Science.gov

Sample records for directed molecular evolution

  1. Exploiting models of molecular evolution to efficiently direct protein engineering.

    PubMed

    Cole, Megan F; Gaucher, Eric A

    2011-02-01

    Directed evolution and protein engineering approaches used to generate novel or enhanced biomolecular function often use the evolutionary sequence diversity of protein homologs to rationally guide library design. To fully capture this sequence diversity, however, libraries containing millions of variants are often necessary. Screening libraries of this size is often undesirable due to inaccuracies of high-throughput assays, costs, and time constraints. The ability to effectively cull sequence diversity while still generating the functional diversity within a library thus holds considerable value. This is particularly relevant when high-throughput assays are not amenable to select/screen for certain biomolecular properties. Here, we summarize our recent attempts to develop an evolution-guided approach, Reconstructing Evolutionary Adaptive Paths (REAP), for directed evolution and protein engineering that exploits phylogenetic and sequence analyses to identify amino acid substitutions that are likely to alter or enhance function of a protein. To demonstrate the utility of this technique, we highlight our previous work with DNA polymerases in which a REAP-designed small library was used to identify a DNA polymerase capable of accepting non-standard nucleosides. We anticipate that the REAP approach will be used in the future to facilitate the engineering of biopolymers with expanded functions and will thus have a significant impact on the developing field of 'evolutionary synthetic biology'. PMID:21132281

  2. Modification of pancreatic lipase properties by directed molecular evolution.

    PubMed

    Colin, Damien Yann; Deprez-Beauclair, Paule; Silva, Noella; Infantes, Lourdes; Kerfelec, Brigitte

    2010-05-01

    Cystic fibrosis is associated with pancreatic insufficiency and acidic intraluminal conditions that limit the action of pancreatic enzyme replacement therapy, especially that of lipase. Directed evolution combined with rational design was used in the aim of improving the performances of the human pancreatic lipase at acidic pH. We set up a method for screening thousands of lipase variants for activity at low pH. A single round of random mutagenesis yielded one lipase variant with an activity at acidic pH enhanced by approximately 50% on medium- and long-chain triglycerides. Sequence analysis revealed two substitutions (E179G/N406S) located in specific regions, the hydrophobic groove accommodating the sn-1 chain of the triglyceride (E179G) and the surface loop that is likely to mediate lipase/colipase interaction in the presence of lipids (N406S). Interestingly, these two substitutions shifted the chain-length specificity of lipase toward medium- and long-chain triglycerides. Combination of those two mutations with a promising one at the entrance of the catalytic cavity (K80E) negatively affected the lipase activity at neutral pH but not that at acidic pH. Our results provide a basis for the design of improved lipase at acidic pH and identify for the first time key residues associated with chain-length specificity. PMID:20150178

  3. Mistakes and Molecular Evolution.

    ERIC Educational Resources Information Center

    Trevors, J. T.

    1998-01-01

    Examines the role mistakes play in the molecular evolution of bacteria. Discusses the interacting physical, chemical, and biological factors that cause changes in DNA and play a role in prokaryotic evolution. (DDR)

  4. Workshop on Molecular Evolution

    NASA Technical Reports Server (NTRS)

    Cummings, Michael P.

    2004-01-01

    Molecular evolution has become the nexus of many areas of biological research. It both brings together and enriches such areas as biochemistry, molecular biology, microbiology, population genetics, systematics, developmental biology, genomics, bioinformatics, in vitro evolution, and molecular ecology. The Workshop provides an important contribution to these fields in that it promotes interdisciplinary research and interaction, and thus provides a glue that sticks together disparate fields. Due to the wide range of fields addressed by the study of molecular evolution, it is difficult to offer a comprehensive course in a university setting. It is rare for a single institution to maintain expertise in all necessary areas. In contrast, the Workshop is uniquely able to provide necessary breadth and depth by utilizing a large number of faculty with appropriate expertise. Furthermore, the flexible nature of the Workshop allows for rapid adaptation to changes in the dynamic field of molecular evolution. For example, the 2003 Workshop included recently emergent research areas of molecular evolution of development and genomics.

  5. Directed Evolution of Fungal Laccases

    PubMed Central

    Maté, Diana; García-Ruiz, Eva; Camarero, Susana; Alcalde, Miguel

    2011-01-01

    Fungal laccases are generalists biocatalysts with potential applications that range from bioremediation to novel green processes. Fuelled by molecular oxygen, these enzymes can act on dozens of molecules of different chemical nature, and with the help of redox mediators, their spectrum of oxidizable substrates is further pushed towards xenobiotic compounds (pesticides, industrial dyes, PAHs), biopolymers (lignin, starch, cellulose) and other complex molecules. In recent years, extraordinary efforts have been made to engineer fungal laccases by directed evolution and semi-rational approaches to improve their functional expression or stability. All these studies have taken advantage of Saccharomyces cerevisiae as a heterologous host, not only to secrete the enzyme but also, to emulate the introduction of genetic diversity through in vivo DNA recombination. Here, we discuss all these endeavours to convert fungal laccases into valuable biomolecular platforms on which new functions can be tailored by directed evolution. PMID:21966249

  6. Evolution of molecular clouds

    NASA Technical Reports Server (NTRS)

    Sevenster, M.

    1993-01-01

    The evolution of interstellar molecular hydrogen was studied, with a special interest for the formation and evolution of molecular clouds and star formation within them, by a two-dimensional hydrodynamical simulation performed on a rectangular grid of physical sizes on the order of 100 pc. It is filled with an initial density of approx. 1 cm(exp -3), except for one cell (approx. 1 pc(exp 2)) at the center of the grid where an accretion core of 1-10(exp 3) solar masses is placed. The grid is co-moving with the gridcenter that is on a circular orbit around the Galactic center and that also is the guiding center of epicyclic approximation of orbits of the matter surrounding it. The initial radial velocity is zero; to account for differential rotation the initial tangential velocity (i.e. the movement around the galactic center) is proportional to the radial distance to the grid center. The rate is comparable to the rotation rate at the Local Standard of Rest. The influence of galactic rotation is noticed by spiral or elliptical forms, but on much longer time scales than self gravitation and cooling processes. Density and temperature are kept constant at the boundaries and no inflow is allowed along the tangential boundaries.

  7. Directed evolution and in silico analysis of reaction centre proteins reveal molecular signatures of photosynthesis adaptation to radiation pressure.

    PubMed

    Rea, Giuseppina; Lambreva, Maya; Polticelli, Fabio; Bertalan, Ivo; Antonacci, Amina; Pastorelli, Sandro; Damasso, Mario; Johanningmeier, Udo; Giardi, Maria Teresa

    2011-01-01

    Evolutionary mechanisms adopted by the photosynthetic apparatus to modifications in the Earth's atmosphere on a geological time-scale remain a focus of intense research. The photosynthetic machinery has had to cope with continuously changing environmental conditions and particularly with the complex ionizing radiation emitted by solar flares. The photosynthetic D1 protein, being the site of electron tunneling-mediated charge separation and solar energy transduction, is a hot spot for the generation of radiation-induced radical injuries. We explored the possibility to produce D1 variants tolerant to ionizing radiation in Chlamydomonas reinhardtii and clarified the effect of radiation-induced oxidative damage on the photosynthetic proteins evolution. In vitro directed evolution strategies targeted at the D1 protein were adopted to create libraries of chlamydomonas random mutants, subsequently selected by exposures to radical-generating proton or neutron sources. The common trend observed in the D1 aminoacidic substitutions was the replacement of less polar by more polar amino acids. The applied selection pressure forced replacement of residues more sensitive to oxidative damage with less sensitive ones, suggesting that ionizing radiation may have been one of the driving forces in the evolution of the eukaryotic photosynthetic apparatus. A set of the identified aminoacidic substitutions, close to the secondary plastoquinone binding niche and oxygen evolving complex, were introduced by site-directed mutagenesis in un-transformed strains, and their sensitivity to free radicals attack analyzed. Mutants displayed reduced electron transport efficiency in physiological conditions, and increased photosynthetic performance stability and oxygen evolution capacity in stressful high-light conditions. Finally, comparative in silico analyses of D1 aminoacidic sequences of organisms differently located in the evolution chain, revealed a higher ratio of residues more sensitive to

  8. Directed Evolution and In Silico Analysis of Reaction Centre Proteins Reveal Molecular Signatures of Photosynthesis Adaptation to Radiation Pressure

    PubMed Central

    Rea, Giuseppina; Lambreva, Maya; Polticelli, Fabio; Bertalan, Ivo; Antonacci, Amina; Pastorelli, Sandro; Damasso, Mario; Johanningmeier, Udo; Giardi, Maria Teresa

    2011-01-01

    Evolutionary mechanisms adopted by the photosynthetic apparatus to modifications in the Earth's atmosphere on a geological time-scale remain a focus of intense research. The photosynthetic machinery has had to cope with continuously changing environmental conditions and particularly with the complex ionizing radiation emitted by solar flares. The photosynthetic D1 protein, being the site of electron tunneling-mediated charge separation and solar energy transduction, is a hot spot for the generation of radiation-induced radical injuries. We explored the possibility to produce D1 variants tolerant to ionizing radiation in Chlamydomonas reinhardtii and clarified the effect of radiation-induced oxidative damage on the photosynthetic proteins evolution. In vitro directed evolution strategies targeted at the D1 protein were adopted to create libraries of chlamydomonas random mutants, subsequently selected by exposures to radical-generating proton or neutron sources. The common trend observed in the D1 aminoacidic substitutions was the replacement of less polar by more polar amino acids. The applied selection pressure forced replacement of residues more sensitive to oxidative damage with less sensitive ones, suggesting that ionizing radiation may have been one of the driving forces in the evolution of the eukaryotic photosynthetic apparatus. A set of the identified aminoacidic substitutions, close to the secondary plastoquinone binding niche and oxygen evolving complex, were introduced by site-directed mutagenesis in un-transformed strains, and their sensitivity to free radicals attack analyzed. Mutants displayed reduced electron transport efficiency in physiological conditions, and increased photosynthetic performance stability and oxygen evolution capacity in stressful high-light conditions. Finally, comparative in silico analyses of D1 aminoacidic sequences of organisms differently located in the evolution chain, revealed a higher ratio of residues more sensitive to

  9. The Molecular Basis of Evolution.

    ERIC Educational Resources Information Center

    Wilson, Allan C.

    1985-01-01

    Discovery that mutations accumulate at steady rates over time in the genes of all lineages of plants and animals has led to new insights into evolution at the molecular and organismal levels. Discusses molecular evolution, examining deoxyribonuclei acid (DNA) sequences, morphological distances, and codon rate of change. (DH)

  10. Molecular simulation of AG nanoparticle nucleation from solution: redox-reactions direct the evolution of shape and structure.

    PubMed

    Milek, Theodor; Zahn, Dirk

    2014-08-13

    The association of Ag(+) ions and the early stage of Ag nanoparticle nucleation are investigated from molecular dynamics simulations. Combining special techniques for tackling crystal nucleation from solution with efficient approaches to model redox-reactions, we unravel the structural evolution of forming silver nanoparticles as a function of the redox-potential in the solution. Within a range of only 1 eV, the redox-potential is demonstrated to have a drastic effect on both the inner structure and the overall shape of the forming particles. On the basis of our simulations we identify surface charge and its distribution as an atomic scale mechanism that accounts for creating/avoiding 5-fold coordination polyhedra and thus the degree of (multiple)-twinning in silver nanoparticles. PMID:25078975

  11. Surface morphology evolution of m-plane (1100) GaN during molecular beam epitaxy growth: Impact of Ga/N ratio, miscut direction, and growth temperature

    SciTech Connect

    Shao Jiayi; Tang Liang; Malis, Oana; Edmunds, Colin; Gardner, Geoff; Manfra, Michael

    2013-07-14

    We present a systematic study of morphology evolution of [1100] m-plane GaN grown by plasma-assisted molecular beam epitaxy on free-standing m-plane substrates with small miscut angles towards the -c [0001] and +c [0001] directions under various gallium to nitrogen (Ga/N) ratios at substrate temperatures T = 720 Degree-Sign C and T = 740 Degree-Sign C. The miscut direction, Ga/N ratio, and growth temperature are all shown to have a dramatic impact on morphology. The observed dependence on miscut direction supports the notion of strong anisotropy in the gallium adatom diffusion barrier and growth kinetics. We demonstrate that precise control of Ga/N ratio and substrate temperature yields atomically smooth morphology on substrates oriented towards +c [0001] as well as the more commonly studied -c [0001] miscut substrates.

  12. Chemical evolution of molecular clouds

    NASA Technical Reports Server (NTRS)

    Prasad, Sheo S.; Tarafdar, Sankar P.; Villere, Karen R.; Huntress, Wesley T., Jr.

    1987-01-01

    The principles behind the coupled chemical-dynamical evolution of molecular clouds are described. Particular attention is given to current problems involving the simplest species (i.e., C. CO, O2, and H2) in quiescent clouds. The results of a comparison made between the molecular abundances in the Orion ridge and the hot core (Blake, 1986) are presented.

  13. Molecular imprint of dust evolution

    NASA Astrophysics Data System (ADS)

    Akimkin, Vitaly; Zhukovska, Svitlana; Wiebe, Dmitri; Semenov, Dmitry; Pavlyuchenkov, Yaroslav; Vasyunin, Anton; Birnstiel, Til; Henning, Thomas

    2013-07-01

    Evolution of sub-micron grains is an essential process during early stages of planet formation. The dust growth and sedimentation to the midplane affect a spectral energy distribution. At the same time dust evolution can alter significantly the distribution of gas that is a factor of 100 more massive than dust and can be traced with molecular line observations. We present simulations of protoplanetary disk structure with grain evolution using the ANDES code ("AccretioN disk with Dust Evolution and Sedimentation"). ANDES comprises (1) a 1+1D frequency-dependent continuum radiative transfer module, (2) a module to calculate the chemical evolution using an extended gas-grain chemical network with UV/X-ray-driven processes and surface reactions, (3) a module to calculate the gas thermal energy balance, and (4) a 1+1D module that simulates dust grain evolution. Such a set of physical processes allows us to assess the impact of dust evolution on the gas component, which is primarily related to radiation field and total available surface for chemical reactions. Considering cases of (i) evolved dust (2 Myr of grain coagulation, fragmentation and sedimentation) and (ii) pristine dust (well- mixed 0.1 micron grains), we found a sufficient changes in disk physical and chemical structure caused by the dust evolution. Due to higher transparency of the evolved disk model UV-shielded molecular layer is shifted closer to the midplane. The presence of big grains in the disk midplane delays the freeze-out of volatile gas-phase species such as CO, while the depletion is still effective in adjacent upper layers. Molecular concentrations of many species are enhanced in the disk model with dust evolution (CO2, NH2CN, HNO, H2O, HCOOH, HCN, CO) which provides an opportunity to use these molecules as tracers of dust evolution.

  14. Biocatalyst development by directed evolution.

    PubMed

    Wang, Meng; Si, Tong; Zhao, Huimin

    2012-07-01

    Biocatalysis has emerged as a great addition to traditional chemical processes for production of bulk chemicals and pharmaceuticals. To overcome the limitations of naturally occurring enzymes, directed evolution has become the most important tool for improving critical traits of biocatalysts such as thermostability, activity, selectivity, and tolerance towards organic solvents for industrial applications. Recent advances in mutant library creation and high-throughput screening have greatly facilitated the engineering of novel and improved biocatalysts. This review provides an update of the recent developments in the use of directed evolution to engineer biocatalysts for practical applications. PMID:22310212

  15. Biocatalyst Development by Directed Evolution

    PubMed Central

    Wang, Meng; Si, Tong; Zhao, Huimin

    2012-01-01

    Biocatalysis has emerged as a great addition to traditional chemical processes for production of bulk chemicals and pharmaceuticals. To overcome the limitations of naturally occurring enzymes, directed evolution has become the most important tool for improving critical traits of biocatalysts such as thermostability, activity, selectivity, and tolerance towards organic solvents for industrial applications. Recent advances in mutant library creation and high-throughput screening have greatly facilitated the engineering of novel and improved biocatalysts. This review provides an update of the recent developments in the use of directed evolution to engineer biocatalysts for practical applications. PMID:22310212

  16. In Vivo Continuous Directed Evolution

    PubMed Central

    Badran, Ahmed H.; Liu, David R.

    2014-01-01

    The development and application of methods for the laboratory evolution of biomolecules has rapidly progressed over the last few decades. Advancements in continuous microbe culturing and selection design have facilitated the development of new technologies that enable the continuous directed evolution of proteins and nucleic acids. These technologies have the potential to support the extremely rapid evolution of biomolecules with tailor-made functional properties. Continuous evolution methods must support all of the key steps of laboratory evolution—translation of genes into gene products, selection or screening, replication of genes encoding the most fit gene products, and mutation of surviving genes—in a self-sustaining manner that requires little or no researcher intervention. Continuous laboratory evolution has been historically used to study problems including antibiotic resistance, organismal adaptation, phylogenetic reconstruction, and host-pathogen interactions, with more recent applications focusing on the rapid generation of proteins and nucleic acids with useful, tailor-made properties. The advent of increasingly general methods for continuous directed evolution should enable researchers to address increasingly complex questions and to access biomolecules with more novel or even unprecedented properties. PMID:25461718

  17. Laboratory-Directed Protein Evolution

    PubMed Central

    Yuan, Ling; Kurek, Itzhak; English, James; Keenan, Robert

    2005-01-01

    Systematic approaches to directed evolution of proteins have been documented since the 1970s. The ability to recruit new protein functions arises from the considerable substrate ambiguity of many proteins. The substrate ambiguity of a protein can be interpreted as the evolutionary potential that allows a protein to acquire new specificities through mutation or to regain function via mutations that differ from the original protein sequence. All organisms have evolutionarily exploited this substrate ambiguity. When exploited in a laboratory under controlled mutagenesis and selection, it enables a protein to “evolve” in desired directions. One of the most effective strategies in directed protein evolution is to gradually accumulate mutations, either sequentially or by recombination, while applying selective pressure. This is typically achieved by the generation of libraries of mutants followed by efficient screening of these libraries for targeted functions and subsequent repetition of the process using improved mutants from the previous screening. Here we review some of the successful strategies in creating protein diversity and the more recent progress in directed protein evolution in a wide range of scientific disciplines and its impacts in chemical, pharmaceutical, and agricultural sciences. PMID:16148303

  18. Thermal Solutions for Molecular Evolution

    NASA Astrophysics Data System (ADS)

    Mast, Christof B.; Osterman, Natan; Braun, Dieter

    2012-12-01

    The key requirement to solve the origin of life puzzle are disequilibrium conditions. Early molecular evolution cannot be explained by initial high concentrations of energetic chemicals since they would just react towards their chemical equilibrium allowing no further development. We argue here that persistent disequilibria are needed to increase complexity during molecular evolution. We propose thermal gradients as the disequilibrium setting which drove Darwinian molecular evolution. On the one hand the thermal gradient gives rise to laminar thermal convection flow with highly regular temperature oscillations that allow melting and replication of DNA. On the other hand molecules move along the thermal gradient, a mechanism termed Soret effect or thermophoresis. Inside a long chamber a combination of the convection flow and thermophoresis leads to a very efficient accumulation of molecules. Short DNA is concentrated thousand-fold, whereas longer DNA is exponentially better accumulated. We demonstrated both scenarios in the same micrometer-sized setting. Forthcoming experiments will reveal how replication and accumulation of DNA in a system, driven only by a thermal gradient, could create a Darwinian process of replication and selection.

  19. Outrunning Nature: Directed Evolution of Superior Biocatalysts

    ERIC Educational Resources Information Center

    Woodyer, Ryan; Chen, Wilfred; Zhao, Huimin

    2004-01-01

    The development of enzymes as biocatalysts for industrial use and the emergence of directed evolution in the invention of advanced biocatalysts are discussed and illustrated. Thus, directed evolution has bridged the functional gap between natural and specially designed biocatalysts.

  20. Adaptive evolution of molecular phenotypes

    NASA Astrophysics Data System (ADS)

    Held, Torsten; Nourmohammad, Armita; Lässig, Michael

    2014-09-01

    Molecular phenotypes link genomic information with organismic functions, fitness, and evolution. Quantitative traits are complex phenotypes that depend on multiple genomic loci. In this paper, we study the adaptive evolution of a quantitative trait under time-dependent selection, which arises from environmental changes or through fitness interactions with other co-evolving phenotypes. We analyze a model of trait evolution under mutations and genetic drift in a single-peak fitness seascape. The fitness peak performs a constrained random walk in the trait amplitude, which determines the time-dependent trait optimum in a given population. We derive analytical expressions for the distribution of the time-dependent trait divergence between populations and of the trait diversity within populations. Based on this solution, we develop a method to infer adaptive evolution of quantitative traits. Specifically, we show that the ratio of the average trait divergence and the diversity is a universal function of evolutionary time, which predicts the stabilizing strength and the driving rate of the fitness seascape. From an information-theoretic point of view, this function measures the macro-evolutionary entropy in a population ensemble, which determines the predictability of the evolutionary process. Our solution also quantifies two key characteristics of adapting populations: the cumulative fitness flux, which measures the total amount of adaptation, and the adaptive load, which is the fitness cost due to a population's lag behind the fitness peak.

  1. Can evolution be directional without being teleological?

    PubMed

    McGhee, George R

    2016-08-01

    Convergent evolution reveals to us that the number of possibilities available for contingent events is limited, that historically contingent evolution is constrained to occur within a finite number of limited pathways, and that contingent evolution is thus probabilistic and predictable. That is, the phenomenon of convergence proves that truly contingent evolutionary processes can repeatedly produce the same, or very similar, organic designs in nature and that evolution is directional in these cases. For this reason it is argued in this paper that evolution can be directional without being teleological, and that the dichotomy that evolution must either be directionless and unpredictable or directional and predetermined (teleological) is false. PMID:26754619

  2. Bringing Molecules Back into Molecular Evolution

    PubMed Central

    Wilke, Claus O.

    2012-01-01

    Much molecular-evolution research is concerned with sequence analysis. Yet these sequences represent real, three-dimensional molecules with complex structure and function. Here I highlight a growing trend in the field to incorporate molecular structure and function into computational molecular-evolution work. I consider three focus areas: reconstruction and analysis of past evolutionary events, such as phylogenetic inference or methods to infer selection pressures; development of toy models and simulations to identify fundamental principles of molecular evolution; and atom-level, highly realistic computational modeling of molecular structure and function aimed at making predictions about possible future evolutionary events. PMID:22761562

  3. Advances in the directed evolution of proteins

    PubMed Central

    Lane, Michael D.; Seelig, Burckhard

    2014-01-01

    Natural evolution has produced a great diversity of proteins that can be harnessed for numerous applications in biotechnology and pharmaceutical science. Commonly, specific applications require proteins to be tailored by protein engineering. Directed evolution is a type of protein engineering that yields proteins with the desired properties under well-defined conditions and in a practical time frame. While directed evolution has been employed for decades, recent creative developments enable the generation of proteins with previously inaccessible properties. Novel selection strategies, faster techniques, the inclusion of unnatural amino acids or modifications, and the symbiosis of rational design approaches and directed evolution continue to advance protein engineering. PMID:25309990

  4. Molecular evolution of hydrogen peroxide degrading enzymes.

    PubMed

    Zámocký, Marcel; Gasselhuber, Bernhard; Furtmüller, Paul G; Obinger, Christian

    2012-09-15

    For efficient removal of intra- and/or extracellular hydrogen peroxide by dismutation to harmless dioxygen and water (2H(2)O(2) → O(2) + 2H(2)O), nature designed three metalloenzyme families that differ in oligomeric organization, monomer architecture as well as active site geometry and catalytic residues. Here we report on the updated reconstruction of the molecular phylogeny of these three gene families. Ubiquitous typical (monofunctional) heme catalases are found in all domains of life showing a high structural conservation. Their evolution was directed from large subunit towards small subunit proteins and further to fused proteins where the catalase fold was retained but lost its original functionality. Bifunctional catalase-peroxidases were at the origin of one of the two main heme peroxidase superfamilies (i.e. peroxidase-catalase superfamily) and constitute a protein family predominantly present among eubacteria and archaea, but two evolutionary branches are also found in the eukaryotic world. Non-heme manganese catalases are a relatively small protein family with very old roots only present among bacteria and archaea. Phylogenetic analyses of the three protein families reveal features typical (i) for the evolution of whole genomes as well as (ii) for specific evolutionary events including horizontal gene transfer, paralog formation and gene fusion. As catalases have reached a striking diversity among prokaryotic and eukaryotic pathogens, understanding their phylogenetic and molecular relationship and function will contribute to drug design for prevention of diseases of humans, animals and plants. PMID:22330759

  5. Outrunning Nature: Directed Evolution of Superior Biocatalysts

    NASA Astrophysics Data System (ADS)

    Woodyer, Ryan; Chen, Wilfred; Zhao, Huimin

    2004-01-01

    Driven by recent technical advances in genetic engineering and new societal needs, the use of enzymes and microorganisms as catalysts to synthesize chemicals and materials is rapidly expanding. One of the key technical drivers is the development of various directed evolution methods for biocatalyst discovery and optimization. Although it essentially replicates the Darwinian evolutionary processes in a test tube, directed evolution can create biocatalysts with better catalytic performance than Nature's own products within weeks or months rather than eons. In this article, both the technologies and applications of directed evolution in biocatalysis are discussed.

  6. Molecular evolution and thermal adaptation

    NASA Astrophysics Data System (ADS)

    Chen, Peiqiu

    2011-12-01

    In this thesis, we address problems in molecular evolution, thermal adaptation, and the kinetics of adaptation of bacteria and viruses to elevated environmental temperatures. We use a nearly neutral fitness model where the replication speed of an organism is proportional to the copy number of folded proteins. Our model reproduces the distribution of stabilities of natural proteins in excellent agreement with experiment. We find that species with high mutation rates tend to have less stable proteins compared to species with low mutation rate. We found that a broad distribution of protein stabilities observed in the model and in experiment is the key determinant of thermal response for viruses and bacteria. Our results explain most of the earlier experimental observations: striking asymmetry of thermal response curves, the absence of evolutionary trade-off which was expected but not found in experiments, correlation between denaturation temperature for several protein families and the Optimal Growth Temperature (OGT) of their carrier organisms, and proximity of bacterial or viral OGTs to their evolutionary temperatures. Our theory quantitatively and with high accuracy described thermal response curves for 35 bacterial species. The model also addresses the key to adaptation is in weak-link genes (WLG), which encode least thermodynamically stable essential proteins in the proteome. We observe, as in experiment, a two-stage adaptation process. The first stage is a Luria-Delbruck type of selection, whereby rare WLG alleles, whose proteins are more stable than WLG proteins of the majority of the population (either due to standing genetic variation or due to an early acquired mutation), rapidly rise to fixation. The second stage constitutes subsequent slow accumulation of mutations in an adapted population. As adaptation progresses, selection regime changes from positive to neutral: Selection coefficient of beneficial mutations scales as a negative power of number of

  7. The Molecular Evolution of Actin

    PubMed Central

    Hightower, Robin C.; Meagher, Richard B.

    1986-01-01

    We have investigated the molecular evolution of plant and nonplant actin genes comparing nucleotide and amino acid sequences of 20 actin genes. Nucleotide changes resulting in amino acid substitutions (replacement substitutions) ranged from 3–7% for all pairwise comparisons of animal actin genes with the following exceptions. Comparisons between higher animal muscle actin gene sequences and comparisons between higher animal cytoplasmic actin gene sequences indicated <3% divergence. Comparisons between plant and nonplant actin genes revealed, with two exceptions, 11–15% replacement substitution. In the analysis of plant actins, replacement substitution between soybean actin genes SAc1, SAc3, SAc4 and maize actin gene MAc1 ranged from 8–10%, whereas these members within the soybean actin gene family ranged from 6–9% replacement substitution. The rate of sequence divergence of plant actin sequences appears to be similar to that observed for animal actins. Furthermore, these and other data suggest that the plant actin gene family is ancient and that the families of soybean and maize actin genes have diverged from a single common ancestral plant actin gene that originated long before the divergence of monocots and dicots. The soybean actin multigene family encodes at least three classes of actin. These classes each contain a pair of actin genes that have been designated kappa (SAc1, SAc6), lambda (SAc2, SAc4) and mu (SAc3, SAc7). The three classes of soybean actin are more divergent in nucleotide sequence from one another than higher animal cytoplasmic actin is divergent from muscle actin. The location and distribution of amino acid changes were compared between actin proteins from all sources. A comparison of the hydropathy of all actin sequences, except from Oxytricha, indicated a strong similarity in hydropathic character between all plant and nonplant actins despite the greater number of replacement substitutions in plant actins. These protein sequence

  8. Statistical limitations on molecular evolution.

    PubMed

    Perlovsky, Leonid I

    2002-06-01

    Complexity of functions evolving in an evolution process are expected to be limited by the time length of an evolution process among other factors. This paper outlines a general method of deriving function-complexity limitations based on mathematical statistics and independent from details of a biological or genetic mechanism of the evolution of the function. Limitations on the emergence of life are derived, these limitations indicate a possibility of a very fast evolution and are consistent with "RNA world" hypothesis. The discussed method is general and can be used to characterize evolution of more specific biological organism functions and relate functions to genetic structures. The derived general limitations indicate that a co-evolution of multiple functions and species could be a slow process, whereas an evolution of a specific function might proceed very fast, so that no trace of intermediate forms (species) is preserved in fossil records of phenotype or DNA structure; this is consistent with a picture of "punctuated equilibrium". PMID:12023805

  9. Surface morphology evolution of m-plane (11xAF00) GaN during molecular beam epitaxy growth: Impact of Ga/N ratio, miscut direction, and growth temperature

    NASA Astrophysics Data System (ADS)

    Shao, Jiayi; Tang, Liang; Edmunds, Colin; Gardner, Geoff; Malis, Oana; Manfra, Michael

    2013-07-01

    We present a systematic study of morphology evolution of [11¯00] m-plane GaN grown by plasma-assisted molecular beam epitaxy on free-standing m-plane substrates with small miscut angles towards the -c [0001¯] and +c [0001] directions under various gallium to nitrogen (Ga/N) ratios at substrate temperatures T = 720 °C and T = 740 °C. The miscut direction, Ga/N ratio, and growth temperature are all shown to have a dramatic impact on morphology. The observed dependence on miscut direction supports the notion of strong anisotropy in the gallium adatom diffusion barrier and growth kinetics. We demonstrate that precise control of Ga/N ratio and substrate temperature yields atomically smooth morphology on substrates oriented towards +c [0001] as well as the more commonly studied -c [0001¯] miscut substrates.

  10. Molecular recordings by directed CRISPR spacer acquisition.

    PubMed

    Shipman, Seth L; Nivala, Jeff; Macklis, Jeffrey D; Church, George M

    2016-07-29

    The ability to write a stable record of identified molecular events into a specific genomic locus would enable the examination of long cellular histories and have many applications, ranging from developmental biology to synthetic devices. We show that the type I-E CRISPR (clustered regularly interspaced short palindromic repeats)-Cas system of Escherichia coli can mediate acquisition of defined pieces of synthetic DNA. We harnessed this feature to generate records of specific DNA sequences into a population of bacterial genomes. We then applied directed evolution so as to alter the recognition of a protospacer adjacent motif by the Cas1-Cas2 complex, which enabled recording in two modes simultaneously. We used this system to reveal aspects of spacer acquisition, fundamental to the CRISPR-Cas adaptation process. These results lay the foundations of a multimodal intracellular recording device. PMID:27284167

  11. Directed Evolution of Enzymes for Industrial Biocatalysis.

    PubMed

    Porter, Joanne L; Rusli, Rukhairul A; Ollis, David L

    2016-02-01

    Enzymes have the potential to catalyse a wide variety of chemical reactions. They are increasingly being sought as environmentally friendly and cost-effective alternatives to conventional catalysts used in industries ranging from bioremediation to applications in medicine and pharmaceutics. Despite the benefits, they are not without their limitations. Many naturally occurring enzymes are not suitable for use outside of their native cellular environments. However, protein engineering can be used to generate enzymes tailored for specific industrial applications. Directed evolution is particularly useful and can be employed even when lack of structural information impedes the use of rational design. The aim of this review is to provide an overview of current industrial applications of enzyme technology and to show how directed evolution can be used to modify and to enhance enzyme properties. This includes a brief discussion on library generation and a more detailed focus on library screening methods, which are critical to any directed evolution experiment. PMID:26661585

  12. Molecular evolution tracks macroevolutionary transitions in Cetacea.

    PubMed

    McGowen, Michael R; Gatesy, John; Wildman, Derek E

    2014-06-01

    Cetacea (whales, dolphins, and porpoises) is a model group for investigating the molecular signature of macroevolutionary transitions. Recent research has begun to reveal the molecular underpinnings of the remarkable anatomical and behavioral transformation in this clade. This shift from terrestrial to aquatic environments is arguably the best-understood major morphological transition in vertebrate evolution. The ancestral body plan and physiology were extensively modified and, in many cases, these crucial changes are recorded in cetacean genomes. Recent studies have highlighted cetaceans as central to understanding adaptive molecular convergence and pseudogene formation. Here, we review current research in cetacean molecular evolution and the potential of Cetacea as a model for the study of other macroevolutionary transitions from a genomic perspective. PMID:24794916

  13. Molecular Evolution of Puumala Hantavirus

    PubMed Central

    Sironen, Tarja; Vaheri, Antti; Plyusnin, Alexander

    2001-01-01

    Puumala virus (PUUV) is a negative-stranded RNA virus in the genus Hantavirus, family Bunyaviridae. In this study, detailed phylogenetic analysis was performed on 42 complete S segment sequences of PUUV originated from several European countries, Russia, and Japan, the largest set available thus far for hantaviruses. The results show that PUUV sequences form seven distinct and well-supported genetic lineages; within these lineages, geographical clustering of genetic variants is observed. The overall phylogeny of PUUV is star-like, suggesting an early split of genetic lineages. The individual PUUV lineages appear to be independent, with the only exception to this being the Finnish and the Russian lineages that are closely connected to each other. Two strains of PUUV-like virus from Japan form the most ancestral lineage diverging from PUUV. Recombination points within the S segment were searched for and evidence for intralineage recombination events was seen in the Finnish, Russian, Danish, and Belgian lineages of PUUV. Molecular clock analysis showed that PUUV is a stable virus, evolving slowly at a rate of 0.7 × 10−7 to 2.2 × 10−6 nt substitutions per site per year. PMID:11689661

  14. Molecular evolution of the vertebrate mechanosensory cell and ear

    PubMed Central

    Fritzsch, Bernd; Beisel, Kirk W.; Pauley, Sarah; Soukup, Garrett

    2014-01-01

    The molecular basis of mechanosensation, mechanosensory cell development and mechanosensory organ development is reviewed with an emphasis on its evolution. In contrast to eye evolution and development, which apparently modified a genetic program through intercalation of genes between the master control genes on the top (Pax6, Eya1, Six1) of the hierarchy and the structural genes (rhodopsin) at the bottom, the as yet molecularly unknown mechanosensory channel precludes such a firm conclusion for mechanosensors. However, recent years have seen the identification of several structural genes which are involved in mechanosensory tethering and several transcription factors controlling mechanosensory cell and organ development; these warrant the interpretation of available data in very much the same fashion as for eye evolution: molecular homology combined with potential morphological parallelism. This assertion of molecular homology is strongly supported by recent findings of a highly conserved set of microRNAs that appear to be associated with mechanosensory cell development across phyla. The conservation of transcription factors and their regulators fits very well to the known or presumed mechanosensory specializations which can be mostly grouped as variations of a common cellular theme. Given the widespread distribution of the molecular ability to form mechanosensory cells, it comes as no surprise that structurally different mechanosensory organs evolved in different phyla, presenting a variation of a common theme specified by a conserved set of transcription factors in their cellular development. Within vertebrates and arthropods, some mechanosensory organs evolved into auditory organs, greatly increasing sensitivity to sound through modifications of accessory structures to direct sound to the specific sensory epithelia. However, while great attention has been paid to the evolution of these accessory structures in vertebrate fossils, comparatively less attention has

  15. Directed Evolution of Stereoselective Hybrid Catalysts

    NASA Astrophysics Data System (ADS)

    Reetz, Manfred T.

    Whereas the directed evolution of stereoselective enzymes provides a useful tool in asymmetric catalysis, generality cannot be claimed because enzymes as catalysts are restricted to a limited set of reaction types. Therefore, a new concept has been proposed, namely directed evolution of hybrid catalysts in which proteins serve as hosts for anchoring ligand/transition metal entities. Accordingly, appropriate genetic mutagenesis methods are applied to the gene of a given protein host, providing after expression a library of mutant proteins. These are purified and a ligand/transition metal anchored site-specifically. Following en masse ee-screening, the best hit is identified, and the corresponding mutant gene is used as a template for another round of mutagenesis, expression, purification, bioconjugation, and screening. This allows for a Darwinian optimization of transition metal catalysts.

  16. Computationally optimizing the directed evolution of proteins

    NASA Astrophysics Data System (ADS)

    Voigt, Christopher Ashby

    Directed evolution has proven a successful strategy for protein engineering. To accelerate the discovery process, we have developed several computational methods to optimize the mutant libraries by targeting specific residues for mutagenesis, and subunits for recombination. In achieving this goal, a statistical model was first used to study the dynamics of directed evolution as a search algorithm. These simulations improved our understanding of the relationship between parameters describing the search space (e.g., interactions between amino acids) and experimental search parameters (e.g., mutation rate and library size). Based on these simulations, a more detailed model was used to calculate the structural tolerance of each residue to amino acid substitutions. Further, a computational model was developed to optimize recombination experiments, based on the three-dimensional structure. Together, these computational techniques represent a major step towards information-driven combinatorial protein design.

