Science.gov

Sample records for directed network modules

  1. System performance analysis of time-division-multiplexing passive optical network using directly modulated lasers or colorless optical network units

    NASA Astrophysics Data System (ADS)

    Gong, Xiaoxue; Guo, Lei; Liu, Yejun; Zhou, Yufang

    2015-05-01

    As a promising technology for broadband communication, passive optical network (PON) has been deployed to support the last-mile broadband access network. In particular, time-division-multiplexing PON (TDM-PON) has been widely used owing to its mature technology and low cost. To practically implement TDM-PONs, the combination of intensity modulation and direct detection is a very promising technique because it achieves cost reduction in system installation and maintenance. However, the current intensity-modulation and direct-detection TDM-PON still suffers from some problems, which mainly include a high-power penalty, detrimental Brillouin backscattering (BB), and so on. Thus, using directly modulated lasers (DMLs) and colorless optical network units (ONUs), respectively, two intensity-modulation and direct-detection TDM-PON architectures are proposed. Using VPI (an optical simulation software developed by VPIphotonics company) simulators, we first analyze the influences on DML-based intensity-modulation and direct-detection TDM-PON (system 1) performances, which mainly include bit error rate (BER) and power penalty. Next, the BB effect on the BER of the intensity-modulation and direct-detection TDM-PON that uses colorless ONUs (system 2) is also investigated. The simulation results show that: (1) a low-power penalty is achieved without degrading the BER of system 1, and (2) the BB can be effectively reduced using phase modulation of the optical carrier in system 2.

  2. Module bay with directed flow

    DOEpatents

    Torczynski, John R. (Albuquerque, NM)

    2001-02-27

    A module bay requires less cleanroom airflow. A shaped gas inlet passage can allow cleanroom air into the module bay with flow velocity preferentially directed toward contaminant rich portions of a processing module in the module bay. Preferential gas flow direction can more efficiently purge contaminants from appropriate portions of the module bay, allowing a reduced cleanroom air flow rate for contaminant removal. A shelf extending from an air inlet slit in one wall of a module bay can direct air flowing therethrough toward contaminant-rich portions of the module bay, such as a junction between a lid and base of a processing module.

  3. Extracellular vesicles modulate the glioblastoma microenvironment via a tumor suppression signaling network directed by miR-1.

    PubMed

    Bronisz, Agnieszka; Wang, Yan; Nowicki, Michal O; Peruzzi, Pierpaolo; Ansari, Khairul I; Ogawa, Daisuke; Balaj, Leonora; De Rienzo, Gianluca; Mineo, Marco; Nakano, Ichiro; Ostrowski, Michael C; Hochberg, Fred; Weissleder, Ralph; Lawler, Sean E; Chiocca, E Antonio; Godlewski, Jakub

    2014-02-01

    Extracellular vesicles have emerged as important mediators of intercellular communication in cancer, including by conveying tumor-promoting microRNAs between cells, but their regulation is poorly understood. In this study, we report the findings of a comparative microRNA profiling and functional analysis in human glioblastoma that identifies miR-1 as an orchestrator of extracellular vesicle function and glioblastoma growth and invasion. Ectopic expression of miR-1 in glioblastoma cells blocked in vivo growth, neovascularization, and invasiveness. These effects were associated with a role for miR-1 in intercellular communication in the microenvironment mediated by extracellular vesicles released by cancer stem-like glioblastoma cells. An extracellular vesicle-dependent phenotype defined by glioblastoma invasion, neurosphere growth, and endothelial tube formation was mitigated by loading miR-1 into glioblastoma-derived extracellular vesicles. Protein cargo in extracellular vesicles was characterized to learn how miR-1 directed extracellular vesicle function. The mRNA encoding Annexin A2 (ANXA2), one of the most abundant proteins in glioblastoma-derived extracellular vesicles, was found to be a direct target of miR-1 control. In addition, extracellular vesicle-derived miR-1 along with other ANXA2 extracellular vesicle networking partners targeted multiple pro-oncogenic signals in cells within the glioblastoma microenvironment. Together, our results showed how extracellular vesicle signaling promotes the malignant character of glioblastoma and how ectopic expression of miR-1 can mitigate this character, with possible implications for how to develop a unique miRNA-based therapy for glioblastoma management. PMID:24310399

  4. Extracellular vesicles modulate the glioblastoma microenvironment via a tumor suppression signaling network directed by miR-1

    PubMed Central

    Nowicki, Michal O.; Peruzzi, Pierpaolo; Ansari, Khairul; Ogawa, Daisuke; Balaj, Leonora; De Rienzo, Gianluca; Mineo, Marco; Nakano, Ichiro; Ostrowski, Michael C.; Hochberg, Fred; Weissleder, Ralph; Lawler, Sean E.; Chiocca, E. Antonio; Godlewski, Jakub

    2014-01-01

    Extracellular vesicles (EVs) have emerged as important mediators of intercellular communication in cancer, including by conveying tumor-promoting microRNAs between cells, but their regulation is poorly understood. In this study, we report the findings of a comparative microRNA profiling and functional analysis in human glioblastoma (GBM) that identifies miR-1 as an orchestrator of EV function and GBM growth and invasion. Ectopic expression of miR-1 in GBM cells blocked in vivo growth, neovascularization and invasiveness. These effects were associated with a role for miR-1 in intercellular communication in the microenvironment mediated by EVs released by cancer stem-like GBM cells. An EV-dependent phenotype defined by GBM invasion, neurosphere growth and endothelial tube formation was mitigated by loading miR-1 into GBM-derived EVs. Protein cargo in EVs was characterized to learn how miR-1 directed EV function. The mRNA encoding Annexin A2 (ANXA2), one of the most abundant proteins in GBM-derived EVs, was found to be a direct target of miR-1 control. In addition, EV-derived miR-1 along with other ANXA2 EV networking partners targeted multiple pro-oncogenic signals in cells within the GBM microenvironment. Together, our results showed how EV signalling promotes the malignant character of GBM and how ectopic expression of miR-1 can mitigate this character, with possible implications for how to develop a unique miRNA-based therapy for GBM management. PMID:24310399

  5. A mean field neural network for hierarchical module placement

    NASA Technical Reports Server (NTRS)

    Unaltuna, M. Kemal; Pitchumani, Vijay

    1992-01-01

    This paper proposes a mean field neural network for the two-dimensional module placement problem. An efficient coding scheme with only O(N log N) neurons is employed where N is the number of modules. The neurons are evolved in groups of N in log N iteration steps such that the circuit is recursively partitioned in alternating vertical and horizontal directions. In our simulations, the network was able to find optimal solutions to all test problems with up to 128 modules.

  6. Explosive Percolation in Directed Networks

    E-print Network

    Anlage, Steven

    Explosive Percolation in Directed Networks Diego Alcala and Katherine Sytwu With Shane Squires ­ Directed and undirected networks ­ Percolation ­ Explosive percolation · Methodology · Results · Conclusion, infrastructure, etc. · Grow by the addition of links · New class of transitions: "explosive percolation" Taken

  7. Caudal-like PAL-1 directly activates the bodywall muscle module regulator hlh-1 in C. elegans to initiate the embryonic muscle gene regulatory network.

    PubMed

    Lei, Haiyan; Liu, Jun; Fukushige, Tetsunari; Fire, Andrew; Krause, Michael

    2009-04-01

    Previous work in C. elegans has shown that posterior embryonic bodywall muscle lineages are regulated through a genetically defined transcriptional cascade that includes PAL-1/Caudal-mediated activation of muscle-specific transcription factors, including HLH-1/MRF and UNC-120/SRF, which together orchestrate specification and differentiation. Using chromatin immunoprecipitation (ChIP) in embryos, we now demonstrate direct binding of PAL-1 in vivo to an hlh-1 enhancer element. Through mutational analysis of the evolutionarily conserved sequences within this enhancer, we identify two cis-acting elements and their associated transacting factors (PAL-1 and HLH-1) that are crucial for the temporal-spatial expression of hlh-1 and proper myogenesis. Our data demonstrate that hlh-1 is indeed a direct target of PAL-1 in the posterior embryonic C. elegans muscle lineages, defining a novel in vivo binding site for this crucial developmental regulator. We find that the same enhancer element is also a target of HLH-1 positive auto regulation, underlying (at least in part) the sustained high levels of CeMyoD in bodywall muscle throughout development. Together, these results provide a molecular framework for the gene regulatory network activating the muscle module during embryogenesis. PMID:19261701

  8. Epidemic threshold in directed networks

    NASA Astrophysics Data System (ADS)

    Li, Cong; Wang, Huijuan; Van Mieghem, Piet

    2013-12-01

    Epidemics have so far been mostly studied in undirected networks. However, many real-world networks, such as the online social network Twitter and the world wide web, on which information, emotion, or malware spreads, are directed networks, composed of both unidirectional links and bidirectional links. We define the directionality ? as the percentage of unidirectional links. The epidemic threshold ?c for the susceptible-infected-susceptible (SIS) epidemic is lower bounded by 1/?1 in directed networks, where ?1, also called the spectral radius, is the largest eigenvalue of the adjacency matrix. In this work, we propose two algorithms to generate directed networks with a given directionality ?. The effect of ? on the spectral radius ?1, principal eigenvector x1, spectral gap (?1-?2), and algebraic connectivity ?N-1 is studied. Important findings are that the spectral radius ?1 decreases with the directionality ?, whereas the spectral gap and the algebraic connectivity increase with the directionality ?. The extent of the decrease of the spectral radius depends on both the degree distribution and the degree-degree correlation ?D. Hence, in directed networks, the epidemic threshold is larger and a random walk converges to its steady state faster than that in undirected networks with the same degree distribution.

  9. Notational usage modulates attention networks in binumerates

    PubMed Central

    Koul, Atesh; Tyagi, Vaibhav; Singh, Nandini C.

    2014-01-01

    Multicultural environments require learning multiple number notations wherein some are encountered more frequently than others. This leads to differences in exposure and consequently differences in usage between notations. We find that differential notational usage imposes a significant neurocognitive load on number processing. Despite simultaneous acquisition, twenty four adult binumerates, familiar with two positional writing systems namely Hindu Nagari digits and Hindu Arabic digits, reported significantly lower preference and usage for Nagari as compared to Arabic. Twenty-four participants showed significantly increased reaction times and reduced accuracy while performing magnitude comparison tasks in Nagari with respect to Arabic. Functional magnetic resonance imaging revealed that processing Nagari elicited significantly greater activity in number processing and attention networks. A direct subtraction of networks for Nagari and Arabic notations revealed a neural circuit comprising of bilateral Intra-parietal Sulcus (IPS), Inferior and Mid Frontal Gyri, Fusiform Gyrus and the Anterior Cingulate Cortex (FDR p < 0.005). Additionally, whole brain correlation analysis showed that activity in the left inferior parietal region was modulated by task performance in Nagari. We attribute the increased activation in Nagari to increased task difficulty due to infrequent exposure and usage. Our results reiterate the role of left IPS in modulating performance in numeric tasks and highlight the role of the attention network for monitoring symbolic notation mode in binumerates. PMID:24904366

  10. Real time network modulation for intractable epilepsy Behnaam Aazhang

    E-print Network

    Aazhang, Behnaam

    Real time network modulation for intractable epilepsy Behnaam Aazhang ! Electrical and Computer;Real time network modulation for intractable epilepsy Behnaam Aazhang ! Electrical and Computer;Real time network modulation for intractable epilepsy Behnaam Aazhang ! Electrical and Computer

  11. Potential Theory for Directed Networks

    PubMed Central

    Zhang, Qian-Ming; Lü, Linyuan; Wang, Wen-Qiang; Zhou, Tao

    2013-01-01

    Uncovering factors underlying the network formation is a long-standing challenge for data mining and network analysis. In particular, the microscopic organizing principles of directed networks are less understood than those of undirected networks. This article proposes a hypothesis named potential theory, which assumes that every directed link corresponds to a decrease of a unit potential and subgraphs with definable potential values for all nodes are preferred. Combining the potential theory with the clustering and homophily mechanisms, it is deduced that the Bi-fan structure consisting of 4 nodes and 4 directed links is the most favored local structure in directed networks. Our hypothesis receives strongly positive supports from extensive experiments on 15 directed networks drawn from disparate fields, as indicated by the most accurate and robust performance of Bi-fan predictor within the link prediction framework. In summary, our main contribution is twofold: (i) We propose a new mechanism for the local organization of directed networks; (ii) We design the corresponding link prediction algorithm, which can not only testify our hypothesis, but also find out direct applications in missing link prediction and friendship recommendation. PMID:23408979

  12. Sampling properties of directed networks

    NASA Astrophysics Data System (ADS)

    Son, S.-W.; Christensen, C.; Bizhani, G.; Foster, D. V.; Grassberger, P.; Paczuski, M.

    2012-10-01

    For many real-world networks only a small “sampled” version of the original network may be investigated; those results are then used to draw conclusions about the actual system. Variants of breadth-first search (BFS) sampling, which are based on epidemic processes, are widely used. Although it is well established that BFS sampling fails, in most cases, to capture the IN component(s) of directed networks, a description of the effects of BFS sampling on other topological properties is all but absent from the literature. To systematically study the effects of sampling biases on directed networks, we compare BFS sampling to random sampling on complete large-scale directed networks. We present new results and a thorough analysis of the topological properties of seven complete directed networks (prior to sampling), including three versions of Wikipedia, three different sources of sampled World Wide Web data, and an Internet-based social network. We detail the differences that sampling method and coverage can make to the structural properties of sampled versions of these seven networks. Most notably, we find that sampling method and coverage affect both the bow-tie structure and the number and structure of strongly connected components in sampled networks. In addition, at a low sampling coverage (i.e., less than 40%), the values of average degree, variance of out-degree, degree autocorrelation, and link reciprocity are overestimated by 30% or more in BFS-sampled networks and only attain values within 10% of the corresponding values in the complete networks when sampling coverage is in excess of 65%. These results may cause us to rethink what we know about the structure, function, and evolution of real-world directed networks.

  13. OM300 Direction Drilling Module

    SciTech Connect

    MacGugan, Doug

    2013-08-22

    OM300 – Geothermal Direction Drilling Navigation Tool: Design and produce a prototype directional drilling navigation tool capable of high temperature operation in geothermal drilling Accuracies of 0.1° Inclination and Tool Face, 0.5° Azimuth Environmental Ruggedness typical of existing oil/gas drilling Multiple Selectable Sensor Ranges High accuracy for navigation, low bandwidth High G-range & bandwidth for Stick-Slip and Chirp detection Selectable serial data communications Reduce cost of drilling in high temperature Geothermal reservoirs Innovative aspects of project Honeywell MEMS* Vibrating Beam Accelerometers (VBA) APS Flux-gate Magnetometers Honeywell Silicon-On-Insulator (SOI) High-temperature electronics Rugged High-temperature capable package and assembly process

  14. Network Models of Frequency Modulated Sweep Detection

    PubMed Central

    Skorheim, Steven; Razak, Khaleel; Bazhenov, Maxim

    2014-01-01

    Frequency modulated (FM) sweeps are common in species-specific vocalizations, including human speech. Auditory neurons selective for the direction and rate of frequency change in FM sweeps are present across species, but the synaptic mechanisms underlying such selectivity are only beginning to be understood. Even less is known about mechanisms of experience-dependent changes in FM sweep selectivity. We present three network models of synaptic mechanisms of FM sweep direction and rate selectivity that explains experimental data: (1) The ‘facilitation’ model contains frequency selective cells operating as coincidence detectors, summing up multiple excitatory inputs with different time delays. (2) The ‘duration tuned’ model depends on interactions between delayed excitation and early inhibition. The strength of delayed excitation determines the preferred duration. Inhibitory rebound can reinforce the delayed excitation. (3) The ‘inhibitory sideband’ model uses frequency selective inputs to a network of excitatory and inhibitory cells. The strength and asymmetry of these connections results in neurons responsive to sweeps in a single direction of sufficient sweep rate. Variations of these properties, can explain the diversity of rate-dependent direction selectivity seen across species. We show that the inhibitory sideband model can be trained using spike timing dependent plasticity (STDP) to develop direction selectivity from a non-selective network. These models provide a means to compare the proposed synaptic and spectrotemporal mechanisms of FM sweep processing and can be utilized to explore cellular mechanisms underlying experience- or training-dependent changes in spectrotemporal processing across animal models. Given the analogy between FM sweeps and visual motion, these models can serve a broader function in studying stimulus movement across sensory epithelia. PMID:25514021

  15. A direct density modulation cathode in magnetron

    SciTech Connect

    Li, Wei; Zhang, Jun; Liu, Yong-gui; Yang, Han-wu; Shu, Ting

    2013-09-15

    A direct Density Modulation Cathode (DMC) in magnetron is proposed in this paper. By removing the velocity modulation process, electron spokes corresponding to the dominant operating mode can be quickly formed when the DMC is used. Based on theoretical analysis, particle-in-cell simulations and experimental investigations are carried out for demonstration. The final results show that compared with conventional solid cathode and transparent cathode, the DMC can increase 68% and even 146% of relative microwave widths, respectively.

  16. Cross-Species Network Analysis Uncovers Conserved Nitrogen-Regulated Network Modules in Rice1[OPEN

    PubMed Central

    Obertello, Mariana; Shrivastava, Stuti; Katari, Manpreet S.; Coruzzi, Gloria M.

    2015-01-01

    In this study, we used a cross-species network approach to uncover nitrogen (N)-regulated network modules conserved across a model and a crop species. By translating gene network knowledge from the data-rich model Arabidopsis (Arabidopsis thaliana) to a crop, rice (Oryza sativa), we identified evolutionarily conserved N-regulatory modules as targets for translational studies to improve N use efficiency in transgenic plants. To uncover such conserved N-regulatory network modules, we first generated an N-regulatory network based solely on rice transcriptome and gene interaction data. Next, we enhanced the network knowledge in the rice N-regulatory network using transcriptome and gene interaction data from Arabidopsis and new data from Arabidopsis and rice plants exposed to the same N treatment conditions. This cross-species network analysis uncovered a set of N-regulated transcription factors (TFs) predicted to target the same genes and network modules in both species. Supernode analysis of the TFs and their targets in these conserved network modules uncovered genes directly related to N use (e.g. N assimilation) and to other shared biological processes indirectly related to N. This cross-species network approach was validated with members of two TF families in the supernode network, BASIC-LEUCINE ZIPPER TRANSCRIPTION FACTOR1-TGA and HYPERSENSITIVITY TO LOW PI-ELICITED PRIMARY ROOT SHORTENING1 (HRS1)/HRS1 Homolog family, which have recently been experimentally validated to mediate the N response in Arabidopsis. PMID:26045464

  17. Module Information for EE4016, 2015/6 -APPROVED Module Title/Name: Mobile Data Networks Module Code: EE4016

    E-print Network

    Rebollo-Neira, Laura

    Module Information for EE4016, 2015/6 - APPROVED Module Title/Name: Mobile Data Networks Module Code: EE4016 School: Engineering and Applied Science Module Type: Standard Module New Module? No Module Credits: 10 Module Management Information Module Leader Name Xiaohong Peng Email Address pengx1@aston

  18. Module Identification for Biological Networks 

    E-print Network

    Wang, Yijie

    2015-08-12

    of predicting protein complexes and protein functions. iii ACKNOWLEDGEMENTS Many thanks go to my advisor Dr. Xiaoning Qian for his excellent guidance, over- whelming passion for scientific problems and his continuous encouragement during my PhD study. I would.... . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.5 A subnetwork with sparsely connected modules detected by SGPG. Module A is enriched in sequence-specific DNA binding with. Module B is enriched in cellular response to calcium ion. Module D is enriched in MAP kinase activity...

  19. Approved Module Information for EE4016, 2014/5 Module Title/Name: Mobile Data Networks Module Code: EE4016

    E-print Network

    Neirotti, Juan Pablo

    Approved Module Information for EE4016, 2014/5 Module Title/Name: Mobile Data Networks Module Code Credits: 10 Module Management Information Module Leader Name Xiaohong Peng Email Address pengx1@aston and services for mobile networks can be built. Module Learning Outcomes: Knowledge and Understanding

  20. Optimal design of reverse osmosis module networks

    SciTech Connect

    Maskan, F.; Wiley, D.E.; Johnston, L.P.M.; Clements, D.J.

    2000-05-01

    The structure of individual reverse osmosis modules, the configuration of the module network, and the operating conditions were optimized for seawater and brackish water desalination. The system model included simple mathematical equations to predict the performance of the reverse osmosis modules. The optimization problem was formulated as a constrained multivariable nonlinear optimization. The objective function was the annual profit for the system, consisting of the profit obtained from the permeate, capital cost for the process units, and operating costs associated with energy consumption and maintenance. Optimization of several dual-stage reverse osmosis systems were investigated and compared. It was found that optimal network designs are the ones that produce the most permeate. It may be possible to achieve economic improvements by refining current membrane module designs and their operating pressures.

  1. Approved Module Information for EE3WSN, 2014/5 Module Title/Name: Wireless Sensor Networks Module Code: EE3WSN

    E-print Network

    Neirotti, Juan Pablo

    Approved Module Information for EE3WSN, 2014/5 Module Title/Name: Wireless Sensor Networks Module Code: EE3WSN School: Engineering and Applied Science Module Type: Standard Module New Module? No Module

  2. Direct Imaging of Functional Networks

    PubMed Central

    2014-01-01

    Abstract In blood-oxygenation-level-dependent functional magnetic resonance imaging (fMRI), current methods typically acquire ?500,000 imaging voxels at each time point, and then use computer algorithms to reduce this data to the coefficients of a few hundred parcels or networks. This suggests that the amount of relevant information present in the fMRI signal is relatively small, and presents an opportunity to greatly improve the speed and signal to noise ratio (SNR) of the fMRI process. In this work, a theoretical framework is presented for calculating the coefficients of functional networks directly from highly undersampled fMRI data. Using predefined functional parcellations or networks and a compact k-space trajectory that samples data at optimal spatial scales, the problem of estimating network coefficients is reformulated to allow for direct least squares estimation, without Fourier encoding. By simulation, this approach is shown to allow for acceleration of the imaging process under ideal circumstances by nearly three orders of magnitude. PMID:25111798

  3. Downhole drilling network using burst modulation techniques

    DOEpatents

    Hall; David R. (Provo, UT), Fox; Joe (Spanish Fork, UT)

    2007-04-03

    A downhole drilling system is disclosed in one aspect of the present invention as including a drill string and a transmission line integrated into the drill string. Multiple network nodes are installed at selected intervals along the drill string and are adapted to communicate with one another through the transmission line. In order to efficiently allocate the available bandwidth, the network nodes are configured to use any of numerous burst modulation techniques to transmit data.

  4. The behaviour of basic autocatalytic signalling modules in isolation and embedded in networks

    SciTech Connect

    Krishnan, J.; Mois, Kristina; Suwanmajo, Thapanar

    2014-11-07

    In this paper, we examine the behaviour of basic autocatalytic feedback modules involving a species catalyzing its own production, either directly or indirectly. We first perform a systematic study of the autocatalytic feedback module in isolation, examining the effect of different factors, showing how this module is capable of exhibiting monostable threshold and bistable switch-like behaviour. We then study the behaviour of this module embedded in different kinds of basic networks including (essentially) irreversible cycles, open and closed reversible chains, and networks with additional feedback. We study the behaviour of the networks deterministically and also stochastically, using simulations, analytical work, and bifurcation analysis. We find that (i) there are significant differences between the behaviour of this module in isolation and in a network: thresholds may be altered or destroyed and bistability may be destroyed or even induced, even when the ambient network is simple. The global characteristics and topology of this network and the position of the module in the ambient network can play important and unexpected roles. (ii) There can be important differences between the deterministic and stochastic dynamics of the module embedded in networks, which may be accentuated by the ambient network. This provides new insights into the functioning of such enzymatic modules individually and as part of networks, with relevance to other enzymatic signalling modules as well.

  5. Part I: Communication networks, January March 2008 Module 1: Fixed Networks

    E-print Network

    Networks Module 3: Wireless Networks Module 4: eTOM Cases Part II: Security, April ­ June 2008 Module 1 the hacker to pass the bill of his communica- tions to the victim of the hacking, but the amplitude

  6. Caffeine Modulates Attention Network Function

    ERIC Educational Resources Information Center

    Brunye, Tad T.; Mahoney, Caroline R.; Lieberman, Harris R.; Taylor, Holly A.

    2010-01-01

    The present work investigated the effects of caffeine (0 mg, 100 mg, 200 mg, 400 mg) on a flanker task designed to test Posner's three visual attention network functions: alerting, orienting, and executive control [Posner, M. I. (2004). "Cognitive neuroscience of attention". New York, NY: Guilford Press]. In a placebo-controlled, double-blind…

  7. Distributed pulse forming network for magnetic modulator

    NASA Astrophysics Data System (ADS)

    Weiner, M.; Carter, J. L.; Youmans, R. J.

    1984-05-01

    A pulse forming network with distributed inductance and capacitance is disclosed for use in a magnetic modulator. The magnetic modulator has a magnetic core with a primary winding and a secondary winding around it. The pulse forming network includes an inner winding of flattened wire around the magnetic core and connected to one end of the secondary winding for receiving an induced voltage. The pulse forming network also includes a metal foil shield around the inner winding, so that the induced voltage may be stored capacitively between the inner winding and the shield. When the magnetic core saturates, the impedance of the secondary winding drops, so that the pulse forming network discharges through a load. The shape of the pulse through the load is determined by the inductance of the inner winding and the capacitance between the inner winding and the shield. The number of turns per unit length of the inner winding, the spacing between the inner winding and the shield, and the dielectric constant of an insulating layer of material between the inner winding and the shield may all be modified to obtain a pulse forming network forming a desired pulse shape.

  8. Optical waveform generation using a directly modulated laser

    NASA Astrophysics Data System (ADS)

    Cartledge, John C.; Karar, Abdullah S.; Roberts, Kim

    2013-10-01

    The capability of a directly modulated laser (DML) can be dramatically enhanced through precise control of the drive current waveform based on digital signal processing (DSP) and a digital-to-analog convertor (DAC). In this paper, a novel method to pre-compensate fiber dispersion for metro and regional networks is described for a bit rate of 10.709 Gb/s using a DML. A look-up table (LUT) for the drive current is optimized for dispersion mitigation. The entries of the LUT are determined based on the effects of the DML adiabatic and transient chirp on pulse propagation, the nonlinear mapping between the input current and the output optical power, and the bandwidth of the DML package. A DAC operating at 2 samples per bit (21.418 GSa/s with 6 bit resolution) converts the digital samples at the output of the LUT to an analog current waveform driving the DML. Experimental results for a bit rate of 10.709 Gb/s and on-off keying demonstrate a transmission reach of 252 km using a DML intended for 2.5 Gb/s operation and 608 km using a chirp managed laser intended for 10 Gb/s operation. Using this approach (DSP + DAC), the generation of 10.709 Gb/s differential phase shift keying (DPSK) and 56 Gb/s 16-ary quadrature amplitude modulation, sub-carrier multiplexed (QAM SCM) optical signals using the direct modulation of a passive feedback laser is also presented. 6-bit DACs operating at sampling rates of 21.418 GSa/s and 28 GSa/s, respectively, was used to generate the requisite analog current waveform.

  9. Directionality of contact networks suppresses selection pressure in evolutionary dynamics

    E-print Network

    Masuda, Naoki

    2008-01-01

    Individuals of different types, may it be genetic, cultural, or else, with different levels of fitness often compete for reproduction and survival. A fitter type generally has higher chances of disseminating their copies to other individuals. The fixation probability of a single mutant type introduced in a population of wild-type individuals quantifies how likely the mutant type spreads. How much the excess fitness of the mutant type increases its fixation probability, namely, the selection pressure, is important in assessing the impact of the introduced mutant. Previous studies mostly based on undirected and unweighted contact networks of individuals showed that the selection pressure depends on the structure of networks and the rule of reproduction. Real networks underlying ecological and social interactions are usually directed or weighted. Here we examine how the selection pressure is modulated by directionality of interactions under several update rules. Our conclusions are twofold. First, directionality...

  10. Network management, status and directions

    SciTech Connect

    Cottrell, R.L.A.; Streater, T.C.

    1992-09-01

    It has been said that the ``network is the system``. This implies providing levels of service, reliability, predictability and availability that are commensurate with or better than those that individual computers provide today. To provide this requires integrated network management for interconnected networks of heterogeneous devices covering both the local campus and across the world and spanning many administrative domains. This talk will review the status of existing tools to address management for networks. It draws on experience from both within and outside the HEP community.

  11. Network management, status and directions

    SciTech Connect

    Cottrell, R.L.A.; Streater, T.C.

    1992-09-01

    It has been said that the network is the system''. This implies providing levels of service, reliability, predictability and availability that are commensurate with or better than those that individual computers provide today. To provide this requires integrated network management for interconnected networks of heterogeneous devices covering both the local campus and across the world and spanning many administrative domains. This talk will review the status of existing tools to address management for networks. It draws on experience from both within and outside the HEP community.

  12. Google matrix analysis of directed networks

    NASA Astrophysics Data System (ADS)

    Ermann, Leonardo; Frahm, Klaus M.; Shepelyansky, Dima L.

    2015-10-01

    In the past decade modern societies have developed enormous communication and social networks. Their classification and information retrieval processing has become a formidable task for the society. Because of the rapid growth of the World Wide Web, and social and communication networks, new mathematical methods have been invented to characterize the properties of these networks in a more detailed and precise way. Various search engines extensively use such methods. It is highly important to develop new tools to classify and rank a massive amount of network information in a way that is adapted to internal network structures and characteristics. This review describes the Google matrix analysis of directed complex networks demonstrating its efficiency using various examples including the World Wide Web, Wikipedia, software architectures, world trade, social and citation networks, brain neural networks, DNA sequences, and Ulam networks. The analytical and numerical matrix methods used in this analysis originate from the fields of Markov chains, quantum chaos, and random matrix theory.

  13. Google matrix analysis of directed networks

    E-print Network

    Leonardo Ermann; Klaus M. Frahm; Dima L. Shepelyansky

    2015-06-19

    In past ten years, modern societies developed enormous communication and social networks. Their classification and information retrieval processing become a formidable task for the society. Due to the rapid growth of World Wide Web, social and communication networks, new mathematical methods have been invented to characterize the properties of these networks on a more detailed and precise level. Various search engines are essentially using such methods. It is highly important to develop new tools to classify and rank enormous amount of network information in a way adapted to internal network structures and characteristics. This review describes the Google matrix analysis of directed complex networks demonstrating its efficiency on various examples including World Wide Web, Wikipedia, software architecture, world trade, social and citation networks, brain neural networks, DNA sequences and Ulam networks. The analytical and numerical matrix methods used in this analysis originate from the fields of Markov chains, quantum chaos and Random Matrix theory.

  14. Google matrix analysis of directed networks

    E-print Network

    Ermann, Leonardo; Shepelyansky, Dima L

    2014-01-01

    In past ten years, modern societies developed enormous communication and social networks. Their classification and information retrieval processing become a formidable task for the society. Due to the rapid growth of World Wide Web, social and communication networks, new mathematical methods have been invented to characterize the properties of these networks on a more detailed and precise level. Various search engines are essentially using such methods. It is highly important to develop new tools to classify and rank enormous amount of network information in a way adapted to internal network structures and characteristics. This review describes the Google matrix analysis of directed complex networks demonstrating its efficiency on various examples including World Wide Web, Wikipedia, software architecture, world trade, social and citation networks, brain neural networks, DNA sequences and Ulam networks. The analytical and numerical matrix methods used in this analysis originate from the fields of Markov chain...

  15. Direct Gaze Modulates Face Recognition in Young Infants

    ERIC Educational Resources Information Center

    Farroni, Teresa; Massaccesi, Stefano; Menon, Enrica; Johnson, Mark H.

    2007-01-01

    From birth, infants prefer to look at faces that engage them in direct eye contact. In adults, direct gaze is known to modulate the processing of faces, including the recognition of individuals. In the present study, we investigate whether direction of gaze has any effect on face recognition in four-month-old infants. Four-month infants were shown…

  16. Calibration-free absolute frequency response measurement of directly modulated lasers based on additional modulation.

    PubMed

    Zhang, Shangjian; Zou, Xinhai; Wang, Heng; Zhang, Yali; Lu, Rongguo; Liu, Yong

    2015-10-15

    A calibration-free electrical method is proposed for measuring the absolute frequency response of directly modulated semiconductor lasers based on additional modulation. The method achieves the electrical domain measurement of the modulation index of directly modulated lasers without the need for correcting the responsivity fluctuation in the photodetection. Moreover, it doubles measuring frequency range by setting a specific frequency relationship between the direct and additional modulation. Both the absolute and relative frequency response of semiconductor lasers are experimentally measured from the electrical spectrum of the twice-modulated optical signal, and the measured results are compared to those obtained with conventional methods to check the consistency. The proposed method provides calibration-free and accurate measurement for high-speed semiconductor lasers with high-resolution electrical spectrum analysis. PMID:26469605

  17. Automatic modulation format recognition for the next generation optical communication networks using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Guesmi, Latifa; Hraghi, Abir; Menif, Mourad

    2015-03-01

    A new technique for Automatic Modulation Format Recognition (AMFR) in next generation optical communication networks is presented. This technique uses the Artificial Neural Network (ANN) in conjunction with the features of Linear Optical Sampling (LOS) of the detected signal at high bit rates using direct detection or coherent detection. The use of LOS method for this purpose mainly driven by the increase of bit rates which enables the measurement of eye diagrams. The efficiency of this technique is demonstrated under different transmission impairments such as chromatic dispersion (CD) in the range of -500 to 500 ps/nm, differential group delay (DGD) in the range of 0-15 ps and the optical signal tonoise ratio (OSNR) in the range of 10-30 dB. The results of numerical simulation for various modulation formats demonstrate successful recognition from a known bit rates with a higher estimation accuracy, which exceeds 99.8%.

  18. Nonconsensus opinion model on directed networks.

    PubMed

    Qu, Bo; Li, Qian; Havlin, Shlomo; Stanley, H Eugene; Wang, Huijuan

    2014-11-01

    Dynamic social opinion models have been widely studied on undirected networks, and most of them are based on spin interaction models that produce a consensus. In reality, however, many networks such as Twitter and the World Wide Web are directed and are composed of both unidirectional and bidirectional links. Moreover, from choosing a coffee brand to deciding who to vote for in an election, two or more competing opinions often coexist. In response to this ubiquity of directed networks and the coexistence of two or more opinions in decision-making situations, we study a nonconsensus opinion model introduced by Shao et al. [Phys. Rev. Lett. 103, 018701 (2009)PRLTAO0031-900710.1103/PhysRevLett.103.018701] on directed networks. We define directionality ? as the percentage of unidirectional links in a network, and we use the linear correlation coefficient ? between the in-degree and out-degree of a node to quantify the relation between the in-degree and out-degree. We introduce two degree-preserving rewiring approaches which allow us to construct directed networks that can have a broad range of possible combinations of directionality ? and linear correlation coefficient ? and to study how ? and ? impact opinion competitions. We find that, as the directionality ? or the in-degree and out-degree correlation ? increases, the majority opinion becomes more dominant and the minority opinion's ability to survive is lowered. PMID:25493838

  19. Nonconsensus opinion model on directed networks

    NASA Astrophysics Data System (ADS)

    Qu, Bo; Li, Qian; Havlin, Shlomo; Stanley, H. Eugene; Wang, Huijuan

    2014-11-01

    Dynamic social opinion models have been widely studied on undirected networks, and most of them are based on spin interaction models that produce a consensus. In reality, however, many networks such as Twitter and the World Wide Web are directed and are composed of both unidirectional and bidirectional links. Moreover, from choosing a coffee brand to deciding who to vote for in an election, two or more competing opinions often coexist. In response to this ubiquity of directed networks and the coexistence of two or more opinions in decision-making situations, we study a nonconsensus opinion model introduced by Shao et al. [Phys. Rev. Lett. 103, 018701 (2009), 10.1103/PhysRevLett.103.018701] on directed networks. We define directionality ? as the percentage of unidirectional links in a network, and we use the linear correlation coefficient ? between the in-degree and out-degree of a node to quantify the relation between the in-degree and out-degree. We introduce two degree-preserving rewiring approaches which allow us to construct directed networks that can have a broad range of possible combinations of directionality ? and linear correlation coefficient ? and to study how ? and ? impact opinion competitions. We find that, as the directionality ? or the in-degree and out-degree correlation ? increases, the majority opinion becomes more dominant and the minority opinion's ability to survive is lowered.

  20. Direct modulation of lanthanide emission at sub-lifetime scales.

    PubMed

    Karaveli, Sinan; Weinstein, Aaron J; Zia, Rashid

    2013-05-01

    The long lifetime of lanthanide emitters can present a challenge for conventional pump-based modulation schemes, where the maximum switching speed is limited by the decay time of the excited state. However, spontaneous emission can also be controlled through the local optical environment. Here, we demonstrate a direct modulation scheme enabled by dynamic control of the local density of optical states (LDOS). Specifically, we exploit the LDOS differences between electric and magnetic dipole transitions near a metal mirror and demonstrate that rapid nanometer-scale mirror displacements can modulate the emission spectra of trivalent europium ions within their excited state lifetime. The dynamic LDOS modulation presented here can be readily extended to faster optical modulation schemes and applied to other long-lived emitters to control the direction, polarization, and spectrum of spontaneous emission at sublifetime scales. PMID:23597062

  1. Modulating the default mode network using hypnosis.

    PubMed

    Deeley, Quinton; Oakley, David A; Toone, Brian; Giampietro, Vincent; Brammer, Michael J; Williams, Steven C R; Halligan, Peter W

    2012-01-01

    Debate regarding the neural basis of the hypnotic state continues, but a recent hypothesis suggests that it may produce alterations in the default mode network (DMN). DMN describes a network of brain regions more active during low-demand compared to high-demand task conditions and has been linked to processes such as task-independent thinking, episodic memory, semantic processing, and self-awareness. However, the experiential and cognitive correlates of DMN remain difficult to investigate directly. Using hypnosis as a means of altering the resting ("default") state in conjunction with subjective measures and brain imaging, the authors found that the state of attentional absorption following a hypnotic induction was associated with reduced activity in DMN and increased activity in prefrontal attentional systems, under invariant conditions of passive visual stimulation. The findings that hypnosis and spontaneous conceptual thought at rest were subjectively and neurally distinctive are also relevant to understanding hypnosis itself. PMID:22443526

  2. Optical phase modulation based on directly modulated reflection-mode OIL-VCSEL.

    PubMed

    Guo, Peng; Sun, Tao; Yang, Weijian; Parekh, Devang; Zhang, Cheng; Xie, Xiaopeng; Chang-Hasnain, Connie J; Xu, Anshi; Chen, Zhangyuan

    2013-09-23

    Optical phase modulation based on directly modulated reflection-mode optically injection-locked VCSEL is investigated based on standard OIL rate equations and reflection-mode OIL model. The phase information of both static and dynamic state is simulated. The difference of static state phase information between transmission- and reflection-mode OIL is numerically analyzed. With specific OIL parameters, the output power of directly modulated OIL-VCSEL remains constant and phase deviation of 0.934? rad is obtained. Results show that a directly modulated OIL-VCSEL can function as a key component in QPSK or 8PSK transmitters. Preliminary 2.5 Gb/s PSK modulation characteristic is demonstrated experimentally. PMID:24104103

  3. Dynamics-based centrality for directed networks

    NASA Astrophysics Data System (ADS)

    Masuda, Naoki; Kori, Hiroshi

    2010-11-01

    Determining the relative importance of nodes in directed networks is important in, for example, ranking websites, publications, and sports teams, and for understanding signal flows in systems biology. A prevailing centrality measure in this respect is the PageRank. In this work, we focus on another class of centrality derived from the Laplacian of the network. We extend the Laplacian-based centrality, which has mainly been applied to strongly connected networks, to the case of general directed networks such that we can quantitatively compare arbitrary nodes. Toward this end, we adopt the idea used in the PageRank to introduce global connectivity between all the pairs of nodes with a certain strength. Numerical simulations are carried out on some networks. We also offer interpretations of the Laplacian-based centrality for general directed networks in terms of various dynamical and structural properties of networks. Importantly, the Laplacian-based centrality defined as the stationary density of the continuous-time random walk with random jumps is shown to be equivalent to the absorption probability of the random walk with sinks at each node but without random jumps. Similarly, the proposed centrality represents the importance of nodes in dynamics on the original network supplied with sinks but not with random jumps.

  4. Random walks in directed modular networks

    NASA Astrophysics Data System (ADS)

    Comin, Cesar H.; Viana, Mateus P.; Antiqueira, Lucas; Costa, Luciano da F.

    2014-12-01

    Because diffusion typically involves symmetric interactions, scant attention has been focused on studying asymmetric cases. However, important networked systems underlain by diffusion (e.g. cortical networks and WWW) are inherently directed. In the case of undirected diffusion, it can be shown that the steady-state probability of the random walk dynamics is fully correlated with the degree, which no longer holds for directed networks. We investigate the relationship between such probability and the inward node degree, which we call efficiency, in modular networks. Our findings show that the efficiency of a given community depends mostly on the balance between its ingoing and outgoing connections. In addition, we derive analytical expressions to show that the internal degree of the nodes does not play a crucial role in their efficiency, when considering the Erd?s-Rényi and Barabási-Albert models. The results are illustrated with respect to the macaque cortical network, providing subsidies for improving transportation and communication systems.

  5. A Novel Modulation Classification Approach Using Gabor Filter Network

    PubMed Central

    Ghauri, Sajjad Ahmed; Qureshi, Ijaz Mansoor; Cheema, Tanveer Ahmed; Malik, Aqdas Naveed

    2014-01-01

    A Gabor filter network based approach is used for feature extraction and classification of digital modulated signals by adaptively tuning the parameters of Gabor filter network. Modulation classification of digitally modulated signals is done under the influence of additive white Gaussian noise (AWGN). The modulations considered for the classification purpose are PSK 2 to 64, FSK 2 to 64, and QAM 4 to 64. The Gabor filter network uses the network structure of two layers; the first layer which is input layer constitutes the adaptive feature extraction part and the second layer constitutes the signal classification part. The Gabor atom parameters are tuned using Delta rule and updating of weights of Gabor filter using least mean square (LMS) algorithm. The simulation results show that proposed novel modulation classification algorithm has high classification accuracy at low signal to noise ratio (SNR) on AWGN channel. PMID:25126603

  6. A novel modulation classification approach using Gabor filter network.

    PubMed

    Ghauri, Sajjad Ahmed; Qureshi, Ijaz Mansoor; Cheema, Tanveer Ahmed; Malik, Aqdas Naveed

    2014-01-01

    A Gabor filter network based approach is used for feature extraction and classification of digital modulated signals by adaptively tuning the parameters of Gabor filter network. Modulation classification of digitally modulated signals is done under the influence of additive white Gaussian noise (AWGN). The modulations considered for the classification purpose are PSK 2 to 64, FSK 2 to 64, and QAM 4 to 64. The Gabor filter network uses the network structure of two layers; the first layer which is input layer constitutes the adaptive feature extraction part and the second layer constitutes the signal classification part. The Gabor atom parameters are tuned using Delta rule and updating of weights of Gabor filter using least mean square (LMS) algorithm. The simulation results show that proposed novel modulation classification algorithm has high classification accuracy at low signal to noise ratio (SNR) on AWGN channel. PMID:25126603

  7. Direct digital RF synthesis and modulation for MSAT mobile applications

    NASA Technical Reports Server (NTRS)

    Crozier, Stewart; Datta, Ravi; Sydor, John

    1993-01-01

    A practical method of performing direct digital RF synthesis using the Hilbert transform single sideband (SSB) technique is described. It is also shown that amplitude and phase modulation can be achieved directly at L-band with frequency stability and spurii performance exceeding stringent MSAT system requirements.

  8. Identify Dynamic Network Modules with Temporal and Spatial Constraints

    SciTech Connect

    Jin, R; McCallen, S; Liu, C; Almaas, E; Zhou, X J

    2007-09-24

    Despite the rapid accumulation of systems-level biological data, understanding the dynamic nature of cellular activity remains a difficult task. The reason is that most biological data are static, or only correspond to snapshots of cellular activity. In this study, we explicitly attempt to detangle the temporal complexity of biological networks by using compilations of time-series gene expression profiling data.We define a dynamic network module to be a set of proteins satisfying two conditions: (1) they form a connected component in the protein-protein interaction (PPI) network; and (2) their expression profiles form certain structures in the temporal domain. We develop the first efficient mining algorithm to discover dynamic modules in a temporal network, as well as frequently occurring dynamic modules across many temporal networks. Using yeast as a model system, we demonstrate that the majority of the identified dynamic modules are functionally homogeneous. Additionally, many of them provide insight into the sequential ordering of molecular events in cellular systems. We further demonstrate that identifying frequent dynamic network modules can significantly increase the signal to noise separation, despite the fact that most dynamic network modules are highly condition-specific. Finally, we note that the applicability of our algorithm is not limited to the study of PPI systems, instead it is generally applicable to the combination of any type of network and time-series data.

  9. Data reliability in complex directed networks

    NASA Astrophysics Data System (ADS)

    Sanz, Joaquín; Cozzo, Emanuele; Moreno, Yamir

    2013-12-01

    The availability of data from many different sources and fields of science has made it possible to map out an increasing number of networks of contacts and interactions. However, quantifying how reliable these data are remains an open problem. From Biology to Sociology and Economics, the identification of false and missing positives has become a problem that calls for a solution. In this work we extend one of the newest, best performing models—due to Guimerá and Sales-Pardo in 2009—to directed networks. The new methodology is able to identify missing and spurious directed interactions with more precision than previous approaches, which renders it particularly useful for analyzing data reliability in systems like trophic webs, gene regulatory networks, communication patterns and several social systems. We also show, using real-world networks, how the method can be employed to help search for new interactions in an efficient way.

  10. Inverter power module with distributed support for direct substrate cooling

    DOEpatents

    Miller, David Harold (San Pedro, CA); Korich, Mark D. (Chino Hills, CA); Ward, Terence G. (Redondo Beach, CA); Mann, Brooks S. (Redondo Beach, CA)

    2012-08-21

    Systems and/or methods are provided for an inverter power module with distributed support for direct substrate cooling. An inverter module comprises a power electronic substrate. A first support frame is adapted to house the power electronic substrate and has a first region adapted to allow direct cooling of the power electronic substrate. A gasket is interposed between the power electronic substrate and the first support frame. The gasket is configured to provide a seal between the first region and the power electronic substrate. A second support frame is adapted to house the power electronic substrate and joined to the first support frame to form the seal.

  11. Monthly modulation in dark matter direct-detection experiments

    NASA Astrophysics Data System (ADS)

    Britto, Vivian; Meyers, Joel

    2015-11-01

    The signals in dark matter direct-detection experiments should exhibit modulation signatures due to the Earth's motion with respect to the Galactic dark matter halo. The annual and daily modulations, due to the Earth's revolution about the Sun and rotation about its own axis, have been explored previously. Monthly modulation is another such feature present in direct detection signals, and provides a nearly model-independent method of distinguishing dark matter signal events from background. We study here monthly modulations in detail for both WIMP and WISP dark matter searches, examining both the effect of the motion of the Earth about the Earth-Moon barycenter and the gravitational focusing due to the Moon. For WIMP searches, we calculate the monthly modulation of the count rate and show the effects are too small to be observed in the foreseeable future. For WISP dark matter experiments, we show that the photons generated by WISP to photon conversion have frequencies which undergo a monthly modulating shift which is detectable with current technology and which cannot in general be neglected in high resolution WISP searches.

  12. Module organization and variance in protein-protein interaction networks

    NASA Astrophysics Data System (ADS)

    Lin, Chun-Yu; Lee, Tsai-Ling; Chiu, Yi-Yuan; Lin, Yi-Wei; Lo, Yu-Shu; Lin, Chih-Ta; Yang, Jinn-Moon

    2015-03-01

    A module is a group of closely related proteins that act in concert to perform specific biological functions through protein-protein interactions (PPIs) that occur in time and space. However, the underlying module organization and variance remain unclear. In this study, we collected module templates to infer respective module families, including 58,041 homologous modules in 1,678 species, and PPI families using searches of complete genomic database. We then derived PPI evolution scores and interface evolution scores to describe the module elements, including core and ring components. Functions of core components were highly correlated with those of essential genes. In comparison with ring components, core proteins/PPIs were conserved across multiple species. Subsequently, protein/module variance of PPI networks confirmed that core components form dynamic network hubs and play key roles in various biological functions. Based on the analyses of gene essentiality, module variance, and gene co-expression, we summarize the observations of module organization and variance as follows: 1) a module consists of core and ring components; 2) core components perform major biological functions and collaborate with ring components to execute certain functions in some cases; 3) core components are more conserved and essential during organizational changes in different biological states or conditions.

  13. Hierarchical decomposition of metabolic networks using k-modules.

    PubMed

    Reimers, Arne C

    2015-12-01

    The optimal solutions obtained by flux balance analysis (FBA) are typically not unique. Flux modules have recently been shown to be a very useful tool to simplify and decompose the space of FBA-optimal solutions. Since yield-maximization is sometimes not the primary objective encountered in vivo, we are also interested in understanding the space of sub-optimal solutions. Unfortunately, the flux modules are too restrictive and not suited for this task. We present a generalization, called k-module, which compensates the limited applicability of flux modules to the space of sub-optimal solutions. Intuitively, a k-module is a sub-network with low connectivity to the rest of the network. Recursive application of k-modules yields a hierarchical decomposition of the metabolic network, which is also known as branch decomposition in matroid theory. In particular, decompositions computed by existing methods, like the null-space-based approach, introduced by Poolman et al. [(2007) J. Theor. Biol. 249: , 691-705] can be interpreted as branch decompositions. With k-modules we can now compare alternative decompositions of metabolic networks to the classical sub-systems of glycolysis, tricarboxylic acid (TCA) cycle, etc. They can be used to speed up algorithmic problems [theoretically shown for elementary flux modes (EFM) enumeration] and have the potential to present computational solutions in a more intuitive way independently from the classical sub-systems. PMID:26614652

  14. Transcranial Direct Current Stimulation of the Dorsolateral Prefrontal Cortex Modulates Repetition

    E-print Network

    Gosselin, Frédéric

    Transcranial Direct Current Stimulation of the Dorsolateral Prefrontal Cortex Modulates Repetition and learning of unfamiliar faces remains unclear. Transcranial direct current stimulation (tDCS) transiently Direct Current Stimulation of the Dorsolateral Prefrontal Cortex Modulates Repetition Suppression

  15. Investigation of direct integrated optics modulators. [applicable to data preprocessors

    NASA Technical Reports Server (NTRS)

    Batchman, T. E.

    1980-01-01

    Direct modulation techniques applicable to integrated optics data preprocessors were investigated. Several methods of modulating a coherent optical beam by interaction with an incoherent beam were studied. It was decided to investigate photon induced conductivity changes in thin semiconductor cladding layers on optical waveguides. Preliminary calculations indicate significant changes can be produced in the phase shift in a propagating wave when the conductivity is changed by ten percent or more. Experimental devices to verify these predicted phase changes and experiments designed to prove the concept are described.

  16. 13 GHz direct modulation of terahertz quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Barbieri, Stefano; Maineult, Wilfried; Dhillon, Sukhdeep S.; Sirtori, Carlo; Alton, Jesse; Breuil, Nicolas; Beere, Harvey E.; Ritchie, David A.

    2007-10-01

    By directly modulating the bias voltage of a double-metal waveguide, 2.8THz quantum cascade laser, we observe the appearance of multiple gigahertz sidebands in the emission spectrum, with a spacing that can be continuously tuned up to 13GHz. By using an upconversion technique, the terahertz spectrum is shifted at 1.57?m, and displayed on an optical spectrum analyzer. A marked increase in the number of sidebands is observed when the modulation frequency approaches the round-trip frequency (˜12.3GHz). The laser packaging high frequency response has been measured using a microwave rectification technique, and is limited by the bond-wire parasitic inductance.

  17. Direct modulation of stably injection-locked semiconductor lasers for photonic microwave transmission

    NASA Astrophysics Data System (ADS)

    Hwang, Sheng-Kwang; Chan, Sze-Chun; Hsieh, Shie-Chin; Li, Cheng-Yu

    2010-04-01

    Photonic transmission of microwave signals from a central office to remote base stations is a key functionality in broadband radio-over-fiber access networks. Because of chromatic dispersion, a strong fluctuation of the microwave power along fiber transmission happens to microwave-modulated optical carriers with double-sideband features. Therefore, optical single-sideband modulation characteristics are preferred. Direct modulation of a semiconductor laser is the simplest scheme for photonic microwave generation and transmission. However, the symmetric property of the laser in the modulation sideband intensity makes the scheme unattractive for radio-over-fiber applications. In this study, we apply the injection locking technique to the laser for optical single-sideband generation. Proper optical injection can drive the laser to the stable-locking dynamical state before entering the Hopf bifurcation. The field-carrier coupling of the injected laser is radically modified due to the dynamical interaction between the injection-shifted cavity resonance and the injection-imposed oscillation. Therefore, the relaxation resonance sidebands of the injected laser are considerably shifted in frequency and asymmetrically modified in intensity, the extent of which depends strongly on the injection condition. Under the range of our study, direct modulation of the injected laser can thus generate microwave signals that are broadly tunable up to 4 times its free-funning relaxation resonance frequency and are highly asymmetric up to 20 dB in modulation sidebands. The microwave frequency can be tuned over a broad range while keeping a similar level of modulation sideband asymmetry, or different levels of modulation sideband asymmetry can be obtained while keeping a similar microwave frequency. This adds the flexibility and re-configurability to the proposed system. No optical phase-locking electronics, no high driving voltages, and no narrow-bandwidth optical filters are necessary as in many other systems.

  18. Direct Modulation of Small GTPase Activity and Function.

    PubMed

    Cromm, Philipp M; Spiegel, Jochen; Grossmann, Tom N; Waldmann, Herbert

    2015-11-01

    Small GTPases are a family of GDP-/GTP-binding proteins that serve as biomolecular switches inside cells to control a variety of essential cellular processes. Aberrant function and regulation of small GTPases is associated with a variety of human diseases, thus rendering these proteins highly interesting targets in drug discovery. However, this class of proteins has been considered "undruggable", as intensive decade-long efforts did not yield clinically relevant direct modulators of small GTPases. Recently, the targeting of small GTPases has gained fresh impetus through the discovery of novel transient cavities on the protein surfaces and the application of new targeting strategies. Besides Ras proteins, other small GTPases have attracted increased attention since improved biological insight in combination with novel targeting strategies identified them as promising targets in drug discovery. This Review gives an overview of relevant aspects of the superfamily of small GTPases and summarizes recent progress and perspectives for the direct modulation of these challenging targets. PMID:26470842

  19. Protein complexes and functional modules in molecular networks

    NASA Astrophysics Data System (ADS)

    Spirin, Victor; Mirny, Leonid A.

    2003-10-01

    Proteins, nucleic acids, and small molecules form a dense network of molecular interactions in a cell. Molecules are nodes of this network, and the interactions between them are edges. The architecture of molecular networks can reveal important principles of cellular organization and function, similarly to the way that protein structure tells us about the function and organization of a protein. Computational analysis of molecular networks has been primarily concerned with node degree [Wagner, A. & Fell, D. A. (2001) Proc. R. Soc. London Ser. B 268, 1803-1810; Jeong, H., Tombor, B., Albert, R., Oltvai, Z. N. & Barabasi, A. L. (2000) Nature 407, 651-654] or degree correlation [Maslov, S. & Sneppen, K. (2002) Science 296, 910-913], and hence focused on single/two-body properties of these networks. Here, by analyzing the multibody structure of the network of protein-protein interactions, we discovered molecular modules that are densely connected within themselves but sparsely connected with the rest of the network. Comparison with experimental data and functional annotation of genes showed two types of modules: (i) protein complexes (splicing machinery, transcription factors, etc.) and (ii) dynamic functional units (signaling cascades, cell-cycle regulation, etc.). Discovered modules are highly statistically significant, as is evident from comparison with random graphs, and are robust to noise in the data. Our results provide strong support for the network modularity principle introduced by Hartwell et al. [Hartwell, L. H., Hopfield, J. J., Leibler, S. & Murray, A. W. (1999) Nature 402, C47-C52], suggesting that found modules constitute the "building blocks" of molecular networks.

  20. Deciphering early development of complex diseases by progressive module network.

    PubMed

    Zeng, Tao; Zhang, Chuan-chao; Zhang, Wanwei; Liu, Rui; Liu, Juan; Chen, Luonan

    2014-06-01

    There is no effective cure nowadays for many complex diseases, and thus it is crucial to detect and further treat diseases in earlier stages. Generally, the development and progression of complex diseases include three stages: normal stage, pre-disease stage, and disease stage. For diagnosis and treatment, it is necessary to reveal dynamical organizations of molecular modules during the early development of the disease from the pre-disease stage to the disease stage. Thus, we develop a new framework, i.e. we identify the modules presenting at the pre-disease stage (pre-disease module) based on dynamical network biomarkers (DNBs), detect the modules observed at the advanced stage (disease-responsive module) by cross-tissue gene expression analysis, and finally find the modules related to early development (progressive module) by progressive module network (PMN). As an application example, we used this new method to analyze the gene expression data for NOD mouse model of Type 1 diabetes mellitus (T1DM). After the comprehensive comparison with the previously reported milestone molecules, we found by PMN: (1) the critical transition point was identified and confirmed by the tissue-specific modules or DNBs relevant to the pre-disease stage, which is considered as an earlier event during disease development and progression; (2) several key tissues-common modules related to the disease stage were significantly enriched on known T1DM associated genes with the rewired association networks, which are marks of later events during T1DM development and progression; (3) the tissue-specific modules associated with early development revealed several common essential progressive genes, and a few of pathways representing the effect of environmental factors during the early T1DM development. Totally, we developed a new method to detect the critical stage and the key modules during the disease occurrence and progression, and show that the pre-disease modules can serve as warning signals for the pre-disease state (e.g. T1DM early diagnosis) whereas the progressive modules can be used as the therapy targets for the disease state (e.g. advanced T1DM), which were also validated by experimental data. PMID:24561825

  1. Google matrix analysis of directed networks Leonardo Ermann

    E-print Network

    Shepelyansky, Dima

    , software architecture, world trade, social and citation networks, brain neural networks, DNA sequences. Wikipedia networks 19 A. Two-dimensional ranking of Wikipedia articles 19 B. Spectral properties networks 40 C. Anderson delocalization of PageRank? 41 XIV. Other examples of directed networks 43 A. Brain

  2. Distributed Broadcasting and Mapping Protocols in Directed Anonymous Networks

    E-print Network

    Bruck, Jehoshua (Shuki)

    Distributed Broadcasting and Mapping Protocols in Directed Anonymous Networks Michael Langberg anonymous networks that are not neces- sarily strongly connected. In such networks, nodes are aware only bounds on its parame- ters, like the number of nodes or the network diameter. Anonymous networks

  3. Detecting modulated lasers in the battlefield and determining their direction

    NASA Astrophysics Data System (ADS)

    McAulay, Alastair D.

    2009-05-01

    Many different lasers are deployed in the battlefield for range finding, target designation, communications, dazzle, location of targets, munitions guidance, and destruction. Laser warning devices on military systems detect and identify lasers striking them in order to assess their threat level and plan avoidance or retaliation. Types of lasers and their characteristics are discussed: power, frequency, coherence, bandwidth, direction, pulse length and modulation. We describe three approaches for laser warning devices from which specific cases may be tailored: simultaneous estimation of direction and wavelength with a grating, wavefront direction only estimation for low light levels with lenses, absolute simultaneous wavelength only estimation with a Fizeau interferometer. We investigate the feasibility and compare the suitability of these approaches for different applications.

  4. The Direct Digital Modulation of Traveling Wave Tubes

    NASA Technical Reports Server (NTRS)

    Radhamohan, Ranjan S.

    2004-01-01

    Traveling wave tube (TWT) technology, first described by Rudolf Kompfner in the early 1940s, has been a key component of space missions from the earliest communication satellites in the 1960s to the Cassini probe today. TWTs are essentially signal amplifiers that have the special capability of operating at microwave frequencies. The microwave frequency range, which spans from approximately 500 MHz to 300 GHz, is shared by many technologies including cellular phones, satellite television, space communication, and radar. TWT devices are superior in reliability, weight, and efficiency to solid-state amplifiers at the high power and frequency levels required for most space missions. TWTs have three main components -an electron gun, slow wave structure, and collector. The electron gun generates an electron beam that moves along the length of the tube axis, inside of the slow wave circuit. At the same time, the inputted signal is slowed by its travel through the coils of the helical slow wave circuit. The interaction of the electron beam and this slowed signal produces a transfer of kinetic energy to the signal, and in turn, amplification. At the end of its travel, the spent electron beam moves into the collector where its remaining energy is dissipated as heat or harnessed for reuse. TWTs can easily produce gains in the tens of decibels, numbers that are suitable for space missions. To date, however, TWTs have typically operated at fixed levels of gain. This gain is determined by various, unchanging, physical factors of the tube. Traditionally, to achieve varying gain, an input signal s amplitude has had to first be modulated by a separate device before being fed into the TWT. This is not always desirable, as significant distortion can occur in certain situations. My mentor, Mr. Dale Force, has proposed an innovative solution to this problem called direct digital modulation . The testing and implementation of this solution is the focus of my summer internship. The direct digital modulation of a TWT removes the need for a separate amplitude modulation device. Instead, different levels of gain are achieved by varying the electron beam current. The lower the current, the less kinetic energy is available to be transferred to the signal. To vary the current, a grid is placed in-between the electron gun and the slow wave circuit. By changing the voltage across the grid, the electron beam current can be controlled. Grid technology has mostly been used in pulse applications such as radar, where only two voltage states are necessary. For direct digital modulation, however, a continuous range of voltages is required.

  5. DHCVIM: A direct heating containment vessel interactions module

    SciTech Connect

    Ginsberg, T.; Tutu, N.K.

    1987-01-01

    Models for prediction of direct containment heating phenomena as implemented in the DHCVIM computer module are described. The models were designed to treat thermal, chemical and hydrodynamic processes in the three regions of the Sandia National Laboratory Surtsey DCH test facility: the melt generator, cavity and vessel. The fundamental balance equations, along with constitutive relations are described. A combination of Eulerian treatment for the gas phase and Lagrangian treatment for the droplet phase is used in the modeling. Comparisons of calculations and DCH-1 test results are presented. Reasonable agreement is demonstrated for the vessel pressure rise, melt generator pressure decay and particle size distribution.

  6. Direct ink writing of microvascular networks

    NASA Astrophysics Data System (ADS)

    Wu, Willie

    Nature is replete with examples of embedded microvascular systems that enable efficient fluid flow and distribution for autonomic healing, cooling, and energy harvesting. The ability to incorporate microvascular networks in functional materials systems is therefore both scientifically and technologically important. In this PhD thesis, the direct-write assembly of planar and 3D biomimetic microvascular networks within polymer and hydrogel matrices is demonstrated. In addition, the influence of network design of fluid transport efficiency is characterized. Planar microvascular networks composed of periodic lattices of uniformal microchannels and hierarchical, branching architectures are constructed by direct-write assembly of a fugitive organic ink. Several advancements are required to facilitate their patterning, including pressure valving, dual ink printing, and dynamic pressure variation to allow tunable control of ink deposition. The hydraulic conductance is measured using a high pressure flow meter as a function of network design. For a constant vascular volume and areal coverage, 2- and 4-generation branched architectures that obey Murray's Law exhibited the highest hydraulic conductivity. These experimental observations are in good agreement with predictions made by analytic models. 3D microvascular networks are fabricated by omnidirectional printing a fugitive organic ink into a photopolymerizable hydrogel matrix that is capped with fluid filler of nearly identical composition. Using this approach, 3D networks of arbitrary design can be patterned. After ink deposition is complete, the matrix and fluid filler are chemically cross-linked via UV irradiation, and the ink is removed by liquefication. Aqueous solutions composed of a triblock copolymer of polyethylene oxide (PEO)-polypropylene oxide (PPO)-PEO constitute the materials system of choice due to their thermal- and concentration-dependent phase behavior. Specifically, the fugitive ink consists of a 23 w/w% PEO-PPO-PEO (Pluronic F127) solution, while matrix (25 w/w%) and fluid filler (20 w/w%) are composed of an acrylate-modified form of the Pluronic F127 that can be subsequently photopolymerized. The ink and matrix concentrations exceed the critical micelle concentration (CMC) of 22 w/w% and thus reside in a physical gel state. At their respective concentrations, they possess an elastic plateau modulus G' > 104 Pa needed for ink filament formation, shape retention, and support during the printing process. By contrast, the fluid filler is formulated below the CMC to facilitate its flow into void spaces created as the nozzle translates through the matrix during printing. After printing is completed, photopolymerization is carried out to yield a chemically cross-linked matrix from which the fugitive ink is removed leaving behind the desired 3D microvascular network. Due to the potential application of 3D microvasularized hydrogels in tissue engineering, dye diffusion through the cured Pluronic F127-diacrylate matrix is investigated via fluorescent microscopy. Image analysis is used to extract diffusion profiles of the dye as a function of time. Extraction of the 1-D Gaussian fitting parameters is used to determine the spatial peak variance sigma2 and plotted as a function of time to determine the dye diffusivity.

  7. Errorless and errorful learning modulated by transcranial direct current stimulation

    PubMed Central

    2011-01-01

    Background Errorless learning is advantageous over trial and error learning (errorful learning) as errors are avoided during learning resulting in increased memory performance. Errorful learning challenges the executive control system of memory processes as the erroneous items compete with the correct items during retrieval. The left dorsolateral prefrontal cortex (DLPFC) is a core region involved in this executive control system. Transcranial direct current stimulation (tDCS) can modify the excitability of underlying brain functioning. Results In a single blinded tDCS study one group of young healthy participants received anodal and another group cathodal tDCS of the left DLPFC each compared to sham stimulation. Participants had to learn words in an errorless and an errorful manner using a word stem completion paradigm. The results showed that errorless compared to errorful learning had a profound effect on the memory performance in terms of quality. Anodal stimulation of the left DLPFC did not modulate the memory performance following errorless or errorful learning. By contrast, cathodal stimulation hampered memory performance after errorful learning compared to sham, whereas there was no modulation after errorless learning. Conclusions Concluding, the study further supports the advantages of errorless learning over errorful learning. Moreover, cathodal stimulation of the left DLPFC hampered memory performance following the conflict-inducing errorful learning as compared to no modulation after errorless learning emphasizing the importance of the left DLPFC in executive control of memory. PMID:21781298

  8. Fast Fragmentation of Networks Using Module-Based Attacks

    PubMed Central

    Requião da Cunha, Bruno; González-Avella, Juan Carlos; Gonçalves, Sebastián

    2015-01-01

    In the multidisciplinary field of Network Science, optimization of procedures for efficiently breaking complex networks is attracting much attention from a practical point of view. In this contribution, we present a module-based method to efficiently fragment complex networks. The procedure firstly identifies topological communities through which the network can be represented using a well established heuristic algorithm of community finding. Then only the nodes that participate of inter-community links are removed in descending order of their betweenness centrality. We illustrate the method by applying it to a variety of examples in the social, infrastructure, and biological fields. It is shown that the module-based approach always outperforms targeted attacks to vertices based on node degree or betweenness centrality rankings, with gains in efficiency strongly related to the modularity of the network. Remarkably, in the US power grid case, by deleting 3% of the nodes, the proposed method breaks the original network in fragments which are twenty times smaller in size than the fragments left by betweenness-based attack. PMID:26569610

  9. Neural Networks ( ) Contents lists available at ScienceDirect

    E-print Network

    Bolton, McLean

    Neural Networks ( ) ­ Contents lists available at ScienceDirect Neural Networks journal homepage of an anatomically realistic neural network in rat vibrissal cortex Stefan Langa,b , Vincent J. Dercksenc , Bert electrical signals that propagate through anatomically realistic models of average neural networks

  10. Stimulation of Glia Reveals Modulation of Mammalian Spinal Motor Networks by Adenosine

    PubMed Central

    Acton, David; Miles, Gareth B.

