Science.gov

Sample records for disk winds driven

  1. DUST-DRIVEN WIND FROM DISK GALAXIES

    SciTech Connect

    Sharma, Mahavir; Nath, Biman B.; Shchekinov, Yuri E-mail: biman@rri.res.in

    2011-08-01

    We study gaseous outflows from disk galaxies driven by radiation pressure on dust grains. We include the effect of bulge and dark matter halo and show that the existence of such an outflow implies a maximum value of disk mass-to-light ratio. We show that the terminal wind speed is proportional to the disk rotation speed in the limit of a cold gaseous outflow, and that in general there is a contribution from the gas sound speed. Using the mean opacity of dust grains and the evolution of the luminosity of a simple stellar population, we then show that the ratio of the wind terminal speed (v{sub {infinity}}) to the galaxy rotation speed (v{sub c}) ranges between 2 and 3 for a period of {approx}10 Myr after a burst of star formation, after which it rapidly decays. This result is independent of any free parameter and depends only on the luminosity of the stellar population and the relation between disk and dark matter halo parameters. We briefly discuss the possible implications of our results.

  2. Thermal stability of a thin disk with magnetically driven winds

    SciTech Connect

    Li, Shuang-Liang; Begelman, Mitchell C. E-mail: mitch@jila.colorado.edu

    2014-05-01

    The absence of thermal instability in the high/soft state of black hole X-ray binaries, in disagreement with the standard thin disk theory, has been a long-standing riddle for theoretical astronomers. We have tried to resolve this question by studying the thermal stability of a thin disk with magnetically driven winds in the M-dot −Σ plane. It is found that disk winds can greatly decrease the disk temperature and thus help the disk become more stable at a given accretion rate. The critical accretion rate, M-dot {sub crit}, corresponding to the thermal instability threshold, is significantly increased in the presence of disk winds. For α = 0.01 and B {sub φ} = 10B {sub p}, the disk is quite stable even for a very weak initial poloidal magnetic field [β{sub p,0}∼2000,β{sub p}=(P{sub gas}+P{sub rad})/(B{sub p}{sup 2}/8π)]. However, when B {sub φ} = B {sub p} or B {sub φ} = 0.1B {sub p}, a somewhat stronger (but still weak) field (β{sub p,} {sub 0} ∼ 200 or β{sub p,} {sub 0} ∼ 20) is required to make the disk stable. Nevertheless, despite the great increase of M-dot {sub crit}, the luminosity threshold, corresponding to instability, remains almost constant or decreases slowly with increasing M-dot {sub crit} due to decreased gas temperature. The advection and diffusion timescales of the large-scale magnetic field threading the disk are also investigated in this work. We find that the advection timescale can be smaller than the diffusion timescale in a disk with winds, because the disk winds take away most of the gravitational energy released in the disk, resulting in the decrease of the magnetic diffusivity η and the increase of the diffusion timescale.

  3. Line-driven disk winds in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Proga, D.; Stone, J. M.; Kallman, T. R.

    2001-01-01

    We present the results of axisymmetric time-dependent hydrodynamic calculations of line-driven winds from accretion disks in active galactic nuclei (AGN). We assume the disk is flat, Keplerian, geometrically thin, and optically thick, radiating according to the α-disk prescription. The central engine of the AGN is a source of both ionizing X-rays and wind-driving ultraviolet (UV) photons. To calculate the radiation force, we take into account radiation from the disk and the central engine. The gas temperature and ionization state in the wind are calculated self-consistently from the photoionization and heating rate of the central engine. We find that a disk accreting onto a 10 8 M ⊙ yr -1 black hole at the rate of 1.8 M ⊙ yr -1 can launch a wind at ˜ 10 16 cm from the central engine. The X-rays from the central object are significantly attenuated by the disk atmosphere so they cannot prevent the local disk radiation from pushing matter away from the disk. However in the supersonic portion of the flow high above the disk, the X-rays can overionize the gas and decrease the wind terminal velocity. For a reasonable X-ray opacity, e.g., κ X = 40 g -1 cm 2, the disk wind can be accelerated by the central UV radiation to velocities of up to 15000 km s -1 at a distance of ˜ 10 17 cm from the central engine. The covering factor of the disk wind is ˜ 0.2. The wind is unsteady and consists of an opaque, slow vertical flow near the disk that is bounded on the polar side by a high-velocity, stream. A typical column density through the fast stream is a few 10 23 cm -2 so the stream is optically thin to the UV radiation. This low column density is precisely why gas can be accelerated to high velocities. The fast stream contributes nearly 100% to the total wind mass loss rate of 0.5 M ⊙ yr -1.

  4. SIMULATIONS OF DISK GALAXIES WITH COSMIC RAY DRIVEN GALACTIC WINDS

    SciTech Connect

    Booth, C. M.; Agertz, Oscar; Kravtsov, Andrey V.; Gnedin, Nickolay Y.

    2013-11-01

    We present results from high-resolution hydrodynamic simulations of isolated Small Magellanic Cloud (SMC)- and Milky-Way-sized galaxies that include a model for feedback from galactic cosmic rays (CRs). We find that CRs are naturally able to drive winds with mass loading factors of up to ∼10 in dwarf systems. The scaling of the mass loading factor with circular velocity between the two simulated systems is consistent with η∝v{sub circ}{sup 1-2} required to reproduce the faint end of the galaxy luminosity function. In addition, simulations with CR feedback reproduce both the normalization and the slope of the observed trend of wind velocity with galaxy circular velocity. We find that winds in simulations with CR feedback exhibit qualitatively different properties compared to supernova-driven winds, where most of acceleration happens violently in situ near star forming sites. The CR-driven winds are accelerated gently by the large-scale pressure gradient established by CRs diffusing from the star-forming galaxy disk out into the halo. The CR-driven winds also exhibit much cooler temperatures and, in the SMC-sized system, warm (T ∼ 10{sup 4} K) gas dominates the outflow. The prevalence of warm gas in such outflows may provide a clue as to the origin of ubiquitous warm gas in the gaseous halos of galaxies detected via absorption lines in quasar spectra.

  5. Hydrodynamic Models of Line-Driven Accretion Disk Winds III: Local Ionization Equilibrium

    NASA Technical Reports Server (NTRS)

    Pereyra, Nicolas Antonio; Kallman, Timothy R.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present time-dependent numerical hydrodynamic models of line-driven accretion disk winds in cataclysmic variable systems and calculate wind mass-loss rates and terminal velocities. The models are 2.5-dimensional, include an energy balance condition with radiative heating and cooling processes, and includes local ionization equilibrium introducing time dependence and spatial dependence on the line radiation force parameters. The radiation field is assumed to originate in an optically thick accretion disk. Wind ion populations are calculated under the assumption that local ionization equilibrium is determined by photoionization and radiative recombination, similar to a photoionized nebula. We find a steady wind flowing from the accretion disk. Radiative heating tends to maintain the temperature in the higher density wind regions near the disk surface, rather than cooling adiabatically. For a disk luminosity L (sub disk) = solar luminosity, white dwarf mass M(sub wd) = 0.6 solar mass, and white dwarf radii R(sub wd) = 0.01 solar radius, we obtain a wind mass-loss rate of M(sub wind) = 4 x 10(exp -12) solar mass yr(exp -1) and a terminal velocity of approximately 3000 km per second. These results confirm the general velocity and density structures found in our earlier constant ionization equilibrium adiabatic CV wind models. Further we establish here 2.5D numerical models that can be extended to QSO/AGN winds where the local ionization equilibrium will play a crucial role in the overall dynamics.

  6. Radiation hydrodynamic simulations of line-driven disk winds for ultra-fast outflows

    NASA Astrophysics Data System (ADS)

    Nomura, Mariko; Ohsuga, Ken; Takahashi, Hiroyuki R.; Wada, Keiichi; Yoshida, Tessei

    2016-02-01

    Using two-dimensional radiation hydrodynamic simulations, we investigate the origin of the ultra-fast outflows (UFOs) that are often observed in luminous active galactic nuclei (AGNs). We found that the radiation force due to the spectral lines generates strong winds (line-driven disk winds) that are launched from the inner region of accretion disks (˜30 Schwarzschild radii). A wide range of black hole masses (MBH) and Eddington ratios (ε) was investigated to study the conditions causing the line-driven winds. For MBH = 106-109 M⊙ and ε = 0.1-0.7, funnel-shaped disk winds appear, in which dense matter is accelerated outward with an opening angle of 70°-80° and with 10% of the speed of light. If we observe the wind along its direction, the velocity, the column density, and the ionization state are consistent with those of the observed UFOs. As long as obscuration by the torus does not affect the observation of X-ray bands, the UFOs could be statistically observed in about 13%-28% of the luminous AGNs, which is not inconsistent with the observed ratio (˜40%). We also found that the results are insensitive to the X-ray luminosity and the density of the disk surface. Thus, we can conclude that UFOs could exist in any luminous AGNs, such as narrow-line Seyfert 1s and quasars with ε > 0.1, with which fast line-driven winds are associated.

  7. WIND-DRIVEN ACCRETION IN PROTOPLANETARY DISKS. II. RADIAL DEPENDENCE AND GLOBAL PICTURE

    SciTech Connect

    Bai Xuening

    2013-08-01

    Non-ideal magnetohydrodynamical effects play a crucial role in determining the mechanism and efficiency of angular momentum transport as well as the level of turbulence in protoplanetary disks (PPDs), which are the key to understanding PPD evolution and planet formation. It was shown in our previous work that at 1 AU, the magnetorotational instability (MRI) is completely suppressed when both ohmic resistivity and ambipolar diffusion (AD) are taken into account, resulting in a laminar flow with accretion driven by magnetocentrifugal wind. In this work, we study the radial dependence of the laminar wind solution using local shearing-box simulations. The scaling relation on the angular momentum transport for the laminar wind is obtained, and we find that the wind-driven accretion rate can be approximated as M-dot approx. 0.91 x 10{sup -8}R{sub AU}{sup 1.21}(B{sub p}/10 mG){sup 0.93} M{sub Sun} yr{sup -1}, where B{sub p} is the strength of the large-scale poloidal magnetic field threading the disk. The result is independent of disk surface density. Four criteria are outlined for the existence of the laminar wind solution: (1) ohmic resistivity dominated the midplane region, (2) the AD-dominated disk upper layer, (3) the presence of a (not too weak) net vertical magnetic flux, and (4) sufficiently well-ionized gas beyond the disk surface. All these criteria are likely to be met in the inner region of the disk from {approx}0.3 AU to about 5-10 AU for typical PPD accretion rates. Beyond this radius, the angular momentum transport is likely to proceed due to a combination of the MRI and disk wind, and eventually completely dominated by the MRI (in the presence of strong AD) in the outer disk. Our simulation results provide key ingredients for a new paradigm on the accretion processes in PPDs.

  8. Dynamics of Line-driven Disk Winds in Active Galactic Nuclei

    NASA Astrophysics Data System (ADS)

    Proga, Daniel; Stone, James M.; Kallman, Timothy R.

    2000-11-01

    We present the results of axisymmetric time-dependent hydrodynamic calculations of line-driven winds from accretion disks in active galactic nuclei (AGNs). We assume the disk is flat, Keplerian, geometrically thin, and optically thick, radiating according to the α-disk prescription. The central engine of the AGN is a source of both ionizing X-rays and wind-driving UV photons. To calculate the radiation force, we take into account radiation from the disk and the central engine. The gas temperature and ionization state in the wind are calculated self-consistently from the photoionization and heating rate of the central engine. We find that a disk accreting onto a 108 Msolar black hole at the rate of 1.8 Msolar yr-1 can launch a wind at ~1016 cm from the central engine. The X-rays from the central object are significantly attenuated by the disk atmosphere so they cannot prevent the local disk radiation from pushing matter away from the disk. However, in the supersonic portion of the flow high above the disk, the X-rays can overionize the gas and decrease the wind terminal velocity. For a reasonable X-ray opacity, e.g., κX=40 g-1 cm2, the disk wind can be accelerated by the central UV radiation to velocities of up to 15,000 km s-1 at a distance of ~1017 cm from the central engine. The covering factor of the disk wind is ~0.2. The wind is unsteady and consists of an opaque, slow vertical flow near the disk that is bounded on the polar side by a high-velocity stream. A typical column density through the fast stream is a few times 1023 cm-2 so the stream is optically thin to the UV radiation. This low column density is precisely why gas can be accelerated to high velocities. The fast stream contributes nearly 100% to the total wind mass-loss rate of 0.5 Msolar yr-1.

  9. Modeling X-ray Absorbers in AGNs with MHD-Driven Accretion-Disk Winds

    NASA Astrophysics Data System (ADS)

    Fukumura, Keigo; Kazanas, D.; Shrader, C. R.; Tombesi, F.; Contopoulos, J.; Behar, E.

    2013-04-01

    We have proposed a systematic view of the observed X-ray absorbers, namely warm absorbers (WAs) in soft X-ray and highly-ionized ultra-fast outflows (UFOs), in the context of magnetically-driven accretion-disk wind models. While potentially complicated by variability and thermal instability in these energetic outflows, in this simplistic model we have calculated 2D kinematic field as well as density and ionization structure of the wind with density profile of 1/r corresponding to a constant column distribution per decade of ionization parameter. In particular we show semi-analytically that the inner layer of the disk-wind manifests itself as the strongly-ionized fast outflows while the outer layer is identified as the moderately-ionized absorbers. The computed characteristics of these two apparently distinct absorbers are consistent with X-ray data (i.e. a factor of ~100 difference in column and ionization parameters as well as low wind velocity vs. near-relativistic flow). With the predicted contour curves for these wind parameters one can constrain allowed regions for the presence of WAs and UFOs.The model further implies that the UFO's gas pressure is comparable to that of the observed radio jet in 3C111 suggesting that the magnetized disk-wind with density profile of 1/r is a viable agent to help sustain such a self-collimated jet at small radii.

  10. Radiation Pressure-Driven Magnetic Disk Winds in Broad Absorption Line Quasi-Stellar Objects

    NASA Technical Reports Server (NTRS)

    DeKool, Martin; Begelman, Mitchell C.

    1995-01-01

    We explore a model in which QSO broad absorption lines (BALS) are formed in a radiation pressure-driven wind emerging from a magnetized accretion disk. The magnetic field threading the disk material is dragged by the flow and is compressed by the radiation pressure until it is dynamically important and strong enough to contribute to the confinement of the BAL clouds. We construct a simple self-similar model for such radiatively driven magnetized disk winds, in order to explore their properties. It is found that solutions exist for which the entire magnetized flow is confined to a thin wedge over the surface of the disk. For reasonable values of the mass-loss rate, a typical magnetic field strength such that the magnetic pressure is comparable to the inferred gas pressure in BAL clouds, and a moderate amount of internal soft X-ray absorption, we find that the opening angle of the flow is approximately 0.1 rad, in good agreement with the observed covering factor of the broad absorption line region.

  11. Disk-driven hydromagnetic winds as a key ingredient of active galactic nuclei unification schemes

    NASA Technical Reports Server (NTRS)

    Konigl, Arieh; Kartje, John F.

    1994-01-01

    Centrifugally driven winds from the surfaces of magnetized accretion disks have been recognized as an attractive mechanism of removing the angular momentum of the accreted matter and of producing the bipolar outflows and jets that are often associated with compact astronomical objects. As previously suggested in the context of young stellar objects, such winds have unique observational manifestations stemming from their highly stratified density and velocity structure and from their exposure to the strong continuum radiation field of the compact object. We have applied this scenario to active galactic nuclei (AGNs) and investigated the properties of hydromagnetic outflows that originate within approximately 10(M(sub 8)) pc of the central 10(exp 8)(M(sub 8)) solar mass black hole. On the basis of our results, we propose that hydromagnetic disk-driven winds may underlie the classification of broad-line and narrow-line AGNs (e.g., the Seyfert 1/Seyfert 2 dichotomy) as well as the apparent dearth of luminous Seyfert 2 galaxies. More generally, we demonstrate that such winds could strongly influence the spectral characteristics of Seyfert galaxies, QSOs, and BL Lac objects (BLOs). In our picture, the torus is identified with the outer regions of the wind where dust uplifted from the disk surfaces by gas-grain collisions is embedded in the outflow. Using an efficient radiative transfer code, we show that the infrared emission of Seyfert galaxies and QSOs can be attributed to the reprocessing of the UV/soft X-ray AGN continuum by the dust in the wind and the disk. We demonstrate that the radiation pressure force flattens the dust distribution in objects with comparatively high (but possibly sub-Eddington) bolometric luminosities, and we propose this as one likely reason for the apparent paucity of narrow-line objects among certain high-luminosity AGNs. Using the XSTAR photoionization code, we show that the inner regions of the wind could naturally account for the warm

  12. Magnetically Driven Accretion Disk Winds and Ultra-fast Outflows in PG 1211+143

    NASA Astrophysics Data System (ADS)

    Fukumura, Keigo; Tombesi, Francesco; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Contopoulos, Ioannis

    2015-05-01

    We present a study of X-ray ionization of MHD accretion-disk winds in an effort to constrain the physics underlying the highly ionized ultra-fast outflows (UFOs) inferred by X-ray absorbers often detected in various sub classes of Seyfert active galactic nuclei (AGNs). Our primary focus is to show that magnetically driven outflows are indeed physically plausible candidates for the observed outflows accounting for the AGN absorption properties of the present X-ray spectroscopic observations. Employing a stratified MHD wind launched across the entire AGN accretion disk, we calculate its X-ray ionization and the ensuing X-ray absorption-line spectra. Assuming an appropriate ionizing AGN spectrum, we apply our MHD winds to model the absorption features in an XMM-Newton/EPIC spectrum of the narrow-line Seyfert, PG 1211+143. We find, through identifying the detected features with Fe Kα transitions, that the absorber has a characteristic ionization parameter of log (ξc[erg cm s-1]) ≃ 5-6 and a column density on the order of NH ≃ 1023 cm-2 outflowing at a characteristic velocity of vc/c ≃ 0.1-0.2 (where c is the speed of light). The best-fit model favors its radial location at rc ≃ 200 Ro (Ro is the black hole’s innermost stable circular orbit), with an inner wind truncation radius at Rt ≃ 30 Ro. The overall K-shell feature in the data is suggested to be dominated by Fe xxv with very little contribution from Fe xxvi and weakly ionized iron, which is in good agreement with a series of earlier analyses of the UFOs in various AGNs, including PG 1211+143.

  13. Line-driven disk winds in active galactic nuclei: The critical importance of ionization and radiative transfer

    SciTech Connect

    Higginbottom, Nick; Knigge, Christian; Matthews, James H.; Proga, Daniel; Long, Knox S.; Sim, Stuart A.

    2014-07-01

    Accretion disk winds are thought to produce many of the characteristic features seen in the spectra of active galactic nuclei (AGNs) and quasi-stellar objects (QSOs). These outflows also represent a natural form of feedback between the central supermassive black hole and its host galaxy. The mechanism for driving this mass loss remains unknown, although radiation pressure mediated by spectral lines is a leading candidate. Here, we calculate the ionization state of, and emergent spectra for, the hydrodynamic simulation of a line-driven disk wind previously presented by Proga and Kallman. To achieve this, we carry out a comprehensive Monte Carlo simulation of the radiative transfer through, and energy exchange within, the predicted outflow. We find that the wind is much more ionized than originally estimated. This is in part because it is much more difficult to shield any wind regions effectively when the outflow itself is allowed to reprocess and redirect ionizing photons. As a result, the calculated spectrum that would be observed from this particular outflow solution would not contain the ultraviolet spectral lines that are observed in many AGN/QSOs. Furthermore, the wind is so highly ionized that line driving would not actually be efficient. This does not necessarily mean that line-driven winds are not viable. However, our work does illustrate that in order to arrive at a self-consistent model of line-driven disk winds in AGN/QSO, it will be critical to include a more detailed treatment of radiative transfer and ionization in the next generation of hydrodynamic simulations.

  14. Galactic Winds Driven by Isotropic and Anisotropic Cosmic-Ray Diffusion in Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Pakmor, R.; Pfrommer, C.; Simpson, C. M.; Springel, V.

    2016-06-01

    The physics of cosmic rays (CRs) is a promising candidate for explaining the driving of galactic winds and outflows. Recent galaxy formation simulations have demonstrated the need for active CR transport either in the form of diffusion or streaming to successfully launch winds in galaxies. However, due to computational limitations, most previous simulations have modeled CR transport isotropically. Here, we discuss high-resolution simulations of isolated disk galaxies in a 1011 M ⊙ halo with the moving-mesh code Arepo that include injection of CRs from supernovae, advective transport, CR cooling, and CR transport through isotropic or anisotropic diffusion. We show that either mode of diffusion leads to the formation of strong bipolar outflows. However, they develop significantly later in the simulation with anisotropic diffusion compared to the simulation with isotropic diffusion. Moreover, we find that isotropic diffusion allows most of the CRs to quickly diffuse out of the disk, while in the simulation with anisotropic diffusion, most CRs remain in the disk once the magnetic field becomes dominated by its azimuthal component, which occurs after ∼300 Myr. This has important consequences for the gas dynamics in the disk. In particular, we show that isotropic diffusion strongly suppresses the amplification of the magnetic field in the disk compared to anisotropic or no diffusion models. We therefore conclude that reliable simulations which include CR transport inevitably need to account for anisotropic diffusion.

  15. Stratified Magnetically Driven Accretion-Disk Winds and Their Relations To Jets

    NASA Technical Reports Server (NTRS)

    Fukumura, Keigo; Tombesi, Francesco; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Contopoulos, Ioannis

    2013-01-01

    We explore the poloidal structure of two-dimensional magnetohydrodynamic (MHD) winds in relation to their potential association with the X-ray warm absorbers (WAs) and the highly ionized ultra-fast outflows (UFOs) in active galactic nuclei (AGNs), in a single unifying approach. We present the density n(r, theta), ionization parameter xi(r, theta), and velocity structure v(r, theta) of such ionized winds for typical values of their fluid-to-magnetic flux ratio, F, and specific angular momentum, H, for which wind solutions become super-Alfvenic. We explore the geometrical shape of winds for different values of these parameters and delineate the values that produce the widest and narrowest opening angles of these winds, quantities necessary in the determination of the statistics of AGN obscuration. We find that winds with smaller H show a poloidal geometry of narrower opening angles with their Alfv´en surface at lower inclination angles and therefore they produce the highest line of sight (LoS) velocities for observers at higher latitudes with the respect to the disk plane. We further note a physical and spatial correlation between the X-ray WAs and UFOs that form along the same LoS to the observer but at different radii, r, and distinct values of n, xi, and v consistent with the latest spectroscopic data of radio-quiet Seyfert galaxies. We also show that, at least in the case of 3C 111, the winds' pressure is sufficient to contain the relativistic plasma responsible for its radio emission. Stratified MHD disk winds could therefore serve as a unique means to understand and unify the diverse AGN outflows.

  16. Stratified magnetically driven accretion-disk winds and their relations to jets

    SciTech Connect

    Fukumura, Keigo; Tombesi, Francesco; Kazanas, Demosthenes; Shrader, Chris; Contopoulos, Ioannis

    2014-01-10

    We explore the poloidal structure of two-dimensional magnetohydrodynamic (MHD) winds in relation to their potential association with the X-ray warm absorbers (WAs) and the highly ionized ultra-fast outflows (UFOs) in active galactic nuclei (AGNs), in a single unifying approach. We present the density n(r, θ), ionization parameter ξ(r, θ), and velocity structure v(r, θ) of such ionized winds for typical values of their fluid-to-magnetic flux ratio, F, and specific angular momentum, H, for which wind solutions become super-Alfvénic. We explore the geometrical shape of winds for different values of these parameters and delineate the values that produce the widest and narrowest opening angles of these winds, quantities necessary in the determination of the statistics of AGN obscuration. We find that winds with smaller H show a poloidal geometry of narrower opening angles with their Alfvén surface at lower inclination angles and therefore they produce the highest line of sight (LoS) velocities for observers at higher latitudes with the respect to the disk plane. We further note a physical and spatial correlation between the X-ray WAs and UFOs that form along the same LoS to the observer but at different radii, r, and distinct values of n, ξ, and v consistent with the latest spectroscopic data of radio-quiet Seyfert galaxies. We also show that, at least in the case of 3C 111, the winds' pressure is sufficient to contain the relativistic plasma responsible for its radio emission. Stratified MHD disk winds could therefore serve as a unique means to understand and unify the diverse AGN outflows.

  17. Stratified Magnetically Driven Accretion-disk Winds and Their Relations to Jets

    NASA Astrophysics Data System (ADS)

    Fukumura, Keigo; Tombesi, Francesco; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Contopoulos, Ioannis

    2014-01-01

    We explore the poloidal structure of two-dimensional magnetohydrodynamic (MHD) winds in relation to their potential association with the X-ray warm absorbers (WAs) and the highly ionized ultra-fast outflows (UFOs) in active galactic nuclei (AGNs), in a single unifying approach. We present the density n(r, θ), ionization parameter ξ(r, θ), and velocity structure v(r, θ) of such ionized winds for typical values of their fluid-to-magnetic flux ratio, F, and specific angular momentum, H, for which wind solutions become super-Alfvénic. We explore the geometrical shape of winds for different values of these parameters and delineate the values that produce the widest and narrowest opening angles of these winds, quantities necessary in the determination of the statistics of AGN obscuration. We find that winds with smaller H show a poloidal geometry of narrower opening angles with their Alfvén surface at lower inclination angles and therefore they produce the highest line of sight (LoS) velocities for observers at higher latitudes with the respect to the disk plane. We further note a physical and spatial correlation between the X-ray WAs and UFOs that form along the same LoS to the observer but at different radii, r, and distinct values of n, ξ, and v consistent with the latest spectroscopic data of radio-quiet Seyfert galaxies. We also show that, at least in the case of 3C 111, the winds' pressure is sufficient to contain the relativistic plasma responsible for its radio emission. Stratified MHD disk winds could therefore serve as a unique means to understand and unify the diverse AGN outflows.

  18. Reverberation Mapping of the Broad Line Region: Application to a Hydrodynamical Line-driven Disk Wind Solution

    NASA Astrophysics Data System (ADS)

    Waters, Tim; Kashi, Amit; Proga, Daniel; Eracleous, Michael; Barth, Aaron J.; Greene, Jenny

    2016-08-01

    The latest analysis efforts in reverberation mapping are beginning to allow reconstruction of echo images (or velocity-delay maps) that encode information about the structure and kinematics of the broad line region (BLR) in active galactic nuclei (AGNs). Such maps can constrain sophisticated physical models for the BLR. The physical picture of the BLR is often theorized to be a photoionized wind launched from the AGN accretion disk. Previously we showed that the line-driven disk wind solution found in an earlier simulation by Proga and Kallman is virialized over a large distance from the disk. This finding implies that, according to this model, black hole masses can be reliably estimated through reverberation mapping techniques. However, predictions of echo images expected from line-driven disk winds are not available. Here, after presenting the necessary radiative transfer methodology, we carry out the first calculations of such predictions. We find that the echo images are quite similar to other virialized BLR models such as randomly orbiting clouds and thin Keplerian disks. We conduct a parameter survey exploring how echo images, line profiles, and transfer functions depend on both the inclination angle and the line opacity. We find that the line profiles are almost always single peaked, while transfer functions tend to have tails extending to large time delays. The outflow, despite being primarily equatorially directed, causes an appreciable blueshifted excess on both the echo image and line profile when seen from lower inclinations (i≲ 45^\\circ ). This effect may be observable in low ionization lines such as {{H}}β .

  19. WIND-DRIVEN ACCRETION IN PROTOPLANETARY DISKS. I. SUPPRESSION OF THE MAGNETOROTATIONAL INSTABILITY AND LAUNCHING OF THE MAGNETOCENTRIFUGAL WIND

    SciTech Connect

    Bai Xuening; Stone, James M.

    2013-05-20

    We perform local, vertically stratified shearing-box MHD simulations of protoplanetary disks (PPDs) at a fiducial radius of 1 AU that take into account the effects of both Ohmic resistivity and ambipolar diffusion (AD). The magnetic diffusion coefficients are evaluated self-consistently from a look-up table based on equilibrium chemistry. We first show that the inclusion of AD dramatically changes the conventional picture of layered accretion. Without net vertical magnetic field, the system evolves into a toroidal field dominated configuration with extremely weak turbulence in the far-UV ionization layer that is far too inefficient to drive rapid accretion. In the presence of a weak net vertical field (plasma {beta} {approx} 10{sup 5} at midplane), we find that the magnetorotational instability (MRI) is completely suppressed, resulting in a fully laminar flow throughout the vertical extent of the disk. A strong magnetocentrifugal wind is launched that efficiently carries away disk angular momentum and easily accounts for the observed accretion rate in PPDs. Moreover, under a physical disk wind geometry, all the accretion flow proceeds through a strong current layer with a thickness of {approx}0.3H that is offset from disk midplane with radial velocity of up to 0.4 times the sound speed. Both Ohmic resistivity and AD are essential for the suppression of the MRI and wind launching. The efficiency of wind transport increases with increasing net vertical magnetic flux and the penetration depth of the FUV ionization. Our laminar wind solution has important implications on planet formation and global evolution of PPDs.