  17. Evolution of molecular phenotypes under stabilizing selection

    NASA Astrophysics Data System (ADS)

    Nourmohammad, Armita; Schiffels, Stephan; Lässig, Michael

    2013-01-01

    Molecular phenotypes are important links between genomic information and organismic functions, fitness, and evolution. Complex phenotypes, which are also called quantitative traits, often depend on multiple genomic loci. Their evolution builds on genome evolution in a complicated way, which involves selection, genetic drift, mutations and recombination. Here we develop a coarse-grained evolutionary statistics for phenotypes, which decouples from details of the underlying genotypes. We derive approximate evolution equations for the distribution of phenotype values within and across populations. This dynamics covers evolutionary processes at high and low recombination rates, that is, it applies to sexual and asexual populations. In a fitness landscape with a single optimal phenotype value, the phenotypic diversity within populations and the divergence between populations reach evolutionary equilibria, which describe stabilizing selection. We compute the equilibrium distributions of both quantities analytically and we show that the ratio of mean divergence and diversity depends on the strength of selection in a universal way: it is largely independent of the phenotype’s genomic encoding and of the recombination rate. This establishes a new method for the inference of selection on molecular phenotypes beyond the genome level. We discuss the implications of our findings for the predictability of evolutionary processes.

  18. Molecular musings in microbial ecology and evolution

    PubMed Central

    2011-01-01

    A few major discoveries have influenced how ecologists and evolutionists study microbes. Here, in the format of an interview, we answer questions that directly relate to how these discoveries are perceived in these two branches of microbiology, and how they have impacted on both scientific thinking and methodology. The first question is "What has been the influence of the 'Universal Tree of Life' based on molecular markers?" For evolutionists, the tree was a tool to understand the past of known (cultured) organisms, mapping the invention of various physiologies on the evolutionary history of microbes. For ecologists the tree was a guide to discover the current diversity of unknown (uncultured) organisms, without much knowledge of their physiology. The second question we ask is "What was the impact of discovering frequent lateral gene transfer among microbes?" In evolutionary microbiology, frequent lateral gene transfer (LGT) made a simple description of relationships between organisms impossible, and for microbial ecologists, functions could not be easily linked to specific genotypes. Both fields initially resisted LGT, but methods or topics of inquiry were eventually changed in one to incorporate LGT in its theoretical models (evolution) and in the other to achieve its goals despite that phenomenon (ecology). The third and last question we ask is "What are the implications of the unexpected extent of diversity?" The variation in the extent of diversity between organisms invalidated the universality of species definitions based on molecular criteria, a major obstacle to the adaptation of models developed for the study of macroscopic eukaryotes to evolutionary microbiology. This issue has not overtly affected microbial ecology, as it had already abandoned species in favor of the more flexible operational taxonomic units. This field is nonetheless moving away from traditional methods to measure diversity, as they do not provide enough resolution to uncover what lies

  19. Molecular evolution of prolactin in primates.

    PubMed

    Wallis, O Caryl; Mac-Kwashie, Akofa O; Makri, Georgia; Wallis, Michael

    2005-05-01

    Pituitary prolactin, like growth hormone (GH) and several other protein hormones, shows an episodic pattern of molecular evolution in which sustained bursts of rapid change contrast with long periods of slow evolution. A period of rapid change occurred in the evolution of prolactin in primates, leading to marked sequence differences between human prolactin and that of nonprimate mammals. We have defined this burst more precisely by sequencing the coding regions of prolactin genes for a prosimian, the slow loris (Nycticebus pygmaeus), and a New World monkey, the marmoset (Callithrix jacchus). Slow loris prolactin is very similar in sequence to pig prolactin, so the episode of rapid change occurred during primate evolution, after the separation of lines leading to prosimians and higher primates. Marmoset prolactin is similar in sequence to human prolactin, so the accelerated evolution occurred before divergence of New World monkeys and Old World monkeys/apes. The burst of change was confined largely to coding sequence (nonsynonymous sites) for mature prolactin and is not marked in other components of the gene sequence. This and the observations that (1) there was no apparent loss of function during the episode of rapid evolution, (2) the rate of evolution slowed toward the basal rate after this burst, and (3) the distribution of substitutions in the prolactin molecule is very uneven support the idea that this episode of rapid change was due to positive adaptive selection. In the slow loris and marmoset there is no evidence for duplication of the prolactin gene, and evidence from another New World monkey (Cebus albifrons) and from the chimpanzee and human genome sequences, suggests that this is the general position in primates, contrasting with the situation for GH genes. The chimpanzee prolactin sequence differs from that of human at two residues and comparison of human and chimpanzee prolactin gene sequences suggests that noncoding regions associated with regulating

  20. Beyond the outer limits of nature by directed evolution.

    PubMed

    Molina-Espeja, Patricia; Viña-Gonzalez, Javier; Gomez-Fernandez, Bernardo J; Martin-Diaz, Javier; Garcia-Ruiz, Eva; Alcalde, Miguel

    2016-01-01

    For more than thirty years, biotechnology has borne witness to the power of directed evolution in designing molecules of industrial relevance. While scientists all over the world discuss the future of molecular evolution, dozens of laboratory-designed products are being released with improved characteristics in terms of turnover rates, substrate scope, catalytic promiscuity or stability. In this review we aim to present the most recent advances in this fascinating research field that are allowing us to surpass the limits of nature and apply newly gained attributes to a range of applications, from gene therapy to novel green processes. The use of directed evolution in non-natural environments, the generation of catalytic promiscuity for non-natural reactions, the insertion of unnatural amino acids into proteins or the creation of unnatural DNA, is described comprehensively, together with the potential applications in bioremediation, biomedicine and in the generation of new bionanomaterials. These successful case studies show us that the limits of directed evolution will be defined by our own imagination, and in some cases, stretching beyond that. PMID:27064127

  1. Selectionism and Neutralism in Molecular Evolution

    PubMed Central

    Nei, Masatoshi

    2006-01-01

    Charles Darwin proposed that evolution occurs primarily by natural selection, but this view has been controversial from the beginning. Two of the major opposing views have been mutationism and neutralism. Early molecular studies suggested that most amino acid substitutions in proteins are neutral or nearly neutral and the functional change of proteins occurs by a few key amino acid substitutions. This suggestion generated an intense controversy over selectionism and neutralism. This controversy is partially caused by Kimura's definition of neutrality, which was too strict (|2Ns| ≤ 1). If we define neutral mutations as the mutations that do not change the function of gene products appreciably, many controversies disappear because slightly deleterious and slightly advantageous mutations are engulfed by neutral mutations. The ratio of the rate of nonsynonymous nucleotide substitution to that of synonymous substitution is a useful quantity to study positive Darwinian selection operating at highly variable genetic loci, but it does not necessarily detect adaptively important codons. Previously, multigene families were thought to evolve following the model of concerted evolution, but new evidence indicates that most of them evolve by a birth-and-death process of duplicate genes. It is now clear that most phenotypic characters or genetic systems such as the adaptive immune system in vertebrates are controlled by the interaction of a number of multigene families, which are often evolutionarily related and are subject to birth-and-death evolution. Therefore, it is important to study the mechanisms of gene family interaction for understanding phenotypic evolution. Because gene duplication occurs more or less at random, phenotypic evolution contains some fortuitous elements, though the environmental factors also play an important role. The randomness of phenotypic evolution is qualitatively different from allele frequency changes by random genetic drift. However, there is

  2. Development of chimeric laccases by directed evolution.

    PubMed

    Pardo, Isabel; Vicente, Ana Isabel; Mate, Diana M; Alcalde, Miguel; Camarero, Susana

    2012-12-01

    DNA recombination methods are useful tools to generate diversity in directed evolution protein engineering studies. We have designed an array of chimeric laccases with high-redox potential by in vitro and in vivo DNA recombination of two fungal laccases (from Pycnoporus cinnabarinus and PM1 basidiomycete), which were previously tailored by laboratory evolution for functional expression in Saccharomyces cerevisiae. The laccase fusion genes (including the evolved α-factor prepro-leaders for secretion in yeast) were subjected to a round of family shuffling to construct chimeric libraries and the best laccase hybrids were identified in dual high-throughput screening (HTS) assays. Using this approach, we identified chimeras with up to six crossover events in the whole sequence, and we obtained active hybrid laccases with combined characteristics in terms of pH activity and thermostability. PMID:22729887

  3. A Nonstationary Markov Model Detects Directional Evolution in Hymenopteran Morphology

    PubMed Central

    Klopfstein, Seraina; Vilhelmsen, Lars; Ronquist, Fredrik

    2015-01-01

    Directional evolution has played an important role in shaping the morphological, ecological, and molecular diversity of life. However, standard substitution models assume stationarity of the evolutionary process over the time scale examined, thus impeding the study of directionality. Here we explore a simple, nonstationary model of evolution for discrete data, which assumes that the state frequencies at the root differ from the equilibrium frequencies of the homogeneous evolutionary process along the rest of the tree (i.e., the process is nonstationary, nonreversible, but homogeneous). Within this framework, we develop a Bayesian approach for testing directional versus stationary evolution using a reversible-jump algorithm. Simulations show that when only data from extant taxa are available, the success in inferring directionality is strongly dependent on the evolutionary rate, the shape of the tree, the relative branch lengths, and the number of taxa. Given suitable evolutionary rates (0.1–0.5 expected substitutions between root and tips), accounting for directionality improves tree inference and often allows correct rooting of the tree without the use of an outgroup. As an empirical test, we apply our method to study directional evolution in hymenopteran morphology. We focus on three character systems: wing veins, muscles, and sclerites. We find strong support for a trend toward loss of wing veins and muscles, while stationarity cannot be ruled out for sclerites. Adding fossil and time information in a total-evidence dating approach, we show that accounting for directionality results in more precise estimates not only of the ancestral state at the root of the tree, but also of the divergence times. Our model relaxes the assumption of stationarity and reversibility by adding a minimum of additional parameters, and is thus well suited to studying the nature of the evolutionary process in data sets of limited size, such as morphology and ecology. PMID:26272507

  4. A Nonstationary Markov Model Detects Directional Evolution in Hymenopteran Morphology.

    PubMed

    Klopfstein, Seraina; Vilhelmsen, Lars; Ronquist, Fredrik

    2015-11-01

    Directional evolution has played an important role in shaping the morphological, ecological, and molecular diversity of life. However, standard substitution models assume stationarity of the evolutionary process over the time scale examined, thus impeding the study of directionality. Here we explore a simple, nonstationary model of evolution for discrete data, which assumes that the state frequencies at the root differ from the equilibrium frequencies of the homogeneous evolutionary process along the rest of the tree (i.e., the process is nonstationary, nonreversible, but homogeneous). Within this framework, we develop a Bayesian approach for testing directional versus stationary evolution using a reversible-jump algorithm. Simulations show that when only data from extant taxa are available, the success in inferring directionality is strongly dependent on the evolutionary rate, the shape of the tree, the relative branch lengths, and the number of taxa. Given suitable evolutionary rates (0.1-0.5 expected substitutions between root and tips), accounting for directionality improves tree inference and often allows correct rooting of the tree without the use of an outgroup. As an empirical test, we apply our method to study directional evolution in hymenopteran morphology. We focus on three character systems: wing veins, muscles, and sclerites. We find strong support for a trend toward loss of wing veins and muscles, while stationarity cannot be ruled out for sclerites. Adding fossil and time information in a total-evidence dating approach, we show that accounting for directionality results in more precise estimates not only of the ancestral state at the root of the tree, but also of the divergence times. Our model relaxes the assumption of stationarity and reversibility by adding a minimum of additional parameters, and is thus well suited to studying the nature of the evolutionary process in data sets of limited size, such as morphology and ecology. PMID:26272507

  5. Improved Precursor Directed Biosynthesis in E. coli via Directed Evolution

    PubMed Central

    Lee, Ho Young; Harvey, Colin J.B.; Cane, David E.; Khosla, Chaitan

    2010-01-01

    Erythromycin and related macrolide antibiotics are widely used polyketide natural products. We have evolved an engineered biosynthetic pathway in Escherichia coli that yields erythromycin analogs from simple synthetic precursors. Multiple rounds of mutagenesis and screening led to the identification of new mutant strains with improved efficiency for precursor directed biosynthesis. Genetic and biochemical analysis suggested that the phenotypically relevant alterations in these mutant strains were localized exclusively to the host-vector system, and not to the polyketide synthase. We also demonstrate the utility of this improved system through engineered biosynthesis of a novel alkynyl erythromycin derivative with comparable antibacterial activity to its natural counterpart. In addition to reinforcing the power of directed evolution for engineering macrolide biosynthesis, our studies have identified a new lead substance for investigating structure-function relationships in the bacterial ribosome. PMID:21081955

  6. Trends in substitution models of molecular evolution.

    PubMed

    Arenas, Miguel

    2015-01-01

    Substitution models of evolution describe the process of genetic variation through fixed mutations and constitute the basis of the evolutionary analysis at the molecular level. Almost 40 years after the development of first substitution models, highly sophisticated, and data-specific substitution models continue emerging with the aim of better mimicking real evolutionary processes. Here I describe current trends in substitution models of DNA, codon and amino acid sequence evolution, including advantages and pitfalls of the most popular models. The perspective concludes that despite the large number of currently available substitution models, further research is required for more realistic modeling, especially for DNA coding and amino acid data. Additionally, the development of more accurate complex models should be coupled with new implementations and improvements of methods and frameworks for substitution model selection and downstream evolutionary analysis. PMID:26579193

  7. Trends in substitution models of molecular evolution

    PubMed Central

    Arenas, Miguel

    2015-01-01

    Substitution models of evolution describe the process of genetic variation through fixed mutations and constitute the basis of the evolutionary analysis at the molecular level. Almost 40 years after the development of first substitution models, highly sophisticated, and data-specific substitution models continue emerging with the aim of better mimicking real evolutionary processes. Here I describe current trends in substitution models of DNA, codon and amino acid sequence evolution, including advantages and pitfalls of the most popular models. The perspective concludes that despite the large number of currently available substitution models, further research is required for more realistic modeling, especially for DNA coding and amino acid data. Additionally, the development of more accurate complex models should be coupled with new implementations and improvements of methods and frameworks for substitution model selection and downstream evolutionary analysis. PMID:26579193

  8. Molecular Cancer Prevention: Current Status & Future Directions

    PubMed Central

    Maresso, Karen Colbert; Tsai, Kenneth Y.; Brown, Powel H.; Szabo, Eva; Lippman, Scott; Hawk, Ernest

    2016-01-01

    The heterogeneity and complexity of advanced cancers strongly supports the rationale for an enhanced focus on molecular prevention as a priority strategy to reduce the burden of cancer. Molecular prevention encompasses traditional chemopreventive agents as well as vaccinations and therapeutic approaches to cancer-predisposing conditions. Despite challenges to the field, we now have refined insights into cancer etiology and early pathogenesis; successful risk assessment and new risk models; agents with broad preventive efficacy (e.g., aspirin) in common chronic diseases, including cancer; and a successful track record of more than 10 agents approved by the FDA for the treatment of precancerous lesions or cancer risk reduction. The development of molecular preventive agents does not differ significantly from the development of therapies for advanced cancers, yet has unique challenges and special considerations given that it most often involves healthy or asymptomatic individuals. Agents, biomarkers, cohorts, overall design, and endpoints are key determinants of molecular preventive trials, as with therapeutic trials, although distinctions exist for each within the preventive setting. Progress in the development and evolution of molecular preventive agents has been steadier in some organ systems, such as breast and skin, than in others. In order for molecular prevention to be fully realized as an effective strategy, a number of challenges to the field must be addressed. Here we provide a brief overview of the context for and special considerations of molecular prevention along with a discussion of the results of major randomized controlled trials. PMID:26284997

  9. Social parasitism and the molecular basis of phenotypic evolution.

    PubMed

    Cini, Alessandro; Patalano, Solenn; Segonds-Pichon, Anne; Busby, George B J; Cervo, Rita; Sumner, Seirian

    2015-01-01

    Contrasting phenotypes arise from similar genomes through a combination of losses, gains, co-option and modifications of inherited genomic material. Understanding the molecular basis of this phenotypic diversity is a fundamental challenge in modern evolutionary biology. Comparisons of the genes and their expression patterns underlying traits in closely related species offer an unrivaled opportunity to evaluate the extent to which genomic material is reorganized to produce novel traits. Advances in molecular methods now allow us to dissect the molecular machinery underlying phenotypic diversity in almost any organism, from single-celled entities to the most complex vertebrates. Here we discuss how comparisons of social parasites and their free-living hosts may provide unique insights into the molecular basis of phenotypic evolution. Social parasites evolve from a eusocial ancestor and are specialized to exploit the socially acquired resources of their closely-related eusocial host. Molecular comparisons of such species pairs can reveal how genomic material is re-organized in the loss of ancestral traits (i.e., of free-living traits in the parasites) and the gain of new ones (i.e., specialist traits required for a parasitic lifestyle). We define hypotheses on the molecular basis of phenotypes in the evolution of social parasitism and discuss their wider application in our understanding of the molecular basis of phenotypic diversity within the theoretical framework of phenotypic plasticity and shifting reaction norms. Currently there are no data available to test these hypotheses, and so we also provide some proof of concept data using the paper wasp social parasite/host system (Polistes sulcifer-Polistes dominula). This conceptual framework and first empirical data provide a spring-board for directing future genomic analyses on exploiting social parasites as a route to understanding the evolution of phenotypic specialization. PMID:25741361

  10. Social parasitism and the molecular basis of phenotypic evolution

    PubMed Central

    Cini, Alessandro; Patalano, Solenn; Segonds-Pichon, Anne; Busby, George B. J.; Cervo, Rita; Sumner, Seirian

    2015-01-01

    Contrasting phenotypes arise from similar genomes through a combination of losses, gains, co-option and modifications of inherited genomic material. Understanding the molecular basis of this phenotypic diversity is a fundamental challenge in modern evolutionary biology. Comparisons of the genes and their expression patterns underlying traits in closely related species offer an unrivaled opportunity to evaluate the extent to which genomic material is reorganized to produce novel traits. Advances in molecular methods now allow us to dissect the molecular machinery underlying phenotypic diversity in almost any organism, from single-celled entities to the most complex vertebrates. Here we discuss how comparisons of social parasites and their free-living hosts may provide unique insights into the molecular basis of phenotypic evolution. Social parasites evolve from a eusocial ancestor and are specialized to exploit the socially acquired resources of their closely-related eusocial host. Molecular comparisons of such species pairs can reveal how genomic material is re-organized in the loss of ancestral traits (i.e., of free-living traits in the parasites) and the gain of new ones (i.e., specialist traits required for a parasitic lifestyle). We define hypotheses on the molecular basis of phenotypes in the evolution of social parasitism and discuss their wider application in our understanding of the molecular basis of phenotypic diversity within the theoretical framework of phenotypic plasticity and shifting reaction norms. Currently there are no data available to test these hypotheses, and so we also provide some proof of concept data using the paper wasp social parasite/host system (Polistes sulcifer—Polistes dominula). This conceptual framework and first empirical data provide a spring-board for directing future genomic analyses on exploiting social parasites as a route to understanding the evolution of phenotypic specialization. PMID:25741361

  11. Molecular epidemiology, phylogeny and evolution of Legionella.

    PubMed

    Khodr, A; Kay, E; Gomez-Valero, L; Ginevra, C; Doublet, P; Buchrieser, C; Jarraud, S

    2016-09-01

    Legionella are opportunistic pathogens that develop in aquatic environments where they multiply in protozoa. When infected aerosols reach the human respiratory tract they may accidentally infect the alveolar macrophages leading to a severe pneumonia called Legionnaires' disease (LD). The ability of Legionella to survive within host-cells is strictly dependent on the Dot/Icm Type 4 Secretion System that translocates a large repertoire of effectors into the host cell cytosol. Although Legionella is a large genus comprising nearly 60 species that are worldwide distributed, only about half of them have been involved in LD cases. Strikingly, the species Legionella pneumophila alone is responsible for 90% of all LD cases. The present review summarizes the molecular approaches that are used for L. pneumophila genotyping with a major focus on the contribution of whole genome sequencing (WGS) to the investigation of local L. pneumophila outbreaks and global epidemiology studies. We report the newest knowledge regarding the phylogeny and the evolution of Legionella and then focus on virulence evolution of those Legionella species that are known to have the capacity to infect humans. Finally, we discuss the evolutionary forces and adaptation mechanisms acting on the Dot/Icm system itself as well as the role of mobile genetic elements (MGE) encoding T4ASSs and of gene duplications in the evolution of Legionella and its adaptation to different hosts and lifestyles. PMID:27180896

  12. Integrating influenza antigenic dynamics with molecular evolution

    PubMed Central

    Bedford, Trevor; Suchard, Marc A; Lemey, Philippe; Dudas, Gytis; Gregory, Victoria; Hay, Alan J; McCauley, John W; Russell, Colin A; Smith, Derek J; Rambaut, Andrew

    2014-01-01

    Influenza viruses undergo continual antigenic evolution allowing mutant viruses to evade host immunity acquired to previous virus strains. Antigenic phenotype is often assessed through pairwise measurement of cross-reactivity between influenza strains using the hemagglutination inhibition (HI) assay. Here, we extend previous approaches to antigenic cartography, and simultaneously characterize antigenic and genetic evolution by modeling the diffusion of antigenic phenotype over a shared virus phylogeny. Using HI data from influenza lineages A/H3N2, A/H1N1, B/Victoria and B/Yamagata, we determine patterns of antigenic drift across viral lineages, showing that A/H3N2 evolves faster and in a more punctuated fashion than other influenza lineages. We also show that year-to-year antigenic drift appears to drive incidence patterns within each influenza lineage. This work makes possible substantial future advances in investigating the dynamics of influenza and other antigenically-variable pathogens by providing a model that intimately combines molecular and antigenic evolution. DOI: http://dx.doi.org/10.7554/eLife.01914.001 PMID:24497547

  13. Blood tolerant laccase by directed evolution.

    PubMed

    Mate, Diana M; Gonzalez-Perez, David; Falk, Magnus; Kittl, Roman; Pita, Marcos; De Lacey, Antonio L; Ludwig, Roland; Shleev, Sergey; Alcalde, Miguel

    2013-02-21

    High-redox potential laccases are powerful biocatalysts with a wide range of applications in biotechnology. We have converted a thermostable laccase from a white-rot fungus into a blood tolerant laccase. Adapting the fitness of this laccase to the specific composition of human blood (above neutral pH, high chloride concentration) required several generations of directed evolution in a surrogate complex blood medium. Our evolved laccase was tested in both human plasma and blood, displaying catalytic activity while retaining a high redox potential at the T1 copper site. Mutations introduced in the second coordination sphere of the T1 site shifted the pH activity profile and drastically reduced the inhibitory effect of chloride. This proof of concept that laccases can be adapted to function in extreme conditions opens an array of opportunities for implantable nanobiodevices, chemical syntheses, and detoxification. PMID:23438751

  14. Directed evolution and solid phase enzyme screening

    NASA Astrophysics Data System (ADS)

    Bylina, Edward J.; Grek, Christina L.; Coleman, William J.; Youvan, Douglas C.

    2000-03-01

    A new digital imaging spectrophotometer and a series of colorimetric solid phase arrays have been developed to screen bacterial libraries expressing mutagenized enzymes undergoing directed evolution. This high-throughput solid- phase array system (known as `Kcat Technology') can detect less than a 20% difference in enzyme rates within microcolonies grown at a nearly confluent density of 500 colonies per cm2 on an assay disk. Each microcolony is analyzed simultaneously at single-pixel resolution (1.5 megapixels; 75 micron/pixel), requiring less than 100 nanoliters of substrate per measurement, a 1000-fold reduction over conventional liquid phase assays. Here we report the successful identification of variants of Agrobacterium (beta) -glucosidase--a glycosidase with broad substrate specificity that favors cleavage of glucosides over galactosides--by simultaneously assaying two different substrates tagged with spectrally distinct chromogenic reporters.

  15. The chemical evolution of molecular clouds

    NASA Technical Reports Server (NTRS)

    Iglesias, E.

    1977-01-01

    The nonequilibrium chemistry of dense molecular clouds (10,000 to 1 million hydrogen molecules per cu cm) is studied in the framework of a model that includes the latest published chemical data and most of the recent theoretical advances. In this model the only important external source of ionization is assumed to be high-energy cosmic-ray bombardment; standard charge-transfer reactions are taken into account as well as reactions that transfer charge from molecular ions to trace-metal atoms. Schemes are proposed for the synthesis of such species as NCO, HNCO, and CN. The role played by adsorption and condensation of molecules on the surface of dust grains is investigated, and effects on the chemical evolution of a dense molecular cloud are considered which result from varying the total density or the elemental abundances and from assuming negligible or severe condensation of gaseous species on dust grains. It is shown that the chemical-equilibrium time scale is given approximately by the depletion times of oxygen and nitrogen when the condensation efficiency is negligible; that this time scale is probably in the range from 1 to 4 million years, depending on the elemental composition and initial conditions in the cloud; and that this time scale is insensitive to variations in the total density.

  16. Molecular epidemiology and evolution of fish Novirhabdoviruses

    USGS Publications Warehouse

    Kurath, Gael

    2014-01-01

    The genus Novirhabdoviridae contains several of the important rhabdoviruses that infect fish hosts. There are four established virus species: Infectious hematopoietic necrosis virus (IHNV), Viral hemorrhagic septicemia virus (VHSV), Hirame rhabdovirus(HIRRV), and Snakehead rhabdovirus (SHRV). Viruses of these species vary in host and geographic range, and they have all been studied at the molecular and genomic level. As globally significant pathogens of cultured fish, IHNV and VHSV have been particularly well studied in terms of molecular epidemiology and evolution. Phylogenic analyses of hundreds of field isolates have defined five major genogroups of IHNV and four major genotypes of VHSV worldwide. These phylogenies are informed by the known histories of IHNV and VHSV, each involving a series of viral emergence events that are sometimes associated with host switches, most often into cultured rainbow trout. In general, IHNV has relatively low genetic diversity and a narrow host range, and has been spread from its endemic source in North American to Europe and Asia due to aquaculture activities. In contrast, VHSV has broad host range and high genetic diversity, and the source of emergence events is virus in widespread marine fish reservoirs in the northern Atlantic and Pacific Oceans. Common mechanisms of emergence and host switch events include use of raw feed, proximity to wild fish reservoirs of virus, and geographic translocations of virus or naive fish hosts associated with aquaculture.

  17. Increasing protein production by directed vector backbone evolution

    PubMed Central

    2013-01-01

    Recombinant protein production in prokaryotic and eukaryotic organisms was a key enabling technology for the rapid development of industrial and molecular biotechnology. However, despite all progress the improvement of protein production is an ongoing challenge and of high importance for cost-effective enzyme production. With the epMEGAWHOP mutagenesis protocol for vector backbone optimization we report a novel directed evolution based approach to increase protein production levels by randomly introducing mutations in the vector backbone. In the current study we validate the epMEGAWHOP mutagenesis protocol for three different expression systems. The latter demonstrated the general applicability of the epMEGAWHOP method. Cellulase and lipase production was doubled in one round of directed evolution by random mutagenesis of pET28a(+) and pET22b(+) vector backbones. Protease production using the vector pHY300PLK was increased ~4-times with an average of ~1.25 mutations per kb vector backbone. The epMEGAWHOP does not require any rational understanding of the expression machinery and can generally be applied to enzymes, expression vectors and related hosts. epMEGAWHOP is therefore from our point of view a robust, rapid and straight forward alternative for increasing protein production in general and for biotechnological applications. PMID:23890095

  18. Molecular epidemiology and evolution of porcine parvoviruses.

    PubMed

    Streck, André Felipe; Canal, Cláudio Wageck; Truyen, Uwe

    2015-12-01

    Porcine parvovirus (PPV), recently named Ungulate protoparvovirus 1, is considered to be one of the most important causes of reproductive failure in swine. Fetal death, mummification, stillbirths and delayed return to estrus are predominant clinical signs commonly associated with PPV infection in a herd. It has recently been shown that certain parvoviruses exhibit a nucleotide substitution rate close to that commonly determined for RNA viruses. However, the PPV vaccines broadly used in the last 30 years have most likely reduced the genetic diversity of the virus and led to the predominance of strains with a capsid profile distinct from that of the original vaccine-based strains. Furthermore, a number of novel porcine parvovirus species with yet-unknown veterinary relevance and characteristics have been described during the last decade. In this review, an overview of PPV molecular evolution is presented, highlighting characteristics of the various genetic elements, their evolutionary rate and the discovery of new capsid profiles driven by the currently used vaccines. PMID:26453771

  19. High rates of molecular evolution in hantaviruses.

    PubMed

    Ramsden, Cadhla; Melo, Fernando L; Figueiredo, Luiz M; Holmes, Edward C; Zanotto, Paolo M A

    2008-07-01

    Hantaviruses are rodent-borne Bunyaviruses that infect the Arvicolinae, Murinae, and Sigmodontinae subfamilies of Muridae. The rate of molecular evolution in the hantaviruses has been previously estimated at approximately 10(-7) nucleotide substitutions per site, per year (substitutions/site/year), based on the assumption of codivergence and hence shared divergence times with their rodent hosts. If substantiated, this would make the hantaviruses among the slowest evolving of all RNA viruses. However, as hantaviruses replicate with an RNA-dependent RNA polymerase, with error rates in the region of one mutation per genome replication, this low rate of nucleotide substitution is anomalous. Here, we use a Bayesian coalescent approach to estimate the rate of nucleotide substitution from serially sampled gene sequence data for hantaviruses known to infect each of the 3 rodent subfamilies: Araraquara virus (Sigmodontinae), Dobrava virus (Murinae), Puumala virus (Arvicolinae), and Tula virus (Arvicolinae). Our results reveal that hantaviruses exhibit short-term substitution rates of 10(-2) to 10(-4) substitutions/site/year and so are within the range exhibited by other RNA viruses. The disparity between this substitution rate and that estimated assuming rodent-hantavirus codivergence suggests that the codivergence hypothesis may need to be reevaluated. PMID:18417484

  20. Molecular pathogenesis of CLL and its evolution.

    PubMed

    Rodríguez, David; Bretones, Gabriel; Arango, Javier R; Valdespino, Víctor; Campo, Elías; Quesada, Víctor; López-Otín, Carlos

    2015-03-01

    In spite of being the most prevalent adult leukemia in Western countries, the molecular mechanisms driving the establishment and progression of chronic lymphocytic leukemia (CLL) remain largely unknown. In recent years, the use of next-generation sequencing techniques has uncovered new and, in some cases, unexpected driver genes with prognostic and therapeutic value. The mutational landscape of CLL is characterized by high-genetic and epigenetic heterogeneity, low mutation recurrence and a long tail of cases with undefined driver genes. On the other hand, the use of deep sequencing has also revealed high intra-tumor heterogeneity and provided a detailed picture of clonal evolution processes. This phenomenon, in which aberrant DNA methylation can also participate, appears to be tightly associated to poor outcomes and chemo-refractoriness, thus providing a new subject for therapeutic intervention. Hence, and having in mind the limitations derived from the CLL complexity thus described, the application of massively parallel sequencing studies has unveiled a wealth of information that is expected to substantially improve patient staging schemes and CLL clinical management. PMID:25630433

  1. Patterns of molecular evolution of RNAi genes in social and socially parasitic bumblebees.

    PubMed

    Helbing, Sophie; Lattorff, H Michael G

    2016-08-01

    The high frequency of interactions amongst closely related individuals in social insect colonies enhances pathogen transmission. Group-mediated behavior supporting immune defenses tends to decrease selection acting on immune genes. Along with low effective population sizes this might result in relaxed constraint and rapid evolution of immune system genes. Here, we show that antiviral siRNA genes show high rates of molecular evolution with argonaute 2, armitage and maelstrom evolving faster in social bumblebees compared to their socially parasitic cuckoo bumblebees that lack a worker caste. RNAi genes show frequent positive selection at the codon level additionally supported by the occurrence of parallel evolution. Their evolutionary rate is linked to their pathway specific position with genes directly interacting with viruses showing the highest rates of molecular evolution. We suggest that higher pathogen load in social insects indeed drives the molecular evolution of immune genes including antiviral siRNA, if not compensated by behavior. PMID:27117935

  2. Polishing the craft of genetic diversity creation in directed evolution.

    PubMed

    Tee, Kang Lan; Wong, Tuck Seng

    2013-12-01

    Genetic diversity creation is a core technology in directed evolution where a high quality mutant library is crucial to its success. Owing to its importance, the technology in genetic diversity creation has seen rapid development over the years and its application has diversified into other fields of scientific research. The advances in molecular cloning and mutagenesis since 2008 were reviewed. Specifically, new cloning techniques were classified based on their principles of complementary overhangs, homologous sequences, overlapping PCR and megaprimers and the advantages, drawbacks and performances of these methods were highlighted. New mutagenesis methods developed for random mutagenesis, focused mutagenesis and DNA recombination were surveyed. The technical requirements of these methods and the mutational spectra were compared and discussed with references to commonly used techniques. The trends of mutant library preparation were summarised. Challenges in genetic diversity creation were discussed with emphases on creating "smart" libraries, controlling the mutagenesis spectrum and specific challenges in each group of mutagenesis methods. An outline of the wider applications of genetic diversity creation includes genome engineering, viral evolution, metagenomics and a study of protein functions. The review ends with an outlook for genetic diversity creation and the prospective developments that can have future impact in this field. PMID:24012599

  3. Rhodopsin Molecular Evolution in Mammals Inhabiting Low Light Environments

    PubMed Central

    Zhao, Huabin; Ru, Binghua; Teeling, Emma C.; Faulkes, Christopher G.; Zhang, Shuyi; Rossiter, Stephen J.

    2009-01-01

    The ecological radiation of mammals to inhabit a variety of light environments is largely attributed to adaptive changes in their visual systems. Visual capabilities are conferred by anatomical features of the eyes as well as the combination and properties of their constituent light sensitive pigments. To test whether evolutionary switches to different niches characterized by dim-light conditions coincided with molecular adaptation of the rod pigment rhodopsin, we sequenced the rhodopsin gene in twenty-two mammals including several bats and subterranean mole-rats. We compared these to thirty-seven published mammal rhodopsin sequences, from species with divergent visual ecologies, including nocturnal, diurnal and aquatic groups. All taxa possessed an intact functional rhodopsin; however, phylogenetic tree reconstruction recovered a gene tree in which rodents were not monophyletic, and also in which echolocating bats formed a monophyletic group. These conflicts with the species tree appear to stem from accelerated evolution in these groups, both of which inhabit low light environments. Selection tests confirmed divergent selection pressures in the clades of subterranean rodents and bats, as well as in marine mammals that live in turbid conditions. We also found evidence of divergent selection pressures among groups of bats with different sensory modalities based on vision and echolocation. Sliding window analyses suggest most changes occur in transmembrane domains, particularly obvious within the pinnipeds; however, we found no obvious pattern between photopic niche and predicted spectral sensitivity based on known critical amino acids. This study indicates that the independent evolution of rhodopsin vision in ecologically specialised groups of mammals has involved molecular evolution at the sequence level, though such changes might not mediate spectral sensitivity directly. PMID:20016835

  4. Diversifying Carotenoid Biosynthetic Pathways by Directed Evolution

    PubMed Central

    Umeno, Daisuke; Tobias, Alexander V.; Arnold, Frances H.

    2005-01-01

    Microorganisms and plants synthesize a diverse array of natural products, many of which have proven indispensable to human health and well-being. Although many thousands of these have been characterized, the space of possible natural products—those that could be made biosynthetically—remains largely unexplored. For decades, this space has largely been the domain of chemists, who have synthesized scores of natural product analogs and have found many with improved or novel functions. New natural products have also been made in recombinant organisms, via engineered biosynthetic pathways. Recently, methods inspired by natural evolution have begun to be applied to the search for new natural products. These methods force pathways to evolve in convenient laboratory organisms, where the products of new pathways can be identified and characterized in high-throughput screening programs. Carotenoid biosynthetic pathways have served as a convenient experimental system with which to demonstrate these ideas. Researchers have mixed, matched, and mutated carotenoid biosynthetic enzymes and screened libraries of these “evolved” pathways for the emergence of new carotenoid products. This has led to dozens of new pathway products not previously known to be made by the assembled enzymes. These new products include whole families of carotenoids built from backbones not found in nature. This review details the strategies and specific methods that have been employed to generate new carotenoid biosynthetic pathways in the laboratory. The potential application of laboratory evolution to other biosynthetic pathways is also discussed. PMID:15755953

  5. Directed evolution of an RNA enzyme

    NASA Technical Reports Server (NTRS)

    Beaudry, Amber A.; Joyce, Gerald F.

    1992-01-01

    An in vitro evolution procedures was used to obtain RNA enzymes with a particular catalytic function. A population of 10 exp 13 variants of the Tetrahymena ribozyme, a group I ribozyme that catalyzes sequence-specific cleavage of RNA via a phosphoester transfer mechanism, was generated. This enzyme has a limited ability to cleave DNA under conditions of high temperature or high MgCl2 concentration, or both. A selection constraint was imposed on the population of ribozyme variants such that only those individuals that carried out DNA cleavage under physiologic conditions were amplified to produce 'progeny' ribozymes. Mutations were introduced during amplification to maintain heterogeneity in the population. This process was repeated for ten successive generations, resulting in enhanced (100 times) DNA cleavage activity.

  6. Automatic Evolution of Molecular Nanotechnology Designs

    NASA Technical Reports Server (NTRS)

    Globus, Al; Lawton, John; Wipke, Todd; Saini, Subhash (Technical Monitor)

    1998-01-01

    This paper describes strategies for automatically generating designs for analog circuits at the molecular level. Software maps out the edges and vertices of potential nanotechnology systems on graphs, then selects appropriate ones through evolutionary or genetic paradigms.

  7. Molecular clouds. [significance in stellar evolution

    NASA Technical Reports Server (NTRS)

    Thaddeus, P.

    1977-01-01

    An attempt is made to understand star formation in the context of the dense interstellar molecular gas from which stars are made. Attention is given to how molecular observations (e.g., UV spectroscopy and radio 21-cm and recombination line observations) provide data on the physical state of the dense interstellar gas; observations of H II regions, stellar associations, and dark nebulae are discussed. CO clouds are studied with reference to radial velocity, temperature, density, ionization, magnetic field.

