cause cupping and streaking artifacts that are practically indistinguishable from beam hardening artifacts. Residual artifacts remain after beam hardening correction and over correction increases noise in CT reconstructions. Another important limitation of existing detectors is that they have a high failure rate, especially when operating at megavolt x-ray energies even with a well collimated beam. Due to the limitations of the current detectors, we decided to design a detector specifically for high energies that has significantly reduced scatter. In collaboration with IMTEC, we have built a prototype amorphous silicon flat panel detector that has both improved imaging response and increased lifetime. LANL's contribution is the ''transparent panel concept''(patent pending), in which structures in the x-ray beam path are either eliminated or made as transparent to x-rays as practical (low atomic number and low areal density). This reduces scatter, makes attenuation measurements more accurate, improves the ability to make corrections for beam hardening, and increases signal to noise ratio in DR images and CT reconstructions. IMTEC's contribution is an improved shielding design that will increase the lifetime of the panel. Preliminary results showing the dramatic reduction in self scatter from the panel will be presented as well as the effect of this improvement on CT images.

  11. Evaluation and correction of readout artifacts from flat panel detectors for non-destructive testing purposes

    NASA Astrophysics Data System (ADS)

    Burtzlaff, S.; Voland, V.; Salamon, M.; Hofmann, Th.; Uhlmann, N.

    2009-08-01

    Flat panel detectors are commonly used for non-destructive testing purposes using X-ray technology. During a series of measurements with high absorbing objects, we observed an unknown kind of artifacts especially apparent with high contrast edges. These artifacts lead to unwanted results in radioscopic and computed tomography inspection. Given the object is fully occupying the lower part and half of the upper part of the detector. Looking at the image with high contrast visualization, it can be seen that the covered upper part of the detector is brighter than the covered lower half. The horizontal border of the detector tile is clearly recognizable. Furthermore, the uncovered area directly above the object is darker than next to the edge. In this area the vertical border of the edge below can be localized. We examined and evaluated the effect and developed a correction algorithm. The effect and its correction results are presented.

  12. Arthroscopic knee surgery using the advanced flat panel high-resolution color head-mounted display

    NASA Astrophysics Data System (ADS)

    Nelson, Scott A.; Jones, D. E. Casey; St. Pierre, Patrick; Sampson, James B.

    1997-06-01

    The first ever deployed arthroscopic knee surgeries have been performed using a high resolution color head-mounted display (HMD) developed under the DARPA Advanced Flat Panel HMD program. THese procedures and several fixed hospital procedures have allowed both the system designers and surgeons to gain new insight into the use of a HMD for medical procedures in both community and combat support hospitals scenarios. The surgeons demonstrated and reported improved head-body orientation and awareness while using the HMD and reported several advantages and disadvantages of the HMD as compared to traditional CRT monitor viewing of the arthroscopic video images. The surgeries, the surgeon's comments, and a human factors overview of HMDs for Army surgical applications are discussed here.

  13. Lowering the ignition voltage by the dual microhollow cathode configuration for multichannel flat panel lamp

    SciTech Connect

    Lee, Tae Il; Park, Ki Wan; Lee, Sung Won; Baik, Hong Koo

    2006-03-20

    We have developed a dual microhollow cathode configuration, employing one power supply circuit with a resistor that is suitable for lamp starting without additional power supplier. We also investigated their electrical characteristics and photo images, varying the applied voltage. The electrical and optical measurements showed that the discharge passed through four distinct stages: no discharges, the first microhollow cathode discharges, the both of the first and second microhollow cathode discharges, and finally the main discharge. As a result, the V{sub s} and E{sub s}/p of a dual microhollow configuration were lower by a factor of about 2 than those of a diode at 40 Torr. We have also observed that the parallel operation can be possible with a single resistor in nine channels flat panel lamp.

  14. Development of next generation digital flat panel catheterization system: design principles and validation methodology

    NASA Astrophysics Data System (ADS)

    Belanger, B.; Betraoui, F.; Dhawale, P.; Gopinath, P.; Tegzes, Pal; Vagvolgyi, B.

    2006-03-01

    The design principles that drove the development of a new cardiovascular x-ray digital flat panel (DFP) detector system are presented, followed by assessments of imaging and dose performance achieved relative to other state of the art FPD systems. The new system (GE Innova 2100 IQ TM) incorporates a new detector with substantially improved DQE at fluoroscopic (73%@1μR) and record (79%@114uR) doses, an x-ray tube with higher continuous fluoro power (3.2kW), a collimator with a wide range of copper spectral filtration (up to 0.9mm), and an improved automatic x-ray exposure management system. The performance of this new system was compared to that of the previous generation GE product (Innova 2000) and to state-of-the art cardiac digital x-ray flat panel systems from two other major manufacturers. Performance was assessed with the industry standard Cardiac X-ray NEMA/SCA and I phantom, and a new moving coronary artery stent (MCAS) phantom, designed to simulate cardiac clinical imaging conditions, composed of an anthropomorphic chest section with stents moving in a manner simulating normal coronary arteries. The NEMA/SCA&I phantom results showed the Innova 2100 IQ to exceed or equal the Innova 2000 in all of the performance categories, while operating at 28% lower dose on average, and to exceed the other DFP systems in most of the performance categories. The MCAS phantom tests showed the Innova 2100 IQ to be significantly better (p << 0.05) than the Innova 2000, and significantly better than the other DFP systems in most cases at comparable or lower doses, thereby verifying excellent performance against design goals.

  15. Review of flat panel display programs and defense applications

    NASA Astrophysics Data System (ADS)

    Gnade, Bruce; Schulze, Raymond; Henderson, Girardeau L.; Hopper, Darrel G.

    1997-07-01

    Flat panel display research has comprised a substantial portion of the national investment in new technology for economic and national security for the past nine years. These investments have ben made principally via several Defense Advanced Research Projects Agency (DARPA) programs, known collectively as the continuing High Definition Systems Program, and the Office of the Secretary of Defense Production Act Title III Program. Using input from the Army, Navy, and Air Force to focus research and identify insertion opportunities, DARPA and the Title III Program Office have made investments to develop the national technology base and manufacturing infrastructure necessary to meet the twin challenge of providing affordable displays in current systems and enabling the DoD strategy of winning future conflicts by getting more information to all participants during the battle. These research programs are reviewed and opportunities for applications are described. Future technology development, transfer, and transition requirements are identified. Strategy and vision are documented to assist the identification of areas meriting further consideration.

  16. Cryogenic flat-panel gas-gap heat switch

    NASA Astrophysics Data System (ADS)

    Vanapalli, S.; Keijzer, R.; Buitelaar, P.; ter Brake, H. J. M.

    2016-09-01

    A compact additive manufactured flat-panel gas-gap heat switch operating at cryogenic temperature is reported in this paper. A guarded-hot-plate apparatus has been developed to measure the thermal conductance of the heat switch with the heat sink temperature in the range of 100-180 K. The apparatus is cooled by a two-stage GM cooler and the temperature is controlled with a heater and a braided copper wire connection. A thermal guard is mounted on the hot side of the device to confine the heat flow axially through the sample. A gas handling system allows testing the device with different gas pressures in the heat switch. Experiments are performed at various heat sink temperatures, by varying gas pressure in the gas-gap and with helium, hydrogen and nitrogen gas. The measured off-conductance with a heat sink temperature of 115 K and the hot plate at 120 K is 0.134 W/K, the on-conductance with helium and hydrogen gases at the same temperatures is 4.80 W/K and 4.71 W/K, respectively. This results in an on/off conductance ratio of 37 ± 7 and 35 ± 6 for helium and hydrogen respectively. The experimental results matches fairly well with the predicted heat conductance at cryogenic temperatures.

  17. Radiation dose reduction using a CdZnTe-based computed tomography system: Comparison to flat-panel detectors

    SciTech Connect

    Le, Huy Q.; Ducote, Justin L.; Molloi, Sabee

    2010-03-15

    Purpose: Although x-ray projection mammography has been very effective in early detection of breast cancer, its utility is reduced in the detection of small lesions that are occult or in dense breasts. One drawback is that the inherent superposition of parenchymal structures makes visualization of small lesions difficult. Breast computed tomography using flat-panel detectors has been developed to address this limitation by producing three-dimensional data while at the same time providing more comfort to the patients by eliminating breast compression. Flat panels are charge integrating detectors and therefore lack energy resolution capability. Recent advances in solid state semiconductor x-ray detector materials and associated electronics allow the investigation of x-ray imaging systems that use a photon counting and energy discriminating detector, which is the subject of this article. Methods: A small field-of-view computed tomography (CT) system that uses CdZnTe (CZT) photon counting detector was compared to one that uses a flat-panel detector for different imaging tasks in breast imaging. The benefits afforded by the CZT detector in the energy weighting modes were investigated. Two types of energy weighting methods were studied: Projection based and image based. Simulation and phantom studies were performed with a 2.5 cm polymethyl methacrylate (PMMA) cylinder filled with iodine and calcium contrast objects. Simulation was also performed on a 10 cm breast specimen. Results: The contrast-to-noise ratio improvements as compared to flat-panel detectors were 1.30 and 1.28 (projection based) and 1.35 and 1.25 (image based) for iodine over PMMA and hydroxylapatite over PMMA, respectively. Corresponding simulation values were 1.81 and 1.48 (projection based) and 1.85 and 1.48 (image based). Dose reductions using the CZT detector were 52.05% and 49.45% for iodine and hydroxyapatite imaging, respectively. Image-based weighting was also found to have the least beam

  18. Synchrotron applications of an amorphous silicon flat-panel detector.

    SciTech Connect

    Lee, J. H.; Can Aydiner, C.; Almer, J.; Bernier, J.; Chapman, K. W.; Chupas, P. J.; Haeffner, D.; Kump, K.; Lee, P. L.; Lienert, U.; Miceli, A.; Vera, G.; LANL; GE Healthcare

    2008-01-01

    A GE Revolution 41RT flat-panel detector (GE 41RT) from GE Healthcare (GE) has been in operation at the Advanced Photon Source for over two years. The detector has an active area of 41 cm x 41 cm with 200 {micro}m x 200 {micro}m pixel size. The nominal working photon energy is around 80 keV. The physical set-up and utility software of the detector system are discussed in this article. The linearity of the detector response was measured at 80.7 keV. The memory effect of the detector element, called lag, was also measured at different exposure times and gain settings. The modulation transfer function was measured in terms of the line-spread function using a 25 {micro}m x 1 cm tungsten slit. The background (dark) signal, the signal that the detector will carry without exposure to X-rays, was measured at three different gain settings and with exposure times of 1 ms to 15 s. The radial geometric flatness of the sensor panel was measured using the diffraction pattern from a CeO{sub 2} powder standard. The large active area and fast data-capturing rate, i.e. 8 frames s{sup -1} in radiography mode, 30 frames s{sup -1} in fluoroscopy mode, make the GE 41RT one of a kind and very versatile in synchrotron diffraction. The loading behavior of a Cu/Nb multilayer material is used to demonstrate the use of the detector in a strain-stress experiment. Data from the measurement of various samples, amorphous SiO{sub 2} in particular, are presented to show the detector effectiveness in pair distribution function measurements.

  19. Synchrotron applications of an amorphous silicon flat-panel detector.

    PubMed

    Lee, John H; Aydiner, C Can; Almer, Jonathan; Bernier, Joel; Chapman, Karena W; Chupas, Peter J; Haeffner, Dean; Kump, Ken; Lee, Peter L; Lienert, Ulrich; Miceli, Antonino; Vera, German

    2008-09-01

    A GE Revolution 41RT flat-panel detector (GE 41RT) from GE Healthcare (GE) has been in operation at the Advanced Photon Source for over two years. The detector has an active area of 41 cm x 41 cm with 200 microm x 200 microm pixel size. The nominal working photon energy is around 80 keV. The physical set-up and utility software of the detector system are discussed in this article. The linearity of the detector response was measured at 80.7 keV. The memory effect of the detector element, called lag, was also measured at different exposure times and gain settings. The modulation transfer function was measured in terms of the line-spread function using a 25 microm x 1 cm tungsten slit. The background (dark) signal, the signal that the detector will carry without exposure to X-rays, was measured at three different gain settings and with exposure times of 1 ms to 15 s. The radial geometric flatness of the sensor panel was measured using the diffraction pattern from a CeO(2) powder standard. The large active area and fast data-capturing rate, i.e. 8 frames s(-1) in radiography mode, 30 frames s(-1) in fluoroscopy mode, make the GE 41RT one of a kind and very versatile in synchrotron diffraction. The loading behavior of a Cu/Nb multilayer material is used to demonstrate the use of the detector in a strain-stress experiment. Data from the measurement of various samples, amorphous SiO(2) in particular, are presented to show the detector effectiveness in pair distribution function measurements. PMID:18728319

  20. Heat Transfar Properties of Flat-Panel Evacuated Porous Insrlators

    NASA Astrophysics Data System (ADS)

    Yoneno, Hirosyi; Yamamoto, Ryoichi

    Flat Panel evacuated porous insulators have been produced by filling powder or fiber (such as perlite powder, diatomaceous earth powder, silica aerogel powder, g lass fiber and ceramic fiber) in film-like laminated plastic container and by evacuating to form vacuum in it is interior. Heat transfer properties of these evacuated insulators have been studied under various conditions (such as particle diameter, surface area, packing density, solid volume fraction and void dimension). The apparent mean thermal conductivity has been measured for the boundary surface temperature at cold face temperature 13°C and hot face temperature 35°. The effect of air pressure ranging from 1 Pa to one atomosphere (105 Pa) was examined. The results were as follows. (1) For each powder the apparent mean thermal conductivity decreases with decreasing residual air pressure, and at very low pressure bellow 1 -103 Pa the conductivity becomes indeqendent of pressure. The thermal conductivity at 1.3Pa is 0.0053 W/mK for perlite powder, 0.0048W/mK for diatomaceous earth powder, 0.0043 W/mK for silica aerogel powder and 0.0029W/mK for glass fiber. (2) With decreasing particle size, the apparent mean thermal conductivity is constant independent of residual air pressure in higher pressure region. It is that void dimension continues to decrease with particle size and the mean free path of air becomes comparable with void dimension. (3) In the range of minor solid volume fraction, the apparent mean thermal conductivity at very low precreases with decreasing particle size. This shows the thermal contact resistance of the solid particle increases with decreasing particle size.

  1. Ring artifact corrections in flat-panel detector based cone beam CT

    NASA Astrophysics Data System (ADS)

    Anas, Emran Mohammad Abu; Kim, Jaegon; Lee, Soo Yeol; Hasan, Md. Kamrul

    2011-03-01

    The use of flat-panel detectors (FPDs) is becoming increasingly popular in the cone beam volume and multi-slice CT imaging. But due to the deficient semiconductor array processing, the diagnostic quality of the FPD-based CT images in both CT systems is degraded by different types of artifacts known as the ring and radiant artifacts. Several techniques have been already published in eliminating the stripe artifacts from the projection data of the multi-slice CT system or in other words, from the sinogram image with a view to suppress the ring and radiant artifacts from the 2-D reconstructed CT images. On the other hand, till now a few articles have been reported to remove the artifacts from the cone beam CT images. In this paper, an effective approach is presented to eliminate the artifacts from the cone beam projection data using the sinogram based stripe artifact removal methods. The improvement in the required diagnostic quality is achieved by applying them both in horizontal and vertical sinograms constituted sequentially from the stacked cone beam projections. Finally, some real CT images have been used to demonstrate the effectiveness of the proposed technique in eliminating the ring and radiant artifacts from the cone beam volume CT images. A comparative study with the conventional sinogram based approaches is also presented to see the effectiveness of the proposed technique.

  2. Monte Carlo calculation of the spatial response (Modulated Transfer Function) of a scintillation flat panel and comparison with experimental results

    NASA Astrophysics Data System (ADS)

    Juste, Belén; Miró, Rafael; Monasor, Paula; Verdú, Gumersindo

    2015-11-01

    Phosphor screens are commonly used in many X-ray imaging applications. The design and optimization of these detectors can be achieved using Monte Carlo codes to simulate radiation transport in scintillation materials and to improve the spatial response. This work presents an exhaustive procedure to measure the spatial resolution of a scintillation flat panel image and to evaluate the agreement with data obtained by simulation. To evaluate the spatial response we have used the Modulated Transfer Function (MTF) parameter. According to this, we have obtained the Line Spread Function (LSF) of the system since the Fourier Transform (FT) of the LSF gives the MTF. The experimental images were carried out using a medical X-ray tube (Toshiba E7299X) and a flat panel (Hammamatsu C9312SK). Measurements were based on the slit methodology experimental implementation, which measures the response of the system to a line. LSF measurements have been performed using a 0.2 mm wide lead slit superimposed over the flat panel. The detector screen was modelled with MCNP (version 6) Monte Carlo simulation code in order to analyze the effect of the acquisition setup configuration and to compare the response of scintillator screens with the experimental results. MCNP6 offers the possibility of studying the optical physics parameters (optical scattering and absorption coefficients) that occur in the phosphor screen. The study has been tested for different X-ray tube voltages, from 100 to 140 kV. An acceptable convergence between the MTF results obtained with MCNP6 and the experimental measurements have been obtained.

  3. Planar cone-beam computed tomography with a flat-panel detector

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Kim, D. W.; Youn, H.; Kim, D.; Kam, S.; Jeon, H.; Kim, H. K.

    2015-12-01

    For a dedicated x-ray inspection of printed-circuit boards (PCBs), a bench-top planar cone-beam computed tomography (pCT) system with a flat-panel detector has been built in the laboratory. The system adopts the tomosynthesis technique that can produce cross-sectional images parallel to the axis of rotation for a limited angular range. For the optimal operation of the system and further improvement in the next design, we have evaluated imaging performances, such as modulation-transfer function, noise-power spectrum, and noise-equivalent number of quanta. The performances are comparatively evaluated with the coventional cone-beam CT (CBCT) acquisition for various scanning angular ranges, applied tube voltages, and geometrical magnification factors. The pCT scan shows a poorer noise performance than the conventional CBCT scan because of less number of projection views used for reconstruction. However, the pCT shows a better spatial-resolution performance than the CBCT. Because the image noise can be compensated by an elevated exposure level during scanning, the pCT can be a useful modality for the PCB inspection that requires higher spatial-resolution performance.

  4. Design and performance characteristics of a digital flat-panel computed tomography system

    SciTech Connect

    Ross, William; Cody, Dianna D.; Hazle, John D.

    2006-06-15

    Computed tomography (CT) applications continue to expand, and they require faster data acquisition speeds and improved spatial resolution. Achieving isotropic resolution, by means of cubic voxels, in combination with longitudinal coverage beyond 20 mm would represent a substantial advance in clinical CT because few commercially available scanners are capable of this at present. To achieve this goal, a prototype CT system incorporating a movable array of 20 cmx20 cm, 200-{mu}m-pitch amorphous silicon flat-panel x-ray detectors and a conventional CT x-ray source was constructed at the General Electric Global Research Center and performance tested at The University of Texas M. D. Anderson Cancer Center. The device was designed for preclinical imaging applications and has a scan field of 13 to 33 cm, with a magnification of 1.5. Image quality performance measurements, such as spatial and contrast resolutions, were obtained using both industry standard and custom phantoms. Spatial resolution, quantified by the system's modulation transfer function, indicated improvement by a factor of 2.5 to 5 in isotropic spatial resolution over current commercially available systems, with 10% modulation transfer function modulations at frequencies from 19 to 31 lp/cm. Low-contrast detectability results were obtained from industry-standard phantoms and were comprised of embedded contrast regions of 0.3%, 0.5%, and 1.0% over areas of several mm{sup 2}. Performance was sufficient to easily distinguish 1.0% contrast regions down to 2 mm in diameter relative to the background. On the basis of scans of specialized hydroxyapatite phantoms, the system response is extremely linear (R{sup 2}=0.990) in bone-equivalent density regimens. Standard CT dose index CTDI{sub 100} and CTDI{sub W} measurements were also conducted to assess dose delivery using a 16-cm-CTDI phantom and a 120 kV 120 mAs scan technique. The CTDI{sub W} ranged from 30 mGy (one-panel mode) to 113 mGy (two-panel mode) for this

  5. Design and performance characteristics of a digital flat-panel computed tomography system.

    PubMed

    Ross, William; Cody, Dianna D; Hazle, John D

    2006-06-01

    Computed tomography (CT) applications continue to expand, and they require faster data acquisition speeds and improved spatial resolution. Achieving isotropic resolution, by means of cubic voxels, in combination with longitudinal coverage beyond 20 mm would represent a substantial advance in clinical CT because few commercially available scanners are capable of this at present. To achieve this goal, a prototype CT system incorporating a movable array of 20 cm X 20 cm, 200-microm-pitch amorphous silicon flat-panel x-ray detectors and a conventional CT x-ray source was constructed at the General Electric Global Research Center and performance tested at The University of Texas M. D. Anderson Cancer Center. The device was designed for preclinical imaging applications and has a scan field of 13 to 33 cm, with a magnification of 1.5. Image quality performance measurements, such as spatial and contrast resolutions, were obtained using both industry standard and custom phantoms. Spatial resolution, quantified by the system's modulation transfer function, indicated improvement by a factor of 2.5 to 5 in isotropic spatial resolution over current commercially available systems, with 10% modulation transfer function modulations at frequencies from 19 to 31 lp/cm. Low-contrast detectability results were obtained from industry-standard phantoms and were comprised of embedded contrast regions of 0.3%, 0.5%, and 1.0% over areas of several mm2. Performance was sufficient to easily distinguish 1.0% contrast regions down to 2 mm in diameter relative to the background. On the basis of scans of specialized hydroxyapatite phantoms, the system response is extremely linear (R2=0.990) in bone-equivalent density regimens. Standard CT dose index CTDI100 and CTDIw measurements were also conducted to assess dose delivery using a 16-cm-CTDI phantom and a 120 kV 120 mAs scan technique. The CTDIw ranged from 30 mGy (one-panel mode) to 113 mGy (two-panel mode) for this system. Lastly, several in

  6. Cone Beam Breast CT with a Flat Panel Detector- Simulation, Implementation and Demonstration.

    PubMed

    Shaw, Chris; Chen, Lingyun; Altunbas, Mastafa; Tu, Shuju; Wang, Tian-Peng; Lai, Chao-Jen; Cheenu Kappadath, S; Meng, Yang; Liu, Xinming

    2005-01-01

    This paper describes our experiences in the simulation, implementation and application of a flat panel detector based cone beam computed tomography (CT) imaging system for dedicated 3-D breast imaging. In our simulation study, the breast was analytically modeled as a cylinder of breast tissue loosely molded into cylindrical shape with embedded soft tissue masses and calcifications. Attenuation coefficients for various types of breast tissue, soft tissue masses and calcifications were estimated for various kVp's to generate simulated image signals. Projection images were computed to incorporate x-ray attenuation, geometric magnification, x-ray detection, detector blurring, image pixelization and digitization. Based on the x-ray kVp/filtration used, transmittance through the phantom, detective quantum efficiency (DQE), exposure level, and imaging geometry, the photon fluence was estimated and used to compute the quantum noise level on a pixel-by-pixel basis for various dose levels at the isocenter. This estimated noise level was then used with a random number generator to generate and add a fluctuation component to the noiseless transmitted image signal. The noise carrying projection images were then convolved with a Gaussian-like kernel, computed from measured 1-D line spread function (LSF) to simulate detector blurring. Additional 2-D Gaussian filtering was applied to the projection images and tested for improving the detection of soft tissue masses and calcifications in the reconstructed images. Reconstruction was performed using the Feldkamp filtered backprojection algorithm. All simulations were performed on a 24 PC (2.4 GHz Dual-Xeon CPU) cluster with MPI parallel programming. PMID:17281227

  7. Development of patient collation system by kinetic analysis for chest dynamic radiogram with flat panel detector

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Yuichiro; Kodera, Yoshie

    2006-03-01

    In the picture archiving and communication system (PACS) environment, it is important that all images be stored in the correct location. However, if information such as the patient's name or identification number has been entered incorrectly, it is difficult to notice the error. The present study was performed to develop a system of patient collation automatically for dynamic radiogram examination by a kinetic analysis, and to evaluate the performance of the system. Dynamic chest radiographs during respiration were obtained by using a modified flat panel detector system. Our computer algorithm developed in this study was consisted of two main procedures, kinetic map imaging processing, and collation processing. Kinetic map processing is a new algorithm to visualize a movement for dynamic radiography; direction classification of optical flows and intensity-density transformation technique was performed. Collation processing consisted of analysis with an artificial neural network (ANN) and discrimination for Mahalanobis' generalized distance, those procedures were performed to evaluate a similarity of combination for the same person. Finally, we investigated the performance of our system using eight healthy volunteers' radiographs. The performance was shown as a sensitivity and specificity. The sensitivity and specificity for our system were shown 100% and 100%, respectively. This result indicated that our system has excellent performance for recognition of a patient. Our system will be useful in PACS management for dynamic chest radiography.

  8. Characterization of a flat-panel detector for ion beam spot measurements

    NASA Astrophysics Data System (ADS)

    Martišíková, Mária; Hartmann, Bernadette; Hesse, Bernd M.; Brons, Stephan; Ackermann, Benjamin; Jäkel, Oliver

    2012-01-01

    Dynamic beam delivery techniques are being increasingly used for cancer therapy. Scanning ion beams require extensive and time-demanding quality assurance procedures and beam tuning. Accordingly, fast measurement techniques improving the efficiency of the procedures and accommodating the safety requirements are highly desirable. Major requirements for a detector used for beam-shape measurements are high spatial resolution in two dimensions, reusability, online readout and easy handling. At the Heidelberg Ion Beam Therapy Facility (Germany), we examined the performance of the RID 256 L flat-panel detector for beam spot measurements. The two-dimensional beam profiles of proton and carbon ion beams measured were compared to measurements with radiographic films at intermediate energies using the Γ index. The difference to the beam width measured with radiographic films of less than 3% demonstrates sufficient accuracy of ion beam width measurements possible with this detector for both proton and carbon ion beams. The beam shapes were also measured at different beam intensities. At both the highest and lowest energies available at the HIT, no beam spot-shape deformation was found with increasing beam intensities, as long as the boundary of the dynamic range was not exceeded. The signal leak along the readout direction was identified as an undesirable effect. However, due to small amplitudes and static beams, this effect is of minor importance for beam spot measurements. Distortion of results due to detector radiation damage was monitored. No detector radiation damage was observed over the experiments. Moreover, the observed short-time detector response stability (within ±0.1%) as well as medium term stability (within 0.5% in 15 months) was excellent. This flat-panel detector is compact and easy to use. Together with its low weight, this helps to speed up measurement procedures substantially. All these properties make this an ideal detector for the fast, high

  9. Contrast-detail analysis of three flat panel detectors for digital radiography

    SciTech Connect

    Borasi, Giovanni; Samei, Ehsan; Bertolini, Marco; Nitrosi, Andrea; Tassoni, Davide

    2006-06-15

    In this paper we performed a contrast detail analysis of three commercially available flat panel detectors, two based on the indirect detection mechanism (GE Revolution XQ/i, system A, and Trixell/Philips Pixium 4600, system B) and one based on the direct detection mechanism (Hologic DirectRay DR 1000, system C). The experiment was conducted using standard x-ray radiation quality and a widely used contrast-detail phantom. Images were evaluated using a four alternative forced choice paradigm on a diagnostic-quality softcopy monitor. At the low and intermediate exposures, systems A and B gave equivalent performances. At the high dose levels, system A performed better than system B in the entire range of target sizes, even though the pixel size of system A was about 40% larger than that of system B. At all the dose levels, the performances of the system C (direct system) were lower than those of system A and B (indirect systems). Theoretical analyses based on the Perception Statistical Model gave similar predicted SNR{sub T} values corresponding to an observer efficiency of about 0.08 for systems A and B and 0.05 for system C.

  10. Nitrogen incorporated ultrananocrystalline diamond based field emitter array for a flat-panel x-ray source

    NASA Astrophysics Data System (ADS)

    Posada, Chrystian M.; Grant, Edwin J.; Divan, Ralu; Sumant, Anirudha V.; Rosenmann, Daniel; Stan, Liliana; Lee, Hyoung K.; Castaño, Carlos H.

    2014-04-01

    A field emission based flat-panel transmission x-ray source is being developed as an alternative for medical and industrial imaging. A field emitter array (FEA) prototype based on nitrogen incorporated ultrananocrystalline diamond film has been fabricated to be used as the electron source of this flat panel x-ray source. The FEA prototype was developed using conventional microfabrication techniques. The field emission characteristics of the FEA prototype were evaluated. Results indicated that emission current densities of the order of 6 mA/cm2 could be obtained at electric fields as low as 10 V/μm to 20 V/μm. During the prototype microfabrication process, issues such as delamination of the extraction gate and poor etching of the SiO2 insulating layer located between the emitters and the extraction layer were encountered. Consequently, alternative FEA designs were investigated. Experimental and simulation data from the first FEA prototype were compared and the results were used to evaluate the performance of alternative single and double gate designs that would yield better field emission characteristics compared to the first FEA prototype. The best simulation results are obtained for the double gate FEA design, when the diameter of the collimator gate is around 2.6 times the diameter of the extraction gate.

  11. Improvement of illumination uniformity for LED flat panel light by using micro-secondary lens array.

    PubMed

    Lee, Hsiao-Wen; Lin, Bor-Shyh

    2012-11-01

    LED flat panel light is an innovative lighting product in recent years. However, current flat panel light products still contain some drawbacks, such as narrow lighting areas and hot spots. In this study, a micro-secondary lens array technique was proposed and applied for the design of the light guide surface to improve the illumination uniformity. By using the micro-secondary lens array, the candela distribution of the LED flat panel light can be adjusted to similar to batwing distribution to improve the illumination uniformity. The experimental results show that the enhancement of the floor illumination uniformity is about 61%, and that of the wall illumination uniformity is about 20.5%. PMID:23187654

  12. Improvement of illumination uniformity for LED flat panel light by using micro-secondary lens array.

    PubMed

    Lee, Hsiao-Wen; Lin, Bor-Shyh

    2012-11-01

    LED flat panel light is an innovative lighting product in recent years. However, current flat panel light products still contain some drawbacks, such as narrow lighting areas and hot spots. In this study, a micro-secondary lens array technique was proposed and applied for the design of the light guide surface to improve the illumination uniformity. By using the micro-secondary lens array, the candela distribution of the LED flat panel light can be adjusted to similar to batwing distribution to improve the illumination uniformity. The experimental results show that the enhancement of the floor illumination uniformity is about 61%, and that of the wall illumination uniformity is about 20.5%. PMID:23326825

  13. Investigations of a flat-panel detector for quality assurance measurements in ion beam therapy

    NASA Astrophysics Data System (ADS)

    Hartmann, Bernadette; Telsemeyer, Julia; Huber, Lucas; Ackermann, Benjamin; Jäkel, Oliver; Martišíková, Mária

    2012-01-01

    Increased accuracy in radiation delivery to a patient provided by scanning particle beams leads to high demands on quality assurance (QA). To meet the requirements, an extensive quality assurance programme has been implemented at the Heidelberg Ion Beam Therapy Center. Currently, high-resolution radiographic films are used for beam spot position measurements and homogeneity measurements for scanned fields. However, given that using this film type is time and equipment demanding, considerations have been made to replace the radiographic films in QA by another appropriate device. In this study, the suitability of the flat-panel detector RID 256 L based on amorphous silicon was investigated as an alternative method. The currently used radiographic films were taken as a reference. Investigations were carried out for proton and carbon ion beams. The detectors were irradiated simultaneously to allow for a direct comparison. The beam parameters (e.g. energy, focus, position) currently used in the daily QA procedures were applied. Evaluation of the measurements was performed using newly implemented automatic routines. The results for the flat-panel detector were compared to the standard radiographic films. Additionally, a field with intentionally decreased homogeneity was applied to test the detector's sensitivities toward possible incorrect scan parameters. For the beam position analyses, the flat-panel detector results showed good agreement with radiographic films. For both detector types, deviations between measured and planned spot distances were found to be below 1% (1 mm). In homogeneously irradiated fields, the flat-panel detector showed a better dose response homogeneity than the currently used radiographic film. Furthermore, the flat-panel detector is sensitive to field irregularities. The flat-panel detector was found to be an adequate replacement for the radiographic film in QA measurements. In addition, it saves time and equipment because no post

  14. Influence of Flat-Panel Fluoroscopic Equipment Variables on Cardiac Radiation Doses

    SciTech Connect

    Nickoloff, Edward L. Lu Zhengfeng; Dutta, Ajoy; So, James; Balter, Stephen; Moses, Jeffrey

    2007-04-15

    Purpose. To assess the influence of physician-selectable equipment variables on the potential radiation dose reductions during cardiac catheterization examinations using modern imaging equipment. Materials. A modern bi-plane angiography unit with flat-panel image receptors was used. Patients were simulated with 15-30 cm of acrylic plastic. The variables studied were: patient thickness, fluoroscopy pulse rates, record mode frame rates, image receptor field-of-view (FoV), automatic dose control (ADC) mode, SID/SSD geometry setting, automatic collimation, automatic positioning, and others. Results. Patient radiation doses double for every additional 3.5-4.5 cm of soft tissue. The dose is directly related to the imaging frame rate; a decrease from 30 pps to 15 pps reduces the dose by about 50%. The dose is related to [(FoV){sup -N}] where 2.0 < N < 3.0. Suboptimal positioning of the patient can nearly double the dose. The ADC system provides three selections that can vary the radiation level by 50%. For pediatric studies (2-5 years old), the selection of equipment variables can result in entrance radiation doses that range between 6 and 60 cGy for diagnostic cases and between 15 and 140 cGy for interventional cases. For adult studies, the equipment variables can produce entrance radiation doses that range between 13 and 130 cGy for diagnostic cases and between 30 and 400 cGy for interventional cases. Conclusions. Overall dose reductions of 70-90% can be achieved with pediatric patients and about 90% with adult patients solely through optimal selection of equipment variables.

  15. Super multi-view display with a lower resolution flat-panel display.

    PubMed

    Takaki, Yasuhiro; Tanaka, Kosuke; Nakamura, Junya

    2011-02-28

    A lenticular-type super multi-view (SMV) display normally requires an ultra high-resolution flat-panel display. To reduce this resolution requirement, two or more views are generated around each eye with an interval smaller than the pupil diameter. Cylindrical lenses constituting a lenticular lens project a group of pixels of the flat-panel display to generate a group of viewing zones. Pixel groups generating left and right viewing zones through the same cylindrical lens are partitioned to separate the two zones. The left and right pixel groups for different cylindrical lenses are interlaced horizontally. A prototype SMV display is demonstrated. PMID:21369242

  16. Enhanced solution velocity between dark and light areas with horizontal tubes and triangular prism baffles to improve microalgal growth in a flat-panel photo-bioreactor.

    PubMed

    Yang, Zongbo; Cheng, Jun; Xu, Xiaodan; Zhou, Junhu; Cen, Kefa

    2016-07-01

    Novel horizontal tubes and triangular prism (HTTP) baffles that generate flow vortices were developed to increase solution velocity between dark and light areas and thus improve microalgal growth in a flat-panel photo-bioreactor. Solution velocity, mass-transfer coefficient, and mixing time were measured with a particle-imaging velocimeter, dissolved oxygen probes, and pH probes. The solution mass-transfer coefficient increased by 30% and mixing time decreased by 21% when the HTTP baffles were used. The solution velocity between dark and light areas increased from ∼0.9cm/s to ∼3.5cm/s, resulting in a decreased dark-light cycle period to one-fourth. This enhanced flashing light effect with the HTTP baffles dramatically increased microalgae biomass yield by 70% in the flat-panel photo-bioreactor. PMID:27038260

  17. Experimental verification of ion range calculation in a treatment planning system using a flat-panel detector

    NASA Astrophysics Data System (ADS)

    Telsemeyer, Julia; Ackermann, Benjamin; Ecker, Swantje; Jäkel, Oliver; Martišíková, Mária

    2014-07-01

    Heavy ion-beam therapy is a highly precise radiation therapy exploiting the characteristic interaction of ions with matter. The steep dose gradient of the Bragg curve allows the irradiation of targets with high-dose and a narrow dose penumbra around the target, in contrast to photon irradiation. This, however, makes heavy ion-beam therapy very sensitive to minor changes in the range calculation of the treatment planning system, as it has a direct influence on the outcome of the treatment. Our previous study has shown that ion radiography with an amorphous silicon flat-panel detector allows the measurement of the water equivalent thickness (WET) of an imaging object with good accuracy and high spatial resolution. In this study, the developed imaging technique is used to measure the WET distribution of a patient-like phantom, and these results are compared to the WET calculation of the treatment planning system. To do so, a measured two-dimensional map of the WET of an anthropomorphic phantom was compared to WET distributions based on x-ray computed tomography images as used in the treatment planning system. It was found that the WET maps agree well in the overall shape and two-dimensional distribution of WET values. Quantitatively, the ratio of the two-dimensional WET maps shows a mean of 1.004 with a standard deviation of 0.022. Differences were found to be concentrated at high WET gradients. This could be explained by the Bragg-peak degradation, which is measured in detail by ion radiography with the flat-panel detector, but is not taken into account in the treatment planning system. Excluding pixels exhibiting significant Bragg-peak degradation, the mean value of the ratio was found to be 1.000 with a standard deviation of 0.012. Employment of the amorphous silicon flat-panel detector for WET measurements allows us to detect uncertainties of the WET determination in the treatment planning process. This makes the investigated technique a very helpful tool to study

  18. Three-dimensional IMRT verification with a flat-panel EPID.

    PubMed

    Steciw, S; Warkentin, B; Rathee, S; Fallone, B G

    2005-02-01

    A three-dimensional (3D) intensity-modulated radiotherapy (IMRT) pretreatment verification procedure has been developed based on the measurement of two-dimensional (2D) primary fluence profiles using an amorphous silicon flat-panel electronic portal imaging device (EPID). As described in our previous work, fluence profiles are extracted from EPID images by deconvolution with kernels that represent signal spread in the EPID due to radiation and optical scattering. The deconvolution kernels are derived using Monte Carlo simulations of dose deposition in the EPID and empirical fitting methods, for both 6 and 15 MV photon energies. In our new 3D verification technique, 2D fluence modulation profiles for each IMRT field in a treatment are used as input to a treatment planning system (TPS), which then generates 3D doses. Verification is accomplished by comparing this new EPID-based 3D dose distribution to the planned dose distribution calculated by the TPS. Thermoluminescent dosimeter (TLD) point dose measurements for an IMRT treatment of an anthropomorphic phantom were in good agreement with the EPID-based 3D doses; in contrast, the planned dose under-predicts the TLD measurement in a high-gradient region by approximately 16%. Similarly, large discrepancies between EPID-based and TPS doses were also evident in dose profiles of small fields incident on a water phantom. These results suggest that our 3D EPID-based method is effective in quantifying relevant uncertainties in the dose calculations of our TPS for IMRT treatments. For three clinical head and neck cancer IMRT treatment plans, our TPS was found to underestimate the mean EPID-based doses in the critical structures of the spinal cord and the parotids by approximately 4 Gy (11%-14%). According to radiobiological modeling calculations that were performed, such underestimates can potentially lead to clinically significant underpredictions of normal tissue complication rates. PMID:15789607

  19. Evaluation of the potential utility of flat panel CT for quantifying relative contrast enhancement

    SciTech Connect

    Jones, A. Kyle; Mahvash, Armeen

    2012-07-15

    Purpose: Certain directed oncologic therapies seek to take advantage of the fact that tumors are typically more susceptible to directed therapeutic agents than normal tissue owing to their extensive networks of poorly formed, leaky vasculature. If differences between the vascularity of normal and tumor tissues could be quantified, patients could be selected for or excluded from directed treatments on the basis of this difference. However, angiographic imaging techniques such as digital subtraction angiography (DSA) yield two-dimensional data that may be inadequate for this task. As a first step, the authors evaluated the feasibility of using a commercial implementation of flat panel computed tomography (FPCT) to quantify differences in enhancement of a simulated tumor compared with normal tissue based on differences in CT number measured in precontrast and postcontrast scans. Methods: To evaluate the FPCT scanner studied, the authors scanned several phantoms containing simulated normal and tumor tissues. In the first experiment, the authors used an anthropomorphic phantom containing inclusions representing normal, tumor, and bone tissue to evaluate the constancy of CT numbers in scans repeated at clinically relevant intervals of 1 and 3 min. The authors then scanned gelatin phantoms containing dilutions of iodinated contrast to evaluate the accuracy of relative contrast enhancement measurements for a clinical FPCT system. Data were analyzed using widely available software. Results: CT numbers measured in identical locations were constant over both scan intervals evaluated. Measured relative contrast enhancement values were accurate compared with known relative contrast enhancement values. Care must be taken to avoid artifacts in reconstructed images when placing regions of interest. Conclusions: Despite its limitations, FPCT in the interventional laboratory can be used to quantify relative contrast enhancement in phantoms. This is accomplished by measuring CT

  20. High-bandwidth remote flat panel display interconnect system

    NASA Astrophysics Data System (ADS)

    Peterson, Darrel G.

    1999-08-01

    High performance electronic displays (CRT, AMLCD, TFEL, plasma, etc.) require wide bandwidth electrical drive signals to produce the desired display images. When the image generation and/or image processing circuitry is located within the same line replaceable unit (LRU) as the display media, the transmission of the display drive signals to the display media presents no unusual design problems. However, many aircraft cockpits are severely constrained for available space behind the instrument panel. This often forces the system designer to specify that only the display media and its immediate support circuitry are to be mounted in the instrument panel. A wide bandwidth interconnect system is then required to transfer image data from the display generation circuitry to the display unit. Image data transfer rates of nearly 1.5 Gbits/second may be required when displaying full motion video at a 60 Hz field rate. In addition to wide bandwidth, this interconnect system must exhibit several additional key characteristics: (1) Lossless transmission of image data; (2) High reliability and high integrity; (3) Ease of installation and field maintenance; (4) High immunity to HIRF and electrical noise; (5) Low EMI emissions; (6) Long term supportability; and (7) Low acquisition and maintenance cost. Rockwell Collins has developed an avionics grade remote display interconnect system based on the American National Standards Institute Fibre Channel standard which meets these requirements. Readily available low cost commercial off the shelf (COTS) components are utilized, and qualification tests have confirmed system performance.

  1. Physical evaluation of a high-frame-rate extended dynamic range flat panel detector for real-time cone beam computed tomography applications

    NASA Astrophysics Data System (ADS)

    Boyce, Sarah J.; Chawla, Amarpreet; Samei, Ehsan

    2005-04-01

    The use of flat panel detectors in computed tomography (CT) systems can improve resolution, reduce system cost, and add operational flexibility by combining fluoroscopy and radiography applications within CT systems. However, some prior studies have suggested that flat panel detectors would not perform well in CT applications due to their lack of high dynamic range, lag artifacts, and inadequate frame rate. The purpose of this study was to perform a physical evaluation of a prototype flat panel detector capable of high frame rates and extended dynamic range. The flat panel detector used had a pixel size of 194 microns and a matrix size of 2048x1536. The detector could be configured for several combinations of frame rate and matrix size up to 750 frames per second for a 512x16 matrix size with 4x4 binning. The evaluation was performed in terms of the MTF and DQE as a function of frame rate and exposure at the IEC RQA5 (~75 kVp, 21 mm Al) beam quality. The image lag was evaluated in terms of temporal-frequency dependent transfer function. Offset shift were also evaluated. Preliminary results indicate 0.1 MTF at 0.92 cycles/mm and DQE(0) of approximately 0.8, 0.6, 0.4, and 0.22 at 0.144, 0.065, 0.035, and 0.008 mR per frame exposures. The temporal MTF exhibited a low-frequency drop and a value of 0.5 at the Nyquist frequency. Offset shift was negligible. Considering high frame rate capabilities of the new detector, the results suggest that the detector has potential for use in real-time CT applications including CT angiography.

  2. 76 FR 9360 - In the Matter of Certain Flat Panel Digital Televisions and Components Thereof; Notice of a...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-17

    ... August 19, 2010, based on a complaint filed by Vizio, Inc. of Irvine, California. 75 FR 51285-86 (August... COMMISSION In the Matter of Certain Flat Panel Digital Televisions and Components Thereof; Notice of a... within the United States after importation of certain flat panel digital televisions and...

  3. Photoelectrochemical based direct conversion systems

    SciTech Connect

    Kocha, S.; Arent, D.; Peterson, M.

    1995-09-01

    The goal of this research is to develop a stable, cost effective, photoelectrochemical based system that will split water upon illumination, producing hydrogen and oxygen directly, using sunlight as the only energy input. This type of direct conversion system combines a photovoltaic material and an electrolyzer into a single monolithic device. We report on our studies of two multifunction multiphoton photoelectrochemical devices, one based on the ternary semiconductor gallium indium phosphide, (GaInP{sub 2}), and the other one based on amorphous silicon carbide. We also report on our studies of the solid state surface treatment of GaInP{sub 2} as well as our continuing effort to develop synthetic techniques for the attachment of transition metal complexes to the surface of semiconductor electrodes. All our surface studies are directed at controlling the interface energetics and forming stable catalytic surfaces.

  4. Scan equalization digital radiography (SEDR) implemented with an amorphous selenium flat-panel detector: initial experience.

    PubMed

    Liu, Xinming; Lai, Chao-Jen; Chen, Lingyun; Han, Tao; Zhong, Yuncheng; Shen, Youtao; Wang, Tianpeng; Shaw, Chris C

    2009-11-21

    It is well recognized in projection radiography that low-contrast detectability suffers in heavily attenuating regions due to excessively low x-ray fluence to the image receptor and higher noise levels. Exposure equalization can improve image quality by increasing the x-ray exposure to heavily attenuating regions, resulting in a more uniform distribution of exposure to the detector. Image quality is also expected to be improved by using the slot-scan geometry to reject scattered radiation effectively without degrading primary x-rays. This paper describes the design of a prototype scan equalization digital radiography (SEDR) system implemented with an amorphous silicon (a-Si) thin-film transistor (TFT) array-based flat-panel detector. With this system, slot-scan geometry with alternate line erasure and readout (ALER) technique was used to achieve scatter rejection. A seven-segment beam height modulator assembly was mounted onto the fore collimator to regulate exposure regionally for chest radiography. The beam modulator assembly, consisting of micro linear motors, lead screw cartridge with lead (Pb) beam blockers attached, position feedback sensors and motor driver circuitry, has been tested and found to have an acceptable response for exposure equalization in chest radiography. An anthropomorphic chest phantom was imaged in the posterior-anterior (PA) view under clinical conditions. Scatter component, primary x-rays, scatter-to-primary ratios (SPRs) and primary signal-to-noise ratios (PSNRs) were measured in the SEDR images to evaluate the rejection and redistribution of scattered radiation, and compared with those for conventional full-field imaging with and without anti-scatter grid methods. SPR reduction ratios (SPRRRs, defined as the differences between the non-grid full-field SPRs and the reduced SPRs divided by the former) yielded approximately 59% for the full-field imaging with grid and 82% for the SEDR technique in the lungs, and 77% for the full

  5. Measurement of joint kinematics using a conventional clinical single-perspective flat-panel radiography system

    SciTech Connect

    Seslija, Petar; Teeter, Matthew G.; Yuan Xunhua; Naudie, Douglas D. R.; Bourne, Robert B.; MacDonald, Steven J.; Peters, Terry M.; Holdsworth, David W.

    2012-10-15

    Purpose: The ability to accurately measure joint kinematics is an important tool in studying both normal joint function and pathologies associated with injury and disease. The purpose of this study is to evaluate the efficacy, accuracy, precision, and clinical safety of measuring 3D joint motion using a conventional flat-panel radiography system prior to its application in an in vivo study. Methods: An automated, image-based tracking algorithm was implemented to measure the three-dimensional pose of a sparse object from a two-dimensional radiographic projection. The algorithm was tested to determine its efficiency and failure rate, defined as the number of image frames where automated tracking failed, or required user intervention. The accuracy and precision of measuring three-dimensional motion were assessed using a robotic controlled, tibiofemoral knee phantom programmed to mimic a subject with a total knee replacement performing a stair ascent activity. Accuracy was assessed by comparing the measurements of the single-plane radiographic tracking technique to those of an optical tracking system, and quantified by the measurement discrepancy between the two systems using the Bland-Altman technique. Precision was assessed through a series of repeated measurements of the tibiofemoral kinematics, and was quantified using the across-trial deviations of the repeated kinematic measurements. The safety of the imaging procedure was assessed by measuring the effective dose of ionizing radiation associated with the x-ray exposures, and analyzing its relative risk to a human subject. Results: The automated tracking algorithm displayed a failure rate of 2% and achieved an average computational throughput of 8 image frames/s. Mean differences between the radiographic and optical measurements for translations and rotations were less than 0.08 mm and 0.07 Degree-Sign in-plane, and 0.24 mm and 0.6 Degree-Sign out-of-plane. The repeatability of kinematics measurements performed

  6. Amorphous Diamond Flat Panel Displays - Final Report of ER-LTR CRADA project with SI Diamond Technology

    SciTech Connect

    Ager III, Joel W.

    1998-05-08

    The objective of this project was to determine why diamond-based films are unusually efficient electron emitters (field emission cathodes) at room temperature. Efficient cathodes based on diamond are being developed by SI Diamond Technology (SIDT) as components for bright, sunlight-readable, flat panel displays. When the project started, it was known that only a small fraction (<1%) of the cathode area is active in electron emission and that the emission sites themselves are sub-micron in size. The critical challenge of this project was to develop new microcharacterization methods capable of examining known emission sites. The research team used a combination of cathode emission imaging (developed at SIDT), micro-Raman spectroscopy (LBNL), and electron microscopy and spectroscopy (National Center for Electron Microscopy, LBNL) to examine the properties of known emission sites. The most significant accomplishment of the project was the development at LBNL of a very high resolution scanning probe that, for the first time, measured simultaneously the topography and electrical characteristics of single emission sites. The increased understanding of the emission mechanism helped SIDT to develop a new cathode material,''nano-diamond,'' which they have incorporated into their Field Emission Picture Element (FEPix) product. SIDT is developing large-format flat panel displays based on these picture elements that will be brighter and more efficient than existing outdoor displays such as Jumbotrons. The energy saving that will be realized if field emission displays are introduced commercially is in line with the energy conservation mission of DOE. The unique characterization tools developed in this project (particularly the new scanning microscopy method) are being used in ongoing BES-funded basic research.

  7. [Flat-panel detector technology -State-of-the-art and future prospects-].