    2015-01-01

    Despite considerable evidence that glia can release modulators to influence the excitability of neighbouring neurons, the importance of gliotransmission for the operation of neural networks and in shaping behaviour remains controversial. Here we characterise the contribution of glia to the modulation of the mammalian spinal central pattern generator for locomotion, the output of which is directly relatable to a defined behaviour. Glia were stimulated by specific activation of protease-activated receptor-1 (PAR1), an endogenous G-protein coupled receptor preferentially expressed by spinal glia during ongoing activity of the spinal central pattern generator for locomotion. Selective activation of PAR1 by the agonist TFLLR resulted in a reversible reduction in the frequency of locomotor-related bursting recorded from ventral roots of spinal cord preparations isolated from neonatal mice. In the presence of the gliotoxins methionine sulfoximine or fluoroacetate, TFLLR had no effect, confirming the specificity of PAR1 activation to glia. The modulation of burst frequency upon PAR1 activation was blocked by the non-selective adenosine-receptor antagonist theophylline and by the A1-receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine, but not by the A2A-receptor antagonist SCH5826, indicating production of extracellular adenosine upon glial stimulation, followed by A1-receptor mediated inhibition of neuronal activity. Modulation of network output following glial stimulation was also blocked by the ectonucleotidase inhibitor ARL67156, indicating glial release of ATP and its subsequent degradation to adenosine rather than direct release of adenosine. Glial stimulation had no effect on rhythmic activity recorded following blockade of inhibitory transmission, suggesting that glial cell-derived adenosine acts via inhibitory circuit components to modulate locomotor-related output. Finally, the modulation of network output by endogenous adenosine was found to scale with the frequency of network activity, implying activity-dependent release of adenosine. Together, these data indicate that glia play an active role in the modulation of mammalian locomotor networks, providing negative feedback control that may stabilise network activity. PMID:26252389

  11. Smart Capture Modules for Direct Sensor-to-FPGA Interfaces.

    PubMed

    Oballe-Peinado, Óscar; Vidal-Verdú, Fernando; Sánchez-Durán, José A; Castellanos-Ramos, Julián; Hidalgo-López, José A

    2015-01-01

    Direct sensor-digital device interfaces measure time dependent variables of simple circuits to implement analog-to-digital conversion. Field Programmable Gate Arrays (FPGAs) are devices whose hardware can be reconfigured to work in parallel. They usually do not have analog-to-digital converters, but have many general purpose I/O pins. Therefore, direct sensor-FPGA connection is a good choice in complex systems with many sensors because several capture modules can be implemented to perform parallel analog data acquisition. The possibility to work in parallel and with high frequency clock signals improves the bandwidth compared to sequential devices such as conventional microcontrollers. The price to pay is usually the resolution of measurements. This paper proposes capture modules implemented in an FPGA which are able to perform smart acquisition that filter noise and achieve high precision. A calibration technique is also proposed to improve accuracy. Resolutions of 12 effective number of bits are obtained for the reading of resistors in the range of an example piezoresistive tactile sensor. PMID:26694403

  12. Gaze Direction Modulates the Relation between Neural Responses to Faces and Visual Awareness.

    PubMed

    Madipakkam, Apoorva Rajiv; Rothkirch, Marcus; Guggenmos, Matthias; Heinz, Andreas; Sterzer, Philipp

    2015-09-30

    Gaze direction and especially direct gaze is a powerful nonverbal cue that plays an important role in social interactions. Here we studied the neural mechanisms underlying the privileged access of direct gaze to visual awareness. We performed functional magnetic resonance imaging in healthy human volunteers who were exposed to faces with direct or averted gaze under continuous flash suppression, thereby manipulating their awareness of the faces. A gaze processing network comprising fusiform face area (FFA), superior temporal sulcus, amygdala, and intraparietal sulcus showed overall reduced neural responses when participants reported to be unaware of the faces. Interestingly, direct gaze elicited greater responses than averted gaze when participants were aware of the faces, but smaller responses when they were unaware. Additional between-subject correlation and single-trial analyses indicated that this pattern of results was due to a modulation of the relationship between neural responses and awareness by gaze direction: with increasing neural activation in the FFA, direct-gaze faces entered awareness more readily than averted-gaze faces. These findings suggest that for direct gaze, lower levels of neural activity are sufficient to give rise to awareness than for averted gaze, thus providing a neural basis for privileged access of direct gaze to awareness. Significance statement: Another person's eye gaze directed at oneself is a powerful social signal acting as a catalyst for further communication. Here, we studied the neural mechanisms underlying the prioritized access of direct gaze to visual awareness in healthy human volunteers and show that with increasing neural activation, direct-gaze faces enter awareness more readily than averted-gaze faces. This suggests that for a socially highly relevant cue like direct gaze, lower levels of neural activity are sufficient to give rise to awareness compared with averted gaze, possibly because the human brain is attuned to the efficient neural processing of direct gaze due to the biological importance of eye contact for social interactions. PMID:26424878

  13. Quantitative assessment of gene expression network module-validation methods.

    PubMed

    Li, Bing; Zhang, Yingying; Yu, Yanan; Wang, Pengqian; Wang, Yongcheng; Wang, Zhong; Wang, Yongyan

    2015-01-01

    Validation of pluripotent modules in diverse networks holds enormous potential for systems biology and network pharmacology. An arising challenge is how to assess the accuracy of discovering all potential modules from multi-omic networks and validating their architectural characteristics based on innovative computational methods beyond function enrichment and biological validation. To display the framework progress in this domain, we systematically divided the existing Computational Validation Approaches based on Modular Architecture (CVAMA) into topology-based approaches (TBA) and statistics-based approaches (SBA). We compared the available module validation methods based on 11 gene expression datasets, and partially consistent results in the form of homogeneous models were obtained with each individual approach, whereas discrepant contradictory results were found between TBA and SBA. The TBA of the Zsummary value had a higher Validation Success Ratio (VSR) (51%) and a higher Fluctuation Ratio (FR) (80.92%), whereas the SBA of the approximately unbiased (AU) p-value had a lower VSR (12.3%) and a lower FR (45.84%). The Gray area simulated study revealed a consistent result for these two models and indicated a lower Variation Ratio (VR) (8.10%) of TBA at 6 simulated levels. Despite facing many novel challenges and evidence limitations, CVAMA may offer novel insights into modular networks. PMID:26470848

  14. Quantitative assessment of gene expression network module-validation methods

    PubMed Central

    Li, Bing; Zhang, Yingying; Yu, Yanan; Wang, Pengqian; Wang, Yongcheng; Wang, Zhong; Wang, Yongyan

    2015-01-01

    Validation of pluripotent modules in diverse networks holds enormous potential for systems biology and network pharmacology. An arising challenge is how to assess the accuracy of discovering all potential modules from multi-omic networks and validating their architectural characteristics based on innovative computational methods beyond function enrichment and biological validation. To display the framework progress in this domain, we systematically divided the existing Computational Validation Approaches based on Modular Architecture (CVAMA) into topology-based approaches (TBA) and statistics-based approaches (SBA). We compared the available module validation methods based on 11 gene expression datasets, and partially consistent results in the form of homogeneous models were obtained with each individual approach, whereas discrepant contradictory results were found between TBA and SBA. The TBA of the Zsummary value had a higher Validation Success Ratio (VSR) (51%) and a higher Fluctuation Ratio (FR) (80.92%), whereas the SBA of the approximately unbiased (AU) p-value had a lower VSR (12.3%) and a lower FR (45.84%). The Gray area simulated study revealed a consistent result for these two models and indicated a lower Variation Ratio (VR) (8.10%) of TBA at 6 simulated levels. Despite facing many novel challenges and evidence limitations, CVAMA may offer novel insights into modular networks. PMID:26470848

  15. Chirped laser dispersion spectroscopy using a directly modulated quantum cascade laser

    SciTech Connect

    Hangauer, Andreas Nikodem, Michal; Wysocki, Gerard; Spinner, Georg; Institute for Quantum Electronics, ETH Zurich, 8093 Zurich

    2013-11-04

    Chirped laser dispersion spectroscopy (CLaDS) utilizing direct modulation of a quantum cascade laser (QCL) is presented. By controlling the laser bias nearly single- and dual-sideband CLaDS operation can be realized in an extremely simplified optical setup with no external optical modulators. Capability of direct single-sideband modulation is a unique feature of QCLs that exhibit a low linewidth enhancement factor. The developed analytical model shows excellent agreement with the experimental, directly modulated CLaDS spectra. This method overcomes major technical limitations of mid-infrared CLaDS systems by allowing significantly higher modulation frequencies and eliminating optical fringes introduced by external modulators.

  16. Modules of human micro-RNA co-target network

    NASA Astrophysics Data System (ADS)

    Basu, Mahashweta; Bhattacharyya, Nitai P.; Mohanty, P. K.

    2011-05-01

    Human micro RNAs (miRNAs) target about 90% of the coding genes and form a complex regulatory network. We study the community structure of the miRNA co-target network considering miRNAs as the nodes which are connected by weighted links. The weight of link that connects a pair of miRNAs denote the total number of common transcripts targeted by that pair. We argue that the network consists of about 74 modules, quite similar to the components (or clusters) obtained earlier [Online J Bioinformatics, 10,280], indicating that the components of the miRNA co-target network are self organized in a way to maximize the modularity.

  17. Compression of Flow Can Reveal Overlapping-Module Organization in Networks

    NASA Astrophysics Data System (ADS)

    Viamontes Esquivel, Alcides; Rosvall, Martin

    2011-10-01

    To better understand the organization of overlapping modules in large networks with respect to flow, we introduce the map equation for overlapping modules. In this information-theoretic framework, we use the correspondence between compression and regularity detection. The generalized map equation measures how well we can compress a description of flow in the network when we partition it into modules with possible overlaps. When we minimize the generalized map equation over overlapping network partitions, we detect modules that capture flow and determine which nodes at the boundaries between modules should be classified in multiple modules and to what degree. With a novel greedy-search algorithm, we find that some networks, for example, the neural network of the nematode Caenorhabditis elegans, are best described by modules dominated by hard boundaries, but that others, for example, the sparse European-roads network, have an organization of highly overlapping modules.

  18. Gaze direction modulates visual aftereffects in depth and color Dylan R. Nieman a,*, Ryusuke Hayashi a

    E-print Network

    Gaze direction modulates visual aftereffects in depth and color Dylan R. Nieman a,*, Ryusuke Abstract Prior physiological studies indicate that gaze direction modulates the gain of neural responses to visual stimuli. Here, we test gaze modulation in the perceptual domain using color and depth aftereffects

  19. Finding communities in directed networks by PageRank random walk induced network embedding

    NASA Astrophysics Data System (ADS)

    Lai, Darong; Lu, Hongtao; Nardini, Christine

    2010-06-01

    Community structure has been found to exist ubiquitously in many different kinds of real world complex networks. Most of the previous literature ignores edge directions and applies methods designed for community finding in undirected networks to find communities. Here, we address the problem of finding communities in directed networks. Our proposed method uses PageRank random walk induced network embedding to transform a directed network into an undirected one, where the information on edge directions is effectively incorporated into the edge weights. Starting from this new undirected weighted network, previously developed methods for undirected network community finding can be used without any modification. Moreover, our method improves on recent work in terms of community definition and meaning. We provide two simulated examples, a real social network and different sets of power law benchmark networks, to illustrate how our method can correctly detect communities in directed networks.

  20. Link module for a downhole drilling network

    DOEpatents

    Hall, David R. (Provo, UT); Fox, Joe (Provo, UT)

    2007-05-29

    A repeater is disclosed in one embodiment of the present invention as including a cylindrical housing, characterized by a proximal end and a distal end, and having a substantially cylindrical wall, the cylindrical wall defining a central bore passing therethrough. The cylindrical housing is formed to define at least one recess in the cylindrical wall, into which a repeater is inserted. The cylindrical housing also includes an annular recess formed into at least one of the proximal end and the distal end. An annular transmission element, operably connected to the repeater, is located in the annular recess. In selected embodiments, the annular transmission element inductively converts electrical energy to magnetic energy. In other embodiments, the annular transmission element includes an electrical contact to transmit electrical energy directly to another contact.

  1. Transcranial direct current stimulation modulates efficiency of reading processes

    PubMed Central

    Thomson, Jennifer M.; Doruk, Deniz; Mascio, Bryan; Fregni, Felipe; Cerruti, Carlo

    2015-01-01

    Transcranial direct current stimulation (tDCS) is a neuromodulatory technique that offers promise as an investigative method for understanding complex cognitive operations such as reading. This study explores the ability of a single session of tDCS to modulate reading efficiency and phonological processing performance within a group of healthy adults. Half the group received anodal or cathodal stimulation, on two separate days, of the left temporo-parietal junction while the other half received anodal or cathodal stimulation of the right homologue area. Pre- and post-stimulation assessment of reading efficiency and phonological processing was carried out. A larger pre-post difference in reading efficiency was found for participants who received right anodal stimulation compared to participants who received left anodal stimulation. Further, there was a significant post-stimulation increase in phonological processing speed following right hemisphere anodal stimulation. Implications for models of reading and reading impairment are discussed. PMID:25852513

  2. Keratinocytes can modulate and directly initiate nociceptive responses.

    PubMed

    Baumbauer, Kyle M; DeBerry, Jennifer J; Adelman, Peter C; Miller, Richard H; Hachisuka, Junichi; Lee, Kuan Hsien; Ross, Sarah E; Koerber, H Richard; Davis, Brian M; Albers, Kathryn M

    2015-01-01

    How thermal, mechanical and chemical stimuli applied to the skin are transduced into signals transmitted by peripheral neurons to the CNS is an area of intense study. Several studies indicate that transduction mechanisms are intrinsic to cutaneous neurons and that epidermal keratinocytes only modulate this transduction. Using mice expressing channelrhodopsin (ChR2) in keratinocytes we show that blue light activation of the epidermis alone can produce action potentials (APs) in multiple types of cutaneous sensory neurons including SA1, A-HTMR, CM, CH, CMC, CMH and CMHC fiber types. In loss of function studies, yellow light stimulation of keratinocytes that express halorhodopsin reduced AP generation in response to naturalistic stimuli. These findings support the idea that intrinsic sensory transduction mechanisms in epidermal keratinocytes can directly elicit AP firing in nociceptive as well as tactile sensory afferents and suggest a significantly expanded role for the epidermis in sensory processing. PMID:26329459

  3. Guide RNA functional modules direct Cas9 activity and orthogonality.

    PubMed

    Briner, Alexandra E; Donohoue, Paul D; Gomaa, Ahmed A; Selle, Kurt; Slorach, Euan M; Nye, Christopher H; Haurwitz, Rachel E; Beisel, Chase L; May, Andrew P; Barrangou, Rodolphe

    2014-10-23

    The RNA-guided Cas9 endonuclease specifically targets and cleaves DNA in a sequence-dependent manner and has been widely used for programmable genome editing. Cas9 activity is dependent on interactions with guide RNAs, and evolutionarily divergent Cas9 nucleases have been shown to work orthogonally. However, the molecular basis of selective Cas9:guide-RNA interactions is poorly understood. Here, we identify and characterize six conserved modules within native crRNA:tracrRNA duplexes and single guide RNAs (sgRNAs) that direct Cas9 endonuclease activity. We show the bulge and nexus are necessary for DNA cleavage and demonstrate that the nexus and hairpins are instrumental in defining orthogonality between systems. In contrast, the crRNA:tracrRNA complementary region can be modified or partially removed. Collectively, our results establish guide RNA features that drive DNA targeting by Cas9 and open new design and engineering avenues for CRISPR technologies. PMID:25373540

  4. Transcranial direct current stimulation over posterior parietal cortex modulates visuospatial localization

    E-print Network

    Krekelberg, Bart

    Transcranial direct current stimulation over posterior parietal cortex modulates visuospatial, our goal was to determine whether modulation of the PPC via transcranial direct current stimulation (t localization. We used transcranial direct current stimulation (tDCS) over the PPC of healthy human volunteers

  5. Modulation of GABA and resting state functional connectivity by transcranial direct current stimulation

    PubMed Central

    Bachtiar, Velicia; Near, Jamie; Johansen-Berg, Heidi; Stagg, Charlotte J

    2015-01-01

    We previously demonstrated that network level functional connectivity in the human brain could be related to levels of inhibition in a major network node at baseline (Stagg et al., 2014). In this study, we build upon this finding to directly investigate the effects of perturbing M1 GABA and resting state functional connectivity using transcranial direct current stimulation (tDCS), a neuromodulatory approach that has previously been demonstrated to modulate both metrics. FMRI data and GABA levels, as assessed by Magnetic Resonance Spectroscopy, were measured before and after 20 min of 1 mA anodal or sham tDCS. In line with previous studies, baseline GABA levels were negatively correlated with the strength of functional connectivity within the resting motor network. However, although we confirm the previously reported findings that anodal tDCS reduces GABA concentration and increases functional connectivity in the stimulated motor cortex; these changes are not correlated, suggesting they may be driven by distinct underlying mechanisms. DOI: http://dx.doi.org/10.7554/eLife.08789.001 PMID:26381352

  6. Concurrent Direct Network Access for Virtual Machine Monitors Paul Willmann

    E-print Network

    Concurrent Direct Network Access for Virtual Machine Monitors Paul Willmann Jeffrey Shafer David running within a virtual machine monitor. In a conventional virtual machine monitor, each operating system running within a virtual machine must access the network through a software-virtualized network interface

  7. Detecting Blackholes and Volcanoes in Directed Networks

    E-print Network

    Li, Zhongmou; Liu, Yanchi

    2010-01-01

    In this paper, we formulate a novel problem for finding blackhole and volcano patterns in a large directed graph. Specifically, a blackhole pattern is a group which is made of a set of nodes in a way such that there are only inlinks to this group from the rest nodes in the graph. In contrast, a volcano pattern is a group which only has outlinks to the rest nodes in the graph. Both patterns can be observed in real world. For instance, in a trading network, a blackhole pattern may represent a group of traders who are manipulating the market. In the paper, we first prove that the blackhole mining problem is a dual problem of finding volcanoes. Therefore, we focus on finding the blackhole patterns. Along this line, we design two pruning schemes to guide the blackhole finding process. In the first pruning scheme, we strategically prune the search space based on a set of pattern-size-independent pruning rules and develop an iBlackhole algorithm. The second pruning scheme follows a divide-and-conquer strategy to fur...

  8. Modulating Cognition Using Transcranial Direct Current Stimulation of the Cerebellum

    PubMed Central

    Pope, Paul A.

    2015-01-01

    Numerous studies have emerged recently that demonstrate the possibility of modulating, and in some cases enhancing, cognitive processes by exciting brain regions involved in working memory and attention using transcranial electrical brain stimulation. Some researchers now believe the cerebellum supports cognition, possibly via a remote neuromodulatory effect on the prefrontal cortex. This paper describes a procedure for investigating a role for the cerebellum in cognition using transcranial direct current stimulation (tDCS), and a selection of information-processing tasks of varying task difficulty, which have previously been shown to involve working memory, attention and cerebellar functioning. One task is called the Paced Auditory Serial Addition Task (PASAT) and the other a novel variant of this task called the Paced Auditory Serial Subtraction Task (PASST). A verb generation task and its two controls (noun and verb reading) were also investigated. All five tasks were performed by three separate groups of participants, before and after the modulation of cortico-cerebellar connectivity using anodal, cathodal or sham tDCS over the right cerebellar cortex. The procedure demonstrates how performance (accuracy, verbal response latency and variability) could be selectively improved after cathodal stimulation, but only during tasks that the participants rated as difficult, and not easy. Performance was unchanged by anodal or sham stimulation. These findings demonstrate a role for the cerebellum in cognition, whereby activity in the left prefrontal cortex is likely dis-inhibited by cathodal tDCS over the right cerebellar cortex. Transcranial brain stimulation is growing in popularity in various labs and clinics. However, the after-effects of tDCS are inconsistent between individuals and not always polarity-specific, and may even be task- or load-specific, all of which requires further study. Future efforts might also be guided towards neuro-enhancement in cerebellar patients presenting with cognitive impairment once a better understanding of brain stimulation mechanisms has emerged. PMID:25741744

  9. TRIM32 modulates pluripotency entry and exit by directly regulating Oct4 stability

    PubMed Central

    Bahnassawy, Lamia’a; Perumal, Thanneer M.; Gonzalez-Cano, Laura; Hillje, Anna-Lena; Taher, Leila; Makalowski, Wojciech; Suzuki, Yutaka; Fuellen, Georg; Sol, Antonio del; Schwamborn, Jens Christian

    2015-01-01

    Induced pluripotent stem cells (iPSCs) have revolutionized the world of regenerative medicine; nevertheless, the exact molecular mechanisms underlying their generation and differentiation remain elusive. Here, we investigated the role of the cell fate determinant TRIM32 in modulating such processes. TRIM32 is essential for the induction of neuronal differentiation of neural stem cells by poly-ubiquitinating cMyc to target it for degradation resulting in inhibition of cell proliferation. To elucidate the role of TRIM32 in regulating somatic cell reprogramming we analysed the capacity of TRIM32-knock-out mouse embryonic fibroblasts (MEFs) in generating iPSC colonies. TRIM32 knock-out MEFs produced a higher number of iPSC colonies indicating a role for TRIM32 in inhibiting this cellular transition. Further characterization of the generated iPSCs indicated that the TRIM32 knock-out iPSCs show perturbed differentiation kinetics. Additionally, mathematical modelling of global gene expression data revealed that during differentiation an Oct4 centred network in the wild-type cells is replaced by an E2F1 centred network in the TRIM32 deficient cells. We show here that this might be caused by a TRIM32-dependent downregulation of Oct4. In summary, the data presented here reveal that TRIM32 directly regulates at least two of the four Yamanaka Factors (cMyc and Oct4), to modulate cell fate transitions. PMID:26307407

  10. Space station common module network topology and hardware development

    NASA Technical Reports Server (NTRS)

    Anderson, P.; Braunagel, L.; Chwirka, S.; Fishman, M.; Freeman, K.; Eason, D.; Landis, D.; Lech, L.; Martin, J.; Mccorkle, J.

    1990-01-01

    Conceptual space station common module power management and distribution (SSM/PMAD) network layouts and detailed network evaluations were developed. Individual pieces of hardware to be developed for the SSM/PMAD test bed were identified. A technology assessment was developed to identify pieces of equipment requiring development effort. Equipment lists were developed from the previously selected network schematics. Additionally, functional requirements for the network equipment as well as other requirements which affected the suitability of specific items for use on the Space Station Program were identified. Assembly requirements were derived based on the SSM/PMAD developed requirements and on the selected SSM/PMAD network concepts. Basic requirements and simplified design block diagrams are included. DC remote power controllers were successfully integrated into the DC Marshall Space Flight Center breadboard. Two DC remote power controller (RPC) boards experienced mechanical failure of UES 706 stud-mounted diodes during mechanical installation of the boards into the system. These broken diodes caused input to output shorting of the RPC's. The UES 706 diodes were replaced on these RPC's which eliminated the problem. The DC RPC's as existing in the present breadboard configuration do not provide ground fault protection because the RPC was designed to only switch the hot side current. If ground fault protection were to be implemented, it would be necessary to design the system so the RPC switched both the hot and the return sides of power.

  11. How familiarization and repetition modulate the picture naming network

    PubMed Central

    Llorens, Anaïs; Trébuchon, Agnès; Riès, Stéphanie; Liégeois-Chauvel, Catherine; Alario, F.-Xavier

    2014-01-01

    A common strategy to reveal the components of the speech production network is to use psycholinguistic manipulations previously tested in behavioral protocols. This often disregards how implementation aspects that are nonessential for interpreting behavior may affect the neural response. We compared the electrophysiological (EEG) signature of two popular picture naming protocols involving either unfamiliar pictures without repetitions or repeated familiar pictures. We observed significant semantic interference effects in behavior but not in the EEG, contrary to some previous findings. Remarkably, the two protocols elicited clearly distinct EEG responses. These were not due to naming latency differences nor did they reflect a homogeneous modulation of amplitude over the trial time-window. The effect of protocol is attributed to the familiarization induced by the first encounter with the materials. Picture naming processes can be substantially modulated by specific protocol requirements controlled by familiarity and, to a much lesser degree, the repetition of materials. PMID:24785306

  12. Sinusoidal modulation control method in a chaotic neural network

    NASA Astrophysics Data System (ADS)

    Zhang, Qihanyue; Xie, Xiaoping; Zhu, Ping; Chen, Hongping; He, Guoguang

    2014-08-01

    Chaotic neural networks (CNNs) have chaotic dynamic associative memory properties: The memory states appear non-periodically, and cannot be converged to a stored pattern. Thus, it is necessary to control chaos in a CNN in order to recognize associative memory. In this paper, a novel control method, the sinusoidal modulation control method, has been proposed to control chaos in a CNN. In this method, a sinusoidal wave simplified from brain waves is used as a control signal to modulate a parameter of the CNN. The simulation results demonstrate the effectiveness of this control method. The controlled CNN can be applied to information processing. Moreover, the method provides a way to associate brain waves by controlling CNNs.

  13. Analysis of relative influence of nodes in directed networks

    NASA Astrophysics Data System (ADS)

    Masuda, Naoki; Kawamura, Yoji; Kori, Hiroshi

    2009-10-01

    Many complex networks are described by directed links; in such networks, a link represents, for example, the control of one node over the other node or unidirectional information flows. Some centrality measures are used to determine the relative importance of nodes specifically in directed networks. We analyze such a centrality measure called the influence. The influence represents the importance of nodes in various dynamics such as synchronization, evolutionary dynamics, random walk, and social dynamics. We analytically calculate the influence in various networks, including directed multipartite networks and a directed version of the Watts-Strogatz small-world network. The global properties of networks such as hierarchy and position of shortcuts rather than local properties of the nodes, such as the degree, are shown to be the chief determinants of the influence of nodes in many cases. The developed method is also applicable to the calculation of the PAGERANK. We also numerically show that in a coupled oscillator system, the threshold for entrainment by a pacemaker is low when the pacemaker is placed on influential nodes. For a type of random network, the analytically derived threshold is approximately equal to the inverse of the influence. We numerically show that this relationship also holds true in a random scale-free network and a neural network.

  14. Direct electrical-to-optical conversion and light modulation in micro whispering-gallery-mode resonators

    NASA Technical Reports Server (NTRS)

    Maleki, Lute (Inventor); Levi, Anthony F. J. (Inventor)

    2005-01-01

    Techniques for directly converting an electrical signal into an optical signal by using a whispering gallery mode optical resonator formed of a dielectric material that allows for direct modulation of optical absorption by the electrical signal.

  15. Network deconvolution as a general method to distinguish direct dependencies in networks

    E-print Network

    Feizi-Khankandi, Soheil

    Recognizing direct relationships between variables connected in a network is a pervasive problem in biological, social and information sciences as correlation-based networks contain numerous indirect relationships. Here ...

  16. Hierarchical Feedback Modules and Reaction Hubs in Cell Signaling Networks

    PubMed Central

    Xu, Jianfeng; Lan, Yueheng

    2015-01-01

    Despite much effort, identification of modular structures and study of their organizing and functional roles remain a formidable challenge in molecular systems biology, which, however, is essential in reaching a systematic understanding of large-scale cell regulation networks and hence gaining capacity of exerting effective interference to cell activity. Combining graph theoretic methods with available dynamics information, we successfully retrieved multiple feedback modules of three important signaling networks. These feedbacks are structurally arranged in a hierarchical way and dynamically produce layered temporal profiles of output signals. We found that global and local feedbacks act in very different ways and on distinct features of the information flow conveyed by signal transduction but work highly coordinately to implement specific biological functions. The redundancy embodied with multiple signal-relaying channels and feedback controls bestow great robustness and the reaction hubs seated at junctions of different paths announce their paramount importance through exquisite parameter management. The current investigation reveals intriguing general features of the organization of cell signaling networks and their relevance to biological function, which may find interesting applications in analysis, design and control of bio-networks. PMID:25951347

  17. Physiological modules for generating discrete and rhythmic movements: action identification by a dynamic recurrent neural network

    PubMed Central

    Bengoetxea, Ana; Leurs, Françoise; Hoellinger, Thomas; Cebolla, Ana M.; Dan, Bernard; McIntyre, Joseph; Cheron, Guy

    2014-01-01

    In this study we employed a dynamic recurrent neural network (DRNN) in a novel fashion to reveal characteristics of control modules underlying the generation of muscle activations when drawing figures with the outstretched arm. We asked healthy human subjects to perform four different figure-eight movements in each of two workspaces (frontal plane and sagittal plane). We then trained a DRNN to predict the movement of the wrist from information in the EMG signals from seven different muscles. We trained different instances of the same network on a single movement direction, on all four movement directions in a single movement plane, or on all eight possible movement patterns and looked at the ability of the DRNN to generalize and predict movements for trials that were not included in the training set. Within a single movement plane, a DRNN trained on one movement direction was not able to predict movements of the hand for trials in the other three directions, but a DRNN trained simultaneously on all four movement directions could generalize across movement directions within the same plane. Similarly, the DRNN was able to reproduce the kinematics of the hand for both movement planes, but only if it was trained on examples performed in each one. As we will discuss, these results indicate that there are important dynamical constraints on the mapping of EMG to hand movement that depend on both the time sequence of the movement and on the anatomical constraints of the musculoskeletal system. In a second step, we injected EMG signals constructed from different synergies derived by the PCA in order to identify the mechanical significance of each of these components. From these results, one can surmise that discrete-rhythmic movements may be constructed from three different fundamental modules, one regulating the co-activation of all muscles over the time span of the movement and two others elliciting patterns of reciprocal activation operating in orthogonal directions. PMID:25278868

  18. Flexible multi-dimensional modulation method for elastic optical networks

    NASA Astrophysics Data System (ADS)

    He, Zilong; Liu, Wentao; Shi, Sheping; Shen, Bailin; Chen, Xue; Gao, Xiqing; Zhang, Qi; Shang, Dongdong; Ji, Yongning; Liu, Yingfeng

    2016-01-01

    We demonstrate a flexible multi-dimensional modulation method for elastic optical networks. We compare the flexible multi-dimensional modulation formats PM-kSC-mQAM with traditional modulation formats PM-mQAM using numerical simulations in back-to-back and wavelength division multiplexed (WDM) transmission (50 GHz-spaced) scenarios at the same symbol rate of 32 Gbaud. The simulation results show that PM-kSC-QPSK and PM-kSC-16QAM can achieve obvious back-to-back sensitivity gain with respect to PM-QPSK and PM-16QAM at the expense of spectral efficiency reduction. And the WDM transmission simulation results show that PM-2SC-QPSK can achieve 57.5% increase in transmission reach compared to PM-QPSK, and 48.5% increase for PM-2SC-16QAM over PM-16QAM. Furthermore, we also experimentally investigate the back to back performance of PM-2SC-QPSK, PM-4SC-QPSK, PM-2SC-16QAM and PM-3SC-16QAM, and the experimental results agree well with the numerical simulations.

  19. Almost decouplability of any directed weighted network topology

    NASA Astrophysics Data System (ADS)

    Cai, Ning; Cao, Jun-Wei; Khan, M. Junaid

    2015-10-01

    This paper introduces a conception that any weighted directed network topology is almost decouplable, which can help to transform the topology into a similar form composed of uncoupled vertices, and thus reduce the complexity of analysis for networked dynamical systems. As an example of its application, the consensus problem of linear multi-agent systems with time-varying network topologies is addressed. As a result, a necessary and sufficient condition for uniform consensus is proposed.

  20. Network-based survival-associated module biomarker and its crosstalk with cell death genes in ovarian cancer

    PubMed Central

    Jin, Nana; Wu, Hao; Miao, Zhengqiang; Huang, Yan; Hu, Yongfei; Bi, Xiaoman; Wu, Deng; Qian, Kun; Wang, Liqiang; Wang, Changliang; Wang, Hongwei; Li, Kongning; Li, Xia; Wang, Dong

    2015-01-01

    Ovarian cancer remains a dismal disease with diagnosing in the late, metastatic stages, therefore, there is a growing realization of the critical need to develop effective biomarkers for understanding underlying mechanisms. Although existing evidences demonstrate the important role of the single genetic abnormality in pathogenesis, the perturbations of interactors in the complex network are often ignored. Moreover, ovarian cancer diagnosis and treatment still exist a large gap that need to be bridged. In this work, we adopted a network-based survival-associated approach to capture a 12-gene network module based on differential co-expression PPI network in the advanced-stage, high-grade ovarian serous cystadenocarcinoma. Then, regulatory genes (protein-coding genes and non-coding genes) direct interacting with the module were found to be significantly overlapped with cell death genes. More importantly, these overlapping genes tightly clustered together pointing to the module, deciphering the crosstalk between network-based survival-associated module and cell death in ovarian cancer. PMID:26099452

  1. The theory of pattern formation on directed networks.

    PubMed

    Asllani, Malbor; Challenger, Joseph D; Pavone, Francesco Saverio; Sacconi, Leonardo; Fanelli, Duccio

    2014-01-01

    Dynamical processes on networks have generated widespread interest in recent years. The theory of pattern formation in reaction-diffusion systems defined on symmetric networks has often been investigated, due to its applications in a wide range of disciplines. Here we extend the theory to the case of directed networks, which are found in a number of different fields, such as neuroscience, computer networks and traffic systems. Owing to the structure of the network Laplacian, the dispersion relation has both real and imaginary parts, at variance with the case for a symmetric, undirected network. The homogeneous fixed point can become unstable due to the topology of the network, resulting in a new class of instabilities, which cannot be induced on undirected graphs. Results from a linear stability analysis allow the instability region to be analytically traced. Numerical simulations show travelling waves, or quasi-stationary patterns, depending on the characteristics of the underlying graph. PMID:25077521

  2. Direct DPSK modulation of chirp-managed laser as cost-effective downstream transmitter for symmetrical 10-Gbit/s WDM PONs.

    PubMed

    Le, Quang Trung; Emsia, Ali; Briggmann, Dieter; Küppers, Franko

    2012-12-10

    This paper proposes the use of chirp-managed lasers (CML) as cost-effective downstream (DS) transmitters for next generation access networks. As the laser bandwidth is as high as 10 GHz, the CML could be directly modulated at 10 Gbit/s for downstream transmission in future wavelength division multiplexing passive optical networks (WDM PON). The laser adiabatic chirp, which is the main drawback limiting the transmission performance of directly modulated lasers, is now utilized to generate phase-shift keying (PSK) modulation format by direct modulation. At the user premise, the wavelength reuse technique based on reflective colorless upstream transmitter is applied. The optical network unit (ONU) reflects and orthogonally remodulates the received light with upstream data. A full-duplex transmission with symmetrical 10-Gbit/s bandwidth is demonstrated. Bit-error-rate measurement showed that optical power budgets of 29 dB at BER of 10(-9) or of 36 dB at BER of 10(-3) could be obtained with direct phase-shift-keying modulation of CML which proves that the proposed solution is a viable candidate for future WDM-PONs. PMID:23262890

  3. Detecting modules in biological networks by edge weight clustering and entropy significance

    PubMed Central

    Lecca, Paola; Re, Angela

    2015-01-01

    Detection of the modular structure of biological networks is of interest to researchers adopting a systems perspective for the analysis of omics data. Computational systems biology has provided a rich array of methods for network clustering. To date, the majority of approaches address this task through a network node classification based on topological or external quantifiable properties of network nodes. Conversely, numerical properties of network edges are underused, even though the information content which can be associated with network edges has augmented due to steady advances in molecular biology technology over the last decade. Properly accounting for network edges in the development of clustering approaches can become crucial to improve quantitative interpretation of omics data, finally resulting in more biologically plausible models. In this study, we present a novel technique for network module detection, named WG-Cluster (Weighted Graph CLUSTERing). WG-Cluster's notable features, compared to current approaches, lie in: (1) the simultaneous exploitation of network node and edge weights to improve the biological interpretability of the connected components detected, (2) the assessment of their statistical significance, and (3) the identification of emerging topological properties in the detected connected components. WG-Cluster utilizes three major steps: (i) an unsupervised version of k-means edge-based algorithm detects sub-graphs with similar edge weights, (ii) a fast-greedy algorithm detects connected components which are then scored and selected according to the statistical significance of their scores, and (iii) an analysis of the convolution between sub-graph mean edge weight and connected component score provides a summarizing view of the connected components. WG-Cluster can be applied to directed and undirected networks of different types of interacting entities and scales up to large omics data sets. Here, we show that WG-Cluster can be successfully used in the differential analysis of physical protein–protein interaction (PPI) networks. Specifically, applying WG-Cluster to a PPI network weighted by measurements of differential gene expression permits to explore the changes in network topology under two distinct (normal vs. tumor) conditions. WG-Cluster code is available at https://sites.google.com/site/paolaleccapersonalpage/. PMID:26379697

  4. Detecting modules in biological networks by edge weight clustering and entropy significance.

    PubMed

    Lecca, Paola; Re, Angela

    2015-01-01

    Detection of the modular structure of biological networks is of interest to researchers adopting a systems perspective for the analysis of omics data. Computational systems biology has provided a rich array of methods for network clustering. To date, the majority of approaches address this task through a network node classification based on topological or external quantifiable properties of network nodes. Conversely, numerical properties of network edges are underused, even though the information content which can be associated with network edges has augmented due to steady advances in molecular biology technology over the last decade. Properly accounting for network edges in the development of clustering approaches can become crucial to improve quantitative interpretation of omics data, finally resulting in more biologically plausible models. In this study, we present a novel technique for network module detection, named WG-Cluster (Weighted Graph CLUSTERing). WG-Cluster's notable features, compared to current approaches, lie in: (1) the simultaneous exploitation of network node and edge weights to improve the biological interpretability of the connected components detected, (2) the assessment of their statistical significance, and (3) the identification of emerging topological properties in the detected connected components. WG-Cluster utilizes three major steps: (i) an unsupervised version of k-means edge-based algorithm detects sub-graphs with similar edge weights, (ii) a fast-greedy algorithm detects connected components which are then scored and selected according to the statistical significance of their scores, and (iii) an analysis of the convolution between sub-graph mean edge weight and connected component score provides a summarizing view of the connected components. WG-Cluster can be applied to directed and undirected networks of different types of interacting entities and scales up to large omics data sets. Here, we show that WG-Cluster can be successfully used in the differential analysis of physical protein-protein interaction (PPI) networks. Specifically, applying WG-Cluster to a PPI network weighted by measurements of differential gene expression permits to explore the changes in network topology under two distinct (normal vs. tumor) conditions. WG-Cluster code is available at https://sites.google.com/site/paolaleccapersonalpage/. PMID:26379697

  5. Quetiapine modulates functional connectivity in brain aggression networks.

    PubMed

    Klasen, Martin; Zvyagintsev, Mikhail; Schwenzer, Michael; Mathiak, Krystyna A; Sarkheil, Pegah; Weber, René; Mathiak, Klaus

    2013-07-15

    Aggressive behavior is associated with dysfunctions in an affective regulation network encompassing amygdala and prefrontal areas such as orbitofrontal (OFC), anterior cingulate (ACC), and dorsolateral prefrontal cortex (DLPFC). In particular, prefrontal regions have been postulated to control amygdala activity by inhibitory projections, and this process may be disrupted in aggressive individuals. The atypical antipsychotic quetiapine successfully attenuates aggressive behavior in various disorders; the underlying neural processes, however, are unknown. A strengthened functional coupling in the prefrontal-amygdala system may account for these anti-aggressive effects. An inhibition of this network has been reported for virtual aggression in violent video games as well. However, there have been so far no in-vivo observations of pharmacological influences on corticolimbic projections during human aggressive behavior. In a double-blind, placebo-controlled study, quetiapine and placebo were administered for three successive days prior to an fMRI experiment. In this experiment, functional brain connectivity was assessed during virtual aggressive behavior in a violent video game and an aggression-free control task in a non-violent modification. Quetiapine increased the functional connectivity of ACC and DLPFC with the amygdala during virtual aggression, whereas OFC-amygdala coupling was attenuated. These effects were observed neither for placebo nor for the non-violent control. These results demonstrate for the first time a pharmacological modification of aggression-related human brain networks in a naturalistic setting. The violence-specific modulation of prefrontal-amygdala networks appears to control aggressive behavior and provides a neurobiological model for the anti-aggressive effects of quetiapine. PMID:23501053

  6. Enhancing complex network controllability by minimum link direction reversal

    NASA Astrophysics Data System (ADS)

    Hou, Lvlin; Lao, Songyang; Small, Michael; Xiao, Yandong

    2015-07-01

    Controllability of complex networks has recently become one of the most popular research fields, but the importance of link direction for controllability has not been systematically considered. We propose a method to enhance controllability of a directed network by changing the direction of a small fraction of links while keeping the total number of links unchanged. The main idea of the method is to find candidate links based on the matching path. Extensive numerical simulation on many modeled networks demonstrates that this method is effective. Furthermore, we find that the nodes linked to candidate links have a distinct character, which provide us with a strategy to improve the controllability based on the local structure. Since the whole topology of many real networks is not visible and we only get some local structure information, this strategy is potentially more practical compared to those that demand complete topology information.

  7. Functional Modules, Structural Topology, and Optimal Activity in Metabolic Networks

    PubMed Central

    Resendis-Antonio, Osbaldo; Hernández, Magdalena; Mora, Yolanda; Encarnación, Sergio

    2012-01-01

    Modular organization in biological networks has been suggested as a natural mechanism by which a cell coordinates its metabolic strategies for evolving and responding to environmental perturbations. To understand how this occurs, there is a need for developing computational schemes that contribute to integration of genomic-scale information and assist investigators in formulating biological hypotheses in a quantitative and systematic fashion. In this work, we combined metabolome data and constraint-based modeling to elucidate the relationships among structural modules, functional organization, and the optimal metabolic phenotype of Rhizobium etli, a bacterium that fixes nitrogen in symbiosis with Phaseolus vulgaris. To experimentally characterize the metabolic phenotype of this microorganism, we obtained the metabolic profile of 220 metabolites at two physiological stages: under free-living conditions, and during nitrogen fixation with P. vulgaris. By integrating these data into a constraint-based model, we built a refined computational platform with the capability to survey the metabolic activity underlying nitrogen fixation in R. etli. Topological analysis of the metabolic reconstruction led us to identify modular structures with functional activities. Consistent with modular activity in metabolism, we found that most of the metabolites experimentally detected in each module simultaneously increased their relative abundances during nitrogen fixation. In this work, we explore the relationships among topology, biological function, and optimal activity in the metabolism of R. etli through an integrative analysis based on modeling and metabolome data. Our findings suggest that the metabolic activity during nitrogen fixation is supported by interacting structural modules that correlate with three functional classifications: nucleic acids, peptides, and lipids. More fundamentally, we supply evidence that such modular organization during functional nitrogen fixation is a robust property under different environmental conditions. PMID:23071431

  8. Allosteric Modulators for the Treatment of Schizophrenia: Targeting Glutamatergic Networks

    PubMed Central

    Menniti, Frank S.; Lindsley, Craig W.; Conn, P. Jeffrey; Pandit, Jayvardhan; Zagouras, Panayiotis; Volkmann, Robert A.

    2013-01-01

    Schizophrenia is a highly debilitating mental disorder which afflicts approximately 1% of the global population. Cognitive and negative deficits account for the lifelong disability associated with schizophrenia, whose symptoms are not effectively addressed by current treatments. New medicines are needed to treat these aspects of the disease. Neurodevelopmental, neuropathological, genetic, and behavioral pharmacological data indicate that schizophrenia stems from a dysfunction of glutamate synaptic transmission, particularly in frontal cortical networks. A number of novel pre- and postsynaptic mechanisms affecting glutamatergic synaptic transmission have emerged as viable targets for schizophrenia. While developing orthosteric glutamatergic agents for these targets has proven extremely difficult, targeting allosteric sites of these targets has emerged as a promising alternative. From a medicinal chemistry perspective, allosteric sites provide an opportunity of finding agents with better drug-like properties and greater target specificity. Furthermore, allosteric modulators are better suited to maintaining the highly precise temporal and spatial aspects of glutamatergic synaptic transmission. Herein, we review neuropathological and genomic/genetic evidence underscoring the importance of glutamate synaptic dysfunction in the etiology of schizophrenia and make a case for allosteric targets for therapeutic intervention. We review progress in identifying allosteric modulators of AMPA receptors, NMDA receptors, and metabotropic glutamate receptors, all with the aim of restoring physiological glutamatergic synaptic transmission. Challenges remain given the complexity of schizophrenia and the difficulty in studying cognition in animals and humans. Nonetheless, important compounds have emerged from these efforts and promising preclinical and variable clinical validation has been achieved. PMID:23409764

  9. Discovering Distinct Functional Modules of Specific Cancer Types Using Protein-Protein Interaction Networks

    PubMed Central

    Shen, Ru; Wang, Xiaosheng; Guda, Chittibabu

    2015-01-01

    Background. The molecular profiles exhibited in different cancer types are very different; hence, discovering distinct functional modules associated with specific cancer types is very important to understand the distinct functions associated with them. Protein-protein interaction networks carry vital information about molecular interactions in cellular systems, and identification of functional modules (subgraphs) in these networks is one of the most important applications of biological network analysis. Results. In this study, we developed a new graph theory based method to identify distinct functional modules from nine different cancer protein-protein interaction networks. The method is composed of three major steps: (i) extracting modules from protein-protein interaction networks using network clustering algorithms; (ii) identifying distinct subgraphs from the derived modules; and (iii) identifying distinct subgraph patterns from distinct subgraphs. The subgraph patterns were evaluated using experimentally determined cancer-specific protein-protein interaction data from the Ingenuity knowledgebase, to identify distinct functional modules that are specific to each cancer type. Conclusion. We identified cancer-type specific subgraph patterns that may represent the functional modules involved in the molecular pathogenesis of different cancer types. Our method can serve as an effective tool to discover cancer-type specific functional modules from large protein-protein interaction networks. PMID:26495282

  10. Polarization-interleave-multiplexed discrete multi-tone modulation with direct detection utilizing MIMO equalization.

    PubMed

    Zhou, Xian; Zhong, Kangping; Gao, Yuliang; Sui, Qi; Dong, Zhenghua; Yuan, Jinhui; Wang, Liang; Long, Keping; Lau, Alan Pak Tao; Lu, Chao

    2015-04-01

    Discrete multi-tone (DMT) modulation is an attractive modulation format for short-reach applications to achieve the best use of available channel bandwidth and signal noise ratio (SNR). In order to realize polarization-multiplexed DMT modulation with direct detection, we derive an analytical transmission model for dual polarizations with intensity modulation and direct diction (IM-DD) in this paper. Based on the model, we propose a novel polarization-interleave-multiplexed DMT modulation with direct diction (PIM-DMT-DD) transmission system, where the polarization de-multiplexing can be achieved by using a simple multiple-input-multiple-output (MIMO) equalizer and the transmission performance is optimized over two distinct received polarization states to eliminate the singularity issue of MIMO demultiplexing algorithms. The feasibility and effectiveness of the proposed PIM-DMT-DD system are investigated via theoretical analyses and simulation studies. PMID:25968680

  11. Deformed diffusion and generalized Laplacian for directed networks

    E-print Network

    Michaël Fanuel; Johan A. K. Suykens

    2015-11-02

    A diffusion equation on a complex network is usually implemented with the help of the combinatorial Laplacian which incorporates information about the network structure. In this paper, a deformed diffusion equation on directed networks, governed by a generalized Laplacian, is introduced within a framework of discrete differential forms, closely related to combinatorial Hodge theory. Edge directions are incorporated with the help of an edge flow $1$-form, whose deforming impact is controlled by a coupling constant. Hence, information about the community structure is encoded in the dominant modes in the long time limit. On the one hand, for a small deformation of the combinatorial Laplacian, the dominant modes of the deformed diffusion allow to uncover community structures which are only encoded in the edge directions. We show that the dynamics distinguishes two categories of nodes, i.e. the nodes with a majority of outgoing links from the nodes with a majority of incoming links. Furthermore, the categorization naturally implements the connectivity of nodes and hence, goes beyond a simple degree counting. On the other hand, in the case of maximal deformation, the dominant modes of the dynamics characterize important nodes of the directed network that we name Bi-directional Outer Cores (BOC's) and Bi-directional Inner Cores (BIC's) which are the analogue of connected components of undirected networks. These BIC's and BOC's are shown to support stationary distributions. The relevance of these aspects is illustrated on a series of artificial and real-life directed networks such as a food web and a neuronal network.

  12. C-element: a new clustering algorithm to find high quality functional modules in PPI networks.

    PubMed

    Ghasemi, Mahdieh; Rahgozar, Maseud; Bidkhori, Gholamreza; Masoudi-Nejad, Ali

    2013-01-01

    Graph clustering algorithms are widely used in the analysis of biological networks. Extracting functional modules in protein-protein interaction (PPI) networks is one such use. Most clustering algorithms whose focuses are on finding functional modules try either to find a clique like sub networks or to grow clusters starting from vertices with high degrees as seeds. These algorithms do not make any difference between a biological network and any other networks. In the current research, we present a new procedure to find functional modules in PPI networks. Our main idea is to model a biological concept and to use this concept for finding good functional modules in PPI networks. In order to evaluate the quality of the obtained clusters, we compared the results of our algorithm with those of some other widely used clustering algorithms on three high throughput PPI networks from Sacchromyces Cerevisiae, Homo sapiens and Caenorhabditis elegans as well as on some tissue specific networks. Gene Ontology (GO) analyses were used to compare the results of different algorithms. Each algorithm's result was then compared with GO-term derived functional modules. We also analyzed the effect of using tissue specific networks on the quality of the obtained clusters. The experimental results indicate that the new algorithm outperforms most of the others, and this improvement is more significant when tissue specific networks are used. PMID:24039752

  13. Lasting modulation of in-vitro oscillatory activity with weak direct current stimulation

    E-print Network

    Parra, Lucas C.

    University of New York, New York, USA December 3, 2014 Abstract Transcranial Direct Current Stimulation (t hypothesis. Introduction The number of studies on transcranial direct current stimulation (tDCS) has rapidlyLasting modulation of in-vitro oscillatory activity with weak direct current stimulation Davide

  14. Effects of Diurnal Modulation in Direct Cold Dark Matter Searches. the Experiment in Sierra Grande

    E-print Network

    Gregorio, D E D; Huck, H; Macchiavelli, A O; Gil, S; Collar, J I

    1993-01-01

    Contains a summary, current status and prospects for the direct detection of cold dark matter using diurnal modulation effects as presented at the ELAF 93, Mar del Plata Argentina. The potential advantages of using the Earth as an absorber to produce diurnal modulation effects in cold dark matter searches are given along with some estimates of counting rates.

  15. Oscillatory entrainment of the motor cortical network during motor imagery is modulated by the feedback modality.

    PubMed

    Vukeli?, Mathias; Gharabaghi, Alireza

    2015-05-01

    Neurofeedback of self-regulated brain activity in circumscribed cortical regions is used as a novel strategy to facilitate functional restoration following stroke. Basic knowledge about its impact on motor system oscillations and functional connectivity is however scarce. Specifically, a direct comparison between different feedback modalities and their neural signatures is missing. We assessed a neurofeedback training intervention of modulating ?-activity in circumscribed sensorimotor regions by kinesthetic motor imagery (MI). Right-handed healthy participants received two different feedback modalities contingent to their MI-associated brain activity in a cross-over design: (I) visual feedback with a brain-computer interface (BCI) and (II) proprioceptive feedback with a brain-robot interface (BRI) orthosis attached to the right hand. High-density electroencephalography was used to examine the reactivity of the cortical motor system during the training session of each task by studying both local oscillatory power entrainment and distributed functional connectivity. Both feedback modalities activated a distributed functional connectivity network of coherent oscillations. A significantly higher skill and lower variability of self-controlled sensorimotor ?-band modulation could, however, be achieved in the BRI condition. This gain in controlling regional motor oscillations was accompanied by functional coupling of remote ?-band and ?-band activity in bilateral fronto-central regions and left parieto-occipital regions, respectively. The functional coupling of coherent ?-band oscillations correlated moreover with the skill of regional ?-modulation thus revealing a motor learning related network. Our findings indicate that proprioceptive feedback is more suitable than visual feedback to entrain the motor network architecture during the interplay between motor imagery and feedback processing thus resulting in better volitional control of regional brain activity. PMID:25665968

  16. Signal to Noise Ratios of Pulsed and Sinewave Modulated Direct Detection Lidar for IPDA Measurements

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Abshire, James B.

    2011-01-01

    The signal-to-noise ratios have been derived for IPDA lidar using a direct detection receiver for both pulsed and sinewave laser modulation techniques, and the results and laboratory measurements are presented

  17. Interaction of multiple networks modulated by the working memory training based on real-time fMRI

    NASA Astrophysics Data System (ADS)

    Shen, Jiahui; Zhang, Gaoyan; Zhu, Chaozhe; Yao, Li; Zhao, Xiaojie

    2015-03-01

    Neuroimaging studies of working memory training have identified the alteration of brain activity as well as the regional interactions within the functional networks such as central executive network (CEN) and default mode network (DMN). However, how the interaction within and between these multiple networks is modulated by the training remains unclear. In this paper, we examined the interaction of three training-induced brain networks during working memory training based on real-time functional magnetic resonance imaging (rtfMRI). Thirty subjects assigned to the experimental and control group respectively participated in two times training separated by seven days. Three networks including silence network (SN), CEN and DMN were identified by the training data with the calculated function connections within each network. Structural equation modeling (SEM) approach was used to construct the directional connectivity patterns. The results showed that the causal influences from the percent signal changes of target ROI to the SN were positively changed in both two groups, as well as the causal influence from the SN to CEN was positively changed in experimental group but negatively changed in control group from the SN to DMN. Further correlation analysis of the changes in each network with the behavioral improvements showed that the changes in SN were stronger positively correlated with the behavioral improvement of letter memory task. These findings indicated that the SN was not only a switch between the target ROI and the other networks in the feedback training but also an essential factor to the behavioral improvement.

  18. Transcriptional Analysis of the MrpJ Network: Modulation of Diverse Virulence-Associated Genes and Direct Regulation of mrp Fimbrial and flhDC Flagellar Operons in Proteus mirabilis

    PubMed Central

    Bode, Nadine J.; Debnath, Irina; Kuan, Lisa; Schulfer, Anjelique; Ty, Maureen

    2015-01-01

    The enteric bacterium Proteus mirabilis is associated with a significant number of catheter-associated urinary tract infections (UTIs). Strict regulation of the antagonistic processes of adhesion and motility, mediated by fimbriae and flagella, respectively, is essential for disease progression. Previously, the transcriptional regulator MrpJ, which is encoded by the mrp fimbrial operon, has been shown to repress both swimming and swarming motility. Here we show that MrpJ affects an array of cellular processes beyond adherence and motility. Microarray analysis found that expression of mrpJ mimicking levels observed during UTIs leads to differential expression of 217 genes related to, among other functions, bacterial virulence, type VI secretion, and metabolism. We probed the molecular mechanism of transcriptional regulation by MrpJ using transcriptional reporters and chromatin immunoprecipitation (ChIP). Binding of MrpJ to two virulence-associated target gene promoters, the promoters of the flagellar master regulator flhDC and mrp itself, appears to be affected by the condensation state of the native chromosome, although both targets share a direct MrpJ binding site proximal to the transcriptional start. Furthermore, an mrpJ deletion mutant colonized the bladders of mice at significantly lower levels in a transurethral model of infection. Additionally, we observed that mrpJ is widely conserved in a collection of recent clinical isolates. Altogether, these findings support a role of MrpJ as a global regulator of P. mirabilis virulence. PMID:25847961

  19. Mammalian-like visual learning by spatially modulating learning rate in deep belief networks

    E-print Network

    Orchard, Jeffery J.

    Mammalian-like visual learning by spatially modulating learning rate in deep belief networks of visual learning in a deep belief network show that this simple learning variant successfully produces in V1. However, unsupervised training of deep belief networks has failed to generate all

  20. Joseph Camp Rice Networks Group Modulation Rate Adaptation in Urban and

    E-print Network

    Knightly, Edward W.

    Joseph Camp Rice Networks Group Modulation Rate Adaptation in Urban and Vehicular Environments: Cross-Layer Implementation and Experimental Evaluation Joseph Camp Rice Networks Group Advisor: Prof. Edward Knightly ACM MobiCom 2008 #12;Joseph Camp Rice Networks Group Background: Link Characteristics

  1. Interarrival times of message propagation on directed networks.

    PubMed

    Mihaljev, Tamara; de Arcangelis, Lucilla; Herrmann, Hans J

    2011-08-01

    One of the challenges in fighting cybercrime is to understand the dynamics of message propagation on botnets, networks of infected computers used to send viruses, unsolicited commercial emails (SPAM) or denial of service attacks. We map this problem to the propagation of multiple random walkers on directed networks and we evaluate the interarrival time distribution between successive walkers arriving at a target. We show that the temporal organization of this process, which models information propagation on unstructured peer to peer networks, has the same features as SPAM reaching a single user. We study the behavior of the message interarrival time distribution on three different network topologies using two different rules for sending messages. In all networks the propagation is not a pure Poisson process. It shows universal features on Poissonian networks and a more complex behavior on scale free networks. Results open the possibility to indirectly learn about the process of sending messages on networks with unknown topologies, by studying interarrival times at any node of the network. PMID:21929069

  2. Interarrival times of message propagation on directed networks

    NASA Astrophysics Data System (ADS)

    Mihaljev, Tamara; de Arcangelis, Lucilla; Herrmann, Hans J.

    2011-08-01

    One of the challenges in fighting cybercrime is to understand the dynamics of message propagation on botnets, networks of infected computers used to send viruses, unsolicited commercial emails (SPAM) or denial of service attacks. We map this problem to the propagation of multiple random walkers on directed networks and we evaluate the interarrival time distribution between successive walkers arriving at a target. We show that the temporal organization of this process, which models information propagation on unstructured peer to peer networks, has the same features as SPAM reaching a single user. We study the behavior of the message interarrival time distribution on three different network topologies using two different rules for sending messages. In all networks the propagation is not a pure Poisson process. It shows universal features on Poissonian networks and a more complex behavior on scale free networks. Results open the possibility to indirectly learn about the process of sending messages on networks with unknown topologies, by studying interarrival times at any node of the network.

  3. Network-Dependent Modulation of COMT and DRD2 Polymorphisms in Healthy Young Adults.

    PubMed

    Zhao, Fangshi; Zhang, Xuejun; Qin, Wen; Liu, Feng; Wang, Qiuhui; Xu, Qiang; Wang, Junping; Yu, Chunshui

    2015-01-01

    Nonlinear modulation of the dopamine signaling on brain functions can be estimated by the interaction effects of dopamine-related genetic variations. We aimed to explore the interaction effects of COMT rs4680 and DRD2 rs1076560 on intra-network connectivity using independent component analysis. In 250 young healthy adults, we identified 11 meaningful resting-state networks (RSNs), including the salience, visual, auditory, default-mode, sensorimotor, attention and frontoparietal networks. A two-way analysis of covariance was used to investigate COMT×DRD2 interactions on intra-network connectivity in each network, controlling for age, gender and education. Significant COMT×DRD2 interaction was found in intra-network connectivity in the left medial prefrontal cortex of the anterior default-mode network, in the right dorsolateral frontal cortex of the right dorsal attention network, and in the left dorsal anterior cingulate cortex of the salience network. Post hoc tests revealed that these interactions were driven by the differential effects of DRD2 genotypes on intra-network connectivity in different COMT genotypic subgroups. Moreover, even in the same COMT subgroup, the modulation effects of DRD2 on intra-network connectivity were different across RSNs. These findings suggest a network-dependent modulation of the DA-related genetic variations on intra-network connectivity. PMID:26642826

  4. Network-Dependent Modulation of COMT and DRD2 Polymorphisms in Healthy Young Adults

    PubMed Central

    Zhao, Fangshi; Zhang, Xuejun; Qin, Wen; Liu, Feng; Wang, Qiuhui; Xu, Qiang; Wang, Junping; Yu, Chunshui

    2015-01-01

    Nonlinear modulation of the dopamine signaling on brain functions can be estimated by the interaction effects of dopamine-related genetic variations. We aimed to explore the interaction effects of COMT rs4680 and DRD2 rs1076560 on intra-network connectivity using independent component analysis. In 250 young healthy adults, we identified 11 meaningful resting-state networks (RSNs), including the salience, visual, auditory, default-mode, sensorimotor, attention and frontoparietal networks. A two-way analysis of covariance was used to investigate COMT×DRD2 interactions on intra-network connectivity in each network, controlling for age, gender and education. Significant COMT×DRD2 interaction was found in intra-network connectivity in the left medial prefrontal cortex of the anterior default-mode network, in the right dorsolateral frontal cortex of the right dorsal attention network, and in the left dorsal anterior cingulate cortex of the salience network. Post hoc tests revealed that these interactions were driven by the differential effects of DRD2 genotypes on intra-network connectivity in different COMT genotypic subgroups. Moreover, even in the same COMT subgroup, the modulation effects of DRD2 on intra-network connectivity were different across RSNs. These findings suggest a network-dependent modulation of the DA-related genetic variations on intra-network connectivity. PMID:26642826

  5. Dynamic Modulation of the Action Observation Network by Movement Familiarity

    PubMed Central

    Gardner, Tom; Goulden, Nia

    2015-01-01

    When watching another person's actions, a network of sensorimotor brain regions, collectively termed the action observation network (AON), is engaged. Previous research suggests that the AON is more responsive when watching familiar compared with unfamiliar actions. However, most research into AON function is premised on comparisons of AON engagement during different types of task using univariate, magnitude-based approaches. To better understand the relationship between action familiarity and AON engagement, here we examine how observed movement familiarity modulates AON activity in humans using dynamic causal modeling, a type of effective connectivity analysis. Twenty-one subjects underwent fMRI scanning while viewing whole-body dance movements that varied in terms of their familiarity. Participants' task was to either predict the next posture the dancer's body would assume or to respond to a non–action-related attentional control question. To assess individuals' familiarity with each movement, participants rated each video on a measure of visual familiarity after being scanned. Parametric analyses showed more activity in left middle temporal gyrus, inferior parietal lobule, and inferior frontal gyrus as videos were rated as increasingly familiar. These clusters of activity formed the regions of interest for dynamic causal modeling analyses, which revealed attenuation of effective connectivity bidirectionally between parietal and temporal AON nodes when participants observed videos they rated as increasingly familiar. As such, the findings provide partial support for a predictive coding model of the AON, as well as illuminate how action familiarity manipulations can be used to explore simulation-based accounts of action understanding. PMID:25632133

  6. Dynamic modulation of the action observation network by movement familiarity.

    PubMed

    Gardner, Tom; Goulden, Nia; Cross, Emily S

    2015-01-28

    When watching another person's actions, a network of sensorimotor brain regions, collectively termed the action observation network (AON), is engaged. Previous research suggests that the AON is more responsive when watching familiar compared with unfamiliar actions. However, most research into AON function is premised on comparisons of AON engagement during different types of task using univariate, magnitude-based approaches. To better understand the relationship between action familiarity and AON engagement, here we examine how observed movement familiarity modulates AON activity in humans using dynamic causal modeling, a type of effective connectivity analysis. Twenty-one subjects underwent fMRI scanning while viewing whole-body dance movements that varied in terms of their familiarity. Participants' task was to either predict the next posture the dancer's body would assume or to respond to a non-action-related attentional control question. To assess individuals' familiarity with each movement, participants rated each video on a measure of visual familiarity after being scanned. Parametric analyses showed more activity in left middle temporal gyrus, inferior parietal lobule, and inferior frontal gyrus as videos were rated as increasingly familiar. These clusters of activity formed the regions of interest for dynamic causal modeling analyses, which revealed attenuation of effective connectivity bidirectionally between parietal and temporal AON nodes when participants observed videos they rated as increasingly familiar. As such, the findings provide partial support for a predictive coding model of the AON, as well as illuminate how action familiarity manipulations can be used to explore simulation-based accounts of action understanding. PMID:25632133

  7. Network oscillations modulate interictal epileptiform spike rate during human memory

    PubMed Central

    Matsumoto, Joseph Y.; Stead, Matt; Kucewicz, Michal T.; Matsumoto, Andrew J.; Peters, Pierce A.; Brinkmann, Benjamin H.; Danstrom, Jane C.; Goerss, Stephan J.; Marsh, W. Richard; Meyer, Fred B.

    2013-01-01

    Eleven patients being evaluated with intracranial electroencephalography for medically resistant temporal lobe epilepsy participated in a visual recognition memory task. Interictal epileptiform spikes were manually marked and their rate of occurrence compared between baseline and three 2 s periods spanning a 6 s viewing period. During successful, but not unsuccessful, encoding of the images there was a significant reduction in interictal epileptiform spike rate in the amygdala, hippocampus, and temporal cortex. During the earliest encoding period (0–2000 ms after image presentation) in these trials there was a widespread decrease in the power of theta, alpha and beta band local field potential oscillations that coincided with emergent focal gamma frequency activity. Interictal epileptiform spike rate correlated with spectral band power changes and broadband (4–150 Hz) desynchronization, which predicted significant reduction in interictal epileptiform spike rate. Spike-triggered averaging of the field potential power spectrum detected a burst of low frequency synchronization 200 ms before the interictal epileptiform spikes that arose during this period of encoding. We conclude that interictal epileptiform spikes are modulated by the patterns of network oscillatory activity that accompany human memory offering a new mechanistic insight into the interplay of cognitive processing, local field potential dynamics and interictal epileptiform spike generation. PMID:23803305

  8. RM-SORN: a reward-modulated self-organizing recurrent neural network

    PubMed Central

    Aswolinskiy, Witali; Pipa, Gordon

    2015-01-01

    Neural plasticity plays an important role in learning and memory. Reward-modulation of plasticity offers an explanation for the ability of the brain to adapt its neural activity to achieve a rewarded goal. Here, we define a neural network model that learns through the interaction of Intrinsic Plasticity (IP) and reward-modulated Spike-Timing-Dependent Plasticity (STDP). IP enables the network to explore possible output sequences and STDP, modulated by reward, reinforces the creation of the rewarded output sequences. The model is tested on tasks for prediction, recall, non-linear computation, pattern recognition, and sequence generation. It achieves performance comparable to networks trained with supervised learning, while using simple, biologically motivated plasticity rules, and rewarding strategies. The results confirm the importance of investigating the interaction of several plasticity rules in the context of reward-modulated learning and whether reward-modulated self-organization can explain the amazing capabilities of the brain. PMID:25852533

  9. Categorization is modulated by transcranial direct current stimulation over left prefrontal cortex

    E-print Network

    Thompson-Schill, Sharon

    Categorization is modulated by transcranial direct current stimulation over left prefrontal cortex transcranial direct current stimulation alters performance of healthy subjects on a simple categoriza- tion of multiple catego- ries. A given object, such as a pillow may be--depending on current task demands

  10. Different types of laughter modulate connectivity within distinct parts of the laughter perception network.

    PubMed

    Wildgruber, Dirk; Szameitat, Diana P; Ethofer, Thomas; Brück, Carolin; Alter, Kai; Grodd, Wolfgang; Kreifelts, Benjamin

    2013-01-01

    Laughter is an ancient signal of social communication among humans and non-human primates. Laughter types with complex social functions (e.g., taunt and joy) presumably evolved from the unequivocal and reflex-like social bonding signal of tickling laughter already present in non-human primates. Here, we investigated the modulations of cerebral connectivity associated with different laughter types as well as the effects of attention shifts between implicit and explicit processing of social information conveyed by laughter using functional magnetic resonance imaging (fMRI). Complex social laughter types and tickling laughter were found to modulate connectivity in two distinguishable but partially overlapping parts of the laughter perception network irrespective of task instructions. Connectivity changes, presumably related to the higher acoustic complexity of tickling laughter, occurred between areas in the prefrontal cortex and the auditory association cortex, potentially reflecting higher demands on acoustic analysis associated with increased information load on auditory attention, working memory, evaluation and response selection processes. In contrast, the higher degree of socio-relational information in complex social laughter types was linked to increases of connectivity between auditory association cortices, the right dorsolateral prefrontal cortex and brain areas associated with mentalizing as well as areas in the visual associative cortex. These modulations might reflect automatic analysis of acoustic features, attention direction to informative aspects of the laughter signal and the retention of those in working memory during evaluation processes. These processes may be associated with visual imagery supporting the formation of inferences on the intentions of our social counterparts. Here, the right dorsolateral precentral cortex appears as a network node potentially linking the functions of auditory and visual associative sensory cortices with those of the mentalizing-associated anterior mediofrontal cortex during the decoding of social information in laughter. PMID:23667619

  11. Centrality in Directed Social Networks: A Game Theoretic Approach

    NASA Astrophysics Data System (ADS)

    González-Arangüena, E.; Manuel, C.; del Pozo, M.

    2010-09-01

    In this paper we define a family of centrality measures for directed social networks from a game theoretical point of view. We follow the line started with our previous work (Gómez et al.., 2003). Besides the definition, we obtain both, a characterization and an additive decomposition of the measures.

  12. IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 40, NO. 5, MAY 2004 445 Shaping Current Waveforms for Direct Modulation

    E-print Network

    Illing, Lucas

    ­Zehnder type electrooptic modulator, mod- ulates the output intensity according to an externally applied. The disadvantage is that costly external apparatus are necessary. Direct modulation involves changing the current for optical communication using either "external" or "direct" modulation. In the first scheme, the laser

  13. Direct Adaptive Aircraft Control Using Dynamic Cell Structure Neural Networks

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles C.