  8. Law of genome evolution direction: Coding information quantity grows

    NASA Astrophysics Data System (ADS)

    Luo, Liao-Fu

    2009-06-01

    The problem of the directionality of genome evolution is studied. Based on the analysis of C-value paradox and the evolution of genome size, we propose that the function-coding information quantity of a genome always grows in the course of evolution through sequence duplication, expansion of code, and gene transfer from outside. The function-coding information quantity of a genome consists of two parts, p-coding information quantity that encodes functional protein and n-coding information quantity that encodes other functional elements. The evidences on the law of the evolutionary directionality are indicated. The needs of function are the motive force for the expansion of coding information quantity, and the information quantity expansion is the way to make functional innovation and extension for a species. Therefore, the increase of coding information quantity of a genome is a measure of the acquired new function, and it determines the directionality of genome evolution.

  9. Animal Foraging and the Evolution of Goal-Directed Cognition

    ERIC Educational Resources Information Center

    Hills, Thomas T.

    2006-01-01

    Foraging-and feeding-related behaviors across eumetazoans share similar molecular mechanisms, suggesting the early evolution of an optimal foraging behavior called area-restricted search (ARS), involving mechanisms of dopamine and glutamate in the modulation of behavioral focus. Similar mechanisms in the vertebrate basal ganglia control motor…

  10. Polyspecific pyrrolysyl-tRNA synthetases from directed evolution

    PubMed Central

    Guo, Li-Tao; Wang, Yane-Shih; Nakamura, Akiyoshi; Eiler, Daniel; Kavran, Jennifer M.; Wong, Margaret; Kiessling, Laura L.; Steitz, Thomas A.; O’Donoghue, Patrick; Söll, Dieter

    2014-01-01

    Pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNAPyl have emerged as ideal translation components for genetic code innovation. Variants of the enzyme facilitate the incorporation >100 noncanonical amino acids (ncAAs) into proteins. PylRS variants were previously selected to acylate Nε-acetyl-Lys (AcK) onto tRNAPyl. Here, we examine an Nε-acetyl-lysyl-tRNA synthetase (AcKRS), which is polyspecific (i.e., active with a broad range of ncAAs) and 30-fold more efficient with Phe derivatives than it is with AcK. Structural and biochemical data reveal the molecular basis of polyspecificity in AcKRS and in a PylRS variant [iodo-phenylalanyl-tRNA synthetase (IFRS)] that displays both enhanced activity and substrate promiscuity over a chemical library of 313 ncAAs. IFRS, a product of directed evolution, has distinct binding modes for different ncAAs. These data indicate that in vivo selections do not produce optimally specific tRNA synthetases and suggest that translation fidelity will become an increasingly dominant factor in expanding the genetic code far beyond 20 amino acids. PMID:25385624

  11. Laccase engineering: from rational design to directed evolution.

    PubMed

    Mate, Diana M; Alcalde, Miguel

    2015-01-01

    Laccases are multicopper oxidoreductases considered by many in the biotechonology field as the ultimate "green catalysts". This is mainly due to their broad substrate specificity and relative autonomy (they use molecular oxygen from air as an electron acceptor and they only produce water as by-product), making them suitable for a wide array of applications: biofuel production, bioremediation, organic synthesis, pulp biobleaching, textiles, the beverage and food industries, biosensor and biofuel cell development. Since the beginning of the 21st century, specific features of bacterial and fungal laccases have been exhaustively adapted in order to reach the industrial demands for high catalytic activity and stability in conjunction with reduced production cost. Among the goals established for laccase engineering, heterologous functional expression, improved activity and thermostability, tolerance to non-natural media (organic solvents, ionic liquids, physiological fluids) and resistance to different types of inhibitors are all challenges that have been met, while obtaining a more comprehensive understanding of laccase structure-function relationships. In this review we examine the most significant advances in this exciting research area in which rational, semi-rational and directed evolution approaches have been employed to ultimately convert laccases into high value-added biocatalysts. PMID:25545886

  12. Polyspecific pyrrolysyl-tRNA synthetases from directed evolution.

    PubMed

    Guo, Li-Tao; Wang, Yane-Shih; Nakamura, Akiyoshi; Eiler, Daniel; Kavran, Jennifer M; Wong, Margaret; Kiessling, Laura L; Steitz, Thomas A; O'Donoghue, Patrick; Söll, Dieter

    2014-11-25

    Pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA(Pyl) have emerged as ideal translation components for genetic code innovation. Variants of the enzyme facilitate the incorporation >100 noncanonical amino acids (ncAAs) into proteins. PylRS variants were previously selected to acylate N(ε)-acetyl-Lys (AcK) onto tRNA(Pyl). Here, we examine an N(ε)-acetyl-lysyl-tRNA synthetase (AcKRS), which is polyspecific (i.e., active with a broad range of ncAAs) and 30-fold more efficient with Phe derivatives than it is with AcK. Structural and biochemical data reveal the molecular basis of polyspecificity in AcKRS and in a PylRS variant [iodo-phenylalanyl-tRNA synthetase (IFRS)] that displays both enhanced activity and substrate promiscuity over a chemical library of 313 ncAAs. IFRS, a product of directed evolution, has distinct binding modes for different ncAAs. These data indicate that in vivo selections do not produce optimally specific tRNA synthetases and suggest that translation fidelity will become an increasingly dominant factor in expanding the genetic code far beyond 20 amino acids. PMID:25385624

  13. Molecular evolution in food allergy diagnosis.

    PubMed

    Barocci, Fiorella; DE Amici, Mara; Marseglia, Gian L

    2016-10-01

    Traditional allergological diagnostics often provide laboratory data that seem to correspond with similar positive results in different patients. However, with technological developments and the introduction of molecular diagnostics, it is possible to extract and highlight the differences in the serological laboratory data, to obtain detailed specificity on the various allergen components in different clinical settings. Allergological diagnostics prove to be increasingly useful in accurately distinguishing "cross-reactivity" and "cosensitization". This aspect is very important especially in patients who are, with a traditional diagnosis, polysensitized. Molecular diagnosis in allergology has expanded its range of applications thanks to the ability to IgE dose specific (in addition to classic total IgE serum) not only to allergens, food and inhalants, but also to the individual protein components which make up the allergenic source. It is essential to establish a correct diagnosis in order to determine the appropriate therapy. Therefore it is crucial to discern whether a patient is truly allergic because he presents specific IgE for molecules of a species or if the positivity is given from the structural homology between the different proteins. Molecular diagnostics emerges as a valuable tool for the discrimination of allergic patients and to differentiate between "true allergies" and "cross-reactivity". Molecular diagnostics should be used in a targeted manner for an accurate assessment and diagnosis, which would also reduce the use of oral challenges, to predict severe reactions and allergy persistence. PMID:26091488

  14. Direct Observations of the Evolution of Polar Cap Ionization Patches

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Zhang, B.; Lockwood, M. M.; Hu, H.; Moen, J. I.; Ruohoniemi, J.; Thomas, E. G.; Zhang, S.; Yang, H.; Liu, R.; McWilliams, K. A.; Baker, J. B.

    2013-12-01

    Patches of ionization are common in the polar ionosphere where their motion and associated density gradients give variable disturbances to High Frequency (HF) radio communications, over-the-horizon radar location errors, and disruption and errors to satellite navigation and communication. Their formation and evolution are poorly understood, particularly under disturbed space weather conditions. We report direct observations of the full evolution of patches during a geomagnetic storm, including formation, polar cap entry, transpolar evolution, polar cap exit, and sunward return flow. Our observations show that modulation of nightside reconnection in the substorm cycle of the magnetosphere helps form the gaps between patches where steady convection would give a 'tongue' of ionization (TOI).

  15. Slow rate of molecular evolution in high-elevation hummingbirds.

    PubMed

    Bleiweiss, R

    1998-01-20

    Estimates of relative rates of molecular evolution from a DNA-hybridization phylogeny for 26 hummingbird species provide evidence for a negative association between elevation and rate of single-copy genome evolution. This effect of elevation on rate remains significant even after taking into account a significant negative association between body mass and molecular rate. Population-level processes do not appear to account for these patterns because (i) all hummingbirds breed within their first year and (ii) the more extensive subdivision and speciation of bird populations living at high elevations predicts a positive association between elevation and rate. The negative association between body mass and molecular rate in other organisms has been attributed to higher mutation rates in forms with higher oxidative metabolism. As ambient oxygen tensions and temperature decrease with elevation, the slow rate of molecular evolution in high-elevation hummingbirds also may have a metabolic basis. A slower rate of single-copy DNA change at higher elevations suggests that the dynamics of molecular evolution cannot be separated from the environmental context. PMID:9435240

  16. Directed evolution and synthetic biology applications to microbial systems.

    PubMed

    Bassalo, Marcelo C; Liu, Rongming; Gill, Ryan T

    2016-06-01

    Biotechnology applications require engineering complex multi-genic traits. The lack of knowledge on the genetic basis of complex phenotypes restricts our ability to rationally engineer them. However, complex phenotypes can be engineered at the systems level, utilizing directed evolution strategies that drive whole biological systems toward desired phenotypes without requiring prior knowledge of the genetic basis of the targeted trait. Recent developments in the synthetic biology field accelerates the directed evolution cycle, facilitating engineering of increasingly complex traits in biological systems. In this review, we summarize some of the most recent advances in directed evolution and synthetic biology that allows engineering of complex traits in microbial systems. Then, we discuss applications that can be achieved through engineering at the systems level. PMID:27054950

  17. Directed Evolution as a Powerful Synthetic Biology Tool

    PubMed Central

    Cobb, Ryan E.; Sun, Ning; Zhao, Huimin

    2012-01-01

    At the heart of synthetic biology lies the goal of rationally engineering a complete biological system to achieve a specific objective, such as bioremediation and synthesis of a valuable drug, chemical, or biofuel molecule. However, the inherent complexity of natural biological systems has heretofore precluded generalized application of this approach. Directed evolution, a process which mimics Darwinian selection on a laboratory scale, has allowed significant strides to be made in the field of synthetic biology by allowing rapid identification of desired properties from large libraries of variants. Improvement in biocatalyst activity and stability, engineering of biosynthetic pathways, tuning of functional regulatory systems and logic circuits, and development of desired complex phenotypes in industrial host organisms have all been achieved by way of directed evolution. Here, we review recent contributions of directed evolution to synthetic biology at the protein, pathway, network, and whole cell levels. PMID:22465795

  18. A half-century after the molecular clock: new dimensions of molecular evolution.

    PubMed

    Koonin, Eugene V

    2012-08-01

    The EMBO workshop on 'Evolution in the Time of Genomics' took place in May 2012 in the magnificent sixteenth century Palazzo Franchetti near Ponte dell'Accademia in Venice. The meeting focused on phenomena that are not part of the traditional narrative of molecular evolution and which might signal a paradigm shift in the field. PMID:22791022

  19. Environmental Epigenetics and a Unified Theory of the Molecular Aspects of Evolution: A Neo-Lamarckian Concept that Facilitates Neo-Darwinian Evolution

    PubMed Central

    Skinner, Michael K.

    2015-01-01

    Environment has a critical role in the natural selection process for Darwinian evolution. The primary molecular component currently considered for neo-Darwinian evolution involves genetic alterations and random mutations that generate the phenotypic variation required for natural selection to act. The vast majority of environmental factors cannot directly alter DNA sequence. Epigenetic mechanisms directly regulate genetic processes and can be dramatically altered by environmental factors. Therefore, environmental epigenetics provides a molecular mechanism to directly alter phenotypic variation generationally. Lamarck proposed in 1802 the concept that environment can directly alter phenotype in a heritable manner. Environmental epigenetics and epigenetic transgenerational inheritance provide molecular mechanisms for this process. Therefore, environment can on a molecular level influence the phenotypic variation directly. The ability of environmental epigenetics to alter phenotypic and genotypic variation directly can significantly impact natural selection. Neo-Lamarckian concept can facilitate neo-Darwinian evolution. A unified theory of evolution is presented to describe the integration of environmental epigenetic and genetic aspects of evolution. PMID:25917417

  20. Molecular evolution of GPCRs: Ghrelin/ghrelin receptors.

    PubMed

    Kaiya, Hiroyuki; Kangawa, Kenji; Miyazato, Mikiya

    2014-06-01

    After the discovery in 1996 of the GH secretagogue-receptor type-1a (GHS-R1a) as an orphan G-protein coupled receptor, many research groups attempted to identify the endogenous ligand. Finally, Kojima and colleagues successfully isolated the peptide ligand from rat stomach extracts, determined its structure, and named it ghrelin. The GHS-R1a is now accepted to be the ghrelin receptor. The existence of the ghrelin system has been demonstrated in many animal classes through biochemical and molecular biological strategies as well as through genome projects. Our work, focused on identifying the ghrelin receptor and its ligand ghrelin in laboratory animals, particularly nonmammalian vertebrates, has provided new insights into the molecular evolution of the ghrelin receptor. In mammals, it is assumed that the ghrelin receptor evolution is in line with the plate tectonics theory. In contrast, the evolution of the ghrelin receptor in nonmammalian vertebrates differs from that of mammals: multiplicity of the ghrelin receptor isoforms is observed in nonmammalian vertebrates only. This multiplicity is due to genome duplication and polyploidization events that particularly occurred in Teleostei. Furthermore, it is likely that the evolution of the ghrelin receptor is distinct from that of its ligand, ghrelin, because only one ghrelin isoform has been detected in all species examined so far. In this review, we summarize current knowledge related to the molecular evolution of the ghrelin receptor in mammalian and nonmammalian vertebrates. PMID:24353285

  1. The Jukes-Cantor Model of Molecular Evolution

    ERIC Educational Resources Information Center

    Erickson, Keith

    2010-01-01

    The material in this module introduces students to some of the mathematical tools used to examine molecular evolution. This topic is standard fare in many mathematical biology or bioinformatics classes, but could also be suitable for classes in linear algebra or probability. While coursework in matrix algebra, Markov processes, Monte Carlo…

  2. Molecular clocks and the early evolution of metazoan nervous systems.

    PubMed

    Wray, Gregory A

    2015-12-19

    The timing of early animal evolution remains poorly resolved, yet remains critical for understanding nervous system evolution. Methods for estimating divergence times from sequence data have improved considerably, providing a more refined understanding of key divergences. The best molecular estimates point to the origin of metazoans and bilaterians tens to hundreds of millions of years earlier than their first appearances in the fossil record. Both the molecular and fossil records are compatible, however, with the possibility of tiny, unskeletonized, low energy budget animals during the Proterozoic that had planktonic, benthic, or meiofaunal lifestyles. Such animals would likely have had relatively simple nervous systems equipped primarily to detect food, avoid inhospitable environments and locate mates. The appearance of the first macropredators during the Cambrian would have changed the selective landscape dramatically, likely driving the evolution of complex sense organs, sophisticated sensory processing systems, and diverse effector systems involved in capturing prey and avoiding predation. PMID:26554040

  3. Witnessing Phenotypic and Molecular Evolution in the Fruit Fly.

    PubMed

    Heil, Caiti S S; Hunter, Mika J; Noor, Juliet Kf; Miglia, Kathleen; Manzano-Winkler, Brenda; McDermott, Shannon R; Noor, Mohamed Af

    2012-12-01

    This multi-day exercise is designed for a college Genetics and Evolution laboratory to demonstrate concepts of inheritance and phenotypic and molecular evolution using a live model organism, Drosophila simulans. Students set up an experimental fruit fly population consisting of ten white eyed flies and one red eyed fly. Having red eyes is advantageous compared to having white eyes, allowing students to track the spread of this advantageous trait over several generations. Ultimately, the students perform PCR and gel electrophoresis at two neutral markers, one located in close proximity to the eye-color locus, and one located at the other end of the chromosome. Students observe that most flies have red eyes, and these red-eyed flies have lost variation at the near marker, but maintained variation at the far marker, hence observing a "selective sweep" and the "hitchhiking" of a nearby neutral variant. Students literally observe phenotypic and molecular evolution in their classroom! PMID:23459154

  4. Molecular pathways for defect annihilation in directed self-assembly.

    PubMed

    Hur, Su-Mi; Thapar, Vikram; Ramírez-Hernández, Abelardo; Khaira, Gurdaman; Segal-Peretz, Tamar; Rincon-Delgadillo, Paulina A; Li, Weihua; Müller, Marcus; Nealey, Paul F; de Pablo, Juan J

    2015-11-17

    Over the last few years, the directed self-assembly of block copolymers by surface patterns has transitioned from academic curiosity to viable contender for commercial fabrication of next-generation nanocircuits by lithography. Recently, it has become apparent that kinetics, and not only thermodynamics, plays a key role for the ability of a polymeric material to self-assemble into a perfect, defect-free ordered state. Perfection, in this context, implies not more than one defect, with characteristic dimensions on the order of 5 nm, over a sample area as large as 100 cm(2). In this work, we identify the key pathways and the corresponding free energy barriers for eliminating defects, and we demonstrate that an extraordinarily large thermodynamic driving force is not necessarily sufficient for their removal. By adopting a concerted computational and experimental approach, we explain the molecular origins of these barriers and how they depend on material characteristics, and we propose strategies designed to overcome them. The validity of our conclusions for industrially relevant patterning processes is established by relying on instruments and assembly lines that are only available at state-of-the-art fabrication facilities, and, through this confluence of fundamental and applied research, we are able to discern the evolution of morphology at the smallest relevant length scales-a handful of nanometers-and present a view of defect annihilation in directed self-assembly at an unprecedented level of detail. PMID:26515095

  5. Molecular pathways for defect annihilation in directed self-assembly

    PubMed Central

    Hur, Su-Mi; Thapar, Vikram; Ramírez-Hernández, Abelardo; Khaira, Gurdaman; Segal-Peretz, Tamar; Rincon-Delgadillo, Paulina A.; Li, Weihua; Müller, Marcus; Nealey, Paul F.; de Pablo, Juan J.

    2015-01-01

    Over the last few years, the directed self-assembly of block copolymers by surface patterns has transitioned from academic curiosity to viable contender for commercial fabrication of next-generation nanocircuits by lithography. Recently, it has become apparent that kinetics, and not only thermodynamics, plays a key role for the ability of a polymeric material to self-assemble into a perfect, defect-free ordered state. Perfection, in this context, implies not more than one defect, with characteristic dimensions on the order of 5 nm, over a sample area as large as 100 cm2. In this work, we identify the key pathways and the corresponding free energy barriers for eliminating defects, and we demonstrate that an extraordinarily large thermodynamic driving force is not necessarily sufficient for their removal. By adopting a concerted computational and experimental approach, we explain the molecular origins of these barriers and how they depend on material characteristics, and we propose strategies designed to overcome them. The validity of our conclusions for industrially relevant patterning processes is established by relying on instruments and assembly lines that are only available at state-of-the-art fabrication facilities, and, through this confluence of fundamental and applied research, we are able to discern the evolution of morphology at the smallest relevant length scales—a handful of nanometers—and present a view of defect annihilation in directed self-assembly at an unprecedented level of detail. PMID:26515095

  6. Molecular pathways for defect annihilation in directed self-assembly.

    SciTech Connect

    Hur, Su-Mi; Thapar, Vikram; Ramirez-Hernandez, Abelardo; Khaira, Gurdaman S.; Segal-Peretz, Tamar; Rincon-Delgadillo, Paulina A.; Li, Weihua; Muller, Marcus; Nealey, Paul F.; de Pablo, Juan J.

    2015-11-17

    Over the last few years, the directed self-assembly of block copolymers by surface patterns has transitioned from academic curiosity to viable contender for commercial fabrication of next-generation nanocircuits by lithography. Recently, it has become apparent that kinetics, and not only thermodynamics, plays a key role for the ability of a polymeric material to self-assemble into a perfect, defect-free ordered state. Perfection, in this context, implies not more than one defect, with characteristic dimensions on the order of 5 nm, over a sample area as large as 100 cm2. In this work, we identify the key pathways and the corresponding free-energy barriers for eliminating defects, and we demonstrate that an extraordinarily large thermodynamic driving force is not necessarily sufficient for their removal. By adopting a concerted computational and experimental approach, we explain the molecular origins of these barriers, how they depend on material characteristics, and we propose strategies designed to over-come them. The validity of our conclusions for industrially-relevant patterning processes is established by relying on instruments and assembly lines that are only available at state-of-the-art fabrication facilities and, through this confluence of fundamental and applied research, we are able to discern the evolution of morphology at the smallest relevant length scales - a handful of nanometers -, and present a view of defect annihilation in directed self-assembly at an unprecedented level of detail.

  7. Molecular pathways for defect annihilation in directed self-assembly.

    DOE PAGESBeta

    Hur, Su-Mi; Thapar, Vikram; Ramirez-Hernandez, Abelardo; Khaira, Gurdaman S.; Segal-Peretz, Tamar; Rincon-Delgadillo, Paulina A.; Li, Weihua; Muller, Marcus; Nealey, Paul F.; de Pablo, Juan J.

    2015-11-17

    Over the last few years, the directed self-assembly of block copolymers by surface patterns has transitioned from academic curiosity to viable contender for commercial fabrication of next-generation nanocircuits by lithography. Recently, it has become apparent that kinetics, and not only thermodynamics, plays a key role for the ability of a polymeric material to self-assemble into a perfect, defect-free ordered state. Perfection, in this context, implies not more than one defect, with characteristic dimensions on the order of 5 nm, over a sample area as large as 100 cm2. In this work, we identify the key pathways and the corresponding free-energymore » barriers for eliminating defects, and we demonstrate that an extraordinarily large thermodynamic driving force is not necessarily sufficient for their removal. By adopting a concerted computational and experimental approach, we explain the molecular origins of these barriers, how they depend on material characteristics, and we propose strategies designed to over-come them. The validity of our conclusions for industrially-relevant patterning processes is established by relying on instruments and assembly lines that are only available at state-of-the-art fabrication facilities and, through this confluence of fundamental and applied research, we are able to discern the evolution of morphology at the smallest relevant length scales - a handful of nanometers -, and present a view of defect annihilation in directed self-assembly at an unprecedented level of detail.« less

  8. Evolution of the atomic and molecular gas content of galaxies

    NASA Astrophysics Data System (ADS)

    Popping, Gergö; Somerville, Rachel S.; Trager, Scott C.

    2014-08-01

    We study the evolution of atomic and molecular gas in galaxies in semi-analytic models of galaxy formation that include new modelling of the partitioning of cold gas in galactic discs into atomic, molecular, and ionized phases. We adopt two scenarios for the formation of molecules: one pressure based and one metallicity based. We find that both recipes successfully reproduce the gas fractions and gas-to-stellar mass ratios of H I and H2 in local galaxies, as well as the H I and H2 disc sizes up to z ≤ 2. We reach good agreement with the locally observed H I and H2 mass function, although both recipes slightly overpredict the low-mass end of the H I mass function. Both of our models predict that the high-mass end of the H I mass function remains nearly constant at redshifts z < 2.0. The metallicity-based recipe yields a higher cosmic density of cold gas and much lower cosmic H2 fraction over the entire redshift range probed than the pressure-based recipe. These strong differences in H I mass function and cosmic density between the two recipes are driven by low-mass galaxies (log (M*/M⊙) ≤ 7) residing in low-mass haloes (log (Mvir/M⊙) ≤ 10). Both recipes predict that galaxy gas fractions remain high from z ˜ 6to3 and drop rapidly at lower redshift. The galaxy H2 fractions show a similar trend, but drop even more rapidly. We provide predictions for the CO J = 1-0 luminosity of galaxies, which will be directly comparable with observations with sub-mm and radio instruments.

  9. Directed evolution of bacteriorhodopsin for applications in bioelectronics

    PubMed Central

    Wagner, Nicole L.; Greco, Jordan A.; Ranaghan, Matthew J.; Birge, Robert R.

    2013-01-01

    In nature, biological systems gradually evolve through complex, algorithmic processes involving mutation and differential selection. Evolution has optimized biological macromolecules for a variety of functions to provide a comparative advantage. However, nature does not optimize molecules for use in human-made devices, as it would gain no survival advantage in such cooperation. Recent advancements in genetic engineering, most notably directed evolution, have allowed for the stepwise manipulation of the properties of living organisms, promoting the expansion of protein-based devices in nanotechnology. In this review, we highlight the use of directed evolution to optimize photoactive proteins, with an emphasis on bacteriorhodopsin (BR), for device applications. BR, a highly stable light-activated proton pump, has shown great promise in three-dimensional optical memories, real-time holographic processors and artificial retinas. PMID:23676894

  10. The Molecular Evolution of the Qo Motif

    PubMed Central

    Kao, Wei-Chun; Hunte, Carola

    2014-01-01

    Quinol oxidation in the catalytic quinol oxidation site (Qo site) of cytochrome (cyt) bc1 complexes is the key step of the Q cycle mechanism, which laid the ground for Mitchell’s chemiosmotic theory of energy conversion. Bifurcated electron transfer upon quinol oxidation enables proton uptake and release on opposite membrane sides, thus generating a proton gradient that fuels ATP synthesis in cellular respiration and photosynthesis. The Qo site architecture formed by cyt b and Rieske iron–sulfur protein (ISP) impedes harmful bypass reactions. Catalytic importance is assigned to four residues of cyt b formerly described as PEWY motif in the context of mitochondrial complexes, which we now denominate Qo motif as comprehensive evolutionary sequence analysis of cyt b shows substantial natural variance of the motif with phylogenetically specific patterns. In particular, the Qo motif is identified as PEWY in mitochondria, α- and ε-Proteobacteria, Aquificae, Chlorobi, Cyanobacteria, and chloroplasts. PDWY is present in Gram-positive bacteria, Deinococcus–Thermus and haloarchaea, and PVWY in β- and γ-Proteobacteria. PPWF only exists in Archaea. Distinct patterns for acidophilic organisms indicate environment-specific adaptations. Importantly, the presence of PDWY and PEWY is correlated with the redox potential of Rieske ISP and quinone species. We propose that during evolution from low to high potential electron-transfer systems in the emerging oxygenic atmosphere, cyt bc1 complexes with PEWY as Qo motif prevailed to efficiently use high potential ubiquinone as substrate, whereas cyt b with PDWY operate best with low potential Rieske ISP and menaquinone, with the latter being the likely composition of the ancestral cyt bc1 complex. PMID:25115012

  11. Models for the directed evolution of bacterial allelopathy: bacteriophage lysins.

    PubMed

    Bull, James J; Crandall, Cameron; Rodriguez, Anna; Krone, Stephen M

    2015-01-01

    Microbes produce a variety of compounds that are used to kill or suppress other species. Traditional antibiotics have their origins in these natural products, as do many types of compounds being pursued today in the quest for new antibacterial drugs. When a potential toxin can be encoded by and exported from a species that is not harmed, the opportunity exists to use directed evolution to improve the toxin's ability to kill other species-allelopathy. In contrast to the typical application of directed evolution, this case requires the co-culture of at least two species or strains, a host that is unharmed by the toxin plus the intended target of the toxin. We develop mathematical and computational models of this directed evolution process. Two contexts are considered, one with the toxin encoded on a plasmid and the other with the toxin encoded in a phage. The plasmid system appears to be more promising than the phage system. Crucial to both designs is the ability to co-culture two species/strains (host and target) such that the host is greatly outgrown by the target species except when the target species is killed. The results suggest that, if these initial conditions can be satisfied, directed evolution is feasible for the plasmid-based system. Screening with a plasmid-based system may also enable rapid improvement of a toxin. PMID:25870772

  12. Models for the directed evolution of bacterial allelopathy: bacteriophage lysins

    PubMed Central

    Bull, James J.; Crandall, Cameron; Rodriguez, Anna

    2015-01-01

    Microbes produce a variety of compounds that are used to kill or suppress other species. Traditional antibiotics have their origins in these natural products, as do many types of compounds being pursued today in the quest for new antibacterial drugs. When a potential toxin can be encoded by and exported from a species that is not harmed, the opportunity exists to use directed evolution to improve the toxin’s ability to kill other species—allelopathy. In contrast to the typical application of directed evolution, this case requires the co-culture of at least two species or strains, a host that is unharmed by the toxin plus the intended target of the toxin. We develop mathematical and computational models of this directed evolution process. Two contexts are considered, one with the toxin encoded on a plasmid and the other with the toxin encoded in a phage. The plasmid system appears to be more promising than the phage system. Crucial to both designs is the ability to co-culture two species/strains (host and target) such that the host is greatly outgrown by the target species except when the target species is killed. The results suggest that, if these initial conditions can be satisfied, directed evolution is feasible for the plasmid-based system. Screening with a plasmid-based system may also enable rapid improvement of a toxin. PMID:25870772

  13. Collection Directions: The Evolution of Library Collections and Collecting

    ERIC Educational Resources Information Center

    Dempsey, Lorcan; Malpas, Constance; Lavoie, Brian

    2014-01-01

    This article takes a broad view of the evolution of collecting behaviors in a network environment and suggests some future directions based on various simple models. The authors look at the changing dynamics of print collections, at the greater engagement with research and learning behaviors, and at trends in scholarly communication. The goal is…

  14. Giant Molecular Cloud Structure and Evolution

    NASA Technical Reports Server (NTRS)

    Hollenbach, David (Technical Monitor); Bodenheimer, P. H.

    2003-01-01

    Bodenheimer and Burkert extended earlier calculations of cloud core models to study collapse and fragmentation. The initial condition for an SPH collapse calculation is the density distribution of a Bonnor-Ebert sphere, with near balance between turbulent plus thermal energy and gravitational energy. The main parameter is the turbulent Mach number. For each Mach number several runs are made, each with a different random realization of the initial turbulent velocity field. The turbulence decays on a dynamical time scale, leading the cloud into collapse. The collapse proceeds isothermally until the density has increased to about 10(exp 13) g cm(exp -3). Then heating is included in the dense regions. The nature of the fragmentation is investigated. About 15 different runs have been performed with Mach numbers ranging from 0.3 to 3.5 (the typical value observed in molecular cloud cores is 0.7). The results show a definite trend of increasing multiplicity with increasing Mach number (M), with the number of fragments approximately proportional to (1 + M). In general, this result agrees with that of Fisher, Klein, and McKee who published three cases with an AMR grid code. However our results show that there is a large spread about this curve. For example, for M=0.3 one case resulted in no fragmentation while a second produced three fragments. Thus it is not only the value of M but also the details of the superposition of the various velocity modes that play a critical role in the formation of binaries. Also, the simulations produce a wide range of separations (10-1000 AU) for the multiple systems, in rough agreement with observations. These results are discussed in two conference proceedings.

  15. Molecular evolution of nitrate reductase genes.

    PubMed

    Zhou, J; Kleinhofs, A

    1996-04-01

    To understand the evolutionary mechanisms and relationships of nitrate reductases (NRs), the nucleotide sequences encoding 19 nitrate reductase (NR) genes from 16 species of fungi, algae, and higher plants were analyzed. The NR genes examined show substantial sequence similarity, particularly within functional domains, and large variations in GC content at the third codon position and intron number. The intron positions were different between the fungi and plants, but conserved within these groups. The overall and nonsynonymous substitution rates among fungi, algae, and higher plants were estimated to be 4.33 x 10(-10) and 3.29 x 10(-10) substitutions per site per year. The three functional domains of NR genes evolved at about one-third of the rate of the N-terminal and the two hinge regions connecting the functional domains. Relative rate tests suggested that the nonsynonymous substitution rates were constant among different lineages, while the overall nucleotide substitution rates varied between some lineages. The phylogenetic trees based on NR genes correspond well with the phylogeny of the organisms determined from systematics and other molecular studies. Based on the nonsynonymous substitution rate, the divergence time of monocots and dicots was estimated to be about 340 Myr when the fungi-plant or algae-higher plant divergence times were used as reference points and 191 Myr when the rice-barley divergence time was used as a reference point. These two estimates are consistent with other estimates of divergence times based on these reference points. The lack of consistency between these two values appears to be due to the uncertainty of the reference times. PMID:8642612

  16. HIV-1 evolution: frustrating therapies, but disclosing molecular mechanisms

    PubMed Central

    Das, Atze T.; Berkhout, Ben

    2010-01-01

    Replication of HIV-1 under selective pressure frequently results in the evolution of virus variants that replicate more efficiently under the applied conditions. For example, in patients on antiretroviral therapy, such evolution can result in variants that are resistant to the HIV-1 inhibitors, thus frustrating the therapy. On the other hand, virus evolution can help us to understand the molecular mechanisms that underlie HIV-1 replication. For example, evolution of a defective virus mutant can result in variants that overcome the introduced defect by restoration of the original sequence or by the introduction of additional mutations in the viral genome. Analysis of the evolution pathway can reveal the requirements of the element under study and help to understand its function. Analysis of the escape routes may generate new insight in the viral life cycle and result in the identification of unexpected biological mechanisms. We have developed in vitro HIV-1 evolution into a systematic research tool that allows the study of different aspects of the viral replication cycle. We will briefly review this method of forced virus evolution and provide several examples that illustrate the power of this approach. PMID:20478891

  17. Directing the evolution of Rubisco and Rubisco activase: first impressions of a new tool for photosynthesis research.

    PubMed

    Mueller-Cajar, Oliver; Whitney, Spencer M

    2008-01-01

    During the last decade the practice of laboratory-directed protein evolution has become firmly established as a versatile tool in biochemical research by enabling molecular evolution toward desirable phenotypes or detection of novel structure-function interactions. Applications of this technique in the field of photosynthesis research are still in their infancy, but recently first steps have been reported in the directed evolution of the CO(2)-fixing enzyme Rubisco and its helper protein Rubisco activase. Here we summarize directed protein evolution strategies and review the progressive advances that have been made to develop and apply suitable selection systems for screening mutant forms of these enzymes that improve the fitness of the host organism. The goal of increasing photosynthetic efficiency of plants by improving the kinetics of Rubisco has been a long-term goal scoring modest successes. We discuss how directed evolution methodologies may one day be able to circumvent the problems encountered during this venture. PMID:18626786

  18. MOLECULAR CLOUD EVOLUTION. III. ACCRETION VERSUS STELLAR FEEDBACK

    SciTech Connect

    Vazquez-Semadeni, Enrique; ColIn, Pedro; Gomez, Gilberto C.; Ballesteros-Paredes, Javier; Watson, Alan W. E-mail: p.colin@crya.unam.m E-mail: alan@astro.unam.m

    2010-06-01

    We numerically investigate the effect of feedback from the ionization heating from massive stars on the evolution of giant molecular clouds (GMCs) and their star formation efficiency (SFE), which we treat as an instantaneous, time-dependent quantity. We follow the GMCs' evolution from their formation to advanced star-forming stages. After an initial period of contraction, the collapsing clouds begin forming stars, whose feedback evaporates part of the clouds' mass, opposing the continuing accretion from the infalling gas. Our results are as follows: (1) in the presence of feedback, the clouds attain levels of the SFE that are consistent at all times with observational determinations for regions of comparable star formation rates. (2) However, the dense gas mass is larger in general in the presence of feedback, while the total mass (dense gas + stars) is nearly insensitive to the presence of feedback, suggesting that it is determined mainly by the accretion, while the feedback inhibits mainly the conversion of dense gas to stars, because it acts directly to reheat and disperse the gas that is directly on its way to forming stars. (3) The factor by which the SFE is reduced upon the inclusion of feedback is a decreasing function of the cloud's mass, for clouds of size {approx}10 pc. This naturally explains the larger observed SFEs of massive-star-forming regions. (4) The clouds may attain a pseudo-virialized state, with a value of the virial mass very similar to the actual cloud mass. However, this state differs from true virialization in that the clouds, rather than being equilibrium entities, are the centers of a larger-scale collapse, in which accretion replenishes the mass consumed by star formation. (5) The higher-density regions within the clouds are in a similar situation, accreting gas infalling from the less-dense, more extended regions of the clouds. (6) The density probability density functions of the regions containing the clouds in general exhibit a shape

  19. Directed evolution of polymerase function by compartmentalized self-replication.

    PubMed

    Ghadessy, F J; Ong, J L; Holliger, P

    2001-04-10

    We describe compartmentalized self-replication (CSR), a strategy for the directed evolution of enzymes, especially polymerases. CSR is based on a simple feedback loop consisting of a polymerase that replicates only its own encoding gene. Compartmentalization serves to isolate individual self-replication reactions from each other. In such a system, adaptive gains directly (and proportionally) translate into genetic amplification of the encoding gene. CSR has applications in the evolution of polymerases with novel and useful properties. By using three cycles of CSR, we obtained variants of Taq DNA polymerase with 11-fold higher thermostability than the wild-type enzyme or with a >130-fold increased resistance to the potent inhibitor heparin. Insertion of an extra stage into the CSR cycle before the polymerase reaction allows its application to enzymes other than polymerases. We show that nucleoside diphosphate kinase and Taq polymerase can form such a cooperative CSR cycle based on reciprocal catalysis, whereby nucleoside diphosphate kinase produces the substrates required for the replication of its own gene. We also find that in CSR the polymerase genes themselves evolve toward more efficient replication. Thus, polymerase genes and their encoded polypeptides cooperate to maximize postselection copy number. CSR should prove useful for the directed evolution of enzymes, particularly DNA or RNA polymerases, as well as for the design and study of in vitro self-replicating systems mimicking prebiotic evolution and viral replication. PMID:11274352

  20. Directed evolution of polymerase function by compartmentalized self-replication

    PubMed Central

    Ghadessy, Farid J.; Ong, Jennifer L.; Holliger, Philipp

    2001-01-01

    We describe compartmentalized self-replication (CSR), a strategy for the directed evolution of enzymes, especially polymerases. CSR is based on a simple feedback loop consisting of a polymerase that replicates only its own encoding gene. Compartmentalization serves to isolate individual self-replication reactions from each other. In such a system, adaptive gains directly (and proportionally) translate into genetic amplification of the encoding gene. CSR has applications in the evolution of polymerases with novel and useful properties. By using three cycles of CSR, we obtained variants of Taq DNA polymerase with 11-fold higher thermostability than the wild-type enzyme or with a >130-fold increased resistance to the potent inhibitor heparin. Insertion of an extra stage into the CSR cycle before the polymerase reaction allows its application to enzymes other than polymerases. We show that nucleoside diphosphate kinase and Taq polymerase can form such a cooperative CSR cycle based on reciprocal catalysis, whereby nucleoside diphosphate kinase produces the substrates required for the replication of its own gene. We also find that in CSR the polymerase genes themselves evolve toward more efficient replication. Thus, polymerase genes and their encoded polypeptides cooperate to maximize postselection copy number. CSR should prove useful for the directed evolution of enzymes, particularly DNA or RNA polymerases, as well as for the design and study of in vitro self-replicating systems mimicking prebiotic evolution and viral replication. PMID:11274352

  1. A molecular description of the evolution of resistance

    NASA Technical Reports Server (NTRS)

    Ordoukhanian, P.; Joyce, G. F.