    PubMed

    Yamazaki, Tatsuya

    2002-01-01

    A flat-panel detector (FPD) is a long-awaited technology to implement the digital X-ray imaging technology into the radiological department. This paper describes the state-of-the-art technology and future prospects on the FPD technology. State-of-the-art technology was reviewed taking the CXDI series as an example. Several FPD-based systems have been introduced into the Japanese market since CXDI-11 opened it in November 1998. Accompanying CXDI-C2 for control, CXDI-22 for table position and CXDI-31 for portable, the CXDI series fulfills the requirement of the radiography room being a fully digitalized room. The FPD on the CXDI series is comprised of a scintillator (Gd(2)O(2)S:Tb(3+)) as a primary sensor in which the X-ray is captured and an amorphous silicon detector (LANMIT) as a secondary sensor in which the fluorescent light is detected. Since the scintillator is identical to that of the screen-film systems, it can be said as proven, durable and chemically stable and it is expected to produce the same image quality as the screen-film systems. CXDI-31, a portable FPD-based system, was developed targeting thinner dimensions, lightweight, durability and high spatial resolution. Thoroughly re-designing the mechanical structure and reducing the power consumption at the readout IC realized thinner dimensions. Introducing the portable note PC technologies successfully combined lightweight with durability. Improving the sensor process and re-designing the layout made the sensor high resolution without compromising the signal-to-noise ratio. Future prospects were overviewed in the aspect of technology and applications. Sensitivity, spatial resolution, frame rate and portability were described as the upcoming technology. Increasing gain and reducing noise will realize higher sensitivity, especially by adopting the PbI(2), HgI(2) or such photoconductor materials as the primary sensor. Pixelized amplifier will also achieve higher sensitivity. Layered sensor designed such

  8. Chacterization and application of a GE amorphous silicon flat panel detector in a synchrotron light source.

    SciTech Connect

    Lee, J. H.; Miceli, A.; Almer, J.; Bernier, J.; Chapman, K.; Chupas, P.; Haeffner, D.; Lee, P. L.; Lienert, U.; Aydiner, C.; Vera, G.; Kump, K.; LANL; GE Healthcare

    2007-01-01

    Characterization, in the language of synchrotron radiation, was performed on a GE Revolution 41RT flat panel detector using the X-ray light source at the Advanced Photon Source (APS). The detector has an active area of 41 x 41 cm{sup 2} with 200 x 200 {micro}m{sup 2} pixel size. The nominal working photon energy is around 80 keV. Modulation transfer function (MTF) was measured in terms of line spread function (LSF) using a 25 {micro}m x 1 cm tungsten slit. Memory effects of the detector elements, called lag, were also measured. The large area and fast data capturing rate - 8 fps in unbinned mode, 30 fps in binned or region of interest (ROI) mode - make the GE flat panel detector a unique and very versatile detector for synchrotron experiments. In particular, we present data from pair distribution function (PDF) measurements to demonstrate the special features of this detector.

  9. Systems And Cost Issues Of Flat Panel Displays For Automotive Application

    NASA Astrophysics Data System (ADS)

    Bansal, Narottam P.; Bruce, Allan J.; Doremus, R. H.; Moynihan, C. T.

    1988-10-01

    The automobile instrument panel is undergoing a revolutionary transition from mechanical and electromechanical displays to all-electronic displays. This is not an easy transition in that the "ideal" automotive display does not exist and all principal candidates have significant limitations. To identify the obstacles standing in the way of successful application of these candidate displays, we examine these limitations from the view of system performance and cost, concluding that innovative approaches to implementing the electronic control of the display can both improve display performance and reduce system cost. Specifically, the development of a high performance, cost effective thin-film transistor (TFT) technology is essential to the successful implementation of automotive quality flat panel dot matrix displays. The potential of competitor TFT technologies will be assessed for their ability to provide the performance required in mature flat panel displays.

  10. A novel heuristic for optimization aggregate production problem: Evidence from flat panel display in Malaysia

    NASA Astrophysics Data System (ADS)

    Al-Kuhali, K.; Hussain M., I.; Zain Z., M.; Mullenix, P.

    2015-05-01

    Aim: This paper contribute to the flat panel display industry it terms of aggregate production planning. Methodology: For the minimization cost of total production of LCD manufacturing, a linear programming was applied. The decision variables are general production costs, additional cost incurred for overtime production, additional cost incurred for subcontracting, inventory carrying cost, backorder costs and adjustments for changes incurred within labour levels. Model has been developed considering a manufacturer having several product types, which the maximum types are N, along a total time period of T. Results: Industrial case study based on Malaysia is presented to test and to validate the developed linear programming model for aggregate production planning. Conclusion: The model development is fit under stable environment conditions. Overall it can be recommended to adapt the proven linear programming model to production planning of Malaysian flat panel display industry.

  11. Flat panel display using Ti-Cr-Al-O thin film

    DOEpatents

    Jankowski, Alan F.; Schmid, Anthony P.

    2002-01-01

    Thin films of Ti--Cr--Al--O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti--Cr--Al--O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti--Cr--Al--O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti--Cr--Al--O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

  12. Attenuated phase-shift mask (PSM) blanks for flat panel display

    NASA Astrophysics Data System (ADS)

    Kageyama, Kagehiro; Mochizuki, Satoru; Yamakawa, Hiroyuki; Uchida, Shigeru

    2015-10-01

    The fine pattern exposure techniques are required for Flat Panel display applications as smart phone, tablet PC recently. The attenuated phase shift masks (PSM) are being used for ArF and KrF photomask lithography technique for high end pattern Semiconductor applications. We developed CrOx based large size PSM blanks that has good uniformity on optical characteristics for FPD applications. We report the basic optical characteristics and uniformity, stability data of large sized CrOx PSM blanks.

  13. Qualification test results for DOE solar photovoltaic flat panel procurement - PRDA 38

    NASA Technical Reports Server (NTRS)

    Griffith, J. S.

    1980-01-01

    Twelve types of prototypes modules for the DOE Photovoltaic Flat Panel Procurement (PRDA 38) were subjected to qualification tests at the Jet Propulsion Laboratory according to a new specification. Environmental exposures were carried out separately and included temperature cycling, humidity, wind simulation, and hail. The most serious problems discovered were reduced insulation resistance to ground and ground continuity of the metal frames, electrical degradation, erratic power readings, and delamination. The electrical and physical characteristics of the newly received modules are also given.

  14. Flat-panel electronic displays: a triumph of physics, chemistry and engineering.

    PubMed

    Hilsum, Cyril

    2010-03-13

    This paper describes the history and science behind the development of modern flat-panel displays, and assesses future trends. Electronic displays are an important feature of modern life. For many years the cathode ray tube, an engineering marvel, was universal, but its shape was cumbersome and its operating voltage too high. The need for a flat-panel display, working at a low voltage, became imperative, and much research has been applied to this need. Any versatile flat-panel display will exploit an electro-optical effect, a transparent conductor and an addressing system to deliver data locally. The first need is to convert an electrical signal into a visible change. Two methods are available, the first giving emission of light, the second modulating ambient illumination. The most useful light-emitting media are semiconductors, historically exploiting III-V or II-VI compounds, but more recently organic or polymer semiconductors. Another possible effect uses gas plasma discharges. The modulating, or subtractive, effects that have been studied include liquid crystals, electrophoresis, electrowetting and electrochromism. A transparent conductor makes it possible to apply a voltage to an extended area while observing the results. The design is a compromise, since the free electrons that carry current also absorb light. The first materials used were metals, but some semiconductors, when heavily doped, give a better balance, with high transmission for a low resistance. Delivering data unambiguously to a million or so picture elements across the display area is no easy task. The preferred solution is an amorphous silicon thin-film transistor deposited at each cross-point in an X-Y matrix. Success in these endeavours has led to many applications for flat-panel displays, including television, flexible displays, electronic paper, electronic books and advertising signs. PMID:20123746

  15. Flat-panel electronic displays: a triumph of physics, chemistry and engineering

    PubMed Central

    Hilsum, Cyril

    2010-01-01

    This paper describes the history and science behind the development of modern flat-panel displays, and assesses future trends. Electronic displays are an important feature of modern life. For many years the cathode ray tube, an engineering marvel, was universal, but its shape was cumbersome and its operating voltage too high. The need for a flat-panel display, working at a low voltage, became imperative, and much research has been applied to this need. Any versatile flat-panel display will exploit an electro-optical effect, a transparent conductor and an addressing system to deliver data locally. The first need is to convert an electrical signal into a visible change. Two methods are available, the first giving emission of light, the second modulating ambient illumination. The most useful light-emitting media are semiconductors, historically exploiting III–V or II–VI compounds, but more recently organic or polymer semiconductors. Another possible effect uses gas plasma discharges. The modulating, or subtractive, effects that have been studied include liquid crystals, electrophoresis, electrowetting and electrochromism. A transparent conductor makes it possible to apply a voltage to an extended area while observing the results. The design is a compromise, since the free electrons that carry current also absorb light. The first materials used were metals, but some semiconductors, when heavily doped, give a better balance, with high transmission for a low resistance. Delivering data unambiguously to a million or so picture elements across the display area is no easy task. The preferred solution is an amorphous silicon thin-film transistor deposited at each cross-point in an X–Y matrix. Success in these endeavours has led to many applications for flat-panel displays, including television, flexible displays, electronic paper, electronic books and advertising signs. PMID:20123746

  16. High-performance flat-panel solar thermoelectric generators with high thermal concentration.

    PubMed

    Kraemer, Daniel; Poudel, Bed; Feng, Hsien-Ping; Caylor, J Christopher; Yu, Bo; Yan, Xiao; Ma, Yi; Wang, Xiaowei; Wang, Dezhi; Muto, Andrew; McEnaney, Kenneth; Chiesa, Matteo; Ren, Zhifeng; Chen, Gang

    2011-07-01

    The conversion of sunlight into electricity has been dominated by photovoltaic and solar thermal power generation. Photovoltaic cells are deployed widely, mostly as flat panels, whereas solar thermal electricity generation relying on optical concentrators and mechanical heat engines is only seen in large-scale power plants. Here we demonstrate a promising flat-panel solar thermal to electric power conversion technology based on the Seebeck effect and high thermal concentration, thus enabling wider applications. The developed solar thermoelectric generators (STEGs) achieved a peak efficiency of 4.6% under AM1.5G (1 kW m(-2)) conditions. The efficiency is 7-8 times higher than the previously reported best value for a flat-panel STEG, and is enabled by the use of high-performance nanostructured thermoelectric materials and spectrally-selective solar absorbers in an innovative design that exploits high thermal concentration in an evacuated environment. Our work opens up a promising new approach which has the potential to achieve cost-effective conversion of solar energy into electricity. PMID:21532584

  17. Development of CT and 3D-CT Using Flat Panel Detector Based Real-Time Digital Radiography System

    SciTech Connect

    Ravindran, V. R.; Sreelakshmi, C.; Vibin

    2008-09-26

    The application of Digital Radiography in the Nondestructive Evaluation (NDE) of space vehicle components is a recent development in India. A Real-time DR system based on amorphous silicon Flat Panel Detector has been developed for the NDE of solid rocket motors at Rocket Propellant Plant of VSSC in a few years back. The technique has been successfully established for the nondestructive evaluation of solid rocket motors. The DR images recorded for a few solid rocket specimens are presented in the paper. The Real-time DR system is capable of generating sufficient digital X-ray image data with object rotation for the CT image reconstruction. In this paper the indigenous development of CT imaging based on the Realtime DR system for solid rocket motor is presented. Studies are also carried out to generate 3D-CT image from a set of adjacent CT images of the rocket motor. The capability of revealing the spatial location and characterisation of defect is demonstrated by the CT and 3D-CT images generated.

  18. A forward bias method for lag correction of an a-Si flat panel detector

    PubMed Central

    Starman, Jared; Tognina, Carlo; Partain, Larry; Fahrig, Rebecca

    2012-01-01

    Purpose: Digital a-Si flat panel (FP) x-ray detectors can exhibit detector lag, or residual signal, of several percent that can cause ghosting in projection images or severe shading artifacts, known as the radar artifact, in cone-beam computed tomography (CBCT) reconstructions. A major contributor to detector lag is believed to be defect states, or traps, in the a-Si layer of the FP. Software methods to characterize and correct for the detector lag exist, but they may make assumptions such as system linearity and time invariance, which may not be true. The purpose of this work is to investigate a new hardware based method to reduce lag in an a-Si FP and to evaluate its effectiveness at removing shading artifacts in CBCT reconstructions. The feasibility of a novel, partially hardware based solution is also examined. Methods: The proposed hardware solution for lag reduction requires only a minor change to the FP. For pulsed irradiation, the proposed method inserts a new operation step between the readout and data collection stages. During this new stage the photodiode is operated in a forward bias mode, which fills the defect states with charge. A Varian 4030CB panel was modified to allow for operation in the forward bias mode. The contrast of residual lag ghosts was measured for lag frames 2 and 100 after irradiation ceased for standard and forward bias modes. Detector step response, lag, SNR, modulation transfer function (MTF), and detective quantum efficiency (DQE) measurements were made with standard and forward bias firmware. CBCT data of pelvic and head phantoms were also collected. Results: Overall, the 2nd and 100th detector lag frame residual signals were reduced 70%–88% using the new method. SNR, MTF, and DQE measurements show a small decrease in collected signal and a small increase in noise. The forward bias hardware successfully reduced the radar artifact in the CBCT reconstruction of the pelvic and head phantoms by 48%–81%. Conclusions: Overall, the

  19. A forward bias method for lag correction of an a-Si flat panel detector

    SciTech Connect

    Starman, Jared; Tognina, Carlo; Partain, Larry; Fahrig, Rebecca

    2012-01-15

    Purpose: Digital a-Si flat panel (FP) x-ray detectors can exhibit detector lag, or residual signal, of several percent that can cause ghosting in projection images or severe shading artifacts, known as the radar artifact, in cone-beam computed tomography (CBCT) reconstructions. A major contributor to detector lag is believed to be defect states, or traps, in the a-Si layer of the FP. Software methods to characterize and correct for the detector lag exist, but they may make assumptions such as system linearity and time invariance, which may not be true. The purpose of this work is to investigate a new hardware based method to reduce lag in an a-Si FP and to evaluate its effectiveness at removing shading artifacts in CBCT reconstructions. The feasibility of a novel, partially hardware based solution is also examined. Methods: The proposed hardware solution for lag reduction requires only a minor change to the FP. For pulsed irradiation, the proposed method inserts a new operation step between the readout and data collection stages. During this new stage the photodiode is operated in a forward bias mode, which fills the defect states with charge. A Varian 4030CB panel was modified to allow for operation in the forward bias mode. The contrast of residual lag ghosts was measured for lag frames 2 and 100 after irradiation ceased for standard and forward bias modes. Detector step response, lag, SNR, modulation transfer function (MTF), and detective quantum efficiency (DQE) measurements were made with standard and forward bias firmware. CBCT data of pelvic and head phantoms were also collected. Results: Overall, the 2nd and 100th detector lag frame residual signals were reduced 70%-88% using the new method. SNR, MTF, and DQE measurements show a small decrease in collected signal and a small increase in noise. The forward bias hardware successfully reduced the radar artifact in the CBCT reconstruction of the pelvic and head phantoms by 48%-81%. Conclusions: Overall, the

  20. Noise, sampling, and the number of projections in cone-beam CT with a flat-panel detector

    PubMed Central

    Zhao, Z.; Gang, G. J.; Siewerdsen, J. H.

    2014-01-01

    Purpose: To investigate the effect of the number of projection views on image noise in cone-beam CT (CBCT) with a flat-panel detector. Methods: This fairly fundamental consideration in CBCT system design and operation was addressed experimentally (using a phantom presenting a uniform medium as well as statistically motivated “clutter”) and theoretically (using a cascaded systems model describing CBCT noise) to elucidate the contributing factors of quantum noise (σQ), electronic noise (σE), and view aliasing (σview). Analysis included investigation of the noise, noise-power spectrum, and modulation transfer function as a function of the number of projections (Nproj), dose (Dtot), and voxel size (bvox). Results: The results reveal a nonmonotonic relationship between image noise and Nproj at fixed total dose: for the CBCT system considered, noise decreased with increasing Nproj due to reduction of view sampling effects in the regime Nproj <∼200, above which noise increased with Nproj due to increased electronic noise. View sampling effects were shown to depend on the heterogeneity of the object in a direct analytical relationship to power-law anatomical clutter of the form κ/f β—and a general model of individual noise components (σQ, σE, and σview) demonstrated agreement with measurements over a broad range in Nproj, Dtot, and bvox. Conclusions: The work elucidates fairly basic elements of CBCT noise in a manner that demonstrates the role of distinct noise components (viz., quantum, electronic, and view sampling noise). For configurations fairly typical of CBCT with a flat-panel detector (FPD), the analysis reveals a “sweet spot” (i.e., minimum noise) in the range Nproj ∼ 250–350, nearly an order of magnitude lower in Nproj than typical of multidetector CT, owing to the relatively high electronic noise in FPDs. The analysis explicitly relates view aliasing and quantum noise in a manner that includes aspects of the object (“clutter”) and

  1. Noise, sampling, and the number of projections in cone-beam CT with a flat-panel detector

    SciTech Connect

    Zhao, Z.; Gang, G. J.; Siewerdsen, J. H.

    2014-06-15

    Purpose: To investigate the effect of the number of projection views on image noise in cone-beam CT (CBCT) with a flat-panel detector. Methods: This fairly fundamental consideration in CBCT system design and operation was addressed experimentally (using a phantom presenting a uniform medium as well as statistically motivated “clutter”) and theoretically (using a cascaded systems model describing CBCT noise) to elucidate the contributing factors of quantum noise (σ{sub Q}), electronic noise (σ{sub E}), and view aliasing (σ{sub view}). Analysis included investigation of the noise, noise-power spectrum, and modulation transfer function as a function of the number of projections (N{sub proj}), dose (D{sub tot}), and voxel size (b{sub vox}). Results: The results reveal a nonmonotonic relationship between image noise andN{sub proj} at fixed total dose: for the CBCT system considered, noise decreased with increasing N{sub proj} due to reduction of view sampling effects in the regime N{sub proj} <∼200, above which noise increased with N{sub proj} due to increased electronic noise. View sampling effects were shown to depend on the heterogeneity of the object in a direct analytical relationship to power-law anatomical clutter of the form κ/f {sup β}—and a general model of individual noise components (σ{sub Q}, σ{sub E}, and σ{sub view}) demonstrated agreement with measurements over a broad range in N{sub proj}, D{sub tot}, and b{sub vox}. Conclusions: The work elucidates fairly basic elements of CBCT noise in a manner that demonstrates the role of distinct noise components (viz., quantum, electronic, and view sampling noise). For configurations fairly typical of CBCT with a flat-panel detector (FPD), the analysis reveals a “sweet spot” (i.e., minimum noise) in the rangeN{sub proj} ∼ 250–350, nearly an order of magnitude lower in N{sub proj} than typical of multidetector CT, owing to the relatively high electronic noise in FPDs. The analysis

  2. Development and evaluation of a digital radiography system using a large-area flat-panel detector

    NASA Astrophysics Data System (ADS)

    Suzuki, Katsumi; Ikeda, Shigeyuki; Ishikawa, Ken; Iinuma, Gen; Ogasawara, Satoshi; Moriyama, Noriyuki; Konno, Yasutaka

    2002-05-01

    A new DR system using a large-area flat panel detector (FPD) with a 40 by 30 cm active area and a 194 micrometers pixel pitch, has been developed to compare with a conventional image intensifier and charge-coupled device camera type DR system. After measuring basic characteristics of the new DR system such as signal-to-noise ratio, modulation transfer function, and detective quantum efficiency, we applied the FPD to a Gastro-Intestinal study with contrast media, and discussed its potential for clinical use with a medical doctor. In radiography mode, the new DR system with a large-are FPD has superior image quality compared with the conventional I.I.- CCD camera type DR system because of high SNR and DQE. In fluoroscopy mode, the SNR of the new DR system at the exposure range of over 2(mu) R/frame is similar with the conventional I.I.-CCD camera type DR system. As a result, we considered that new DR system with a large-area FPD could be applied to a clinical study replacing an I.I.-CCD camera type. In the evaluation using various clinical images taken with the new DR system by a medical doctor, the new DR system with a large-are FPD performed sufficiently for a GI study.

  3. Percutaneous Glycerol Rhizotomy for Trigeminal Neuralgia Using a Single-Plane, Flat Panel Detector Angiography System: Technical Note.

    PubMed

    Arishima, Hidetaka; Kawajiri, Satoshi; Arai, Hiroshi; Higashino, Yoshifumi; Kodera, Toshiaki; Kikuta, Ken-Ichiro

    2016-05-15

    Percutaneous treatments for trigeminal neuralgia (TN) including glycerol rhizotomy (GR), radiofrequency thermocoagulation (RT), and balloon compression (BC) are effective for patients with medical comorbidities and risk factors of microvascular decompression (MVD). These procedures are usually performed under fluoroscopy. Surgeons advance the needle to the trigeminal plexus through the foramen ovale while observing landmarks of fluoroscopic images; however, it is sometimes difficult to appropriately place the needle tip in Meckel's cave. We present the technical details of percutaneous GR using a single-plane, flat panel detector angiography system to check the needle positioning. When the needle tip may be located near the trigeminal cistern, three-dimensional (3-D) bone images are taken with cone-beam computed tomography (CT). These images clearly show the position of the needle tip in Meckel's cave. If it is difficult to place it through the foramen ovale, surgeons perform cone beam CT to observe the actual position of the needle tip at the skull base. After confirming the positional relation between the needle tip and foramen ovale, surgeons can advance it in the precise direction. In 10 procedures, we could place the nerve-block needle in about 14.5 minutes on average without complications. We think that our method is simple and convenient for percutaneous treatments for TN, and it may be helpful for surgeons to perform such treatments. PMID:27041633

  4. Percutaneous Glycerol Rhizotomy for Trigeminal Neuralgia Using a Single-Plane, Flat Panel Detector Angiography System: Technical Note

    PubMed Central

    ARISHIMA, Hidetaka; KAWAJIRI, Satoshi; ARAI, Hiroshi; HIGASHINO, Yoshifumi; KODERA, Toshiaki; KIKUTA, Ken-ichiro

    2016-01-01

    Percutaneous treatments for trigeminal neuralgia (TN) including glycerol rhizotomy (GR), radiofrequency thermocoagulation (RT), and balloon compression (BC) are effective for patients with medical comorbidities and risk factors of microvascular decompression (MVD). These procedures are usually performed under fluoroscopy. Surgeons advance the needle to the trigeminal plexus through the foramen ovale while observing landmarks of fluoroscopic images; however, it is sometimes difficult to appropriately place the needle tip in Meckel’s cave. We present the technical details of percutaneous GR using a single-plane, flat panel detector angiography system to check the needle positioning. When the needle tip may be located near the trigeminal cistern, three-dimensional (3-D) bone images are taken with cone-beam computed tomography (CT). These images clearly show the position of the needle tip in Meckel’s cave. If it is difficult to place it through the foramen ovale, surgeons perform cone beam CT to observe the actual position of the needle tip at the skull base. After confirming the positional relation between the needle tip and foramen ovale, surgeons can advance it in the precise direction. In 10 procedures, we could place the nerve-block needle in about 14.5 minutes on average without complications. We think that our method is simple and convenient for percutaneous treatments for TN, and it may be helpful for surgeons to perform such treatments. PMID:27041633

  5. Designing, Modeling, Constructing, and Testing a Flat Panel Speaker and Sound Diffuser for a Simulator

    NASA Technical Reports Server (NTRS)

    Dillon, Christina

    2013-01-01

    The goal of this project was to design, model, build, and test a flat panel speaker and frame for a spherical dome structure being made into a simulator. The simulator will be a test bed for evaluating an immersive environment for human interfaces. This project focused on the loud speakers and a sound diffuser for the dome. The rest of the team worked on an Ambisonics 3D sound system, video projection system, and multi-direction treadmill to create the most realistic scene possible. The main programs utilized in this project, were Pro-E and COMSOL. Pro-E was used for creating detailed figures for the fabrication of a frame that held a flat panel loud speaker. The loud speaker was made from a thin sheet of Plexiglas and 4 acoustic exciters. COMSOL, a multiphysics finite analysis simulator, was used to model and evaluate all stages of the loud speaker, frame, and sound diffuser. Acoustical testing measurements were utilized to create polar plots from the working prototype which were then compared to the COMSOL simulations to select the optimal design for the dome. The final goal of the project was to install the flat panel loud speaker design in addition to a sound diffuser on to the wall of the dome. After running tests in COMSOL on various speaker configurations, including a warped Plexiglas version, the optimal speaker design included a flat piece of Plexiglas with a rounded frame to match the curvature of the dome. Eight of these loud speakers will be mounted into an inch and a half of high performance acoustic insulation, or Thinsulate, that will cover the inside of the dome. The following technical paper discusses these projects and explains the engineering processes used, knowledge gained, and the projected future goals of this project

  6. Visual and ocular effects from the use of flat-panel displays

    PubMed Central

    Porcar, Esteban; Pons, Alvaro M.; Lorente, Amalia

    2016-01-01

    AIM To evaluate the prevalence of eye symptoms in a non-presbyopic population of video display unit (VDU) users with flat-panel displays. METHODS One hundred and sixteen VDU users with flat-panel display from an urban population participated in the study; their ages ranging from 20 to 34y. There were 60 females and 56 males. An eye examination to rule out the presence of significant uncorrected refractive errors, general binocular dysfunctions and eye conditions was carried out. In order to determine and quantify the type and nature of eye symptoms, participants were asked to answer written questionnaire and the results were grouped by gender, age and number of hours a day spent using a VDU. RESULTS Seventy-two percent of participants reported eye symptoms related to VDU use. Eye symptoms from moderate-to-severe were found in 23% of participants. The main symptom was moderate-to-severe tired eyes (14%); followed by sensitivity to bright lights (12%), blurred vision at far distances (10%), eyestrain or dry eye or irritated or burning eyes (9%), difficulty in refocusing from one distance to another or headache (8%) and blurred vision at near or intermediate distances (<4%). Eye symptoms were greater among females (P=0.005) and increased with VDU use, markedly above 6h spent using a VDU in a typical day (P=0.01). CONCLUSION Significant eye symptoms relate to VDU use often occur and should not be underestimated. The increasing use of electronic devices with flat-panel display should prompt users to take appropriate measures to prevent or to relieve the eye symptoms arising from their use. PMID:27366692

  7. Metal artifact reduction for flat panel detector intravenous CT angiography in patients with intracranial metallic implants after endovascular and surgical treatment

    PubMed Central

    Pjontek, Rastislav; Önenköprülü, Belgin; Scholz, Bernhard; Kyriakou, Yiannis; Schubert, Gerrit A; Othman, Ahmed; Wiesmann, Martin; Brockmann, Marc A

    2016-01-01

    Background Flat panel detector CT angiography with intravenous contrast agent injection (IV CTA) allows high-resolution imaging of cerebrovascular structures. Artifacts caused by metallic implants like platinum coils or clips lead to degradation of image quality and are a significant problem. Objective To evaluate the influence of a prototype metal artifact reduction (MAR) algorithm on image quality in patients with intracranial metallic implants. Methods Flat panel detector CT after intravenous application of 80 mL contrast agent was performed with an angiography system (Artis zee; Siemens, Forchheim, Germany) using a 20 s rotation protocol (200° rotation angle, 20 s acquisition time, 496 projections). The data before and after MAR of 26 patients with a total of 34 implants (coils, clips, stents) were independently evaluated by two blinded neuroradiologists. Results MAR improved the assessability of the brain parenchyma and small vessels (diameter <1 mm) in the neighborhood of metallic implants and at a distance of 6 cm (p<0.001 each, Wilcoxon test). Furthermore, MAR significantly improved the assessability of parent vessel patency and potential aneurysm remnants (p<0.005 each, McNemar test). MAR, however, did not improve assessability of stented vessels. Conclusions When an intravenous contrast protocol is used, MAR significantly ameliorates the assessability of brain parenchyma, vessels, and treated aneurysms in patients with intracranial coils or clips. PMID:26346458

  8. 99mTc-Sestamibi Using a Direct Conversion Molecular Breast Imaging System to Assess Tumor Response to Neoadjuvant Chemotherapy in Women With Locally Advanced Breast Cancer

    PubMed Central

    Mitchell, David; Hruska, Carrie B.; Boughey, Judy C.; Wahner-Roedler, Dietlind L.; Jones, Katie N.; Tortorelli, Cindy; Conners, Amy Lynn; O’Connor, Michael K.

    2014-01-01

    Purpose The objective of this study was to determine the ability of breast imaging with 99mTc-sestamibi and a direct conversion–molecular breast imaging (MBI) system to predict early response to neoadjuvant chemotherapy (NAC). Methods Patients undergoing NAC for breast cancer were imaged with a direct conversion–MBI system before (baseline), at 3 to 5 weeks after onset, and after completion of NAC. Tumor size and tumor-to-background (T/B) uptake ratio measured from MBI images were compared with extent of residual disease at surgery using the residual cancer burden. Results Nineteen patients completed imaging and proceeded to surgical resection after NAC. Mean reduction in T/B ratio from baseline to 3 to 5 weeks for patients classified as RCB-0 (no residual disease), RCB-1 and RCB-2 combined, and RCB-3 (extensive residual disease) was 56% (SD, 0.20), 28% (SD, 0.20), and 4% (SD, 0.15), respectively. The reduction in the RCB-0 group was significantly greater than in RCB-1/2 (P = 0.036) and RCB-3 (P = 0.001) groups. The area under the receiver operator characteristic curve for determining the presence or absence of residual disease was 0.88. Using a threshold of 50% reduction in T/B ratio at 3 to 5 weeks, MBI predicted presence of residual disease at surgery with a diagnostic accuracy of 89.5% (95% confidence interval [CI], 0.64%–0.99%), sensitivity of 92.3% (95% CI, 0.74%–0.99%), and specificity of 83.3% (95% CI, 0.44%–0.99%). The reduction in tumor size at 3 to 5 weeks was not statistically different between RCB groups. Conclusions Changes in T/B ratio on MBI images performed at 3 to 5 weeks following initiation of NAC were accurate at predicting the presence or absence of residual disease at NAC completion. PMID:24152645

  9. Finding an improved amorphous-silicon x-ray flat-panel detector configuration for the in-line geometry.

    PubMed

    Fast, M F; Teymurazyan, A; Pang, G; Oelfke, U; Rowlands, J A

    2013-04-01

    We have previously investigated the use of a conventional amorphous-silicon flat-panel detector (FPD) for intrafractional image guidance in the in-line geometry. In this configuration, the FPD is mounted between the patient and the treatment head, with the front of the FPD facing towards the patient. By geometrically separating signals from the diagnostic (kV) and treatment (MV) beams, it is possible to monitor the patient and treatment beam at the same time. In this study, we propose an FPD design based on existing technology with a 70% reduced up-stream areal density that is more suited to this new application. We have investigated our FPD model by means of a validated Monte Carlo simulation. Experimentally, simple rectangular fields were used to irradiate through the detector and observe the impact of removing detector components such as the support structure or the phosphor screen on the measured signal. The proposed FPD performs better than the conventional FPD: (i) attenuation of the MV beam is decreased by 60%; (ii) the MV signal is reduced by 20% for the primary MV field region which can avoid saturation of the FPD; and (iii) long range scatter from the MV into the kV region of the detector is greatly reduced. PMID:23478634

  10. Amorphous selenium flat panel detectors for digital mammography: Validation of a NPWE model observer with CDMAM observer performance experiments

    SciTech Connect

    Segui, Jennifer A.; Zhao Wei

    2006-10-15

    Model observers have been developed which incorporate a specific imaging task, system performance, and human observer characteristics and can potentially overcome some of the limitations in using detective quantum efficiency for optimization and comparison of detectors. In this paper, a modified nonprewhitening matched filter (NPWE) model observer was developed and validated to predict object detectability for an amorphous selenium (a-Se) direct flat-panel imager (FPI) where aliasing is severe. A preclinical a-Se digital mammography FPI with 85 {mu}m pixel size was used in this investigation. Its physical imaging properties including modulation transfer function (MTF), noise power spectrum, and DQE were fully characterized. An observer performance study was conducted by imaging the CDMAM 3.4 contrast-detail phantom designed specifically for digital mammography and presenting these images to a panel of seven observers. X-ray attenuation and scatter due to the phantom were determined experimentally for use in development of the model observer. The observer study results were analyzed via threshold averaging and signal detection theory (SDT) based techniques to produce contrast-detail curves where threshold contrast is plotted as a function of disk diameter. Validity of the model was established using SDT analysis of the experimental data. The effect of aliasing on the detectability of small diameter disks was determined using the NPWE model observer. The signal spectrum was calculated using the presampling MTF of the detector with and without including the aliased terms. Our results indicate that the NPWE model based on Fourier domain parameters provides reasonable prediction of object detectability for the signal-known-exactly task in uniform image noise for a-Se direct FPI.

  11. Method of forming a spacer for field emission flat panel displays

    DOEpatents

    Bernhardt, A.F.; Contolini, R.J.

    1997-08-19

    Spacers are disclosed for applications such as field emission flat panel displays and vacuum microelectronics, and which involves the application of aerogel/xerogel technology to the formation of the spacer. In a preferred approach the method uses a mold and mold release agent wherein the gel precursor is a liquid which can be applied to the mold filling holes which expose the substrate (either the baseplate or the faceplate). A release agent is applied to the mold prior to precursor application to ease removal of the mold after formation of the dielectric spacer. The shrinkage of the gel during solvent extraction also improves mold removal. The final spacer material is a good dielectric, such as silica, secured to the substrate. 3 figs.

  12. Test and Analysis of Foam Impacting a 6x6 Inch RCC Flat Panel

    NASA Technical Reports Server (NTRS)

    Lessard, Wendy B.

    2006-01-01

    This report presents the testing and analyses of a foam projectile impacting onto thirteen 6x6 inch flat panels at a 90 degrees incidence angle. The panels tested in this investigation were fabricated of Reinforced-Carbon-Carbon material and were used to aid in the validation of an existing material model, MAT58. The computational analyses were performed using LS-DYNA, which is a physics-based, nonlinear, transient, finite element code used for analyzing material responses subjected to high impact forces and other dynamic conditions. The test results were used to validate LS-DYNA predictions and to determine the threshold of damage generated by the MAT58 cumulative damage material model. The threshold of damage parameter represents any external or internal visible RCC damage detectable by nondestructive evaluation techniques.

  13. Investigation of Vertical Drag and Periodic Airloads Acting on Flat Panels in a Rotor Slipstream

    NASA Technical Reports Server (NTRS)

    Makofski, Robert A; Menkick, George F

    1956-01-01

    Tests have been conducted on the Langley helicopter test tower to determine the vertical drag and pressure distributions on flat panels mounted below a helicopter rotor. Calculations of the vertical drag by use of a strip-analysis procedure outlined in the paper and the assumption of a fully contracted wake agreed well with the experimental results over the range from 0.2 to 0.64 rotor radius beneath the plane of zero flapping. The pressure increase caused by the passage of the blade over the panel is a maximum at about the 0.8 radius spanwise station. At this station, the pressure decreases from 10 times the disk loading per blade at 0.05 radius beneath the rotor plane of zero flapping to one-half of the disk loading per blade at 0.64 radius beneath the plane of zero flapping.

  14. Response of laminated composite flat panels to sonic boom and explosive blast loadings

    NASA Technical Reports Server (NTRS)

    Librescu, L.; Nosier, A.

    1990-01-01

    This paper deals with a theoretical analysis of the dynamic response of shear deformable symmetrically laminated rectangular composite flat panels exposed to sonic boom and explosive blast loadings. The pertinent governing equations incorporating transverse shear deformation, transverse normal stress, as well as the higher-order effects are solved by using the integral-transform technique. The obtained results are compared with their counterparts obtained within the framework of the first-order transverse shear deformation and the classical plate theories and some conclusions concerning their range of applicability are outlined. The paper also contains a detailed analysis of the influence played by the various parameters characterizing the considered pressure pulses as well as the material and geometry of the plate.

  15. An improved method for flat-field correction of flat panel x-ray detector.

    PubMed

    Kwan, Alexander L C; Seibert, J Anthony; Boone, John M

    2006-02-01

    In this Technical Note, the effects of different flat-field techniques are examined for a cesium iodide flat panel detector, which exhibited a slightly nonlinear exposure response. The results indicate that the variable flat-field correction method with the appropriate polynomial fit provides excellent correction throughout the entire exposure range. The averaged normalized variation factor, used to assess the nonuniformity of the flat-field correction, decreased from 30.76 for the fixed correction method to 4.13 for the variable flat-field correction method with a fourth-order polynomial fit for the 60 kVp spectrum, and from 16.42 to 3.97 for the 95 kVp spectrum. PMID:16532945

  16. An improved method for flat-field correction of flat panel x-ray detector

    SciTech Connect

    Kwan, Alexander L.C.; Seibert, J. Anthony; Boone, John M.

    2006-02-15

    In this Technical Note, the effects of different flat-field techniques are examined for a cesium iodide flat panel detector, which exhibited a slightly nonlinear exposure response. The results indicate that the variable flat-field correction method with the appropriate polynomial fit provides excellent correction throughout the entire exposure range. The averaged normalized variation factor, used to assess the nonuniformity of the flat-field correction, decreased from 30.76 for the fixed correction method to 4.13 for the variable flat-field correction method with a fourth-order polynomial fit for the 60 kVp spectrum, and from 16.42 to 3.97 for the 95 kVp spectrum.

  17. Method of forming a spacer for field emission flat panel displays

    DOEpatents

    Bernhardt, Anthony F.; Contolini, Robert J.

    1997-01-01

    Spacers for applications such as field emission flat panel displays and vacuum microelectronics, and which involves the application of aerogel/xerogel technology to the formation of the spacer. In a preferred approach the method uses a mold and mold release agent wherein the gel precursor is a liquid which can be applied to the mold filling holes which expose the substrate (either the baseplate or the faceplate). A release agent is applied to the mold prior to precursor application to ease removal of the mold after formation of the dielectric spacer. The shrinkage of the gel during solvent extraction also improves mold removal. The final spacer material is a good dielectric, such as silica, secured to the substrate.

  18. A typical flat-panel membrane bioreactor with a composite membrane for sulfur removal

    NASA Astrophysics Data System (ADS)

    Guan, Jian; Xiao, Yuan; Song, Jimin; Miao, Junhe

    2014-03-01

    The aim of this work was to provide a concrete study to understand the effects of operation on biofilm morphology and microstructure and degradation efficiency for the disposal of sulfur dioxide produced by coal-fired power plants. For this purpose, a flat-panel reactor-membrane bioreactor (MBR) with a composite membrane consisting of a dense layer and a support layer was designed; the membrane bioreactors inoculated with Thiobacillus ferrooxidans were further conducted for the removal of sulfur dioxide. Dry weight, active biomass, pressure drop, removal efficiency, morphology and structure of the formed biofilms were investigated and analyzed over period of biofilm formation. The results found that the dry weight, biomass, pressure drops and removal efficiency increased rapidly during biofilm formation, remained relatively stable in the stabilization period of biofilm growth, and finally reached 0.085 g, 7.00 μg, 180 Pa, and 78%, respectively. Our results suggested the MBR is available for flue-gas desulfurization.

  19. SU-D-12A-04: Investigation of a 2D Antiscatter Grid for Flat Panel Detectors

    SciTech Connect

    Altunbas, C; Kavanagh, B; Miften, M; Zhong, Y; Shaw, C

    2014-06-01

    Purpose: To improve CT number accuracy and contrast sensitivity, a novel 2D antiscatter grid (ASG) for flat panel detector (FPD) based CBCT imaging was evaluated. Experiments were performed to characterize the scatter rejection and contrast sensitivity performance of ASG. The reduction in primary transmission for various ASG geometries was also evaluated by a computational model. Methods: The 2D ASG design was based on multi-hole collimators used in Nuclear Medicine. It consisted of abutted hexagon shaped apertures with 2.5 mm pitch and 32 mm height, and separated by 0.25 mm thick lead septa. Scatter-to-primary ratio (SPR), contrast-to-noise ratio (CNR), and mean primary transmission were measured using a benchtop FPD/x-ray source system. Acrylic slabs of varying thicknesses were imaged with a contrast-detail phantom to measure CNR and SPR under different scatter conditions. Primary transmission was also measured by averaging pixel values in flood field images without the phantom. We additionally explored variation of primary transmission with pitch and septum thickness using a computational model of our ASG. Results: Our 2D ASG reduced the SPR from 3.3 to 0.12, and improved CNR by 50% in 20 cm thick slab phantom projections acquired at 120 kVp. While the measured primary transmission was 72.8%, our simulations show that primary transmission can be increased to 86% by reducing the septum thickness to 0.1 mm. Primary transmission further increases to 93% if septum thickness of 0.1 mm is used in conjunction with an increased pitch of 4 mm. Conclusion: The 2D ASG appears to be a promising scatter rejection device, offering both superior scatter rejection and improved contrast sensitivity. Though its lead footprint reduced primary transmission, our work shows that optimization of aperture pitch and septum thickness can significantly improve the primary transmission.

  20. Quantitative kinetic analysis of lung nodules by temporal subtraction technique in dynamic chest radiography with a flat panel detector

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Yuichiro; Kodera, Yoshie; Tanaka, Rie; Sanada, Shigeru

    2007-03-01

    Early detection and treatment of lung cancer is one of the most effective means to reduce cancer mortality; chest X-ray radiography has been widely used as a screening examination or health checkup. The new examination method and the development of computer analysis system allow obtaining respiratory kinetics by the use of flat panel detector (FPD), which is the expanded method of chest X-ray radiography. Through such changes functional evaluation of respiratory kinetics in chest has become available. Its introduction into clinical practice is expected in the future. In this study, we developed the computer analysis algorithm for the purpose of detecting lung nodules and evaluating quantitative kinetics. Breathing chest radiograph obtained by modified FPD was converted into 4 static images drawing the feature, by sequential temporal subtraction processing, morphologic enhancement processing, kinetic visualization processing, and lung region detection processing, after the breath synchronization process utilizing the diaphragmatic analysis of the vector movement. The artificial neural network used to analyze the density patterns detected the true nodules by analyzing these static images, and drew their kinetic tracks. For the algorithm performance and the evaluation of clinical effectiveness with 7 normal patients and simulated nodules, both showed sufficient detecting capability and kinetic imaging function without statistically significant difference. Our technique can quantitatively evaluate the kinetic range of nodules, and is effective in detecting a nodule on a breathing chest radiograph. Moreover, the application of this technique is expected to extend computer-aided diagnosis systems and facilitate the development of an automatic planning system for radiation therapy.

  1. Reduction of ring artifacts in CBCT: Detection and correction of pixel gain variations in flat panel detectors

    SciTech Connect

    Altunbas, Cem; Lai, Chao-Jen; Zhong, Yuncheng; Shaw, Chris C.

    2014-09-15

    Purpose: In using flat panel detectors (FPD) for cone beam computed tomography (CBCT), pixel gain variations may lead to structured nonuniformities in projections and ring artifacts in CBCT images. Such gain variations can be caused by change in detector entrance exposure levels or beam hardening, and they are not accounted by conventional flat field correction methods. In this work, the authors presented a method to identify isolated pixel clusters that exhibit gain variations and proposed a pixel gain correction (PGC) method to suppress both beam hardening and exposure level dependent gain variations. Methods: To modulate both beam spectrum and entrance exposure, flood field FPD projections were acquired using beam filters with varying thicknesses. “Ideal” pixel values were estimated by performing polynomial fits in both raw and flat field corrected projections. Residuals were calculated by taking the difference between measured and ideal pixel values to identify clustered image and FPD artifacts in flat field corrected and raw images, respectively. To correct clustered image artifacts, the ratio of ideal to measured pixel values in filtered images were utilized as pixel-specific gain correction factors, referred as PGC method, and they were tabulated as a function of pixel value in a look-up table. Results: 0.035% of detector pixels lead to clustered image artifacts in flat field corrected projections, where 80% of these pixels were traced back and linked to artifacts in the FPD. The performance of PGC method was tested in variety of imaging conditions and phantoms. The PGC method reduced clustered image artifacts and fixed pattern noise in projections, and ring artifacts in CBCT images. Conclusions: Clustered projection image artifacts that lead to ring artifacts in CBCT can be better identified with our artifact detection approach. When compared to the conventional flat field correction method, the proposed PGC method enables characterization of nonlinear

  2. 75 FR 51285 - In the Matter of Certain Flat Panel Digital Televisions and Components Thereof; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-19

    ... From the Federal Register Online via the Government Publishing Office INTERNATIONAL TRADE COMMISSION In the Matter of Certain Flat Panel Digital Televisions and Components Thereof; Notice of... that information on this matter can be obtained by contacting the Commission's TDD terminal on...

  3. Cone beam breast CT with a high pitch (75 μm), thick (500 μm) scintillator CMOS flat panel detector: Visibility of simulated microcalcifications

    PubMed Central

    Shen, Youtao; Zhong, Yuncheng; Lai, Chao-Jen; Wang, Tianpeng; Shaw, Chris C.

    2013-01-01

    Purpose: To measure and investigate the improvement of microcalcification (MC) visibility in cone beam breast CT with a high pitch (75 μm), thick (500 μm) scintillator CMOS/CsI flat panel detector (Dexela 2923, Perkin Elmer). Methods: Aluminum wires and calcium carbonate grains of various sizes were embedded in a paraffin cylinder to simulate imaging of calcifications in a breast. Phantoms were imaged with a benchtop experimental cone beam CT system at various exposure levels. In addition to the Dexela detector, a high pitch (50 μm), thin (150 μm) scintillator CMOS/CsI flat panel detector (C7921CA-09, Hamamatsu Corporation, Hamamatsu City, Japan) and a widely used low pitch (194 μm), thick (600 μm) scintillator aSi/CsI flat panel detector (PaxScan 4030CB, Varian Medical Systems) were also used in scanning for comparison. The images were independently reviewed by six readers (imaging physicists). The MC visibility was quantified as the fraction of visible MCs and measured as a function of the estimated mean glandular dose (MGD) level for various MC sizes and detectors. The modulation transfer functions (MTFs) and detective quantum efficiencies (DQEs) were also measured and compared for the three detectors used. Results: The authors have demonstrated that the use of a high pitch (75 μm) CMOS detector coupled with a thick (500 μm) CsI scintillator helped make the smaller 150–160, 160–180, and 180–200 μm MC groups more visible at MGDs up to 10.8, 9, and 10.8 mGy, respectively. It also made the larger 200–212 and 212–224 μm MC groups more visible at MGDs up to 7.2 mGy. No performance improvement was observed for 224–250 μm or larger size groups. With the higher spatial resolution of the Dexela detector based system, the apparent dimensions and shapes of MCs were more accurately rendered. The results show that with the aforementioned detector, a 73% visibility could be achieved in imaging 160–180 μm MCs as compared to 28% visibility achieved by

  4. Cone beam breast CT with a high pitch (75 μm), thick (500 μm) scintillator CMOS flat panel detector: Visibility of simulated microcalcifications

    SciTech Connect

    Shen, Youtao; Zhong, Yuncheng; Lai, Chao-Jen; Wang, Tianpeng; Shaw, Chris C.

    2013-10-15

    Purpose: To measure and investigate the improvement of microcalcification (MC) visibility in cone beam breast CT with a high pitch (75 μm), thick (500 μm) scintillator CMOS/CsI flat panel detector (Dexela 2923, Perkin Elmer).Methods: Aluminum wires and calcium carbonate grains of various sizes were embedded in a paraffin cylinder to simulate imaging of calcifications in a breast. Phantoms were imaged with a benchtop experimental cone beam CT system at various exposure levels. In addition to the Dexela detector, a high pitch (50 μm), thin (150 μm) scintillator CMOS/CsI flat panel detector (C7921CA-09, Hamamatsu Corporation, Hamamatsu City, Japan) and a widely used low pitch (194 μm), thick (600 μm) scintillator aSi/CsI flat panel detector (PaxScan 4030CB, Varian Medical Systems) were also used in scanning for comparison. The images were independently reviewed by six readers (imaging physicists). The MC visibility was quantified as the fraction of visible MCs and measured as a function of the estimated mean glandular dose (MGD) level for various MC sizes and detectors. The modulation transfer functions (MTFs) and detective quantum efficiencies (DQEs) were also measured and compared for the three detectors used.Results: The authors have demonstrated that the use of a high pitch (75 μm) CMOS detector coupled with a thick (500 μm) CsI scintillator helped make the smaller 150–160, 160–180, and 180–200 μm MC groups more visible at MGDs up to 10.8, 9, and 10.8 mGy, respectively. It also made the larger 200–212 and 212–224 μm MC groups more visible at MGDs up to 7.2 mGy. No performance improvement was observed for 224–250 μm or larger size groups. With the higher spatial resolution of the Dexela detector based system, the apparent dimensions and shapes of MCs were more accurately rendered. The results show that with the aforementioned detector, a 73% visibility could be achieved in imaging 160–180 μm MCs as compared to 28% visibility achieved by

  5. Comparing Ovarian Radiation Doses in Flat-Panel and Conventional Angiography During Uterine Artery Embolization: A Randomized Clinical Trial

    PubMed Central

    Firouznia, Kavous; Ghanaati, Hossein; Sharafi, Aliakbar; Abahashemi, Firouze; Hashemi, Hassan; Jalali, Amir Hossein; Shakiba, Madjid

    2013-01-01

    Background Uterine artery embolization (UAE) is a minimally invasive procedure performed under fluoroscopy for the treatment of uterine fibroids and accompanied by radiation exposure. Objectives To compare ovarian radiation doses during uterine artery embolization (UAE) in patients using conventional digital subtraction angiography (DSA) with those using digital flat-panel technology. Patients and Methods Thirty women who were candidates for UAE were randomly enrolled for one of the two angiographic systems. Ovarian doses were calculated according to in-vitro phantom study results using entrance and exit doses and were compared between the two groups. Results The mean right entrance dose was 1586±1221 mGy in the conventional and 522.3±400.1 mGy in the flat panel group (P=0.005). These figures were 1470±1170 mGy and 456±396 mGy, respectively for the left side (P=0.006). The mean right exit dose was 18.8±12.3 for the conventional and 9.4±6.4 mGy for the flat panel group (P=0.013). These figures were 16.7±11.3 and 10.2±7.2 mGy, respectively for the left side (P=0.06). The mean right ovarian dose was 139.9±92 in the conventional and 23.6±16.2 mGy in the flat panel group (P<0.0001). These figures were 101.7±77.6 and 24.6±16.9 mGy, respectively for the left side (P=0.002). Conclusion Flat panel system can significantly reduce the ovarian radiation dose during UAE compared with conventional DSA. PMID:24348594

  6. Detection of Cement Leakage After Vertebroplasty with a Non-Flat-Panel Angio Unit Compared to Multidetector Computed Tomography - An Ex Vivo Study

    SciTech Connect

    Baumann, Clemens Fuchs, Heiko; Westphalen, Kerstin; Hierholzer, Johannes

    2008-11-15

    The purpose of this study was to investigate the detection of cement leakages after vertebroplasty using angiographic computed tomography (ACT) in a non-flat-panel angio unit compared to multidetector computed tomography (MDCT). Vertebroplasty was performed in 19 of 33 cadaver vertebrae (23 thoracic and 10 lumbar segments). In the angio suite, ACT (190{sup o}; 1.5{sup o} per image) was performed to obtain volumetric data. Another volumetric data set of the specimen was obtained by MDCT using a standard algorithm. Nine multiplanar reconstructions in standardized axial, coronal, and sagittal planes of every vertebra were generated from both data sets. Images were evaluated on the basis of a nominal scale with 18 criteria, comprising osseous properties (e.g., integrity of the end plate) and cement distribution (e.g., presence of intraspinal cement). MDCT images were regarded as gold standard and analyzed by two readers in a consensus mode. Rotational acquisitions were analyzed by six blinded readers. Results were correlated with the gold standard using Cohen's {kappa}-coefficient analysis. Furthermore, interobserver variability was calculated. Correlation with the gold standard ranged from no correlation (osseous margins of the neuroforamen, {kappa} = 0.008) to intermediate (trace of vertebroplasty canula; {kappa} = 0.615) for criteria referring to osseous morphology. However, there was an excellent correlation for those criteria referring to cement distribution, with {kappa} values ranging from 0.948 (paravertebral cement distribution) to 0.972 (intraspinal cement distribution). With a minimum of {kappa} = 0.768 ('good correlation') and a maximum of {kappa} = 0.91 ('excellent'), interobserver variability was low. In conclusion, ACT in an angio suite without a flat-panel detector depicts a cement leakage after vertebroplasty as well as MDCT. However, the method does not provide sufficient depiction of osseous morphology.