  20. Dust Dynamics in Protoplanetary Disk Winds Driven by Magnetorotational Turbulence: A Mechanism for Floating Dust Grains with Characteristic Sizes

    NASA Astrophysics Data System (ADS)

    Miyake, Tomoya; Suzuki, Takeru K.; Inutsuka, Shu-ichiro

    2016-04-01

    We investigate the dynamics of dust grains of various sizes in protoplanetary disk winds driven by magnetorotational turbulence, by simulating the time evolution of the dust grain distribution in the vertical direction. Small dust grains, which are well-coupled to the gas, are dragged upward with the upflowing gas, while large grains remain near the midplane of a disk. Intermediate-size grains float near the sonic point of the disk wind located at several scale heights from the midplane, where the grains are loosely coupled to the background gas. For the minimum mass solar nebula at 1 au, dust grains with size of 25-45 μm float around 4 scale heights from the midplane. Considering the dependence on the distance from the central star, smaller-size grains remain only in an outer region of the disk, while larger-size grains are distributed in a broader region. We also discuss the implications of our result for observations of dusty material around young stellar objects.

  1. Magnetically Driven Jets from Accretion Disks. I. Steady Solutions and Application to Jets/Winds in Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Kudoh, Takahiro; Shibata, Kazunari

    1997-01-01

    We solve one-dimensional steady and axisymmetric magnetohydrodynamic (MHD) equations to study basic properties of astrophysical jets from accretion disks. Assuming the configuration of the poloidal magnetic field, we solve for a wide range of parameters of the poloidal magnetic field strength in the disk. We include a thermal energy in the solution, although the jet is mainly accelerated by the magnetic force, so that we are able to obtain the mass flux of the jet and physical quantities, such as temperature, in the disk. We find that the mass flux (Ṁ) depends on the poloidal magnetic field strength of the disk (Bp0) when the toroidal component of the magnetic field (Bφ0) is dominant near the disk surface, although it is independent of the magnetic field when the poloidal component is dominant there:Ṁ~const,if |Bφ/Bp|0<<1,Bp0,if |Bφ/Bp|0>>1. Since Michel's minimum energy solution [v∞~(B2p0/Ṁ)1/3] is almost satisfied in the magnetically driven jets, the terminal velocity (v∞) depends on Bp0 as v∞~B1/3p0 when | Bφ/Bp |0 >> 1, and as v∞~B2/3p0 when | Bφ/Bp |0 << 1. When the toroidal component of the magnetic field is dominant near the disk surface (| Bφ/Bp |0 >> 1), the acceleration mainly takes place after the flow speed exceeds the Alfvén speed. This means that the magnetic pressure largely contributes to the acceleration of these jets. We also study the dependence of mass flux on the other parameters, such as inclination angle of the poloidal field, the rotational velocity of the disk, and the r-dependence of the poloidal magnetic field strength along the field line, where r is the distance from the axis. We discuss the application of these models, i.e., the MHD jets from accretion disks, to jets/winds observed in young stellar objects (such as optical jets, T Tauri winds, and fast neutral winds). The mass-loss rates observed in these jets/winds will constrain the physical quantities in the disks. When the mass-loss rate is Ṁ~10-8 M⊙ yr-1

  2. Magneto-thermal Disk Winds from Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Bai, Xue-Ning; Ye, Jiani; Goodman, Jeremy; Yuan, Feng

    2016-02-01

    The global evolution and dispersal of protoplanetary disks (PPDs) are governed by disk angular-momentum transport and mass-loss processes. Recent numerical studies suggest that angular-momentum transport in the inner region of PPDs is largely driven by magnetized disk wind, yet the wind mass-loss rate remains unconstrained. On the other hand, disk mass loss has conventionally been attributed to photoevaporation, where external heating on the disk surface drives a thermal wind. We unify the two scenarios by developing a one-dimensional model of magnetized disk winds with a simple treatment of thermodynamics as a proxy for external heating. The wind properties largely depend on (1) the magnetic field strength at the wind base, characterized by the poloidal Alfvén speed vAp, (2) the sound speed cs near the wind base, and (3) how rapidly poloidal field lines diverge (achieve {R}-2 scaling). When {v}{Ap}\\gg {c}{{s}}, corotation is enforced near the wind base, resulting in centrifugal acceleration. Otherwise, the wind is accelerated mainly by the pressure of the toroidal magnetic field. In both cases, the dominant role played by magnetic forces likely yields wind outflow rates that exceed purely hydrodynamical mechanisms. For typical PPD accretion-rate and wind-launching conditions, we expect vAp to be comparable to cs at the wind base. The resulting wind is heavily loaded, with a total wind mass-loss rate likely reaching a considerable fraction of the wind-driven accretion rate. Implications for modeling global disk evolution and planet formation are also discussed.

  3. 10 micron detection of the hard X-ray transient GRO J0422+32: Free-free emission from an X-ray-driven accretion disk wind?

    NASA Technical Reports Server (NTRS)

    Paradijs, Van J.; Telesco, C. M.; Kouveliotou, C.; Fishman, G. J.

    1994-01-01

    We report the detection of 10 micrometer emission from the transient low-mass X-ray binary (LMXB) and optical nova GRO J0422+32 near the maximum of its outburst. We discuss this result in terms of (1) a 'standard' model according to which low-energy radiation of LMXB is caused by reprocessing of X-rays in an accretion disk; (2) emission from a cool secondary star; (3) emission from dust grains heated by the transient X-rays, and (4) free-free emission from an X-ray-driven wind from the accretion disk. Only the fourth alternative provides a viable explanation for the observed 10 micrometer emission, with a mass-loss rate in the disk wind that may be substantially higher than the rate of accretion onto the compact star. The presence of such a wind may have a profound effect on the evolution of the binary, and contribute to the solution of the 'birthrate problem' of millisecond ratio pulsars.

  4. Parker winds revisited: An extension to disk winds

    NASA Astrophysics Data System (ADS)

    Waters, Timothy R.

    A simple 1D dynamical model of thermally driven disk winds is proposed, based on the results of recent, 2.5D axi-symmetric simulations. Our formulation of the disk wind problem is in the spirit of the original Parker (1958) and Bondi (1952) problems, namely we assume an elementary flow configuration consisting of an outflow following pre-defined trajectories in the presence of a central gravitating point mass. Viscosity and heat conduction are neglected. We consider two different streamline geometries, both comprised of straight lines in the (x,z)-plane: (i) streamlines that converge to a geometric point located at (x,z)=(0,-- d) and (ii) streamlines that emerge at a constant inclination angle from the disk midplane (the x-axis, as we consider geometrically thin accretion discs). The former geometry is commonly used in kinematic models to compute synthetic spectra, while the latter, which exhibits self-similarity, is likely unused for this purpose, although it easily can be with existing kinematic models. We make the case that it should be, i.e. that geometry (ii) leads to transonic wind solutions with substantially different properties owing to its lack of streamline divergence. Pertinent to understanding our disk wind results, which are applicable to X-ray binaries, active galactic nuclei, and circumstellar discs, is a focused discussion on lesser known properties of Parker wind solutions. Parker winds are of wide applicability and have recently been used to predict photoevaporative mass loss rates from protoplanetary discs, but not without shortcomings, as we address. In addition, the analytical solutions of Parker winds are ideal for assessing and validating the accuracy of hydrodynamical simulations. Geometry (i) contains the spherically symmetric Parker wind solution as a special case, while one instance of geometry (ii) has been used as a testbed problem for hydrodynamic simulations performed in cylindrical coordinates. We present a parameter survey of our

  5. Winds from disks in compact binaries

    SciTech Connect

    Mauche, C.W.

    1993-10-27

    We herein present an observational and theoretical review of the winds of compact binaries. After a brief consideration of the accretion disk coronae and winds of X-ray binaries, the review concentrates on the winds of cataclysmic variables (CVs). Specifically, we consider the related problems of the geometry and mass-loss rate of the winds of CVs, their ionization state and variability, and the results from studies of eclipsing CVs. Finally, the properties of bona fide accretion disk wind models are reviewed.

  6. Radiation-Driven Warping. 2; Nonisothermal Disks

    NASA Technical Reports Server (NTRS)

    Maloney, Philip R.; Begelman, Mitchell C.; Nowak, Michael A.

    1998-01-01

    Recent work by Pringle and by Maloney, Begelman, & Pringle has shown that geometrically thin, optically thick, accretion disks are unstable to warping driven by radiation torque from the central source. This work was confined to isothermal (i.e., surface density Sigma varies as R(sup -3/2) disks. In this paper we generalize the study of radiation-driven warping to include general power-law surface density distributions, Sigma varies as R(sup -delta).We consider the range from Delta = 3/2 (the isothermal case) to Delta = -3/2, which corresponds to a radiation-pressure-supported disk; this spans the range of surface density distributions likely to be found in real astrophysical disks. In all cases there are an infinite number of zero-crossing solutions (i.e., solutions that cross the equator), which are the physically relevant modes if the outer boundary of the disk is required to lie in a specified plane. However, unlike the isothermal disk, which is the degenerate case, the frequency eigenvalues for Delta does not equal 3/2 are all distinct. In all cases the location of the zero moves outward from the steady state (pure precession) value with increasing growth rate; thus, there is a critical minimum size for unstable disks. Modes with zeros at smaller radii are damped. The critical radius and the steady state precession rate depend only weakly on Delta. An additional analytic solution has been found for Delta = 1. The case Delta = 1 divides the solutions into two qualitatively different regimes. For Delta greater than or equal to 1, the fastest growing modes have maximum warp amplitude, close to the disk outer edge, and the ratio of Beta(sub max) to the warp amplitude at the disk inner edge, Beta(sub o), is much greater than 1. For Delta less than 1, Beta(sub max/Beta(sub o) approximately equals 1, and the warp maximum steadily approaches the origin as Delta decreases. This implies that nonlinear effects must be important if the warp extends to the disk inner edge

  7. Quasar Unification Via Disk Winds: From Phenomenology to Physics

    NASA Astrophysics Data System (ADS)

    Knigge, C.

    2015-09-01

    I will give an overview of a collaborative project aimed at testing the viability of QSO unification via accretion disk winds. In this scenario, most of the characteristic spectral features of QSOs are formed in these outflows. More specifically, broad absorption lines (BALs) are produced for sight lines within the outflow, while broad emission lines (BELs) are observed for other viewing angles. In order to test these ideas, we use a state-of- the-art Monte Carlo radiative transfer and photoionization code to predict emergent spectra for a wide range of viewing angles and quasar properties (black hole mass, accretion rate, X-ray luminosity, etc). It turns out to be relatively straightforward to produce BALs, but harder to obtain sufficiently strong BELs. We also find that it is easy to overionize the wind with realistic X-ray luminosities. In addition, we are using our code to test and improve hydrodynamic disk wind models for quasars. So far, we have been able to demonstrate that the treatment of ionization in existing hydrodynamic models of line-driven disk winds is too simplistic to yield realistic results: the modelled outflows would be strongly overionized and hence would not feel the line-driving forces that are asssumed to produce them. We have therefore embarked on an effort to model line-driven disk winds self-consistently by linking a hydrodynamics code with our ionization and radiative transfer code. Finally, we can also predict the reverberation signatures produced by disk winds, which can be directly compared to the results of the latest reverberation mapping campaigns.

  8. Magnetically driven jets and winds

    NASA Technical Reports Server (NTRS)

    Lovelace, R. V. E.; Berk, H. L.; Contopoulos, J.

    1991-01-01

    Four equations for the origin and propagation of nonrelativistic jets and winds are derived from the basic conservation laws of ideal MHD. The axial current density is negative in the vicinity of the axis and positive at larger radii; there is no net current because this is energetically favored. The magnetic field is essential for the jet solutions in that the zz-component of the magnetic stress acts, in opposition to gravity, to drive matter through the slow magnetosonic critical point. For a representative self-consistent disk/jet solution relevant to a protostellar system, the reaction of the accreted mass expelled in the jets is 0.1, the ratio of the power carried by the jets to the disk luminosity is 0.66, and the ratio of the boundary layer to disk luminosities is less than about 0.13. The star's rotation rate decreases with time even for rotation rates much less than the breakup rate.

  9. CONSTRAINTS ON COMPTON-THICK WINDS FROM BLACK HOLE ACCRETION DISKS: CAN WE SEE THE INNER DISK?

    SciTech Connect

    Reynolds, Christopher S.

    2012-11-01

    Strong evidence is emerging that winds can be driven from the central regions of accretion disks in both active galactic nuclei and Galactic black hole binaries. Direct evidence for highly ionized, Compton-thin inner-disk winds comes from observations of blueshifted (v {approx} 0.05-0.1c) iron-K X-ray absorption lines. However, it has been suggested that the inner regions of black hole accretion disks can also drive Compton-thick winds-such winds would enshroud the inner disk, preventing us from seeing direct signatures of the accretion disk (i.e., the photospheric thermal emission, or the Doppler/gravitationally broadened iron K{alpha} line). Here, we show that, provided the source is sub-Eddington, the well-established wind-driving mechanisms fail to launch a Compton-thick wind from the inner disk. For the accelerated region of the wind to be Compton-thick, the momentum carried in the wind must exceed the available photon momentum by a factor of at least 2/{lambda}, where {lambda} is the Eddington ratio of the source, ruling out radiative acceleration unless the source is very close to the Eddington limit. Compton-thick winds also carry large mass fluxes, and a consideration of the connections between the wind and the disk shows this to be incompatible with magneto-centrifugal driving. Finally, thermal driving of the wind is ruled out on the basis of the large Compton radii that typify black hole systems. In the absence of some new acceleration mechanisms, we conclude that the inner regions of sub-Eddington accretion disks around black holes are indeed naked.

  10. Driving disk winds and heating hot coronae by MRI turbulence

    SciTech Connect

    Io, Yuki; Suzuki, Takeru K.

    2014-01-01

    We investigate the formation of hot coronae and vertical outflows in accretion disks by magnetorotational turbulence. We perform local three-dimensional magnetohydrodynamical (MHD) simulations with the vertical stratification by explicitly solving an energy equation with various effective ratios of specific heats, γ. Initially imposed weak vertical magnetic fields are effectively amplified by magnetorotational instability and winding caused by the differential rotation. In the isothermal case (γ = 1), the disk winds are driven mainly by the Poynting flux associated with the MHD turbulence and show quasi-periodic intermittency. In contrast, in the non-isothermal cases with γ ≥ 1.1, the regions above 1-2 scale heights from the midplane are effectively heated to form coronae with temperature ∼50 times the initial value, which are connected to the cooler midplane region through the pressure-balanced transition regions. As a result, the disk winds are driven mainly by the gas pressure, exhibiting more time-steady nature, although the nondimensional time-averaged mass loss rates are similar to that of the isothermal case. Sound-like waves are confined in the cool midplane region in these cases, and the amplitude of the density fluctuations is larger than that of the isothermal case.

  11. On local ionization equilibrium and disk winds in QSOs

    SciTech Connect

    Pereyra, Nicolas A.

    2014-11-01

    We present theoretical C IV λλ1548,1550 absorption line profiles for QSOs calculated assuming the accretion disk wind (ADW) scenario. The results suggest that the multiple absorption troughs seen in many QSOs may be due to the discontinuities in the ion balance of the wind (caused by X-rays), rather than discontinuities in the density/velocity structure. The profiles are calculated from a 2.5-dimensional time-dependent hydrodynamic simulation of a line-driven disk wind for a typical QSO black hole mass, a typical QSO luminosity, and for a standard Shakura-Sunyaev disk. We include the effects of ionizing X-rays originating from within the inner disk radius by assuming that the wind is shielded from the X-rays from a certain viewing angle up to 90° ({sup e}dge on{sup )}. In the shielded region, we assume constant ionization equilibrium, and thus constant line-force parameters. In the non-shielded region, we assume that both the line-force and the C IV populations are nonexistent. The model can account for P-Cygni absorption troughs (produced at edge on viewing angles), multiple absorption troughs (produced at viewing angles close to the angle that separates the shielded region and the non-shielded region), and for detached absorption troughs (produced at an angle in between the first two absorption line types); that is, the model can account for the general types of broad absorption lines seen in QSOs as a viewing angle effect. The steady nature of ADWs, in turn, may account for the steady nature of the absorption structure observed in multiple-trough broad absorption line QSOs. The model parameters are M {sub bh} = 10{sup 9} M {sub ☉} and L {sub disk} = 10{sup 47} erg s{sup –1}.

  12. On Local Ionization Equilibrium and Disk Winds in QSOs

    NASA Astrophysics Data System (ADS)

    Pereyra, Nicolas A.

    2014-11-01

    We present theoretical C IV λλ1548,1550 absorption line profiles for QSOs calculated assuming the accretion disk wind (ADW) scenario. The results suggest that the multiple absorption troughs seen in many QSOs may be due to the discontinuities in the ion balance of the wind (caused by X-rays), rather than discontinuities in the density/velocity structure. The profiles are calculated from a 2.5-dimensional time-dependent hydrodynamic simulation of a line-driven disk wind for a typical QSO black hole mass, a typical QSO luminosity, and for a standard Shakura-Sunyaev disk. We include the effects of ionizing X-rays originating from within the inner disk radius by assuming that the wind is shielded from the X-rays from a certain viewing angle up to 90° ("edge on"). In the shielded region, we assume constant ionization equilibrium, and thus constant line-force parameters. In the non-shielded region, we assume that both the line-force and the C IV populations are nonexistent. The model can account for P-Cygni absorption troughs (produced at edge on viewing angles), multiple absorption troughs (produced at viewing angles close to the angle that separates the shielded region and the non-shielded region), and for detached absorption troughs (produced at an angle in between the first two absorption line types); that is, the model can account for the general types of broad absorption lines seen in QSOs as a viewing angle effect. The steady nature of ADWs, in turn, may account for the steady nature of the absorption structure observed in multiple-trough broad absorption line QSOs. The model parameters are M bh = 109 M ⊙ and L disk = 1047 erg s-1.

  13. Simulations of Accretion Disk Wind Models

    NASA Astrophysics Data System (ADS)

    Brooks, Craig L.; Yong, Suk Yee; O'Dowd, Matthew; Webster, Rachel L.; Bate, Nicholas

    2016-01-01

    The kinematics of the broad emission line region (BELR) in quasars is largely unknown, however there is strong evidence that outflows may be a key component. For example, in approximately 15% of quasars we observe broad, blue-shifted absorption features which may be ubiquitous based on line-of-sight arguments. We use a new mathematical description of an outflowing disk-wind with an initial rotational component to predict surface brightness distributions of this wind at different orientations. These surface brightness distributions will allow us to simulate gravitational microlensing of BELR light, with a view to mapping the structure and better understanding the kinematics of these flows.

  14. LIMB-DARKENED RADIATION-DRIVEN WINDS FROM MASSIVE STARS

    SciTech Connect

    Cure, M.; Cidale, L.

    2012-10-01

    We calculated the influence of the limb-darkened finite-disk correction factor in the theory of radiation-driven winds from massive stars. We solved the one-dimensional m-CAK hydrodynamical equation of rotating radiation-driven winds for all three known solutions, i.e., fast, {Omega}-slow, and {delta}-slow. We found that for the fast solution, the mass-loss rate is increased by a factor of {approx}10%, while the terminal velocity is reduced about 10%, when compared with the solution using a finite-disk correction factor from a uniformly bright star. For the other two slow solutions, the changes are almost negligible. Although we found that the limb darkening has no effects on the wind-momentum-luminosity relationship, it would affect the calculation of synthetic line profiles and the derivation of accurate wind parameters.

  15. The Accretion Disk Wind in the Black Hole GRS 1915+105

    NASA Astrophysics Data System (ADS)

    Miller, J. M.; Raymond, J.; Fabian, A. C.; Gallo, E.; Kaastra, J.; Kallman, T.; King, A. L.; Proga, D.; Reynolds, C. S.; Zoghbi, A.

    2016-04-01

    We report on a 120 ks Chandra/HETG spectrum of the black hole GRS 1915+105. The observation was made during an extended and bright soft state in 2015 June. An extremely rich disk wind absorption spectrum is detected, similar to that observed at lower sensitivity in 2007. The very high resolution of the third-order spectrum reveals four components to the disk wind in the Fe K band alone; the fastest has a blueshift of v=0.03c. Broadened re-emission from the wind is also detected in the first-order spectrum, giving rise to clear accretion disk P Cygni profiles. Dynamical modeling of the re-emission spectrum gives wind launching radii of r≃ {10}2-4 {GM}/{{{c}}}2. Wind density values of n≃ {10}13-16 {{{cm}}}-3 are then required by the ionization parameter formalism. The small launching radii, high density values, and inferred high mass outflow rates signal a role for magnetic driving. With simple, reasonable assumptions, the wind properties constrain the magnitude of the emergent magnetic field to be B≃ {10}3-4 G if the wind is driven via magnetohydrodynamic (MHD) pressure from within the disk and B≃ {10}4-5 G if the wind is driven by magnetocentrifugal acceleration. The MHD estimates are below upper limits predicted by the canonical α-disk model. We discuss these results in terms of fundamental disk physics and black hole accretion modes.

  16. Cosmic ray driven Galactic winds

    NASA Astrophysics Data System (ADS)

    Recchia, S.; Blasi, P.; Morlino, G.

    2016-08-01

    The escape of cosmic rays from the Galaxy leads to a gradient in the cosmic ray pressure that acts as a force on the background plasma, in the direction opposite to the gravitational pull. If this force is large enough to win against gravity, a wind can be launched that removes gas from the Galaxy, thereby regulating several physical processes, including star formation. The dynamics of these cosmic ray driven winds is intrinsically non-linear in that the spectrum of cosmic rays determines the characteristics of the wind (velocity, pressure, magnetic field) and in turn the wind dynamics affects the cosmic ray spectrum. Moreover, the gradient of the cosmic ray distribution function causes excitation of Alfvén waves, that in turn determine the scattering properties of cosmic rays, namely their diffusive transport. These effects all feed into each other so that what we see at the Earth is the result of these non-linear effects. Here we investigate the launch and evolution of such winds, and we determine the implications for the spectrum of cosmic rays by solving together the hydrodynamical equations for the wind and the transport equation for cosmic rays under the action of self-generated diffusion and advection with the wind and the self-excited Alfvén waves.

  17. Protosteller Disks Under the Influence of Winds and UV Radiation

    NASA Technical Reports Server (NTRS)

    Yorke, H. W.

    2003-01-01

    Star formation and the creation of protostellar disks generally occur in a crowded environment. Nearby young stars and protostars can influence the disks of their closets neighbors by a combination of outflows and hard radiation. The central stars themselves can have a stellar wind and may produce sufficient UV and X-ray to ultimately destroy their surrounding disks. Here we describe the results of numerical simulations of the influence that an external UV source and a central star's wind can have on its circumstellar disk. The numerical method (axial symmetry assumed) is described elsewhere. We find that protostellar disks will be destroyed on a relatively short time scale ( 10(sup 5)yr) unless they are well shielded from O-stars. Initially isotropic T-Tauri winds do not significantly influence their disks, but instead are focused toward the rotation axis by the disk wind from photoevaporation.

  18. DISPERSAL OF PROTOPLANETARY DISKS BY CENTRAL WIND STRIPPING

    SciTech Connect

    Matsuyama, I.; Johnstone, D.; Hollenbach, D.

    2009-07-20

    We present a model for the dispersal of protoplanetary disks by winds from either the central star or the inner disk. These winds obliquely strike the flaring disk surface and strip away disk material by entraining it in an outward radial-moving flow at the wind-disk interface, which lies several disk scale heights above the midplane. The disk dispersal time depends on the entrainment velocity, v{sub d} = {epsilon}c{sub s} , at which disk material flows into this turbulent shear layer interface, where {epsilon} is a scale factor and c{sub s} is the local sound speed in the disk surface just below the entrainment layer. If {epsilon} {approx} 0.1, a likely upper limit, the dispersal time at 1 AU is {approx}6 Myr for a disk with a surface density of 10{sup 3} g cm{sup -2}, a solar mass central star, and a wind with an outflow rate M-dot{sub w}=10{sup -8}M{sub odot}yr{sup -1} and terminal velocity v{sub w} = 200kms{sup -1}. When compared with photoevaporation and viscous evolution, wind stripping can be a dominant mechanism only for the combination of low accretion rates ({approx}<10{sup -8} M{sub sun} yr{sup -1}) and wind outflow rates approaching these accretion rates. This case is unusual since generally outflow rates are {approx}<0.1 of accretion rates.

  19. Constraining MHD Disk-Winds with X-ray Absorbers

    NASA Astrophysics Data System (ADS)

    Fukumura, Keigo; Tombesi, F.; Shrader, C. R.; Kazanas, D.; Contopoulos, J.; Behar, E.

    2014-01-01

    From the state-of-the-art spectroscopic observations of active galactic nuclei (AGNs) the robust features of absorption lines (e.g. most notably by H/He-like ions), called warm absorbers (WAs), have been often detected in soft X-rays (< 2 keV). While the identified WAs are often mildly blueshifted to yield line-of-sight velocities up to ~100-3,000 km/sec in typical X-ray-bright Seyfert 1 AGNs, a fraction of Seyfert galaxies such as PG 1211+143 exhibits even faster absorbers (v/ 0.1-0.2) called ultra-fast outflows (UFOs) whose physical condition is much more extreme compared with the WAs. Motivated by these recent X-ray data we show that the magnetically- driven accretion-disk wind model is a plausible scenario to explain the characteristic property of these X-ray absorbers. As a preliminary case study we demonstrate that the wind model parameters (e.g. viewing angle and wind density) can be constrained by data from PG 1211+143 at a statistically significant level with chi-squared spectral analysis. Our wind models can thus be implemented into the standard analysis package, XSPEC, as a table spectrum model for general analysis of X-ray absorbers.

  20. THE PHOTOEVAPORATIVE WIND FROM THE DISK OF TW Hya

    SciTech Connect

    Pascucci, I.; Sterzik, M.; Alexander, R. D.; Alencar, S. H. P.; Gorti, U.; Hollenbach, D.; Owen, J.; Ercolano, B.; Edwards, S.

    2011-07-20

    Photoevaporation driven by the central star is expected to be a ubiquitous and important mechanism for dispersing the circumstellar dust and gas from which planets form. Here, we present a detailed study of the circumstellar disk surrounding the nearby star TW Hya and provide observational constraints to its photoevaporative wind. Our new high-resolution (R {approx} 30,000) mid-infrared spectroscopy in the [Ne II] 12.81 {mu}m line confirms that this gas diagnostic traces the unbound wind component within 10 AU of the star. From the blueshift and asymmetry in the line profile, we estimate that most (>80%) of the [Ne II] emission arises from disk radii where the midplane is optically thick to the redshifted outflowing gas, meaning beyond the 1 or 4 AU dust rim inferred from other observations. We re-analyze high-resolution (R {approx} 48,000) archival optical spectra searching for additional transitions that may trace the photoevaporative flow. Unlike the [Ne II] line, optical forbidden lines from O I, S II, and Mg I are centered at stellar velocity and have symmetric profiles. The only way these lines can trace the photoevaporative flow is if they arise from a disk region physically distinct from that traced by the [Ne II] line, specifically from within the optically thin dust gap. However, the small ({approx}10 km s{sup -1}) FWHM of these lines suggests that most of the emitting gas traced at optical wavelengths is bound to the system rather than unbound. We discuss the implications of our results for a planet-induced gap versus a photoevaporation-induced gap.

  1. The Photoevaporative Wind from the Disk of TW Hya

    NASA Astrophysics Data System (ADS)

    Pascucci, I.; Sterzik, M.; Alexander, R. D.; Alencar, S. H. P.; Gorti, U.; Hollenbach, D.; Owen, J.; Ercolano, B.; Edwards, S.

    2011-07-01

    Photoevaporation driven by the central star is expected to be a ubiquitous and important mechanism for dispersing the circumstellar dust and gas from which planets form. Here, we present a detailed study of the circumstellar disk surrounding the nearby star TW Hya and provide observational constraints to its photoevaporative wind. Our new high-resolution (R ~ 30,000) mid-infrared spectroscopy in the [Ne II] 12.81 μm line confirms that this gas diagnostic traces the unbound wind component within 10 AU of the star. From the blueshift and asymmetry in the line profile, we estimate that most (>80%) of the [Ne II] emission arises from disk radii where the midplane is optically thick to the redshifted outflowing gas, meaning beyond the 1 or 4 AU dust rim inferred from other observations. We re-analyze high-resolution (R ~ 48,000) archival optical spectra searching for additional transitions that may trace the photoevaporative flow. Unlike the [Ne II] line, optical forbidden lines from O I, S II, and Mg I are centered at stellar velocity and have symmetric profiles. The only way these lines can trace the photoevaporative flow is if they arise from a disk region physically distinct from that traced by the [Ne II] line, specifically from within the optically thin dust gap. However, the small (~10 km s-1) FWHM of these lines suggests that most of the emitting gas traced at optical wavelengths is bound to the system rather than unbound. We discuss the implications of our results for a planet-induced gap versus a photoevaporation-induced gap. Based on observations made with VISIR on the UT3/Melipal ESO Telescope at Paranal under program ID 084.C-0088(A).

  2. Compton heated winds and coronae above accretion disks. I Dynamics

    NASA Technical Reports Server (NTRS)

    Begelman, M. C.; Mckee, C. F.; Shields, G. A.

    1983-01-01

    X rays emitted in the inner part of an accretion disk system can heat the surface of the disk farther out, producing a corona and possibly driving off a strong wind. The dynamics of Compton-heated coronae and winds are analyzed using an approximate two-dimensional technique to estimate the mass loss rate as a function of distance from the source of X rays. The findings have important dynamical implications for accretion disks in quasars, active galactic nuclei, X ray binaries, and cataclysmic variables. These include: mass loss from the disk possibly comparable with or exceeding the net accretion rate onto the central compact object, which may lead to unstable accretion; sufficient angular momentum loss in some cases to truncate the disk in a semidetached binary at a smaller radius than that predicted by tidal truncation theories; and combined static plus ram pressure in the wind adequate to confine line-emitting clouds in quasars and Seyfert galaxies.