    1999-01-01

    BACKGROUND: In vitro evolution has been used to obtain nucleic acid molecules with interesting functional properties. The evolution process usually is carried out in a stepwise manner, involving successive rounds of selection, amplification and mutation. Recently, a continuous in vitro evolution system was devised for RNAs that catalyze the ligation of oligonucleotide substrates, allowing the evolution of catalytic function to be studied in real time. RESULTS: Continuous in vitro evolution of an RNA ligase ribozyme was carried out in the presence of a DNA enzyme that was capable of cleaving, and thereby inactivating, the ribozyme. The DNA concentration was increased steadily over 33.5 hours of evolution, reaching a final concentration that would have been sufficient to inactivate the starting population in one second. The evolved population of ribozymes developed resistance to the DNA enzyme, reducing their vulnerability to cleavage by 2000-fold but retaining their own catalytic function. Based on sequencing and kinetic analysis of the ribozymes, two mechanisms are proposed for this resistance. One involves three nucleotide substitutions, together with two compensatory mutations, that alter the site at which the DNA enzyme binds the ribozyme. The other involves enhancement of the ribozyme's ability to bind its own substrate in a way that protects it from cleavage by the DNA enzyme. CONCLUSIONS: The ability to direct the evolution of an enzyme's biochemical properties in response to the behavior of another macromolecule provides insight into the evolution of resistance and may be useful in developing enzymes with novel or enhanced function.

  2. Widespread convergence in toxin resistance by predictable molecular evolution

    PubMed Central

    Ujvari, Beata; Casewell, Nicholas R.; Sunagar, Kartik; Arbuckle, Kevin; Wüster, Wolfgang; Lo, Nathan; O’Meally, Denis; Beckmann, Christa; King, Glenn F.; Deplazes, Evelyne; Madsen, Thomas

    2015-01-01

    The question about whether evolution is unpredictable and stochastic or intermittently constrained along predictable pathways is the subject of a fundamental debate in biology, in which understanding convergent evolution plays a central role. At the molecular level, documented examples of convergence are rare and limited to occurring within specific taxonomic groups. Here we provide evidence of constrained convergent molecular evolution across the metazoan tree of life. We show that resistance to toxic cardiac glycosides produced by plants and bufonid toads is mediated by similar molecular changes to the sodium-potassium-pump (Na+/K+-ATPase) in insects, amphibians, reptiles, and mammals. In toad-feeding reptiles, resistance is conferred by two point mutations that have evolved convergently on four occasions, whereas evidence of a molecular reversal back to the susceptible state in varanid lizards migrating to toad-free areas suggests that toxin resistance is maladaptive in the absence of selection. Importantly, resistance in all taxa is mediated by replacements of 2 of the 12 amino acids comprising the Na+/K+-ATPase H1–H2 extracellular domain that constitutes a core part of the cardiac glycoside binding site. We provide mechanistic insight into the basis of resistance by showing that these alterations perturb the interaction between the cardiac glycoside bufalin and the Na+/K+-ATPase. Thus, similar selection pressures have resulted in convergent evolution of the same molecular solution across the breadth of the animal kingdom, demonstrating how a scarcity of possible solutions to a selective challenge can lead to highly predictable evolutionary responses. PMID:26372961

  3. Direct observations of the evolution of polar cap ionization patches.

    PubMed

    Zhang, Qing-He; Zhang, Bei-Chen; Lockwood, Michael; Hu, Hong-Qiao; Moen, Jøran; Ruohoniemi, J Michael; Thomas, Evan G; Zhang, Shun-Rong; Yang, Hui-Gen; Liu, Rui-Yuan; McWilliams, Kathryn A; Baker, Joseph B H

    2013-03-29

    Patches of ionization are common in the polar ionosphere, where their motion and associated density gradients give variable disturbances to high-frequency (HF) radio communications, over-the-horizon radar location errors, and disruption and errors to satellite navigation and communication. Their formation and evolution are poorly understood, particularly under disturbed space weather conditions. We report direct observations of the full evolution of patches during a geomagnetic storm, including formation, polar cap entry, transpolar evolution, polar cap exit, and sunward return flow. Our observations show that modulation of nightside reconnection in the substorm cycle of the magnetosphere helps form the gaps between patches where steady convection would give a "tongue" of ionization (TOI). PMID:23539601

  4. [The genotyping and molecular evolution of varicella-zoster virus].

    PubMed

    Jiang, Long-Feng; Gan, Lin; Chen, Jing-Xian; Wang, Ming-Li

    2012-09-01

    Varicella-zoster virus (VZV, Human herpesvirus 3) is a member of the family Herpesviridae, and is classified as alpha-subfamily along with HSV-1 and HSV-2. VZV is the causative agent of chicken pox (varicella) mostly in children, after which it establishes latency in the sensory ganglia with the potential to reactivate at a later time to cause shingles (zoster). Increasing molecular epidemiological studies in recent years have been performed to monitor the mutations in VZV genome, discriminate vaccine virus from wild type virus, study the phylogeny of VZV strains throughout the world, and understand the evolution of the different clades of VZV. The progress has great impact on the fields of epidemiology, virology and bioinformatics. In this review, the currently available data concerning the geographic distribution and molecular evolution of VZV clades are discussed. PMID:23233938

  5. An epistatic ratchet constrains the direction of glucocorticoid receptor evolution

    SciTech Connect

    Bridgham, Jamie T.; Ortlund, Eric A.; Thornton, Joseph W.

    2010-10-28

    The extent to which evolution is reversible has long fascinated biologists. Most previous work on the reversibility of morphological and life-history evolution has been indecisive, because of uncertainty and bias in the methods used to infer ancestral states for such characters. Further, despite theoretical work on the factors that could contribute to irreversibility, there is little empirical evidence on its causes, because sufficient understanding of the mechanistic basis for the evolution of new or ancestral phenotypes is seldom available. By studying the reversibility of evolutionary changes in protein structure and function, these limitations can be overcome. Here we show, using the evolution of hormone specificity in the vertebrate glucocorticoid receptor as a case-study, that the evolutionary path by which this protein acquired its new function soon became inaccessible to reverse exploration. Using ancestral gene reconstruction, protein engineering and X-ray crystallography, we demonstrate that five subsequent 'restrictive' mutations, which optimized the new specificity of the glucocorticoid receptor, also destabilized elements of the protein structure that were required to support the ancestral conformation. Unless these ratchet-like epistatic substitutions are restored to their ancestral states, reversing the key function-switching mutations yields a non-functional protein. Reversing the restrictive substitutions first, however, does nothing to enhance the ancestral function. Our findings indicate that even if selection for the ancestral function were imposed, direct reversal would be extremely unlikely, suggesting an important role for historical contingency in protein evolution.

  6. Two-photon directed evolution of green fluorescent proteins

    NASA Astrophysics Data System (ADS)

    Stoltzfus, Caleb R.; Barnett, Lauren M.; Drobizhev, Mikhail; Wicks, Geoffrey; Mikhaylov, Alexander; Hughes, Thomas E.; Rebane, Aleksander

    2015-07-01

    Directed evolution has been used extensively to improve the properties of a variety of fluorescent proteins (FPs). Evolutionary strategies, however, have not yet been used to improve the two-photon absorption (2PA) properties of a fluorescent protein, properties that are important for two-photon imaging in living tissues, including the brain. Here we demonstrate a technique for quantitatively screening the two-photon excited fluorescence (2PEF) efficiency and 2PA cross section of tens of thousands of mutant FPs expressed in E. coli colonies. We use this procedure to move EGFP through three rounds of two-photon directed evolution leading to new variants showing up to a 50% enhancement in peak 2PA cross section and brightness within the near-IR tissue transparency wavelength range.

  7. Two-photon directed evolution of green fluorescent proteins

    PubMed Central

    Stoltzfus, Caleb R.; Barnett, Lauren M.; Drobizhev, Mikhail; Wicks, Geoffrey; Mikhaylov, Alexander; Hughes, Thomas E.; Rebane, Aleksander

    2015-01-01

    Directed evolution has been used extensively to improve the properties of a variety of fluorescent proteins (FPs). Evolutionary strategies, however, have not yet been used to improve the two-photon absorption (2PA) properties of a fluorescent protein, properties that are important for two-photon imaging in living tissues, including the brain. Here we demonstrate a technique for quantitatively screening the two-photon excited fluorescence (2PEF) efficiency and 2PA cross section of tens of thousands of mutant FPs expressed in E. coli colonies. We use this procedure to move EGFP through three rounds of two-photon directed evolution leading to new variants showing up to a 50% enhancement in peak 2PA cross section and brightness within the near-IR tissue transparency wavelength range. PMID:26145791

  8. Beyond directed evolution - semi-rational protein engineering and design

    PubMed Central

    Lutz, Stefan

    2010-01-01

    Over the last two decades, directed evolution has transformed the field of protein engineering. The advances in understanding protein structure and function, in no insignificant part a result of directed evolution studies, are increasingly empowering scientists and engineers to device more effective methods for manipulating and tailoring biocatalysts. Abandoning large combinatorial libraries, the focus has shifted to small, functionally-rich libraries and rational design. A critical component to the success of these emerging engineering strategies are computational tools for the evaluation of protein sequence datasets and the analysis of conformational variations of amino acids in proteins. Highlighting the opportunities and limitations of such approaches, this review focuses on recent engineering and design examples that require screening or selection of small libraries. PMID:20869867

  9. [The molecular evolution of rice stress-related genes].

    PubMed

    Song, Xiaojun; Xie, Kaibin; Zhang, Yanping; Jin, Ping

    2014-10-01

    In the processes of evolution, plants have formed a perfect regulation system to tolerate adverse environmental conditions. However, there has not been any report about the molecular evolution of rice stress-related genes. We derived a family of 22 stress-related genes in rice from Plant Stress Gene Database, and analyzed it by bioinformatics and comparative genome method. The results showed that these genes are relatively conservative in low organisms, and their copy numbers increase along with the environmental changes and the evolution. We also found four conserved sequence motifs and three other specific motifs. We propose that these motifs are closely associated with the function of rice stress-related genes. The analysis of selection pressure showed that about 50% rice stress-related genes have positive selection sites, although they were subject to a strong purifying selection. Positive selection sites might be very significant for plants to adapt to environmental changes. PMID:25406251

  10. Site-directed deep electronic tunneling through a molecular network

    SciTech Connect

    Caspary, Maytal; Peskin, Uri

    2005-10-15

    Electronic tunneling in a complex molecular network of N(>2) donor/acceptor sites, connected by molecular bridges, is analyzed. The 'deep' tunneling dynamics is formulated using a recursive perturbation expansion, yielding a McConnell-type reduced N-level model Hamiltonian. Applications to models of molecular junctions demonstrate that the donor-bridge contact parameters can be tuned in order to control the tunneling dynamics and particularly to direct the tunneling pathway to either one of the various acceptors.

  11. Reconstructing phylogenies and phenotypes: a molecular view of human evolution.

    PubMed

    Bradley, Brenda J

    2008-04-01

    This review broadly summarizes how molecular biology has contributed to our understanding of human evolution. Molecular anthropology began in the 1960s with immunological comparisons indicating that African apes and humans were closely related and, indeed, shared a common ancestor as recently as 5 million years ago. Although initially dismissed, this finding has proven robust and numerous lines of molecular evidence now firmly place the human-ape divergence at 4-8 Ma. Resolving the trichotomy among humans, chimpanzees and gorillas took a few more decades. Despite the readily apparent physical similarities shared by African apes to the exclusion of modern humans (body hair, knuckle-walking, thin tooth enamel), the molecular support for a human-chimpanzee clade is now overwhelming. More recently, whole genome sequencing and gene mapping have shifted the focus of molecular anthropology from phylogenetic analyses to phenotypic reconstruction and functional genomics. We are starting to identify the genetic basis of the morphological, physiological and behavioural traits that distinguish modern humans from apes and apes from other primates. Most notably, recent comparative genomic analyses strongly indicate that the marked differences between modern humans and chimpanzees are likely due more to changes in gene regulation than to modifications of the genes themselves, an idea first proposed over 30 years ago. Almost weekly, press releases describe newly identified genes and regulatory elements that seem to have undergone strong positive selection along the human lineage. Loci involved in speech (e.g. FOXP2), brain development (e.g. ASPM), and skull musculature (e.g. MYH16) have been of particular interest, but some surprising candidate loci (e.g. those involved in auditory capabilities) have emerged as well. Exciting new research avenues, such as the Neanderthal Genome Project, promise that molecular analyses will continue to provide novel insights about our evolution

  12. High Throughput Screening and Selection Methods for Directed Enzyme Evolution

    PubMed Central

    2015-01-01

    Successful evolutionary enzyme engineering requires a high throughput screening or selection method, which considerably increases the chance of obtaining desired properties and reduces the time and cost. In this review, a series of high throughput screening and selection methods are illustrated with significant and recent examples. These high throughput strategies are also discussed with an emphasis on compatibility with phenotypic analysis during directed enzyme evolution. Lastly, certain limitations of current methods, as well as future developments, are briefly summarized. PMID:26074668

  13. Are Molecular Alphabets Universal Enabling Factors for the Evolution of Complex Life?

    NASA Astrophysics Data System (ADS)

    Dunn, Ian S.

    2013-12-01

    Terrestrial biosystems depend on macromolecules, and this feature is often considered as a likely universal aspect of life. While opinions differ regarding the importance of small-molecule systems in abiogenesis, escalating biological functional demands are linked with increasing complexity in key molecules participating in biosystem operations, and many such requirements cannot be efficiently mediated by relatively small compounds. It has long been recognized that known life is associated with the evolution of two distinct molecular alphabets (nucleic acid and protein), specific sequence combinations of which serve as informational and functional polymers. In contrast, much less detailed focus has been directed towards the potential universal need for molecular alphabets in constituting complex chemically-based life, and the implications of such a requirement. To analyze this, emphasis here is placed on the generalizable replicative and functional characteristics of molecular alphabets and their concatenates. A primary replicative alphabet based on the simplest possible molecular complementarity can potentially enable evolutionary processes to occur, including the encoding of secondarily functional alphabets. Very large uniquely specified (`non-alphabetic') molecules cannot feasibly underlie systems capable of the replicative and evolutionary properties which characterize complex biosystems. Transitions in the molecular evolution of alphabets can be related to progressive bridging of barriers which enable higher levels of biosystem organization. It is thus highly probable that molecular alphabets are an obligatory requirement for complex chemically-based life anywhere in the universe. In turn, reference to molecular alphabets should be usefully applied in current definitions of life.

  14. Are molecular alphabets universal enabling factors for the evolution of complex life?

    PubMed

    Dunn, Ian S

    2013-12-01

    Terrestrial biosystems depend on macromolecules, and this feature is often considered as a likely universal aspect of life. While opinions differ regarding the importance of small-molecule systems in abiogenesis, escalating biological functional demands are linked with increasing complexity in key molecules participating in biosystem operations, and many such requirements cannot be efficiently mediated by relatively small compounds. It has long been recognized that known life is associated with the evolution of two distinct molecular alphabets (nucleic acid and protein), specific sequence combinations of which serve as informational and functional polymers. In contrast, much less detailed focus has been directed towards the potential universal need for molecular alphabets in constituting complex chemically-based life, and the implications of such a requirement. To analyze this, emphasis here is placed on the generalizable replicative and functional characteristics of molecular alphabets and their concatenates. A primary replicative alphabet based on the simplest possible molecular complementarity can potentially enable evolutionary processes to occur, including the encoding of secondarily functional alphabets. Very large uniquely specified ('non-alphabetic') molecules cannot feasibly underlie systems capable of the replicative and evolutionary properties which characterize complex biosystems. Transitions in the molecular evolution of alphabets can be related to progressive bridging of barriers which enable higher levels of biosystem organization. It is thus highly probable that molecular alphabets are an obligatory requirement for complex chemically-based life anywhere in the universe. In turn, reference to molecular alphabets should be usefully applied in current definitions of life. PMID:24510462

  15. Molecular Ultrasound Imaging: Current Status and Future Directions

    PubMed Central

    Deshpande, Nirupama; Needles, Andrew; Willmann, Jürgen K.

    2011-01-01

    Targeted contrast-enhanced ultrasound (molecular ultrasound) is an emerging imaging strategy that combines ultrasound technology with novel molecularly-targeted ultrasound contrast agents for assessing biological processes at the molecular level. Molecular ultrasound contrast agents are nano- or micro-sized particles that are targeted to specific molecular markers by adding high-affinity binding ligands onto the surface of the particles. Following intravenous administration, these targeted ultrasound contrast agents accumulate at tissue sites overexpressing specific molecular markers, thereby enhancing the ultrasound imaging signal. High spatial and temporal resolution, real-time imaging, non-invasiveness, relatively low costs, lack of ionizing irradiation and wide availability of ultrasound systems are advantages compared to other molecular imaging modalities. In this article we review current concepts and future directions of molecular ultrasound imaging, including different classes of molecular ultrasound contrast agents, ongoing technical developments of preclinical and clinical ultrasound systems , the potential of molecular ultrasound for imaging different diseases at the molecular level, and the translation of molecular ultrasound into the clinic. PMID:20541656

  16. Directed Chemical Evolution with an Outsized Genetic Code

    PubMed Central

    Krusemark, Casey J.; Tilmans, Nicolas P.; Brown, Patrick O.; Harbury, Pehr B.

    2016-01-01

    The first demonstration that macromolecules could be evolved in a test tube was reported twenty-five years ago. That breakthrough meant that billions of years of chance discovery and refinement could be compressed into a few weeks, and provided a powerful tool that now dominates all aspects of protein engineering. A challenge has been to extend this scientific advance into synthetic chemical space: to enable the directed evolution of abiotic molecules. The problem has been tackled in many ways. These include expanding the natural genetic code to include unnatural amino acids, engineering polyketide and polypeptide synthases to produce novel products, and tagging combinatorial chemistry libraries with DNA. Importantly, there is still no small-molecule analog of directed protein evolution, i.e. a substantiated approach for optimizing complex (≥ 10^9 diversity) populations of synthetic small molecules over successive generations. We present a key advance towards this goal: a tool for genetically-programmed synthesis of small-molecule libraries from large chemical alphabets. The approach accommodates alphabets that are one to two orders of magnitude larger than any in Nature, and facilitates evolution within the chemical spaces they create. This is critical for small molecules, which are built up from numerous and highly varied chemical fragments. We report a proof-of-concept chemical evolution experiment utilizing an outsized genetic code, and demonstrate that fitness traits can be passed from an initial small-molecule population through to the great-grandchildren of that population. The results establish the practical feasibility of engineering synthetic small molecules through accelerated evolution. PMID:27508294

  17. Directed Chemical Evolution with an Outsized Genetic Code.

    PubMed

    Krusemark, Casey J; Tilmans, Nicolas P; Brown, Patrick O; Harbury, Pehr B

    2016-01-01

    The first demonstration that macromolecules could be evolved in a test tube was reported twenty-five years ago. That breakthrough meant that billions of years of chance discovery and refinement could be compressed into a few weeks, and provided a powerful tool that now dominates all aspects of protein engineering. A challenge has been to extend this scientific advance into synthetic chemical space: to enable the directed evolution of abiotic molecules. The problem has been tackled in many ways. These include expanding the natural genetic code to include unnatural amino acids, engineering polyketide and polypeptide synthases to produce novel products, and tagging combinatorial chemistry libraries with DNA. Importantly, there is still no small-molecule analog of directed protein evolution, i.e. a substantiated approach for optimizing complex (≥ 10^9 diversity) populations of synthetic small molecules over successive generations. We present a key advance towards this goal: a tool for genetically-programmed synthesis of small-molecule libraries from large chemical alphabets. The approach accommodates alphabets that are one to two orders of magnitude larger than any in Nature, and facilitates evolution within the chemical spaces they create. This is critical for small molecules, which are built up from numerous and highly varied chemical fragments. We report a proof-of-concept chemical evolution experiment utilizing an outsized genetic code, and demonstrate that fitness traits can be passed from an initial small-molecule population through to the great-grandchildren of that population. The results establish the practical feasibility of engineering synthetic small molecules through accelerated evolution. PMID:27508294

  18. Flight loss linked to faster molecular evolution in insects

    PubMed Central

    Mitterboeck, T. Fatima; Adamowicz, Sarah J.

    2013-01-01

    The loss of flight ability has occurred thousands of times independently during insect evolution. Flight loss may be linked to higher molecular evolutionary rates because of reductions in effective population sizes (Ne) and relaxed selective constraints. Reduced dispersal ability increases population subdivision, may decrease geographical range size and increases (sub)population extinction risk, thus leading to an expected reduction in Ne. Additionally, flight loss in birds has been linked to higher molecular rates of energy-related genes, probably owing to relaxed selective constraints on energy metabolism. We tested for an association between insect flight loss and molecular rates through comparative analysis in 49 phylogenetically independent transitions spanning multiple taxa, including moths, flies, beetles, mayflies, stick insects, stoneflies, scorpionflies and caddisflies, using available nuclear and mitochondrial protein-coding DNA sequences. We estimated the rate of molecular evolution of flightless (FL) and related flight-capable lineages by ratios of non-synonymous-to-synonymous substitutions (dN/dS) and overall substitution rates (OSRs). Across multiple instances of flight loss, we show a significant pattern of higher dN/dS ratios and OSRs in FL lineages in mitochondrial but not nuclear genes. These patterns may be explained by relaxed selective constraints in FL ectotherms relating to energy metabolism, possibly in combination with reduced Ne. PMID:23884090

  19. Molecular ecology of aquatic communities: Reflections and future directions

    USGS Publications Warehouse

    Zehr, J.P.; Voytek, M.A.

    1999-01-01

    During the 1980s, many new molecular biology techniques were developed, providing new capabilities for studying the genetics and activities of organisms. Biologists and ecologists saw the promise that these techniques held for studying different aspects of organisms, both in culture and in the natural environment. In less than a decade, these techniques were adopted by a large number of researchers studying many types of organisms in diverse environments. Much of the molecular-level information acquired has been used to address questions of evolution, biogeography, population structure and biodiversity. At this juncture, molecular ecologists are poised to contribute to the study of the fundamental characteristics underlying aquatic community structure. The goal of this overview is to assess where we have been, where we are now and what the future holds for revealing the basis of community structure and function with molecular-level information.

  20. Engineering Platforms for Directed Evolution of Laccase from Pycnoporus cinnabarinus

    PubMed Central

    Camarero, S.; Pardo, I.; Cañas, A. I.; Molina, P.; Record, E.; Martínez, A. T.; Martínez, M. J.

    2012-01-01

    While the Pycnoporus cinnabarinus laccase (PcL) is one of the most promising high-redox-potential enzymes for environmental biocatalysis, its practical use has to date remained limited due to the lack of directed evolution platforms with which to improve its features. Here, we describe the construction of a PcL fusion gene and the optimization of conditions to induce its functional expression in Saccharomyces cerevisiae, facilitating its directed evolution and semirational engineering. The native PcL signal peptide was replaced by the α-factor preproleader, and this construct was subjected to six rounds of evolution coupled to a multiscreening assay based on the oxidation of natural and synthetic redox mediators at more neutral pHs. The laccase total activity was enhanced 8,000-fold: the evolved α-factor preproleader improved secretion levels 40-fold, and several mutations in mature laccase provided a 13.7-fold increase in kcat. While the pH activity profile was shifted to more neutral values, the thermostability and the broad substrate specificity of PcL were retained. Evolved variants were highly secreted by Aspergillus niger (∼23 mg/liter), which addresses the potential use of this combined-expression system for protein engineering. The mapping of mutations onto the PcL crystal structure shed new light on the oxidation of phenolic and nonphenolic substrates. Furthermore, some mutations arising in the evolved preproleader highlighted its potential for heterologous expression of fungal laccases in yeast (S. cerevisiae). PMID:22210206

  1. The direction of evolution: the rise of cooperative organization.

    PubMed

    Stewart, John E

    2014-09-01

    Two great trends are evident in the evolution of life on Earth: towards increasing diversification and towards increasing integration. Diversification has spread living processes across the planet, progressively increasing the range of environments and free energy sources exploited by life. Integration has proceeded through a stepwise process in which living entities at one level are integrated into cooperative groups that become larger-scale entities at the next level, and so on, producing cooperative organizations of increasing scale (for example, cooperative groups of simple cells gave rise to the more complex eukaryote cells, groups of these gave rise to multi-cellular organisms, and cooperative groups of these organisms produced animal societies). The trend towards increasing integration has continued during human evolution with the progressive increase in the scale of human groups and societies. The trends towards increasing diversification and integration are both driven by selection. An understanding of the trajectory and causal drivers of the trends suggests that they are likely to culminate in the emergence of a global entity. This entity would emerge from the integration of the living processes, matter, energy and technology of the planet into a global cooperative organization. Such an integration of the results of previous diversifications would enable the global entity to exploit the widest possible range of resources across the varied circumstances of the planet. This paper demonstrates that it's case for directionality meets the tests and criticisms that have proven fatal to previous claims for directionality in evolution. PMID:24887200

  2. Selection platforms for directed evolution in synthetic biology.

    PubMed

    Tizei, Pedro A G; Csibra, Eszter; Torres, Leticia; Pinheiro, Vitor B

    2016-08-15

    Life on Earth is incredibly diverse. Yet, underneath that diversity, there are a number of constants and highly conserved processes: all life is based on DNA and RNA; the genetic code is universal; biology is limited to a small subset of potential chemistries. A vast amount of knowledge has been accrued through describing and characterizing enzymes, biological processes and organisms. Nevertheless, much remains to be understood about the natural world. One of the goals in Synthetic Biology is to recapitulate biological complexity from simple systems made from biological molecules-gaining a deeper understanding of life in the process. Directed evolution is a powerful tool in Synthetic Biology, able to bypass gaps in knowledge and capable of engineering even the most highly conserved biological processes. It encompasses a range of methodologies to create variation in a population and to select individual variants with the desired function-be it a ligand, enzyme, pathway or even whole organisms. Here, we present some of the basic frameworks that underpin all evolution platforms and review some of the recent contributions from directed evolution to synthetic biology, in particular methods that have been used to engineer the Central Dogma and the genetic code. PMID:27528765

  3. Selection platforms for directed evolution in synthetic biology

    PubMed Central

    Tizei, Pedro A.G.; Csibra, Eszter; Torres, Leticia; Pinheiro, Vitor B.

    2016-01-01

    Life on Earth is incredibly diverse. Yet, underneath that diversity, there are a number of constants and highly conserved processes: all life is based on DNA and RNA; the genetic code is universal; biology is limited to a small subset of potential chemistries. A vast amount of knowledge has been accrued through describing and characterizing enzymes, biological processes and organisms. Nevertheless, much remains to be understood about the natural world. One of the goals in Synthetic Biology is to recapitulate biological complexity from simple systems made from biological molecules–gaining a deeper understanding of life in the process. Directed evolution is a powerful tool in Synthetic Biology, able to bypass gaps in knowledge and capable of engineering even the most highly conserved biological processes. It encompasses a range of methodologies to create variation in a population and to select individual variants with the desired function–be it a ligand, enzyme, pathway or even whole organisms. Here, we present some of the basic frameworks that underpin all evolution platforms and review some of the recent contributions from directed evolution to synthetic biology, in particular methods that have been used to engineer the Central Dogma and the genetic code. PMID:27528765

  4. Molecular evolution of the lysophosphatidic acid acyltransferase (LPAAT) gene family.

    PubMed

    Körbes, Ana Paula; Kulcheski, Franceli Rodrigues; Margis, Rogério; Margis-Pinheiro, Márcia; Turchetto-Zolet, Andreia Carina

    2016-03-01

    Lysophosphatidic acid acyltransferases (LPAATs) perform an essential cellular function by controlling the production of phosphatidic acid (PA), a key intermediate in the synthesis of membrane, signaling and storage lipids. Although LPAATs have been extensively explored by functional and biotechnological studies, little is known about their molecular evolution and diversification. We performed a genome-wide analysis using data from several plants and animals, as well as other eukaryotic and prokaryotic species, to identify LPAAT genes and analyze their evolutionary history. We used phylogenetic and molecular evolution analysis to test the hypothesis of distinct origins for these genes. The reconstructed phylogeny supported the ancient origin of some isoforms (plant LPAAT1 and LPAATB; animal AGPAAT1/2), while others emerged more recently (plant LPAAT2/3/4/5; AGPAAT3/4/5/8). Additionally, the hypothesis of endosymbiotic origin of the plastidic isoform LPAAT1 was confirmed. LPAAT genes from plants and animals mainly experienced strong purifying selection pressures with limited functional divergence after the species-specific duplications. Gene expression analyses of LPAAT isoforms in model plants demonstrated distinct LPAAT expression patterns in these organisms. The results showed that distinct origins followed by diversification of the LPAAT genes shaped the evolution of TAG biosynthesis. The expression pattern of individual genes may be responsible for adaptation into multiple ecological niches. PMID:26721558

  5. Molecular evolution of haemagglutinin (H) gene in measles virus.

    PubMed

    Kimura, Hirokazu; Saitoh, Mika; Kobayashi, Miho; Ishii, Haruyuki; Saraya, Takeshi; Kurai, Daisuke; Tsukagoshi, Hiroyuki; Shirabe, Komei; Nishina, Atsuyoshi; Kozawa, Kunihisa; Kuroda, Makoto; Takeuchi, Fumihiko; Sekizuka, Tsuyoshi; Minakami, Hisanori; Ryo, Akihide; Takeda, Makoto

    2015-01-01

    We studied the molecular evolution of the haemagglutinin (H) gene (full length) in all genotypes (24 genotypes, 297 strains) of measles virus (MeV). The gene's evolutionary timescale was estimated by the Bayesian Markov chain Monte Carlo (MCMC) method. We also analysed positive selection sites. The MCMC tree indicated that the MeV H gene diverged from the rinderpest virus (same genus) about 250 years ago and that 24 MeV genotypes formed 3 lineages dating back to a 1915 ancestor (95% highest posterior density [HPD] 1882-1941) with relatively rapid evolution (mean rate: 9.02 × 10(-4) substitutions/site/year). The 3 lineages diverged in 1915 (lineage 1, 95% HPD 1882-1941), 1954 (lineage 2, 95% HPD 1937-1969), and 1940 (lineage 3, 95% HPD 1927-1952). These 24 genotypes may have diverged and emerged between the 1940s and 1990 s. Selective pressure analysis identified many negative selection sites on the H protein but only a few positive selection sites, suggesting strongly operated structural and/or functional constraint of changes on the H protein. Based on the molecular evolution of H gene, an ancestor MeV of the 24 genotypes emerged about 100 years ago and the structure of H protein has been well conserved. PMID:26130388

  6. Molecular hyperdiversity and evolution in very large populations

    PubMed Central

    Cutter, Asher D.; Jovelin, Richard; Dey, Alivia

    2014-01-01

    The genomic density of sequence polymorphisms critically affects the sensitivity of inferences about ongoing sequence evolution, function, and demographic history. Most animal and plant genomes have relatively low densities of polymorphisms, but some species are hyperdiverse with neutral nucleotide heterozygosity exceeding 5%. Eukaryotes with extremely large populations, mimicking bacterial and viral populations, present novel opportunities for studying molecular evolution in sexually-reproducing taxa with complex development. In particular, hyperdiverse species can help answer controversial questions about the evolution of genome complexity, the limits of natural selection, modes of adaptation, and subtleties of the mutation process. However, such systems have some inherent complications and here we identify topics in need of theoretical developments. Close relatives of the model organisms Caenorhabditis elegans and Drosophila melanogaster provide known examples of hyperdiverse eukaryotes, encouraging functional dissection of resulting molecular evolutionary patterns. We recommend how best to exploit hyperdiverse populations for analysis, for example, in quantifying the impact of non-crossover recombination in genomes and for determining the identity and micro-evolutionary selective pressures on non-coding regulatory elements. PMID:23506466

  7. Molecular cancer prevention: Current status and future directions.

    PubMed

    Maresso, Karen Colbert; Tsai, Kenneth Y; Brown, Powel H; Szabo, Eva; Lippman, Scott; Hawk, Ernest T

    2015-01-01

    The heterogeneity and complexity of advanced cancers strongly support the rationale for an enhanced focus on molecular prevention as a priority strategy to reduce the burden of cancer. Molecular prevention encompasses traditional chemopreventive agents as well as vaccinations and therapeutic approaches to cancer-predisposing conditions. Despite challenges to the field, we now have refined insights into cancer etiology and early pathogenesis; successful risk assessment and new risk models; agents with broad preventive efficacy (eg, aspirin) in common chronic diseases, including cancer; and a successful track record of more than 10 agents approved by the US Food and Drug Administration for the treatment of precancerous lesions or cancer risk reduction. The development of molecular preventive agents does not differ significantly from the development of therapies for advanced cancers, yet it has unique challenges and special considerations given that it most often involves healthy or asymptomatic individuals. Agents, biomarkers, cohorts, overall design, and endpoints are key determinants of molecular preventive trials, as with therapeutic trials, although distinctions exist for each within the preventive setting. Progress in the development and evolution of molecular preventive agents has been steadier in some organ systems, such as breast and skin, than in others. In order for molecular prevention to be fully realized as an effective strategy, several challenges to the field must be addressed. Here, the authors provide a brief overview of the context for and special considerations of molecular prevention along with a discussion of the results from major randomized controlled trials. PMID:26284997

  8. Molecular evolution of WDR62, a gene that regulates neocorticogenesis

    PubMed Central

    Pervaiz, Nashaiman; Abbasi, Amir Ali

    2016-01-01

    Human brain evolution is characterized by dramatic expansion in cerebral cortex size. WDR62 (WD repeat domain 62) is one of the important gene in controlling human cortical development. Mutations in WDR62 lead to primary microcephaly, a neurodevelopmental disease characterized by three to four fold reduction in cerebral cortex size of affected individuals. This study analyzes comparative protein evolutionary rate to provide a useful insight into the molecular evolution of WDR62 and hence pinpointed human specific amino acid replacements. Comparative analysis of human WDR62 with two archaic humans (Neanderthals and Denisovans) and modern human populations revealed that five hominin specific amino acid residues (human specific amino acids shared with two archaic humans) might have been accumulated in the common ancestor of extinct archaic humans and modern humans about 550,000–765,000 years ago. Collectively, the data demonstrates an acceleration of WDR62 sequence evolution in hominin lineage and suggests that the ability of WDR62 protein to mediate the neurogenesis has been altered in the course of hominin evolution. PMID:27114917

  9. Molecular evolution of WDR62, a gene that regulates neocorticogenesis.

    PubMed

    Pervaiz, Nashaiman; Abbasi, Amir Ali

    2016-09-01

    Human brain evolution is characterized by dramatic expansion in cerebral cortex size. WDR62 (WD repeat domain 62) is one of the important gene in controlling human cortical development. Mutations in WDR62 lead to primary microcephaly, a neurodevelopmental disease characterized by three to four fold reduction in cerebral cortex size of affected individuals. This study analyzes comparative protein evolutionary rate to provide a useful insight into the molecular evolution of WDR62 and hence pinpointed human specific amino acid replacements. Comparative analysis of human WDR62 with two archaic humans (Neanderthals and Denisovans) and modern human populations revealed that five hominin specific amino acid residues (human specific amino acids shared with two archaic humans) might have been accumulated in the common ancestor of extinct archaic humans and modern humans about 550,000-765,000 years ago. Collectively, the data demonstrates an acceleration of WDR62 sequence evolution in hominin lineage and suggests that the ability of WDR62 protein to mediate the neurogenesis has been altered in the course of hominin evolution. PMID:27114917

  10. Directed Evolution of Unspecific Peroxygenase from Agrocybe aegerita

    PubMed Central

    Molina-Espeja, Patricia; Garcia-Ruiz, Eva; Gonzalez-Perez, David; Ullrich, René; Hofrichter, Martin

    2014-01-01

    Unspecific peroxygenase (UPO) represents a new type of heme-thiolate enzyme with self-sufficient mono(per)oxygenase activity and many potential applications in organic synthesis. With a view to taking advantage of these properties, we subjected the Agrocybe aegerita UPO1-encoding gene to directed evolution in Saccharomyces cerevisiae. To promote functional expression, several different signal peptides were fused to the mature protein, and the resulting products were tested. Over 9,000 clones were screened using an ad hoc dual-colorimetric assay that assessed both peroxidative and oxygen transfer activities. After 5 generations of directed evolution combined with hybrid approaches, 9 mutations were introduced that resulted in a 3,250-fold total activity improvement with no alteration in protein stability. A breakdown between secretion and catalytic activity was performed by replacing the native signal peptide of the original parental type with that of the evolved mutant; the evolved leader increased functional expression 27-fold, whereas an 18-fold improvement in the kcat/Km value for oxygen transfer activity was obtained. The evolved UPO1 was active and highly stable in the presence of organic cosolvents. Mutations in the hydrophobic core of the signal peptide contributed to enhance functional expression up to 8 mg/liter, while catalytic efficiencies for peroxidative and oxygen transfer reactions were increased by several mutations in the vicinity of the heme access channel. Overall, the directed-evolution platform described is a valuable point of departure for the development of customized UPOs with improved features and for the study of structure-function relationships. PMID:24682297

  11. Protein engineering of conger eel galectins by tracing of molecular evolution using probable ancestral mutants

    PubMed Central

    2010-01-01

    Background Conger eel galectins, congerin I (ConI) and congerin II (ConII), show the different molecular characteristics resulting from accelerating evolution. We recently reconstructed a probable ancestral form of congerins, Con-anc. It showed properties similar to those of ConII in terms of thermostability and carbohydrate recognition specificity, although it shares a higher sequence similarity with ConI than ConII. Results In this study, we have focused on the different amino acid residues between Con-anc and ConI, and have performed the protein engineering of Con-anc through site-directed mutagenesis, followed by the molecular evolution analysis of the mutants. This approach revealed the functional importance of loop structures of congerins: (1) N- and C-terminal and loop 5 regions that are involved in conferring a high thermostability to ConI; (2) loops 3, 5, and 6 that are responsible for stronger binding of ConI to most sugars; and (3) loops 5 and 6, and Thr38 residue in loop 3 contribute the specificity of ConI toward lacto-N-fucopentaose-containing sugars. Conclusions Thus, this methodology, with tracing of the molecular evolution using ancestral mutants, is a powerful tool for the analysis of not only the molecular evolutionary process, but also the structural elements of a protein responsible for its various functions. PMID:20152053

  12. Altering Tropism of rAAV by Directed Evolution.

    PubMed

    Marsic, Damien; Zolotukhin, Sergei

    2016-01-01

    Directed evolution represents an attractive approach to derive AAV capsid variants capable of selectively infect specific tissue or cell targets. It involves the generation of an initial library of high complexity followed by cycles of selection during which the library is progressively enriched for target-specific variants. Each selection cycle consists of the following: reconstitution of complete AAV genomes within plasmid molecules; production of virions for which each particular capsid variant is matched with the particular capsid gene encoding it; recovery of capsid gene sequences from target tissue after systemic administration. Prevalent variants are then analyzed and evaluated. PMID:26611585

  13. Parasitic plants have increased rates of molecular evolution across all three genomes

    PubMed Central

    2013-01-01

    Background Theoretical models and experimental evidence suggest that rates of molecular evolution could be raised in parasitic organisms compared to non-parasitic taxa. Parasitic plants provide an ideal test for these predictions, as there are at least a dozen independent origins of the parasitic lifestyle in angiosperms. Studies of a number of parasitic plant lineages have suggested faster rates of molecular evolution, but the results of some studies have been mixed. Comparative analysis of all parasitic plant lineages, including sequences from all three genomes, is needed to examine the generality of the relationship between rates of molecular evolution and parasitism in plants. Results We analysed DNA sequence data from the mitochondrial, nuclear and chloroplast genomes for 12 independent evolutionary origins of parasitism in angiosperms. We demonstrated that parasitic lineages have a faster rate of molecular evolution than their non-parasitic relatives in sequences for all three genomes, for both synonymous and nonsynonymous substitutions. Conclusions Our results prove that raised rates of molecular evolution are a general feature of parasitic plants, not confined to a few taxa or specific genes. We discuss possible causes for this relationship, including increased positive selection associated with host-parasite arms races, relaxed selection, reduced population size or repeated bottlenecks, increased mutation rates, and indirect causal links with generation time and body size. We find no evidence that faster rates are due to smaller effective populations sizes or changes in selection pressure. Instead, our results suggest that parasitic plants have a higher mutation rate than their close non-parasitic relatives. This may be due to a direct connection, where some aspect of the parasitic lifestyle drives the evolution of raised mutation rates. Alternatively, this pattern may be driven by an indirect connection between rates and parasitism: for example, parasitic

  14. A Tale of Two Crocoducks: Creationist Misuses of Molecular Evolution

    NASA Astrophysics Data System (ADS)

    Hofmann, James R.