  7. Nonlinear statistical reconstruction for flat-panel cone-beam CT with blur and correlated noise models

    NASA Astrophysics Data System (ADS)

    Tilley, Steven; Siewerdsen, Jeffrey H.; Zbijewski, Wojciech; Stayman, J. Webster

    2016-03-01

    Flat-panel cone-beam CT (FP-CBCT) is a promising imaging modality, partly due to its potential for high spatial resolution reconstructions in relatively compact scanners. Despite this potential, FP-CBCT can face difficulty resolving important fine scale structures (e.g, trabecular details in dedicated extremities scanners and microcalcifications in dedicated CBCT mammography). Model-based methods offer one opportunity to improve high-resolution performance without any hardware changes. Previous work, based on a linearized forward model, demonstrated improved performance when both system blur and spatial correlations characteristics of FP-CBCT systems are modeled. Unfortunately, the linearized model relies on a staged processing approach that complicates tuning parameter selection and can limit the finest achievable spatial resolution. In this work, we present an alternative scheme that leverages a full nonlinear forward model with both system blur and spatially correlated noise. A likelihood-based objective function is derived from this forward model and we derive an iterative optimization algorithm for its solution. The proposed approach is evaluated in simulation studies using a digital extremities phantom and resolution-noise trade-offs are quantitatively evaluated. The correlated nonlinear model outperformed both the uncorrelated nonlinear model and the staged linearized technique with up to a 86% reduction in variance at matched spatial resolution. Additionally, the nonlinear models could achieve finer spatial resolution (correlated: 0.10 mm, uncorrelated: 0.11 mm) than the linear correlated model (0.15 mm), and traditional FDK (0.40 mm). This suggests the proposed nonlinear approach may be an important tool in improving performance for high-resolution clinical applications.

  8. Nonlinear Statistical Reconstruction for Flat-Panel Cone-Beam CT with Blur and Correlated Noise Models

    PubMed Central

    Tilley, Steven; Siewerdsen, Jeffrey H.; Zbijewski, Wojciech; Stayman, J. Webster

    2016-01-01

    Flat-panel cone-beam CT (FP-CBCT) is a promising imaging modality, partly due to its potential for high spatial resolution reconstructions in relatively compact scanners. Despite this potential, FP-CBCT can face difficulty resolving important fine scale structures (e.g, trabecular details in dedicated extremities scanners and microcalcifications in dedicated CBCT mammography). Model-based methods offer one opportunity to improve high-resolution performance without any hardware changes. Previous work, based on a linearized forward model, demonstrated improved performance when both system blur and spatial correlations characteristics of FP-CBCT systems are modeled. Unfortunately, the linearized model relies on a staged processing approach that complicates tuning parameter selection and can limit the finest achievable spatial resolution. In this work, we present an alternative scheme that leverages a full nonlinear forward model with both system blur and spatially correlated noise. A likelihood-based objective function is derived from this forward model and we derive an iterative optimization algorithm for its solution. The proposed approach is evaluated in simulation studies using a digital extremities phantom and resolution-noise trade-offs are quantitatively evaluated. The correlated nonlinear model outperformed both the uncorrelated nonlinear model and the staged linearized technique with up to a 86% reduction in variance at matched spatial resolution. Additionally, the nonlinear models could achieve finer spatial resolution (correlated: 0.10 mm, uncorrelated: 0.11 mm) than the linear correlated model (0.15 mm), and traditional FDK (0.40 mm). This suggests the proposed nonlinear approach may be an important tool in improving performance for high-resolution clinical applications. PMID:27110051

  9. Direct conversion of algal biomass to biofuel

    DOEpatents

    Deng, Shuguang; Patil, Prafulla D; Gude, Veera Gnaneswar

    2014-10-14

    A method and system for providing direct conversion of algal biomass. Optionally, the method and system can be used to directly convert dry algal biomass to biodiesels under microwave irradiation by combining the reaction and combining steps. Alternatively, wet algae can be directly processed and converted to fatty acid methyl esters, which have the major components of biodiesels, by reacting with methanol at predetermined pressure and temperature ranges.

  10. Measurements and simulations of VUV emissions from plasma flat panel display pixel microdischarges

    SciTech Connect

    McGrath, R.T.; Veerasingam, R.; Hunter, J.A.; Rockett, P.D.; Campbell, R.B.

    1998-10-01

    This paper reports on measurements of the principal vacuum ultra-violet emission lines from micro discharges operating with helium/xenon gas mixture used in full color plasma driven flat panel display pixels. The principal emission lines observed are the 147 and 129 nm lines from atomic xenon transitions and the relatively broad emissions from xenon dimers centered near 173 nm. The authors report on the changing intensities of these lines with variation in xenon concentration in the pixel gas mixtures, which affect the overall luminous efficiency of the display. A one-dimensional computer model has been used to simulate the discharge evolution. The model tracks the populations of twelve different representative quantum energy levels of the helium and xenon atoms, as well as the production and decay of the xenon dimers. The atomic physics description is sufficiently detailed to allow prediction of the relative intensities of the dominant emission lines. The authors find that model predicted intensities for xenon atomic and dimer emission lines agree well with experimental measurements.

  11. Compact flat-panel gas-gap heat switch operating at 295 K

    NASA Astrophysics Data System (ADS)

    Krielaart, M. A. R.; Vermeer, C. H.; Vanapalli, S.

    2015-11-01

    Heat switches are devices that can change from a thermally conducting (on-) state to an insulating (off-) state whenever the need arises. They enable adaptive thermal management strategies in which cooling rates are altered either spatially or temporally, leading to a substantial reduction in the energy and mass budget of a large range of systems. State-of-the-art heat switches are only rarely employed in thermal system architectures, since they are rather bulky and have a limited thermal performance (expressed as the heat transfer ratio between the on- and off-state heat conductance). Using selective laser melting additive manufacturing technology, also known as 3D printing, we developed a compact flat-panel gas-gap heat switch that offers superior thermal performance, is simpler and more economic to produce and assemble, contains no moving parts, and is more reliable because it lacks welded joints. The manufactured rectangular panel heat switch has frontal device dimensions of 10 cm by 10 cm, thickness of 3.2 mm and weighs just 121 g. An off heat conductance of 0.2 W/K and on-off heat conductance ratio of 38 is observed at 295 K.

  12. Compact flat-panel gas-gap heat switch operating at 295 K.

    PubMed

    Krielaart, M A R; Vermeer, C H; Vanapalli, S

    2015-11-01

    Heat switches are devices that can change from a thermally conducting (on-) state to an insulating (off-) state whenever the need arises. They enable adaptive thermal management strategies in which cooling rates are altered either spatially or temporally, leading to a substantial reduction in the energy and mass budget of a large range of systems. State-of-the-art heat switches are only rarely employed in thermal system architectures, since they are rather bulky and have a limited thermal performance (expressed as the heat transfer ratio between the on- and off-state heat conductance). Using selective laser melting additive manufacturing technology, also known as 3D printing, we developed a compact flat-panel gas-gap heat switch that offers superior thermal performance, is simpler and more economic to produce and assemble, contains no moving parts, and is more reliable because it lacks welded joints. The manufactured rectangular panel heat switch has frontal device dimensions of 10 cm by 10 cm, thickness of 3.2 mm and weighs just 121 g. An off heat conductance of 0.2 W/K and on-off heat conductance ratio of 38 is observed at 295 K. PMID:26628181

  13. Dynamic chest radiography with a flat-panel detector (FPD): ventilation-perfusion study

    NASA Astrophysics Data System (ADS)

    Tanaka, R.; Sanada, S.; Fujimura, M.; Yasui, M.; Tsuji, S.; Hayashi, N.; Okamoto, H.; Nanbu, Y.; Matsui, O.

    2011-03-01

    Pulmonary ventilation and blood flow are reflected in dynamic chest radiographs as changes in X-ray translucency, i.e., pixel values. This study was performed to investigate the feasibility of ventilation-perfusion (V/Q) study based on the changes in pixel value. Sequential chest radiographs of a patient with ventilation-perfusion mismatch were obtained during respiration using a dynamic flat-panel detector (FPD) system. The lung area was recognized and average pixel value was measured in each area, tracking and deforming the region of interest. Inter-frame differences were then calculated, and the absolute values were summed in each respiratory phase. The results were visualized as ventilation, blood flow, V/Q ratio distribution map and compared to distribution of radioactive counts on ventilation and perfusion scintigrams. In the results, abnormalities were appeared as a reduction of changes in pixel values, and a correlation was observed between the distribution of changes in pixel value and those of radioactivity counts (Ventilation; r=0.78, Perfusion; r=0.77). V/Q mismatch was also indicated as mismatch of changes in pixel value, and a correlation with V/Q calculated by radioactivity counts (r=0.78). These results indicated that the present method is potentially useful for V/Q study as an additional examination in conventional chest radiography.

  14. Average power scaling of UV excimer lasers drives flat panel display and lidar applications

    NASA Astrophysics Data System (ADS)

    Herbst, Ludolf; Delmdahl, Ralph F.; Paetzel, Rainer

    2012-03-01

    Average power scaling of 308nm excimer lasers has followed an evolutionary path over the last two decades driven by diverse industrial UV laser microprocessing markets. Recently, a new dual-oscillator and beam management concept for high-average power upscaling of excimer lasers has been realized, for the first time enabling as much as 1.2kW of stabilized UV-laser average output power at a UV wavelength of 308nm. The new dual-oscillator concept enables low temperature polysilicon (LTPS) fabrication to be extended to generation six glass substrates. This is essential in terms of a more economic high-volume manufacturing of flat panel displays for the soaring smartphone and tablet PC markets. Similarly, the cost-effective production of flexible displays is driven by 308nm excimer laser power scaling. Flexible displays have enormous commercial potential and can largely use the same production equipment as is used for rigid display manufacturing. Moreover, higher average output power of 308nm excimer lasers aids reducing measurement time and improving the signal-to-noise ratio in the worldwide network of high altitude Raman lidar stations. The availability of kW-class 308nm excimer lasers has the potential to take LIDAR backscattering signal strength and achievable altitude to new levels.

  15. Astaxanthin induction in Microalga H. pluvialis with flat panel airlift photobioreactors under indoor and outdoor conditions.

    PubMed

    Poonkum, Woradej; Powtongsook, Sorawit; Pavasant, Prasert

    2015-01-01

    Astaxanthin was induced from Haematococcus pluvialis (NIES-144) under indoor and outdoor conditions using 17-, 50-, and 90-L flat-panel airlift photobioreactors (FP-APBRs). Preliminary experiments in 1.5-L bubble column photobioreactors (BC-PBRs) revealed that sterilized clean water with 3% CO2 aeration (1.47 cm(3) s(-1) CO2 loading) could best encourage astaxanthin accumulation at 18.21 g m(-3) (3.63% by weight). Operating 17-L FP-APBRs with these bubble column parameters under indoor conditions could further enhance astaxanthin to 26.63 g m(-3) (5.34% by weight). This was potentially due to the inherited up-lift force from the reactor that helped avoid cell precipitation by allowing the cells to be circulated within the reactor. In addition, the various sizes of FP-APBRs exhibited similar performance, implying a potential scale-up opportunity. However, similar operation under outdoor condition exhibited slightly poorer performance due to the light inhibition effect. The best outdoor performance was obtained with the FP-APBR covered with one layer of shading net, where 20.11 g m(-3) (4.47% by weight) of astaxanthin was resulted. PMID:25105532

  16. The forced radiation efficiency of finite size flat panels that are excited by incident sound.

    PubMed

    Davy, John L

    2009-08-01

    The radiation efficiency of an infinite flat panel that radiates a plane wave into a half space is equal to the inverse of the cosine of the angle between the direction of propagation of the plane wave and the normal to the panel. The fact that this radiation efficiency tends to infinity as the angle tends to 90 degrees causes problems with simple theories of sound insulation. Sato calculated numerical values of radiation efficiency for a finite size rectangular panel in an infinite baffle whose motion is forced by sound incident at an angle to the normal from the other side. This paper presents a simple two dimensional analytic strip theory, which agrees reasonably well with Sato's numerical calculations for a rectangular panel. This leads to the conclusion that it is mainly the length of the panel in the direction of radiation, rather than its width that is important in determining its radiation efficiency. A low frequency correction is added to the analytic strip theory. The theory is analytically integrated over all angles of incidence, with the appropriate weighting function, to obtain the diffuse sound field forced radiation efficiency of a panel. PMID:19640035

  17. Thermal Reactor Model for Large-Scale Algae Cultivation in Vertical Flat Panel Photobioreactors.

    PubMed

    Endres, Christian H; Roth, Arne; Brück, Thomas B

    2016-04-01

    Microalgae can grow significantly faster than terrestrial plants and are a promising feedstock for sustainable value added products encompassing pharmaceuticals, pigments, proteins and most prominently biofuels. As the biomass productivity of microalgae strongly depends on the cultivation temperature, detailed information on the reactor temperature as a function of time and geographical location is essential to evaluate the true potential of microalgae as an industrial feedstock. In the present study, a temperature model for an array of vertical flat plate photobioreactors is presented. It was demonstrated that mutual shading of reactor panels has a decisive effect on the reactor temperature. By optimizing distance and thickness of the panels, the occurrence of extreme temperatures and the amplitude of daily temperature fluctuations in the culture medium can be drastically reduced, while maintaining a high level of irradiation on the panels. The presented model was developed and applied to analyze the suitability of various climate zones for algae production in flat panel photobioreactors. Our results demonstrate that in particular Mediterranean and tropical climates represent favorable locations. Lastly, the thermal energy demand required for the case of active temperature control is determined for several locations. PMID:26950078

  18. The Spatial Effects of Antenna Configuration in a Large Area Inductively Coupled Plasma System for Flat Panel Displays

    NASA Astrophysics Data System (ADS)

    Seon-Geun, Oh; Young-Jun, Lee; Jae-Hong, Jeon; Jong-Hyeon, Seo; Hee-Hwan, Choe

    2014-08-01

    Spatial distributions of plasma parameters such as electron density, electron temperature and electric potential were investigated using a commercial simulation software (COMSOLTM) to predict the effects of antenna configuration in a large area inductively coupled plasma (ICP) system for flat panel displays. Nine planar antenna sets were evenly placed above a ceramic window. While the electron density was influenced by both the input current and gas pressure, the electron temperature and electric potential were dominantly affected by the gas pressure.

  19. Flat panel displays for ubiquitous product applications and related impurity doping technologies

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshiharu

    2006-06-01

    Various kinds of flat panel displays such as liquid crystal displays (LCDs), plasma display panels and organic light emitting diode (OLED) displays are briefly evaluated from the perspective of applicability to ubiquitous products. It is clarified that the LCDs and OLED displays are suitable for realizing mobile electronic products with a high quality display, since these displays can use active devices on the backplanes to form active matrix displays and can integrate peripheral circuits of the displays and functional circuits of mobile electronics for a ubiquitous era. It is clarified further that the low temperature polycrystalline silicon (LTPS) thin film transistor (TFT) is the most promising active device for the backplane of such active matrix displays because the LTPS TFT has the possibility to enhance its performance without raising the cost. The low temperature poly-Si TFT fabrication process is introduced, and its key technologies such as crystallization, gate oxide formation, and impurity doping are surveyed. As the property of polycrystalline silicon (poly-Si) influences not only the TFT performance itself but also the efficiency of impurity doping and the integrity of the gate oxide, the crystallinity of the poly-Si is reviewed. After that, the history of the development and the state of the art in impurity doping technology and its issues are addressed in detail. Finally, foreseeing the application of LTPS TFT, the realization of OLED displays, and the progress of LTPS TFT for integrating higher functional circuits for ubiquitous applications, the requirements for impurity doping in such progress are addressed. In particular, the single grain silicon technology and the scaling down of the TFT size, which are thought to be highly effective to enhance the performance of TFTs, and issues of impurity doping technology relating to them are discussed.

  20. Optimization of outdoor cultivation in flat panel airlift reactors for lipid production by Chlorella vulgaris.

    PubMed

    Münkel, Ronja; Schmid-Staiger, Ulrike; Werner, Achim; Hirth, Thomas

    2013-11-01

    Microalgae are discussed as a potential renewable feedstock for biofuel production. The production of highly concentrated algae biomass with a high fatty acid content, accompanied by high productivity with the use of natural sunlight is therefore of great interest. In the current study an outdoor pilot plant with five 30 L Flat Panel Airlift reactors (FPA) installed southwards were operated in 2011 in Stuttgart, Germany. The patented FPA reactor works on the basis of an airlift loop reactor and offers efficient intermixing for homogeneous light distribution. A lipid production process with the microalgae Chlorella vulgaris (SAG 211-12), under nitrogen and phosphorous deprivation, was established and evaluated in regard to the fatty acid content, fatty acid productivity and light yield. In the first set of experiments limitations caused by restricted CO₂ availability were excluded by enriching the media with NaOH. The higher alkalinity allows a higher CO₂ content of supplied air and leads to doubling of fatty acid productivity. The second set of experiments focused on how the ratio of light intensity to biomass concentration in the reactor impacts fatty acid content, productivity and light yield. The specific light availability was specified as mol photons on the reactor surface per gram biomass in the reactor. This is the first publication based on experimental data showing the quantitative correlation between specific light availability, fatty acid content and biomass light yield for a lipid production process under nutrient deprivation and outdoor conditions. High specific light availability leads to high fatty acid contents. Lower specific light availability increases fatty acid productivity and biomass light yield. An average fatty acid productivity of 0.39 g L⁻¹  day⁻¹ for a 12 days batch process with a final fatty acid content of 44.6% [w/w] was achieved. Light yield of 0.4 g mol photons⁻¹ was obtained for the first 6 days of

  1. The effect of discontinuous airlift mixing in outdoor flat panel photobioreactors on growth of Scenedesmus obliquus.

    PubMed

    Leupold, Marco; Hindersin, Stefan; Kerner, Martin; Hanelt, Dieter

    2013-11-01

    Discontinuous airlift mixing was realized by injecting pressured air at time intervals with a frequency between 0.033 and 0.25 Hz (at 80 kPa; i.e., every 4-30 s; valve opening time 800 ms) into outdoor flat panel photobioreactors ([Formula: see text]). This caused a flow velocity between 2 and 20 cm s(-1) of the culture medium within the photobioreactor and the mixing time was between 38 and 103.5 s, requiring 0.175-1.340 L(gas volume) L(photobioreactor volume)(-1) min(-1) pressured air. In order to detect the effect on growth of Scenedesmus obliquus during outdoor experiments and to be able to compare obtained results, a batch run with an airlift frequency of 0.25 Hz was simultaneously used as control. Growth at different airlift frequencies was measured by the increase of cell dry weight (CDW) during 3-5 days and biomass yield on light energy was calculated. With increasing airlift frequencies, growth increased from 52 to 91 % compared to the control. When CDW was at around 1.0-1.5 g L(-1), airlift frequency had no effect on growth, indicating that mass transfer gradients of nutrients and gas were not the limiting factors of growth. Above 1.5 g CDW L(-1), growth increased with increasing airlift frequency and light limitation for a single cell occurred. This effect was observed during low and high irradiance and it is concluded that a higher mean flow causes a better light distribution, resulting in an enhanced growth. Biomass productivity and demand of pressured air are correlated logarithmically, which enables to save mixing energy during cultivation. PMID:23494400

  2. Assessment of the CO2 fixation capacity of Anabaena sp. ATCC 33047 outdoor cultures in vertical flat-panel reactors.

    PubMed

    Clares, Marta E; Moreno, José; Guerrero, Miguel G; García-González, Mercedes

    2014-10-10

    The extent of biological CO2 fixation was evaluated for outdoor cultures of the cyanobacterium Anabaena sp. ATCC 33047. Culture conditions were optimized indoors in bubble-column photochemostats operating in continuous mode, subjected to irradiance cycles mimicking the light regime outdoors. Highest values achieved for CO2 fixation rate and biomass productivity were 1 and 0.6 g L(-1) day(-1), respectively. The comparison among different reactors operating simultaneously - open pond, horizontal tubular reactor and vertical flat-panel - allowed to assess their relative efficiency for the outdoor development of Anabaena cultures. Despite the higher volumetric CO2 fixation capacity (and biomass productivity) exhibited by the tubular photobioreactor, yield of the flat-panel reactor was 50% higher than that of the tubular option on a per area basis, reaching values over 35 g CO2 fixed m(-2) d(-1). The flat-panel reactor actually represents a most suitable system for CO2 capture coupled to the generation of valuable biomass by Anabaena cultures. PMID:25068618

  3. SU-E-I-49: Simulation Study for Removing Scatter Radiation in Cesium-Iodine Based Flat Panel Detector System

    SciTech Connect

    Yoon, Y; Park, M; Kim, H; Kim, K; Kim, J; Morishita, J

    2015-06-15

    Purpose: This study aims to identify the feasibility of a novel cesium-iodine (CsI)-based flat-panel detector (FPD) for removing scatter radiation in diagnostic radiology. Methods: The indirect FPD comprises three layers: a substrate, scintillation, and thin-film-transistor (TFT) layer. The TFT layer has a matrix structure with pixels. There are ineffective dimensions on the TFT layer, such as the voltage and data lines; therefore, we devised a new FPD system having net-like lead in the substrate layer, matching the ineffective area, to block the scatter radiation so that only primary X-rays could reach the effective dimension.To evaluate the performance of this new FPD system, we conducted a Monte Carlo simulation using MCNPX 2.6.0 software. Scatter fractions (SFs) were acquired using no grid, a parallel grid (8:1 grid ratio), and the new system, and the performances were compared.Two systems having different thicknesses of lead in the substrate layer—10 and 20μm—were simulated. Additionally, we examined the effects of different pixel sizes (153×153 and 163×163μm) on the image quality, while keeping the effective area of pixels constant (143×143μm). Results: In case of 10μm lead, the SFs of the new system (∼11%) were lower than those of the other system (∼27% with no grid, ∼16% with parallel grid) at 40kV. However, as the tube voltage increased, the SF of new system (∼19%) was higher than that of parallel grid (∼18%) at 120kV. In the case of 20μm lead, the SFs of the new system were lower than those of the other systems at all ranges of the tube voltage (40–120kV). Conclusion: The novel CsI-based FPD system for removing scatter radiation is feasible for improving the image contrast but must be optimized with respect to the lead thickness, considering the system’s purposes and the ranges of the tube voltage in diagnostic radiology. This study was supported by a grant(K1422651) from Institute of Health Science, Korea University.

  4. Investigation of the use of iodinated contrast agent in a proposed flat-panel CT mammography system

    NASA Astrophysics Data System (ADS)

    Didier, Clay; Glick, Stephen; Gong, Xing; Chen, Yu; Mahd, Mufeed

    2007-03-01

    incident on the flat panel detector for an x-ray projection, then using the aforementioned Bakic phantom, a 0.5 cm sphere representing a breast tumor attenuation and a 3.0 mg/ml of Iodinated contrast agent were inserted at various locations with varying attenuation for 100 projection sets with scatter, and 100 projections without scatter. Histograms of the resulting effective attenuation coefficients yielded by Feldkamp filtered backprojection were plotted and compared.

  5. Metal-induced unilaterally crystallized polycrystalline silicon thin-film transistor technology and application to flat-panel displays

    NASA Astrophysics Data System (ADS)

    Meng, Zhiguo

    High quality flat-panel displays (FPD) typically use active-matrix (AM) addressing, with the optical state of each pixel controlled by one or more active devices such as amorphous silicon (a-Si) thin film transistors (TFT). The successful examples are portable computer and liquid-crystal television (LC-TV). A high level of system on panel (SoP) electronic integration is required for versatile and compact systems. Meanwhile, many self-emitting display technologies are developing fast, active matrix for self-emitting display is typically current driven. The a-Si TFTs suffer from limited current driving capability, polycrystalline silicon (poly-Si) device technology is required. A new technology employing metal-induced unilaterally crystallization (MIUC) is presently reported. The device characteristics are obviously better than those in rapid-thermal annealed (RTA) and solid-phase crystallization (SPC) TFTs and the fabrication equipment is much cheaper than excimer laser crystallization (ELC) technology. The field effect mobility (muFE) of p- and n-channel MIUC TFTs is about 100cm2/Vs. Ion/I off is more than seven orders. Gate-induced leakage current in LT-MIUC poly-Si TFTs has been reduced by crystallization before heavy junction implantation to improve material quality and incorporating a gate-modulated lightly-doped drain (gamo-LDD) structure to reduce the electric field near the drain/channel junction region. At the same time, recrystallized (RC) MIUC TFT was researched with device characteristics improved. The 6.6cm 120 x 160 active matrix for OLED display is fabricated using LT-MIUC TFT technology on glass substrate. This display has the advantages of self-emitting, large intrinsic view angle and very fast response. At the same time, 6.6cm 120X160 AM-reflective twist nematic (RTN) display is fabricated using RC-MIUC TFT technology. This display is capable of producing 16 grade levels, 10:1 contrast and video image. The SOP display for AM-OLED were designed

  6. SU-E-I-07: Response Characteristics and Signal Conversion Modeling of KV Flat-Panel Detector in Cone Beam CT System

    SciTech Connect

    Wang, Yu; Cao, Ruifen; Pei, Xi; Wang, Hui; Hu, Liqin

    2015-06-15

    Purpose: The flat-panel detector response characteristics are investigated to optimize the scanning parameter considering the image quality and less radiation dose. The signal conversion model is also established to predict the tumor shape and physical thickness changes. Methods: With the ELEKTA XVI system, the planar images of 10cm water phantom were obtained under different image acquisition conditions, including tube voltage, electric current, exposure time and frames. The averaged responses of square area in center were analyzed using Origin8.0. The response characteristics for each scanning parameter were depicted by different fitting types. The transmission measured for 10cm water was compared to Monte Carlo simulation. Using the quadratic calibration method, a series of variable-thickness water phantoms images were acquired to derive the signal conversion model. A 20cm wedge water phantom with 2cm step thickness was used to verify the model. At last, the stability and reproducibility of the model were explored during a four week period. Results: The gray values of image center all decreased with the increase of different image acquisition parameter presets. The fitting types adopted were linear fitting, quadratic polynomial fitting, Gauss fitting and logarithmic fitting with the fitting R-Square 0.992, 0.995, 0.997 and 0.996 respectively. For 10cm water phantom, the transmission measured showed better uniformity than Monte Carlo simulation. The wedge phantom experiment show that the radiological thickness changes prediction error was in the range of (-4mm, 5mm). The signal conversion model remained consistent over a period of four weeks. Conclusion: The flat-panel response decrease with the increase of different scanning parameters. The preferred scanning parameter combination was 100kV, 10mA, 10ms, 15frames. It is suggested that the signal conversion model could effectively be used for tumor shape change and radiological thickness prediction. Supported by

  7. Impact and Penetration of Thin Aluminum 2024 Flat Panels at Oblique Angles of Incidence

    NASA Technical Reports Server (NTRS)

    Ruggeri, Charles R.; Revilock, Duane M.; Pereira, J. Michael; Emmerling, William; Queitzsch, Gilbert K., Jr.

    2015-01-01

    under more extreme conditions, using a projectile with a more complex shape and sharp contacts, impacting flat panels at oblique angles of incidence.

  8. Dual-energy cone-beam CT with a flat-panel detector: Effect of reconstruction algorithm on material classification

    PubMed Central

    Zbijewski, W.; Gang, G. J.; Xu, J.; Wang, A. S.; Stayman, J. W.; Taguchi, K.; Carrino, J. A.; Siewerdsen, J. H.

    2014-01-01

    Purpose: Cone-beam CT (CBCT) with a flat-panel detector (FPD) is finding application in areas such as breast and musculoskeletal imaging, where dual-energy (DE) capabilities offer potential benefit. The authors investigate the accuracy of material classification in DE CBCT using filtered backprojection (FBP) and penalized likelihood (PL) reconstruction and optimize contrast-enhanced DE CBCT of the joints as a function of dose, material concentration, and detail size. Methods: Phantoms consisting of a 15 cm diameter water cylinder with solid calcium inserts (50–200 mg/ml, 3–28.4 mm diameter) and solid iodine inserts (2–10 mg/ml, 3–28.4 mm diameter), as well as a cadaveric knee with intra-articular injection of iodine were imaged on a CBCT bench with a Varian 4343 FPD. The low energy (LE) beam was 70 kVp (+0.2 mm Cu), and the high energy (HE) beam was 120 kVp (+0.2 mm Cu, +0.5 mm Ag). Total dose (LE+HE) was varied from 3.1 to 15.6 mGy with equal dose allocation. Image-based DE classification involved a nearest distance classifier in the space of LE versus HE attenuation values. Recognizing the differences in noise between LE and HE beams, the LE and HE data were differentially filtered (in FBP) or regularized (in PL). Both a quadratic (PLQ) and a total-variation penalty (PLTV) were investigated for PL. The performance of DE CBCT material discrimination was quantified in terms of voxelwise specificity, sensitivity, and accuracy. Results: Noise in the HE image was primarily responsible for classification errors within the contrast inserts, whereas noise in the LE image mainly influenced classification in the surrounding water. For inserts of diameter 28.4 mm, DE CBCT reconstructions were optimized to maximize the total combined accuracy across the range of calcium and iodine concentrations, yielding values of ∼88% for FBP and PLQ, and ∼95% for PLTV at 3.1 mGy total dose, increasing to ∼95% for FBP and PLQ, and ∼98% for PLTV at 15.6 mGy total dose. For a

  9. Dual-energy cone-beam CT with a flat-panel detector: Effect of reconstruction algorithm on material classification

    SciTech Connect

    Zbijewski, W. Gang, G. J.; Xu, J.; Wang, A. S.; Stayman, J. W.; Taguchi, K.; Carrino, J. A.; Siewerdsen, J. H.

    2014-02-15

    Purpose: Cone-beam CT (CBCT) with a flat-panel detector (FPD) is finding application in areas such as breast and musculoskeletal imaging, where dual-energy (DE) capabilities offer potential benefit. The authors investigate the accuracy of material classification in DE CBCT using filtered backprojection (FBP) and penalized likelihood (PL) reconstruction and optimize contrast-enhanced DE CBCT of the joints as a function of dose, material concentration, and detail size. Methods: Phantoms consisting of a 15 cm diameter water cylinder with solid calcium inserts (50–200 mg/ml, 3–28.4 mm diameter) and solid iodine inserts (2–10 mg/ml, 3–28.4 mm diameter), as well as a cadaveric knee with intra-articular injection of iodine were imaged on a CBCT bench with a Varian 4343 FPD. The low energy (LE) beam was 70 kVp (+0.2 mm Cu), and the high energy (HE) beam was 120 kVp (+0.2 mm Cu, +0.5 mm Ag). Total dose (LE+HE) was varied from 3.1 to 15.6 mGy with equal dose allocation. Image-based DE classification involved a nearest distance classifier in the space of LE versus HE attenuation values. Recognizing the differences in noise between LE and HE beams, the LE and HE data were differentially filtered (in FBP) or regularized (in PL). Both a quadratic (PLQ) and a total-variation penalty (PLTV) were investigated for PL. The performance of DE CBCT material discrimination was quantified in terms of voxelwise specificity, sensitivity, and accuracy. Results: Noise in the HE image was primarily responsible for classification errors within the contrast inserts, whereas noise in the LE image mainly influenced classification in the surrounding water. For inserts of diameter 28.4 mm, DE CBCT reconstructions were optimized to maximize the total combined accuracy across the range of calcium and iodine concentrations, yielding values of ∼88% for FBP and PLQ, and ∼95% for PLTV at 3.1 mGy total dose, increasing to ∼95% for FBP and PLQ, and ∼98% for PLTV at 15.6 mGy total dose. For a

  10. Comparison of Multidetector Computed Tomography and Flat-Panel Computed Tomography Regarding Visualization of Cortical Fractures, Cortical Defects, and Orthopedic Screws: A Phantom Study.

    PubMed

    Neubauer, Jakob; Benndorf, Matthias; Lang, Hannah; Lampert, Florian; Kemna, Lars; Konstantinidis, Lukas; Neubauer, Claudia; Reising, Kilian; Zajonc, Horst; Kotter, Elmar; Langer, Mathias; Goerke, Sebastian M

    2015-08-01

    To compare the visualization of cortical fractures, cortical defects, and orthopedic screws in a dedicated extremity flat-panel computed tomography (FPCT) scanner and a multidetector computed tomography (MDCT) scanner.We used feet of European roe deer as phantoms for cortical fractures, cortical defects, and implanted orthopedic screws. FPCT and MDCT scans were performed with equivalent dose settings. Six observers rated the scans according to number of fragments, size of defects, size of defects opposite orthopedic screws, and the length of different screws. The image quality regarding depiction of the cortical bone was assessed. The gold standard (real number of fragments) was evaluated by autopsy.The correlation of reader assessment of fragments, cortical defects, and screws with the gold standard was similar for FPCT and MDCT. Three readers rated the subjective image quality of the MDCT to be higher, whereas the others showed no preferences.Although the image quality was rated higher in the MDCT than in the FPCT by 3 out of 6 observers, both modalities proved to be comparable regarding the visualization of cortical fractures, cortical defects, and orthopedic screws and of use to musculoskeletal radiology regarding fracture detection and postsurgical evaluation in our experimental setting. PMID:26252281

  11. Comparison of Multidetector Computed Tomography and Flat-Panel Computed Tomography Regarding Visualization of Cortical Fractures, Cortical Defects, and Orthopedic Screws

    PubMed Central

    Neubauer, Jakob; Benndorf, Matthias; Lang, Hannah; Lampert, Florian; Kemna, Lars; Konstantinidis, Lukas; Neubauer, Claudia; Reising, Kilian; Zajonc, Horst; Kotter, Elmar; Langer, Mathias; Goerke, Sebastian M.

    2015-01-01

    Abstract To compare the visualization of cortical fractures, cortical defects, and orthopedic screws in a dedicated extremity flat-panel computed tomography (FPCT) scanner and a multidetector computed tomography (MDCT) scanner. We used feet of European roe deer as phantoms for cortical fractures, cortical defects, and implanted orthopedic screws. FPCT and MDCT scans were performed with equivalent dose settings. Six observers rated the scans according to number of fragments, size of defects, size of defects opposite orthopedic screws, and the length of different screws. The image quality regarding depiction of the cortical bone was assessed. The gold standard (real number of fragments) was evaluated by autopsy. The correlation of reader assessment of fragments, cortical defects, and screws with the gold standard was similar for FPCT and MDCT. Three readers rated the subjective image quality of the MDCT to be higher, whereas the others showed no preferences. Although the image quality was rated higher in the MDCT than in the FPCT by 3 out of 6 observers, both modalities proved to be comparable regarding the visualization of cortical fractures, cortical defects, and orthopedic screws and of use to musculoskeletal radiology regarding fracture detection and postsurgical evaluation in our experimental setting. PMID:26252281

  12. Experimental evaluation of a-Se and CdTe flat-panel x-ray detectors for digital radiography and fluoroscopy

    NASA Astrophysics Data System (ADS)

    Adachi, Susumu; Hori, Naoyuki; Sato, Kenji; Tokuda, Satoshi; Sato, Toshiyuki; Uehara, Kazuhiro; Izumi, Yoshihiro; Nagata, Hisashi; Yoshimura, Youji; Yamada, Satoshi

    2000-04-01

    Described are two types of direct-detection flat-panel X-ray detectors utilizing amorphous selenium (a-Se) and cadmium telluride (CdTe). The a-Se detector is fabricated using direct deposition onto a thin film transistor (TFT) substrate, whereas the CdTe detector is fabricated using a novel hybrid method, in which CdTe is pre-deposited onto a glass substrate and then connected to a TFT substrate. The detector array format is 512 X 512 with a pixel pitch of 150 micrometer. The imaging properties of both detectors have been evaluated with respect to X-ray sensitivity, lag, spatial resolution, and detective quantum efficiency (DQE). The modulation transfer functions (MTFs) measured at 1 lp/mm were 0.96 for a- Se and 0.65 for CdTe. The imaging lags after 33 ms were about 4% for a-Se and 22% for CdTe. The DQE values measured at zero spatial frequency were 0.75 for a-Se and 0.22 for CdTe. The results indicate that the a-Se and CdTe detectors have high potential as new digital X-ray imaging devices for both radiography and fluoroscopy.

  13. High-resolution reconstruction of a waxed heart specimen with flat panel volume computed tomography and rapid prototyping.

    PubMed

    Greil, Gerald F; Kuettner, Axel; Flohr, Thomas; Grasruck, Michael; Sieverding, Ludger; Meinzer, Hans-Peter; Wolf, Ivo

    2007-01-01

    A waxed piglet heart was scanned with a flat panel volume computed tomography scanner (voxel size, 0.25 mm). Virtual and real laser-sintered models showed excellent visual concordance with the original. Using an iterative-closest-point algorithm, a very low mean surface distance was found between the original and laser-sintered model (0.26 +/- 0.34 mm). These techniques allow submillimeter 3-dimensional virtual and real reconstructions without destroying the original and might be useful for teaching, research, and planning of cardiac interventions. PMID:17538294

  14. A 25 kW solar photovoltaic flat panel power supply for an electrodialysis water desalination unit in New Mexico

    NASA Astrophysics Data System (ADS)

    Wood, J. R.; Crutcher, J. L.

    1980-06-01

    The stand-alone system consists of a flat panel array employing silicon ribbon solar cells, used in conjunction with a lead-acid battery bank. Electrodialysis is an energy-conservative process for the desalination of water, in which ions are transferred from one solution through a membrane into another solution by imposition of a direct electrical current. The system design is intended to be prototypical of part of the drinking water supply for a remote village. The specific task of this system is to aid in the restoration of an aquifer following a uranium leaching operation.

  15. The influence of antiscatter grids on soft-tissue detectability in cone-beam computed tomography with flat-panel detectors

    SciTech Connect

    Siewerdsen, J.H.; Moseley, D.J.; Bakhtiar, B.; Richard, S.; Jaffray, D.A.

    2004-12-01

    The influence of antiscatter x-ray grids on image quality in cone-beam computed tomography (CT) is evaluated through broad experimental investigation for various anatomical sites (head and body), scatter conditions (scatter-to-primary ratio (SPR) ranging from {approx}10% to 150%), patient dose, and spatial resolution in three-dimensional reconstructions. Studies involved linear grids in combination with a flat-panel imager on a system for kilovoltage cone-beam CT imaging and guidance of radiation therapy. Grids were found to be effective in reducing x-ray scatter 'cupping' artifacts, with heavier grids providing increased image uniformity. The system was highly robust against ring artifacts that might arise in CT reconstructions as a result of gridline shadows in the projection data. The influence of grids on soft-tissue detectability was evaluated quantitatively in terms of absolute contrast, voxel noise, and contrast-to-noise ratio (CNR) in cone-beam CT reconstructions of 16 cm 'head' and 32 cm 'body' cylindrical phantoms. Imaging performance was investigated qualitatively in observer preference tests based on patient images (pelvis, abdomen, and head-and-neck sites) acquired with and without antiscatter grids. The results suggest that although grids reduce scatter artifacts and improve subject contrast, there is little strong motivation for the use of grids in cone-beam CT in terms of CNR and overall image quality under most circumstances. The results highlight the tradeoffs in contrast and noise imparted by grids, showing improved image quality with grids only under specific conditions of high x-ray scatter (SPR>100%), high imaging dose (D{sub center}>2 cGy), and low spatial resolution (voxel size {>=}1 mm)

  16. Performance of advanced a-Si/CsI-based flat-panel x-ray detectors for mammography

    NASA Astrophysics Data System (ADS)

    Albagli, Douglas; Hudspeth, Heather; Possin, George E.; Lee, Ji Ung; Granfors, Paul R.; Giambattista, Brian W.

    2003-06-01

    The GE Senographe 2000D, the first full field digital mammography system based on amorphous Silicon (a-Si) flat panel arrays and a Cesium-Iodide (CsI) scintillator, has been in clinical use for several years. The purpose of this paper is to demonstrate and quantify improvements in the detective quantum efficiency (DQE) for both typical screening and ultra-low exposure levels for this technology platform. A new figure of merit, the electronic noise factor, is introduced to explicitly quantify the influence of the electronic noise, conversion factor, modulation transfer function (MTF), and pixel pitch towards the reduction of DQE at low exposure levels. Methods to improve the DQE through an optimization of both the flat panel design and the scintillator deposition process are discussed. The results show a substantial improvement in the DQE(f) at all frequencies and demonstrate the potential for DQE(0) to exceed 80%. The combination of high DQE at ultra low exposures and the inherent fast read-out capability makes this technology platform ideal for both current clinical procedures and advanced applications that may use multiple projections (tomosynthesis) or contrast media to enhance digital mammography.

  17. Coupled thermal/structural analyses of laser powered glass sealing methods for fiber optic and flat panel display applications

    SciTech Connect

    Chambers, R.S.; Gianoulakis, S.E.

    1996-12-31

    Glasses are used extensively by the electronics industry for packaging and in components. Because glasses have such low fracture toughness, glass components must maintain low tensile stresses to avoid cracking and ensure product stability. Modeling is a key tool for developing designs with low tensile stresses. Thermoelastic analyses are ideal for modeling slow, oven controlled processes where the temperature varies uniformly. Many processing environments, however, involve rapid heating and cooling cycles that produce nonhomogeneous temperature fields causing the volume and stresses in the glass to relax at different rates. This structural relaxation is an important nonlinear material behavior that gives rise to a point-to-point variability in effective properties of the material. To accurately model such stresses, a thermal analysis must be coupled to a structural analysis that employs a viscoelastic model of glass. Laser sealing of glasses is an example of a process where thermal history is an important factor in determining the residual stress state. Recent needs to consider laser sealing methods for fiber optic connectors and flat panel displays have spurred the development of coupled, three-dimensional thermal and structural finite element codes. Analyses of the temperatures and stresses generated in a flat panel display during a laser sealing operation are presented, an the idiosyncrasies and importance of modeling coupled thermal/structural phenomena are discussed.

  18. Quantitative radiography enabled by slot collimation and a novel scatter correction technique on a large-area flat panel x-ray detector

    NASA Astrophysics Data System (ADS)

    Yue, Meghan L.; Boden, Adam E.; Sabol, John M.

    2009-02-01

    In addition to causing loss of contrast and blurring in an image, scatter also makes quantitative measurements of xray attenuation impossible. Many devices, methods, and models have been developed to eliminate, estimate, and correct for the effects of scatter. Although these techniques can reduce the impact of scatter in a large-area image, no methods have proven to be practical and sufficient to enable quantitative analysis of image data in a routine clinical setting. This paper describes a method of scatter correction which uses moderate x-ray collimation in combination with a correction algorithm operating on data obtained from large-area flat panel detector images. The method involves acquiring slot collimated images of the object, and utilizing information from outside of the collimated region, in addition to a priori data, to estimate the scatter within the collimated region. This method requires no increase dose to the patient while providing high image quality and accurate estimates of the primary x-ray data. This scatter correction technique was validated through beam stop experiments and comparison of theoretically calculated and measured contrast of thin aluminum and polymethylmethacrelate objects. Measurements taken with various background material thicknesses, both with and without a grid, showed that the slot-scatter corrected contrast and the theoretical contrast were not significantly different given a 99% confidence interval. However, the uncorrected contrast was found to be significantly different from the corrected and theoretical contrasts. These findings indicate that this method of scatter correction can eliminate the effect of scatter on contrast and potentially enable quantitative x-ray imaging.

  19. Quantitative comparison using generalized relative object detectability (G-ROD) metrics of an amorphous selenium detector with high resolution microangiographic fluoroscopes (MAF) and standard flat panel detectors (FPD)

    NASA Astrophysics Data System (ADS)

    Russ, M.; Shankar, A.; Jain, A.; Setlur Nagesh, S. V.; Ionita, C. N.; Scott, C.; Karim, K. S.; Bednarek, D. R.; Rudin, S.

    2016-03-01

    A novel amorphous selenium (a-Se) direct detector with CMOS readout has been designed, and relative detector performance investigated. The detector features include a 25μm pixel pitch, and 1000μm thick a-Se layer operating at 10V/μm bias field. A simulated detector DQE was determined, and used in comparative calculations of the Relative Object Detectability (ROD) family of prewhitening matched-filter (PWMF) observer and non-pre-whitening matched filter (NPWMF) observer model metrics to gauge a-Se detector performance against existing high resolution micro-angiographic fluoroscopic (MAF) detectors and a standard flat panel detector (FPD). The PWMF-ROD or ROD metric compares two x-ray imaging detectors in their relative abilities in imaging a given object by taking the integral over spatial frequencies of the Fourier transform of the detector DQE weighted by an object function, divided by the comparable integral for a different detector. The generalized-ROD (G-ROD) metric incorporates clinically relevant parameters (focal- spot size, magnification, and scatter) to show the degradation in imaging performance for detectors that are part of an imaging chain. Preliminary ROD calculations using simulated spheres as the object predicted superior imaging performance by the a-Se detector as compared to existing detectors. New PWMF-G-ROD and NPWMF-G-ROD results still indicate better performance by the a-Se detector in an imaging chain over all sphere sizes for various focal spot sizes and magnifications, although a-Se performance advantages were degraded by focal spot blurring. Nevertheless, the a-Se technology has great potential to provide break- through abilities such as visualization of fine details including of neuro-vascular perforator vessels and of small vascular devices.

  20. Women with Anorexia Nervosa: Finite Element and Trabecular Structure Analysis by Using Flat-Panel Volume CT

    PubMed Central

    Phan, Catherine M.; Misra, Madhusmita; Bredella, Miriam A.; Miller, Karen K.; Fazeli, Pouneh K.; Bayraktar, Harun H.; Klibanski, Anne; Gupta, Rajiv

    2010-01-01

    Purpose: To use finite element modeling based on flat-panel volume computed tomography (CT) and bone mineral density (BMD) provided by dual-energy x-ray absorptiometry (DXA) to compare bone failure load, stiffness, and trabecular structure in women with anorexia nervosa (AN) and age-matched normal-weight control subjects. Materials and Methods: The study was approved by the institutional review board and complied with HIPAA guidelines. Informed consent was obtained. Fourteen women, eight with AN (mean age, 26.6 years) and six control subjects (mean age, 26.3 years), underwent flat-panel volume CT of the distal radius to determine apparent trabecular bone volume fraction (BV/TV), apparent trabecular number (TbN), apparent trabecular thickness (TbTh), and apparent trabecular separation (TbSp). Bone strength and stiffness were calculated from uniaxial compression tests by using finite element models created from flat-panel volume CT. DXA was used to determine BMD of the radius, lumbar spine, and hip. Means ± standard deviations of all variables were calculated for both groups and compared (Student t test). Univariate regression analysis and stepwise regression modeling were performed. Results: Patients with AN had lower values for stiffness (284.77 kN/mm ± 76.14 vs 389.97 kN/mm ± 84.90, P = .04), failure load (4.98 kN ± 1.23 vs 7.01 kN ± 1.52, P = .02), BV/TV (0.32% ± 0.09 vs 0.44% ± 0.02, P = .007), and TbN (1.15 mm−3 ± 0.20 vs 1.43 mm−3 ± 0.13, P = .008) and higher values for TbSp (0.62 mm ± 0.20 vs 0.40 mm ± 0.04, P = .02) compared with normal-weight control subjects. TbTh was lower in women with AN (P = .1). BMD measurements were significantly lower for the AN group. BMD measurements and trabecular parameters (except TbTh) correlated with stiffness and failure load (r = 0.58 to 0.83). Conclusion: Failure load and stiffness are abnormal in women with AN compared with those in normal-weight control subjects and correlate with BMD and trabecular

  1. Post-buckling of geometrically imperfect shear-deformable flat panels under combined thermal and compressive edge loadings

    NASA Technical Reports Server (NTRS)

    Librescu, L.; Souza, M. A.

    1993-01-01

    The static post-buckling of simply-supported flat panels exposed to a stationary nonuniform temperature field and subjected to a system of subcritical in-plane compressive edge loads is investigated. The study is performed within a refined theory of composite laminated plates incorporating the effect of transverse shear and the geometric nonlinearities. The influence played by a number of effects, among them transverse shear deformation, initial geometric imperfections, the character of the in-plane boundary conditions and thickness ratio are studied and a series of conclusions are outlined. The influence played by the complete temperature field (i.e., the uniform through thickness and thickness-wise gradient) as compared to the one induced by only the uniform one, is discussed and the peculiarities of the resulting post-buckling behaviors are enlightened.

  2. Performance of a flat panel reactor in the continuous culture of microalgae in urban wastewater: prediction from a batch experiment.

    PubMed

    Ruiz, J; Álvarez-Díaz, P D; Arbib, Z; Garrido-Pérez, C; Barragán, J; Perales, J A

    2013-01-01

    A laboratory-scale flat panel photobioreactor was operated for the continuous growth of Scenedesmus obliquus and consequent removal of nutrients in wastewater. This study develops a simple model by which biomass values in continuous operation can be predicted from kinetic growth parameters obtained from a shorter batch experiment. Based on this study, biomass concentrations and productivities in continuous operation can be successfully predicted as a function of the specific hydraulic retention time (HRT) assumed. Considerable biomass production and nutrient uptake from wastewater were achieved in the experiment. Optimum operating conditions for the reactor depend on the particular objective: the maximization of biomass production and carbon dioxide biofixation involves a HRT of 2 μ(-1) (specific growth rate), whereas efficient nutrient removal involves a HRT as close as possible to μ(-1) (as long as discharges comply fully with the parameters set); alternatively biomass intended for biodiesel or biogas production would involve a HRT > 2 μ(-1). PMID:23138070

  3. X-ray imaging using avalanche multiplication in amorphous selenium: Investigation of depth dependent avalanche noise

    SciTech Connect

    Hunt, D. C.; Tanioka, Kenkichi; Rowlands, J. A.

    2007-03-15

    The past decade has seen the swift development of the flat-panel detector (FPD), also known as the active matrix flat-panel imager, for digital radiography. This new technology is applicable to other modalities, such as fluoroscopy, which require the acquisition of multiple images, but could benefit from some improvements. In such applications where more than one image is acquired less radiation is available to form each image and amplifier noise becomes a serious problem. Avalanche multiplication in amorphous selenium (a-Se) can provide the necessary amplification prior to read out so as to reduce the effect of electronic noise of the FPD. However, in direct conversion detectors avalanche multiplication can lead to a new source of gain fluctuation noise called depth dependent avalanche noise. A theoretical model was developed to understand depth dependent avalanche noise. Experiments were performed on a direct imaging system implementing avalanche multiplication in a layer of a-Se to validate the theory. For parameters appropriate for a diagnostic imaging FPD for fluoroscopy the detective quantum efficiency (DQE) was found to drop by as much as 50% with increasing electric field, as predicted by the theoretical model. This drop in DQE can be eliminated by separating the collection and avalanche regions. For example by having a region of low electric field where x rays are absorbed and converted into charge that then drifts into a region of high electric field where the x-ray generated charge undergoes avalanche multiplication. This means quantum noise limited direct conversion FPD for low exposure imaging techniques are a possibility.

  4. Noise variance analysis using a flat panel x-ray detector: A method for additive noise assessment with application to breast CT applications

    SciTech Connect

    Yang Kai; Huang, Shih-Ying; Packard, Nathan J.; Boone, John M.