  3. On the virialization of disk winds: Implications for the black hole mass estimates in active galactic nuclei

    SciTech Connect

    Kashi, Amit; Proga, Daniel; Nagamine, Kentaro; Greene, Jenny; Barth, Aaron J.

    2013-11-20

    Estimating the mass of a supermassive black hole in an active galactic nucleus usually relies on the assumption that the broad line region (BLR) is virialized. However, this assumption seems to be invalid in BLR models that consist of an accretion disk and its wind. The disk is likely Keplerian and therefore virialized. However, beyond a certain point, the wind material must be dominated by an outward force that is stronger than gravity. Here, we analyze hydrodynamic simulations of four different disk winds: an isothermal wind, a thermal wind from an X-ray-heated disk, and two line-driven winds, one with and the other without X-ray heating and cooling. For each model, we determine whether gravity governs the flow properties by computing and analyzing the volume-integrated quantities that appear in the virial theorem: internal, kinetic, and gravitational energies. We find that in the first two models, the winds are non-virialized, whereas the two line-driven disk winds are virialized up to a relatively large distance. The line-driven winds are virialized because they accelerate slowly so that the rotational velocity is dominant and the wind base is very dense. For the two virialized winds, the so-called projected virial factor scales with inclination angle as 1/sin {sup 2} i. Finally, we demonstrate that an outflow from a Keplerian disk becomes unvirialized more slowly when it conserves the gas specific angular momentum, as in the models considered here, than when it conserves the angular velocity, as in the so-called magneto-centrifugal winds.

  4. New Instabilities in Line Driven Winds

    NASA Technical Reports Server (NTRS)

    Martens, P. C. H.

    1985-01-01

    The physical mechanisms which potentially lead to instabilities in line driven winds, the drift instability and the line shape instability, are discussed. A general three dimensional treatment of the stability problem of line driven winds which leads to the general dispersion equation is proposed. From this dispersion equation automatically a third physical mechanism driving instability in stellar winds is deduced; the thermal drift instability which is related to changes in absorption of radiation caused by temperature perturbations. This mechanism results in growing inwardly propagating sound waves.

  5. PROTOPLANETARY DISK WINDS VIA MAGNETOROTATIONAL INSTABILITY: FORMATION OF AN INNER HOLE AND A CRUCIAL ASSIST FOR PLANET FORMATION

    SciTech Connect

    Suzuki, Takeru K.; Inutsuka, Shu-ichiro; Muto, Takayuki

    2010-08-01

    By constructing a global model based on three-dimensional local magnetohydrodynamical simulations, we show that the disk wind driven by magnetorotational instability (MRI) plays a significant role in the dispersal of the gas component of protoplanetary disks. Because the mass loss timescale of the MRI-driven disk winds is proportional to the local Keplerian rotation period, a gas disk dynamically evaporates from the inner region, possibly creating a gradually expanding inner hole, while a sizable amount of the gas remains in the outer region. The disk wind is highly time dependent with a quasi-periodicity of several times the Keplerian rotation period at each radius, which will be observed as the time variability of protostar-protoplanetary disk systems. These features persistently hold even if a dead zone exists because the disk winds are driven from the surface regions where ionizing cosmic rays and high energy photons can penetrate. Moreover, the predicted inside-out clearing significantly suppresses the infall of boulders to a central star and the type I migration of proto-planets, which are favorable for the formation and survival of planets.

  6. WIND-DRIVEN RAIN EROSION

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The erosion process involves detachment of soil particles from a soil surface and transport of these particles from their original position. The main agents that loosen, break down, and carry the soil particles are wind and water. Wind and water erosion have been separately studied in detail, and ...

  7. UV line diagnostics of accretion disk winds in cataclysmic variables

    NASA Technical Reports Server (NTRS)

    Vitello, Peter; Shlosman, Isaac

    1992-01-01

    The IUE data base is used to analyze the UV line shapes of cataclysmic variables RW Sex, RW Tri, and V Sge. Observed lines are compared to synthetic line profiles computed using a model of rotating bi-conical winds from accretion disks. The wind model calculates the wind ionization structure self-consistently including photoionization from the disk and boundary layer and treats 3-D line radiation transfer in the Sobolev approximation. It is found that winds from accretion disks provide a good fit for reasonable parameters to the observed UV lines which include the P Cygni profiles for low inclination systems and pure emission at large inclination. Disk winds are preferable to spherical winds which originate on the white dwarf because they (1) require a much lower ratio of mass loss rate to accretion rate and are therefore more plausible energetically, (2) provide a natural source for a bi-conical distribution of mass outflow which produces strong scattering far above the disk leading to P Cygni profiles for low inclination systems, and pure line emission profiles at high inclination with the absence of eclipses in UV lines, and (3) produce rotation broadened pure emission lines at high inclination.

  8. Ultraviolet line diagnostics of accretion disk winds in cataclysmic variables

    NASA Technical Reports Server (NTRS)

    Vitello, Peter; Shlosman, Isaac

    1993-01-01

    The IUE data base is used to analyze the UV line shapes of the cataclysmic variables RW Sex, RW Tri, and V Sge. Observed lines are compared to synthetic line profiles computed using a model of rotating biconical winds from accretion disks. The wind model calculates the wind ionization structure self-consistently including photoionization from the disk and boundary layer and treats 3D line radiation transfer in the Sobolev approximation. It is found that winds from accretion disks provide a good fit for reasonable parameters to the observed UV lines which include the P Cygni profiles for low-inclination systems and pure emission at large inclination. Disk winds are preferable to spherical winds which originate on the white dwarf because they: (1) require a much lower ratio of mass-loss rate to accretion rate and are therefore more plausible energetically; (2) provide a natural source for a biconical distribution of mass outflow which produces strong scattering far above the disk leading to P Cygni profiles for low-inclination systems and pure line emission profiles at high inclination with the absence of eclipses in UV lines; and (3) produce rotation-broadened pure emission lines at high inclination.

  9. Wind-driven circulation in Titan's seas

    NASA Astrophysics Data System (ADS)

    Tokano, Tetsuya; Lorenz, Ralph D.

    2015-01-01

    Circulation in Titan's seas forced by wind is simulated by an ocean circulation model using surface wind data predicted by a global circulation model. Wind-driven circulation is insignificant throughout much of the annual cycle but becomes significant from late spring to late summer, when the wind stress becomes strong. The large-scale circulation in summer is predominantly southward near the sea surface and northward near the sea bottom. The sea surface current can get as fast as 5 cms-1 in some areas. Titan's rotation affects the vertical structure of sea currents in the form of an Ekman spiral if the wind is strong. The maximum wind setup at the shores is of the same order of magnitude as the tidal range. Wind stirring may reduce thermal stratification in summer but may be unable to destroy stratification of methane-rich liquids on top of ethane-rich liquids that can result from imbalances between evaporation and precipitation.

  10. Wind-driven circulation in Titan's seas

    NASA Astrophysics Data System (ADS)

    Tokano, Tetsuya; Lorenz, Ralph D.

    2015-04-01

    Circulation in Titan's seas forced by wind is simulated by an ocean circulation model using surface wind data predicted by a global circulation model. Wind-driven circulation is insignificant throughout much of the annual cycle, but becomes significant from late spring to late summer, when the wind stress becomes strong. The large-scale circulation in summer is predominantly southward near the sea surface and northward near the sea bottom. The sea surface current can get as fast as 5 cms-1 in some areas. Titan's rotation affects the vertical structure of sea currents in the form of an Ekman spiral if the wind is strong. The maximum wind set-up at the shores is of the same order of magnitude as the tidal range. Wind stirring may reduce thermal stratification in summer, but may be unable to destroy stratification of methane-rich liquids on top of ethane-rich liquids that can result from imbalances between evaporation and precipitation.

  11. Stellar winds driven by Alfven waves

    NASA Technical Reports Server (NTRS)

    Belcher, J. W.; Olbert, S.

    1973-01-01

    Models of stellar winds were considered in which the dynamic expansion of a corona is driven by Alfven waves propagating outward along radial magnetic field lines. In the presence of Alfven waves, a coronal expansion can exist for a broad range of reference conditions which would, in the absence of waves, lead to static configurations. Wind models in which the acceleration mechanism is due to Alfven waves alone and exhibit lower mass fluxes and higher energies per particle are compared to wind models in which the acceleration is due to thermal processes. For example, winds driven by Alfven waves exhibit streaming velocities at infinity which may vary between the escape velocity at the coronal base and the geometrical mean of the escape velocity and the speed of light. Upper and lower limits were derived for the allowed energy fluxes and mass fluxes associated with these winds.

  12. RESOLVING THE DUST DISK IN THE PROTOTYPE IONIZED DISK WIND SOURCE S140-IRS1

    SciTech Connect

    Maud, L. T.; Hoare, M. G.

    2013-12-20

    The dust disk confirming the presence of an ionized disk wind in the massive young stellar object, S140-IRS1, is resolved for the first time. The 1.3 mm continuum observations taken with the CARMA A array configuration achieve a resolution of ∼0.''12, probing scales of 100 au. The dust disk is elongated in a direction aligned with a previously discovered ionized disk wind. Both are perpendicular to the large scale molecular outflow and near-infrared reflection nebula. A two-dimensional axis-symmetric radiative transfer model is used to produce synthetic images and visibilities for comparison with the observations. Using a 2D visibility fitting method the position angle of the dusty disk is constrained to 40° ± 5°. This result confirms the disk wind nature of the radio emission from S140-IRS1 and shows that radiation pressure on the gas in the disk is important in the later stages of the massive star formation evolutionary sequence.

  13. Resonantly driven nonlinear density waves in protostellar disks

    NASA Technical Reports Server (NTRS)

    Yuan, Chi; Cassen, Pat

    1994-01-01

    Recent observations of binary, pre-main-sequence, solar-type stars provide evidence that such systems may coexist with circumstellar disks. The binary disk systems, besides being of general interest for the study of star formation, potentially provide useful tests of companion-disk interaction theories prominent in current hypotheses of planet formation. In this paper, we apply an asymptotic analysis of the nonlinear, resonant interaction of a stellar companion with a disk to understand the dependence of such interactions on the properties of the system: the binary mass ratio, the physical properties of the disk, and the effective dissipation (treated herein as viscosity). The method is based on a WKBJ approximation and exploits the conditions that the disk is thin and much less massive than the primary, but does not require that the companion-induced disturbance be small. Both isothermal and adiabatic responses are treated. Only circular orbit resonances are considered in this paper. It is demonstrated that the temperature of the disk as well as the relative mass of the companion affects the degree of nonlinearity, and that nonlinearity promotes high wave compression ratios, long wavelengths, and increased propagation distances. Nevertheless, the total torque exerted between the companion and the disk is well represented by linear theory. The amplitudes of density disturbances are reduced by viscosity and nonisothermality. Because resonant interactions are generally strong and capable of driving rapid evolution, one might expect observations of systems undergoing strong, resonant-driven evolution to be rare. In this connection, it is pointed out that the m = 1 resonance is distinguished by being anomalously weaker than the others and is therefore of observational interest. It is speculated that, in conditions of intrinsically small dissipation, the propagation of resonant-driven density waves is limited by the tendency of their wavelength to diminish with distance

  14. CHEMICAL EVOLUTION OF PROTOPLANETARY DISKS-THE EFFECTS OF VISCOUS ACCRETION, TURBULENT MIXING, AND DISK WINDS

    SciTech Connect

    Heinzeller, D.; Nomura, H.; Walsh, C.; Millar, T. J.

    2011-04-20

    We calculate the chemical evolution of protoplanetary disks considering radial viscous accretion, vertical turbulent mixing, and vertical disk winds. We study the effects on the disk chemical structure when different models for the formation of molecular hydrogen on dust grains are adopted. Our gas-phase chemistry is extracted from the UMIST Database for Astrochemistry (Rate06) to which we have added detailed gas-grain interactions. We use our chemical model results to generate synthetic near- and mid-infrared local thermodynamic equilibrium line emission spectra and compare these with recent Spitzer observations. Our results show that if H{sub 2} formation on warm grains is taken into consideration, the H{sub 2}O and OH abundances in the disk surface increase significantly. We find that the radial accretion flow strongly influences the molecular abundances, with those in the cold midplane layers particularly affected. On the other hand, we show that diffusive turbulent mixing affects the disk chemistry in the warm molecular layers, influencing the line emission from the disk and subsequently improving agreement with observations. We find that NH{sub 3}, CH{sub 3}OH, C{sub 2}H{sub 2}, and sulfur-containing species are greatly enhanced by the inclusion of turbulent mixing. We demonstrate that disk winds potentially affect the disk chemistry and the resulting molecular line emission in a manner similar to that found when mixing is included.

  15. Wind from the black-hole accretion disk driving a molecular outflow in an active galaxy

    NASA Astrophysics Data System (ADS)

    Tombesi, F.; Meléndez, M.; Veilleux, S.; Reeves, J. N.; González-Alfonso, E.; Reynolds, C. S.

    2015-03-01

    Powerful winds driven by active galactic nuclei are often thought to affect the evolution of both supermassive black holes and their host galaxies, quenching star formation and explaining the close relationship between black holes and galaxies. Recent observations of large-scale molecular outflows in ultraluminous infrared galaxies support this quasar-feedback idea, because they directly trace the gas from which stars form. Theoretical models suggest that these outflows originate as energy-conserving flows driven by fast accretion-disk winds. Proposed connections between large-scale molecular outflows and accretion-disk activity in ultraluminous galaxies were incomplete because no accretion-disk wind had been detected. Conversely, studies of powerful accretion-disk winds have until now focused only on X-ray observations of local Seyfert galaxies and a few higher-redshift quasars. Here we report observations of a powerful accretion-disk wind with a mildly relativistic velocity (a quarter that of light) in the X-ray spectrum of IRAS F11119+3257, a nearby (redshift 0.189) optically classified type 1 ultraluminous infrared galaxy hosting a powerful molecular outflow. The active galactic nucleus is responsible for about 80 per cent of the emission, with a quasar-like luminosity of 1.5 × 1046 ergs per second. The energetics of these two types of wide-angle outflows is consistent with the energy-conserving mechanism that is the basis of the quasar feedback in active galactic nuclei that lack powerful radio jets (such jets are an alternative way to drive molecular outflows).

  16. Wind from the black-hole accretion disk driving a molecular outflow in an active galaxy.

    PubMed

    Tombesi, F; Meléndez, M; Veilleux, S; Reeves, J N; González-Alfonso, E; Reynolds, C S

    2015-03-26

    Powerful winds driven by active galactic nuclei are often thought to affect the evolution of both supermassive black holes and their host galaxies, quenching star formation and explaining the close relationship between black holes and galaxies. Recent observations of large-scale molecular outflows in ultraluminous infrared galaxies support this quasar-feedback idea, because they directly trace the gas from which stars form. Theoretical models suggest that these outflows originate as energy-conserving flows driven by fast accretion-disk winds. Proposed connections between large-scale molecular outflows and accretion-disk activity in ultraluminous galaxies were incomplete because no accretion-disk wind had been detected. Conversely, studies of powerful accretion-disk winds have until now focused only on X-ray observations of local Seyfert galaxies and a few higher-redshift quasars. Here we report observations of a powerful accretion-disk wind with a mildly relativistic velocity (a quarter that of light) in the X-ray spectrum of IRAS F11119+3257, a nearby (redshift 0.189) optically classified type 1 ultraluminous infrared galaxy hosting a powerful molecular outflow. The active galactic nucleus is responsible for about 80 per cent of the emission, with a quasar-like luminosity of 1.5 × 10(46) ergs per second. The energetics of these two types of wide-angle outflows is consistent with the energy-conserving mechanism that is the basis of the quasar feedback in active galactic nuclei that lack powerful radio jets (such jets are an alternative way to drive molecular outflows). PMID:25810204

  17. Powerful, Rotating Disk Winds from Stellar-mass Black Holes

    NASA Astrophysics Data System (ADS)

    Miller, J. M.; Fabian, A. C.; Kaastra, J.; Kallman, T.; King, A. L.; Proga, D.; Raymond, J.; Reynolds, C. S.

    2015-12-01

    We present an analysis of ionized X-ray disk winds found in the Fe K band of four stellar-mass black holes observed with Chandra, including 4U 1630-47, GRO J1655-40, H 1743-322, and GRS 1915+105. High-resolution photoionization grids were generated in order to model the data. Third-order gratings spectra were used to resolve complex absorption profiles into atomic effects and multiple velocity components. The Fe xxv line is found to be shaped by contributions from the intercombination line (in absorption), and the Fe xxvi line is detected as a spin-orbit doublet. The data require 2-3 absorption zones, depending on the source. The fastest components have velocities approaching or exceeding 0.01c, increasing mass outflow rates and wind kinetic power by orders of magnitude over prior single-zone models. The first-order spectra require re-emission from the wind, broadened by a degree that is loosely consistent with Keplerian orbital velocities at the photoionization radius. This suggests that disk winds are rotating with the orbital velocity of the underlying disk, and provides a new means of estimating launching radii—crucial to understanding wind driving mechanisms. Some aspects of the wind velocities and radii correspond well to the broad-line region in active galactic nuclei (AGNs), suggesting a physical connection. We discuss these results in terms of prevalent models for disk wind production and disk accretion itself, and implications for massive black holes in AGNs.

  18. The structure and appearance of winds from supercritical accretion disks. I - Numerical models

    NASA Technical Reports Server (NTRS)

    Meier, D. L.

    1979-01-01

    Equations for the structure and appearance of supercritical accretion disks and the radiation-driven winds which emanate from them are derived and solved by a steady-state hydrodynamic computer code with a relaxation technique used in stellar structure problems. The present model takes into account the mass of the accreting star, the total accretion rate, a generalization of the disk alpha parameter which accounts for heating by processes in addition to viscosity, and the ratio of the total luminosity to the Eddington luminosity. Solutions indicate that for accretion onto a hard-surfaced star, steady, optically thick winds result for even slightly supercritical accretion, and the object will appear as a supergiant star with a high mass loss rate and a nonblackbody spectrum. Winds from black hole accretion disks are expected to depend on the form of the accretion interior to the critical radius, possibly consisting of no ejection at all, a wind similar to that of a hard-surfaced star, or a column of material ejected from a hole in the accretion disk.

  19. ACCELERATION AND COLLIMATION OF RELATIVISTIC MAGNETOHYDRODYNAMIC DISK WINDS

    SciTech Connect

    Porth, Oliver; Fendt, Christian E-mail: fendt@mpia.d

    2010-02-01

    We perform axisymmetric relativistic magnetohydrodynamic simulations to investigate the acceleration and collimation of jets and outflows from disks around compact objects. Newtonian gravity is added to the relativistic treatment in order to establish the physical boundary condition of an underlying accretion disk in centrifugal and pressure equilibrium. The fiducial disk surface (respectively a slow disk wind) is prescribed as boundary condition for the outflow. We apply this technique for the first time in the context of relativistic jets. The strength of this approach is that it allows us to run a parameter study in order to investigate how the accretion disk conditions govern the outflow formation. Substantial effort has been made to implement a current-free, numerical outflow boundary condition in order to avoid artificial collimation present in the standard outflow conditions. Our simulations using the PLUTO code run for 500 inner disk rotations and on a physical grid size of 100 x 200 inner disk radii. The simulations evolve from an initial state in hydrostatic equilibrium and an initially force-free magnetic field configuration. Two options for the initial field geometries are applied-an hourglass-shaped potential magnetic field and a split monopole field. Most of our parameter runs evolve into a steady state solution which can be further analyzed concerning the physical mechanism at work. In general, we obtain collimated beams of mildly relativistic speed with Lorentz factors up to 6 and mass-weighted half-opening angles of 3-7 deg. The split-monopole initial setup usually results in less collimated outflows. The light surface of the outflow magnetosphere tends to align vertically-implying three relativistically distinct regimes in the flow-an inner subrelativistic domain close to the jet axis, a (rather narrow) relativistic jet and a surrounding subrelativistic outflow launched from the outer disk surface-similar to the spine-sheath structure currently

  20. The Discovery of a Photoevaporation-Driven Molecular Outflow from the T Tauri Transitional Disk GM Aur

    NASA Astrophysics Data System (ADS)

    Hornbeck, Jeremy; Grady, C. A.; Brown, A.; Ayres, T.; Apai, D.; Brittain, S.; Brown, J. M.; Hamaguchi, K.; Henning, T.; Herczeg, G.; Kamp, I.; Perrin, M.; Petre, R.; Schneider, G.; Sitko, M.; Walter, F.; Williger, G.; Wisniewski, J.; Woodgate, B.

    2011-01-01

    Circumstellar disks are not only a byproduct of star formation, but are also the place where planets form and migrate. The dominant gas-phase constituent of disks early in their evolution is H2, and its lifetime in the disk limits the time available for gas giant planet formation and migration. A number of mechanisms have been proposed to remove gas, including photoevaporation in the presence of the stellar X-ray, EUV, and FUV radiation field, but the relative importance of these different components and the point in disk evolution where they become significant remain uncertain. Some models predict enhanced evaporation of gas in the outer disk once the inner portions of the disk have begun to clear. One such system is the T Tauri star GM Aur which hosts a large disk with an r=20 AU central cavity. We have carried out the first high-contrast FUV imaging of this star+disk using HST ACS/SBC and report the detection of the inner 1" (140 AU) of the disk in the FUV and the discovery of a roughly cylindrical structure 90 AU in radius and extending 200 AU orthogonal to the disk, aligned with the previously reported red, polar lobes. The structure is brightest at wavelengths where there are numerous fluorescent molecular hydrogen transitions, both in our imagery and in an archival HST/STIS long-slit spectrum. The cylinder is marginally detected in the ACS/SBC F165LP band indicating that there is some sub-0.2 micron-sized dust entrained in it, but is not detected in ACS/SBC F122M imagery. The radial scale of the footprint of the cylinder on the disk and the absence of atomic emission lines associated with the structure exclude a conventional jet, but are consistent with a photoevaporation-driven outflow. We compare the properties of this outflow with predictions of X-ray, EUV, and FUV-driven disk winds.

  1. Chemical Evolution of Protoplanetary Disks: The Effects of Viscous Accretion, Turbulent Mixing, and Disk Winds

    NASA Astrophysics Data System (ADS)

    Nomura, H.; Heinzeller, D.; Walsh, C.; Millar, T.

    2011-05-01

    Recent infrared observations of molecular lines by the Spitzer Space Telescope have revealed the chemical properties in the surface layers of planet-forming regions in protoplanetary disks. These observations, together with (sub)millimetre molecular line observations, are useful tools for diagnosing the physical and chemical properties of disks, key to our understanding of the planet formation process and the origin of material in planetary systems, including our Solar System. In this work, we have studied the chemical evolution of a protoplanetary disk using a comprehensive astrochemical reaction network, extracted from the UMIST Database for Astrochemistry (Rate06), and a detailed model for the gas and dust temperature and density profiles. We especially focus on the effects of (i) molecular hydrogen formation on warm dust grains and (ii) gas motion, such as viscous accretion, turbulent mixing, and disk winds, on the chemical structure of the disk. As a result, we find that the former affects the H2O, OH and CO abundances in the hot disk surface, while the latter enhances NH3, CH3OH, C2H2, and sulphur species in the inner disk. Results from our turbulent mixing model are in best agreement with the Spitzer observations.

  2. Winds driven by the Saharan heat low

    NASA Astrophysics Data System (ADS)

    Dalu, Giovanni; Baldi, Marina; Gaetani, Marco

    2016-04-01

    In this paper we present an analysis of the winds driven by the Saharan heat low (SHL), generated in summer by the sensible heat fluxes over the hot Sahara desert. The SHL is longitudinally as wide as the Sahara desert and seasonally oscillates between 8 degrees north and 25 degrees north, to the west of the Hoggar massif. The SHL is the summer evolution of the West African heat low (WAHL), which is smaller and deeper in winter, and occupies a south-easterly position to the east of the Gulf of Guinea. These lows are important, because they drive the surface and the mid-tropospheric winds. In the mixed layer above the surface, the desert winds have a cyclonic curvature up to 1.5 km in winter and up to 2.5 km in summer. In the free troposphere above the mixed layer, the winds are more intense with a small anticyclonic curvature. The dry north-easterly surface winds to the north of the desert low are known as Harmattan; while the south-westerly surface winds to the south of the desert low carry moisture from the Tropical Atlantic. This moist air converges towards the thermal heat low, where it rises up to the mid-troposphere, and, subsiding to the north of the heat low, generates the Libyan anticyclone. To the south of the desert low, the tropospheric winds are characterized by a strong easterly jet, known as African easterly jet, and it is important for the sub-Sahara region, because it acts as waveguide for the easterly weather perturbations, which bring the rainfall to the Sahel. In addition, about half of the hurricanes, which cross the Tropical Atlantic, are generated by these perturbations.

  3. Accretion disk winds in active galactic nuclei: X-ray observations, models, and feedback

    NASA Astrophysics Data System (ADS)

    Tombesi, F.

    2016-05-01

    Powerful winds driven by active galactic nuclei (AGN) are often invoked to play a fundamental role in the evolution of both supermassive black holes (SMBHs) and their host galaxies, quenching star formation and explaining the tight SMBH-galaxy relations. A strong support of this ``quasar mode'' feedback came from the recent X-ray observation of a mildly relativistic accretion disk wind in a ultraluminous infrared galaxy (ULIRG) and its connection with a large-scale molecular outflow, providing a direct link between the SMBH and the gas out of which stars form. Spectroscopic observations, especially in the X-ray band, show that such accretion disk winds may be common in local AGN and quasars. However, their origin and characteristics are still not fully understood. Detailed theoretical models and simulations focused on radiation, magnetohydrodynamic (MHD) or a combination of these two processes to investigate the possible acceleration mechanisms and the dynamics of these winds. Some of these models have been directly compared to X-ray spectra, providing important insights into the wind physics. However, fundamental improvements on these studies will come only from the unprecedented energy resolution and sensitivity of the upcoming X-ray observatories, namely ASTRO-H (launch date early 2016) and Athena (2028).

  4. Brackett γ radiation from the inner gaseous accretion disk, magnetosphere, and disk wind region of Herbig AeBe stars

    NASA Astrophysics Data System (ADS)

    Tambovtseva, L. V.; Grinin, V. P.; Weigelt, G.

    2016-05-01

    Various disk and outflow components such as the magnetosphere, the disk wind, the gaseous accretion disk, and other regions may contribute to the hydrogen line emission of young Herbig AeBe stars. Non-LTE modeling was performed to show the influence of the model parameters of each emitting region on the intensity and shape of the Brγ line profile, to present the spatial brightness distribution of each component, and to compare the contribution of each component to the total line emission. The modeling shows that the disk wind is the dominant contributor to the Brγ line rather than the magnetosphere and inner gaseous accretion disk. The contribution of the disk wind region to the Hα line is also considered.

  5. Integrated Nucleosynthesis in Neutrino Driven Winds

    SciTech Connect

    Roberts, L F; Woosley, S E; Hoffman, R D

    2010-03-26

    Although they are but a small fraction of the mass ejected in core-collapse supernovae, neutrino-driven winds (NDWs) from nascent proto-neutron stars (PNSs) have the potential to contribute significantly to supernova nucleosynthesis. In previous works, the NDW has been implicated as a possible source of r-process and light p-process isotopes. In this paper we present time-dependent hydrodynamic calculations of nucleosynthesis in the NDW which include accurate weak interaction physics coupled to a full nuclear reaction network. Using two published models of PNS neutrino luminosities, we predict the contribution of the NDW to the integrated nucleosynthetic yield of the entire supernova. For the neutrino luminosity histories considered, no true r-process occurs in the most basic scenario. The wind driven from an older 1.4M{sub {circle_dot}} model for a PNS is moderately neutron-rich at late times however, and produces {sup 87}Rb, {sup 88}Sr, {sup 89}Y, and {sup 90}Zr in near solar proportions relative to oxygen. The wind from a more recently studied 1.27M{sub {circle_dot}} PNS is proton-rich throughout its entire evolution and does not contribute significantly to the abundance of any element. It thus seems very unlikely that the simplest model of the NDW can produce the r-process. At most, it contributes to the production of the N = 50 closed shell elements and some light p-nuclei. In doing so, it may have left a distinctive signature on the abundances in metal poor stars, but the results are sensitive to both uncertain models for the explosion and the masses of the neutron stars involved.

  6. Integrated Nucleosynthesis in Neutrino-driven Winds

    NASA Astrophysics Data System (ADS)

    Roberts, L. F.; Woosley, S. E.; Hoffman, R. D.

    2010-10-01

    Although they are but a small fraction of the mass ejected in core-collapse supernovae, neutrino-driven winds (NDWs) from nascent proto-neutron stars (PNSs) have the potential to contribute significantly to supernova nucleosynthesis. In previous works, the NDW has been implicated as a possible source of r-process and light p-process isotopes. In this paper, we present time-dependent hydrodynamic calculations of nucleosynthesis in the NDW which include accurate weak interaction physics coupled to a full nuclear reaction network. Using two published models of PNS neutrino luminosities, we predict the contribution of the NDW to the integrated nucleosynthetic yield of the entire supernova. For the neutrino luminosity histories considered, no true r-process occurs in the most basic scenario. The wind driven from an older 1.4 M sun model for a PNS is moderately neutron-rich at late times however, and produces 87Rb, 88Sr, 89Y, and 90Zr in near solar proportions relative to oxygen. The wind from a more recently studied 1.27 M sun PNS is proton-rich throughout its entire evolution and does not contribute significantly to the abundance of any element. It thus seems very unlikely that the simplest model of the NDW can produce the r-process. At most, it contributes to the production of the N = 50 closed shell elements and some light p-nuclei. In doing so, it may have left a distinctive signature on the abundances in metal-poor stars, but the results are sensitive to both uncertain models for the explosion and the masses of the neutron stars involved.