    2014-10-01

    Although some creationist objections to evolutionary biology are simplistic and thus are easily refuted, when more technical arguments become widespread it is important for science educators to explain the relevant science in a straightforward manner. An interesting case study is provided by misguided allegations about how cytochrome c data pertain to molecular evolution. The most common of these misrepresentations bears a striking similarity to a particularly glaring misunderstanding of what should be expected of a transitional form in a fossil sequence. Although evangelist Kirk Cameron's ridiculous injunction of a hypothetical `crocoduck' as an example of a potential transitional form is frequently invoked to illustrate the ignorance of many critics of evolutionary science, a strikingly analogous argument was applied to cytochrome c data by biochemist Michael Denton in 1985. The details of this analogy are worth exploring to clarify the fallacy of the widely circulated molecular argument.

  15. [Evolution and systematics of nematodes based on molecular investigation].

    PubMed

    Okulewicz, Anna; Perec, Agnieszka

    2004-01-01

    Evolution and systematics of nematodes based on molecular investigation. The use of molecular phylogenetics to examine the interrelationships between animal parasites, free-living nematodes, and plant parasites versus traditional classification based on morphological-ecological characters was discussed and reviewed. Distinct differences were observed between parasitic nematodes and free-living ones. Within the former group, animal parasites turned out to be distinctly different from plant parasites. Using small subunit of ribosomal RNA gene sequence from a wide range of nematodes, there is a possibility to compare animal-parasitic, plant-parasitic and free-living taxa. Nowadays the parasitic nematodes expressed sequence tag (EST) project is currently generating sequence information to provide a new source of data to examine the evolutionary history of this taxonomic group. PMID:16859012

  16. Evolution of molecular crystal optical phonons near structural phase transitions

    NASA Astrophysics Data System (ADS)

    Michki, Nigel; Niessen, Katherine; Xu, Mengyang; Markelz, Andrea

    Molecular crystals are increasingly important photonic and electronic materials. For example organic semiconductors are lightweight compared to inorganic semiconductors and have inexpensive scale up processing with roll to roll printing. However their implementation is limited by their environmental sensitivity, in part arising from the weak intermolecular interactions of the crystal. These weak interactions result in optical phonons in the terahertz frequency range. We examine the evolution of intermolecular interactions near structural phase transitions by measuring the optical phonons as a function of temperature and crystal orientation using terahertz time-domain spectroscopy. The measured orientation dependence of the resonances provides an additional constraint for comparison of the observed spectra with the density functional calculations, enabling us to follow specific phonon modes. We observe crystal reorganization near 350 K for oxalic acid as it transforms from dihydrate to anhydrous form. We also report the first THz spectra for the molecular crystal fructose through its melting point.

  17. Rapid Modeling and Analysis Tools: Evolution, Status, Needs and Directions

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Stone, Thomas J.; Ransom, Jonathan B. (Technical Monitor)

    2002-01-01

    Advanced aerospace systems are becoming increasingly more complex, and customers are demanding lower cost, higher performance, and high reliability. Increased demands are placed on the design engineers to collaborate and integrate design needs and objectives early in the design process to minimize risks that may occur later in the design development stage. High performance systems require better understanding of system sensitivities much earlier in the design process to meet these goals. The knowledge, skills, intuition, and experience of an individual design engineer will need to be extended significantly for the next generation of aerospace system designs. Then a collaborative effort involving the designer, rapid and reliable analysis tools and virtual experts will result in advanced aerospace systems that are safe, reliable, and efficient. This paper discusses the evolution, status, needs and directions for rapid modeling and analysis tools for structural analysis. First, the evolution of computerized design and analysis tools is briefly described. Next, the status of representative design and analysis tools is described along with a brief statement on their functionality. Then technology advancements to achieve rapid modeling and analysis are identified. Finally, potential future directions including possible prototype configurations are proposed.

  18. GeneGenie: optimized oligomer design for directed evolution

    PubMed Central

    Swainston, Neil; Currin, Andrew; Day, Philip J.; Kell, Douglas B.

    2014-01-01

    GeneGenie, a new online tool available at http://www.gene-genie.org, is introduced to support the design and self-assembly of synthetic genes and constructs. GeneGenie allows for the design of oligonucleotide cohorts encoding the gene sequence optimized for expression in any suitable host through an intuitive, easy-to-use web interface. The tool ensures consistent oligomer overlapping melting temperatures, minimizes the likelihood of misannealing, optimizes codon usage for expression in a selected host, allows for specification of forward and reverse cloning sequences (for downstream ligation) and also provides support for mutagenesis or directed evolution studies. Directed evolution studies are enabled through the construction of variant libraries via the optional specification of ‘variant codons’, containing mixtures of bases, at any position. For example, specifying the variant codon TNT (where N is any nucleotide) will generate an equimolar mixture of the codons TAT, TCT, TGT and TTT at that position, encoding a mixture of the amino acids Tyr, Ser, Cys and Phe. This facility is demonstrated through the use of GeneGenie to develop and synthesize a library of enhanced green fluorescent protein variants. PMID:24782527

  19. Simulation of gene evolution under directional mutational pressure

    NASA Astrophysics Data System (ADS)

    Dudkiewicz, Małgorzata; Mackiewicz, Paweł; Kowalczuk, Maria; Mackiewicz, Dorota; Nowicka, Aleksandra; Polak, Natalia; Smolarczyk, Kamila; Banaszak, Joanna; R. Dudek, Mirosław; Cebrat, Stanisław

    2004-05-01

    The two main mechanisms generating the genetic diversity, mutation and recombination, have random character but they are biased which has an effect on the generation of asymmetry in the bacterial chromosome structure and in the protein coding sequences. Thus, like in a case of two chiral molecules-the two possible orientations of a gene in relation to the topology of a chromosome are not equivalent. Assuming that the sequence of a gene may oscillate only between certain limits of its structural composition means that the gene could be forced out of these limits by the directional mutation pressure, in the course of evolution. The probability of the event depends on the time the gene stays under the same mutation pressure. Inversion of the gene changes the directional mutational pressure to the reciprocal one and hence it changes the distance of the gene to its lower and upper bound of the structural tolerance. Using Monte Carlo methods we were able to simulate the evolution of genes under experimentally found mutational pressure, assuming simple mechanisms of selection. We found that the mutation and recombination should work in accordance to lower their negative effects on the function of the products of coding sequences.

  20. High-activity barley alpha-amylase by directed evolution.

    PubMed

    Wong, Dominic W S; Batt, Sarah B; Lee, Charles C; Robertson, George H

    2004-10-01

    Barley alpha-amylase isozyme 2 was cloned into and constitutively secreted by Saccharomyces cervisiae. The gene coding for the wild-type enzyme was subjected to directed evolution. Libraries of mutants were screened by halo formation on starch agar plates, followed by high-throughput liquid assay using dye-labeled starch as the substrate. The concentration of recombinant enzyme in the culture supernatant was determined by immunodetection, and used for the calculation of specific activity. After three rounds of directed evolution, one mutant (Mu322) showed 1000 times the total activity and 20 times the specific activity of the wild-type enzyme produced by the same yeast expression system. Comparison of the amino acid sequence of this mutant with the wild type revealed five substitutions: Q44H, R303K and F325Y in domain A, and T94A and R128Q in domain B. Two of these mutations. Q44H and R303K, result in amino acids highly conserved in cereal alpha-amylases. R303K and F325Y are located in the raw starch-binding fragment of the enzyme molecule. PMID:15635937

  1. A comparison of directed evolution approaches using the beta-glucuronidase model system.

    PubMed

    Rowe, Lori A; Geddie, Melissa L; Alexander, Omar B; Matsumura, Ichiro

    2003-09-26

    Protein engineers can alter the properties of enzymes by directing their evolution in vitro. Many methods to generate molecular diversity and to identify improved clones have been developed, but experimental evolution remains as much an art as a science. We previously used DNA shuffling (sexual recombination) and a histochemical screen to direct the evolution of Escherichia coli beta-glucuronidase (GUS) variants with improved beta-galactosidase (BGAL) activity. Here, we employ the same model evolutionary system to test the efficiencies of several other techniques: recursive random mutagenesis (asexual), combinatorial cassette mutagenesis (high-frequency recombination) and a versatile high-throughput microplate screen. GUS variants with altered specificity evolved in each trial, but different combinations of mutagenesis and screening techniques effected the fixation of different beneficial mutations. The new microplate screen identified a broader set of mutations than the previously employed X-gal colony screen. Recursive random mutagenesis produced essentially asexual populations, within which beneficial mutations drove each other into extinction (clonal interference); DNA shuffling and combinatorial cassette mutagenesis led instead to the accumulation of beneficial mutations within a single allele. These results explain why recombinational approaches generally increase the efficiency of laboratory evolution. PMID:12972256

  2. The interface of protein structure, protein biophysics, and molecular evolution

    PubMed Central

    Liberles, David A; Teichmann, Sarah A; Bahar, Ivet; Bastolla, Ugo; Bloom, Jesse; Bornberg-Bauer, Erich; Colwell, Lucy J; de Koning, A P Jason; Dokholyan, Nikolay V; Echave, Julian; Elofsson, Arne; Gerloff, Dietlind L; Goldstein, Richard A; Grahnen, Johan A; Holder, Mark T; Lakner, Clemens; Lartillot, Nicholas; Lovell, Simon C; Naylor, Gavin; Perica, Tina; Pollock, David D; Pupko, Tal; Regan, Lynne; Roger, Andrew; Rubinstein, Nimrod; Shakhnovich, Eugene; Sjölander, Kimmen; Sunyaev, Shamil; Teufel, Ashley I; Thorne, Jeffrey L; Thornton, Joseph W; Weinreich, Daniel M; Whelan, Simon

    2012-01-01

    Abstract The interface of protein structural biology, protein biophysics, molecular evolution, and molecular population genetics forms the foundations for a mechanistic understanding of many aspects of protein biochemistry. Current efforts in interdisciplinary protein modeling are in their infancy and the state-of-the art of such models is described. Beyond the relationship between amino acid substitution and static protein structure, protein function, and corresponding organismal fitness, other considerations are also discussed. More complex mutational processes such as insertion and deletion and domain rearrangements and even circular permutations should be evaluated. The role of intrinsically disordered proteins is still controversial, but may be increasingly important to consider. Protein geometry and protein dynamics as a deviation from static considerations of protein structure are also important. Protein expression level is known to be a major determinant of evolutionary rate and several considerations including selection at the mRNA level and the role of interaction specificity are discussed. Lastly, the relationship between modeling and needed high-throughput experimental data as well as experimental examination of protein evolution using ancestral sequence resurrection and in vitro biochemistry are presented, towards an aim of ultimately generating better models for biological inference and prediction. PMID:22528593

  3. The evolution of human populations: a molecular perspective.

    PubMed

    Ayala, F J; Escalante, A A

    1996-02-01

    Human evolution exhibits repeated speciations and conspicuous morphological change: from Australopithecus to Homo habilis, H. erectus, and H. sapiens; and from their hominoid ancestor to orangutans, gorillas, chimpanzees, and humans. Theories of founder-event speciation propose that speciation often occurs as a consequence of population bottlenecks, down to one or very few individual pairs. Proponents of punctuated equilibrium claim in addition that founder-event speciation results in rapid morphological change. The major histocompatibility complex (MHC) consists of several very polymorphic gene loci. The genealogy of 19 human alleles of the DQB1 locus coalesces more than 30 million years ago, before the divergence of apes and Old World monkeys. Many human alleles are more closely related to pongid and cercopithecoid alleles than to other human alleles. Using the theory of gene coalescence, we estimate that these polymorphisms require human populations of the order of N = 100,000 individuals for the last several million years. This conclusion is confirmed by computer simulations showing the rate of decay of the polymorphisms over time. Computer simulations indicate, in addition, that in human evolution no bottlenecks have occurred with fewer than several thousand individuals. We evaluate studies of mtDNA, Y-chromosome, and microsatellite autosomal polymorphisms and conclude that they are consistent with the MHC result that no narrow population bottlenecks have occurred in human evolution. The available molecular information favors a recent African origin of modern humans, who spread out of Africa approximately 100,000 to 200,000 years ago. PMID:8673287

  4. Statistical mechanics of quasispecies theories of molecular evolution

    NASA Astrophysics Data System (ADS)

    Munoz Tavera, Enrique

    This thesis presents a statistical mechanical analysis of different formulations of quasispecies theory of molecular evolution. These theories, characterized by two different families of models, the Crow-Kimura and the Eigen model, constitute a microscopie description of evolution. These models are most often used for RNA viruses, where a phase transition is predicted, in agreement with experiments, between an organized or quasispecies phase, and a disordered non-selective phase when the mutation rate exceeds a critical value. The methods of statistical mechanics, in particular field-theoretic methods, are employed to obtain analytic solutions to four problems relevant to biological interest. The first chapter presents the study of evolution under a multiple-peak fitness landscape, with biological applications in the study of the proliferation of viruses or cancer under the control of drugs or the immune system. The second chapter studies the effect of incorporating different forms of horizontal gene transfer and two-parent recombination to the classical formulation of quasispecies models. As an example, we study the effect of the sign of epistasis of the fitness landscape on the advantage or disadvantage of recombination for the mean fitness. The third chapter considers the relaxation of the purine/pyrimidine assumption in the classical formulation of the models, by formulating and solving the parallel and Eigen models in the context of a four-letter alphabet. The fourth and final chapter studies finite population effects, both in the presence and in the absence of horizontal gene transfer.

  5. Modelling biological evolution: recent progress, current challenges and future direction

    PubMed Central

    Morozov, Andrew

    2013-01-01

    Mathematical modelling is widely recognized as a powerful and convenient theoretical tool for investigating various aspects of biological evolution and explaining the existing genetic complexity of the real world. It is increasingly apparent that understanding the key mechanisms involved in the processes of species biodiversity, natural selection and inheritance, patterns of animal behaviour and coevolution of species in complex ecological systems is simply impossible by means of laboratory experiments and field observations alone. Mathematical models are so important because they provide wide-ranging exploration of the problem without a need for experiments with biological systems—which are usually expensive, often require long time and can be potentially dangerous. However, as the number of theoretical works on modelling biological evolution is constantly accelerating each year as different mathematical frameworks and various aspects of evolutionary problems are considered, it is often hard to avoid getting lost in such an immense flux of publications. The aim of this issue of Interface Focus is to provide a useful guide to important recent findings in some key areas in modelling biological evolution, to refine the existing challenges and to outline possible future directions. In particular, the following topics are addressed here by world-leading experts in the modelling of evolution: (i) the origins of biodiversity observed in ecosystems and communities; (ii) evolution of decision-making by animals and the optimal strategy of populations; (iii) links between evolutionary and ecological processes across different time scales; (iv) quantification of biological information in evolutionary models; and (v) linking theoretical models with empirical data. Most of the works presented here are in fact contributed papers from the international conference ‘Modelling Biological Evolution’ (MBE 2013), which took place in Leicester, UK, in May 2013 and brought together

  6. Supernova Feedback in Molecular Clouds: Global Evolution and Dynamics

    NASA Astrophysics Data System (ADS)

    Körtgen, Bastian; Seifried, Daniel; Banerjee, Robi; Vázquez-Semadeni, Enrique; Zamora-Avilés, Manuel

    2016-04-01

    We use magnetohydrodynamical simulations of converging warm neutral medium flows to analyse the formation and global evolution of magnetised and turbulent molecular clouds subject to supernova feedback from massive stars. We show that supernova feedback alone fails to disrupt entire, gravitationally bound, molecular clouds, but is able to disperse small-sized (˜10 pc) regions on timescales of less than 1 Myr. Efficient radiative cooling of the supernova remnant as well as strong compression of the surrounding gas result in non-persistent energy and momentum input from the supernovae. However, if the time between subsequent supernovae is short and they are clustered, large hot bubbles form that disperse larger regions of the parental cloud. On longer timescales, supernova feedback increases the amount of gas with moderate temperatures (T ≈ 300 - 3000 K). Despite its inability to disrupt molecular clouds, supernova feedback leaves a strong imprint on the star formation process. We find an overall reduction of the star formation efficiency by a factor of 2 and of the star formation rate by roughly factors of 2-4.

  7. Supernova feedback in molecular clouds: global evolution and dynamics

    NASA Astrophysics Data System (ADS)

    Körtgen, Bastian; Seifried, Daniel; Banerjee, Robi; Vázquez-Semadeni, Enrique; Zamora-Avilés, Manuel

    2016-07-01

    We use magnetohydrodynamical simulations of converging warm neutral medium flows to analyse the formation and global evolution of magnetized and turbulent molecular clouds subject to supernova feedback from massive stars. We show that supernova feedback alone fails to disrupt entire, gravitationally bound, molecular clouds, but is able to disperse small-sized (˜10 pc) regions on time-scales of less than 1 Myr. Efficient radiative cooling of the supernova remnant as well as strong compression of the surrounding gas result in non-persistent energy and momentum input from the supernovae. However, if the time between subsequent supernovae is short and they are clustered, large hot bubbles form that disperse larger regions of the parental cloud. On longer time-scales, supernova feedback increases the amount of gas with moderate temperatures (T ≈ 300-3000 K). Despite its inability to disrupt molecular clouds, supernova feedback leaves a strong imprint on the star formation process. We find an overall reduction of the star formation efficiency by a factor of 2 and of the star formation rate by roughly factors of 2-4.

  8. MOLECULAR GAS EVOLUTION ACROSS A SPIRAL ARM IN M51

    SciTech Connect

    Egusa, Fumi; Scoville, Nick; Koda, Jin

    2011-01-10

    We present sensitive and high angular resolution CO(1-0) data obtained by the Combined Array for Research in Millimeter-wave Astronomy observations toward the nearby grand-design spiral galaxy M51. The angular resolution of 0.''7 corresponds to 30 pc, which is similar to the typical size of giant molecular clouds (GMCs), and the sensitivity is also high enough to detect typical GMCs. Within the 1' field of view centered on a spiral arm, a number of GMC-scale structures are detected as clumps. However, only a few clumps are found to be associated with each giant molecular association (GMA) and more than 90% of the total flux is resolved out in our data. Considering the high sensitivity and resolution of our data, these results indicate that GMAs are not mere confusion with GMCs but plausibly smooth structures. In addition, we have found that the most massive clumps are located downstream of the spiral arm, which suggests that they are at a later stage of molecular cloud evolution across the arm and plausibly are cores of GMAs. By comparing with H{alpha} and Pa{alpha} images, most of these cores are found to have nearby star-forming regions. We thus propose an evolutionary scenario for the interstellar medium, in which smaller molecular clouds collide to form smooth GMAs at spiral arm regions and then star formation is triggered in the GMA cores. Our new CO data have revealed the internal structure of GMAs at GMC scales, finding the most massive substructures on the downstream side of the arm in close association with the brightest H II regions.

  9. Electrocatalytic hydrogen evolution in acidic water with molecular cobalt tetraazamacrocycles.

    PubMed

    McCrory, Charles C L; Uyeda, Christopher; Peters, Jonas C

    2012-02-15

    A series of water-soluble molecular cobalt complexes of tetraazamacrocyclic ligands are reported for the electrocatalytic production of H(2) from pH 2.2 aqueous solutions. The comparative data reported for this family of complexes shed light on their relative efficiencies for hydrogen evolution in water. Rotating disk electrode voltammetry data are presented for each of the complexes discussed, as are data concerning their respective pH-dependent electrocatalytic activity. In particular, two diimine-dioxime complexes were identified as exhibiting catalytic onset at comparatively low overpotentials relative to other reported homogeneous cobalt and nickel electrocatalysts in aqueous solution. These complexes are stable at pH 2.2 and produce hydrogen with high Faradaic efficiency in bulk electrolysis experiments over time intervals ranging from 2 to 24 h. PMID:22280515

  10. Spatiotemporal evolution of plasma molecular emission following laser ablation of explosive analogs

    NASA Astrophysics Data System (ADS)

    Merten, Jonathan; Jones, Matthew; Sheppard, Cheyenne; Parigger, Christian; Allen, Susan

    2013-05-01

    The spatial and temporal evolution of the CN molecular emission following laser ablation of a TNT analog (3- nitrobenzoic acid) has been studied along with ablation of targets that contain neither nitro groups nor C-N bonds. At a fluence of ~104 J/cm2, behavior indicative of the ablation of native CN bonds has been observed in samples containing no native CN bonds. The recorded data show significant plasma background emissions that pose difficulties for direct spectral imaging. Spatially resolved images suggest that some of the observed phenomena are simply the result of the interaction of the plasma and the observation volume of the collection optics.

  11. Directed Evolution of FLS2 towards Novel Flagellin Peptide Recognition.

    PubMed

    Helft, Laura; Thompson, Mikayla; Bent, Andrew F

    2016-01-01

    Microbe-associated molecular patterns (MAMPs) are molecules, or domains within molecules, that are conserved across microbial taxa and can be recognized by a plant or animal immune system. Although MAMP receptors have evolved to recognize conserved epitopes, the MAMPs in some microbial species or strains have diverged sufficiently to render them unrecognizable by some host immune systems. In this study, we carried out in vitro evolution of the Arabidopsis thaliana flagellin receptor FLAGELLIN-SENSING 2 (FLS2) to isolate derivatives that recognize one or more flagellin peptides from bacteria for which the wild-type Arabidopsis FLS2 confers little or no response. A targeted approach generated amino acid variation at FLS2 residues in a region previously implicated in flagellin recognition. The primary screen tested for elevated response to the canonical flagellin peptide from Pseudomonas aeruginosa, flg22. From this pool, we then identified five alleles of FLS2 that confer modest (quantitatively partial) recognition of an Erwinia amylovora flagellin peptide. Use of this Erwinia-based flagellin peptide to stimulate Arabidopsis plants expressing the resulting FLS2 alleles did not lead to a detectable reduction of virulent P. syringae pv. tomato growth. However, combination of two identified mutations into a single allele further increased FLS2-mediated responses to the E. amylovora flagellin peptide. These studies demonstrate the potential to raise the sensitivity of MAMP receptors toward particular targets. PMID:27270917

  12. Directed evolution of FLS2 towards novel flagellin peptide recognition

    DOE PAGESBeta

    Helft, Laura; Thompson, Mikayla; Bent, Andrew F.

    2016-06-06

    Microbe-associated molecular patterns (MAMPs) are molecules, or domains within molecules, that are conserved across microbial taxa and can be recognized by a plant or animal immune system. Although MAMP receptors have evolved to recognize conserved epitopes, the MAMPs in some microbial species or strains have diverged sufficiently to render them unrecognizable by some host immune systems. In this study, we carried out in vitro evolution of the Arabidopsis thaliana flagellin receptor FLAGELLIN-SENSING 2 (FLS2) to isolate derivatives that recognize one or more flagellin peptides from bacteria for which the wild type Arabidopsis FLS2 confers little or no response. A targetedmore » approach generated amino acid variation at FLS2 residues in a region previously implicated in flagellin recognition. The primary screen tested for elevated response to the canonical flagellin peptide from Pseudomonas aeruginosa, flg22. From this pool, we then identified five alleles of FLS2 that confer modest (quantitatively partial) recognition of an Erwinia amylovora flagellin peptide. Use of this Erwinia-based flagellin peptide to stimulate Arabidopsis plants expressing the resulting FLS2 alleles did not lead to a detectable reduction of virulent P. syringae pv. tomato growth. However, combination of two identified mutations into a single allele further increased FLS2-mediated responses to the E. amylovora flagellin peptide. As a result, these studies demonstrate the potential to raise the sensitivity of MAMP receptors toward particular targets.« less

  13. Directed Evolution of FLS2 towards Novel Flagellin Peptide Recognition

    PubMed Central

    Helft, Laura; Thompson, Mikayla

    2016-01-01

    Microbe-associated molecular patterns (MAMPs) are molecules, or domains within molecules, that are conserved across microbial taxa and can be recognized by a plant or animal immune system. Although MAMP receptors have evolved to recognize conserved epitopes, the MAMPs in some microbial species or strains have diverged sufficiently to render them unrecognizable by some host immune systems. In this study, we carried out in vitro evolution of the Arabidopsis thaliana flagellin receptor FLAGELLIN-SENSING 2 (FLS2) to isolate derivatives that recognize one or more flagellin peptides from bacteria for which the wild-type Arabidopsis FLS2 confers little or no response. A targeted approach generated amino acid variation at FLS2 residues in a region previously implicated in flagellin recognition. The primary screen tested for elevated response to the canonical flagellin peptide from Pseudomonas aeruginosa, flg22. From this pool, we then identified five alleles of FLS2 that confer modest (quantitatively partial) recognition of an Erwinia amylovora flagellin peptide. Use of this Erwinia-based flagellin peptide to stimulate Arabidopsis plants expressing the resulting FLS2 alleles did not lead to a detectable reduction of virulent P. syringae pv. tomato growth. However, combination of two identified mutations into a single allele further increased FLS2-mediated responses to the E. amylovora flagellin peptide. These studies demonstrate the potential to raise the sensitivity of MAMP receptors toward particular targets. PMID:27270917

  14. Molecular Evolution and Structural Features of IRAK Family Members

    PubMed Central

    Gosu, Vijayakumar; Basith, Shaherin; Durai, Prasannavenkatesh; Choi, Sangdun

    2012-01-01

    The interleukin-1 receptor-associated kinase (IRAK) family comprises critical signaling mediators of the TLR/IL-1R signaling pathways. IRAKs are Ser/Thr kinases. There are 4 members in the vertebrate genome (IRAK1, IRAK2, IRAKM, and IRAK4) and an IRAK homolog, Pelle, in insects. IRAK family members are highly conserved in vertebrates, but the evolutionary relationship between IRAKs in vertebrates and insects is not clear. To investigate the evolutionary history and functional divergence of IRAK members, we performed extensive bioinformatics analysis. The phylogenetic relationship between IRAK sequences suggests that gene duplication events occurred in the evolutionary lineage, leading to early vertebrates. A comparative phylogenetic analysis with insect homologs of IRAKs suggests that the Tube protein is a homolog of IRAK4, unlike the anticipated protein, Pelle. Furthermore, the analysis supports that an IRAK4-like kinase is an ancestral protein in the metazoan lineage of the IRAK family. Through functional analysis, several potentially diverged sites were identified in the common death domain and kinase domain. These sites have been constrained during evolution by strong purifying selection, suggesting their functional importance within IRAKs. In summary, our study highlighted the molecular evolution of the IRAK family, predicted the amino acids that contributed to functional divergence, and identified structural variations among the IRAK paralogs that may provide a starting point for further experimental investigations. PMID:23166766

  15. Molecular Evolution of the Capsid Gene in Norovirus Genogroup I.

    PubMed

    Kobayashi, Miho; Yoshizumi, Shima; Kogawa, Sayaka; Takahashi, Tomoko; Ueki, Yo; Shinohara, Michiyo; Mizukoshi, Fuminori; Tsukagoshi, Hiroyuki; Sasaki, Yoshiko; Suzuki, Rieko; Shimizu, Hideaki; Iwakiri, Akira; Okabe, Nobuhiko; Shirabe, Komei; Shinomiya, Hiroto; Kozawa, Kunihisa; Kusunoki, Hideki; Ryo, Akihide; Kuroda, Makoto; Katayama, Kazuhiko; Kimura, Hirokazu

    2015-01-01

    We studied the molecular evolution of the capsid gene in all genotypes (genotypes 1-9) of human norovirus (NoV) genogroup I. The evolutionary time scale and rate were estimated by the Bayesian Markov chain Monte Carlo (MCMC) method. We also performed selective pressure analysis and B-cell linear epitope prediction in the deduced NoV GI capsid protein. Furthermore, we analysed the effective population size of the virus using Bayesian skyline plot (BSP) analysis. A phylogenetic tree by MCMC showed that NoV GI diverged from the common ancestor of NoV GII, GIII, and GIV approximately 2,800 years ago with rapid evolution (about 10(-3) substitutions/site/year). Some positive selection sites and over 400 negative selection sites were estimated in the deduced capsid protein. Many epitopes were estimated in the deduced virus capsid proteins. An epitope of GI.1 may be associated with histo-blood group antigen binding sites (Ser377, Pro378, and Ser380). Moreover, BSP suggested that the adaptation of NoV GI strains to humans was affected by natural selection. The results suggested that NoV GI strains evolved rapidly and date back to many years ago. Additionally, the virus may have undergone locally affected natural selection in the host resulting in its adaptation to humans. PMID:26338545

  16. Sex speeds adaptation by altering the dynamics of molecular evolution.

    PubMed

    McDonald, Michael J; Rice, Daniel P; Desai, Michael M

    2016-03-10

    Sex and recombination are pervasive throughout nature despite their substantial costs. Understanding the evolutionary forces that maintain these phenomena is a central challenge in biology. One longstanding hypothesis argues that sex is beneficial because recombination speeds adaptation. Theory has proposed several distinct population genetic mechanisms that could underlie this advantage. For example, sex can promote the fixation of beneficial mutations either by alleviating interference competition (the Fisher-Muller effect) or by separating them from deleterious load (the ruby in the rubbish effect). Previous experiments confirm that sex can increase the rate of adaptation, but these studies did not observe the evolutionary dynamics that drive this effect at the genomic level. Here we present the first, to our knowledge, comparison between the sequence-level dynamics of adaptation in experimental sexual and asexual Saccharomyces cerevisiae populations, which allows us to identify the specific mechanisms by which sex speeds adaptation. We find that sex alters the molecular signatures of evolution by changing the spectrum of mutations that fix, and confirm theoretical predictions that it does so by alleviating clonal interference. We also show that substantially deleterious mutations hitchhike to fixation in adapting asexual populations. In contrast, recombination prevents such mutations from fixing. Our results demonstrate that sex both speeds adaptation and alters its molecular signature by allowing natural selection to more efficiently sort beneficial from deleterious mutations. PMID:26909573

  17. Evolution of Molecular Clouds in a Hot Plasma

    NASA Astrophysics Data System (ADS)

    Vieser, Wolfgang; Hensler, Gerhard

    We are performing 2D hydrodynamic simulations to examine the evaporation and condensation of molecular clouds in the hot phase of the interstellar medium due to heat conduction. Heat conduction is a process that may not be neglected for clouds which are embedded in a hot gas, High-Velocity-Clouds falling through the hot galactic halo or clouds in a galactic chimney. The evolution of cold and dense clouds with different masses and radii is calculated in the subsonic streaming of a hot rarefied plasma. Our code includes self-gravity, heating and cooling effects and heat conduction by electrons. Simulations with and without heat conduction show significant differences. Heat conduction provides a possibility to stabilize clouds agains hydrodynamic instabilities. Molecular clouds become able to survive significantly longer in a violent stream of hot gas. Additionally, this hot gas condensates onto the cloud's surface and is mixed very efficiently with the cloud material. Therefore, heat conduction is an important process, which has to be considered in order to explain the existence and metallicity of clouds in a stream of hot gas.

  18. Evolution of Molecular Alignment in a Background Plasma

    NASA Astrophysics Data System (ADS)

    Pearson, Andrew; Antonsen, Thomas

    2008-11-01

    We study numerically the behavior of rotational revivals in a molecular gas when subject to the fluctuating electric field of a background plasma. We model a molecule as a rigid rotor and couple it to an electric field using permanent and induced multipole interactions. The evolution of the density matrix for the molecule is calculated for a short, intense laser pulse, followed by a fluctuating electric field. A broad superposition of angular momentum eigenstates of a molecule is created by the laser field, and the result is a set of recurring peaks in the probability density for observing a particular orientation -- the so-called 'rotational revivals.' Experimentally, this effect is manifest as a variation in the refractive index of the gas [1]. The fluctuating field is created using the dressed particle method, and the result is a loss of coherence between the phases of the basis states of the molecule, which causes a decreasing amplitude for subsequent alignment peaks. Modern short-pulse lasers operate with sufficient intensity to make this effect relevant to experiments in molecular alignment. This work was supported by the Department of Energy.[1] Y.-H. Chen et. al., Optics Express Vol. 15, No. 18, 11341 (2007)

  19. Molecular evolution of Dmrt1 accompanies change of sex-determining mechanisms in reptilia

    PubMed Central

    Janes, Daniel E.; Organ, Christopher L.; Stiglec, Rami; O'Meally, Denis; Sarre, Stephen D.; Georges, Arthur; Graves, Jennifer A. M.; Valenzuela, Nicole; Literman, Robert A.; Rutherford, Kim; Gemmell, Neil; Iverson, John B.; Tamplin, Jeffrey W.; Edwards, Scott V.; Ezaz, Tariq

    2014-01-01

    In reptiles, sex-determining mechanisms have evolved repeatedly and reversibly between genotypic and temperature-dependent sex determination. The gene Dmrt1 directs male determination in chicken (and presumably other birds), and regulates sex differentiation in animals as distantly related as fruit flies, nematodes and humans. Here, we show a consistent molecular difference in Dmrt1 between reptiles with genotypic and temperature-dependent sex determination. Among 34 non-avian reptiles, a convergently evolved pair of amino acids encoded by sequence within exon 2 near the DM-binding domain of Dmrt1 distinguishes species with either type of sex determination. We suggest that this amino acid shift accompanied the evolution of genotypic sex determination from an ancestral condition of temperature-dependent sex determination at least three times among reptiles, as evident in turtles, birds and squamates. This novel hypothesis describes the evolution of sex-determining mechanisms as turnover events accompanied by one or two small mutations. PMID:25540158

  20. The first molecular phylogeny of Strepsiptera (Insecta) reveals an early burst of molecular evolution correlated with the transition to endoparasitism.