    2010-07-15

    Purpose: A simplified linear model approach was proposed to accurately model the response of a flat panel detector used for breast CT (bCT). Methods: Individual detector pixel mean and variance were measured from bCT projection images acquired both in air and with a polyethylene cylinder, with the detector operating in both fixed low gain and dynamic gain mode. Once the coefficients of the linear model are determined, the fractional additive noise can be used as a quantitative metric to evaluate the system's efficiency in utilizing x-ray photons, including the performance of different gain modes of the detector. Results: Fractional additive noise increases as the object thickness increases or as the radiation dose to the detector decreases. For bCT scan techniques on the UC Davis prototype scanner (80 kVp, 500 views total, 30 frames/s), in the low gain mode, additive noise contributes 21% of the total pixel noise variance for a 10 cm object and 44% for a 17 cm object. With the dynamic gain mode, additive noise only represents approximately 2.6% of the total pixel noise variance for a 10 cm object and 7.3% for a 17 cm object. Conclusions: The existence of the signal-independent additive noise is the primary cause for a quadratic relationship between bCT noise variance and the inverse of radiation dose at the detector. With the knowledge of the additive noise contribution to experimentally acquired images, system modifications can be made to reduce the impact of additive noise and improve the quantum noise efficiency of the bCT system.

  5. Electron field emission Particle-In-Cell (PIC) coupled with MCNPX simulation of a CNT-based flat-panel x-ray source

    NASA Astrophysics Data System (ADS)

    Grant, Edwin J.; Posada, Chrystian M.; Castaño, Carlos H.; Lee, Hyoung K.

    2011-03-01

    A novel x-ray source based on carbon nanotubes (CNTs) field emitters is being developed as an alternative for medical imaging diagnostic technologies. The design is based on an array of millions of micro sized x-ray sources similar to the way pixels are arranged in flat panel displays. The trajectory and focusing characteristics of the field emitted electrons, as well as the x-ray generation characteristics of each one of the proposed micro-sized x-ray tubes are simulated. The electron field emission is simulated using the OOPIC PRO particle-in-cell code. The x-ray generation is analyzed with the MCNPX Monte Carlo code. MCNPX is used to optimize both the bremsstrahlung radiation energy spectra and to verify the angular distribution for 0.25-12 μm thick molybdenum, rhodium and tungsten targets. Also, different extracting, accelerating and focusing voltages, as well as different focusing structures and geometries of the micro cells are simulated using the OOPIC Pro particle-in-cell code. The electron trajectories, beam spot sizes, I-V curves, bremsstrahlung radiation energy spectra, and angular distribution are all analyzed for a given cell. The simulation results show that micro x-ray cells can be used to generate suitable electron currents using CNT field emitters and strike a thin tungsten target to produce an adequate bremsstrahlung spectrum. The shape and trajectory of the electron beam was modified using focusing structures in the microcell. Further modifications to the electron beam are possible and can help design a better x-ray transmission source.

  6. See-through integral imaging display with background occlusion capability.

    PubMed

    Yamaguchi, Yuta; Takaki, Yasuhiro

    2016-01-20

    Background occlusion capability is provided to a flat-panel-type integral imaging display that has a transparent screen and can superimpose three-dimensional (3D) images on real scenes. A symmetric integral imaging system that comprises two integral imaging systems connected by an additional lens array, is proposed. Elementary images are displayed on a flat-panel display on one integral imaging system to generate 3D images, and the occlusion mask patterns are displayed on a flat-panel display on the other integral imaging system to selectively block rays from background scenes. The proposed system was constructed and experimentally verified. PMID:26835946

  7. Empirical binary tomography calibration (EBTC) for the precorrection of beam hardening and scatter for flat panel CT

    SciTech Connect

    Grimmer, Rainer; Kachelriess, Marc

    2011-04-15

    Purpose: Scatter and beam hardening are prominent artifacts in x-ray CT. Currently, there is no precorrection method that inherently accounts for tube voltage modulation and shaped prefiltration. Methods: A method for self-calibration based on binary tomography of homogeneous objects, which was proposed by B. Li et al. [''A novel beam hardening correction method for computed tomography,'' in Proceedings of the IEEE/ICME International Conference on Complex Medical Engineering CME 2007, pp. 891-895, 23-27 May 2007], has been generalized in order to use this information to preprocess scans of other, nonbinary objects, e.g., to reduce artifacts in medical CT applications. Further on, the method was extended to handle scatter besides beam hardening and to allow for detector pixel-specific and ray-specific precorrections. This implies that the empirical binary tomography calibration (EBTC) technique is sensitive to spectral effects as they are induced by the heel effect, by shaped prefiltration, or by scanners with tube voltage modulation. The presented method models the beam hardening correction by using a rational function, while the scatter component is modeled using the pep model of B. Ohnesorge et al. [''Efficient object scatter correction algorithm for third and fourth generation CT scanners,'' Eur. Radiol. 9(3), 563-569 (1999)]. A smoothness constraint is applied to the parameter space to regularize the underdetermined system of nonlinear equations. The parameters determined are then used to precorrect CT scans. Results: EBTC was evaluated using simulated data of a flat panel cone-beam CT scanner with tube voltage modulation and bow-tie prefiltration and using real data of a flat panel cone-beam CT scanner. In simulation studies, where the ground truth is known, the authors' correction model proved to be highly accurate and was able to reduce beam hardening by 97% and scatter by about 75%. Reconstructions of measured data showed significantly less artifacts than

  8. Luminescent studies of fluorescent chromophore-doped silica aerogels for flat panel display applications

    SciTech Connect

    Glauser, S.A.C.; Lee, H.W.H.

    1997-04-01

    The remarkable optical and electronic properties of doped and undoped silica aerogels establish their utility as unique, mulitfunctional host materials for fluorescent dyes and other luminescent materials for display and imaging applications. We present results on the photoluminescence, absorption, and photoluminescence excitation spectra of undoped silica aerogels and aerogels doped with Er{sup 3+}, rhodamine 6G (R6G), and fluorescein. 4 refs., 12 figs.

  9. Development and evaluation of a portable amorphous silicon flat-panel x-ray detector

    NASA Astrophysics Data System (ADS)

    Watanabe, Minoru; Mochizuki, Chiori; Kameshima, Toshio; Yamazaki, Tatsuya; Court, Laurence; Hayashida, Shinsuke; Morishita, Masakazu; Ohta, Shin-ichi

    2001-06-01

    The design, development and evaluation of a portable x-ray detector are described. The completed detector has a pixel pitch of 100 micrometers , an active imaging area of 22.5 x 27.5 cm2 (9 x 11 inch2), package outer dimensions of 32.5 x 32.5 cm2, a thickness of only 20 mm, and a weight of around 2.8 kg. A number of significant advances in the design and production processes were needed to produce such a compact detector with such a small pixel pitch, while maintaining the image quality achieved a current detector (CXDI-22) which has a 160 mm pixel pitch. These include the development of a low power readout IC, advances in detector packaging design, concentrating on lightweight and strong components, and redesign of the pixel structure to improve the fill-factor. A comparison is made of the imaging characteristics of this new detector with the CXDI-22 detector, and it is shown that the new detector demonstrates improved CTF, and NEQ. The new detector is also shown to demonstrate superior performance in a contrast-detail phantom evaluation. This new detector should be useful for limb and joint examinations as it offers high spatial resolution, combined with the same freedom in positioning provided by conventional screen-film cassettes.

  10. High-performance, cost-effective computer and video interfacing to megapixel flat panel displays (FPDs)

    NASA Astrophysics Data System (ADS)

    Wedding, Carol A.; Stoller, Ray A.

    1994-04-01

    In the Information Age of multimedia computer and presentation, video-telephone conferencing and interactive television, display designs have increased demands for even higher resolution, greater definition, increased color palette, higher speed and large size. These performance demands are required on equipment that is space efficient, transportable, and usable in commercial, industrial and military applications. FPD designs are flourishing because the CRT is neither space efficient or easily transportable, nor cost effective in larger sizes and in ruggedized form. In addition, communications and computing systems for high definition imaging information are based on digital interfacing rather than analog. A video digital interface (VDI) is therefore more cost effective and higher performance for FPDs which use data directly from the computer system and circumvent the analog and rescan conversions that occur for CRTs. Photonics has developed and produces high resolution AC plasma FPDs that can accept both in analog or digital form imaging information that is presented at up to 75 frames per second, 1280 X 1024 full color pixel resolution and 8 bits of gray scale per color channel. This paper explores cost effective and high performance capabilities of the FPD-VDI and how it integrated with high definition computer and communications systems.

  11. Plasma Sprayed Coatings of High-Purity Ceramics for Semiconductor and Flat-Panel-Display Production Equipment

    NASA Astrophysics Data System (ADS)

    Kitamura, Junya; Ibe, Hiroyuki; Yuasa, Fumi; Mizuno, Hiroaki

    2008-12-01

    High-purity oxide ceramic powders of alumina (Al2O3) and yttria (Y2O3) have been developed to apply to semiconductor and flat-panel-display (FPD) production equipment. The ceramic coatings on the inside chamber wall of the equipment are required to have high erosion resistance against CFx plasma in dry etching process for microfabrications of the devices. It is found that the yttria coating formed from agglomerated-and-sintered powder consisting of large primary particles has smoother eroded surface with high erosion resistance. Considering the particle deposition on the devices, this coating will be effective in decreasing generation of large-sized particles, which easily deposit on the devices. Electric insulating properties of the coatings are also investigated to apply to electrostatic chuck. Electric breakdown voltage of yttria coatings is comparable to that of alumina coatings. Smaller powder is effective for improving the electric properties, and the influence of coating purity is lower than that of the powder size.

  12. Flight tests of advanced 3D-PFD with commercial flat-panel avionics displays and EGPWS system

    NASA Astrophysics Data System (ADS)

    He, Gang; Feyereisen, Thea; Gannon, Aaron; Wilson, Blake; Schmitt, John; Wyatt, Sandy; Engels, Jary

    2005-05-01

    This paper describes flight trials of Honeywell Advanced 3D Primary Flight Display System. The system employs a large-format flat-panel avionics display presently used in Honeywell PRIMUS EPIC flight-deck products and is coupled to an on-board EGPWS system. The heads-down primary flight display consists of dynamic primary-flight attitude information, flight-path and approach symbology similar to Honeywell HUD2020 heads-up displays, and a synthetic 3D perspective-view terrain environment generated with Honeywell"s EGPWS terrain data. Numerous flights are conducted on-board Honeywell Citation V aircraft and significant amount of pilot feedback are collected with portion of the data summarized in this paper. The system development is aimed at leveraging several well-established avionics components (HUD, EGPWS, large-format displays) in order to produce an integrated system that significantly reduces pilot workload, increases overall situation awareness, and is more beneficial to flight operations than achievable with separated systems.

  13. Application of flat panel OLED display technology for the point-of-care detection of circulating cancer biomarkers.

    PubMed

    Katchman, Benjamin A; Smith, Joseph T; Obahiagbon, Uwadiae; Kesiraju, Sailaja; Lee, Yong-Kyun; O'Brien, Barry; Kaftanoglu, Korhan; Blain Christen, Jennifer; Anderson, Karen S

    2016-01-01

    Point-of-care molecular diagnostics can provide efficient and cost-effective medical care, and they have the potential to fundamentally change our approach to global health. However, most existing approaches are not scalable to include multiple biomarkers. As a solution, we have combined commercial flat panel OLED display technology with protein microarray technology to enable high-density fluorescent, programmable, multiplexed biorecognition in a compact and disposable configuration with clinical-level sensitivity. Our approach leverages advances in commercial display technology to reduce pre-functionalized biosensor substrate costs to pennies per cm(2). Here, we demonstrate quantitative detection of IgG antibodies to multiple viral antigens in patient serum samples with detection limits for human IgG in the 10 pg/mL range. We also demonstrate multiplexed detection of antibodies to the HPV16 proteins E2, E6, and E7, which are circulating biomarkers for cervical as well as head and neck cancers. PMID:27374875

  14. Performance of a novel 43-cm x 43-cm flat-panel detector with CsI:Tl scintillator

    NASA Astrophysics Data System (ADS)

    Yamazaki, Tatsuya; Tamura, Tomoyuki; Nokita, Makoto; Okada, Satoshi; Hayashida, Shinsuke; Ogawa, Yoshihiro

    2004-05-01

    We have developed a novel flat-panel detector with CsI:Tl scintillator. The detector consists of a single piece 43cm x 43cm amorphous silicon thin-film transistor (TFT) array with MIS (metal-insulator-semiconductor) photoelectric converter having a pixel pitch of 160μm coated with a needle-like crystal CsI:Tl scintillator. Signal chain was totally revised from current detector utilizing an innovative sensor technology. The novel detector and current detector were equipped to a digital radiography system allowing a quantitative and comparative study. Results show that the novel detector has a linear response covering the radiographic exposure range. It has a moderate modulation transfer function (MTF) sufficient to the radiography tasks and effective to suppress the aliasing. The detective quantum efficiency (DQE) was almost twice than the current detector. The result of contrast-detail phantom exposed with a 1/2x dose level is equivalent to that of current detector with a 1x dose level. These results show that performance of novel detector is superior to and expected to reduce the patient dose in half than current detector due to higher DQE and innovative sensor technology.

  15. Application of flat panel OLED display technology for the point-of-care detection of circulating cancer biomarkers

    PubMed Central

    Katchman, Benjamin A.; Smith, Joseph T.; Obahiagbon, Uwadiae; Kesiraju, Sailaja; Lee, Yong-Kyun; O’Brien, Barry; Kaftanoglu, Korhan; Blain Christen, Jennifer; Anderson, Karen S.

    2016-01-01

    Point-of-care molecular diagnostics can provide efficient and cost-effective medical care, and they have the potential to fundamentally change our approach to global health. However, most existing approaches are not scalable to include multiple biomarkers. As a solution, we have combined commercial flat panel OLED display technology with protein microarray technology to enable high-density fluorescent, programmable, multiplexed biorecognition in a compact and disposable configuration with clinical-level sensitivity. Our approach leverages advances in commercial display technology to reduce pre-functionalized biosensor substrate costs to pennies per cm2. Here, we demonstrate quantitative detection of IgG antibodies to multiple viral antigens in patient serum samples with detection limits for human IgG in the 10 pg/mL range. We also demonstrate multiplexed detection of antibodies to the HPV16 proteins E2, E6, and E7, which are circulating biomarkers for cervical as well as head and neck cancers. PMID:27374875

  16. Lag and ghosting in a clinical flat-panel selenium digital mammography system

    SciTech Connect

    Bloomquist, Aili K.; Yaffe, Martin J.; Mawdsley, Gordon E.; Hunter, David M.; Beideck, Daniel J.

    2006-08-15

    We present measurements of lag and ghosting in a FDA-approved digital mammography system that uses a dielectric/selenium based detector structure. Lag is the carryover of signal from a previous image, whereas ghosting is the reduction of sensitivity caused by previous exposure history of the detector. Data from six selenium units were acquired. For the type of selenium detector tested, and under typical clinical usage conditions, the lag was as high as 0.15% of source signal and the ghosting could be as high as 15%. The amount of lag and ghosting varied from unit to unit. Results were compared with data acquired on a phosphor-based full-field digital mammography system. Modifications in the technology of the selenium detectors appear to have resulted in a marked decrease in both lag and ghosting effects in more recent systems.

  17. An investigation of signal performance enhancements achieved through innovative pixel design across several generations of indirect detection, active matrix, flat-panel arrays

    SciTech Connect

    Antonuk, Larry E.; Zhao Qihua; El-Mohri, Youcef; Du Hong; Wang Yi; Street, Robert A.; Ho, Jackson; Weisfield, Richard; Yao, William

    2009-07-15

    Active matrix flat-panel imager (AMFPI) technology is being employed for an increasing variety of imaging applications. An important element in the adoption of this technology has been significant ongoing improvements in optical signal collection achieved through innovations in indirect detection array pixel design. Such improvements have a particularly beneficial effect on performance in applications involving low exposures and/or high spatial frequencies, where detective quantum efficiency is strongly reduced due to the relatively high level of additive electronic noise compared to signal levels of AMFPI devices. In this article, an examination of various signal properties, as determined through measurements and calculations related to novel array designs, is reported in the context of the evolution of AMFPI pixel design. For these studies, dark, optical, and radiation signal measurements were performed on prototype imagers incorporating a variety of increasingly sophisticated array designs, with pixel pitches ranging from 75 to 127 {mu}m. For each design, detailed measurements of fundamental pixel-level properties conducted under radiographic and fluoroscopic operating conditions are reported and the results are compared. A series of 127 {mu}m pitch arrays employing discrete photodiodes culminated in a novel design providing an optical fill factor of {approx}80% (thereby assuring improved x-ray sensitivity), and demonstrating low dark current, very low charge trapping and charge release, and a large range of linear signal response. In two of the designs having 75 and 90 {mu}m pitches, a novel continuous photodiode structure was found to provide fill factors that approach the theoretical maximum of 100%. Both sets of novel designs achieved large fill factors by employing architectures in which some, or all of the photodiode structure was elevated above the plane of the pixel addressing transistor. Generally, enhancement of the fill factor in either discrete or

  18. An investigation of signal performance enhancements achieved through innovative pixel design across several generations of indirect detection, active matrix, flat-panel arrays

    PubMed Central

    Antonuk, Larry E.; Zhao, Qihua; El-Mohri, Youcef; Du, Hong; Wang, Yi; Street, Robert A.; Ho, Jackson; Weisfield, Richard; Yao, William

    2009-01-01

    Active matrix flat-panel imager (AMFPI) technology is being employed for an increasing variety of imaging applications. An important element in the adoption of this technology has been significant ongoing improvements in optical signal collection achieved through innovations in indirect detection array pixel design. Such improvements have a particularly beneficial effect on performance in applications involving low exposures and∕or high spatial frequencies, where detective quantum efficiency is strongly reduced due to the relatively high level of additive electronic noise compared to signal levels of AMFPI devices. In this article, an examination of various signal properties, as determined through measurements and calculations related to novel array designs, is reported in the context of the evolution of AMFPI pixel design. For these studies, dark, optical, and radiation signal measurements were performed on prototype imagers incorporating a variety of increasingly sophisticated array designs, with pixel pitches ranging from 75 to 127 μm. For each design, detailed measurements of fundamental pixel-level properties conducted under radiographic and fluoroscopic operating conditions are reported and the results are compared. A series of 127 μm pitch arrays employing discrete photodiodes culminated in a novel design providing an optical fill factor of ∼80% (thereby assuring improved x-ray sensitivity), and demonstrating low dark current, very low charge trapping and charge release, and a large range of linear signal response. In two of the designs having 75 and 90 μm pitches, a novel continuous photodiode structure was found to provide fill factors that approach the theoretical maximum of 100%. Both sets of novel designs achieved large fill factors by employing architectures in which some, or all of the photodiode structure was elevated above the plane of the pixel addressing transistor. Generally, enhancement of the fill factor in either discrete or continuous

  19. Novel Na(+) doped Alq3 hybrid materials for organic light-emitting diode (OLED) devices and flat panel displays.

    PubMed

    Bhagat, S A; Borghate, S V; Kalyani, N Thejo; Dhoble, S J

    2015-05-01

    Pure and Na(+) -doped Alq3 complexes were synthesized by a simple precipitation method at room temperature, maintaining a stoichiometric ratio. These complexes were characterized by X-ray diffraction, Fourier transform infrared (FTIR), UV/Vis absorption and photoluminescence (PL) spectra. The X-ray diffractogram exhibits well-resolved peaks, revealing the crystalline nature of the synthesized complexes, FTIR confirms the molecular structure and the completion of quinoline ring formation in the metal complex. UV/Vis absorption and PL spectra of sodium-doped Alq3 complexes exhibit high emission intensity in comparison with Alq3 phosphor, proving that when doped in Alq3 , Na(+) enhances PL emission intensity. The excitation spectra of the synthesized complexes lie in the range 242-457 nm when weak shoulders are also considered. Because the sharp excitation peak falls in the blue region of visible radiation, the complexes can be employed for blue chip excitation. The emission wavelength of all the synthesized complexes lies in the bluish green/green region ranging between 485 and 531 nm. The intensity of the emission wavelength was found to be elevated when Na(+) is doped into Alq3 . Because both the excitation and emission wavelengths fall in the visible region of electromagnetic radiation, these phosphors can also be employed to improve the power conversion efficiency of photovoltaic cells by using the solar spectral conversion principle. Thus, the synthesized phosphors can be used as bluish green/green light-emitting phosphors for organic light-emitting diodes, flat panel displays, solid-state lighting technology - a step towards the desire to reduce energy consumption and generate pollution free light. PMID:25045087

  20. Accuracy of thoracolumbar transpedicular and vertebral body percutaneous screw placement: coupling the Rosa® Spine robot with intraoperative flat-panel CT guidance--a cadaver study.

    PubMed

    Lefranc, M; Peltier, J

    2015-12-01

    The primary objective of the present study was to evaluate the accuracy of a new robotic device when coupled with intraoperative flat-panel CT guidance. Screws (D8-S1) were implanted during two separate cadaver sessions by coupling the Rosa(®) Spine robot with the flat-panel CT device. Of 38 implanted screws, 37 (97.4 %) were fully contained within the pedicle. One screw breached the lateral cortical of one pedicle by <1 mm. The mean ± SD accuracy (relative to pre-operative planning) was 2.05 ± 1.2 mm for the screw head, 1.65 ± 1.11 for the middle of the pedicle and 1.57 ± 1.01 for the screw tip. When coupled with intraoperative flat-panel CT guidance, the Rosa(®) Spine robot appears to be accurate in placing pedicle screws within both pedicles and the vertebral body. Large clinical studies are mandatory to confirm this preliminary cadaveric report. PMID:26530846

  1. A compact high resolution flat panel PET detector based on the new 4-side buttable MPPC for biomedical applications

    NASA Astrophysics Data System (ADS)

    Wang, Qiang; Wen, Jie; Ravindranath, Bosky; O`Sullivan, Andrew W.; Catherall, David; Li, Ke; Wei, Shouyi; Komarov, Sergey; Tai, Yuan-Chuan

    2015-09-01

    Compact high-resolution panel detectors using virtual pinhole (VP) PET geometry can be inserted into existing clinical or pre-clinical PET systems to improve regional spatial resolution and sensitivity. Here we describe a compact panel PET detector built using the new Though Silicon Via (TSV) multi-pixel photon counters (MPPC) detector. This insert provides high spatial resolution and good timing performance for multiple bio-medical applications. Because the TSV MPPC design eliminates wire bonding and has a package dimension which is very close to the MPPC's active area, it is 4-side buttable. The custom designed MPPC array (based on Hamamatsu S12641-PA-50(x)) used in the prototype is composed of 4×4 TSV-MPPC cells with a 4.46 mm pitch in both directions. The detector module has 16×16 lutetium yttrium oxyorthosilicate (LYSO) crystal array, with each crystal measuring 0.92×0.92×3 mm3 with 1.0 mm pitch. The outer diameter of the detector block is 16.8×16.8 mm2. Thirty-two such blocks will be arranged in a 4×8 array with 1 mm gaps to form a panel detector with detection area around 7 cm×14 cm in the full-size detector. The flood histogram acquired with 68Ge source showed excellent crystal separation capability with all 256 crystals clearly resolved. The detector module's mean, standard deviation, minimum (best) and maximum (worst) energy resolution were 10.19%, ±0.68%, 8.36% and 13.45% FWHM, respectively. The measured coincidence time resolution between the block detector and a fast reference detector (around 200 ps single photon timing resolution) was 0.95 ns. When tested with Siemens Cardinal electronics the performance of the detector blocks remain consistent. These results demonstrate that the TSV-MPPC is a promising photon sensor for use in a flat panel PET insert composed of many high resolution compact detector modules.

  2. Generation of diverse neural cell types through direct conversion

    PubMed Central

    Petersen, Gayle F; Strappe, Padraig M

    2016-01-01

    A characteristic of neurological disorders is the loss of critical populations of cells that the body is unable to replace, thus there has been much interest in identifying methods of generating clinically relevant numbers of cells to replace those that have been damaged or lost. The process of neural direct conversion, in which cells of one lineage are converted into cells of a neural lineage without first inducing pluripotency, shows great potential, with evidence of the generation of a range of functional neural cell types both in vitro and in vivo, through viral and non-viral delivery of exogenous factors, as well as chemical induction methods. Induced neural cells have been proposed as an attractive alternative to neural cells derived from embryonic or induced pluripotent stem cells, with prospective roles in the investigation of neurological disorders, including neurodegenerative disease modelling, drug screening, and cellular replacement for regenerative medicine applications, however further investigations into improving the efficacy and safety of these methods need to be performed before neural direct conversion becomes a clinically viable option. In this review, we describe the generation of diverse neural cell types via direct conversion of somatic cells, with comparison against stem cell-based approaches, as well as discussion of their potential research and clinical applications. PMID:26981169

  3. Direct conversion technology: Annual summary report CY 1988

    SciTech Connect

    Massier, P.F.; Bankston, C.P.; Fabris, G.; Kirol, L.D.

    1988-12-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct thermal-to-electric energy conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC), and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1988 through December 1988. Research on these concepts was initiated during October 1987. In addition, status reviews and assessments are presented for thermomagnetic converter concepts and for thermoelastic converters (Nitinol heat engines). Reports prepared on previous occasions contain discussions on the following other direct conversion concepts: thermoelectric, pyroelectric, thermionic thermophotovoltaic and thermoacoustic; and also, more complete discussions of AMTEC and LMMHD systems. A tabulated summary of the various systems which have been reviewed thus far has been prepared. Some of the important technical research needs are listed and a schematic of each system is shown. These tabulations are included herein as figures. 43 refs., 26 figs., 1 tab.

  4. A novel potential source of β-carotene: Eustigmatos cf. polyphem (Eustigmatophyceae) and pilot β-carotene production in bubble column and flat panel photobioreactors.

    PubMed

    Li, Zhen; Ma, Xiaoqin; Li, Aifen; Zhang, Chengwu

    2012-08-01

    Carotenoids profile of the unicellular Eustigmatos cf. polyphem (Eustigmatophyceae) and β-carotene production of the microalga in bubble column and large flat panel bioreactors were studied. The microalga which contained β-carotene, violaxanthin and vaucheriaxanthin as the major carotenoids accumulated large amount of β-carotene. The β-carotene production of this microalga in the bubble column bioreactor was considerable, with the maximum intracellular β-carotene content reaching 60.76 mg g(-1), biomass reaching 9.2 g L(-1), and β-carotene yield up to 470.2 mg L(-1). The β-carotene productions in two large flat panel bioreactors were relatively lower, whereas over 100 mg β-carotene L(-1) was achieved. Besides, high light intensity helped to accumulate intracellular β-carotene and biomass. Deficient nitrate supply inhibited biomass growth, though it helped to accumulate β-carotene. Our results first proved that E. cf. polyphem was a potential source and producer of β-carotene, making it an interesting subject for further β-carotene study or commercial exploration. PMID:22617035

  5. Method for direct conversion of gaseous hydrocarbons to liquids

    DOEpatents

    Kong, Peter C.; Lessing, Paul A.

    2006-03-07

    A chemical reactor for direct conversion of hydrocarbons includes a dielectric barrier discharge plasma cell and a solid oxide electrochemical cell in fluid communication therewith. The discharge plasma cell comprises a pair of electrodes separated by a dielectric material and passageway therebetween. The electrochemical cell comprises a mixed-conducting solid oxide electrolyte membrane tube positioned between a porous cathode and a porous anode, and a gas inlet tube for feeding oxygen containing gas to the porous cathode. An inlet is provided for feeding hydrocarbons to the passageway of the discharge plasma cell, and an outlet is provided for discharging reaction products from the reactor. A packed bed catalyst may optionally be used in the reactor to increase efficiency of conversion. The reactor can be modified to allow use of a light source for directing ultraviolet light into the discharge plasma cell and the electrochemical cell.

  6. Direct conversion of terpenylalkanolamines to ethylidyne N-nitroso compounds

    USGS Publications Warehouse

    Abidi, S.L.

    1986-01-01

    A series of mono- and diterpenylalkanolamines bearing isopropylidene functionality on the terpene group was reacted with sodium nitrite in aqueous acetic acid to yield ethylidyne N-nitroso analogues. The key feature of this direct conversion involved initial N-nitrosation followed by apparent elimination of a "CH4" unit (not necessarily methane) from the isopropylidene double bond. The product distribution data for ethylidyne nitrosamines derived from tertiary terpenyl alkanolamines reflect the conformational outcome of the nitrosative dealkylation process. For β,γ-unsaturated allylic diterpenylethanolamines, electronic effects appeared to be important for controlling the product distribution of ethylidyne nitrosamines in light of the highly selective α-cleavage observed in the nitrosation reactions.

  7. Photoelectrochemical based direct conversion systems for hydrogen production

    SciTech Connect

    Kocha, S.; Peterson, M.; Arent, D.

    1996-10-01

    Photon driven, direct conversion systems consist of a light absorber and a water splitting catalyst as a monolithic system; water is split directly upon illumination. This one-step process eliminates the need to generate electricity externally and subsequently feed it to an electrolyzer. These configurations require only the piping necessary for transport of hydrogen to an external storage system or gas pipeline. This work is focused on multiphoton photoelectrochemical devices for production of hydrogen directly using sunlight and water. Two types of multijunction cells, one consisting of a-Si triple junctions and the other GaInP{sub 2}/GaAs homojunctions, were studied for the photoelectrochemical decomposition of water into hydrogen and oxygen from an aqueous electrolyte solution. To catalyze the water decomposition process, the illuminated surface of the device was modified either by addition of platinum colloids or by coating with ruthenium dioxide. These colloids have been characterized by gel electrophoresis.

  8. 25 kW solar photovoltaic flat panel power supply for an electrodialysis water desalination unit in New Mexico. Final report, 1 October 1978-31 May 1979

    SciTech Connect

    Wood, J.R.; Crutcher, J.L.

    1980-06-01

    The stand-alone system designed by Mobil Tyco Solar Energy Corporation consists of a 25 kW flat panel array employing silicon ribbon solar cells, used in conjunction with a lead-acid battery bank to provide the complete power requirements of an electrodialysis water desalination unit. The Mobil Tyco system design is intended to be prototypical of part of the drinking water supply for a remote village. The specific task which this system will perform during Phase III is to aid in the restoration of an aquifer following a uranium leaching operation by the Energy Minerals Division of Mobil Oil Corporation at a site which is approximately four miles from the township of Crownpoint in northwestern New Mexico. System design is described, and a detailed description of a mathematical model and computerized simulation of the system is included. (WHK)

  9. Evaluation of the additive noise of a flat panel detector and its effect on cone-beam CT applications

    NASA Astrophysics Data System (ADS)

    Yang, Kai; Huang, Shih-Ying C.; Packard, Nathan J.; Boone, John M.

    2009-02-01

    Cone-beam systems designed for breast cancer detection bear a unique radiation dose limitation and are vulnerable to the additive noise from the detector. Additive noise is the signal fluctuation from detector elements and is independent of the incident exposure level. In this study, two different approaches (single pixel based and region of interest based) to measure the additive noise were explored using continuously acquired air images at different exposure levels, with both raw images and flat-field corrected images. The influence from two major factors, inter-pixel variance and image lag, were studied. The pixel variance measured from dark images was used as the gold standard (for the entire detector 15.12+/-1.3 ADU2) for comparison. Image noise propagation through reconstruction procedures was also investigated and a mathematically derived quadratic relationship between the image noise and the inverse of the radiation dose was confirmed with experiment data. The additive noise level was proved to affect the CT image noise as the second order coefficient and thus determines the lower limit of the scan radiation dose, above which the scanner operates at quantum limited region and utilizes the x-ray photon most efficiently.

  10. State-of-the-art for large area high resolution gray scale and full color AC plasma flat panel displays

    NASA Technical Reports Server (NTRS)

    Stoller, Ray A.; Wedding, Donald K.; Friedman, Peter S.

    1993-01-01

    A development status evaluation is presented for gas plasma display technology, noting how tradeoffs among the parameters of size, resolution, speed, portability, color, and image quality can yield cost-effective solutions for medical imaging, CAD, teleconferencing, multimedia, and both civil and military applications. Attention is given to plasma-based large-area displays' suitability for radar, sonar, and IR, due to their lack of EM susceptibility. Both monochrome and color displays are available.

  11. Single-layer and dual-layer contrast-enhanced mammography using amorphous selenium flat panel detectors

    NASA Astrophysics Data System (ADS)

    Allec, N.; Abbaszadeh, S.; Karim, K. S.

    2011-09-01

    The accumulation of injected contrast agents allows the image enhancement of lesions through the use of contrast-enhanced mammography. In this technique, the combination of two acquired images is used to create an enhanced image. There exist several methods to acquire the images to be combined, which include dual energy subtraction using a single detection layer that suffers from motion artifacts due to patient motion between image acquisition. To mitigate motion artifacts, a detector composed of two layers may be used to simultaneously acquire the low and high energy images. In this work, we evaluate both of these methods using amorphous selenium as the detection material to find the system parameters (tube voltage, filtration, photoconductor thickness and relative intensity ratio) leading to the optimal performance. We then compare the performance of the two detectors under the variation of contrast agent concentration, tumor size and dose. The detectability was found to be most comparable at the lower end of the evaluated factors. The single-layer detector not only led to better contrast, due to its greater spectral separation capabilities, but also had lower quantum noise. The single-layer detector was found to have a greater detectability by a factor of 2.4 for a 2.5 mm radius tumor having a contrast agent concentration of 1.5 mg ml-1 in a 4.5 cm thick 50% glandular breast. The inclusion of motion artifacts in the comparison is part of ongoing research efforts.

  12. Hybrid Pixel Detectors for gamma/X-ray imaging

    NASA Astrophysics Data System (ADS)

    Hatzistratis, D.; Theodoratos, G.; Zografos, V.; Kazas, I.; Loukas, D.; Lambropoulos, C. P.

    2015-09-01

    Hybrid pixel detectors are made by direct converting high-Z semi-insulating single crystalline material coupled to complementary-metal-oxide semiconductor (CMOS) readout electronics. They are attractive because direct conversion exterminates all the problems of spatial localization related to light diffusion, energy resolution, is far superior from the combination of scintillation crystals and photomultipliers and lithography can be used to pattern electrodes with very fine pitch. We are developing 2-D pixel CMOS ASICs, connect them to pixilated CdTe crystals with the flip chip and bump bonding method and characterize the hybrids. We have designed a series of circuits, whose latest member consists of a 50×25 pixel array with 400um pitch and an embedded controller. In every pixel a full spectroscopic channel with time tagging information has been implemented. The detectors are targeting Compton scatter imaging and they can be used for coded aperture imaging too. Hybridization using CMOS can overcome the limit put on pixel circuit complexity by the use of thin film transistors (TFT) in large flat panels. Hybrid active pixel sensors are used in dental imaging and other applications (e.g. industrial CT etc.). Thus X-ray imaging can benefit from the work done on dynamic range enhancement methods developed initially for visible and infrared CMOS pixel sensors. A 2-D CMOS ASIC with 100um pixel pitch to demonstrate the feasibility of such methods in the context of X-ray imaging has been designed.

  13. Flat-Panel Cone-Beam Ct-Guided Radiofrequency Ablation of Very Small (≤1.5 cm) Liver Tumors: Technical Note on a Preliminary Experience

    SciTech Connect

    Cazzato, Roberto Luigi Buy, Xavier Alberti, Nicolas Fonck, Mariane; Grasso, Rosario Francesco; Palussière, Jean

    2015-02-15

    PurposeThe aim of the present study was to investigate the technical feasibility of flat-panel cone-beam CT (CBCT)-guided radiofrequency ablation (RFA) of very small (<1.5 cm) liver tumors.Materials and MethodsPatients included were candidates for hepatic percutaneous RFA as they had single biopsy-proven hepatic tumors sized ≤1.5 cm and poorly defined on ultrasonography. Following apnea induction, unenhanced CBCT scans were acquired and used to deploy the RF electrode with the aid of a virtual navigation system. If the tumor was not clearly identified on the unenhanced CBCT scan, a right retrograde arterial femoral access was established to carry out hepatic angiography and localize the tumor. Patients’ lesions and procedural variables were recorded and analyzed.ResultsThree patients (2 male and 1 female), aged 68, 76, and 87 years were included; 3 lesions (2 hepato-cellular carcinoma and 1 metastasis from colorectal cancer) were treated. One patient required hepatic angiography. Cycles of apnea used to acquire CBCT images and to deploy the electrode lasted <120 s. Mean fluoroscopic time needed to deploy the electrode was 36.6 ± 5.7 min. Mean overall procedural time was 66.0 ± 22.9 min. No peri- or post-procedural complications were noted. No cases of incomplete ablation were noted at 1-month follow-up.ConclusionPercutaneous CBCT-guided liver RFA with or without arterial hepatic angiography is technically feasible.

  14. Uterine Artery Embolization for Leiomyomata: Optimization of the Radiation Dose to the Patient Using a Flat-Panel Detector Angiographic Suite

    SciTech Connect

    Sapoval, Marc Pellerin, Olivier; Rehel, Jean-Luc; Houdoux, Nicolas; Rahmoune, Ghizlaine; Aubert, Bernard; Fitton, Isabelle

    2010-10-15

    The purpose of this study was to assess the ability of low-dose/low-frame fluoroscopy/angiography with a flat-panel detector angiographic suite to reduce the dose delivered to patients during uterine fibroid embolization (UFE). A two-step prospective dosimetric study was conducted, with a flat-panel detector angiography suite (Siemens Axiom Artis) integrating automatic exposure control (AEC), during 20 consecutive UFEs. Patient dosimetry was performed using calibrated thermoluminescent dosimeters placed on the lower posterior pelvis skin. The first step (10 patients; group A) consisted in UFE (bilateral embolization, calibrated microspheres) performed using the following parameters: standard fluoroscopy (15 pulses/s) and angiography (3 frames/s). The second step (next consecutive 10 patients; group B) used low-dose/low-frame fluoroscopy (7.5 pulses/s for catheterization and 3 pulses/s for embolization) and angiography (1 frame/s). We also recorded the total dose-area product (DAP) delivered to the patient and the fluoroscopy time as reported by the manufacturer's dosimetry report. The mean peak skin dose decreased from 2.4 {+-} 1.3 to 0.4 {+-} 0.3 Gy (P = 0.001) for groups A and B, respectively. The DAP values decreased from 43,113 {+-} 27,207 {mu}Gy m{sup 2} for group A to 9,515 {+-} 4,520 {mu}Gy m{sup 2} for group B (P = 0.003). The dose to ovaries and uterus decreased from 378 {+-} 238 mGy (group A) to 83 {+-} 41 mGy (group B) and from 388 {+-} 246 mGy (group A) to 85 {+-} 39 mGy (group B), respectively. Effective doses decreased from 112 {+-} 71 mSv (group A) to 24 {+-} 12 mSv (group B) (P = 0.003). In conclusion, the use of low-dose/low-frame fluoroscopy/angiography, based on a good understanding of the AEC system and also on the technique during uterine fibroid embolization, allows a significant decrease in the dose exposure to the patient.

  15. Hydrogen production by the engineered cyanobacterial strain Nostoc PCC 7120 ΔhupW examined in a flat panel photobioreactor system.

    PubMed

    Nyberg, Marcus; Heidorn, Thorsten; Lindblad, Peter

    2015-12-10

    Nitrogenase based hydrogen production was examined in a ΔhupW strain of the filamentous heterocystous cyanobacterium Nostoc PCC 7120, i.e., cells lacking the last step in the maturation system of the large subunit of the uptake hydrogenase and as a consequence with a non-functional uptake hydrogenase. The cells were grown in a developed flat panel photobioreactor system with 3.0L culture volume either aerobically (air) or anaerobically (Ar or 80% N2/20% Ar) and illuminated with a mixture of red and white LED. Aerobic growth of the ΔhupW strain of Nostoc PCC 7120 at 44μmolar photons m(-2)s(-1) PAR gave the highest hydrogen production of 0.7mL H2 L(-1)h(-1), 0.53mmol H2 mg chlorophyll a(-1)h(-1), and a light energy conversion efficiency of 1.2%. Anaerobic growth using 100% argon showed a maximal hydrogen production of 1.7mLL(-1)h(-1), 0.85mmol per mg chlorophyll a(-1) h(-1), and a light energy conversion efficiency of 2.7%. Altering between argon/N2 (20/80) and 100% argon phases resulted in a maximal hydrogen production at hour 128 (100% argon phase) with 6.2mL H2L(-1)h(-1), 0.71mL H2 mg chlorophyll a(-1)h(-1), and a light energy efficiency conversion of 4.0%. The highest buildup of hydrogen gas observed was 6.89% H2 (100% argon phase) of the total photobioreactor system with a maximal production of 4.85mL H2 L(-1)h(-1). The present study clearly demonstrates the potential to use purpose design cyanobacteria in developed flat panel photobioreactor systems for the direct production of the solar fuel hydrogen. Further improvements in the strain used, environmental conditions employed, and growth, production and collection systems used, are needed before a sustainable and economical cyanobacterial based hydrogen production can be realized. PMID:26325196

  16. 32 CFR Appendix C to Part 169a - Simplified Cost Comparison and Direct Conversion of CAs

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 1 2013-07-01 2013-07-01 false Simplified Cost Comparison and Direct Conversion of CAs C Appendix C to Part 169a National Defense Department of Defense OFFICE OF THE SECRETARY OF... 169a—Simplified Cost Comparison and Direct Conversion of CAs A. This appendix provides guidance...

  17. 32 CFR Appendix C to Part 169a - Simplified Cost Comparison and Direct Conversion of CAs

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 1 2012-07-01 2012-07-01 false Simplified Cost Comparison and Direct Conversion of CAs C Appendix C to Part 169a National Defense Department of Defense OFFICE OF THE SECRETARY OF... 169a—Simplified Cost Comparison and Direct Conversion of CAs A. This appendix provides guidance...

  18. 32 CFR Appendix C to Part 169a - Simplified Cost Comparison and Direct Conversion of CAs

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 1 2011-07-01 2011-07-01 false Simplified Cost Comparison and Direct Conversion of CAs C Appendix C to Part 169a National Defense Department of Defense OFFICE OF THE SECRETARY OF... 169a—Simplified Cost Comparison and Direct Conversion of CAs A. This appendix provides guidance...

  19. 32 CFR Appendix C to Part 169a - Simplified Cost Comparison and Direct Conversion of CAs

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false Simplified Cost Comparison and Direct Conversion of CAs C Appendix C to Part 169a National Defense Department of Defense OFFICE OF THE SECRETARY OF... 169a—Simplified Cost Comparison and Direct Conversion of CAs A. This appendix provides guidance...

  20. 32 CFR Appendix C to Part 169a - Simplified Cost Comparison and Direct Conversion of CAs

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 1 2014-07-01 2014-07-01 false Simplified Cost Comparison and Direct Conversion of CAs C Appendix C to Part 169a National Defense Department of Defense OFFICE OF THE SECRETARY OF... 169a—Simplified Cost Comparison and Direct Conversion of CAs A. This appendix provides guidance...

  1. SU-D-204-05: Quantitative Comparison of a High Resolution Micro-Angiographic Fluoroscopic (MAF) Detector with a Standard Flat Panel Detector (FPD) Using the New Metric of Generalized Measured Relative Object Detectability (GM-ROD)

    SciTech Connect

    Russ, M; Ionita, C; Bednarek, D; Rudin, S

    2015-06-15

    Purpose: In endovascular image-guided neuro-interventions, visualization of fine detail is paramount. For example, the ability of the interventionist to visualize the stent struts depends heavily on the x-ray imaging detector performance. Methods: A study to examine the relative performance of the high resolution MAF-CMOS (pixel size 75µm, Nyquist frequency 6.6 cycles/mm) and a standard Flat Panel Detector (pixel size 194µm, Nyquist frequency 2.5 cycles/mm) detectors in imaging a neuro stent was done using the Generalized Measured Relative Object Detectability (GM-ROD) metric. Low quantum noise images of a deployed stent were obtained by averaging 95 frames obtained by both detectors without changing other exposure or geometric parameters. The square of the Fourier transform of each image is taken and divided by the generalized normalized noise power spectrum to give an effective measured task-specific signal-to-noise ratio. This expression is then integrated from 0 to each of the detector’s Nyquist frequencies, and the GM-ROD value is determined by taking a ratio of the integrals for the MAF-CMOS to that of the FPD. The lower bound of integration can be varied to emphasize high frequencies in the detector comparisons. Results: The MAF-CMOS detector exhibits vastly superior performance over the FPD when integrating over all frequencies, yielding a GM-ROD value of 63.1. The lower bound of integration was stepped up in increments of 0.5 cycles/mm for higher frequency comparisons. As the lower bound increased, the GM-ROD value was augmented, reflecting the superior performance of the MAF-CMOS in the high frequency regime. Conclusion: GM-ROD is a versatile metric that can provide quantitative detector and task dependent comparisons that can be used as a basis for detector selection. Supported by NIH Grant: 2R01EB002873 and an equipment grant from Toshiba Medical Systems Corporation.

  2. Does Preinterventional Flat-Panel Computer Tomography Pooled Blood Volume Mapping Predict Final Infarct Volume After Mechanical Thrombectomy in Acute Cerebral Artery Occlusion?

    SciTech Connect

    Wagner, Marlies; Kyriakou, Yiannis; Mesnil de Rochemont, Richard du; Singer, Oliver C.; Berkefeld, Joachim

    2013-08-01

    PurposeDecreased cerebral blood volume is known to be a predictor for final infarct volume in acute cerebral artery occlusion. To evaluate the predictability of final infarct volume in patients with acute occlusion of the middle cerebral artery (MCA) or the distal internal carotid artery (ICA) and successful endovascular recanalization, pooled blood volume (PBV) was measured using flat-panel detector computed tomography (FPD CT).Materials and MethodsTwenty patients with acute unilateral occlusion of the MCA or distal ACI without demarcated infarction, as proven by CT at admission, and successful Thrombolysis in cerebral infarction score (TICI 2b or 3) endovascular thrombectomy were included. Cerebral PBV maps were acquired from each patient immediately before endovascular thrombectomy. Twenty-four hours after recanalization, each patient underwent multislice CT to visualize final infarct volume. Extent of the areas of decreased PBV was compared with the final infarct volume proven by follow-up CT the next day.ResultsIn 15 of 20 patients, areas of distinct PBV decrease corresponded to final infarct volume. In 5 patients, areas of decreased PBV overestimated final extension of ischemia probably due to inappropriate timing of data acquisition and misery perfusion.ConclusionPBV mapping using FPD CT is a promising tool to predict areas of irrecoverable brain parenchyma in acute thromboembolic stroke. Further validation is necessary before routine use for decision making for interventional thrombectomy.

  3. A study on 100 MeV O7+ irradiated SnO2/Ag/SnO2 multilayer as transparent electrode for flat panel display application

    NASA Astrophysics Data System (ADS)

    Sharma, Vikas; Singh, Satyavir; Asokan, K.; Sachdev, Kanupriya

    2016-07-01

    The multilayer thin films of SnO2/Ag/SnO2 were deposited using electron-beam and thermal evaporation for flat panel display application. The as-prepared SnO2/Ag/SnO2 specimen was irradiated with 100 MeV O7+ ions by varying the fluences 1 × 1012 and 5 × 1012 ions/cm2. The pristine and irradiated films were investigated using XRD, SEM, AFM and Raman to find out modification in the structure and surface morphology of the films. UV-Vis and Hall measurement techniques were used to investigate the optical and electrical properties respectively. It was observed that the roughness of the film after irradiation (for the fluence of 1 × 1012 ions/cm2) ​ decreased to 0.68 nm from 1.6 nm and showed an increase in roughness to 1.35 nm on increasing the fluence to 5 × 1012 ions/cm2. This oxide/metal/oxide structure fulfills the basic requirements of a TCE, like high-transmittance >75% for pristine and >80% for the fluence of 1 × 1012 ions/cm2 over a broad spectrum of visible light for practical applications. The multilayer structure shows change in the electrical resistivity from 1.6 × 10-3 Ω cm to 6.3 × 10-3 Ω cm after irradiation.

  4. Matrix formalism of electromagnetic wave propagation through multiple layers in the near-field region: application to the flat panel display.

    PubMed

    Lee, C Y; Lee, D E; Hong, Y K; Shim, J H; Jeong, C K; Joo, J; Zang, D S; Shim, M G; Lee, J J; Cha, J K; Yang, H G

    2003-04-01

    We have developed an electromagnetic (EM) wave propagation theory through a single layer and multiple layers in the near-field and far-field regions, and have constructed a matrix formalism in terms of the boundary conditions of the EM waves. From the shielding efficiency (SE) against EM radiation in the near-field region calculated by using the matrix formalism, we propose that the effect of multiple layers yields enhanced shielding capability compared to a single layer with the same total thickness in conducting layers as the multiple layers. We compare the intensities of an EM wave propagating through glass coated with conducting indium tin oxide (ITO) on one side and on both sides, applying it to the electromagnetic interference (EMI) shielding filter in a flat panel display such as a plasma display panel (PDP). From the measured intensities of EMI noise generated by a PDP loaded with ITO coated glass samples, the two-side coated glass shows a lower intensity of EMI noise compared to the one-side coated glass. The result confirms the enhancement of the SE due to the effect of multiple layers, as expected in the matrix formalism of EM wave propagation in the near-field region. In the far-field region, the two-side coated glass with ITO in multiple layers has a higher SE than the one-side coated glass with ITO, when the total thickness of ITO in both cases is the same. PMID:12786507

  5. Response of a CsI/amorphous-Si flat panel detector as function of incident x-ray angle

    NASA Astrophysics Data System (ADS)

    Tkaczyk, J. Eric; Claus, Bernhard; Trotter, Dinko Gonzalez; Eberhard, J. W.

    2006-03-01

    Two mechanisms for MTF dependence on incident x-ray angle are demonstrated by an experimental technique that separates the two phenomena. The dominant effect is that travel of x-ray photons through the scintillator at non-normal incidence involves an in-plane component. This mechanism leads to a significant but deterministic blurring of the incident image, but has no effect on the noise transfer characteristics of the detector. A secondary effect is that at large angles to the surface normal, x-ray-to-optical conversion occurs at positions in the scintillator further away from the photodiode surface. This leads to a small net decrease in MTF and NPS at angles above 60 degrees. The deterministic character of the angular dependence of gain, MTF and NPS leads to the conclusion that sufficient angular range can be supported by this detector construction. Excellent functionality in the context of tomography is expected.

  6. Percutaneous Bone Biopsies: Comparison between Flat-Panel Cone-Beam CT and CT-Scan Guidance

    SciTech Connect

    Tselikas, Lambros Joskin, Julien; Roquet, Florian; Farouil, Geoffroy; Dreuil, Serge; Hakimé, Antoine Teriitehau, Christophe; Auperin, Anne; Baere, Thierry de Deschamps, Frederic

    2015-02-15

    PurposeThis study was designed to compare the accuracy of targeting and the radiation dose of bone biopsies performed either under fluoroscopic guidance using a cone-beam CT with real-time 3D image fusion software (FP-CBCT-guidance) or under conventional computed tomography guidance (CT-guidance).MethodsSixty-eight consecutive patients with a bone lesion were prospectively included. The bone biopsies were scheduled under FP-CBCT-guidance or under CT-guidance according to operating room availability. Thirty-four patients underwent a bone biopsy under FP-CBCT and 34 under CT-guidance. We prospectively compared the two guidance modalities for their technical success, accuracy, puncture time, and pathological success rate. Patient and physician radiation doses also were compared.ResultsAll biopsies were technically successful, with both guidance modalities. Accuracy was significantly better using FP-CBCT-guidance (3 and 5 mm respectively: p = 0.003). There was no significant difference in puncture time (32 and 31 min respectively, p = 0.51) nor in pathological results (88 and 88 % of pathological success respectively, p = 1). Patient radiation doses were significantly lower with FP-CBCT (45 vs. 136 mSv, p < 0.0001). The percentage of operators who received a dose higher than 0.001 mSv (dosimeter detection dose threshold) was lower with FP-CBCT than CT-guidance (27 vs. 59 %, p = 0.01).ConclusionsFP-CBCT-guidance for bone biopsy is accurate and reduces patient and operator radiation doses compared with CT-guidance.