  7. Supernovae-driven Winds in Isolated Galaxies.

    NASA Astrophysics Data System (ADS)

    Dubois, Y.; Teyssier, R.

    2006-06-01

    The hierarchical model of galaxy formation, despite its many successes, still suffers from the so--called ``angular momentum'' and ``overcooling'' problems. Supernovae--driven winds and their associated feedback on galaxy formation was proposed as a possible solution. It turned out that a proper modelling of supernovae explosions within a turbulent InterStellar Medium (ISM) is a difficult task. Recent advances have been obtained using a multiphase approach to solve for the thermal state of the ISM, plus some additional recipes to account for the kinetic effect of supernovae on the galactic gas. We describe here our implementation of supernovae feedback within the RAMSES code, and apply it to the formation and evolution of isolated galaxies of various masses and angular momenta. We have explored under what conditions a galactic wind can develop, if one considers only a quiescent mode of star formation. It turns out that, because of the ram pressure of infalling material from the gaseous halo, only moderately efficient winds appear, and in rather low mass (<1011 M_⊙) dark matter haloes.

  8. MODELING HIGH-VELOCITY QSO ABSORBERS WITH PHOTOIONIZED MAGNETOHYDRODYNAMIC DISK WINDS

    SciTech Connect

    Fukumura, Keigo; Kazanas, Demosthenes; Behar, Ehud

    2010-11-10

    We extend our modeling of the ionization structure of magnetohydrodynamic (MHD) accretion-disk winds, previously applied to Seyfert galaxies, to a population of quasi-stellar objects (QSOs) of much lower X-ray-to-UV flux ratios, i.e., smaller {alpha}{sub ox} index, motivated by UV/X-ray ionized absorbers with extremely high outflow velocities in UV-luminous QSOs. We demonstrate that magnetically driven winds ionized by a spectrum with {alpha}{sub ox} {approx_equal} -2 can produce the charge states responsible for C IV and Fe XXV/Fe XXVI absorption in wind regions with corresponding maximum velocities of v(C IV) {approx_lt}0.1c and v(Fe XXV) {approx_lt} 0.6c (where c is the speed of light) and column densities N {sub H} {approx} 10{sup 23}-10{sup 24} cm{sup -2}, in general agreement with observations. In contrast to the conventional radiation-driven wind models, high-velocity flows are always present in our MHD-driven winds but manifest in the absorption spectra only for {alpha}{sub ox} {approx_lt} -2, as larger {alpha}{sub ox} values ionize the wind completely out to radii too large to demonstrate the presence of these high velocities. We thus predict increasing velocities of these ionized absorbers with decreasing (steeper) {alpha}{sub ox}, a quantity that emerges as the defining parameter in the kinematics of the active galactic nucleus UV/X-ray absorbers.

  9. A HYBRID MAGNETICALLY/THERMALLY DRIVEN WIND IN THE BLACK HOLE GRO J1655-40?

    SciTech Connect

    Neilsen, Joseph; Homan, Jeroen

    2012-05-01

    During its 2005 outburst, GRO J1655-40 was observed twice with the Chandra High Energy Transmission Grating Spectrometer; the second observation revealed a spectrum rich with ionized absorption lines from elements ranging from O to Ni, indicative of an outflow too dense and too ionized to be driven by radiation or thermal pressure. To date, this spectrum is the only definitive evidence of an ionized wind driven off the accretion disk by magnetic processes in a black hole X-ray binary. Here we present our detailed spectral analysis of the first Chandra observation, nearly three weeks earlier, in which the only signature of the wind is the Fe XXVI absorption line. Comparing the broadband X-ray spectra via photoionization models, we argue that the differences in the Chandra spectra cannot possibly be explained by the changes in the ionizing spectrum, which implies that the properties of the wind cannot be constant throughout the outburst. We explore physical scenarios for the changes in the wind, which we suggest may begin as a hybrid MHD/thermal wind, but evolves over the course of weeks into two distinct outflows with different properties. We discuss the implications of our results for the links between the state of the accretion flow and the presence of transient disk winds.

  10. Performance of a wind-profiling LIDAR in the region of wind turbine rotor disks

    NASA Astrophysics Data System (ADS)

    Aitken, M.; Rhodes, M. E.; Lundquist, J. K.

    2010-12-01

    As the wind energy sector continues to grow, so does the need for reliable vertical wind profiles for assessing wind turbine performance and diagnosing underperformance issues. In situ instrumentation mounted on meteorological towers can rarely probe the atmosphere at the altitudes of modern turbine rotor disks, up to 200 m above the surface. Remote sensing LIDAR, on the other hand, can quantify winds and turbulence at altitudes throughout the ranges of modern turbine rotor disks (40 m to 200 m above the surface). By measuring the Doppler shift of laser light backscattered by particles in the atmosphere, LIDAR has proven a promising technology for both wind resource assessment and turbine response characterization; to date, however, LIDAR data availability has not been well-quantified. To determine situations of suitable data return rates, we have deployed a Windcube LIDAR, co-located with a Vaisala CL31 ceilometer, as part of the Skywatch Observatory at the University of Colorado at Boulder. Aerosol backscatter, as measured by the ceilometer, and LIDAR signal-to-noise ratio (SNR) are strongly correlated. Additionally, we find that LIDAR SNR also depends weakly on atmospheric turbulence characteristics and atmospheric relative humidity. This relationship suggests an ability to predict LIDAR performance based on widely available air quality assessments (such as the EPA Air Quality Index), thus providing guidance for useful LIDAR deployments at wind farms to characterize turbine performance. *Acknowledgments: Skywatch Observatory is funded through NSF grant 0837388.

  11. The Disk-wind-Jet Connection in the Black Hole H 1743-322

    NASA Astrophysics Data System (ADS)

    Miller, J. M.; Raymond, J.; Fabian, A. C.; Reynolds, C. S.; King, A. L.; Kallman, T. R.; Cackett, E. M.; van der Klis, M.; Steeghs, D. T. H.

    2012-11-01

    X-ray disk winds are detected in spectrally soft, disk-dominated phases of stellar-mass black hole outbursts. In contrast, compact, steady, relativistic jets are detected in spectrally hard states that are dominated by non-thermal X-ray emission. Although these distinctive outflows appear to be almost mutually exclusive, it is possible that a disk wind persists in hard states but cannot be detected via X-ray absorption lines owing to very high ionization. Here, we present an analysis of a deep, 60 ks Chandra/HETGS observation of the black hole candidate H 1743-322 in the low/hard state. The spectrum shows no evidence of a disk wind, with tight limits, and within the range of ionizing flux levels that were measured in prior Chandra observations wherein a wind was clearly detected. In H 1743-322, at least, disk winds are actually diminished in the low/hard state, and disk winds and jets are likely state dependent and anti-correlated. These results suggest that although the launching radii of winds and jets may differ by orders of magnitude, they may both be tied to a fundamental property of the inner accretion flow, such as the mass accretion rate and/or the magnetic field topology of the disk. We discuss these results in the context of disk winds and jets in other stellar-mass black holes, and possible launching mechanisms for black hole outflows.

  12. THE DISK-WIND-JET CONNECTION IN THE BLACK HOLE H 1743-322

    SciTech Connect

    Miller, J. M.; King, A. L.; Raymond, J.; Fabian, A. C.; Reynolds, C. S.; Kallman, T. R.; Cackett, E. M.; Van der Klis, M.; Steeghs, D. T. H.

    2012-11-01

    X-ray disk winds are detected in spectrally soft, disk-dominated phases of stellar-mass black hole outbursts. In contrast, compact, steady, relativistic jets are detected in spectrally hard states that are dominated by non-thermal X-ray emission. Although these distinctive outflows appear to be almost mutually exclusive, it is possible that a disk wind persists in hard states but cannot be detected via X-ray absorption lines owing to very high ionization. Here, we present an analysis of a deep, 60 ks Chandra/HETGS observation of the black hole candidate H 1743-322 in the low/hard state. The spectrum shows no evidence of a disk wind, with tight limits, and within the range of ionizing flux levels that were measured in prior Chandra observations wherein a wind was clearly detected. In H 1743-322, at least, disk winds are actually diminished in the low/hard state, and disk winds and jets are likely state dependent and anti-correlated. These results suggest that although the launching radii of winds and jets may differ by orders of magnitude, they may both be tied to a fundamental property of the inner accretion flow, such as the mass accretion rate and/or the magnetic field topology of the disk. We discuss these results in the context of disk winds and jets in other stellar-mass black holes, and possible launching mechanisms for black hole outflows.

  13. Reconnection-driven oscillations in dwarf nova disks

    NASA Technical Reports Server (NTRS)

    Tajima, T.; Gilden, D.

    1987-01-01

    A class of oscillations observed during eruption of dwarf novae has been interpreted as oscillations of the accretion disks in these systems.These oscillations are quasi-periodic with coherence times typically between three and 15 cycles. It is shown that magnetic field reconnection at high magnetic Reynolds number can drive disk oscillations. The expected stochastic geometry of disk magnetic fields could naturally produce the observed phase incoherency.

  14. The starformation driven interstellar disk-halo connection

    NASA Astrophysics Data System (ADS)

    Dettmar, Ralf-Jürgen

    2005-08-01

    The evidence for starformation in the disks of spiral galaxies driving the disk-halo interaction is briefly reviewed. It is argued that diffuse ionized gas (DIG) in the halos of edge-on disk galaxies traces the presence of extraplanar gas well since it correlates with the star formation rate in the underlying disk as well as with other gaseous phases and components of the ISM such as X-ray hot gas, cosmic rays, and magnetic fields. The dependence on the starformation rate is demonstrated using a survey of H+ halos with more than 70 objects. This survey allows us to establish a minimum energy release per unit area that is required to start the disk-halo mass exchange. Observations of extraplanar HII regions let us conclude that also molecular hydrogen must be present. In addition, well ordered magnetic field in the gaseous halos can be deduced from the polarization of synchrotron radiocontinuum maps.

  15. Rupture-disk-less shock-tube with compression tube driven by free piston

    NASA Astrophysics Data System (ADS)

    Abe, T.; Ogura, E.; Sato, S.; Funabiki, K.

    A new technique is proposed for a shock tube driven by a freely moving piston. In a conventional free-piston-driven shock tube, a rupture disk is employed between the compression tube and the shock generation tube. In the present method, however, the conventional rupture disk is replaced by a newly developed fast action valve which is activated by the compressed gas generated in the compression tube. The present method enables us to generate high Mach number shock waves of arbitrary strength with good reproducibility. The performance of the new method is demonstrated experimentally. This also enables us to be carefree to scattering of fragments of the rupture disk.

  16. A non-hydrodynamical model for acceleration of line-driven winds in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Risaliti, G.; Elvis, M.

    2010-06-01

    Context. Radiation driven winds are the likely origin of AGN outflows, and are believed to be a fundamental component of the inner structure of AGNs. Several hydrodynamical models have been developed, showing that these winds can be effectively launched from AGN accretion disks. Aims: Here we want to study the acceleration phase of line-driven winds in AGNs, in order to examine the physical conditions required for the existence of such winds for a wide variety of initial conditions. Methods: We built a simple and fast non-hydrodynamic model QWIND, where we assume that a wind is launched from the accretion disk at supersonic velocities of a few 100 km s-1, and we concentrated on the subsequent supersonic phase, when the wind is accelerated to final velocities up to 104 km s-1. Results: We show that, with a set of initial parameters in agreement with observations in AGNs, this model can produce a wind with terminal velocities on the order of 104 km s-1. There are three zones in the wind, only the middle one of which can launch a wind: in the inner zone the wind is too ionized and so experiences only the Compton radiation force, which is not effective in accelerating gas. This inner “failed wind” is important for shielding the next zone by lowering the ionization parameter there. In the middle zone the lower ionization of the gas leads to a much larger radiation force and the gas achieves escape velocity This middle zone is quite thin (about 100 gravitational radii). The outer, third zone is shielded from the UV radiation by the central wind zone, so does not achieve a high enough acceleration to reach escape velocity. We also describe a simple analytic approximation of our model, in which we neglect the effects of gravity during the acceleration phase. This analytic approach agrees with the results of the numerical code, and is a powerful way to check whether a radiation driven wind can be accelerated with a given set of initial parameters. Conclusions: Our

  17. Radiation-driven warping of circumbinary disks around eccentric young star binaries

    SciTech Connect

    Hayasaki, Kimitake; Sohn, Bong Won; Jung, Taehyun; Zhao, Guangyao; Okazaki, Atsuo T.; Naito, Tsuguya

    2014-12-10

    We study a warping instability of a geometrically thin, non-self-gravitating, circumbinary disk around young binary stars on an eccentric orbit. Such a disk is subject to both the tidal torques due to a time-dependent binary potential and the radiative torques due to radiation emitted from each star. The tilt angle between the circumbinary disk plane and the binary orbital plane is assumed to be very small. We find that there is a radius within/beyond which the circumbinary disk is unstable to radiation-driven warping, depending on the disk density and temperature gradient indices. This marginally stable warping radius is very sensitive to viscosity parameters, a fiducial disk radius and the temperature measured there, the stellar luminosity, and the disk surface density at a radius where the disk changes from optically thick to thin for the irradiation from the central stars. On the other hand, it is insensitive to the orbital eccentricity and binary irradiation parameter, which is a function of the binary mass ratio and luminosity of each star. Since the tidal torques can suppress the warping in the inner part of the circumbinary disk, the disk starts to be warped in the outer part. While the circumbinary disks are most likely to be subject to the radiation-driven warping on an AU to kilo-AU scale for binaries with young massive stars more luminous than 10{sup 4} L {sub ☉}, the radiation-driven warping does not work for those around young binaries with the luminosity comparable to the solar luminosity.

  18. Radiation-driven Warping of Circumbinary Disks around Eccentric Young Star Binaries

    NASA Astrophysics Data System (ADS)

    Hayasaki, Kimitake; Sohn, Bong Won; Okazaki, Atsuo T.; Jung, Taehyun; Zhao, Guangyao; Naito, Tsuguya

    2014-12-01

    We study a warping instability of a geometrically thin, non-self-gravitating, circumbinary disk around young binary stars on an eccentric orbit. Such a disk is subject to both the tidal torques due to a time-dependent binary potential and the radiative torques due to radiation emitted from each star. The tilt angle between the circumbinary disk plane and the binary orbital plane is assumed to be very small. We find that there is a radius within/beyond which the circumbinary disk is unstable to radiation-driven warping, depending on the disk density and temperature gradient indices. This marginally stable warping radius is very sensitive to viscosity parameters, a fiducial disk radius and the temperature measured there, the stellar luminosity, and the disk surface density at a radius where the disk changes from optically thick to thin for the irradiation from the central stars. On the other hand, it is insensitive to the orbital eccentricity and binary irradiation parameter, which is a function of the binary mass ratio and luminosity of each star. Since the tidal torques can suppress the warping in the inner part of the circumbinary disk, the disk starts to be warped in the outer part. While the circumbinary disks are most likely to be subject to the radiation-driven warping on an AU to kilo-AU scale for binaries with young massive stars more luminous than 104 L ⊙, the radiation-driven warping does not work for those around young binaries with the luminosity comparable to the solar luminosity.

  19. Mechanics of interrill erosion with wind-driven rain

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The vector physics of wind-driven rain (WDR) differs from that of wind-free rain, and the interrill soil detachment equations in the Water Erosion Prediction Project (WEPP) model were not originally developed to deal with this phenomenon. This article provides an evaluation of the performance of the...

  20. Mechanics of Interrill Erosion with Wind-Driven Rain (WDR)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This article provides an evaluation analysis for the performance of the interrill component of the Water Erosion Prediction Project (WEPP) model for Wind-Driven Rain (WDR) events. The interrill delivery rates (Di) were collected in the wind tunnel rainfall simulator facility of the International Cen...

  1. A DISK-WIND MODEL FOR THE NEAR-INFRARED EXCESS EMISSION IN PROTOSTARS

    SciTech Connect

    Bans, Alissa; Koenigl, Arieh E-mail: akonigl@uchicago.edu

    2012-10-20

    Protostellar systems, ranging from low-luminosity classical T Tauri and Herbig Ae stars to high-luminosity Herbig Be stars, exhibit a near-infrared (NIR) excess in their spectra that is dominated by a bump in the monochromatic luminosity with a peak near 3 {mu}m. The bump can be approximated by a thermal emission component of temperature {approx}1500 K that is of the order of the sublimation temperature of interstellar dust grains. In the currently popular 'puffed-up rim' scenario, the bump represents stellar radiation that propagates through the optically thin inner region of the surrounding accretion disk and is absorbed and reemitted by the dust that resides just beyond the dust sublimation radius r {sub sub}. However, this model cannot account for the strongest bumps measured in these sources, and it predicts a pronounced secondary bounce in the interferometric visibility curve that is not observed. In this paper we present an alternative interpretation, which attributes the bump to reemission of stellar radiation by dust that is uplifted from the disk by a centrifugally driven wind. Winds of this type are a leading candidate for the origin of the strong outflows associated with protostars, and there is observational evidence for disk winds originating on scales {approx}r {sub sub}. Using a newly constructed Monte Carlo radiative transfer code and focusing on low-luminosity sources, we show that this model can account for the NIR excess emission even in bright Herbig Ae stars such as AB Auriga and MWC 275, and that it successfully reproduces the basic features of the visibilities measured in these protostars. We argue that a robust dusty outflow in these sources could be self-limiting-through shielding of the stellar FUV photons-to a relatively narrow launching region between r {sub sub} and {approx}2 r {sub sub}. We also suggest that the NIR and scattered-light variability exhibited by a source like MWC 275 can be attributed in this picture to the uplifting of

  2. Magnetocentrifugally driven flows from young stars and disks. 1: A generalized model

    NASA Astrophysics Data System (ADS)

    Shu, Frank; Najita, Joan; Ostriker, Eve; Wilkin, Frank; Ruden, Steven; Lizano, Susana

    1994-07-01

    We propose a generalized model for stellar spin-down, disk accretion, and truncation, and the origin of winds, jets, and bipolar outflows from young stellar objects. We consider the steady state dynamics of accretion of matter from a viscous and imperfectly conducting disk onto a young star with a strong magnetic field. For an aligned stellar magnetosphere, shielding currents in the surface layers of the disk prevent stellar field lines from penetrating the disk everywhere except for a range of radii about pi = Rx, where the Keplerian angular speed of rotation Omegax equals the angular speed of the star Omega*. For the low disk accretion rates and high magnetic fields associated with typical T Tauri stars, Rx exceeds the radius of the star R* by a factor of a few, and the inner disk is effectively truncated at a radius Rt somewhat smaller than Rx. Where the closed field lines between Rt and Rx bow sufficiently inward, the accreting gas attaches itself to the field and is funneled dynamically down the effective potential (gravitational plus centrifugal) onto the star. Contrary to common belief, the accompanying magnetic torques associated with this accreting gas may transfer angular momentum mostly to the disk rather than to the star. Thus, the star can spin slowly as long as Rx remains significantly greater than R*. Exterior to Rx field lines threading the disk bow outward, which makes the gas off the mid-plane rotate at super-Keplerian velocities. This combination drives a magnetocentrifugal wind with a mass-loss rate Mw equal to a definite fraction f of the disk accretion rate MD. For high disk accretion rates, Rx is forced down to the stellar surface, the star is spun to breakup, and the wind is generated in a manner identical to that proposed by Shu, Lizano, Ruden, & Najita in a previous communication to this journal. In two companion papers (II and III), we develop a detailed but idealized theory of the magnetocentrifugal acceleration process.

  3. No Disk Winds in Failed Black Hole Outbursts? New Observations of H1743-322

    NASA Astrophysics Data System (ADS)

    Neilsen, Joseph; Coriat, Mickael; Motta, Sara; Fender, Rob P.; Ponti, Gabriele; Corbel, Stephane

    2016-04-01

    The rich and complex physics of stellar-mass black holes in outburst is often referred to as the "disk-jet connection," a term that encapsulates the evolution of accretion disks over several orders of magnitude in Eddington ratio; through Compton scattering, reflection, and thermal emission; as they produce steady compact jets, relativistic plasma ejections, and (from high spectral resolution revelations of the last 15 years) massive, ionized disk winds. It is well established that steady jets are associated with radiatively inefficient X-ray states, and that winds tend to appear during states with more luminous disks, but the underlying physical processes that govern these connections (and their changes during state transitions) are not fully understood. I will present a unique perspective on the disk-wind-jet connection based on new Chandra HETGS, NuSTAR, and JVLA observations of the black hole H1743-322. Rather than following the usual outburst track, the 2015 outburst of H1743 fizzled: the disk never appeared in X-rays, and the source remained spectrally hard for the entire ~100 days. Remarkably, we find no evidence for any accretion disk wind in our data, even though H1743-322 has produced winds at comparable hard X-ray luminosities. I will discuss the implications of this "failed outburst" for our picture of winds from black holes and the astrophysics that governs them.

  4. "Heavy" elements produced in neutrino-driven winds

    NASA Astrophysics Data System (ADS)

    Arcones, Almudena

    2012-02-01

    We present nucleosynthesis studies based on trajectories of hydrodynamical simulations for core-collapse supernovae and their subsequent neutrino-driven winds. Based on recent hydrodynamical simulations, heavy r-process elements (Z > 56) cannot be synthesized in the neutrino-driven winds because the entropy is too low and ejected matter is proton-rich. We have shown that the lighter heavy elements (e.g., Sr, Y, Zr) are produced in neutron- and proton-rich winds and could explain the abundance observed in some very old halo stars.

  5. VISCOUS ACCRETION OF A POLYTROPIC SELF-GRAVITATING DISK IN THE PRESENCE OF WIND

    SciTech Connect

    Abbassi, Shahram; Nourbakhsh, Erfan; Shadmehri, Mohsen E-mail: e.nourbakhsh@mail.sbu.ac.ir

    2013-03-10

    Self-similar and semi-analytical solutions are found for the height-averaged equations governing the dynamical behavior of a polytropic, self-gravitating disk under the effects of winds around the nascent object. In order to describe the time evolution of the system, we adopt a radius-dependent mass loss rate, then highlight its importance on both the traditional {alpha} and innovative {beta} models of viscosity prescription. In agreement with some other studies, our solutions represent that the Toomre parameter is less than one in most regions on the {beta}-disk, which indicates that in such disks gravitational instabilities can occur at various distances from the central accretor. So, the {beta}-disk model might provide a good explanation of how the planetary systems form. The purpose of the present work is twofold: examining the structure of a disk with wind in comparison to a no-wind solution and seeing whether the adopted viscosity prescription significantly affects the dynamical behavior of the disk-wind system. We also considered the temperature distribution in our disk by a polytropic condition. The solutions imply that, under our boundary conditions, the radial velocity is larger for {alpha}-disks and increases as wind becomes stronger in both viscosity models. Also, we noticed that the disk thickness increases by amplifying the wind or adopting larger values for the polytropic exponent {gamma}. It also may globally decrease if one prescribes a {beta}-model for the viscosity. Moreover, in both viscosity models, the surface density and mass accretion rate diminish as the wind gets stronger or {gamma} increases.

  6. The Behavior of Accretion Disks in Low Mass X-ray Binaries: Disk Winds and Alpha Model

    NASA Astrophysics Data System (ADS)

    Bayless, Amanda J.

    2010-01-01

    This dissertation presents research on two low mass X-ray binaries. The eclipsing low-mass X-ray binary 4U 1822-371 is the prototypical accretion disk corona (ADC) system. We have obtained new time-resolved UV spectroscopy with the ACS/SBC on the Hubble Space Telescope and new V- and J-band photometry with the 1.3-m SMARTS telescope at CTIO. We show that the accretion disk in the system has a strong wind with projected velocities up to 4000 km/s as determined from the Doppler width of the C IV emission line. The broad and shallow eclipse indicates that the disk has a vertically-extended, optically-thick component at optical wavelengths. This component extends almost to the edge of the disk and has a height equal to 50% of the disk radius. As it has a low brightness temperature, we identify it as the optically-thick base of the disk wind. V1408 Aql (=4U 1957+115) is a low mass X-ray binary which continues to be a black hole candidate. We have new photometric data of this system from the Otto Struve 2.1-m telescope's high speed CCD photometer at McDonald Observatory. The light curve is largely sinusoidal which we model with two components: a constant light source from the disk and a sinusoidal modulation at the orbital period from the irradiated face of the companion star. This is a radical re-interpretation of the orbital light curve. We do not require a large or asymmetric disk rim to account for the modulation in the light curve. Thus, the orbital inclination is unconstrained in our new model, removing the foundation for any claims of the compact object being a black hole.

  7. Studying Wake Deflection of Wind Turbines in Yaw using Drag Disk Experiments and Actuator Disk Modeling in LES

    NASA Astrophysics Data System (ADS)

    Howland, Michael; Bossuyt, Juliaan; Meyers, Johan; Meneveau, Charles

    2015-11-01

    Recently, there has been a push towards the optimization in the power output of entire large wind farms through the control of individual turbines, as opposed to operating each turbine in a maximum power point tracking manner. In this vane, the wake deflection by wind turbines in yawed conditions has generated considerable interest in recent years. In order to effectively study the wake deflection according to classical actuator disk momentum theory, a 3D printed drag disk model with a coefficient of thrust of approximately 0.75 - 0.85 and a diameter of 3 cm is used, studied under uniform inflow in a wind tunnel with test section of 1 m by 1.3 m, operating with a negligible inlet turbulence level at an inflow velocity of 10 m/s. Mean velocity profile measurements are performed using Pitot probes. Different yaw angles are considered, including 10, 20, and 30 degrees. We confirm earlier results that (e.g.) a 30 degree yaw angle deflects the center of the wake around 1/2 of a rotor diameter when it impinges on a downstream turbine. Detailed comparisons between the experiments and Large Eddy Simulations using actuator disk model for the wind turbines are carried out in order to help validate the CFD model. Work supported by NSF (grants CBET-113380 and IIA-1243482, the WINDINSPIRE project) and by ERC (ActiveWindFarms, grant no. 306471).

  8. Nucleosynthesis in Early Neutrino Driven Winds

    SciTech Connect

    Hoffman, R; Fisker, J; Pruet, J; Woosley, S; Janka, H; Buras, R

    2008-01-09

    Two recent issues related to nucleosynthesis in early proton-rich neutrino winds are investigated. In the first part we investigate the effect of nuclear physics uncertainties on the synthesis of {sup 92}Mo and {sup 94}Mo. Based on recent experimental results, we find that the proton rich winds of the model investigated here can not be the only source of the solar abundance of {sup 92}Mo and {sup 94}Mo. In the second part we investigate the nucleosynthesis from neutron rich bubbles and show that they do not contribute to the nucleosynthesis integrated over both neutron and proton-rich bubbles and proton-rich winds.

  9. Magnetocentrifugally driven flows from young stars and disks. 2: Formulation of the dynamical problem

    NASA Technical Reports Server (NTRS)

    Shu, Frank H.; Najita, Joan; Ruden, Steven P.; Lizano, Susana

    1994-01-01

    We formulate the dynamical problem of a cool wind centrifugally driven from the magnetic interface of a young star and an adjoining Keplerian disk. We examine the situation for mildly accreting T Tauri stars that rotate slowly as well as rapidly accreting protostars that rotate near break-up. In both cases a wind can be driven from a small X-region just outside the stellar magnetopause, where the field lines assume an open geometry and are rooted to material that rotates at an angular speed equal both to the local Keplerian value and to the stellar angular speed. Assuming axial symmetry for the ideal magnetohydrodynamic flow, which requires us to postpone asking how the (lightly ionized) gas is loaded onto field lines, we can formally integrate all the governing equations analytically except for a partial equation that describes how streamlines spread in the meridional plane. Apart from the difficulty of dealing with PDEs of mixed type, finding the functional forms of the conserved quantities along streamlines - the ratio beta of magnetic field to mass flux, the specific energy H of the fluid in the rotating frame, and the total specific angular momentum J carried in the matter and the field - constitutes a standard difficulty in this kind of (Grad-Shafranov) formalism. Fortunately, because the ratio of the thermal speed of the mass-loss regions to the Keplerian speed of rotation of the interface constitutes a small parameter epsilon, we can attack the overall problem by the method of matched asymptotic expansions. This procedure leads to a natural and systematic technique for obtaining the relevant functional dependences of beta, H, and J. Moreover, we are able to solve analytically for the properties of the flow emergent from the small transsonic region driven by gas pressure without having to specify the detailed form of any of the conserved functions, beta, H, and J. This analytical solution provides inner boundary conditions for the numerical computation in a

  10. Neutrino-driven wind simulations and nucleosynthesis of heavy elements

    NASA Astrophysics Data System (ADS)

    Arcones, A.; Thielemann, F.-K.

    2013-01-01

    Neutrino-driven winds, which follow core-collapse supernova explosions, present a fascinating nuclear-astrophysics problem that requires an understanding of advanced astrophysics simulations, the properties of matter and neutrino interactions under extreme conditions, the structure and reactions of exotic nuclei, and comparisons with forefront astronomical observations. The neutrino-driven wind has attracted vast attention over the last 20 years as it was suggested as a candidate for the astrophysics site where half of the heavy elements are produced via the r-process. In this review, we summarize our present understanding of neutrino-driven winds from the dynamical and nucleosynthesis perspectives. Rapid progress has been made during recent years in understanding the wind with improved simulations and better micro physics. The current status of the fields is that hydrodynamical simulations do not reach the extreme conditions necessary for the r-process, and the proton or neutron richness of the wind remains to be investigated in more detail. However, nucleosynthesis studies and observations already point to neutrino-driven winds to explain the origin of lighter heavy elements, such as Sr, Y, Zr.