    PubMed

    McMahon, Dino P; Hayward, Alexander; Kathirithamby, Jeyaraney

    2011-01-01

    A comprehensive model of evolution requires an understanding of the relationship between selection at the molecular and phenotypic level. We investigate this in Strepsiptera, an order of endoparasitic insects whose evolutionary biology is poorly studied. We present the first molecular phylogeny of Strepsiptera, and use this as a framework to investigate the association between parasitism and molecular evolution. We find evidence of a significant burst in the rate of molecular evolution in the early history of Strepsiptera. The evolution of morphological traits linked to parasitism is significantly correlated with the pattern in molecular rate. The correlated burst in genotypic-phenotypic evolution precedes the main phase of strepsipteran diversification, which is characterised by the return to a low and even molecular rate, and a period of relative morphological stability. These findings suggest that the transition to endoparasitism led to relaxation of selective constraint in the strepsipteran genome. Our results indicate that a parasitic lifestyle can affect the rate of molecular evolution, although other causal life-history traits correlated with parasitism may also play an important role. PMID:21738621

  1. Directed molecular evolution to design advanced red fluorescent proteins

    PubMed Central

    Subach, Fedor V; Piatkevich, Kiryl D; Verkhusha, Vladislav V

    2015-01-01

    Fluorescent proteins have become indispensable imaging tools for biomedical research. continuing progress in fluorescence imaging, however, requires probes with additional colors and properties optimized for emerging techniques. Here we summarize strategies for development of red-shifted fluorescent proteins. We discuss possibilities for knowledge-based rational design based on the photochemistry of fluorescent proteins and the position of the chromophore in protein structure. We consider advances in library design by mutagenesis, protein expression systems and instrumentation for high-throughput screening that should yield improved fluorescent proteins for advanced imaging applications. PMID:22127219

  2. Evolution of grain structures during directional solidification of silicon wafers

    NASA Astrophysics Data System (ADS)

    Lin, H. K.; Wu, M. C.; Chen, C. C.; Lan, C. W.

    2016-04-01

    The evolution of grain structures, especially the types of grain boundaries (GBs), during directional solidification is crucial to the electrical properties of multicrystalline silicon used for solar cells. To study this, the electric molten zone crystallization (EMZC) of silicon wafers at different drift speeds from 2 to 6 mm/min was considered. It was found that <111> orientation was dominant at the lower drift velocity, while <112> orientation at the higher drift velocity. Most of the non-∑GBs tended to align with the thermal gradient, but some tilted toward the unfavorable grains having higher interfacial energies. On the other hand, the tilted ∑3GBs tended to decrease during grain competition, except at the higher speed, where the twin nucleation became frequent. The competition of grains separated by ∑GBs could be viewed as the interactions of GBs that two coherent ∑3n GBs turned into one ∑3nGB following certain relations as reported before. On the other hand, when ∑ GBs met non-∑ GBs, the non-∑ GBs remained which explained the decrease of ∑ GBs at the lower speed.

  3. New approaches to enzymatic glycoside synthesis through directed evolution.

    PubMed

    Kittl, Roman; Withers, Stephen G

    2010-07-01

    The expanding field of glycobiology requires tools for the synthesis of structurally defined oligosaccharides and glycoconjugates, while any potential therapeutic applications of sugar-based derivates would require access to substantial quantities of such compounds. Classical chemical approaches are not well suited for such large-scale syntheses, thus enzymatic approaches are sought. Traditional routes to the enzymatic assembly of oligosaccharides have involved the use of either Nature's own biosynthetic enzymes, the glycosyl transferases, or glycosidases run in transglycosylation mode. However, each approach has drawbacks that have limited its application. Glycosynthases are mutant glycosidases in which the catalytic nucleophile has been replaced by mutation, inactivating them as hydrolases. When used in conjunction with glycosyl fluorides of the opposite anomeric configuration to that of the substrate, these enzymes function as highly efficient transferases, frequently giving stoichiometric yields of products. Further improvements can be obtained through directed evolution of the gene encoding the enzyme in question, but this requires the ability to screen very large libraries of catalysts. In this review we survey new screening methods for the formation of glycosidic linkages using high-throughput techniques, such as FACS, chemical complementation, and robot-assisted ELISA assays. Enzymes were evolved to have higher catalytic activity with their natural substrates, to show altered substrate specificities or to be promiscuous for efficient application in oligosaccharide, glycolipid, and glycoprotein synthesis. PMID:20427037

  4. ScaffoldSeq: Software for characterization of directed evolution populations.

    PubMed

    Woldring, Daniel R; Holec, Patrick V; Hackel, Benjamin J

    2016-07-01

    ScaffoldSeq is software designed for the numerous applications-including directed evolution analysis-in which a user generates a population of DNA sequences encoding for partially diverse proteins with related functions and would like to characterize the single site and pairwise amino acid frequencies across the population. A common scenario for enzyme maturation, antibody screening, and alternative scaffold engineering involves naïve and evolved populations that contain diversified regions, varying in both sequence and length, within a conserved framework. Analyzing the diversified regions of such populations is facilitated by high-throughput sequencing platforms; however, length variability within these regions (e.g., antibody CDRs) encumbers the alignment process. To overcome this challenge, the ScaffoldSeq algorithm takes advantage of conserved framework sequences to quickly identify diverse regions. Beyond this, unintended biases in sequence frequency are generated throughout the experimental workflow required to evolve and isolate clones of interest prior to DNA sequencing. ScaffoldSeq software uniquely handles this issue by providing tools to quantify and remove background sequences, cluster similar protein families, and dampen the impact of dominant clones. The software produces graphical and tabular summaries for each region of interest, allowing users to evaluate diversity in a site-specific manner as well as identify epistatic pairwise interactions. The code and detailed information are freely available at http://research.cems.umn.edu/hackel. Proteins 2016; 84:869-874. © 2016 Wiley Periodicals, Inc. PMID:27018773

  5. Direct formic acid microfluidic fuel cell design and performance evolution

    NASA Astrophysics Data System (ADS)

    Moreno-Zuria, A.; Dector, A.; Cuevas-Muñiz, F. M.; Esquivel, J. P.; Sabaté, N.; Ledesma-García, J.; Arriaga, L. G.; Chávez-Ramírez, A. U.

    2014-12-01

    This work reports the evolution of design, fabrication and testing of direct formic acid microfluidic fuel cells (DFAμFFC), the architecture and channel dimensions are miniaturized from a thousand to few cents of micrometers. Three generations of DFAμFFCs are presented, from the initial Y-shape configuration made by a hot pressing technique; evolving into a novel miniaturized fuel cell based on microfabrication technology using SU-8 photoresist as core material; to the last air-breathing μFFC with enhanced performance and built with low cost materials and processes. The three devices were evaluated in acidic media in the presence of formic acid as fuel and oxygen/air as oxidant. Commercial Pt/C (30 wt. % E-TEK) and Pd/C XC-72 (20 wt. %, E-TEK) were used as cathode and anode electrodes respectively. The air-breathing μFFC generation, delivered up to 27.3 mW cm-2 for at least 30 min, which is a competitive power density value at the lowest fuel flow of 200 μL min-1 reported to date.

  6. Directed Evolution of Ionizing Radiation Resistance in Escherichia coli▿ †

    PubMed Central

    Harris, Dennis R.; Pollock, Steve V.; Wood, Elizabeth A.; Goiffon, Reece J.; Klingele, Audrey J.; Cabot, Eric L.; Schackwitz, Wendy; Martin, Joel; Eggington, Julie; Durfee, Timothy J.; Middle, Christina M.; Norton, Jason E.; Popelars, Michael C.; Li, Hao; Klugman, Sarit A.; Hamilton, Lindsay L.; Bane, Lukas B.; Pennacchio, Len A.; Albert, Thomas J.; Perna, Nicole T.; Cox, Michael M.; Battista, John R.

    2009-01-01

    We have generated extreme ionizing radiation resistance in a relatively sensitive bacterial species, Escherichia coli, by directed evolution. Four populations of Escherichia coli K-12 were derived independently from strain MG1655, with each specifically adapted to survive exposure to high doses of ionizing radiation. D37 values for strains isolated from two of the populations approached that exhibited by Deinococcus radiodurans. Complete genomic sequencing was carried out on nine purified strains derived from these populations. Clear mutational patterns were observed that both pointed to key underlying mechanisms and guided further characterization of the strains. In these evolved populations, passive genomic protection is not in evidence. Instead, enhanced recombinational DNA repair makes a prominent but probably not exclusive contribution to genome reconstitution. Multiple genes, multiple alleles of some genes, multiple mechanisms, and multiple evolutionary pathways all play a role in the evolutionary acquisition of extreme radiation resistance. Several mutations in the recA gene and a deletion of the e14 prophage both demonstrably contribute to and partially explain the new phenotype. Mutations in additional components of the bacterial recombinational repair system and the replication restart primosome are also prominent, as are mutations in genes involved in cell division, protein turnover, and glutamate transport. At least some evolutionary pathways to extreme radiation resistance are constrained by the temporally ordered appearance of specific alleles. PMID:19502398

  7. Directed Evolution and Structural Characterization of a Simvastatin Synthase

    SciTech Connect

    Gao, Xue; Xie, Xinkai; Pashkov, Inna; Sawaya, Michael R.; Laidman, Janel; Zhang, Wenjun; Cacho, Ralph; Yeates, Todd O.; Tang, Yi; UCLA

    2010-02-02

    Enzymes from natural product biosynthetic pathways are attractive candidates for creating tailored biocatalysts to produce semisynthetic pharmaceutical compounds. LovD is an acyltransferase that converts the inactive monacolin J acid (MJA) into the cholesterol-lowering lovastatin. LovD can also synthesize the blockbuster drug simvastatin using MJA and a synthetic {alpha}-dimethylbutyryl thioester, albeit with suboptimal properties as a biocatalyst. Here we used directed evolution to improve the properties of LovD toward semisynthesis of simvastatin. Mutants with improved catalytic efficiency, solubility, and thermal stability were obtained, with the best mutant displaying an {approx}11-fold increase in an Escherichia coli-based biocatalytic platform. To understand the structural basis of LovD enzymology, seven X-ray crystal structures were determined, including the parent LovD, an improved mutant G5, and G5 cocrystallized with ligands. Comparisons between the structures reveal that beneficial mutations stabilize the structure of G5 in a more compact conformation that is favorable for catalysis.

  8. Hepatitis C virus molecular evolution: Transmission, disease progression and antiviral therapy

    PubMed Central

    Preciado, Maria Victoria; Valva, Pamela; Escobar-Gutierrez, Alejandro; Rahal, Paula; Ruiz-Tovar, Karina; Yamasaki, Lilian; Vazquez-Chacon, Carlos; Martinez-Guarneros, Armando; Carpio-Pedroza, Juan Carlos; Fonseca-Coronado, Salvador; Cruz-Rivera, Mayra

    2014-01-01

    Hepatitis C virus (HCV) infection represents an important public health problem worldwide. Reduction of HCV morbidity and mortality is a current challenge owned to several viral and host factors. Virus molecular evolution plays an important role in HCV transmission, disease progression and therapy outcome. The high degree of genetic heterogeneity characteristic of HCV is a key element for the rapid adaptation of the intrahost viral population to different selection pressures (e.g., host immune responses and antiviral therapy). HCV molecular evolution is shaped by different mechanisms including a high mutation rate, genetic bottlenecks, genetic drift, recombination, temporal variations and compartmentalization. These evolutionary processes constantly rearrange the composition of the HCV intrahost population in a staging manner. Remarkable advances in the understanding of the molecular mechanism controlling HCV replication have facilitated the development of a plethora of direct-acting antiviral agents against HCV. As a result, superior sustained viral responses have been attained. The rapidly evolving field of anti-HCV therapy is expected to broad its landscape even further with newer, more potent antivirals, bringing us one step closer to the interferon-free era. PMID:25473152

  9. The Coevolution of Phycobilisomes: Molecular Structure Adapting to Functional Evolution

    PubMed Central

    Shi, Fei; Qin, Song; Wang, Yin-Chu

    2011-01-01

    Phycobilisome is the major light-harvesting complex in cyanobacteria and red alga. It consists of phycobiliproteins and their associated linker peptides which play key role in absorption and unidirectional transfer of light energy and the stability of the whole complex system, respectively. Former researches on the evolution among PBPs and linker peptides had mainly focused on the phylogenetic analysis and selective evolution. Coevolution is the change that the conformation of one residue is interrupted by mutation and a compensatory change selected for in its interacting partner. Here, coevolutionary analysis of allophycocyanin, phycocyanin, and phycoerythrin and covariation analysis of linker peptides were performed. Coevolution analyses reveal that these sites are significantly correlated, showing strong evidence of the functional and structural importance of interactions among these residues. According to interprotein coevolution analysis, less interaction was found between PBPs and linker peptides. Our results also revealed the correlations between the coevolution and adaptive selection in PBS were not directly related, but probably demonstrated by the sites coupled under physical-chemical interactions. PMID:21904470

  10. Molecular evolution of the MAGUK family in metazoan genomes

    PubMed Central

    te Velthuis, Aartjan JW; Admiraal, Jeroen F; Bagowski, Christoph P

    2007-01-01

    Background Development, differentiation and physiology of metazoans all depend on cell to cell communication and subsequent intracellular signal transduction. Often, these processes are orchestrated via sites of specialized cell-cell contact and involve receptors, adhesion molecules and scaffolding proteins. Several of these scaffolding proteins important for synaptic and cellular junctions belong to the large family of membrane-associated guanylate kinases (MAGUK). In order to elucidate the origin and the evolutionary history of the MAGUKs we investigated full-length cDNA, EST and genomic sequences of species in major phyla. Results Our results indicate that at least four of the seven MAGUK subfamilies were present in early metazoan lineages, such as Porifera. We employed domain sequence and structure based methods to infer a model for the evolutionary history of the MAGUKs. Notably, the phylogenetic trees for the guanylate kinase (GK)-, the PDZ- and the SH3-domains all suggested a matching evolutionary model which was further supported by molecular modeling of the 3D structures of different GK domains. We found no MAGUK in plants, fungi or other unicellular organisms, which suggests that the MAGUK core structure originated early in metazoan history. Conclusion In summary, we have characterized here the molecular and structural evolution of the large MAGUK family. Using the MAGUKs as an example, our results show that it is possible to derive a highly supported evolutionary model for important multidomain families by analyzing encoded protein domains. It further suggests that larger superfamilies encoded in the different genomes can be analyzed in a similar manner. PMID:17678554

  11. Chemical evolution of giant molecular clouds in simulations of galaxies

    NASA Astrophysics Data System (ADS)

    Richings, Alexander J.; Schaye, Joop

    2016-08-01

    We present an analysis of giant molecular clouds (GMCs) within hydrodynamic simulations of isolated, low-mass (M* ˜ 109 M⊙) disc galaxies. We study the evolution of molecular abundances and the implications for CO emission and the XCO conversion factor in individual clouds. We define clouds either as regions above a density threshold n_{H, min} = 10 {cm}^{-3}, or using an observationally motivated CO intensity threshold of 0.25 {K} {km} {s}^{-1}. Our simulations include a non-equilibrium chemical model with 157 species, including 20 molecules. We also investigate the effects of resolution and pressure floors (i.e. Jeans limiters). We find cloud lifetimes up to ≈ 40 Myr, with a median of 13 Myr, in agreement with observations. At one-tenth solar metallicity, young clouds ( ≲ 10-15 Myr) are underabundant in H2 and CO compared to chemical equilibrium, by factors of ≈3 and one to two orders of magnitude, respectively. At solar metallicity, GMCs reach chemical equilibrium faster (within ≈ 1 Myr). We also compute CO emission from individual clouds. The mean CO intensity, ICO, is strongly suppressed at low dust extinction, Av, and possibly saturates towards high Av, in agreement with observations. The ICO-Av relation shifts towards higher Av for higher metallicities and, to a lesser extent, for stronger UV radiation. At one-tenth solar metallicity, CO emission is weaker in young clouds ( ≲ 10-15 Myr), consistent with the underabundance of CO. Consequently, XCO decreases by an order of magnitude from 0 to 15 Myr, albeit with a large scatter.

  12. Chemical evolution of giant molecular clouds in simulations of galaxies

    NASA Astrophysics Data System (ADS)

    Richings, Alexander J.; Schaye, Joop

    2016-08-01

    We present an analysis of Giant Molecular Clouds (GMCs) within hydrodynamic simulations of isolated, low-mass (M* ~ 10^9 M_sol) disc galaxies. We study the evolution of molecular abundances and the implications for CO emission and the X_CO conversion factor in individual clouds. We define clouds either as regions above a density threshold n_H,min = 10 cm^-3, or using an observationally motivated CO intensity threshold of 0.25 K km s^-1. Our simulations include a non-equilibrium chemical model with 157 species, including 20 molecules. We also investigate the effects of resolution and pressure floors (i.e. Jeans limiters). We find cloud lifetimes up to ~40 Myr, with a median of 13 Myr, in agreement with observations. At one tenth solar metallicity, young clouds (<10-15 Myr) are underabundant in H2 and CO compared to chemical equilibrium, by factors of ~3 and 1-2 orders of magnitude, respectively. At solar metallicity, GMCs reach chemical equilibrium faster (within ~1 Myr). We also compute CO emission from individual clouds. The mean CO intensity, I_CO, is strongly suppressed at low dust extinction, A_v, and possibly saturates towards high A_v, in agreement with observations. The I_CO - A_v relation shifts towards higher A_v for higher metallicities and, to a lesser extent, for stronger UV radiation. At one tenth solar metallicity, CO emission is weaker in young clouds (<10-15 Myr), consistent with the underabundance of CO. Consequently, X_CO decreases by an order of magnitude from 0 to 15 Myr, albeit with a large scatter.

  13. The Structure and Evolution of Self-Gravitating Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Holliman, John Herbert, II

    1995-01-01

    We present a theoretical formalism to evaluate the structure of molecular clouds and to determine precollapse conditions in star-forming regions. Models consist of pressure-bounded, self-gravitating spheres of a single -fluid ideal gas. We treat the case without rotation. The analysis is generalized to consider states in hydrostatic equilibrium maintained by multiple pressure components. Individual pressures vary with density as P_i(r) ~ rho^{gamma {rm p},i}(r), where gamma_{rm p},i is the polytropic index. Evolution depends additionally on whether conduction occurs on a dynamical time scale and on the adiabatic index gammai of each component, which is modified to account for the effects of any thermal coupling to the environment of the cloud. Special attention is given to properly representing the major contributors to dynamical support in molecular clouds: the pressures due to static magnetic fields, Alfven waves, and thermal motions. Straightforward adjustments to the model allow us to treat the intrinsically anisotropic support provided by the static fields. We derive structure equations, as well as perturbation equations for performing a linear stability analysis. The analysis provides insight on the nature of dynamical motions due to collapse from an equilibrium state and estimates the mass of condensed objects that form in such a process. After presenting a set of general results, we describe models of star-forming regions that include the major pressure components. We parameterize the extent of ambipolar diffusion. The analysis contributes to the physical understanding of several key results from observations of these regions. Commonly observed quantities are explicitly cross-referenced with model results. We theoretically determine density and linewidth profiles on scales ranging from that of molecular cloud cores to that of giant molecular clouds (GMCs). The model offers an explanation of the mean pressures in GMCs, which are observed to be high relative

  14. Optimizing legacy molecular dynamics software with directive-based offload

    NASA Astrophysics Data System (ADS)

    Michael Brown, W.; Carrillo, Jan-Michael Y.; Gavhane, Nitin; Thakkar, Foram M.; Plimpton, Steven J.

    2015-10-01

    Directive-based programming models are one solution for exploiting many-core coprocessors to increase simulation rates in molecular dynamics. They offer the potential to reduce code complexity with offload models that can selectively target computations to run on the CPU, the coprocessor, or both. In this paper, we describe modifications to the LAMMPS molecular dynamics code to enable concurrent calculations on a CPU and coprocessor. We demonstrate that standard molecular dynamics algorithms can run efficiently on both the CPU and an x86-based coprocessor using the same subroutines. As a consequence, we demonstrate that code optimizations for the coprocessor also result in speedups on the CPU; in extreme cases up to 4.7X. We provide results for LAMMPS benchmarks and for production molecular dynamics simulations using the Stampede hybrid supercomputer with both Intel®  Xeon Phi™ coprocessors and NVIDIA GPUs. The optimizations presented have increased simulation rates by over 2X for organic molecules and over 7X for liquid crystals on Stampede. The optimizations are available as part of the "Intel package" supplied with LAMMPS.

  15. Optimizing legacy molecular dynamics software with directive-based offload

    SciTech Connect

    Michael Brown, W.; Carrillo, Jan-Michael Y.; Gavhane, Nitin; Thakkar, Foram M.; Plimpton, Steven J.

    2015-05-14

    The directive-based programming models are one solution for exploiting many-core coprocessors to increase simulation rates in molecular dynamics. They offer the potential to reduce code complexity with offload models that can selectively target computations to run on the CPU, the coprocessor, or both. In our paper, we describe modifications to the LAMMPS molecular dynamics code to enable concurrent calculations on a CPU and coprocessor. We also demonstrate that standard molecular dynamics algorithms can run efficiently on both the CPU and an x86-based coprocessor using the same subroutines. As a consequence, we demonstrate that code optimizations for the coprocessor also result in speedups on the CPU; in extreme cases up to 4.7X. We provide results for LAMMAS benchmarks and for production molecular dynamics simulations using the Stampede hybrid supercomputer with both Intel (R) Xeon Phi (TM) coprocessors and NVIDIA GPUs: The optimizations presented have increased simulation rates by over 2X for organic molecules and over 7X for liquid crystals on Stampede. The optimizations are available as part of the "Intel package" supplied with LAMMPS. (C) 2015 Elsevier B.V. All rights reserved.

  16. Optimizing legacy molecular dynamics software with directive-based offload

    DOE PAGESBeta

    Michael Brown, W.; Carrillo, Jan-Michael Y.; Gavhane, Nitin; Thakkar, Foram M.; Plimpton, Steven J.

    2015-05-14

    The directive-based programming models are one solution for exploiting many-core coprocessors to increase simulation rates in molecular dynamics. They offer the potential to reduce code complexity with offload models that can selectively target computations to run on the CPU, the coprocessor, or both. In our paper, we describe modifications to the LAMMPS molecular dynamics code to enable concurrent calculations on a CPU and coprocessor. We also demonstrate that standard molecular dynamics algorithms can run efficiently on both the CPU and an x86-based coprocessor using the same subroutines. As a consequence, we demonstrate that code optimizations for the coprocessor also resultmore » in speedups on the CPU; in extreme cases up to 4.7X. We provide results for LAMMAS benchmarks and for production molecular dynamics simulations using the Stampede hybrid supercomputer with both Intel (R) Xeon Phi (TM) coprocessors and NVIDIA GPUs: The optimizations presented have increased simulation rates by over 2X for organic molecules and over 7X for liquid crystals on Stampede. The optimizations are available as part of the "Intel package" supplied with LAMMPS. (C) 2015 Elsevier B.V. All rights reserved.« less

  17. Regulatory punctuated equilibrium and convergence in the evolution of developmental pathways in direct-developing sea urchins.

    PubMed

    Raff, Elizabeth C; Popodi, Ellen M; Kauffman, Jeffery S; Sly, Belinda J; Turner, F Rudolf; Morris, Valerie B; Raff, Rudolf A

    2003-01-01

    We made hybrid crosses between closely and distantly related sea urchin species to test two hypotheses about the evolution of gene regulatory systems in the evolution of ontogenetic pathways and larval form. The first hypothesis is that gene regulatory systems governing development evolve in a punctuational manner during periods of rapid morphological evolution but are relatively stable over long periods of slow morphological evolution. We compared hybrids between direct and indirect developers from closely and distantly related families. Hybrids between eggs of the direct developer Heliocidaris erythrogramma and sperm of the 4-million year distant species H. tuberculata, an indirect developer, restored feeding larval structures and paternal gene expression that were lost in the evolution of the direct-developing maternal parent. Hybrids resulting from the cross between eggs of H. erythrogramma and sperm of the 40-million year distant indirect-developer Pseudoboletia maculata are strikingly similar to hybrids between the congeneric hybrids. The marked similarities in ontogenetic trajectory and morphological outcome in crosses of involving either closely or distantly related indirect developing species indicates that their regulatory mechanisms interact with those of H. erythrogramma in the same way, supporting remarkable conservation of molecular control pathways among indirect developers. Second, we tested the hypothesis that convergent developmental pathways in independently evolved direct developers reflect convergence of the underlying regulatory systems. Crosses between two independently evolved direct-developing species from two 70-million year distant families, H. erythrogramma and Holopneustes purpurescens, produced harmoniously developing hybrid larvae that maintained the direct mode of development and did not exhibit any obvious restoration of indirect-developing features. These results are consistent with parallel evolution of direct-developing features

  18. Molecular mechanisms of cobalt-catalyzed hydrogen evolution

    PubMed Central

    Marinescu, Smaranda C.; Winkler, Jay R.; Gray, Harry B.

    2012-01-01

    Several cobalt complexes catalyze the evolution of hydrogen from acidic solutions, both homogeneously and at electrodes. The detailed molecular mechanisms of these transformations remain unresolved, largely owing to the fact that key reactive intermediates have eluded detection. One method of stabilizing reactive intermediates involves minimizing the overall reaction free-energy change. Here, we report a new cobalt(I) complex that reacts with tosylic acid to evolve hydrogen with a driving force of just 30 meV/Co. Protonation of CoI produces a transient CoIII-H complex that was characterized by nuclear magnetic resonance spectroscopy. The CoIII-H intermediate decays by second-order kinetics with an inverse dependence on acid concentration. Analysis of the kinetics suggests that CoIII-H produces hydrogen by two competing pathways: a slower homolytic route involving two CoIII-H species and a dominant heterolytic channel in which a highly reactive CoII-H transient is generated by CoI reduction of CoIII-H. PMID:22949704

  19. Dynamical Evolution of Supernova Remnants Breaking Through Molecular Clouds

    NASA Astrophysics Data System (ADS)

    Cho, Wankee; Kim, Jongsoo; Koo, Bon-Chul

    2015-04-01

    We carry out three-dimensional hydrodynamic simulations of the supernova remnants (SNRs) produced inside molecular clouds (MCs) near their surface using the HLL code tep{har83}. We explore the dynamical evolution and the X-ray morphology of SNRs after breaking through the MC surface for ranges of the explosion depths below the surface and the density ratios of the clouds to the intercloud media (ICM). We find that if an SNR breaks out through an MC surface in its Sedov stage, the outermost dense shell of the remnant is divided into several layers. The divided layers are subject to the Rayleigh-Taylor instability and fragmented. On the other hand, if an SNR breaks through an MC after the remnant enters the snowplow phase, the radiative shell is not divided to layers. We also compare the predictions of previous analytic solutions for the expansion of SNRs in stratified media with our one-dimensional simulations. Moreover, we produce synthetic X-ray surface brightness in order to research the center-bright X-ray morphology shown in thermal composite SNRs. In the late stages, a breakout SNR shows the center-bright X-ray morphology inside an MC in our results. We apply our model to the observational results of the X-ray morphology of the thermal composite SNR 3C 391.

  20. Molecular evolution of SRP cycle components: functional implications.

    PubMed Central

    Althoff, S; Selinger, D; Wise, J A

    1994-01-01

    Signal recognition particle (SRP) is a cytoplasmic ribonucleoprotein that targets a subset of nascent presecretory proteins to the endoplasmic reticulum membrane. We have considered the SRP cycle from the perspective of molecular evolution, using recently determined sequences of genes or cDNAs encoding homologs of SRP (7SL) RNA, the Srp54 protein (Srp54p), and the alpha subunit of the SRP receptor (SR alpha) from a broad spectrum of organisms, together with the remaining five polypeptides of mammalian SRP. Our analysis provides insight into the significance of structural variation in SRP RNA and identifies novel conserved motifs in protein components of this pathway. The lack of congruence between an established phylogenetic tree and size variation in 7SL homologs implies the occurrence of several independent events that eliminated more than half the sequence content of this RNA during bacterial evolution. The apparently non-essential structures are domain I, a tRNA-like element that is constant in archaea, varies in size among eucaryotes, and is generally missing in bacteria, and domain III, a tightly base-paired hairpin that is present in all eucaryotic and archeal SRP RNAs but is invariably absent in bacteria. Based on both structural and functional considerations, we propose that the conserved core of SRP consists minimally of the 54 kDa signal sequence-binding protein complexed with the loosely base-paired domain IV helix of SRP RNA, and is also likely to contain a homolog of the Srp68 protein. Comparative sequence analysis of the methionine-rich M domains from a diverse array of Srp54p homologs reveals an extended region of amino acid identity that resembles a recently identified RNA recognition motif. Multiple sequence alignment of the G domains of Srp54p and SR alpha homologs indicates that these two polypeptides exhibit significant similarity even outside the four GTPase consensus motifs, including a block of nine contiguous amino acids in a location

  1. Characterizing Microbe-Environment Interactions Through Experimental Evolution: The Autonomous Adaptive Directed Evolution Chamber

    NASA Astrophysics Data System (ADS)

    Ibanez, C. R.; Blaich, J.; Owyang, S.; Storrs, A.; Moffet, A.; Wong, N.; Zhou, J.; Gentry, D.

    2015-12-01

    We are developing a laboratory system for studying micro- to meso-scale interactions between microorganisms and their physicochemical environments. The Autonomous Adaptive Directed Evolution Chamber (AADEC) cultures microorganisms in controlled,small-scale geochemical environments. It observes corresponding microbial interactions to these environments and has the ability to adjust thermal, chemical, and other parameters in real time in response to these interactions. In addition to the sensed data, the system allows the generation of time-resolved ecological, genomic, etc. samples on the order of microbial generations. The AADEC currently houses cultures in liquid media and controls UVC radiation, heat exposure, and nutrient supply. In a proof-of-concept experimental evolution application, it can increase UVC radiation resistance of Escherichia coli cultures by iteratively exposing them to UVC and allowing the surviving cells to regrow. A baseline characterization generated a million fold resistance increase. This demonstration uses a single-well growth chamber prototype, but it was limited by scalability. We have expanded upon this system by implementing a microwell plate compatible fluidics system and sensor housing. This microwell plate system increases the diversity of microbial interactions seen in response to the geochemical environments generated by the system, allowing greater control over individual cultures' environments and detection of rarer events. The custom microfluidic card matches the footprint of a standard microwell plate. This card enables controllable fluid flow between wells and introduces multiple separate exposure and sensor chambers, increasing the variety of sensors compatible with the system. This gives the device control over scale and the interconnectedness of environments within the system. The increased controllability of the multiwell system provides a platform for implementing machine learning algorithms that will autonomously

  2. Evolution of Molecular and Atomic Gas Phases in the Milky Way

    NASA Astrophysics Data System (ADS)

    Koda, Jin; Scoville, Nick; Heyer, Mark

    2016-06-01

    We analyze radial and azimuthal variations of the phase balance between the molecular and atomic interstellar medium (ISM) in the Milky Way (MW) using archival CO(J = 1-0) and HI 21 cm data. In particular, the azimuthal variations—between the spiral arm and interarm regions—are analyzed without any explicit definition of the spiral arm locations. We show that the molecular gas mass fraction, i.e., {f}{{mol}}={{{Σ }}}{{{H}}2}/({{{Σ }}}{HI}+{{{Σ }}}{{{H}}2}), varies predominantly in the radial direction: starting from ∼ 100% at the center, remaining ≳ 50% to R∼ 6 {{kpc}} and decreasing to ∼10%–20% at R=8.5 {{kpc}} when averaged over the whole disk thickness (from ∼100% to ≳60%, then to ∼50% in the midplane). Azimuthal, arm-interarm variations are secondary: only ∼ 20% in the globally molecule-dominated inner MW, but becoming larger, ∼40%–50%, in the atom-dominated outskirts. This suggests that in the inner MW the gas remains highly molecular ({f}{{mol}}\\gt 50%) as it moves from an interarm region into a spiral arm and back into the next interarm region. Stellar feedback does not dissociate molecules much, and the coagulation and fragmentation of molecular clouds dominate the evolution of the ISM at these radii. The trend differs in the outskirts where the gas phase is globally atomic ({f}{{mol}}\\lt 50%). The HI and H2 phases cycle through spiral arm passage there. These different regimes of ISM evolution are also seen in external galaxies (e.g., the LMC, M33, and M51). We explain the radial gradient of {f}{{mol}} using a simple flow continuity model. The effects of spiral arms on this analysis are illustrated in the Appendix.

  3. Evolution of Molecular and Atomic Gas Phases in the Milky Way

    NASA Astrophysics Data System (ADS)

    Koda, Jin; Scoville, Nick; Heyer, Mark

    2016-06-01

    We analyze radial and azimuthal variations of the phase balance between the molecular and atomic interstellar medium (ISM) in the Milky Way (MW) using archival CO(J = 1-0) and HI 21 cm data. In particular, the azimuthal variations—between the spiral arm and interarm regions—are analyzed without any explicit definition of the spiral arm locations. We show that the molecular gas mass fraction, i.e., {f}{{mol}}={{{Σ }}}{{{H}}2}/({{{Σ }}}{HI}+{{{Σ }}}{{{H}}2}), varies predominantly in the radial direction: starting from ˜ 100% at the center, remaining ≳ 50% to R˜ 6 {{kpc}} and decreasing to ˜10%–20% at R=8.5 {{kpc}} when averaged over the whole disk thickness (from ˜100% to ≳60%, then to ˜50% in the midplane). Azimuthal, arm-interarm variations are secondary: only ˜ 20% in the globally molecule-dominated inner MW, but becoming larger, ˜40%–50%, in the atom-dominated outskirts. This suggests that in the inner MW the gas remains highly molecular ({f}{{mol}}\\gt 50%) as it moves from an interarm region into a spiral arm and back into the next interarm region. Stellar feedback does not dissociate molecules much, and the coagulation and fragmentation of molecular clouds dominate the evolution of the ISM at these radii. The trend differs in the outskirts where the gas phase is globally atomic ({f}{{mol}}\\lt 50%). The HI and H2 phases cycle through spiral arm passage there. These different regimes of ISM evolution are also seen in external galaxies (e.g., the LMC, M33, and M51). We explain the radial gradient of {f}{{mol}} using a simple flow continuity model. The effects of spiral arms on this analysis are illustrated in the Appendix.

  4. Directed evolution as an approach to the design of efficient biocatalysts

    NASA Astrophysics Data System (ADS)

    Zagrebelny, Stanislav N.

    2005-03-01

    Methodical approaches to the modification of the catalytic properties of enzymes by various means of directed evolution are summarised. A number of particular examples of the design of enzymes with new and enhanced properties, including higher thermal stability, solubility, substrate specificity, stereoselectivity, etc., are considered. The prospects for further development of the directed evolution strategy for enzymes and proteins with other functions are discussed.

  5. In-situ Mass Spectrometric Determination of Molecular Structural Evolution at the Solid Electrolyte Interphase in Lithium-Ion Batteries

    SciTech Connect

    Zhu, Zihua; Zhou, Yufan; Yan, Pengfei; Vemuri, Venkata Rama Ses; Xu, Wu; Zhao, Rui; Wang, Xuelin; Thevuthasan, Suntharampillai; Baer, Donald R.; Wang, Chong M.

    2015-08-19

    Dynamic molecular evolution at solid/liquid electrolyte interface is always a mystery for a rechargeable battery due to the challenge to directly probe/observe the solid/liquid interface under reaction conditions, which in essence appears to be similarly true for all the fields involving solid/liquid phases, such as electrocatalysis, electrodeposition, biofuel conversion, biofilm, and biomineralization, We use in-situ liquid secondary ion mass spectroscopy (SIMS) for the first time to directly observe the molecular structural evolution at the solid electrode/liquid electrolyte interface for a lithium (Li)-ion battery under dynamic operating conditions. We have discovered that the deposition of Li metal on copper electrode leads to the condensation of solvent molecules around the electrode. Chemically, this layer of solvent condensate tends to deplete the salt anion and with low concentration of Li+ ions, which essentially leads to the formation of a lean electrolyte layer adjacent to the electrode and therefore contributes to the overpotential of the cell. This unprecedented molecular level dynamic observation at the solid electrode/liquid electrolyte interface provides vital chemical information that is needed for designing of better battery chemistry for enhanced performance, and ultimately opens new avenues for using liquid SIMS to probe molecular evolution at solid/liquid interface in general.

  6. Molecular evolution and in vitro characterization of Botryllus histocompatibility factor.

    PubMed

    Taketa, Daryl A; Nydam, Marie L; Langenbacher, Adam D; Rodriguez, Delany; Sanders, Erin; De Tomaso, Anthony W

    2015-10-01

    Botryllus schlosseri is a colonial ascidian with a natural ability to anastomose with another colony to form a vascular and hematopoietic chimera. In order to fuse, two individuals must share at least one allele at the highly polymorphic fuhc locus. Otherwise, a blood-based inflammatory response will occur resulting in a melanin scar at the sites of interaction. The single-locus genetic control of allorecognition makes B. schlosseri an attractive model to study the underlying molecular mechanisms. Over the past decade, several candidate genes involved in allorecognition have been identified, but how they ultimately contribute to allorecognition outcome remains poorly understood. Here, we report our initial molecular characterization of a recently identified candidate allodeterminant called Botryllus histocompatibility factor (bhf). bhf, both on a DNA and protein level, is the least polymorphic protein in the fuhc locus studied so far and, unlike other known allorecognition determinants, does not appear to be under any form of balancing or directional selection. Additionally, we identified a second isoform through mRNA-Seq and an EST assembly library which is missing exon 3, resulting in a C-terminally truncated form. We report via whole-mount fluorescent in situ hybridization that a subset of cells co-express bhf and cfuhc(sec). Finally, we observed BHF's localization in HEK293T at the cytoplasmic side of the plasma membrane in addition to the nucleus via a nuclear localization signal. Given the localization data thus far, we hypothesize that BHF may function as a scaffolding protein in a complex with other Botryllus proteins, rather than functioning as an allorecognition determinant. PMID:26359175

  7. Choosing the right molecular genetic markers for studying biodiversity: from molecular evolution to practical aspects.