    1997-01-01

    A Dynamic Cell Structure (DCS) Neural Network was developed which learns topology representing networks (TRNS) of F-15 aircraft aerodynamic stability and control derivatives. The network is integrated into a direct adaptive tracking controller. The combination produces a robust adaptive architecture capable of handling multiple accident and off- nominal flight scenarios. This paper describes the DCS network and modifications to the parameter estimation procedure. The work represents one step towards an integrated real-time reconfiguration control architecture for rapid prototyping of new aircraft designs. Performance was evaluated using three off-line benchmarks and on-line nonlinear Virtual Reality simulation. Flight control was evaluated under scenarios including differential stabilator lock, soft sensor failure, control and stability derivative variations, and air turbulence.

  14. Neural network approach for direction of arrival estimation

    NASA Astrophysics Data System (ADS)

    El Zooghby, Ahmed H.; Christodoulou, Christos G.; Georgiopoulos, Michael

    1997-04-01

    The problem of Direction of Arrival (DOA) estimation of users in mobile communication systems using linear antenna arrays is addressed. Superresolution algorithms, such as Multiple Signal Classification (MUSIC), are used to locate desired as well as cochannel mobile users. However these algorithms require extensive computation and are difficult to implement in real-time. In this paper, the DOA problem is approached as a mapping problem which can be modeled using a suitable artificial neural network trained with input output pairs. A study of a three-layer Radial Basis Function Neural Network (RBFNN) which can learn multiple source direction finding with a six-element array is conducted. RBFNNs were used due to their ability for data interpolation in higher dimensions. The network weights are modified using the normalized cumulative delta rule. The performance of this network is compared to that of the MUSIC algorithm for both uncorrelated and corrected signals. It was found that networks implementing these functions were indeed successful in performing the required task and their performance approached that of the MUSIC algorithm. It is also shown that the RBFNN substantially reduced the CPU time for the DOA estimation computations.

  15. Study of dynamic chirp in direct modulated DFB laser for C-OFDR application

    NASA Astrophysics Data System (ADS)

    Boukari, O.; Hassine, L.; Bouchriha, H.; Ketata, M.

    2010-05-01

    A description of the chirp induced by direct modulated DFB laser is presented. Two approaches are considered: the first one is based on a resolution of laser rate equations; the second, on a simulation with a commercial software. We compare results of the two approaches, we demonstrate that the optical frequency can be controlled via the injected current. We also characterize the linear variation of the optical frequency in time (for triangular and sawtooth modulation), in order to choose the appropriate values of laser and modulation parameters for a perfect linearity of the chirp in time. This study will be very helpful to validate the use of direct linear modulated DFB laser as a tunable source in Coherent Optical Frequency Domain Reflectometry technique C-OFDR. We present a simulation result of Mach-Zehnder delay time measurement based on C-OFDR system using a direct modulated semiconductor laser source. The obtained results are very important because it depicts the beat frequencies relating to each delay time, with respect to the modulation format used. This is very encouraging for the implementation of an experimental C-OFDR.

  16. Direct Conversion of Free Space Millimeter Waves to Optical Domain by Plasmonic Modulator Antenna.

    PubMed

    Salamin, Yannick; Heni, Wolfgang; Haffner, Christian; Fedoryshyn, Yuriy; Hoessbacher, Claudia; Bonjour, Romain; Zahner, Marco; Hillerkuss, David; Leuchtmann, Pascal; Elder, Delwin L; Dalton, Larry R; Hafner, Christian; Leuthold, Juerg

    2015-12-01

    A scheme for the direct conversion of millimeter and THz waves to optical signals is introduced. The compact device consists of a plasmonic phase modulator that is seamlessly cointegrated with an antenna. Neither high-speed electronics nor electronic amplification is required to drive the modulator. A built-in enhancement of the electric field by a factor of 35?000 enables the direct conversion of millimeter-wave signals to the optical domain. This high enhancement is obtained via a resonant antenna that is directly coupled to an optical field by means of a plasmonic modulator. The suggested concept provides a simple and cost-efficient alternative solution to conventional schemes where millimeter-wave signals are first converted to the electrical domain before being up-converted to the optical domain. PMID:26570995

  17. Neurocomputing 32}33 (2000) 623}628 Gain modulation of recurrent networks

    E-print Network

    Abbott, Laurence

    2000-01-01

    Neurocomputing 32}33 (2000) 623}628 Gain modulation of recurrent networks Jian Zhang*, L.F. Abbott. Zhang, L.F. Abbott / Neurocomputing 32}33 (2000) 623}628 #12;we evaluate this network with all g G "1

  18. A fast hierarchical clustering algorithm for functional modules discovery in protein interaction networks.

    PubMed

    Wang, Jianxin; Li, Min; Chen, Jianer; Pan, Yi

    2011-01-01

    As advances in the technologies of predicting protein interactions, huge data sets portrayed as networks have been available. Identification of functional modules from such networks is crucial for understanding principles of cellular organization and functions. However, protein interaction data produced by high-throughput experiments are generally associated with high false positives, which makes it difficult to identify functional modules accurately. In this paper, we propose a fast hierarchical clustering algorithm HC-PIN based on the local metric of edge clustering value which can be used both in the unweighted network and in the weighted network. The proposed algorithm HC-PIN is applied to the yeast protein interaction network, and the identified modules are validated by all the three types of Gene Ontology (GO) Terms: Biological Process, Molecular Function, and Cellular Component. The experimental results show that HC-PIN is not only robust to false positives, but also can discover the functional modules with low density. The identified modules are statistically significant in terms of three types of GO annotations. Moreover, HC-PIN can uncover the hierarchical organization of functional modules with the variation of its parameter's value, which is approximatively corresponding to the hierarchical structure of GO annotations. Compared to other previous competing algorithms, our algorithm HC-PIN is faster and more accurate. PMID:20733244

  19. Selective attention to semantic and syntactic features modulates sentence processing networks in anterior temporal cortex.

    PubMed

    Rogalsky, Corianne; Hickok, Gregory

    2009-04-01

    Numerous studies have identified an anterior temporal lobe (ATL) region that responds preferentially to sentence-level stimuli. It is unclear, however, whether this activity reflects a response to syntactic computations or some form of semantic integration. This distinction is difficult to investigate with the stimulus manipulations and anomaly detection paradigms traditionally implemented. The present functional magnetic resonance imaging study addresses this question via a selective attention paradigm. Subjects monitored for occasional semantic anomalies or occasional syntactic errors, thus directing their attention to semantic integration, or syntactic properties of the sentences. The hemodynamic response in the sentence-selective ATL region (defined with a localizer scan) was examined during anomaly/error-free sentences only, to avoid confounds due to error detection. The majority of the sentence-specific region of interest was equally modulated by attention to syntactic or compositional semantic features, whereas a smaller subregion was only modulated by the semantic task. We suggest that the sentence-specific ATL region is sensitive to both syntactic and integrative semantic functions during sentence processing, with a smaller portion of this area preferentially involved in the later. This study also suggests that selective attention paradigms may be effective tools to investigate the functional diversity of networks involved in sentence processing. PMID:18669589

  20. Selective Attention to Semantic and Syntactic Features Modulates Sentence Processing Networks in Anterior Temporal Cortex

    PubMed Central

    Rogalsky, Corianne

    2009-01-01

    Numerous studies have identified an anterior temporal lobe (ATL) region that responds preferentially to sentence-level stimuli. It is unclear, however, whether this activity reflects a response to syntactic computations or some form of semantic integration. This distinction is difficult to investigate with the stimulus manipulations and anomaly detection paradigms traditionally implemented. The present functional magnetic resonance imaging study addresses this question via a selective attention paradigm. Subjects monitored for occasional semantic anomalies or occasional syntactic errors, thus directing their attention to semantic integration, or syntactic properties of the sentences. The hemodynamic response in the sentence-selective ATL region (defined with a localizer scan) was examined during anomaly/error-free sentences only, to avoid confounds due to error detection. The majority of the sentence-specific region of interest was equally modulated by attention to syntactic or compositional semantic features, whereas a smaller subregion was only modulated by the semantic task. We suggest that the sentence-specific ATL region is sensitive to both syntactic and integrative semantic functions during sentence processing, with a smaller portion of this area preferentially involved in the later. This study also suggests that selective attention paradigms may be effective tools to investigate the functional diversity of networks involved in sentence processing. PMID:18669589

  1. An ELMO2-RhoG-ILK network modulates microtubule dynamics

    PubMed Central

    Jackson, Bradley C.; Ivanova, Iordanka A.; Dagnino, Lina

    2015-01-01

    ELMO2 belongs to a family of scaffold proteins involved in phagocytosis and cell motility. ELMO2 can simultaneously bind integrin-linked kinase (ILK) and RhoG, forming tripartite ERI complexes. These complexes are involved in promoting ?1 integrin–dependent directional migration in undifferentiated epidermal keratinocytes. ELMO2 and ILK have also separately been implicated in microtubule regulation at integrin-containing focal adhesions. During differentiation, epidermal keratinocytes cease to express integrins, but ERI complexes persist. Here we show an integrin-independent role of ERI complexes in modulation of microtubule dynamics in differentiated keratinocytes. Depletion of ERI complexes by inactivating the Ilk gene in these cells reduces microtubule growth and increases the frequency of catastrophe. Reciprocally, exogenous expression of ELMO2 or RhoG stabilizes microtubules, but only if ILK is also present. Mechanistically, activation of Rac1 downstream from ERI complexes mediates their effects on microtubule stability. In this pathway, Rac1 serves as a hub to modulate microtubule dynamics through two different routes: 1) phosphorylation and inactivation of the microtubule-destabilizing protein stathmin and 2) phosphorylation and inactivation of GSK-3?, which leads to the activation of CRMP2, promoting microtubule growth. At the cellular level, the absence of ERI species impairs Ca2+-mediated formation of adherens junctions, critical to maintaining mechanical integrity in the epidermis. Our findings support a key role for ERI species in integrin-independent stabilization of the microtubule network in differentiated keratinocytes. PMID:25995380

  2. Phase transitions in Ising models on directed networks

    NASA Astrophysics Data System (ADS)

    Lipowski, Adam; Ferreira, António Luis; Lipowska, Dorota; Gontarek, Krzysztof

    2015-11-01

    We examine Ising models with heat-bath dynamics on directed networks. Our simulations show that Ising models on directed triangular and simple cubic lattices undergo a phase transition that most likely belongs to the Ising universality class. On the directed square lattice the model remains paramagnetic at any positive temperature as already reported in some previous studies. We also examine random directed graphs and show that contrary to undirected ones, percolation of directed bonds does not guarantee ferromagnetic ordering. Only above a certain threshold can a random directed graph support finite-temperature ferromagnetic ordering. Such behavior is found also for out-homogeneous random graphs, but in this case the analysis of magnetic and percolative properties can be done exactly. Directed random graphs also differ from undirected ones with respect to zero-temperature freezing. Only at low connectivity do they remain trapped in a disordered configuration. Above a certain threshold, however, the zero-temperature dynamics quickly drives the model toward a broken symmetry (magnetized) state. Only above this threshold, which is almost twice as large as the percolation threshold, do we expect the Ising model to have a positive critical temperature. With a very good accuracy, the behavior on directed random graphs is reproduced within a certain approximate scheme.

  3. Site-directed deep electronic tunneling through a molecular network

    SciTech Connect

    Caspary, Maytal; Peskin, Uri

    2005-10-15

    Electronic tunneling in a complex molecular network of N(>2) donor/acceptor sites, connected by molecular bridges, is analyzed. The 'deep' tunneling dynamics is formulated using a recursive perturbation expansion, yielding a McConnell-type reduced N-level model Hamiltonian. Applications to models of molecular junctions demonstrate that the donor-bridge contact parameters can be tuned in order to control the tunneling dynamics and particularly to direct the tunneling pathway to either one of the various acceptors.

  4. Protein complexes and functional modules in molecular networks

    E-print Network

    Mirny, Leonid

    to the way that protein structure tells us about the function and organization of a protein. Computational. Molecules are nodes of this network, and the interactions between them are edges. The architecture the organization of mo- lecular networks (12­16). Important statistical characteristics of such networks include

  5. Moving Target Tracking through Distributed Clustering in Directional Sensor Networks

    PubMed Central

    Enayet, Asma; Razzaque, Md. Abdur; Hassan, Mohammad Mehedi; Almogren, Ahmad; Alamri, Atif

    2014-01-01

    The problem of moving target tracking in directional sensor networks (DSNs) introduces new research challenges, including optimal selection of sensing and communication sectors of the directional sensor nodes, determination of the precise location of the target and an energy-efficient data collection mechanism. Existing solutions allow individual sensor nodes to detect the target's location through collaboration among neighboring nodes, where most of the sensors are activated and communicate with the sink. Therefore, they incur much overhead, loss of energy and reduced target tracking accuracy. In this paper, we have proposed a clustering algorithm, where distributed cluster heads coordinate their member nodes in optimizing the active sensing and communication directions of the nodes, precisely determining the target location by aggregating reported sensing data from multiple nodes and transferring the resultant location information to the sink. Thus, the proposed target tracking mechanism minimizes the sensing redundancy and maximizes the number of sleeping nodes in the network. We have also investigated the dynamic approach of activating sleeping nodes on-demand so that the moving target tracking accuracy can be enhanced while maximizing the network lifetime. We have carried out our extensive simulations in ns-3, and the results show that the proposed mechanism achieves higher performance compared to the state-of-the-art works. PMID:25529205

  6. Interest communities and flow roles in directed networks: the Twitter network of the UK riots

    PubMed Central

    Beguerisse-Díaz, Mariano; Garduño-Hernández, Guillermo; Vangelov, Borislav; Yaliraki, Sophia N.; Barahona, Mauricio

    2014-01-01

    Directionality is a crucial ingredient in many complex networks in which information, energy or influence are transmitted. In such directed networks, analysing flows (and not only the strength of connections) is crucial to reveal important features of the network that might go undetected if the orientation of connections is ignored. We showcase here a flow-based approach for community detection through the study of the network of the most influential Twitter users during the 2011 riots in England. Firstly, we use directed Markov Stability to extract descriptions of the network at different levels of coarseness in terms of interest communities, i.e. groups of nodes within which flows of information are contained and reinforced. Such interest communities reveal user groupings according to location, profession, employer and topic. The study of flows also allows us to generate an interest distance, which affords a personalized view of the attention in the network as viewed from the vantage point of any given user. Secondly, we analyse the profiles of incoming and outgoing long-range flows with a combined approach of role-based similarity and the novel relaxed minimum spanning tree algorithm to reveal that the users in the network can be classified into five roles. These flow roles go beyond the standard leader/follower dichotomy and differ from classifications based on regular/structural equivalence. We then show that the interest communities fall into distinct informational organigrams characterized by a different mix of user roles reflecting the quality of dialogue within them. Our generic framework can be used to provide insight into how flows are generated, distributed, preserved and consumed in directed networks. PMID:25297320

  7. Gravitational Focusing and Substructure Effects on the Rate Modulation in Direct Dark Matter Searches

    E-print Network

    Eugenio Del Nobile; Graciela B. Gelmini; Samuel J. Witte

    2015-07-27

    We study how gravitational focusing (GF) of dark matter by the Sun affects the annual and biannual modulation of the expected signal in non-directional direct dark matter searches, in the presence of dark matter substructure in the local dark halo. We consider the Sagittarius stream and a possible dark disk, and show that GF suppresses some, but not all, of the distinguishing features that would characterize substructure of the dark halo were GF neglected.

  8. Gravitational focusing and substructure effects on the rate modulation in direct dark matter searches

    NASA Astrophysics Data System (ADS)

    Del Nobile, Eugenio; Gelmini, Graciela B.; Witte, Samuel J.

    2015-08-01

    We study how gravitational focusing (GF) of dark matter by the Sun affects the annual and biannual modulation of the expected signal in non-directional direct dark matter searches, in the presence of dark matter substructure in the local dark halo. We consider the Sagittarius stream and a possible dark disk, and show that GF suppresses some, but not all, of the distinguishing features that would characterize substructure of the dark halo were GF neglected.

  9. Gravitational Focusing and Substructure Effects on the Rate Modulation in Direct Dark Matter Searches

    E-print Network

    Del Nobile, Eugenio; Witte, Samuel J

    2015-01-01

    We study how gravitational focusing (GF) of dark matter by the Sun affects the annual and biannual modulation of the expected signal in non-directional direct dark matter searches, in the presence of dark matter substructure in the local dark halo. We consider the Sagittarius stream and a possible dark disk, and show that GF suppresses some, but not all, of the distinguishing features that would characterize substructure of the dark halo were GF neglected.

  10. The Psychedelic State Induced by Ayahuasca Modulates the Activity and Connectivity of the Default Mode Network

    PubMed Central

    Palhano-Fontes, Fernanda; Andrade, Katia C.; Tofoli, Luis F.; Santos, Antonio C.; Crippa, Jose Alexandre S.; Hallak, Jaime E. C.; Ribeiro, Sidarta; de Araujo, Draulio B.

    2015-01-01

    The experiences induced by psychedelics share a wide variety of subjective features, related to the complex changes in perception and cognition induced by this class of drugs. A remarkable increase in introspection is at the core of these altered states of consciousness. Self-oriented mental activity has been consistently linked to the Default Mode Network (DMN), a set of brain regions more active during rest than during the execution of a goal-directed task. Here we used fMRI technique to inspect the DMN during the psychedelic state induced by Ayahuasca in ten experienced subjects. Ayahuasca is a potion traditionally used by Amazonian Amerindians composed by a mixture of compounds that increase monoaminergic transmission. In particular, we examined whether Ayahuasca changes the activity and connectivity of the DMN and the connection between the DMN and the task-positive network (TPN). Ayahuasca caused a significant decrease in activity through most parts of the DMN, including its most consistent hubs: the Posterior Cingulate Cortex (PCC)/Precuneus and the medial Prefrontal Cortex (mPFC). Functional connectivity within the PCC/Precuneus decreased after Ayahuasca intake. No significant change was observed in the DMN-TPN orthogonality. Altogether, our results support the notion that the altered state of consciousness induced by Ayahuasca, like those induced by psilocybin (another serotonergic psychedelic), meditation and sleep, is linked to the modulation of the activity and the connectivity of the DMN. PMID:25693169

  11. The psychedelic state induced by ayahuasca modulates the activity and connectivity of the default mode network.

    PubMed

    Palhano-Fontes, Fernanda; Andrade, Katia C; Tofoli, Luis F; Santos, Antonio C; Crippa, Jose Alexandre S; Hallak, Jaime E C; Ribeiro, Sidarta; de Araujo, Draulio B

    2015-01-01

    The experiences induced by psychedelics share a wide variety of subjective features, related to the complex changes in perception and cognition induced by this class of drugs. A remarkable increase in introspection is at the core of these altered states of consciousness. Self-oriented mental activity has been consistently linked to the Default Mode Network (DMN), a set of brain regions more active during rest than during the execution of a goal-directed task. Here we used fMRI technique to inspect the DMN during the psychedelic state induced by Ayahuasca in ten experienced subjects. Ayahuasca is a potion traditionally used by Amazonian Amerindians composed by a mixture of compounds that increase monoaminergic transmission. In particular, we examined whether Ayahuasca changes the activity and connectivity of the DMN and the connection between the DMN and the task-positive network (TPN). Ayahuasca caused a significant decrease in activity through most parts of the DMN, including its most consistent hubs: the Posterior Cingulate Cortex (PCC)/Precuneus and the medial Prefrontal Cortex (mPFC). Functional connectivity within the PCC/Precuneus decreased after Ayahuasca intake. No significant change was observed in the DMN-TPN orthogonality. Altogether, our results support the notion that the altered state of consciousness induced by Ayahuasca, like those induced by psilocybin (another serotonergic psychedelic), meditation and sleep, is linked to the modulation of the activity and the connectivity of the DMN. PMID:25693169

  12. Stress-response balance drives the evolution of a network module and its host genome

    PubMed Central

    González, Caleb; Ray, Joe Christian J; Manhart, Michael; Adams, Rhys M; Nevozhay, Dmitry; Morozov, Alexandre V; Balázsi, Gábor

    2015-01-01

    Stress response genes and their regulators form networks that underlie drug resistance. These networks often have an inherent tradeoff: their expression is costly in the absence of stress, but beneficial in stress. They can quickly emerge in the genomes of infectious microbes and cancer cells, protecting them from treatment. Yet, the evolution of stress resistance networks is not well understood. Here, we use a two-component synthetic gene circuit integrated into the budding yeast genome to model experimentally the adaptation of a stress response module and its host genome in three different scenarios. In agreement with computational predictions, we find that: (i) intra-module mutations target and eliminate the module if it confers only cost without any benefit to the cell; (ii) intra- and extra-module mutations jointly activate the module if it is potentially beneficial and confers no cost; and (iii) a few specific mutations repeatedly fine-tune the module's noisy response if it has excessive costs and/or insufficient benefits. Overall, these findings reveal how the timing and mechanisms of stress response network evolution depend on the environment. PMID:26324468

  13. Stress-response balance drives the evolution of a network module and its host genome.

    PubMed

    González, Caleb; Ray, Joe Christian J; Manhart, Michael; Adams, Rhys M; Nevozhay, Dmitry; Morozov, Alexandre V; Balázsi, Gábor

    2015-08-01

    Stress response genes and their regulators form networks that underlie drug resistance. These networks often have an inherent tradeoff: their expression is costly in the absence of stress, but beneficial in stress. They can quickly emerge in the genomes of infectious microbes and cancer cells, protecting them from treatment. Yet, the evolution of stress resistance networks is not well understood. Here, we use a two-component synthetic gene circuit integrated into the budding yeast genome to model experimentally the adaptation of a stress response module and its host genome in three different scenarios. In agreement with computational predictions, we find that: (i) intra-module mutations target and eliminate the module if it confers only cost without any benefit to the cell; (ii) intra- and extra-module mutations jointly activate the module if it is potentially beneficial and confers no cost; and (iii) a few specific mutations repeatedly fine-tune the module's noisy response if it has excessive costs and/or insufficient benefits. Overall, these findings reveal how the timing and mechanisms of stress response network evolution depend on the environment. PMID:26324468

  14. Energy Efficient Wireless Transmitters: Polar and Direct-Digital Modulation Architectures

    E-print Network

    Sanders, Seth

    Energy Efficient Wireless Transmitters: Polar and Direct-Digital Modulation Architectures Jason provided that copies are not made or distributed for profit or commercial advantage and that copies bear or to redistribute to lists, requires prior specific permission. #12;Energy Efficient Wireless Transmitters: Polar

  15. Shear stress magnitude and directionality modulate growth factor gene expression in

    E-print Network

    Passerini, Tony

    Shear stress magnitude and directionality modulate growth factor gene expression in preconditioned levels of 12 endothelial growth factor genes in response to alterations in wall shear stress (WSS) under nitric oxide synthase (NOS3), platelet-derived growth factor A, platelet-derived growth factor B (PDGFB

  16. How slaves affect a master module in gene transcription networks

    E-print Network

    Gyorgy, Andras

    One of the major challenges in systems and synthetic biology is the lack of modular composition. Modules change their behavior once connected, due to retroactivity. In this paper, we build upon our earlier results and ...

  17. Opinion formation of free speech on the directed social network

    NASA Astrophysics Data System (ADS)

    Su, Jiongming; Ma, Hongxu; Liu, Baohong; Li, Qi

    2014-12-01

    A dynamical model with continuous opinion is proposed to study how the speech order and the topology of directed social network affect the opinion formation of free speech. In the model, agents express their opinions one by one with random order (RO) or probability order (PO), other agents paying attentions to the speaking agent, receive provider's opinion, update their opinions and then express their new opinions in their turns. It is proved that with the same agent j repeats its opinion more, other agents who pay their attentions to j and include j's opinion in their confidence level at initial time, will continue approaching j's opinion. Simulation results reveal that on directed scale-free network: (1) the model for PO forms fewer opinion clusters, larger maximum cluster (MC), smaller standard deviation (SD), and needs less waiting time to reach a middle level of consensus than RO; (2) as the parameter of scale-free degree distribution decreases or the confidence level increases, the results often get better for both speech orders; (3) the differences between PO and RO get smaller as the size of network decreases.

  18. Phase transition in a directed traffic flow network.

    PubMed

    Mukherjee, G; Manna, S S

    2005-06-01

    The generic feature of traffic in a network of flowing electronic data packets is a phase transition from a stationary free-flow phase to a continuously growing congested nonstationary phase. In the most simple network of directed oriented square lattice we have been able to observe all crucial features of such flow systems having nontrivial critical behavior near the critical point of transition. The network here is in the shape of a square lattice and data packets are randomly posted with a rate rho at one side of the lattice. Each packet executes a directed diffusive motion toward the opposite boundary where it is delivered. Packets accumulated at a particular node form a queue and a maximum of m such packets randomly jump out of this node at every time step to its neighbors on a first-in-first-out basis. The phase transition occurs at rho(c) = m. The distribution of travel times through the system is found to have a log-normal behavior and the power spectrum of the load time series shows 1/f-like noise similar to the scenario of Internet traffic. PMID:16089821

  19. MORAL ENHANCEMENT VIA DIRECT EMOTION MODULATION: A REPLY TO JOHN HARRIS

    PubMed Central

    Douglas, Thomas

    2013-01-01

    Some argue that humans should enhance their moral capacities by adopting institutions that facilitate morally good motives and behaviour. I have defended a parallel claim: that we could permissibly use biomedical technologies to enhance our moral capacities, for example by attenuating certain counter-moral emotions. John Harris has recently responded to my argument by raising three concerns about the direct modulation of emotions as a means to moral enhancement. He argues (1) that such means will be relatively ineffective in bringing about moral improvements, (2) that direct modulation of emotions would invariably come at an unacceptable cost to our freedom, and (3) that we might end up modulating emotions in ways that actually lead to moral decline. In this article I outline some counter-intuitive potential implications of Harris' claims. I then respond individually to his three concerns, arguing that they license only the very weak conclusion that moral enhancement via direct emotion modulation is sometimes impermissible. However I acknowledge that his third concern might, with further argument, be developed into a more troubling objection to such enhancements. PMID:22092503

  20. MPI-NeTSim: A network simulation module for MPI

    E-print Network

    Wagner, Alan

    ­ Network effects not shown ­ All non-communications (computation, sleep, etc.) look the same Jumpshot-level simulation ­ Network traces ­ Complete transport and middlebox statistics · No extra permissions for devices and middlebox statistics · No extra permissions for devices/traces/stats ­ Can run in user-space ­ No special

  1. Ion transport membrane module and vessel system with directed internal gas flow

    DOEpatents

    Holmes, Michael Jerome (Thompson, ND); Ohrn, Theodore R. (Alliance, OH); Chen, Christopher Ming-Poh (Allentown, PA)

    2010-02-09

    An ion transport membrane system comprising (a) a pressure vessel having an interior, an inlet adapted to introduce gas into the interior of the vessel, an outlet adapted to withdraw gas from the interior of the vessel, and an axis; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region; and (c) one or more gas flow control partitions disposed in the interior of the pressure vessel and adapted to change a direction of gas flow within the vessel.

  2. Communities, modules and large-scale structure in networks

    NASA Astrophysics Data System (ADS)

    Newman, M. E. J.

    2012-01-01

    Networks, also called graphs by mathematicians, provide a useful abstraction of the structure of many complex systems, ranging from social systems and computer networks to biological networks and the state spaces of physical systems. In the past decade there have been significant advances in experiments to determine the topological structure of networked systems, but there remain substantial challenges in extracting scientific understanding from the large quantities of data produced by the experiments. A variety of basic measures and metrics are available that can tell us about small-scale structure in networks, such as correlations, connections and recurrent patterns, but it is considerably more difficult to quantify structure on medium and large scales, to understand the `big picture'. Important progress has been made, however, within the past few years, a selection of which is reviewed here.

  3. Integrative multi-omics module network inference with Lemon-Tree.

    PubMed

    Bonnet, Eric; Calzone, Laurence; Michoel, Tom

    2015-02-01

    Module network inference is an established statistical method to reconstruct co-expression modules and their upstream regulatory programs from integrated multi-omics datasets measuring the activity levels of various cellular components across different individuals, experimental conditions or time points of a dynamic process. We have developed Lemon-Tree, an open-source, platform-independent, modular, extensible software package implementing state-of-the-art ensemble methods for module network inference. We benchmarked Lemon-Tree using large-scale tumor datasets and showed that Lemon-Tree algorithms compare favorably with state-of-the-art module network inference software. We also analyzed a large dataset of somatic copy-number alterations and gene expression levels measured in glioblastoma samples from The Cancer Genome Atlas and found that Lemon-Tree correctly identifies known glioblastoma oncogenes and tumor suppressors as master regulators in the inferred module network. Novel candidate driver genes predicted by Lemon-Tree were validated using tumor pathway and survival analyses. Lemon-Tree is available from http://lemon-tree.googlecode.com under the GNU General Public License version 2.0. PMID:25679508

  4. Integrative Multi-omics Module Network Inference with Lemon-Tree

    PubMed Central

    Bonnet, Eric; Calzone, Laurence; Michoel, Tom

    2015-01-01

    Module network inference is an established statistical method to reconstruct co-expression modules and their upstream regulatory programs from integrated multi-omics datasets measuring the activity levels of various cellular components across different individuals, experimental conditions or time points of a dynamic process. We have developed Lemon-Tree, an open-source, platform-independent, modular, extensible software package implementing state-of-the-art ensemble methods for module network inference. We benchmarked Lemon-Tree using large-scale tumor datasets and showed that Lemon-Tree algorithms compare favorably with state-of-the-art module network inference software. We also analyzed a large dataset of somatic copy-number alterations and gene expression levels measured in glioblastoma samples from The Cancer Genome Atlas and found that Lemon-Tree correctly identifies known glioblastoma oncogenes and tumor suppressors as master regulators in the inferred module network. Novel candidate driver genes predicted by Lemon-Tree were validated using tumor pathway and survival analyses. Lemon-Tree is available from http://lemon-tree.googlecode.com under the GNU General Public License version 2.0. PMID:25679508

  5. Network analysis reveals that bacteria and fungi form modules that correlate independently with soil parameters.

    PubMed

    de Menezes, Alexandre B; Prendergast-Miller, Miranda T; Richardson, Alan E; Toscas, Peter; Farrell, Mark; Macdonald, Lynne M; Baker, Geoff; Wark, Tim; Thrall, Peter H

    2015-08-01

    Network and multivariate statistical analyses were performed to determine interactions between bacterial and fungal community terminal restriction length polymorphisms as well as soil properties in paired woodland and pasture sites. Canonical correspondence analysis (CCA) revealed that shifts in woodland community composition correlated with soil dissolved organic carbon, while changes in pasture community composition correlated with moisture, nitrogen and phosphorus. Weighted correlation network analysis detected two distinct microbial modules per land use. Bacterial and fungal ribotypes did not group separately, rather all modules comprised of both bacterial and fungal ribotypes. Woodland modules had a similar fungal?:?bacterial ribotype ratio, while in the pasture, one module was fungal dominated. There was no correspondence between pasture and woodland modules in their ribotype composition. The modules had different relationships to soil variables, and these contrasts were not detected without the use of network analysis. This study demonstrated that fungi and bacteria, components of the soil microbial communities usually treated as separate functional groups as in a CCA approach, were co-correlated and formed distinct associations in these adjacent habitats. Understanding these distinct modular associations may shed more light on their niche space in the soil environment, and allow a more realistic description of soil microbial ecology and function. PMID:25040229

  6. Feature-based attention modulates direction-selective hemodynamic activity within human MT.

    PubMed

    Stoppel, Christian Michael; Boehler, Carsten Nicolas; Strumpf, Hendrik; Heinze, Hans-Jochen; Noesselt, Toemme; Hopf, Jens-Max; Schoenfeld, Mircea Ariel

    2011-12-01

    Attending to the spatial location or to nonspatial features of a stimulus modulates neural activity in cortical areas that process its perceptual attributes. The feature-based attentional selection of the direction of a moving stimulus is associated with increased firing of individual neurons tuned to the direction of the movement in area V5/MT, while responses of neurons tuned to opposite directions are suppressed. However, it is not known how these multiplicatively scaled responses of individual neurons tuned to different motion-directions are integrated at the population level, in order to facilitate the processing of stimuli that match the perceptual goals. Using functional magnetic resonance imaging (fMRI) the present study revealed that attending to the movement direction of a dot field enhances the response in a number of areas including the human MT region (hMT) as a function of the coherence of the stimulus. Attending the opposite direction, however, lead to a suppressed response in hMT that was inversely correlated with stimulus-coherence. These findings demonstrate that the multiplicative scaling of single-neuron responses by feature-based attention results in an enhanced direction-selective population response within those cortical modules that processes the physical attributes of the attended stimuli. Our results provide strong support for the validity of the "feature similarity gain model" on the integrated population response as quantified by parametric fMRI in humans. PMID:21305663

  7. A portable inspection system to estimate direct glare of various LED modules

    NASA Astrophysics Data System (ADS)

    Chen, Po-Li; Liao, Chun-Hsiang; Li, Hung-Chung; Jou, Shyh-Jye; Chen, Han-Ting; Lin, Yu-Hsin; Tang, Yu-Hsiang; Peng, Wei-Jei; Kuo, Hui-Jean; Sun, Pei-Li; Lee, Tsung-Xian

    2015-07-01

    Glare is caused by both direct and indirect light sources and discomfort glare produces visual discomfort, annoyance, or loss in visual performance and visibility. Direct glare is caused by light sources in the field of view whereas reflected glare is caused by bright reflections from polished or glossy surfaces that are reflected toward an individual. To improve visual comfort of our living environment, a portable inspection system to estimate direct glare of various commercial LED modules with the range of color temperature from 3100 K to 5300 K was developed in this study. The system utilized HDR images to obtain the illumination distribution of LED modules and was first calibrated for brightness and chromaticity and corrected with flat field, dark-corner and curvature by the installed algorithm. The index of direct glare was then automatically estimated after image capturing, and the operator can recognize the performance of LED modules and the possible effects on human being once the index was out of expecting range. In the future, we expect that the quick-response smart inspection system can be applied in several new fields and market, such as home energy diagnostics, environmental lighting and UGR monitoring and popularize it in several new fields.

  8. Effect of gravitational focusing on annual modulation in dark-matter direct-detection experiments.

    PubMed

    Lee, Samuel K; Lisanti, Mariangela; Peter, Annika H G; Safdi, Benjamin R

    2014-01-10

    The scattering rate in dark-matter direct-detection experiments should modulate annually due to Earth's orbit around the Sun. The rate is typically thought to be extremized around June 1, when the relative velocity of Earth with respect to the dark-matter wind is maximal. We point out that gravitational focusing can alter this modulation phase. Unbound dark-matter particles are focused by the Sun's gravitational potential, affecting their phase-space density in the lab frame. Gravitational focusing can result in a significant overall shift in the annual-modulation phase, which is most relevant for dark matter with low scattering speeds. The induced phase shift for light O(10)??GeV dark matter may also be significant, depending on the threshold energy of the experiment. PMID:24483881

  9. The Limbic-Prefrontal Network Modulated by Electroacupuncture at CV4 and CV12

    PubMed Central

    Fang, Jiliang; Wang, Xiaoling; Liu, Hesheng; Wang, Yin; Zhou, Kehua; Hong, Yang; Liu, Jun; Wang, Lei; Xue, Chao; Song, Ming; Liu, Baoyan; Zhu, Bing

    2012-01-01

    fMRI studies showed that acupuncture could induce hemodynamic changes in brain networks. Many of these studies focused on whether specific acupoints could activate specific brain regions and were often limited to manual acupuncture at acupoints on the limbs. In this fMRI study, we investigated acupuncture's modulation effects on brain functional networks by electroacupuncture (EA) at acupoints on the midline of abdomen. Acupoints Guanyuan (CV4) and Zhongwan (CV12) were stimulated in 21 healthy volunteers. The needling sensations, brain activation, and functional connectivity were studied. We found that the limbic-prefrontal functional network was deactivated by EA at CV4 and CV12. More importantly, the local functional connectivity was significantly changed during EA stimulation, and the change persisted during the period after the stimulation. Although minor differences existed, both acupoints similarly modulated the limbic-prefrontal functional network, which is overlapped with the functional circuits associated with emotional and cognitive regulation. PMID:22291848

  10. Physical Module Networks: an integrative approach for reconstructing transcription regulation

    E-print Network

    Regev, Aviv

    Motivation: Deciphering the complex mechanisms by which regulatory networks control gene expression remains a major challenge. While some studies infer regulation from dependencies between the expression levels of putative ...

  11. Discrimination of Direction in Fast Frequency-Modulated Tones by Rats

    PubMed Central

    King, Isabella; Felsheim, Christian; Ostwald, Joachim; von der Behrens, Wolfger

    2006-01-01

    Fast frequency modulations (FM) are an essential part of species-specific auditory signals in animals as well as in human speech. Major parameters characterizing non-periodic frequency modulations are the direction of frequency change in the FM sweep (upward/downward) and the sweep speed, i.e., the speed of frequency change. While it is well established that both parameters are represented in the mammalian central auditory pathway, their importance at the perceptual level in animals is unclear. We determined the ability of rats to discriminate between upward and downward modulated FM-tones as a function of sweep speed in a two-alternative-forced-choice-paradigm. Directional discrimination in logarithmic FM-sweeps was reduced with increasing sweep speed between 20 and 1,000 octaves/s following a psychometric function. Average threshold sweep speed for FM directional discrimination was 96 octaves/s. This upper limit of perceptual FM discrimination fits well the upper limit of preferred sweep speeds in auditory neurons and the upper limit of neuronal direction selectivity in the rat auditory cortex and midbrain, as it is found in the literature. Influences of additional stimulus parameters on FM discrimination were determined using an adaptive testing-procedure for efficient threshold estimation based on a maximum likelihood approach. Directional discrimination improved with extended FM sweep range between two and five octaves. Discrimination performance declined with increasing lower frequency boundary of FM sweeps, showing an especially strong deterioration when the boundary was raised from 2 to 4 kHz. This deterioration corresponds to a frequency-dependent decline in direction selectivity of FM-encoding neurons in the rat auditory cortex, as described in the literature. Taken together, by investigating directional discrimination of FM sweeps in the rat we found characteristics at the perceptual level that can be related to several aspects of FM encoding in the central auditory pathway. PMID:16411160

  12. The segment polarity network is a robust developmental module

    NASA Astrophysics Data System (ADS)

    von Dassow, George; Meir, Eli; Munro, Edwin M.; Odell, Garrett M.

    2000-07-01

    All insects possess homologous segments, but segment specification differs radically among insect orders. In Drosophila, maternal morphogens control the patterned activation of gap genes, which encode transcriptional regulators that shape the patterned expression of pair-rule genes. This patterning cascade takes place before cellularization. Pair-rule gene products subsequently `imprint' segment polarity genes with reiterated patterns, thus defining the primordial segments. This mechanism must be greatly modified in insect groups in which many segments emerge only after cellularization. In beetles and parasitic wasps, for instance, pair-rule homologues are expressed in patterns consistent with roles during segmentation, but these patterns emerge within cellular fields. In contrast, although in locusts pair-rule homologues may not control segmentation, some segment polarity genes and their interactions are conserved. Perhaps segmentation is modular, with each module autonomously expressing a characteristic intrinsic behaviour in response to transient stimuli. If so, evolution could rearrange inputs to modules without changing their intrinsic behaviours. Here we suggest, using computer simulations, that the Drosophila segment polarity genes constitute such a module, and that this module is resistant to variations in the kinetic constants that govern its behaviour.

  13. Rapid, Time-Division Multiplexed, Direct Absorption- and Wavelength Modulation-Spectroscopy

    PubMed Central

    Klein, Alexander; Witzel, Oliver; Ebert, Volker

    2014-01-01

    We present a tunable diode laser spectrometer with a novel, rapid time multiplexed direct absorption- and wavelength modulation-spectroscopy operation mode. The new technique allows enhancing the precision and dynamic range of a tunable diode laser absorption spectrometer without sacrificing accuracy. The spectroscopic technique combines the benefits of absolute concentration measurements using calibration-free direct tunable diode laser absorption spectroscopy (dTDLAS) with the enhanced noise rejection of wavelength modulation spectroscopy (WMS). In this work we demonstrate for the first time a 125 Hz time division multiplexed (TDM-dTDLAS-WMS) spectroscopic scheme by alternating the modulation of a DFB-laser between a triangle-ramp (dTDLAS) and an additional 20 kHz sinusoidal modulation (WMS). The absolute concentration measurement via the dTDLAS-technique allows one to simultaneously calibrate the normalized 2f/1f-signal of the WMS-technique. A dTDLAS/WMS-spectrometer at 1.37 ?m for H2O detection was built for experimental validation of the multiplexing scheme over a concentration range from 50 to 3000 ppmV (0.1 MPa, 293 K). A precision of 190 ppbV was achieved with an absorption length of 12.7 cm and an averaging time of two seconds. Our results show a five-fold improvement in precision over the entire concentration range and a significantly decreased averaging time of the spectrometer. PMID:25405508

  14. Prospects for detection of target-dependent annual modulation in direct dark matter searches

    E-print Network

    Del Nobile, Eugenio; Witte, Samuel J

    2015-01-01

    Earth's rotation about the Sun produces an annual modulation in the expected scattering rate at direct dark matter detection experiments. The annual modulation as a function of the recoil energy $E_\\text{R}$ imparted by the dark matter particle to a target nucleus is expected to vary depending on the detector material. However, for most interactions a change of variables from $E_\\text{R}$ to $v_\\text{min}$, the minimum speed a dark matter particle must have to impart a fixed $E_\\text{R}$ to a target nucleus, produces an annual modulation independent of the target element. We recently showed that if the dark matter-nucleus cross section contains a non-factorizable target and dark matter velocity dependence, the annual modulation as a function of $v_\\text{min}$ can be target dependent. Here we examine more extensively the necessary conditions for target-dependent modulation, its observability in present-day experiments, and the extent to which putative signals could identify a dark matter-nucleus differential c...

  15. Approved Module Information for EE4024, 2014/5 Module Title/Name: Distributed Network Applications Module Code: EE4024

    E-print Network

    Neirotti, Juan Pablo

    they are addressed through directory, event, transaction, security and persistent state services. UML is also as summative): Assessment Type Category Duration/ Submission Date Common Modules/ Exempt from Anonymous Marking Individual Assignment - Yes 25% Details - Total: 100% Method of Submission: Electronic Copy Only Assessment

  16. Lightweight PV Inverters: Dual Bi-Directional IGBTs Modules Enables Breakthrough PV Inverter Using Current Modulation Topology

    SciTech Connect

    2012-01-30

    Solar ADEPT Project: PV inverters convert DC power generated by modules into usable AC power. IPC’s initial 30kW 94lb. PV inverter reduces the weight of comparable 30kW PV inverters by 90%—reducing the cost of materials, manufacturing, shipping, and installation. With ARPA-E support, new bi-directional silicon power switches will be developed, commercialized, and utilized in IPC’s next-generation PV inverter. With these components, IPC will produce 100kW inverters that weight less than 100lb., reducing the weight of conventional 3,000lb. 100kW inverters by more than 95%. The new power switches will cut IPC’s $/W manufacturing cost in half, as well as further reduce indirect shipping and installation costs.

  17. Writing and erasing of temporal cavity solitons by direct phase modulation of the cavity driving field.

    PubMed

    Jang, Jae K; Erkintalo, Miro; Murdoch, Stuart G; Coen, Stéphane

    2015-10-15

    Temporal cavity solitons (CSs) are persisting pulses of light that can manifest themselves in continuously driven passive resonators, such as macroscopic fiber ring cavities and monolithic microresonators. Experiments so far have demonstrated two techniques for their excitation, yet both possess drawbacks in the form of system complexity or lack of control over soliton positioning. Here we experimentally demonstrate a new CS writing scheme that alleviates these deficiencies. Specifically, we show that temporal CSs can be excited at arbitrary positions through direct phase modulation of the cavity driving field, and that this technique also allows existing CSs to be selectively erased. Our results constitute the first experimental demonstration of temporal CS excitation via direct phase modulation, as well as their selective erasure (by any means). These advances reduce the complexity of CS excitation and could lead to controlled pulse generation in monolithic microresonators. PMID:26469612

  18. A direct modulated optical link for MRI RF receive coil interconnection.

    PubMed

    Yuan, Jing; Wei, Juan; Shen, G X

    2007-11-01

    Optical glass fiber is a promising alternative to traditional coaxial cables for MRI RF receive coil interconnection to avoid any crosstalk and electromagnetic interference between multiple channels. A direct modulated optical link is proposed for MRI coil interconnection in this paper. The link performances of power gain, frequency response and dynamic range are measured. Phantom and in vivo human head images have been demonstrated by the connection of this direct modulated optical link to a head coil on a 0.3T MRI scanner for the first time. Comparable image qualities to coaxial cable link verify the feasibility of using the optical link for imaging with minor modification on the existing scanners. This optical link could also be easily extended for multi-channel array interconnections at high field of 1.5 T. PMID:17889578

  19. A direct torque control scheme for permanent magnet synchronous motors based on space vector modulation

    NASA Astrophysics Data System (ADS)

    Su, Xiao-hui; Xu, Shu-Ping

    2013-03-01

    In order to solve the problem of direct torque control (DTC) for permanent magnet synchronous motor (PMSM) related to the flux and the torque ripple and the uncertainty of switching frequency, A novel direct torque control system based on space vector modulation(SVM-DTC) for permanent magnet synchronous motor was proposed. In this method flux and torque are controlled through stator voltage components in stator flux linkage coordinate axes and space vector modulation is used to control inverters. Therefore, the errors of torque and flux linkage could be compensated accurately. The whole system has only one easily adjustable PI adjuster and needs no high for hardware and easy for realize. The simulation results verify the feasibility of this method, reduction of the flux and the torque ripple, and the good performance of DTC.

  20. Direct and Propagated Effects of Small Molecules on Protein–Protein Interaction Networks

    PubMed Central

    Cesa, Laura C.; Mapp, Anna K.; Gestwicki, Jason E.

    2015-01-01

    Networks of protein–protein interactions (PPIs) link all aspects of cellular biology. Dysfunction in the assembly or dynamics of PPI networks is a hallmark of human disease, and as such, there is growing interest in the discovery of small molecules that either promote or inhibit PPIs. PPIs were once considered undruggable because of their relatively large buried surface areas and difficult topologies. Despite these challenges, recent advances in chemical screening methodologies, combined with improvements in structural and computational biology have made some of these targets more tractable. In this review, we highlight developments that have opened the door to potent chemical modulators. We focus on how allostery is being used to produce surprisingly robust changes in PPIs, even for the most challenging targets. We also discuss how interfering with one PPI can propagate changes through the broader web of interactions. Through this analysis, it is becoming clear that a combination of direct and propagated effects on PPI networks is ultimately how small molecules re-shape biology. PMID:26380257

  1. A hybrid graph-theoretic method for mining overlapping functional modules in large sparse protein interaction networks.

    PubMed

    Zhang, Shihua; Liu, Hong-Wei; Ning, Xue-Mei; Zhang, Xiang-Sun

    2009-01-01

    Modular architecture, which encompasses groups of genes/proteins involved in elementary biological functional units, is a basic form of the organisation of interacting proteins. Here, we propose a method that combines the Line Graph Transformation (LGT) and clique percolation-clustering algorithm to detect network modules, which may overlap each other in large sparse PPI networks. The resulting modules by the present method show a high coverage among yeast, fly, and worm PPI networks, respectively. Our analysis of the yeast PPI network suggests that most of these modules have well-biological significance in context of protein localisation, function annotation, and protein complexes. PMID:19432377

  2. Integration of turbo-generator modules in digital transient network analyzer

    SciTech Connect

    Guo, Y.; Ooi, B.T.; Lee, H.C. . Dept. of Electrical Engineering)

    1994-05-01

    The behavior of a small power system consisting of two interconnected generators is simulated in real-time by a prototype Digital Transient Network Analyzer (TNA). The prototype Digital TNA consists of two Computational Modules and one I/O Module. The Modules communicate with each other through ribbon cables. Each Computational Module simulates one Turbo-Generator, its Transformer, its Governor, Exciter, and Power System Stabilizer Systems. The numerical integration is shared by two TMS320C30 DSPs at a step-size of 100 microseconds in real-time. The I/O module post-processes the state variables and presents selected information for analog display. The paper presents oscillograms from a test program which includes symmetry checks and behavioral checks against well known waveforms of hunting oscillations, synchronization out-of-phase torques, and subsynchronous resonance phenomena. The success of the Digital TNA depends on: (a) the theoretical method of Decoupled Partitioning so that different portions of the power system can be allocated to different DSP-modules, (b) the architecture of the DSP-modules which can communicate the numerical integration results of one module to its contiguous neighbors with minimum delay.

  3. Influences of impedance matching network on pulse-modulated radio frequency atmospheric pressure glow discharges

    SciTech Connect

    Huo, W. G.; Xu, K.; Sun, B.; Ding, Z. F.

    2012-08-15

    Pulse-modulated RF atmospheric pressure glow discharges (APDGs) were investigated in recent years to reduce the thermal accumulation and extend the operation region of the stable alpha glow mode. Different pulse-modulated voltage and current waveforms were acquired in previous experiments, but no attention was paid to the interpretation. We investigated this issue and associated phenomenon via positive and negative feedback effects derived from varying the series capacitor in the inversely L-shaped matching network used in our pulse-modulated RF APGD source. The evolutions of pulse-modulated RF waveforms were found to be associated with the feedback region and the pulsed plasma absorbed RF power. In the positive feedback region, pulse-modulated RF APGDs are relatively stable. In the negative feedback region, wide spikes as well as undershoots occur in RF voltage and current waveforms and the plasma absorbed RF power. In case of a high RF power discharge with a low modulation frequency, the pulse-modulated RF APGD is extinguished and re-ignited due to the enhanced undershoot during the initial pulse phase. The pulse-modulated RF APGD can transit from positive to negative feedback region in a range of series capacitance. Experimental results are discussed by the aid of equivalent circuit, negative and positive feedback effects.

  4. Stress-response balance drives the evolution of a network module and its host genome

    E-print Network

    Zhang, Jianzhi

    Article Stress-response balance drives the evolution of a network module and its host genome Caleb V Morozov3,6 & Gábor Balázsi1,7,8,* Abstract Stress response genes and their regulators form is costly in the absence of stress, but beneficial in stress. They can quickly emerge in the genomes

  5. Configuration Merging in Point-to-Point Networks for Module-based FPGA Reconfiguration

    E-print Network

    Diessel, Oliver

    of off-the-shelf cores, proprietary IP and legacy components. A modular design style also fConfiguration Merging in Point-to-Point Networks for Module-based FPGA Reconfiguration SHANNON KOH and Hutchings 1994; Villasenor et al. 1995] and considered time- and space-sharing the FPGA resources among

  6. Networked Bio-Inspired Modules For Sensorimotor Control of Wearable Cyber-Physical Devices

    E-print Network

    Park, Yong-Lae

    Networked Bio-Inspired Modules For Sensorimotor Control of Wearable Cyber-Physical Devices Yong, wearable, bio-inspired cyber-physical assistive device for rehabilitation of injured nervous systems and wearability. Fig. 1 Overall design concept of "second skin." The sensing, actuation, and control functions

  7. Neural Networks 23 (2010) 667668 Contents lists available at ScienceDirect

    E-print Network

    Fukai, Tomoki

    2010-01-01

    Neural Networks 23 (2010) 667­668 Contents lists available at ScienceDirect Neural Networks journal of large-scale neural network simulations poses the same challenge as experimental data does. This special massively parallel neural recordings and large-scale neural network simulations; (b) Frameworks

  8. Google matrix analysis of directed networks Leonardo Ermann

    E-print Network

    Shepelyansky, Dima

    architectures, world trade, social and citation networks, brain neural networks, DNA sequences, and Ulam-dimensional ranking of Wikipedia articles 1278 B. Spectral properties of the Wikipedia network 1279 C. Communities. Brain neural networks 1300 B. Google matrix of DNA sequences 1301 C. Gene regulation networks 1304 D

  9. Age-dependent modulation of the somatosensory network upon eye closure.

    PubMed

    Brodoehl, Stefan; Klingner, Carsten; Witte, Otto W

    2016-02-01

    Eye closure even in complete darkness can improve somatosensory perception by switching the brain to a uni-sensory processing mode. This causes an increased information flow between the thalamus and the somatosensory cortex while decreasing modulation by the visual cortex. Previous work suggests that these modulations are age-dependent and that the benefit in somatosensory performance due to eye closing diminishes with age. The cause of this age-dependency and to what extent somatosensory processing is involved remains unclear. Therefore, we intended to characterize the underlying age-dependent modifications in the interaction and connectivity of different sensory networks caused by eye closure. We performed functional MR-imaging with tactile stimulation of the right hand under the conditions of opened and closed eyes in healthy young and elderly participants. Conditional Granger causality analysis was performed to assess the somatosensory and visual networks, including the thalamus. Independent of age, eye closure improved the information transfer from the thalamus to and within the somatosensory cortex. However, beyond that, we found an age-dependent recruitment strategy. Whereas young participants were characterized by an optimized information flow within the relays of the somatosensory network, elderly participants revealed a stronger modulatory influence of the visual network upon the somatosensory cortex. Our results demonstrate that the modulation of the somatosensory and visual networks by eye closure diminishes with age and that the dominance of the visual system is more pronounced in the aging brain. PMID:26546882

  10. Differential C3NET reveals disease networks of direct physical interactions

    E-print Network

    Altay, Gokmen; Asim, Mohammad; Markowetz, Florian; Neal, David E

    2011-07-21

    , form disease networks if the conditions are a disease, such as cancer, and normal. This could potentially allow developing better and subtly targeted drugs to cure cancer. Differential network analysis with direct physical gene interactions needs...

  11. Mean size of avalanches on directed random networks with arbitrary degree distributions James P. Gleeson

    E-print Network

    Gleeson, James P.

    Mean size of avalanches on directed random networks with arbitrary degree distributions James P avalanches on infinite directed random networks may be determined using the damage propagation function.057101 PACS number s : 89.75.Da, 02.50.Ey, 02.10.Ox, 05.50. q Unordered binary avalanches UBAs on directed net

  12. Robust criticality of an Ising model on rewired directed networks

    NASA Astrophysics Data System (ADS)

    Lipowski, Adam; Gontarek, Krzysztof; Lipowska, Dorota

    2015-06-01

    We show that preferential rewiring, which is supposed to mimic the behavior of financial agents, changes a directed-network Ising ferromagnet with a single critical point into a model with robust critical behavior. For the nonrewired random graph version, due to a constant number of out-links for each site, we write a simple mean-field-like equation describing the behavior of magnetization; we argue that it is exact and support the claim with extensive Monte Carlo simulations. For the rewired version, this equation is obeyed only at low temperatures. At higher temperatures, rewiring leads to strong heterogeneities, which apparently invalidates mean-field arguments and induces large fluctuations and divergent susceptibility. Such behavior is traced back to the formation of a relatively small core of agents that influence the entire system.

  13. Amyloid beta modulation of neuronal network activity in vitro.

    PubMed

    Charkhkar, Hamid; Meyyappan, Susheela; Matveeva, Evgenia; Moll, Jonathan R; McHail, Daniel G; Peixoto, Nathalia; Cliff, Richard O; Pancrazio, Joseph J

    2015-12-10

    In vitro assays offer a means of screening potential therapeutics and accelerating the drug development process. Here, we utilized neuronal cultures on planar microelectrode arrays (MEA) as a functional assay to assess the neurotoxicity of amyloid-? 1-42 (A?42), a biomolecule implicated in the Alzheimer?s disease (AD). In this approach, neurons harvested from embryonic mice were seeded on the substrate-integrated microelectrode arrays. The cultured neurons form a spontaneously active network, and the spiking activity as a functional endpoint could be detected via the MEA. A?42 oligomer, but not monomer, significantly reduced network spike rate. In addition, we demonstrated that the ionotropic glutamate receptors, NMDA and AMPA/kainate, play a role in the effects of A?42 on neuronal activity in vitro. To examine the utility of the MEA-based assay for AD drug discovery, we tested two model therapeutics for AD, methylene blue (MB) and memantine. Our results show an almost full recovery in the activity within 24h after administration of A?42 in the cultures pre-treated with either MB or memantine. Our findings suggest that cultured neuronal networks may be a useful platform in screening potential therapeutics for A? induced changes in neurological function. PMID:26453830

  14. A 50-kW Module Power Station of Directly Solar-Pumped Iodine Laser

    NASA Technical Reports Server (NTRS)

    Choi, S. H.; Lee, J. H.; Meador, W. E.; Conway, E. J.

    1997-01-01

    The conceptual design of a 50 kW Directly Solar-Pumped Iodine Laser (DSPIL) module was developed for a space-based power station which transmits its coherent-beam power to users such as the moon, Martian rovers, or other satellites with large (greater than 25 kW) electric power requirements. Integration of multiple modules would provide an amount of power that exceeds the power of a single module by combining and directing the coherent beams to the user's receiver. The model developed for the DSPIL system conservatively predicts the laser output power (50 kW) that appears much less than the laser output (93 kW) obtained from the gain volume ratio extrapolation of experimental data. The difference in laser outputs may be attributed to reflector configurations adopted in both design and experiment. Even though the photon absorption by multiple reflections in experimental cavity setup was more efficient, the maximum secondary absorption amounts to be only 24.7 percent of the primary. However, the gain volume ratio shows 86 percent more power output than theoretical estimation that is roughly 60 percent more than the contribution by the secondary absorption. Such a difference indicates that the theoretical model adopted in the study underestimates the overall performance of the DSPIL. This fact may tolerate more flexible and radical selection of design parameters than used in this design study. The design achieves an overall specific power of approximately 5 W/kg and total mass of 10 metric tons.

  15. A 50-kW module power station of directly solar-pumped iodine laser

    SciTech Connect

    Choi, S.H.; Lee, J.H.; Meador, W.E.; Conway, E.J.

    1997-11-01

    The conceptual design of a 50 kW directly solar-pumped iodine laser (DSPIL) module was developed for a space-based power station which transmits its coherent-beam power to users such as the moon, Martian rovers, or other satellites with large (>25 kW) electric power requirements. Integration of multiple modules would provide an amount of power that exceeds the power of a single module by combining and directing the coherent beams to the user`s receiver. The model developed for the DSPIL system conservatively predicts the laser output power (50 kW) that appears much less than the laser output (93 kW) obtained from the gain volume ratio extrapolation of experimental data. The difference in laser outputs may be attributed to reflector configurations adopted in both design and experiment. Even though the photon absorption by multiple reflections in experimental cavity setup was more efficient, the maximum secondary absorption amounts to be only 24.7 percent of the primary. However, the gain volume ratio shows 86 percent more power output than theoretical estimation that is roughly 60 percent more than the contribution by the secondary absorption. Such a difference indicates that the theoretical model adopted in the study underestimates the overall performance of the DSPIL. This fact may tolerate more flexible and radical selection of design parameters than used in this design study. The design achieves an overall specific power of approximately 5 W/kg and total mass of 10 metric tons.

  16. Transcriptional override: a regulatory network model of indirect responses to modulations in microRNA expression

    PubMed Central

    2014-01-01

    Background Documented changes in levels of microRNAs (miRNA) in a variety of diseases including cancer are leading to their development as early indicators of disease, and as a potential new class of therapeutic agents. A significant hurdle to the rational application of miRNAs as therapeutics is our current inability to reliably predict the range of molecular and cellular consequences of perturbations in the levels of specific miRNAs on targeted cells. While the direct gene (mRNA) targets of individual miRNAs can be computationally predicted with reasonable degrees of accuracy, reliable predictions of the indirect molecular effects of perturbations in miRNA levels remain a major challenge in molecular systems biology. Results Changes in gene (mRNA) and miRNA expression levels between normal precursor and ovarian cancer cells isolated from patient tissue samples were measured by microarray. Expression of 31 miRNAs was significantly elevated in the cancer samples. Consistent with previous reports, the expected decrease in expression of the mRNA targets of upregulated miRNAs was observed in only 20-30% of the cancer samples. We present and provide experimental support for a network model (The Transcriptional Override Model; TOM) to account for the unexpected regulatory consequences of modulations in the expression of miRNAs on expression levels of their target mRNAs in ovarian cancer. Conclusions The direct and indirect regulatory effects of changes in miRNA expression levels in vivo are interactive and complex but amenable to systems level modeling. Although TOM has been developed and validated within the context of ovarian cancer, it may be applicable in other biological contexts as well, including of potential future use in the rational design of miRNA-based strategies for the treatment of cancers and other diseases. PMID:24666724

  17. High-speed one-dimensional spatial light modulator for Laser Direct Imaging and other patterning applications

    E-print Network

    Jonsson, Fredrik

    High-speed one-dimensional spatial light modulator for Laser Direct Imaging and other patterning. This SLM is the core element of the Swedish company's new LDI 5sp series of Laser-Direct-Imaging systems of ultraviolet light needs to be combined with high throughput and high precision. Keywords: Laser Direct Imaging

  18. Microwave sidebands for laser cooling by direct modulation of a tapered amplifier.

    PubMed

    Mahnke, J; Kulas, S; Geisel, I; Jöllenbeck, S; Ertmer, W; Klempt, C

    2013-06-01

    Laser cooling of atoms usually necessitates several laser frequencies. Alkaline atoms, for example, are cooled by two lasers with a frequency difference in the gigahertz range. This gap cannot be closed with simple shifting techniques. Here, we present a method of generating sidebands at 6.6 GHz by modulating the current of a tapered amplifier, which is seeded by an unmodulated master laser. The sidebands enable trapping of 1.1 × 10(9) (87)Rb atoms in a chip-based magneto-optical trap. Compared to the direct modulation of the master laser, this method allows for an easy implementation, a fast adjustment over a wide frequency range, and the simultaneous extraction of unmodulated light for manipulation and detection. The low power consumption, small size, and applicability for multiple frequencies benefit a wide range of applications reaching from atom-based mobile sensors to the laser cooling of molecules. PMID:23822336

  19. Direct leaf trajectory optimization for volumetric modulated arc therapy planning with sliding window delivery

    E-print Network

    Papp, Dávid

    2013-01-01

    We propose a novel optimization model for volumetric modulated arc therapy (VMAT) planning that directly optimizes deliverable leaf trajectories in the treatment plan optimization problem, and eliminates the need for a separate arc-sequencing step. In this model, a 360-degree arc is divided into a given number of arc segments in which the leaves move unidirectionally. This facilitates an algorithm that determines the optimal piecewise linear leaf trajectories for each arc segment, which are deliverable in a given treatment time. Multi-leaf collimator (MLC) constraints, including maximum leaf speed and interdigitation, are accounted for explicitly. The algorithm is customized to allow for VMAT delivery using constant gantry speed and dose rate, however, the algorithm generalizes to variable gantry speed if beneficial. We demonstrate the method for three different tumor sites: a head-and-neck case, a prostate case, and a paraspinal case. For that purpose, we first obtain a reference plan for intensity modulated...

  20. Approved Module Information for EE3NPD, 2014/5 Module Title/Name: Networked Product Development Module Code: EE3NPD

    E-print Network

    Neirotti, Juan Pablo

    Module Code: EE3NPD School: Engineering and Applied Science Module Type: Standard Module New Module? No Module Credits: 10 Module Management Information Module Leader Name Haitao Ye Email Address h devices to high performance games consoles, mobile computers, Musical Instrument Digital Interface (MIDI

  1. Dopamine: a parallel pathway for the modulation of spinal locomotor networks

    PubMed Central

    Sharples, Simon A.; Koblinger, Kathrin; Humphreys, Jennifer M.; Whelan, Patrick J.

    2014-01-01

    The spinal cord contains networks of neurons that can produce locomotor patterns. To readily respond to environmental conditions, these networks must be flexible yet at the same time robust. Neuromodulators play a key role in contributing to network flexibility in a variety of invertebrate and vertebrate networks. For example, neuromodulators contribute to altering intrinsic properties and synaptic weights that, in extreme cases, can lead to neurons switching between networks. Here we focus on the role of dopamine in the control of stepping networks in the spinal cord. We first review the role of dopamine in modulating rhythmic activity in the stomatogastric ganglion (STG) and the leech, since work from these preparations provides a foundation to understand its role in vertebrate systems. We then move to a discussion of dopamine’s role in modulation of swimming in aquatic species such as the larval xenopus, lamprey and zebrafish. The control of terrestrial walking in vertebrates by dopamine is less studied and we review current evidence in mammals with a focus on rodent species. We discuss data suggesting that the source of dopamine within the spinal cord is mainly from the A11 area of the diencephalon, and then turn to a discussion of dopamine’s role in modulating walking patterns from both in vivo and in vitro preparations. Similar to the descending serotonergic system, the dopaminergic system may serve as a potential target to promote recovery of locomotor function following spinal cord injury (SCI); evidence suggests that dopaminergic agonists can promote recovery of function following SCI. We discuss pharmacogenetic and optogenetic approaches that could be deployed in SCI and their potential tractability. Throughout the review we draw parallels with both noradrenergic and serotonergic modulatory effects on spinal cord networks. In all likelihood, a complementary monoaminergic enhancement strategy should be deployed following SCI. PMID:24982614

  2. Identification and validation of gene module associated with lung cancer through coexpression network analysis.

    PubMed

    Liu, Rong; Cheng, Yu; Yu, Jing; Lv, Qiao-Li; Zhou, Hong-Hao

    2015-05-25

    Lung cancer, a tumor with heterogeneous biology, is influenced by a complex network of gene interactions. Therefore, elucidating the relationships between genes and lung cancer is critical to attain further knowledge on tumor biology. In this study, we performed weighted gene coexpression network analysis to investigate the roles of gene networks in lung cancer regulation. Gene coexpression relationships were explored in 58 samples with tumorous and matched non-tumorous lungs, and six gene modules were identified on the basis of gene coexpression patterns. The overall expression of one module was significantly higher in the normal group than in the lung cancer group. This finding was validated across six datasets (all p values <0.01). The particular module was highly enriched for genes belonging to the biological Gene Ontology category "response to wounding" (adjusted p value = 4.28 × 10(-10)). A lung cancer-specific hub network (LCHN) consisting of 15 genes was also derived from this module. A support vector machine based on classification model robustly separated lung cancer from adjacent normal tissues in the validation datasets (accuracy ranged from 91.7% to 98.5%) by using the LCHN gene signatures as predictors. Eight genes in the LCHN are associated with lung cancer. Overall, we identified a gene module associated with lung cancer, as well as an LCHN consisting of hub genes that may be candidate biomarkers and therapeutic targets for lung cancer. This integrated analysis of lung cancer transcriptome provides an alternative strategy for identification of potential oncogenic drivers. PMID:25752287

  3. Direct leaf trajectory optimization for volumetric modulated arc therapy planning with sliding window delivery

    SciTech Connect

    Papp, Dávid Unkelbach, Jan

    2014-01-15

    Purpose: The authors propose a novel optimization model for volumetric modulated arc therapy (VMAT) planning that directly optimizes deliverable leaf trajectories in the treatment plan optimization problem, and eliminates the need for a separate arc-sequencing step. Methods: In this model, a 360° arc is divided into a given number of arc segments in which the leaves move unidirectionally. This facilitates an algorithm that determines the optimal piecewise linear leaf trajectories for each arc segment, which are deliverable in a given treatment time. Multileaf collimator constraints, including maximum leaf speed and interdigitation, are accounted for explicitly. The algorithm is customized to allow for VMAT delivery using constant gantry speed and dose rate, however, the algorithm generalizes to variable gantry speed if beneficial. Results: The authors demonstrate the method for three different tumor sites: a head-and-neck case, a prostate case, and a paraspinal case. The authors first obtain a reference plan for intensity modulated radiotherapy (IMRT) using fluence map optimization and 20 intensity-modulated fields in equally spaced beam directions, which is beyond the standard of care. Modeling the typical clinical setup for the treatment sites considered, IMRT plans using seven or nine beams are also computed. Subsequently, VMAT plans are optimized by dividing the 360° arc into 20 corresponding arc segments. Assuming typical machine parameters (a dose rate of 600 MU/min, and a maximum leaf speed of 3 cm/s), it is demonstrated that the optimized VMAT plans with 2–3 min delivery time are of noticeably better quality than the 7–9 beam IMRT plans. The VMAT plan quality approaches the quality of the 20-beam IMRT benchmark plan for delivery times between 3 and 4 min. Conclusions: The results indicate that high quality treatments can be delivered in a single arc with 20 arc segments if sufficient time is allowed for modulation in each segment.

  4. Improved Connectivity using Hybrid Uni/Omni-Directional Antennas in Sensor Networks 

    E-print Network

    Kwon, Ji Heon

    2008-05-27

    below explain using the context of a linear network how the hybrid approach helps improve connectivity in random sensor network deployments. r r’ 15 Figure 7 Partitioned network with omni-directional antenna Figure 8 100... in the previous section describe the phenomenal benefits of using a hybrid approach in sensor networks. The most motivating observation is the performance of a hybrid enabled sensor network deployment at low transmission radii and node densities. The ability...