  11. Temperature fluctuations driven by magnetorotational instability in protoplanetary disks

    SciTech Connect

    McNally, Colin P.; Hubbard, Alexander; Low, Mordecai-Mark Mac; Yang, Chao-Chin E-mail: ahubbard@amnh.org E-mail: ccyang@astro.lu.se

    2014-08-10

    The magnetorotational instability (MRI) drives magnetized turbulence in sufficiently ionized regions of protoplanetary disks, leading to mass accretion. The dissipation of the potential energy associated with this accretion determines the thermal structure of accreting regions. Until recently, the heating from the turbulence has only been treated in an azimuthally averaged sense, neglecting local fluctuations. However, magnetized turbulence dissipates its energy intermittently in current sheet structures. We study this intermittent energy dissipation using high resolution numerical models including a treatment of radiative thermal diffusion in an optically thick regime. Our models predict that these turbulent current sheets drive order-unity temperature variations even where the MRI is damped strongly by Ohmic resistivity. This implies that the current sheet structures where energy dissipation occurs must be well-resolved to correctly capture the flow structure in numerical models. Higher resolutions are required to resolve energy dissipation than to resolve the magnetic field strength or accretion stresses. The temperature variations are large enough to have major consequences for mineral formation in disks, including melting chondrules, remelting calcium-aluminum-rich inclusions, and annealing silicates; and may drive hysteresis: current sheets in MRI active regions could be significantly more conductive than the remainder of the disk.

  12. The ALMA view of the protostellar system HH212. The wind, the cavity, and the disk

    NASA Astrophysics Data System (ADS)

    Codella, C.; Cabrit, S.; Gueth, F.; Podio, L.; Leurini, S.; Bachiller, R.; Gusdorf, A.; Lefloch, B.; Nisini, B.; Tafalla, M.; Yvart, W.

    2014-08-01

    Context. Because it is viewed simply edge-on, the HH212 protostellar system is an ideal laboratory for studying the interplay of infall, outflow, and rotation in the earliest stages of low-mass star formation. Aims: We wish to exploit the unmatched combination of high angular resolution, high sensitivity, high-imaging fidelity, and spectral coverage provided by ALMA to shed light on the complex kinematics of the innermost central regions of HH212. Methods: We mapped the inner 10″ (4500 AU) of the HH212 system at ≃0.5″ resolution in several molecular tracers and in the 850 μm dust continuum using the ALMA interferometer in band 7 in the extended configuration of the Early Science Cycle 0 operations. Results: Within a single ALMA spectral set-up, we simultaneously identify all the crucial ingredients known to be involved in the star formation recipe: (i) the fast, collimated bipolar SiO jet driven by the protostar; (ii) the large-scale swept-up CO outflow; (iii) the flattened rotating and infalling envelope, with bipolar cavities carved by the outflow (in C17O(3-2)); and (iv) a rotating wide-angle flow that fills the cavities and surrounds the axial jet (in C34S(7-6)). In addition, the compact high-velocity C17O emission (±1.9-3.5 km s-1 from systemic) shows a velocity gradient along the equatorial plane consistent with a rotating disk of ≃0farcs2 = 90 AU around a ≃0.3 ± 0.1 M⊙ source. The rotating disk is possibly Keplerian. Conclusions: HH212 is the third Class 0 protostar with possible signatures of a Keplerian disk of radius ≥30 AU. The warped geometry in our CS data suggests that this large Keplerian disk might result from misaligned magnetic and rotation axes during the collapse phase. The wide-angle CS flow suggests that disk winds may be present in this source. Appendix A is available in electronic form at http://www.aanda.orgFinal reduced ALMA cubes (FITS) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp

  13. Decoding the heartbeat of the microquasar GRS 1915+105: Disk wind Connection

    NASA Astrophysics Data System (ADS)

    Zoghbi, Abderahmen; Miller, Jon M.; Harrison, Fiona

    2016-04-01

    GRS 1915+105 is a microquasar that shows extreme variability in X-ray, IR and radio bands. It shows disk emission, relativistic jets and strong winds during its different states. We observed this source recently with NuSTAR and Chandra during the heartbeat state, characterized a 50 seconds strong oscillations. The oscillations are likely due to thermal/viscous instability in the inner disk when it deviates significantly from the standard Shakura & Sunyaev disk. Combining the high sensitivty of Nustar and the high resolution of Chandra, we use phase spectroscopy to study the details of these oscillation, revealing changes in the inner accretion disk as well as the launching of powerful winds during the oscillations. I will discuss the implications of these results on accretion physics, the thermal instability and the launching mechanism of the wind.

  14. Controlled power transfer from wind driven reluctance generator

    SciTech Connect

    Rahim, Y.H.A.; Al-Sabbagh, A.M.L.

    1997-12-01

    The paper describes the dynamic performance of a wind driven reluctance generator connected to an electric network of large capacity. A controller that makes possible the regular flow of power to the network has been considered. Controller parameters that successfully suppress unwanted mechanical and electrical stresses and overshoots due to wind gust, have been estimated. The performance of the controller has also been examined for short-circuit faults at the terminals of the generators.

  15. Ionization Driven Chemistry in Protoplanetary Disks and Observational Signatures of Ionization Suppression

    NASA Astrophysics Data System (ADS)

    Cleeves, Lauren Ilsedore; Bergin, Edwin A.

    2015-01-01

    Circumstellar disks around young stars set the stage for the formation of planetary systems. The ionization fraction of the disk fundamentally regulates turbulence, which drives accretion onto the star and plays a role in the formation of planetesimals. Ionization is also central to the chemistry of the coldest disk gas, where comets and other icy bodies are assembled. During my PhD I studied the expected levels --- including possible severe suppression --- of the primary ionizing agents in disks, including cosmic rays, X-rays and the decay of short-lived radionuclides. Within this framework, I examined how each of these sources impacts turbulence-free "dead zones," and I identified submillimeter molecular emission tracers that can be used to spatially map-out ionization in disks with ALMA. I applied these theoretical results to SMA and ALMA observations of the extensively studied TW Hya protoplanetary disk, and I measured a disk-averaged upper limit to the cosmic ray ionization rate ~100 times below the canonical rate of 10-17 s-1 per H2. These results point to extensive CR deflection by either natal winds or twisted magnetic fields from the background environment or within the disk itself. One of the important implications of this work is that cold disk chemistry is inefficient without sufficient ionization, and as a direct result, deuterated water (HDO) is not significantly produced in disks. Given the elevated levels of HDO/H2O present throughout Solar System bodies, these results point to a substantial interstellar inheritance of deuterium-enriched ices during the formation of our own planetary system.

  16. Signatures of MRI-driven Turbulence in Protoplanetary Disks: Predictions for ALMA Observations

    NASA Astrophysics Data System (ADS)

    Simon, Jacob B.; Hughes, A. Meredith; Flaherty, Kevin M.; Bai, Xue-Ning; Armitage, Philip J.

    2015-08-01

    Spatially resolved observations of molecular line emission have the potential to yield unique constraints on the nature of turbulence within protoplanetary disks. Using a combination of local non-ideal magnetohydrodynamics (MHD) simulations and radiative transfer calculations, tailored to properties of the disk around HD 163296, we assess the ability of ALMA to detect turbulence driven by the magnetorotational instability (MRI). Our local simulations show that the MRI produces small-scale turbulent velocity fluctuations that increase in strength with height above the mid-plane. For a set of simulations at different disk radii, we fit a Maxwell-Boltzmann distribution to the turbulent velocity and construct a turbulent broadening parameter as a function of radius and height. We input this broadening into radiative transfer calculations to quantify observational signatures of MRI-driven disk turbulence. We find that the ratio of the peak line flux to the flux at line center is a robust diagnostic of turbulence that is only mildly degenerate with systematic uncertainties in disk temperature. For the CO(3-2) line, which we expect to probe the most magnetically active slice of the disk column, variations in the predicted peak-to-trough ratio between our most and least turbulent models span a range of approximately 15%. Additional independent constraints can be derived from the morphology of spatially resolved line profiles, and we estimate the resolution required to detect turbulence on different spatial scales. We discuss the role of lower optical depth molecular tracers, which trace regions closer to the disk mid-plane where velocities in MRI-driven models are systematically lower.

  17. Two-body Relaxation Driven Evolution of the Young Stellar Disk in the Galactic Center

    NASA Astrophysics Data System (ADS)

    Šubr, Ladislav; Haas, Jaroslav

    2014-05-01

    The center of our Galaxy hosts almost two hundred very young stars, a subset of which is orbiting the central supermassive black hole (SMBH) in a relatively thin disk-like structure. First analyses indicated a power-law surface density profile of the disk, ΣvpropR β with β = -2. Recently, however, doubts about this profile arose. In particular, it now seems to be better described by a sort of broken power law. By means of both analytical arguments and numerical N-body modeling, we show that such a broken power-law profile is a natural consequence of the two-body relaxation of the disk. Due to the small relative velocities of the nearby stars in co-planar Keplerian orbits around the SMBH, two-body relaxation is effective enough to affect the evolution of the disk on timescales comparable to its estimated age. In the inner, densest part of the disk, the profile becomes rather flat (β ≈ -1) while the outer parts keep imprints of the initial state. Our numerical models show that the observed projected surface density profile of the young stellar disk can result from two-body relaxation driven evolution of a disk with initial single power-law profile with -2 <~ β <~ -1.5. In addition, we suggest that two-body relaxation may have caused a significant radial migration of the S-stars toward the central SMBH, thus playing an important role in their formation scenario.

  18. Stellar winds driven by multi-line scattering

    NASA Technical Reports Server (NTRS)

    Friend, D. B.

    1983-01-01

    This paper presents a model of a radiation-driven stellar wind with overlapping spectral lines. It is based on the Castor, Abbott, and Klein (CAK) theory. The presence of overlapping lines allows a photon to be scattered many times in different lines. The properties of the wind at any point depend on the wavelength-averaged intensity, which in turn depends on the structure of the wind. A self-consistent wind model is found. The mass loss rate does not saturate as line overlap becomes more pronounced, but continues to increase. The terminal velocity is much larger than in the CAK model, while the velocity law is shallower. This model might help explain the massive winds from Wolf-Rayet stars.

  19. Wind Tunnel Testing of Various Disk-Gap-Band Parachutes

    NASA Technical Reports Server (NTRS)

    Cruz, Juan R.; Mineck, Raymond E.; Keller, Donald F.; Bobskill, Maria V.

    2003-01-01

    Two Disk-Gap-Band model parachute designs were tested in the NASA Langley Transonic Dynamics Tunnel. The purposes of these tests were to determine the drag and static stability coefficients of these two model parachutes at various subsonic Mach numbers in support of the Mars Exploration Rover mission. The two model parachute designs were designated 1.6 Viking and MPF. These model parachute designs were chosen to investigate the tradeoff between drag and static stability. Each of the parachute designs was tested with models fabricated from MIL-C-7020 Type III or F-111 fabric. The reason for testing model parachutes fabricated with different fabrics was to evaluate the effect of fabric permeability on the drag and static stability coefficients. Several improvements over the Viking-era wind tunnel tests were implemented in the testing procedures and data analyses. Among these improvements were corrections for test fixture drag interference and blockage effects, and use of an improved test fixture for measuring static stability coefficients. The 1.6 Viking model parachutes had drag coefficients from 0.440 to 0.539, while the MPF model parachutes had drag coefficients from 0.363 to 0.428. The 1.6 Viking model parachutes had drag coefficients 18 to 22 percent higher than the MPF model parachute for equivalent fabric materials and test conditions. Model parachutes of the same design tested at the same conditions had drag coefficients approximately 11 to 15 percent higher when manufactured from F-111 fabric as compared to those fabricated from MIL-C-7020 Type III fabric. The lower fabric permeability of the F-111 fabric was the source of this difference. The MPF model parachutes had smaller absolute statically stable trim angles of attack as compared to the 1.6 Viking model parachutes for equivalent fabric materials and test conditions. This was attributed to the MPF model parachutes larger band height to nominal diameter ratio. For both designs, model parachutes

  20. Magnetocentrifugally driven flows from young stars and disks. 1: A generalized model

    NASA Technical Reports Server (NTRS)

    Shu, Frank; Najita, Joan; Ostriker, Eve; Wilkin, Frank; Ruden, Steven; Lizano, Susana

    1994-01-01

    We propose a generalized model for stellar spin-down, disk accretion, and truncation, and the origin of winds, jets, and bipolar outflows from young stellar objects. We consider the steady state dynamics of accretion of matter from a viscous and imperfectly conducting disk onto a young star with a strong magnetic field. For an aligned stellar magnetosphere, shielding currents in the surface layers of the disk prevent stellar field lines from penetrating the disk everywhere except for a range of radii about pi = R(sub x), where the Keplerian angular speed of rotation Omega(sub x) equals the angular speed of the star Omega(sub *). For the low disk accretion rates and high magnetic fields associated with typical T Tauri stars, R(sub x) exceeds the radius of the star R(sub *) by a factor of a few, and the inner disk is effectively truncated at a radius R(sub t) somewhat smaller than R(sub x). Where the closed field lines between R(sub t) and R(sub x) bow sufficiently inward, the accreting gas attaches itself to the field and is funneled dynamically down the effective potential (gravitational plus centrifugal) onto the star. Contrary to common belief, the accompanying magnetic torques associated with this accreting gas may transfer angular momentum mostly to the disk rather than to the star. Thus, the star can spin slowly as long as R(sub x) remains significantly greater than R(sub *). Exterior to R(sub x) field lines threading the disk bow outward, which makes the gas off the mid-plane rotate at super-Keplerian velocities. This combination drives a magnetocentrifugal wind with a mass-loss rate M(sub w) equal to a definite fraction f of the disk accretion rate M(sub D). For high disk accretion rates, R(sub x) is forced down to the stellar surface, the star is spun to breakup, and the wind is generated in a manner identical to that proposed by Shu, Lizano, Ruden, & Najita in a previous communication to this journal. In two companion papers (II and III), we develop a

  1. An Overview of Wind-Driven Rovers for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Hajos, Gregory A.; Jones, Jack A.; Behar, Alberto; Dodd, Micheal

    2005-01-01

    The use of in-situ propulsion is considered enabling technology for long duration planetary surface missions. Most studies have focused on stored energy from chemicals extracted from the soil or the use of soil chemicals to produce photovoltaic arrays. An older form of in-situ propulsion is the use of wind power. Recent studies have shown potential for wind driven craft for exploration of Mars, Titan and Venus. The power of the wind, used for centuries to power wind mills and sailing ships, is now being applied to modern land craft. Efforts are now underway to use the wind to push exploration vehicles on other planets and moons in extended survey missions. Tumbleweed rovers are emerging as a new type of wind-driven science platform concept. Recent investigations by the National Aeronautics and Space Administration (NASA) and Jet Propulsion Laboratory (JPL) indicate that these light-weight, mostly spherical or quasi-spherical devices have potential for long distance surface exploration missions. As a power boat has unique capabilities, but relies on stored energy (fuel) to move the vessel, the Tumbleweed, like the sailing ships of the early explorers on earth, uses an unlimited resource the wind to move around the surface of Mars. This has the potential to reduce the major mass drivers of robotic rovers as well as the power generation and storage systems. Jacques Blamont of JPL and the University of Paris conceived the first documented Mars wind-blown ball in 1977, shortly after the Viking landers discovered that Mars has a thin CO2 atmosphere with relatively strong winds. In 1995, Jack Jones, et al, of JPL conceived of a large wind-blown inflated ball for Mars that could also be driven and steered by means of a motorized mass hanging beneath the rolling axis of the ball. A team at NASA Langley Research Center started a biomimetic Tumbleweed design study in 1998. Wind tunnel and CFD analysis were applied to a variety of concepts to optimize the aerodynamic

  2. THERMAL-INSTABILITY-DRIVEN TURBULENT MIXING IN GALACTIC DISKS. I. EFFECTIVE MIXING OF METALS

    SciTech Connect

    Yang, Chao-Chin; Krumholz, Mark

    2012-10-10

    Observations show that radial metallicity gradients in disk galaxies are relatively shallow, if not flat, especially at large galactocentric distances and for galaxies in the high-redshift universe. Given that star formation and metal production are centrally concentrated, this requires a mechanism to redistribute metals. However, the nature of this mechanism is poorly understood, let alone quantified. To address this problem, we conduct magnetohydrodynamical simulations of a local shearing sheet of a thin, thermally unstable, gaseous disk driven by a background stellar spiral potential, including metals modeled as passive scalar fields. Contrary to what a simple {alpha} prescription for the gas disk would suggest, we find that turbulence driven by thermal instability is very efficient at mixing metals, regardless of the presence or absence of stellar spiral potentials or magnetic fields. The timescale for homogenizing randomly distributed metals is comparable to or less than the local orbital time in the disk. This implies that turbulent mixing of metals is a significant process in the history of chemical evolution of disk galaxies.

  3. COUNTERROTATION IN MAGNETOCENTRIFUGALLY DRIVEN JETS AND OTHER WINDS

    SciTech Connect

    Sauty, C.; Cayatte, V.; Lima, J. J. G.; Matsakos, T.; Tsinganos, K.

    2012-11-01

    Rotation measurement in jets from T Tauri stars is a rather difficult task. Some jets seem to be rotating in a direction opposite to that of the underlying disk, although it is not yet clear if this affects the totality or part of the outflows. On the other hand, Ulysses data also suggest that the solar wind may rotate in two opposite ways between the northern and southern hemispheres. We show that this result is not as surprising as it may seem and that it emerges naturally from the ideal MHD equations. Specifically, counterrotating jets neither contradict the magnetocentrifugal driving of the flow nor prevent extraction of angular momentum from the disk. The demonstration of this result is shown by combining the ideal MHD equations for steady axisymmetric flows. Provided that the jet is decelerated below some given threshold beyond the Alfven surface, the flow will change its direction of rotation locally or globally. Counterrotation is also possible for only some layers of the outflow at specific altitudes along the jet axis. We conclude that the counterrotation of winds or jets with respect to the source, star or disk, is not in contradiction with the magnetocentrifugal driving paradigm. This phenomenon may affect part of the outflow, either in one hemisphere, or only in some of the outflow layers. From a time-dependent simulation, we illustrate this effect and show that it may not be permanent.

  4. The dynamics of radiation-driven, optically thick winds

    NASA Astrophysics Data System (ADS)

    Shen, Rong-Feng; Nakar, Ehud; Piran, Tsvi

    2016-06-01

    Recent observation of some luminous transient sources with low colour temperatures suggests that the emission is dominated by optically thick winds driven by super-Eddington accretion. We present a general analytical theory of the dynamics of radiation pressure-driven, optically thick winds. Unlike the classical adiabatic stellar wind solution whose dynamics are solely determined by the sonic radius, here the loss of the radiation pressure due to photon diffusion also plays an important role. We identify two high mass-loss rate regimes (dot{M} > L_Edd/c^2). In the large total luminosity regime, the solution resembles an adiabatic wind solution. Both the radiative luminosity, L, and the kinetic luminosity, Lk, are super-Eddington with L < Lk and L ∝ L_k^{1/3}. In the lower total luminosity regime, most of the energy is carried out by the radiation with Lk < L ≈ LEdd. In a third, low mass-loss regime (dot{M} < L_Edd/c^2), the wind becomes optically thin early on and, unless gas pressure is important at this stage, the solution is very different from the adiabatic one. The results are independent from the energy generation mechanism at the foot of the wind; therefore, they are applicable to a wide range of mass ejection systems, from black hole accretion, to planetary nebulae, and to classical novae.

  5. Asymptotic structure of hydromagnetically driven relativistic winds

    NASA Technical Reports Server (NTRS)

    Chiueh, Tzihong; Li, Zhi-Yun; Begelman, Mitchell C.

    1991-01-01

    A fully relativistic analysis has been performed of the asymptotic structure of stationary axisymmetric hydromagnetic winds. If a flow fills the region containing the rotation axis, then the flux surfaces in the flow must collimate to a set of current-carrying cylindrical surface extending to infinite transverse radius, collimate to a set of cylindrical surfaces extending to a finite radius, or collimate to a current-free paraboloidal field configuration which fills up the entire space. If an asymptotically cylindrical flow carries a finite current at radii well beyond the light cylinder, then the Lorentz factor of the terminal flow speed on a given flux surface is proportional to the total current enclosed within this flux surface. If a flow is of type II paraboloidal, then its asymptotic energy flux is carried entirely by the gas motion rather than the electromagnetic fields.

  6. The Disk Wind Model and the Effect on the Virial Black Hole Mass Estimation

    NASA Astrophysics Data System (ADS)

    Yong, Suk Yee

    2015-09-01

    The current 'standard quasar model' consists of a central engine, accretion disk, and jet. However, these components cannot entirely explain some quasar spectral features, specifically, the presence of broad emission lines (BELs), which are assumed to originate from high velocity gas in the broad line region (BLR). The addition of a wind to the standard model provides a mechanism to drive the outflowing gas emanated from the accretion disk. The shape of the emission line profiles in the BLR, in particular, the velocity offsets and skewness for different viewing angles, are explored. The impact on the virial black hole mass calculation due to the quasar's orientation to the observer is also tested. The geometry of the BLR is modelled by implementing the wind component or the disk wind model. While the models are dependent on the specified parameters, they are able to qualitatively reproduce the predicted features of the emission lines.

  7. Escape conditions of radiative-driven strati from luminous accretion disks

    NASA Astrophysics Data System (ADS)

    Nakai, Takuya; Fukue, Jun

    2015-10-01

    We examine the dynamical motion and escape conditions of continuum-driven strati (flat cloud) with finite optical depth from luminous accretion disks around a black hole. We adopt the near-disk approximation, and treat the problem in the framework of special relativity, where the radiation drag force as well as the radiation pressure are included. We find that the optically thin strati are easy to accelerate, compared with the particles, and the escape condition of the stratus is reduced. That is, when the disk luminosity is around the Eddington luminosity, the optically thin strati can escape from the inner disk (≲ 20 rg; rg being the Schwarzschild radius). When the disk luminosity is about half the Eddington luminosity, it can escape at around 5 rg. This is due to the translucent effect. In addition, the trajectories of the strati are not vertical, but a funnel-like shape due to the centrifugal force. Stratus outflow could easily blow out from usual accretion disks with sub-Eddington luminosities, and this may explain outflows observed in broad absorption line quasars and ultra-fast outflow objects.

  8. Coronae and Winds from Irradiated Disks in X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Higginbottom, Nick; Proga, Daniel

    2015-07-01

    X-ray and UV line emission in X-ray binaries (XRBs) can be accounted for by a hot corona. Such a corona forms through irradiation of the outer disk by radiation produced in the inner accretion flow. The same irradiation can produce a strong outflow from the disk at sufficiently large radii. Outflowing gas has been recently detected in several XRBs via blueshifted absorption lines. However, the causal connection between winds produced by irradiation and the blueshifted absorption lines is problematic, particularly in the case of GRO J1655-40. Observations of this source imply wind densities about two orders of magnitude higher than theoretically predicted. This discrepancy does not mean that these “thermal disk winds” cannot explain blueshifted absorption in other systems, nor that they are unimportant as a sink of matter. Motivated by the inevitability of thermal disk winds and wealth of data taken with current observatories such as Chandra, XMM-Newton, and Suzaku, as well as the future AstroH mission, we decided to investigate the requirements to produce very dense winds. Using physical arguments, hydrodynamical simulations, and absorption-line calculations, we found that modification of the heating and cooling rates by a factor of a few results in an increase of the wind density of up to an order of magnitude and the wind velocity by a factor of about two. Therefore, the mass-loss rate from the disk can be one, if not even two, orders of magnitude higher than the accretion rate onto the central object. Such a high mass-loss rate is expected to destabilize the disk and perhaps provides a mechanism for state change.

  9. Topographic Effects On Wind Driven Oceanic Circulation

    NASA Astrophysics Data System (ADS)

    Bigorre, S.; Dewar, W. K.

    A large scale oceanic anticyclone has been recently observed above the Zapiola Drift in the Argentine Basin. Its transports are comparable to those of the Gulf Stream. Its proximity to the Malvinas-Brazil current confluence render it potentially important to several aspects of the South Atlantic oceanic climate. A conceptual multilayer turbu- lent quasigeostrophic model simulated a comparable anticyclonic circulation in the presence of an isolated topography. The model is able to generate an upslope eddy mass flux, in agreement with downgradient eddy potential vorticity diffusion. Maps of EKE are consistent with the eddy kinetic energy minimum observed by TOPEX above the Zapiola Drift. This paper investigates the time dependent dynamics of the flow, from a 150 years long simulation. Compared to the flat bottom case, the spectrum over the bump is redder, a multi-year (7 years) band is energized, and the mesoscale band is comparatively suppressed. The presence of the 7 years oscillation is variable and connected to an apparent tendency for the flow regime to switch between 'sta- ble' and 'unstable' states. During unstable periods, the phenomenology of the oscil- lation consists of the slow development of a large potential vorticity anomaly above the seamount driven by surface Ekman pumping. This is followed by a rapid ejection phase. In stable regimes, the potential vorticity anomaly can persist for longer peri- ods and is accompanied by a stronger eddy variability. Eddy potential vorticity fluxes show that relative vorticity flux, caused by vortex tube stretching along the slope of the seamount is dominant. A low order relaxation oscillator model has successfully reproduced the results of the turbulent numerical model.

  10. Wind-driven water motions in wetlands with emergent vegetation

    NASA Astrophysics Data System (ADS)

    Tse, Ian C.; Poindexter, Cristina M.; Variano, Evan A.

    2016-04-01

    Wetland biogeochemical transformations are affected by flow and mixing in wetland surface water. We investigate the influence of wind on wetland water flow by simultaneously measuring wind and surface water velocities in an enclosed freshwater wetland during 1 day of strong-wind conditions. Water velocities are measured using a Volumetric Particle Imager while wind velocities are measured via sonic-anemometer. Our measurements indicate that the wind interacting with the vegetation canopy generates coherent billows and that these billows are the dominant source of momentum into the wetland water column. Spectral analysis of velocity time series shows that the spectral peak in water velocity is aligned with the spectral peak of in-canopy wind velocity, and that this peak corresponds with the Kelvin-Helmholtz billow frequency predicted by mixing layer theory. We also observe a strong correlation in the temporal pattern of velocity variance in the air and water, with high variance events having similar timing and duration both above and below the air-water interface. Water-side variance appears coupled with air-side variance at least down to 5 cm, while the theoretical Stokes' solution predicts momentum transfer down to only 2 mm assuming transfer via molecular viscosity alone. This suggests that the wind-driven flow contributed to significant mixing in the wetland water column.

  11. Centrifugally driven MHD-winds in active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Camenzind, M.

    1986-02-01

    When the prime mover in quasars is a supermassive magnetized and rapidly rotating object, the centrifugal instability can drive strong MHD-winds away from the equatorial region and extract angular momentum and rotational energy from the central object. The author shows that the necessary magnetic fields are produced, when this central object has been formed from the central part of a galactic disc. The position of the light cylinder for these objects requires a relativistic description for the corresponding MHD-winds. The author discusses the relevant equations for any stationary and axisymmetric spacetime and derives explicitly the position of the Alfvén point in the flow. He finds that centrifugally driven winds from supermassive objects carry a Poynting flux comparable with the kinetic energy flux. In addition, the magnetic field structure in the open wind zone requires the existence of a global current topology, which might explain the necessary magnetic collimation for escaping jet material. As a result, centrifugally driven winds from rapidly rotating supermassive objects carry the energy necessary to power the non-thermal emission of BLR AGNs and the material required to fuel the broad emission line clouds and the thermal jets.

  12. Tangential stress beneath wind-driven air water interfaces

    NASA Astrophysics Data System (ADS)

    Banner, Michael L.; Peirson, William L.

    1998-06-01

    The detailed structure of the aqueous surface sublayer flow immediately adjacent to the wind-driven air water interface is investigated in a laboratory wind-wave flume using particle image velocimetry (PIV) techniques. The goal is to investigate quantitatively the character of the flow in this crucial, very thin region which is often disrupted by microscale breaking events. In this study, we also examine critically the conclusions of Okuda, Kawai & Toba (1977), who argued that for very short, strongly forced wind-wave conditions, shear stress is the dominant mechanism for transmitting the atmospheric wind stress into the water motion waves and surface drift currents. In strong contrast, other authors have more recently observed very substantial normal stress contributions on the air side. The availability of PIV and associated image technology now permits a timely re-examination of the results of Okuda et al., which have been influential in shaping present perceptions of the physics of this dynamically important region. The PIV technique used in the present study overcomes many of the inherent shortcomings of the hydrogen bubble measurements, and allows reliable determination of the fluid velocity and shear within 200 [mu]m of the instantaneous wind-driven air water interface.