  7. Technical Note: Skin thickness measurements using high-resolution flat-panel cone-beam dedicated breast CT

    SciTech Connect

    Shi Linxi; Vedantham, Srinivasan; Karellas, Andrew; O'Connell, Avice M.

    2013-03-15

    Purpose: To determine the mean and range of location-averaged breast skin thickness using high-resolution dedicated breast CT for use in Monte Carlo-based estimation of normalized glandular dose coefficients. Methods: This study retrospectively analyzed image data from a clinical study investigating dedicated breast CT. An algorithm similar to that described by Huang et al.['The effect of skin thickness determined using breast CT on mammographic dosimetry,' Med. Phys. 35(4), 1199-1206 (2008)] was used to determine the skin thickness in 137 dedicated breast CT volumes from 136 women. The location-averaged mean breast skin thickness for each breast was estimated and the study population mean and range were determined. Pathology results were available for 132 women, and were used to investigate if the distribution of location-averaged mean breast skin thickness varied with pathology. The effect of surface fitting to account for breast curvature was also studied. Results: The study mean ({+-} interbreast SD) for breast skin thickness was 1.44 {+-} 0.25 mm (range: 0.87-2.34 mm), which was in excellent agreement with Huang et al. Based on pathology, pair-wise statistical analysis (Mann-Whitney test) indicated that at the 0.05 significance level, there were no significant difference in the location-averaged mean breast skin thickness distributions between the groups: benign vs malignant (p= 0.223), benign vs hyperplasia (p= 0.651), hyperplasia vs malignant (p= 0.229), and malignant vs nonmalignant (p= 0.172). Conclusions: Considering this study used a different clinical prototype system, and the study participants were from a different geographical location, the observed agreement between the two studies suggests that the choice of 1.45 mm thick skin layer comprising the epidermis and the dermis for breast dosimetry is appropriate. While some benign and malignant conditions could cause skin thickening, in this study cohort the location-averaged mean breast skin thickness

  8. SU-E-I-53: Comparison of Kerma-Area-Product Between the Micro-Angiographic Fluoroscope (MAF) and a Flat Panel Detector (FPD) as Used in Neuro-Endovascular Procedures

    SciTech Connect

    Vijayan, S; Rana, V; Nagesh, S Setlur; Xiong, Z; Rudin, S; Bednarek, D

    2015-06-15

    Purpose: To determine the reduction of integral dose to the patient when using the micro-angiographic fluoroscope (MAF) compared to when using the standard flat-panel detector (FPD) for the techniques used during neurointerventional procedures. Methods: The MAF is a small field-of-view, high resolution x-ray detector which captures 1024 x 1024 pixels with an effective pixel size of 35μm and is capable of real-time imaging up to 30 frames per second. The MAF was used in neuro-interventions during those parts of the procedure when high resolution was needed and the FPD was used otherwise. The technique parameters were recorded when each detector was used and the kerma-area-product (KAP) per image frame was determined. KAP values were calculated for seven neuro interventions using premeasured calibration files of output as a function of kVp and beam filtration and included the attenuation of the patient table for the frontal projections to be more representative of integral patient dose. The air kerma at the patient entrance was multiplied by the beam area at that point to obtain the KAP values. The ranges of KAP values per frame were determined for the range of technique parameters used during the clinical procedures. To appreciate the benefit of the higher MAF resolution in the region of interventional activity, DA technique parameters were generally used with the MAF. Results: The lowest and highest values of KAP per frame for the MAF in DA mode were 4 and 50 times lower, respectively, compared to those of the FPD in pulsed fluoroscopy mode. Conclusion: The MAF was used in those parts of the clinical procedures when high resolution and image quality was essential. The integral patient dose as represented by the KAP value was substantially lower when using the MAF than when using the FPD due to the much smaller volume of tissue irradiated. This research was supported in part by Toshiba Medical Systems Corporation and NIH Grant R01EB002873.

  9. High-EPA Biomass from Nannochloropsis salina Cultivated in a Flat-Panel Photo-Bioreactor on a Process Water-Enriched Growth Medium

    PubMed Central

    Safafar, Hamed; Hass, Michael Z.; Møller, Per; Holdt, Susan L.; Jacobsen, Charlotte

    2016-01-01

    Nannochloropsis salina was grown on a mixture of standard growth media and pre-gasified industrial process water representing effluent from a local biogas plant. The study aimed to investigate the effects of enriched growth media and cultivation time on nutritional composition of Nannochloropsis salina biomass, with a focus on eicosapentaenoic acid (EPA). Variations in fatty acid composition, lipids, protein, amino acids, tocopherols and pigments were studied and results compared to algae cultivated on F/2 media as reference. Mixed growth media and process water enhanced the nutritional quality of Nannochloropsis salina in laboratory scale when compared to algae cultivated in standard F/2 medium. Data from laboratory scale translated to the large scale using a 4000 L flat panel photo-bioreactor system. The algae growth rate in winter conditions in Denmark was slow, but results revealed that large-scale cultivation of Nannochloropsis salina at these conditions could improve the nutritional properties such as EPA, tocopherol, protein and carotenoids compared to laboratory-scale cultivated microalgae. EPA reached 44.2% ± 2.30% of total fatty acids, and α-tocopherol reached 431 ± 28 µg/g of biomass dry weight after 21 days of cultivation. Variations in chemical compositions of Nannochloropsis salina were studied during the course of cultivation. Nannochloropsis salina can be presented as a good candidate for winter time cultivation in Denmark. The resulting biomass is a rich source of EPA and also a good source of protein (amino acids), tocopherols and carotenoids for potential use in aquaculture feed industry. PMID:27483291

  10. High-EPA Biomass from Nannochloropsis salina Cultivated in a Flat-Panel Photo-Bioreactor on a Process Water-Enriched Growth Medium.

    PubMed

    Safafar, Hamed; Hass, Michael Z; Møller, Per; Holdt, Susan L; Jacobsen, Charlotte

    2016-01-01

    Nannochloropsis salina was grown on a mixture of standard growth media and pre-gasified industrial process water representing effluent from a local biogas plant. The study aimed to investigate the effects of enriched growth media and cultivation time on nutritional composition of Nannochloropsis salina biomass, with a focus on eicosapentaenoic acid (EPA). Variations in fatty acid composition, lipids, protein, amino acids, tocopherols and pigments were studied and results compared to algae cultivated on F/2 media as reference. Mixed growth media and process water enhanced the nutritional quality of Nannochloropsis salina in laboratory scale when compared to algae cultivated in standard F/2 medium. Data from laboratory scale translated to the large scale using a 4000 L flat panel photo-bioreactor system. The algae growth rate in winter conditions in Denmark was slow, but results revealed that large-scale cultivation of Nannochloropsis salina at these conditions could improve the nutritional properties such as EPA, tocopherol, protein and carotenoids compared to laboratory-scale cultivated microalgae. EPA reached 44.2% ± 2.30% of total fatty acids, and α-tocopherol reached 431 ± 28 µg/g of biomass dry weight after 21 days of cultivation. Variations in chemical compositions of Nannochloropsis salina were studied during the course of cultivation. Nannochloropsis salina can be presented as a good candidate for winter time cultivation in Denmark. The resulting biomass is a rich source of EPA and also a good source of protein (amino acids), tocopherols and carotenoids for potential use in aquaculture feed industry. PMID:27483291

  11. Direct conversion of wet algae to crude biodiesel under supercritical ethanol conditions

    SciTech Connect

    Reddy, Harvind K.; Muppaneni, Tapaswy; Patil, Prafulla D.; Ponnusamy, Sundaravadivelnathan; Cooke, Peter; Schaub, Tanner; Deng, Shuguang

    2013-08-06

    This paper presents a single-step, environmentally friendly approach for the direct conversion of wet algae to crude biodiesel under supercritical ethanol conditions. Ethanol was used for the simultaneous extraction and transesterification of lipids in algae to produce fatty acid ethyl esters at supercritical conditions. In this work the effects of process parameters dry algae to ethanol (wt./vol.) ratio (1:6-1:15), reaction temperature (245-270 C), and reaction time (2-30 min.) on the yield of fatty acid ethyl esters (FAEE) were studied. 67% conversion was achieved at 265 C and 20 min of reaction time. The calorific value of a purified biodiesel sample produced at optimum conditions was measured to be 43 MJ/kg, which is higher than that of fatty acid methyl esters produced from the same biomass. The purified fatty acid ethyl esters were analyzed using GC-MS and FTIR. TGA analysis of algal biomass and purified FAEE was presented along with TEM images of the biomass captured before and after supercritical ethanol transesterification. This green conversion process has the potential to provide an energy-efficient and economical route for the production of renewable biodiesel production.

  12. X-ray imaging with amorphous selenium: Pulse height measurements of avalanche gain fluctuations

    SciTech Connect

    Lui, Brian J. M.; Hunt, D. C.; Reznik, A.; Tanioka, K.; Rowlands, J. A.

    2006-09-15

    Avalanche multiplication in amorphous selenium (a-Se) can provide a large, adjustable gain for active matrix flat panel imagers (AMFPI), enabling quantum noise limited x-ray imaging during both radiography and fluoroscopy. In the case of direct conversion AMFPI, the multiplication factor for each x ray is a function of its depth of interaction, and the resulting variations in gain can reduce the detective quantum efficiency (DQE) of the system. An experimental method was developed to measure gain fluctuations by analyzing images of individual x rays that were obtained using a video camera with an a-Se target operated in avalanche mode. Pulse height spectra (PHS) of the charge produced per x ray were recorded for monoenergetic 30.9, 49.4, and 73.8 keV x-ray sources. The rapid initial decay and long tail of each PHS can be explained by a model in which positive charge dominates the initiation of avalanche. The Swank information factor quantifies the effect of gain fluctuation on DQE and was calculated from the PHS. The information factor was found to be 0.5 for a 25 {mu}m a-Se layer with a maximum gain of {approx}300. Changing the energy of the incident x ray influenced the range of the primary photoelectron and noticeably affected the tail of the experimental PHS, but did not significantly change the avalanche Swank factor.

  13. Direct conversion technology. Annual summary report CY 1991, January 1, 1991--December 31, 1991

    SciTech Connect

    Massier, P.F.; Back, L.H.; Ryan, M.A.; Fabris, G.

    1992-01-07

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC) and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1, 1991 through December 31, 1991. Research on AMTEC and on LMMHD was initiated during October 1987. Reports prepared on previous occasions (Refs. 1--5) contain descriptive and performance discussions of the following direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (Nitionol heat engine); and also, more complete descriptive discussions of AMTEC and LMMHD systems.

  14. Direct Conversion Technology. Progress report, January 1, 1992--June 30, 1992

    SciTech Connect

    Back, L.H.; Fabris, G.; Ryan, M.A.

    1992-07-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. Initially, two systems were selected for exploratory research and advanced development. These are Alkali Metal Thermal-to-Electric Converter (AMTEC) and Two-Phase Liquid Metal MD Generator (LMMHD). This report describes progress that has been made during the first six months of 1992 on research activities associated with these two systems. (GHH)

  15. Investigation of Properties of As x Se1- x Thin Films for Direct Conversion

    NASA Astrophysics Data System (ADS)

    Bharathan, P.

    2015-08-01

    The electrical characteristics of metal/As x Se1- x /metal structures for potential use in direct-conversion x-ray detectors and imaging applications are reported. The structures exhibit current rectification in both solid (amorphous, crystalline) and liquid As x Se1- x phases. Capacitance-voltage measurements of the device in the amorphous phase find that the capacitance is essentially independent of bias. Transport phenomenon in the amorphous phase of the film was found to be influenced by trapping and the space-charge effect. In the liquid and crystalline phases, transport in the devices was characteristic of thermionic emission. The indium tin oxide (ITO)/a-As0.01Se0.99/Au 2.85- μm-thick device gave a short-circuit current ( I sc) of 0.16 μA, an open-circuit voltage ( V oc) of 0.1 V, and a fill factor of 0.29 at 384 K under irradiation from visible light. An interpretation of the current-voltage characteristics in the amorphous phase has been made using the self-consistent drift-diffusion model of transport, and material parameters of a-As x Se1- x films have been extracted by fitting the experimentally measured I- V data. The model indicated that transport in the ITO/a-As0.01Se0.99/Au film was dominated by shallow-level traps with density of 5 × 1015 cm-3 at depth of 0.3 eV from the band edge. The photoconversion efficiency was found to be limited by low photogeneration efficiency, high amount of recombination losses, and the level of charge injection in the a-As x Se1- x films.

  16. Direct Conversion of Free Space Millimeter Waves to Optical Domain by Plasmonic Modulator Antenna

    PubMed Central

    2015-01-01

    A scheme for the direct conversion of millimeter and THz waves to optical signals is introduced. The compact device consists of a plasmonic phase modulator that is seamlessly cointegrated with an antenna. Neither high-speed electronics nor electronic amplification is required to drive the modulator. A built-in enhancement of the electric field by a factor of 35 000 enables the direct conversion of millimeter-wave signals to the optical domain. This high enhancement is obtained via a resonant antenna that is directly coupled to an optical field by means of a plasmonic modulator. The suggested concept provides a simple and cost-efficient alternative solution to conventional schemes where millimeter-wave signals are first converted to the electrical domain before being up-converted to the optical domain. PMID:26570995

  17. Direct Conversion of Free Space Millimeter Waves to Optical Domain by Plasmonic Modulator Antenna.

    PubMed

    Salamin, Yannick; Heni, Wolfgang; Haffner, Christian; Fedoryshyn, Yuriy; Hoessbacher, Claudia; Bonjour, Romain; Zahner, Marco; Hillerkuss, David; Leuchtmann, Pascal; Elder, Delwin L; Dalton, Larry R; Hafner, Christian; Leuthold, Juerg

    2015-12-01

    A scheme for the direct conversion of millimeter and THz waves to optical signals is introduced. The compact device consists of a plasmonic phase modulator that is seamlessly cointegrated with an antenna. Neither high-speed electronics nor electronic amplification is required to drive the modulator. A built-in enhancement of the electric field by a factor of 35,000 enables the direct conversion of millimeter-wave signals to the optical domain. This high enhancement is obtained via a resonant antenna that is directly coupled to an optical field by means of a plasmonic modulator. The suggested concept provides a simple and cost-efficient alternative solution to conventional schemes where millimeter-wave signals are first converted to the electrical domain before being up-converted to the optical domain. PMID:26570995

  18. Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii

    PubMed Central

    Chung, Daehwan; Cha, Minseok; Guss, Adam M.; Westpheling, Janet

    2014-01-01

    Ethanol is the most widely used renewable transportation biofuel in the United States, with the production of 13.3 billion gallons in 2012 [John UM (2013) Contribution of the Ethanol Industry to the Economy of the United States]. Despite considerable effort to produce fuels from lignocellulosic biomass, chemical pretreatment and the addition of saccharolytic enzymes before microbial bioconversion remain economic barriers to industrial deployment [Lynd LR, et al. (2008) Nat Biotechnol 26(2):169–172]. We began with the thermophilic, anaerobic, cellulolytic bacterium Caldicellulosiruptor bescii, which efficiently uses unpretreated biomass, and engineered it to produce ethanol. Here we report the direct conversion of switchgrass, a nonfood, renewable feedstock, to ethanol without conventional pretreatment of the biomass. This process was accomplished by deletion of lactate dehydrogenase and heterologous expression of a Clostridium thermocellum bifunctional acetaldehyde/alcohol dehydrogenase. Whereas wild-type C. bescii lacks the ability to make ethanol, 70% of the fermentation products in the engineered strain were ethanol [12.8 mM ethanol directly from 2% (wt/vol) switchgrass, a real-world substrate] with decreased production of acetate by 38% compared with wild-type. Direct conversion of biomass to ethanol represents a new paradigm for consolidated bioprocessing, offering the potential for carbon neutral, cost-effective, sustainable fuel production. PMID:24889625

  19. Non-viral approaches for direct conversion into mesenchymal cell types: Potential application in tissue engineering.

    PubMed

    Lee, Eun-Seo; Kim, Seung Hyun L; Lee, Hwajin; Hwang, Nathaniel S

    2016-05-01

    Acquiring adequate number of cells is one of the crucial factors to apply tissue engineering strategies in order to recover critical-sized defects. While the reprogramming technology used for inducing pluripotent stem cells (iPSCs) opened up a direct path for generating pluripotent stem cells, a direct conversion strategy may provide another possibility to obtain desired cells for tissue engineering. In order to convert a somatic cell into any other cell type, diverse approaches have been investigated. Conspicuously, in contrast to traditional viral transduction method, non-viral delivery of conversion factors has the merit of lowering immune responses and provides safer genetic manipulation, thus revolutionizing the generation of directly converted cells and its application in therapeutics. In addition, applying various microenvironmental modulations have potential to ameliorate the conversion of somatic cells into different lineages. In this review, we discuss the recent progress in direct conversion technologies, specifically focusing on generating mesenchymal cell types. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 686-697, 2016. PMID:26729213

  20. A field-shaping multi-well avalanche detector for direct conversion amorphous selenium

    SciTech Connect

    Goldan, A. H.; Zhao, W.

    2013-01-15

    Purpose: A practical detector structure is proposed to achieve stable avalanche multiplication gain in direct-conversion amorphous selenium radiation detectors. Methods: The detector structure is referred to as a field-shaping multi-well avalanche detector. Stable avalanche multiplication gain is achieved by eliminating field hot spots using high-density avalanche wells with insulated walls and field-shaping inside each well. Results: The authors demonstrate the impact of high-density insulated wells and field-shaping to eliminate the formation of both field hot spots in the avalanche region and high fields at the metal-semiconductor interface. Results show a semi-Gaussian field distribution inside each well using the field-shaping electrodes, and the electric field at the metal-semiconductor interface can be one order-of-magnitude lower than the peak value where avalanche occurs. Conclusions: This is the first attempt to design a practical direct-conversion amorphous selenium detector with avalanche gain.

  1. Engineering of beam direct conversion for a 120-kV, 1-MW ion beam

    NASA Technical Reports Server (NTRS)

    Barr, W. L.; Doggett, J. N.; Hamilton, G. W.; Kinney, J. D.; Moir, R. W.

    1977-01-01

    Practical systems for beam direct conversion are required to recover the energy from ion beams at high efficiency and at very high beam power densities in the environment of a high-power neutral-injection system. Such an experiment is now in progress using a 120-kV beam with a maximum total current of 20 A. After neutralization, the H(+) component to be recovered will have a power of approximately 1 MW. A system testing these concepts has been designed and tested at 15 kV, 2 kW in preparation for the full-power tests. The engineering problems involved in the full-power tests affect electron suppression, gas pumping, voltage holding, diagnostics, and measurement conditions. Planning for future experiments at higher power includes the use of cryopumping and electron suppression by a magnetic field rather than by an electrostatic field. Beam direct conversion for large fusion experiments and reactors will save millions of dollars in the cost of power supplies and electricity and will dispose of the charged beam under conditions that may not be possible by other techniques.

  2. Direct Conversion of Plant Biomass to Ethanol by Engineered Caldicellulosiruptor bescii

    SciTech Connect

    Chung, Daehwan; Cha, Minseok; Guss, Adam M; Westpheling, Janet

    2014-01-01

    Ethanol is the most widely used renewable transportation biofuel in the United States, with the production of 13.3 billion gallons in 2012 [John UM (2013) Contribution of the Ethanol Industry to the Economy of the United States]. Despite considerable effort to produce fuels from lignocellulosic biomass, chemical pretreatment and the addition of saccharolytic enzymes before microbial bioconversion remain economic barriers to industrial deployment [Lynd LR, et al. (2008) Nat Biotechnol 26(2):169-172]. We began with the thermophilic, anaerobic, cellulolytic bacterium Caldicellulosiruptor bescii, which efficiently uses unpretreated biomass, and engineered it to produce ethanol. Here we report the direct conversion of switchgrass, a nonfood, renewable feedstock, to ethanol without conventional pretreatment of the biomass. This process was accomplished by deletion of lactate dehydrogenase and heterologous expression of a Clostridium thermocellum bifunctional acetaldehyde/alcohol dehydrogenase. Whereas wild-type C. bescii lacks the ability to make ethanol, 70% of the fermentation products in the engineered strain were ethanol [12.8 mM ethanol directly from 2% (wt/vol) switchgrass, a real-world substrate] with decreased production of acetate by 38% compared with wild-type. Direct conversion of biomass to ethanol represents a new paradigm for consolidated bioprocessing, offering the potential for carbon neutral, cost-effective, sustainable fuel production.

  3. Bi-directional conversion between microwave and optical frequencies in a piezoelectric optomechanical device

    NASA Astrophysics Data System (ADS)

    Vainsencher, Amit; Satzinger, K. J.; Peairs, G. A.; Cleland, A. N.

    2016-07-01

    We describe the principles of design, fabrication, and operation of a piezoelectric optomechanical crystal with which we demonstrate bi-directional conversion of energy between microwave and optical frequencies. The optomechanical crystal has an optical mode at 1523 nm co-located with a mechanical breathing mode at 3.8 GHz, with a measured optomechanical coupling strength gom/2π of 115 kHz. The breathing mode is driven and detected by curved interdigitated transducers that couple to a Lamb mode in suspended membranes on either end of the optomechanical crystal, allowing the external piezoelectric modulation of the optical signal as well as the converse, the detection of microwave electrical signals generated by a modulated optical signal. We compare measurements to theory where appropriate.

  4. Apparatus and methods for direct conversion of gaseous hydrocarbons to liquids

    DOEpatents

    Kong, Peter C.; Lessing, Paul A.

    2006-04-25

    A chemical reactor for direct conversion of hydrocarbons includes a dielectric barrier discharge plasma cell and a solid oxide electrochemical cell in fluid communication therewith. The discharge plasma cell comprises a pair of electrodes separated by a dielectric material and passageway therebetween. The electrochemical cell comprises a mixed-conducting solid oxide electrolyte membrane tube positioned between a porous cathode and a porous anode, and a gas inlet tube for feeding oxygen containing gas to the porous cathode. An inlet is provided for feeding hydrocarbons to the passageway of the discharge plasma cell, and an outlet is provided for discharging reaction products from the reactor. A packed bed catalyst may optionally be used in the reactor to increase efficiency of conversion. The reactor can be modified to allow use of a light source for directing ultraviolet light into the discharge plasma cell and the electrochemical cell.

  5. Direct Conversion of Fibroblasts into Functional Astrocytes by Defined Transcription Factors

    PubMed Central

    Caiazzo, Massimiliano; Giannelli, Serena; Valente, Pierluigi; Lignani, Gabriele; Carissimo, Annamaria; Sessa, Alessandro; Colasante, Gaia; Bartolomeo, Rosa; Massimino, Luca; Ferroni, Stefano; Settembre, Carmine; Benfenati, Fabio; Broccoli, Vania

    2014-01-01

    Summary Direct cell reprogramming enables direct conversion of fibroblasts into functional neurons and oligodendrocytes using a minimal set of cell-lineage-specific transcription factors. This approach is rapid and simple, generating the cell types of interest in one step. However, it remains unknown whether this technology can be applied to convert fibroblasts into astrocytes, the third neural lineage. Astrocytes play crucial roles in neuronal homeostasis, and their dysfunctions contribute to the origin and progression of multiple human diseases. Herein, we carried out a screening using several transcription factors involved in defining the astroglial cell fate and identified NFIA, NFIB, and SOX9 to be sufficient to convert with high efficiency embryonic and postnatal mouse fibroblasts into astrocytes (iAstrocytes). We proved both by gene-expression profiling and functional tests that iAstrocytes are comparable to native brain astrocytes. This protocol can be then employed to generate functional iAstrocytes for a wide range of experimental applications. PMID:25556566

  6. Direct conversion of methane to aromatics in a catalytic co-ionic membrane reactor.

    PubMed

    Morejudo, S H; Zanón, R; Escolástico, S; Yuste-Tirados, I; Malerød-Fjeld, H; Vestre, P K; Coors, W G; Martínez, A; Norby, T; Serra, J M; Kjølseth, C

    2016-08-01

    Nonoxidative methane dehydroaromatization (MDA: 6CH4 ↔ C6H6 + 9H2) using shape-selective Mo/zeolite catalysts is a key technology for exploitation of stranded natural gas reserves by direct conversion into transportable liquids. However, this reaction faces two major issues: The one-pass conversion is limited by thermodynamics, and the catalyst deactivates quickly through kinetically favored formation of coke. We show that integration of an electrochemical BaZrO3-based membrane exhibiting both proton and oxide ion conductivity into an MDA reactor gives rise to high aromatic yields and improved catalyst stability. These effects originate from the simultaneous extraction of hydrogen and distributed injection of oxide ions along the reactor length. Further, we demonstrate that the electrochemical co-ionic membrane reactor enables high carbon efficiencies (up to 80%) that improve the technoeconomic process viability. PMID:27493179

  7. Direct conversion of plutonium-containing materials to borosilicate glass for storage or disposal

    SciTech Connect

    Forsberg, C.W.; Beahm, E.C.

    1995-06-27

    A new process, the Glass Material Oxidation and Dissolution System (GMODS), has been invented for the direct conversion of plutonium metal, scrap, and residue into borosilicate glass. The glass should be acceptable for either the long-term storage or disposition of plutonium. Conversion of plutonium from complex chemical mixtures and variable geometries into homogeneous glass (1) simplifies safeguards and security; (2) creates a stable chemical form that meets health, safety, and environmental concerns; (3) provides an easy storage form; (4) may lower storage costs; and (5) allows for future disposition options. In the GMODS process, mixtures of metals, ceramics, organics, and amorphous solids containing plutonium are fed directly into a glass melter where they are directly converted to glass. Conventional glass melters can accept materials only in oxide form; thus, it is its ability to accept materials in multiple chemical forms that makes GMODS a unique glass making process. Initial proof-of-principle experiments have converted cerium (plutonium surrogate), uranium, stainless steel, aluminum, and other materials to glass. Significant technical uncertainties remain because of the early nature of process development.

  8. Direct conversion of chitin biomass to 5-hydroxymethylfurfural in concentrated ZnCl2 aqueous solution.

    PubMed

    Wang, Yingxiong; Pedersen, Christian Marcus; Deng, Tiansheng; Qiao, Yan; Hou, Xianglin

    2013-09-01

    The direct conversion of chitin biomass to 5-hydroxymethylfurfural (5-HMF) in ZnCl2 aqueous solution was studied systemically. D-Glucosamine (GlcNH2) was chosen as the model compound to investigate the reaction, and 5-HMF could be obtained in 21.9% yield with 99% conversion of GlcNH2. Optimization of the reaction parameters including the screening of 8 co-catalysts was carried out. Among them, AlCl3 and B(OH)3 improved 5-HMF yield, whereas CdCl2, CuCl2 and NH4Cl had no effect. CrCl3, SnCl4 and SnCl2 showed negative effects, i.e. lower yields. Consequently, the optimal reaction conditions were found to be 67 wt.% ZnCl2 aqueous solution, at 120 °C without co-catalyst. The reactions were further studied by in situ NMR, and no intermediate or other byproducts, except humins, were observed. Finally, the substrate scope was expanded from GlcNH2 to N-acetyl-D-glucosamine and various chitosan polymers with different molecular weights, 5-HMF yield from polymers were generally lower than that from GlcNH2. PMID:23819974

  9. Modeling the imaging performance of prototype organic x-ray imagers

    SciTech Connect

    Blakesley, J. C.; Speller, R.

    2008-01-15

    A unified Monte Carlo and cascaded systems model for the simulation of active-matrix flat-panel imagers is presented. With few input parameters, the model simulated the imaging performance of previously measured flat-panel imagers with reasonable accuracy. The model is used to predict the properties of conceptual flat-panel imagers based on organic semiconductors on plastic substrates. The model suggests that significant improvements in resolution and detective quantum efficiency could be achieved by operating such a detector in a back-side illuminated configuration, or by employing two imaging arrays arranged face-to-face. The effect of semiconductor properties on the conceptual imagers is investigated. According to the model, a photodiode quantum efficiency of 25% and dark current of less than 100 pA mm{sup -2} would be satisfactory for a prototype imager, while a competitive imager would require a photodiode quantum efficiency of 40-50% with a dark current of less than 10 pA mm{sup -2} to be quantum limited over the radiographic exposure range.

  10. Small molecule–driven direct conversion of human pluripotent stem cells into functional osteoblasts

    PubMed Central

    Kang, Heemin; Shih, Yu-Ru V.; Nakasaki, Manando; Kabra, Harsha; Varghese, Shyni

    2016-01-01

    The abilities of human pluripotent stem cells (hPSCs) to proliferate without phenotypic alteration and to differentiate into tissue-specific progeny make them a promising cell source for regenerative medicine and development of physiologically relevant in vitro platforms. Despite this potential, efficient conversion of hPSCs into tissue-specific cells still remains a challenge. Herein, we report direct conversion of hPSCs into functional osteoblasts through the use of adenosine, a naturally occurring nucleoside in the human body. The hPSCs treated with adenosine not only expressed the molecular signatures of osteoblasts but also produced calcified bone matrix. Our findings show that the adenosine-mediated osteogenesis of hPSCs involved the adenosine A2bR. When implanted in vivo, using macroporous synthetic matrices, the human induced pluripotent stem cell (hiPSC)–derived donor cells participated in the repair of critical-sized bone defects through the formation of neobone tissue without teratoma formation. The newly formed bone tissues exhibited various attributes of the native tissue, including vascularization and bone resorption. To our knowledge, this is the first demonstration of adenosine-induced differentiation of hPSCs into functional osteoblasts and their subsequent use to regenerate bone tissues in vivo. This approach that uses a physiologically relevant single small molecule to generate hPSC-derived progenitor cells is highly appealing because of its simplicity, cost-effectiveness, scalability, and impact in cell manufacturing, all of which are decisive factors for successful translational applications of hPSCs. PMID:27602403

  11. Small molecule-driven direct conversion of human pluripotent stem cells into functional osteoblasts.

    PubMed

    Kang, Heemin; Shih, Yu-Ru V; Nakasaki, Manando; Kabra, Harsha; Varghese, Shyni

    2016-08-01

    The abilities of human pluripotent stem cells (hPSCs) to proliferate without phenotypic alteration and to differentiate into tissue-specific progeny make them a promising cell source for regenerative medicine and development of physiologically relevant in vitro platforms. Despite this potential, efficient conversion of hPSCs into tissue-specific cells still remains a challenge. Herein, we report direct conversion of hPSCs into functional osteoblasts through the use of adenosine, a naturally occurring nucleoside in the human body. The hPSCs treated with adenosine not only expressed the molecular signatures of osteoblasts but also produced calcified bone matrix. Our findings show that the adenosine-mediated osteogenesis of hPSCs involved the adenosine A2bR. When implanted in vivo, using macroporous synthetic matrices, the human induced pluripotent stem cell (hiPSC)-derived donor cells participated in the repair of critical-sized bone defects through the formation of neobone tissue without teratoma formation. The newly formed bone tissues exhibited various attributes of the native tissue, including vascularization and bone resorption. To our knowledge, this is the first demonstration of adenosine-induced differentiation of hPSCs into functional osteoblasts and their subsequent use to regenerate bone tissues in vivo. This approach that uses a physiologically relevant single small molecule to generate hPSC-derived progenitor cells is highly appealing because of its simplicity, cost-effectiveness, scalability, and impact in cell manufacturing, all of which are decisive factors for successful translational applications of hPSCs. PMID:27602403

  12. Focal spot deblurring for high resolution direct conversion x-ray detectors

    NASA Astrophysics Data System (ADS)

    Setlur Nagesh, S. V.; Rana, R.; Russ, M.; Ionita, Ciprian N.; Bednarek, D. R.; Rudin, S.

    2016-03-01

    Small pixel high resolution direct x-ray detectors have the advantage of higher spatial sampling and decreased blurring characteristic. The limiting factors for such systems becomes the degradation due to the focal spot size. One solution is a smaller focal spot; however, this can limit the output of the x-ray tube. Here a software solution of deconvolving with an estimated focal spot blur is presented. To simulate images from a direct detector affected with focal-spot blur, first a set of high-resolution stent images (FRED from Microvention, Inc., Tustin, CA) were acquired using a 75μm pixel size Dexela-Perkin-Elmer detector and frame averaged to reduce quantum noise. Then the averaged image was blurred with a known Gaussian blur. To add noise to the blurred image a flat-field image was multiplied with the blurred image. Both the ideal and the noisy-blurred images were then deconvolved with the known Gaussian function using either threshold-based inverse filtering or Weiner deconvolution. The blur in the ideal image was removed and the details were recovered successfully. However, the inverse filtering deconvolution process is extremely susceptible to noise. The Weiner deconvolution process was able to recover more of the details of the stent from the noisy-blurred image, but for noisier images, stent details are still lost in the recovery process.

  13. Concise review: Generation of neurons from somatic cells of healthy individuals and neurological patients through induced pluripotency or direct conversion.

    PubMed

    Velasco, Iván; Salazar, Patricia; Giorgetti, Alessandra; Ramos-Mejía, Verónica; Castaño, Julio; Romero-Moya, Damià; Menendez, Pablo

    2014-11-01

    Access to healthy or diseased human neural tissue is a daunting task and represents a barrier for advancing our understanding about the cellular, genetic, and molecular mechanisms underlying neurogenesis and neurodegeneration. Reprogramming of somatic cells to pluripotency by transient expression of transcription factors was achieved a few years ago. Induced pluripotent stem cells (iPSC) from both healthy individuals and patients suffering from debilitating, life-threatening neurological diseases have been differentiated into several specific neuronal subtypes. An alternative emerging approach is the direct conversion of somatic cells (i.e., fibroblasts, blood cells, or glial cells) into neuron-like cells. However, to what extent neuronal direct conversion of diseased somatic cells can be achieved remains an open question. Optimization of current expansion and differentiation approaches is highly demanded to increase the differentiation efficiency of specific phenotypes of functional neurons from iPSCs or through somatic cell direct conversion. The realization of the full potential of iPSCs relies on the ability to precisely modify specific genome sequences. Genome editing technologies including zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeat/CAS9 RNA-guided nucleases have progressed very fast over the last years. The combination of genome-editing strategies and patient-specific iPSC biology will offer a unique platform for in vitro generation of diseased and corrected neural derivatives for personalized therapies, disease modeling and drug screening. PMID:24989459

  14. Performance of electronic portal imaging devices (EPIDs) used in radiotherapy: image quality and dose measurements.

    PubMed

    Cremers, F; Frenzel, Th; Kausch, C; Albers, D; Schönborn, T; Schmidt, R

    2004-05-01

    The aim of our study was to compare the image and dosimetric quality of two different imaging systems. The first one is a fluoroscopic electronic portal imaging device (first generation), while the second is based on an amorphous silicon flat-panel array (second generation). The parameters describing image quality include spatial resolution [modulation transfer function (MTF)], noise [noise power spectrum (NPS)], and signal-to-noise transfer [detective quantum efficiency (DQE)]. The dosimetric measurements were compared with ionization chamber as well as with film measurements. The response of the flat-panel imager and the fluoroscopic-optical device was determined performing a two-step Monte Carlo simulation. All measurements were performed in a 6 MV linear accelerator photon beam. The resolution (MTF) of the fluoroscopic device (f 1/2 = 0.3 mm(-1)) is larger than of the amorphous silicon based system (f 1/2 = 0.21 mm(-1)), which is due to the missing backscattered photons and the smaller pixel size. The noise measurements (NPS) show the correlation of neighboring pixels of the amorphous silicon electronic portal imaging device, whereas the NPS of the fluoroscopic system is frequency independent. At zero spatial frequency the DQE of the flat-panel imager has a value of 0.008 (0.8%). Due to the minor frequency dependency this device may be almost x-ray quantum limited. Monte Carlo simulations verified these characteristics. For the fluoroscopic imaging system the DQE at low frequencies is about 0.0008 (0.08%) and degrades with higher frequencies. Dose measurements with the flat-panel imager revealed that images can only be directly converted to portal dose images, if scatter can be neglected. Thus objects distant to the detector (e.g., inhomogeneous dose distribution generated by a modificator) can be verified dosimetrically, while objects close to a detector (e.g., a patient) cannot be verified directly and must be scatter corrected prior to verification. This is

  15. Stimulation by D-glucose of the direct conversion of arginine to citrulline in enterocytes isolated from pig jejunum

    SciTech Connect

    Blachier, F.; M'Rabet-Touil, H.; Darcy-Vrillon, B.; Posho, L.; Duee, P.H. )

    1991-06-28

    In enterocytes isolated from pig jejunum, L-arginine is metabolized to L-citrulline either directly or indirectly through the sequence of reactions catalysed by arginase and ornithine transcarbamylase. In the presence of 5 mM D-glucose, the direct conversion of 1mM L-(guanido-14C) arginine to L-citrulline was increased more than 4 times. Isolated enterocytes exhibit a high glycolytic capacity. Furthermore, the decarboxylation of 5mM D-(1-14C) glucose was 3.6 fold higher than the decarboxylation of 5 mM D-(6-14C) glucose which suggests the presence of a pentose phosphate pathway in enterocytes. Since the production of labelled L-citrulline from L-(guanido-14C) arginine in pig enterocyte homogenates was markedly increased in the presence of NADPH, it is proposed that the direct conversion of L-arginine to L-citrulline could be stimulated by the production of NADPH from D-glucose in the pentose phosphate pathway.

  16. Medical imaging applications of amorphous silicon

    SciTech Connect

    Mireshghi, A.; Drewery, J.S.; Hong, W.S.; Jing, T.; Kaplan, S.N.; Lee, H.K.; Perez-Mendez, V.

    1994-07-01

    Two dimensional hydrogenated amorphous silicon (a-Si:H) pixel arrays are good candidates as flat-panel imagers for applications in medical imaging. Various performance characteristics of these imagers are reviewed and compared with currently used equipments. An important component in the a-Si:H imager is the scintillator screen. A new approach for fabrication of high resolution CsI(Tl) scintillator layers, appropriate for coupling to a-Si:H arrays, are presented. For nuclear medicine applications, a new a-Si:H based gamma camera is introduced and Monte Carlo simulation is used to evaluate its performance.

  17. Neutron Imaging Developments at LANSCE

    SciTech Connect

    Nelson, Ronald Owen; Hunter, James F.; Schirato, Richard C.; Vogel, Sven C.; Swift, Alicia L.; Ickes, Timothy Lee; Ward, William Carl; Losko, Adrian Simon; Tremsin, Anton; Sevanto, Sanna Annika; Espy, Michelle A.; Dickman, Lee Thoresen; Malone, Michael

    2015-10-29

    Thermal, epithermal, and high-energy neutrons are available from two spallation sources at the 800 MeV proton accelerator. Improvements in detectors and computing have enabled new capabilities that use the pulsed beam properties at LANSCE; these include amorphous Si (aSi) detectors, intensified charge-coupled device cameras, and micro-channel plates. Applications include water flow in living specimens, inclusions and fission products in uranium oxide, and high-energy neutron imaging using an aSi flat panel with ZnS(Ag) scintillator screen. images of a metal/plastic cylinder from photons, low-energy and high-energy neutrons are compared.

  18. A fully integrated direct-conversion digital satellite tuner in 0.18 μm CMOS

    NASA Astrophysics Data System (ADS)

    Si, Chen; Zengwang, Yang; Mingliang, Gu

    2011-04-01

    A fully integrated direct-conversion digital satellite tuner for DVB-S/S2 and ABS-S applications is presented. A broadband noise-canceling Balun-LNA and passive quadrature mixers provided a high-linearity low noise RF front-end, while the synthesizer integrated the loop filter to reduce the solution cost and system debug time. Fabricated in 0.18 μm CMOS, the chip achieves a less than 7.6 dB noise figure over a 900-2150 MHz L-band, while the measured sensitivity for 4.42 MS/s QPSK-3/4 mode is -91 dBm at the PCB connector. The fully integrated integer-N synthesizer operating from 2150 to 4350 MHz achieves less than 1 °C integrated phase error. The chip consumes about 145 mA at a 3.3 V supply with internal integrated LDOs.

  19. Electrical properties of amorphous selenium based photoconductive devices for application in x-ray image detectors

    NASA Astrophysics Data System (ADS)

    Belev, Gueorgui Stoev

    In the last 10-15 years there has been a renewed interest in amorphous Se (a-Se) and its alloys due to their application as photoconductor materials in the new fully digital direct conversion flat panel x-ray medical image detectors. For a number of reasons, the a-Se photoconductor layer in such x-ray detectors has to be operated at very high electric fields (up to 10 V mum-1) and one of the most difficult problems related to such applications of a-Se is the problem of the dark current (the current in the absence of any radiation) minimization in the photoconductor layer. This PhD work has been devoted to researching the possibilities for dark current minimization in a-Se x-ray photoconductors devices through a systematic study of the charge transport (carrier mobility and carrier lifetimes) and dark currents in single and multilayered a-Se devices as a function of alloying, doping, deposition condition and other fabrication factors. The results of the studies are extensively discussed in the thesis. We have proposed a new technological method for dark current reduction in single and multilayered a-Se based photoconductor for x-ray detector applications. The new technology is based on original experimental findings which demonstrate that both hole transport and the dark currents in a-Se films are a very strong function of the substrate temperature (Tsubstrate) during the film deposition process. We have shown that the new technique reduces the dark currents to approximately the same levels as achievable with the previously existing methods for dark current reduction. However, the new method is simpler to implement, and offers some potential advantages, especially in cases when a very high image resolution (20 lp/mm) and/or fast pixel readout (>30 s-1) are needed. Using the new technology we have fabricated simple single and double (ni-like) photoconductor layers on prototype x-ray image detectors with CCD (Charge Coupled Device) readout circuits. Dark currents in

  20. Direct Conversion of Energy.

    ERIC Educational Resources Information Center

    Corliss, William R.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Direct energy conversion involves energy transformation without moving parts. The concepts of direct and dynamic energy conversion plus the laws governing energy conversion are investigated. Among the topics…

  1. Enhanced Detection Efficiency of Direct Conversion X-ray Detector Using Polyimide as Hole-Blocking Layer

    PubMed Central

    Abbaszadeh, Shiva; Scott, Christopher C.; Bubon, Oleksandr; Reznik, Alla; Karim, Karim S.

    2013-01-01

    In this article we demonstrate the performance of a direct conversion amorphous selenium (a-Se) X-ray detector using biphenyldisnhydride/1,4 phenylenediamine (BPDA/PPD) polyimide (PI) as a hole-blocking layer. The use of a PI layer with a-Se allows detector operation at high electric fields (≥10 V/μm) while maintaining low dark current, without deterioration of transient performance. The hole mobility of the PI/a-Se device is measured by the time-of-flight method at different electric fields to investigate the effect of the PI layer on detector performance. It was found that hole mobility as high as 0.75 cm2/Vs is achievable by increasing the electric field in the PI/a-Se device structure. Avalanche multiplication is also shown to be achievable when using PI as a blocking layer. Increasing the electric field within a-Se reduces the X-ray ionization energy, increases hole mobility, and improves the dynamic range and sensitivity of the detector. PMID:24285255

  2. Enhanced Detection Efficiency of Direct Conversion X-ray Detector Using Polyimide as Hole-Blocking Layer

    NASA Astrophysics Data System (ADS)

    Abbaszadeh, Shiva; Scott, Christopher C.; Bubon, Oleksandr; Reznik, Alla; Karim, Karim S.

    2013-11-01

    In this article we demonstrate the performance of a direct conversion amorphous selenium (a-Se) X-ray detector using biphenyldisnhydride/1,4 phenylenediamine (BPDA/PPD) polyimide (PI) as a hole-blocking layer. The use of a PI layer with a-Se allows detector operation at high electric fields (>=10 V/μm) while maintaining low dark current, without deterioration of transient performance. The hole mobility of the PI/a-Se device is measured by the time-of-flight method at different electric fields to investigate the effect of the PI layer on detector performance. It was found that hole mobility as high as 0.75 cm2/Vs is achievable by increasing the electric field in the PI/a-Se device structure. Avalanche multiplication is also shown to be achievable when using PI as a blocking layer. Increasing the electric field within a-Se reduces the X-ray ionization energy, increases hole mobility, and improves the dynamic range and sensitivity of the detector.

  3. Enhanced detection efficiency of direct conversion X-ray detector using polyimide as hole-blocking layer.

    PubMed

    Abbaszadeh, Shiva; Scott, Christopher C; Bubon, Oleksandr; Reznik, Alla; Karim, Karim S

    2013-01-01

    In this article we demonstrate the performance of a direct conversion amorphous selenium (a-Se) X-ray detector using biphenyldisnhydride/1,4 phenylenediamine (BPDA/PPD) polyimide (PI) as a hole-blocking layer. The use of a PI layer with a-Se allows detector operation at high electric fields (≥10 V/μm) while maintaining low dark current, without deterioration of transient performance. The hole mobility of the PI/a-Se device is measured by the time-of-flight method at different electric fields to investigate the effect of the PI layer on detector performance. It was found that hole mobility as high as 0.75 cm(2)/Vs is achievable by increasing the electric field in the PI/a-Se device structure. Avalanche multiplication is also shown to be achievable when using PI as a blocking layer. Increasing the electric field within a-Se reduces the X-ray ionization energy, increases hole mobility, and improves the dynamic range and sensitivity of the detector. PMID:24285255

  4. DESIGN OF 2.4 GHZ CMOS DIRECT CONVERSION LNA AND MIXER COMBINATION FOR WIRLESS DATA LINK TRANSCEIVER.

    SciTech Connect

    ZHAO, D.; OCONNOR, P.

    2002-04-10

    Three LNA and mixer combinations in 0.6{micro}m and 0.4{micro}m standard CMOS processes for direct-conversion receiver of 2.4GHz ISM band short-range wireless data-link applications are described in this paper. Taking low power dissipation as first consideration, these designs, employing differential common-source LNA and double balanced mixer architectures, achieve total conversion gain as high as 42.4dB, DSB noise figure as low as 9.5dB, output-referred IP3 as high as of 21.3dBm at about 4mA DC current consumption. This proves it is possible to apply standard CMOS process to implement receiver front-end with low power dissipation for this kind of application, but gain changeable LNA is needed to combat the dominant flicker noise of the mixer in order to achieve acceptable sensitivity and dynamic range at the same time.

  5. Mechanically stable, hierarchically porous Cu3(btc)2 (HKUST-1) monoliths via direct conversion of copper(II) hydroxide-based monoliths.

    PubMed

    Moitra, Nirmalya; Fukumoto, Shotaro; Reboul, Julien; Sumida, Kenji; Zhu, Yang; Nakanishi, Kazuki; Furukawa, Shuhei; Kitagawa, Susumu; Kanamori, Kazuyoshi

    2015-02-28

    The synthesis of highly crystalline macro-meso-microporous monolithic Cu3(btc)2 (HKUST-1; btc(3-) = benzene-1,3,5-tricarboxylate) is demonstrated by direct conversion of Cu(OH)2-based monoliths while preserving the characteristic macroporous structure. The high mechanical strength of the monoliths is promising for possible applications to continuous flow reactors. PMID:25572361

  6. Direct conversion of h-BN into c-BN and formation of epitaxial c-BN/diamond heterostructures

    NASA Astrophysics Data System (ADS)

    Narayan, Jagdish; Bhaumik, Anagh; Xu, Weizong

    2016-05-01

    We have created a new state of BN (named Q-BN) through rapid melting and super undercooling and quenching by using nanosecond laser pulses. Phase pure c-BN is formed either by direct quenching of super undercooled liquid or by nucleation and growth from Q-BN. Thus, a direct conversion of hexagonal boron nitride (h-BN) into phase-pure cubic boron nitride (c-BN) is achieved by nanosecond pulsed laser melting at ambient temperatures and atmospheric pressure in air. According to the P-T phase diagram, the transformation from h-BN into c-BN under equilibrium processing can occur only at high temperatures and pressures, as the hBN-cBN-Liquid triple point is at 3500 K/9.5 GPa or 3700 K/7.0 GPa with a recent theoretical refinement. Using nonequilibrium nanosecond laser melting, we have created super undercooled state and shifted this triple point to as low as 2800 K and atmospheric pressure. The rapid quenching from super undercooled state leads to the formation of a new phase, named as Q-BN. We present detailed characterization of Q-BN and c-BN layers by using Raman spectroscopy, high-resolution scanning electron microscopy, electron-back-scatter diffraction, high-resolution TEM, and electron energy loss spectroscopy, and discuss the mechanism of formation of nanodots, nanoneedles, microneedles, and single-crystal c-BN on sapphire substrate. We have also deposited diamond by pulsed laser deposition of carbon on c-BN and created c-BN/diamond heterostructures, where c-BN acts as a template for epitaxial diamond growth. We discuss the mechanism of epitaxial c-BN and diamond growth on lattice matching c-BN template under pulsed laser evaporation of amorphous carbon, and the impact of this discovery on a variety of applications.

  7. TEM Characterization of Nanostructured MgAl2O4 Synthesized by a Direct Conversion Process from gamma-Al2O3

    SciTech Connect

    Al-Sharab, J.F.; Cosandey, F.; Singhal, Amit; Skandan, Ganesh; Bentley, James

    2006-01-01

    Nanostructured MgAl{sub 2}O{sub 4} spinel was synthesized by a direct conversion process from cubic ?-Al2O3. The effect of post-annealing temperature (300C, 500C, and 800C) on MgAl2O4 phase formation was investigated using transmission electron microscopy, selected area electron diffraction (SAED), electron energy loss spectroscopy (EELS), and energy-dispersive spectroscopy (EDS). Relative diffraction intensities as well as lattice parameter measurements from SAED revealed that MgAl2O4 spinel structure starts forming at temperatures as low as 300C. EELS and EDS spectrum images also revealed an increase in elemental homogeneity with increasing annealing temperature. The degree of ordering of Mg and Al between octahedral and tetrahedral sites has been determined from relative diffraction intensities. Results show that annealing to 800C leads to a spinel phase with an order parameter of 0.78.

  8. Changing from image intensifier to flat detector technology for interventional cardiology procedures: a practical point of view.

    PubMed

    Bokou, C; Schreiner-Karoussou, A; Breisch, R; Beissel, J

    2008-01-01

    A small-scale internal audit has been used to evaluate the impact of the use of a dynamic flat panel detector in the clinical routine in the National Interventional Cardiology Centre in Luxembourg. The parameters tested during commissioning and constancy control of an X-ray system, the introduction of new clinical protocols, the patient and the personal staff dosimetry were considered. The technical parameters tested by the hospital physicist stay the same as for the image intensifier. No innovative protocols have been adopted due to the existence of the flat panel detector. A reduction in dose was noted after the installation of a flat detector, due mostly to the continuing education of the interventional cardiologists as well as the initial calibration of the radiological system. The understanding of the X-ray system and its possibilities is vital for the optimisation of clinical procedures in patient and staff exposure. PMID:18448437

  9. Design and image-quality performance of high resolution CMOS-based X-ray imaging detectors for digital mammography

    NASA Astrophysics Data System (ADS)

    Cha, B. K.; Kim, J. Y.; Kim, Y. J.; Yun, S.; Cho, G.; Kim, H. K.; Seo, C.-W.; Jeon, S.; Huh, Y.