  5. Finding pathway-modulating genes from a novel Ontology Fingerprint-derived gene network

    PubMed Central

    Qin, Tingting; Matmati, Nabil; Tsoi, Lam C.; Mohanty, Bidyut K.; Gao, Nan; Tang, Jijun; Lawson, Andrew B.; Hannun, Yusuf A.; Zheng, W. Jim

    2014-01-01

    To enhance our knowledge regarding biological pathway regulation, we took an integrated approach, using the biomedical literature, ontologies, network analyses and experimental investigation to infer novel genes that could modulate biological pathways. We first constructed a novel gene network via a pairwise comparison of all yeast genes’ Ontology Fingerprints—a set of Gene Ontology terms overrepresented in the PubMed abstracts linked to a gene along with those terms’ corresponding enrichment P-values. The network was further refined using a Bayesian hierarchical model to identify novel genes that could potentially influence the pathway activities. We applied this method to the sphingolipid pathway in yeast and found that many top-ranked genes indeed displayed altered sphingolipid pathway functions, initially measured by their sensitivity to myriocin, an inhibitor of de novo sphingolipid biosynthesis. Further experiments confirmed the modulation of the sphingolipid pathway by one of these genes, PFA4, encoding a palmitoyl transferase. Comparative analysis showed that few of these novel genes could be discovered by other existing methods. Our novel gene network provides a unique and comprehensive resource to study pathway modulations and systems biology in general. PMID:25063300

  6. Optical vector network analyzer with improved accuracy based on polarization modulation and polarization pulling.

    PubMed

    Li, Wei; Liu, Jian Guo; Zhu, Ning Hua

    2015-04-15

    We report a novel optical vector network analyzer (OVNA) with improved accuracy based on polarization modulation and stimulated Brillouin scattering (SBS) assisted polarization pulling. The beating between adjacent higher-order optical sidebands which are generated because of the nonlinearity of an electro-optic modulator (EOM) introduces considerable error to the OVNA. In our scheme, the measurement error is significantly reduced by removing the even-order optical sidebands using polarization discrimination. The proposed approach is theoretically analyzed and experimentally verified. The experimental results show that the accuracy of the OVNA is greatly improved compared to a conventional OVNA. PMID:25872046

  7. Regulatory Snapshots: integrative mining of regulatory modules from expression time series and regulatory networks.

    PubMed

    Gonçalves, Joana P; Aires, Ricardo S; Francisco, Alexandre P; Madeira, Sara C

    2012-01-01

    Explaining regulatory mechanisms is crucial to understand complex cellular responses leading to system perturbations. Some strategies reverse engineer regulatory interactions from experimental data, while others identify functional regulatory units (modules) under the assumption that biological systems yield a modular organization. Most modular studies focus on network structure and static properties, ignoring that gene regulation is largely driven by stimulus-response behavior. Expression time series are key to gain insight into dynamics, but have been insufficiently explored by current methods, which often (1) apply generic algorithms unsuited for expression analysis over time, due to inability to maintain the chronology of events or incorporate time dependency; (2) ignore local patterns, abundant in most interesting cases of transcriptional activity; (3) neglect physical binding or lack automatic association of regulators, focusing mainly on expression patterns; or (4) limit the discovery to a predefined number of modules. We propose Regulatory Snapshots, an integrative mining approach to identify regulatory modules over time by combining transcriptional control with response, while overcoming the above challenges. Temporal biclustering is first used to reveal transcriptional modules composed of genes showing coherent expression profiles over time. Personalized ranking is then applied to prioritize prominent regulators targeting the modules at each time point using a network of documented regulatory associations and the expression data. Custom graphics are finally depicted to expose the regulatory activity in a module at consecutive time points (snapshots). Regulatory Snapshots successfully unraveled modules underlying yeast response to heat shock and human epithelial-to-mesenchymal transition, based on regulations documented in the YEASTRACT and JASPAR databases, respectively, and available expression data. Regulatory players involved in functionally enriched processes related to these biological events were identified. Ranking scores further suggested ability to discern the primary role of a gene (target or regulator). Prototype is available at: http://kdbio.inesc-id.pt/software/regulatorysnapshots. PMID:22563474

  8. Identifying core gene modules in glioblastoma based on multilayer factor-mediated dysfunctional regulatory networks through integrating multi-dimensional genomic data

    PubMed Central

    Ping, Yanyan; Deng, Yulan; Wang, Li; Zhang, Hongyi; Zhang, Yong; Xu, Chaohan; Zhao, Hongying; Fan, Huihui; Yu, Fulong; Xiao, Yun; Li, Xia

    2015-01-01

    The driver genetic aberrations collectively regulate core cellular processes underlying cancer development. However, identifying the modules of driver genetic alterations and characterizing their functional mechanisms are still major challenges for cancer studies. Here, we developed an integrative multi-omics method CMDD to identify the driver modules and their affecting dysregulated genes through characterizing genetic alteration-induced dysregulated networks. Applied to glioblastoma (GBM), the CMDD identified a core gene module of 17 genes, including seven known GBM drivers, and their dysregulated genes. The module showed significant association with shorter survival of GBM. When classifying driver genes in the module into two gene sets according to their genetic alteration patterns, we found that one gene set directly participated in the glioma pathway, while the other indirectly regulated the glioma pathway, mostly, via their dysregulated genes. Both of the two gene sets were significant contributors to survival and helpful for classifying GBM subtypes, suggesting their critical roles in GBM pathogenesis. Also, by applying the CMDD to other six cancers, we identified some novel core modules associated with overall survival of patients. Together, these results demonstrate integrative multi-omics data can identify driver modules and uncover their dysregulated genes, which is useful for interpreting cancer genome. PMID:25653168

  9. A complex task? Direct modulation of transcription factors with small molecules

    PubMed Central

    Koehler, Angela N.

    2010-01-01

    Transcription factors with aberrant activity in disease are promising yet untested targets for therapeutic development, particularly in oncology. Directly inhibiting or activating the function of a transcription factor requires specific disruption or recruitment of protein-protein or protein-DNA interactions. The discovery or design of small molecules that specifically modulate these interactions has thus far proven to be a significant challenge and the protein class is often perceived to be ‘undruggable.’ This review will summarize recent progress in the development of small-molecule probes of transcription factors and provide evidence to challenge the notion that this important protein class is chemically intractable. PMID:20395165

  10. Probability of multiple correct packet receptions in direct-sequence spread-spectrum networks

    NASA Astrophysics Data System (ADS)

    Geraniotis, Evaggelos; Wu, Jason

    1994-06-01

    In this paper, we provide methods to evaluate the probabilities P(l,m - lvertical bar K), l = 0,1,center-dotcenter-dotcenter-dot ,m and mless than or = K of exactly l correct packet receptions in a group of m receivers, given that K packets are transmitted simultaneously from users employing direct-sequence spread spectrum (DS/SS) signaling schemes. This quantity is useful for the design and performance evaluation of protocols for admission control and dynamic code allocation in multiple-access spread spectrum packet radio networks intended for terrestrial or satellite applications. The evaluations are carried out for DS/SS networks employing BPSK modulation with coherent demodulation and convolutional codes with Viterbi decoding. Systems with geographically dispersed receivers and systems with collocated receivers are considered. Approximations based on the Independent Receiver Operation Assumption (IROA) and the Gaussian multivariate distribution are developed, and their accuracy is checked against the exact expressions derived for synchronous systems. The Joint First Error Event Approximation (JFEEA) is also developed for coded systems and compared to the IROA.

  11. Synergy of direct and indirect cholinergic septo-hippocampal pathways coordinates firing in hippocampal networks.

    PubMed

    Dannenberg, Holger; Pabst, Milan; Braganza, Oliver; Schoch, Susanne; Niediek, Johannes; Bayraktar, Melike; Mormann, Florian; Beck, Heinz

    2015-06-01

    The medial septum/diagonal band of Broca complex (MSDB) is a key structure that modulates hippocampal rhythmogenesis. Cholinergic neurons of the MSDB play a central role in generating and pacing theta-band oscillations in the hippocampal formation during exploration, novelty detection, and memory encoding. How precisely cholinergic neurons affect hippocampal network dynamics in vivo, however, has remained elusive. In this study, we show that stimulation of cholinergic MSDB neurons in urethane-anesthetized mice acts on hippocampal networks via two distinct pathways. A direct septo-hippocampal cholinergic projection causes increased firing of hippocampal inhibitory interneurons with concomitantly decreased firing of principal cells. In addition, cholinergic neurons recruit noncholinergic neurons within the MSDB. This indirect pathway is required for hippocampal theta synchronization. Activation of both pathways causes a reduction in pyramidal neuron firing and a more precise coupling to the theta oscillatory phase. These two anatomically and functionally distinct pathways are likely relevant for cholinergic control of encoding versus retrieval modes in the hippocampus. PMID:26041909

  12. Hierarchical structure and modules in the Escherichia coli transcriptional regulatory network revealed by a new top-down approach

    PubMed Central

    Ma, Hong-Wu; Buer, Jan; Zeng, An-Ping

    2004-01-01

    Background Cellular functions are coordinately carried out by groups of genes forming functional modules. Identifying such modules in the transcriptional regulatory network (TRN) of organisms is important for understanding the structure and function of these fundamental cellular networks and essential for the emerging modular biology. So far, the global connectivity structure of TRN has not been well studied and consequently not applied for the identification of functional modules. Moreover, network motifs such as feed forward loop are recently proposed to be basic building blocks of TRN. However, their relationship to functional modules is not clear. Results In this work we proposed a top-down approach to identify modules in the TRN of E. coli. By studying the global connectivity structure of the regulatory network, we first revealed a five-layer hierarchical structure in which all the regulatory relationships are downward. Based on this regulatory hierarchy, we developed a new method to decompose the regulatory network into functional modules and to identify global regulators governing multiple modules. As a result, 10 global regulators and 39 modules were identified and shown to have well defined functions. We then investigated the distribution and composition of the two basic network motifs (feed forward loop and bi-fan motif) in the hierarchical structure of TRN. We found that most of these network motifs include global regulators, indicating that these motifs are not basic building blocks of modules since modules should not contain global regulators. Conclusion The transcriptional regulatory network of E. coli possesses a multi-layer hierarchical modular structure without feedback regulation at transcription level. This hierarchical structure builds the basis for a new and simple decomposition method which is suitable for the identification of functional modules and global regulators in the transcriptional regulatory network of E. coli. Analysis of the distribution of feed forward loops and bi-fan motifs in the hierarchical structure suggests that these network motifs are not elementary building blocks of functional modules in the transcriptional regulatory network of E. coli. PMID:15603590

  13. Frequency tunable optoelectronic oscillator based on a directly modulated DFB semiconductor laser under optical injection.

    PubMed

    Wang, Peng; Xiong, Jintian; Zhang, Tingting; Chen, Dalei; Xiang, Peng; Zheng, Jilin; Zhang, Yunshan; Li, Ruoming; Huang, Long; Pu, Tao; Chen, Xiangfei

    2015-08-10

    A frequency tunable optoelectronic oscillator based on a directly modulated distributed-feedback (DFB) semiconductor laser under optical injection is proposed and experimentally demonstrated. Through optical injection, the relaxation oscillation frequency of the DFB laser is enhanced and its high modulation efficiency can enable the loop oscillation with a RF threshold gain of less than 20 dB. The DFB laser is a commercial semiconductor laser with a package of 10 GHz, and its packaging limitation can be overcome by optical injection. In our scheme, neither a high-speed external modulator nor an electrical bandpass filter is required, making the system simple and low-cost. Microwave signals with a frequency tuning range from 5.98 to 15.22 GHz are generated by adjusting the injection ratio and frequency detuning between the master and slave lasers. The phase noise of the generated 9.75 GHz microwave signal is measured to be -104.8 dBc/Hz @ 10 kHz frequency offset. PMID:26367899

  14. Test particle simulation of direct laser acceleration in a density-modulated plasma waveguide

    SciTech Connect

    Lin, M.-W.; Jovanovic, I.

    2012-11-15

    Direct laser acceleration (DLA) of electrons by the use of the intense axial electric field of an ultrafast radially polarized laser pulse is a promising technique for future compact accelerators. Density-modulated plasma waveguides can be implemented for guiding the propagation of the laser pulse to extend the acceleration distance and for the quasi-phase-matching between the accelerated electrons and the laser pulse. A test particle model is developed to study the optimal axial density modulation structure of plasma waveguides for laser pulses to efficiently accelerate co-propagating electrons. A simple analytical approach is also presented, which can be used to estimate the energy gain in DLA. The analytical model is validated by the test particle simulation. The effect of injection phase and acceleration of electrons injected at various radial positions are studied. The results indicate that a positively chirped density modulation of the waveguide structure is required to accelerate electron with low initial energies, and can be effectively optimized. A wider tolerance on the injection phase and radial distance from the waveguide axis exists for electrons injected with a higher initial energy.

  15. Modulation of cerebello-cerebral resting state networks by site-specific stimulation.

    PubMed

    Rastogi, Anuj; Ghahremani, Ayda; Cash, Robin

    2015-10-01

    Converging evidence from neuroimaging and neuromodulation literature suggests that the cerebellum plays a broad role in motor as well as cognitive processes through its participation in resting-state networks. A recent study by Halko et al. (J Neurosci 34: 12049-12056, 2014) demonstrates, for the first time, the ability to modulate functional connectivity of some of these distinct resting-state networks using site-specific repetitive transcranial magnetic stimulation (rTMS) of the cerebellum. In this Neuro Forum, we discuss and critically analyze this study, emphasizing important findings, potential therapeutic relevance, and areas worthy of further inquiry. PMID:25673743

  16. 25 Gbit/s differential phase-shift-keying signal generation using directly modulated quantum-dot semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Zeghuzi, A.; Schmeckebier, H.; Stubenrauch, M.; Meuer, C.; Schubert, C.; Bunge, C.-A.; Bimberg, D.

    2015-05-01

    Error-free generation of 25-Gbit/s differential phase-shift keying (DPSK) signals via direct modulation of InAs quantum-dot (QD) based semiconductor optical amplifiers (SOAs) is experimentally demonstrated with an input power level of -5 dBm. The QD SOAs emit in the 1.3-?m wavelength range and provide a small-signal fiber-to-fiber gain of 8 dB. Furthermore, error-free DPSK modulation is achieved for constant optical input power levels from 3 dBm down to only -11 dBm for a bit rate of 20 Gbit/s. Direct phase modulation of QD SOAs via current changes is thus demonstrated to be much faster than direct gain modulation.

  17. 25 Gbit/s differential phase-shift-keying signal generation using directly modulated quantum-dot semiconductor optical amplifiers

    SciTech Connect

    Zeghuzi, A. Schmeckebier, H.; Stubenrauch, M.; Bimberg, D.; Meuer, C.; Schubert, C.; Bunge, C.-A.

    2015-05-25

    Error-free generation of 25-Gbit/s differential phase-shift keying (DPSK) signals via direct modulation of InAs quantum-dot (QD) based semiconductor optical amplifiers (SOAs) is experimentally demonstrated with an input power level of ?5 dBm. The QD SOAs emit in the 1.3-?m wavelength range and provide a small-signal fiber-to-fiber gain of 8?dB. Furthermore, error-free DPSK modulation is achieved for constant optical input power levels from 3 dBm down to only ?11 dBm for a bit rate of 20 Gbit/s. Direct phase modulation of QD SOAs via current changes is thus demonstrated to be much faster than direct gain modulation.

  18. A 4-channel coil array interconnection by analog direct modulation optical link for 1.5-T MRI.

    PubMed

    Yuan, Jing; Wei, Juan; Shen, Gary X

    2008-10-01

    Optical glass fiber shows great advantages over coaxial cables in terms of electromagnetic interference, thus, it should be considered a potential alternative for magnetic resonance imaging (MRI) receive coil interconnection, especially for a large number coil array at high field. In this paper, we propose a 4-channel analog direct modulation optical link for a 1.5-T MRI coil array interconnection. First, a general direct modulated optical link is compared to an external modulated optical link. And then the link performances of the proposed direct modulated optical link, including power gain, frequency response, and dynamic range, are analyzed and measured. Phantom and in vivo head images obtained using this optical link are demonstrated for comparison with those obtained by cable connections. The signal-to-noise (SNR) analysis shows that the optical link achieves 6%-8% SNR a improvement over coaxial cables by elimination of electrical interference between cables during MR signal transmission. PMID:18815095

  19. Identification of Functional Modules by Integration of Multiple Data Sources Using a Bayesian Network Classifier

    PubMed Central

    Wang, Jinlian; Zuo, Yiming; Liu, Lun; Man, Yangao; Tadesse, Mahlet G.; Ressom, Habtom W

    2014-01-01

    Background Prediction of functional modules is indispensable for detecting protein deregulation in human complex diseases such as cancer. Bayesian network (BN) is one of the most commonly used models to integrate heterogeneous data from multiple sources such as protein domain, interactome, functional annotation, genome-wide gene expression, and the literature. Methods and Results In this paper, we present a BN classifier that is customized to: 1) increase the ability to integrate diverse information from different sources, 2) effectively predict protein-protein interactions, 3) infer aberrant networks with scale-free and small world properties, and 4) group molecules into functional modules or pathways based on the primary function and biological features. Application of this model on discovering protein biomarkers of hepatocelluar carcinoma (HCC) leads to the identification of functional modules that provide insights into the mechanism of the development and progression of HCC. These functional modules include cell cycle deregulation, increased angiogenesis (e.g., vascular endothelial growth factor, blood vessel morphogenesis), oxidative metabolic alterations, and aberrant activation of signaling pathways involved in cellular proliferation, survival, and differentiation. Conclusion The discoveries and conclusions derived from our customized BN classifier are consistent with previously published results. The proposed approach for determining BN structure facilitates the integration of heterogeneous data from multiple sources to elucidate the mechanisms of complex diseases. PMID:24736851

  20. Neural Networks 24 (2011) 950960 Contents lists available at SciVerse ScienceDirect

    E-print Network

    Fukai, Tomoki

    2011-01-01

    Neural Networks 24 (2011) 950­960 Contents lists available at SciVerse ScienceDirect Neural of a spiking neural network model of the basal ganglia circuitry using general purpose computing on graphics neural networks Real-time simulation GPGPUs Basal ganglia High-performance computing a b s t r a c t Real

  1. Criticality of Large Delay Tolerant Networks via Directed Continuum Percolation in Space-Time

    E-print Network

    Hyytiä, Esa

    Criticality of Large Delay Tolerant Networks via Directed Continuum Percolation in Space-Time Esa that DTN is a network that is super- critical in space-time. In practice, DTN is often sub in space-time. This work is motivated by different opportunistic network- ing schemes. One such scheme

  2. Modulation of Cortical Activity by Transcranial Direct Current Stimulation in Patients with Affective Disorder

    PubMed Central

    Powell, Tamara Y.; Boonstra, Tjeerd W.; Martin, Donel M.; Loo, Colleen K.; Breakspear, Michael

    2014-01-01

    Transcranial direct current stimulation (tDCS) has been shown to have antidepressant efficacy in patients experiencing a major depressive episode, but little is known about the underlying neurophysiology. The purpose of our study was to investigate the acute effects of tDCS on cortical activity using electroencephalography (EEG) in patients with an affective disorder. Eighteen patients diagnosed with an affective disorder and experiencing a depressive episode participated in a sham-controlled study of tDCS, each receiving a session of active (2 mA for 20 minutes) and sham tDCS to the left dorsolateral prefrontal cortex (DLPFC). The effects of tDCS on EEG activity were assessed after each session using event-related potentials (ERP) and measurement of spectral activity during a visual working memory (VWM) task. We observed task and intervention dependent effects on both ERPs and task-related alpha and theta activity, where active compared to sham stimulation resulted in a significant reduction in the N2 amplitude and reduced theta activity over frontal areas during memory retrieval. In summary a single session of anodal tDCS stimulation to the left DLPFC during a major depressive episode resulted in modulated brain activity evident in task-related EEG. Effects on the N2 and frontal theta activity likely reflect modulated activity in the medial frontal cortex and hence indicate that the after-effects of tDCS extend beyond the direct focal effects to the left DLPFC. PMID:24914953

  3. Urban road network evolution mechanism based on the ‘direction preferred connection’ and ‘degree constraint’

    NASA Astrophysics Data System (ADS)

    Yuan, PengCheng; Juan, ZhiCai

    2013-10-01

    The urban road network is a complex system that exhibits the properties of self-organization and emergence. Recent theoretical and empirical studies have mainly focused on the structural properties of the urban road networks. This research concentrates on some important parameters such as degree, average degree, meshedness coefficient, betweeness, etc. These parameters of the real road network exhibit specific statistical properties. Some studies show that perhaps these specific statistical properties are caused by a compromise mechanism of the formation of a minimum spanning tree and the greedy triangulation. Inspired by these results, we propose a principle to construct the network (we call it a MG network in this paper) whose structure is located between the minimum spanning tree and the greedy triangulation at first. The structural properties of the MG network are analyzed. We find the formation mechanism of the MG network cannot explain the urban road network evolution well. Then, based on the formation mechanism of the MG network, we add the ‘direction preferred connection’ and ‘degree constraint’ principles to the urban road network evolution simulation process. The result of the simulation network turns out to be a planar network that is in accordance with reality. Compared with the real road network’s structural properties, we find the simulation results are so consistent with it. It indicates the validation of the model and also demonstrates perhaps the ‘direction preferred connection’ and ‘degree constraint’ principle can explain the urban road network evolution better.

  4. Spectral statistics in directed complex networks and universality of the Ginibre ensemble

    NASA Astrophysics Data System (ADS)

    Ye, Bin; Qiu, Liang; Wang, Xuesong; Guhr, Thomas

    2015-03-01

    Spectra of the adjacency matrices of directed complex networks are analyzed by using non-Hermitian random matrix theory. Both the short-range and long-range correlations in the eigenvalues are calculated numerically for directed model complex networks and real-world networks. The results are compared with predictions of Ginibre's ensemble. The spectral density ? (?) , the nearest neighbor spacing distribution p (s) and the level-number variance ?2 (L) show good agreement with Ginibre's ensemble when the adjacency matrices of directed complex networks are in the strongly non-Hermitian regime.

  5. Conservation laws for voter-like models on random directed networks

    E-print Network

    Stadler, Peter F.

    Conservation laws for voter-like models on random directed networks M. ´Angeles Serrano1 quantity. The conservation laws obtained in the thermodynamic limit for a system that does not order. #12;Conservation laws for voter-like models on random directed networks 2 1. Introduction Conservation

  6. A Property-Based Optimization of Direct Recycle Networks and Wastewater

    E-print Network

    Grossmann, Ignacio E.

    A Property-Based Optimization of Direct Recycle Networks and Wastewater Treatment Processes Jose a mathematical programming approach to optimize direct recycle-reuse networks together with wastewater treatment of wastewater treatment units. In addition to composition-based constraints, the formulation also incorporates

  7. On The Communication Complexity of Perfectly Secure Message Transmission in Directed Networks

    E-print Network

    International Association for Cryptologic Research (IACR)

    On The Communication Complexity of Perfectly Secure Message Transmission in Directed Networks directed networks. Even though the issue of tradeoff between phase complexity and communication complexity bounds on communication complexity of (a) two phase PSMT protocols and (b) three or more phase PSMT

  8. DHCVIM: A direct heating containment vessel interactions module: Applications to Sandia National Laboratory Surtsey experiments

    SciTech Connect

    Ginsberg, T.; Tutu, N.K.

    1987-01-01

    Direct containment heating is the mechanism of severe nuclear reactor accident containment loading which results from transfer of thermal and chemical energy from high temperature, finely divided, molten core material to the containment atmosphere. The Direct Heating Containment Vessel Interactions Module, DHCVIM, has been developed at BNL to mechanistically model the mechanisms of containment loading resulting from the direct heating accident sequence. The calculational procedure is being used at present to model the Sandia National Laboratory 1/10th-scale Surtsey direct containment heating experiments. The objective of the code is to provide a test bed for detailed modeling of various aspects of the thermal, chemical and hydrodynamic interactions which are expected to occur in three regions of a containment building: reactor cavity, intermediate subcompartments and containment done. Major emphasis is placed, at present, on the description of reactor cavity dynamics. This paper summarizes the modeling principles which are incorporated in DHCVIM and presents a prediction of the Surtsey Test DCH-2 which was made prior to execution of the experiment.

  9. DHCVIM - a direct heating containment vessel interactions module: applications to Sandia National Laboratories Surtsey experiments

    SciTech Connect

    Ginsberg, T.; Tutu, N.K.

    1987-01-01

    Direct containment heating is the mechanism of severe nuclear reactor accident containment loading that results from transfer of thermal and chemical energy from high-temperature, finely divided, molten core material to the containment atmosphere. The direct heating containment vessel interactions module (DHCVIM) has been developed at Brookhaven National Laboratory to model the mechanisms of containment loading resulting from the direct heating accident sequence. The calculational procedure is being used at present to model the Sandia National Laboratories one-tenth-scale Surtsey direct containment heating experiments. The objective of the code is to provide a test bed for detailed modeling of various aspects of the thermal, chemical, and hydrodynamic interactions that are expected to occur in three regions of a containment building: reactor cavity, intermediate subcompartments, and containment dome. Major emphasis is placed on the description of reactor cavity dynamics. This paper summarizes the modeling principles that are incorporated in DHCVIM and presents a prediction of the Surtsey Test DCH-2 that was made prior to execution of the experiment.

  10. Reconfigurable bi-directional optical routing in photonic crystals enabled by silicon nanomembrane modules

    NASA Astrophysics Data System (ADS)

    Zablocki, Mathew J.; Sharkawy, Ahmed S.; Prather, Dennis W.

    2011-01-01

    Wavelength-division multiplexing (WDM) is the transmission of many signals through a single communication channel using different wavelengths, each of which carries a separate, independent signal. We present and discuss a reconfigurable WDM based on slow-light, functioning as a bi-directional optical routing and processing network, consisting of photonic crystals designed as drop/add filters. The photonic crystal based routing elements consist of two waveguides coupled through a resonant cavity. Photonic crystals offer the ability to achieve separation of many channels on a much smaller scale than their predecessors. Photonic crystals have led a challenging frontier of miniaturization and large scale integration of high-density optical interconnects, and with the aid of nanomembranes, optical routing networks can set a new standard for high-density optical interconnects.

  11. A Scheduling Algorithm for Connected Target Coverage in Rotatable Directional Sensor Networks

    NASA Astrophysics Data System (ADS)

    Han, Youn-Hee; Kim, Chan-Myung; Gil, Joon-Min

    A key challenge in developing energy-efficient sensor networks is to extend network lifetime in resource-limited environments. As sensors are often densely distributed, they can be scheduled on alternative duty cycles to conserve energy while satisfying the system requirements. Directional sensor networks composed of a large number of directional sensors equipped with a limited battery and with a limited angle of sensing have recently attracted attention. Many types of directional sensors can rotate to face a given direction. Maximizing network lifetime while covering all of the targets in a given area and forwarding sensor data to the sink is a challenge in developing such rotatable directional sensor networks. In this paper, we address the maximum directional cover tree (MDCT) problem of organizing directional sensors into a group of non-disjoint subsets to extend network lifetime. One subset, in which the directional sensors cover all of the targets and forward the data to the sink, is activated at a time, while the others sleep to conserve energy. For the MDCT problem, we first present an energy-consumption model that mainly takes into account the energy expenditure for sensor rotation as well as for the sensing and relaying of data. We also develop a heuristic scheduling algorithm called directional coverage and connectivity (DCC)-greedy to solve the MDCT problem. To verify and evaluate the algorithm, we conduct extensive simulations and show that it extends network lifetime to a reasonable degree.

  12. Acupuncture induce the different modulation patterns of the default mode network: an fMRI study

    NASA Astrophysics Data System (ADS)

    Liu, Peng; Qin, Wei; Tian, Jie; Zhang, Yi

    2009-02-01

    According to Traditional Chinese Medicine (TCM) theory and certain clinical treatment reports, the sustained effects of acupuncture indeed exist, which may last several minutes or hours. Furthermore, increased attention has fallen on the sustained effects of acupuncture. Recently, it is reported that the sustained acupuncture effects may alter the default mode network (DMN). It raises interesting questions: whether the modulations of acupuncture effects to the DMN are still detected at other acupoints and whether the modulation patterns are different induced by different acupoints. In the present study, we wanted to investigate the questions. An experiment fMRI design was carried out on 36 subjects with the electroacupuncture stimulation (EAS) at the three acupoints: Guangming (GB37), Kunlun (BL60) and Jiaoxin (KI8) on the left leg. The data sets were analyzed by a data driven method named independent component analysis (ICA). The results indicated that the three acupoints stimulations may modulate the DMN. Moreover, the modulation patterns were distinct. We suggest the different modulation patterns on the DMN may attribute to the distinct functional effects of acupoints.

  13. Unilateral deafness in children affects development of multi-modal modulation and default mode networks

    PubMed Central

    Schmithorst, Vincent J.; Plante, Elena; Holland, Scott

    2014-01-01

    Monaural auditory input due to congenital or acquired unilateral hearing loss (UHL) may have neurobiological effects on the developing brain. Using functional magnetic resonance imaging (fMRI), we investigated the effect of UHL on the development of functional brain networks used for cross-modal processing. Children ages 7–12 with moderate or greater unilateral hearing loss of sensorineural origin (UHL-SN; N = 21) and normal-hearing controls (N = 23) performed an fMRI-compatible adaptation of the Token Test involving listening to a sentence such as “touched the small green circle and the large blue square” and simultaneously viewing an arrow touching colored shapes on a video. Children with right or severe-to-profound UHL-SN displayed smaller activation in a region encompassing the right inferior temporal, middle temporal, and middle occipital gyrus (BA 19/37/39), evidencing differences due to monaural hearing in cross-modal modulation of the visual processing pathway. Children with UHL-SN displayed increased activation in the left posterior superior temporal gyrus, likely the result either of more effortful low-level processing of auditory stimuli or differences in cross-modal modulation of the auditory processing pathway. Additionally, children with UHL-SN displayed reduced deactivation of anterior and posterior regions of the default mode network. Results suggest that monaural hearing affects the development of brain networks related to cross-modal sensory processing and the regulation of the default network during processing of spoken language. PMID:24723873

  14. 10Gb/s direct modulation of widely tunable V-cavity-laser with chirp managed laser technology

    NASA Astrophysics Data System (ADS)

    Meng, Jianjun; Wang, Lei; He, Jian-Jun

    2015-03-01

    We report direct modulation results in a simple and compact widely tunable V-cavity laser. Chirp managed laser technology has been successfully applied to the V-cavity laser with an optical spectrum reshaping filter. The tunable V-cavity-laser employs a half-wave coupler to obtain single-mode operation with high side-mode suppression ratio and the Vernier effect to extend its tuning range. It does not require any grating structure and regrowth steps. In this experiment, we achieved single-electrode controlled wavelength tuning of about 18 channels at 100GHz spacing with a fixed temperature, and 32 channels using 2 temperature settings. Well-open eye diagrams with extinction ratio above 4.3dB in all channels are observed when the laser is directly modulated at 2.5Gb/s. Although the measured small-signal frequency response is only about 5.7GHz, more than 6.7dB extinction ratio under 10Gb/s modulation rate is achieved by using the chirp managed laser technology with an optical spectrum reshaping filter placed after the output of the laser to convert the frequency chirp accompanying the direct modulation to amplitude modulation. The advantages of compactness, fabrication simplicity, easy wavelength control algorithm, and simple direct modulation offer great potential for the chirped managed V-cavity laser to be used in low-cost WDM links.

  15. Single-Chip Fully Integrated Direct-Modulation CMOS RF Transmitters for Short-Range Wireless Applications

    PubMed Central

    El-Desouki, Munir M.; Qasim, Syed Manzoor; BenSaleh, Mohammed; Deen, M. Jamal

    2013-01-01

    Ultra-low power radio frequency (RF) transceivers used in short-range application such as wireless sensor networks (WSNs) require efficient, reliable and fully integrated transmitter architectures with minimal building blocks. This paper presents the design, implementation and performance evaluation of single-chip, fully integrated 2.4 GHz and 433 MHz RF transmitters using direct-modulation power voltage-controlled oscillators (PVCOs) in addition to a 2.0 GHz phase-locked loop (PLL) based transmitter. All three RF transmitters have been fabricated in a standard mixed-signal CMOS 0.18 ?m technology. Measurement results of the 2.4 GHz transmitter show an improvement in drain efficiency from 27% to 36%. The 2.4 GHz and 433 MHz transmitters deliver an output power of 8 dBm with a phase noise of ?122 dBc/Hz at 1 MHz offset, while drawing 15.4 mA of current and an output power of 6.5 dBm with a phase noise of ?120 dBc/Hz at 1 MHz offset, while drawing 20.8 mA of current from 1.5 V power supplies, respectively. The PLL transmitter delivers an output power of 9 mW with a locking range of 128 MHz and consumes 26 mA from 1.8 V power supply. The experimental results demonstrate that the RF transmitters can be efficiently used in low power WSN applications. PMID:23917260

  16. Neural feedback for instantaneous spatiotemporal modulation of afferent pathways in bi-directional brain-machine interfaces.

    PubMed

    Liu, Jianbo; Khalil, Hassan K; Oweiss, Karim G

    2011-10-01

    In bi-directional brain-machine interfaces (BMIs), precisely controlling the delivery of microstimulation, both in space and in time, is critical to continuously modulate the neural activity patterns that carry information about the state of the brain-actuated device to sensory areas in the brain. In this paper, we investigate the use of neural feedback to control the spatiotemporal firing patterns of neural ensembles in a model of the thalamocortical pathway. Control of pyramidal (PY) cells in the primary somatosensory cortex (S1) is achieved based on microstimulation of thalamic relay cells through multiple-input multiple-output (MIMO) feedback controllers. This closed loop feedback control mechanism is achieved by simultaneously varying the stimulation parameters across multiple stimulation electrodes in the thalamic circuit based on continuous monitoring of the difference between reference patterns and the evoked responses of the cortical PY cells. We demonstrate that it is feasible to achieve a desired level of performance by controlling the firing activity pattern of a few "key" neural elements in the network. Our results suggest that neural feedback could be an effective method to facilitate the delivery of information to the cortex to substitute lost sensory inputs in cortically controlled BMIs. PMID:21859634

  17. Evolutionary developmental transcriptomics reveals a gene network module regulating interspecific diversity in plant leaf shape

    PubMed Central

    Ichihashi, Yasunori; Aguilar-Martínez, José Antonio; Farhi, Moran; Chitwood, Daniel H.; Kumar, Ravi; Millon, Lee V.; Peng, Jie; Maloof, Julin N.; Sinha, Neelima R.

    2014-01-01

    Despite a long-standing interest in the genetic basis of morphological diversity, the molecular mechanisms that give rise to developmental variation are incompletely understood. Here, we use comparative transcriptomics coupled with the construction of gene coexpression networks to predict a gene regulatory network (GRN) for leaf development in tomato and two related wild species with strikingly different leaf morphologies. The core network in the leaf developmental GRN contains regulators of leaf morphology that function in global cell proliferation with peripheral gene network modules (GNMs). The BLADE-ON-PETIOLE (BOP) transcription factor in one GNM controls the core network by altering effective concentration of the KNOTTED-like HOMEOBOX gene product. Comparative network analysis and experimental perturbations of BOP levels suggest that variation in BOP expression could explain the diversity in leaf complexity among these species through dynamic rewiring of interactions in the GRN. The peripheral location of the BOP-containing GNM in the leaf developmental GRN and the phenotypic mimics of evolutionary diversity caused by alteration in BOP levels identify a key role for this GNM in canalizing the leaf morphospace by modifying the maturation schedule of leaves to create morphological diversity. PMID:24927584

  18. Low-Intensity Electrical Stimulation Affects Network Dynamics by Modulating Population Rate and Spike Timing

    PubMed Central

    Reato, Davide; Rahman, Asif; Bikson, Marom; Parra, Lucas C.

    2012-01-01

    Clinical effects of transcranial electrical stimulation with weak currents are remarkable considering the low amplitude of the electric fields acting on the brain. Elucidating the processes by which small currents affect ongoing brain activity is of paramount importance for the rational design of noninvasive electrotherapeutic strategies and to determine the relevance of endogenous fields. We propose that in active neuronal networks, weak electrical fields induce small but coherent changes in the firing rate and timing of neuronal populations that can be magnified by dynamic network activity. Specifically, we show that carbachol-induced gamma oscillations (25–35 Hz) in rat hippocampal slices have an inherent rate-limiting dynamic and timing precision that govern susceptibility to low-frequency weak electric fields (<50 Hz; <10 V/m). This leads to a range of nonlinear responses, including the following: (1) asymmetric power modulation by DC fields resulting from balanced excitation and inhibition; (2) symmetric power modulation by lower frequency AC fields with a net-zero change in firing rate; and (3) half-harmonic oscillations for higher frequency AC fields resulting from increased spike timing precision. These underlying mechanisms were elucidated by slice experiments and a parsimonious computational network model of single-compartment spiking neurons responding to electric field stimulation with small incremental polarization. Intracellular recordings confirmed model predictions on neuronal timing and rate changes, as well as spike phase-entrainment resonance at 0.2 V/m. Finally, our data and mechanistic framework provide a functional role for endogenous electric fields, specifically illustrating that modulation of gamma oscillations during theta-modulated gamma activity can result from field effects alone. PMID:21068312

  19. Modulation of amplitude and latency of motor evoked potential by direction of transcranial magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Sato, Aya; Torii, Tetsuya; Iwahashi, Masakuni; Itoh, Yuji; Iramina, Keiji

    2014-05-01

    The present study analyzed the effects of monophasic magnetic stimulation to the motor cortex. The effects of magnetic stimulation were evaluated by analyzing the motor evoked potentials (MEPs). The amplitude and latency of MEPs on the abductor pollicis brevis muscle were used to evaluate the effects of repetitive magnetic stimulation. A figure eight-shaped flat coil was used to stimulate the region over the primary motor cortex. The intensity of magnetic stimulation was 120% of the resting motor threshold, and the frequency of magnetic stimulation was 0.1 Hz. In addition, the direction of the current in the brain was posterior-anterior (PA) or anterior-posterior (AP). The latency of MEP was compared with PA and AP on initial magnetic stimulation. The results demonstrated that a stimulus in the AP direction increased the latency of the MEP by approximately 2.5 ms. MEP amplitude was also compared with PA and AP during 60 magnetic stimulations. The results showed that a stimulus in the PA direction gradually increased the amplitude of the MEP. However, a stimulus in the AP direction did not modulate the MEP amplitude. The average MEP amplitude induced from every 10 magnetic pulses was normalized by the average amplitude of the first 10 stimuli. These results demonstrated that the normalized MEP amplitude increased up to approximately 150%. In terms of pyramidal neuron indirect waves (I waves), magnetic stimulation inducing current flowing backward to the anterior preferentially elicited an I1 wave, and current flowing forward to the posterior elicited an I3 wave. It has been reported that the latency of the I3 wave is approximately 2.5 ms longer than the I1 wave elicitation, so the resulting difference in latency may be caused by this phenomenon. It has also been reported that there is no alteration of MEP amplitude at a frequency of 0.1 Hz. However, this study suggested that the modulation of MEP amplitude depends on stimulation strength and stimulation direction.

  20. Copyright Meru Networks 2008. May be reproduced only in its original entirety [without revision]. Security Gateway SG1000 Cryptographic Module

    E-print Network

    conforming to the IEEE 802.11i standards to provide data security for the Wireless LAN. The Security Gateway]. Security Gateway SG1000 Cryptographic Module Security Policy Document Version 1.2 Meru Networks Revision Date: June 24, 2009 #12;Meru Networks Cryptographic Gateway Security Policy Page 2 TABLE OF CONTENTS

  1. Caffeine modulates attention network function Tad T. Bruny a,b,*, Caroline R. Mahoney a,b

    E-print Network

    Patel, Aniruddh D.

    Caffeine modulates attention network function Tad T. Brunyé a,b,*, Caroline R. Mahoney a,b , Harris 2009 Available online 5 September 2009 Keywords: Caffeine Arousal Attention networks Visuospatial attention a b s t r a c t The present work investigated the effects of caffeine (0 mg, 100 mg, 200 mg, 400

  2. Molecular Correlates of Cortical Network Modulation by Long-Term Sensory Experience in the Adult Rat Barrel Cortex

    ERIC Educational Resources Information Center

    Vallès, Astrid; Granic, Ivica; De Weerd, Peter; Martens, Gerard J. M.

    2014-01-01

    Modulation of cortical network connectivity is crucial for an adaptive response to experience. In the rat barrel cortex, long-term sensory stimulation induces cortical network modifications and neuronal response changes of which the molecular basis is unknown. Here, we show that long-term somatosensory stimulation by enriched environment…

  3. Direct acceleration of electrons by a circular polarized laser pulse with phase modulation

    SciTech Connect

    Zhu, Lun-Wu; Department of Science, Zhejiang University of Science and Technology, Hangzhou 310023 ; Sheng, Zheng-Mao; Yu, M. Y.

    2013-11-15

    Electron acceleration by transversely echelon phase-modulated (EPM) circularly polarized (CP) intense laser pulse is investigated. Solution of the relativistic electron equations of motion shows that the CP EPM light wave structure can disrupt the harmonic response of a trapped electron not only in the transverse direction but also in the direction of laser propagation. In each laser cycle, there can be a net gain in the electron's transverse momentum, which is promptly converted into the forward direction by the Lorentz force. As a result, the electron can be trapped and accelerated in the favorable phase of the laser for a rather long time. Its momentum gain then accumulates and can eventually reach high levels. It is also found that with the CP EPM laser, the net acceleration of the electron is not sensitive to its initial position and velocity relative to the phase of the laser fields, so that such a laser can also be useful for accelerating thermal electron bunches to high energies.

  4. Speech perception in noise: directional microphones versus frequency modulation (FM) systems.

    PubMed

    Lewis, M Samantha; Crandell, Carl C; Valente, Michael; Horn, Jane Enrietto

    2004-06-01

    The major consequence of sensorineural hearing loss (SNHL) is communicative difficulty, especially with the addition of noise and/or reverberation. The purpose of this investigation was to compare two types of technologies that have been shown to improve the speech-perception performance of individuals with SNHL: directional microphones and frequency modulation (FM) systems. Forty-six adult subjects with slight to severe SNHL served as subjects. Speech perception was assessed using the Hearing in Noise Test (HINT) with correlated diffuse noise under five different listening conditions. Results revealed that speech perception was significantly better with the use of the FM system over that of any of the hearing aid conditions, even with the use of the directional microphone. Additionally, speech perception was significantly better with the use of two hearing aids used in conjunction with two FM receivers rather than with just one FM receiver. Directional microphone performance was significantly better than omnidirectional microphone performance. All aided listening conditions were significantly better than the unaided listening condition. PMID:15341224

  5. Parallel direct laser writing of micro-optical and photonic structures using spatial light modulator

    NASA Astrophysics Data System (ADS)

    Yang, Liang; El-Tamer, Ayman; Hinze, Ulf; Li, Jiawen; Hu, Yanlei; Huang, Wenhao; Chu, Jiaru; Chichkov, Boris N.

    2015-07-01

    Two-photon polymerization (2PP) is a powerful tool for direct laser writing of micro-optical and photonic structures due to its flexibility in 3D structuring and sub-micrometer resolution. However, it can be time consuming to fabricate arrays of micro-optical devices and complex photonic structures. In this study, we propose to use predefined patterns (PPs) for parallel 2PP processing. A PP contains a multiple focal spot pattern optimized for the fabrication of certain microstructures. PP can be created by holographic laser beam modulation with a spatial light modulator (SLM). The quantity and position of the multiple foci can be flexibly and precisely controlled by predesigned computer generated holograms (CGHs). With these specially designed PPs, parallel fabrication of arbitrary distributed microlens arrays and 3D photonic structures is demonstrated. This method significantly improves throughput and flexibility of the 2PP technique and can be used for mass production of functional devices in micro-optics and photonics.

  6. ADAPTATION OF MAMMALIAN PHOTORECEPTORS TO BACKGROUND LIGHT: PUTATIVE ROLE FOR DIRECT MODULATION OF PHOSPHODIESTERASE

    PubMed Central

    Fain, Gordon L

    2011-01-01

    All sensory receptors adapt. As the mean level of light or sound or odor is altered, the sensitivity of the receptor is adjusted to permit the cell to function over as wide a range of ambient stimulation as possible. In a rod photoreceptor, adaptation to maintained background light produces a decrease (or “sag) in the response to the prolonged illumination, as well as an acceleration in response decay time and a Weber-Fechner-like decrease in sensitivity. Earlier work on salamander indicated that adaptation is controlled by the intracellular concentration of Ca2+. Three Ca2+-dependent mechanisms were subsequently identified, namely regulation of guanylyl cyclase, modulation of activated rhodopsin lifetime, and alteration of channel opening probability, with the contribution of the cyclase thought to be the most important. Later experiments on mouse that exploit the powerful techniques of molecular genetics have shown that cyclase does indeed play a significant role in mammalian rods, but that much of adaptation remains even when regulation of cyclase and both of the other proposed pathways have been genetically deleted. The identity of the missing mechanism or mechanisms is unclear, but recent speculation has focused on direct modulation of spontaneous and light-activated phosphodiesterase. PMID:21922272

  7. Optical demultiplexer filtering to increase the uncompensated reach of 10-Gbit/s directly modulated lasers

    NASA Astrophysics Data System (ADS)

    Downie, John D.; Vodhanel, Richard S.

    2005-05-01

    Significant uncompensated reach extension of highly chirped 10-Gbit/s directly modulated lasers is demonstrated by use of optical filtering provided by optical demultiplexers at the link end. Narrowband filtering narrows the optical spectrum of the chirped signal to minimize dispersion effects when the filter's center wavelength is appropriately adjusted relative to the laser wavelength. We show that an equivalent reach improvement is obtained with a dense wavelength division multiplexing (DWDM) demultiplexer as the filtering agent with optimal filter-laser alignment. Experimental uncompensated reach lengths of greater than 100 km of Corning LEAF fiber are demonstrated, without the need for forward error correction. This represents a reach improvement of up to 50% in comparison with nominally unfiltered signal transmission. We also examine the correlation of performance with the filter insertion loss derivative.

  8. Inherent directionality explains the lack of feedback loops in empirical networks.

    PubMed

    Domínguez-García, Virginia; Pigolotti, Simone; Muñoz, Miguel A

    2014-01-01

    We explore the hypothesis that the relative abundance of feedback loops in many empirical complex networks is severely reduced owing to the presence of an inherent global directionality. Aimed at quantifying this idea, we propose a simple probabilistic model in which a free parameter ? controls the degree of inherent directionality. Upon strengthening such directionality, the model predicts a drastic reduction in the fraction of loops which are also feedback loops. To test this prediction, we extensively enumerated loops and feedback loops in many empirical biological, ecological and socio-technological directed networks. We show that, in almost all cases, empirical networks have a much smaller fraction of feedback loops than network randomizations. Quite remarkably, this empirical finding is quantitatively reproduced, for all loop lengths, by our model by fitting its only parameter ?. Moreover, the fitted value of ? correlates quite well with another direct measurement of network directionality, performed by means of a novel algorithm. We conclude that the existence of an inherent network directionality provides a parsimonious quantitative explanation for the observed lack of feedback loops in empirical networks. PMID:25531727

  9. Inherent directionality explains the lack of feedback loops in empirical networks

    PubMed Central

    Domínguez-García, Virginia; Pigolotti, Simone; Muñoz, Miguel A.

    2014-01-01

    We explore the hypothesis that the relative abundance of feedback loops in many empirical complex networks is severely reduced owing to the presence of an inherent global directionality. Aimed at quantifying this idea, we propose a simple probabilistic model in which a free parameter ? controls the degree of inherent directionality. Upon strengthening such directionality, the model predicts a drastic reduction in the fraction of loops which are also feedback loops. To test this prediction, we extensively enumerated loops and feedback loops in many empirical biological, ecological and socio-technological directed networks. We show that, in almost all cases, empirical networks have a much smaller fraction of feedback loops than network randomizations. Quite remarkably, this empirical finding is quantitatively reproduced, for all loop lengths, by our model by fitting its only parameter ?. Moreover, the fitted value of ? correlates quite well with another direct measurement of network directionality, performed by means of a novel algorithm. We conclude that the existence of an inherent network directionality provides a parsimonious quantitative explanation for the observed lack of feedback loops in empirical networks. PMID:25531727

  10. Fiber-Optic Transceiver Module for High-Speed Intrasatellite Networks

    NASA Astrophysics Data System (ADS)

    Heikkinen, Veli; Alajoki, Teemu; Juntunen, Eveliina; Karppinen, Mikko; Kautio, Kari; Mäkinen, Jukka-Tapani; Ollila, Jyrki; Tanskanen, Antti; Toivonen, Jaakko; Casey, Rory; Scott, Shane; Pintzka, Wilhelm; Thériault, Sylvain; McKenzie, Iain

    2007-05-01

    High-speed intrasatellite networks are needed to interconnect units such as synthetic aperture radars, high-resolution cameras, and fast image-compression processors that produce data beyond gigabits per second. We have developed a fiber-optic link, named SpaceFibre, which operates up to 3.125 Gb/s and is compatible with the existing SpaceWire network. The link provides symmetrical, bidirectional, full-duplex, and point-to-point communication. It employs 850-nm vertical-cavity surface emitting lasers, radiation-hardened laser-optimized 50/125 µm graded-index fibers, and GaAs p-i-n photo diodes. The transceiver electronics is realized using a multilayer-ceramic-substrate technology that enables the passive alignment of optical fibers to active devices. The SpaceFibre link demonstrator was tested to transfer data at 2.5 Gb/s over 100 m with a bit error rate of less than 1.3 · 10-14. Fiber-pigtailed modules were stressed with temperature variations from -40 °C to +85 °C, vibrations up to 30 g, and mechanical shocks up to 3900 g. The test results of 20 modules show that the SpaceFibre link is a promising candidate for the upcoming high-speed intrasatellite networks.

  11. Precise Temporal Modulation in the Response of the SOS DNA Repair Network in Individual Bacteria

    PubMed Central

    2005-01-01

    The SOS genetic network is responsible for the repair/bypass of DNA damage in bacterial cells. While the initial stages of the response have been well characterized, less is known about the dynamics of the response after induction and its shutoff. To address this, we followed the response of the SOS network in living individual Escherichia coli cells. The promoter activity (PA) of SOS genes was monitored using fluorescent protein-promoter fusions, with high temporal resolution, after ultraviolet irradiation activation. We find a temporal pattern of discrete activity peaks masked in studies of cell populations. The number of peaks increases, while their amplitude reaches saturation, as the damage level is increased. Peak timing is highly precise from cell to cell and is independent of the stage in the cell cycle at the time of damage. Evidence is presented for the involvement of the umuDC operon in maintaining the pattern of PA and its temporal precision, providing further evidence for the role UmuD cleavage plays in effecting a timed pause during the SOS response, as previously proposed. The modulations in PA we observe share many features in common with the oscillatory behavior recently observed in a mammalian DNA damage response. Our results, which reveal a hitherto unknown modulation of the SOS response, underscore the importance of carrying out dynamic measurements at the level of individual living cells in order to unravel how a natural genetic network operates at the systems level. PMID:15954802

  12. Plastic modulation of PTSD resting-state networks by EEG neurofeedback

    PubMed Central

    Kluetsch, Rosemarie C.; Ros, Tomas; Théberge, Jean; Frewen, Paul A.; Calhoun, Vince D.; Schmahl, Christian; Jetly, Rakesh; Lanius, Ruth A.

    2015-01-01

    Objective Electroencephalographic (EEG) neurofeedback training has been shown to produce plastic modulations in salience network and default mode network functional connectivity in healthy individuals. In this study, we investigated whether a single session of neurofeedback training aimed at the voluntary reduction of alpha rhythm (8–12 Hz) amplitude would be related to differences in EEG network oscillations, functional MRI (fMRI) connectivity, and subjective measures of state anxiety and arousal in a group of individuals with PTSD. Method 21 individuals with PTSD related to childhood abuse underwent 30 minutes of EEG neurofeedback training preceded and followed by a resting-state fMRI scan. Results Alpha desynchronizing neurofeedback was associated with decreased alpha amplitude during training, followed by a significant increase (‘rebound’) in resting-state alpha synchronization. This rebound was linked to increased calmness, greater salience network connectivity with the right insula, and enhanced default mode network connectivity with bilateral posterior cingulate, right middle frontal gyrus, and left medial prefrontal cortex. Conclusion Our study represents a first step in elucidating the potential neurobehavioral mechanisms mediating the effects of neurofeedback treatment on regulatory systems in PTSD. Moreover, it documents for the first time a spontaneous EEG ‘rebound’ after neurofeedback, pointing to homeostatic/compensatory mechanisms operating in the brain. PMID:24266644

  13. Not seeing or feeling is still believing: conscious and non-conscious pain modulation after direct and observational learning.

    PubMed

    Egorova, Natalia; Park, Joel; Orr, Scott P; Kirsch, Irving; Gollub, Randy L; Kong, Jian

    2015-01-01

    Our experience with the world is shaped not only directly through personal exposure but also indirectly through observing others and learning from their experiences. Using a conditioning paradigm, we investigated how directly and observationally learned information can affect pain perception, both consciously and non-consciously. Differences between direct and observed cues were manifest in higher pain ratings and larger skin conductance responses to directly experienced cues. However, the pain modulation effects produced by conditioning were of comparable magnitude for direct and observational learning. These results suggest that social observation can induce positive and negative pain modulation. Importantly, the fact that cues learned by observation and activated non-consciously still produced a robust conditioning effect that withstood extinction highlights the role of indirect exposure in placebo and nocebo effects. PMID:26578164

  14. Not seeing or feeling is still believing: conscious and non-conscious pain modulation after direct and observational learning

    PubMed Central

    Egorova, Natalia; Park, Joel; Orr, Scott P.; Kirsch, Irving; Gollub, Randy L.; Kong, Jian

    2015-01-01

    Our experience with the world is shaped not only directly through personal exposure but also indirectly through observing others and learning from their experiences. Using a conditioning paradigm, we investigated how directly and observationally learned information can affect pain perception, both consciously and non-consciously. Differences between direct and observed cues were manifest in higher pain ratings and larger skin conductance responses to directly experienced cues. However, the pain modulation effects produced by conditioning were of comparable magnitude for direct and observational learning. These results suggest that social observation can induce positive and negative pain modulation. Importantly, the fact that cues learned by observation and activated non-consciously still produced a robust conditioning effect that withstood extinction highlights the role of indirect exposure in placebo and nocebo effects. PMID:26578164

  15. Modulation of effective connectivity in the default mode network at rest and during a memory task.

    PubMed

    Li, Xingfeng; Kehoe, Elizabeth G; McGinnity, Thomas Martin; Coyle, Damien; Bokde, Arun L W

    2015-02-01

    It is known that the default mode network (DMN) may be modulated by a cognitive task and by performance level. Changes in the DMN have been examined by investigating resting-state activation levels, but there have been very few studies examining the modulation of effective connectivity of the DMN during a task in healthy older subjects. In this study, the authors examined how effective connectivity changed in the DMN between rest and during a memory task. The authors also investigated whether there was any relationship between effective connectivity modulation in the DMN and memory performance, to establish whether variations in cognitive performance are related to neural network effective connectivity, either at rest or during task performance. Twenty-eight healthy older participants underwent a resting-state functional magnetic resonance imaging scan and an emotional face-name encoding task. Effective connectivity analyses were performed on the DMN to examine the effective connectivity modulation in these two different conditions. During the resting state, there was strong self-influence in the regions of the DMN, while the main regions with statistically significant cross-regional effective connectivity were the posterior cingulate cortex (PCC) and the hippocampus (HP). During the memory task, the self-influence effective connectivities remained statistically significant across the DMN, and there were statistically significant effective connectivities from the PCC, HP, amygdala (AM), and parahippocampal region to other DMN regions. The authors found that effective connectivities from PCC, HP, and AM (in both resting state and during task) were linearly correlated to memory performance. The results suggest that superior memory ability in this older cohort was associated with effective connectivity both at rest and during the memory task of three DMN regions, which are also known to be important for memory function. PMID:25390185

  16. Direct current stimulation of the left temporoparietal junction modulates dynamic humor appreciation.

    PubMed

    Slaby, Isabella; Holmes, Amanda; Moran, Joseph M; Eddy, Marianna D; Mahoney, Caroline R; Taylor, Holly A; Brunyé, Tad T

    2015-11-11

    The aim of this study was to evaluate the influence of transcranial direct current stimulation targeting the left temporoparietal junction (TPJ) on humor appreciation during a dynamic video rating task. In a within-participants design, we targeted the left TPJ with anodal, cathodal, or no transcranial direct current stimulation, centered at electrode site C3 using a 4×1 targeted stimulation montage. During stimulation, participants dynamically rated a series of six stand-up comedy videos for perceived humor. We measured event-related (time-locked to crowd laughter) modulation of humor ratings as a function of stimulation condition. Results showed decreases in rated humor during anodal (vs. cathodal or none) stimulation; this pattern was evident for the majority of videos and was only partially predicted by individual differences in humor style. We discuss the possibility that upregulation of neural circuits involved in the theory of mind and empathizing with others may reduce appreciation of aggressive humor. In conclusion, the present data show that neuromodulation of the TPJ can alter the mental processes underlying humor appreciation, suggesting critical involvement of this cortical region in detecting, comprehending, and appreciating humor. PMID:26351965

  17. Direction-sensitive transverse velocity measurement by phase-modulated structured light beams.

    PubMed

    Rosales-Guzmán, Carmelo; Hermosa, Nathaniel; Belmonte, Aniceto; Torres, Juan P

    2014-09-15

    The use of structured light beams to detect the velocity of targets moving perpendicularly to the beam's propagation axis opens new avenues for remote sensing of moving objects. However, determining the direction of motion is still a challenge because detection is usually done by means of an interferometric setup, which only provides an absolute value of the frequency shift. In this Letter, we present a novel method that addresses this issue. It uses dynamic control of the phase in the transverse plane of the structured light beam so that the direction of the particles' movement can be deduced. This is done by noting the change in the magnitude of the frequency shift as the transverse phase of the structured light is moved appropriately. We demonstrate our method with rotating microparticles that are illuminated by a Laguerre-Gaussian beam with a rotating phase about its propagation axis. Our method, which only requires a dynamically configurable optical beam generator, can easily be used with other types of motion by appropriate engineering and dynamic modulation of the phase of the light beam. PMID:26466286

  18. DIRECT MODULATION OF THE PROTEIN KINASE A CATALYTIC SUBUNIT ? BY GROWTH FACTOR RECEPTOR TYROSINE KINASES

    PubMed Central

    Caldwell, George B.; Howe, Alan K.; Nickl, Christian K.; Dostmann, Wolfgang R.; Ballif, Bryan A.; Deming, Paula B.

    2011-01-01

    The cyclic-AMP-dependent protein kinase A (PKA) regulates processes such as cell proliferation and migration following activation of growth factor receptor tyrosine kinases (RTKs), yet the signaling mechanisms that link PKA with growth factor receptors remain largely undefined. Here we report that RTKs can directly modulate the function of the catalytic subunit of PKA (PKA-C) through post-translational modification. In vitro kinase assays revealed that both the epidermal growth factor and platelet derived growth factor receptors (EGFR and PDGFR, respectively) tyrosine phosphorylate PKA-C. Mass spectrometry identified tyrosine 330 (Y330) as a receptor-mediated phosphorylation site and mutation of Y330 to phenylalanine (Y330F) all but abolished the RTK-mediated phosphorylation of PKA-C in vitro. Y330 resides within a conserved region at the C-terminal tail of PKA-C that allosterically regulates enzymatic activity. Therefore, the effect of phosphorylation at Y330 on the activity of PKA-C was investigated. The Km for a peptide substrate was markedly decreased when PKA-C subunits were tyrosine phosphorylated by the receptors as compared to un-phosphorylated controls. Importantly, tyrosine-phosphorylated PKA-C subunits were detected in cells stimulated with EGF, PDGF and FGF2 and in fibroblasts undergoing PDGF-mediated chemotaxis. These results demonstrate a direct, functional interaction between RTKs and PKA-C and identify tyrosine phosphorylation as a novel mechansim for regulating PKA activity. PMID:21866565

  19. AT1 receptors in the collecting duct directly modulate the concentration of urine.

    PubMed

    Stegbauer, Johannes; Gurley, Susan B; Sparks, Matthew A; Woznowski, Magdalena; Kohan, Donald E; Yan, Ming; Lehrich, Ruediger W; Coffman, Thomas M

    2011-12-01

    Mice lacking AT(1) angiotensin receptors have an impaired capacity to concentrate the urine, but the underlying mechanism is unknown. To determine whether direct actions of AT(1) receptors in epithelial cells of the collecting duct regulate water reabsorption, we used Cre-Loxp technology to specifically eliminate AT(1A) receptors from the collecting duct in mice (CD-KOs). Although levels of AT(1A) receptor mRNA in the inner medulla of CD-KO mice were significantly reduced, their kidneys appeared structurally normal. Under basal conditions, plasma and urine osmolalities and urine volumes were similar between CD-KO mice and controls. The increase in urine osmolality in response to water deprivation or vasopressin administration, however, was consistently attenuated in CD-KO mice. Similarly, levels of aquaporin-2 protein in inner and outer medulla after water deprivation were significantly lower in CD-KO mice compared with controls, despite its normal localization to the apical membrane. In summary, these results demonstrate that AT(1A) receptors in epithelial cells of the collecting duct directly modulate aquaporin-2 levels and contribute to the concentration of urine. PMID:22052052

  20. Shape-shifting 3D protein microstructures with programmable directionality via quantitative nanoscale stiffness modulation.

    PubMed

    Lee, Mian Rong; Phang, In Yee; Cui, Yan; Lee, Yih Hong; Ling, Xing Yi

    2015-02-11

    The ability to shape-shift in response to a stimulus increases an organism's survivability in nature. Similarly, man-made dynamic and responsive "smart" microtechnology is crucial for the advancement of human technology. Here, 10-30 ?m shape-changing 3D BSA protein hydrogel microstructures are fabricated with dynamic, quantitative, directional, and angle-resolved bending via two-photon photolithography. The controlled directional responsiveness is achieved by spatially controlling the cross-linking density of BSA at a nanometer lengthscale. Atomic force microscopy measurements of Young's moduli of structures indicate that increasing the laser writing distance at the z-axis from 100-500 nm decreases the modulus of the structure. Hence, through nanoscale modulation of the laser writing z-layer distance at the nanoscale, control over the cross-linking density is possible, allowing for the swelling extent of the microstructures to be quantified and controlled with high precision. This method of segmented moduli is applied within a single microstructure for the design of shape-shifting microstructures that exhibit stimulus-induced chirality, as well as for the fabrication of a free-standing 3D microtrap which is able to open and close in response to a pH change. PMID:25264141

  1. A low voltage submillisecond-response polymer network liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    Sun, Jie; Wu, Shin-Tson; Haseba, Yasuhiro

    2014-01-01

    We report a low voltage and highly transparent polymer network liquid crystal (PNLC) with submillisecond response time. By employing a large dielectric anisotropy LC host JC-BP07N, we have lowered the V2? voltage to 23 V at ? = 514 nm. This will enable PNLC to be integrated with a high resolution liquid-crystal-on-silicon spatial light modulator, in which the maximum voltage is 24 V. A simple model correlating PNLC performance with its host LC is proposed and validated experimentally. By optimizing the domain size, we can achieve V2? < 15 V with some compromises in scattering and response time.

  2. Pinning Synchronization of Directed Networks With Switching Topologies: A Multiple Lyapunov Functions Approach.

    PubMed

    Wen, Guanghui; Yu, Wenwu; Hu, Guoqiang; Cao, Jinde; Yu, Xinghuo

    2015-12-01

    This paper studies the global pinning synchronization problem for a class of complex networks with switching directed topologies. The common assumption in the existing related literature that each possible network topology contains a directed spanning tree is removed in this paper. Using tools from M -matrix theory and stability analysis of the switched nonlinear systems, a new kind of network topology-dependent multiple Lyapunov functions is proposed for analyzing the synchronization behavior of the whole network. It is theoretically shown that the global pinning synchronization in switched complex networks can be ensured if some nodes are appropriately pinned and the coupling is carefully selected. Interesting issues of how many and which nodes should be pinned for possibly realizing global synchronization are further addressed. Finally, some numerical simulations on coupled neural networks are provided to verify the theoretical results. PMID:26595418

  3. Multiple monoaminergic modulation of posturo-locomotor network activity in the newborn rat spinal cord

    PubMed Central

    Beliez, Lauriane; Barrière, Gregory; Bertrand, Sandrine S.; Cazalets, Jean-René

    2014-01-01

    Studies devoted to understanding locomotor control have mainly addressed the functioning of the neural circuits controlling leg movements and relatively little is known of the operation of networks that activate trunk muscles in coordination with limb movements. The aim of the present work was (1) to identify the exogenous neurotransmitter cocktail that most strongly activates postural thoracic circuitry; (2) to investigate how the biogenic amines serotonin (5-HT), dopamine (DA), and noradrenaline (NA) modulate the coordination between limb and axial motor networks. Experiments were carried out on in vitro isolated spinal cord preparations from newborn rats. We recorded from ventral roots to monitor hindlimb locomotor and axial postural network activity. Each combination of the three amines with excitatory amino acids (EAAs) elicited coordinated rhythmic motor activity at all segmental levels with specific characteristics. The variability in cycle period was similar with 5-HT and DA while it was significantly higher with NA. DA elicited motor bursts of smaller amplitude in thoracic segments compared to 5-HT and NA, while both DA and NA elicited motor bursts of higher amplitude than 5-HT in the lumbar and sacral segments. The amines modulated the phase relationships of bursts in various segments with respect to the reference lumbar segment. At the thoracic level there was a phase lag between all recorded segments in the presence of 5-HT, while DA and NA elicited synchronous bursting. At the sacral level, 5-HT and DA induced an intersegmental phase shift while relationships became phase-locked with NA. Various combinations of EAAs with two or even all three amines elicited rhythmic motor output that was more variable than with one amine alone. Our results provide new data on the coordinating processes between spinal cord networks, demonstrating that each amine has a characteristic “signature” regarding its specific effect on intersegmental phase relationships. PMID:25177275

  4. Robotic localization of hostile networked radio sources with a directional antenna 

    E-print Network

    Hu, Qiang

    2007-04-25

    propose a scheme to localize hostile networked radio sources based on the radio signal strength and communication protocol pattern analysis using a mobile robot with a directional antenna. We integrate a Particle Filter algorithm with a new sensing model...

  5. Phenology Across the LTER Network: Initial Findings, Future Directions

    NASA Astrophysics Data System (ADS)

    Henebry, G. M.

    2007-12-01

    Phenology is, in the words of Aldo Leopold, a "horizontal science" that cuts across and binds together multiple biological disciplines. It is a far-reaching but poorly understood aspect of the environmental sciences. Phenological research has been a component of the Long Term Ecological Research (LTER) Network at several sites over the years. However, it has not received the attention or resources to bring it to the forefront as an effective theme for interdisciplinary and cross-site synthesis. With the recent establishment of the USA National Phenology Network (USA-NPN), it is appropriate to assess the status of phenological knowledge across the LTER Network. A workshop funded by the LTER Network Office took place at the Sevilleta Field Station during February 26 to March 2, 2007. From the workshop three main products emerged: (1) an inventory of LTER phenology datasets, (2) establishment of a website to facilitate information interchange, and (3) a white paper recommending next steps for the LTER Network to engage the USA-NPN. This poster relates the findings and recommendations of the workshop, including a summary of phenologically explicit and phenologically implicit LTER datasets and illustrations of how the climatic envelopes described by simple weather variables can provide context for phenological comparisons within and across sites.

  6. Magnetoencephalographic evidence for the modulation of cortical swallowing processing by transcranial direct current stimulation.