  13. Local magnetohydrodynamic instabilities and the wave-driven dynamo in accretion disks

    NASA Technical Reports Server (NTRS)

    Vishniac, Ethan T.; Diamond, Patrick

    1992-01-01

    We consider the consequences of magnetic buoyancy and the magnetic shearing instability (MSI) on the strength and organization of the magnetic field in a thin accretion disk. We discuss a model in which the wave-driven dynamo growth rate is balanced by the dissipative effects of the MSI. As in earlier work, the net helicity is due to small advective motions driven by nonlinear interactions between internal waves. Assuming a simple model of the internal wave spectrum generated from the primary m = 1 internal waves, we find that the magnetic energy density saturates at about (H/r) exp 4/3 times the local pressure (where H is the disk thickness and r is its radius). On very small scales the shearing instability will produce an isotropic fluctuating field. For a stationary disk this is equivalent to a dimensionless 'viscosity' of about (H/r) exp 4/3. The vertical and radial diffusion coefficients will be comparable to each other. Magnetic buoyancy will be largely suppressed by the turbulence due to the MSI. We present a rough estimate of its effects and find that it removes magnetic flux from the disk at a rate comparable to that caused by turbulent diffusion.

  14. Towards a Global Evolutionary Model of Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Bai, Xue-Ning

    2016-04-01

    A global picture of the evolution of protoplanetary disks (PPDs) is key to understanding almost every aspect of planet formation, where standard α-disk models have been continually employed for their simplicity. In the meantime, disk mass loss has been conventionally attributed to photoevaporation, which controls disk dispersal. However, a paradigm shift toward accretion driven by magnetized disk winds has taken place in recent years, thanks to studies of non-ideal magnetohydrodynamic effects in PPDs. I present a framework of global PPD evolution aiming to incorporate these advances, highlighting the role of wind-driven accretion and wind mass loss. Disk evolution is found to be largely dominated by wind-driven processes, and viscous spreading is suppressed. The timescale of disk evolution is controlled primarily by the amount of external magnetic flux threading the disks, and how rapidly the disk loses the flux. Rapid disk dispersal can be achieved if the disk is able to hold most of its magnetic flux during the evolution. In addition, because wind launching requires a sufficient level of ionization at the disk surface (mainly via external far-UV (FUV) radiation), wind kinematics is also affected by the FUV penetration depth and disk geometry. For a typical disk lifetime of a few million years, the disk loses approximately the same amount of mass through the wind as through accretion onto the protostar, and most of the wind mass loss proceeds from the outer disk via a slow wind. Fractional wind mass loss increases with increasing disk lifetime. Significant wind mass loss likely substantially enhances the dust-to-gas mass ratio and promotes planet formation.

  15. Slotted-wall research with disk and parachute models in a low-speed wind tunnel

    SciTech Connect

    Macha, J.M.; Buffington, R.J.; Henfling, J.L. ); Every, D. Van; Harris, J.L. )

    1990-01-01

    An experimental investigation of slotted-wall blockage interference has been conducted using disk and parachute models in a low speed wind tunnel. Test section open area ratio, model geometric blockage ratio, and model location along the length of the test section were systematically varied. Resulting drag coefficients were compared to each other and to interference-free measurements obtained in a much larger wind tunnel where the geometric blockage ratio was less than 0.0025. 9 refs., 10 figs.

  16. Numerical models of wind-driven circulation in lakes

    USGS Publications Warehouse

    Cheng, R.T.; Powell, T.M.; Dillon, T.M.

    1976-01-01

    The state-of-the-art of numerical modelling of large-scale wind-driven circulation in lakes is presented. The governing equations which describe this motion are discussed along with the appropriate numerical techniques necessary to solve them in lakes. The numerical models are categorized into three large primary groups: the layered models, the Ekman-type models, and the other three-dimensional models. Discussions and comparison of models are given and future research directions are suggested. ?? 1976.

  17. Two-body relaxation driven evolution of the young stellar disk in the galactic center

    SciTech Connect

    Šubr, Ladislav; Haas, Jaroslav

    2014-05-10

    The center of our Galaxy hosts almost two hundred very young stars, a subset of which is orbiting the central supermassive black hole (SMBH) in a relatively thin disk-like structure. First analyses indicated a power-law surface density profile of the disk, Σ∝R {sup β} with β = –2. Recently, however, doubts about this profile arose. In particular, it now seems to be better described by a sort of broken power law. By means of both analytical arguments and numerical N-body modeling, we show that such a broken power-law profile is a natural consequence of the two-body relaxation of the disk. Due to the small relative velocities of the nearby stars in co-planar Keplerian orbits around the SMBH, two-body relaxation is effective enough to affect the evolution of the disk on timescales comparable to its estimated age. In the inner, densest part of the disk, the profile becomes rather flat (β ≈ –1) while the outer parts keep imprints of the initial state. Our numerical models show that the observed projected surface density profile of the young stellar disk can result from two-body relaxation driven evolution of a disk with initial single power-law profile with –2 ≲ β ≲ –1.5. In addition, we suggest that two-body relaxation may have caused a significant radial migration of the S-stars toward the central SMBH, thus playing an important role in their formation scenario.

  18. Southern Ocean isopycnal mixing and ventilation changes driven by winds

    NASA Astrophysics Data System (ADS)

    Abernathey, Ryan; Ferreira, David

    2015-12-01

    Observed and predicted changes in the strength of the westerly winds blowing over the Southern Ocean have motivated a number of studies on the response of the Antarctic Circumpolar Current and Southern Ocean meridional overturning circulation (MOC) to wind perturbations and led to the hypothesis of the "eddy compensation" regime, wherein the MOC becomes insensitive to wind changes. In addition to the MOC, tracer transport also depends on mixing processes. Here we show, in a high-resolution process model, that isopycnal mixing by mesoscale eddies is strongly dependent on the wind strength. This dependence can be explained by mixing length theory and is driven by increases in eddy kinetic energy; the mixing length does not change strongly in our simulation. Simulation of a passive ventilation tracer (analogous to CFCs or anthropogenic CO2) demonstrates that variations in tracer uptake across experiments are dominated by changes in isopycnal mixing, rather than changes in the MOC. We argue that to properly understand tracer uptake under different wind-forcing scenarios, the sensitivity of isopycnal mixing to winds must be accounted for.

  19. Flutter-driven triboelectrification for harvesting wind energy.

    PubMed

    Bae, Jihyun; Lee, Jeongsu; Kim, SeongMin; Ha, Jaewook; Lee, Byoung-Sun; Park, YoungJun; Choong, Chweelin; Kim, Jin-Baek; Wang, Zhong Lin; Kim, Ho-Young; Park, Jong-Jin; Chung, U-In

    2014-01-01

    Technologies to harvest electrical energy from wind have vast potentials because wind is one of the cleanest and most sustainable energy sources that nature provides. Here we propose a flutter-driven triboelectric generator that uses contact electrification caused by the self-sustained oscillation of flags. We study the coupled interaction between a fluttering flexible flag and a rigid plate. In doing so, we find three distinct contact modes: single, double and chaotic. The flutter-driven triboelectric generator having small dimensions of 7.5 × 5 cm at wind speed of 15 ms(-1) exhibits high-electrical performances: an instantaneous output voltage of 200 V and a current of 60 μA with a high frequency of 158 Hz, giving an average power density of approximately 0.86 mW. The flutter-driven triboelectric generation is a promising technology to drive electric devices in the outdoor environments in a sustainable manner. PMID:25247474

  20. Electric winds driven by time oscillating corona discharges

    NASA Astrophysics Data System (ADS)

    Drews, Aaron M.; Cademartiri, Ludovico; Whitesides, George M.; Bishop, Kyle J. M.

    2013-10-01

    We investigate the formation of steady gas flows—so-called electric winds—created by point-plane corona discharges driven by time oscillating (ac) electric fields. By varying the magnitude and frequency of the applied field, we identify two distinct scaling regimes: (i) a low frequency (dc) regime and (ii) a high frequency (ac) regime. These experimental observations are reproduced and explained by a theoretical model describing the transport and recombination of ions surrounding the discharge and their contribution to the measured wind velocity. The two regimes differ in the spatial distribution of ions and in the process by which ions are consumed. Interestingly, we find that ac corona discharges generate strong electric forces localized near the tip of the point electrode, while dc corona discharges generate weaker forces distributed throughout the interelectrode region. Consequently, the velocity of the electric winds (>1 m/s) generated by ac discharges is largely independent of the position of the counter electrode. The unified theoretical description of dc and ac electric winds presented here reconciles previous observations of winds driven by dc corona and ac dielectric barrier discharges; insights from the model should also prove useful in the design of other plasma actuators.

  1. Modeling the Formation and Evolution of Wind-Capture Disks In Binary Systems

    NASA Astrophysics Data System (ADS)

    Huarte-Espinosa, M.; Carroll-Nellenback, J.; Nordhaus, J.; Frank, A.; Blackman, E.

    2014-04-01

    In this talk I will present results of recent models of the formation, evolution and physical properties of accretion disks formed via wind capture in binary systems. Using the AMR code AstroBEAR, we have carried out high resolution 3D simulations that follow a stellar mass secondary in the co-rotating frame as it orbits a wind producing AGB primary. A resolution criteria, based on considerations of Bondi-Hoyle flows, must be met in order to properly resolve the formation of accretion disks around the secondary. We then compare simulations of binaries with three different orbital radii (10, 15, 20 AU). Disks are formed in all three cases, however the size of the disk and, most importantly, its accretion rate decreases with orbital radii. In addition, the shape of the orbital motions of material within the disk becomes increasingly elliptical with increasing binary separation. The flow is mildly unsteady with "fluttering" around the bow shock observed. The disks are generally well aligned with the orbital plane after a few binary orbits. We do not observe the presence of any large scale, violent instabilities (such as the flip-flop mode). For the first time it is observed that the wind component that is accreted towards the secondary has a vortex tube-like structure. In the context of AGB binary systems that might be precursors to Pre-Planetary and Planetary Nebula, we find that the wind accretion rates at the chosen orbital separations are generally too small to produce the most powerful outflows observed in these systems if the companions are main sequence stars but marginally capable if the companions are white dwarfs. It is likely that many of the more powerful PPN and PN involve closer binaries than the ones considered here.

  2. Tide- and wind-driven flushing of Boston Harbor, Massachusetts

    USGS Publications Warehouse

    Signell, Richard

    1992-01-01

    The flushing of Boston Harbor, a shallow, tidally dominated embayment with little fresh water input, is investigated using a depth-averaged model. The modeled tidal currents exhibit strong spatial variability and ebb/flood asymmetry due to complex topography and coastline geometry and were verified by shipboard acoustic Doppler current profiler measurements. At the inlets to the harbor, the asymmetry between flood and ebb gives rise to a net exchange of water, which acts over successive tidal cycles to flush the harbor. The flushing is examined by tracking water that starts out in Boston Harbor for 40 M2 tidal cycles. The tidal flushing is very efficient at mixing water in the vicinity of the inlets over several tidal cycles, but efficiency decreases with time as ``tidal mixing regions'' form on either side of the harbor inlets. When wind forcing is included, the wind-driven currents act to flush the tidal mixing regions, giving rise to more efficient flushing. The exception is when the wind is from the southwest, which confines the jet-like ebb flow from the harbor and therefore reduces the flushing efficiency. In general, flushing is shown to be a two-step process: (1) rapid exchange due to tides over a large region in the vicinity of the harbor inlets and (2) flushing of this region by wind-driven flow. The model also demonstrates that flushing is not uniform over the entire harbor but occurs rapidly in the deep tidal channels and slowly in the regions of weak tidal currents around the harbor periphery. Although the depth-averaged approach to flushing is appropriate over most of the harbor due to the harbor's shallow depth and broad depth distribution, the lack of bathymetric variability and the presence of locally important density driven currents in the Boston Inner Harbor indicates that flushing of this localized area must be approached with a three-dimensional model.

  3. Mass Flux and Terminal Velocities of Magnetically Driven Jets from Accretion Disks

    NASA Astrophysics Data System (ADS)

    Kudoh, Takahiro; Shibata, Kazunari

    1995-10-01

    In order to investigate astrophysical jets from accretion disks, we solve 1.5-dimensional steady MHD equations for a wide range of parameters, assuming the shape of poloidal magnetic field lines. We include a thermal effect to obtain the relation between the mass flux of the jet and the magnetic energy at the disk, although the jet is mainly accelerated by the magnetic force. It is found that the mass flux of the jets ( M dot ) is dependent on the magnetic energy at the disk surface, i.e., M dot ~ (rho Aa|Bp/B|)_{{slow}} ~ (rho Aa|Bp/Bphi|)_{{slow}} ~ Ealpha_{{mg}} [where rho is the density, a is the sound velocity, A is the cross section of the magnetic flux, B = (B2p + B2phi)^{1/2} , Bp and B phi are the poloidal and toroidal magnetic field strength, respectively, Emg is the magnetic energy in unit of the gravitational energy at the disk surface, and the suffix "slow" denotes the value at a slow point], when the magnetic energy is not too large. The parameter alpha increases from 0 to 0.5 with decreasing magnetic energy. Since the scaling law of Michel's minimum energy solution nearly holds in the magnetically driven flows, the dependence of the terminal velocity on the magnetic energy becomes weaker than had been expected, i.e., v_∞ ~ E^{(1-alpha)/3}_{{mg}} . It is shown that the terminal velocity of the jet is an order of Keplerian velocity at the footpoint of the jets for a wide range of values of Emg expected for accretion disks in star-forming regions and active galactic nuclei. We argue that the mass-loss rates observed in the star-forming regions would constrain the magnetic energies at the disk surfaces.

  4. An Optically Thick Disk Wind in GRO J1655–40?

    NASA Astrophysics Data System (ADS)

    Shidatsu, M.; Done, C.; Ueda, Y.

    2016-06-01

    We revisited the unusual wind in GRO J1655‑40, detected with Chandra in 2005 April, using long-term Rossi X-ray Timing Explorer X-ray data and simultaneous optical/near-infrared photometric data. This wind is the most convincing case for magnetic driving in black hole binaries, as it has an inferred launch radius that is a factor of 10 smaller than the thermal wind prediction. However, the optical and near-infrared (OIR) fluxes monotonically increase around the Chandra observation, whereas the X-ray flux monotonically decreases from 10 days beforehand. Yet the optical and near-infrared fluxes are from the outer, irradiated disk, so for them to increase implies that the X-rays likewise increased. We applied a new irradiated disk model to the multi-wavelength spectral energy distributions. Fitting the OIR fluxes, we estimated the intrinsic luminosity at the Chandra epoch was ≳ 0.7{L}{{Edd}}, which is more than one order of magnitude larger than the observed X-ray luminosity. These results could be explained if a Compton-thick, almost completely ionized gas was present in the wind and strong scattering reduced the apparent X-ray luminosity. The effects of scattering in the wind should then be taken into account for discussion of the wind-driving mechanism. Radiation pressure and Compton heating may also contribute to powering the wind at this high luminosity.

  5. Hydrodynamic Simulations of Jet- and Wind-driven Protostellar Outflows

    NASA Astrophysics Data System (ADS)

    Lee, Chin-Fei; Stone, James M.; Ostriker, Eve C.; Mundy, Lee G.

    2001-08-01

    We present two-dimensional hydrodynamic simulations of both jet- and wind-driven models for protostellar outflows in order to make detailed comparisons to the kinematics of observed molecular outflows. The simulations are performed with the ZEUS-2D hydrodynamic code using a simplified equation of state, simplified cooling and no external heating, and no self-gravity. In simulations of steady jets, swept-up ambient gas forms a thin shell that can be identified as a molecular outflow. We find a simple ballistic bow shock model is able to reproduce the structure and transverse velocity of the shell. Position-velocity (PV) diagrams for the shell cut along the outflow axis show a convex spur structure with the highest velocity at the bow tip and low-velocity red and blue components at any viewing angle. The power-law index of the mass-velocity (MV) relationship ranges from 1.5 to 3.5, depending strongly on the inclination. If the jet is time-variable, the PV diagrams show multiple convex spur structures, and the power-law index becomes smaller than the steady jet simulation. In simulations of isothermal steady wide-angle winds, swept-up ambient gas forms a thin shell that at early stages has a similar shape to the shell in the jet-driven model; it becomes broader at later times. We find the structure and kinematics of the shell is well described by a momentum-conserving model similar to that of Shu et al. (1991). In contrast to the results from jet simulations, the PV diagrams for the shell cut along the outflow axis show a lobe structure tilted with source inclination, with components that are primarily either red or blue unless the inclination is nearly in the plane of sky. The power-law index of the MV relationship ranges from 1.3 to 1.8. If the wind is time-variable, the PV diagrams also show multiple structures, and the power-law index becomes smaller than the steady wind simulation. Comparing the different simulations with observations, we find that some outflows

  6. Magnetorotationally driven wind cycles in local disc models

    NASA Astrophysics Data System (ADS)

    Riols, A.; Ogilvie, G. I.; Latter, H.; Ross, J. P.

    2016-09-01

    Jets, from the protostellar to the AGN context, have been extensively studied but their connection to the turbulent dynamics of the underlying accretion disc is poorly understood. Following a similar approach to Lesur et al. (2013), we examine the role of the magnetorotational instability (MRI) in the production and acceleration of outflows from discs. Via a suite of one-dimensional shearing-box simulations of stratified discs we show that magneto-centrifugal winds exhibit cyclic activity with a period of 10 - 20 Ω-1, a few times the orbital period. The cycle seems to be more vigorous for strong vertical field; it is robust to the variation of relevant parameters and independent of numerical details. The convergence of these solutions (in particular the mass loss rate) with vertical box size is also studied. By considering a sequence of magnetohydrostatic equilibria and their stability, the periodic activity may be understood as the succession of the following phases: (a) a dominant MRI channel mode, (b) strong magnetic field generation, (c) consequent wind launching, and ultimately (d) vertical expulsion of the excess magnetic field by the expanding and accelerating gas associated with the wind. We discuss potential connections between this behaviour and observed time-variability in disk-jet systems.

  7. Global MHD simulations of cosmic ray driven galactic winds

    NASA Astrophysics Data System (ADS)

    Ruszkowski, Mateusz; Yang, Hsiang-Yi Karen; Gould Zweibel, Ellen

    2016-04-01

    Galactic outflows play an important role in galactic evolution. Despite their importance, a detailed understanding of the physical mechanisms responsible for the driving of these winds is lacking. In an effort to gain more insight into the nature of these flows, we perform global three-dimensional magneto-hydrodynamical simulations of an isolated starbursting galaxy. We focus on the dynamical role of cosmic rays injected by supernovae, and specifically on the impact of the streaming and anisotropic diffusion of cosmic rays along the magnetic fields. We find that these microphysical effects can have a significant effect on the wind launching and mass loading factors depending on the details of the plasma physics. Cosmic rays stream away from the densest regions near the galactic disk along partially ordered magnetic fields and, in the process, accelerate more tenuous gas away from the galaxy. For cosmic ray acceleration efficiencies broadly consistent with the observational constraints, cosmic rays are likely to have a notable impact on the wind launching.

  8. Solar Wind Driven Plasma Fluxes from the Venus Ionosphere

    NASA Astrophysics Data System (ADS)

    Perez De Tejada, H. A.; Lundin, R. N.; Zhang, T.; Sauvaud, J. A.; Reyes-Ruiz, M.

    2012-12-01

    SOLAR WIND DRIVEN PLASMA FLUXES FROM THE VENUS IONOSPHERE H. Pérez-de-Tejada (1), R. Lundin (2), H. Durand-Manterola (1), S. Barabash (2), T. L. Zhang (3), J. A., Sauvaud (4), and M. Reyes-Ruiz (5) 1 - Institute of Geophysics, UNAM, México, D. F. 2 - Swedish Institute of Space Physics, Kiruna, Sweden 3 - Space Research Institute, Graz, Austria 4 - CESR, Toulouse, France 5 - Institute of Astronomy, UNAM, Ensenada, México Measurements conducted with the ASPERA-4 instrument and the magnetometer of the Venus Express spacecraft show that the kinetic pressure of planetary O+ ion fluxes measured in the Venus wake can be significantly larger than the local magnetic pressure and, as a result, those ions are not being driven by magnetic forces but by the kinetic energy of the solar wind. Beams of planetary O+ ions with those properties have been detected in several orbits of the Venus Express through the wake as the spacecraft traverses by the noon-midnight plane along its near polar trajectory. The momentum flux of the O+ ions leads to superalfvenic flow conditions. It is suggested that such O+ ion beams are produced in the vicinity of the magnetic polar regions of the Venus ionosphere where the solar wind erodes the local plasma leading to plasma channels that extend downstream from those regions.

  9. ON CONTINUUM-DRIVEN WINDS FROM ROTATING STARS

    SciTech Connect

    Shacham, Tomer; Shaviv, Nir J.

    2012-10-01

    We study the dynamics of continuum-driven winds from rotating stars and develop an approximate analytical model. We then discuss the evolution of stellar angular momentum, and show that just above the Eddington limit, the winds are sufficiently concentrated toward the poles to spin-up the star. A twin-lobe structure of the ejected nebula is seen to be a generic consequence of critical rotation. We find that if the pressure in such stars is sufficiently dominated by radiation, an equatorial ejection of mass will occur during eruptions. These results are then applied to {eta}-Carinae. We show that if it began its life with a high enough angular momentum, the present-day wind could have driven the star toward critical rotation, if it is the dominant mode of mass loss. We find that the shape and size of the Homunculus nebula, as given by our model, agree with recent observations. Moreover, the contraction expected due to the sudden increase in luminosity at the onset of the Great Eruption explains the equatorial 'skirt' as well.

  10. On Continuum-driven Winds from Rotating Stars

    NASA Astrophysics Data System (ADS)

    Shacham, Tomer; Shaviv, Nir J.

    2012-10-01

    We study the dynamics of continuum-driven winds from rotating stars and develop an approximate analytical model. We then discuss the evolution of stellar angular momentum, and show that just above the Eddington limit, the winds are sufficiently concentrated toward the poles to spin-up the star. A twin-lobe structure of the ejected nebula is seen to be a generic consequence of critical rotation. We find that if the pressure in such stars is sufficiently dominated by radiation, an equatorial ejection of mass will occur during eruptions. These results are then applied to η-Carinae. We show that if it began its life with a high enough angular momentum, the present-day wind could have driven the star toward critical rotation, if it is the dominant mode of mass loss. We find that the shape and size of the Homunculus nebula, as given by our model, agree with recent observations. Moreover, the contraction expected due to the sudden increase in luminosity at the onset of the Great Eruption explains the equatorial "skirt" as well.

  11. Large eddy simulation of unsteady wind farm behavior using advanced actuator disk models

    NASA Astrophysics Data System (ADS)

    Moens, Maud; Duponcheel, Matthieu; Winckelmans, Gregoire; Chatelain, Philippe

    2014-11-01

    The present project aims at improving the level of fidelity of unsteady wind farm scale simulations through an effort on the representation and the modeling of the rotors. The chosen tool for the simulations is a Fourth Order Finite Difference code, developed at Universite catholique de Louvain; this solver implements Large Eddy Simulation (LES) approaches. The wind turbines are modeled as advanced actuator disks: these disks are coupled with the Blade Element Momentum method (BEM method) and also take into account the turbine dynamics and controller. A special effort is made here to reproduce the specific wake behaviors. Wake decay and expansion are indeed initially governed by vortex instabilities. This is an information that cannot be obtained from the BEM calculations. We thus aim at achieving this by matching the large scales of the actuator disk flow to high fidelity wake simulations produced using a Vortex Particle-Mesh method. It is obtained by adding a controlled excitation at the disk. We apply this tool to the investigation of atmospheric turbulence effects on the power production and on the wake behavior at a wind farm level. A turbulent velocity field is then used as inflow boundary condition for the simulations. We gratefully acknowledge the support of GDF Suez for the fellowship of Mrs Maud Moens.

  12. Development of an advanced actuator disk model for Large-Eddy Simulation of wind farms

    NASA Astrophysics Data System (ADS)

    Moens, Maud; Duponcheel, Matthieu; Winckelmans, Gregoire; Chatelain, Philippe

    2015-11-01

    This work aims at improving the fidelity of the wind turbine modelling for Large-Eddy Simulation (LES) of wind farms, in order to accurately predict the loads, the production, and the wake dynamics. In those simulations, the wind turbines are accounted for through actuator disks. i.e. a body-force term acting over the regularised disk swept by the rotor. These forces are computed using the Blade Element theory to estimate the normal and tangential components (based on the local simulated flow and the blade characteristics). The local velocities are modified using the Glauert tip-loss factor in order to account for the finite number of blades; the computation of this correction is here improved thanks to a local estimation of the effective upstream velocity at every point of the disk. These advanced actuator disks are implemented in a 4th order finite difference LES solver and are compared to a classical Blade Element Momentum method and to high fidelity wake simulations performed using a Vortex Particle-Mesh method in uniform and turbulent flows.

  13. The r-PROCESS IN THE NEUTRINO-DRIVEN WIND FROM A BLACK-HOLE TORUS

    SciTech Connect

    Wanajo, Shinya; Janka, Hans-Thomas E-mail: thj@mpa-garching.mpg.de

    2012-02-20

    We examine r-process nucleosynthesis in the neutrino-driven wind from the thick accretion disk (or 'torus') around a black hole. Such systems are expected as remnants of binary neutron star or neutron star-black hole mergers. We consider a simplified, analytic, time-dependent evolution model of a 3 M{sub Sun} central black hole surrounded by a neutrino emitting accretion torus with 90 km radius, which serves as basis for computing spherically symmetric neutrino-driven wind solutions. We find that ejecta with modest entropies ({approx}30 per nucleon in units of the Boltzmann constant) and moderate expansion timescales ({approx}100 ms) dominate in the mass outflow. The mass-integrated nucleosynthetic abundances are in good agreement with the solar system r-process abundance distribution if a minimal value of the electron fraction at the charged-particle freezeout, Y{sub e,min} {approx} 0.2, is achieved. In the case of Y{sub e,min} {approx} 0.3, the production of r-elements beyond A {approx} 130 does not reach to the third peak but could still be important for an explanation of the abundance signatures in r-process deficient stars in the early Galaxy. The total mass of the ejected r-process nuclei is estimated to be {approx}1 Multiplication-Sign 10{sup -3} M{sub Sun }. If our model was representative, this demands a Galactic event rate of {approx}2 Multiplication-Sign 10{sup -4} yr{sup -1} for black-hole-torus winds from merger remnants to be the dominant source of the r-process elements. Our result thus suggests that black-hole-torus winds from compact binary mergers have the potential to be a major, but probably not the dominant, production site of r-process elements.

  14. Accretion Disks Driven by External Radiation Drag around Central Luminous Sources

    NASA Astrophysics Data System (ADS)

    Fukue, Jun; Umemura, Masayuki

    1995-08-01

    Accretion disks/disk accretions (beta -disks) driven by the external radiation drag exerted by a central luminous source are presented under the steady and subrelativistic approximations. In a cold regime, where the gravity of the central object, the radiation force, and the radiation drag are included, but the pressure-gradient force is neglected, we find steady solutions such that the infalling velocity v_r is inversely proportional to radius r far from the center and becomes constant near to the center, while the rotation velocity v_ϕ is Keplerian far from the center and drops exponentially near to the center. In a warm regime, where the effect of the gas pressure is also taken into account, we find steady transonic solutions such that a flow accreting subsonically and rotating with the Keplerian velocity far from the center becomes, after passing a sonic point, an almost radially accreting supersonic flow with no angular momentum. Due to the effect of external radiation drag, the angular momentum of the gas is removed. In particular, it is quickly lost inside the characteristic radius r_0, which is expressed as r_0 = displaystyle (Gamma (2)/(1-Gamma )r_) g, where Gamma is the central luminosity normalized by the Eddington luminosity and r_g is the Schwarzschild radius of the central object. As a result, the nearly Keplerian rotating disk outside r_0 turns to a nearly radial flow inside r_0. Furthermore, in the vicinity of the central object the infall velocity attains a terminal value, at which the effective gravity is balanced by radiation drag. The terminal speed v_infty is found to be v_infty = - displaystyle (1-Gamma )/(2Gamma )c. Such accretion disks, where the angular momentum is removed via the external drag of radiation fields from the central source, are possible in several astrophysical contexts. For example, in the case of an X-ray burster the radiation density at the burst phases is very high in the inner region of the accretion disk, and therefore

  15. The physics of galactic winds driven by active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Faucher-Giguère, Claude-André; Quataert, Eliot

    2012-09-01

    Active galactic nuclei (AGN) drive fast winds in the interstellar medium of their host galaxies. It is commonly assumed that the high ambient densities and intense radiation fields in galactic nuclei imply short cooling times, thus making the outflows momentum conserving. We show that cooling of high-velocity shocked winds in AGN is in fact inefficient in a wide range of circumstances, including conditions relevant to ultraluminous infrared galaxies (ULIRGs), resulting in energy-conserving outflows. We further show that fast energy-conserving outflows can tolerate a large amount of mixing with cooler gas before radiative losses become important. For winds with initial velocity vin ≳ 10 000 km s-1, as observed in ultraviolet and X-ray absorption, the shocked wind develops a two-temperature structure. While most of the thermal pressure support is provided by the protons, the cooling processes operate directly only on the electrons. This significantly slows down inverse Compton cooling, while free-free cooling is negligible. Slower winds with vin ˜ 1000 km s-1, such as may be driven by radiation pressure on dust, can also experience energy-conserving phases but under more restrictive conditions. During the energy-conserving phase, the momentum flux of an outflow is boosted by a factor ˜vin/2vs by work done by the hot post-shock gas, where vs is the velocity of the swept-up material. Energy-conserving outflows driven by fast AGN winds (vin ˜ 0.1c) may therefore explain the momentum fluxes Ṗ≫LAGN/c of galaxy-scale outflows recently measured in luminous quasars and ULIRGs. Shocked wind bubbles expanding normal to galactic discs may also explain the large-scale bipolar structures observed in some systems, including around the Galactic Centre, and can produce significant radio, X-ray and γ-ray emission. The analytic solutions presented here will inform implementations of AGN feedback in numerical simulations, which typically do not include all the important

  16. Gas content of transitional disks: a VLT/X-Shooter study of accretion and winds

    NASA Astrophysics Data System (ADS)

    Manara, C. F.; Testi, L.; Natta, A.; Rosotti, G.; Benisty, M.; Ercolano, B.; Ricci, L.