    2012-04-01

    In digital X-ray imaging systems, X-ray imaging detectors based on scintillating screens with electronic devices such as charge-coupled devices (CCDs), thin-film transistors (TFT), complementary metal oxide semiconductor (CMOS) flat panel imagers have been introduced for general radiography, dental, mammography and non-destructive testing (NDT) applications. Recently, a large-area CMOS active-pixel sensor (APS) in combination with scintillation films has been widely used in a variety of digital X-ray imaging applications. We employed a scintillator-based CMOS APS image sensor for high-resolution mammography. In this work, both powder-type Gd2O2S:Tb and a columnar structured CsI:Tl scintillation screens with various thicknesses were fabricated and used as materials to convert X-ray into visible light. These scintillating screens were directly coupled to a CMOS flat panel imager with a 25 × 50 mm2 active area and a 48 μm pixel pitch for high spatial resolution acquisition. We used a W/Al mammographic X-ray source with a 30 kVp energy condition. The imaging characterization of the X-ray detector was measured and analyzed in terms of linearity in incident X-ray dose, modulation transfer function (MTF), noise-power spectrum (NPS) and detective quantum efficiency (DQE).

  10. Cardiac Multidetector Computed Tomography: Basic Physics of Image Acquisition and Clinical Applications

    PubMed Central

    Bardo, Dianna M.E; Brown, Paul

    2008-01-01

    Cardiac MDCT is here to stay. And, it is more than just imaging coronary arteries. Understanding the differences in and the benefits of one CT scanner from another will help you to optimize the capabilities of the scanner, but requires a basic understanding of the MDCT imaging physics. This review provides key information needed to understand the differences in the types of MDCT scanners, from 64 – 320 detectors, flat panels, single and dual source configurations, step and shoot prospective and retrospective gating, and how each factor influences radiation dose, spatial and temporal resolution, and image noise. PMID:19936200

  11. A preliminary study of flat-panel displays

    NASA Technical Reports Server (NTRS)

    Yancey, K. E.

    1986-01-01

    Six display technologies that might be of future value in a spacelab workstation are discussed. Some have been developed to the point where they could be used as a computer display while others have not. The display technologies studied are electroluminescents, light-emitting didodes, gas plasma, liquid crystal, electrochromic, and electrophoretic. An explanation of each mechanism is provided along with the state-of-the-art development.

  12. Beam-Steerable Flat-Panel Reflector Antenna

    NASA Technical Reports Server (NTRS)

    Lee, Choon Sae; Lee, Chanam; Miranda, Felix A.

    2005-01-01

    Many space applications require a high-gain antenna that can be easily deployable in space. Currently, the most common high-gain antenna for space-born applications is an umbrella-type reflector antenna that can be folded while being lifted to the Earth orbit. There have been a number of issues to be resolved for this type of antenna. The reflecting surface of a fine wire mesh has to be light in weight and flexible while opening up once in orbit. Also the mesh must be a good conductor at the operating frequency. In this paper, we propose a different type of high-gain antenna for easy space deployment. The proposed antenna is similar to reflector antennas except the curved main reflector is replaced by a flat reconfigurable surface for easy packing and deployment in space. Moreover it is possible to steer the beam without moving the entire antenna system.

  13. The effect of amorphous selenium detector thickness on dual-energy digital breast imaging

    SciTech Connect

    Hu, Yue-Houng Zhao, Wei

    2014-11-01

    Purpose: Contrast enhanced (CE) imaging techniques for both planar digital mammography (DM) and three-dimensional (3D) digital breast tomosynthesis (DBT) applications requires x-ray photon energies higher than the k-edge of iodine (33.2 keV). As a result, x-ray tube potentials much higher (>40 kVp) than those typical for screening mammography must be utilized. Amorphous selenium (a-Se) based direct conversion flat-panel imagers (FPI) have been widely used in DM and DBT imaging systems. The a-Se layer is typically 200 μm thick with quantum detective efficiency (QDE) >87% for x-ray energies below 26 keV. However, QDE decreases substantially above this energy. To improve the object detectability of either CE-DM or CE-DBT, it may be advantageous to increase the thickness (d{sub Se}) of the a-Se layer. Increasing the d{sub Se} will improve the detective quantum efficiency (DQE) at the higher energies used in CE imaging. However, because most DBT systems are designed with partially isocentric geometries, where the gantry moves about a stationary detector, the oblique entry of x-rays will introduce additional blur to the system. The present investigation quantifies the effect of a-Se thickness on imaging performance for both CE-DM and CE-DBT, discussing the effects of improving photon absorption and blurring from oblique entry of x-rays. Methods: In this paper, a cascaded linear system model (CLSM) was used to investigate the effect of d{sub Se} on the imaging performance (i.e., MTF, NPS, and DQE) of FPI in CE-DM and CE-DBT. The results from the model are used to calculate the ideal observer signal-to-noise ratio, d′, which is used as a figure-of-merit to determine the total effect of increasing d{sub Se} for CE-DM and CE-DBT. Results: The results of the CLSM show that increasing d{sub Se} causes a substantial increase in QDE at the high energies used in CE-DM. However, at the oblique projection angles used in DBT, the increased length of penetration through a

  14. The effect of amorphous selenium detector thickness on dual-energy digital breast imaging

    PubMed Central

    Hu, Yue-Houng; Zhao, Wei

    2014-01-01

    Purpose: Contrast enhanced (CE) imaging techniques for both planar digital mammography (DM) and three-dimensional (3D) digital breast tomosynthesis (DBT) applications requires x-ray photon energies higher than the k-edge of iodine (33.2 keV). As a result, x-ray tube potentials much higher (>40 kVp) than those typical for screening mammography must be utilized. Amorphous selenium (a-Se) based direct conversion flat-panel imagers (FPI) have been widely used in DM and DBT imaging systems. The a-Se layer is typically 200 μm thick with quantum detective efficiency (QDE) >87% for x-ray energies below 26 keV. However, QDE decreases substantially above this energy. To improve the object detectability of either CE-DM or CE-DBT, it may be advantageous to increase the thickness (dSe) of the a-Se layer. Increasing the dSe will improve the detective quantum efficiency (DQE) at the higher energies used in CE imaging. However, because most DBT systems are designed with partially isocentric geometries, where the gantry moves about a stationary detector, the oblique entry of x-rays will introduce additional blur to the system. The present investigation quantifies the effect of a-Se thickness on imaging performance for both CE-DM and CE-DBT, discussing the effects of improving photon absorption and blurring from oblique entry of x-rays. Methods: In this paper, a cascaded linear system model (CLSM) was used to investigate the effect of dSe on the imaging performance (i.e., MTF, NPS, and DQE) of FPI in CE-DM and CE-DBT. The results from the model are used to calculate the ideal observer signal-to-noise ratio, d′, which is used as a figure-of-merit to determine the total effect of increasing dSe for CE-DM and CE-DBT. Results: The results of the CLSM show that increasing dSe causes a substantial increase in QDE at the high energies used in CE-DM. However, at the oblique projection angles used in DBT, the increased length of penetration through a-Se introduces additional image blur

  15. Gene array analysis of neural crest cells identifies transcription factors necessary for direct conversion of embryonic fibroblasts into neural crest cells

    PubMed Central

    Motohashi, Tsutomu; Watanabe, Natsuki; Nishioka, Masahiro; Nakatake, Yuhki; Yulan, Piao; Mochizuki, Hiromi; Kawamura, Yoshifumi; Ko, Minoru S. H.; Goshima, Naoki; Kunisada, Takahiro

    2016-01-01

    ABSTRACT Neural crest cells (NC cells) are multipotent cells that emerge from the edge of the neural folds and migrate throughout the developing embryo. Although the gene regulatory network for generation of NC cells has been elucidated in detail, it has not been revealed which of the factors in the network are pivotal to directing NC identity. In this study we analyzed the gene expression profile of a pure NC subpopulation isolated from Sox10-IRES-Venus mice and investigated whether these genes played a key role in the direct conversion of Sox10-IRES-Venus mouse embryonic fibroblasts (MEFs) into NC cells. The comparative molecular profiles of NC cells and neural tube cells in 9.5-day embryos revealed genes including transcription factors selectively expressed in developing trunk NC cells. Among 25 NC cell-specific transcription factor genes tested, SOX10 and SOX9 were capable of converting MEFs into SOX10-positive (SOX10+) cells. The SOX10+ cells were then shown to differentiate into neurons, glial cells, smooth muscle cells, adipocytes and osteoblasts. These SOX10+ cells also showed limited self-renewal ability, suggesting that SOX10 and SOX9 directly converted MEFs into NC cells. Conversely, the remaining transcription factors, including well-known NC cell specifiers, were unable to convert MEFs into SOX10+ NC cells. These results suggest that SOX10 and SOX9 are the key factors necessary for the direct conversion of MEFs into NC cells. PMID:26873953

  16. Gene array analysis of neural crest cells identifies transcription factors necessary for direct conversion of embryonic fibroblasts into neural crest cells.

    PubMed

    Motohashi, Tsutomu; Watanabe, Natsuki; Nishioka, Masahiro; Nakatake, Yuhki; Yulan, Piao; Mochizuki, Hiromi; Kawamura, Yoshifumi; Ko, Minoru S H; Goshima, Naoki; Kunisada, Takahiro

    2016-01-01

    Neural crest cells (NC cells) are multipotent cells that emerge from the edge of the neural folds and migrate throughout the developing embryo. Although the gene regulatory network for generation of NC cells has been elucidated in detail, it has not been revealed which of the factors in the network are pivotal to directing NC identity. In this study we analyzed the gene expression profile of a pure NC subpopulation isolated from Sox10-IRES-Venus mice and investigated whether these genes played a key role in the direct conversion of Sox10-IRES-Venus mouse embryonic fibroblasts (MEFs) into NC cells. The comparative molecular profiles of NC cells and neural tube cells in 9.5-day embryos revealed genes including transcription factors selectively expressed in developing trunk NC cells. Among 25 NC cell-specific transcription factor genes tested, SOX10 and SOX9 were capable of converting MEFs into SOX10-positive (SOX10+) cells. The SOX10+ cells were then shown to differentiate into neurons, glial cells, smooth muscle cells, adipocytes and osteoblasts. These SOX10+ cells also showed limited self-renewal ability, suggesting that SOX10 and SOX9 directly converted MEFs into NC cells. Conversely, the remaining transcription factors, including well-known NC cell specifiers, were unable to convert MEFs into SOX10+ NC cells. These results suggest that SOX10 and SOX9 are the key factors necessary for the direct conversion of MEFs into NC cells. PMID:26873953

  17. Perspectives of medical X-ray imaging

    NASA Astrophysics Data System (ADS)

    Freudenberger, J.; Hell, E.; Knüpfer, W.

    2001-06-01

    While X-ray image intensifiers (XII), storage phosphor screens and film-screen systems are still the work horses of medical imaging, large flat panel solid state detectors using either scintillators and amorphous silicon photo diode arrays (FD-Si), or direct X-ray conversion in amorphous selenium are reaching maturity. The main advantage with respect to image quality and low patient dose of the XII and FD-Si systems is caused by the rise of the Detector Quantum Efficiency originating from the application of thick needle-structured phosphor X-ray absorbers. With the detectors getting closer to an optimal state, further progress in medical X-ray imaging requires an improvement of the usable source characteristics. The development of clinical monochromatic X-ray sources of high power would not only allow an improved contrast-to-dose ratio by allowing smaller average photon energies in applications but would also lead to new imaging techniques.

  18. Dynamic X-ray direct conversion detector using a CdTe polycrystalline layer coupled to a CMOS readout chip

    NASA Astrophysics Data System (ADS)

    Arques, Marc; Renet, Sébastien; Brambilla, Andréa; Feuillet, Guy; Gasse, Adrien; Billon-Pierron, Nicolas; Jolliot, Muriel; Mathieu, Lydie; Rohr, Pierre

    2011-05-01

    A direct detection X-ray imager is presented. It uses polycrystalline cadmium telluride (CdTe) grown by close space sublimation technique for the X-ray photoconductor. A 15 mm×15 mm CdTe layer is connected to a 200×200 pixel readout CMOS by indium bumping. X-ray performance at 16 frames/s rate is measured. In particular a readout noise of 0.5 X-ray, an MTF of 50% at 4 lp/mm and a DQE of 20% at 4 lp/mm are obtained.

  19. Development of breast phantoms for use in breast imaging simulation

    NASA Astrophysics Data System (ADS)

    O'Connor, J. Michael

    Dedicated x-ray breast computed tomography (BCT) and breast tomosynthesis (BT) using a cone-beam flat-panel detector system are modalities under investigation by a number of research teams. Several teams, including the University of Massachusetts Medical School (UMMS) Tomographic Breast Imaging Lab (TBIL), have fabricated a prototype, bench-top flat-panel CT breast imaging (CTBI) system. TBIL researchers also use computer simulation software to investigate various x-ray acquisition and reconstruction parameters. I have developed a methodology to use high resolution, low noise CT reconstructions of fresh mastectomy specimens in order to create an ensemble of three-dimensional (3D) digital breast phantoms that realistically model 3D compressed and uncompressed breast anatomy. The resulting breast phantoms can then be used to simulate realistic projection data for both BCT and BT systems thereby providing a powerful evaluation and optimization mechanism for research and development of novel breast imaging systems as well as the optimization of imaging techniques for such systems.

  20. Direct conversion of bio-ethanol to isobutene on nanosized Zn(x)Zr(y)O(z) mixed oxides with balanced acid-base sites.

    PubMed

    Sun, Junming; Zhu, Kake; Gao, Feng; Wang, Chongmin; Liu, Jun; Peden, Charles H F; Wang, Yong

    2011-07-27

    We report the design and synthesis of nanosized Zn(x)Zr(y)O(z) mixed oxides for direct and high-yield conversion of bio-ethanol to isobutene (~83%). ZnO is addded to ZrO(2) to selectively passivate zirconia's strong Lewis acidic sites and weaken Brönsted acidic sites, while simultaneously introducing basicity. As a result, the undesired reactions of bio-ethanol dehydration and acetone polymerization/coking are suppressed. Instead, a surface basic site-catalyzed ethanol dehydrogenation to acetaldehyde, acetaldehyde to acetone conversion via a complex pathway including aldol-condensation/dehydrogenation, and a Brönsted acidic site-catalyzed acetone-to-isobutene reaction pathway dominates on the nanosized Zn(x)Zr(y)O(z) mixed oxide catalyst, leading to a highly selective process for direct conversion of bio-ethanol to isobutene. PMID:21682296

  1. Direct Conversion of Bio-ethanol to Isobutene on Nanosized ZnxZryOz Mixed Oxides with Balanced Acid–Base Sites

    SciTech Connect

    Sun, Junming; Zhu, Kake; Gao, Feng; Wang, Chong M.; Liu, Jun; Peden, Charles HF; Wang, Yong

    2011-06-17

    Bio-mass conversion has attracted increasing research interests to produce bio-fuels with bio-ethanol being a major product. Development of advanced processes to further upgrade bio-ethanol to other value added fuels or chemicals are pivotal to improving the economics of biomass conversion and deversifying the utilization of biomass resources. In this paper, for the first time, we report the direct conversion of bio-ethanol to isobutene with high yield (~83%) on a multifunctional ZnxZryOz mixed oxide with a dedicated balance of surface acid-base properties. This work illustrates the significance of rational design of a multifunctional mixed oxide catalyst for one step bio-ethanol conversion to a value-added intermediate, isobutene, for chemical and fuel production. This work was supported by the US Department of Energy Basic Energy Sciences' Chemical Sciences, Geosciences & Biosciences Division. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy.

  2. Comparison of two detector systems for cone beam CT small animal imaging - a preliminary study

    PubMed Central

    Meng, Yang; Shaw, Chris C.; Liu, Xinming; Altunbas, Mustafa C.; Wang, Tianpeng; Chen, Lingyun; Tu, Shu-Ju; Kappadath, S. Cheenu; Lai, Chao-Jen

    2007-01-01

    Purpose To compare two detector systems - one based on the charge-coupled device (CCD) and image amplifier, the other based on a-Si/CsI flat panel, for cone beam computed-tomography (CT) imaging of small animals. A high resolution, high framing rate detector system for the cone beam CT imaging of small animals was developed. The system consists of a 2048×3072×12 bit CCD optically coupled to an image amplifier and an x-ray phosphor screen. The CCD has an intrinsic pixel size of 12 μm but the effective pixel size can be adjusted through the magnification adjustment of the optical coupling systems. The system is used in conjunction with an x-ray source and a rotating stage for holding and rotating the scanned object in the cone beam CT imaging experiments. The advantages of the system include but are not limited to the ability to adjust the effective pixel size and to achieve extremely high spatial resolution and temporal resolution. However, the need to use optical coupling compromises the detective quanta efficiency (DQE) of the system. In this paper, the imaging characteristics of the system were presented and compared with those of an a-Si/CsI flat-panel detector system. PMID:18160972

  3. Medical imaging using ionizing radiation: Optimization of dose and image quality in fluoroscopy

    SciTech Connect

    Jones, A. Kyle; Balter, Stephen; Rauch, Phillip; Wagner, Louis K.

    2014-01-15

    The 2012 Summer School of the American Association of Physicists in Medicine (AAPM) focused on optimization of the use of ionizing radiation in medical imaging. Day 2 of the Summer School was devoted to fluoroscopy and interventional radiology and featured seven lectures. These lectures have been distilled into a single review paper covering equipment specification and siting, equipment acceptance testing and quality control, fluoroscope configuration, radiation effects, dose estimation and measurement, and principles of flat panel computed tomography. This review focuses on modern fluoroscopic equipment and is comprised in large part of information not found in textbooks on the subject. While this review does discuss technical aspects of modern fluoroscopic equipment, it focuses mainly on the clinical use and support of such equipment, from initial installation through estimation of patient dose and management of radiation effects. This review will be of interest to those learning about fluoroscopy, to those wishing to update their knowledge of modern fluoroscopic equipment, to those wishing to deepen their knowledge of particular topics, such as flat panel computed tomography, and to those who support fluoroscopic equipment in the clinic.

  4. A multi-platform approach to image guided radiation therapy (IGRT)

    SciTech Connect

    Amies, Christopher . E-mail: christopher.amies@siemens.com; Bani-Hashemi, Ali; Celi, Juan-Carlos; Grousset, Guillaume; Ghelmansarai, Farhad; Hristov, Dimitre; Lane, Derek; Mitschke, Matthias; Singh, Ajit; Shukla, Himanshu; Stein, Joerg; Wofford, Mark

    2006-04-01

    Siemens Medical Solutions, Oncology Care Systems Group (SMSOCSG) is supporting the development of several technologies that enable image acquisition and decision making processes required for IGRT in various clinical settings. Four such technologies are presented including: (i) the integration of a traditional multi-slice computed tomography (CT) scanner 'on rails' with a C-arm gantry linear accelerator; (ii) the development of a high sensitivity, fast, megavoltage (MV) electronic portal imaging device capable of clinical MV Conebeam CT (MVCBCT) reconstruction and fluoroscopy mounted on a C-arm gantry linear accelerator; (iii) the modification of a mobile C-arm with flat panel kilovoltage (kV) diagnostic imager; and (iv) the development of an in-line megavoltage and kilovoltage flat panel imaging system that has the potential to image both anatomical and dosimetric information in 'real-time' utilizing the traditional C-arm gantry linear accelerator geometry. Each method of IGRT has unique as well as complementary qualities which are discussed from both a clinical and technical perspective.

  5. Image-quality performance of an a-Si : H-based X-ray imaging system for digital mammography

    NASA Astrophysics Data System (ADS)

    Darambara, D. G.; Taibi, A.; Speller, R. D.

    2002-01-01

    We have been investigating the potential of large area active matrix flat-panel a-Si : H imaging arrays for full-field digital X-ray mammography. To optimise the overall performance of such an imaging system under mammographic conditions, four different Gd 2O 2S : Tb phosphor screens (i.e. Lanex Fast-Back, Regular, Fine and MinR-2000) were employed and our full-field detector was integrated with the Feinfocus DIMA (Direct Magnification) PLUS MII mammographic unit. The spatial resolution and the image noise of the digital detector were measured and the X-ray imaging performance of the whole system was also evaluated with two mammographic phantoms. It was deduced from the results of this study that Regular screen offers the best compromise between sensitivity and spatial resolution and exhibits better overall image-quality performance than that of a conventional mammography system.

  6. [Digital thoracic radiology: devices, image processing, limits].

    PubMed

    Frija, J; de Géry, S; Lallouet, F; Guermazi, A; Zagdanski, A M; De Kerviler, E

    2001-09-01

    In a first part, the different techniques of digital thoracic radiography are described. Since computed radiography with phosphore plates are the most commercialized it is more emphasized. But the other detectors are also described, as the drum coated with selenium and the direct digital radiography with selenium detectors. The other detectors are also studied in particular indirect flat panels detectors and the system with four high resolution CCD cameras. In a second step the most important image processing are discussed: the gradation curves, the unsharp mask processing, the system MUSICA, the dynamic range compression or reduction, the soustraction with dual energy. In the last part the advantages and the drawbacks of computed thoracic radiography are emphasized. The most important are the almost constant good quality of the pictures and the possibilities of image processing. PMID:11567193

  7. Simulated Thin-Film Growth and Imaging

    NASA Astrophysics Data System (ADS)

    Schillaci, Michael

    2001-06-01

    Thin-films have become the cornerstone of the electronics, telecommunications, and broadband markets. A list of potential products includes: computer boards and chips, satellites, cell phones, fuel cells, superconductors, flat panel displays, optical waveguides, building and automotive windows, food and beverage plastic containers, metal foils, pipe plating, vision ware, manufacturing equipment and turbine engines. For all of these reasons a basic understanding of the physical processes involved in both growing and imaging thin-films can provide a wonderful research project for advanced undergraduate and first-year graduate students. After producing rudimentary two- and three-dimensional thin-film models incorporating ballsitic deposition and nearest neighbor Coulomb-type interactions, the QM tunneling equations are used to produce simulated scanning tunneling microscope (SSTM) images of the films. A discussion of computational platforms, languages, and software packages that may be used to accomplish similar results is also given.

  8. A Triple-Band WCDMA Direct Conversion Receiver IC with Reduced Number of Off-Chip Components and Digital Baseband Control Signals

    NASA Astrophysics Data System (ADS)

    Watanabe, Osamu; Ito, Rui; Mitomo, Toshiya; Saigusa, Shigehito; Arai, Tadashi; Toyoda, Takehiko

    This paper presents a triple-band WCDMA direct conversion receiver (DCR) IC that needs a small number of off-chip components and control signals from digital baseband (DBB) IC. The DCR IC consists of 3 quadrature demodulators (QDEMs) with on-chip impedance matching circuit and an analog baseband block (ABB) that contains a low-pass filter (LPF) with fc automatic tuning circuit using no off-chip components and a linear-in-dB variable-gain amplifier (VGA) with on-chip analog high-pass filter (HPF). In order to make use of DBB control-free DC offset canceler, the DCR is designed to avoid large gain change under large interference that causes long transient response. In order to realize that characteristic without increasing quiescent current, the QDEM is used that employs class AB input stage and low-noise common mode feedback (CMFB) output stage. The DCR IC was fabricated in a SiGe BiCMOS process and occupies about 2.9mm×3.0mm. The DCR needs SAW filters only for off-chip components and a gain control signal from DBB IC for AGC loop. The IIP3 of over -4.4dBm for small signal input level and that of over +1.9dBm for large signal input level are achieved. The gain compression of the desired signal is less than 0.3dB for ACS Case-II condition.

  9. Neutron Imaging Developments at LANSCE

    NASA Astrophysics Data System (ADS)

    Nelson, Ron; Hunter, James; Schirato, Richard; Vogel, Sven; Swift, Alicia; Ickes, Tim; Ward, Bill; Losko, Adrian; Tremsin, Anton

    2015-10-01

    Neutron imaging is complementary to x-ray imaging because of its sensitivity to light elements and greater penetration of high-Z materials. Energy-resolved neutron imaging can provide contrast enhancements for elements and isotopes due to the variations with energy in scattering cross sections due to nuclear resonances. These cross section differences exist due to compound nuclear resonances that are characteristic of each element and isotope, as well as broader resonances at higher energies. In addition, multi-probe imaging, such as combined photon and neutron imaging, is a powerful tool for discerning properties and features in materials that cannot be observed with a single probe. Recently, we have demonstrated neutron imaging, both radiography and computed tomography, using the moderated (Lujan Center) and high-energy (WNR facility) neutron sources at LANSCE. Flat panel x-ray detectors with suitable scintillator-converter screens provide good sensitivity for both low and high neutron energies. Micro-Channel-Plate detectors and iCCD scintillator camera systems that provide the fast time gating needed for energy-resolved imaging have been demonstrated as well. Examples of recent work will be shown including fluid flow in plants and imaging through dense thick objects. This work is funded by the US Department of Energy, National Nuclear Security Administration, and performed by Los Alamos National Security LLC under Contract DE-AC52-06NA25396.

  10. Biological object recognition in μ-radiography images

    NASA Astrophysics Data System (ADS)

    Prochazka, A.; Dammer, J.; Weyda, F.; Sopko, V.; Benes, J.; Zeman, J.; Jandejsek, I.

    2015-03-01

    This study presents an applicability of real-time microradiography to biological objects, namely to horse chestnut leafminer, Cameraria ohridella (Insecta: Lepidoptera, Gracillariidae) and following image processing focusing on image segmentation and object recognition. The microradiography of insects (such as horse chestnut leafminer) provides a non-invasive imaging that leaves the organisms alive. The imaging requires a high spatial resolution (micrometer scale) radiographic system. Our radiographic system consists of a micro-focus X-ray tube and two types of detectors. The first is a charge integrating detector (Hamamatsu flat panel), the second is a pixel semiconductor detector (Medipix2 detector). The latter allows detection of single quantum photon of ionizing radiation. We obtained numerous horse chestnuts leafminer pupae in several microradiography images easy recognizable in automatic mode using the image processing methods. We implemented an algorithm that is able to count a number of dead and alive pupae in images. The algorithm was based on two methods: 1) noise reduction using mathematical morphology filters, 2) Canny edge detection. The accuracy of the algorithm is higher for the Medipix2 (average recall for detection of alive pupae =0.99, average recall for detection of dead pupae =0.83), than for the flat panel (average recall for detection of alive pupae =0.99, average recall for detection of dead pupae =0.77). Therefore, we conclude that Medipix2 has lower noise and better displays contours (edges) of biological objects. Our method allows automatic selection and calculation of dead and alive chestnut leafminer pupae. It leads to faster monitoring of the population of one of the world's important insect pest.

  11. Fundamental Discovery of New Phases and Direct Conversion of Carbon into Diamond and hBN into cBN and Properties

    NASA Astrophysics Data System (ADS)

    Narayan, Jagdish; Bhaumik, Anagh

    2016-04-01

    We review the discovery of new phases of carbon (Q-carbon) and BN (Q-BN) and address critical issues related to direct conversion of carbon into diamond and hBN into cBN at ambient temperatures and pressures in air without any need for catalyst and the presence of hydrogen. The Q-carbon and Q-BN are formed as a result of quenching from super undercooled state by using high-power nanosecond laser pulses. We discuss the equilibrium phase diagram ( P vs T) of carbon, and show that by rapid quenching, kinetics can shift thermodynamic graphite/diamond/liquid carbon triple point from 5000 K/12 GPa to super undercooled carbon at atmospheric pressure in air. Similarly, the hBN-cBN-Liquid triple point is shifted from 3500 K/9.5 GPa to as low as 2800 K and atmospheric pressure. It is shown that nanosecond laser heating of amorphous carbon and nanocrystalline BN on sapphire, glass, and polymer substrates can be confined to melt in a super undercooled state. By quenching this super undercooled state, we have created a new state of carbon (Q-carbon) and BN (Q-BN) from which nanocrystals, microcrystals, nanoneedles, microneedles, and thin films are formed depending upon the nucleation and growth times allowed and the presence of growth template. The large-area epitaxial diamond and cBN films are formed, when appropriate planar matching or lattice matching template is provided for growth from super undercooled liquid. The Q-phases have unique atomic structure and bonding characteristics as determined by high-resolution SEM and backscatter diffraction, HRTEM, STEM-Z, EELS, and Raman spectroscopy, and exhibit new and improved mechanical hardness, electrical conductivity, and chemical and physical properties, including room-temperature ferromagnetism and enhanced field emission. The Q-carbon exhibits robust bulk ferromagnetism with estimated Curie temperature of about 500 K and saturation magnetization value of 20 emu g-1. We have also deposited diamond on cBN by using a novel

  12. Imaging system fundamentals

    NASA Astrophysics Data System (ADS)

    Holst, Gerald C.

    2011-05-01

    Point-and-shoot, TV studio broadcast, and thermal infrared imaging cameras have significantly different applications. A parameter that applies to all imaging systems is Fλ/d, where F is the focal ratio, λ is the wavelength, and d is the detector size. Fλ/d uniquely defines the shape of the camera modulation transfer function. When Fλ/d<2, aliased signal corrupts the imagery. Mathematically, the worst case analysis assumes that the scene contains all spatial frequencies with equal amplitudes. This quantifies the potential for aliasing and is called the spurious response. Digital data cannot be seen; it resides in a computer. Cathode ray tubes, flat panel displays, and printers convert the data into an analog format and are called reconstruction filters. The human visual system is an additional reconstruction filter. Different displays and variable viewing distance affect the perceived image quality. Simulated imagery illustrates different Fλ/d ratios, displays, and sampling artifacts. Since the human visual system is primarily sensitive to intensity variations, aliasing (a spatial frequency phenomenon) is not considered bothersome in most situations.

  13. A novel high resolution, high sensitivity SPECT detector for molecular imaging of cardiovascular diseases

    NASA Astrophysics Data System (ADS)

    Cusanno, F.; Argentieri, A.; Baiocchi, M.; Colilli, S.; Cisbani, E.; De Vincentis, G.; Fratoni, R.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lucentini, M.; Magliozzi, M. L.; Majewski, S.; Marano, G.; Musico, P.; Musumeci, M.; Santavenere, F.; Torrioli, S.; Tsui, B. M. W.; Vitelli, L.; Wang, Y.

    2010-05-01

    Cardiovascular diseases are the most common cause of death in western countries. Understanding the rupture of vulnerable atherosclerotic plaques and monitoring the effect of innovative therapies of heart failure is of fundamental importance. A flexible, high resolution, high sensitivity detector system for molecular imaging with radionuclides on small animal models has been designed for this aim. A prototype has been built using tungsten pinhole and LaBr3(Ce) scintillator coupled to Hamamatsu Flat Panel PMTs. Compact individual-channel readout has been designed, built and tested. Measurements with phantoms as well as pilot studies on mice have been performed, the results show that the myocardial perfusion in mice can be determined with sufficient precision. The detector will be improved replacing the Hamamatsu Flat Panel with Silicon Photomultipliers (SiPMs) to allow integration of the system with MRI scanners. Application of LaBr3(Ce) scintillator coupled to photosensor with high photon detection efficiency and excellent energy resolution will allow dual-label imaging to monitor simultaneously the cardiac perfusion and the molecular targets under investigation during the heart therapy.

  14. Over-exposure correction in knee cone-beam CT imaging with automatic exposure control using a partial low dose scan

    NASA Astrophysics Data System (ADS)

    Choi, Jang-Hwan; Muller, Kerstin; Hsieh, Scott; Maier, Andreas; Gold, Garry; Levenston, Marc; Fahrig, Rebecca

    2016-03-01

    C-arm-based cone-beam CT (CBCT) systems with flat-panel detectors are suitable for diagnostic knee imaging due to their potentially flexible selection of CT trajectories and wide volumetric beam coverage. In knee CT imaging, over-exposure artifacts can occur because of limitations in the dynamic range of the flat panel detectors present on most CBCT systems. We developed a straightforward but effective method for correction and detection of over-exposure for an Automatic Exposure Control (AEC)-enabled standard knee scan incorporating a prior low dose scan. The radiation dose associated with the low dose scan was negligible (0.0042mSv, 2.8% increase) which was enabled by partially sampling the projection images considering the geometry of the knees and lowering the dose further to be able to just see the skin-air interface. We combined the line integrals from the AEC and low dose scans after detecting over-exposed regions by comparing the line profiles of the two scans detector row-wise. The combined line integrals were reconstructed into a volumetric image using filtered back projection. We evaluated our method using in vivo human subject knee data. The proposed method effectively corrected and detected over-exposure, and thus recovered the visibility of exterior tissues (e.g., the shape and density of the patella, and the patellar tendon), incorporating a prior low dose scan with a negligible increase in radiation exposure.

  15. X-ray imaging with scintillator-sensitized hybrid organic photodetectors

    NASA Astrophysics Data System (ADS)

    Büchele, Patric; Richter, Moses; Tedde, Sandro F.; Matt, Gebhard J.; Ankah, Genesis N.; Fischer, Rene; Biele, Markus; Metzger, Wilhelm; Lilliu, Samuele; Bikondoa, Oier; MacDonald, J. Emyr; Brabec, Christoph J.; Kraus, Tobias; Lemmer, Uli; Schmidt, Oliver

    2015-12-01

    Medical X-ray imaging requires cost-effective and high-resolution flat-panel detectors for the energy range between 20 and 120 keV. Solution-processed photodetectors provide the opportunity to fabricate detectors with a large active area at low cost. Here, we present a disruptive approach that improves the resolution of such detectors by incorporating terbium-doped gadolinium oxysulfide scintillator particles into an organic photodetector matrix. The X-ray induced light emission from the scintillators is absorbed within hundreds of nanometres, which is negligible compared with the pixel size. Hence, optical crosstalk, a limiting factor in the resolution of scintillator-based X-ray detectors, is minimized. The concept is validated with a 256 × 256 pixel detector with a resolution of 4.75 lp mm-1 at a MTF = 0.2, significantly better than previous stacked scintillator-based flat-panel detectors. We achieved a resolution that proves the feasibility of solution-based detectors in medical applications. Time-resolved electrical characterization showed enhanced charge carrier mobility with increased scintillator filling, which is explained by morphological changes.

  16. Advanced digital subtraction angiography and MR fusion imaging protocol applied to accurate placement of flow diverter device.

    PubMed

    Faragò, Giuseppe; Caldiera, Valentina; Tempra, Giovanni; Ciceri, Elisa

    2016-02-01

    In recent years there has been a progressive increase in interventional neuroradiology procedures, partially due to improvements in devices, but also to the simultaneous development of technologies and radiological images. Cone beam CT (Dyna-CT; Siemens) is a method recently used to obtain pseudo CT images from digital subtraction angiography (DSA) with a flat panel detector. Using dedicated software, it is then possible to merge Dyna-CT images with images from a different source. We report here the usefulness of advanced DSA techniques (Syngo-Dyna CT, three-dimensional DSA iPilot) for the treatment of an intracranial aneurysm with a flow diverter device. Merging MR and Dyna-CT images at the end of the procedure proved to be a simple and rapid additional method of verifying the success of the intervention. PMID:25589548

  17. Wide-viewing integral imaging using fiber-coupled monocentric lens array.

    PubMed

    Zhang, JianLei; Wang, XiaoRui; Wu, XiongXiong; Yang, Chen; Chen, YuJiao

    2015-09-01

    We propose a novel three dimensional integral imaging display system with improved viewing angle using a monocentric lens array (MoLA) coupled with fiber bundle. In conventional integral imaging, the off-axis aberrations of the conventional lens array limit the viewing angle in the display stage. The key to our design is a MoLA that eliminates most of the off-axis aberrations and generates a wide-angle image on a spherical surface. The fiber bundle acts as relay optics from the flat-panel display to spherical focal plane of the MoLA. The viewing angle enhancement of the proposed method is analyzed, and the achromatic condition is deduced for the MoLA to correct the chromatic aberration. The experimental result illustrates the capabilities of the proposed method. PMID:26368435

  18. Sci—Thur PM: Imaging — 03: A novel Čerenkov detector based on air-spaced light guiding taper for megavoltage x-ray imaging

    SciTech Connect

    Teymurazyan, A; Rowlands, J A; Pang, G

    2014-08-15

    Electronic Portal Imaging Devices (EPIDs) have been used in radiation therapy and are still needed on linear accelerators (Linacs) equipped with kilovoltage cone beam CT (kV-CBCT) or MRI systems. Recently a new concept of a high quantum efficiency (QE) Čerenkov Portal Imaging Device (CPID) for MV x-ray imaging in radiation therapy was introduced. It relies on Čerenkov effect for x-ray detection. The proposed design consisted of a matrix of optical fibres aligned with the incident x-rays and coupled to an active matrix flat panel imager (AMFPI) for image readout. A weakness of such design is that too few Čerenkov light photons reach the AMFPI for each incident x-ray and an AMFPI with an avalanche gain is required. In this work we propose to replace the optical fibers in the CPID with light guides without a cladding layer that are suspended in air. The air between the light guides takes on the role of the cladding layer found in a regular optical fiber. Since air has a significantly lower refractive index, a much superior light collection efficiency is achieved. Our Monte Carlo studies have shown that the modified new CPID has a QE more than an order of magnitude greater than that of current clinical systems and yet a spatial resolution similar to that of current flat-panel based EPIDs. Furthermore it has been demonstrated that the new CPID does not require an avalanche gain in the AMFPI and is quantum noise limited at dose levels corresponding to a single Linac pulse.

  19. Imaging properties of digital magnification radiography

    SciTech Connect

    Boyce, Sarah J.; Samei, Ehsan

    2006-04-15

    Flat panel detectors exhibit improved signal-to-noise ratio (SNR) and display capabilities compared to film. This improvement necessitates a new evaluation of optimal geometry for conventional projection imaging applications such as digital projection mammography as well as for advanced x-ray imaging applications including cone-beam computed tomography (CT), tomosynthesis, and mammotomography. Such an evaluation was undertaken in this study to examine the effects of x-ray source distribution, inherent detector resolution, magnification, scatter rejection, and noise characteristics including noise aliasing. A model for x-ray image acquisition was used to develop generic results applicable to flat panel detectors with similar x-ray absorption characteristics. The model assumed a Gaussian distribution for the focal spot and a rectangular distribution for a pixel. A generic model for the modulated transfer function (MTF) of indirect flat panel detectors was derived by a nonlinear fit of empirical receptor data to the Burgess model for phosphor MTFs. Noise characteristics were investigated using a generic noise power spectrum (NPS) model for indirect phosphor-based detectors. The detective quantum efficiency (DQE) was then calculated from the MTF and NPS models. The results were examined as a function of focal spot size (0.1, 0.3, and 0.6 mm) and pixel size (50, 100, 150, and 200 {mu}m) for magnification ranges 1 to 3. Mammography, general radiography (also applicable to mammotomography), and chest radiography applications were explored using x-ray energies of 28, 74, and 120 kVp, respectively. Nodule detection was examined using the effective point source scatter model, effective DQE, and the Hotelling SNR{sup 2} efficiency. Results indicate that magnification can potentially improve the signal and noise performance of digital images. Results also show that a cross over point occurs in the spatial frequency above and below which the effects of magnification differ

  20. Imaging properties of digital magnification radiography.

    PubMed

    Boyce, Sarah J; Samei, Ehsan

    2006-04-01

    Flat panel detectors exhibit improved signal-to-noise ratio (SNR) and display capabilities compared to film. This improvement necessitates a new evaluation of optimal geometry for conventional projection imaging applications such as digital projection mammography as well as for advanced x-ray imaging applications including cone-beam computed tomography (CT), tomosynthesis, and mammotomography. Such an evaluation was undertaken in this study to examine the effects of x-ray source distribution, inherent detector resolution, magnification, scatter rejection, and noise characteristics including noise aliasing. A model for x-ray image acquisition was used to develop generic results applicable to flat panel detectors with similar x-ray absorption characteristics. The model assumed a Gaussian distribution for the focal spot and a rectangular distribution for a pixel. A generic model for the modulated transfer function (MTF) of indirect flat panel detectors was derived by a nonlinear fit of empirical receptor data to the Burgess model for phosphor MTFs. Noise characteristics were investigated using a generic noise power spectrum (NPS) model for indirect phosphor-based detectors. The detective quantum efficiency (DQE) was then calculated from the MTF and NPS models. The results were examined as a function of focal spot size (0.1, 0.3, and 0.6 mm) and pixel size (50, 100, 150, and 200 microm) for magnification ranges 1 to 3. Mammography, general radiography (also applicable to mammotomography), and chest radiography applications were explored using x-ray energies of 28, 74, and 120 kVp, respectively. Nodule detection was examined using the effective point source scatter model, effective DQE, and the Hotelling SNR2 efficiency. Results indicate that magnification can potentially improve the signal and noise performance of digital images. Results also show that a cross over point occurs in the spatial frequency above and below which the effects of magnification differ

  1. A feasibility study of X-ray phase-contrast mammographic tomography at the Imaging and Medical beamline of the Australian Synchrotron.

    PubMed

    Nesterets, Yakov I; Gureyev, Timur E; Mayo, Sheridan C; Stevenson, Andrew W; Thompson, Darren; Brown, Jeremy M C; Kitchen, Marcus J; Pavlov, Konstantin M; Lockie, Darren; Brun, Francesco; Tromba, Giuliana

    2015-11-01

    Results are presented of a recent experiment at the Imaging and Medical beamline of the Australian Synchrotron intended to contribute to the implementation of low-dose high-sensitivity three-dimensional mammographic phase-contrast imaging, initially at synchrotrons and subsequently in hospitals and medical imaging clinics. The effect of such imaging parameters as X-ray energy, source size, detector resolution, sample-to-detector distance, scanning and data processing strategies in the case of propagation-based phase-contrast computed tomography (CT) have been tested, quantified, evaluated and optimized using a plastic phantom simulating relevant breast-tissue characteristics. Analysis of the data collected using a Hamamatsu CMOS Flat Panel Sensor, with a pixel size of 100 µm, revealed the presence of propagation-based phase contrast and demonstrated significant improvement of the quality of phase-contrast CT imaging compared with conventional (absorption-based) CT, at medically acceptable radiation doses. PMID:26524316

  2. Development of a QA phantom and automated analysis tool for geometric quality assurance of on-board MV and kV x-ray imaging systems

    SciTech Connect

    Mao Weihua; Lee, Louis; Xing Lei

    2008-04-15

    The medical linear accelerator (linac) integrated with a kilovoltage (kV) flat-panel imager has been emerging as an important piece of equipment for image-guided radiation therapy. Due to the sagging of the linac head and the flexing of the robotic arms that mount the x-ray tube and flat-panel detector, geometric nonidealities generally exist in the imaging geometry no matter whether it is for the two-dimensional projection image or three-dimensional cone-beam computed tomography. Normally, the geometric parameters are established during the commissioning and incorporated in correction software in respective image formation or reconstruction. A prudent use of an on-board imaging system necessitates a routine surveillance of the geometric accuracy of the system like the position of the x-ray source, imager position and orientation, isocenter, rotation trajectory, and source-to-imager distance. Here we describe a purposely built phantom and a data analysis software for monitoring these important parameters of the system in an efficient and automated way. The developed tool works equally well for the megavoltage (MV) electronic portal imaging device and hence allows us to measure the coincidence of the isocenters of the MV and kV beams of the linac. This QA tool can detect an angular uncertainty of 0.1 deg. of the x-ray source. For spatial uncertainties, such as the source position, the imager position, or the kV/MV isocenter misalignment, the demonstrated accuracy of this tool was better than 1.6 mm. The developed tool provides us with a simple, robust, and objective way to probe and monitor the geometric status of an imaging system in a fully automatic process and facilitate routine QA workflow in a clinic.

  3. Tomosynthesis imaging: At a translational crossroads

    SciTech Connect

    Dobbins, James T. III

    2009-06-15

    Tomosynthesis is a decades-old technique for section imaging that has seen a recent upsurge in interest due to its promise to provide three-dimensional information at lower dose and potentially lower cost than CT in certain clinical imaging situations. This renewed interest in tomosynthesis began in the late 1990s as a new generation of flat-panel detectors became available; these detectors were the one missing piece of the picture that had kept tomosynthesis from enjoying significant utilization earlier. In the past decade, tomosynthesis imaging has been investigated in a variety of clinical imaging situations, but the two most prominent have been in breast and chest imaging. Tomosynthesis has the potential to substantially change the way in which breast cancer and pulmonary nodules are detected and managed. Commercial tomosynthesis devices are now available or on the horizon. Many of the remaining research activities with tomosynthesis will be translational in nature and will involve physicist and clinician alike. This overview article provides a forward-looking assessment of the translational questions facing tomosynthesis imaging and anticipates some of the likely research and clinical activities in the next five years.

  4. Comparative study on 3D-2D convertible integral imaging systems

    NASA Astrophysics Data System (ADS)

    Choi, Heejin; Kim, Joohwan; Kim, Yunhee; Lee, Byoungho

    2006-02-01

    In spite of significant improvements in three-dimensional (3D) display fields, the commercialization of a 3D-only display system is not achieved yet. The mainstream of display market is a high performance two-dimensional (2D) flat panel display (FPD) and the beginning of the high-definition (HD) broadcasting accelerates the opening of the golden age of HD FPDs. Therefore, a 3D display system needs to be able to display a 2D image with high quality. In this paper, two different 3D-2D convertible methods based on integral imaging are compared and categorized for its applications. One method uses a point light source array and a polymer-dispersed liquid crystal and one display panel. The other system adopts two display panels and a lens array. The former system is suitable for mobile applications while the latter is for home applications such as monitors and TVs.

  5. Molecular breast imaging: First results from Italian-National-Institute-of-Health clinical trials

    NASA Astrophysics Data System (ADS)

    Cusanno, F.; Cisbani, E.; Colilli, S.; Fratoni, R.; Garibaldi, F.; Giuliani, F.; Gricia, M.; Lucentini, M.; Magliozzi, M. L.; Santanvenere, F.; Torrioli, S.; Cinti, M. N.; Pani, R.; Pellegrini, R.; Simonetti, G.; Schillaci, O.; Del Vecchio, S.; Salvatore, M.; Majewski, S.; De Vincentis, G.; Scopinaro, F.

    2007-02-01

    Dedicated high resolution detectors are needed for detection of small tumors by molecular imaging with radionuclides. Absorptive collimation are typically used for imaging single photon emitters, but it results in a strong reduction in efficiency. Systems based on electronic collimation offer higher efficiency but they are complex and expensive. In case of scintimammography, dual-head detectors increase sensitivity and cancel out the dependence of the lesion depth. In the system presented here, pixellated scintillator arrays (NaI:Tl) were coupled to arrays of PSPMT's, HPK H8500 Flat Panel. A dual-head detector having field of view of 100×100 mm 2 and 150×200 mm 2 were designed and built. The electronic system allows readout of all the anode pad signals. First clinical trials, performed in the framework of the Scintimammography project of Italian National Institute of Health and University of Tor Vergata in Rome, and University of Naples, are presented.

  6. Development and operation of a prototype cone-beam computed tomography system for X-ray medical imaging

    NASA Astrophysics Data System (ADS)

    Seo, Chang-Woo; Cha, Bo Kyung; Kim, Ryun Kyung; Kim, Cho-Rong; Yang, Keedong; Huh, Young; Jeon, Sungchae; Park, Justin C.; Song, Bongyong; Song, William Y.

    2014-01-01

    This paper describes the development of a prototype cone-beam computed tomography (CBCT) system for clinical use. The overall system design in terms of physical characteristics, geometric calibration methods, and three-dimensional image reconstruction algorithms are described. Our system consists of an X-ray source and a large-area flat-panel detector with the axial dimension large enough for most clinical applications when acquired in a full gantry rotation mode. Various elaborate methods are applied to measure, analyze and calibrate the system for imaging. The electromechanical and the radiographic subsystems through the synchronized control include: gantry rotation and speed, tube rotor, the high-frequency generator (kVp, mA, exposure time and repetition rate), and the reconstruction server (imaging acquisition and reconstruction). The operator can select between analytic and iterative reconstruction methods. Our prototype system contains the latest hardware and reconstruction algorithms and, thus, represents a step forward in CBCT technology.

  7. Physical and psychophysical characterization of a novel clinical system for digital mammography

    SciTech Connect

    Rivetti, Stefano; Lanconelli, Nico; Bertolini, Marco; Borasi, Giovanni; Golinelli, Paola; Acchiappati, Domenico; Gallo, Ennio

    2009-11-15

    Purpose: In recent years, many approaches have been investigated on the development of full-field digital mammography detectors and implemented in practical clinical systems. Some of the most promising techniques are based on flat panel detectors, which, depending on the mechanism involved in the x-ray detection, can be grouped into direct and indirect flat panels. Direct detectors display a better spatial resolution due to the direct conversion of x rays into electron-hole pairs, which do not need an intermediate production of visible light. In these detectors the readout is usually achieved through arrays of thin film transistors (TFTs). However, TFT readout tends to display noise characteristics worse than those from indirect detectors. To address this problem, a novel clinical system for digital mammography has been recently marketed based on direct-conversion detector and optical readout. This unit, named AMULET and manufactured by FUJIFILM, is based on a dual layer of amorphous selenium that acts both as a converter of x rays (first layer) and as an optical switch for the readout of signals (second layer) powered by a line light source. The optical readout is expected to improve the noise characteristics of the detector. The aim is to obtain images with high resolution and low noise, thanks to the combination of optical switching technology and direct conversion with amorphous selenium. In this article, the authors present a characterization of an AMULET system. Methods: The characterization was achieved in terms of physical figures as modulation transfer function (MTF), noise power spectra (NPS), detective quantum efficiency (DQE), and contrast-detail analysis. The clinical unit was tested by exposing it to two different beams: 28 kV Mo/Mo (namely, RQA-M2) and 28 kV W/Rh (namely, W/Rh). Results: MTF values of the system are slightly worse than those recorded from other direct-conversion flat panels but still within the range of those from indirect flat

  8. Evaluation of imaging geometry for stationary chest tomosynthesis

    NASA Astrophysics Data System (ADS)

    Shan, Jing; Tucker, Andrew W.; Lee, Yueh Z.; Heath, Michael D.; Wang, Xiaohui; Foos, David; Lu, Jianping; Zhou, Otto

    2014-03-01

    We have recently demonstrated the feasibility of stationary digital chest tomosynthesis (s-DCT) using a dis- tributed carbon nanotube x-ray source array. The technology has the potential to increase the imaging resolution and speed by eliminating source motion. In addition, the flexibility in the spatial configuration of the individual sources allows new tomosynthesis imaging geometries beyond the linear scanning mode used in the conventional systems. In this paper, we report the preliminary results on the effects of the tomosynthesis imaging geometry on the image quality. The study was performed using a bench-top s-DCT system consisting of a CNT x-ray source array and a flat-panel detector. System MTF and ASF are used as quantitative measurement of the in-plane and in-depth resolution. In this study geometries with the x-ray sources arranged in linear, square, rectangular and circular configurations were investigated using comparable imaging doses. Anthropomorphic chest phantom images were acquired and reconstructed for image quality assessment. It is found that wider angular coverage results in better in-depth resolution, while the angular span has little impact on the in-plane resolution in the linear geometry. 2D source array imaging geometry leads to a more isotropic in-plane resolution, and better in-depth resolution compared to 1D linear imaging geometry with comparable angular coverage.