    PubMed

    Chenuil, Anne; Anne, Chenuil

    2006-05-01

    The use of molecular genetic markers (MGMs) has become widespread among evolutionary biologists, and the methods of analysis of genetic data improve rapidly, yet an organized framework in which scientists can work is lacking. Elements of molecular evolution are summarized to explain the origin of variation at the DNA level, its measures, and the relationships linking genetic variability to the biological parameters of the studied organisms. MGM are defined by two components: the DNA region(s) screened, and the technique used to reveal its variation. Criteria of choice belong to three categories: (1) the level of variability, (2) the nature of the information (e.g. dominance vs. codominance, ploidy, ... ) which must be determined according to the biological question and (3) some practical criteria which mainly depend on the equipment of the laboratory and experience of the scientist. A three-step procedure is proposed for drawing up MGMs suitable to answer given biological questions, and compiled data are organized to guide the choice at each step: (1) choice, determined by the biological question, of the level of variability and of the criteria of the nature of information, (2) choice of the DNA region and (3) choice of the technique. PMID:16850217

  8. Improving Glyphosate Oxidation Activity of Glycine Oxidase from Bacillus cereus by Directed Evolution

    PubMed Central

    Zhan, Tao; Zhang, Kai; Chen, Yangyan; Lin, Yongjun; Wu, Gaobing; Zhang, Lili; Yao, Pei; Shao, Zongze; Liu, Ziduo

    2013-01-01

    Glyphosate, a broad spectrum herbicide widely used in agriculture all over the world, inhibits 5-enolpyruvylshikimate-3-phosphate synthase in the shikimate pathway, and glycine oxidase (GO) has been reported to be able to catalyze the oxidative deamination of various amines and cleave the C-N bond in glyphosate. Here, in an effort to improve the catalytic activity of the glycine oxidase that was cloned from a glyphosate-degrading marine strain of Bacillus cereus (BceGO), we used a bacteriophage T7 lysis-based method for high-throughput screening of oxidase activity and engineered the gene encoding BceGO by directed evolution. Six mutants exhibiting enhanced activity toward glyphosate were screened from two rounds of error-prone PCR combined with site directed mutagenesis, and the beneficial mutations of the six evolved variants were recombined by DNA shuffling. Four recombinants were generated and, when compared with the wild-type BceGO, the most active mutant B3S1 showed the highest activity, exhibiting a 160-fold increase in substrate affinity, a 326-fold enhancement in catalytic efficiency against glyphosate, with little difference between their pH and temperature stabilities. The role of these mutations was explored through structure modeling and molecular docking, revealing that the Arg51 mutation is near the active site and could be an important residue contributing to the stabilization of glyphosate binding, while the role of the remaining mutations is unclear. These results provide insight into the application of directed evolution in optimizing glycine oxidase function and have laid a foundation for the development of glyphosate-tolerant crops. PMID:24223901

  9. Molecular phylogenetics of the Anolis onca series: a case history in retrograde evolution revisited.

    PubMed

    Nicholson, Kirsten E; Mijares-Urrutia, Abraham; Larson, Allan

    2006-09-15

    Anoles of the Anolis onca series represent a dramatic case of retrograde evolution, exhibiting great reduction (A. annectens) and loss (A. onca) of the subdigital pads considered a key innovation for the evolutionary radiation of anoles in arboreal environments. We present a molecular phylogenetic analysis of these anoles and their closest known relatives (A. auratus, A. lineatus, A. meridionalis, and A. nitens) using new mitochondrial DNA sequence data from the ND2 gene, five tRNA genes (tRNA(Trp), tRNA(Ala), tRNA(Asn), tRNA(Cys), tRNA(Tyr)), the origin of light-strand replication, and a portion of the CO1 gene (1,446 aligned base positions, 612 parsimony informative). Our results confirm monophyly of the A. onca series and suggest an evolutionary separation of approximately 10 million years between A. annectens and A. onca. Evolution of subdigital structure in this series illustrates ectopic expression of developmental programs that replace flexible subdigital lamellae of the toepad with rigid, keeled scales resembling dorsal digital scales. Our phylogenetic results indicate that narrowing of the toepad in A. auratus evolved separately from toepad reduction in the A. onca series. Expansion of the subdigital lamellae along the phalanges in A. auratus appears to compensate constriction of lamellae by digital narrowing, maintaining greater climbing capability in this species. Toepad evolution in the lineage ancestral to A. auratus features changes of the same developmental modules as the A. onca series but in the opposite direction. Large molecular distances between geographic populations of A. auratus indicate that its derived toepad structure is at least 9 million years old. PMID:16506231

  10. Engineering and Evolution of Molecular Chaperones and Protein Disaggregases with Enhanced Activity

    PubMed Central

    Mack, Korrie L.; Shorter, James

    2016-01-01

    Cells have evolved a sophisticated proteostasis network to ensure that proteins acquire and retain their native structure and function. Critical components of this network include molecular chaperones and protein disaggregases, which function to prevent and reverse deleterious protein misfolding. Nevertheless, proteostasis networks have limits, which when exceeded can have fatal consequences as in various neurodegenerative disorders, including Parkinson's disease and amyotrophic lateral sclerosis. A promising strategy is to engineer proteostasis networks to counter challenges presented by specific diseases or specific proteins. Here, we review efforts to enhance the activity of individual molecular chaperones or protein disaggregases via engineering and directed evolution. Remarkably, enhanced global activity or altered substrate specificity of various molecular chaperones, including GroEL, Hsp70, ClpX, and Spy, can be achieved by minor changes in primary sequence and often a single missense mutation. Likewise, small changes in the primary sequence of Hsp104 yield potentiated protein disaggregases that reverse the aggregation and buffer toxicity of various neurodegenerative disease proteins, including α-synuclein, TDP-43, and FUS. Collectively, these advances have revealed key mechanistic and functional insights into chaperone and disaggregase biology. They also suggest that enhanced chaperones and disaggregases could have important applications in treating human disease as well as in the purification of valuable proteins in the pharmaceutical sector. PMID:27014702

  11. Engineering and Evolution of Molecular Chaperones and Protein Disaggregases with Enhanced Activity.

    PubMed

    Mack, Korrie L; Shorter, James

    2016-01-01

    Cells have evolved a sophisticated proteostasis network to ensure that proteins acquire and retain their native structure and function. Critical components of this network include molecular chaperones and protein disaggregases, which function to prevent and reverse deleterious protein misfolding. Nevertheless, proteostasis networks have limits, which when exceeded can have fatal consequences as in various neurodegenerative disorders, including Parkinson's disease and amyotrophic lateral sclerosis. A promising strategy is to engineer proteostasis networks to counter challenges presented by specific diseases or specific proteins. Here, we review efforts to enhance the activity of individual molecular chaperones or protein disaggregases via engineering and directed evolution. Remarkably, enhanced global activity or altered substrate specificity of various molecular chaperones, including GroEL, Hsp70, ClpX, and Spy, can be achieved by minor changes in primary sequence and often a single missense mutation. Likewise, small changes in the primary sequence of Hsp104 yield potentiated protein disaggregases that reverse the aggregation and buffer toxicity of various neurodegenerative disease proteins, including α-synuclein, TDP-43, and FUS. Collectively, these advances have revealed key mechanistic and functional insights into chaperone and disaggregase biology. They also suggest that enhanced chaperones and disaggregases could have important applications in treating human disease as well as in the purification of valuable proteins in the pharmaceutical sector. PMID:27014702

  12. Phylemon: a suite of web tools for molecular evolution, phylogenetics and phylogenomics

    PubMed Central

    Tárraga, Joaquín; Medina, Ignacio; Arbiza, Leonardo; Huerta-Cepas, Jaime; Gabaldón, Toni; Dopazo, Joaquín; Dopazo, Hernán

    2007-01-01

    Phylemon is an online platform for phylogenetic and evolutionary analyses of molecular sequence data. It has been developed as a web server that integrates a suite of different tools selected among the most popular stand-alone programs in phylogenetic and evolutionary analysis. It has been conceived as a natural response to the increasing demand of data analysis of many experimental scientists wishing to add a molecular evolution and phylogenetics insight into their research. Tools included in Phylemon cover a wide yet selected range of programs: from the most basic for multiple sequence alignment to elaborate statistical methods of phylogenetic reconstruction including methods for evolutionary rates analyses and molecular adaptation. Phylemon has several features that differentiates it from other resources: (i) It offers an integrated environment that enables the direct concatenation of evolutionary analyses, the storage of results and handles required data format conversions, (ii) Once an outfile is produced, Phylemon suggests the next possible analyses, thus guiding the user and facilitating the integration of multi-step analyses, and (iii) users can define and save complete pipelines for specific phylogenetic analysis to be automatically used on many genes in subsequent sessions or multiple genes in a single session (phylogenomics). The Phylemon web server is available at http://phylemon.bioinfo.cipf.es. PMID:17452346

  13. Molecular diversity and functional evolution of scorpion potassium channel toxins.

    PubMed

    Zhu, Shunyi; Peigneur, Steve; Gao, Bin; Luo, Lan; Jin, Di; Zhao, Yong; Tytgat, Jan

    2011-02-01

    Scorpion toxins affecting K(+) channels (KTxs) represent important pharmacological tools and potential drug candidates. Here, we report molecular characterization of seven new KTxs in the scorpion Mesobuthus eupeus by cDNA cloning combined with biochemical approaches. Comparative modeling supports that all these KTxs share a conserved cysteine-stabilized α-helix/β-sheet structural motif despite the differences in protein sequence and size. We investigated functional diversification of two orthologous α-KTxs (MeuTXKα1 from M. eupeus and BmP01 from Mesobuthus martensii) by comparing their K(+) channel-blocking activities. Pharmacologically, MeuTXKα1 selectively blocked Kv1.3 channel with nanomolar affinity (IC(50), 2.36 ± 0.9 nM), whereas only 35% of Kv1.1 currents were inhibited at 3 μM concentration, showing more than 1271-fold selectivity for Kv1.3 over Kv1.1. This peptide displayed a weak effect on Drosophila Shaker channel and no activity on Kv1.2, Kv1.4, Kv1.5, Kv1.6, and human ether-a-go-go-related gene (hERG) K(+) channels. Although BmB01 and MeuTXKα1 have a similar channel spectrum, their affinity and selectivity for these channels largely varies. In comparison with MeuTXKα1, BmP01 only exhibits a submicromolar affinity (IC(50), 133.72 ± 10.98 nM) for Kv1.3, showing 57-fold less activity than MeuTXKα1. Moreover, it lacks the ability to distinguish between Kv1.1 and Kv1.3. We also found that MeuTXKα1 inhibited the proliferation of activated T cells induced by phorbol myristate acetate and ionomycin at micromolar concentrations. Our results demonstrate that accelerated evolution drives affinity variations of orthologous α-KTxs on Kv channels and indicate that MeuTXKα1 is a promising candidate to develop an immune modulation agent for human autoimmune diseases. PMID:20889474

  14. Directed evolution of a magnetic resonance imaging contrast agent for noninvasive imaging of dopamine

    PubMed Central

    Shapiro, Mikhail G; Westmeyer, Gil G; Romero, Philip A; Szablowski, Jerzy O; Küster, Benedict; Shah, Ameer; Otey, Christopher R; Langer, Robert; Arnold, Frances H; Jasanoff, Alan

    2011-01-01

    The development of molecular probes that allow in vivo imaging of neural signaling processes with high temporal and spatial resolution remains challenging. Here we applied directed evolution techniques to create magnetic resonance imaging (MRI) contrast agents sensitive to the neurotransmitter dopamine. The sensors were derived from the heme domain of the bacterial cytochrome P450-BM3 (BM3h). Ligand binding to a site near BM3h’s paramagnetic heme iron led to a drop in MRI signal enhancement and a shift in optical absorbance. Using an absorbance-based screen, we evolved the specificity of BM3h away from its natural ligand and toward dopamine, producing sensors with dissociation constants for dopamine of 3.3–8.9 μM. These molecules were used to image depolarization-triggered neurotransmitter release from PC12 cells and in the brains of live animals. Our results demonstrate the feasibility of molecular-level functional MRI using neural activity–dependent sensors, and our protein engineering approach can be generalized to create probes for other targets. PMID:20190737

  15. Magnetoelectric directional nonreciprocity in gas-phase molecular nitrogen.

    PubMed

    Pelle, B; Bitard, H; Bailly, G; Robilliard, C

    2011-05-13

    We report the direct observation of the nonreciprocity of the velocity of light, induced by electric and magnetic fields. This bilinear magneto-electro-optical effect appears in crossed electric and magnetic fields perpendicular to the light wave vector, as a refractive index difference between two counterpropagating directions. Using a high finesse ring cavity, we have measured this magnetoelectric nonreciprocity in molecular nitrogen at ambient temperature and atmospheric pressure; for light polarized parallel to the magnetic field it is 2η(∥exp)(N2) = (4.7±1)×10(-23)  m  V(-1)  T(-1) for λ = 1064  nm, in agreement with the expected order of magnitude. Our measurement opens the way to a deeper insight into light-matter interaction beyond the electric dipole approximation. We were able to measure a nonreciprocity as small as Δn =(5±2)×10(-18), which makes its observation in quantum vacuum a conceivable challenge. PMID:21668149

  16. Temporal Evolution of Directly Driven Hydrodynamic Jets Relevant to Astrophysics

    NASA Astrophysics Data System (ADS)

    Sublett, S.

    2005-10-01

    A hydrodynamic jet is formed when a strong laser shock drives material from a metal plug in a dense, high-Z washer through its hole into a low-density, foam ambient medium. The jet is about ten times as dense as the medium, a ratio important for scaling to astrophysical phenomena. The plug material and backlighter x-ray energy are varied to radiograph either the jet's core or its interaction with the ambient medium. Temporal evolution of the lateral expansion of the bowshock, contact discontinuity, and Mach disk is also tracked at several times during the evolution. The mass of the jet is determined. Quantitative comparisons with simulations are presented. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-92SF19460.

  17. The Eyes Have It: A Problem-Based Learning Exercise in Molecular Evolution

    ERIC Educational Resources Information Center

    White, Harold B.

    2007-01-01

    Molecular evolution provides an interesting context in which to use problem-based learning because it integrates a variety of topics in biology, biochemistry, and molecular biology. This three-stage problem for advanced students deals with the structure, multiple functions, and properties of lactate dehydrogenase isozymes, and the related…

  18. Iterative key-residues interrogation of a phytase with thermostability increasing substitutions identified in directed evolution.

    PubMed

    Shivange, Amol V; Roccatano, Danilo; Schwaneberg, Ulrich

    2016-01-01

    Bacterial phytases have attracted industrial interest as animal feed supplement due to their high activity and sufficient thermostability (required for feed pelleting). We devised an approach named KeySIDE,  an iterative Key-residues interrogation of the wild type with Substitutions Identified in Directed Evolution for improving Yersinia mollaretii phytase (Ymphytase) thermostability by combining key beneficial substitutions and elucidating their individual roles. Directed evolution yielded in a discovery of nine positions in Ymphytase and combined iteratively to identify key positions. The "best" combination (M6: T77K, Q154H, G187S, and K289Q) resulted in significantly improved thermal resistance; the residual activity improved from 35 % (wild type) to 89 % (M6) at 58 °C and 20-min incubation. Melting temperature increased by 3 °C in M6 without a loss of specific activity. Molecular dynamics simulation studies revealed reduced flexibility in the loops located next to helices (B, F, and K) which possess substitutions (Helix-B: T77K, Helix-F: G187S, and Helix-K: K289E/Q). Reduced flexibility in the loops might be caused by strengthened hydrogen bonding network (e.g., G187S and K289E/K289Q) and a salt bridge (T77K). Our results demonstrate a promising approach to design phytases in food research, and we hope that the KeySIDE might become an attractive approach for understanding of structure-function relationships of enzymes. PMID:26403922

  19. Directed evolution of APEX2 for electron microscopy and proteomics

    PubMed Central

    Lam, Stephanie S.; Martell, Jeffrey D.; Kamer, Kimberli J.; Deerinck, Thomas J.; Ellisman, Mark H.; Mootha, Vamsi K.; Ting, Alice Y.

    2014-01-01

    APEX is an engineered peroxidase that functions both as an electron microscopy tag, and as a promiscuous labeling enzyme for live-cell proteomics. Because the limited sensitivity of APEX precludes applications requiring low APEX expression, we used yeast display evolution to improve its catalytic efficiency. Our evolved APEX2 is far more active in cells, enabling the superior enrichment of endogenous mitochondrial and endoplasmic reticulum membrane proteins and the use of electron microscopy to resolve the sub-mitochondrial localization of calcium uptake regulatory protein MICU1. PMID:25419960

  20. Molecular Evolution of Aminoacyl tRNA Synthetase Proteins in the Early History of Life

    NASA Astrophysics Data System (ADS)

    Fournier, Gregory P.; Andam, Cheryl P.; Alm, Eric J.; Gogarten, J. Peter

    2011-12-01

    Aminoacyl-tRNA synthetases (aaRS) consist of several families of functionally conserved proteins essential for translation and protein synthesis. Like nearly all components of the translation machinery, most aaRS families are universally distributed across cellular life, being inherited from the time of the Last Universal Common Ancestor (LUCA). However, unlike the rest of the translation machinery, aaRS have undergone numerous ancient horizontal gene transfers, with several independent events detected between domains, and some possibly involving lineages diverging before the time of LUCA. These transfers reveal the complexity of molecular evolution at this early time, and the chimeric nature of genomes within cells that gave rise to the major domains. Additionally, given the role of these protein families in defining the amino acids used for protein synthesis, sequence reconstruction of their pre-LUCA ancestors can reveal the evolutionary processes at work in the origin of the genetic code. In particular, sequence reconstructions of the paralog ancestors of isoleucyl- and valyl- RS provide strong empirical evidence that at least for this divergence, the genetic code did not co-evolve with the aaRSs; rather, both amino acids were already part of the genetic code before their cognate aaRSs diverged from their common ancestor. The implications of this observation for the early evolution of RNA-directed protein biosynthesis are discussed.

  1. Cosmic Structure and Galaxy Evolution through Intensity Mapping of Molecular Gas

    NASA Astrophysics Data System (ADS)

    Bower, Geoffrey C.; Keating, Garrett K.; Marrone, Daniel P.; YT Lee Array Team, SZA Team

    2016-01-01

    The origin and evolution of structure in the Universe is one of the major challenges of observational astronomy. How does baryonic structure trace the underlying dark matter? How have galaxies evolved to produce the present day Universe? A multi-wavelength, multi-tool approach is necessary to provide the complete story of the evolution of structure in the Universe. Intensity mapping, which relies on the ability to detect many objects at once through their integrated emission rather than direct detection of individual objects, is a critical part of this mosaic. In particular, our understanding of the molecular gas component of massive galaxies is being revolutionized by ALMA and EVLA but the population of smaller, star-forming galaxies, which provide the bulk of star formation cannot be individually probed by these instruments.In this talk, I will summarize two intensity mapping experiments to detect molecular gas through the carbon monoxide (CO) rotational transition. We have completed sensitive observations with the Sunyaev-Zel'dovic Array (SZA) telescope at a wavelength of 1 cm that are sensitive to emission at redshifts 2.3 to 3.3. The SZA experiments sets strong limits on models for the CO emission and demonstrates the ability to reject foregrounds and telescope systematics in very deep integrations. I also describe the development of an intensity mapping capability for the Y.T. Lee Array, a 13-element interferometer located on Mauna Loa. In its first phase, this project focuses on detection of CO at redshifts 2.4 - 3.0 with detection via power spectrum and cross-correlation with other surveys. The project includes a major technical upgrade, a new digital correlator and IF electronics component to be deployed in 2015/2016. The Y.T. Lee Array observations will be more sensitive and extend to larger angular scales than the SZA observations.

  2. MOLECULAR PHYLOGENY AND EVOLUTION OF MOSQUITO PARASTIC MICROSPORIDIA (MICROSPORIDIA: AMBLYOSPORIDAE)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Amblyospora and related species were isolated from mosquitoes, black flies and copepods and the small subunit ribosomal DNA gene was sequenced. The comparative phylogenetic analysis for this study shows co-evolution agreement between the mosquito host genera and Amblyospora parasite species with a ...

  3. "Eve" in Africa: Human Evolution Meets Molecular Biology.

    ERIC Educational Resources Information Center

    Seager, Robert D.

    1990-01-01

    Presented is a discussion of recent evidence on the evolution of human forms on earth gathered and evaluated using mitochondrial DNA techniques. Theories regarding the possibility that a common female ancestor existed in Africa about 200,000 years ago are discussed. A list of teaching aids is provided. (CW)

  4. On the Stability and Evolution of Isolated Molecular Clouds

    NASA Technical Reports Server (NTRS)

    Langer, W.; Nelson, R.

    1998-01-01

    We present the results of three dimensional hydrodynamic models of evolving, isolated, low mass, quiescent clouds and Bok gobules, where the interstellar radiation field plays an important role in the thermal and chemical evolution, and thermal pressure provides dominant support against gravitational collapse.

  5. Processing of meteoritic organic materials as a possible analog of early molecular evolution in planetary environments

    PubMed Central

    Pizzarello, Sandra; Davidowski, Stephen K.; Holland, Gregory P.; Williams, Lynda B.

    2013-01-01

    The composition of the Sutter’s Mill meteorite insoluble organic material was studied both in toto by solid-state NMR spectroscopy of the powders and by gas chromatography–mass spectrometry analyses of compounds released upon their hydrothermal treatment. Results were compared with those obtained for other meteorites of diverse classifications (Murray, GRA 95229, Murchison, Orgueil, and Tagish Lake) and found to be so far unique in regard to the molecular species released. These include, in addition to O-containing aromatic compounds, complex polyether- and ester-containing alkyl molecules of prebiotic appeal and never detected in meteorites before. The Sutter’s Mill fragments we analyzed had likely been altered by heat, and the hydrothermal conditions of the experiments realistically mimic early Earth settings, such as near volcanic activity or impact craters. On this basis, the data suggest a far larger availability of meteoritic organic materials for planetary environments than previously assumed and that molecular evolution on the early Earth could have benefited from accretion of carbonaceous meteorites both directly with soluble compounds and, for a more protracted time, through alteration, processing, and release from their insoluble organic materials. PMID:24019471

  6. Molecular Evolution and Functional Characterization of a Bifunctional Decarboxylase Involved in Lycopodium Alkaloid Biosynthesis1[OPEN

    PubMed Central

    Bunsupa, Somnuk; Hanada, Kousuke; Maruyama, Akira; Aoyagi, Kaori; Komatsu, Kana; Ueno, Hideki; Yamashita, Madoka; Sasaki, Ryosuke; Oikawa, Akira; Yamazaki, Mami

    2016-01-01

    Lycopodium alkaloids (LAs) are derived from lysine (Lys) and are found mainly in Huperziaceae and Lycopodiaceae. LAs are potentially useful against Alzheimer’s disease, schizophrenia, and myasthenia gravis. Here, we cloned the bifunctional lysine/ornithine decarboxylase (L/ODC), the first gene involved in LA biosynthesis, from the LA-producing plants Lycopodium clavatum and Huperzia serrata. We describe the in vitro and in vivo functional characterization of the L. clavatum L/ODC (LcL/ODC). The recombinant LcL/ODC preferentially catalyzed the decarboxylation of l-Lys over l-ornithine (l-Orn) by about 5 times. Transient expression of LcL/ODC fused with the amino or carboxyl terminus of green fluorescent protein, in onion (Allium cepa) epidermal cells and Nicotiana benthamiana leaves, showed LcL/ODC localization in the cytosol. Transgenic tobacco (Nicotiana tabacum) hairy roots and Arabidopsis (Arabidopsis thaliana) plants expressing LcL/ODC enhanced the production of a Lys-derived alkaloid, anabasine, and cadaverine, respectively, thus, confirming the function of LcL/ODC in plants. In addition, we present an example of the convergent evolution of plant Lys decarboxylase that resulted in the production of Lys-derived alkaloids in Leguminosae (legumes) and Lycopodiaceae (clubmosses). This convergent evolution event probably occurred via the promiscuous functions of the ancestral Orn decarboxylase, which is an enzyme involved in the primary metabolism of polyamine. The positive selection sites were detected by statistical analyses using phylogenetic trees and were confirmed by site-directed mutagenesis, suggesting the importance of those sites in granting the promiscuous function to Lys decarboxylase while retaining the ancestral Orn decarboxylase function. This study contributes to a better understanding of LA biosynthesis and the molecular evolution of plant Lys decarboxylase. PMID:27303024

  7. Molecular Evolution and Functional Characterization of a Bifunctional Decarboxylase Involved in Lycopodium Alkaloid Biosynthesis.

    PubMed

    Bunsupa, Somnuk; Hanada, Kousuke; Maruyama, Akira; Aoyagi, Kaori; Komatsu, Kana; Ueno, Hideki; Yamashita, Madoka; Sasaki, Ryosuke; Oikawa, Akira; Saito, Kazuki; Yamazaki, Mami

    2016-08-01

    Lycopodium alkaloids (LAs) are derived from lysine (Lys) and are found mainly in Huperziaceae and Lycopodiaceae. LAs are potentially useful against Alzheimer's disease, schizophrenia, and myasthenia gravis. Here, we cloned the bifunctional lysine/ornithine decarboxylase (L/ODC), the first gene involved in LA biosynthesis, from the LA-producing plants Lycopodium clavatum and Huperzia serrata We describe the in vitro and in vivo functional characterization of the L. clavatum L/ODC (LcL/ODC). The recombinant LcL/ODC preferentially catalyzed the decarboxylation of l-Lys over l-ornithine (l-Orn) by about 5 times. Transient expression of LcL/ODC fused with the amino or carboxyl terminus of green fluorescent protein, in onion (Allium cepa) epidermal cells and Nicotiana benthamiana leaves, showed LcL/ODC localization in the cytosol. Transgenic tobacco (Nicotiana tabacum) hairy roots and Arabidopsis (Arabidopsis thaliana) plants expressing LcL/ODC enhanced the production of a Lys-derived alkaloid, anabasine, and cadaverine, respectively, thus, confirming the function of LcL/ODC in plants. In addition, we present an example of the convergent evolution of plant Lys decarboxylase that resulted in the production of Lys-derived alkaloids in Leguminosae (legumes) and Lycopodiaceae (clubmosses). This convergent evolution event probably occurred via the promiscuous functions of the ancestral Orn decarboxylase, which is an enzyme involved in the primary metabolism of polyamine. The positive selection sites were detected by statistical analyses using phylogenetic trees and were confirmed by site-directed mutagenesis, suggesting the importance of those sites in granting the promiscuous function to Lys decarboxylase while retaining the ancestral Orn decarboxylase function. This study contributes to a better understanding of LA biosynthesis and the molecular evolution of plant Lys decarboxylase. PMID:27303024

  8. Extracellular Matrix Molecular Remodeling in Human Liver Fibrosis Evolution

    PubMed Central

    Baiocchini, Andrea; Montaldo, Claudia; Conigliaro, Alice; Grimaldi, Alessio; Correani, Virginia; Mura, Francesco; Ciccosanti, Fabiola; Rotiroti, Nicolina; Brenna, Alessia; Montalbano, Marzia; D’Offizi, Gianpiero; Capobianchi, Maria Rosaria; Alessandro, Riccardo; Piacentini, Mauro; Schininà, Maria Eugenia; Maras, Bruno; Del Nonno, Franca; Tripodi, Marco; Mancone, Carmine

    2016-01-01

    Chronic liver damage leads to pathological accumulation of ECM proteins (liver fibrosis). Comprehensive characterization of the human ECM molecular composition is essential for gaining insights into the mechanisms of liver disease. To date, studies of ECM remodeling in human liver diseases have been hampered by the unavailability of purified ECM. Here, we developed a decellularization method to purify ECM scaffolds from human liver tissues. Histological and electron microscopy analyses demonstrated that the ECM scaffolds, devoid of plasma and cellular components, preserved the three-dimensional ECM structure and zonal distribution of ECM components. This method has been then applied on 57 liver biopsies of HCV-infected patients at different stages of liver fibrosis according to METAVIR classification. Label-free nLC-MS/MS proteomics and computation biology were performed to analyze the ECM molecular composition in liver fibrosis progression, thus unveiling protein expression signatures specific for the HCV-related liver fibrotic stages. In particular, the ECM molecular composition of liver fibrosis was found to involve dynamic changes in matrix stiffness, flexibility and density related to the dysregulation of predominant collagen, elastic fibers and minor components with both structural and signaling properties. This study contributes to the understanding of the molecular bases underlying ECM remodeling in liver fibrosis and suggests new molecular targets for fibrolytic strategies. PMID:26998606

  9. Temporal scaling of molecular evolution in primates and other mammals.

    PubMed

    Gingerich, P D

    1986-05-01

    Molecular clocks are routinely tested for linearity using a relative rate test and routinely calibrated against the geological time scale using a single or average paleontologically determined time of divergence between living taxa. The relative rate test is a test of parallel rate equality, not a test of rate constancy. Temporal scaling provides a test of rates, where scaling coefficients of 1.0 (isochrony) represent stochastic rate constancy. The fossil record of primates and other mammals is now known in sufficient detail to provide several independent divergence times for major taxonomic groups. Molecular difference should scale negatively or isochronically (scaling coefficients less than 1.0) with divergence time: where two or more divergence times are available, molecular difference appears to scale positively (scaling coefficient greater than 1.0). A minimum of four divergence times are required for adequate statistical power in testing the linear model: scaling is significantly nonlinear and positive in six of 11 published investigations meeting this criterion. All groups studied show some slowdown in rates of molecular change over Cenozoic time. The break from constant or increasing rates during the Mesozoic to decreasing rates during the Cenozoic appears to coincide with extraordinary diversification of placental mammals at the beginning of this era. High rates of selectively neutral molecular change may be concentrated in such discrete events of evolutionary diversification. PMID:3444400

  10. Evolution and Molecular Control of Hybrid Incompatibility in Plants.

    PubMed

    Chen, Chen; E, Zhiguo; Lin, Hong-Xuan

    2016-01-01

    Postzygotic reproductive isolation (RI) plays an important role in speciation. According to the stage at which it functions and the symptoms it displays, postzygotic RI can be called hybrid inviability, hybrid weakness or necrosis, hybrid sterility, or hybrid breakdown. In this review, we summarized new findings about hybrid incompatibilities in plants, most of which are from studies on Arabidopsis and rice. Recent progress suggests that hybrid incompatibility is a by-product of co-evolution either with "parasitic" selfish elements in the genome or with invasive microbes in the natural environment. We discuss the environmental influences on the expression of hybrid incompatibility and the possible effects of environment-dependent hybrid incompatibility on sympatric speciation. We also discuss the role of domestication on the evolution of hybrid incompatibilities. PMID:27563306

  11. Evolution and Molecular Control of Hybrid Incompatibility in Plants

    PubMed Central

    Chen, Chen; E, Zhiguo; Lin, Hong-Xuan

    2016-01-01

    Postzygotic reproductive isolation (RI) plays an important role in speciation. According to the stage at which it functions and the symptoms it displays, postzygotic RI can be called hybrid inviability, hybrid weakness or necrosis, hybrid sterility, or hybrid breakdown. In this review, we summarized new findings about hybrid incompatibilities in plants, most of which are from studies on Arabidopsis and rice. Recent progress suggests that hybrid incompatibility is a by-product of co-evolution either with “parasitic” selfish elements in the genome or with invasive microbes in the natural environment. We discuss the environmental influences on the expression of hybrid incompatibility and the possible effects of environment-dependent hybrid incompatibility on sympatric speciation. We also discuss the role of domestication on the evolution of hybrid incompatibilities. PMID:27563306

  12. Structural limits for evolutive capacities in complex molecular systems.

    PubMed

    Bergareche, A M; Ostolaza, J F

    1990-01-01

    The possibilities of evolution for a system with and without a code of translation from nucleic acids into proteins are evaluated. Our interest is mainly centred on the enzymatic RNA case since this molecule has, at the same time, reproductive and functional properties. After scanning the evolutive capacities of the enzymatic RNAs, including the possibility to play the role of "synthetase" which would match nucleic acids with amino acids as a transition step towards a code, we will try to show that due to their own functional limitative factors, the matching system (code) is necessary. This would be the only way to transform the formal complexity--complexity which has not entered into action before the translation process--into functional information to drive the instructive self-reproductive process. Once this stage is reached, the system could evolve without a limit. PMID:1707552

  13. Genetic Diversity and Molecular Evolution of Chinese Waxy Maize Germplasm

    PubMed Central

    Zheng, Hongjian; Wang, Hui; Yang, Hua; Wu, Jinhong; Shi, Biao; Cai, Run; Xu, Yunbi; Wu, Aizhong; Luo, Lijun

    2013-01-01

    Waxy maize (Zea mays L. var. certaina Kulesh), with many excellent characters in terms of starch composition and economic value, has grown in China for a long history and its production has increased dramatically in recent decades. However, the evolution and origin of waxy maize still remains unclear. We studied the genetic diversity of Chinese waxy maize including typical landraces and inbred lines by SSR analysis and the results showed a wide genetic diversity in the Chinese waxy maize germplasm. We analyzed the origin and evolution of waxy maize by sequencing 108 samples, and downloading 52 sequences from GenBank for the waxy locus in a number of accessions from genus Zea. A sharp reduction of nucleotide diversity and significant neutrality tests (Tajima’s D and Fu and Li’s F*) were observed at the waxy locus in Chinese waxy maize but not in nonglutinous maize. Phylogenetic analysis indicated that Chinese waxy maize originated from the cultivated flint maize and most of the modern waxy maize inbred lines showed a distinct independent origin and evolution process compared with the germplasm from Southwest China. The results indicated that an agronomic trait can be quickly improved to meet production demand by selection. PMID:23818949

  14. Direct handling of sharp interfacial energy for microstructural evolution

    DOE PAGESBeta

    Hernández–Rivera, Efraín; Tikare, Veena; Noirot, Laurence; Wang, Lumin

    2014-08-24

    In this study, we introduce a simplification to the previously demonstrated hybrid Potts–phase field (hPPF), which relates interfacial energies to microstructural sharp interfaces. The model defines interfacial energy by a Potts-like discrete interface approach of counting unlike neighbors, which we use to compute local curvature. The model is compared to the hPPF by studying interfacial characteristics and grain growth behavior. The models give virtually identical results, while the new model allows the simulator more direct control of interfacial energy.

  15. Evolution of posttraumatic stress disorder and future directions.

    PubMed

    Ray, Susan L

    2008-08-01

    The knowledge that trauma can cause long-term physiological and psychological problems has been recognized for centuries. Today, such suffering would be classified as the characteristic symptoms of posttraumatic stress disorder (PTSD). Nurses in all practice settings are increasingly caring for individuals suffering from military trauma, natural disasters, and interpersonal violence such as childhood sexual, physical, and emotional abuse, intimate partner violence, and collective violence. This article discusses how the diagnosis of PTSD evolved over the course of history, limitations of the PTSD diagnostic category, and additional diagnostic categories for trauma. Implications for nursing practice and future directions for research are explored. PMID:18640541

  16. Evolution & Phylogenetic Analysis: Classroom Activities for Investigating Molecular & Morphological Concepts

    ERIC Educational Resources Information Center

    Franklin, Wilfred A.

    2010-01-01

    In a flexible multisession laboratory, students investigate concepts of phylogenetic analysis at both the molecular and the morphological level. Students finish by conducting their own analysis on a collection of skeletons representing the major phyla of vertebrates, a collection of primate skulls, or a collection of hominid skulls.

  17. Molecular Evolution of the Plant SLT Protein Family

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The products of the sodium/lithium tolerance (Slt) genes are proteins that have molecular chaperone activity in vitro. The results from extensive database analyses indicate that SLT-orthologous proteins are present only in seed plants (Spermatopsida). Herein we describe the sequence analysis of th...