    2014-08-01

    Context. Transitional disks are thought to be a late evolutionary stage of protoplanetary disks whose inner regions have been depleted of dust. The mechanism responsible for this depletion is still under debate. To constrain the various models it is mandatory to have a good understanding of the properties of the gas content in the inner part of the disk. Aims: Using X-Shooter broad band - UV to near-infrared - medium-resolution spectroscopy, we derive the stellar, accretion, and wind properties of a sample of 22 transitional disks. The analysis of these properties allows us to place strong constraints on the gas content in a region very close to the star (≲0.2 AU) that is not accessible with any other observational technique. Methods: We fitted the spectra with a self-consistent procedure to simultaneously derive spectral type, extinction, and accretion properties of the targets. From the continuum excess at near-infrared wavelength we distinguished whether our targets have dust free inner holes. By analyzing forbidden emission lines, we derived the wind properties of the targets. We then compared our findings with results for classical T Tauri stars. Results: The accretion rates and wind properties of 80% of the transitional disks in our sample, which is strongly biased toward stongly accreting objects, are comparable to those of classical T Tauri stars. Thus, there are (at least) some transitional disks with accretion properties compatible with those of classical T Tauri stars, irrespective of the size of the dust inner hole. Only in two cases are the mass accretion rates much lower, while the wind properties remain similar. We detected no strong trend of the mass accretion rates with the size of the dust-depleted cavity or with the presence of a dusty optically thick disk very close to the star. These results suggest that, close to the central star, there is a gas-rich inner disk with a density similar to that of classical T Tauri star disks. Conclusions: The

  17. Time dependent ventilation flows driven by opposing wind and buoyancy

    NASA Astrophysics Data System (ADS)

    Coomaraswamy, Imran; Caulfield, Colm

    2008-11-01

    We consider flow in an enclosure containing an isolated heat source, ventilated by a windward high level opening and a leeward low level opening, so that prevailing wind acts to oppose buoyancy driven flow. Following the ``emptying filling box'' approach of Linden et al., Hunt & Linden demonstrate that multiple steady states can exist above a critical wind strength. We develop time dependent models for this system and apply them to an initial value problem - box filling with constant opposing wind. We identify the final state attained for any given heat load, wind strength and vent size. We note that the interface between the upper region of hot plume fluid and the lower region of cool ambient air can dramatically overshoot its final level before relaxing to equilibrium; in some cases, a fully mixed transient can occur before the stratified steady state is reached. Analogue laboratory experiments confirm the existence of these transient phenomena and elucidate the range of validity of our predictions. Linden, Lane-Serff & Smeed, J. Fluid Mech. 212, 309 (1990)., Hunt & Linden, J. Fluid Mech. 527, 27 (2005).

  18. Data-driven RANS for simulations of large wind farms

    NASA Astrophysics Data System (ADS)

    Iungo, G. V.; Viola, F.; Ciri, U.; Rotea, M. A.; Leonardi, S.

    2015-06-01

    In the wind energy industry there is a growing need for real-time predictions of wind turbine wake flows in order to optimize power plant control and inhibit detrimental wake interactions. To this aim, a data-driven RANS approach is proposed in order to achieve very low computational costs and adequate accuracy through the data assimilation procedure. The RANS simulations are implemented with a classical Boussinesq hypothesis and a mixing length turbulence closure model, which is calibrated through the available data. High-fidelity LES simulations of a utility-scale wind turbine operating with different tip speed ratios are used as database. It is shown that the mixing length model for the RANS simulations can be calibrated accurately through the Reynolds stress of the axial and radial velocity components, and the gradient of the axial velocity in the radial direction. It is found that the mixing length is roughly invariant in the very near wake, then it increases linearly with the downstream distance in the diffusive region. The variation rate of the mixing length in the downstream direction is proposed as a criterion to detect the transition between near wake and transition region of a wind turbine wake. Finally, RANS simulations were performed with the calibrated mixing length model, and a good agreement with the LES simulations is observed.

  19. Universality of jamming criticality in overdamped shear-driven frictionless disks.

    PubMed

    Vågberg, Daniel; Olsson, Peter; Teitel, S

    2014-10-01

    We investigate the criticality of the jamming transition for overdamped shear-driven frictionless disks in two dimensions for two different models of energy dissipation: (i) Durian's bubble model with dissipation proportional to the velocity difference of particles in contact, and (ii) Durian's "mean-field" approximation to (i), with dissipation due to the velocity difference between the particle and the average uniform shear flow velocity. By considering the finite-size behavior of pressure, the pressure analog of viscosity, and the macroscopic friction σ/p, we argue that these two models share the same critical behavior. PMID:25325662

  20. Ion-driven instabilities in the solar wind: Wind observations of 19 March 2005

    DOE PAGESBeta

    Gary, S. Peter; Jian, Lan K.; Broiles, Thomas W.; Stevens, Michael L.; Podesta, John J.; Kasper, Justin C.

    2016-01-16

    Intervals of enhanced magnetic fluctuations have been frequently observed in the solar wind. However, it remains an open question as to whether these waves are generated at the Sun and then transported outward by the solar wind or generated locally in the interplanetary medium. Magnetic field and plasma measurements from the Wind spacecraft under slow solar wind conditions on 19 March 2005 demonstrate seven events of enhanced magnetic fluctuations at spacecraft-frame frequencies somewhat above the proton cyclotron frequency and propagation approximately parallel or antiparallel to the background magnetic field Bo. The proton velocity distributions during these events are characterized bymore » two components: a more dense, slower core and a less dense, faster beam. In conclusion, observed plasma parameters are used in a kinetic linear dispersion equation analysis for electromagnetic fluctuations at k x Bo = 0; for two events the most unstable mode is the Alfvén-cyclotron instability driven by a proton component temperature anisotropy T⊥/T|| > 1 (where the subscripts denote directions relative to Bo), and for three events the most unstable mode is the right-hand polarized magnetosonic instability driven primarily by ion component relative flows. Thus, both types of ion anisotropies and both types of instabilities are likely to be local sources of these enhanced fluctuation events in the solar wind.« less

  1. Self-similarity of wind-driven seas

    NASA Astrophysics Data System (ADS)

    Badulin, S. I.; Pushkarev, A. N.; Resio, D.; Zakharov, V. E.

    2005-11-01

    The results of theoretical and numerical study of the Hasselmann kinetic equation for deep water waves in presence of wind input and dissipation are presented. The guideline of the study: nonlinear transfer is the dominating mechanism of wind-wave evolution. In other words, the most important features of wind-driven sea could be understood in a framework of conservative Hasselmann equation while forcing and dissipation determine parameters of a solution of the conservative equation. The conservative Hasselmann equation has a rich family of self-similar solutions for duration-limited and fetch-limited wind-wave growth. These solutions are closely related to classic stationary and homogeneous weak-turbulent Kolmogorov spectra and can be considered as non-stationary and non-homogeneous generalizations of these spectra. It is shown that experimental parameterizations of wind-wave spectra (e.g. JONSWAP spectrum) that imply self-similarity give a solid basis for comparison with theoretical predictions. In particular, the self-similarity analysis predicts correctly the dependence of mean wave energy and mean frequency on wave age Cp / U10. This comparison is detailed in the extensive numerical study of duration-limited growth of wind waves. The study is based on algorithm suggested by Webb (1978) that was first realized as an operating code by Resio and Perrie (1989, 1991). This code is now updated: the new version is up to one order faster than the previous one. The new stable and reliable code makes possible to perform massive numerical simulation of the Hasselmann equation with different models of wind input and dissipation. As a result, a strong tendency of numerical solutions to self-similar behavior is shown for rather wide range of wave generation and dissipation conditions. We found very good quantitative coincidence of these solutions with available results on duration-limited growth, as well as with experimental parametrization of fetch-limited spectra JONSWAP

  2. The insulation design for transmission class HTS transformer with continuous disk winding

    NASA Astrophysics Data System (ADS)

    Cheon, H. G.; Kwag, D. S.; Choi, J. H.; Kim, S. H.

    2007-10-01

    In the response to the demands for electrical energy, much effort aimed to develop and commercialize HTS power equipments have been made around the world. Among them HTS transformer is one of very promising one. In Korea, companies and universities are developing a power distribution and transmission class HTS transformer that is one of the 21st century superconducting frontier projects. The composite continuous disk winding of transmission class HTS transformer is concentrically arranged H1-L-H2 from center. For the development of transmission HTS transformer with continuous disk winding, the cryogenic insulation technology should be established. We have been analyzed insulation composition and investigated electrical characteristics such as the breakdown of LN2, barrier, kapton films, flashover on FRP in LN2. We are going to compare with measured each value and apply the value to most suitable insulating design of the HTS transformer.

  3. The rp-Process in Neutrino-driven Winds

    NASA Astrophysics Data System (ADS)

    Wanajo, Shinya

    2006-08-01

    Recent hydrodynamic simulations of core-collapse supernovae with accurate neutrino transport suggest that the bulk of the early neutrino-heated ejecta is proton rich, in which the production of some interesting proton-rich nuclei is expected. As suggested in recent nucleosynthesis studies, the rapid proton-capture (rp) process takes place in such proton-rich environments by bypassing the waiting point nuclei with β+-lives of a few minutes via the faster capture of neutrons continuously supplied from the neutrino absorption by protons. In this study, the nucleosynthesis calculations are performed with a wide range of neutrino luminosities and electron fractions (Ye), using semianalytic models of proto-neutron-star winds. The masses of proto-neutron stars are taken to be 1.4 and 2.0 Msolar, where the latter is regarded as the test for somewhat high-entropy winds (about a factor of 2). For Ye>0.52, the neutrino-induced rp-process takes place in many wind trajectories, and p-nuclei up to A~130 are synthesized in interesting amounts. However, 92Mo is somewhat underproduced compared to other p-nuclei with similar mass numbers. For 0.46winds, and further, over the Ye distribution predicted by a recent hydrodynamic simulation of a core-collapse supernova. Comparison of the Ye- and mass-averaged yields to the solar compositions implies that the neutrino-driven winds can potentially be the origin of light p-nuclei up to A~110, including 92,94Mo and 96,98Ru, that cannot be explained by other astrophysical sites.

  4. Wind-driven marine phytoplank blooms: Satellite observation and analysis

    NASA Astrophysics Data System (ADS)

    Tang, DanLing

    2016-07-01

    Algal bloom is defined as a rapid increase or accumulation in biomass in an aquatic system. It not only can increase the primary production but also could result in negative ecological consequence, e.g.,Harmful Algal Blooms (HABs). According to the classic theory for the formation of algal blooms "critical depth" and "eutrophication", oligotrophic sea area is usually difficult to form a large area of algal blooms, and actuallythe traditional observation is only sporadic capture to the existence of algal blooms.Taking full advantage of multiple data of satellite remote sensing , this study introduces "Wind-driven algal blooms in open oceans: observation and mechanisms" It explained except classic coastal Ekman transport, the wind through a variety of mechanisms affecting the formation of algal blooms. Proposed a conceptual model of "Strong wind -upwelling-nutrient-phytoplankton blooms" in Western South China Sea (SCS) to assess role of wind-induced advection transport in phytoplankton bloom formation. It illustrates the nutrient resources that support long-term offshore phytoplankton blooms in the western SCS; (2)Proposal of the theory that "typhoons cause vertical mixing, induce phytoplankton blooms", and quantify their important contribution to marine primary production; Proposal a new ecological index for typhoon. Proposed remote sensing inversion models. (3)Finding of the spatial and temporaldistributions pattern of harmful algal bloom (HAB)and species variations of HAB in the South Yellow Sea and East China Sea, and in the Pearl River estuary, and their oceanic dynamic mechanisms related with monsoon; The project developed new techniques and generated new knowledge, which significantly improved understanding of the formation mechanisms of algal blooms. The proposed "wind-pump" mechanism integrates theoretical system combined "ocean dynamics, development of algal blooms, and impact on primary production", which will benefit fisheries management. These

  5. Computations of wind-driven ocean-induced magnetic fields

    NASA Astrophysics Data System (ADS)

    Sachl, Libor; Einspigel, David; Martinec, Zdenek

    2016-04-01

    We present the results of computations of the secondary magnetic field induced by ocean motions. Ocean velocities are computed using the baroclinic ocean model LSOMG. The velocities are then used to determine the Lorentz force which is plugged into the magnetic induction code TLAM as a principal forcing. The TLAM is a 2D magnetic induction code based on the thin-shell approximation (Vivier et al., 2004; Tyler et al., 1997). In this approximation, the equation of magnetic induction simplifies significantly, time derivatives of main and induced magnetic fields are neglected as well as the self-induction term. The price for simplification of governing equations is the limited applicability of the resulting system. It is only suitable for slowly evolving processes. In order to meet the condition, we restrict ourselves to the wind (buoyancy) driven ocean circulation, although the LSOMG model is able to model both tidally- and wind-driven circulations. We assess the accuracy of thin-shell approximation in our setup by comparing the results with the Swarm satellite magnetic data. References Tyler, R. H., Mysak, L. A., and Oberhuber, J. M, 1997. Electromagnetic fields generated by a three dimensional global ocean circulation. J. Geophys. Res., 102, 5531-5551. Vivier, F., Meier-Reimer, E., and Tyler, R. H., 2004. Simulations of magnetic fields generated by the Antarctic Circumpolar Current at satellite altitude: Can geomagnetic measurements be used to monitor the flow? Geophys. Res. Lett., 31, L10306, doi:10.1029/2004GL019804.

  6. Accretion disk winds as the jet suppression mechanism in the microquasar GRS 1915+105.

    PubMed

    Neilsen, Joseph; Lee, Julia C

    2009-03-26

    Stellar-mass black holes with relativistic jets, also known as microquasars, mimic the behaviour of quasars and active galactic nuclei. Because timescales around stellar-mass black holes are orders of magnitude smaller than those around more distant supermassive black holes, microquasars are ideal nearby 'laboratories' for studying the evolution of accretion disks and jet formation in black-hole systems. Whereas studies of black holes have revealed a complex array of accretion activity, the mechanisms that trigger and suppress jet formation remain a mystery. Here we report the presence of a broad emission line in the faint, hard states and narrow absorption lines in the bright, soft states of the microquasar GRS 1915+105. ('Hard' and 'soft' denote the character of the emitted X-rays.) Because the hard states exhibit prominent radio jets, we argue that the broad emission line arises when the jet illuminates the inner accretion disk. The jet is weak or absent during the soft states, and we show that the absorption lines originate when the powerful radiation field around the black hole drives a hot wind off the accretion disk. Our analysis shows that this wind carries enough mass away from the disk to halt the flow of matter into the radio jet. PMID:19325629

  7. WIND-SHEARING IN GASEOUS PROTOPLANETARY DISKS AND THE EVOLUTION OF BINARY PLANETESIMALS

    SciTech Connect

    Perets, Hagai B.; Murray-Clay, Ruth A.

    2011-05-20

    One of the first stages of planet formation is the growth of small planetesimals and their accumulation into large planetesimals and planetary embryos. This early stage occurs much before the dispersal of most of the gas from the protoplanetary disk. Due to their different aerodynamic properties, planetesimals of different sizes and shapes experience different drag forces from the gas during this time. Such differential forces produce a wind-shearing (WISH) effect between close by, different-sized planetesimals. For any two planetesimals, a WISH radius can be considered at which the differential acceleration due to the wind becomes greater than the mutual gravitational pull between the planetesimals. We find that the WISH radius could be much smaller than the gravitational shearing radius by the star (the Hill radius). In other words, during the gas-phase of the disk, WISH could play a more important role than tidal perturbations by the star. Here, we study the WISH radii for planetesimal pairs of different sizes and compare the effects of wind and gravitational shearing (drag force versus gravitational tidal force). We then discuss the role of WISH for the stability and survival of binary planetesimals. Binaries are sheared apart by the wind if they are wider than their WISH radius. WISH-stable binaries can also inspiral, and possibly coalesce, due to gas drag. Here, we calculate the WISH radius and the gas-drag-induced merger timescale, providing stability and survival criteria for gas-embedded binary planetesimals. Our results suggest that even WISH-stable binaries may merge in times shorter than the lifetime of the gaseous disk. This may constrain currently observed binary planetesimals to have formed far from the star or at a late stage after the dispersal of most of the disk gas. We note that the WISH radius may also be important for other processes such as planetesimal erosion and planetesimal encounters and collisions in a gaseous environment.

  8. THE CIRCUMBINARY OUTFLOW: A PROTOSTELLAR OUTFLOW DRIVEN BY A CIRCUMBINARY DISK

    SciTech Connect

    Machida, Masahiro N.; Inutsuka, Shu-ichiro; Matsumoto, Tomoaki E-mail: inutsuka@nagoya-u.j

    2009-10-10

    Protostellar outflow is a star's first cry at the moment of birth. The outflows have an indispensable role in the formation of single stars because they carry off the excess angular momentum from the center of the shrinking gas cloud, and permit further collapse to form a star. On the other hand, a significant fraction of stars is supposedly born as binaries with circumbinary disks that are frequently observed. Here, we investigate the evolution of a magnetized rotating cloud using a three-dimensional resistive MHD nested-grid code, and show that the outflow is driven by the circumbinary disk and has an important role even in the binary formation. After the adiabatic core formation in the collapsing cloud core, the magnetic flux is significantly removed from the center of the cloud by the Ohmic dissipation. Since this removal makes the magnetic braking ineffective, the adiabatic core continuously acquires the angular momentum to induce fragmentation and subsequent binary formation. The magnetic field accumulates in the circumbinary disk where the removal and accretion of magnetic field are balanced, and finally drives the circumbinary outflow. This result explains the spectacular morphology of some specific young stellar objects such as L1551 IRS5. We can infer that most of the bipolar molecular outflows observed by low density tracers (i.e., CO) would correspond to circumbinary or circum-multiple outflows found in this Letter, since most of the young stellar objects are supposed to be binaries or multiples.

  9. The Evolution of Disks and Winds in Dwarf Nova Outbursts - FUSE

    NASA Technical Reports Server (NTRS)

    Long, Knox

    2002-01-01

    This project was a project to study the FUV spectra of two proto-typical dwarf novae, U Gem and SS Cygni, through an outburst cycle. The luminosity of the boundary layer in the two systems, as evidenced by earlier EUVE observations, is different in the two systems. Our intensive study of the two systems was intended to (1) probe the ionization and kinematic structure of the wind as a function of system brightness, (2) isolate the contributions of the disk to the FUV spectra, and (3) examine physical conditions and abundances of material just being accreted onto the disk from the secondary. The U Gem and SS Cyg observations took place in March and October 2000, respectively. The data obtained with FUSE was of excellent quality. Analysis of the both observations is now essentially complete, although some modeling of the SS Cyg spectra is ongoing, as we complete an ApJ manuscript on this object. Our main results for U Gem are as follows: The plateau spectra have continuum shapes and fluxes that are approximated by steady state accretion disk model spectra with an accretion rate 7x10(exp 9) Msolar/yr. The spectra also show numerous absorption lines of H I, He II, and 2-5 times ionized transitions of C, N, O, P, S, and Si. There are no emission features in the spectra, with the possible exception of a weak feature on the red wing of the 0 VI doublet. The absorption lines are narrow (FWHM approx. 50 km/s), too narrow to arise from the disk photosphere, and at low velocities (less than or equal to 700 km/s). The S VI and O VI doublets are optically thick. The absorption lines in the plateau spectra show orbital variability: in spectra obtained at orbital phases between 0.53 and 0.79, low-ionization absorption lines appear and the central depths of the preexisting lines increase. The increase in line absorption occurs at the same orbital phases as previously observed EUV and X-ray light-curve dips. If the absorbing material is in (near-) Keplerian rotation around the disk

  10. Wind-driven currents in a shallow lake or sea

    NASA Technical Reports Server (NTRS)

    Goldstein, M. E.; Gedney, R. T.

    1971-01-01

    For shallow lakes and seas such as the great lakes (especially Lake Erie) where the depth is not much greater than the Ekman depth, the usual Ekman dynamics cannot be used to predict the wind driven currents. The necessary extension to include shallow bodies of water, given by Welander, leads to a partial differential equation for the surface displacement which in turn determines all other flow quantities. A technique for obtaining exact analytical solutions to Welander's equation for bodies of water with large class of bottom topographies which may or may not contain islands is given. It involves applying conformal mapping methods to an extension of Welander's equation into the complex plane. When the wind stress is constant (which is the usual assumption for lakes) the method leads to general solutions which hold for bodies of water of arbitrary shape (the shape appears in the solutions through a set of constants which are the coefficients in the Laurent expansion of a mapping of the particular lake geometry). The method is applied to an elliptically shaped lake and a circular lake containing an eccentrically located circular island.

  11. Impulsive solar wind-driven emission from Uranus

    SciTech Connect

    Desch, M.D.; Kaiser, M.L. ); Kurth, W.S. )

    1989-05-01

    Several days prior to the Voyager spacecraft encounter with Uranus, the plasma wave and radio astronomy receivers detected extraordinarily narrowband bursty signals, the first indication of any radio emission from the planet. The characteristics of these signals were so unusual that their identity as a natural planetary emission was questioned at first. Subsequent analysis has shown, however, that the n bursts are modulated at the 17.24-hour Uranus rotation period and are therefore planetary in origin. The authors show, in addition, that the typical bandwidth and time scale for the bursts are about 5 kHz and 250 ms, respectively. The phase of the rotation modulation suggests a probable source for these events in the vicinity of the north (weak) magnetic pole. The waves are right-hand polarized and are therefore emitted in the extraordinary magnetoionic mode if the emission in fact originates above the north magnetic pole. In the context of the electron cyclotron maser mechanism, inferred upper limit electron densities range from 15 cm{sup {minus}3} at 0.9 R{sub U} altitude to 0.4 cm{sup {minus}3} at 2.4 R{sub U} altitude. Discovery of events predating the counter identification by up to 1 month indicates the n bursts were organized into two major {approx equal} 10-day-long episodes. These episodes were simultaneous with times of enhanced solar wind levels at Uranus, leading to the first evidence of a solar wind-driven radiation at Uranus.

  12. Disk Winds as an Explanation for Slowly Evolving Temperatures in Tidal Disruption Events

    NASA Astrophysics Data System (ADS)

    Miller, M. Coleman

    2015-05-01

    Among the many intriguing aspects of optically discovered tidal disruption events (TDEs) is that their temperatures are lower than predicted and that the temperature does not evolve as rapidly with a decreasing fallback rate as would be expected in standard disk theory. We show that this can be explained qualitatively using an idea proposed by Laor & Davis in the context of normal active galactic nuclei: that larger accretion rates imply stronger winds and thus that the accretion rate through the inner disk only depends weakly on the inflow rate at the outer edge of the disk. We also show that a reasonable quantitative agreement with data requires that, as has been suggested in recent papers, the characteristic radius of the tidal stream is approximately equal to the semimajor axis of the most bound orbit of the debris rather than twice the pericenter distance, which would be expected from circularization without rapid angular momentum redistribution. If this explanation is correct, it suggests that the evolution of TDEs may test both non-standard disk theory and the details of the interactions of the tidal stream.

  13. General Relativistic Magnetohydrodynamic Simulations of Jets from Black Hole Accretions Disks: Two-Component Jets Driven by Nonsteady Accretion of Magnetized Disks

    NASA Astrophysics Data System (ADS)

    Koide, Shinji; Shibata, Kazunari; Kudoh, Takahiro

    1998-03-01

    The radio observations have revealed the compelling evidence of the existence of relativistic jets not only from active galactic nuclei but also from ``microquasars'' in our Galaxy. In the cores of these objects, it is believed that a black hole exists and that violent phenomena occur in the black hole magnetosphere, forming the relativistic jets. To simulate the jet formation in the magnetosphere, we have newly developed the general relativistic magnetohydrodynamic code. Using the code, we present a model of these relativistic jets, in which magnetic fields penetrating the accretion disk around a black hole play a fundamental role of inducing nonsteady accretion and ejection of plasmas. According to our simulations, a jet is ejected from a close vicinity to a black hole (inside 3rS, where rS is the Schwarzschild radius) at a maximum speed of ~90% of the light velocity (i.e., a Lorentz factor of ~2). The jet has a two-layered shell structure consisting of a fast gas pressure-driven jet in the inner part and a slow magnetically driven jet in the outer part, both of which are collimated by the global poloidal magnetic field penetrating the disk. The former jet is a result of a strong pressure increase due to shock formation in the disk through fast accretion flow (``advection-dominated disk'') inside 3rS, which has never been seen in the nonrelativistic calculations.

  14. Evaluation of lightning accommodation systems for wind-driven turbine rotors

    NASA Technical Reports Server (NTRS)

    Bankaitis, H.

    1982-01-01

    Wind-driven turbine generators are being evaluated as an alternative source of electric energy. Areas of favorable location for the wind-driven turbines (high wind density) coincide with areas of high incidence of thunderstorm activity. These locations, coupled with the 30-m or larger diameter rotor blades, make the wind-driven turbine blades probable terminations for lightning strikes. Several candidate systems of lightning accommodation for composite-structural-material blades were designed and their effectiveness evaluated by submitting the systems to simulated lightning strikes. The test data were analyzed and system design were reviewed on the basis of the analysis.

  15. Wind-driven desertification: Process modeling, remote monitoring, and forecasting

    NASA Astrophysics Data System (ADS)

    Okin, Gregory Stewart

    Arid and semiarid landscapes comprise nearly a third of the Earth's total land surface. These areas are coming under increasing land use pressures. Despite their low productivity these lands are not barren. Rather, they consist of fragile ecosystems vulnerable to anthropogenic disturbance. The purpose of this thesis is threefold: (I) to develop and test a process model of wind-driven desertification, (II) to evaluate next-generation process-relevant remote monitoring strategies for use in arid and semiarid regions, and (III) to identify elements for effective management of the world's drylands. In developing the process model of wind-driven desertification in arid and semiarid lands, field, remote sensing, and modeling observations from a degraded Mojave Desert shrubland are used. This model focuses on aeolian removal and transport of dust, sand, and litter as the primary mechanisms of degradation: killing plants by burial and abrasion, interrupting natural processes of nutrient accumulation, and allowing the loss of soil resources by abiotic transport. This model is tested in field sampling experiments at two sites and is extended by Fourier Transform and geostatistical analysis of high-resolution imagery from one site. Next, the use of hyperspectral remote sensing data is evaluated as a substantive input to dryland remote monitoring strategies. In particular, the efficacy of spectral mixture analysis (SMA) in discriminating vegetation and soil types and determining vegetation cover is investigated. The results indicate that hyperspectral data may be less useful than often thought in determining vegetation parameters. Its usefulness in determining soil parameters, however, may be leveraged by developing simple multispectral classification tools that can be used to monitor desertification. Finally, the elements required for effective monitoring and management of arid and semiarid lands are discussed. Several large-scale multi-site field experiments are proposed to

  16. New Insights on the Accretion Disk-Winds Connection in Radio-Loud AGNs from Suzaku

    NASA Technical Reports Server (NTRS)

    Tombesi, F.; Sambruna, R. M.; Reeves, J. N.; Braito, V.; Cappi, M.; Reynolds, S.; Mushotzky, R. F.

    2011-01-01

    From the spectral analysis of long Suzaku observations of five radio-loud AGNs we have been able to discover the presence of ultra-fast outflows with velocities ,,approx.0.1 c in three of them, namely 3C III, 3C 120 and 3C 390.3. They are consistent with being accretion disk winds/outflows. We also performed a follow-up on 3C III to monitor its outflow on approx.7 days time-scales and detected an anti-correlated variability of a possible relativistic emission line with respect to blue-shifted Fe K features, following a flux increase. This provides the first direct evidence for an accretion disc-wind connection in an AGN. The mass outflow rate of these outflows can be comparable to the accretion rate and their mechanical power can correspond to a significant fraction of the bolometric luminosity and is comparable to their typical jet power. Therefore, they can possibly play a significant role in the expected feedback from AGNs and can give us further clues on the relation between the accretion disk and the formation of winds/jets.

  17. Using Rare Earth Elements (REE) to determine wind-driven soil dispersal from a point source

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although erosion of soil by water is a predictably directional process, the erosion of soil by wind is determined by wind direction on an event-wise basis. The wind-driven dispersal patterns of chemical constituents including natural soil components and anthropogenic contaminants are not well under...

  18. Evaluation of Interrill Erosion Under Wind-Driven Rain Events in Northern Burkina Faso

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wind changes the velocity, frequency and angle of raindrop impact and hence affects rain splash detachment rates. Many soil erosion models underpredict interrill erosion because the contribution of the wind to raindrop detachment and wind-driven transport processes are not taken into account. In thi...

  19. Absorption lines from magnetically driven winds in X-ray binaries

    NASA Astrophysics Data System (ADS)

    Chakravorty, S.; Petrucci, P.-O.; Ferreira, J.; Henri, G.; Belmont, R.; Clavel, M.; Corbel, S.; Rodriguez, J.; Coriat, M.; Drappeau, S.; Malzac, J.