  9. Evaluation of patient dose using a virtual CT scanner: Applications to 4DCT simulation and Kilovoltage cone-beam imaging

    NASA Astrophysics Data System (ADS)

    DeMarco, J. J.; McNitt-Gray, M. F.; Cagnon, C. H.; Angel, E.; Agazaryan, N.; Zankl, M.

    2008-02-01

    This work evaluates the effects of patient size on radiation dose from simulation imaging studies such as four-dimensional computed tomography (4DCT) and kilovoltage cone-beam computed tomography (kV-CBCT). 4DCT studies are scans that include temporal information, frequently incorporating highly over-sampled imaging series necessary for retrospective sorting as a function of respiratory phase. This type of imaging study can result in a significant dose increase to the patient due to the slower table speed as compared with a conventional axial or helical scan protocol. Kilovoltage cone-beam imaging is a relatively new imaging technique that requires an on-board kilovoltage x-ray tube and a flat-panel detector. Instead of porting individual reference fields, the kV tube and flat-panel detector are rotated about the patient producing a cone-beam CT data set (kV-CBCT). To perform these investigations, we used Monte Carlo simulation methods with detailed models of adult patients and virtual source models of multidetector computed tomography (MDCT) scanners. The GSF family of three-dimensional, voxelized patient models, were implemented as input files using the Monte Carlo code MCNPX. The adult patient models represent a range of patient sizes and have all radiosensitive organs previously identified and segmented. Simulated 4DCT scans of each voxelized patient model were performed using a multi-detector CT source model that includes scanner specific spectra, bow-tie filtration, and helical source path. Standard MCNPX tally functions were applied to each model to estimate absolute organ dose based upon an air-kerma normalization measurement for nominal scanner operating parameters.

  10. Dose assessment of digital tomosynthesis in pediatric imaging

    NASA Astrophysics Data System (ADS)

    Gislason, Amber; Elbakri, Idris A.; Reed, Martin

    2009-02-01

    We investigated the potential for digital tomosynthesis (DT) to reduce pediatric x-ray dose while maintaining image quality. We utilized the DT feature (VolumeRadTM) on the GE DefiniumTM 8000 flat panel system installed in the Winnipeg Children's Hospital. Facial bones, cervical spine, thoracic spine, and knee of children aged 5, 10, and 15 years were represented by acrylic phantoms for DT dose measurements. Effective dose was estimated for DT and for corresponding digital radiography (DR) and computed tomography (CT) patient image sets. Anthropomorphic phantoms of selected body parts were imaged by DR, DT, and CT. Pediatric radiologists rated visualization of selected anatomic features in these images. Dose and image quality comparisons between DR, DT, and CT determined the usefulness of tomosynthesis for pediatric imaging. CT effective dose was highest; total DR effective dose was not always lowest - depending how many projections were in the DR image set. For the cervical spine, DT dose was close to and occasionally lower than DR dose. Expert radiologists rated visibility of the central facial complex in a skull phantom as better than DR and comparable to CT. Digital tomosynthesis has a significantly lower dose than CT. This study has demonstrated DT shows promise to replace CT for some facial bones and spinal diagnoses. Other clinical applications will be evaluated in the future.

  11. A compact gamma camera for biological imaging

    SciTech Connect

    Bradley, E L; Cella, J; Majewski, S; Popov, V; Qian, Jianguo; Saha, M S; Smith, M F; Weisenberger, A G; Welsh, R E

    2006-02-01

    A compact detector, sized particularly for imaging a mouse, is described. The active area of the detector is approximately 46 mm; spl times/ 96 mm. Two flat-panel Hamamatsu H8500 position-sensitive photomultiplier tubes (PSPMTs) are coupled to a pixellated NaI(Tl) scintillator which views the animal through a copper-beryllium (CuBe) parallel-hole collimator specially designed for {sup 125}I. Although the PSPMTs have insensitive areas at their edges and there is a physical gap, corrections for scintillation light collection at the junction between the two tubes results in a uniform response across the entire rectangular area of the detector. The system described has been developed to optimize both sensitivity and resolution for in-vivo imaging of small animals injected with iodinated compounds. We demonstrate an in-vivo application of this detector, particularly to SPECT, by imaging mice injected with approximately 10-15; spl mu/Ci of {sup 125}I.

  12. Highly sensitive direct conversion ultrasound interferometer

    NASA Astrophysics Data System (ADS)

    Svitelskiy, Oleksiy; Grossmann, John; Suslov, Alexey

    2015-03-01

    Being invented more than fifty years ago, the ultrasonic pulse-echo technique has proven itself as a valuable and indispensable non-destructive tool to explore elastic properties of materials in engineering and scientific tasks. We propose a new design for the instrument based on mass-produced integral microchips. In our design the radiofrequency echo-pulse signal is processed by AD8302 RF gain and phase detector (www.analog.com).Its phase output is linearly proportional to the phase difference between the exciting and response signals. The gain output is proportional to the log of the ratio of amplitudes of the received to the exciting signals. To exclude the non-linear fragments and to enable exploring large phase changes, we employ parallel connection of two detectors, fed by in-phase and quadrature signals respectively. The instrument allowed us exploring phase transitions with precision of ΔV / V ~10-7 (V is the ultrasound speed). The high sensitivity of the logarithmic amplifiers embedded into AD8302 requires good grounding and screening of the receiving circuitry.

  13. Direct Conversion of Radioisotope Energy to Electricity

    SciTech Connect

    Marks Prelas; Alexey Spitsyn; Alejandro Suarez; Eric Stienfelds; Dickerson Moreno; Bia-Ling Hsu; Tushar Ghosh; Robert Tompson; Sudarshan Loyalka; Dabir Viswanath

    2003-09-09

    A new chemical reactor has been tested for Field Enhanced Diffusion by Optical Activation doping and purification of SiC, GaN and AlN films. Different conditions have been used on SiC, GaN and AlN samples including temperature variation, electrical field variation, variations in electrical current and optical activation. A 5mW (630-680) nm laser was used for optical activation. It was observed that optical activation has a major effect on ion drift rates. It was also observed that the magnitude of the electrical current also enhanced ion drift rates by a postulated current drag mechanism. I-V characteristic curves were measured to verify changes in the electrical properties of the samples SIMS was used to analyze the concentrations of impurities in the film samples before and after treatment. It has been demonstrated that the field-enhanced diffusion by optical activation method can dope and purify the films. As a result, the electrical properties of the wafers have been significantly improved during treatment especially in cases where a laser is used.

  14. Multi-energy imagers for a radiotherapy treatment environment

    NASA Astrophysics Data System (ADS)

    Antonuk, Larry E.; Liu, Langechuan; Liang, Albert K.; El-Mohri, Youcef; Zhao, Qihua; Koniczek, Martin; Jiang, Hao

    2015-03-01

    Over the last ~15 years, the central goal in external beam radiotherapy of maximizing dose to the tumor while minimizing dose to surrounding normal tissues has been greatly facilitated by the development and clinical implementation of many innovations. These include megavoltage active matrix flat-panel imagers (MV AMFPIs) designed to image the treatment beam, and separate kilovoltage (kV) AMFPIs and x-ray sources designed to provide high-contrast projection and cone-beam CT images in the treatment room. While these systems provide clinically valuable information, a variety of advantages would accrue through introduction of the capability to produce clinically useful, high quality imaging information at multiple energies (e.g., kV and MV) from a single detector along the treatment beam direction. One possible approach for achieving this goal involves substitution of the x-ray converters used in conventional MV AMFPIs with thick, segmented crystalline scintillators designed for dual-energy operation, coupled with the addition of x-ray imaging beams that contain a significant diagnostic component. A second approach involves introduction of a large area, monolithic array of photon counting pixels with multiple energy thresholds and event counters, which could provide multi-spectral views of the treatment beam with improved contrast. In this paper, the motivations behind, and the merits of each approach are described. In addition, prospects for such dual-energy imagers and photon counting array designs are discussed in the context of the radiotherapy environment.

  15. Analysis of the kinestatic charge detection system as a high detective quantum efficiency electronic portal imaging device

    SciTech Connect

    Samant, Sanjiv S.; Gopal, Arun

    2006-09-15

    Megavoltage x-ray imaging suffers from reduced image quality due to low differential x-ray attenuation and large Compton scatter compared with kilovoltage imaging. Notwithstanding this, electronic portal imaging devices (EPIDs) are now widely used in portal verification in radiotherapy as they offer significant advantages over film, including immediate digital imaging and superior contrast range. However video-camera-based EPIDs (VEPIDs) are limited by problems of low light collection efficiency and significant light scatter, leading to reduced contrast and spatial resolution. Indirect and direct detection-based flat-panel EPIDs have been developed to overcome these limitations. While flat-panel image quality has been reported to exceed that achieved with portal film, these systems have detective quantum efficiency (DQE) limited by the thin detection medium and are sensitive to radiation damage to peripheral read-out electronics. An alternative technology for high-quality portal imaging is presented here: kinesatic charge detection (KCD). The KCD is a scanning tri-electrode ion-chamber containing high-pressure noble gas (xenon at 100 atm) used in conjunction with a strip-collimated photon beam. The chamber is scanned across the patient, and an external electric field is used to regulate the cation drift velocity. By matching the scanning velocity with that of the cation (i.e., ion) drift velocity, the cations remain static in the object frame of reference, allowing temporal integration of the signal. The KCD offers several advantages as a portal imaging system. It has a thick detector geometry with an active detection depth of 6.1 cm, compared to the sub-millimeter thickness of the phosphor layer in conventional phosphor screens, leading to an order of magnitude advantage in quantum efficiency (>0.3). The unique principle of kinestatis and the use of the scanning strip-collimated x-ray beam provide further integration of charges in time, reduced scatter, and a

  16. An image guided small animal stereotactic radiotherapy system.

    PubMed

    Sha, Hao; Udayakumar, Thirupandiyur S; Johnson, Perry B; Dogan, Nesrin; Pollack, Alan; Yang, Yidong

    2016-04-01

    Small animal radiotherapy studies should be performed preferably on irradiators capable of focal tumor irradiation and healthy tissue sparing. In this study, an image guided small animal arc radiation treatment system (iSMAART) was developed which can achieve highly precise radiation targeting through the utilization of onboard cone beam computed tomography (CBCT) guidance. The iSMAART employs a unique imaging and radiation geometry where animals are positioned upright. It consists of a stationary x-ray tube, a stationary flat panel detector, and a rotatable and translational animal stage. System performance was evaluated in regards to imaging, image guidance, animal positioning, and radiation targeting using phantoms and tumor bearing animals. The onboard CBCT achieved good signal, contrast, and sub-millimeter spatial resolution. The iodine contrast CBCT accurately delineated orthotopic prostate tumors. Animal positioning was evaluated with ~0.3 mm vertical displacement along superior-inferior direction. The overall targeting precision was within 0.4 mm. Stereotactic radiation beams conformal to tumor targets can be precisely delivered from multiple angles surrounding the animal. The iSMAART allows radiobiology labs to utilize an image guided precision radiation technique that can focally irradiate tumors while sparing healthy tissues at an affordable cost. PMID:26958942

  17. An image guided small animal stereotactic radiotherapy system

    PubMed Central

    Sha, Hao; Udayakumar, Thirupandiyur S.; Johnson, Perry B.; Dogan, Nesrin; Pollack, Alan; Yang, Yidong

    2016-01-01

    Small animal radiotherapy studies should be performed preferably on irradiators capable of focal tumor irradiation and healthy tissue sparing. In this study, an image guided small animal arc radiation treatment system (iSMAART) was developed which can achieve highly precise radiation targeting through the utilization of onboard cone beam computed tomography (CBCT) guidance. The iSMAART employs a unique imaging and radiation geometry where animals are positioned upright. It consists of a stationary x-ray tube, a stationary flat panel detector, and a rotatable and translational animal stage. System performance was evaluated in regards to imaging, image guidance, animal positioning, and radiation targeting using phantoms and tumor bearing animals. The onboard CBCT achieved good signal, contrast, and sub-millimeter spatial resolution. The iodine contrast CBCT accurately delineated orthotopic prostate tumors. Animal positioning was evaluated with ∼0.3 mm vertical displacement along superior-inferior direction. The overall targeting precision was within 0.4 mm. Stereotactic radiation beams conformal to tumor targets can be precisely delivered from multiple angles surrounding the animal. The iSMAART allows radiobiology labs to utilize an image guided precision radiation technique that can focally irradiate tumors while sparing healthy tissues at an affordable cost. PMID:26958942

  18. Study of a prototype high quantum efficiency thick scintillation crystal video-electronic portal imaging device

    SciTech Connect

    Samant, Sanjiv S.; Gopal, Arun

    2006-08-15

    Image quality in portal imaging suffers significantly from the loss in contrast and spatial resolution that results from the excessive Compton scatter associated with megavoltage x rays. In addition, portal image quality is further reduced due to the poor quantum efficiency (QE) of current electronic portal imaging devices (EPIDs). Commercial video-camera-based EPIDs or VEPIDs that utilize a thin phosphor screen in conjunction with a metal buildup plate to convert the incident x rays to light suffer from reduced light production due to low QE (<2% for Eastman Kodak Lanex Fast-B). Flat-panel EPIDs that utilize the same luminescent screen along with an a-Si:H photodiode array provide improved image quality compared to VEPIDs, but they are expensive and can be susceptible to radiation damage to the peripheral electronics. In this article, we present a prototype VEPID system for high quality portal imaging at sub-monitor-unit (subMU) exposures based on a thick scintillation crystal (TSC) that acts as a high QE luminescent screen. The prototype TSC system utilizes a 12 mm thick transparent CsI(Tl) (thallium-activated cesium iodide) scintillator for QE=0.24, resulting in significantly higher light production compared to commercial phosphor screens. The 25x25 cm{sup 2} CsI(Tl) screen is coupled to a high spatial and contrast resolution Video-Optics plumbicon-tube camera system (1240x1024 pixels, 250 {mu}m pixel width at isocenter, 12-bit ADC). As a proof-of-principle prototype, the TSC system with user-controlled camera target integration was adapted for use in an existing clinical gantry (Siemens BEAMVIEW{sup PLUS}) with the capability for online intratreatment fluoroscopy. Measurements of modulation transfer function (MTF) were conducted to characterize the TSC spatial resolution. The measured MTF along with measurements of the TSC noise power spectrum (NPS) were used to determine the system detective quantum efficiency (DQE). A theoretical expression of DQE(0) was

  19. Study of a prototype high quantum efficiency thick scintillation crystal video-electronic portal imaging device.

    PubMed

    Samant, Sanjiv S; Gopal, Arun

    2006-08-01

    Image quality in portal imaging suffers significantly from the loss in contrast and spatial resolution that results from the excessive Compton scatter associated with megavoltage x rays. In addition, portal image quality is further reduced due to the poor quantum efficiency (QE) of current electronic portal imaging devices (EPIDs). Commercial video-camera-based EPIDs or VEPIDs that utilize a thin phosphor screen in conjunction with a metal buildup plate to convert the incident x rays to light suffer from reduced light production due to low QE (<2% for Eastman Kodak Lanex Fast-B). Flat-panel EPIDs that utilize the same luminescent screen along with an a-Si:H photodiode array provide improved image quality compared to VEPIDs, but they are expensive and can be susceptible to radiation damage to the peripheral electronics. In this article, we present a prototype VEPID system for high quality portal imaging at sub-monitor-unit (subMU) exposures based on a thick scintillation crystal (TSC) that acts as a high QE luminescent screen. The prototype TSC system utilizes a 12 mm thick transparent CsI(Tl) (thallium-activated cesium iodide) scintillator for QE=0.24, resulting in significantly higher light production compared to commercial phosphor screens. The 25 X 25 cm2 CsI(Tl) screen is coupled to a high spatial and contrast resolution Video-Optics plumbicon-tube camera system (1240 X 1024 pixels, 250 microm pixel width at isocenter, 12-bit ADC). As a proof-of-principle prototype, the TSC system with user-controlled camera target integration was adapted for use in an existing clinical gantry (Siemens BEAMVIEW(PLUS)) with the capability for online intratreatment fluoroscopy. Measurements of modulation transfer function (MTF) were conducted to characterize the TSC spatial resolution. The measured MTF along with measurements of the TSC noise power spectrum (NPS) were used to determine the system detective quantum efficiency (DQE). A theoretical expression of DQE(0) was developed

  20. Development of a standard modular design for low-cost flat-panel photovoltaic array fields

    SciTech Connect

    Carmichael, D.C.; Alexander, G.; Noel, G.T.; Smith, R.W.; Huss, W.R.

    1982-11-01

    Array-field balance-of-system (BOS) and engineering costs must be reduced for PV power systems to be cost effective for grid-connected applications. Therefore, a study was conducted to develop an innovative and integrated structural and electrical array-field design optimized for minimum life-cycle energy cost, to identify a modular Building Block from this design to be used to construct various sizes of PV array fields at minimum cost, and to standardize the design and prepare complete construction specifications and engineering drawings for reduction of costs of site-specific engineering design and installation. The subsystem area investigated include the support structure, foundation, site preparation, PV module wiring, grounding, ligntning protection, and electromagnetic-interference (EMI) suppression. Maximum use of information from other PV system designs and installation methods were incorporated. Over 50 designs were prepared and evaluated for cost and the final array field selected, developed, and incorporated into a standard Building Block design. Results indicated that the new design greatly reduced BOS costs compared to those of previous installations, provided a high degree of reliability and minimum maintenance, required no major capital investment or long-lead time for an automated plant or equipment, and could be used immediately. The low cost of the array field BOS was determined to be realistic and economically viable.

  1. Large 15-in. flat-panel display glass cockpit for general aviation aircraft

    NASA Astrophysics Data System (ADS)

    Schaefer, Lyle H.

    2002-08-01

    The large format Active Matrix Liquid Crystal Display (AMLCD) brings new possibilities to the aircraft cockpit environment. Broad-based format flexibility, enhanced situational awareness, sharp contrast and brilliant chromaticity are all features inherent in this product. This paper reviews cockpit instrument design, traces the evolution of electronic flight instrument systems (EFIS) and describes an optimized format of a large format cockpit display from an engineering test pilot's perspective. Additional potential uses for the large format display are described.

  2. Postbuckling analysis of shear deformable composite flat panels taking into account geometrical imperfections

    NASA Technical Reports Server (NTRS)

    Librescu, L.; Stein, M.

    1990-01-01

    The effects of initial geometrical imperfections on the postbuckling response of flat laminated composite panels to uniaxial and biaxial compressive loading are investigated analytically. The derivation of the mathematical model on the basis of first-order transverse shear deformation theory is outlined, and numerical results for perfect and imperfect, single-layer and three-layer square plates with free-free, clamped-clamped, or free-clamped edges are presented in graphs and briefly characterized. The present approach is shown to be more accurate than analyses based on the classical Kirchhoff plate model.

  3. System design and implementation for the glass panel alignment and sealing tool for flat panel displays

    SciTech Connect

    Jordan, J.D.; Stromberg, P.G.; Kuszmaul, S.S.

    1996-10-16

    This report describes the system designed and fabricated for the National Center for Advanced Information Component Manufacturing (NCAICM) project number 9322-135. The system is a device capable of simultaneously aligning two glass plates and sealing them together with glass frit. The process development was divided into two phases. The first was thermal sealing in an ambient environment. The second was sealing a controlled environment in a vacuum.

  4. Hydrometallurgical Recovery of Indium from Flat-Panel Displays of Spent Liquid Crystal Televisions

    NASA Astrophysics Data System (ADS)

    Inoue, Katsutoshi; Alam, Shafiq

    2015-02-01

    A recovery process for indium from waste liquid crystal display panels was developed on the basis of hydrometallurgical technology. The powdered sample was leached with 3 M HCl to extract its various metal constituents (indium, aluminum, tin, etc.). The mutual separation and subsequent recovery of the dissolved metals was achieved using two column adsorption tests: The first column was packed with a porous resin impregnated with Aliquat 336, a commercially available solvent extraction reagent based on a quaternary ammonium compound, and the resin contained in the second column was impregnated with Cyanex 923, also a commercially available solvent extraction reagent based on trialkylphosphine oxide. In the first column, tin, iron, and zinc were removed from the leach liquor. In the second column, only indium was selectively recovered. The metal ions trapped in these columns were eluted with 0.1 M H2SO4, yielding a solution purified indium solution with a concentration 10 times that of the feed solution.

  5. 76 FR 63657 - Certain Flat Panel Display Devices, and Products Containing the Same; Notice of Commission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-13

    ... (collectively, ``AU Optronics''). 76 FR 45296 (July 28, 2011). The complaint alleged violations of section 337... (``Best Buy''); and BrandsMart USA, Inc. of Hollywood, Florida (``BrandsMart''). On August 31, 2011, AU... Corporation of America of Fort Lauderdale, Florida, d/b/a BrandsMart U.S.A. (collectively, ``New...

  6. Flat-panel display solutions for ground-environment military displays (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Thomas, J., II; Roach, R.

    2005-05-01

    Displays for military vehicles have very distinct operational and cost requirements that differ from other military applications. These requirements demand that display suppliers to Army and Marine ground-environments provide low cost equipment that is capable of operation across environmental extremes. Inevitably, COTS components form the foundation of these "affordable" display solutions. This paper will outline the major display requirements and review the options that satisfy conflicting and difficult operational demands, using newly developed equipment as an example. Recently, a new supplier was selected for the Drivers Vision Enhancer (DVE) equipment, including the Display Control Module (DCM). The paper will outline the DVE and describe development of a new DCM solution. The DVE programme, with several thousand units presently in service and operational in conflicts such as "Operation Iraqi Freedom", represents a critical balance between cost and performance. We shall describe design considerations that include selection of COTS sources, the need to minimise display modification; video interfaces, power interfaces, operator interfaces and new provisions to optimise displayed video content.

  7. 75 FR 51286 - Certain Flat Panel Digital Televisions and Components Thereof; Notice of Investigation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-19

    ...Notice is hereby given that a complaint was filed with the U.S. International Trade Commission on July 16, 2010, under section 337 of the Tariff Act of 1930, as amended, 19 U.S.C. 1337, on behalf of Vizio, Inc. of Irvine, California. The complaint alleges violations of section 337 based upon the importation into the United States, the sale for importation, and the sale within the United States......

  8. Uniformity of internal linear-type inductively coupled plasma source for flat panel display processing

    NASA Astrophysics Data System (ADS)

    Lim, Jong Hyeuk; Kim, Kyong Nam; Park, Jung Kyun; Lim, Jong Tae; Yeom, Geun Young

    2008-02-01

    The variation in plasma uniformity over an extremely large size inductively coupled plasma (ICP) source of 2750×2350mm2 was examined. An internal linear-type antenna called "double comb-type antenna" was used as the ICP source. A plasma density of ˜1.4×1011/cm3 could be obtained at 5mTorr Ar by applying 10kW rf power to the source at a frequency of 13.56MHz. An increase in rf power from 1to10kW improved the plasma uniformity over a substrate area of 2300×2000mm2 from 18.1% to 11.4%. The improvement in uniformity of the internal ICP source was attributed to the increase in plasma density near the wall.

  9. An experimental investigation of sandwich flat panels under low velocity impact

    NASA Astrophysics Data System (ADS)

    Harrington, Timberlyn M.

    1994-12-01

    This study evaluated the failure modes and mechanisms associated with increasing face sheet thickness of flat sandwich panels under low velocity impact. The sandwich panels were fabricated using 1.27 cm thick, 145 kg/cu m (9 lb/cu ft), 3.175 mm (1/8 in.) cell size Nomex honeycomb core, FM 300-2 film adhesive and AS4/3501-6 graphite/epoxy face sheets. The thickness of the core remained 1.27 cm, and the thickness of the adhesive remained 0.25 mm. The thickness of the face sheets varied using the following stacking sequences: (O/90)s, (O/90)2s, (O/90)4s, (O/90)8s, and (O/90)12s. The sandwich panels were subjected to various low velocity impacts using the Dynatup Impact Test Machine. Pulse-Echo C-scans and optical microscopy of panel cross-sections were performed to characterize the damage. The cross-sections indicated that delamination and transverse cracking contribute to internal damage of the face sheets, while crushing, buckling, and crippling contribute to damage of the core. Cracks in the adhesive also contribute to damage in some cases.

  10. Low-impedance internal linear inductive antenna for large-area flat panel display plasma processing

    SciTech Connect

    Kim, K.N.; Jung, S.J.; Lee, Y.J.; Yeom, G.Y.; Lee, S.H.; Lee, J.K.

    2005-03-15

    An internal-type linear inductive antenna, that is, a double-comb-type antenna, was developed for a large-area plasma source having the size of 1020 mmx830 mm, and high density plasmas on the order of 2.3x10{sup 11} cm{sup -3} were obtained with 15 mTorr Ar at 5000 W of inductive power with good plasma stability. This is higher than that for the conventional serpentine-type antenna, possibly due to the low impedance, resulting in high efficiency of power transfer for the double-comb antenna type. In addition, due to the remarkable reduction of the antenna length, a plasma uniformity of less than 8% was obtained within the substrate area of 880 mmx660 mm at 5000 W without having a standing-wave effect.

  11. Flat Panel Light Source with Lateral Gate Structure Based on SiC Nanowire Field Emitters

    NASA Astrophysics Data System (ADS)

    Youh, Meng-Jey; Tseng, Chun-Lung; Jhuang, Meng-Han; Chiu, Sheng-Cheng; Huang, Li-Hu; Gong, Jyun-An; Li, Yuan-Yao

    2015-06-01

    A field-emission light source with high luminance, excellent luminance uniformity, and tunable luminance characteristics with a novel lateral-gate structure is demonstrated. The lateral-gate triode structure comprises SiC nanowire emitters on a Ag cathode electrode and a pair of Ag gate electrodes placed laterally on both sides of the cathode. The simple and cost-effective screen printing technique is employed to pattern the lateral-gates and cathode structure on soda lime glass. The area coverage of the screen-printed cathode and gates on the glass substrate (area: 6 × 8 cm2) is in the range of 2.04% - 4.74% depending on the set of cathode-gate electrodes on the substrate. The lateral-gate structure with its small area coverage exhibits a two-dimensional luminance pattern with high brightness and good luminance uniformity. A maximum luminance of 10952 cd/cm2 and a luminance uniformity of >90% can be achieved with a gate voltage of 500 V and an anode voltage of 4000 V, with an anode current of 1.44 mA and current leakage to the gate from the cathode of about 10%.

  12. Flat Panel Light Source with Lateral Gate Structure Based on SiC Nanowire Field Emitters.

    PubMed

    Youh, Meng-Jey; Tseng, Chun-Lung; Jhuang, Meng-Han; Chiu, Sheng-Cheng; Huang, Li-Hu; Gong, Jyun-An; Li, Yuan-Yao

    2015-01-01

    A field-emission light source with high luminance, excellent luminance uniformity, and tunable luminance characteristics with a novel lateral-gate structure is demonstrated. The lateral-gate triode structure comprises SiC nanowire emitters on a Ag cathode electrode and a pair of Ag gate electrodes placed laterally on both sides of the cathode. The simple and cost-effective screen printing technique is employed to pattern the lateral-gates and cathode structure on soda lime glass. The area coverage of the screen-printed cathode and gates on the glass substrate (area: 6 × 8 cm(2)) is in the range of 2.04% - 4.74% depending on the set of cathode-gate electrodes on the substrate. The lateral-gate structure with its small area coverage exhibits a two-dimensional luminance pattern with high brightness and good luminance uniformity. A maximum luminance of 10,952 cd/cm(2) and a luminance uniformity of >90% can be achieved with a gate voltage of 500 V and an anode voltage of 4000 V, with an anode current of 1.44 mA and current leakage to the gate from the cathode of about 10%. PMID:26042359

  13. Prediction of the niche effect for single flat panels with or without attached sound absorbing materials.

    PubMed

    Sgard, Franck; Atalla, Noureddine; Nélisse, Hugues

    2015-01-01

    The sound transmission loss (STL) of a test sample measured in sound transmission facilities is affected by the opening in which it is located. This is called the niche effect. This paper uses a modal approach to study the STL of a rectangular plate with or without an attached porous material located inside a box-shaped niche. The porous material is modeled as a limp equivalent fluid. The proposed model is validated by comparison with finite element/boundary element computations. Using a condensation of the pressure fields in the niche, the niche effect is interpreted in terms of a modification of the modal blocked pressure fields acting on the panel induced by the front cavity and by a modification of the radiation efficiency of the panel modes due to the presence of the back cavity. The modal approach is then used to investigate the impact of (1) the presence of a porous material attached to the panel on the niche effect and (2) the niche effect on the assessment of the porous material insertion loss. A simplified model for the porous material based on a transfer matrix approach is also proposed to predict the STL of the system and its validity is discussed. PMID:25618044

  14. Flat Panel Light Source with Lateral Gate Structure Based on SiC Nanowire Field Emitters

    PubMed Central

    Youh, Meng-Jey; Tseng, Chun-Lung; Jhuang, Meng-Han; Chiu, Sheng-Cheng; Huang, Li-Hu; Gong, Jyun-An; Li, Yuan-Yao

    2015-01-01

    A field-emission light source with high luminance, excellent luminance uniformity, and tunable luminance characteristics with a novel lateral-gate structure is demonstrated. The lateral-gate triode structure comprises SiC nanowire emitters on a Ag cathode electrode and a pair of Ag gate electrodes placed laterally on both sides of the cathode. The simple and cost-effective screen printing technique is employed to pattern the lateral-gates and cathode structure on soda lime glass. The area coverage of the screen-printed cathode and gates on the glass substrate (area: 6 × 8 cm2) is in the range of 2.04% – 4.74% depending on the set of cathode-gate electrodes on the substrate. The lateral-gate structure with its small area coverage exhibits a two-dimensional luminance pattern with high brightness and good luminance uniformity. A maximum luminance of 10952 cd/cm2 and a luminance uniformity of >90% can be achieved with a gate voltage of 500 V and an anode voltage of 4000 V, with an anode current of 1.44 mA and current leakage to the gate from the cathode of about 10%. PMID:26042359

  15. Creation of a Reference Image with Monte Carlo Simulations for Online EPID Verification of Daily Patient Setup

    SciTech Connect

    Descalle, M-A; Chuang, C; Pouliot, J

    2002-01-30

    Patient positioning accuracy remains an issue for external beam radiotherapy. Currently, kilovoltage verification images are used as reference by clinicians to compare the actual patient treatment position with the planned position. These images are qualitatively different from treatment-time megavoltage portal images. This study will investigate the feasibility of using PEREGRINE, a 3D Monte Carlo calculation engine, to create reference images for portal image comparisons. Portal images were acquired using an amorphous-silicon flat-panel EPID for (1) the head and pelvic sections of an anthropomorphic phantom with 7-8 mm displacements applied, and (2) a prostate patient on five treatment days. Planning CT scans were used to generate simulated reference images with PEREGRINE. A correlation algorithm quantified the setup deviations between simulated and portal images. Monte Carlo simulated images exhibit similar qualities to portal images, the phantom slabs appear clearly. Initial positioning differences and applied displacements were detected and quantified. We find that images simulated with Monte Carlo methods can be used as reference images to detect and quantify set-up errors during treatment.

  16. Novel method to calculate pulmonary compliance images in rodents from computed tomography acquired at constant pressures

    NASA Astrophysics Data System (ADS)

    Guerrero, Thomas; Castillo, Richard; Sanders, Kevin; Price, Roger; Komaki, Ritsuko; Cody, Dianna

    2006-03-01

    Our goal was to develop a method for generating high-resolution three-dimensional pulmonary compliance images in rodents from computed tomography (CT) images acquired at a series of constant pressures in ventilated animals. One rat and one mouse were used to demonstrate this technique. A pre-clinical GE flat panel CT scanner (maximum 31 line-pairs cm-1 resolution) was utilized for image acquisition. The thorax of each animal was imaged with breath-holds at 2, 6, 10, 14 and 18 cm H2O pressure in triplicate. A deformable image registration algorithm was applied to each pair of CT images to map corresponding tissue elements. Pulmonary compliance was calculated on a voxel by voxel basis using adjacent pairs of CT images. Triplicate imaging was used to estimate the measurement error of this technique. The 3D pulmonary compliance images revealed regional heterogeneity of compliance. The maximum total lung compliance measured 0.080 (±0.007) ml air per cm H2O per ml of lung and 0.039 (±0.004) ml air per cm H2O per ml of lung for the rat and mouse, respectively. In this study, we have demonstrated a unique method of quantifying regional lung compliance from 4 to 16 cm H2O pressure with sub-millimetre spatial resolution in rodents. Presented at the Third IASTED Int. Conf. on Biomechanics (Benidorm, Spain), 7-9 September 2005.

  17. An inherent anti-scatter detector for megavoltage x-ray imaging

    NASA Astrophysics Data System (ADS)

    Teymurazyan, A.; Pang, G.

    2013-03-01

    Scattered x-rays are detrimental to the image quality of x-ray transmission radiography. Anti-scatter grids have been developed for kilovoltage (kV) x-ray imaging but are impractical to use for megavoltage (MV) x-ray imaging in radiation therapy. Our goal is to develop a new approach that uses an inherent anti-scatter detector for scatter reduction in MV x-ray imaging. A Monte Carlo simulation has been conducted to evaluate the response of a recently proposed Čerenkov electronic portal imaging device (CPID) to scattered x-rays. The proposed detector consists of a matrix of optical fibers aligned with the incident x-rays and coupled to an active matrix flat panel imager for image readout. The effects of scatter on the signal and noise of the CPID in comparison with those of conventional electronic portal imaging devices (EPIDs) have been investigated. It has been found that the CPID is ∼50% less sensitive to scattered x-rays than conventional EPIDs at 6 MV. The differential signal to noise ratio is also improved by up to 30% in the CPID. The results of our simulations have demonstrated that the recently proposed CPID system is an inherent anti-scatter detector, the first of this kind, for MV x-ray imaging.

  18. Image quality improvement in megavoltage cone beam CT using an imaging beam line and a sintered pixelated array system

    SciTech Connect

    Breitbach, Elizabeth K.; Maltz, Jonathan S.; Gangadharan, Bijumon; Bani-Hashemi, Ali; Anderson, Carryn M.; Bhatia, Sudershan K.; Stiles, Jared; Edwards, Drake S.; Flynn, Ryan T.

    2011-11-15

    Purpose: To quantify the improvement in megavoltage cone beam computed tomography (MVCBCT) image quality enabled by the combination of a 4.2 MV imaging beam line (IBL) with a carbon electron target and a detector system equipped with a novel sintered pixelated array (SPA) of translucent Gd{sub 2}O{sub 2}S ceramic scintillator. Clinical MVCBCT images are traditionally acquired with the same 6 MV treatment beam line (TBL) that is used for cancer treatment, a standard amorphous Si (a-Si) flat panel imager, and the Kodak Lanex Fast-B (LFB) scintillator. The IBL produces a greater fluence of keV-range photons than the TBL, to which the detector response is more optimal, and the SPA is a more efficient scintillator than the LFB. Methods: A prototype IBL + SPA system was installed on a Siemens Oncor linear accelerator equipped with the MVision{sup TM} image guided radiation therapy (IGRT) system. A SPA strip consisting of four neighboring tiles and measuring 40 cm by 10.96 cm in the crossplane and inplane directions, respectively, was installed in the flat panel imager. Head- and pelvis-sized phantom images were acquired at doses ranging from 3 to 60 cGy with three MVCBCT configurations: TBL + LFB, IBL + LFB, and IBL + SPA. Phantom image quality at each dose was quantified using the contrast-to-noise ratio (CNR) and modulation transfer function (MTF) metrics. Head and neck, thoracic, and pelvic (prostate) cancer patients were imaged with the three imaging system configurations at multiple doses ranging from 3 to 15 cGy. The systems were assessed qualitatively from the patient image data. Results: For head and neck and pelvis-sized phantom images, imaging doses of 3 cGy or greater, and relative electron densities of 1.09 and 1.48, the CNR average improvement factors for imaging system change of TBL + LFB to IBL + LFB, IBL + LFB to IBL + SPA, and TBL + LFB to IBL + SPA were 1.63 (p < 10{sup -8}), 1.64 (p < 10{sup -13}), 2.66 (p < 10{sup -9}), respectively. For all imaging

  19. Combined system of fluorescence diffuse optical tomography and microcomputed tomography for small animal imaging

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoquan; Gong, Hui; Quan, Guotao; Deng, Yong; Luo, Qingming

    2010-05-01

    We developed a dual-modality system that combines fluorescence diffuse optical tomography (fDOT) and flat panel detector-based microcomputed tomography (micro-CT) to simultaneously reveal molecular and structural information in small animals. In fDOT, a 748 nm diode laser was used as an excitation source, while a cooled charge coupled device camera was adopted to collect transmission fluorescence. In micro-CT, a flat panel detector based on amorphous silicon, with active area of 13×13 cm2, and a microfocus x-ray tube were used. The fDOT system was mounted orthogonally to the micro-CT and the projection images were acquired without rotation of the sample, which is different from the method used for micro-CT alone. Both the finite element method and the algebraic reconstruction technique were used to reconstruct images from the fDOT. Phantom data showed that the resolution of the fDOT system was about 3 mm at an imaging depth of 7 mm. Quantitative error was no more than 5% and imaging sensitivity for 1,1'-dioctadecyl-3,3,3',3'-etramethylindotricarbocyanine iodide bis-oleate (DiR-BOA) was estimated to be higher than 100 nM at a depth of 7 mm. Calculations of the phantom's center of mass showed that the location accuracy of fDOT was about 0.7 mm. We applied a Feldkamp algorithm to reconstruct the micro-CT image. By measuring the presampled modulation transfer function with a 30 μm tungsten thread, we estimated that the micro-CT has a resolution of 5 mm-1 when the field of view was 6.5 cm. Our results indicate the uniformity of the transaxial micro-CT image and the contrast-to-noise ratio was measured as 1.95 for a radiation dose of 1 cGy. A non-image-based method was employed for merging images from the two imaging modalities. A nude mouse with DiR-BOA, imaged ex vivo, was used to validate the feasibility of the dual-modality system.

  20. Magnification Embossed Radiography Utilizing Image-Shifting Subtraction Program

    NASA Astrophysics Data System (ADS)

    Akihiro Osawa,; Manabu Watanabe,; Eiichi Sato,; Hiroshi Matsukiyo,; Toshiyuki Enomoto,; Jiro Nagao,; Purkhet Abderyim,; Katsuo Aizawa,; Etsuro Tanaka,; Hidezo Mori,; Toshiaki Kawai,; Akira Ogawa,; Kiyomi Takahashi,; Shigehiro Sato,; Jun Onagawa,

    2010-03-01

    We developed an image-shifting subtraction program and carried out magnification embossed radiography (MER) utilizing single- and dual-energy subtractions. In particular, dual-energy subtraction was carried out to decrease the absorption contrast of unnecessary regions. The contrast resolution of the target region was increased by the use of subtraction software and a linear-contrast system in a flat-panel detector (FPD). The X-ray generator had a 100-μm-focus tube, and the subtractions were performed at tube voltages of 40 and 70 kV, a tube current of 0.50 mA, and an X-ray exposure time of 5.0 s. MER images with threefold magnification were obtained using the FPD with a pixel size of 48× 48 μm2, and the shifting dimensions of the imaged object in the horizontal and vertical directions ranged from 48 to 192 μm. At a shifting distance ranging from 48 to 144 μm, the spatial resolutions in the horizontal and vertical directions measured with a lead test chart were both 50 μm. In the MER of nonliving animals, we obtained high-contrast embossed images of fine bones, gadolinium oxide particles in blood vessels, and iodine-based microspheres in coronary arteries of approximately 100 μm diameter.

  1. Magnification Embossed Radiography Utilizing Image-Shifting Subtraction Program

    NASA Astrophysics Data System (ADS)

    Osawa, Akihiro; Watanabe, Manabu; Sato, Eiichi; Matsukiyo, Hiroshi; Enomoto, Toshiyuki; Nagao, Jiro; Abderyim, Purkhet; Aizawa, Katsuo; Tanaka, Etsuro; Mori, Hidezo; Kawai, Toshiaki; Ogawa, Akira; Takahashi, Kiyomi; Sato, Shigehiro; Onagawa, Jun

    2010-03-01

    We developed an image-shifting subtraction program and carried out magnification embossed radiography (MER) utilizing single- and dual-energy subtractions. In particular, dual-energy subtraction was carried out to decrease the absorption contrast of unnecessary regions. The contrast resolution of the target region was increased by the use of subtraction software and a linear-contrast system in a flat-panel detector (FPD). The X-ray generator had a 100-µm-focus tube, and the subtractions were performed at tube voltages of 40 and 70 kV, a tube current of 0.50 mA, and an X-ray exposure time of 5.0 s. MER images with threefold magnification were obtained using the FPD with a pixel size of 48×48 µm2, and the shifting dimensions of the imaged object in the horizontal and vertical directions ranged from 48 to 192 µm. At a shifting distance ranging from 48 to 144 µm, the spatial resolutions in the horizontal and vertical directions measured with a lead test chart were both 50 µm. In the MER of nonliving animals, we obtained high-contrast embossed images of fine bones, gadolinium oxide particles in blood vessels, and iodine-based microspheres in coronary arteries of approximately 100 µm diameter.

  2. Dose and detectability improvements with high energy phase sensitive x-ray imaging in comparison to low energy conventional imaging

    PubMed Central

    Wong, Molly Donovan; Yan, Aimin; Ghani, Muhammad; Li, Yuhua; Fajardo, Laurie; Wu, Xizeng; Liu, Hong

    2014-01-01

    The objective of this study was to demonstrate the potential benefits of using high energy x-rays for phase sensitive breast imaging through a comparison with conventional mammography imaging. We compared images of a contrast-detail (CD) phantom acquired on a prototype phase sensitive x-ray imaging system with images acquired on a commercial flat panel digital mammography unit. The phase contrast images were acquired using a micro-focus x-ray source with a 50 μm focal spot at 120 kVp and 4.5 mAs, with a magnification factor of 2.46 and a 50 μm pixel pitch. A phase attenuation duality (PAD)-based phase retrieval algorithm that requires only a single phase contrast image was applied. Conventional digital mammography images were acquired at 27 kVp, 131 mAs and 28 kVp, 54 mAs. For the same radiation dose, both the observer study and SNR/FOM comparisons indicated a large improvement by the phase retrieved image as compared to the clinical system for the larger disk sizes, but the improvement was not enough to detect the smallest disks. Compared to the double dose image acquired with the clinical system, the observer study also indicated that the phase retrieved image provided improved detection capabilities for all disk sizes except the smallest disks. Thus the SNR improvement provided by phase contrast imaging is not yet enough to offset the noise reduction provided by the clinical system at the doubled dose level. However, the potential demonstrated by this study for high energy phase sensitive x-ray imaging to improve lesion detection and reduce radiation dose in mammography warrants further investigation of this technique. PMID:24732108

  3. Dose and detectability improvements with high energy phase sensitive x-ray imaging in comparison to low energy conventional imaging

    NASA Astrophysics Data System (ADS)

    Donovan Wong, Molly; Yan, Aimin; Ghani, Muhammad; Li, Yuhua; Fajardo, Laurie; Wu, Xizeng; Liu, Hong

    2014-05-01

    The objective of this study was to demonstrate the potential benefits of using high energy x-rays for phase sensitive breast imaging through a comparison with conventional mammography imaging. We compared images of a contrast-detail phantom acquired on a prototype phase sensitive x-ray imaging system with images acquired on a commercial flat panel digital mammography unit. The phase contrast images were acquired using a micro-focus x-ray source with a 50 µm focal spot at 120 kVp and 4.5 mAs, with a magnification factor of 2.46 and a 50 µm pixel pitch. A phase attenuation duality-based phase retrieval algorithm that requires only a single phase contrast image was applied. Conventional digital mammography images were acquired at 27 kVp, 131 mAs and 28 kVp, 54 mAs. For the same radiation dose, both the observer study and signal-to-noise ratio (SNR)/figure of merit comparisons indicated a large improvement by the phase retrieved image as compared to the clinical system for the larger disc sizes, but the improvement was not enough to detect the smallest discs. Compared to the double dose image acquired with the clinical system, the observer study also indicated that the phase retrieved image provided improved detection capabilities for all disc sizes except the smallest discs. Thus the SNR improvement provided by phase contrast imaging is not yet enough to offset the noise reduction provided by the clinical system at the doubled dose level. However, the potential demonstrated by this study for high energy phase sensitive x-ray imaging to improve lesion detection and reduce radiation dose in mammography warrants further investigation of this technique.

  4. Quantitative analysis of rib kinematics based on dynamic chest bone images: preliminary results

    PubMed Central

    Tanaka, Rie; Sanada, Shigeru; Sakuta, Keita; Kawashima, Hiroki

    2015-01-01

    Abstract. An image-processing technique for separating bones from soft tissue in static chest radiographs has been developed. The present study was performed to evaluate the usefulness of dynamic bone images in quantitative analysis of rib movement. Dynamic chest radiographs of 16 patients were obtained using a dynamic flat-panel detector and processed to create bone images by using commercial software (Clear Read BS, Riverain Technologies). Velocity vectors were measured in local areas on the dynamic images, which formed a map. The velocity maps obtained with bone and original images for scoliosis and normal cases were compared to assess the advantages of bone images. With dynamic bone images, we were able to quantify and distinguish movements of ribs from those of other lung structures accurately. Limited rib movements of scoliosis patients appeared as a reduced rib velocity field, resulting in an asymmetrical distribution of rib movement. Vector maps in all normal cases exhibited left/right symmetric distributions of the velocity field, whereas those in abnormal cases showed asymmetric distributions because of locally limited rib movements. Dynamic bone images were useful for accurate quantitative analysis of rib movements. The present method has a potential for an additional functional examination in chest radiography. PMID:26158097

  5. Grating-based phase contrast tomosynthesis imaging: Proof-of-concept experimental studies

    SciTech Connect

    Li, Ke; Ge, Yongshuai; Garrett, John; Bevins, Nicholas; Zambelli, Joseph; Chen, Guang-Hong

    2014-01-15

    Purpose: This paper concerns the feasibility of x-ray differential phase contrast (DPC) tomosynthesis imaging using a grating-based DPC benchtop experimental system, which is equipped with a commercial digital flat-panel detector and a medical-grade rotating-anode x-ray tube. An extensive system characterization was performed to quantify its imaging performance. Methods: The major components of the benchtop system include a diagnostic x-ray tube with a 1.0 mm nominal focal spot size, a flat-panel detector with 96 μm pixel pitch, a sample stage that rotates within a limited angular span of ±30°, and a Talbot-Lau interferometer with three x-ray gratings. A total of 21 projection views acquired with 3° increments were used to reconstruct three sets of tomosynthetic image volumes, including the conventional absorption contrast tomosynthesis image volume (AC-tomo) reconstructed using the filtered-backprojection (FBP) algorithm with the ramp kernel, the phase contrast tomosynthesis image volume (PC-tomo) reconstructed using FBP with a Hilbert kernel, and the differential phase contrast tomosynthesis image volume (DPC-tomo) reconstructed using the shift-and-add algorithm. Three inhouse physical phantoms containing tissue-surrogate materials were used to characterize the signal linearity, the signal difference-to-noise ratio (SDNR), the three-dimensional noise power spectrum (3D NPS), and the through-plane artifact spread function (ASF). Results: While DPC-tomo highlights edges and interfaces in the image object, PC-tomo removes the differential nature of the DPC projection data and its pixel values are linearly related to the decrement of the real part of the x-ray refractive index. The SDNR values of polyoxymethylene in water and polystyrene in oil are 1.5 and 1.0, respectively, in AC-tomo, and the values were improved to 3.0 and 2.0, respectively, in PC-tomo. PC-tomo and AC-tomo demonstrate equivalent ASF, but their noise characteristics quantified by the 3D NPS

  6. Improved accuracy of markerless motion tracking on bone suppression images: preliminary study for image-guided radiation therapy (IGRT)

    NASA Astrophysics Data System (ADS)

    Tanaka, Rie; Sanada, Shigeru; Sakuta, Keita; Kawashima, Hiroki

    2015-05-01

    The bone suppression technique based on advanced image processing can suppress the conspicuity of bones on chest radiographs, creating soft tissue images obtained by the dual-energy subtraction technique. This study was performed to evaluate the usefulness of bone suppression image processing in image-guided radiation therapy. We demonstrated the improved accuracy of markerless motion tracking on bone suppression images. Chest fluoroscopic images of nine patients with lung nodules during respiration were obtained using a flat-panel detector system (120 kV, 0.1 mAs/pulse, 5 fps). Commercial bone suppression image processing software was applied to the fluoroscopic images to create corresponding bone suppression images. Regions of interest were manually located on lung nodules and automatic target tracking was conducted based on the template matching technique. To evaluate the accuracy of target tracking, the maximum tracking error in the resulting images was compared with that of conventional fluoroscopic images. The tracking errors were decreased by half in eight of nine cases. The average maximum tracking errors in bone suppression and conventional fluoroscopic images were 1.3   ±   1.0 and 3.3   ±   3.3 mm, respectively. The bone suppression technique was especially effective in the lower lung area where pulmonary vessels, bronchi, and ribs showed complex movements. The bone suppression technique improved tracking accuracy without special equipment and implantation of fiducial markers, and with only additional small dose to the patient. Bone suppression fluoroscopy is a potential measure for respiratory displacement of the target. This paper was presented at RSNA 2013 and was carried out at Kanazawa University, JAPAN.

  7. A study on quality improvement of x-ray imaging of the respiratory-system based on a new image processing technique

    NASA Astrophysics Data System (ADS)

    Torii, Jun; Nagai, Yuichi; Horita, Tatsuya; Matsumoto, Yuuji; Izumo, Takehiro; Kitagawa, Mayumi; Ihara, Kanyu; Nakamura, Tadashi; Mukoyoshi, Wataru; Tennmei, Kounosuke; Suzuki, Katsumi; Hara, Akio; Sasada, Shinji; Aso, Tomohiko

    2015-03-01

    Recently, the double contrast technique in a gastrointestinal examination and the transbronchial lung biopsy in an examination for the respiratory system [1-3] have made a remarkable progress. Especially in the transbronchial lung biopsy, better quality of x-ray fluoroscopic images is requested because this examination is performed under a guidance of x-ray fluoroscopic images. On the other hand, various image processing methods [4] for x-ray fluoroscopic images have been developed as an x-ray system with a flat panel detector [5-7] is widely used. New noise reduction processing, Adaptive Noise Reduction [ANR], was announced in SPIE last year.[8] ANR is a new image processing technique which is capable of extracting and reducing noise components regardless of moving objects in fluoroscopy images. However, for further enhancement of noise reduction effect in clinical use, it was used in combination with a recursive filter, which is a time axis direction filter. Due to this, the recursive filter generated image lags when there are moving objects in the fluoroscopic images, and these image lags sometimes became hindrance in performing smooth bronchoscopy. This is because recursive filters reduce noise by adding multiple fluoroscopy images. Therefore, we have developed new image processing technique, Motion Tracking Noise Reduction [MTNR] for decreasing image lags as well as noise. This ground-breaking image processing technique detects global motion in images with high accuracy, determines the pixels to track the motion, and applies a motion tracking-type time filter. With this, image lags are removed remarkably while realizing the effective noise reduction. In this report, we will explain the effect of MTNR by comparing the performance of MTNR images [MTNR] and ANR + Recursive filter-applied images [ANR + Recursive filter].