    PubMed

    Suntrup, Sonja; Teismann, Inga; Wollbrink, Andreas; Winkels, Martin; Warnecke, Tobias; Flöel, Agnes; Pantev, Christo; Dziewas, Rainer

    2013-12-01

    Swallowing is a complex neuromuscular task that is processed within multiple regions of the human brain. Rehabilitative treatment options for dysphagia due to neurological diseases are limited. Because the potential for adaptive cortical changes in compensation of disturbed swallowing is recognized, neuromodulation techniques like transcranial direct current stimulation (tDCS) are currently considered as a treatment option. Here we evaluate the effect of tDCS on cortical swallowing network activity and behavior. In a double-blind crossover study, anodal tDCS (20 min, 1 mA) or sham stimulation was administered over the left or right swallowing motor cortex in 21 healthy subjects in separate sessions. Cortical activation was measured using magnetoencephalography (MEG) before and after tDCS during cued "simple", "fast" and "challenged" swallow tasks with increasing levels of difficulty. Swallowing response times and accuracy were measured. Significant bilateral enhancement of cortical swallowing network activation was found in the theta frequency range after left tDCS in the fast swallow task (p=0.006) and following right tDCS in the challenged swallow task (p=0.007), but not after sham stimulation. No relevant behavioral effects were observed on swallow response time, but swallow precision improved after left tDCS (p<0.05). Anodal tDCS applied over the swallowing motor cortex of either hemisphere was able to increase bilateral swallow-related cortical network activation in a frequency specific manner. These neuroplastic effects were associated with subtle behavioral gains during complex swallow tasks in healthy individuals suggesting that tDCS deserves further evaluation as a treatment tool for dysphagia. PMID:23800793

  7. Neural Networks ( ) Contents lists available at SciVerse ScienceDirect

    E-print Network

    Minai, Ali A.

    Neural Networks ( ) ­ Contents lists available at SciVerse ScienceDirect Neural Networks journal Motor synergies Muscle synergies Motor primitives Modularity Reservoir models a b s t r a c t Animals estimated that the human body has between 500 and 1400 degrees of freedom! And yet, these animals can

  8. Secure Message Transmission In Asynchronous Directed Networks Shashank Agrawal Abhinav Mehta Kannan Srinathan

    E-print Network

    International Association for Cryptologic Research (IACR)

    Secure Message Transmission In Asynchronous Directed Networks Shashank Agrawal Abhinav Mehta Kannan Srinathan {shashank.agrawal@research. abhinav mehta@research. srinathan@}iiit.ac.in Abstract We study. Mehta, K. Srinathan to work on, it is hard to achieve synchrony in practice. In a real-life network

  9. Electro-acupuncture at different acupoints modulating the relative specific brain functional network

    NASA Astrophysics Data System (ADS)

    Fang, Jiliang; Wang, Xiaoling; Wang, Yin; Liu, Hesheng; Hong, Yang; Liu, Jun; Zhou, Kehua; Wang, Lei; Xue, Chao; Song, Ming; Liu, Baoyan; Zhu, Bing

    2010-11-01

    Objective: The specific brain effects of acupoint are important scientific concern in acupuncture. However, previous acupuncture fMRI studies focused on acupoints in muscle layer on the limb. Therefore, researches on acupoints within connective tissue at trunk are warranted. Material and Methods: Brain effects of acupuncture on abdomen at acupoints Guanyuan (CV4) and Zhongwan (CV12) were tested using fMRI on 21 healthy volunteers. The data acquisition was performed at resting state, during needle retention, electroacupuncture (EA) and post-EA resting state. Needling sensations were rated after every electroacupuncture (EA) procedure. The needling sensations and the brain functional activity and connectivity were compared between CV4 and CV12 using SPSS, SPM2 and the local and remote connectivity maps. Results and conclusion: EA at CV4 and CV12 induced apparent deactivation effects in the limbic-paralimbic-neocortical network. The default mode of the brain was modified by needle retention and EA, respectively. The functional brain network was significantly changed post EA. However, the minor differences existed between these two acupoints. The results demonstrated similarity between functional brain network mode of acupuncture modulation and functional circuits of emotional and cognitive regulation. Acupuncture may produce analgesia, anti-anxiety and anti-depression via the limbic-paralimbic-neocortical network (LPNN).

  10. Wireless Multimedia Sensor Networks: current trends and future directions.

    PubMed

    Almalkawi, Islam T; Zapata, Manel Guerrero; Al-Karaki, Jamal N; Morillo-Pozo, Julian

    2010-01-01

    Wireless Multimedia Sensor Networks (WMSNs) have emerged and shifted the focus from the typical scalar wireless sensor networks to networks with multimedia devices that are capable to retrieve video, audio, images, as well as scalar sensor data. WMSNs are able to deliver multimedia content due to the availability of inexpensive CMOS cameras and microphones coupled with the significant progress in distributed signal processing and multimedia source coding techniques. In this paper, we outline the design challenges of WMSNs, give a comprehensive discussion of the proposed architectures, algorithms and protocols for the different layers of the communication protocol stack for WMSNs, and evaluate the existing WMSN hardware and testbeds. The paper will give the reader a clear view of the state of the art at all aspects of this research area, and shed the light on its main current challenges and future trends. We also hope it will foster discussions and new research ideas among its researchers. PMID:22163571

  11. Wireless Multimedia Sensor Networks: Current Trends and Future Directions

    PubMed Central

    Almalkawi, Islam T.; Zapata, Manel Guerrero; Al-Karaki, Jamal N.; Morillo-Pozo, Julian

    2010-01-01

    Wireless Multimedia Sensor Networks (WMSNs) have emerged and shifted the focus from the typical scalar wireless sensor networks to networks with multimedia devices that are capable to retrieve video, audio, images, as well as scalar sensor data. WMSNs are able to deliver multimedia content due to the availability of inexpensive CMOS cameras and microphones coupled with the significant progress in distributed signal processing and multimedia source coding techniques. In this paper, we outline the design challenges of WMSNs, give a comprehensive discussion of the proposed architectures, algorithms and protocols for the different layers of the communication protocol stack for WMSNs, and evaluate the existing WMSN hardware and testbeds. The paper will give the reader a clear view of the state of the art at all aspects of this research area, and shed the light on its main current challenges and future trends. We also hope it will foster discussions and new research ideas among its researchers. PMID:22163571

  12. Nano-rheology of hydrogels using direct drive force modulation atomic force microscopy.

    PubMed

    Nalam, Prathima C; Gosvami, Nitya N; Caporizzo, Matthew A; Composto, Russell J; Carpick, Robert W

    2015-10-14

    We present a magnetic force-based direct drive modulation method to measure local nano-rheological properties of soft materials across a broad frequency range (10 Hz to 2 kHz) using colloid-attached atomic force microscope (AFM) probes in liquid. The direct drive method enables artefact-free measurements over several decades of excitation frequency, and avoids the need to evaluate medium-induced hydrodynamic drag effects. The method was applied to measure the local mechanical properties of polyacrylamide hydrogels. The frequency-dependent storage stiffness, loss stiffness, and loss tangent (tan??) were quantified for hydrogels having high and low crosslinking densities by measuring the amplitude and the phase response of the cantilever while the colloid was in contact with the hydrogel. The frequency bandwidth was further expanded to lower effective frequencies (0.1 Hz to 10 Hz) by obtaining force-displacement (FD) curves. Slow FD measurements showed a recoverable but highly hysteretic response, with the contact mechanical behaviour dependent on the loading direction: approach curves showed Hertzian behaviour while retraction curves fit the JKR contact mechanics model well into the adhesive regime, after which multiple detachment instabilities occurred. Using small amplitude dynamic modulation to explore faster rates, the load dependence of the storage stiffness transitioned from Hertzian to a dynamic punch-type (constant contact area) model, indicating significant influence of material dissipation coupled with adhesion. Using the appropriate contact model across the full frequency range measured, the storage moduli were found to remain nearly constant until an increase began near ?100 Hz. The softer gels' storage modulus increased from 7.9 ± 0.4 to 14.5 ± 2.1 kPa (?85%), and the stiffer gels' storage modulus increased from 16.3 ± 1.1 to 31.7 ± 5.0 kPa (?95%). This increase at high frequencies may be attributed to a contribution from solvent confinement in the hydrogel (poroelasticity). The storage moduli measured by both macro-rheometry and AFM FD curves were comparable to those measured using the modulation method at their overlapping frequencies (10-25 Hz). In all cases, care was taken to ensure the contact mechanics models were applied within the important limit of small relative deformations. This study thus highlights possible transitions in the probe-material contact mechanical behaviour for soft matter, especially when the applied strain rates and the material relaxation rates become comparable. In particular, at low frequencies, the modulus follows Hertzian contact mechanics, while at high frequencies adhesive contact is well represented by punch-like behaviour. More generally, use of the Hertz model on hydrogels at high loading rates, at high strains, or during the retraction portion of FD curves, leads to significant errors in the calculated moduli. PMID:26337502

  13. Novel Quantum Virtual Private Network Scheme for PON via Quantum Secure Direct Communication

    NASA Astrophysics Data System (ADS)

    Gong, Li-Hua; Liu, Ye; Zhou, Nan-Run

    2013-09-01

    Two quantum secure direct communication (QSDC) protocols with quantum identification (QI) based on passive optical network (PON) architecture are proposed. One QSDC protocol can be implemented between two different optical network units just with simple configurations of PON by optical line terminal when they are in the same virtual private network after optical line terminal performing QI to the optical network units in the given PON architecture. The other QSDC protocol is also implemented between any two legitimated users in the virtual private network but with considerable reduction of workload of the optical line terminal. The security analysis shows that the proposed QSDC schemes with quantum identification are unconditionally secure and allow the legitimate users to exchange their secret information efficiently and to realize a quantum virtual private network in the PON networks ultimately.

  14. Right hemisphere dominance directly predicts both baseline V1 cortical excitability and the degree of top-down modulation exerted over low-level brain structures

    PubMed Central

    Arshad, Q.; Siddiqui, S.; Ramachandran, S.; Goga, U.; Bonsu, A.; Patel, M.; Roberts, R.E.; Nigmatullina, Y.; Malhotra, P.; Bronstein, A.M.

    2015-01-01

    Right hemisphere dominance for visuo-spatial attention is characteristically observed in most right-handed individuals. This dominance has been attributed to both an anatomically larger right fronto-parietal network and the existence of asymmetric parietal interhemispheric connections. Previously it has been demonstrated that interhemispheric conflict, which induces left hemisphere inhibition, results in the modulation of both (i) the excitability of the early visual cortex (V1) and (ii) the brainstem-mediated vestibular–ocular reflex (VOR) via top-down control mechanisms. However to date, it remains unknown whether the degree of an individual’s right hemisphere dominance for visuospatial function can influence, (i) the baseline excitability of the visual cortex and (ii) the extent to which the right hemisphere can exert top-down modulation. We directly tested this by correlating line bisection error (or pseudoneglect), taken as a measure of right hemisphere dominance, with both (i) visual cortical excitability measured using phosphene perception elicited via single-pulse occipital trans-cranial magnetic stimulation (TMS) and (ii) the degree of trans-cranial direct current stimulation (tDCS)-mediated VOR suppression, following left hemisphere inhibition. We found that those individuals with greater right hemisphere dominance had a less excitable early visual cortex at baseline and demonstrated a greater degree of vestibular nystagmus suppression following left hemisphere cathodal tDCS. To conclude, our results provide the first demonstration that individual differences in right hemisphere dominance can directly predict both the baseline excitability of low-level brain structures and the degree of top-down modulation exerted over them. PMID:26518461

  15. Right hemisphere dominance directly predicts both baseline V1 cortical excitability and the degree of top-down modulation exerted over low-level brain structures.

    PubMed

    Arshad, Q; Siddiqui, S; Ramachandran, S; Goga, U; Bonsu, A; Patel, M; Roberts, R E; Nigmatullina, Y; Malhotra, P; Bronstein, A M

    2015-12-17

    Right hemisphere dominance for visuo-spatial attention is characteristically observed in most right-handed individuals. This dominance has been attributed to both an anatomically larger right fronto-parietal network and the existence of asymmetric parietal interhemispheric connections. Previously it has been demonstrated that interhemispheric conflict, which induces left hemisphere inhibition, results in the modulation of both (i) the excitability of the early visual cortex (V1) and (ii) the brainstem-mediated vestibular-ocular reflex (VOR) via top-down control mechanisms. However to date, it remains unknown whether the degree of an individual's right hemisphere dominance for visuospatial function can influence, (i) the baseline excitability of the visual cortex and (ii) the extent to which the right hemisphere can exert top-down modulation. We directly tested this by correlating line bisection error (or pseudoneglect), taken as a measure of right hemisphere dominance, with both (i) visual cortical excitability measured using phosphene perception elicited via single-pulse occipital trans-cranial magnetic stimulation (TMS) and (ii) the degree of trans-cranial direct current stimulation (tDCS)-mediated VOR suppression, following left hemisphere inhibition. We found that those individuals with greater right hemisphere dominance had a less excitable early visual cortex at baseline and demonstrated a greater degree of vestibular nystagmus suppression following left hemisphere cathodal tDCS. To conclude, our results provide the first demonstration that individual differences in right hemisphere dominance can directly predict both the baseline excitability of low-level brain structures and the degree of top-down modulation exerted over them. PMID:26518461

  16. Hybrid pulse position modulation/ultrashort-light-pulse code division multiple access for data networking

    NASA Astrophysics Data System (ADS)

    Marom, Daniel M.; Kim, Kwang S.; Milstein, Laurence B.; Fainman, Yeshaiahu

    2000-05-01

    Future data networks are required to support numerous high- capacity connections while providing simplified management and connectivity. To meet these requirements, we propose to utilize broadband ultrashort light pulses (ULP) in conjunction with pulse position modulation (PPM) as an efficient modulation format and code division multiple access (CDMA) for interference suppression. This networking format is operated asynchronously for simplified control, and requires minimal management for ensuring that the number of active users is below the limit at which multi-user interference generates excessive errors. The pulse positions can be detected at the receiver with high temporal resolution by utilizing a time-to-space conversion operating in real-time. The performance of the PPM/ULP-CDMA is found to depend on the following parameters: the ULP duration, the bandwidth of each spectral chip of the CDMA filter, and the ULP repetition time. We find that employing PPM improves the performance of the system relative to On-Off Keying. The performance can be further improved by increasing the number of PPM symbols, reducing the spectral chip bandwidth, and reducing the ratio of the pulse duration to repetition time. The performance analysis shows that the proposed system operates at a high bandwidth efficiency.

  17. Emergence of complex computational structures from chaotic neural networks through reward-modulated Hebbian learning.

    PubMed

    Hoerzer, Gregor M; Legenstein, Robert; Maass, Wolfgang

    2014-03-01

    This paper addresses the question how generic microcircuits of neurons in different parts of the cortex can attain and maintain different computational specializations. We show that if stochastic variations in the dynamics of local microcircuits are correlated with signals related to functional improvements of the brain (e.g. in the control of behavior), the computational operation of these microcircuits can become optimized for specific tasks such as the generation of specific periodic signals and task-dependent routing of information. Furthermore, we show that working memory can autonomously emerge through reward-modulated Hebbian learning, if needed for specific tasks. Altogether, our results suggest that reward-modulated synaptic plasticity can not only optimize the network parameters for specific computational tasks, but also initiate a functional rewiring that re-programs microcircuits, thereby generating diverse computational functions in different generic cortical microcircuits. On a more general level, this work provides a new perspective for a standard model for computations in generic cortical microcircuits (liquid computing model). It shows that the arguably most problematic assumption of this model, the postulate of a teacher that trains neural readouts through supervised learning, can be eliminated. We show that generic networks of neurons can learn numerous biologically relevant computations through trial and error. PMID:23146969

  18. Optimizing Environmental Monitoring Networks with Direction-Dependent Distance Thresholds.

    ERIC Educational Resources Information Center

    Hudak, Paul F.

    1993-01-01

    In the direction-dependent approach to location modeling developed herein, the distance within which a point of demand can find service from a facility depends on direction of measurement. The utility of the approach is illustrated through an application to groundwater remediation. (Author/MDH)

  19. A Directionality based Location Discovery Scheme for Wireless Sensor Networks

    E-print Network

    Ha, Dong S.

    information. Applications include detection of a fire or chemical leak in manufacturing plants, intrusion transceivers. Such networks can be applied for cooperative signal detection, monitoring, and tracking. 1. INTRODUCTION Recent advances in embedded systems and wireless tech- nology have made it possible

  20. Implementing direct, spatially isolated problems on transputer networks

    NASA Technical Reports Server (NTRS)

    Ellis, Graham K.

    1988-01-01

    Parametric studies were performed on transputer networks of up to 40 processors to determine how to implement and maximize the performance of the solution of problems where no processor-to-processor data transfer is required for the problem solution (spatially isolated). Two types of problems are investigated a computationally intensive problem where the solution required the transmission of 160 bytes of data through the parallel network, and a communication intensive example that required the transmission of 3 Mbytes of data through the network. This data consists of solutions being sent back to the host processor and not intermediate results for another processor to work on. Studies were performed on both integer and floating-point transputers. The latter features an on-chip floating-point math unit and offers approximately an order of magnitude performance increase over the integer transputer on real valued computations. The results indicate that a minimum amount of work is required on each node per communication to achieve high network speedups (efficiencies). The floating-point processor requires approximately an order of magnitude more work per communication than the integer processor because of the floating-point unit's increased computing capacity.

  1. Direct Observation of Phase Separation in Microemulsion Networks

    E-print Network

    Tlusty, Tsvi

    of these phases consists of two-dimensional layers of amphiphiles separating oil and water domains that are both. Networks formed by interconnected oil- swollen cylinders were observed in the water-rich regions continuous.1 These dense symmetric sponges (at almost equal volume fractions of oil and water) have been

  2. Direct Information Exchange in Wireless Networks: A Coding Perspective 

    E-print Network

    Ozgul, Damla

    2011-10-21

    The rise in the popularity of smartphones such as Blackberry and iPhone creates a strain on the world's mobile networks. The extensive use of these mobile devices leads to increasing congestion and higher rate of node failures. This increasing...

  3. Estradiol rapidly modulates spinogenesis in hippocampal dentate gyrus: Involvement of kinase networks.

    PubMed

    Hojo, Yasushi; Munetomo, Arisa; Mukai, Hideo; Ikeda, Muneki; Sato, Rei; Hatanaka, Yusuke; Murakami, Gen; Komatsuzaki, Yoshimasa; Kimoto, Tetsuya; Kawato, Suguru

    2015-08-01

    This article is part of a Special Issue "Estradiol and cognition". Estradiol (E2) is locally synthesized within the hippocampus and the gonads. Rapid modulation of hippocampal synaptic plasticity by E2 is essential for synaptic regulation. The molecular mechanisms of modulation through the synaptic estrogen receptor (ER) and its downstream signaling, however, are largely unknown in the dentate gyrus (DG). We investigated the E2-induced modulation of dendritic spines in male adult rat hippocampal slices by imaging Lucifer Yellow-injected DG granule cells. Treatments with 1 nM E2 increased the density of spines by approximately 1.4-fold within 2h. Spine head diameter analysis showed that the density of middle-head spines (0.4-0.5 ?m) was significantly increased. The E2-induced spine density increase was suppressed by blocking Erk MAPK, PKA, PKC and LIMK. These suppressive effects by kinase inhibitors are not non-specific ones because the GSK-3? antagonist did not inhibit E2-induced spine increase. The ER antagonist ICI 182,780 also blocked the E2-induced spine increase. Taken together, these results suggest that E2 rapidly increases the density of spines through kinase networks that are driven by synaptic ER. PMID:26122288

  4. Effects of Edge Directions on the Structural Controllability of Complex Networks

    PubMed Central

    Xiao, Yandong; Lao, Songyang; Hou, Lvlin; Small, Michael; Bai, Liang

    2015-01-01

    Recent advances indicate that assigning or reversing edge direction can significantly improve the structural controllability of complex networks. For directed networks, approaching the optimal structural controllability can be achieved by detecting and reversing certain “inappropriate” edge directions. However, the existence of multiple sets of “inappropriate” edge directions suggests that different edges have different effects on optimal controllability—that is, different combinations of edges can be reversed to achieve the same structural controllability. Therefore, we classify edges into three categories based on their direction: critical, redundant and intermittent. We then investigate the effects of changing these edge directions on network controllability, and demonstrate that the existence of more critical edge directions implies not only a lower cost of modifying inappropriate edges but also better controllability. Motivated by this finding, we present a simple edge orientation method aimed at producing more critical edge directions—utilizing only local information—which achieves near optimal controllability. Furthermore, we explore the effects of edge direction on the controllability of several real networks. PMID:26281042

  5. All-optical virtual private network system in OFDM based long-reach PON using RSOA re-modulation technique

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Hun; Jung, Sang-Min; Kang, Su-Min; Han, Sang-Kook

    2015-01-01

    We propose an all-optical virtual private network (VPN) system in an orthogonal frequency division multiplexing (OFDM) based long reach PON (LR-PON). In the optical access network field, technologies based on fundamental upstream (U/S) and downstream (D/S) have been actively researched to accommodate explosion of data capacity. However, data transmission among the end users which is arisen from cloud computing, file-sharing and interactive game takes a large weight inside of internet traffic. Moreover, this traffic is predicted to increase more if Internet of Things (IoT) services are activated. In a conventional PON, VPN data is transmitted through ONU-OLT-ONU via U/S and D/S carriers. It leads to waste of bandwidth and energy due to O-E-O conversion in the OLT and round-trip propagation between OLT and remote node (RN). Also, it causes inevitable load to the OLT for electrical buffer, scheduling and routing. The network inefficiency becomes more critical in a LR-PON which has been researched as an effort to reduce CAPEX and OPEX through metro-access consolidation. In the proposed system, the VPN data is separated from conventional U/S and re-modulated on the D/S carrier by using RSOA in the ONUs to avoid bandwidth consumption of U/S and D/S unlike in previously reported system. Moreover, the transmitted VPN data is re-directed to the ONUs by wavelength selective reflector device in the RN without passing through the OLT. Experimental demonstration for the VPN communication system in an OFDM based LR-PON has been verified.

  6. Bilateral dorsolateral prefrontal cortex modulation for tinnitus by transcranial direct current stimulation: a preliminary clinical study.

    PubMed

    Vanneste, Sven; Plazier, Mark; Ost, Jan; van der Loo, Elsa; Van de Heyning, Paul; De Ridder, Dirk

    2010-05-01

    Tinnitus is considered as an auditory phantom percept. Preliminary evidence indicates that transcranial direct current stimulation (tDCS) of the temporo-parietal area might reduce tinnitus. tDCS studies of the prefrontal cortex have been successful in reducing depression, impulsiveness and pain. Recently, it was shown that the prefrontal cortex is important for the integration of sensory and emotional aspects of tinnitus. As such, frontal tDCS might suppress tinnitus as well. In an open label study, a total of 478 tinnitus patients received bilateral tDCS on dorsolateral prefrontal cortex (448 patients anode right, cathode left and 30 anode left, cathode right) for 20 min. Treatment effects were assessed with visual analogue scale for tinnitus intensity and distress. No tinnitus-suppressing effect was found for tDCS with left anode and right cathode. Analyses show that tDCS with right anode and left cathode modulates tinnitus perception in 29.9% of the tinnitus patients. For these responders a significant reduction was found for both tinnitus-related distress and tinnitus intensity. In addition, the amount of suppression for tinnitus-related distress is moderated by an interaction between tinnitus type and tinnitus laterality. This was, however, not the case for tinnitus intensity. Our study supports the involvement of the prefrontal cortex in the pathophysiology of tinnitus. PMID:20186404

  7. GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters

    PubMed Central

    Ramesh, Sunita A.; Tyerman, Stephen D.; Xu, Bo; Bose, Jayakumar; Kaur, Satwinder; Conn, Vanessa; Domingos, Patricia; Ullah, Sana; Wege, Stefanie; Shabala, Sergey; Feijó, José A.; Ryan, Peter R.; Gillham, Matthew

    2015-01-01

    The non-protein amino acid, gamma-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to biotic and abiotic stress, and regulates plant growth. Until now it was not known whether GABA exerts its effects in plants through the regulation of carbon metabolism or via an unidentified signalling pathway. Here, we demonstrate that anion flux through plant aluminium-activated malate transporter (ALMT) proteins is activated by anions and negatively regulated by GABA. Site-directed mutagenesis of selected amino acids within ALMT proteins abolishes GABA efficacy but does not alter other transport properties. GABA modulation of ALMT activity results in altered root growth and altered root tolerance to alkaline pH, acid pH and aluminium ions. We propose that GABA exerts its multiple physiological effects in plants via ALMT, including the regulation of pollen tube and root growth, and that GABA can finally be considered a legitimate signalling molecule in both the plant and animal kingdoms. PMID:26219411

  8. Dopaminergic modulation of positive expectations for goal-directed action: evidence from Parkinson’s disease

    PubMed Central

    Wolpe, Noham; Nombela, Cristina; Rowe, James B.

    2015-01-01

    Parkinson’s disease (PD) impairs the control of movement and cognition, including the planning of action and its consequences. This provides the opportunity to study the dopaminergic influences on the perception and awareness of action. Here we examined the perception of the outcome of a goal-directed action made by medicated patients with PD. A visuomotor task probed the integration of sensorimotor signals with the positive expectations of outcomes (Self priors), which in healthy adults bias perception toward success in proportion to trait optimism. We tested the hypotheses that (i) the priors on the perception of the consequences of one’s own actions differ between patients and age- and sex-matched controls, and (ii) that these priors are modulated by the levodopa dose equivalent (LDEs) in patients. There was no overall difference between patients and controls in the perceptual priors used. However, the precision of patient priors was inversely related to their LDE. Patients with high LDE showed more accurate priors, representing predictions that were closer to the true distribution of performance. Such accuracy has previously been demonstrated when observing the actions of others, suggesting abnormal awareness of action in these patients. These results confirm a link between dopamine and the positive expectation of the outcome of one’s own actions, and may have implications for the management of PD. PMID:26500582

  9. Dopaminergic modulation of positive expectations for goal-directed action: evidence from Parkinson's disease.

    PubMed

    Wolpe, Noham; Nombela, Cristina; Rowe, James B

    2015-01-01

    Parkinson's disease (PD) impairs the control of movement and cognition, including the planning of action and its consequences. This provides the opportunity to study the dopaminergic influences on the perception and awareness of action. Here we examined the perception of the outcome of a goal-directed action made by medicated patients with PD. A visuomotor task probed the integration of sensorimotor signals with the positive expectations of outcomes (Self priors), which in healthy adults bias perception toward success in proportion to trait optimism. We tested the hypotheses that (i) the priors on the perception of the consequences of one's own actions differ between patients and age- and sex-matched controls, and (ii) that these priors are modulated by the levodopa dose equivalent (LDEs) in patients. There was no overall difference between patients and controls in the perceptual priors used. However, the precision of patient priors was inversely related to their LDE. Patients with high LDE showed more accurate priors, representing predictions that were closer to the true distribution of performance. Such accuracy has previously been demonstrated when observing the actions of others, suggesting abnormal awareness of action in these patients. These results confirm a link between dopamine and the positive expectation of the outcome of one's own actions, and may have implications for the management of PD. PMID:26500582

  10. Criticality of forcing directions on the fragmentation and resilience of grid networks.

    PubMed

    Abundo, Cheryl; Monterola, Christopher; Legara, Erika Fille

    2014-01-01

    A general framework for probing the dynamic evolution of spatial networks comprised of nodes applying force amongst each other is presented. Aside from the already reported magnitude of forces and elongation thresholds, we show that preservation of links in a network is also crucially dependent on how nodes are connected and how edges are directed. We demonstrate that the time it takes for the networks to reach its equilibrium network structure follows a robust power law relationship consistent with Basquin's law with an exponent that can be tuned by changing only the force directions. Further, we illustrate that networks with different connection structures, node positions and edge directions have different Basquin's exponent which can be used to distinguish spatial directed networks from each other. Using an extensive waiting time simulation that spans up to over 16 orders of magnitude, we establish that the presence of memory combined with the scale-free bursty dynamics of edge breaking at the micro level leads to the evident macroscopic power law distribution of network lifetime. PMID:25160061

  11. Criticality of forcing directions on the fragmentation and resilience of grid networks

    PubMed Central

    Abundo, Cheryl; Monterola, Christopher; Legara, Erika Fille

    2014-01-01

    A general framework for probing the dynamic evolution of spatial networks comprised of nodes applying force amongst each other is presented. Aside from the already reported magnitude of forces and elongation thresholds, we show that preservation of links in a network is also crucially dependent on how nodes are connected and how edges are directed. We demonstrate that the time it takes for the networks to reach its equilibrium network structure follows a robust power law relationship consistent with Basquin's law with an exponent that can be tuned by changing only the force directions. Further, we illustrate that networks with different connection structures, node positions and edge directions have different Basquin's exponent which can be used to distinguish spatial directed networks from each other. Using an extensive waiting time simulation that spans up to over 16 orders of magnitude, we establish that the presence of memory combined with the scale-free bursty dynamics of edge breaking at the micro level leads to the evident macroscopic power law distribution of network lifetime. PMID:25160061

  12. Criticality of forcing directions on the fragmentation and resilience of grid networks

    NASA Astrophysics Data System (ADS)

    Abundo, Cheryl; Monterola, Christopher; Legara, Erika Fille

    2014-08-01

    A general framework for probing the dynamic evolution of spatial networks comprised of nodes applying force amongst each other is presented. Aside from the already reported magnitude of forces and elongation thresholds, we show that preservation of links in a network is also crucially dependent on how nodes are connected and how edges are directed. We demonstrate that the time it takes for the networks to reach its equilibrium network structure follows a robust power law relationship consistent with Basquin's law with an exponent that can be tuned by changing only the force directions. Further, we illustrate that networks with different connection structures, node positions and edge directions have different Basquin's exponent which can be used to distinguish spatial directed networks from each other. Using an extensive waiting time simulation that spans up to over 16 orders of magnitude, we establish that the presence of memory combined with the scale-free bursty dynamics of edge breaking at the micro level leads to the evident macroscopic power law distribution of network lifetime.

  13. W-band RoF transmission based on optical multi-carrier generation by cascading one directly-modulated DFB laser and one phase modulator

    NASA Astrophysics Data System (ADS)

    Li, Xinying; Yu, Jianjun

    2015-06-01

    We experimentally demonstrate that, adopting an optical multi-carrier source based on cascaded directly-modulated distributed-feedback laser (DML) and phase modulator (PM), any pair of subcarriers spaced by 100 GHz selected from the generated optical subcarriers can be used to generate 100-GHz millimeter-wave (mm-wave) frequency based on remote heterodyning technique, and thus realize 3.125-Gb/s on-off-keying (OOK) signal transmission over a radio-over-fiber (RoF) system at W-band. After 20-km large-effective-area fiber (LEAF) transmission and 2-m wireless delivery, the bit-error ratio (BER) of 1×10-9 can be attained when the two selected subcarriers spaced by 100 GHz are simultaneously modulated before remote heterodyning. 1.5-dB power penalty at the BER of 1×10-9 is caused by 2-m wireless delivery while almost no penalty is caused by 20-km LEAF transmission. However, because of different path lengths and the quite wide linewidth of the DML, the 3.125-Gb/s OOK signal after the same RoF transmission cannot be recovered when the two selected subcarriers are separated into two different optical paths and only one of them is modulated before remote heterodyning.

  14. Fast-response IR spatial light modulators with a polymer network liquid crystal

    NASA Astrophysics Data System (ADS)

    Peng, Fenglin; Chen, Haiwei; Tripathi, Suvagata; Twieg, Robert J.; Wu, Shin-Tson

    2015-03-01

    Liquid crystals (LC) have widespread applications for amplitude modulation (e.g. flat panel displays) and phase modulation (e.g. beam steering). For phase modulation, a 2? phase modulo is required. To extend the electro-optic application into infrared region (MWIR and LWIR), several key technical challenges have to be overcome: 1. low absorption loss, 2. high birefringence, 3. low operation voltage, and 4. fast response time. After three decades of extensive development, an increasing number of IR devices adopting LC technology have been demonstrated, such as liquid crystal waveguide, laser beam steering at 1.55?m and 10.6 ?m, spatial light modulator in the MWIR (3~5?m) band, dynamic scene projectors for infrared seekers in the LWIR (8~12?m) band. However, several fundamental molecular vibration bands and overtones exist in the MWIR and LWIR regions, which contribute to high absorption coefficient and hinder its widespread application. Therefore, the inherent absorption loss becomes a major concern for IR devices. To suppress IR absorption, several approaches have been investigated: 1) Employing thin cell gap by choosing a high birefringence liquid crystal mixture; 2) Shifting the absorption bands outside the spectral region of interest by deuteration, fluorination and chlorination; 3) Reducing the overlap vibration bands by using shorter alkyl chain compounds. In this paper, we report some chlorinated LC compounds and mixtures with a low absorption loss in the near infrared and MWIR regions. To achieve fast response time, we have demonstrated a polymer network liquid crystal with 2? phase change at MWIR and response time less than 5 ms.

  15. World Migration Degree Global migration flows in directed networks

    E-print Network

    Porat, Idan

    2015-01-01

    In this article we analyze the global flow of migrants from 206 source countries to 145 destination countries (2006-2010) and focus on the differences in the migration network pattern between destination and source counters as represented by its degree and weight distribution. Degree represents the connectivity of a country to the global migration network, and plays an important role in defining migration processes and characteristics. Global analysis of migration degree distribution offers a strong potential contribution to understanding of migration as a global phenomenon. In regard to immigration, we found that it is possible to classify destination countries into three classes: global migration hubs with high connectivity and high migration rate; local migration hubs with low connectivity and high migration rate; and local migration hubs with opposite strategy of high connectivity and low migration rate. The different migration strategies of destination countries are emerging from similar and homogenies p...

  16. Linguistic complex networks: Rationale, application, interpretation, and directions. Reply to comments on "Approaching human language with complex networks"

    NASA Astrophysics Data System (ADS)

    Cong, Jin; Liu, Haitao

    2014-12-01

    Amid the enthusiasm for real-world networks of the new millennium, the enquiry into linguistic networks is flourishing not only as a productive branch of the new networks science but also as a promising approach to linguistic research. Although the complex network approach constitutes a potential opportunity to make linguistics a science, the world of linguistics seems unprepared to embrace it. For one thing, linguistics has been largely unaffected by quantitative methods. Those who are accustomed to qualitative linguistic methods may find it hard to appreciate the application of quantitative properties of language such as frequency and length, not to mention quantitative properties of language modeled as networks. With this in mind, in our review [1] we restrict ourselves to the basics of complex networks and the new insights into human language with the application of complex networks. For another, while breaking new grounds and posing new challenges for linguistics, the complex network approach to human language as a new tradition of linguistic research is faced with challenges and unsolved issues of its own. It is no surprise that the comments on our review, especially their skepticism and suggestions, focus on various different aspects of the complex network approach to human language. We are grateful to all the insightful and penetrating comments, which, together with our review, mark a significant impetus to linguistic research from the complex network approach. In this reply, we would like to address four major issues of the complex network approach to human language, namely, a) its theoretical rationale, b) its application in linguistic research, c) interpretation of the results, and d) directions of future research.

  17. Energy Efficient Sleep Scheduling based on Moving Directions in Target Tracking Sensor Network

    E-print Network

    Ravindran, Binoy

    Energy Efficient Sleep Scheduling based on Moving Directions in Target Tracking Sensor Network Bo presents a target direction-based sleep scheduling algorithm (TDSS) to enhance the energy efficiency and the sleep scheduling, achieves the energy efficiency but suffers little performance loss. For the sleep

  18. Detecting Blackhole and Volcano Patterns in Directed Networks Zhongmou Li1

    E-print Network

    Xiong, Hui

    Detecting Blackhole and Volcano Patterns in Directed Networks Zhongmou Li1 , Hui Xiong1 , Yanchi and volcano patterns in a large directed graph. Specifically, a blackhole pattern is a group which is made. In contrast, a volcano pattern is a group which only has outlinks to the rest nodes in the graph. Both

  19. DIRECTLY MODELING SPEECH WAVEFORMS BY NEURAL NETWORKS FOR STATISTICAL PARAMETRIC SPEECH SYNTHESIS

    E-print Network

    Cortes, Corinna

    DIRECTLY MODELING SPEECH WAVEFORMS BY NEURAL NETWORKS FOR STATISTICAL PARAMETRIC SPEECH SYNTHESIS@nitech.ac.jp heigazen@google.com ABSTRACT This paper proposes a novel approach for directly-modeling speech speech synthesis frame- work with a specially designed output layer. As acoustic feature extraction

  20. Learning modulation of odor representations: new findings from Arc-indexed networks

    PubMed Central

    Yuan, Qi; Harley, Carolyn W.

    2014-01-01

    We first review our understanding of odor representations in rodent olfactory bulb (OB) and anterior piriform cortex (APC). We then consider learning-induced representation changes. Finally we describe the perspective on network representations gained from examining Arc-indexed odor networks of awake rats. Arc-indexed networks are sparse and distributed, consistent with current views. However Arc provides representations of repeated odors. Arc-indexed repeated odor representations are quite variable. Sparse representations are assumed to be compact and reliable memory codes. Arc suggests this is not necessarily the case. The variability seen is consistent with electrophysiology in awake animals and may reflect top-down cortical modulation of context. Arc-indexing shows that distinct odors share larger than predicted neuron pools. These may be low-threshold neuronal subsets. Learning’s effect on Arc-indexed representations is to increase the stable or overlapping component of rewarded odor representations. This component can decrease for similar odors when their discrimination is rewarded. The learning effects seen are supported by electrophysiology, but mechanisms remain to be elucidated. PMID:25565958

  1. Achieving Capacity of Bi-Directional Tandem Collision Network by Joint Medium-Access Control and Channel-Network Coding

    E-print Network

    Shum, Kenneth W

    2009-01-01

    In ALOHA-type packetized network, the transmission times of packets follow a stochastic process. In this paper, we advocate a deterministic approach for channel multiple-access. Each user is statically assigned a periodic protocol signal, which takes value either zero or one, and transmit packets whenever the value of the protocol signal is equal to one. On top of this multiple-access protocol, efficient channel coding and network coding schemes are devised. We illustrate the idea by constructing a transmission scheme for the tandem collision network, for both slot-synchronous and slot-asynchronous systems. This cross-layer approach is able to achieve the capacity region when the network is bi-directional.

  2. A method for modeling and analysis of directed weighted accident causation network (DWACN)

    NASA Astrophysics Data System (ADS)

    Zhou, Jin; Xu, Weixiang; Guo, Xin; Ding, Jing

    2015-11-01

    Using complex network theory to analyze accidents is effective to understand the causes of accidents in complex systems. In this paper, a novel method is proposed to establish directed weighted accident causation network (DWACN) for the Rail Accident Investigation Branch (RAIB) in the UK, which is based on complex network and using event chains of accidents. DWACN is composed of 109 nodes which denote causal factors and 260 directed weighted edges which represent complex interrelationships among factors. The statistical properties of directed weighted complex network are applied to reveal the critical factors, the key event chains and the important classes in DWACN. Analysis results demonstrate that DWACN has characteristics of small-world networks with short average path length and high weighted clustering coefficient, and display the properties of scale-free networks captured by that the cumulative degree distribution follows an exponential function. This modeling and analysis method can assist us to discover the latent rules of accidents and feature of faults propagation to reduce accidents. This paper is further development on the research of accident analysis methods using complex network.

  3. Characterizing system dynamics with a weighted and directed network constructed from time series data

    SciTech Connect

    Sun, Xiaoran; School of Mathematics and Statistics, The University of Western Australia, Crawley WA 6009 ; Small, Michael; Zhao, Yi; Xue, Xiaoping

    2014-06-15

    In this work, we propose a novel method to transform a time series into a weighted and directed network. For a given time series, we first generate a set of segments via a sliding window, and then use a doubly symbolic scheme to characterize every windowed segment by combining absolute amplitude information with an ordinal pattern characterization. Based on this construction, a network can be directly constructed from the given time series: segments corresponding to different symbol-pairs are mapped to network nodes and the temporal succession between nodes is represented by directed links. With this conversion, dynamics underlying the time series has been encoded into the network structure. We illustrate the potential of our networks with a well-studied dynamical model as a benchmark example. Results show that network measures for characterizing global properties can detect the dynamical transitions in the underlying system. Moreover, we employ a random walk algorithm to sample loops in our networks, and find that time series with different dynamics exhibits distinct cycle structure. That is, the relative prevalence of loops with different lengths can be used to identify the underlying dynamics.

  4. Generalised Sandpile Dynamics on Artificial and Real-World Directed Networks.

    PubMed

    Zachariou, Nicky; Expert, Paul; Takayasu, Misako; Christensen, Kim

    2015-01-01

    The main finding of this paper is a novel avalanche-size exponent ? ? 1.87 when the generalised sandpile dynamics evolves on the real-world Japanese inter-firm network. The topology of this network is non-layered and directed, displaying the typical bow tie structure found in real-world directed networks, with cycles and triangles. We show that one can move from a strictly layered regular lattice to a more fluid structure of the inter-firm network in a few simple steps. Relaxing the regular lattice structure by introducing an interlayer distribution for the interactions, forces the scaling exponent of the avalanche-size probability density function ? out of the two-dimensional directed sandpile universality class ? = 4/3, into the mean field universality class ? = 3/2. Numerical investigation shows that these two classes are the only that exist on the directed sandpile, regardless of the underlying topology, as long as it is strictly layered. Randomly adding a small proportion of links connecting non adjacent layers in an otherwise layered network takes the system out of the mean field regime to produce non-trivial avalanche-size probability density function. Although these do not display proper scaling, they closely reproduce the behaviour observed on the Japanese inter-firm network. PMID:26606143

  5. Generalised Sandpile Dynamics on Artificial and Real-World Directed Networks

    PubMed Central

    Zachariou, Nicky; Expert, Paul; Takayasu, Misako; Christensen, Kim

    2015-01-01

    The main finding of this paper is a novel avalanche-size exponent ? ? 1.87 when the generalised sandpile dynamics evolves on the real-world Japanese inter-firm network. The topology of this network is non-layered and directed, displaying the typical bow tie structure found in real-world directed networks, with cycles and triangles. We show that one can move from a strictly layered regular lattice to a more fluid structure of the inter-firm network in a few simple steps. Relaxing the regular lattice structure by introducing an interlayer distribution for the interactions, forces the scaling exponent of the avalanche-size probability density function ? out of the two-dimensional directed sandpile universality class ? = 4/3, into the mean field universality class ? = 3/2. Numerical investigation shows that these two classes are the only that exist on the directed sandpile, regardless of the underlying topology, as long as it is strictly layered. Randomly adding a small proportion of links connecting non adjacent layers in an otherwise layered network takes the system out of the mean field regime to produce non-trivial avalanche-size probability density function. Although these do not display proper scaling, they closely reproduce the behaviour observed on the Japanese inter-firm network. PMID:26606143

  6. Direct detection of RDX vapor using a conjugated polymer network.

    PubMed

    Gopalakrishnan, Deepti; Dichtel, William R

    2013-06-01

    1,3,5-Trinitroperhydro-1,3,5-triazine (RDX) is a principal component of plastic explosives used in acts of terrorism and within improvised explosive devices, among others. Approaches to detect RDX compatible with remote, "stand-off" sampling that do not require preconcentration strategies, such as the swabs commonly employed in airports, will benefit military and civilian security. Such detection remains a significant challenge because RDX is 10(3) less volatile than 1,3,5-trinitrotoluene (TNT), corresponding to a parts-per-trillion vapor pressure under ambient conditions. Therefore, while fluorescence quenching of conjugated polymers is sufficiently sensitive to detect TNT vapors, RDX vapor detection is undemonstrated. Here we report a cross-linked phenylene vinylene polymer network whose fluorescence is quenched by trace amounts of RDX introduced from solution or the vapor phase. Fluorescence quenching is reduced, but remains significant, when partially degraded RDX is employed, suggesting that the polymer responds to RDX itself. The polymer network also responds to TNT and PETN similarly introduced from solution or the vapor phase. Pure solvents, volatile amines, and the outgassed vapors from lipstick or sunscreen do not quench polymer fluorescence. The established success of TNT sensors based on fluorescence quenching makes this a material of interest for real-world explosive sensors and will motivate further interest in cross-linked polymers and framework materials for sensing applications. PMID:23641956

  7. Seeking Structural Specificity: Direct Modulation of Pentameric Ligand-Gated Ion Channels by Alcohols and General Anesthetics

    PubMed Central

    Trudell, James R.; Harris, R. Adron

    2014-01-01

    Alcohols and other anesthetic agents dramatically alter neurologic function in a wide range of organisms, yet their molecular sites of action remain poorly characterized. Pentameric ligand-gated ion channels, long implicated in important direct effects of alcohol and anesthetic binding, have recently been illuminated in renewed detail thanks to the determination of atomic-resolution structures of several family members from lower organisms. These structures provide valuable models for understanding and developing anesthetic agents and for allosteric modulation in general. This review surveys progress in this field from function to structure and back again, outlining early evidence for relevant modulation of pentameric ligand-gated ion channels and the development of early structural models for ion channel function and modulation. We highlight insights and challenges provided by recent crystal structures and resulting simulations, as well as opportunities for translation of these newly detailed models back to behavior and therapy. PMID:24515646

  8. Low-cost and wideband frequency tunable optoelectronic oscillator based on a directly modulated distributed feedback semiconductor laser.

    PubMed

    Xiong, Jintian; Wang, Rong; Fang, Tao; Pu, Tao; Chen, Dalei; Lu, Lin; Xiang, Peng; Zheng, Jilin; Zhao, Jiyong

    2013-10-15

    A novel scheme to realize a low-cost and wideband frequency tunable optoelectronic oscillator based on a directly modulated distributed feedback (DFB) semiconductor laser is proposed and experimentally demonstrated. In the proposed scheme, neither an external modulator nor an electrical filter is used, and no more than 25 dB of the electrical loop gain is required due to the high modulation efficiency of the relaxation oscillation frequency of the DFB laser. Microwave signals with frequency coarsely tuned from 3.77 to 8.75 GHz are generated by changing the bias current and operation temperature of the DFB laser. The single sideband phase noise of the generated 6.97 GHz microwave signal is measured to be -103.6 dBc/Hz at 10 kHz offset. PMID:24321940

  9. Goal-Directed Modulation of Neural Memory Patterns: Implications for fMRI-Based Memory Detection.

    PubMed

    Uncapher, Melina R; Boyd-Meredith, J Tyler; Chow, Tiffany E; Rissman, Jesse; Wagner, Anthony D

    2015-06-01

    Remembering a past event elicits distributed neural patterns that can be distinguished from patterns elicited when encountering novel information. These differing patterns can be decoded with relatively high diagnostic accuracy for individual memories using multivoxel pattern analysis (MVPA) of fMRI data. Brain-based memory detection--if valid and reliable--would have clear utility beyond the domain of cognitive neuroscience, in the realm of law, marketing, and beyond. However, a significant boundary condition on memory decoding validity may be the deployment of "countermeasures": strategies used to mask memory signals. Here we tested the vulnerability of fMRI-based memory detection to countermeasures, using a paradigm that bears resemblance to eyewitness identification. Participants were scanned while performing two tasks on previously studied and novel faces: (1) a standard recognition memory task; and (2) a task wherein they attempted to conceal their true memory state. Univariate analyses revealed that participants were able to strategically modulate neural responses, averaged across trials, in regions implicated in memory retrieval, including the hippocampus and angular gyrus. Moreover, regions associated with goal-directed shifts of attention and thought substitution supported memory concealment, and those associated with memory generation supported novelty concealment. Critically, whereas MVPA enabled reliable classification of memory states when participants reported memory truthfully, the ability to decode memory on individual trials was compromised, even reversing, during attempts to conceal memory. Together, these findings demonstrate that strategic goal states can be deployed to mask memory-related neural patterns and foil memory decoding technology, placing a significant boundary condition on their real-world utility. PMID:26041920

  10. A network module-based method for identifying cancer prognostic signatures.

    PubMed

    Wu, Guanming; Stein, Lincoln

    2012-01-01

    Discovering robust prognostic gene signatures as biomarkers using genomics data can be challenging. We have developed a simple but efficient method for discovering prognostic biomarkers in cancer gene expression data sets using modules derived from a highly reliable gene functional interaction network. When applied to breast cancer, we discover a novel 31-gene signature associated with patient survival. The signature replicates across 5 independent gene expression studies, and outperforms 48 published gene signatures. When applied to ovarian cancer, the algorithm identifies a 75-gene signature associated with patient survival. A Cytoscape plugin implementation of the signature discovery method is available at http://wiki.reactome.org/index.php/Reactome_FI_Cytoscape_Plugin. PMID:23228031

  11. Astrocytes modulate neural network activity by Ca²+-dependent uptake of extracellular K+.

    PubMed

    Wang, Fushun; Smith, Nathan A; Xu, Qiwu; Fujita, Takumi; Baba, Akemichi; Matsuda, Toshio; Takano, Takahiro; Bekar, Lane; Nedergaard, Maiken

    2012-04-01

    Astrocytes are electrically nonexcitable cells that display increases in cytosolic calcium ion (Ca²+) in response to various neurotransmitters and neuromodulators. However, the physiological role of astrocytic Ca²+ signaling remains controversial. We show here that astrocytic Ca²+ signaling ex vivo and in vivo stimulated the Na+,K+-ATPase (Na+- and K+-dependent adenosine triphosphatase), leading to a transient decrease in the extracellular potassium ion (K+) concentration. This in turn led to neuronal hyperpolarization and suppressed baseline excitatory synaptic activity, detected as a reduced frequency of excitatory postsynaptic currents. Synaptic failures decreased in parallel, leading to an increase in synaptic fidelity. The net result was that astrocytes, through active uptake of K+, improved the signal-to-noise ratio of synaptic transmission. Active control of the extracellular K+ concentration thus provides astrocytes with a simple yet powerful mechanism to rapidly modulate network activity. PMID:22472648

  12. Acupuncture Modulates the Functional Connectivity of the Default Mode Network in Stroke Patients

    PubMed Central

    Zhang, Yong; Li, Kuangshi; Ren, Yi; Cui, Fangyuan; Xie, Zijing; Shin, Jae-Young; Tan, Zhongjian; Tang, Lixin; Bai, Lijun; Zou, Yihuai

    2014-01-01

    Abundant evidence from previous fMRI studies on acupuncture has revealed significant modulatory effects at widespread brain regions. However, few reports on the modulation to the default mode network (DMN) of stroke patients have been investigated in the field of acupuncture. To study the modulatory effects of acupuncture on the DMN of stroke patients, eight right hemispheric infarction and stable ischemic stroke patients and ten healthy subjects were recruited to undergo resting state fMRI scanning before and after acupuncture stimulation. Functional connectivity analysis was applied with the bilateral posterior cingulate cortices chosen as the seed regions. The main finding demonstrated that the interregional interactions between the ACC and PCC especially enhanced after acupuncture at GB34 in stroke patients, compared with healthy controls. The results indicated that the possible mechanisms of the modulatory effects of acupuncture on the DMN of stroke patients could be interpreted in terms of cognitive ability and motor function recovery. PMID:24734113

  13. Directional Bias and Pheromone for Discovery and Coverage on Networks

    SciTech Connect

    Fink, Glenn A.; Berenhaut, Kenneth S.; Oehmen, Christopher S.

    2012-09-11

    Natural multi-agent systems often rely on “correlated random walks” (random walks that are biased toward a current heading) to distribute their agents over a space (e.g., for foraging, search, etc.). Our contribution involves creation of a new movement and pheromone model that applies the concept of heading bias in random walks to a multi-agent, digital-ants system designed for cyber-security monitoring. We examine the relative performance effects of both pheromone and heading bias on speed of discovery of a target and search-area coverage in a two-dimensional network layout. We found that heading bias was unexpectedly helpful in reducing search time and that it was more influential than pheromone for improving coverage. We conclude that while pheromone is very important for rapid discovery, heading bias can also greatly improve both performance metrics.

  14. Direct2Experts: a pilot national network to demonstrate interoperability among research-networking platforms

    PubMed Central

    Barnett, William; Conlon, Mike; Eichmann, David; Kibbe, Warren; Falk-Krzesinski, Holly; Halaas, Michael; Johnson, Layne; Meeks, Eric; Mitchell, Donald; Schleyer, Titus; Stallings, Sarah; Warden, Michael; Kahlon, Maninder

    2011-01-01

    Research-networking tools use data-mining and social networking to enable expertise discovery, matchmaking and collaboration, which are important facets of team science and translational research. Several commercial and academic platforms have been built, and many institutions have deployed these products to help their investigators find local collaborators. Recent studies, though, have shown the growing importance of multiuniversity teams in science. Unfortunately, the lack of a standard data-exchange model and resistance of universities to share information about their faculty have presented barriers to forming an institutionally supported national network. This case report describes an initiative, which, in only 6?months, achieved interoperability among seven major research-networking products at 28 universities by taking an approach that focused on addressing institutional concerns and encouraging their participation. With this necessary groundwork in place, the second phase of this effort can begin, which will expand the network's functionality and focus on the end users. PMID:22037890

  15. Direct2Experts: a pilot national network to demonstrate interoperability among research-networking platforms.

    PubMed

    Weber, Griffin M; Barnett, William; Conlon, Mike; Eichmann, David; Kibbe, Warren; Falk-Krzesinski, Holly; Halaas, Michael; Johnson, Layne; Meeks, Eric; Mitchell, Donald; Schleyer, Titus; Stallings, Sarah; Warden, Michael; Kahlon, Maninder

    2011-12-01

    Research-networking tools use data-mining and social networking to enable expertise discovery, matchmaking and collaboration, which are important facets of team science and translational research. Several commercial and academic platforms have been built, and many institutions have deployed these products to help their investigators find local collaborators. Recent studies, though, have shown the growing importance of multiuniversity teams in science. Unfortunately, the lack of a standard data-exchange model and resistance of universities to share information about their faculty have presented barriers to forming an institutionally supported national network. This case report describes an initiative, which, in only 6 months, achieved interoperability among seven major research-networking products at 28 universities by taking an approach that focused on addressing institutional concerns and encouraging their participation. With this necessary groundwork in place, the second phase of this effort can begin, which will expand the network's functionality and focus on the end users. PMID:22037890

  16. Modeling Reveals Bistability and Low-Pass Filtering in the Network Module Determining Blood Stem Cell Fate

    E-print Network

    Igoshin, Oleg

    this method to model the Scl-Gata2- Fli1 triad--a network module important for cell fate specification threshold. We have found that the auto-regulation loops connecting the slow-degrading Scl to Gata2 and Fli1

  17. Daily modulation and gravitational focusing in direct dark matter search experiments

    NASA Astrophysics Data System (ADS)

    Kouvaris, Chris; Nielsen, Niklas G.

    2015-10-01

    We study the effect of gravitational focusing of the Earth on dark matter. We find that the effect can produce a detectable diurnal modulation in the dark matter signal for part of the parameter space which for high dark matter masses is larger than the diurnal modulation induced by the fluctuations in the flux of dark matter particles due to the rotation of the Earth around its own axis. The two sources of diurnal modulation have different phases and can be distinguished from each other. We demonstrate that the diurnal modulation can potentially check the self-consistency of experiments that observe annual modulated signals that can be attributed to dark matter. Failing to discover a daily varying signal can result conclusively in the falsification of the hypothesis that the annual modulation is due to dark matter. We also suggest that null result experiments should check for a daily modulation of their rejected background signal with specific phases. A potential discovery could mean that dark matter collisions have been vetoed out.

  18. Abnormal dopaminergic modulation of striato-cortical networks underlies levodopa-induced dyskinesias in humans.

    PubMed

    Herz, Damian M; Haagensen, Brian N; Christensen, Mark S; Madsen, Kristoffer H; Rowe, James B; Løkkegaard, Annemette; Siebner, Hartwig R

    2015-06-01

    Dopaminergic signalling in the striatum contributes to reinforcement of actions and motivational enhancement of motor vigour. Parkinson's disease leads to progressive dopaminergic denervation of the striatum, impairing the function of cortico-basal ganglia networks. While levodopa therapy alleviates basal ganglia dysfunction in Parkinson's disease, it often elicits involuntary movements, referred to as levodopa-induced peak-of-dose dyskinesias. Here, we used a novel pharmacodynamic neuroimaging approach to identify the changes in cortico-basal ganglia connectivity that herald the emergence of levodopa-induced dyskinesias. Twenty-six patients with Parkinson's disease (age range: 51-84 years; 11 females) received a single dose of levodopa and then performed a task in which they had to produce or suppress a movement in response to visual cues. Task-related activity was continuously mapped with functional magnetic resonance imaging. Dynamic causal modelling was applied to assess levodopa-induced modulation of effective connectivity between the pre-supplementary motor area, primary motor cortex and putamen when patients suppressed a motor response. Bayesian model selection revealed that patients who later developed levodopa-induced dyskinesias, but not patients without dyskinesias, showed a linear increase in connectivity between the putamen and primary motor cortex after levodopa intake during movement suppression. Individual dyskinesia severity was predicted by levodopa-induced modulation of striato-cortical feedback connections from putamen to the pre-supplementary motor area (Pcorrected = 0.020) and primary motor cortex (Pcorrected = 0.044), but not feed-forward connections from the cortex to the putamen. Our results identify for the first time, aberrant dopaminergic modulation of striatal-cortical connectivity as a neural signature of levodopa-induced dyskinesias in humans. We argue that excessive striato-cortical connectivity in response to levodopa produces an aberrant reinforcement signal producing an abnormal motor drive that ultimately triggers involuntary movements. PMID:25882651

  19. Direct correlation between nonrandom ion hopping and network structure in ion-conducting borophosphate glasses.

    PubMed

    Zielniok, D; Eckert, H; Cramer, C

    2008-01-25

    We present temperature-dependent conductivity spectra of sodium borophosphate glasses with a varying borate/phosphate ratio but a constant sodium oxide content which can be mapped into time-dependent mean square displacements. For the first time, we show that characteristic lengths of ion transport derived thereof are directly linked to features of network structure, viz., the number of boron oxide tetrahedra. Our results also shed light on the mixed network former effect. PMID:18233003

  20. Unusual ferromagnetism in Ising and Potts model on semi-directed Barabási-Albert networks

    NASA Astrophysics Data System (ADS)

    Sumour, Muneer A.; Lima, F. W. S.

    2014-06-01

    We check the existence of a spontaneous magnetisation of Ising and Potts spins on semi-directed Barabasi-Albert networks by Monte Carlo simulations. We verify that the magnetisation for different temperatures T decays after a characteristic time ?( T), which we extrapolate to diverge at positive temperatures T c ( N) by a Vogel-Fulcher law, with T c ( N) increasing logarithmically with network size N.

  1. Nyquist-shaped dispersion-precompensated subcarrier modulation with direct detection for spectrally-efficient WDM transmission.

    PubMed

    Erk?l?nç, M S; Kilmurray, S; Maher, R; Paskov, M; Bouziane, R; Pachnicke, S; Griesser, H; Thomsen, B C; Bayvel, P; Killey, R I

    2014-04-21

    The use of single-sideband subcarrier modulation (SCM) with Nyquist (N) pulse shaping for cost-effective spectrally-efficient wavelength division multiplexed transmission with direct detection is described. Transmission of digitally pre-compensated 7 × 11 GHz-spaced QPSK SCM channels at 14 Gb/s per channel is experimentally demonstrated over distances of up to 800 km of uncompensated standard single-mode fiber (SSMF) (13440 ps/nm chromatic dispersion). PMID:24787831

  2. Detection of multiple and overlapping bidirectional communities within large, directed and weighted networks of neurons

    E-print Network

    Esposito, Umberto

    2015-01-01

    With the recent explosion of publicly available biological data, the analysis of networks has gained significant interest. In particular, recent promising results in Neuroscience show that the way neurons and areas of the brain are connected to each other plays a fundamental role in cognitive functions and behaviour. Revealing pattern and structures within such an intricate volume of connections is a hard problem that has its roots in Graph and Network Theory. Since many real world situations can be modelled through networks, structures detection algorithms find application in almost every field of Science. These are NP-complete problems; therefore the generally used approach is through heuristic algorithms. Here, we formulate the problem of finding structures in networks of neurons in terms of a community detection problem. We introduce a definition of community and we construct a statistics-based heuristic algorithm for directed and weighted networks aiming at identifying overlapping bidirectional communiti...

  3. Spontaneous formation of InGaN nanowall network directly on Si

    SciTech Connect

    Soto Rodriguez, P. E. D.; Kumar, Praveen; Gomez, V. J.; Alvi, N. H.; Calleja, E.; Noetzel, R.

    2013-04-29

    We present the study on epitaxial growth of an InGaN nanowall network directly on Si by plasma-assisted molecular beam epitaxy. Scanning electron microscopy, high-resolution X-ray diffraction, and transmission electron microscopy together with energy-dispersive X-ray analysis infer the crystalline nature of the InGaN nanowall network, oriented along the C-axis, with In composition ranging from pure GaN to 40%. Room temperature photoluminescence is observed, indicating good optical quality. The nanowall network is highly in-plane electrically conductive.

  4. Brain network dynamics characterization in epileptic seizures. Joint directed graph and pairwise synchronization measures

    NASA Astrophysics Data System (ADS)

    Rodrigues, A. C.; Machado, B. S.; Florence, G.; Hamad, A. P.; Sakamoto, A. C.; Fujita, A.; Baccalá, L. A.; Amaro, E.; Sameshima, K.

    2014-12-01

    Here we propose and evaluate a new approach to analyse multichannel mesial temporal lobe epilepsy EEG data from eight patients through complex network and synchronization theories. The method employs a Granger causality test to infer the directed connectivity graphs and a wavelet transform based phase synchronization measure whose characteristics allow studying dynamical transitions during epileptic seizures. We present a new combined graph measure that quantifies the level of network hub formation, called network hub out-degree, which closely reflects the level of synchronization observed during the ictus.

  5. Engineering a Blood Vessel Network Module for Body-on-a-Chip Applications.

    PubMed

    Ryu, Hyunryul; Oh, Soojung; Lee, Hyun Jae; Lee, Jin Young; Lee, Hae Kwang; Jeon, Noo Li

    2015-06-01

    The blood circulatory system links all organs from one to another to support and maintain each organ's functions consistently. Therefore, blood vessels have been considered as a vital unit. Engineering perfusable functional blood vessels in vitro has been challenging due to difficulties in designing the connection between rigid macroscale tubes and fragile microscale ones. Here, we propose a generalizable method to engineer a "long" perfusable blood vessel network. To form millimeter-scale vessels, fibroblasts were co-cultured with human umbilical vein endothelial cells (HUVECs) in close proximity. In contrast to previous works, in which all cells were permanently placed within the device, we developed a novel method to culture paracrine factor secreting fibroblasts on an O-ring-shaped guide that can be transferred in and out. This approach affords flexibility in co-culture, where the effects of secreted factors can be decoupled. Using this, blood vessels with length up to 2 mm were successfully produced in a reproducible manner (>90%). Because the vessels form a perfusable network within the channel, simple links to inlets and outlets of the device allowed connections to the outside world. The robust and reproducible formation of in vitro engineered vessels can be used as a module to link various organ components as parts of future body-on-a-chip applications. PMID:25532526

  6. Prediction of the anti-inflammatory mechanisms of curcumin by module-based protein interaction network analysis

    PubMed Central

    Gan, Yanxiong; Zheng, Shichao; Baak, Jan P.A.; Zhao, Silei; Zheng, Yongfeng; Luo, Nini; Liao, Wan; Fu, Chaomei

    2015-01-01

    Curcumin, the medically active component from Curcuma longa (Turmeric), is widely used to treat inflammatory diseases. Protein interaction network (PIN) analysis was used to predict its mechanisms of molecular action. Targets of curcumin were obtained based on ChEMBL and STITCH databases. Protein–protein interactions (PPIs) were extracted from the String database. The PIN of curcumin was constructed by Cytoscape and the function modules identified by gene ontology (GO) enrichment analysis based on molecular complex detection (MCODE). A PIN of curcumin with 482 nodes and 1688 interactions was constructed, which has scale-free, small world and modular properties. Based on analysis of these function modules, the mechanism of curcumin is proposed. Two modules were found to be intimately associated with inflammation. With function modules analysis, the anti-inflammatory effects of curcumin were related to SMAD, ERG and mediation by the TLR family. TLR9 may be a potential target of curcumin to treat inflammation. PMID:26713275

  7. Prediction of the anti-inflammatory mechanisms of curcumin by module-based protein interaction network analysis.

    PubMed

    Gan, Yanxiong; Zheng, Shichao; Baak, Jan P A; Zhao, Silei; Zheng, Yongfeng; Luo, Nini; Liao, Wan; Fu, Chaomei

    2015-11-01

    Curcumin, the medically active component from Curcuma longa (Turmeric), is widely used to treat inflammatory diseases. Protein interaction network (PIN) analysis was used to predict its mechanisms of molecular action. Targets of curcumin were obtained based on ChEMBL and STITCH databases. Protein-protein interactions (PPIs) were extracted from the String database. The PIN of curcumin was constructed by Cytoscape and the function modules identified by gene ontology (GO) enrichment analysis based on molecular complex detection (MCODE). A PIN of curcumin with 482 nodes and 1688 interactions was constructed, which has scale-free, small world and modular properties. Based on analysis of these function modules, the mechanism of curcumin is proposed. Two modules were found to be intimately associated with inflammation. With function modules analysis, the anti-inflammatory effects of curcumin were related to SMAD, ERG and mediation by the TLR family. TLR9 may be a potential target of curcumin to treat inflammation. PMID:26713275

  8. Tailored graph ensembles as proxies or null models for real networks II: results on directed graphs

    NASA Astrophysics Data System (ADS)

    Roberts, E. S.; Schlitt, T.; Coolen, A. C. C.

    2011-07-01

    We generate new mathematical tools with which to quantify the macroscopic topological structure of large directed networks. This is achieved via a statistical mechanical analysis of constrained maximum entropy ensembles of directed random graphs with prescribed joint distributions for in- and out-degrees and prescribed degree-degree correlation functions. We calculate exact and explicit formulae for the leading orders in the system size of the Shannon entropies and complexities of these ensembles, and for information-theoretic distances. The results are applied to data on gene regulation networks.

  9. Positive cloud-to-ground lightning detection by a direction-finder network

    NASA Technical Reports Server (NTRS)

    Macgorman, Donald R.; Taylor, William L.

    1989-01-01

    Consideration is given to the ability of an automatic direction-finder network to identify cloud-to-ground flashes that effectively lower positive charge to the ground (+CG flashes). Records from an extremely low frequency system are examined to determine whether or not 340 +CG flashes detected by the network have coincident waveforms characteristic of +CG flashes. It is found that false detection in the system is negligible for +CG flashes with range-normalized amplitudes of at least 50 direction-finder units. Also, it is shown that no more than about 15 percent of the +CG flashes detected by the system at smaller amplitudes are false detections.

  10. Evolution of egoism on semi-directed and undirected Barabási-Albert networks

    NASA Astrophysics Data System (ADS)

    Lima, F. W. S.

    2015-05-01

    Through Monte Carlo simulations, we study the evolution of the four strategies: Ethnocentric, altruistic, egoistic and cosmopolitan in one community of individuals. Interactions and reproduction among computational agents are simulated on undirected and semi-directed Barabási-Albert (BA) networks. We study the Hammond-Axelrod (HA) model on undirected and semi-directed BA networks for the asexual reproduction case. With a small modification in the traditional HA model, our simulations showed that egoism wins, differently from other results found in the literature where ethnocentric strategy is common. Here, mechanisms such as reciprocity are absent.

  11. Direct dark matter search by annual modulation in XMASS-I

    E-print Network

    Abe, K; Ichimura, K; Kishimoto, Y; Kobayashi, K; Kobayashi, M; Moriyama, S; Nakahata, M; Norita, T; Ogawa, H; Sekiya, H; Takachio, O; Takeda, A; Yamashita, M; Yang, B S; Kim, N Y; Kim, Y D; Tasaka, S; Fushimi, K; Liu, J; Martens, K; Suzuki, Y; Xu, B D; Fujita, R; Hosokawa, K; Miuchi, K; Onishi, Y; Oka, N; Takeuchi, Y; Kim, Y H; Lee, J S; Lee, K B; Lee, M K; Fukuda, Y; Itow, Y; Kegasa, R; Masada, K; Takiya, H; Nishijima, K; Nakamura, S

    2015-01-01

    A search for dark matter was conducted with the XMASS detector by means of the expected annual modulation due to the Earth's rotation around the Sun. The data used for this analysis was 359.2 live days $\\times$ 832 kg of exposure accumulated between November 2013 and March 2015. The result of a simple modulation analysis, without assuming any specific dark matter model, showed a slight negative amplitude. As the $p$-values are 6.1 or 17\\% in our two independent analyses, these results are consistent with fluctuations. We also set 90\\% confidence level (C.L.) upper bounds that can be used to test models. When we assume Weakly Interacting Massive Particle (WIMP) dark matter elastically scattering on the target nuclei, we exclude almost all the DAMA/LIBRA allowed region with the modulation analysis. This is the first extensive search probing this region with redan exposure comparable to theirs.