  18. Designer Gene Delivery Vectors: Molecular Engineering and Evolution of Adeno-Associated Viral Vectors for Enhanced Gene Transfer

    PubMed Central

    Kwon, Inchan

    2007-01-01

    Gene delivery vectors based on adeno-associated virus (AAV) are highly promising due to several desirable features of this parent virus, including a lack of pathogenicity, efficient infection of dividing and non-dividing cells, and sustained maintenance of the viral genome. However, several problems should be addressed to enhance the utility of AAV vectors, particularly those based on AAV2, the best characterized AAV serotype. First, altering viral tropism would be advantageous for broadening its utility in various tissue or cell types. In response to this need, vector pseudotyping, mosaic capsids, and targeting ligand insertion into the capsid have shown promise for altering AAV specificity. In addition, library selection and directed evolution have recently emerged as promising approaches to modulate AAV tropism despite limited knowledge of viral structure–function relationships. Second, pre-existing immunity to AAV must be addressed for successful clinical application of AAV vectors. “Shielding” polymers, site-directed mutagenesis, and alternative AAV serotypes have shown success in avoiding immune neutralization. Furthermore, directed evolution of the AAV capsid is a high throughput approach that has yielded vectors with substantial resistance to neutralizing antibodies. Molecular engineering and directed evolution of AAV vectors therefore offer promise for generating ‘designer’ gene delivery vectors with enhanced properties. PMID:17763830

  19. Tracking the Molecular Evolution of Calcium Permeability in a Nicotinic Acetylcholine Receptor

    PubMed Central

    Lipovsek, Marcela; Fierro, Angélica; Pérez, Edwin G.; Boffi, Juan C.; Millar, Neil S.; Fuchs, Paul A.; Katz, Eleonora; Elgoyhen, Ana Belén

    2014-01-01

    Nicotinic acetylcholine receptors are a family of ligand-gated nonselective cationic channels that participate in fundamental physiological processes at both the central and the peripheral nervous system. The extent of calcium entry through ligand-gated ion channels defines their distinct functions. The α9α10 nicotinic cholinergic receptor, expressed in cochlear hair cells, is a peculiar member of the family as it shows differences in the extent of calcium permeability across species. In particular, mammalian α9α10 receptors are among the ligand-gated ion channels which exhibit the highest calcium selectivity. This acquired differential property provides the unique opportunity of studying how protein function was shaped along evolutionary history, by tracking its evolutionary record and experimentally defining the amino acid changes involved. We have applied a molecular evolution approach of ancestral sequence reconstruction, together with molecular dynamics simulations and an evolutionary-based mutagenesis strategy, in order to trace the molecular events that yielded a high calcium permeable nicotinic α9α10 mammalian receptor. Only three specific amino acid substitutions in the α9 subunit were directly involved. These are located at the extracellular vestibule and at the exit of the channel pore and not at the transmembrane region 2 of the protein as previously thought. Moreover, we show that these three critical substitutions only increase calcium permeability in the context of the mammalian but not the avian receptor, stressing the relevance of overall protein structure on defining functional properties. These results highlight the importance of tracking evolutionarily acquired changes in protein sequence underlying fundamental functional properties of ligand-gated ion channels. PMID:25193338

  20. Tracking the molecular evolution of calcium permeability in a nicotinic acetylcholine receptor.

    PubMed

    Lipovsek, Marcela; Fierro, Angélica; Pérez, Edwin G; Boffi, Juan C; Millar, Neil S; Fuchs, Paul A; Katz, Eleonora; Elgoyhen, Ana Belén

    2014-12-01

    Nicotinic acetylcholine receptors are a family of ligand-gated nonselective cationic channels that participate in fundamental physiological processes at both the central and the peripheral nervous system. The extent of calcium entry through ligand-gated ion channels defines their distinct functions. The α9α10 nicotinic cholinergic receptor, expressed in cochlear hair cells, is a peculiar member of the family as it shows differences in the extent of calcium permeability across species. In particular, mammalian α9α10 receptors are among the ligand-gated ion channels which exhibit the highest calcium selectivity. This acquired differential property provides the unique opportunity of studying how protein function was shaped along evolutionary history, by tracking its evolutionary record and experimentally defining the amino acid changes involved. We have applied a molecular evolution approach of ancestral sequence reconstruction, together with molecular dynamics simulations and an evolutionary-based mutagenesis strategy, in order to trace the molecular events that yielded a high calcium permeable nicotinic α9α10 mammalian receptor. Only three specific amino acid substitutions in the α9 subunit were directly involved. These are located at the extracellular vestibule and at the exit of the channel pore and not at the transmembrane region 2 of the protein as previously thought. Moreover, we show that these three critical substitutions only increase calcium permeability in the context of the mammalian but not the avian receptor, stressing the relevance of overall protein structure on defining functional properties. These results highlight the importance of tracking evolutionarily acquired changes in protein sequence underlying fundamental functional properties of ligand-gated ion channels. PMID:25193338

  1. Directed Evolution and Mutant Characterization of Nitrilase from Rhodococcus rhodochrous tg1-A6.

    PubMed

    Luo, Hui; Ma, Jinwei; Chang, Yanhong; Yu, Huimin; Shen, Zhongyao

    2016-04-01

    In this paper, a molecularly directed evolution-based approach was applied to modify the nitrilase from Rhodococcus rhodochrous tg1-A6 for improving properties in catalyzing nitriles. In the process of error-prone polymerase chain reaction (PCR) with the wild-type nitrilase gene acting as the template, a library of the randomly mutated nitrilase gene was constructed. Since the pH value of catalyzing solution decreased when glycolonitrile was used as the substrate of nitrilase, a high-throughput strategy based on the color change of a pH-sensitive indicator was established for rapid screening of the mutated nitrilase. After three rounds of random mutation and screening about 5000 clones, a variant (Mut3) with 5.3-fold activity of the wild-type counterpart was obtained. Five amino acid substitutions (D27E, N97K, L246F, D108E, and S111R) were found in the variant Mut3. The properties of three mutated enzymes obtained in the three-round mutation were investigated. In the conversion of glycolonitrile, the variant (Mut2) accumulated the highest concentration of glycolic acid at 10.6 g l(-1), a much higher value than the wild type (3.2 g l(-1)). PMID:26712248

  2. Moving in the Right Direction: Evolution of Protein Structural Vibrations with Functional State and Mutation

    NASA Astrophysics Data System (ADS)

    Niessen, Katherine; Xu, Mengyang; Snell, Edward; Markelz, Andrea

    Long-range intramolecular vibrations may enable efficient access to functionally important conformations. We examine how these motions change with inhibitor binding and mutation using terahertz anisotropic absorption and molecular modeling. The measured anisotropic absorption dramatically changes with 3NAG inhibitor binding for wild type (WT) free chicken egg white lysozyme (CEWL). We examine the evolution of internal motions with binding using normal mode analysis to calculate an ensemble averaged vibrational density of states (VDOS) and isotropic and anisotropic absorptions for both WT and a two residue (R14 and H15) deletion mutant which has a 1.4 higher activity rate. While the VDOS and isotropic response are largely unchanged with inhibitor binding, the anisotropic response changes dramatically with binding. However, for the mutant the calculated unbound anisotropic absorption more closely resembles its bound spectrum, and it has increased calculated mean squared fluctuations in regions overlapping those in its bound state. These results indicate that the mutant's enhanced activity may be due to a shift in the direction of vibrations toward those of the bound state, increasing the sampling rate of the bound conformation.

  3. Linking the functions of unrelated proteins using a novel directed evolution domain insertion method

    PubMed Central

    Edwards, Wayne R.; Busse, Kathy; Allemann, Rudolf K.; Jones, D. Dafydd

    2008-01-01

    We have successfully developed a new directed evolution method for generating integral protein fusions comprising of one domain inserted within another. Creating two connections between the insert and accepting parent domain can result in the inter-dependence of the separate protein activities, thus providing a general strategy for constructing molecular switches. Using an engineered transposon termed MuDel, contiguous trinucleotide sequences were removed at random positions from the bla gene encoding TEM-1 β-lactamase. The deleted trinucleotide sequence was then replaced by a DNA cassette encoding cytochrome b562 with differing linking sequences at each terminus and sampling all three reading frames. The result was a variety of chimeric genes encoding novel integral fusion proteins that retained TEM-1 activity. While most of the tolerated insertions were observed in loops, several also occurred close to the termini of α-helices and β-strands. Several variants conferred a switching phenotype on Escherichia coli, with bacterial tolerance to ampicillin being dependent on the presence of haem in the growth medium. The magnitude of the switching phenotype ranged from 4- to 128-fold depending on the insertion position within TEM-1 and the linker sequences that join the two domains. PMID:18559359

  4. Converting a {beta}-glycosidase into a {beta}-transglycosidase by directed evolution.

    PubMed

    Feng, Hui-Yong; Drone, Jullien; Hoffmann, Lionel; Tran, Vinh; Tellier, Charles; Rabiller, Claude; Dion, Michel

    2005-11-01

    Directed evolution was applied to the beta-glycosidase of Thermus thermophilus in order to increase its ability to synthesize oligosaccharide by transglycosylation. Wild-type enzyme was able to transfer the glycosyl residue with a yield of 50% by self-condensation and of about 8% by transglycosylation on disaccharides without nitrophenyl at their reducing end. By using a simple screening procedure, we could produce mutant enzymes possessing a high transferase activity. In one step of random mutagenesis and in vitro recombination, the hydrolysis of substrates and of transglycosylation products was considerably reduced. For certain mutants, synthesis by self-condensation of nitrophenyl glycosides became nearly quantitative, whereas synthesis by transglycosylation on maltose and on cellobiose could reach 60 and 75%, respectively. Because the most efficient mutations, F401S and N282T, were located just in front of the subsite (-1), molecular modeling techniques were used to explain their effects on the synthesis reaction; we can suggest that repositioning of the glycone in the (-1) subsite together with a better fit of the acceptor in the (+1) subsite might favor the attack of a glycosyl acceptor in the mutant at the expense of water. Thus these new transglycosidases constitute an interesting alternative for the synthesis of oligosaccharides by using stable and accessible donor substrates. PMID:16085651

  5. Directed evolution can rapidly improve the activity of chimeric assembly-line enzymes

    PubMed Central

    Fischbach, Michael A.; Lai, Jonathan R.; Roche, Eric D.; Walsh, Christopher T.; Liu, David R.

    2007-01-01

    Nonribosomal peptides (NRPs) are produced by NRP synthetase (NRPS) enzymes that function as molecular assembly lines. The modular architecture of NRPSs suggests that a domain responsible for activating a building block could be replaced with a domain from a foreign NRPS to create a chimeric assembly line that produces a new variant of a natural NRP. However, such chimeric NRPS modules are often heavily impaired, impeding efforts to create novel NRP variants by swapping domains from different modules or organisms. Here we show that impaired chimeric NRPSs can be functionally restored by directed evolution. Using rounds of mutagenesis coupled with in vivo screens for NRP production, we rapidly isolated variants of two different chimeric NRPSs with ≈10-fold improvements in enzyme activity and product yield, including one that produces new derivatives of the potent NRP/polyketide antibiotic andrimid. Because functional restoration in these examples required only modest library sizes (103 to 104 clones) and three or fewer rounds of screening, our approach may be widely applicable even for NRPSs from genetically challenging hosts. PMID:17620609

  6. The molecular evolution of four anti-malarial immune genes in the Anopheles gambiae species complex

    PubMed Central

    2008-01-01

    Background If the insect innate immune system is to be used as a potential blocking step in transmission of malaria, then it will require targeting one or a few genes with highest relevance and ease of manipulation. The problem is to identify and manipulate those of most importance to malaria infection without the risk of decreasing the mosquito's ability to stave off infections by microbes in general. Molecular evolution methodologies and concepts can help identify such genes. Within the setting of a comparative molecular population genetic and phylogenetic framework, involving six species of the Anopheles gambiae complex, we investigated whether a set of four pre-selected immunity genes (gambicin, NOS, Rel2 and FBN9) might have evolved under selection pressure imposed by the malaria parasite. Results We document varying levels of polymorphism within and divergence between the species, in all four genes. Introgression and the sharing of ancestral polymorphisms, two processes that have been documented in the past, were verified in this study in all four studied genes. These processes appear to affect each gene in different ways and to different degrees. However, there is no evidence of positive selection acting on these genes. Conclusion Considering the results presented here in concert with previous studies, genes that interact directly with the Plasmodium parasite, and play little or no role in defense against other microbes, are probably the most likely candidates for a specific adaptive response against P. falciparum. Furthermore, since it is hard to establish direct evidence linking the adaptation of any candidate gene to P. falciparum infection, a comparative framework allowing at least an indirect link should be provided. Such a framework could be achieved, if a similar approach like the one involved here, was applied to all other anopheline complexes that transmit P. falciparum malaria. PMID:18325105

  7. Evolution and ecology of directed aerial descent in arboreal ants.

    PubMed

    Yanoviak, Stephen P; Munk, Yonatan; Dudley, Robert

    2011-12-01

    Directed aerial descent (DAD) is used by a variety of arboreal animals to escape predators, to remain in the canopy, and to access resources. Here, we build upon the discovery of DAD in ants of tropical canopies by summarizing its known phylogenetic distribution among ant genera, and within both the subfamily Pseudomyrmecinae and the genus Cephalotes. DAD has multiple evolutionary origins in ants, occurring independently in numerous genera in the subfamilies Myrmicinae, Formicinae, and Pseudomyrmecinae. Ablation experiments and video recordings of ants in a vertical wind tunnel showed that DAD in Cephalotes atratus is achieved via postural changes, specifically orientation of the legs and gaster. The occurrence of DAD in Formicinae indicates that the presence of a postpetiole is not essential for the behavior. Evidence to date indicates that gliding behavior is accomplished by visual targeting mediated by the compound eyes, and is restricted to diurnally active ants that nest in trees. Occlusion of ocelli in Pseudomyrmex gracilis workers had no effect on their success or performance in gliding. Experimental assessment of the fate of ants that fall to the understory showed that ants landing in water are 15 times more likely to suffer lethal attacks than are ants landing in leaf litter. Variation in both the aerodynamic mechanisms and selective advantages of DAD merits further study given the broad taxonomic diversity of arboreal ants that engage in this intriguing form of flight. PMID:21562023

  8. Molecular phylogeny, biogeography, and habitat preference evolution of marsupials.

    PubMed

    Mitchell, Kieren J; Pratt, Renae C; Watson, Laura N; Gibb, Gillian C; Llamas, Bastien; Kasper, Marta; Edson, Janette; Hopwood, Blair; Male, Dean; Armstrong, Kyle N; Meyer, Matthias; Hofreiter, Michael; Austin, Jeremy; Donnellan, Stephen C; Lee, Michael S Y; Phillips, Matthew J; Cooper, Alan

    2014-09-01

    Marsupials exhibit great diversity in ecology and morphology. However, compared with their sister group, the placental mammals, our understanding of many aspects of marsupial evolution remains limited. We use 101 mitochondrial genomes and data from 26 nuclear loci to reconstruct a dated phylogeny including 97% of extant genera and 58% of modern marsupial species. This tree allows us to analyze the evolution of habitat preference and geographic distributions of marsupial species through time. We found a pattern of mesic-adapted lineages evolving to use more arid and open habitats, which is broadly consistent with regional climate and environmental change. However, contrary to the general trend, several lineages subsequently appear to have reverted from drier to more mesic habitats. Biogeographic reconstructions suggest that current views on the connectivity between Australia and New Guinea/Wallacea during the Miocene and Pliocene need to be revised. The antiquity of several endemic New Guinean clades strongly suggests a substantially older period of connection stretching back to the Middle Miocene and implies that New Guinea was colonized by multiple clades almost immediately after its principal formation. PMID:24881050

  9. Molecular cytogenetic dissection of human chromosomes 3 and 21 evolution

    PubMed Central

    Müller, S.; Stanyon, R.; Finelli, P.; Archidiacono, N.; Wienberg, J.

    2000-01-01

    Chromosome painting in placental mammalians illustrates that genome evolution is marked by chromosomal synteny conservation and that the association of chromosomes 3 and 21 may be the largest widely conserved syntenic block known for mammals. We studied intrachromosomal rearrangements of the syntenic block 3/21 by using probes derived from chromosomal subregions with a resolution of up to 10–15 Mbp. We demonstrate that the rearrangements visualized by chromosome painting, mostly translocations, are only a fraction of the actual chromosomal changes that have occurred during evolution. The ancestral segment order for both primates and carnivores is still found in some species in both orders. From the ancestral primate/carnivore condition an inversion is needed to derive the pig homolog, and a fission of chromosome 21 and a pericentric inversion is needed to derive the Bornean orangutan condition. Two overlapping inversions in the chromosome 3 homolog then would lead to the chromosome form found in humans and African apes. This reconstruction of the origin of human chromosome 3 contrasts with the generally accepted scenario derived from chromosome banding in which it was proposed that only one pericentric inversion was needed. From the ancestral form for Old World primates (now found in the Bornean orangutan) a pericentric inversion and centromere shift leads to the chromosome ancestral for all Old World monkeys. Intrachromosomal rearrangements, as shown here, make up a set of potentially plentiful and informative markers that can be used for phylogenetic reconstruction and a more refined comparative mapping of the genome. PMID:10618396

  10. Molecular Evolution of the TET Gene Family in Mammals

    PubMed Central

    Akahori, Hiromichi; Guindon, Stéphane; Yoshizaki, Sumio; Muto, Yoshinori

    2015-01-01

    Ten-eleven translocation (TET) proteins, a family of Fe2+- and 2-oxoglutarate-dependent dioxygenases, are involved in DNA demethylation. They also help regulate various cellular functions. Three TET paralogs have been identified (TET1, TET2, and TET3) in humans. This study focuses on the evolution of mammalian TET genes. Distinct patterns in TET1 and TET2 vs. TET3 were revealed by codon-based tests of positive selection. Results indicate that TET1 and TET2 genes have experienced positive selection more frequently than TET3 gene, and that the majority of codon sites evolved under strong negative selection. These findings imply that the selective pressure on TET3 may have been relaxed in several lineages during the course of evolution. Our analysis of convergent amino acid substitutions also supports the different evolutionary dynamics among TET gene subfamily members. All of the five amino acid sites that are inferred to have evolved under positive selection in the catalytic domain of TET2 are localized at the protein’s outer surface. The adaptive changes of these positively selected amino acid sites could be associated with dynamic interactions between other TET-interacting proteins, and positive selection thus appears to shift the regulatory scheme of TET enzyme function. PMID:26633372

  11. 'Molecules and monkeys': George Gaylord Simpson and the challenge of molecular evolution.

    PubMed

    Aronson, Jay D

    2002-01-01

    In this paper, I analyze George Gaylord Simpson's response to the molecularization of evolutionary biology from his unique perspective as a paleontologist. I do so by exploring his views on early attempts to reconstruct phylogenetic relationships among primates using molecular data. Particular attention is paid to Simpson's role in the evolutionary synthesis of the 1930s and 1940s, as well as his concerns about the rise of molecular biology as a powerful discipline and world-view in the 1960s. I argue that Simpson's belief in the supremacy of natural selection as the primary driving force of evolution, as well as his view that biology was a historical science that seeks ultimate causes and highlights contingency, prevented him from acknowledging that the study of molecular evolution was an inherently valuable part of the life sciences. PMID:15045833

  12. Molecular phylogeny analysis of fiddler crabs: test of the hypothesis of increasing behavioral complexity in evolution.

    PubMed Central

    Sturmbauer, C; Levinton, J S; Christy, J

    1996-01-01

    The current phylogenetic hypothesis for the evolution and biogeography of fiddler crabs relies on the assumption that complex behavioral traits are assumed to also be evolutionary derived. Indo-west Pacific fiddler crabs have simpler reproductive social behavior and are more marine and were thought to be ancestral to the more behaviorally complex and more terrestrial American species. It was also hypothesized that the evolution of more complex social and reproductive behavior was associated with the colonization of the higher intertidal zones. Our phylogenetic analysis, based upon a set of independent molecular characters, however, demonstrates how widely entrenched ideas about evolution and biogeography led to a reasonable, but apparently incorrect, conclusion about the evolutionary trends within this pantropical group of crustaceans. Species bearing the set of "derived traits" are phylogenetically ancestral, suggesting an alternative evolutionary scenario: the evolution of reproductive behavioral complexity in fiddler crabs may have arisen multiple times during their evolution. The evolution of behavioral complexity may have arisen by coopting of a series of other adaptations for high intertidal living and antipredator escape. A calibration of rates of molecular evolution from populations on either side of the Isthmus of Panama suggest a sequence divergence rate for 16S rRNA of 0.9% per million years. The divergence between the ancestral clade and derived forms is estimated to be approximately 22 million years ago, whereas the divergence between the American and Indo-west Pacific is estimated to be approximately 17 million years ago. Images Fig. 1 PMID:11607711

  13. Molecular Imaging and Contrast Agent Database (MICAD): Evolution and Progress

    PubMed Central

    Chopra, Arvind; Shan, Liang; Eckelman, W. C.; Leung, Kam; Latterner, Martin; Bryant, Stephen H.; Menkens, Anne

    2011-01-01

    The purpose of writing this review is to showcase the Molecular Imaging and Contrast Agent Database (MICAD; www.micad.nlm.nih.gov) to students, researchers and clinical investigators interested in the different aspects of molecular imaging. This database provides freely accessible, current, online scientific information regarding molecular imaging (MI) probes and contrast agents (CA) used for positron emission tomography, single-photon emission computed tomography, magnetic resonance imaging, x-ray/computed tomography, optical imaging and ultrasound imaging. Detailed information on >1000 agents in MICAD is provided in a chapter format and can be accessed through PubMed. Lists containing >4250 unique MI probes and CAs published in peer-reviewed journals and agents approved by the United States Food and Drug Administration (FDA) as well as a CSV file summarizing all chapters in the database can be downloaded from the MICAD homepage. Users can search for agents in MICAD on the basis of imaging modality, source of signal/contrast, agent or target category, preclinical or clinical studies, and text words. Chapters in MICAD describe the chemical characteristics (structures linked to PubChem), the in vitro and in vivo activities and other relevant information regarding an imaging agent. All references in the chapters have links to PubMed. A Supplemental Information Section in each chapter is available to share unpublished information regarding an agent. A Guest Author Program is available to facilitate rapid expansion of the database. Members of the imaging community registered with MICAD periodically receive an e-mail announcement (eAnnouncement) that lists new chapters uploaded to the database. Users of MICAD are encouraged to provide feedback, comments or suggestions for further improvement of the database by writing to the editors at: micad@nlm.nih.gov PMID:21989943

  14. The Question of Absolute Space and Time Directions in Relation to Molecular Chirality, Parity Violation, and Biomolecular Homochirality

    SciTech Connect

    Quack, Martin

    2001-03-21

    The questions of the absolute directions of space and time or the “observability” of absolute time direction as well as absolute handedness-left or right- are related to the fundamental symmetries of physics C, P, T as well as their combinations, in particular CPT, and their violations, such as parity violation. At the same time there is a relation to certain still open questions in chemistry concerning the fundamental physical- chemical principles of molecular chirality and in biochemistry concerning the selection of homochirality in evolution. In the lecture we shall introduce the concepts and then report new theoretical results from our work on parity violation in chiral molecules, showing order of magnitude increases with respect to previously accepted values. We discus as well our current experimental efforts. We shall briefly mention the construction of an absolute molecular clock.

  15. The Question of Absolute Space and Time Directions in Relation to Molecular Chirality, Parity Violation, and Biomolecular Homochirality

    SciTech Connect

    Quack, Martin

    2001-03-21

    The questions of the absolute directions of space and time or the 'observability' of absolute time direction as well as absolute handedness - left or right - are related to the fundamental symmetries of physics C, P, T as well as their combinations, in particular CPT, and their violations, such as parity violation. At the same time there is a relation to certain still open questions in chemistry concerning the fundamental physical-chemical principles of molecular chirality and in biochemistry concerning the selection of homochirality in evolution. In the lecture we shall introduce the concepts and then report new theoretical results from our work on parity violation in chiral molecules, showing order of magnitude increases with respect to previously accepted values. We discuss as well our current experimental efforts. We shall briefly mention the construction of an absolute molecular clock.

  16. Molecular genetics and the evolution of ultraviolet vision in vertebrates

    PubMed Central

    Shi, Yongsheng; Radlwimmer, F. Bernhard; Yokoyama, Shozo

    2001-01-01

    Despite the biological importance of UV vision, its molecular bases are not well understood. Here, we present evidence that UV vision in vertebrates is determined by eight specific amino acids in the UV pigments. Amino acid sequence analyses show that contemporary UV pigments inherited their UV sensitivities from the vertebrate ancestor by retaining most of these eight amino acids. In the avian lineage, the ancestral pigment lost UV sensitivity, but some descendants regained it by one amino acid change. Our results also strongly support the hypothesis that UV pigments have an unprotonated Schiff base-linked chromophore. PMID:11573008

  17. [Molecular Mechanism and Malignant Clonal Evolution of Multiple Myeloma].

    PubMed

    Ding, Fei; Zhu, Ping; Wu, Xue-Qiang

    2015-10-01

    Almost all patients with multiple myeloma (MM) have chromosomal translocation which can result in genetic variation. There are mainly five types of chromosomal translocations, involving the IGH gene translocation to 11q13 (CCND1), 4p16 (FGFR/MMSET), 16q23 (MAF), 6p21 (CCND3) and 20q11 (MAFB). It is possible that all IGH translocations converge on a common cell cycle signal pathway. Some MM develops through a multistep transformation from monoclonal gammopathy of undetermined significance (MGUS) to smoldering MM (SMM) and eventually to MM and plasma cell leukemia (PCL). Similarly to what Darwin proposed in the mid-19th century-random genetic variation and natural selection in the context of limited resources, MM clonal evolution follow branching and nonlinear mode. The failure of MM treatment is usually related with the minimal subclone which is hardly found at newlydiagnosed. PMID:26524068

  18. Molecular networks and the evolution of human cognitive specializations

    PubMed Central

    Fontenot, Miles; Konopka, Genevieve

    2014-01-01

    Inroads into elucidating the origins of human cognitive specializations have taken many forms, including genetic, genomic, anatomical, and behavioral assays that typically compare humans to non-human primates. While the integration of all of these approaches is essential for ultimately understanding human cognition, here, we review the usefulness of coexpression network analysis for specifically addressing this question. An increasing number of studies have incorporated coexpression networks into brain expression studies comparing species, disease versus control tissue, brain regions, or developmental time periods. A clearer picture has emerged of the key genes driving brain evolution, as well as the developmental and regional contributions of gene expression patterns important for normal brain development and those misregulated in cognitive diseases. PMID:25212263

  19. Molecular evolution of peste des petits ruminants virus.

    PubMed

    Muniraju, Murali; Munir, Muhammad; Parthiban, AravindhBabu R; Banyard, Ashley C; Bao, Jingyue; Wang, Zhiliang; Ayebazibwe, Chrisostom; Ayelet, Gelagay; El Harrak, Mehdi; Mahapatra, Mana; Libeau, Geneviève; Batten, Carrie; Parida, Satya

    2014-12-01

    Despite safe and efficacious vaccines against peste des petits ruminants virus (PPRV), this virus has emerged as the cause of a highly contagious disease with serious economic consequences for small ruminant agriculture across Asia, the Middle East, and Africa. We used complete and partial genome sequences of all 4 lineages of the virus to investigate evolutionary and epidemiologic dynamics of PPRV. A Bayesian phylogenetic analysis of all PPRV lineages mapped the time to most recent common ancestor and initial divergence of PPRV to a lineage III isolate at the beginning of 20th century. A phylogeographic approach estimated the probability for root location of an ancestral PPRV and individual lineages as being Nigeria for PPRV, Senegal for lineage I, Nigeria/Ghana for lineage II, Sudan for lineage III, and India for lineage IV. Substitution rates are critical parameters for understanding virus evolution because restrictions in genetic variation can lead to lower adaptability and pathogenicity. PMID:25418782

  20. Molecular evolution and phylogeny of dengue-4 viruses.

    PubMed

    Lanciotti, R S; Gubler, D J; Trent, D W

    1997-09-01

    Nucleotide sequences of the envelope protein genes of 19 geographically and temporally distinct dengue (DEN)-4 viruses were determined. Nucleic acid sequence comparison revealed that the identity among the DEN-4 viruses was greater than 92%. Similarity among deduced amino acids was between 96 and 100%; in most cases identical amino acid substitutions occurred among viruses from similar geographical regions. Alignment of nucleic acid sequences followed by parsimony analysis generated phylogenetic trees, which indicated that geographically independent evolution of DEN-4 viruses had occurred. DEN-4 viruses were separated into two genetically distinct subtypes (genotypes). Genotype-1 contains viruses from the Philippines, Thailand and Sri Lanka; genotype-2 consists of viruses from Indonesia, Tahiti, the Caribbean Islands (Puerto Rico, Dominica) and Central and South America. PMID:9292015

  1. Glutamine synthetase gene evolution: a good molecular clock.

    PubMed Central

    Pesole, G; Bozzetti, M P; Lanave, C; Preparata, G; Saccone, C

    1991-01-01

    Glutamine synthetase (EC 6.3.1.2) gene evolution in various animals, plants, and bacteria was evaluated by a general stationary Markov model. The evolutionary process proved to be unexpectedly regular even for a time span as long as that between the divergence of prokaryotes from eukaryotes. This enabled us to draw phylogenetic trees for species whose phylogeny cannot be easily reconstructed from the fossil record. Our calculation of the times of divergence of the various organelle-specific enzymes led us to hypothesize that the pea and bean chloroplast genes for these enzymes originated from the duplication of nuclear genes as a result of the different metabolic needs of the various species. Our data indicate that the duplication of plastid glutamine synthetase genes occurred long after the endosymbiotic events that produced the organelles themselves. PMID:1671172

  2. Gibberellin Receptor GID1: Gibberellin Recognition and Molecular Evolution

    NASA Astrophysics Data System (ADS)

    Kato, Hiroaki; Sato, Tomomi; Ueguchi-Tanaka, Miyako

    Gibberellins (GAs) are phytohormones essential for many developmental processes in plants. We analyzed the crystal structure of a nuclear GA receptor, GIBBERELLIN INSENSITIVE DWARF 1 (GID1) from Oryza sativa. As it was proposed from the sequence similarity, the overall structure of GID1 shows an α/β-hydrolase fold similar to that of the hormone-sensitive lipases (HSLs) except for an amino-terminal lid. The GA-binding site corresponds to the substrate-binding site of HSLs. Almost residues assigned for GA binding showed very little or no activity when they were replaced with Ala. The substitution of the residues corresponding to those of the lycophyte GID1s caused an increase in the binding affinity for GA34, a 2β-hydroxylated GA4. These findings indicate that GID1 originated from HSL and was tinkered to have the specificity for bioactive GAs in the course of plant evolution.

  3. Structure, molecular evolution, and hydrolytic specificities of largemouth bass pepsins.

    PubMed

    Miura, Yoko; Suzuki-Matsubara, Mieko; Kageyama, Takashi; Moriyama, Akihiko

    2016-02-01

    The nucleotide sequences of largemouth bass pepsinogens (PG1, 2 and 3) were determined after molecular cloning of the respective cDNAs. Encoded PG1, 2 and 3 were classified as fish pepsinogens A1, A2 and C, respectively. Molecular evolutionary analyses show that vertebrate pepsinogens are classified into seven monophyletic groups, i.e. pepsinogens A, F, Y (prochymosins), C, B, and fish pepsinogens A and C. Regarding the primary structures, extensive deletion was obvious in S'1 loop residues in fish pepsin A as well as tetrapod pepsin Y. This deletion resulted in a decrease in hydrophobic residues in the S'1 site. Hydrolytic specificities of bass pepsins A1 and A2 were investigated with a pepsin substrate and its variants. Bass pepsins preferred both hydrophobic/aromatic residues and charged residues at the P'1 sites of substrates, showing the dual character of S'1 sites. Thermodynamic analyses of bass pepsin A2 showed that its activation Gibbs energy change (∆G(‡)) was lower than that of porcine pepsin A. Several sites of bass pepsin A2 moiety were found to be under positive selection, and most of them are located on the surface of the molecule, where they are involved in conformational flexibility. The broad S'1 specificity and flexible structure of bass pepsin A2 are thought to cause its high proteolytic activity. PMID:26627128

  4. Multiple cellular origins and molecular evolution of intrahepatic cholangiocarcinoma.

    PubMed

    Wei, Miaoyan; Lü, Lisheng; Lin, Peiyi; Chen, Zhisheng; Quan, Zhiwei; Tang, Zhaohui

    2016-09-01

    Intrahepatic cholangiocarcinoma (ICC) is an aggressive malignancy associated with unfavorable prognosis and for which no effective treatments are available. Its molecular pathogenesis is poorly understood. Genome-wide sequencing and high-throughput technologies have provided critical insights into the molecular basis of ICC while sparking a heated debate on the cellular origin. Cancer exhibits variabilities in origin, progression and cell biology. Recent evidence suggests that ICC has multiple cellular origins, including differentiated hepatocytes; intrahepatic biliary epithelial cells (IBECs)/cholangiocytes; pluripotent stem cells, such as hepatic stem/progenitor cells (HPCs) and biliary tree stem/progenitor cells (BTSCs); and peribiliary gland (PBG). However, both somatic mutagenesis and epigenomic features are highly cell type-specific. Multiple cellular origins may have profoundly different genomic landscapes and key signaling pathways, driving phenotypic variation and thereby posing significant challenges to personalized medicine in terms of achieving the optimal drug response and patient outcome. Considering this information, we have summarized the latest experimental evidence and relevant literature to provide an up-to-date view of the cellular origin of ICC, which will contribute to establishment of a hierarchical model of carcinogenesis and allow for improvement of the anatomical-based classification of ICC. These new insights have important implications for both the diagnosis and treatment of ICC patients. PMID:26940139

  5. Molecular tools in understanding the evolution of Vibrio cholerae

    PubMed Central

    Rahaman, Md. Habibur; Islam, Tarequl; Colwell, Rita R.; Alam, Munirul

    2015-01-01

    Vibrio cholerae, the etiological agent of cholera, has been a scourge for centuries. Cholera remains a serious health threat for developing countries and has been responsible for millions of deaths globally over the past 200 years. Identification of V. cholerae has been accomplished using a variety of methods, ranging from phenotypic strategies to DNA based molecular typing and currently whole genomic approaches. This array of methods has been adopted in epidemiological investigations, either singly or in the aggregate, and more recently for evolutionary analyses of V. cholerae. Because the new technologies have been developed at an ever increasing pace, this review of the range of fingerprinting strategies, their relative advantages and limitations, and cholera case studies was undertaken. The task was challenging, considering the vast amount of the information available. To assist the study, key references representative of several areas of research are provided with the intent to provide readers with a comprehensive view of recent advances in the molecular epidemiology of V. cholerae. Suggestions for ways to obviate many of the current limitations of typing techniques are also provided. In summary, a comparative report has been prepared that includes the range from traditional typing to whole genomic strategies. PMID:26500613

  6. The molecular evolution of the vertebrate behavioural repertoire.

    PubMed

    Grant, Seth G N

    2016-01-01

    How the sophisticated vertebrate behavioural repertoire evolved remains a major question in biology. The behavioural repertoire encompasses the set of individual behavioural components that an organism uses when adapting and responding to changes in its external world. Although unicellular organisms, invertebrates and vertebrates share simple reflex responses, the fundamental mechanisms that resulted in the complexity and sophistication that is characteristic of vertebrate behaviours have only recently been examined. A series of behavioural genetic experiments in mice and humans support a theory that posited the importance of synapse proteome expansion in generating complexity in the behavioural repertoire. Genome duplication events, approximately 550 Ma, produced expansion in the synapse proteome that resulted in increased complexity in synapse signalling mechanisms that regulate components of the behavioural repertoire. The experiments demonstrate the importance to behaviour of the gene duplication events, the diversification of paralogues and sequence constraint. They also confirm the significance of comparative proteomic and genomic studies that identified the molecular origins of synapses in unicellular eukaryotes and the vertebrate expansion in proteome complexity. These molecular mechanisms have general importance for understanding the repertoire of behaviours in different species and for human behavioural disorders arising from synapse gene mutations. PMID:26598730

  7. The molecular evolution of the vertebrate behavioural repertoire

    PubMed Central

    2016-01-01

    How the sophisticated vertebrate behavioural repertoire evolved remains a major question in biology. The behavioural repertoire encompasses the set of individual behavioural components that an organism uses when adapting and responding to changes in its external world. Although unicellular organisms, invertebrates and vertebrates share simple reflex responses, the fundamental mechanisms that resulted in the complexity and sophistication that is characteristic of vertebrate behaviours have only recently been examined. A series of behavioural genetic experiments in mice and humans support a theory that posited the importance of synapse proteome expansion in generating complexity in the behavioural repertoire. Genome duplication events, approximately 550 Ma, produced expansion in the synapse proteome that resulted in increased complexity in synapse signalling mechanisms that regulate components of the behavioural repertoire. The experiments demonstrate the importance to behaviour of the gene duplication events, the diversification of paralogues and sequence constraint. They also confirm the significance of comparative proteomic and genomic studies that identified the molecular origins of synapses in unicellular eukaryotes and the vertebrate expansion in proteome complexity. These molecular mechanisms have general importance for understanding the repertoire of behaviours in different species and for human behavioural disorders arising from synapse gene mutations. PMID:26598730

  8. Trends in the sand: Directional evolution in the shell shape of recessing scallops (Bivalvia: Pectinidae).

    PubMed

    Sherratt, Emma; Alejandrino, Alvin; Kraemer, Andrew C; Serb, Jeanne M; Adams, Dean C

    2016-09-01

    Directional evolution is one of the most compelling evolutionary patterns observed in macroevolution. Yet, despite its importance, detecting such trends in multivariate data remains a challenge. In this study, we evaluate multivariate evolution of shell shape in 93 bivalved scallop species, combining geometric morphometrics and phylogenetic comparative methods. Phylomorphospace visualization described the history of morphological diversification in the group; revealing that taxa with a recessing life habit were the most distinctive in shell shape, and appeared to display a directional trend. To evaluate this hypothesis empirically, we extended existing methods by characterizing the mean directional evolution in phylomorphospace for recessing scallops. We then compared this pattern to what was expected under several alternative evolutionary scenarios using phylogenetic simulations. The observed pattern did not fall within the distribution obtained under multivariate Brownian motion, enabling us to reject this evolutionary scenario. By contrast, the observed pattern was more similar to, and fell within, the distribution obtained from simulations using Brownian motion combined with a directional trend. Thus, the observed data are consistent with a pattern of directional evolution for this lineage of recessing scallops. We discuss this putative directional evolutionary trend in terms of its potential adaptive role in exploiting novel habitats. PMID:27375214

  9. Engineering Biosynthesis of Non-ribosomal Peptides and Polyketides by Directed Evolution.

    PubMed

    Rui, Zhe; Zhang, Wenjun

    2016-01-01

    Non-ribosomal peptides (NRPs) and polyketides (PKs) play key roles in pharmaceutical industry due to their promising biological activities. The structural complexity of NRPs and PKs, however, creates significant synthetic challenges for producing these natural products and their analogues by purely chemical means. Alternatively, difficult syntheses can be achieved by using biosynthetic enzymes with improved efficiency and altered selectivity that are acquired from directed evolution. Key to the successful directed evolution is the methodology of screening/selection. This review summarizes the screening/selection strategies that have been employed to improve or modify the functions of non-ribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), in the hope of triggering the wide adoption of the directed evolution approaches in the engineered biosynthesis of NRPs and PKs for drug discovery. PMID:26456467

  10. Synthesis of one-dimensional metal-containing insulated molecular wire with versatile properties directed toward molecular electronics materials.

    PubMed

    Masai, Hiroshi; Terao, Jun; Seki, Shu; Nakashima, Shigeto; Kiguchi, Manabu; Okoshi, Kento; Fujihara, Tetsuaki; Tsuji, Yasushi

    2014-02-01

    We report, herein, the design, synthesis, and properties of new materials directed toward molecular electronics. A transition metal-containing insulated molecular wire was synthesized through the coordination polymerization of a Ru(II) porphyrin with an insulated bridging ligand of well-defined structure. The wire displayed not only high linearity and rigidity, but also high intramolecular charge mobility. Owing to the unique properties of the coordination bond, the interconversion between the monomer and polymer states was realized under a carbon monoxide atmosphere or UV irradiation. The results demonstrated a high potential of the metal-containing insulated molecular wire for applications in molecular electronics. PMID:24428791