  8. Development and implementation of a high-performance, cardiac-gated dual-energy imaging system

    NASA Astrophysics Data System (ADS)

    Shkumat, N. A.; Siewerdsen, J. H.; Dhanantwari, A. C.; Williams, D. B.; Richard, S.; Tward, D. J.; Paul, N. S.; Yorkston, J.; Van Metter, R.

    2007-03-01

    Mounting evidence suggests that the superposition of anatomical clutter in a projection radiograph poses a major impediment to the detectability of subtle lung nodules. Through decomposition of projections acquired at multiple kVp, dual-energy (DE) imaging offers to dramatically improve lung nodule detectability and, in part through quantitation of nodule calcification, increase specificity in nodule characterization. The development of a high-performance DE chest imaging system is reported, with design and implementation guided by fundamental imaging performance metrics. A diagnostic chest stand (Kodak RVG 5100 digital radiography system) provided the basic platform, modified to include: (i) a filter wheel, (ii) a flat-panel detector (Trixell Pixium 4600), (iii) a computer control and monitoring system for cardiac-gated acquisition, and (iv) DE image decomposition and display. Computational and experimental studies of imaging performance guided optimization of key acquisition technique parameters, including: x-ray filtration, allocation of dose between low- and high-energy projections, and kVp selection. A system for cardiac-gated acquisition was developed, directing x-ray exposures to within the quiescent period of the heart cycle, thereby minimizing anatomical misregistration. A research protocol including 200 patients imaged following lung nodule biopsy is underway, allowing preclinical evaluation of DE imaging performance relative to conventional radiography and low-dose CT.

  9. A novel method and workflow for stereotactic surgery with a mobile intraoperative CT imaging device

    NASA Astrophysics Data System (ADS)

    Li, Senhu; Clinthorne, Neal

    2015-03-01

    xCAT®, (Xoran Technologies, LLC., Ann Arbor, MI) is a CT imaging device that has been used for minimally invasive surgeries. Designed with flat panel and cone-beam imaging technique, it provides a fast, low-dose CT imaging alternative for diagnosis and examination purposes at hospitals. With its unique compact and mobile characteristics, it allows scanning inside crowded operating rooms (OR). The xCAT allows acquisition of images in the OR that show the most recent morphology during the procedure. This can potentially improve outcomes of surgical procedures such as deep brain stimulation (DBS) and other neurosurgeries, since brain displacement and deformation (brain shift) often occur between pre-operative imaging and electrode placement during surgery. However, the small gantry size of the compact scanner obstructs scanning of patients with stereotactic frames or skull clamp. In this study, we explored a novel method, in which we first utilized the xCAT to obtain CT images with fiducial markers, registered the stereotactic frame with those markers, and finally, target measurements were calculated and set up on the frame. The new procedure workflow provides a means to use CT images obtained inside of OR for stereotactic surgery and can be used in current intraoperative settings. Our phantom validation study in lab shows that the procedure workflow with this method is easy to conduct.

  10. Flattening filter removal for improved image quality of megavoltage fluoroscopy

    SciTech Connect

    Christensen, James D.; Kirichenko, Alexander; Gayou, Olivier

    2013-08-15

    Purpose: Removal of the linear accelerator (linac) flattening filter enables a high rate of dose deposition with reduced treatment time. When used for megavoltage imaging, an unflat beam has reduced primary beam scatter resulting in sharper images. In fluoroscopic imaging mode, the unflat beam has higher photon count per image frame yielding higher contrast-to-noise ratio. The authors’ goal was to quantify the effects of an unflat beam on the image quality of megavoltage portal and fluoroscopic images.Methods: 6 MV projection images were acquired in fluoroscopic and portal modes using an electronic flat-panel imager. The effects of the flattening filter on the relative modulation transfer function (MTF) and contrast-to-noise ratio were quantified using the QC3 phantom. The impact of FF removal on the contrast-to-noise ratio of gold fiducial markers also was studied under various scatter conditions.Results: The unflat beam had improved contrast resolution, up to 40% increase in MTF contrast at the highest frequency measured (0.75 line pairs/mm). The contrast-to-noise ratio was increased as expected from the increased photon flux. The visualization of fiducial markers was markedly better using the unflat beam under all scatter conditions, enabling visualization of thin gold fiducial markers, the thinnest of which was not visible using the unflat beam.Conclusions: The removal of the flattening filter from a clinical linac leads to quantifiable improvements in the image quality of megavoltage projection images. These gains enable observers to more easily visualize thin fiducial markers and track their motion on fluoroscopic images.

  11. Comparison of different phantoms used in digital diagnostic imaging

    NASA Astrophysics Data System (ADS)

    Bor, Dogan; Unal, Elif; Uslu, Anil

    2015-09-01

    The organs of extremity, chest, skull and lumbar were physically simulated using uniform PMMA slabs with different thicknesses alone and using these slabs together with aluminum plates and air gaps (ANSI Phantoms). The variation of entrance surface air kerma and scatter fraction with X-ray beam qualities was investigated for these phantoms and the results were compared with those measured from anthropomorphic phantoms. A flat panel digital radiographic system was used for all the experiments. Considerable variations of entrance surface air kermas were found for the same organs of different designs, and highest doses were measured for the PMMA slabs. A low contrast test tool and a contrast detail test object (CDRAD) were used together with each organ simulation of PMMA slabs and ANSI phantoms in order to test the clinical image qualities. Digital images of these phantom combinations and anthropomorphic phantoms were acquired in raw and clinically processed formats. Variation of image quality with kVp and post processing was evaluated using the numerical metrics of these test tools and measured contrast values from the anthropomorphic phantoms. Our results indicated that design of some phantoms may not be efficient enough to reveal the expected performance of the post processing algorithms.

  12. Embossed radiography utilizing an image-shifting subtraction program

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Osawa, Akihiro; Matsukiyo, Hiroshi; Enomoto, Toshiyuki; Watanabe, Manabu; Takahashi, Kiyomi; Sato, Shigehiro; Ogawa, Akira; Onagawa, Jun

    2010-07-01

    We developed an image-shifting subtraction program and carried out embossed radiography (ER) utilizing single- and dual-energy subtractions. In particular, dual-energy subtraction was carried out to decrease the absorption contrast of unnecessary regions. The contrast resolution of a target region was increased using the subtraction program and a linear-contrast system in a flat panel detector (FPD). The X-ray generator had a 100 μm-focus tube, and the subtractions were performed at tube voltages of 40 and 70 kV, a tube current of 0.50 mA, and an X-ray exposure time of 5.0 s. ER was achieved with cohesion imaging using the FPD with pixel sizes of 48×48 μm 2, and the shifting dimension of an object in the horizontal and vertical directions ranged from 48 to 96 μm. At a shifting distance of 96 μm, the spatial resolutions in the horizontal and vertical directions measured with a lead test chart were both 83 μm. In ER of animal phantoms, we obtained high-contrast embossed images of fine bones, gadolinium oxide particles in blood vessels, iodine-based microspheres in coronary arteries approximately 100 μm in diameter.

  13. 3D image guidance in radiotherapy: a feasibility study

    NASA Astrophysics Data System (ADS)

    Ebert, Matthias; Groh, Burkhard A.; Partridge, Mike; Hesse, Bernd M.; Bortfeld, Thomas

    2001-07-01

    Currently, one major research field in radiotheraphy is focused on patient setup verification and on detection of organ motion and deformation. A phantom study is performed to demonstrate the feasibility of image guidance in radiotherapy. Patient setup errors are simulated with a humanoid phantom, which is imaged using a linear accelerator and a therapy simulator to address megavoltage and kilovoltage (kV) computed tomography (CT), respectively. Projections are recorded by a flat panel imager. The various data sets of the humanoid phantom are compared by mutual information matching. The CT investigations show that the spatial resolution is better than 1.6 mm for high contrast objects. The uncertainties remaining after mutual information matching are found to be less than 1 mm for translations and 1 degree(s) for rotations. The phantom study indicates that the detection of patient setup errors as well as organ motion or deformation is possible with a high accuracy, especially if a kV X-ray tube could be attached to the linear accelerator. The presented method allows sophisticated quality assurance of beam delivery in each fraction and may even enable the use of new concepts of adaptive radiotherapy.

  14. Prototype high detective quantum efficiency imaging panel based on a fiber-optic scintillation glass array (FOSGA) for megavoltage imaging

    NASA Astrophysics Data System (ADS)

    Samant, Sanjiv; Baciak, Jim; Gopal, Arun

    2011-09-01

    Megavoltage imaging has applications in nondestructive imaging for homeland security, radiotherapy, and industrial manufacturing. Current commercial systems are limited by low image quality as measured by detective quantum efficiency (DQE). These systems yield measured DQE=0.01-0.02, limiting efficacy for detection based on automated signal processing. Past efforts to improve DQE have included novel scintillators and manufacturing of large crystal structures. An alternative novel design for a 2D x-ray imager, based on a modification of existing amorphous silicon (a:Si) or flat-panel imagers, is presented. The panel utilizes a fiber-optic scintillation glass array (FOSGA) consisting of scintillation fibers bundled within a pixilated thick sintered tungsten housing. The tungsten housing is constructed using a lithographic manufacturing technique for high fabrication accuracy. The Tb-doped fibers emit light in the 555-565nm range (matched to the sensitive region of current a:Si photodiodes), with a decay time of 2ms (100-to-40%). Monte Carlo simulations, linear cascaded systems analyses, and film studies have been carried out to validate and optimize image quality for radiation beams in the 1-6MV range. An 8cmx8cm prototype array was fabricated using Tb-doped fibers (9mm length, 0.9mm diameter) loaded into a tungsten matrix (1.1mm pixel pitch, 0.1mm septa), yielding measured DQE=0.05 (vs theoretical DQE=0.07) for 6MV imaging , an order of magnitude improvement in image quality over current commercial imagers. Design parameters of a large field-of-view FOSGA imager for cargo container security imaging are presented: 5cm thick FOSGA array, 0.4-1mm pixel pitch, 50-70% fill factor, DQE>0.2 for 1-6MV range.

  15. Image

    Energy Science and Technology Software Center (ESTSC)

    2007-08-31

    The computer side of the IMAGE project consists of a collection of Perl scripts that perform a variety of tasks; scripts are available to insert, update and delete data from the underlying Oracle database, download data from NCBI's Genbank and other sources, and generate data files for download by interested parties. Web scripts make up the tracking interface, and various tools available on the project web-site (image.llnl.gov) that provide a search interface to the database.

  16. Precise image-guided irradiation of small animals: a flexible non-profit platform.

    PubMed

    Tillner, Falk; Thute, Prasad; Löck, Steffen; Dietrich, Antje; Fursov, Andriy; Haase, Robert; Lukas, Mathias; Rimarzig, Bernd; Sobiella, Manfred; Krause, Mechthild; Baumann, Michael; Bütof, Rebecca; Enghardt, Wolfgang

    2016-04-21

    Preclinical in vivo studies using small animals are essential to develop new therapeutic options in radiation oncology. Of particular interest are orthotopic tumour models, which better reflect the clinical situation in terms of growth patterns and microenvironmental parameters of the tumour as well as the interplay of tumours with the surrounding normal tissues. Such orthotopic models increase the technical demands and the complexity of preclinical studies as local irradiation with therapeutically relevant doses requires image-guided target localisation and accurate beam application. Moreover, advanced imaging techniques are needed for monitoring treatment outcome. We present a novel small animal image-guided radiation therapy (SAIGRT) system, which allows for precise and accurate, conformal irradiation and x-ray imaging of small animals. High accuracy is achieved by its robust construction, the precise movement of its components and a fast high-resolution flat-panel detector. Field forming and x-ray imaging is accomplished close to the animal resulting in a small penumbra and a high image quality. Feasibility for irradiating orthotopic models has been proven using lung tumour and glioblastoma models in mice. The SAIGRT system provides a flexible, non-profit academic research platform which can be adapted to specific experimental needs and therefore enables systematic preclinical trials in multicentre research networks. PMID:27008208

  17. Automated localization of implanted seeds in 3D TRUS images used for prostate brachytherapy

    SciTech Connect

    Wei Zhouping; Gardi, Lori; Downey, Donal B.; Fenster, Aaron

    2006-07-15

    An algorithm has been developed in this paper to localize implanted radioactive seeds in 3D ultrasound images for a dynamic intraoperative brachytherapy procedure. Segmentation of the seeds is difficult, due to their small size in relatively low quality of transrectal ultrasound (TRUS) images. In this paper, intraoperative seed segmentation in 3D TRUS images is achieved by performing a subtraction of the image before the needle has been inserted, and the image after the seeds have been implanted. The seeds are searched in a 'local' space determined by the needle position and orientation information, which are obtained from a needle segmentation algorithm. To test this approach, 3D TRUS images of the agar and chicken tissue phantoms were obtained. Within these phantoms, dummy seeds were implanted. The seed locations determined by the seed segmentation algorithm were compared with those obtained from a volumetric cone-beam flat-panel micro-CT scanner and human observers. Evaluation of the algorithm showed that the rms error in determining the seed locations using the seed segmentation algorithm was 0.98 mm in agar phantoms and 1.02 mm in chicken phantoms.

  18. Feasibility of using energy-resolving detectors in differential phase-contrast imaging

    NASA Astrophysics Data System (ADS)

    Baturin, Pavlo

    2016-03-01

    In a common clinical setting, conventional absorption-based imaging provides relatively good contrast between bonelike and soft-tissue materials. The reliability of material differentiation, however, is hampered when materials with similar absorption properties are scanned. This problem can be addressed by utilizing a spectral imaging technique whereby multiple X-ray measurements are taken at different beam conditions. In this work, we discuss the possibility of using a spectral imaging approach in a grating-based, differential-phase contrast-imaging (DPCI) modality. Two approaches, dual exposure with a conventional flat-panel detector (FPD) and a single exposure with a photon-counting energy-resolving detector (PCD), were reviewed. The feasibility of a single-exposure DPCI and a two-bin PCD setup was assessed quantitatively by a least-squares minimization algorithm applied to an X-ray diffraction pattern. It was shown that a two-peak-shaped X-ray spectrum can allow PCDs to be placed unambiguously at single Talbot distances making it possible to simultaneously detect photons in each energy bin with comparable efficiencies. The results of this work can help build a bridge between two rapidly developing imaging modalities, X-ray spectral imaging and X-ray DPCI.

  19. Scatter correction for kilovoltage cone-beam computed tomography (CBCT) images using Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Jarry, G.; Graham, S. A.; Jaffray, D. A.; Moseley, D. J.; Verhaegen, F.

    2006-03-01

    In this work Monte Carlo (MC) simulations are used to correct kilovoltage (kV) cone-beam computed tomographic (CBCT) projections for scatter radiation. All images were acquired using a kV CBCT bench-top system composed of an x-ray tube, a rotation stage and a flat-panel imager. The EGSnrc MC code was used to model the system. BEAMnrc was used to model the x-ray tube while a modified version of the DOSXYZnrc program was used to transport the particles through various phantoms and score phase space files with identified scattered and primary particles. An analytical program was used to read the phase space files and produce image files. The scatter correction was implemented by subtracting Monte Carlo predicted scatter distribution from measured projection images; these projection images were then reconstructed. Corrected reconstructions showed an important improvement in image quality. Several approaches to reduce the simulation time were tested. To reduce the number of simulated scatter projections, the effect of varying the projection angle on the scatter distribution was evaluated for different geometries. It was found that the scatter distribution does not vary significantly over a 30-degree interval for the geometries tested. It was also established that increasing the size of the voxels in the voxelized phantom does not affect the scatter distribution but reduces the simulation time. Different techniques to smooth the scatter distribution were also investigated.

  20. Precise image-guided irradiation of small animals: a flexible non-profit platform

    NASA Astrophysics Data System (ADS)

    Tillner, Falk; Thute, Prasad; Löck, Steffen; Dietrich, Antje; Fursov, Andriy; Haase, Robert; Lukas, Mathias; Rimarzig, Bernd; Sobiella, Manfred; Krause, Mechthild; Baumann, Michael; Bütof, Rebecca; Enghardt, Wolfgang

    2016-04-01

    Preclinical in vivo studies using small animals are essential to develop new therapeutic options in radiation oncology. Of particular interest are orthotopic tumour models, which better reflect the clinical situation in terms of growth patterns and microenvironmental parameters of the tumour as well as the interplay of tumours with the surrounding normal tissues. Such orthotopic models increase the technical demands and the complexity of preclinical studies as local irradiation with therapeutically relevant doses requires image-guided target localisation and accurate beam application. Moreover, advanced imaging techniques are needed for monitoring treatment outcome. We present a novel small animal image-guided radiation therapy (SAIGRT) system, which allows for precise and accurate, conformal irradiation and x-ray imaging of small animals. High accuracy is achieved by its robust construction, the precise movement of its components and a fast high-resolution flat-panel detector. Field forming and x-ray imaging is accomplished close to the animal resulting in a small penumbra and a high image quality. Feasibility for irradiating orthotopic models has been proven using lung tumour and glioblastoma models in mice. The SAIGRT system provides a flexible, non-profit academic research platform which can be adapted to specific experimental needs and therefore enables systematic preclinical trials in multicentre research networks.

  1. Mercuric iodide medical imagers for low-exposure radiography and fluoroscopy

    NASA Astrophysics Data System (ADS)

    Zentai, George; Partain, Larry; Pavlyuchkova, Raisa; Proano, Cesar; Breen, Barry N.; Taieb, A.; Dagan, Ofer; Schieber, Michael; Gilboa, Haim; Thomas, Jerry

    2004-05-01

    Photoconductive polycrystalline mercuric iodide deposited on flat panel thin film transistor (TFT) arrays is being developed for direct digital X-ray detectors that can perform both radiographic and fluoroscopic medical imaging. The mercuric iodide is either vacuum deposited by Physical Vapor Deposition (PVD) or coated onto the array by a wet Particle-In-Binder (PIB) process. The PVD deposition technology has been scaled up to the 20 cm x 25 cm size required in common medical imaging applications. A TFT array with a pixel pitch of 127 microns is used for these imagers. Arrays of 10 cm x 10 cm size have been used to evaluate performance of mercuric iodide imagers. Radiographic and fluoroscopic images of diagnostic quality at up to 15 pulses per second were demonstrated. As we previously reported, the resolution is limited to the TFT array Nyquist frequency of ~3.9 lp/mm (127 micron pixel pitch). Detective Quantum Efficiency (DQE) has been measured as a function of spatial frequency for these imagers. The DQE is lower than the theoretically calculated value due to some additional noise sources of the electronics and the array. We will retest the DQE after eliminating these noise sources. Reliability and stress testing was also began for polycrystalline mercuric iodide PVD and PIB detectors. These are simplified detectors based upon a stripe electrode or circular electrode structure. The detectors were stressed under various voltage bias, temperature and time conditions. The effects of the stress tests on the detector dark current and sensitivity were determined.

  2. From synchrotron radiation to lab source: advanced speckle-based X-ray imaging using abrasive paper

    PubMed Central

    Wang, Hongchang; Kashyap, Yogesh; Sawhney, Kawal

    2016-01-01

    X-ray phase and dark-field imaging techniques provide complementary and inaccessible information compared to conventional X-ray absorption or visible light imaging. However, such methods typically require sophisticated experimental apparatus or X-ray beams with specific properties. Recently, an X-ray speckle-based technique has shown great potential for X-ray phase and dark-field imaging using a simple experimental arrangement. However, it still suffers from either poor resolution or the time consuming process of collecting a large number of images. To overcome these limitations, in this report we demonstrate that absorption, dark-field, phase contrast, and two orthogonal differential phase contrast images can simultaneously be generated by scanning a piece of abrasive paper in only one direction. We propose a novel theoretical approach to quantitatively extract the above five images by utilising the remarkable properties of speckles. Importantly, the technique has been extended from a synchrotron light source to utilise a lab-based microfocus X-ray source and flat panel detector. Removing the need to raster the optics in two directions significantly reduces the acquisition time and absorbed dose, which can be of vital importance for many biological samples. This new imaging method could potentially provide a breakthrough for numerous practical imaging applications in biomedical research and materials science. PMID:26847921

  3. From synchrotron radiation to lab source: advanced speckle-based X-ray imaging using abrasive paper

    NASA Astrophysics Data System (ADS)

    Wang, Hongchang; Kashyap, Yogesh; Sawhney, Kawal

    2016-02-01

    X-ray phase and dark-field imaging techniques provide complementary and inaccessible information compared to conventional X-ray absorption or visible light imaging. However, such methods typically require sophisticated experimental apparatus or X-ray beams with specific properties. Recently, an X-ray speckle-based technique has shown great potential for X-ray phase and dark-field imaging using a simple experimental arrangement. However, it still suffers from either poor resolution or the time consuming process of collecting a large number of images. To overcome these limitations, in this report we demonstrate that absorption, dark-field, phase contrast, and two orthogonal differential phase contrast images can simultaneously be generated by scanning a piece of abrasive paper in only one direction. We propose a novel theoretical approach to quantitatively extract the above five images by utilising the remarkable properties of speckles. Importantly, the technique has been extended from a synchrotron light source to utilise a lab-based microfocus X-ray source and flat panel detector. Removing the need to raster the optics in two directions significantly reduces the acquisition time and absorbed dose, which can be of vital importance for many biological samples. This new imaging method could potentially provide a breakthrough for numerous practical imaging applications in biomedical research and materials science.

  4. Images.

    ERIC Educational Resources Information Center

    Barr, Catherine, Ed.

    1997-01-01

    The theme of this month's issue is "Images"--from early paintings and statuary to computer-generated design. Resources on the theme include Web sites, CD-ROMs and software, videos, books, and others. A page of reproducible activities is also provided. Features include photojournalism, inspirational Web sites, art history, pop art, and myths. (AEF)

  5. An improved method for the removal of ring artifacts in high resolution CT imaging

    NASA Astrophysics Data System (ADS)

    Rashid, Sabrina; Lee, Soo Yeol; Hasan, Md Kamrul

    2012-12-01

    In high resolution computed tomography (CT) using flat panel detectors, imperfect or defected detector elements cause stripe artifacts in sinogram which results in concentric ring artifacts in the image. Such ring artifacts obscure image details in the regions of interest of the image. In this article, novel techniques are proposed for the detection, classification, and correction of ring artifacts in the sinogram domain. The proposed method is suitable for multislice CT with parallel or fan beam geometry. It can also be employed for ring artifact removal in 3D cone beam volume CT by adopting a sinogram by sinogram processing technique. The detection algorithm is based on applying data driven thresholds on the mean curve and difference curve of the sinogram. The ring artifacts are classified into three types and a separate correction algorithm is used for each class. The performance of the proposed techniques is evaluated on a number of real micro-CT images. Experimental results corroborate that the proposed algorithm can remove ring artifacts from micro-CT images more effectively as compared to other recently reported techniques in the literature.

  6. Breast density measurement: 3D cone beam computed tomography (CBCT) images versus 2D digital mammograms

    NASA Astrophysics Data System (ADS)

    Han, Tao; Lai, Chao-Jen; Chen, Lingyun; Liu, Xinming; Shen, Youtao; Zhong, Yuncheng; Ge, Shuaiping; Yi, Ying; Wang, Tianpeng; Yang, Wei T.; Shaw, Chris C.

    2009-02-01

    Breast density has been recognized as one of the major risk factors for breast cancer. However, breast density is currently estimated using mammograms which are intrinsically 2D in nature and cannot accurately represent the real breast anatomy. In this study, a novel technique for measuring breast density based on the segmentation of 3D cone beam CT (CBCT) images was developed and the results were compared to those obtained from 2D digital mammograms. 16 mastectomy breast specimens were imaged with a bench top flat-panel based CBCT system. The reconstructed 3D CT images were corrected for the cupping artifacts and then filtered to reduce the noise level, followed by using threshold-based segmentation to separate the dense tissue from the adipose tissue. For each breast specimen, volumes of the dense tissue structures and the entire breast were computed and used to calculate the volumetric breast density. BI-RADS categories were derived from the measured breast densities and compared with those estimated from conventional digital mammograms. The results show that in 10 of 16 cases the BI-RADS categories derived from the CBCT images were lower than those derived from the mammograms by one category. Thus, breasts considered as dense in mammographic examinations may not be considered as dense with the CBCT images. This result indicates that the relation between breast cancer risk and true (volumetric) breast density needs to be further investigated.

  7. MTF measurements with high-resolution a-Si:H imaging arrays

    NASA Astrophysics Data System (ADS)

    Yorkston, John; Antonuk, Larry E.; Seraji, N.; Huang, Weidong; Siewerdsen, Jeffrey H.; El-Mohri, Youcef

    1995-05-01

    Recent advances in a-Si:H fabrication technology have opened the way for the application of flat panel imaging arrays in a number of areas in medical imaging. Their large area (up to approximately 26 X 26 cm), thin profile (< 1 mm) and real time readout capability make them strong candidates for the replacement of more traditional x-ray imaging technologies such as film and image intensifier systems. As a first step towards a device suitable for clinical use we have created a 24.4 X 19.4 cm array with 127 micrometers pitch pixels. This device serves as a testbed for investigating the effects of design changes on array imaging performance. This paper reports on initial measurements of the spatial resolution of this device used in conjunction with an overlaying Lanex Regular screen and 90 kVp x rays. The measured pre-sampled modulation transfer function (p.s. MTF) is found to fall below the predicted value by up to approximately 8%. At least part of this reduction seems to be due to scattering of light photons between the array and the surface of the phosphor screen contacting the array.

  8. A study of the x-ray image quality improvement in the examination of the respiratory system based on the new image processing technique

    NASA Astrophysics Data System (ADS)

    Nagai, Yuichi; Kitagawa, Mayumi; Torii, Jun; Iwase, Takumi; Aso, Tomohiko; Ihara, Kanyu; Fujikawa, Mari; Takeuchi, Yumiko; Suzuki, Katsumi; Ishiguro, Takashi; Hara, Akio

    2014-03-01

    Recently, the double contrast technique in a gastrointestinal examination and the transbronchial lung biopsy in an examination for the respiratory system [1-3] have made a remarkable progress. Especially in the transbronchial lung biopsy, better quality of x-ray fluoroscopic images is requested because this examination is performed under a guidance of x-ray fluoroscopic images. On the other hand, various image processing methods [4] for x-ray fluoroscopic images have been developed as an x-ray system with a flat panel detector [5-7] is widely used. A recursive filtering is an effective method to reduce a random noise in x-ray fluoroscopic images. However it has a limitation for its effectiveness of a noise reduction in case of a moving object exists in x-ray fluoroscopic images because the recursive filtering is a noise reduction method by adding last few images. After recursive filtering a residual signal was produced if a moving object existed in x-ray images, and this residual signal disturbed a smooth procedure of the examinations. To improve this situation, new noise reduction method has been developed. The Adaptive Noise Reduction [ANR] is the brand-new noise reduction technique which can be reduced only a noise regardless of the moving object in x-ray fluoroscopic images. Therefore the ANR is a very suitable noise reduction method for the transbronchial lung biopsy under a guidance of x-ray fluoroscopic images because the residual signal caused of the moving object in x-ray fluoroscopic images is never produced after the ANR. In this paper, we will explain an advantage of the ANR by comparing of a performance between the ANR images and the conventional recursive filtering images.

  9. Detector system comparison using relative CNR for specific imaging tasks related to neuro-endovascular image-guided interventions (neuro-EIGIs)

    PubMed Central

    Loughran, Brendan; Swetadri Vasan, S. N.; Singh, Vivek; Ionita, Ciprian N.; Jain, Amit; Bednarek, Daniel R.; Rudin, Stephen

    2014-01-01

    Neuro-EIGIs require visualization of very small endovascular devices and small vessels. A Microangiographic Fluoroscope (MAF) x-ray detector was developed to improve on the standard flat panel detector’s (FPD’s) ability to visualize small objects during neuro-EIGIs. To compare the performance of FPD and MAF imaging systems, specific imaging tasks related to those encountered during neuro-EIGIs were used to assess contrast to noise ratio (CNR) of different objects. A bar phantom and a stent were placed at a fixed distance from the x-ray focal spot to mimic a clinical imaging geometry and both objects were imaged by each detector system. Imaging was done without anti-scatter grids and using the same conditions for each system including: the same x-ray beam quality, collimator position, source to imager distance (SID), and source to object distance (SOD). For each object, relative contrasts were found for both imaging systems using the peak and trough signals. The relative noise was found using mean background signal and background noise for varying detector exposures. Next, the CNRs were found for these values for each object imaged and for each imaging system used. A relative CNR metric is defined and used to compare detector imaging performance. The MAF utilizes a temporal filter to reduce the overall image noise. The effects of using this filter with the MAF while imaging the clinical object’s CNRs are reported. The relative CNR for the detectors demonstrated that the MAF has superior CNRs for most objects and exposures investigated for this specific imaging task. PMID:25301999

  10. Detector system comparison using relative CNR for specific imaging tasks related to neuro-endovascular image-guided interventions (neuro-EIGIs)

    NASA Astrophysics Data System (ADS)

    Loughran, Brendan; Swetadri Vasan, S. N.; Singh, Vivek; Ionita, Ciprian N.; Jain, Amit; Bednarek, Daniel R.; Rudin, Stephen

    2014-03-01

    Neuro-EIGIs require visualization of very small endovascular devices and small vessels. A Microangiographic Fluoroscope (MAF) x-ray detector was developed to improve on the standard flat panel detector's (FPD's) ability to visualize small objects during neuro-EIGIs. To compare the performance of FPD and MAF imaging systems, specific imaging tasks related to those encountered during neuro-EIGIs were used to assess contrast to noise ratio (CNR) of different objects. A bar phantom and a stent were placed at a fixed distance from the x-ray focal spot to mimic a clinical imaging geometry and both objects were imaged by each detector system. Imaging was done without anti-scatter grids and using the same conditions for each system including: the same x-ray beam quality, collimator position, source to imager distance (SID), and source to object distance (SOD). For each object, relative contrasts were found for both imaging systems using the peak and trough signals. The relative noise was found using mean background signal and background noise for varying detector exposures. Next, the CNRs were found for these values for each object imaged and for each imaging system used. A relative CNR metric is defined and used to compare detector imaging performance. The MAF utilizes a temporal filter to reduce the overall image noise. The effects of using this filter with the MAF while imaging the clinical object's CNRs are reported. The relative CNR for the detectors demonstrated that the MAF has superior CNRs for most objects and exposures investigated for this specific imaging task.

  11. The x-ray light valve: A potentially low-cost, digital radiographic imaging system-concept and implementation considerations

    SciTech Connect

    Webster, Christie Ann; Koprinarov, Ivaylo; Germann, Stephen; Rowlands, J. A.

    2008-03-15

    New x-ray radiographic systems based on large-area flat-panel technology have revolutionized our capability to produce digital x-ray images. However, these imagers are extraordinarily expensive compared to the systems they are replacing. Hence, there is a need for a low-cost digital imaging system for general applications in radiology. A novel potentially low-cost radiographic imaging system based on established technologies is proposed--the X-Ray Light Valve (XLV). This is a potentially high-quality digital x-ray detector made of a photoconducting layer and a liquid-crystal cell, physically coupled in a sandwich structure. Upon exposure to x rays, charge is collected on the surface of the photoconductor. This causes a change in the optical properties of the liquid-crystal cell and a visible image is generated. Subsequently, it is digitized by a scanned optical imager. The image formation is based on controlled modulation of light from an external source. The operation and practical implementation of the XLV system are described. The potential performance of the complete system and issues related to sensitivity, spatial resolution, noise, and speed are discussed. The feasibility of clinical use of an XLV device based on amorphous selenium (a-Se) as the photoconductor and a reflective electrically controlled birefringence cell is analyzed. The results of our analysis indicate that the XLV can potentially be adapted to a wide variety of radiographic tasks.

  12. High dynamic range active pixel sensor arrays for digital x-ray imaging using a-Si:H

    SciTech Connect

    Lai, Jackson; Nathan, Arokia; Rowlands, John

    2006-05-15

    Hydrogenated amorphous silicon (a-Si:H) active matrix flat panel imagers have gained considerable significance in large area digital imaging applications, in view of their large area readout capability. Current interests lie in a multifaceted a-Si:H array which is compatible with multiple x-ray imaging modalities. This concept entails a single detector system with sufficient dynamic range and variable signal gain. This article reports on an active pixel sensor (APS) array with high dynamic range and programable gain for multimodality x-ray imaging. Initial results have demonstrated sensitivity from subpicoampere to nanoampere photocurrent, which proves amenable for both low-dosage dynamic imaging and high input static imaging. In addition, the programable system signal gain alleviates problems such as output saturation and ensures signal readout linearity to further improve the exploitable dynamic range. Together with external amplification, this APS circuit delivers the performance needed in terms of signal gain, dynamic range, and readout rate entailed by fluoroscopic and radiographic imaging applications.

  13. Dual-gate photo thin-film transistor: a “smart” pixel for high- resolution and low-dose X-ray imaging

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Ou, Hai; Chen, Jun

    2015-06-01

    Since its emergence a decade ago, amorphous silicon flat panel X-ray detector has established itself as a ubiquitous platform for an array of digital radiography modalities. The fundamental building block of a flat panel detector is called a pixel. In all current pixel architectures, sensing, storage, and readout are unanimously kept separate, inevitably compromising resolution by increasing pixel size. To address this issue, we hereby propose a “smart” pixel architecture where the aforementioned three components are combined in a single dual-gate photo thin-film transistor (TFT). In other words, the dual-gate photo TFT itself functions as a sensor, a storage capacitor, and a switch concurrently. Additionally, by harnessing the amplification effect of such a thin-film transistor, we for the first time created a single-transistor active pixel sensor. The proof-of-concept device had a W/L ratio of 250μm/20μm and was fabricated using a simple five-mask photolithography process, where a 130nm transparent ITO was used as the top photo gate, and a 200nm amorphous silicon as the absorbing channel layer. The preliminary results demonstrated that the photocurrent had been increased by four orders of magnitude due to light-induced threshold voltage shift in the sub-threshold region. The device sensitivity could be simply tuned by photo gate bias to specifically target low-level light detection. The dependence of threshold voltage on light illumination indicated that a dynamic range of at least 80dB could be achieved. The "smart" pixel technology holds tremendous promise for developing high-resolution and low-dose X-ray imaging and may potentially lower the cancer risk imposed by radiation, especially among paediatric patients.

  14. Dual-energy digital mammography for calcification imaging: Scatter and nonuniformity corrections

    SciTech Connect

    Kappadath, S. Cheenu; Shaw, Chris C.

    2005-11-15

    Mammographic images of small calcifications, which are often the earliest signs of breast cancer, can be obscured by overlapping fibroglandular tissue. We have developed and implemented a dual-energy digital mammography (DEDM) technique for calcification imaging under full-field imaging conditions using a commercially available aSi:H/CsI:Tl flat-panel based digital mammography system. The low- and high-energy images were combined using a nonlinear mapping function to cancel the tissue structures and generate the dual-energy (DE) calcification images. The total entrance-skin exposure and mean-glandular dose from the low- and high-energy images were constrained so that they were similar to screening-examination levels. To evaluate the DE calcification image, we designed a phantom using calcium carbonate crystals to simulate calcifications of various sizes (212-425 {mu}m) overlaid with breast-tissue-equivalent material 5 cm thick with a continuously varying glandular-tissue ratio from 0% to 100%. We report on the effects of scatter radiation and nonuniformity in x-ray intensity and detector response on the DE calcification images. The nonuniformity was corrected by normalizing the low- and high-energy images with full-field reference images. Correction of scatter in the low- and high-energy images significantly reduced the background signal in the DE calcification image. Under the current implementation of DEDM, utilizing the mammography system and dose level tested, calcifications in the 300-355 {mu}m size range were clearly visible in DE calcification images. Calcification threshold sizes decreased to the 250-280 {mu}m size range when the visibility criteria were lowered to barely visible. Calcifications smaller than {approx}250 {mu}m were usually not visible in most cases. The visibility of calcifications with our DEDM imaging technique was limited by quantum noise, not system noise.

  15. X-ray light valve (XLV): a novel detectors' technology for digital mammography

    NASA Astrophysics Data System (ADS)

    Marcovici, Sorin; Sukhovatkin, Vlad; Oakham, Peter

    2014-03-01

    A novel method, based on X-ray Light Valve (XLV) technology, is proposed for making good image quality yet inexpensive flat panel detectors for digital mammography. The digital mammography markets, particularly in the developing countries, demand quality machines at substantially lower prices than the ones available today. Continuous pressure is applied on x-ray detectors' manufacturers to reduce the flat panel detectors' prices. XLV presents a unique opportunity to achieve the needed price - performance characteristics for direct conversion, x-ray detectors. The XLV based detectors combine the proven, superior, spatial resolution of a-Se with the simplicity and low cost of liquid crystals and optical scanning. The x-ray quanta absorbed by a 200 μm a-Se produce electron - hole pairs that move under an electric field to the top and bottom of a-Se layer. This 2D charge distribution creates at the interface with the liquid crystals a continuous (analog) charge image corresponding to the impinging radiation's information. Under the influence of local electrical charges next to them, the liquid crystals twist proportionally to the charges and vary their light reflectivity. A scanning light source illuminates the liquid crystals while an associated, pixilated photo-detector, having a 42 μm pixel size, captures the light reflected by the liquid crystals and converts it in16 bit words that are transmitted to the machine for image processing and display. The paper will describe a novel XLV, 25 cm x 30 cm, flat panel detector structure and its underlying physics as well as its preliminary performance measured on several engineering prototypes. In particular, the paper will present the results of measuring XLV detectors' DQE, MTF, dynamic range, low contrast resolution and dynamic behavior. Finally, the paper will introduce the new, low cost, XLV detector based, digital mammography machine under development at XLV Diagnostics Inc.

  16. Imaging acquisition display performance: an evaluation and discussion of performance metrics and procedures.

    PubMed

    Silosky, Michael S; Marsh, Rebecca M; Scherzinger, Ann L

    2016-01-01

    When The Joint Commission updated its Requirements for Diagnostic Imaging Services for hospitals and ambulatory care facilities on July 1, 2015, among the new requirements was an annual performance evaluation for acquisition workstation displays. The purpose of this work was to evaluate a large cohort of acquisition displays used in a clinical environment and compare the results with existing performance standards provided by the American College of Radiology (ACR) and the American Association of Physicists in Medicine (AAPM). Measurements of the minimum luminance, maximum luminance, and luminance uniformity, were performed on 42 acquisition displays across multiple imaging modalities. The mean values, standard deviations, and ranges were calculated for these metrics. Additionally, visual evaluations of contrast, spatial resolution, and distortion were performed using either the Society of Motion Pictures and Television Engineers test pattern or the TG-18-QC test pattern. Finally, an evaluation of local nonuniformities was performed using either a uniform white display or the TG-18-UN80 test pattern. Displays tested were flat panel, liquid crystal displays that ranged from less than 1 to up to 10 years of use and had been built by a wide variety of manufacturers. The mean values for Lmin and Lmax for the displays tested were 0.28 ± 0.13 cd/m2 and 135.07 ± 33.35 cd/m2, respectively. The mean maximum luminance deviation for both ultrasound and non-ultrasound displays was 12.61% ± 4.85% and 14.47% ± 5.36%, respectively. Visual evaluation of display performance varied depending on several factors including brightness and contrast settings and the test pattern used for image quality assessment. This work provides a snapshot of the performance of 42 acquisition displays across several imaging modalities in clinical use at a large medical center. Comparison with existing performance standards reveals that changes in display technology and the move from cathode ray

  17. Twin robotic x-ray system for 2D radiographic and 3D cone-beam CT imaging

    NASA Astrophysics Data System (ADS)

    Fieselmann, Andreas; Steinbrener, Jan; Jerebko, Anna K.; Voigt, Johannes M.; Scholz, Rosemarie; Ritschl, Ludwig; Mertelmeier, Thomas

    2016-03-01

    In this work, we provide an initial characterization of a novel twin robotic X-ray system. This system is equipped with two motor-driven telescopic arms carrying X-ray tube and flat-panel detector, respectively. 2D radiographs and fluoroscopic image sequences can be obtained from different viewing angles. Projection data for 3D cone-beam CT reconstruction can be acquired during simultaneous movement of the arms along dedicated scanning trajectories. We provide an initial evaluation of the 3D image quality based on phantom scans and clinical images. Furthermore, initial evaluation of patient dose is conducted. The results show that the system delivers high image quality for a range of medical applications. In particular, high spatial resolution enables adequate visualization of bone structures. This system allows 3D X-ray scanning of patients in standing and weight-bearing position. It could enable new 2D/3D imaging workflows in musculoskeletal imaging and improve diagnosis of musculoskeletal disorders.

  18. Virtual tomography: a new approach to efficient human-computer interaction for medical imaging

    NASA Astrophysics Data System (ADS)

    Teistler, Michael; Bott, Oliver J.; Dormeier, Jochen; Pretschner, Dietrich P.

    2003-05-01

    By utilizing virtual reality (VR) technologies the computer system virtusMED implements the concept of virtual tomography for exploring medical volumetric image data. Photographic data from a virtual patient as well as CT or MRI data from real patients are visualized within a virtual scene. The view of this scene is determined either by a conventional computer mouse, a head-mounted display or a freely movable flat panel. A virtual examination probe is used to generate oblique tomographic images which are computed from the given volume data. In addition, virtual models can be integrated into the scene such as anatomical models of bones and inner organs. virtusMED has shown to be a valuable tool to learn human anaotomy and to udnerstand the principles of medical imaging such as sonography. Furthermore its utilization to improve CT and MRI based diagnosis is very promising. Compared to VR systems of the past, the standard PC-based system virtusMED is a cost-efficient and easily maintained solution providing a highly intuitive time-saving user interface for medical imaging.

  19. Monte Carlo simulation of a novel water-equivalent electronic portal imaging device using plastic scintillating fibers

    SciTech Connect

    Teymurazyan, A.; Pang, G.

    2012-03-15

    Purpose: Most electronic portal imaging devices (EPIDs) developed so far use a thin Cu plate/phosphor screen to convert x-ray energies into light photons, while maintaining a high spatial resolution. This results in a low x-ray absorption and thus a low quantum efficiency (QE) of approximately 2-4% for megavoltage (MV) x-rays. A significant increase of QE is desirable for applications such as MV cone-beam computed tomography (MV-CBCT). Furthermore, the Cu plate/phosphor screen contains high atomic number (high-Z) materials, resulting in an undesirable over-response to low energy x-rays (due to photoelectric effect) as well as high energy x-rays (due to pair production) when used for dosimetric verification. Our goal is to develop a new MV x-ray detector that has a high QE and uses low-Z materials to overcome the obstacles faced by current MV x-ray imaging technologies. Methods: A new high QE and low-Z EPID is proposed. It consists of a matrix of plastic scintillating fibers embedded in a water-equivalent medium and coupled to an optically sensitive 2D active matrix flat panel imager (AMFPI) for image readout. It differs from the previous approach that uses segmented crystalline scintillators made of higher density and higher atomic number materials to detect MV x-rays. The plastic scintillating fibers are focused toward the x-ray source to avoid image blurring due to oblique incidence of off-axis x-rays. When MV x-rays interact with the scintillating fibers in the detector, scintillation light will be produced. The light photons produced in a fiber core and emitted within the acceptance angle of the fiber will be guided toward the AMFPI by total internal reflection. A Monte Carlo simulation has been used to investigate imaging and dosimetric characteristics of the proposed detector under irradiation of MV x-rays. Results: Properties, such as detection efficiency, modulation transfer function, detective quantum efficiency (DQE), energy dependence of detector

  20. Design of a prototype tri-electrode ion-chamber for megavoltage X-ray imaging

    NASA Astrophysics Data System (ADS)

    Samant, Sanjiv S.; Gopal, Arun; Jain, Jinesh; Xia, Junyi; DiBianca, Frank A.

    2007-04-01

    High-energy (megavoltage) X-ray imaging is widely used in industry (e.g., aerospace, construction, material sciences) as well as in health care (radiation therapy). One of the fundamental problems with megavoltage imaging is poor contrast and spatial resolution in the detected images due to the dominance of Compton scattering at megavoltage X-ray energies. Therefore, although megavoltage X-rays can be used to image highly attenuating objects that cannot be imaged at kilovoltage energies, the former does not provide the high image quality that is associated with the latter. A high contrast and spatial resolution detector for high-energy X-ray fields called the kinestatic charge detector (KCD) is presented here. The KCD is a tri-electrode ion-chamber based on highly pressurized noble gas. The KCD operates in conjunction with a strip-collimated X-ray beam (for high scatter rejection) to scan across the imaging field. Its thick detector design and unique operating principle provides enhanced charge signal integration for high quality imaging (quantum efficiency ˜50%) despite the unfavorable implications of high-energy X-ray interactions on image quality. The proposed design for a large-field prototype KCD includes a cylindrical pressure chamber along with 576 signal-collecting electrodes capable of resolving at 2 mm -1. The collecting electrodes are routed out of the chamber through the flat end-cap, thereby optimizing the mechanical strength of the chamber. This article highlights the simplified design of the chamber using minimal components for simple assembly. In addition, fundamental imaging measurements and estimates of ion recombination that were performed on a proof-of-principle test chamber are presented. The imaging performance of the prototype KCD was found to be an order-of-magnitude greater than commercial phosphor screen based flat-panel systems, demonstrating the potential for high-quality megavoltage imaging for a variety of industrial applications.

  1. Initial tests of a prototype MRI-compatible PET imager

    NASA Astrophysics Data System (ADS)

    Raylman, Raymond R.; Majewski, Stan; Lemieux, Susan; Velan, S. Sendhil; Kross, Brain; Popov, Vladimir; Smith, Mark F.; Weisenberger, Andrew G.; Wojcik, Randy

    2006-12-01

    Multi-modality imaging is rapidly becoming a valuable tool in the diagnosis of disease and in the development of new drugs. Functional images produced with PET fused with anatomical structure images created by MRI, will allow the correlation of form with function. Our group (a collaboration of West Virginia University and Jefferson Lab) is developing a system to acquire MRI and PET images contemporaneously. The prototype device consists of two opposed detector heads, operating in coincidence mode with an active FOV of 5×5×4 cm 3. Each MRI-PET detector module consists of an array of LSO detector elements (2.5×2.5×15 mm 3) coupled through a long fiber optic light guide to a single Hamamatsu flat panel PSPMT. The fiber optic light guide is made of a glued assembly of 2 mm diameter acrylic fibers with a total length of 2.5 m. The use of a light guides allows the PSPMTs to be positioned outside the bore of the 3 T General Electric MRI scanner used in the tests. Photon attenuation in the light guides resulted in an energy resolution of ˜60% FWHM, interaction of the magnetic field with PSPMT further reduced energy resolution to ˜85% FWHM. Despite this effect, excellent multi-plane PET and MRI images of a simple disk phantom were acquired simultaneously. Future work includes improved light guides, optimized magnetic shielding for the PSPMTs, construction of specialized coils to permit high-resolution MRI imaging, and use of the system to perform simultaneous PET and MRI or MR-spectroscopy .

  2. Stereoscopic uncooled thermal imaging with autostereoscopic 3D flat-screen display in military driving enhancement systems

    NASA Astrophysics Data System (ADS)

    Haan, H.; Münzberg, M.; Schwarzkopf, U.; de la Barré, R.; Jurk, S.; Duckstein, B.

    2012-06-01

    Thermal cameras are widely used in driver vision enhancement systems. However, in pathless terrain, driving becomes challenging without having a stereoscopic perception. Stereoscopic imaging is a well-known technique already for a long time with understood physical and physiological parameters. Recently, a commercial hype has been observed, especially in display techniques. The commercial market is already flooded with systems based on goggle-aided 3D-viewing techniques. However, their use is limited for military applications since goggles are not accepted by military users for several reasons. The proposed uncooled thermal imaging stereoscopic camera with a geometrical resolution of 640x480 pixel perfectly fits to the autostereoscopic display with a 1280x768 pixels. An eye tracker detects the position of the observer's eyes and computes the pixel positions for the left and the right eye. The pixels of the flat panel are located directly behind a slanted lenticular screen and the computed thermal images are projected into the left and the right eye of the observer. This allows a stereoscopic perception of the thermal image without any viewing aids. The complete system including camera and display is ruggedized. The paper discusses the interface and performance requirements for the thermal imager as well as for the display.

  3. A user-friendly LabVIEW software platform for grating based X-ray phase-contrast imaging.

    PubMed

    Wang, Shenghao; Han, Huajie; Gao, Kun; Wang, Zhili; Zhang, Can; Yang, Meng; Wu, Zhao; Wu, Ziyu

    2015-01-01

    X-ray phase-contrast imaging can provide greatly improved contrast over conventional absorption-based imaging for weakly absorbing samples, such as biological soft tissues and fibre composites. In this study, we introduced an easy and fast way to develop a user-friendly software platform dedicated to the new grating-based X-ray phase-contrast imaging setup at the National Synchrotron Radiation Laboratory of the University of Science and Technology of China. The control of 21 motorized stages, of a piezoelectric stage and of an X-ray tube are achieved with this software, it also covers image acquisition with a flat panel detector for automatic phase stepping scan. Moreover, a data post-processing module for signals retrieval and other custom features are in principle available. With a seamless integration of all the necessary functions in one software package, this platform greatly facilitate users' activities during experimental runs with this grating based X-ray phase contrast imaging setup. PMID:25882730

  4. Implementation of a channelized Hotelling observer model to assess image quality of x-ray angiography systems

    PubMed Central

    Favazza, Christopher P.; Fetterly, Kenneth A.; Hangiandreou, Nicholas J.; Leng, Shuai; Schueler, Beth A.

    2015-01-01

    Abstract. Evaluation of flat-panel angiography equipment through conventional image quality metrics is limited by the scope of standard spatial-domain image quality metric(s), such as contrast-to-noise ratio and spatial resolution, or by restricted access to appropriate data to calculate Fourier domain measurements, such as modulation transfer function, noise power spectrum, and detective quantum efficiency. Observer models have been shown capable of overcoming these limitations and are able to comprehensively evaluate medical-imaging systems. We present a spatial domain-based channelized Hotelling observer model to calculate the detectability index (DI) of our different sized disks and compare the performance of different imaging conditions and angiography systems. When appropriate, changes in DIs were compared to expectations based on the classical Rose model of signal detection to assess linearity of the model with quantum signal-to-noise ratio (SNR) theory. For these experiments, the estimated uncertainty of the DIs was less than 3%, allowing for precise comparison of imaging systems or conditions. For most experimental variables, DI changes were linear with expectations based on quantum SNR theory. DIs calculated for the smallest objects demonstrated nonlinearity with quantum SNR theory due to system blur. Two angiography systems with different detector element sizes were shown to perform similarly across the majority of the detection tasks. PMID:26158086

  5. Fourier analysis of the imaging characteristics of a CMOS active pixel detector for mammography by using a linearization method

    NASA Astrophysics Data System (ADS)

    Han, Jong Chul; Yun, Seungman; Youn, Hanbean; Kam, Soohwa; Cho, Seungryong; Achterkirchen, Thorsten G.; Kim, Ho Kyung

    2014-09-01

    Active pixel design using the complementary metal-oxide-semiconductor (CMOS) process is a compelling solution for use in X-ray imaging detectors because of its excellent electronic noise characteristics. We have investigated the imaging performance of a CMOS active pixel photodiode array coupled to a granular phosphor through a fiber-optic faceplate for mammographic applications. The imaging performance included the modulation-transfer function (MTF), noise-power spectrum (NPS), and detective quantum efficiency (DQE). Because we observed a nonlinear detector response at low exposures, we used the linearization method for the