  12. Direct dark matter search by annual modulation in XMASS-I

    E-print Network

    XMASS Collaboration; K. Abe; K. Hiraide; K. Ichimura; Y. Kishimoto; K. Kobayashi; M. Kobayashi; S. Moriyama; M. Nakahata; T. Norita; H. Ogawa; H. Sekiya; O. Takachio; A. Takeda; M. Yamashita; B. S. Yang; N. Y. Kim; Y. D. Kim; S. Tasaka; K. Fushimi; J. Liu; K. Martens; Y. Suzuki; B. D. Xu; R. Fujita; K. Hosokawa; K. Miuchi; Y. Onishi; N. Oka; Y. Takeuchi; Y. H. Kim; J. S. Lee; K. B. Lee; M. K. Lee; Y. Fukuda; Y. Itow; R. Kegasa; K. Kobayashi; K. Masada; H. Takiya; K. Nishijima; S. Nakamura

    2015-11-16

    A search for dark matter was conducted with the XMASS detector by means of the expected annual modulation due to the Earth's rotation around the Sun. The data used for this analysis was 359.2 live days $\\times$ 832 kg of exposure accumulated between November 2013 and March 2015. The result of a simple modulation analysis, without assuming any specific dark matter model, showed a slight negative amplitude. As the $p$-values are 6.1 or 17\\% in our two independent analyses, these results are consistent with fluctuations. We also set 90\\% confidence level (C.L.) upper bounds that can be used to test models. When we assume Weakly Interacting Massive Particle (WIMP) dark matter elastically scattering on the target nuclei, we exclude almost all the DAMA/LIBRA allowed region with the modulation analysis. This is the first extensive search probing this region with redan exposure comparable to theirs.

  13. Bandwidth provisioning in infrastructure-based wireless networks employing directional antennas

    SciTech Connect

    Hasiviswanthan, Shiva; Zhao, Bo; Vasudevan, Sudarshan; Yrgaonkar, Bhuvan

    2009-01-01

    Motivated by the widespread proliferation of wireless networks employing directional antennas, we study the problem of provisioning bandwidth in such networks. Given a set of subscribers and one or more access points possessing directional antennas, we formalize the problem of orienting these antennas in two fundamental settings: (1) subscriber-centric, where the objective is to fairly allocate bandwidth among the subscribers and (2) provider-centric, where the objective is to maximize the revenue generated by satisfying the bandwidth requirements of subscribers. For both the problems, we first design algorithms for a network with only one access point working under the assumption that the number of antennas does not exceed the number of noninterfering channels. Using the well-regarded lexicographic max-min fair allocation as the objective for a subscriber-centric network, we present an optimum dynamic programming algorithm. For a provider-centric network, the allocation problem turns out to be NP-hard. We present a greedy heuristic based algorithm that guarantees almost half of the optimum revenue. We later enhance both these algorithms to operate in more general networks with multiple access points and no restrictions on the relative numbers of antennas and channels. A simulation-based evaluation using OPNET demonstrates the efficacy of our approaches and provides us further in insights into these problems.

  14. Random and Directed Walk-Based Top-k Queries in Wireless Sensor Networks

    PubMed Central

    Fu, Jun-Song; Liu, Yun

    2015-01-01

    In wireless sensor networks, filter-based top-k query approaches are the state-of-the-art solutions and have been extensively researched in the literature, however, they are very sensitive to the network parameters, including the size of the network, dynamics of the sensors’ readings and declines in the overall range of all the readings. In this work, a random walk-based top-k query approach called RWTQ and a directed walk-based top-k query approach called DWTQ are proposed. At the beginning of a top-k query, one or several tokens are sent to the specific node(s) in the network by the base station. Then, each token walks in the network independently to record and process the readings in a random or directed way. A strategy of choosing the “right” way in DWTQ is carefully designed for the token(s) to arrive at the high-value regions as soon as possible. When designing the walking strategy for DWTQ, the spatial correlations of the readings are also considered. Theoretical analysis and simulation results indicate that RWTQ and DWTQ both are very robust against these parameters discussed previously. In addition, DWTQ outperforms TAG, FILA and EXTOK in transmission cost, energy consumption and network lifetime. PMID:26016914

  15. Stitching together Multiple Data Dimensions Reveals Interacting Metabolomic and Transcriptomic Networks That Modulate Cell Regulation

    PubMed Central

    Dombek, Kenneth M.; Xu, Ethan Y.; Vu, Heather; Tu, Zhidong; Brem, Rachel B.; Bumgarner, Roger E.; Schadt, Eric E.

    2012-01-01

    Cells employ multiple levels of regulation, including transcriptional and translational regulation, that drive core biological processes and enable cells to respond to genetic and environmental changes. Small-molecule metabolites are one category of critical cellular intermediates that can influence as well as be a target of cellular regulations. Because metabolites represent the direct output of protein-mediated cellular processes, endogenous metabolite concentrations can closely reflect cellular physiological states, especially when integrated with other molecular-profiling data. Here we develop and apply a network reconstruction approach that simultaneously integrates six different types of data: endogenous metabolite concentration, RNA expression, DNA variation, DNA–protein binding, protein–metabolite interaction, and protein–protein interaction data, to construct probabilistic causal networks that elucidate the complexity of cell regulation in a segregating yeast population. Because many of the metabolites are found to be under strong genetic control, we were able to employ a causal regulator detection algorithm to identify causal regulators of the resulting network that elucidated the mechanisms by which variations in their sequence affect gene expression and metabolite concentrations. We examined all four expression quantitative trait loci (eQTL) hot spots with colocalized metabolite QTLs, two of which recapitulated known biological processes, while the other two elucidated novel putative biological mechanisms for the eQTL hot spots. PMID:22509135

  16. Global epidemic invasion thresholds in directed cattle subpopulation networks having source, sink, and transit nodes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Through the characterization of a metapopulation cattle disease model on a directed network having source, transit, and sink nodes, we derive two global epidemic invasion thresholds. The first threshold defines the conditions necessary for an epidemic to successfully spread at the global scale. The ...

  17. NRC TLD Direct Radiation Monitoring Network progress report, October--December 1994. Volume 14, No. 4

    SciTech Connect

    Struckmeyer, R.

    1995-03-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1994. It provides the ambient radiation levels measured in the vicinity of 75 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program.

  18. An improved Dial's algorithm for logit-based traffic assignment within a directed acyclic network

    E-print Network

    Jin, Wenlong

    An improved Dial's algorithm for logit-based traffic assignment within a directed acyclic network of the most effective and popular procedures for a logit- type stochastic traffic assignment, as it does Bing-Feng Sia , Ming Zhongb *, Hao-Zhi Zhanga and Wen-Long Jinc a State Key Laboratory of Rail Traffic

  19. NRC TLD Direct Radiation Monitoring Network. Progress report, October--December 1996

    SciTech Connect

    Struckmeyer, R.

    1997-03-01

    This report presents the results of the NRC Direct Radiation Monitoring Network for the fourth quarter of 1996. It provides the ambient radiation levels measured in the vicinity of 74 sites throughout the United States. In addition, it describes the equipment used, monitoring station selection criteria, characterization of the dosimeter response, calibration procedures, statistical methods, intercomparison, and quality assurance program. 3 figs., 4 tabs.

  20. Evolution of ethnocentrism on undirected and directed Barabási-Albert networks

    NASA Astrophysics Data System (ADS)

    Lima, F. W. S.; Hadzibeganovic, Tarik; Stauffer, Dietrich

    2009-12-01

    Using Monte Carlo simulations, we study the evolution of contingent cooperation and ethnocentrism in the one-shot game. Interactions and reproduction among computational agents are simulated on undirected and directed Barabási-Albert (BA) networks. We first replicate the Hammond-Axelrod model of in-group favoritism on a square lattice and then generalize this model on undirected and directed BA networks for both asexual and sexual reproduction cases. Our simulations demonstrate that irrespective of the mode of reproduction, the ethnocentric strategy becomes common even though cooperation is individually costly and mechanisms such as reciprocity or conformity are absent. Moreover, our results indicate that the spread of favoritism towards similar others highly depends on the network topology and the associated heterogeneity of the studied population.

  1. Nitric Oxide-Mediated Modulation of Central Network Dynamics during Olfactory Perception.

    PubMed

    Watanabe, Satoshi; Takanashi, Fumihito; Ishida, Kohei; Kobayashi, Suguru; Kitamura, Yoshiichiro; Hamasaki, Yuuta; Saito, Minoru

    2015-01-01

    Nitric oxide (NO) modulates the dynamics of central olfactory networks and has been implicated in olfactory processing including learning. Land mollusks have a specialized olfactory lobe in the brain called the procerebral (PC) lobe. The PC lobe produces ongoing local field potential (LFP) oscillation, which is modulated by olfactory stimulation. We hypothesized that NO should be released in the PC lobe in response to olfactory stimulation, and to prove this, we applied an NO electrode to the PC lobe of the land slug Limax in an isolated tentacle-brain preparation. Olfactory stimulation applied to the olfactory epithelium transiently increased the NO concentration in the PC lobe, and this was blocked by the NO synthase inhibitor L-NAME at 3.7 mM. L-NAME at this concentration did not block the ongoing LFP oscillation, but did block the frequency increase during olfactory stimulation. Olfactory stimulation also enhanced spatial synchronicity of activity, and this response was also blocked by L-NAME. Single electrical stimulation of the superior tentacle nerve (STN) mimicked the effects of olfactory stimulation on LFP frequency and synchronicity, and both of these effects were blocked by L-NAME. L-NAME did not block synaptic transmission from the STN to the nonbursting (NB)-type PC lobe neurons, which presumably produce NO in an activity-dependent manner. Previous behavioral experiments have revealed impairment of olfactory discrimination after L-NAME injection. The recording conditions in the present work likely reproduce the in vivo brain state in those behavioral experiments. We speculate that the dynamical effects of NO released during olfactory perception underlie precise odor representation and memory formation in the brain, presumably through regulation of NB neuron activity. PMID:26360020

  2. Nitric Oxide-Mediated Modulation of Central Network Dynamics during Olfactory Perception

    PubMed Central

    Kobayashi, Suguru; Kitamura, Yoshiichiro; Hamasaki, Yuuta; Saito, Minoru

    2015-01-01

    Nitric oxide (NO) modulates the dynamics of central olfactory networks and has been implicated in olfactory processing including learning. Land mollusks have a specialized olfactory lobe in the brain called the procerebral (PC) lobe. The PC lobe produces ongoing local field potential (LFP) oscillation, which is modulated by olfactory stimulation. We hypothesized that NO should be released in the PC lobe in response to olfactory stimulation, and to prove this, we applied an NO electrode to the PC lobe of the land slug Limax in an isolated tentacle-brain preparation. Olfactory stimulation applied to the olfactory epithelium transiently increased the NO concentration in the PC lobe, and this was blocked by the NO synthase inhibitor L-NAME at 3.7 mM. L-NAME at this concentration did not block the ongoing LFP oscillation, but did block the frequency increase during olfactory stimulation. Olfactory stimulation also enhanced spatial synchronicity of activity, and this response was also blocked by L-NAME. Single electrical stimulation of the superior tentacle nerve (STN) mimicked the effects of olfactory stimulation on LFP frequency and synchronicity, and both of these effects were blocked by L-NAME. L-NAME did not block synaptic transmission from the STN to the nonbursting (NB)-type PC lobe neurons, which presumably produce NO in an activity-dependent manner. Previous behavioral experiments have revealed impairment of olfactory discrimination after L-NAME injection. The recording conditions in the present work likely reproduce the in vivo brain state in those behavioral experiments. We speculate that the dynamical effects of NO released during olfactory perception underlie precise odor representation and memory formation in the brain, presumably through regulation of NB neuron activity. PMID:26360020

  3. Identifying Influential Nodes in Large-Scale Directed Networks: The Role of Clustering

    PubMed Central

    Chen, Duan-Bing; Gao, Hui; Lü, Linyuan; Zhou, Tao

    2013-01-01

    Identifying influential nodes in very large-scale directed networks is a big challenge relevant to disparate applications, such as accelerating information propagation, controlling rumors and diseases, designing search engines, and understanding hierarchical organization of social and biological networks. Known methods range from node centralities, such as degree, closeness and betweenness, to diffusion-based processes, like PageRank and LeaderRank. Some of these methods already take into account the influences of a node’s neighbors but do not directly make use of the interactions among it’s neighbors. Local clustering is known to have negative impacts on the information spreading. We further show empirically that it also plays a negative role in generating local connections. Inspired by these facts, we propose a local ranking algorithm named ClusterRank, which takes into account not only the number of neighbors and the neighbors’ influences, but also the clustering coefficient. Subject to the susceptible-infected-recovered (SIR) spreading model with constant infectivity, experimental results on two directed networks, a social network extracted from delicious.com and a large-scale short-message communication network, demonstrate that the ClusterRank outperforms some benchmark algorithms such as PageRank and LeaderRank. Furthermore, ClusterRank can also be applied to undirected networks where the superiority of ClusterRank is significant compared with degree centrality and k-core decomposition. In addition, ClusterRank, only making use of local information, is much more efficient than global methods: It takes only 191 seconds for a network with about nodes, more than 15 times faster than PageRank. PMID:24204833

  4. Analysis of weblike network structures of directed graphs for chemical reactions in methane plasmas

    NASA Astrophysics Data System (ADS)

    Sakai, Osamu; Nobuto, Kyosuke; Miyagi, Shigeyuki; Tachibana, Kunihide

    2015-10-01

    Chemical reactions of molecular gases like methane are so complicated that a chart of decomposed and/or synthesized species originating from molecules in plasma resembles a weblike network in which we write down species and reactions among them. Here we consider properties of the network structures of chemical reactions in methane plasmas. In the network, atoms/molecules/radical species are assumed to form nodes and chemical reactions correspond to directed edges in the terminology of graph theory. Investigation of the centrality index reveals importance of CH3 in the global chemical reaction, and difference of an index for each radical species between cases with and without electrons clarifies that the electrons are at an influential position to tighten the network structure.

  5. Opinion formation driven by PageRank node influence on directed networks

    NASA Astrophysics Data System (ADS)

    Eom, Young-Ho; Shepelyansky, Dima L.

    2015-10-01

    We study a two states opinion formation model driven by PageRank node influence and report an extensive numerical study on how PageRank affects collective opinion formations in large-scale empirical directed networks. In our model the opinion of a node can be updated by the sum of its neighbor nodes' opinions weighted by the node influence of the neighbor nodes at each step. We consider PageRank probability and its sublinear power as node influence measures and investigate evolution of opinion under various conditions. First, we observe that all networks reach steady state opinion after a certain relaxation time. This time scale is decreasing with the heterogeneity of node influence in the networks. Second, we find that our model shows consensus and non-consensus behavior in steady state depending on types of networks: Web graph, citation network of physics articles, and LiveJournal social network show non-consensus behavior while Wikipedia article network shows consensus behavior. Third, we find that a more heterogeneous influence distribution leads to a more uniform opinion state in the cases of Web graph, Wikipedia, and Livejournal. However, the opposite behavior is observed in the citation network. Finally we identify that a small number of influential nodes can impose their own opinion on significant fraction of other nodes in all considered networks. Our study shows that the effects of heterogeneity of node influence on opinion formation can be significant and suggests further investigations on the interplay between node influence and collective opinion in networks.

  6. What Is Matched in Direct Matching? Intention Attribution Modulates Motor Priming

    ERIC Educational Resources Information Center

    Liepelt, Roman; Cramon, D. Yves Von; Brass, Marcel

    2008-01-01

    Converging evidence has shown that action observation and execution are tightly linked. The observation of an action directly activates an equivalent internal motor representation in the observer (direct matching). However, whether direct matching is primarily driven by basic perceptual features of the observed movement or is influenced by more…

  7. Engineering immunity: Modulating dendritic cell subsets and lymph node response to direct immune-polarization and vaccine efficacy.

    PubMed

    Leleux, Jardin; Atalis, Alexandra; Roy, Krishnendu

    2015-12-10

    While successful vaccines have been developed against many pathogens, there are still many diseases and pathogenic infections that are highly evasive to current vaccination strategies. Thus, more sophisticated approaches to control the type and quality of vaccine-induced immune response must be developed. Dendritic cells (DCs) are the sentinels of the body and play a critical role in immune response generation and direction by bridging innate and adaptive immunity. It is now well recognized that DCs can be separated into many subgroups, each of which has a unique function. Better understanding of how various DC subsets, in lymphoid organs and in the periphery, can be targeted through controlled delivery; and how these subsets modulate and control the resulting immune response could greatly enhance our ability to develop new, effective vaccines against complex diseases. In this review, we provide an overview of DC subset biology and discuss current immunotherapeutic strategies that utilize DC targeting to modulate and control immune responses. PMID:26489733

  8. Estimating the 3D Pore Size Distribution of Biopolymer Networks from Directionally Biased Data

    PubMed Central

    Lang, Nadine R.; Münster, Stefan; Metzner, Claus; Krauss, Patrick; Schürmann, Sebastian; Lange, Janina; Aifantis, Katerina E.; Friedrich, Oliver; Fabry, Ben

    2013-01-01

    The pore size of biopolymer networks governs their mechanical properties and strongly impacts the behavior of embedded cells. Confocal reflection microscopy and second harmonic generation microscopy are widely used to image biopolymer networks; however, both techniques fail to resolve vertically oriented fibers. Here, we describe how such directionally biased data can be used to estimate the network pore size. We first determine the distribution of distances from random points in the fluid phase to the nearest fiber. This distribution follows a Rayleigh distribution, regardless of isotropy and data bias, and is fully described by a single parameter—the characteristic pore size of the network. The bias of the pore size estimate due to the missing fibers can be corrected by multiplication with the square root of the visible network fraction. We experimentally verify the validity of this approach by comparing our estimates with data obtained using confocal fluorescence microscopy, which represents the full structure of the network. As an important application, we investigate the pore size dependence of collagen and fibrin networks on protein concentration. We find that the pore size decreases with the square root of the concentration, consistent with a total fiber length that scales linearly with concentration. PMID:24209841

  9. Suppressing the relaxation oscillation noise of injection-locked WRC-FPLD for directly modulated OFDM transmission.

    PubMed

    Cheng, Min-Chi; Chi, Yu-Chieh; Li, Yi-Cheng; Tsai, Cheng-Ting; Lin, Gong-Ru

    2014-06-30

    By up-shifting the relaxation oscillation peak and suppressing its relative intensity noise in a weak-resonant-cavity Fabry-Perot laser diode (WRC-FPLD) under intense injection-locking, the directly modulated transmission of optical 16 quadrature amplitude modulation (QAM) orthogonal frequency division multiplexing (OFDM) data-stream is demonstrated. The total bit rate of up to 20 Gbit/s within 5-GHz bandwidth is achieved by using the OFDM subcarrier pre-leveling technique. With increasing the injection-locking power from -12 to -3 dBm, the effective reduction on threshold current of the WRC-FPLD significantly shifts its relaxation oscillation frequency from 5 to 7.5 GHz. This concurrently induces an up-shift of the peak relative intensity noise (RIN) of the WRC-FPLD, and effectively suppresses the background RIN level to -104 dBc/Hz within the OFDM band between 3 and 6 GHz. The enhanced signal-to-noise ratio from 16 to 20 dB leads to a significant reduction of bit-error-rate (BER) of the back-to-back transmitted 16-QAM-OFDM data from 1.3 × 10(-3) to 5 × 10(-5), which slightly degrades to 1.1 × 10(-4) after 25-km single-mode fiber (SMF) transmission. However, the enlarged injection-locking power from -12 to -3 dBm inevitably declines the modulation throughput and increases its negative throughput slope from -0.8 to -1.9 dBm/GHz. After pre-leveling the peak amplitude of the OFDM subcarriers to compensate the throughput degradation of the directly modulated WRC-FPLD, the BER under 25-km SMF transmission can be further improved to 3 × 10(-5) under a receiving power of -3 dBm. PMID:24977832

  10. Site-directed mutagenesis of serine 158 demonstrates its role in spinach leaf sucrose-phosphate synthase modulation

    NASA Technical Reports Server (NTRS)

    Toroser, D.; McMichael, R. Jr; Krause, K. P.; Kurreck, J.; Sonnewald, U.; Stitt, M.; Huber, S. C.; Davies, E. (Principal Investigator)

    1999-01-01

    Site-directed mutagenesis of spinach sucrose-phosphate synthase (SPS) was performed to investigate the role of Ser158 in the modulation of spinach leaf SPS. Tobacco plants expressing the spinach wild-type (WT), S158A, S158T and S157F/S158E SPS transgenes were produced. Expression of transgenes appeared not to reduce expression of the tobacco host SPS. SPS activity in the WT and the S158T SPS transgenics showed light/dark modulation, whereas the S158A and S157F/S158E mutants were not similarly light/dark modulated: the S158A mutant enzyme was not inactivated in the dark, and the S157F/S158E was not activated in the light. The inability to modulate the activity of the S158A mutant enzyme by protein phosphorylation was demonstrated in vitro. The WT spinach enzyme immunopurified from dark transgenic tobacco leaves had a low initial activation state, and could be activated by PP2A and subsequently inactivated by SPS-kinase plus ATP. Rapid purification of the S158A mutant enzyme from dark leaves of transgenic plants using spinach-specific monoclonal antibodies yielded enzyme that had a high initial activation state, and pre-incubation with leaf PP2A or ATP plus SPS-kinase (the PKIII enzyme) caused little modulation of activity. The results demonstrate the regulatory significance of Ser158 as the major site responsible for dark inactivation of spinach SPS in vivo, and indicate that the significance of phosphorylation is the introduction of a negative charge at the Ser158 position.

  11. Scaling analysis for the adsorption transition in a watermelon network of n directed non-intersecting walks.

    E-print Network

    Essam, John W.

    Scaling analysis for the adsorption transition in a watermelon network of n directed non so we derive the asymptotics of the partition function of a watermelon network of n such walks-avoiding walks, adsorption transition, watermelon network. email: aleks@ms.unimelb.edu.au, j

  12. Inference of directed climate networks: role of instability of causality estimation methods

    NASA Astrophysics Data System (ADS)

    Hlinka, Jaroslav; Hartman, David; Vejmelka, Martin; Paluš, Milan

    2013-04-01

    Climate data are increasingly analyzed by complex network analysis methods, including graph-theoretical approaches [1]. For such analysis, links between localized nodes of climate network are typically quantified by some statistical measures of dependence (connectivity) between measured variables of interest. To obtain information on the directionality of the interactions in the networks, a wide range of methods exists. These can be broadly divided into linear and nonlinear methods, with some of the latter having the theoretical advantage of being model-free, and principally a generalization of the former [2]. However, as a trade-off, this generality comes together with lower accuracy - in particular if the system was close to linear. In an overall stationary system, this may potentially lead to higher variability in the nonlinear network estimates. Therefore, with the same control of false alarms, this may lead to lower sensitivity for detection of real changes in the network structure. These problems are discussed on the example of daily SAT and SLP data from the NCEP/NCAR reanalysis dataset. We first reduce the dimensionality of data using PCA with VARIMAX rotation to detect several dozens of components that together explain most of the data variability. We further construct directed climate networks applying a selection of most widely used methods - variants of linear Granger causality and conditional mutual information. Finally, we assess the stability of the detected directed climate networks by computing them in sliding time windows. To understand the origin of the observed instabilities and their range, we also apply the same procedure to two types of surrogate data: either with non-stationarity in network structure removed, or imposed in a controlled way. In general, the linear methods show stable results in terms of overall similarity of directed climate networks inferred. For instance, for different decades of SAT data, the Spearman correlation of edge weights in the networks is ~ 0.6. The networks constructed using nonlinear measures were in general less stable both in real data and stationarized surrogates. Interestingly, when the nonlinear method parameters are optimized with respect to temporal stability of the networks, the networks seem to converge close to those detected by linear Granger causality. This provides further evidence for the hypothesis of overall sparsity and weakness of nonlinear coupling in climate networks on this spatial and temporal scale [3] and sufficient support for the use of linear methods in this context, unless specific clearly detectable nonlinear phenomena are targeted. Acknowledgement: This study is supported by the Czech Science Foundation, Project No. P103/11/J068. [1] Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M. & Hwang, D. U.: Complex networks: Structure and dynamics, Physics Reports, 2006, 424, 175-308 [2] Barnett, L.; Barrett, A. B. & Seth, A. K.: Granger Causality and Transfer Entropy Are Equivalent for Gaussian Variables, Physical Review Letters, 2009, 103, 238701 [3] Hlinka, J.; Hartman, D.; Vejmelka, M.; Novotná, D.; Paluš, M.: Non-linear dependence and teleconnections in climate data: sources, relevance, nonstationarity, submitted preprint (http://arxiv.org/abs/1211.6688)

  13. Asymmetric friction of non-motor MAPs can lead to their directional motion in active microtubule networks

    PubMed Central

    Forth, Scott; Hsia, Kuo-Chiang; Shimamoto, Yuta; Kapoor, Tarun M.

    2014-01-01

    Summary Diverse cellular processes require microtubules to be organized into distinct structures, such as asters or bundles. Within these dynamic motifs, microtubule-associated proteins (MAPs) are frequently under load, but how force modulates these proteins’ function is poorly understood. Here, we combine optical-trapping with TIRF-based microscopy to measure the force-dependence of microtubule interaction for three non-motor MAPs (NuMA, PRC1, and EB1) required for cell division. We find that frictional forces increase non-linearly with MAP velocity across microtubules and depend on filament polarity, with NuMA’s friction being lower when moving towards minus-ends, EB1’s lower towards plus-ends, and PRC1 exhibiting no directional preference. Mathematical models predict, and experiments confirm, that MAPs with asymmetric friction can move directionally within active microtubule pairs they crosslink. Our findings reveal how non-motor MAPs can generate frictional resistance in dynamic cytoskeletal networks via micromechanical adaptations whose anisotropy may be optimized for MAP localization and function within cellular structures. PMID:24725408

  14. Attitudes towards Social Networking and Sharing Behaviors among Consumers of Direct-to-Consumer Personal Genomics

    PubMed Central

    Lee, Sandra Soo-Jin; Vernez, Simone L.; Ormond, K.E.; Granovetter, Mark

    2013-01-01

    Little is known about how consumers of direct-to-consumer personal genetic services share personal genetic risk information. In an age of ubiquitous online networking and rapid development of social networking tools, understanding how consumers share personal genetic risk assessments is critical in the development of appropriate and effective policies. This exploratory study investigates how consumers share personal genetic information and attitudes towards social networking behaviors. Methods: Adult participants aged 23 to 72 years old who purchased direct-to-consumer genetic testing from a personal genomics company were administered a web-based survey regarding their sharing activities and social networking behaviors related to their personal genetic test results. Results: 80 participants completed the survey; of those, 45% shared results on Facebook and 50.9% reported meeting or reconnecting with more than 10 other individuals through the sharing of their personal genetic information. For help interpreting test results, 70.4% turned to Internet websites and online sources, compared to 22.7% who consulted their healthcare providers. Amongst participants, 51.8% reported that they believe the privacy of their personal genetic information would be breached in the future. Conclusion: Consumers actively utilize online social networking tools to help them share and interpret their personal genetic information. These findings suggest a need for careful consideration of policy recommendations in light of the current ambiguity of regulation and oversight of consumer initiated sharing activities. PMID:25562728

  15. The Mechanism Research of Qishen Yiqi Formula by Module-Network Analysis

    PubMed Central

    Zheng, Shichao; Zhang, Yanling; Qiao, Yanjiang

    2015-01-01

    Qishen Yiqi formula (QSYQ) has the effect of tonifying Qi and promoting blood circulation, which is widely used to treat the cardiovascular diseases with Qi deficiency and blood stasis syndrome. However, the mechanism of QSYQ to tonify Qi and promote blood circulation is rarely reported at molecular or systems level. This study aimed to elucidate the mechanism of QSYQ based on the protein interaction network (PIN) analysis. The targets' information of the active components was obtained from ChEMBL and STITCH databases and was further used to search against protein-protein interactions by String database. Next, the PINs of QSYQ were constructed by Cytoscape and were analyzed by gene ontology enrichment analysis based on Markov Cluster algorithm. Finally, based on the topological parameters, the properties of scale-free, small world, and modularity of the QSYQ's PINs were analyzed. And based on function modules, the mechanism of QSYQ was elucidated. The results indicated that Qi-tonifying efficacy of QSYQ may be partly attributed to the regulation of amino acid metabolism, carbohydrate metabolism, lipid metabolism, and cAMP metabolism, while QSYQ improves the blood stasis through the regulation of blood coagulation and cardiac muscle contraction. Meanwhile, the “synergy” of formula compatibility was also illuminated. PMID:26379745

  16. Hexapeptide-11 is a novel modulator of the proteostasis network in human diploid fibroblasts

    PubMed Central

    Sklirou, Aimilia D.; Ralli, Marianna; Dominguez, Maria; Papassideri, Issidora; Skaltsounis, Alexios-Leandros; Trougakos, Ioannis P.

    2015-01-01

    Despite the fact that several natural products (e.g. crude extracts or purified compounds) have been found to activate cell antioxidant responses and/or delay cellular senescence the effect(s) of small peptides on cell viability and/or modulation of protective mechanisms (e.g. the proteostasis network) remain largely elusive. We have thus studied a hexapeptide (Hexapeptide-11) of structure Phe–Val–Ala–Pro–Phe–Pro (FVAPFP) originally isolated from yeast extracts and later synthesized by solid state synthesis to high purity. We show herein that Hexapeptide-11 exhibits no significant toxicity in normal human diploid lung or skin fibroblasts. Exposure of fibroblasts to Hexapeptide-11 promoted dose and time-dependent activation of proteasome, autophagy, chaperones and antioxidant responses related genes. Moreover, it promoted increased nuclear accumulation of Nrf2; higher expression levels of proteasomal protein subunits and increased proteasome peptidase activities. In line with these findings we noted that Hexapeptide-11 conferred significant protection in fibroblasts against oxidative-stress-mediated premature cellular senescence, while at in vivo skin deformation assays in human subjects it improved skin elasticity. Finally, Hexapeptide-11 was found to induce the activity of extracellular MMPs and it also suppressed cell migration. Our presented findings indicate that Hexapeptide-11 is a promising anti-ageing agent. PMID:25974626

  17. Modulation of cultured neural networks using neurotrophin release from hydrogel-coated microelectrode arrays

    PubMed Central

    Jun, Sang Beom; Hynd, Matthew R.; Dowell-Mesfin, Natalie M.; Al-Kofahi, Yousef; Roysam, Badrinath; Shain, William; Kim, Sung June

    2009-01-01

    Polyacrylamide and poly(ethylene glycol) diacrylate hydrogels were synthesized and characterized for use as drug-release and substrates for neuron cell culture. Protein release kinetics was determined by incorporating bovine serum albumin (BSA) into hydrogels during polymerization. To determine if hydrogel incorporation and release affects bioactivity, alkaline phosphatase was incorporated into hydrogels and released enzyme activity determined using the fluorescence-based ELF-97 assay. Hydrogels were then used to deliver brain derived neurotrophic factor (BDNF) from hydrogels polymerized over planar microelectrode arrays (MEA). Primary hippocampal neurons were cultured on both control and neurotrophin-containing hydrogel-coated MEAs. The effect of released BDNF on neurite length and process arborization was investigated using automated image analysis. Increased spontaneous activity as a response to released BDNF was recorded from the neurons cultured on top of hydrogel layers. These results demonstrate that proteins of biological interest can be incorporated into hydrogels to modulate development and function of cultured neural networks. These results also set the stage for development of hydrogel-coated neural prosthetic devices for local delivery of various biologically active molecules. PMID:18477815

  18. Virus-induced gene complementation reveals a transcription factor network in modulation of tomato fruit ripening

    PubMed Central

    Zhou, Tao; Zhang, Hang; Lai, Tongfei; Qin, Cheng; Shi, Nongnong; Wang, Huizhong; Jin, Mingfei; Zhong, Silin; Fan, Zaifeng; Liu, Yule; Wu, Zirong; Jackson, Stephen; Giovannoni, James J.; Rolin, Dominique; Gallusci, Philippe; Hong, Yiguo

    2012-01-01

    Plant virus technology, in particular virus-induced gene silencing, is a widely used reverse- and forward-genetics tool in plant functional genomics. However the potential of virus technology to express genes to induce phenotypes or to complement mutants in order to understand the function of plant genes is not well documented. Here we exploit Potato virus X as a tool for virus-induced gene complementation (VIGC). Using VIGC in tomato, we demonstrated that ectopic viral expression of LeMADS-RIN, which encodes a MADS-box transcription factor (TF), resulted in functional complementation of the non-ripening rin mutant phenotype and caused fruits to ripen. Comparative gene expression analysis indicated that LeMADS-RIN up-regulated expression of the SBP-box (SQUAMOSA promoter binding protein-like) gene LeSPL-CNR, but down-regulated the expression of LeHB-1, an HD-Zip homeobox TF gene. Our data support the hypothesis that a transcriptional network may exist among key TFs in the modulation of fruit ripening in tomato. PMID:23150786

  19. Modulation of cultured neural networks using neurotrophin release from hydrogel-coated microelectrode arrays

    NASA Astrophysics Data System (ADS)

    Jun, Sang Beom; Hynd, Matthew R.; Dowell-Mesfin, Natalie M.; Al-Kofahi, Yousef; Roysam, Badrinath; Shain, William; Kim, Sung June

    2008-06-01

    Polyacrylamide and poly(ethylene glycol) diacrylate hydrogels were synthesized and characterized for use as drug release and substrates for neuron cell culture. Protein release kinetics was determined by incorporating bovine serum albumin (BSA) into hydrogels during polymerization. To determine if hydrogel incorporation and release affect bioactivity, alkaline phosphatase was incorporated into hydrogels and a released enzyme activity determined using the fluorescence-based ELF-97 assay. Hydrogels were then used to deliver a brain-derived neurotrophic factor (BDNF) from hydrogels polymerized over planar microelectrode arrays (MEAs). Primary hippocampal neurons were cultured on both control and neurotrophin-containing hydrogel-coated MEAs. The effect of released BDNF on neurite length and process arborization was investigated using automated image analysis. An increased spontaneous activity as a response to the released BDNF was recorded from the neurons cultured on the top of hydrogel layers. These results demonstrate that proteins of biological interest can be incorporated into hydrogels to modulate development and function of cultured neural networks. These results also set the stage for development of hydrogel-coated neural prosthetic devices for local delivery of various biologically active molecules.

  20. Silicon microring modulator for 40 Gb/s NRZ-OOK metro networks in O-band.

    PubMed

    Xuan, Zhe; Ma, Yangjin; Liu, Yang; Ding, Ran; Li, Yunchu; Ophir, Noam; Lim, Andy Eu-Jin; Lo, Guo-Qiang; Magill, Peter; Bergman, Keren; Baehr-Jones, Tom; Hochberg, Michael

    2014-11-17

    A microring-based silicon modulator operating at 40 Gb/s near 1310 nm is demonstrated for the first time to our knowledge. NRZ-OOK signals at 40 Gb/s with 6.2 dB extinction ratio are observed by applying a 4.8 Vpp driving voltage and biasing the modulator at 7 dB insertion loss point. The energy efficiency is 115 fJ/bit. The transmission performance of 40 Gb/s NRZ-OOK through 40 km of standard single mode fiber without dispersion compensation is also investigated. We show that the link suffers negligible dispersion penalty. This makes the modulator a potential candidate for metro network applications. PMID:25402070

  1. Social networks and future direction for obesity research: A scoping review.

    PubMed

    Nam, Soohyun; Redeker, Nancy; Whittemore, Robin

    2015-01-01

    Despite significant efforts to decrease obesity rates, the prevalence of obesity continues to increase in the United States. Obesity risk behaviors including physical inactivity, unhealthy eating, and sleep deprivation are intertwined during daily life and are difficult to improve in the current social environment. Studies show that social networks-the thick webs of social relations and interactions-influence various health outcomes, such as HIV risk behaviors, alcohol consumption, smoking, depression, and cardiovascular mortality; however, there is limited information on the influences of social networks on obesity and obesity risk behaviors. Given the complexities of the biobehavioral pathology of obesity and the lack of clear evidence of effectiveness and sustainability of existing interventions that are usually focused on an individual approach, targeting change in an individual's health behaviors or attitude may not take sociocontextual factors into account; there is a pressing need for a new perspective on this problem. In this review, we evaluate the literature on social networks as a potential approach for obesity prevention and treatment (i.e., how social networks affect various health outcomes), present two major social network data analyses (i.e., egocentric and sociometric analysis), and discuss implications and the future direction for obesity research using social networks. PMID:25982770

  2. Assessing the direction of climate interactions by means of complex networks and information theoretic tools

    E-print Network

    J. Ignacio Deza; Cristina Masoller; Marcelo Barreiro

    2015-02-04

    An estimate of the net direction of climate interactions in different geographical regions is made by constructing a directed climate network from a regular latitude-longitude grid of nodes, using a directionality index (DI) based on conditional mutual information. Two datasets of surface air temperature anomalies - one monthly-averaged and another daily-averaged - are analyzed and compared. The network links are interpreted in terms of known atmospheric tropical and extratropical variability patterns. Specific and relevant geographical regions are selected, the net direction of propagation of the atmospheric patterns is analyzed and the direction of the inferred links is validated by recovering some well-known climate variability structures. These patterns are found to be acting at various time-scales, such as atmospheric waves in the extra-tropics or longer range events in the tropics. This analysis demonstrates the capability of the DI measure to infer the net direction of climate interactions and may contribute to improve the present understanding of climate phenomena and climate predictability. The work presented here also stands out as an application of advanced tools to the analysis of empirical, real-world data.

  3. Identification of the direction of the neural network activation with a cellular resolution by fast two-photon imaging

    NASA Astrophysics Data System (ADS)

    Liu, Xiuli; Quan, Tingwei; Zeng, Shaoqun; Lv, Xiaohua

    2011-08-01

    Spatiotemporal activity patterns in local neural networks are fundamental to understanding how information is processed and stored in brain microcircuits. Currently, imaging techniques are able to map the directional activation of macronetworks across brain areas; however, these strategies still fail to resolve the activation direction for fine microcircuits with cellular spatial resolution. Here, we show the capability to identify the activation direction of a multicell network with a cellular resolution and millisecond precision by using fast two-photon microscopy and cross correlation procedures. As an example, we characterized a directional neuronal network in an epilepsy brain slice to provide different initiation delay among multiple neurons defined at a millisecond scale.

  4. Robust and tunable 16.375Gb/s dual-band optical OFDM transmissions over directly modulated VCSEL-based 200m OM2 MMFs.

    PubMed

    Deng, M L; Jiang, N; Duan, X; Giddings, R P; Yi, X W; Cao, B Y; Mansoor, S; Qiu, K; Tang, J M

    2015-01-12

    Utilizing low-cost, 2.2GHz modulation bandwidth, uncooled and standalone directly modulated VCSEL (DM-VCSEL)-based real-time dual-band optical OFDM (OOFDM) transmitters, aggregated 16.375Gb/s transmissions of OOFDM signals having bandwidths approximately 3.8 times higher than the VCSEL manufacturer-specified modulation bandwidths, are experimentally demonstrated, for the first time, over 200m OM2 MMF links based on intensity modulation and direct detection. The aggregated signal transmission capacities of the aforementioned links vary by just 8% for various OM2 MMFs ranging from 100m to 500m, and by just 10% over a 1GHz passband carrier frequency detuning range. Such dual-band OOFDM adaptability-induced excellent performance robustness and large passband frequency tunability can significantly relax the requirements on VCSEL modulation bandwidth for achieving specific transmission performances for cost-sensitive application scenarios such as data centers. PMID:25835683

  5. Quantum dot based photonic devices at 1.3 ?m: Direct modulation, mode-locking, SOAs and VCSELs

    NASA Astrophysics Data System (ADS)

    Laemmlin, M.; Fiol, G.; Kuntz, M.; Hopfer, F.; Mutig, A.; Ledentsov, N. N.; Kovsh, A. R.; Schubert, C.; Jacob, A.; Umbach, A.; Bimberg, D.

    2006-03-01

    We present results on directly modulated lasers with high-reflectivity coating, mode-locked lasers with a gain and absorber section, and semiconductor optical amplifiers (SOA) with anti-reflection coating, all based on InGaAs/GaAs quantum dot (QD) material emitting at 1.3 ?m. Error free 8 and 10 Gb/s data modulation is presented. 80 GHz passive mode-locking of two-section QD lasers is reported. Hybrid mode-locking was achieved at 40 GHz. The minimum pulse width at 80 GHz was 1.5 ps, with a time-bandwidth product of 1.7. QD SOAs are shown to have a chip gain larger than 26 dB. Modeling of the gain characteristics of these devices predicts 40 dB amplification under ideal biasing and input power. QD-VCSEL with 17 p-modulation doped QD layers placed in 5 field intensity antinodes and fully doped GaAs/AlGaAs DBRs show a peak multimode RT cw output power of 1.8 mW and differential efficiency of 20%. The maximum -3dB bandwidth is 3 GHz.

  6. Walking Drosophila align with the e-vector of linearly polarized light through directed modulation of angular acceleration

    PubMed Central

    Velez, Mariel M.; Wernet, Mathias F.; Clark, Damon A.

    2014-01-01

    Understanding the mechanisms that link sensory stimuli to animal behavior is a central challenge in neuroscience. The quantitative description of behavioral responses to defined stimuli has led to a rich understanding of different behavioral strategies in many species. One important navigational cue perceived by many vertebrates and insects is the e-vector orientation of linearly polarized light. Drosophila manifests an innate orientation response to this cue (‘polarotaxis’), aligning its body axis with the e-vector field. We have established a population-based behavioral paradigm for the genetic dissection of neural circuits guiding polarotaxis to both celestial as well as reflected polarized stimuli. However, the behavioral mechanisms by which flies align with a linearly polarized stimulus remain unknown. Here, we present a detailed quantitative description of Drosophila polarotaxis, systematically measuring behavioral parameters that are modulated by the stimulus. We show that angular acceleration is modulated during alignment, and this single parameter may be sufficient for alignment. Furthermore, using monocular deprivation, we show that each eye is necessary for modulating turns in the ipsilateral direction. This analysis lays the foundation for understanding how neural circuits guide these important visual behaviors. PMID:24810784

  7. Does Gaze Direction Modulate Facial Expression Processing in Children with Autism Spectrum Disorder?

    ERIC Educational Resources Information Center

    Akechi, Hironori; Senju, Atsushi; Kikuchi, Yukiko; Tojo, Yoshikuni; Osanai, Hiroo; Hasegawa, Toshikazu

    2009-01-01

    Two experiments investigated whether children with autism spectrum disorder (ASD) integrate relevant communicative signals, such as gaze direction, when decoding a facial expression. In Experiment 1, typically developing children (9-14 years old; n = 14) were faster at detecting a facial expression accompanying a gaze direction with a congruent…

  8. Comparison Between Hybrid Direct Aperture Optimized Intensity-Modulated Radiotherapy and Forward Planning Intensity-Modulated Radiotherapy for Whole Breast Irradiation

    SciTech Connect

    Descovich, Martina; Fowble, Barbara; Bevan, Alison; Schechter, Naomi; Park, Catherine; Xia Ping

    2010-01-15

    Purpose: To investigate the planning efficiency and dosimetric characteristics of hybrid direct aperture optimized (hDAO) intensity-modulated radiotherapy (IMRT) compared with forward planning (FP)-IMRT for whole breast irradiation with two tangential beams. Methods and Materials: A total of 15 patients with left-sided breast cancer, categorized with three different breast volumes, were selected for this study. All patients were treated with FP plans to 50 Gy in 25 fractions. The hDAO plans were created by combining two open fields with eight segments in two tangential beam directions and were inversely optimized. Results: The FP and hDAO plans achieved similar breast coverage and sparing of critical organs. The volume of breast receiving 105% of the prescription dose was significantly smaller in the hDAO than in the FP plans: 25% vs. 63% (p = .008) for small, 22% vs. 57% (p = .005) for medium, and 28% vs. 53% (p = .005) for large breasts. Furthermore, the tumor cavity coverage was slightly better in the hDAO plans (92.4% vs. 90.9%). Conclusion: Compared with FP-IMRT, hDAO-IMRT provided dosimetric advantages, significantly reducing the size of the hot spot and slightly improving the coverage of the tumor cavity. In addition, hDAO-IMRT required less planning time and was less dependent on the planner's ability.

  9. Mesoporous silica nanoparticle-based substrates for cell directed delivery of Notch signalling modulators to control myoblast differentiation.

    PubMed

    Böcking, Dominique; Wiltschka, Oliver; Niinimäki, Jenni; Shokry, Hussein; Brenner, Rolf; Lindén, Mika; Sahlgren, Cecilia

    2014-01-01

    Biochemical cues are critical to control stem cell function and can be utilized to develop smart biomaterials for stem cell engineering. The challenge is to deliver these cues in a restricted manner with spatial and temporal control. Here we have developed bilayer films of mesoporous silica nanoparticles for delayed cellular delivery of Notch modulators to promote muscle stem cell differentiation. We demonstrate that drug-loaded particles are internalized from the particle-covered surface, which allows for direct delivery of the drug into the cell and a delayed and confined drug release. Substrates of particles loaded with ?-secretase-inhibitors, which block the Notch signalling pathway, promoted efficient differentiation of myoblasts. The particle substrates were fully biocompatible and did not interfere with the inherent differentiation process. We further demonstrate that impregnating commercially available, biocompatible polymer scaffolds with MSNs allows for a free standing substrate for cell directed drug delivery. PMID:24316607

  10. A high Reliability Module with Thermoelectric Device by Molding Technology for M2M Wireless Sensor Network

    NASA Astrophysics Data System (ADS)

    Nakagawa, K.; Tanaka, T.; Suzuki, T.

    2014-11-01

    This paper presents the fabrication of a new energy harvesting module that used the thermoelectric device (TED) by using molding technology. The output voltage per heater temperature of the TED module at 20 °C ambient temperature is 8mV/K and similar to the result with the aluminium heat sink which is almost the same fin size as the TED module. The accelerated environmental tests are performed on damp heat test that is an aging test under high temperature and high humidity, cold test and highly accelerated temperature and humidity stress test (HAST) for the purpose of evaluating the electrical reliability in harsh environments. Every result of tests indicates that the TED and circuit board can be properly protected from harsh temperature and humidity by using molding technology, because the output voltage of after tested modules is reduced by less than 5%.This study presents a novel fabrication method for a high reliability TED-installed module appropriate for Machine to Machine wireless sensor networks

  11. A high reliability module with thermoelectric device by molding technology for M2M wireless sensor network

    NASA Astrophysics Data System (ADS)

    Nakagawa, K.; Tanaka, T.; Suzuki, T.

    2015-10-01

    This paper presents the fabrication of a new energy harvesting module that uses a thermoelectric device (TED) by using molding technology. Through molding technology, the TED and circuit board can be properly protected and a heat-radiating fin structure can be simultaneously constructed. The output voltage per heater temperature of the TED module at 20 °C ambient temperature is 8 mV K-1, similar to the result with the aluminum heat sink which is almost the same fin size as the TED module. The accelerated environmental tests are performed on a damp heat test, which is an aging test under high temperature and high humidity, highly accelerated temperature, and humidity stress test (HAST) for the purpose of evaluating the electrical reliability in harsh environments, cold test and thermal cycle test to evaluate degrading characteristics by cycling through two temperatures. All test results indicate that the TED and circuit board can be properly protected from harsh temperature and humidity by using molding technology because the output voltage of after-tested modules is reduced by less than 5%. This study presents a novel fabrication method for a high reliability TED-installed module appropriate for Machine to Machine wireless sensor networks.

  12. A Study of an Optical Lunar Surface Communications Network with High Bandwidth Direct to Earth Link

    NASA Technical Reports Server (NTRS)

    Wilson, K.; Biswas, A.; Schoolcraft, J.

    2011-01-01

    Analyzed optical DTE (direct to earth) and lunar relay satellite link analyses, greater than 200 Mbps downlink to 1-m Earth receiver and greater than 1 Mbps uplink achieved with mobile 5-cm lunar transceiver, greater than 1Gbps downlink and greater than 10 Mpbs uplink achieved with 10-cm stationary lunar transceiver, MITLL (MIT Lincoln Laboratory) 2013 LLCD (Lunar Laser Communications Demonstration) plans to demonstrate 622 Mbps downlink with 20 Mbps uplink between lunar orbiter and ground station; Identified top five technology challenges to deploying lunar optical network, Performed preliminary experiments on two of challenges: (i) lunar dust removal and (ii)DTN over optical carrier, Exploring opportunities to evaluate DTN (delay-tolerant networking) over optical link in a multi-node network e.g. Desert RATS.

  13. Network Offoaded Hierarchical Collectives Using ConnectX-2's CORE-Direct Capabilities

    SciTech Connect

    Rabinovitz, Ishai; Shamis, Pavel; Graham, Richard L; Bloch, Noam; Shainer, Gilad

    2010-01-01

    As the scale of High Performance Computing (HPC) systems continues to increase, demanding that we extract even more parallelism from applications, the need to move communication management away from the Central Processing Unit (CPU) becomes even greater. Moving this management to the network, frees up CPU cycles for computation, making it possible to overlap computation and communication. In this paper we continue to investigate how to best use the new CORE-Direct support added in the ConnectX-2 Host Channel Adapter (HCA) for creating high performance, asynchronous collective operations that are managed by the HCA. Specifically we consider the network topology, creating a two-level communication hierarchy, reducing the MPI Barrier completion time by 45%, from 26.59 microseconds, when not considering network topology, to 14.72 microseconds, with the CPU based collective barrier operation completing in 19.04 microseconds. The nonblocking barrier algorithm has similar performance, with about 50% of that time available for computation.

  14. Fingolimod: direct CNS effects of sphingosine 1-phosphate (S1P) receptor modulation and implications in multiple sclerosis therapy

    PubMed Central

    Groves, Aran; Kihara, Yasuyuki; Chun, Jerold

    2013-01-01

    Fingolimod is the first oral disease-modifying therapy approved for relapsing forms of multiple sclerosis (MS). Following phosphorylation in vivo, the active agent, fingolimod phosphate (fingolimod-P), acts as a sphingosine 1-phosphate (S1P) receptor modulator, binding with high affinity to four of the five known S1P receptors (S1P1, S1P3, S1P4 and S1P5). The mechanism of action of fingolimod in MS has primarily been considered as immunomodulatory, whereby fingolimod-P modulates S1P1 on lymphocytes, selectively retaining autoreactive lymphocytes in lymph nodes to reduce damaging infiltration into the central nervous system (CNS). However, emerging evidence indicates that fingolimod has direct effects in the CNS in MS. For example, in the MS animal model of experimental autoimmune encephalomyelitis (EAE), fingolimod is highly efficacious in both a prophylactic and therapeutic setting, yet becomes ineffective in animals selectively deficient for S1P1 on astrocytes, despite maintained normal immunologic receptor expression and functions, and S1P-mediated immune activities. Here, we review S1P signalling effects relevant to MS in neural cell types expressing S1P receptors, including astrocytes, oligodendrocytes, neurons, microglia and dendritic cells. The direct effects of fingolimod on these CNS cells observed in preclinical studies are discussed in view of the functional consequences of reducing neurodegenerative processes and promoting myelin preservation and repair. The therapeutic implications of S1P modulation in the CNS are considered in terms of the clinical outcomes of MS, such as reducing MS-related brain atrophy, and other CNS disorders. Additionally, we briefly outline other existing and investigational MS therapies that may also have effects in the CNS. PMID:23518370

  15. Searching for Bayesian Network Structures in the Space of Restricted Acyclic Partially Directed Graphs

    E-print Network

    Acid, S; 10.1613/jair.1061

    2011-01-01

    Although many algorithms have been designed to construct Bayesian network structures using different approaches and principles, they all employ only two methods: those based on independence criteria, and those based on a scoring function and a search procedure (although some methods combine the two). Within the score+search paradigm, the dominant approach uses local search methods in the space of directed acyclic graphs (DAGs), where the usual choices for defining the elementary modifications (local changes) that can be applied are arc addition, arc deletion, and arc reversal. In this paper, we propose a new local search method that uses a different search space, and which takes account of the concept of equivalence between network structures: restricted acyclic partially directed graphs (RPDAGs). In this way, the number of different configurations of the search space is reduced, thus improving efficiency. Moreover, although the final result must necessarily be a local optimum given the nature of the search m...

  16. Directionality of large-scale resting-state brain networks during eyes open and eyes closed conditions

    PubMed Central

    Zhang, Delong; Liang, Bishan; Wu, Xia; Wang, Zengjian; Xu, Pengfei; Chang, Song; Liu, Bo; Liu, Ming; Huang, Ruiwang

    2015-01-01

    The present study examined directional connections in the brain among resting-state networks (RSNs) when the participant had their eyes open (EO) or had their eyes closed (EC). The resting-state fMRI data were collected from 20 healthy participants (9 males, 20.17 ± 2.74 years) under the EO and EC states. Independent component analysis (ICA) was applied to identify the separated RSNs (i.e., the primary/high-level visual, primary sensory-motor, ventral motor, salience/dorsal attention, and anterior/posterior default-mode networks), and the Gaussian Bayesian network (BN) learning approach was then used to explore the conditional dependencies among these RSNs. The network-to-network directional connections related to EO and EC were depicted, and a support vector machine (SVM) was further employed to identify the directional connection patterns that could effectively discriminate between the two states. The results indicated that the connections among RSNs are directionally connected within a BN during the EO and EC states. The directional connections from the salience network (SN) to the anterior/posterior default-mode networks and the high-level to primary-level visual network were the obvious characteristics of both the EO and EC resting-state BNs. Of the directional connections in BN, the directional connections of the salience and dorsal attention network (DAN) were observed to be discriminative between the EO and EC states. In particular, we noted that the properties of the salience and DANs were in opposite directions. Overall, the present study described the directional connections of RSNs using a BN learning approach during the EO and EC states, and the results suggested that the directionality of the attention systems (i.e., mainly for the salience and the DAN) in resting state might have important roles in switching between the EO and EC conditions. PMID:25745394

  17. UTILITY OF MECHANISTIC MODELS FOR DIRECTING ADVANCED SEPARATIONS RESEARCH & DEVELOPMENT ACTIVITIES: Electrochemically Modulated Separation Example

    SciTech Connect

    Schwantes, Jon M.

    2009-06-01

    The objective for this work was to demonstrate the utility of mechanistic computer models designed to simulate actinide behavior for use in efficiently and effectively directing advanced laboratory R&D activities associated with developing advanced separations methods.

  18. Genetic fow directionality and geographical segregation in Cymodocea Nodosa genetic diversity network

    E-print Network

    Masucci, Paolo; Eguíluz, Vctor M; Hernández-García, Emilio; Serrão, Ester A

    2012-01-01

    We analyse a large data set of genetic markers obtained from populations of Cymodecea Nodosa, a marine plant with habitat ranging from the Aegean Sea to the Atlantic Ocean. We fully develop and test a novel methodology to infer the genetic flow directionality based on the concept of geographical segregation. Then, using the Jensen-Shannon divergence, we are able to extract a directed network of gene flow describing the evolutionary patterns of Cymodecea Nodosa. In particular we recover genetic segregation the marine plant underwent during its evolution. The results are confirmed by natural evidences and are consistent with an independent cross analysis.

  19. Modeling digits. Digit patterning is controlled by a Bmp-Sox9-Wnt Turing network modulated by morphogen gradients.

    PubMed

    Raspopovic, J; Marcon, L; Russo, L; Sharpe, J

    2014-08-01

    During limb development, digits emerge from the undifferentiated mesenchymal tissue that constitutes the limb bud. It has been proposed that this process is controlled by a self-organizing Turing mechanism, whereby diffusible molecules interact to produce a periodic pattern of digital and interdigital fates. However, the identities of the molecules remain unknown. By combining experiments and modeling, we reveal evidence that a Turing network implemented by Bmp, Sox9, and Wnt drives digit specification. We develop a realistic two-dimensional simulation of digit patterning and show that this network, when modulated by morphogen gradients, recapitulates the expression patterns of Sox9 in the wild type and in perturbation experiments. Our systems biology approach reveals how a combination of growth, morphogen gradients, and a self-organizing Turing network can achieve robust and reproducible pattern formation. PMID:25082703

  20. Direct and Indirect Influence of Altruistic Behavior in a Social Network

    PubMed Central

    Liu, Pei-Pei; Safin, Vasiliy; Yang, Barry; Luhmann, Christian C.

    2015-01-01

    Prior research has suggested that recipients of generosity behave more generously themselves (a direct social influence). In contrast, there is conflicting evidence about the existence of indirect influence (i.e., whether interacting with a recipient of generosity causes one to behave more generously), casting doubt on the possibility that altruistic behavior can cascade through social networks. The current study investigated how far selfish and generous behavior can be transmitted through social networks and the cognitive mechanisms that underlie such transmission. Participants played a sequence of public goods games comprising a chain network. This network is advantageous because it permits only a single, unambiguous path of influence. Furthermore, we experimentally manipulated the behavior of the first link in the chain to be either generous or selfish. Results revealed the presence of direct social influence, but no evidence for indirect influence. Results also showed that selfish behavior exerted a substantially greater influence than generous behavior. Finally, expectations about future partners’ behavior strongly mediated the observed social influence, suggesting an adaptive basis for such influence. PMID:26469066

  1. Health system tests CRM data base. Community Health Network uses direct mail to boost physicians.

    PubMed

    Botvin, Judith D

    2003-01-01

    A six-month pilot patient retention project for Community Health Network (CHN), Indianapolis, ran from July 2002 to January 2003. It was a direct mail campaign on behalf of some members of the group practices owned by CHN, designed to test the use of the system's CRM database. Patients of the physicians received personal, dynamically-generated cards reminding them to schedule appointments and tests. Each mailing cost $1.76, including production and mailing. PMID:12645315

  2. Vasopressin modulates lateral septal network activity via two distinct electrophysiological mechanisms.

    PubMed

    Allaman-Exertier, G; Reymond-Marron, I; Tribollet, E; Raggenbass, M

    2007-11-01

    The lateral septal area is rich in vasopressin V(1A) receptors and is densely innervated by vasopressinergic axons, originating mainly from the bed nucleus of the stria terminalis and the amygdala. Genetic and behavioral studies provide evidence that activation of vasopressin receptors in this area plays a determinant role in promoting social recognition. What could be the neuronal mechanism underlying this effect? Using rat brain slices and whole-cell recordings, we found that lateral septal neurons are under the influence of a basal GABAergic inhibitory input. Vasopressin, acting via V(1A) but not V(1B) receptors, greatly enhanced this input in nearly all neurons. The peptide had no effect on miniature inhibitory postsynaptic currents, indicating that it acted on receptors located in the somatodendritic membrane, rather than on axon terminals, of GABAergic interneurons. Cell-attached recordings showed that vasopressin can cause a direct excitation of a subpopulation of lateral septal neurons by acting via V(1A) but not V(1B) receptors. The presence in the lateral septum of V(1A) but not of V(1B) receptors was confirmed by competition binding studies using light microscopic autoradiography. In conclusion, vasopressin appears to act in the lateral septum in a dual mode: (i) by causing a direct excitation of a subpopulation of neurons, and (ii) by causing an indirect inhibition of virtually all lateral septal neurons. This modulation by vasopressin of the lateral septal circuitry may be part of the neuronal mechanism by which the peptide, acting via V(1A) receptors, promotes social recognition. PMID:17970727

  3. Optical Access Architecture Designs Based on WDM-Direct toward New Generation Networks

    NASA Astrophysics Data System (ADS)

    Miyazawa, Takaya; Harai, Hiroaki

    We present our proposed designs of optical access architecture based on WDM technology toward new-generation networks for two types of topologies: Single-star (SS) and passive-double-star (PDS). We adopt the concept of WDM-direct which links multiple wavelengths to each optical network unit (ONU). Our proposed architecture based on WDM-direct can achieve more than 10Gbps access per ONU. Moreover, our architecture can provide not only conventional bandwidth-shared services but also bandwidth-guaranteed services requiring more than 10Gbps bandwidth by establishing end-to-end lightpaths directly to each ONU, and thus meet high requirements of QoS in new-generation networks. Firstly, we show our proposed designs of SS-type architecture, and experimentally demonstrate the system. We confirm that the optical line terminal (OLT) successfully switches between packet/lightpath data transmissions for each ONU. In addition, we measure and evaluate optical power loss in upstream/downstream transmissions between the OLT and ONUs. Secondly, we show our proposed designs of PDS-type architecture, and theoretically analyze and evaluate the bit-rate capacity of the system.

  4. Selectivity of direct and network-mediated stimulation of the retinal ganglion cells with epi-, sub- and intraretinal electrodes

    NASA Astrophysics Data System (ADS)

    Boinagrov, David; Pangratz-Fuehrer, Susanne; Goetz, Georges; Palanker, Daniel

    2014-04-01

    Objective. Intra-retinal placement of stimulating electrodes can provide close and stable proximity to target neurons. We assessed improvement in stimulation thresholds and selectivity of the direct and network-mediated retinal stimulation with intraretinal electrodes, compared to epiretinal and subretinal placements. Approach. Stimulation thresholds of the retinal ganglion cells (RGCs) in wild-type rat retina were measured using the patch-clamp technique. Direct and network-mediated responses were discriminated using various synaptic blockers. Main results. Three types of RGC responses were identified: short latency (SL, ? < 5 ms) originating in RGCs, medium latency (ML, 3 < ? < 70 ms) originating in the inner nuclear layer and long latency (LL, ? > 40 ms) originating in photoreceptors. Cathodic epiretinal stimulation exhibited the lowest threshold for direct RGC response and the highest direct selectivity (network/direct thresholds ratio), exceeding a factor of 3 with pulse durations below 0.5 ms. For network-mediated stimulation, the lowest threshold was obtained with anodic pulses in OPL position, and its network selectivity (direct/network thresholds ratio) increased with pulse duration, exceeding a factor of 4 at 10 ms. Latency of all three types of responses decreased with increasing strength of the stimulus. Significance. These results define the optimal range of pulse durations, pulse polarities and electrode placement for the retinal prostheses aiming at direct or network-mediated stimulation of RGCs.

  5. Lightning Radio Source Retrieval Using Advanced Lightning Direction Finder (ALDF) Networks

    NASA Technical Reports Server (NTRS)

    Koshak, William J.; Blakeslee, Richard J.; Bailey, J. C.

    1998-01-01

    A linear algebraic solution is provided for the problem of retrieving the location and time of occurrence of lightning ground strikes from an Advanced Lightning Direction Finder (ALDF) network. The ALDF network measures field strength, magnetic bearing and arrival time of lightning radio emissions. Solutions for the plane (i.e., no Earth curvature) are provided that implement all of tile measurements mentioned above. Tests of the retrieval method are provided using computer-simulated data sets. We also introduce a quadratic planar solution that is useful when only three arrival time measurements are available. The algebra of the quadratic root results are examined in detail to clarify what portions of the analysis region lead to fundamental ambiguities in source location. Complex root results are shown to be associated with the presence of measurement errors when the lightning source lies near an outer sensor baseline of the ALDF network. In the absence of measurement errors, quadratic root degeneracy (no source location ambiguity) is shown to exist exactly on the outer sensor baselines for arbitrary non-collinear network geometries. The accuracy of the quadratic planar method is tested with computer generated data sets. The results are generally better than those obtained from the three station linear planar method when bearing errors are about 2 deg. We also note some of the advantages and disadvantages of these methods over the nonlinear method of chi(sup 2) minimization employed by the National Lightning Detection Network (NLDN) and discussed in Cummins et al.(1993, 1995, 1998).

  6. Hypoxia-ischemia disrupts directed interactions within neonatal prefrontal-hippocampal networks.

    PubMed

    Brockmann, Marco D; Kukovic, Maja; Schönfeld, Michael; Sedlacik, Jan; Hanganu-Opatz, Ileana L

    2013-01-01

    Due to improved survival rates and outcome of human infants experiencing a hypoxic-ischemic episode, cognitive dysfunctions have become prominent. They might result from abnormal communication within prefrontal-hippocampal networks, as synchrony and directed interactions between the prefrontal cortex and hippocampus account for mnemonic and executive performance. Here, we elucidate the structural and functional impact of hypoxic-ischemic events on developing prefrontal-hippocampal networks in an immature rat model of injury. The magnitude of infarction, cell loss and astrogliosis revealed that an early hypoxic-ischemic episode had either a severe or a mild/moderate outcome. Without affecting the gross morphology, hypoxia-ischemia with mild/moderate outcome diminished prefrontal neuronal firing and gamma network entrainment. This dysfunction resulted from decreased coupling synchrony within prefrontal-hippocampal networks and disruption of hippocampal theta drive. Thus, early hypoxia-ischemia may alter the functional maturation of neuronal networks involved in cognitive processing by disturbing the communication between the neonatal prefrontal cortex and hippocampus. PMID:24376636

  7. Hypoxia-Ischemia Disrupts Directed Interactions within Neonatal Prefrontal-Hippocampal Networks

    PubMed Central

    Brockmann, Marco D.; Kukovic, Maja; Schönfeld, Michael; Sedlacik, Jan; Hanganu-Opatz, Ileana L.

    2013-01-01

    Due to improved survival rates and outcome of human infants experiencing a hypoxic-ischemic episode, cognitive dysfunctions have become prominent. They might result from abnormal communication within prefrontal-hippocampal networks, as synchrony and directed interactions between the prefrontal cortex and hippocampus account for mnemonic and executive performance. Here, we elucidate the structural and functional impact of hypoxic-ischemic events on developing prefrontal-hippocampal networks in an immature rat model of injury. The magnitude of infarction, cell loss and astrogliosis revealed that an early hypoxic-ischemic episode had either a severe or a mild/moderate outcome. Without affecting the gross morphology, hypoxia-ischemia with mild/moderate outcome diminished prefrontal neuronal firing and gamma network entrainment. This dysfunction resulted from decreased coupling synchrony within prefrontal-hippocampal networks and disruption of hippocampal theta drive. Thus, early hypoxia-ischemia may alter the functional maturation of neuronal networks involved in cognitive processing by disturbing the communication between the neonatal prefrontal cortex and hippocampus. PMID:24376636

  8. Receiver Signal to Noise Ratios for IPDA Lidars Using Sine-wave and Pulsed Laser Modulation and Direct Detections

    NASA Technical Reports Server (NTRS)

    Sun, Xiaoli; Abshire, James B.

    2011-01-01

    Integrated path differential absorption (IPDA) lidar can be used to remotely measure the column density of gases in the path to a scattering target [1]. The total column gas molecular density can be derived from the ratio of the laser echo signal power with the laser wavelength on the gas absorption line (on-line) to that off the line (off-line). 80th coherent detection and direct detection IPDA lidar have been used successfully in the past in horizontal path and airborne remote sensing measurements. However, for space based measurements, the signal propagation losses are often orders of magnitude higher and it is important to use the most efficient laser modulation and detection technique to minimize the average laser power and the electrical power from the spacecraft. This paper gives an analysis the receiver signal to noise ratio (SNR) of several laser modulation and detection techniques versus the average received laser power under similar operation environments. Coherent detection [2] can give the best receiver performance when the local oscillator laser is relatively strong and the heterodyne mixing losses are negligible. Coherent detection has a high signal gain and a very narrow bandwidth for the background light and detector dark noise. However, coherent detection must maintain a high degree of coherence between the local oscillator laser and the received signal in both temporal and spatial modes. This often results in a high system complexity and low overall measurement efficiency. For measurements through atmosphere the coherence diameter of the received signal also limits the useful size of the receiver telescope. Direct detection IPDA lidars are simpler to build and have fewer constraints on the transmitter and receiver components. They can use much larger size 'photon-bucket' type telescopes to reduce the demands on the laser transmitter. Here we consider the two most widely used direct detection IPDA lidar techniques. The first technique uses two CW seeder lasers, one on-line and one offline that are intensity modulated by two different frequency sine-waves signals before being amplified by a common laser amplifier. The receiver uses narrowband amplitude demodulation, or lock-in, Signal processing at the given laser modulation frequencies [3,4]. The laser transmitter operates in a quasi CW mode with the peak power equal to twice the average power. The on-line and off-line lasers can be transmitted at the same time without interference. Another direct detection technique uses a low duty cycle pulsed laser modulation [5,6] with the laser wavelengths alternating between on-line and off-line on successive pulses. The receiver uses time resolved detection and can also provide simultaneous target range measurement. With a lower laser duty cycle it requires a much higher peak laser power for the same average power.

  9. CDK9/cyclin complexes modulate endoderm induction by direct interaction with Mix.3/mixer

    PubMed Central

    Zhu, Haiqing; Doherty, Joanne R.; Kuliyev, Emin; Mead, Paul E.

    2010-01-01

    Mix-related homeodomain proteins are involved in endoderm formation in the early vertebrate embryo. We used a yeast two-hybrid screen to identify proteins that interact with Mix.3/mixer to regulate endoderm induction. We demonstrate that cyclin dependent kinase 9 (CDK9) interacts with the carboxyl terminal domain of Mix.3. CDK9 is the catalytic subunit of the PTEF-b transcription elongation complex that phosphorylates the C-terminal domain of RNA polymerase II to promote efficient elongation of nascent transcripts. Using whole embryo transcription reporter and animal pole explant assays, we show that Mix.3 activity is regulated by CDK9/cyclin complexes. Co-expression of cyclin T2 and cyclin K had different effects on Mix.3 transcriptional activity and endoderm induction. Our data suggests that binding of CDK9, and the recruitment of different cyclin partners, can modulate the endoderm inducing activity of Mix.3 during embryonic development. PMID:19347956

  10. Past Strategies and Future Directions for Identifying AMP-Activated Protein Kinase (AMPK) Modulators

    PubMed Central

    Sinnett, Sarah E.; Brenman, Jay E.

    2014-01-01

    AMP-activated protein kinase (AMPK) is a promising therapeutic target for cancer, type II diabetes, and other illnesses characterized by abnormal energy utilization. During the last decade, numerous labs have published a range of methods for identifying novel AMPK modulators. The current understanding of AMPK structure and regulation, however, has propelled a paradigm shift in which many researchers now consider ADP to be an additional regulatory nucleotide of AMPK. How can the AMPK community apply this new understanding of AMPK signaling to translational research? Recent insights into AMPK structure, regulation, and holoenzyme-sensitive signaling may provide the hindsight needed to clearly evaluate the strengths and weaknesses of past AMPK drug discovery efforts. Improving future strategies for AMPK drug discovery will require pairing the current understanding of AMPK signaling with improved experimental designs. PMID:24583089

  11. Outline of the Web Science optional module, trimester 3.2. Book: Easly & Kleinberg, Networks, Crowds, and Markets: Reasoning About a Highly Connected World.

    E-print Network

    Boucherie, Richard J.

    Outline of the Web Science optional module, trimester 3.2. Book: Easly & Kleinberg, Networks, Crowds, and Markets: Reasoning About a Highly Connected World. https://www.cs.cornell.edu/home/kleinber/networksbook/ Graphs and Social Network We study basic graph theory concepts such as components, triadic closure

  12. Meta-Analysis of Arabidopsis KANADI1 Direct Target Genes Identifies a Basic Growth-Promoting Module Acting Upstream of Hormonal Signaling Pathways.

    PubMed

    Xie, Yakun; Straub, Daniel; Eguen, Tenai; Brandt, Ronny; Stahl, Mark; Martínez-García, Jaime F; Wenkel, Stephan

    2015-10-01

    An intricate network of antagonistically acting transcription factors mediates the formation of a flat leaf lamina of Arabidopsis (Arabidopsis thaliana) plants. In this context, members of the class III homeodomain leucine zipper (HD-ZIPIII) transcription factor family specify the adaxial domain (future upper side) of the leaf, while antagonistically acting KANADI transcription factors determine the abaxial domain (future lower side). Here, we used a messenger RNA sequencing approach to identify genes regulated by KANADI1 (KAN1) and subsequently performed a meta-analysis combining our data sets with published genome-wide data sets. Our analysis revealed that KAN1 acts upstream of several genes encoding auxin biosynthetic enzymes. When exposed to shade, we found three YUCCA genes, YUC2, YUC5, and YUC8, to be transcriptionally up-regulated, which correlates with an increase in the levels of free auxin. When ectopically expressed, KAN1 is able to transcriptionally repress these three YUC genes and thereby block shade-induced auxin biosynthesis. Consequently, KAN1 is able to strongly suppress shade-avoidance responses. Taken together, we hypothesize that HD-ZIPIII/KAN form the basis of a basic growth-promoting module. Hypocotyl extension in the shade and outgrowth of new leaves both involve auxin synthesis and signaling, which are under the direct control of HD-ZIPIII/KAN. PMID:26246448

  13. Meta-Analysis of Arabidopsis KANADI1 Direct Target Genes Identifies a Basic Growth-Promoting Module Acting Upstream of Hormonal Signaling Pathways1[OPEN

    PubMed Central

    Xie, Yakun; Straub, Daniel; Eguen, Tenai; Brandt, Ronny; Stahl, Mark; Martínez-García, Jaime F.; Wenkel, Stephan

    2015-01-01

    An intricate network of antagonistically acting transcription factors mediates the formation of a flat leaf lamina of Arabidopsis (Arabidopsis thaliana) plants. In this context, members of the class III homeodomain leucine zipper (HD-ZIPIII) transcription factor family specify the adaxial domain (future upper side) of the leaf, while antagonistically acting KANADI transcription factors determine the abaxial domain (future lower side). Here, we used a messenger RNA sequencing approach to identify genes regulated by KANADI1 (KAN1) and subsequently performed a meta-analysis combining our data sets with published genome-wide data sets. Our analysis revealed that KAN1 acts upstream of several genes encoding auxin biosynthetic enzymes. When exposed to shade, we found three YUCCA genes, YUC2, YUC5, and YUC8, to be transcriptionally up-regulated, which correlates with an increase in the levels of free auxin. When ectopically expressed, KAN1 is able to transcriptionally repress these three YUC genes and thereby block shade-induced auxin biosynthesis. Consequently, KAN1 is able to strongly suppress shade-avoidance responses. Taken together, we hypothesize that HD-ZIPIII/KAN form the basis of a basic growth-promoting module. Hypocotyl extension in the shade and outgrowth of new leaves both involve auxin synthesis and signaling, which are under the direct control of HD-ZIPIII/KAN. PMID:26246448

  14. Spectral properties of the Google matrix of the World Wide Web and other directed networks Bertrand Georgeot, Olivier Giraud,* and Dima L. Shepelyansky

    E-print Network

    Shepelyansky, Dima

    Spectral properties of the Google matrix of the World Wide Web and other directed networks Bertrand of the Google matrix of various examples of directed networks such as vocabulary networks of dictionaries eigenvalue for Google damping parameter equal to unity. The vocabulary networks have relatively homogeneous

  15. Immune modulation by Bacillus subtilus-based direct-fed microbials in commercial broiler chickens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Direct-fed microbials (DFMs), also known as probiotics, have been successfully used to improve the balance of gut microbiota. Spores of Bacillus subtilis, have been used as DFMs for food animals and humans and our previous studies showed that dietary supplementation of broiler chickens with a B. su...

  16. Contextual Modulation of Reading Rate for Direct versus Indirect Speech Quotations

    ERIC Educational Resources Information Center

    Yao, Bo; Scheepers, Christoph

    2011-01-01

    In human communication, direct speech (e.g., "Mary said: "I'm hungry"") is perceived to be more vivid than indirect speech (e.g., "Mary said [that] she was hungry"). However, the processing consequences of this distinction are largely unclear. In two experiments, participants were asked to either orally (Experiment 1) or silently (Experiment 2,…

  17. Debris Flows in Direct Dark Matter Searches-The modulation effect

    E-print Network

    J. D. Vergados

    2012-05-17

    The effect of some possible non standard WIMP velocity distributions, like the Debris Flows recently proposed, on the direct dark matter detection rates is investigated. We find that such distributions may be deciphered from the data, especially if the time variation of the event rates due to the annual motion of the Earth is observed

  18. A Disk-Based Parallel Implementation for Direct Condensation of Large Permutation Modules

    E-print Network

    Mueller, Jürgen

    * * Eric Robinson J"urgen M"uller Gene Cooperman College of Computer Science tivadar@ccs.neu.edu juergen.mueller@ gene@ccs.neu.edu math A more recent research direction [* *6, 22] looked at using I.1.2 [Symbolic and Algebraic Manipulation

  19. Retrieval intention modulates the effects of directed forgetting instructions on recollection.

    PubMed

    Xiao, Xin; Lucas, Heather D; Paller, Ken A; Ding, Jin-Hong; Guo, Chun-Yan

    2014-01-01

    The neurocognitive basis of memory retrieval is often examined by investigating brain potential old/new effects, which are differences in brain activity between successfully remembered repeated stimuli and correctly rejected new stimuli in a recognition test. In this study, we combined analyses of old/new effects for words with an item-method directed-forgetting manipulation in order to isolate differences between the retrieval processes elicited by words that participants were initially instructed to commit to memory and those that participants were initially instructed to forget. We compared old/new effects elicited by to-be-forgotten (TBF) words with those elicited by to-be-remembered (TBR) words in both an explicit-memory test (a recognition test) and an implicit-memory test (a lexical-decision test). Behavioral results showed clear directed forgetting effects in the recognition test, but not in the lexical decision test. Mirroring the behavioral findings, analyses of brain potentials showed evidence of directed forgetting only in the recognition test. In this test, potentials from 450-650 ms (P600 old/new effects) were more positive for TBR relative to TBF words. By contrast, P600 effects evident during the lexical-decision test did not differ in magnitude between TBR and TBF items. When taken in the context of prior studies that have linked similar parietal old/new effects to the recollection of episodic information, these data suggest that directed-forgetting effects manifest primarily in greater episodic retrieval by TBR than TBF items, and that retrieval intention may be important for these directed-forgetting effects to occur. PMID:25140658

  20. A fronto-striato-subthalamic-pallidal network for goal-directed and habitual inhibition.

    PubMed

    Jahanshahi, Marjan; Obeso, Ignacio; Rothwell, John C; Obeso, José A

    2015-12-01

    Classically, the basal ganglia have been considered to have a role in producing habitual and goal-directed behaviours. In this article, we review recent evidence that expands this role, indicating that the basal ganglia are also involved in neural and behavioural inhibition in the motor and non-motor domains. We then distinguish between goal-directed and habitual (also known as automatic) inhibition mediated by fronto-striato-subthalamic-pallido-thalamo-cortical networks. We also suggest that imbalance between goal-directed and habitual action and inhibition contributes to some manifestations of Parkinson's disease, Tourette syndrome and obsessive-compulsive disorder. Finally, we propose that basal ganglia surgery improves these disorders by restoring a functional balance between facilitation and inhibition. PMID:26530468

  1. [Anti-inflammatory mechanism research of flavonoid compounds in Dalbergiae Odoriferae Lignum by module-based network analysis].

    PubMed

    Zheng, Shi-chao; Ren, Zhen-zhen; Zhang, Yan-ling; Qiao, Yan-jiang

    2015-04-01

    Dalbergiae Odoriferae Lignum as a traditional Chinese medicine (TCM) has been widely used for promoting blood circulation and removing blood stasis. Flavonoid compounds are main chemical constituents of Dalbergiae Odoriferae Lignum, which exert anti-inflammatory property. However, the underlying anti-inflammatory mechanisms of flavonoid compounds are incompletely understood. It has been reported that isoliquiritigenin, liquiritigenin, naringenin and butein possess anti-inflammatory property. The purpose of this study is to illuminate the anti-inflammatory mechanism of flavonoid compounds based on the protein interaction network (PIN) analysis on molecular network level. 130 targets of the main medicinal ingredients of flavonoid compounds were gained though database retrieval. A protein interaction network of flavonoid compounds was constructed with 589 nodes and 216 interactions. By a graph theoretic clustering algorithm Molecular Complex Detection (MCODE), 26 modules were identified and analyzed by Gene ontology (GO) enrichment. Two modules were associated with anti-inflammatory actions. The most interesting finding of this study was that the anti-inflammatory effect of flavonoid compounds may be partly attributable to inhibite FOS, PTGS2 expression, inhibite of IL-1beta release, and block the MAPK pathway and toll-like receptor pathway. PMID:26281599

  2. Network analysis of S. aureus response to ramoplanin reveals modules for virulence factors and resistance mechanisms and characteristic novel genes.

    PubMed

    Subramanian, Devika; Natarajan, Jeyakumar

    2015-12-10

    Staphylococcus aureus is a major human pathogen and ramoplanin is an antimicrobial attributed for effective treatment. The goal of this study was to examine the transcriptomic profiles of ramoplanin sensitive and resistant S. aureus to identify putative modules responsible for virulence and resistance-mechanisms and its characteristic novel genes. The dysregulated genes were used to reconstruct protein functional association networks for virulence-factors and resistance-mechanisms individually. Strong link between metabolic-pathways and development of virulence/resistance is suggested. We identified 15 putative modules of virulence factors. Six hypothetical genes were annotated with novel virulence activity among which SACOL0281 was discovered to be an essential virulence factor EsaD. The roles of MazEF toxin-antitoxin system, SACOL0202/SACOL0201 two-component system and that of amino-sugar and nucleotide-sugar metabolism in virulence are also suggested. In addition, 14 putative modules of resistance mechanisms including modules of ribosomal protein-coding genes and metabolic pathways such as biotin-synthesis, TCA-cycle, riboflavin-biosynthesis, peptidoglycan-biosynthesis etc. are also indicated. PMID:26255091

  3. Beat-length measurement in directional couplers by thermo-optic modulation.

    PubMed

    Gnewuch, H; Román, J E; Hempstead, M; Wilkinson, J S; Ulrich, R

    1996-08-01

    In integrated-optical directional couplers formed by two parallel waveguides we measure the difference Deltabeta = beta(even) - ss(odd) between the propagation constants of the supermodes. We couple them locally by heating a fine spot on one of the guides. When the spot is scanned along the coupler, the output power from one of the guides is found to vary periodically. The period of variation is the modal beat length Lambda = 2pi/Deltabeta. We demonstrate this technique with directional couplers fabricated by K-ion exchange in glass. Beat lengths in the range 0.6 -2.2 mm are measured with an accuracy of +/-0.3%. PMID:19876295

  4. Labeling the Planar Face of Crystalline Cellulose Using Quantum Dots Directed by Type-I Carbohydrate-Binding Modules

    SciTech Connect

    Xu, Q.; Tucker, M. P.; Arenkiel, P.; Ai, X.; Rumbles, G.; Sugiyama, J.; Himmel, M. E.; Ding, S.-Y.

    2009-01-01

    We report a new method for the direct labeling and visualization of crystalline cellulose using quantum dots (QDs) directed by carbohydrate-binding modules (CBMs). Two type-I (surface binding) CBMs belonging to families 2 and 3a were cloned and expressed with dual histidine tags at the N- and C-termini. Semiconductor (CdSe)ZnS QDs were used to label these CBMs following their binding to Valonia cellulose crystals. Using this approach, we demonstrated that QDs are linearly arrayed on cellulose, which implies that these CBMs specifically bind to a planar face of cellulose. Direct imaging has further shown that different sizes (colors) of QDs can be used to label CBMs bound to cellulose. Furthermore, the binding density of QDs arrayed on cellulose was modified predictably by selecting from various combinations of CBMs and QDs of known dimensions. This approach should be useful for labeling and imaging cellulose-containing materials precisely at the molecular scale, thereby supporting studies of the molecular mechanisms of lignocellulose conversion for biofuels production.

  5. Broadband infrared electro-optic modulator having a buried microstrip network

    NASA Technical Reports Server (NTRS)

    Cheo, Peter K. (Inventor); Gilden, Meyer (Inventor)

    1987-01-01

    A microwave infrared modulator having a novel three dimensional structure is presented. The modulator includes a waveguide and metal base with a dielectric wafer buried therebetween. The buried wafer allows for conventional microstrip structures to be employed with larger microstrip electrode dimensions than would otherwise be possible.

  6. Eye Remember You Two: Gaze Direction Modulates Face Recognition in a Developmental Study

    ERIC Educational Resources Information Center

    Smith, Alastair D.; Hood, Bruce M.; Hector, Karen

    2006-01-01

    The effects of gaze direction on memory for faces were studied in children from three different age groups (6-7, 8-9, and 10-11 years old) using a computerized version of a task devised by Hood, Macrae, Cole-Davies and Dias (2003). Participants were presented with a sequence of faces in an encoding phase, and were then required to judge which…

  7. Gap junctions modulate glioma invasion by direct transfer of microRNA

    PubMed Central

    Hong, Xiaoting; Sin, Wun Chey; Harris, Andrew L.; Naus, Christian C.

    2015-01-01

    The invasiveness of high-grade glioma is the primary reason for poor survival following treatment. Interaction between glioma cells and surrounding astrocytes are crucial to invasion. We investigated the role of gap junction mediated miRNA transfer in this context. By manipulating gap junctions with a gap junction inhibitor, siRNAs, and a dominant negative connexin mutant, we showed that functional glioma-glioma gap junctions suppress glioma invasion while glioma-astrocyte and astrocyte-astrocyte gap junctions promote it in an in vitro transwell invasion assay. After demonstrating that glioma-astrocyte gap junctions are permeable to microRNA, we compared the microRNA profiles of astrocytes before and after co-culture with glioma cells, identifying specific microRNAs as candidates for transfer through gap junctions from glioma cells to astrocytes. Further analysis showed that transfer of miR-5096 from glioma cells to astrocytes is through gap junctions; this transfer is responsible, in part, for the pro-invasive effect. Our results establish a role for glioma-astrocyte gap junction mediated microRNA signaling in modulation of glioma invasive behavior, and that gap junction coupling among astrocytes magnifies the pro-invasive signaling. Our findings reveal the potential for therapeutic interventions based on abolishing alteration of stromal cells by tumor cells via manipulation of microRNA and gap junction channel activity. PMID:25978028

  8. Cortical and corticospinal output modulations during reaching movements with varying directions and magnitudes of interaction torques.

    PubMed

    Asmussen, M J; Bailey, A Z; Nelson, A J

    2015-12-17

    The neural command required to coordinate a multi-joint movement is inherently complex. During multi-joint movement of the limb, the force created from movement at one joint may create a torque at a second joint known as an interaction torque. Interaction torques may be assistive or resistive thereby aiding or opposing the motion of the second joint, respectively. For movement to be effectively controlled, the central nervous system should modulate neural output to the muscles to appropriately account for interaction torques. The present study examined the neural output from the primary motor cortex before and during reaching movements that required different combinations of assistive and resistive interaction torques occurring at the shoulder and elbow joints. Using transcranial magnetic stimulation to probe neural output from the primary motor cortex, results indicate that corticospinal output controlling the upper arm is related to resistive interaction torques occurring at the shoulder joint. Further, cortical output to bi-articular muscles is associated with interaction torque and this may be driven by the fact that these muscles are in an advantageous position to control torques produced between inter-connection segments. Humans have a tendency to avoid reaching movements that involve resistive interaction torques and this may be driven by the requirement of increased neural output associated with these movements. PMID:26525892

  9. Multifunctional carbon nanotube/bioceramics modulate the directional growth and activity of osteoblastic cells.

    PubMed

    Mata, D; Oliveira, F J; Ferro, M; Gomes, P S; Fernandes, M H; Lopes, M A; Silval, R F

    2014-05-01

    Biomaterials can still be reinvented to become simple and universal bone regeneration solutions. Following this roadmap, a bone graft of carbon nanotube (CNT)/glass/hydroxyapatite (HA) with controlled CNT agglomeration state was designed with multifunctionalities able to stimulate the bone cell phenotype. The preparation route, the mechanical and electrical behavior and the in vitro profiles of degradation and osteocompatibility were described. A non-destructive dynamic route was found to have a higher influence than the Diels-Alder functionalization one on controlling the CNT agglomerate state in the ceramic-matrix composite. Biologically safe CNT agglomerates, with diameter sizes below 3 microm homogenously distributed, were obtained in non-functionalized and functionalized composites. Yet, the lowest CNT damage and the highest mechanical and electrical properties were found for the non-functionalized materials. Even though that these composites present higher degradation rate at pH:3 than the ceramic matrix, the CNT agglomerates are released with safe diameter sizes. Also, non-functionalized composites allowed cellular adhesion and modulated the orientation of the cell growth, with a proliferation/differentiation relationship favoring osteoblastic functional activity. Findings offer further contributions for bone tissue engineering by showing that multifunctional bone grafts with high electroconductivity, and integrating CNT agglomerates with maximized interfacing area, allow the in situ control of bone cell functions. PMID:24734525

  10. Line coding to enhance the performance of 10-Gb/s CPFSK-ASK directly modulated signals.

    PubMed

    Al-Qazwini, Zaineb; Kim, Hoon

    2010-04-12

    The major drawback of frequency modulation (FM)-based directly modulated laser (DML) is its non-uniform FM response at low frequency range which gives rise to a severe pattern-dependent performance degradation. In this paper, we investigate the use of line coding to deplete the low-frequency spectral contents of the signal and thus to alleviate the degradation. We examine various line codes (8B/10B, 5B/6B, 7B/8B, 9B/10B, and 64B/66B) with continuous-phase frequency-shift keying/ amplitude-shift keying (CPFSK/ASK) signals generated using a DML and a delay interferometer. Experimental demonstrations are performed with a long pseudorandom bit sequence length of 2(20)-1 and the bandwidth expansion by each code is taken into consideration. The results show that among the five codes we tested, 9B/10B code outperforms the other codes in terms of receiver sensitivity an dispersion tolerance. We demonstrate successful transmission of 10-Gb/s CPFSK-ASK signals over 65-km standard single-mode fiber with a bandwidth expansion of only 11.1%. PMID:20588681

  11. Hybrid direct-detection differential phase shift keying-multipulse pulse position modulation techniques for optical communication systems

    NASA Astrophysics Data System (ADS)

    Morra, Ahmed E.; Shalaby, Hossam M. H.; Hegazy, Salem F.; Obayya, Salah S. A.

    2015-12-01

    In this paper, a hybrid differential phase shift keying-multipulse pulse position modulation (DPSK-MPPM) technique is proposed in order to enhance the receiver sensitivity of optical communication systems. Both binary and quadrature formats are adopted in the proposed systems. Direct-detection DPSK schemes that are based on an asymmetric Mach-Zehnder interferometer with a novel ultrafast discrete delay unit are presented to simplify the receiver implementation. Expressions for the bit-error rate (BER) of the proposed hybrid modulation techniques are derived taking into account the effect of the optical amplifier noise. Under the constraints of the same transmitted data rate, bandwidth, and average received optical signal-to-noise ratio, the BER performances of the proposed schemes are then evaluated numerically and compared with that of traditional differential binary phase shift keying (DBPSK), differential quadrature phase shift keying (DQPSK), and MPPM schemes and with that of recent hybrid schemes. Furthermore, a comparison between the proposed systems and the traditional ones is held in terms of the bandwidth-utilization efficiency. Our results reveal that the proposed hybrid schemes are more energy-efficient and have higher receiver sensitivity compared with the traditional ones while improving the bandwidth-utilization efficiency. The proposed DPSK-MPPM system is ready to accommodate adjustable (or variable) bit rates, by virtue of the programmable delay integrated to the receiver system.

  12. Multiplexed dual first-dimension comprehensive two-dimensional gas chromatography-mass spectrometry with contra-directional thermal modulation.

    PubMed

    Savareear, Benjamin; Jacobs, Matthew R; Shellie, Robert A

    2014-10-24

    A multiplexed dual-primary column comprehensive two-dimensional gas chromatography-mass spectrometry approach (2GC×GC-MS) is introduced. The approach splits injected samples into two first-dimension columns with different stationary phases, and recombines the two streams into one second-dimension column that terminates at a single detector. The approach produces two two-dimensional chromatograms for each injection, and is made possible by using a dual-stage modulator operated in contra-directional modulation mode. The dual two-dimensional chromatograms produced by this single detector system provide complementary information due to selectivity differences between the three separation columns used in the column ensemble. An aged Australian tea tree (Melaleuca alternifolia) essential oil was analyzed to demonstrate the 2GC×GC-MS approach. The number of compounds separated by each of the GC×GC separations in the 2GC×GC experiment is comparable to conventional GC×GC experiments with matching column configurations. Robust peak assignment was possible for this sample based on the combination of MS library matches and multiple linear retention index searching. Forty-nine components (22 unique) were identified using a non-polar×mid-polar column combination and 34 components (7 unique) were positively identified using a polar×mid-polar column combination. Twenty-seven peak assignments were corroborated by positive identification in both of the multiplexed separations. PMID:25249490

  13. Empirical study on a directed and weighted bus transport network in China

    NASA Astrophysics Data System (ADS)

    Feng, Shumin; Hu, Baoyu; Nie, Cen; Shen, Xianghao

    2016-01-01

    Bus transport networks are directed complex networks that consist of routes, stations, and passenger flow. In this study, the concept of duplication factor is introduced to analyze the differences between uplinks and downlinks for the bus transport network of Harbin (BTN-H). Further, a new representation model for BTNs is proposed, named as directed-space P. Two empirical characteristics of BTN-H are reported in this paper. First, the cumulative distributions of weighted degree, degree, number of routes that connect to each station, and node weight (peak-hour trips at a station) uniformly follow the exponential law. Meanwhile, the node weight shows positive correlations with the corresponding weighted degree, degree, and number of routes that connect to a station. Second, a new richness parameter of a node is explored by its node weight and the connectivity, weighted connectivity, average shortest path length and efficiency between rich nodes can be fitted by composite exponential functions to demonstrate the rich-club phenomenon.

  14. A polarization-independent liquid crystal phase modulation using polymer-network liquid crystal with orthogonal alignment layers

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Syuan; Lin, Wei-Chih; Tsou, Yu-Shih; Lin, Yi-Hsin

    2012-10-01

    A polarization-independent liquid crystal (LC) phase modulation using polymer-network liquid crystals with orthogonal alignments layers (T-PNLC) is demonstrated. T-PNLC consists of three layers. LC directors in the two layers near glass substrates are orthogonal to each other. In the middle layer, LC directors are perpendicular to the glass substrate. The advantages of such T-PNLC include polarizer-free, larger phase shift (~0.4? rad) than the residual phase type (<0.05? rad), and low operating voltage (< 30Vrms). It does not require bias voltage for avoiding scattering because the refractive index of liquid crystals matches that of polymers. The phase shift of T-PNLC is affected by the cell gap and the curing voltages. The potential applications are laser beam steering, spatial light modulators and electrically tunable micro-lens arrays.

  15. Generation of linear frequency modulation signal with reduced round-off error using pulse-output Direct Digital Synthesis technique.

    PubMed

    Peng, Cheng Y; Ma, Xiao C; Yan, She F; Yang, Li

    2014-02-01

    The pulse-output Direct Digital Synthesis (DDS), in which the overflow signal of the phase accumulator is used for the pulse output, can be easily implemented due to its simple hardware architecture and low algorithm complexity. This paper introduces the fundamentals for generating Linear Frequency Modulation (LFM) pulse using pulse-output DDS technique. Error introducing mechanisms that affect the accuracy of signal's duration, initial phase, and frequency are studied. Extensive analysis of round-off error is given. A modified hardware architecture for LFM pulse generation with reduced round-off error is proposed. Experiment results are given, which shows that the proposed generator is promising in applications such as sonar transmitters. PMID:24593395

  16. Comparison of directed and weighted co-occurrence networks of six languages

    NASA Astrophysics Data System (ADS)

    Gao, Yuyang; Liang, Wei; Shi, Yuming; Huang, Qiuling

    2014-01-01

    To study commonalities and differences among different languages, we select 100 reports from the documents of the United Nations, each of which was written in Arabic, Chinese, English, French, Russian and Spanish languages, separately. Based on these corpora, we construct 6 weighted and directed word co-occurrence networks. Besides all the networks exhibit scale-free and small-world features, we find several new non-trivial results, including connections among English words are denser, and the expression of English language is more flexible and powerful; the connection way among Spanish words is more stringent and this indicates that the Spanish grammar is more rigorous; values of many statistical parameters of the French and Spanish networks are very approximate and this shows that these two languages share many commonalities; Arabic and Russian words have many varieties, which result in rich types of words and a sparse connection among words; connections among Chinese words obey a more uniform distribution, and one inclines to use the least number of Chinese words to express the same complex information as those in other five languages. This shows that the expression of Chinese language is quite concise. In addition, several topics worth further investigating by the complex network approach have been observed in this study.

  17. Directed Virtual Path Layouts in ATM networks? Jean-Claude Bermond ??, Nausica Marlin ??, David Peleg ? ? ?, and St phane Perennes ??

    E-print Network

    Bermond, Jean-Claude

    Directed Virtual Path Layouts in ATM networks? Jean-Claude Bermond ??, Nausica Marlin ??, David-Claude.Bermond, Nausica.Marlin, Stephane.Perennes}@sophia.inria.fr) ? ? ? Department of Applied Mathematics and Computer

  18. Modulation of Estrogen Response Element-Driven Gene Expressions and Cellular Proliferation with Polar Directions by Designer Transcription Regulators

    PubMed Central

    Muyan, Mesut; Güpür, Gizem; Ya?ar, Pelin; Ayaz, Gamze; User, S?rma Damla; Kazan, Hasan Hüseyin; Huang, Yanfang

    2015-01-01

    Estrogen receptor ? (ER?), as a ligand-dependent transcription factor, mediates 17?-estradiol (E2) effects. ER? is a modular protein containing a DNA binding domain (DBD) and transcription activation domains (AD) located at the amino- and carboxyl-termini. The interaction of the E2-activated ER? dimer with estrogen response elements (EREs) of genes constitutes the initial step in the ERE-dependent signaling pathway necessary for alterations of cellular features. We previously constructed monomeric transcription activators, or monotransactivators, assembled from an engineered ERE-binding module (EBM) using the ER?-DBD and constitutively active ADs from other transcription factors. Monotransactivators modulated cell proliferation by activating and repressing ERE-driven gene expressions that simulate responses observed with E2-ER?. We reasoned here that integration of potent heterologous repression domains (RDs) into EBM could generate monotransrepressors that alter ERE-bearing gene expressions and cellular proliferation in directions opposite to those observed with E2-ER? or monotransactivators. Consistent with this, monotransrepressors suppressed reporter gene expressions that emulate the ERE-dependent signaling pathway. Moreover, a model monotransrepressor regulated DNA synthesis, cell cycle progression and proliferation of recombinant adenovirus infected ER-negative cells through decreasing as well as increasing gene expressions with polar directions compared with E2-ER? or monotransactivator. Our results indicate that an ‘activator’ or a ‘repressor’ possesses both transcription activating/enhancing and repressing/decreasing abilities within a chromatin context. Offering a protein engineering platform to alter signal pathway-specific gene expressions and cell growth, our approach could also be used for the development of tools for epigenetic modifications and for clinical interventions wherein multigenic de-regulations are an issue. PMID:26295471

  19. Platelet-activating factor and WEB-2086 directly modulate rat cardiomyocyte contractility.

    PubMed

    Delbridge, L M; Stewart, A G; Goulter, C M; Morgan, T O; Harris, P J

    1994-02-01

    In various isolated cardiac tissue preparations the phospholipid mediator platelet-activating factor (PAF, 1-O-hexadecyl-2-acetyl-sn-glycero-3-phosphorylcholine) may elicit a positive, negative or no inotropic response. In the multicellular preparation it is difficult to differentiate and characterize the direct actions of PAF on the myocardium from the effects due to the release of secondary mediators from non-myocyte cell types. Thus in the present study the inotropic effects of PAF (10(-11), 10(-9), 10(-7) M) and a specific PAF receptor antagonist, WEB-2086, PAF receptor antagonist. WEB-2086, on the contractility of enzymatically isolated adult rat cardiomyocytes have been investigated. PAF (10(-7) M) reduced maximum cell shortening by 23% compared to the initial level, delayed excitation contraction coupling, abbreviated the contraction cycle and reduced the maximum rate of cell lengthening during relaxation. Lower concentrations of PAF elicited smaller negative inotropic responses. There was no evidence of a positive inotropic effect of PAF at any concentration tested or at any time after the onset of treatment. Co-treatment with WEB-2086 (10(-5) M) prevented the negative inotropic response to PAF. WEB-2086 alone increased maximum shortening by 16% compared to initial performance, extended the contraction cycle and increased the maximum rates of shortening and lengthening. WEB-2086 had no effect on excitation contraction coupling latency. The selective alteration of contraction parameters induced by PAF and WEB-2086 indicates that, in addition to antagonizing the negative inotropic action of exogenous PAF, WEB-2086 alone enhances contractility. These results demonstrate that PAF has a direct, receptor-mediated negative inotropic effect on adult contractility. These results demonstrate that PAF has a direct, receptor-mediated negative inotropic effect on adult cardiomyocytes. PMID:8006979

  20. Mesoporous silica nanoparticle-based substrates for cell directed delivery of Notch signalling modulators to control myoblast differentiation

    NASA Astrophysics Data System (ADS)

    Böcking, Dominique; Wiltschka, Oliver; Niinimäki, Jenni; Shokry, Hussein; Brenner, Rolf; Lindén, Mika; Sahlgren, Cecilia

    2014-01-01

    Biochemical cues are critical to control stem cell function and can be utilized to develop smart biomaterials for stem cell engineering. The challenge is to deliver these cues in a restricted manner with spatial and temporal control. Here we have developed bilayer films of mesoporous silica nanoparticles for delayed cellular delivery of Notch modulators to promote muscle stem cell differentiation. We demonstrate that drug-loaded particles are internalized from the particle-covered surface, which allows for direct delivery of the drug into the cell and a delayed and confined drug release. Substrates of particles loaded with ?-secretase-inhibitors, which block the Notch signalling pathway, promoted efficient differentiation of myoblasts. The particle substrates were fully biocompatible and did not interfere with the inherent differentiation process. We further demonstrate that impregnating commercially available, biocompatible polymer scaffolds with MSNs allows for a free standing substrate for cell directed drug delivery.Biochemical cues are critical to control stem cell function and can be utilized to develop smart biomaterials for stem cell engineering. The challenge is to deliver these cues in a restricted manner with spatial and temporal control. Here we have developed bilayer films of mesoporous silica nanoparticles for delayed cellular delivery of Notch modulators to promote muscle stem cell differentiation. We demonstrate that drug-loaded particles are internalized from the particle-covered surface, which allows for direct delivery of the drug into the cell and a delayed and confined drug release. Substrates of particles loaded with ?-secretase-inhibitors, which block the Notch signalling pathway, promoted efficient differentiation of myoblasts. The particle substrates were fully biocompatible and did not interfere with the inherent differentiation process. We further demonstrate that impregnating commercially available, biocompatible polymer scaffolds with MSNs allows for a free standing substrate for cell directed drug delivery. Electronic supplementary information (ESI) available: (1) Particle characterization. (2) Immunohistochemistry and SEM analyses of C2C12 cells grown on films for 3, 6, 24 and 72 h. Light microscopy and WST1 analyses of cells grown on cover slips and films for 6, 24 and 72 h (3) Quantification of protein levels of C2C12 cells differentiating on cover slips versus MSN films. (4) Stability of MSN films in biological solution and the influence on cell viability. (5) Cell internalization of particles from MSN films and intracellular drug release at 12 and 24 h (6) Cell internalization and intracellular DiI release of MSNs from (3Dtro®) fiber scaffolds impregnated with MSNs. See DOI: 10.1039/c3nr04022d

  1. Direct-to-consumer drug advertisements on network television: an exploration of quantity, frequency, and placement.

    PubMed

    Brownfield, Erica D; Bernhardt, Jay M; Phan, Jennifer L; Williams, Mark V; Parker, Ruth M

    2004-01-01

    Prescription and over-the-counter (OTC) drug advertisements that appear on television are among the most common forms of health communication reaching the U.S. public, but no studies to date have explored the quantity, frequency, or placement of these ads on television. We explored these questions by recording all programs and advertisements that appeared on network television in a southeastern city during a selected week in the summer of 2001 and coding each prescription and OTC drug ad for its frequency, length, and placement by time of day and television program genre. A total of 18,906 ads appeared in the 504-hour sample, including 907 OTC drug ads (4.8%) and 428 prescription (Rx) drug ads (2.3%), which together occupied about 8% of all commercial airtime. Although OTC drug ads were more common, Rx drug ads on average were significantly longer. Direct-to-consumer drug ads appeared most frequently during news programs and soap operas and during the middle-afternoon and early-evening hours. Overall, we found that direct-to-consumer drug advertisements occupy a large percentage of network television commercial advertising and, based on time and program placement, many ads may be targeted specifically at women and older viewers. Our findings suggest that Americans who watch average amounts of television may be exposed to more than 30 hours of direct-to-consumer drug advertisements each year, far surpassing their exposure to other forms of health communication. PMID:15764448

  2. Modulation of urban atmospheric electric field measurements with the wind direction in Lisbon (Portugal)

    NASA Astrophysics Data System (ADS)

    Silva, H. G.; Matthews, J. C.; Conceição, R.; Wright, M. D.; Pereira, S. N.; Reis, A. H.; Shallcross, D. E.

    2015-10-01

    Atmospheric electric field measurements (potential gradient, PG) were retrieved in the urban environment of the city of Lisbon (Portugal). The measurements were performed with a Benndorf electrograph at the Portela Meteorological station in the suburbs of the city (NE from the centre). The period of 1980 to 1990 is considered here. According to wind direction, different content and types of ions and aerosols arrive at the measurement site causing significant variations to the PG. To the south there are significant pollution sources while to the north such sources are scarcer. The Iberian Peninsula is found east of the station and the Atlantic Ocean covers the western sector, Wind directions are divided in four sectors: i) NW: 270° ? ? ? 360° ii) NE: 0 ? ? ? 90° iii) SE: 90 ? ? ? 180° iv) SW: 180° ? ? ? 270°. Analysis of weekly cycle, caused by anthropogenic pollution related with urban activity, was undertaken for each wind sector. NW sector has been shown to be less affected by this cycle, which is attributed to the effect of marine air. The daily variation of NE sector for weekends reveals a similar behaviour to the Carnegie curve, which corresponds to a clean air daily variation of PG, following universal time, independent of measurement site.

  3. Direct and/or Indirect Roles for SUMO in Modulating Alpha-Synuclein Toxicity

    PubMed Central

    Vijayakumaran, Shamini; Wong, Mathew B.; Antony, Helma; Pountney, Dean L.

    2015-01-01

    ?-Synuclein inclusion bodies are a pathological hallmark of several neurodegenerative diseases, including Parkinson’s disease, and contain aggregated ?-synuclein and a variety of recruited factors, including protein chaperones, proteasome components, ubiquitin and the small ubiquitin-like modifier, SUMO-1. Cell culture and animal model studies suggest that misfolded, aggregated ?-synuclein is actively translocated via the cytoskeletal system to a region of the cell where other factors that help to lessen the toxic effects can also be recruited. SUMO-1 covalently conjugates to various intracellular target proteins in a way analogous to ubiquitination to alter cellular distribution, function and metabolism and also plays an important role in a growing list of cellular pathways, including exosome secretion and apoptosis. Furthermore, SUMO-1 modified proteins have recently been linked to cell stress responses, such as oxidative stress response and heat shock response, with increased SUMOylation being neuroprotective in some cases. Several recent studies have linked SUMOylation to the ubiquitin-proteasome system, while other evidence implicates the lysosomal pathway. Other reports depict a direct mechanism whereby sumoylation reduced the aggregation tendency of ?-synuclein, and reduced the toxicity. However, the precise role of SUMO-1 in neurodegeneration remains unclear. In this review, we explore the potential direct or indirect role(s) of SUMO-1 in the cellular response to misfolded ?-synuclein in neurodegenerative disorders. PMID:26213981

  4. Improved Recellularization of Ex Vivo Vascular Scaffolds using Directed Transport Gradients to Modulate ECM Remodeling

    PubMed Central

    Tosun, Zehra; McFetridge, Peter S.

    2015-01-01

    The regeneration of functional, clinically viable, tissues from acellular ex vivo tissues has been problematic largely due to poor nutrient transport conditions that limit cell migration and integration. Compounding these issues are subcellular pore sizes that necessarily requires extracellular matrix (ECM) remodeling in order for cells to migrate and regenerate the tissue. The aim of the present work was to create a directed growth environment that allows cells to fully populate an ex vivo-derived vascular scaffold and maintain viability over extended periods. Three different culture conditions using single (one nutrient source) or dual perfusion bioreactor systems (two nutrients sources) were designed to assess the effect of pressure and nutrient gradients under either low (50/30 mmHg) or high (120/80) relative pressure conditions. Human myofibroblasts were seeded to the ablumenal periphery of an ex vivo-derived vascular scaffold using a collagen/hydrogel cell delivery system. After 30 days culture, total cell density was consistent between groups; however, significant variation was noted in cell distribution and construct mechanics as a result of differing perfusion conditions. The most aggressive transport gradient was developed by the single perfusion low-pressure circuits and resulted in a higher proportion of cells migrating across the scaffold toward the vessel lumen (nutrient source). These investigations illustrate the influence of directed nutrient gradients where precisely controlled perfusion conditions significantly affects cell migration, distribution and function, resulting in pronounced effects on construct mechanics during early remodeling events. PMID:23613430

  5. Direct interaction with filamins modulates the stability and plasma membrane expression of CFTR.

    PubMed

    Thelin, William R; Chen, Yun; Gentzsch, Martina; Kreda, Silvia M; Sallee, Jennifer L; Scarlett, Cameron O; Borchers, Christoph H; Jacobson, Ken; Stutts, M Jackson; Milgram, Sharon L

    2007-02-01

    The role of the cystic fibrosis transmembrane conductance regulator (CFTR) as a cAMP-dependent chloride channel on the apical membrane of epithelia is well established. However, the processes by which CFTR is regulated on the cell surface are not clear. Here we report the identification of a protein-protein interaction between CFTR and the cytoskeletal filamin proteins. Using proteomic approaches, we identified filamins as proteins that associate with the extreme CFTR N terminus. Furthermore, we identified a disease-causing missense mutation in CFTR, serine 13 to phenylalanine (S13F), which disrupted this interaction. In cells, filamins tethered plasma membrane CFTR to the underlying actin network. This interaction stabilized CFTR at the cell surface and regulated the plasma membrane dynamics and confinement of the channel. In the absence of filamin binding, CFTR was internalized from the cell surface, where it prematurely accumulated in lysosomes and was ultimately degraded. Our data demonstrate what we believe to be a previously unrecognized role for the CFTR N terminus in the regulation of the plasma membrane stability and metabolic stability of CFTR. In addition, we elucidate the molecular defect associated with the S13F mutation. PMID:17235394

  6. Direct interaction with filamins modulates the stability and plasma membrane expression of CFTR

    PubMed Central

    Thelin, William R.; Chen, Yun; Gentzsch, Martina; Kreda, Silvia M.; Sallee, Jennifer L.; Scarlett, Cameron O.; Borchers, Christoph H.; Jacobson, Ken; Stutts, M. Jackson; Milgram, Sharon L.

    2007-01-01

    The role of the cystic fibrosis transmembrane conductance regulator (CFTR) as a cAMP-dependent chloride channel on the apical membrane of epithelia is well established. However, the processes by which CFTR is regulated on the cell surface are not clear. Here we report the identification of a protein-protein interaction between CFTR and the cytoskeletal filamin proteins. Using proteomic approaches, we identified filamins as proteins that associate with the extreme CFTR N terminus. Furthermore, we identified a disease-causing missense mutation in CFTR, serine 13 to phenylalanine (S13F), which disrupted this interaction. In cells, filamins tethered plasma membrane CFTR to the underlying actin network. This interaction stabilized CFTR at the cell surface and regulated the plasma membrane dynamics and confinement of the channel. In the absence of filamin binding, CFTR was internalized from the cell surface, where it prematurely accumulated in lysosomes and was ultimately degraded. Our data demonstrate what we believe to be a previously unrecognized role for the CFTR N terminus in the regulation of the plasma membrane stability and metabolic stability of CFTR. In addition, we elucidate the molecular defect associated with the S13F mutation. PMID:17235394

  7. Theta-Gamma-Modulated Synaptic Currents in Hippocampal Granule Cells In Vivo Define a Mechanism for Network Oscillations

    PubMed Central

    Pernía-Andrade, Alejandro Javier; Jonas, Peter

    2014-01-01

    Summary Theta-gamma network oscillations are thought to represent key reference signals for information processing in neuronal ensembles, but the underlying synaptic mechanisms remain unclear. To address this question, we performed whole-cell (WC) patch-clamp recordings from mature hippocampal granule cells (GCs) in vivo in the dentate gyrus of anesthetized and awake rats. GCs in vivo fired action potentials at low frequency, consistent with sparse coding in the dentate gyrus. GCs were exposed to barrages of fast AMPAR-mediated excitatory postsynaptic currents (EPSCs), primarily relayed from the entorhinal cortex, and inhibitory postsynaptic currents (IPSCs), presumably generated by local interneurons. EPSCs exhibited coherence with the field potential predominantly in the theta frequency band, whereas IPSCs showed coherence primarily in the gamma range. Action potentials in GCs were phase locked to network oscillations. Thus, theta-gamma-modulated synaptic currents may provide a framework for sparse temporal coding of information in the dentate gyrus. PMID:24333053

  8. The impact of directed choice on the design of preventive healthcare facility network under congestion.

    PubMed

    Vidyarthi, Navneet; Kuzgunkaya, Onur

    2015-12-01

    Preventive healthcare (PH) programs and services aim at reducing the likelihood and severity of potentially life-threatening illness by early detection and prevention. The effectiveness of these programs depends on the participation level and the accessibility of the users to the facilities providing the services. Factors that impact the accessibility include the number, type, and location of the facilities as well as the assignment of the clients to these facilities. In this paper, we study the impact of system-optimal (i.e., directed) choice on the design of the preventive healthcare facility network under congestion. We present a model that simultaneously determines the location and the size of the facilities as well as the allocation of clients to these facilities so as to minimize the weighted sum of the total travel time and the congestion associated with waiting and service delay at the facilities. The problem is set up as a network of spatially distributed M/G/1 queues and formulated as a nonlinear mixed integer program. Using simple transformation of the nonlinear objective function and piecewise linear approximation, we reformulate the problem as a linear model. We present a cutting plane algorithm based exact (-optimal) solution approach. We analyze the tradeoff between travel time and queuing time and its impact on the location and capacity of the facilities as well as the allocation of clients to these facilities under a directed choice policy. We present a case study that deals with locating mammography clinics in Montreal, Canada. The results show that incorporating congestion in the PH facility network design substantially reduces the total time spent by clients. The proposed model allows policy makers to direct clients to facilities in an equitable manner resulting in better accessibility. PMID:24879402

  9. Long-Lasting, Kin-Directed Female Interactions in a Spatially Structured Wild Boar Social Network

    PubMed Central

    Podgórski, Tomasz; Lusseau, David; Scandura, Massimo; Sönnichsen, Leif; J?drzejewska, Bogumi?a

    2014-01-01

    Individuals can increase inclusive fitness benefits through a complex network of social interactions directed towards kin. Preferential relationships with relatives lead to the emergence of kin structures in the social system. Cohesive social groups of related individuals and female philopatry of wild boar create conditions for cooperation through kin selection and make the species a good biological model for studying kin structures. Yet, the role of kinship in shaping the social structure of wild boar populations is still poorly understood. In the present study, we investigated spatio-temporal patterns of associations and the social network structure of the wild boar Sus scrofa population in Bia?owie?a National Park, Poland, which offered a unique opportunity to understand wild boar social interactions away from anthropogenic factors. We used a combination of telemetry data and genetic information to examine the impact of kinship on network cohesion and the strength of social bonds. Relatedness and spatial proximity between individuals were positively related to the strength of social bond. Consequently, the social network was spatially and genetically structured with well-defined and cohesive social units. However, spatial proximity between individuals could not entirely explain the association patterns and network structure. Genuine, kin-targeted, and temporarily stable relationships of females extended beyond spatial proximity between individuals while males interactions were short-lived and not shaped by relatedness. The findings of this study confirm the matrilineal nature of wild boar social structure and show how social preferences of individuals translate into an emergent socio-genetic population structure. PMID:24919178

  10. Performance analysis of bi-directional broadband passive optical network using erbium-doped fiber amplifier

    NASA Astrophysics Data System (ADS)

    Almalaq, Yasser; Matin, Mohammad A.

    2014-09-01

    The broadband passive optical network (BPON) has the ability to support high-speed data, voice, and video services to home and small businesses customers. In this work, the performance of bi-directional BPON is analyzed for both down and up streams traffic cases by the help of erbium doped fiber amplifier (EDFA). The importance of BPON is reduced cost. Because PBON uses a splitter the cost of the maintenance between the providers and the customers side is suitable. In the proposed research, BPON has been tested by the use of bit error rate (BER) analyzer. BER analyzer realizes maximum Q factor, minimum bit error rate, and eye height.

  11. Early Outcome of Prostate Intensity Modulated Radiation Therapy (IMRT) Incorporating a Simultaneous Intra-Prostatic MRI Directed Boost

    PubMed Central

    Schild, Michael H; Schild, Steven E; Wong, William W; Vora, Sujay A; Silva, Alvin C; Silva, Annelise M; Daniels, Thomas B; Keole, Sameer R

    2015-01-01

    This study assessed the feasibility and outcomes of treating prostate cancer with intensity modulated radiotherapy (IMRT) incorporating a Magnetic Resonance Imaging (MRI) directed boost. Seventy-eight men received IMRT for localized prostate cancer. The entire prostate received 77.4Gy in 43 fractions and simultaneous intra-prostatic boosts (SIB) of 83Gy were administered to increase the dose to the MRI identified malignancy. In 16 (21%) patients, the MRI didn't detect a neoplasm and these patients received an SIB of 81Gy to the posterior prostate. Androgen Deprivation Therapy (ADT) was also administered to 32 (41%) patients. The 3-year rates of biochemical control, local control, distant control, and survival were 92%, 98%, 95%, and 95% respectively. While grade 1-2 toxicities were common, there were only 2 patients who suffered grade 3 toxicity. These patients developed strictures which were dilated resulting in improvement in symptoms such that both had grade 1-2 toxicity at last follow up examination. The results of this program of IMRT incorporating a MRI directed intra-prostatic boost suggest this technique is feasible and well tolerated. This technique appears to shift the therapeutic index favorably by boosting the malignancy to the highest dose without increasing the doses administered to the bladder and rectum. PMID:25717423

  12. Modulation of executive control in dual tasks with transcranial direct current stimulation (tDCS).

    PubMed

    Strobach, Tilo; Soutschek, Alexander; Antonenko, Daria; Flöel, Agnes; Schubert, Torsten

    2015-02-01

    Executive processing in dual tasks is primarily associated with activation of the lateral prefrontal cortex (lPFC), which is demonstrated in functional imaging studies (e.g., Szameitat et al., 2006). However, a causal relation between lPFC activity and executive functions in dual tasks has not been demonstrated so far. Here, we used anodal transcranial direct current stimulation (atDCS [1 mA, 20 min] vs. sham stimulation [1 mA, 30s]) over the left inferior frontal junction under conditions of random and fixed task order in dual tasks as well as in single tasks in healthy young individuals (Experiment 1). We found that atDCS, if administered simultaneously to the task, improved performance in random-order dual tasks, but not in fixed-order dual tasks and single tasks. Moreover, dual-task performance under random-order conditions did not improve if atDCS was applied prior to the task performance. The identical procedure in Experiment 2 showed no difference in dual-task performance under random-task order conditions when we compared cathodal tDCS (ctDCS) with sham stimulation. Our findings suggest that dual-task performance is causally related to lPFC activation under conditions that require task-order decisions and high demands on executive functioning. Subsequent studies may now explore if atDCS leads to sustained improvements parallel to the training of dual tasks. PMID:25556813

  13. Selective attention modulates the direction of audio-visual temporal recalibration.

    PubMed

    Ikumi, Nara; Soto-Faraco, Salvador

    2014-01-01

    Temporal recalibration of cross-modal synchrony has been proposed as a mechanism to compensate for timing differences between sensory modalities. However, far from the rich complexity of everyday life sensory environments, most studies to date have examined recalibration on isolated cross-modal pairings. Here, we hypothesize that selective attention might provide an effective filter to help resolve which stimuli are selected when multiple events compete for recalibration. We addressed this question by testing audio-visual recalibration following an adaptation phase where two opposing audio-visual asynchronies were present. The direction of voluntary visual attention, and therefore to one of the two possible asynchronies (flash leading or flash lagging), was manipulated using colour as a selection criterion. We found a shift in the point of subjective audio-visual simultaneity as a function of whether the observer had focused attention to audio-then-flash or to flash-then-audio groupings during the adaptation phase. A baseline adaptation condition revealed that this effect of endogenous attention was only effective toward the lagging flash. This hints at the role of exogenous capture and/or additional endogenous effects producing an asymmetry toward the leading flash. We conclude that selective attention helps promote selected audio-visual pairings to be combined and subsequently adjusted in time but, stimulus organization exerts a strong impact on recalibration. We tentatively hypothesize that the resolution of recalibration in complex scenarios involves the orchestration of top-down selection mechanisms and stimulus-driven processes. PMID:25004132

  14. Cytosolic extensions directly regulate a rhomboid protease by modulating substrate gating

    PubMed Central

    Baker, Rosanna P.; Urban, Siniša

    2015-01-01

    Intramembrane proteases catalyze the signal-generating step of various cell signaling pathways, and continue to be implicated in diseases ranging from malaria infection to Parkinsonian neurodegeneration1–3. Despite playing such decisive roles, it remains unclear whether or how these membrane-immersed enzymes might be regulated directly. To address this limitation, we sought intramembrane proteases containing domains known to exert regulatory functions in other contexts, and focused on rhomboid proteases that harbor calcium-binding EF-hands. We found calcium potently stimulates proteolysis by endogenous rhomboid-4 in Drosophila cells, and, remarkably, when rhomboid-4 was purified and reconstituted in liposomes. Interestingly, deleting the amino-terminal EF-hands activated proteolysis prematurely, while residues in cytoplasmic loops connecting distal transmembrane segments mediated calcium stimulation. Rhomboid regulation was not orchestrated by either dimerization or substrate interactions. Instead, calcium increased catalytic rate by promoting substrate gating. Substrates with cleavage sites outside the membrane could be cleaved but lost the capacity to be regulated. These observations indicate substrate gating is not an essential step in catalysis, but instead evolved as a mechanism for regulating proteolysis inside the membrane. Moreover, these insights provide new approaches for studying rhomboid functions by investigating upstream inputs that trigger proteolysis. PMID:25970241

  15. Selective Attention Modulates the Direction of Audio-Visual Temporal Recalibration

    PubMed Central

    Ikumi, Nara; Soto-Faraco, Salvador

    2014-01-01

    Temporal recalibration of cross-modal synchrony has been proposed as a mechanism to compensate for timing differences between sensory modalities. However, far from the rich complexity of everyday life sensory environments, most studies to date have examined recalibration on isolated cross-modal pairings. Here, we hypothesize that selective attention might provide an effective filter to help resolve which stimuli are selected when multiple events compete for recalibration. We addressed this question by testing audio-visual recalibration following an adaptation phase where two opposing audio-visual asynchronies were present. The direction of voluntary visual attention, and therefore to one of the two possible asynchronies (flash leading or flash lagging), was manipulated using colour as a selection criterion. We found a shift in the point of subjective audio-visual simultaneity as a function of whether the observer had focused attention to audio-then-flash or to flash-then-audio groupings during the adaptation phase. A baseline adaptation condition revealed that this effect of endogenous attention was only effective toward the lagging flash. This hints at the role of exogenous capture and/or additional endogenous effects producing an asymmetry toward the leading flash. We conclude that selective attention helps promote selected audio-visual pairings to be combined and subsequently adjusted in time but, stimulus organization exerts a strong impact on recalibration. We tentatively hypothesize that the resolution of recalibration in complex scenarios involves the orchestration of top-down selection mechanisms and stimulus-driven processes. PMID:25004132

  16. Açaí (Euterpe oleracea Mart.) Modulates Oxidative Stress Resistance in Caenorhabditis elegans by Direct and Indirect Mechanisms

    PubMed Central

    Bonomo, Larissa de Freitas; Silva, David Nunes; Boasquivis, Patrícia Ferreira; Paiva, Franciny Aparecida; Guerra, Joyce Ferreira da Costa; Martins, Talita Alves Faria; de Jesus Torres, Álvaro Gustavo; de Paula, Igor Thadeu Borges Raposo; Caneschi, Washington Luiz; Jacolot, Philippe; Grossin, Nicolas; Tessier, Frederic J.; Boulanger, Eric; Silva, Marcelo Eustáquio; Pedrosa, Maria Lúcia; de Paula Oliveira, Riva

    2014-01-01

    Açaí (Euterpe oleracea Mart.) has recently emerged as a promising source of natural antioxidants. Despite its claimed pharmacological and nutraceutical value, studies regarding the effects of açaí in vivo are limited. In this study, we use the Caenorhabditis elegans model to evaluate the in vivo antioxidant properties of açaí on an organismal level and to examine its mechanism of action. Supplementation with açaí aqueous extract (AAE) increased both oxidative and osmotic stress resistance independently of any effect on reproduction and development. AAE suppressed bacterial growth, but this antimicrobial property did not influence stress resistance. AAE-increased stress resistance was correlated with reduced ROS production, the prevention of sulfhydryl (SH) level reduction and gcs-1 activation under oxidative stress conditions. Our mechanistic studies indicated that AAE promotes oxidative stress resistance by acting through DAF-16 and the osmotic stress response pathway OSR-1/UNC-43/SEK-1. Finally, AAE increased polyglutamine protein aggregation and decreased proteasome activity. Our findings suggest that natural compounds available in AAE can improve the antioxidant status of a whole organism under certain conditions by direct and indirect mechanisms. PMID:24594796

  17. Categorization is modulated by transcranical direct current stimulation over left prefrontal cortex

    PubMed Central

    Lupyan, Gary; Mirman, Daniel; Hamilton, Roy; Thompson-Schill, Sharon L.

    2013-01-01

    Humans have an unparalleled ability to represent objects as members of multiple categories. A given object, such as a pillow may be—depending on current task demands—represented as an instance of something that is soft, as something that contains feathers, as something that is found in bedrooms, or something that is larger than a toaster. This type of processing requires the individual to dynamically highlight task-relevant properties and abstract over or suppress object properties that, although salient, are not relevant to the task at hand. Neuroimaging and neuropsychological evidence suggests that this ability may depend on cognitive control processes associated with the left inferior prefrontal gyrus. Here, we show that stimulating the left inferior frontal cortex using transcranial direct current stimulation alters performance of healthy subjects on a simple categorization task. Our task required subjects to select pictures matching a description, e.g., “click on all the round things.“ Cathodal stimulation led to poorer performance on classification trials requiring attention to specific dimensions such as color or shape as opposed to trials that required selecting items belonging to a more thematic category such as objects that hold water. A polarity reversal (anodal stimulation) lowered the threshold for selecting items that were more weakly associated with the target category. These results illustrate the role of frontally-mediated control processes in categorization and suggest potential interactions between categorization, cognitive control, and language. PMID:22578885

  18. Categorization is modulated by transcranial direct current stimulation over left prefrontal cortex.

    PubMed

    Lupyan, Gary; Mirman, Daniel; Hamilton, Roy; Thompson-Schill, Sharon L

    2012-07-01

    Humans have an unparalleled ability to represent objects as members of multiple categories. A given object, such as a pillow may be-depending on current task demands-represented as an instance of something that is soft, as something that contains feathers, as something that is found in bedrooms, or something that is larger than a toaster. This type of processing requires the individual to dynamically highlight task-relevant properties and abstract over or suppress object properties that, although salient, are not relevant to the task at hand. Neuroimaging and neuropsychological evidence suggests that this ability may depend on cognitive control processes associated with the left inferior prefrontal gyrus. Here, we show that stimulating the left inferior frontal cortex using transcranial direct current stimulation alters performance of healthy subjects on a simple categorization task. Our task required subjects to select pictures matching a description, e.g., "click on all the round things." Cathodal stimulation led to poorer performance on classification trials requiring attention to specific dimensions such as color or shape as opposed to trials that required selecting items belonging to a more thematic category such as objects that hold water. A polarity reversal (anodal stimulation) lowered the threshold for selecting items that were more weakly associated with the target category. These results illustrate the role of frontally-mediated control processes in categorization and suggest potential interactions between categorization, cognitive control, and language. PMID:22578885

  19. Neural-network-directed alignment of optical systems using the laser-beam spatial filter as an example

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.; Krasowski, Michael J.; Weiland, Kenneth E.

    1993-01-01

    This report describes an effort at NASA Lewis Research Center to use artificial neural networks to automate the alignment and control of optical measurement systems. Specifically, it addresses the use of commercially available neural network software and hardware to direct alignments of the common laser-beam-smoothing spatial filter. The report presents a general approach for designing alignment records and combining these into training sets to teach optical alignment functions to neural networks and discusses the use of these training sets to train several types of neural networks. Neural network configurations used include the adaptive resonance network, the back-propagation-trained network, and the counter-propagation network. This work shows that neural networks can be used to produce robust sequencers. These sequencers can learn by example to execute the step-by-step procedures of optical alignment and also can learn adaptively to correct for environmentally induced misalignment. The long-range objective is to use neural networks to automate the alignment and operation of optical measurement systems in remote, harsh, or dangerous aerospace environments. This work also shows that when neural networks are trained by a human operator, training sets should be recorded, training should be executed, and testing should be done in a manner that does not depend on intellectual judgments of the human operator.

  20. CADLIVE dynamic simulator: Direct link of biochemical networks to dynamic models

    PubMed Central

    Kurata, Hiroyuki; Masaki, Kouichi; Sumida, Yoshiyuki; Iwasaki, Rei

    2005-01-01

    We have developed the CADLIVE (Computer-Aided Design of LIVing systEms) Simulator that provided a rule-based automatic way to convert biochemical network maps into dynamic models, which enables simulating their dynamics without going through all of the reactions down to the details of exact kinetic parameters. The simulator supports the biochemical reaction maps that are generated by the previously developed GUI editor. Notice that the part of the GUI editor had been previously published, but, as yet, not the simulator. To directly link biochemical network maps to dynamic simulation, we have created the strategy of three layers and two stages with the efficient conversion rules in an XML representation. This strategy divides a molecular network into three layers, i.e., gene, protein, and metabolic layers, and partitions the conversion process into two stages. Once a biochemical map is provided, CADLIVE automatically builds a mathematical model, thereby facilitating one to simulate and analyze it. In order to demonstrate the feasibility of CADLIVE, we analyzed the Escherichia coli nitrogen-assimilation system (64 equations with 64 variables) that consists of multiple and complicated negative and positive feedback loops. CADLIVE predicted that the glnK gene is responsible for hysteresis or reversibility of nitrogen-related (Ntr) gene expression with respect to the ammonia concentration, supporting the experimental observation of the runaway expression of the Ntr genes. PMID:15805500

  1. Research 2.0: social networking and direct-to-consumer (DTC) genomics.

    PubMed

    Lee, Sandra Soo-Jin; Crawley, LaVera

    2009-01-01

    The convergence of increasingly efficient high throughput sequencing technology and ubiquitous Internet use by the public has fueled the proliferation of companies that provide personal genetic information (PGI) direct-to-consumers. Companies such as 23andme (Mountain View, CA) and Navigenics (Foster City, CA) are emblematic of a growing market for PGI that some argue represents a paradigm shift in how the public values this information and incorporates it into how they behave and plan for their futures. This new class of social networking business ventures that market the science of the personal genome illustrates the new trend in collaborative science. In addition to fostering a consumer empowerment movement, it promotes the trend of democratizing information--openly sharing of data with all interested parties, not just the biomedical researcher--for the purposes of pooling data (increasing statistical power) and escalating the innovation process. This target article discusses the need for new approaches to studying DTC genomics using social network analysis to identify the impact of obtaining, sharing, and using PGI. As a locus of biosociality, DTC personal genomics forges social relationships based on beliefs of common genetic susceptibility that links risk, disease, and group identity. Ethical issues related to the reframing of DTC personal genomic consumers as advocates and research subjects and the creation of new social formations around health research may be identified through social network analysis. PMID:19998112

  2. Optimization of Self-Directed Target Coverage in Wireless Multimedia Sensor Network

    PubMed Central

    Yang, Yang; Wang, Yufei; Pi, Dechang; Wang, Ruchuan

    2014-01-01

    Video and image sensors in wireless multimedia sensor networks (WMSNs) have directed view and limited sensing angle. So the methods to solve target coverage problem for traditional sensor networks, which use circle sensing model, are not suitable for WMSNs. Based on the FoV (field of view) sensing model and FoV disk model proposed, how expected multimedia sensor covers the target is defined by the deflection angle between target and the sensor's current orientation and the distance between target and the sensor. Then target coverage optimization algorithms based on expected coverage value are presented for single-sensor single-target, multisensor single-target, and single-sensor multitargets problems distinguishingly. Selecting the orientation that sensor rotated to cover every target falling in the FoV disk of that sensor for candidate orientations and using genetic algorithm to multisensor multitargets problem, which has NP-complete complexity, then result in the approximated minimum subset of sensors which covers all the targets in networks. Simulation results show the algorithm's performance and the effect of number of targets on the resulting subset. PMID:25136667

  3. Gel-expanded to gel-condensed transition in neurofilament networks revealed by direct force measurements

    NASA Astrophysics Data System (ADS)

    Beck, Roy; Deek, Joanna; Jones, Jayna B.; Safinya, Cyrus R.

    2010-01-01

    Neurofilaments (NF)-the principal cytoskeletal constituent of myelinated axons in vertebrates-consist of three molecular-weight subunit proteins NF-L (low), NF-M (medium) and NF-H (high), assembled to form mature filaments with protruding unstructured C-terminus side arms. Liquid-crystal gel networks of side-arm-mediated neurofilament assemblies have a key role in the mechanical stability of neuronal processes. Disruptions of the neurofilament network, owing to neurofilament over-accumulation or incorrect side-arm interactions, are a hallmark of motor-neuron diseases including amyotrophic lateral sclerosis. Using synchrotron X-ray scattering, we report on a direct measurement of forces in reconstituted neurofilament gels under osmotic pressure (P). With increasing pressure near physiological salt and average phosphorylation conditions, NF-LMH, comprising the three subunits near in vivo composition, or NF-LH gels, undergo for P>Pc~10kPa, an abrupt non-reversible gel-expanded to gel-condensed transition. The transition indicates side-arm-mediated attractions between neurofilaments consistent with an electrostatic model of interpenetrating chains. In contrast, NF-LM gels remain in a collapsed state for PPc. These findings, which delineate the distinct roles of NF-M and NF-H in regulating neurofilament interactions, shed light on possible mechanisms for disruptions of optimal mechanical network properties.

  4. A polarization-independent liquid crystal phase modulation using polymer-network liquid crystals in a 90° twisted cell

    NASA Astrophysics Data System (ADS)

    Lin, Yi-Hsin; Chen, Ming-Syuan; Lin, Wei-Chih; Tsou, Yu-Shih

    2012-07-01

    A polarization-independent liquid crystal phase modulation using polymer-network liquid crystals in a 90° twisted cell (T-PNLC) is demonstrated. T-PNLC consists of three layers. Liquid crystal (LC) directors in the two layers near glass substrates are orthogonal to each other and those two layers modulate two eigen-polarizations of an incident light. As a result, two eigen-polarizations of an incident light experience the same phase shift. In the middle layer, LC directors are perpendicular to the glass substrate and contribute no phase shift. The phase shift of T-PNLC is electrically tunable and polarization-independent. T-PNLC does not require any bias voltage for operation. The phase shift is 0.28 ? rad for the voltage of 30 Vrms. By measuring and analyzing the optical phase shift of T-PNLC at the oblique incidence of transverse magnetic wave, the pretilt angle of LC directors and the effective thickness of three layers are obtained and discussed. The potential applications are spatial light modulators, laser beam steering, and micro-lens arrays.

  5. Mutual or Unrequited Love: Identifying Stable Clusters in Social Networks with Uni-and Bi-directional Links

    E-print Network

    Zhang, Zhi-Li

    Mutual or Unrequited Love: Identifying Stable Clusters in Social Networks with Uni- and Bi) with two types of links between entities: mutual (bi- directional) and one-way (uni-directional) connections. Social science theories reveal that mutual connections are more stable than one-way connections

  6. Do tDCS and TMS influence tinnitus transiently via a direct cortical and indirect somatosensory modulating effect? A combined TMS-tDCS and TENS study.

    PubMed

    Vanneste, Sven; Langguth, Berthold; De Ridder, Dirk

    2011-10-01

    Tinnitus is usually defined as an intrinsic sound percept that cannot be attributed to an external sound source that tinnitus can be suppressed by neuromodulation techniques such as transcranial direct current stimulation (tDCS), transcranial magnetic stimulation (TMS), and transcranial electrical nerve stimulation (TENS). It is thought that TMS and tDCS modulate tinnitus directly by targeting the frontal and/or auditory cortex of the brain, whereas TENS most likely influences tinnitus indirectly via cervical nerve-cochlear nucleus interactions. It is unknown whether part of the tinnitus modulating effect of tDCS and TMS also depends on a somatosensory modulating effect analogous to TENS, via the trigeminal and cervical nerves. We aimed to investigate this question by analyzing to which extent response to one neuromodulation technique predicts the response to another neuromodulation technique. We analyzed 153 patients with chronic tinnitus (> 1 year) who underwent all three neuromodulation techniques (C2 nerve TENS, auditory cortex TMS, and bifrontal tDCS). Our results show that TENS predicts tDCS and TMS better than the opposite, and tDCS predicts TMS response and vice versa. On the basis of these results, it is it is argued that TENS only modulates the tinnitus brain circuit indirectly, whereas TMS and tDCS have a dual working mechanism, a TENS-like mechanism plus a direct brain modulating mechanism. PMID:22032739

  7. Characteristic optimization of 1.3-?m InGaAsP MQW lasers for direct modulation applications

    NASA Astrophysics Data System (ADS)

    Guo, Fei; Zhang, Ruikang; Lu, Dan; Wang, We; Ji, Chen

    2014-10-01

    We have investigated 1.3-?m InGaAsP strained multi-quantum-well (MQW) lasers on InP substrate for direct modulation applications using the commercial laser simulator PIC3D. The physical mechanisms affecting the laser dynamic characteristics such as nonradiative recombination losses and vertical electron leakage effect are considered in our simulation. The number of wells is optimized because increasing the number of QWs can decrease the nonradiative recombination losses and increase the modal differential gain, nevertheless, the carrier distribution between wells become more non-uniform with too many QWs numbers resulting in uneven simulated recombination rate and increasing Auger recombination. The influence of barrier height is analyzed and a tradeoff has to be determined because too high barriers results in more nonuniform carrier distribution in the active regions, increasing the Auger recombination rate severely while the vertical current leakage outside the QWs will increase dramatically at lower barrier height. The 1.3-?m FP laser with the MQWs of 6 wells, 1.15 Q barriers bandgap and 8 wells, 1.1 Q barrier bandgaps is fabricated and characterized. The FP laser with MQWs structures composed of 8 compressive strain quantum wells and 9 barriers with the optimized bandgap 1.1 Q shows better properties. The threshold current is around 19 mA and the resonance frequency of 9.5 GHz and 3-dB bandwidth in excess of 13.3 GHz at 120 mA injection current. This modulation frequency is suitable for 10 Gbits/s optical data transmission.

  8. Modulation of smoking and decision-making behaviors with transcranial direct current stimulation in tobacco smokers: a preliminary study

    PubMed Central

    Fecteau, Shirley; Agosta, Sara; Hone-Blanchet, Antoine; Fregni, Felipe; Boggio, Paulo; Ciraulo, Domenic; Pascual-Leone, Alvaro

    2014-01-01

    Background Most tobacco smokers who wish to quit fail to reach their goal. One important, insufficiently emphasized aspect of addiction relates to the decision-making system, often characterized by dysfunctional cognitive control and a powerful drive for reward. Recent proof-of-principle studies indicate that transcranial direct current stimulation (tDCS) over the dorsolateral prefrontal cortex (DLPFC) can transiently modulate processes involved in decision-making, and reduce substance intake and craving for various addictions. We previously proposed that this beneficial effect of stimulation for reducing addictive behaviors is in part mediated by more reflective decision-making. The goal of this study was to test whether nicotine intake and decision-making behaviors are modulated by tDCS over the DLPFC in tobacco smokers who wished to quit smoking. Methods Subjects received two five-day tDCS regimens (active or sham). Stimulation was delivered over the right DLPFC at a 2mA during 30 minutes. Nicotine cravings, cigarette consumption and decision-making were assessed before and after each session. Results Main findings include a significant decrease in the number of cigarettes smoked when participants received active as compared to sham stimulation. This effect lasted up to four days after the end of the stimulation regimen. In regards to decision-making, smokers rejected more often offers of cigarettes, but not offers of money, after they received active as compared to sham stimulation at the Ultimatum Game. No significant change was observed at the Risk Task with cigarettes or money as rewards. Conclusion Overall, these findings suggest that tDCS over the DLPFC may be beneficial for smoking reduction and induce reward sensitive effects. PMID:24814566

  9. On the growth of directed complex networks with preferential attachment: Effect upon the prohibition of multiple links

    NASA Astrophysics Data System (ADS)

    Esquivel-Gómez, J.; Balderas-Navarro, R. E.; Ugalde, Edgardo; Acosta-Elías, J.

    2015-11-01

    Several real-world directed networks do not have multiple links. For example, in a paper citation network a paper does not cite two identical references, and in a network of friends there exists only a single link between two individuals. This suggest that the growth and evolution models of complex networks should take into account such feature in order to approximate the topological properties of this class of networks. The aim of this paper is to propose a growth model of directed complex networks that takes into account the prohibition of the existence multiple links. It is shown through numerical experiments that when multiple links are forbidden, the exponent ? of the in-degree connectivity distribution, P(k{ in}) ˜ k{ in}-? , takes values ranging from 1 to ?. In particular, the proposed multi-link free (MLF) model is able to predict exponents occurring in real-world complex networks, which range 1.05 < ? < 3.51. As an example, the MLF reproduces somxe topological properties exhibited by the network of flights between airports of the world (NFAW); i.e. ? ? 1.74. With this result, we believe that the multiple links prohibition might be one of the local processes accounting for the existence of exponents ? < 2 found in some real complex networks.

  10. Destination-directed, packet-switched architecture for a geostationary communications satellite network

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Shalkhauser, Mary JO; Bobinsky, Eric A.; Soni, Nitin J.; Quintana, Jorge A.; Kim, Heechul; Wager, Paul; Vanderaar, Mark

    1993-01-01

    A major goal of the Digital Systems Technology Branch at the NASA Lewis Research Center is to identify and develop critical digital components and technologies that either enable new commercial missions or significantly enhance the performance, cost efficiency, and/or reliability of existing and planned space communications systems. NASA envisions a need for low-data-rate, interactive, direct-to-the-user communications services for data, voice, facsimile, and video conferencing. The network would provide enhanced very-small-aperture terminal (VSAT) communications services and be capable of handling data rates of 64 kbps through 2.048 Mbps in 64-kbps increments. Efforts have concentrated heavily on the space segment; however, the ground segment has been considered concurrently to ensure cost efficiency and realistic operational constraints. The focus of current space segment developments is a flexible, high-throughput, fault-tolerant onboard information-switching processor (ISP) for a geostationary satellite communications network. The Digital Systems Technology Branch is investigating both circuit and packet architectures for the ISP. Destination-directed, packet-switched architectures for geostationary communications satellites are addressed.

  11. Identification of module biomarkers from the dysregulated ceRNA-ceRNA interaction network in lung adenocarcinoma.

    PubMed

    Shao, Tingting; Wu, Aiwei; Chen, Juan; Chen, Hong; Lu, Jianping; Bai, Jing; Li, Yongsheng; Xu, Juan; Li, Xia

    2015-10-13

    Competitive endogenous RNA (ceRNA) represents a novel layer of gene regulation that plays important roles in the physiology and development of diseases such as cancer and its dysregulation could contribute to cancer pathogenesis. Here, we have proposed a computational method to systematically identify genome-wide dysregulated ceRNA-ceRNA interactions by integrating microRNA regulation with expression profiles in cancer and normal tissues by RNA sequencing, as well as considering the details of how the behavior of ceRNAs has changed. These gain or loss dysregulations further assemble into a dysregulated ceRNA-ceRNA network; lncRNAs and pseudogenes are also considered. After applying the method to lung adenocarcinoma, we found that most dysregulations are connected together and formed a lung adenocarcinoma dysregulated ceRNA-ceRNA network (LDCCNet). Our analyses found that ceRNA pairs with gain regulations have consistent expression in cancer, otherwise for loss regulation, it is not necessary. Moreover, ceRNAs with more significant gain regulations (gain ceRNAs) undergo stronger regulation in cancer; thus their expression is more likely to decrease in cancer, while the expression of loss ceRNAs displays a rising trend. Additionally, we found that gain and loss ceRNAs as topological key nodes are implicated in the development of cancer. Finally, dysregulated ceRNA modules were identified, which are significantly enriched with known lung cancer microRNAs. We further found that several modules have the power as diagnostic biomarkers even in three independent datasets. For example, the module with lncRNA RP11-457M11.2 as a center is involved in the epithelial cell morphogenesis process and provides the average AUC values of 0.95. Our study about LDCCNet opens up the possibility of a new biological mechanism in cancer that could serve as a biomarker for diagnosis. PMID:26325208

  12. Module-based functional pathway enrichment analysis of a protein-protein interaction network to study the effects of intestinal microbiota depletion in mice.

    PubMed

    Jia, Zhen-Yi; Xia, Yang; Tong, Danian; Yao, Jing; Chen, Hong-Qi; Yang, Jun

    2014-06-01

    Complex communities of microorganisms play important roles in human health, and alterations in the intestinal microbiota may induce intestinal inflammation and numerous diseases. The purpose of this study was to identify the key genes and processes affected by depletion of the intestinal microbiota in a murine model. The Affymetrix microarray dataset GSE22648 was downloaded from the Gene Expression Omnibus database, and differentially expressed genes (DEGs) were identified using the limma package in R. A protein-protein interaction (PPI) network was constructed for the DEGs using the Cytoscape software, and the network was divided into several modules using the MCODE plugin. Furthermore, the modules were functionally annotated using the PiNGO plugin, and DEG-related pathways were retrieved and analyzed using the GenMAPP software. A total of 53 DEGs were identified, of which 26 were upregulated and 27 were downregulated. The PPI network of these DEGs comprised 3 modules. The most significant module-related DEGs were the cytochrome P450 (CYP) 4B1 isozyme gene (CYP4B1) in module 1, CYP4F14 in module 2 and the tachykinin precursor 1 gene (TAC1) in module 3. The majority of enriched pathways of module 1 and 2 were oxidation reduction pathways (metabolism of xenobiotics by CYPs) and lipid metabolism-related pathways, including linoleic acid and arachidonic acid metabolism. The neuropeptide signaling pathway was the most significantly enriched functional pathway of module 3. In conclusion, our findings strongly suggest that intestinal microbiota depletion affects cellular metabolism and oxidation reduction pathways. In addition, this is the first time, to the best of our knowledge, that the neuropeptide signaling pathway is reported to be affected by intestinal microbiota depletion in mice. The present study provides a list of candidate genes and processes related to the interaction of microbiota with the intestinal tract. PMID:24718810

  13. Self-regulation of circumscribed brain activity modulates spatially selective and frequency specific connectivity of distributed resting state networks

    PubMed Central

    Vukeli?, Mathias; Gharabaghi, Alireza

    2015-01-01

    The mechanisms of learning involved in brain self-regulation have still to be unveiled to exploit the full potential of this methodology for therapeutic interventions. This skill of volitionally changing brain activity presumably resembles motor skill learning which in turn is accompanied by plastic changes modulating resting state networks. Along these lines, we hypothesized that brain regulation and neurofeedback would similarly modify intrinsic networks at rest while presenting a distinct spatio-temporal pattern. High-resolution electroencephalography preceded and followed a single neurofeedback training intervention of modulating circumscribed sensorimotor low ?-activity by kinesthetic motor imagery in eleven healthy participants. The participants were kept in the deliberative phase of skill acquisition with high demands for learning self-regulation through stepwise increases of task difficulty. By applying the corrected imaginary part of the coherency function, we observed increased functional connectivity of both the primary motor and the primary somatosensory cortex with their respective contralateral homologous cortices in the low ?-frequency band which was self-regulated during feedback. At the same time, the primary motor cortex—but none of the surrounding cortical areas—showed connectivity to contralateral supplementary motor and dorsal premotor areas in the high ?-band. Simultaneously, the neurofeedback target displayed a specific increase of functional connectivity with an ipsilateral fronto-parietal network in the ?-band while presenting a de-coupling with contralateral primary and secondary sensorimotor areas in the very same frequency band. Brain self-regulation modifies resting state connections spatially selective to the neurofeedback target of the dominant hemisphere. These are anatomically distinct with regard to the cortico-cortical connectivity pattern and are functionally specific with regard to the time domain of coherent activity consistent with a Hebbian-like sharpening concept. PMID:26236207

  14. MicroRNA and Transcription Factor Mediated Regulatory Network Analysis Reveals Critical Regulators and Regulatory Modules in Myocardial Infarction

    PubMed Central

    Wang, Lin; Zhou, Meng; Wang, Zhenzhen; Liu, Xiaoxia; Cheng, Liang; Li, Weimin; Li, Xueqi

    2015-01-01

    Myocardial infarction (MI) is a severe coronary artery disease and a leading cause of mortality and morbidity worldwide. However, the molecular mechanisms of MI have yet to be fully elucidated. In this study, we compiled MI-related genes, MI-related microRNAs (miRNAs) and known human transcription factors (TFs), and we then identified 1,232 feed-forward loops (FFLs) among these miRNAs, TFs and their co-regulated target genes through integrating target prediction. By merging these FFLs, the first miRNA and TF mediated regulatory network for MI was constructed, from which four regulators (SP1, ESR1, miR-21-5p and miR-155-5p) and three regulatory modules that might play crucial roles in MI were then identified. Furthermore, based on the miRNA and TF mediated regulatory network and literature survey, we proposed a pathway model for miR-21-5p, the miR-29 family and SP1 to demonstrate their potential co-regulatory mechanisms in cardiac fibrosis, apoptosis and angiogenesis. The majority of the regulatory relations in the model were confirmed by previous studies, which demonstrated the reliability and validity of this miRNA and TF mediated regulatory network. Our study will aid in deciphering the complex regulatory mechanisms involved in MI and provide putative therapeutic targets for MI. PMID:26258537

  15. Direct synthesis of graphene 3D-coated Cu nanosilks network for antioxidant transparent conducting electrode

    NASA Astrophysics Data System (ADS)

    Xu, Hongmei; Wang, Huachun; Wu, Chenping; Lin, Na; Soomro, Abdul Majid; Guo, Huizhang; Liu, Chuan; Yang, Xiaodong; Wu, Yaping; Cai, Duanjun; Kang, Junyong

    2015-06-01

    Transparent conducting film occupies an important position in various optoelectronic devices. To replace the costly tin-doped indium oxide (ITO), promising materials, such as metal nanowires and graphene, have been widely studied. Moreover, a long-pursued goal is to consolidate these two materials together and express their outstanding properties simultaneously. We successfully achieved a direct 3D coating of a graphene layer on an interlacing Cu nanosilks network by the low pressure chemical vapor deposition method. High aspect ratio Cu nanosilks (13 nm diameter with 40 ?m length) were synthesized through the nickel ion catalytic process. Large-size, transparent conducting film was successfully fabricated with Cu nanosilks ink by the imprint method. A magnetic manipulator equipped with a copper capsule was used to produce high Cu vapor pressure on Cu nanosilks and realize the graphene 3D-coating. The coated Cu@graphene nanosilks network achieved high transparency, low sheet resistance (41 Ohm sq-1 at 95% transmittance) and robust antioxidant ability. With this technique, the transfer process of graphene is no longer needed, and a flexible, uniform and high-performance transparent conducting film could be fabricated in unlimited size.Transparent conducting film occupies an important position in various optoelectronic devices. To replace the costly tin-doped indium oxide (ITO), promising materials, such as metal nanowires and graphene, have been widely studied. Moreover, a long-pursued goal is to consolidate these two materials together and express their outstanding properties simultaneously. We successfully achieved a direct 3D coating of a graphene layer on an interlacing Cu nanosilks network by the low pressure chemical vapor deposition method. High aspect ratio Cu nanosilks (13 nm diameter with 40 ?m length) were synthesized through the nickel ion catalytic process. Large-size, transparent conducting film was successfully fabricated with Cu nanosilks ink by the imprint method. A magnetic manipulator equipped with a copper capsule was used to produce high Cu vapor pressure on Cu nanosilks and realize the graphene 3D-coating. The coated Cu@graphene nanosilks network achieved high transparency, low sheet resistance (41 Ohm sq-1 at 95% transmittance) and robust antioxidant ability. With this technique, the transfer process of graphene is no longer needed, and a flexible, uniform and high-performance transparent conducting film could be fabricated in unlimited size. Electronic supplementary information (ESI) available: Photographs, transmission spectra, Auger electron spectroscopy (AES) and transmission electron microscopy (TEM) images. See DOI: 10.1039/c5nr01711d

  16. Neural network models for spatial data mining, map production, and cortical direction selectivity

    NASA Astrophysics Data System (ADS)

    Parsons, Olga

    A family of ARTMAP neural networks for incremental supervised learning has been developed over the last decade. The Sensor Exploitation Group of MIT Lincoln Laboratory (LL) has incorporated an early version of this network as the recognition engine of a hierarchical system for fusion and data mining of multiple registered geospatial images. The LL system has been successfully fielded, but it is limited to target vs. non-target identifications and does not produce whole maps. This dissertation expands the capabilities of the LL system so that it learns to identify arbitrarily many target classes at once and can thus produce a whole map. This new spatial data mining system is designed particularly to cope with the highly skewed class distributions of typical mapping problems. Specification of a consistent procedure and a benchmark testbed has permitted the evaluation of candidate recognition networks as well as pre- and post-processing and feature extraction options. The resulting default ARTMAP network and mapping methodology set a standard for a variety of related mapping problems and application domains. The second part of the dissertation investigates the development of cortical direction selectivity. The possible role of visual experience and oculomotor behavior in the maturation of cells in the primary visual cortex is studied. The responses of neurons in the thalamus and cortex of the cat are modeled when natural scenes are scanned by several types of eye movements. Inspired by the Hebbian-like synaptic plasticity, which is based upon correlations between cell activations, the second-order statistical structure of thalamo-cortical activity is examined. In the simulations, patterns of neural activity that lead to a correct refinement of cell responses are observed during visual fixation, when small ocular movements occur, but are not observed in the presence of large saccades. Simulations also replicate experiments in which kittens are reared under stroboscopic illumination. The abnormal fixational eye movements of these cats may account for the puzzling finding of a specific loss of cortical direction selectivity but preservation of orientation selectivity. This work indicates that the oculomotor behavior of visual fixation may play an important role in the refinement of cell response selectivity.

  17. Phosphorus and magnesium interactively modulate the elongation and directional growth of primary roots in Arabidopsis thaliana (L.) Heynh

    PubMed Central

    Niu, Yaofang; Jin, Gulei; Li, Xin; Tang, Caixian; Zhang, Yongsong; Liang, Yongchao; Yu, Jingquan

    2015-01-01

    A balanced supply of essential nutrients is an important factor influencing root architecture in many plants, yet data related to the interactive effects of two nutrients on root growth are limited. Here, we investigated the interactive effect between phosphorus (P) and magnesium (Mg) on root growth of Arabidopsis grown in pH-buffered agar medium at different P and Mg levels. The results showed that elongation and deviation of primary roots were directly correlated with the amount of P added to the medium but could be modified by the Mg level, which was related to the root meristem activity and stem-cell division. High P enhanced while low P decreased the tip-focused fluorescence signal of auxin biosynthesis, transport, and redistribution during elongation of primary roots; these effects were greater under low Mg than under high Mg. The altered root growth in response to P and Mg supply was correlated with AUX1, PIN2, and PIN3 mRNA abundance and expression and the accumulation of the protein. Application of either auxin influx inhibitor or efflux inhibitor inhibited the elongation and increased the deviation angle of primary roots, and decreased auxin level in root tips. Furthermore, the auxin-transport mutants aux1-22 and eir1-1 displayed reduced root growth and increased the deviation angle. Our data suggest a profound effect of the combined supply of P and Mg on the development of root morphology in Arabidopsis through auxin signals that modulate the elongation and directional growth of primary root and the expression of root differentiation and development genes. PMID:25922494

  18. Contribution of directly connected and isolated impervious areas to urban drainage network hydrographs

    NASA Astrophysics Data System (ADS)

    Seo, Y.; Choi, N.-J.; Schmidt, A. R.

    2013-05-01

    This paper addresses the mass balance error observed in runoff hydrographs in urban watersheds by introducing assumptions regarding the contribution of infiltrated rainfall from pervious areas and isolated impervious area (IIA) to the runoff hydrograph. Rainfall infiltrating into pervious areas has been assumed not to contribute to the runoff hydrograph until Hortonian excess rainfall occurs. However, mass balance analysis in an urban watershed indicates that rainfall infiltrated to pervious areas can contribute to direct runoff hydrograph, thereby offering an explanation for the long hydrograph tail commonly observed in runoff from urban storm sewers. In this study, a hydrologic analysis based on the width function is introduced, with two types of width functions obtained from both pervious and impervious areas, respectively. The width function can be regarded as the direct interpretation of the network response. These two width functions are derived to obtain distinct response functions for directly connected impervious areas (DCIA), IIA, and pervious areas. The results show significant improvement in the estimation of runoff hydrographs and suggest the need to consider the flow contribution from pervious areas to the runoff hydrograph. It also implies that additional contribution from flow paths through joints and cracks in sewer pipes needs to be taken into account to improve the estimation of runoff hydrographs in urban catchments.

  19. Contribution of directly connected and isolated impervious areas to urban drainage network hydrographs

    NASA Astrophysics Data System (ADS)

    Seo, Y.; Choi, N.-J.; Schmidt, A. R.

    2013-09-01

    This paper addresses the mass balance error observed in runoff hydrographs in urban watersheds by introducing assumptions regarding the contribution of infiltrated rainfall from pervious areas and isolated impervious area (IIA) to the runoff hydrograph. Rainfall infiltrating into pervious areas has been assumed not to contribute to the runoff hydrograph until Hortonian excess rainfall occurs. However, mass balance analysis in an urban watershed indicates that rainfall infiltrated to pervious areas can contribute directly to the runoff hydrograph, thereby offering an explanation for the long hydrograph tail commonly observed in runoff from urban storm sewers. In this study, a hydrologic analysis based on the width function is introduced, with two types of width functions obtained from both pervious and impervious areas, respectively. The width function can be regarded as the direct interpretation of the network response. These two width functions are derived to obtain distinct response functions for directly connected impervious areas (DCIA), IIA, and pervious areas. The results show significant improvement in the estimation of runoff hydrographs and suggest the need to consider the flow contribution from pervious areas to the runoff hydrograph. It also implies that additional contribution from flow paths through joints and cracks in sewer pipes needs to be taken into account to improve the estimation of runoff hydrographs in urban catchments.

  20. A Low NO(x) Lean-Direct Injection, Multipoint Integrated Module Combuster Concept for Advanced Aircraft Gas Turbines

    NASA Technical Reports Server (NTRS)

    Tacina, Robert; Wey, Changlie; Laing, Peter; Mansour, Adel

    2002-01-01

    A low NO(x) emissions combustor has been demonstrated in flame-tube tests. A multipoint, lean-direct injection concept was used. Configurations were tested that had 25- and 36- fuel injectors in the size of a conventional single fuel injector. An integrated-module approach was used for the construction where chemically etched laminates, diffusion bonded together, combine the fuel injectors, air swirlers and fuel manifold into a single element. Test conditions were inlet temperatures up to 810 K, inlet pressures up to 2760 kPa, and flame temperatures up to 2100 K. A correlation was developed relating the NO(x) emissions with the inlet temperature, inlet pressure, fuel-air ratio and pressure drop. Assuming that 10 percent of the combustion air would be used for liner cooling and using a hypothetical engine cycle, the NO(x) emissions using the correlation from flame-tube tests were estimated to be less than 20 percent of the 1996 ICAO standard.

  1. Thin-Layer Chemical Modulations by a Combined Selective Proton Pump and pH Probe for Direct Alkalinity Detection.

    PubMed

    Afshar, Majid Ghahraman; Crespo, Gastón A; Bakker, Eric

    2015-07-01

    We report a general concept based on a selective electrochemical ion pump used for creating concentration perturbations in thin layer samples (?40??L). As a first example, hydrogen ions are released from a selective polymeric membrane (proton pump) and the resulting pH is assessed potentiometrically with a second membrane placed directly opposite. By applying a constant potential modulation for 30?s, an induced proton concentration of up to 350?mM may be realized. This concept may become an attractive tool for in?situ titrations without the need for sampling, because the thin layer eventually re-equilibrates with the contacting bulk sample. Acid-base titrations of NaOH and Na2 CO3 are demonstrated. The determination of total alkalinity in a river water sample is carried out, giving levels (23.1?mM) comparable to that obtained by standard methods (23.6?mM). The concept may be easily extended to other ions (cations, anions, polyions) and may become attractive for environmental and clinical applications. PMID:26014101

  2. A Coral Reef Algorithm Based on Learning Automata for the Coverage Control Problem of Heterogeneous Directional Sensor Networks.

    PubMed

    Li, Ming; Miao, Chunyan; Leung, Cyril

    2015-01-01

    Coverage control is one of the most fundamental issues in directional sensor networks. In this paper, the coverage optimization problem in a directional sensor network is formulated as a multi-objective optimization problem. It takes into account the coverage rate of the network, the number of working sensor nodes and the connectivity of the network. The coverage problem considered in this paper is characterized by the geographical irregularity of the sensed events and heterogeneity of the sensor nodes in terms of sensing radius, field of angle and communication radius. To solve this multi-objective problem, we introduce a learning automata-based coral reef algorithm for adaptive parameter selection and use a novel Tchebycheff decomposition method to decompose the multi-objective problem into a single-objective problem. Simulation results show the consistent superiority of the proposed algorithm over alternative approaches. PMID:26690162

  3. Modulation of Brain Resting-State Networks by Sad Mood Induction

    PubMed Central

    Harrison, Ben J.; Pujol, Jesus; Ortiz, Hector; Fornito, Alex; Pantelis, Christos; Yücel, Murat

    2008-01-01

    Background There is growing interest in the nature of slow variations of the blood oxygen level-dependent (BOLD) signal observed in functional MRI resting-state studies. In humans, these slow BOLD variations are thought to reflect an underlying or intrinsic form of brain functional connectivity in discrete neuroanatomical systems. While these ‘resting-state networks’ may be relatively enduring phenomena, other evidence suggest that dynamic changes in their functional connectivity may also emerge depending on the brain state of subjects during scanning. Methodology/Principal Findings In this study, we examined healthy subjects (n?=?24) with a mood induction paradigm during two continuous fMRI recordings to assess the effects of a change in self-generated mood state (neutral to sad) on the functional connectivity of these resting-state networks (n?=?24). Using independent component analysis, we identified five networks that were common to both experimental states, each showing dominant signal fluctuations in the very low frequency domain (?0.04 Hz). Between the two states, we observed apparent increases and decreases in the overall functional connectivity of these networks. Primary findings included increased connectivity strength of a paralimbic network involving the dorsal anterior cingulate and anterior insula cortices with subjects' increasing sadness and decreased functional connectivity of the ‘default mode network’. Conclusions/Significance These findings support recent studies that suggest the functional connectivity of certain resting-state networks may, in part, reflect a dynamic image of the current brain state. In our study, this was linked to changes in subjective mood. PMID:18350136

  4. A Survey of Link Recommendation for Social Networks: Methods, Theoretical Foundations, and Future Research Directions

    E-print Network

    Li, Zhepeng; Sheng, Olivia

    2015-01-01

    Link recommendation has attracted significant attentions from both industry practitioners and academic researchers. In industry, link recommendation has become a standard and most important feature in online social networks, prominent examples of which include "People You May Know" on LinkedIn and "You May Know" on Google+. In academia, link recommendation has been and remains a highly active research area. This paper surveys state-of-the-art link recommendation methods, which can be broadly categorized into learning-based methods and proximity-based methods. We further identify social and economic theories, such as social interaction theory, that underlie these methods and explain from a theoretical perspective why a link recommendation method works. Finally, we propose to extend link recommendation research in several directions that include utility-based link recommendation, diversity of link recommendation, link recommendation from incomplete data, and experimental study of link recommendation.

  5. Experimental demonstration of cascaded AWG access network featuring bi-directional transmission and polarization multiplexing

    NASA Astrophysics Data System (ADS)

    Tsalamanis, Ioannis; Rochat, Etienne; Walker, Stuart D.; Parker, Michael C.; Holburn, D. M.

    2004-03-01

    We present the first experimental demonstration of a bidirectional cascaded arrayed-waveguide grating (AWG) access network combining one N×N AWG in the central office with multiple 1×N AWG's at the distribution points, such as to individually address N2 users with only N wavelengths. Downstream and upstream data share the same optical path. BER curves were measured using 2.5Gb/s data stream in each direction, and error free transmission achieved for downstream and upstream, with only 0.3dB power penalty for simultaneous transmission. The addition of two orthogonal polarization-multiplexed channels per wavelength doubled the number of possible end users. Error free transmission was achieved with simultaneous upstream and downstream transmission of a composite signal featuring eight 2.5Gb/s channels (2 polarizations × 4 wavelengths)

  6. Global epidemic invasion thresholds in directed cattle subpopulation networks having source, sink, and transit nodes.

    PubMed

    Schumm, Phillip; Scoglio, Caterina; Zhang, Qian; Balcan, Duygu

    2015-02-21

    Through the characterization of a metapopulation cattle disease model on a directed network having source, transit, and sink nodes, we derive two global epidemic invasion thresholds. The first threshold defines the conditions necessary for an epidemic to successfully spread at the global scale. The second threshold defines the criteria that permit an epidemic to move out of the giant strongly connected component and to invade the populations of the sink nodes. As each sink node represents a final waypoint for cattle before slaughter, the existence of an epidemic among the sink nodes is a serious threat to food security. We find that the relationship between these two thresholds depends on the relative proportions of transit and sink nodes in the system and the distributions of the in-degrees of both node types. These analytic results are verified through numerical realizations of the metapopulation cattle model. PMID:25524151

  7. Three-dimensional Dendritic Needle Network model with application to Al-Cu directional solidification experiments

    DOE PAGESBeta

    Tourret, D.; Karma, A.; Clarke, A. J.; Gibbs, P. J.; Imhoff, S. D.

    2015-06-11

    We present a three-dimensional (3D) extension of a previously proposed multi-scale Dendritic Needle Network (DNN) approach for the growth of complex dendritic microstructures. Using a new formulation of the DNN dynamics equations for dendritic paraboloid-branches of a given thickness, one can directly extend the DNN approach to 3D modeling. We validate this new formulation against known scaling laws and analytical solutions that describe the early transient and steady-state growth regimes, respectively. Finally, we compare the predictions of the model to in situ X-ray imaging of Al-Cu alloy solidification experiments. The comparison shows a very good quantitative agreement between 3D simulationsmore »and thin sample experiments. It also highlights the importance of full 3D modeling to accurately predict the primary dendrite arm spacing that is significantly over-estimated by 2D simulations.« less

  8. Three-dimensional Dendritic Needle Network model with application to Al-Cu directional solidification experiments

    SciTech Connect

    Tourret, D.; Karma, A.; Clarke, A. J.; Gibbs, P. J.; Imhoff, S. D.

    2015-06-11

    We present a three-dimensional (3D) extension of a previously proposed multi-scale Dendritic Needle Network (DNN) approach for the growth of complex dendritic microstructures. Using a new formulation of the DNN dynamics equations for dendritic paraboloid-branches of a given thickness, one can directly extend the DNN approach to 3D modeling. We validate this new formulation against known scaling laws and analytical solutions that describe the early transient and steady-state growth regimes, respectively. Finally, we compare the predictions of the model to in situ X-ray imaging of Al-Cu alloy solidification experiments. The comparison shows a very good quantitative agreement between 3D simulations and thin sample experiments. It also highlights the importance of full 3D modeling to accurately predict the primary dendrite arm spacing that is significantly over-estimated by 2D simulations.

  9. Sector Tests of a Low-NO(sub x), Lean, Direct- Injection, Multipoint Integrated Module Combustor Concept Conducted

    NASA Technical Reports Server (NTRS)

    Tacina, Robert R.; Wey, Chang-Lie; Laing, Peter; Mansour, Adel

    2002-01-01

    The low-emissions combustor development described is directed toward advanced high pressure aircraft gas-turbine applications. The emphasis of this research is to reduce nitrogen oxides (NOx) at high-power conditions and to maintain carbon monoxide and unburned hydrocarbons at their current low levels at low power conditions. Low-NOx combustors can be classified into rich-burn and lean-burn concepts. Lean-burn combustors can be further classified into lean-premixed-prevaporized (LPP) and lean direct injection (LDI) concepts. In both concepts, all the combustor air, except for liner cooling flow, enters through the combustor dome so that the combustion occurs at the lowest possible flame temperature. The LPP concept has been shown to have the lowest NOx emissions, but for advanced high-pressure-ratio engines, the possibility of autoignition or flashback precludes its use. LDI differs from LPP in that the fuel is injected directly into the flame zone, and thus, it does not have the potential for autoignition or flashback and should have greater stability. However, since it is not premixed and prevaporized, good atomization is necessary and the fuel must be mixed quickly and uniformly so that flame temperatures are low and NOx formation levels are comparable to those of LPP. The LDI concept described is a multipoint fuel injection/multiburning zone concept. Each of the multiple fuel injectors has an air swirler associated with it to provide quick mixing and a small recirculation zone for burning. The multipoint fuel injection provides quick, uniform mixing and the small multiburning zones provide for reduced burning residence time, resulting in low NOx formation. An integrated-module approach was used for the construction where chemically etched laminates, diffusion bonded together, combine the fuel injectors, air swirlers, and fuel manifold into a single element. The multipoint concept combustor was demonstrated in a 15 sector test. The configuration tested had 36 fuel injectors and fuel-air mixers that replaced two fuel injectors in a conventional dual-annular combustor. During tests, inlet temperatures were up to 870 K and inlet pressures were up to 5400 kPa. A correlation was developed that related the NOx emissions with the inlet temperature, inlet pressure, fuel-air ratio, and pressure drop. At low-power conditions, fuel staging was used so that high combustion efficiency was obtained with only one-fourth of the fuel injectors flowing. The test facility had optical access, and visual images showed the flame to be very short, approximately 25 mm long.

  10. Reconstruction of canine diffuse large B-cell lymphoma gene regulatory network: detection of functional modules and hub genes.

    PubMed

    Zamani-Ahmadmahmudi, M; Najafi, A; Nassiri, S M

    2015-01-01

    Lymphoma is one of the most common malignancies in dogs. Canine lymphoma is similar to human non-Hodgkin's lymphoma (NHL) with shared clinical presentation and histopathological features. This study reports the construction of a comprehensive gene regulatory network (GRN) for canine diffuse large B-cell lymphoma (DLBCL), the most common type of canine lymphoma, and performs analysis for detection of major functional modules and hub genes (the most important genes in a GRN). The canine DLBCL GRN was reconstructed from gene expression data (NCBI GEO dataset: GSE30881) using the STRING and MiMI interaction databases. Reconstructed GRNs were then assessed, using various bioinformatics programmes, in order to analyze network topology and identify major pathways and hub genes. The resultant network from both interaction databases had a logically scale-free pattern. Gene ontology (GO) analysis revealed cell activation, cell cycle phase, immune effector process, immune system development, immune system process, integrin-mediated signalling pathway, intracellular protein kinase cascade, intracellular signal transduction, leucocyte activation and differentiation, lymphocyte activation and differentiation as major GO terms in the biological processes of the networks. Moreover, bioinformatics analysis showed E2F1, E2F4, PTEN, CDKN1A, PCNA, DKC1, MNAT1, NDUFB4, ATP5J, PRKDC, BRCA1, MYCN, RFC4 and POLA1 as the most important hub genes. The phosphatidyl inositol signalling system, P53 signalling pathway, Rac CycD pathway, G1/S checkpoint, chemokine signalling pathway and telomere maintenance were the main signalling pathways in which the protein products of the hub genes are involved. PMID:25678421

  11. 112 Gb/s transmission with a directly-modulated laser using FFT-based synthesis of orthogonal PAM and DMT signals.

    PubMed

    Ling, William A; Matsui, Yasuhiro; Daghighian, Henry M; Lyubomirsky, Ilya

    2015-07-27

    We report the experimental measurement of 112 Gb/s transmission back-to-back and through 12 km of S-SMF with a single directly-modulated laser (DML) using the novel modulation format Orthogonal PAM-DMT. This work demonstrates a record DML-based 112 Gb/s receiver sensitivity of -7.1 dBm at a BER of 10-3, outperforming conventional PAM and DMT by approximately 2.5 dB. PMID:26367582

  12. Direct synthesis of graphene 3D-coated Cu nanosilks network for antioxidant transparent conducting electrode.

    PubMed

    Xu, Hongmei; Wang, Huachun; Wu, Chenping; Lin, Na; Soomro, Abdul Majid; Guo, Huizhang; Liu, Chuan; Yang, Xiaodong; Wu, Yaping; Cai, Duanjun; Kang, JunYong

    2015-06-28

    Transparent conducting film occupies an important position in various optoelectronic devices. To replace the costly tin-doped indium oxide (ITO), promising materials, such as metal nanowires and graphene, have been widely studied. Moreover, a long-pursued goal is to consolidate these two materials together and express their outstanding properties simultaneously. We successfully achieved a direct 3D coating of a graphene layer on an interlacing Cu nanosilks network by the low pressure chemical vapor deposition method. High aspect ratio Cu nanosilks (13 nm diameter with 40 ?m length) were synthesized through the nickel ion catalytic process. Large-size, transparent conducting film was successfully fabricated with Cu nanosilks ink by the imprint method. A magnetic manipulator equipped with a copper capsule was used to produce high Cu vapor pressure on Cu nanosilks and realize the graphene 3D-coating. The coated Cu@graphene nanosilks network achieved high transparency, low sheet resistance (41 Ohm sq(-1) at 95% transmittance) and robust antioxidant ability. With this technique, the transfer process of graphene is no longer needed, and a flexible, uniform and high-performance transparent conducting film could be fabricated in unlimited size. PMID:26018299

  13. Globes from global data: Charting international research networks with the GRASS GIS r.out.polycones add-on module.

    NASA Astrophysics Data System (ADS)

    Löwe, Peter

    2015-04-01

    Many Free and Open Source Software (FOSS) tools have been created for the various application fields within geoscience. While FOSS allows re-implementation of functionalities in new environments by access to the original codebase, the easiest approach to build new software solutions for new problems is the combination or merging of existing software tools. Such mash-ups are implemented by embedding and encapsulating FOSS tools within each another, effectively focusing the use of the embedded software to the specific role it needs to perform in the given scenario, while ignoring all its other capabilities. GRASS GIS is a powerful and established FOSS GIS for raster, vector and volume data processing while the Generic Mapping Tools (GMT) are a suite of powerful Open Source mapping tools, which exceed the mapping capabilities of GRASS GIS. This poster reports on the new GRASS GIS add-on module r.out.polycones. It enables users to utilize non-continuous projections for map production within the GRASS production environment. This is implemented on the software level by encapsulating a subset of GMT mapping capabilities into a GRASS GIS (Version 6.x) add-on module. The module was developed at the German National Library of Science and Technology (TIB) to provide custom global maps of scientific collaboration networks, such as the DataCite consortium, the registration agency for Digital Object Identifiers (DOI) for research data. The GRASS GIS add-on module can be used for global mapping of raster data into a variety of non continuous sinosoidal projections, allowing the creation of printable biangles (gores) to be used for globe making. Due to the well structured modular nature of GRASS modules, technical follow-up work will focus on API-level Python-based integration in GRASS 7 [1]. Based on this, GMT based mapping capabilities in GRASS will be extended beyond non-continuous sinosoidal maps and advanced from raster-layers to content GRASS display monitors. References: [1] Petras, V., Petrasova, A., Chemin, Y., Zambelli, P., Landa, M., Gebbert, S., Neteler, N., Löwe, P.: Analyzing rasters, vectors and time series using new Python interfaces in GRASS GIS 7, Geophysical Research Abstracts Vol. 17, EGU2015-8142, 2015 (in preparation)

  14. A Conserved Circular Network of Coregulated Lipids Modulates Innate Immune Responses

    PubMed Central

    Köberlin, Marielle S.; Snijder, Berend; Heinz, Leonhard X.; Baumann, Christoph L.; Fauster, Astrid; Vladimer, Gregory I.; Gavin, Anne-Claude; Superti-Furga, Giulio

    2015-01-01

    Summary Lipid composition affects the biophysical properties of membranes that provide a platform for receptor-mediated cellular signaling. To study the regulatory role of membrane lipid composition, we combined genetic perturbations of sphingolipid metabolism with the quantification of diverse steps in Toll-like receptor (TLR) signaling and mass spectrometry-based lipidomics. Membrane lipid composition was broadly affected by these perturbations, revealing a circular network of coregulated sphingolipids and glycerophospholipids. This evolutionarily conserved network architecture simultaneously reflected membrane lipid metabolism, subcellular localization, and adaptation mechanisms. Integration of the diverse TLR-induced inflammatory phenotypes with changes in lipid abundance assigned distinct functional roles to individual lipid species organized across the network. This functional annotation accurately predicted the inflammatory response of cells derived from patients suffering from lipid storage disorders, based solely on their altered membrane lipid composition. The analytical strategy described here empowers the understanding of higher-level organization of membrane lipid function in diverse biological systems. PMID:26095250

  15. Epigenetic modulation of brain gene networks for cocaine and alcohol abuse

    PubMed Central

    Farris, Sean P.; Harris, Robert A.; Ponomarev, Igor

    2015-01-01

    Cocaine and alcohol are two substances of abuse that prominently affect the central nervous system (CNS). Repeated exposure to cocaine and alcohol leads to longstanding changes in gene expression, and subsequent functional CNS plasticity, throughout multiple brain regions. Epigenetic modifications of histones are one proposed mechanism guiding these enduring changes to the transcriptome. Characterizing the large number of available biological relationships as network models can reveal unexpected biochemical relationships. Clustering analysis of variation from whole-genome sequencing of gene expression (RNA-Seq) and histone H3 lysine 4 trimethylation (H3K4me3) events (ChIP-Seq) revealed the underlying structure of the transcriptional and epigenomic landscape within hippocampal postmortem brain tissue of drug abusers and control cases. Distinct sets of interrelated networks for cocaine and alcohol abuse were determined for each abusive substance. The network approach identified subsets of functionally related genes that are regulated in agreement with H3K4me3 changes, suggesting cause and effect relationships between this epigenetic mark and gene expression. Gene expression networks consisted of recognized substrates for addiction, such as the dopamine- and cAMP-regulated neuronal phosphoprotein PPP1R1B/DARPP-32 and the vesicular glutamate transporter SLC17A7/VGLUT1 as well as potentially novel molecular targets for substance abuse. Through a systems biology based approach our results illustrate the utility of integrating epigenetic and transcript expression to establish relevant biological networks in the human brain for addiction. Future work with laboratory models may clarify the functional relevance of these gene networks for cocaine and alcohol, and provide a framework for the development of medications for the treatment of addiction. PMID:26041984

  16. USE SRR include the SRR transport module in the network server. Both USE_VMTP and NETPORT require kernel support that is not normally present. Normally,

    E-print Network

    ., Duchamp, D., Eppinger, J. L., Menees, S. G., and Thompson, D. S. The Camelot Project. Database Engineering versions of the Mach kernel. CAMELOT include the Camelot module in the network server. NM USE KDS use server. 41 #12; 17.7. Camelot Support The Camelot Distributed Transaction Facility [3] requires special

  17. Modulation of grasping force in prosthetic hands using neural network-based predictive control.

    PubMed

    Pasluosta, Cristian F; Chiu, Alan W L

    2015-01-01

    This chapter describes the implementation of a neural network-based predictive control system for driving a prosthetic hand. Nonlinearities associated with the electromechanical aspects of prosthetic devices present great challenges for precise control of this type of device. Model-based controllers may overcome this issue. Moreover, given the complexity of these kinds of electromechanical systems, neural network-based modeling arises as a good fit for modeling the fingers' dynamics. The results of simulations mimicking potential situations encountered during activities of daily living demonstrate the feasibility of this technique. PMID:25502382

  18. Integer-Linear-Programing Optimization in Scalable Video Multicast with Adaptive Modulation and Coding in Wireless Networks

    PubMed Central

    Lee, Chaewoo

    2014-01-01

    The advancement in wideband wireless network supports real time services such as IPTV and live video streaming. However, because of the sharing nature of the wireless medium, efficient resource allocation has been studied to achieve a high level of acceptability and proliferation of wireless multimedia. Scalable video coding (SVC) with adaptive modulation and coding (AMC) provides an excellent solution for wireless video streaming. By assigning different modulation and coding schemes (MCSs) to video layers, SVC can provide good video quality to users in good channel conditions and also basic video quality to users in bad channel conditions. For optimal resource allocation, a key issue in applying SVC in the wireless multicast service is how to assign MCSs and the time resources to each SVC layer in the heterogeneous channel condition. We formulate this problem with integer linear programming (ILP) and provide numerical results to show the performance under 802.16?m environment. The result shows that our methodology enhances the overall system throughput compared to an existing algorithm. PMID:25276862

  19. The AT-hook motif-encoding gene METABOLIC NETWORK MODULATOR 1 underlies natural variation in Arabidopsis primary metabolism

    PubMed Central

    Li, Baohua; Kliebenstein, Daniel J.

    2014-01-01

    Regulation of primary metabolism is a central mechanism by which plants coordinate their various responses to biotic and abiotic challenge. To identify genes responsible for natural variation in primary metabolism, we focused on cloning a locus from Arabidopsis thaliana that influences the level of TCA cycle metabolites in planta. We found that the Met.V.67 locus was controlled by natural variation in METABOLIC NETWORK MODULATOR 1 (MNM1), which encoded an AT-hook motif-containing protein that was unique to the Brassicales lineage. MNM1 had wide ranging effects on plant metabolism and displayed a tissue expression pattern that was suggestive of a function in sink tissues. Natural variation within MNM1 had differential effects during a diurnal time course, and this temporal dependency was supported by analysis of T-DNA insertion and over-expression lines for MNM1. Thus, the cloning of a natural variation locus specifically associated with primary metabolism allowed us to identify MNM1 as a lineage-specific modulator of primary metabolism, suggesting that the regulation of primary metabolism can change during evolution. PMID:25202318

  20. Cognitive emotion regulation in children: Reappraisal of emotional faces modulates neural source activity in a frontoparietal network.

    PubMed

    Wessing, Ida; Rehbein, Maimu A; Romer, Georg; Achtergarde, Sandra; Dobel, Christian; Zwitserlood, Pienie; Fürniss, Tilman; Junghöfer, Markus

    2015-06-01

    Emotion regulation has an important role in child development and psychopathology. Reappraisal as cognitive regulation technique can be used effectively by children. Moreover, an ERP component known to reflect emotional processing called late positive potential (LPP) can be modulated by children using reappraisal and this modulation is also related to children's emotional adjustment. The present study seeks to elucidate the neural generators of such LPP effects. To this end, children aged 8-14 years reappraised emotional faces, while neural activity in an LPP time window was estimated using magnetoencephalography-based source localization. Additionally, neural activity was correlated with two indexes of emotional adjustment and age. Reappraisal reduced activity in the left dorsolateral prefrontal cortex during down-regulation and enhanced activity in the right parietal cortex during up-regulation. Activity in the visual cortex decreased with increasing age, more adaptive emotion regulation and less anxiety. Results demonstrate that reappraisal changed activity within a frontoparietal network in children. Decreasing activity in the visual cortex with increasing age is suggested to reflect neural maturation. A similar decrease with adaptive emotion regulation and less anxiety implies that better emotional adjustment may be associated with an advance in neural maturation. PMID:25796042

  1. Efficient target tracking with an ad-hoc network of omni-directional sensors

    NASA Astrophysics Data System (ADS)

    Atanassov, Kalin

    2015-05-01

    Ad-hoc networks of omni-directional sensors provide an efficient means to obtain low-cost, easily deployed, reliable target tracking systems. To remove target position dependency on the target power, a transformation to another coordinate system is introduced. It can be shown that the problem of sensing target position with omni-directional sensors can be adapted to the conventional Kalman filter framework. To validate the proposed methodology, first an analysis is conducted to show that by converting to log-ratio space and at the same time reducing the number of parameters to track, no information about target position is lost. The analysis is done by deriving the CRLBs for the position estimation error in both original and transformed spaces and showing that they are the same. Second, to show how the traditional Kalman filter framework performs, a particle filter that works off the transformed coordinates is designed. The number of particles is selected to be sufficiently large and the result is used as ground truth to compare with the performance of the Kalman tracker. The comparisons are done for different target movement speeds and sensor density modes. The results provide an insight into Kalman tracker performance in different situations.

  2. Relationship Reciprocation Modulates Resource Allocation in Adolescent Social Networks: Developmental Effects

    ERIC Educational Resources Information Center

    Burnett Heyes, Stephanie; Jih, Yeou-Rong; Block, Per; Hiu, Chii-Fen; Holmes, Emily A.; Lau, Jennifer Y. F.

    2015-01-01

    Adolescence is characterized as a period of social reorientation toward peer relationships, entailing the emergence of sophisticated social abilities. Two studies (Study 1: N = 42, ages 13-17; Study 2: N = 81, ages 13-16) investigated age group differences in the impact of relationship reciprocation within school-based social networks on an…

  3. Local pulmonary opioid network in patients with lung cancer: a putative modulator of respiratory function.

    PubMed

    Krajnik, Ma?gorzata; Schäfer, Michael; Soba?ski, Piotr; Kowalewski, Janusz; Bloch-Bogus?awska, Elzbieta; Zylicz, Zbigniew; Mousa, Shaaban A

    2010-01-01

    Recently, there has been growing interest in the opioid regulation of physiological respiratory function. However, evidence for a local opioid network that includes endogenous opioid peptides and their receptors is scarce. Tissue samples from patients with lung cancer were examined by immunohistochemistry to identify the components of the opioid network: beta-endorphin (END); its precursor, proopiomelanocortin (POMC); the key processing enzymes prohormone convertase 1 and 2; carboxypeptidase E; and END's corresponding opioid receptor, the mu-opioid receptor (MOR). Additionally, we tested pulmonary function parameters in a patient with advanced lung cancer after inhalation of nebulized morphine. Confocal immunofluorescence microscopy revealed that the opioid precursor POMC colocalizes with its active peptide END, key processing enzymes and MOR in alveolar macrophages, submucosal glands, cancerous cells, and pulmonary neuroendocrine cells within the bronchial epithelium. In addition, MOR was identified on sensory nerve endings within the bronchial epithelium. Furthermore, nebulized morphine improved pulmonary function parameters in advanced lung cancer. These findings provide evidence of a local opioid network in functionally important anatomical structures of the respiratory system; this network consists of all the machinery required for POMC processing into active peptides, such as END, and contains the receptors for END. Our findings indicate a need for further clinical trials to elucidate the modulatory function of peripheral endogenous opioids in the human lung. PMID:20360624

  4. Low voltage polymer network liquid crystal for infrared spatial light modulators

    E-print Network

    Wu, Shin-Tson

    . J. Sun, S.-T. Wu, and Y. Haseba, "A low voltage submillisecond-response polymer network liquid," Proc. SPIE 5106, 138­145 (2003). 18. J. Sun, Y. Chen, and S.-T. Wu, "Submillisecond­2007 (2013). 5. F. Peng, Y. Chen, S.-T. Wu, S. Tripathi, and R. J. Twieg, "Low loss liquid crystals

  5. Algorithm to Identify Frequent Coupled Modules from Two-Layered Network Series: Application to Study

    E-print Network

    Zhou, Xianghong Jasmine

    to simultaneously profiling biological 1 Program in Computational Biology, Department of Biological Sciences data, in fact, is RNA-seq data, since every RNA-seq profile provides the information at both different types yet coupled biological networks. We formulated the problem of identifying frequent coupled

  6. Diversity and Adaptive Modulation & Coding Aware Routing in WLAN Multihop Networks with Centrally

    E-print Network

    Yanikomeroglu, Halim

    Scheduled Multiple Access By Shoaev Hares A thesis submitted to the Faculty of Graduate Studies and Research, Ontario Copyright 2004, Shoaev Hares #12;The undersigned hereby recommended to the Faculty of Graduate in WLAN Multihop Networks with Centrally Scheduled Multiple Access Submitted by Shoaev Hares In partial

  7. NATARAJAN, ARUN. NSDMiner: Automated Discovery of Network Service Dependencies. (Under the direction of Dr. Peng Ning.)

    E-print Network

    Ning, Peng

    -based approaches. Our experimental evaluation, which uses network traffic collected from our campus network, shows graduation. His research interests include Networks and System security. iii #12;ACKNOWLEDGEMENTS With a deepABSTRACT NATARAJAN, ARUN. NSDMiner: Automated Discovery of Network Service Dependencies. (Under

  8. Polymerase and hydrolase activities of Bacillus subtilis levansucrase can be separately modulated by site-directed mutagenesis.

    PubMed Central

    Chambert, R; Petit-Glatron, M F

    1991-01-01

    The levansucrase (sucrose:2,6-beta-D-fructan 6-beta-D-fructosyltransferase, EC 2.4.1.10) structural gene from a Bacillus subtilis mutant strain displaying a low polymerase activity was sequenced. Only one missense mutation changing Arg331 to His was responsible for this modified catalytic property. From this allele we created new mutations by directed mutagenesis, which modified the charge and polarity of site 331. Examination of the kinetics of the purified levansucrase variants revealed that transfructosylation activities are affected differently by the substitution chosen. His331----Arg completely restored the properties of the wild-type enzyme. The most striking feature of the other variants, namely Lys331, Ser331 and Leu331, was that they lost the ability of the wild-type enzyme to synthesize levan from sucrose alone. They were only capable of catalysing the first step of levan chain elongation, which is the formation of the trisaccharide ketose. The variant His331----Lys presented a higher kcat. for sucrose hydrolysis than the wild-type, and only this hydrolase activity was preserved in a solvent/water mixture in which the wild-type acted as a true polymerase. The two other substitutions reduced the efficiency of transfructosylation activities of the enzyme via the decrease of the rate of fructosyl-enzyme intermediate formation. For all variants, the sucrose affinity was slightly affected. This strong modulation of the enzyme specificities from a single amino acid substitution led us to postulate the hypothesis that bacterial levansucrases and plant fructosyltransferases involved in fructan synthesis may possess a common ancestral form. Images Fig. 2. PMID:1930154

  9. Four-dimensional intensity-modulated radiation therapy planning for dynamic tracking using a direct aperture deformation (DAD) method

    SciTech Connect

    Gui Minzhi; Feng Yuanming; Yi Byongyong; Dhople, Anil Arvind; Yu, Cedric

    2010-05-15

    Purpose: Planning for the delivery of intensity-modulated radiation therapy (IMRT) to a moving target, referred to as four-dimensional (4D) IMRT planning, is a crucial step for achieving the treatment objectives for sites that move during treatment delivery. The authors proposed a simplistic method that accounts for both rigid and nonrigid respiration-induced target motion based on 4D computed tomography (4DCT) data sets. Methods: A set of MLC apertures and weights was first optimized on a reference phase of a 4DCT data set. At each beam angle, the apertures were morphed from the reference phase to each of the remaining phases according to the relative shape changes in the beam's eye view of the target. Three different planning schemes were evaluated for two lung cases and one pancreas patient: (1) Individually optimizing each breathing phase; (2) optimizing the reference phase and shifting the optimized apertures to other breathing phases based on a rigid-body image registration; and (3) optimizing the reference phase and deforming the optimized apertures to the other phases based on the deformation and translation of target contours. Planning results using scheme 1 serves as the ''gold standard'' for plan quality assessment; scheme 2 is the method previously proposed in the literature; and scheme 3 is the method the authors proposed in this article. The optimization results were compared between the three schemes for all three cases. Results: The proposed scheme 3 is comparable to scheme 1 in plan quality, and provides improved target coverage and conformity with similar normal tissue dose compared with scheme 2. Conclusions: Direct aperture deformation method for 4D IMRT planning improves upon methods that only consider rigid-body motion and achieves a plan quality close to that optimized for each of the phases.

  10. Secreted frizzled related proteins modulate pathfinding and fasciculation of mouse retina ganglion cell axons by direct and indirect mechanisms.

    PubMed

    Marcos, Séverine; Nieto-Lopez, Francisco; Sandonìs, Africa; Cardozo, Marcos Julian; Di Marco, Fabiana; Esteve, Pilar; Bovolenta, Paola

    2015-03-18

    Retina ganglion cell (RGC) axons grow along a stereotyped pathway undergoing coordinated rounds of fasciculation and defasciculation, which are critical to establishing proper eye-brain connections. How this coordination is achieved is poorly understood, but shedding of guidance cues by metalloproteinases is emerging as a relevant mechanism. Secreted Frizzled Related Proteins (Sfrps) are multifunctional proteins, which, among others, reorient RGC growth cones by regulating intracellular second messengers, and interact with Tolloid and ADAM metalloproteinases, thereby repressing their activity. Here, we show that the combination of these two functions well explain the axon guidance phenotype observed in Sfrp1 and Sfrp2 single and compound mouse mutant embryos, in which RGC axons make subtle but significant mistakes during their intraretinal growth and inappropriately defasciculate along their pathway. The distribution of Sfrp1 and Sfrp2 in the eye is consistent with the idea that Sfrp1/2 normally constrain axon growth into the fiber layer and the optic disc. Disheveled axon growth instead seems linked to Sfrp-mediated modulation of metalloproteinase activity. Indeed, retinal explants from embryos with different Sfrp-null alleles or explants overexpressing ADAM10 extend axons with a disheveled appearance, which is reverted by the addition of Sfrp1 or an ADAM10-specific inhibitor. This mode of growth is associated with an abnormal proteolytic processing of L1 and N-cadherin, two ADAM10 substrates previously implicated in axon guidance. We thus propose that Sfrps contribute to coordinate visual axon growth with a dual mechanism: by directly signaling at the growth cone and by regulating the processing of other relevant cues. PMID:25788689

  11. Hippocampal place cell instability after lesions of the head direction cell network

    NASA Technical Reports Server (NTRS)

    Calton, Jeffrey L.; Stackman, Robert W.; Goodridge, Jeremy P.; Archey, William B.; Dudchenko, Paul A.; Taube, Jeffrey S.; Oman, C. M. (Principal Investigator)

    2003-01-01

    The occurrence of cells that encode spatial location (place cells) or head direction (HD cells) in the rat limbic system suggests that these cell types are important for spatial navigation. We sought to determine whether place fields of hippocampal CA1 place cells would be altered in animals receiving lesions of brain areas containing HD cells. Rats received bilateral lesions of anterodorsal thalamic nuclei (ADN), postsubiculum (PoS), or sham lesions, before place cell recording. Although place cells from lesioned animals did not differ from controls on many place-field characteristics, such as place-field size and infield firing rate, the signal was significantly degraded with respect to measures of outfield firing rate, spatial coherence, and information content. Surprisingly, place cells from lesioned animals were more likely modulated by the directional heading of the animal. Rotation of the landmark cue showed that place fields from PoS-lesioned animals were not controlled by the cue and shifted unpredictably between sessions. Although fields from ADN-lesioned animals tended to have less landmark control than fields from control animals, this impairment was mild compared with cells recorded from PoS-lesioned animals. Removal of the prominent visual cue also led to instability of place-field representations in PoS-lesioned, but not ADN-lesioned, animals. Together, these findings suggest that an intact HD system is not necessary for the maintenance of place fields, but lesions of brain areas that convey the HD signal can degrade this signal, and lesions of the PoS might lead to perceptual or mnemonic deficits, leading to place-field instability between sessions.

  12. Network Modules of the Cross-Species Genotype-Phenotype Map Reflect the Clinical Severity of Human Diseases

    PubMed Central

    Han, Seong Kyu; Kim, Inhae; Hwang, Jihye; Kim, Sanguk

    2015-01-01

    Recent advances in genome sequencing techniques have improved our understanding of the genotype-phenotype relationship between genetic variants and human diseases. However, genetic variations uncovered from patient populations do not provide enough information to understand the mechanisms underlying the progression and clinical severity of human diseases. Moreover, building a high-resolution genotype-phenotype map is difficult due to the diverse genetic backgrounds of the human population. We built a cross-species genotype-phenotype map to explain the clinical severity of human genetic diseases. We developed a data-integrative framework to investigate network modules composed of human diseases mapped with gene essentiality measured from a model organism. Essential and nonessential genes connect diseases of different types which form clusters in the human disease network. In a large patient population study, we found that disease classes enriched with essential genes tended to show a higher mortality rate than disease classes enriched with nonessential genes. Moreover, high disease mortality rates are explained by the multiple comorbid relationships and the high pleiotropy of disease genes found in the essential gene-enriched diseases. Our results reveal that the genotype-phenotype map of a model organism can facilitate the identification of human disease-gene associations and predict human disease progression. PMID:26301634

  13. Electron-tunneling modulation in percolating network of graphene quantum dots: fabrication, phenomenological understanding, and humidity/pressure sensing applications.

    PubMed

    Sreeprasad, T S; Rodriguez, Alfredo Alexander; Colston, Jonathan; Graham, Augustus; Shishkin, Evgeniy; Pallem, Vasanta; Berry, Vikas

    2013-04-10

    The two-dimensional (2D) electron cloud, flexible carbon-carbon bonds, chemical modifiability, and size-dependent quantum-confinement and capacitance makes graphene nanostructures (GN) a widely tunable material for electronics. Here we report the oxidation-led edge-roughening and cleavage of long graphene nanoribbons (GNRs) (150 nm wide) synthesized via nanotomy (nanoscale cutting) of graphite (with 2 nm edged diamond knife) to produce graphene quantum dots (GQD). These GQDs (~100-200 nm) selectively interfaced with polyelectrolyte microfiber (diameter = 2-20 ?m) form an electrically percolating-network exhibiting a characteristic Coulomb blockade signature with a dry tunneling distance of 0.58 nm and conduction activation energy of 3 meV. We implement this construct to demonstrate the functioning of humidity and pressure sensors and outline their governing model. Here, a 0.36 nm decrease in the average tunneling-barrier-width between GQDs (tunneling barrier = 5.11 eV) increases the conductivity of the device by 43-fold. These devices leverage the modulation in electron tunneling distances caused by pressure and humidity induced water transport across the hygroscopic polymer microfiber (Henry's constant = 0.215 Torr(-1)). This is the foremost example of GQD-based electronic sensors. We envision that this polymer-interfaced GQD percolating network will evolve a new class of sensors leveraging the low mass, low capacitance, high conductivity, and high sensitivity of GQD and the interfacial or dielectric properties of the polymer fiber. PMID:23506081

  14. Space station common module power system network topology and hardware development

    NASA Technical Reports Server (NTRS)

    Landis, D. M.

    1985-01-01

    Candidate power system newtork topologies for the space station common module are defined and developed and the necessary hardware for test and evaluation is provided. Martin Marietta's approach to performing the proposed program is presented. Performance of the tasks described will assure systematic development and evaluation of program results, and will provide the necessary management tools, visibility, and control techniques for performance assessment. The plan is submitted in accordance with the data requirements given and includes a comprehensive task logic flow diagram, time phased manpower requirements, a program milestone schedule, and detailed descriptions of each program task.

  15. Left cathodal trans-cranial direct current stimulation of the parietal cortex leads to an asymmetrical modulation of the vestibular-ocular reflex.

    PubMed

    Arshad, Qadeer; Nigmatullina, Yuliya; Roberts, R Edward; Bhrugubanda, Vamsee; Asavarut, Paladd; Bronstein, Adolfo M

    2014-01-01

    Multi-sensory visuo-vestibular cortical areas within the parietal lobe are important for spatial orientation and possibly for descending modulation of the vestibular-ocular reflex (VOR). Functional imaging and lesion studies suggest that vestibular cortical processing is localized primarily in the non-dominant parietal lobe. However, the role of inter-hemispheric parietal balance in vestibular processing is poorly understood. Therefore, we tested whether experimentally induced asymmetries in right versus left parietal excitability would modulate vestibular function. VOR function was assessed in right-handed normal subjects during caloric ear irrigation (30 °C), before and after trans-cranial direct current stimulation (tDCS) was applied bilaterally over the parietal cortex. Bilateral tDCS with the anode over the right and the cathode over the left parietal region resulted in significant asymmetrical modulation of the VOR, with highly suppressed responses during the right caloric irrigation (i.e. rightward slow phase nystagmus). In contrast, we observed no VOR modulation during either cathodal stimulation of the right parietal cortex or SHAM tDCS conditions. Application of unilateral tDCS revealed that the left cathodal stimulation was critical in inducing the observed modulation of the VOR. We show that disruption of parietal inter-hemispheric balance can induce asymmetries in vestibular function. This is the first report using neuromodulation to show right hemisphere dominance for vestibular cortical processing. PMID:23941985

  16. Demonstration of optical frequency quadrupling combined with direct/external signal double-sideband suppressed-carrier modulation

    NASA Astrophysics Data System (ADS)

    Lin, Jhe-Min; Ho, Wen-Jeng; Chang, Yu-Peng; Peng, Peng-Chun; Lu, Hai-Han

    2014-04-01

    This study experimentally demonstrates the performance of optical frequency quadrupling generation and base-band signal up-conversion techniques based on the cascaded single-electrode Mach-Zehnder modulator (SEMZM) using different signal modulation schemes. The optical signals in microwave band with double-sideband suppressed-carrier (DSB-SC) modulated format exhibit that the receiver sensitivity and the spectral efficiency are maximized and the power penalty over long-distance delivery is minimized. A simple configuration and low-frequency bandwidth requirement for both electrical and optical components in the proposed schemes also are demonstrated.

  17. Physical-layer Network Coding using FSK Modulation under Frequency Offset

    E-print Network

    Valenti, Matthew C.

    -tolerance oscillators which generate imperfect carrier frequencies. System Model Network Topology: Two-way Relay Channel(t) ~r(t) h2 ~s1(t) ~s2(t) b2b1 r2,I + jr2,Q r1,I + jr1,Q (b) Block Diagram of MAC Transmission Phase Vector Channel Model under Oscillator Offset We show that oscillator offset may be modeled as a linear

  18. The impact of local processes and the prohibition of multiple links in the topological properties of directed complex networks

    NASA Astrophysics Data System (ADS)

    Esquivel-Gómez, J.; Arjona-Villicaña, P. D.; Acosta-Elías, J.

    2015-05-01

    Local processes exert influence on the growth and evolution of complex networks, which in turn shape the topological and dynamic properties of these networks. Some local processes have been researched, for example: Addition of nodes and links, rewiring of links between nodes, accelerated growth, link removal, aging, copying and multiple links prohibition. These processes impact directly into the topological and dynamical properties of complex networks. This paper introduces a new model for growth of directed complex networks which incorporates the prohibition of multiple links, addition of nodes and links, and rewiring of links. This paper also reports on the impact that these processes have in the topological properties of the networks generated with the proposed model. Numerical simulation shows that, when the frequency of rewiring increases in the proposed model, the ? exponent of the in-degree distribution approaches a value of 1.1. When the frequency of adding new links increases, the ? exponent approaches 1. That is the proposed model is able to generate all exponent values documented in real-world networks which range 1.05 < ? < 8.94.

  19. Modulation of network behaviour by changes in variance in interneuronal properties

    PubMed Central

    Aradi, I; Soltesz, I

    2002-01-01

    Interneurones are important regulators of neuronal networks. The conventional approach to interneurones is to focus on the mean values of various parameters. Here we tested the hypothesis that changes in the variance of interneuronal properties (e.g. in the degree of scattering of parameter values of individual cells around the population mean) may modify the behaviour of networks. Biophysically based multicompartmental models of principal cells and interneurones showed that changes in the variance in the electrophysiological and anatomical properties of interneurones significantly alter the input-output functions, rhythmicity and synchrony of principal cells, even if the mean values were unchanged. In most cases, increased heterogeneity in interneurones resulted in stronger inhibition of principal cell firing; however, there were parameter ranges where increased interneuronal variance decreased the inhibition of principal cells. Electrophysiological recordings showed that the variance in the resting membrane potential of CA1 stratum oriens interneurones persistently increased following experimental complex febrile seizures in developing rats, without a change in the mean resting membrane potential, indicating that lasting alterations in interneuronal heterogeneity can take place in real neuronal systems. These computational and experimental data demonstrate that modifications in interneuronal population variance influence the behaviour of neuronal networks, and suggest a physiological role for interneuronal diversity. Furthermore, the results indicate that interneuronal heterogeneity can change in neurological diseases, and raise the possibility that neuromodulators may act by regulating the variance of key parameters in interneuronal populations. PMID:11773331

  20. Unconscious priming instructions modulate activity in default and executive networks of the human brain.

    PubMed

    De Pisapia, Nicola; Turatto, Massimo; Lin, Pan; Jovicich, Jorge; Caramazza, Alfonso

    2012-03-01

    During task executions, brain activity increases in executive networks (ENs) and decreases in default-mode networks (DMNs). Here, we examined whether these large-scale network dynamics can be influenced by unconscious cognitive information processing. Volunteers saw instructions (cues) to respond either ipsilaterally or contralaterally to a subsequent lateralized target. Unbeknownst to them, each cue was preceded by a masked stimulus (prime), which could be identical (congruent), or opposite (incongruent) to the cue, or neutral (not an instruction). Behaviorally, incongruent primes interfered with performance, even though they were not consciously perceived. With functional magnetic resonance imaging, we individuated the anticorrelated ENs and DMNs involved during task execution. With effective connectivity analyses, we found that DMNs caused activity in ENs throughout the task. Unconscious interference during incongruent trials was associated with a specific activity increase in ENs and an activity drop in DMNs. Intersubject efficiency in performance during incongruent trials was correlated with functional connectivity between specific ENs and DMNs. These results indicate that unconscious instructions can prime activity in ENs and DMNs and suggest that the DMNs play a key role in unconscious monitoring of the environment in the service of efficient resource allocation for task execution. PMID:21690258