    2016-05-01

    Context. High resolution X-ray spectra of black hole X-ray binaries (BHBs) show blueshifted absorption lines suggesting the presence of outflowing winds. Furthermore, observations show that the disk winds are equatorial and they occur in the Softer (disk dominated) states of the outburst and are less prominent or absent in the Harder (power-law dominated) states. Aims: We want to test whether the self-similar magneto-hydrodynamic (MHD) accretion-ejection models can explain the observational results for accretion disk winds in BHBs. In our models, the density at the base of the outflow from the accretion disk is not a free parameter. This mass loading is determined by solving the full set of dynamical MHD equations without neglecting any physical term. Thus, the physical properties of the outflow depend on and are controlled by the global structure of the disk. Methods: We studied different MHD solutions characterized by different values of the disk aspect ratio (ɛ) and the ejection efficiency (p). We also generate two kinds of MHD solutions depending on the absence (cold solution) or presence (warm solution) of heating at the disk surface. Such heating could be either from dissipation of energy due to MHD turbulence in the disk or from illumination of the disk surface. Warm solutions can have large (>0.1) values of p, which would imply larger wind mass loading at the base of the outflow. We use each of these MHD solutions to predict the physical parameters (distance, density, velocity, magnetic field, etc.) of an outflow. Motivated by observational results, we have put limits on the ionization parameter (ξ), column density, and timescales. Further constraints were derived for the allowed values of ξ from thermodynamic instability considerations, particularly for the Hard SED. These physical constraints were imposed on each of these outflows to select regions within it, which are consistent with the observed winds. Results: The cold MHD solutions are found to be

  20. AGN Unification, X-Ray Absorbers and Accretion Disk MHD Winds

    NASA Technical Reports Server (NTRS)

    Kazanas, Demos

    2011-01-01

    We present the 2D photoionization structure of the MHD winds of AGN accretion disks. We focus our attention on a specific subset of winds, those with poloidal currents that lead to density profiles n(r) \\propto 1/r. We employ the code XSTAR to compute the local ionization balance, emissivities and opacity which are then used in the self-consistent transfer of radiation and ionization of a host of ionic species of a large number of elements over then entire poloidal plane. Particular attention is paid to the Absorption Measure Distribution (AMD), namely their hydrogen-equivalent column of these ions per logarithmic 7 interval, dN_H/dlog ? (? = L/n(r)r(sup 2) is the ionization parameter), which provides a measure of the winds' radial density profiles. For the given density profile, AMD is found to be independent of ?, in good agreement with analyses of Chandra and XMM data, suggesting the specific profile as a fundamental AGN property. Furthermore, the ratio of equatorial to polar column densities of these winds is \\simeq 10(exp 4); as such, it is shown they serve as the "torus" necessary for AGN unification with phenomenology consistent with the observations. The same winds are also shown to reproduce the observed columns and velocities of C IV and Fe XXV of SAL QSOs once the proper ionizing spectra and inclination angles are employed.

  1. Molecule survival in magnetized protostellar disk winds. II. Predicted H2O line profiles versus Herschel/HIFI observations

    NASA Astrophysics Data System (ADS)

    Yvart, W.; Cabrit, S.; Pineau des Forêts, G.; Ferreira, J.

    2016-01-01

    Context. The origin of molecular protostellar jets and their role in extracting angular momentum from the accreting system are important open questions in star formation research. In the first paper of this series we showed that a dusty magneto-hydrodynamic (MHD) disk wind appeared promising to explain the pattern of H2 temperature and collimation in the youngest jets. Aims: We wish to see whether the high-quality H2O emission profiles of low-mass protostars, observed for the first time by the HIFI spectrograph on board the Herschel satellite, remain consistent with the MHD disk wind hypothesis, and which constraints they would set on the underlying disk properties. Methods: We present synthetic H2O line profiles predictions for a typical MHD disk wind solution with various values of disk accretion rate, stellar mass, extension of the launching area, and view angle. We compare them in terms of line shapes and intensities with the HIFI profiles observed by the WISH key program towards a sample of 29 low-mass Class 0 and Class 1 protostars. Results: A dusty MHD disk wind launched from 0.2-0.6 AU AU to 3-25 AU can reproduce to a remarkable degree the observed shapes and intensities of the broad H2O component observed in low-mass protostars, both in the fundamental 557 GHz line and in more excited lines. Such a model also readily reproduces the observed correlation of 557 GHz line luminosity with envelope density, if the infall rate at 1000 AU is 1-3 times the disk accretion rate in the wind ejection region. It is also compatible with the typical disk size and bolometric luminosity in the observed targets. However, the narrower line profiles in Class 1 sources suggest that MHD disk winds in these sources, if present, would have to be slower and/or less water rich than in Class 0 sources. Conclusions: MHD disk winds appear as a valid (though not unique) option to consider for the origin of the broad H2O component in low-mass protostars. ALMA appears ideally suited to

  2. Regulation of black-hole accretion by a disk wind during a violent outburst of V404 Cygni

    NASA Astrophysics Data System (ADS)

    Muñoz-Darias, T.; Casares, J.; Mata Sánchez, D.; Fender, R. P.; Armas Padilla, M.; Linares, M.; Ponti, G.; Charles, P. A.; Mooley, K. P.; Rodriguez, J.

    2016-06-01

    Accretion of matter onto black holes is universally associated with strong radiative feedback and powerful outflows. In particular, black-hole transients have outflows whose properties are strongly coupled to those of the accretion flow. This includes X-ray winds of ionized material, expelled from the accretion disk encircling the black hole, and collimated radio jets. Very recently, a distinct optical variability pattern has been reported in the transient stellar-mass black hole V404 Cygni, and interpreted as disrupted mass flow into the inner regions of its large accretion disk. Here we report observations of a sustained outer accretion disk wind in V404 Cyg, which is unlike any seen hitherto. We find that the outflowing wind is neutral, has a large covering factor, expands at one per cent of the speed of light and triggers a nebular phase once accretion drops sharply and the ejecta become optically thin. The large expelled mass (>10‑8 solar masses) indicates that the outburst was prematurely ended when a sizeable fraction of the outer disk was depleted by the wind, detaching the inner regions from the rest of the disk. The luminous, but brief, accretion phases shown by transients with large accretion disks imply that this outflow is probably a fundamental ingredient in regulating mass accretion onto black holes.

  3. Regulation of black-hole accretion by a disk wind during a violent outburst of V404 Cygni.

    PubMed

    Muñoz-Darias, T; Casares, J; Mata Sánchez, D; Fender, R P; Armas Padilla, M; Linares, M; Ponti, G; Charles, P A; Mooley, K P; Rodriguez, J

    2016-06-01

    Accretion of matter onto black holes is universally associated with strong radiative feedback and powerful outflows. In particular, black-hole transients have outflows whose properties are strongly coupled to those of the accretion flow. This includes X-ray winds of ionized material, expelled from the accretion disk encircling the black hole, and collimated radio jets. Very recently, a distinct optical variability pattern has been reported in the transient stellar-mass black hole V404 Cygni, and interpreted as disrupted mass flow into the inner regions of its large accretion disk. Here we report observations of a sustained outer accretion disk wind in V404 Cyg, which is unlike any seen hitherto. We find that the outflowing wind is neutral, has a large covering factor, expands at one per cent of the speed of light and triggers a nebular phase once accretion drops sharply and the ejecta become optically thin. The large expelled mass (>10(-8) solar masses) indicates that the outburst was prematurely ended when a sizeable fraction of the outer disk was depleted by the wind, detaching the inner regions from the rest of the disk. The luminous, but brief, accretion phases shown by transients with large accretion disks imply that this outflow is probably a fundamental ingredient in regulating mass accretion onto black holes. PMID:27251277

  4. Planetesimal-driven planet migration in the presence of a gas disk

    NASA Astrophysics Data System (ADS)

    Capobianco, Christopher C.; Duncan, Martin; Levison, Harold F.

    2011-01-01

    We report here on an extension of a previous study by Kirsh et al. (Kirsh, D.R., Duncan, M., Brasser, R., Levison, H.F. [2009]. Icarus 199, 197-209) of planetesimal-driven migration using our N-body code SyMBA (Duncan, M.J., Levison, H.F., Lee, M.H. [1998]. Astron. J. 116, 2067-2077). The previous work focused on the case of a single planet of mass Mem, immersed in a planetesimal disk with a power-law surface density distribution and Rayleigh distributed eccentricities and inclinations. Typically 10 4-10 5 equal-mass planetesimals were used, where the gravitational force (and the back-reaction) on each planetesimal by the Sun and planet were included, while planetesimal-planetesimal interactions were neglected. The runs reported on here incorporate the dynamical effects of a gas disk, where the Adachi et al. (Adachi, I., Hayashi, C., Nakazawa, K. [1976]. Prog. Theor. Phys. 56, 1756-1771) prescription of aerodynamic gas drag is implemented for all bodies. In some cases the Papaloizou and Larwood (Papaloizou, J.C.B., Larwood, J.D. [2000]. Mon. Not. R. Astron. Soc. 315, 823-833) prescription of Type-I migration for the planet are implemented, as well as a mass distribution. In the gas-free cases, rapid planet migration was observed - at a rate independent of the planet's mass - provided the planet's mass was not large compared to the mass in planetesimals capable of entering its Hill sphere. In such cases, both inward and outward migrations can be self-sustaining, but there is a strong propensity for inward migration. When a gas disk is present, aerodynamic drag can substantially modify the dynamics of scattered planetesimals. For sufficiently large or small mono-dispersed planetesimals, the planet typically migrates inward. However, for a range of plausible planetesimal sizes (i.e. 0.5-5.0 km at 5.0 AU in a minimum mass Hayashi disk) outward migration is usually triggered, often accompanied by substantial planetary mass accretion. The origins of this behaviour are

  5. Recent Observational Progress on Accretion Disks Around Compact Objects

    NASA Astrophysics Data System (ADS)

    Miller, Jon M.

    2016-04-01

    Studies of accretion disks around black holes and neutron stars over the last ten years have made remarkable progress. Our understanding of disk evolution as a function of mass accretion rate is pushing toward a consensus on thin/thick disk transitions; an apparent switching between disk-driven outflow modes has emerged; and monitoring observations have revealed complex spectral energy distributions wherein disk reprocessing must be important. Detailed studies of disk winds, in particular, have the potential to reveal the basic physical processes that mediate disk accretion, and to connect with numerical simulations. This talk will review these developments and look ahead to the potential of Astro-H.

  6. Radiation Belt Transport Driven by Solar Wind Dynamic Pressure Fluctuations

    NASA Astrophysics Data System (ADS)

    Kress, B. T.; Hudson, M. K.; Ukhorskiy, A. Y.; Mueller, H.

    2012-12-01

    The creation of the Earth's outer zone radiation belts is attributed to earthward transport and adiabatic acceleration of electrons by drift-resonant interactions with electromagnetic fluctuations in the magnetosphere. Three types of radial transport driven by solar wind dynamic pressure fluctuations that have been identified are: (1) radial diffusion [Falthammer, 1965], (2) significant changes in the phase space density radial profile due to a single or few ULF drift-resonant interactions [Ukhorskiy et al., 2006; Degeling et al., 2008], and (3) shock associated injections of radiation belt electrons occurring in less than a drift period [Li et al., 1993]. A progress report will be given on work to fully characterize different forms of radial transport and their effect on the Earth's radiation belts. The work is being carried out by computing test-particle trajectories in electric and magnetic fields from a simple analytic ULF field model and from global MHD simulations of the magnetosphere. Degeling, A. W., L. G. Ozeke, R. Rankin, I. R. Mann, and K. Kabin (2008), Drift resonant generation of peaked relativistic electron distributions by Pc 5 ULF waves, textit{J. Geophys. Res., 113}, A02208, doi:10.1029/2007JA012411. Fälthammar, C.-G. (1965), Effects of Time-Dependent Electric Fields on Geomagnetically Trapped Radiation, J. Geophys. Res., 70(11), 2503-2516, doi:10.1029/JZ070i011p02503. Li, X., I. Roth, M. Temerin, J. R. Wygant, M. K. Hudson, and J. B. Blake (1993), Simulation of the prompt energization and transport of radiation belt particles during the March 24, 1991 SSC, textit{Geophys. Res. Lett., 20}(22), 2423-2426, doi:10.1029/93GL02701. Ukhorskiy, A. Y., B. J. Anderson, K. Takahashi, and N. A. Tsyganenko (2006), Impact of ULF oscillations in solar wind dynamic pressure on the outer radiation belt electrons, textit{Geophys. Res. Lett., 33}(6), L06111, doi:10.1029/2005GL024380.

  7. Turbulence avoidance and the wind-driven transport of plankton in the surface Ekman layer

    NASA Astrophysics Data System (ADS)

    Pringle, James M.

    2007-03-01

    Observations of turbulence avoidance in zooplankton are compared to estimates of the wind-driven turbulence in the upper ocean. Plankton that avoid wind-driven turbulence by moving deeper are no longer transported by the wind-driven Ekman currents near the surface because they are no longer near the surface. Here, a threshold level of turbulence that triggers an avoidance response is estimated, and is used to infer the wind speed and water column stratification conditions that would lead to zooplankton leaving the Ekman layer. Turbulence avoidance is argued to lead to near-shore retention in wind-driven upwelling systems, and to a reduction of the delivery of zooplankton to Georges Bank from the deeper waters of the Gulf of Maine.

  8. On Shocks Driven by High-mass Planets in Radiatively Inefficient Disks. II. Three-dimensional Global Disk Simulations

    NASA Astrophysics Data System (ADS)

    Lyra, Wladimir; Richert, Alexander J. W.; Boley, Aaron; Turner, Neal; Mac Low, Mordecai-Mark; Okuzumi, Satoshi; Flock, Mario

    2016-02-01

    Recent high-resolution, near-infrared images of protoplanetary disks have shown that these disks often present spiral features. Spiral arms are among the structures predicted by models of disk-planet interaction and thus it is tempting to suspect that planetary perturbers are responsible for these signatures. However, such interpretation is not free of problems. The observed spirals have large pitch angles, and in at least one case (HD 100546) it appears effectively unpolarized, implying thermal emission of the order of 1000 K (465 ± 40 K at closer inspection). We have recently shown in two-dimensional models that shock dissipation in the supersonic wake of high-mass planets can lead to significant heating if the disk is sufficiently adiabatic. Here we extend this analysis to three dimensions in thermodynamically evolving disks. We use the Pencil Code in spherical coordinates for our models, with a prescription for thermal cooling based on the optical depth of the local vertical gas column. We use a 5MJ planet, and show that shocks in the region around the planet where the Lindblad resonances occur heat the gas to substantially higher temperatures than the ambient gas. The gas is accelerated vertically away from the midplane to form shock bores, and the gas falling back toward the midplane breaks up into a turbulent surf. This turbulence, although localized, has high α values, reaching 0.05 in the inner Lindblad resonance, and 0.1 in the outer one. We find evidence that the disk regions heated up by the shocks become superadiabatic, generating convection far from the planet’s orbit.

  9. Line-Driven Winds in Strong Gravitational Fields

    NASA Astrophysics Data System (ADS)

    Dorodnitsyn, Anton

    A general physical mechanism which could contribute to the formation of fast line-driven outflows at the vicinity of strong gravitational field sources is proposed. The problem of the acceleration of a wind due to absorption of the radiation flux in lines is considered at the vicinity of a supermassive BH. We argue that the gradient of the gravitational potential plays the same role as the velocity gradient plays in Sobolev approximation. Both Doppler effect and gravitational redshifting are taken into account in Sobolev approximation. It is shown that the radiation force becomes a function of the local velocity gradient and the gradient of the gravitational potential. The derived equation of motion has a critical point that is different from that of Castor Abbott Klein (CAK). A solution that is continuous through the singular point is obtained numerically. A comparison with CAK theory is presented. It is shown that the developed theory predicts terminal velocities which are greater than those obtained from the CAK theory. Applications to the problem of the formation of fast outflows from AGN are discussed.

  10. Line-driven winds revisited in the context of Be stars: Ω-slow solutions with high k values

    SciTech Connect

    Silaj, J.; Jones, C. E.; Curé, M.

    2014-11-01

    The standard, or fast, solutions of m-CAK line-driven wind theory cannot account for slowly outflowing disks like the ones that surround Be stars. It has been previously shown that there exists another family of solutions—the Ω-slow solutions—that is characterized by much slower terminal velocities and higher mass-loss rates. We have solved the one-dimensional m-CAK hydrodynamical equation of rotating radiation-driven winds for this latter solution, starting from standard values of the line force parameters (α, k, and δ), and then systematically varying the values of α and k. Terminal velocities and mass-loss rates that are in good agreement with those found in Be stars are obtained from the solutions with lower α and higher k values. Furthermore, the equatorial densities of such solutions are comparable to those that are typically assumed in ad hoc models. For very high values of k, we find that the wind solutions exhibit a new kind of behavior.

  11. Wind-driven nutrient pulses to the subsurface chlorophyll maximum in seasonally stratified shelf seas

    NASA Astrophysics Data System (ADS)

    Williams, Charlotte; Sharples, Jonathan; Mahaffey, Claire; Rippeth, Tom

    2013-10-01

    seas are an important global carbon sink. In the seasonal thermocline, the subsurface chlorophyll maximum (SCM) supports almost half of summer shelf production. Using observations from the seasonally stratified Celtic Sea (June 2010), we identify wind-driven inertial oscillations as a mechanism for supplying the SCM with the nitrate needed for phytoplankton growth and carbon fixation. Analysis of wind, currents, and turbulent dissipation indicates that inertial oscillations are triggered by a change in the wind velocity. High magnitude, short-lived dissipation spikes occur when the shear and wind vectors align, increasing the daily nitrate flux to the SCM by a factor of at least 17. However, it is likely that the sampling resolution of turbulent dissipation does not always capture the maximum wind-driven peak in mixing. We estimate that wind-driven inertial oscillations supply the SCM with ~33% to 71% of the nitrate required for new production in shelf seas during summer.

  12. The Disk Wind in the Rapidly Spinning Stellar-mass Black Hole 4U 1630-472 Observed with NuSTAR

    NASA Technical Reports Server (NTRS)

    King, Ashley L.; Walton, Dominic J.; Miller, Jon M.; Barret, Didier; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.; Fabian, Andy C.; Furst, Felix; Hailey, Charles J.; Harrison, Fiona A.; Krivonos, Roman; Mori, Kaya; Natalucci, Lorenzo; Stern, Daniel; Tomsick, John A.; Zhang, William W.

    2014-01-01

    We present an analysis of a short NuSTAR observation of the stellar-mass black hole and low-mass X-ray binary 4U 1630-472. Reflection from the inner accretion disk is clearly detected for the first time in this source, owing to the sensitivity of NuSTAR. With fits to the reflection spectrum, we find evidence for a rapidly spinning black hole, a* = 0.985(+0.005/-0.014) (1 sigma statistical errors). However, archival data show that the source has relatively low radio luminosity. Recently claimed relationships between jet power and black hole spin would predict either a lower spin or a higher peak radio luminosity. We also report the clear detection of an absorption feature at 7.03 +/- 0.03 keV, likely signaling a disk wind. If this line arises in dense, moderately ionized gas (log xi = 3.6(+0.2/-0.3) and is dominated by He-like Fe xxv, the wind has a velocity of v/c = 0.043(+0.002/-0.007) (12900(+600/-2100) km s(exp -1)). If the line is instead associated with a more highly ionized gas (log xi = 6.1(+0.7/-0.6)), and is dominated by Fe xxvi, evidence of a blueshift is only marginal, after taking systematic errors into account. Our analysis suggests the ionized wind may be launched within 200-1100 Rg, and may be magnetically driven.

  13. Disk-cathode flash x-ray tube driven by a repetitive type of Blumlein pulser

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Kimura, Shingo; Isobe, Hiroshi; Takahashi, Kei; Tamakawa, Yoshiharu; Yanagisawa, Toru

    1991-04-01

    A repetitive flash x-ray generator utilizing a disk-cathode radiation tube is described. This generator consisted of the following essential components: a high voltage power supply, an energy storage condenser, a repetitive type of modified Blumlein pulser, a turbo molecular pump, and a flash x-ray tube. This high-voltage pulser consisted of the following major devices: two ceramic condensers with capacities of 85OpF, a gas gap switch driven by electric field distortion, and a coil. The two condensers were charged from -50 to -70kV, and the total capacity during main discharge was 425pF. The peak voltages of the pulser output were about -1. 4 times the condenser charged voltage. The flash x-ray tube consisted of the following major devices: a rod-shaped anode tip made of tungsten, a disk cathode made of graphite, a spattering shield, and a tube body made of acrylate resin. The anode-cathode (A-C) space was regulated from the outside of the x-ray tube by rotating the anode rod. The maximum values of the tube voltage and the current were about 80kV and 1. 2kA, respectively. The maximum pulse width was about lOOns, and the x-ray intensity was less than lpC/kg at 0. 3m per pulse. The repetition frequency was less than 50Hz, and the maximum focal spot size was equivalent to the anode diameter of 3. 0mm.

  14. The relative importance of the wind-driven and tidal circulations in Malacca Strait

    NASA Astrophysics Data System (ADS)

    Chen, Haoliang; Malanotte-Rizzoli, Paola; Koh, Tieh-Yong; Song, Guiting

    2014-10-01

    The Malacca Strait is traditionally treated as a typical tidally-driven channel with the wind-driven and other components considered negligible. However, the strait is frequently affected by intense tropical weather events distorting the background monsoon winds. The variable winds can create large wind-stress curl at the surface level. To answer the question of how significant the wind-driven circulation is to the total circulation, numerical simulations are carried out by isolating or superimposing the different driving mechanisms. Comparison of the time series at selected points reveals that the winds significantly affect the tidal currents in different ways in the northern and southern strait. In the northern wide strait, the tidal current is enhanced while in the southern narrow channel it is weakened. Experiments with uniform water depth confirm that the weakening is mainly due to the interaction among tidal current, wind-driven current and bathymetry in the southern strait. Spectral analysis of the currents in the whole MS quantifies that the wind-driven current energy is more significant in the northern channel than in the southern one. Furthermore, winds with high intensity and large wind-stress curl can produce an eddy as large as the northern channel width which significantly distorts the tidal circulation especially during the neap tide. Vorticity analysis shows that the eddy in the northern Malacca Strait is purely wind-driven. Our study highlights that the wind stress, which has been ignored in previous studies in this region, is an important driver of the circulation in the Malacca Strait even when tidal forcing is strong.

  15. A FAST X-RAY DISK WIND IN THE TRANSIENT PULSAR IGR J17480-2446 IN TERZAN 5

    SciTech Connect

    Miller, Jon M.; Maitra, Dipankar; Cackett, Edward M.; Bhattacharyya, Sudip; Strohmayer, Tod E.

    2011-04-10

    Accretion disk winds are revealed in Chandra gratings spectra of black holes. The winds are hot and highly ionized (typically composed of He-like and H-like charge states) and show modest blueshifts. Similar line spectra are sometimes seen in 'dipping' low-mass X-ray binaries (LMXBs), which are likely viewed edge-on; however, that absorption is tied to structures in the outer disk, and blueshifts are not typically observed. Here, we report the detection of blueshifted He-like Fe XXV (3100 {+-} 400 km s{sup -1}) and H-like Fe XXVI (1000 {+-} 200 km s{sup -1}) absorption lines in a Chandra/HETG spectrum of the transient pulsar and LMXB IGR J17480-2446 in Terzan 5. These features indicate a disk wind with at least superficial similarities to those observed in stellar-mass black holes. The wind does not vary strongly with numerous weak X-ray bursts or flares. A broad Fe K emission line is detected in the spectrum, and fits with different line models suggest that the inner accretion disk in this system may be truncated. If the stellar magnetic field truncates the disk, a field strength of B= (0.7-4.0)x10{sup 9} G is implied, which is in line with estimates based on X-ray timing techniques. We discuss our findings in the context of accretion flows onto neutron stars and stellar-mass black holes.

  16. Understanding the relation between wind- and pressure-driven sea level variability

    NASA Technical Reports Server (NTRS)

    Ponte, Rui M.

    1994-01-01

    Sea surface adjustment to combined wind and pressure forcing is examined using numerical solutions to the shallow water equations. The experiments use coastal geometry and bottom topography representative of the North Atlantic and are forced by realistic barometric pressure and wind stress fields. The repsonse to pressure is essentially static or close to the inverted barometer solution at periods longer than a few days and dominates the sea level variability, with wind-driven sea level signals being relatively small. With regard to the dynamic signals, wind-driven fluctuations dominate at long periods, as expected from quasi-geostrophic theory. Pressure becomes more important than wind stress as a source of dynamic signals only at periods shorter than approximately three days. Wind- and pressure-driven sea level fluctuations are anticorrelated over most regions. Hence, regressions of sea level on barometric pressure yield coefficients generally smaller than expected for the inverted barometer response known to be the case in the model. In the regions of significant wind-pressure correlation effects, to infer the correct pressure reponse using statistical methods, input fields must include winds as well as pressure. Because of the nonlocal character of the wind response, multivariate statistical models with local wind driving as input are not very successful. Inclusion of nonlocal wind variability over extensive regions is necessary to extract the correct pressure response. Implications of these results to the interpretation of sea level observations are discussed.

  17. Wind-driven currents on the West Florida Shelf

    SciTech Connect

    Mitchum, G.T.; Sturges, W.

    1982-11-01

    Three weeks of current-meter, wind and sea-level data off Cedar Key, Florida are analyzed. Currents and sea level are found to be coherent with alongshore wind stress in the ''synoptic'' band (approx.0.05--0.25 cycle per day) and to lag it by approximately half a day. Little coherence is found with cross-self wind stress.

  18. AN EXTREME X-RAY DISK WIND IN THE BLACK HOLE CANDIDATE IGR J17091-3624

    SciTech Connect

    King, A. L.; Miller, J. M.; Maitra, D.; Raymond, J.; Fabian, A. C.; Cackett, E. M.; Reynolds, C. S.; Kallman, T. R.; Rupen, M. P.

    2012-02-20

    Chandra spectroscopy of transient stellar-mass black holes in outburst has clearly revealed accretion disk winds in soft, disk-dominated states, in apparent anti-correlation with relativistic jets in low/hard states. These disk winds are observed to be highly ionized, dense, and to have typical velocities of {approx}1000 km s{sup -1} or less projected along our line of sight. Here, we present an analysis of two Chandra High Energy Transmission Grating spectra of the Galactic black hole candidate IGR J17091-3624 and contemporaneous Expanded Very Large Array (EVLA) radio observations, obtained in 2011. The second Chandra observation reveals an absorption line at 6.91 {+-} 0.01 keV; associating this line with He-like Fe XXV requires a blueshift of 9300{sup +500}{sub -400} km s{sup -1} (0.03c, or the escape velocity at 1000 R{sub Schw}). This projected outflow velocity is an order of magnitude higher than has previously been observed in stellar-mass black holes, and is broadly consistent with some of the fastest winds detected in active galactic nuclei. A potential feature at 7.32 keV, if due to Fe XXVI, would imply a velocity of {approx}14, 600 km s{sup -1} (0.05c), but this putative feature is marginal. Photoionization modeling suggests that the accretion disk wind in IGR J17091-3624 may originate within 43,300 Schwarzschild radii of the black hole and may be expelling more gas than it accretes. The contemporaneous EVLA observations strongly indicate that jet activity was indeed quenched at the time of our Chandra observations. We discuss the results in the context of disk winds, jets, and basic accretion disk physics in accreting black hole systems.

  19. An Extreme X-Ray Disk Wind in the Black Hole Candidate IGR J17091-3624

    NASA Astrophysics Data System (ADS)

    King, A. L.; Miller, J. M.; Raymond, J.; Fabian, A. C.; Reynolds, C. S.; Kallman, T. R.; Maitra, D.; Cackett, E. M.; Rupen, M. P.

    2012-02-01

    Chandra spectroscopy of transient stellar-mass black holes in outburst has clearly revealed accretion disk winds in soft, disk-dominated states, in apparent anti-correlation with relativistic jets in low/hard states. These disk winds are observed to be highly ionized, dense, and to have typical velocities of ~1000 km s-1 or less projected along our line of sight. Here, we present an analysis of two Chandra High Energy Transmission Grating spectra of the Galactic black hole candidate IGR J17091-3624 and contemporaneous Expanded Very Large Array (EVLA) radio observations, obtained in 2011. The second Chandra observation reveals an absorption line at 6.91 ± 0.01 keV associating this line with He-like Fe XXV requires a blueshift of 9300+500 -400 km s-1 (0.03c, or the escape velocity at 1000 R Schw). This projected outflow velocity is an order of magnitude higher than has previously been observed in stellar-mass black holes, and is broadly consistent with some of the fastest winds detected in active galactic nuclei. A potential feature at 7.32 keV, if due to Fe XXVI, would imply a velocity of ~14, 600 km s-1 (0.05c), but this putative feature is marginal. Photoionization modeling suggests that the accretion disk wind in IGR J17091-3624 may originate within 43,300 Schwarzschild radii of the black hole and may be expelling more gas than it accretes. The contemporaneous EVLA observations strongly indicate that jet activity was indeed quenched at the time of our Chandra observations. We discuss the results in the context of disk winds, jets, and basic accretion disk physics in accreting black hole systems.

  20. An Extreme X-ray Disk Wind in the Black Hole Candidate IGR J17091-3624

    NASA Technical Reports Server (NTRS)

    King, A. L.; Miller, J. M.; Raymond, J.; Fabian, A. C.; Reynolds, C. S.; Kallman, T. R.; Maitra, D.; Cackett, E. M.; Rupen, M. P.

    2012-01-01

    Chandra spectroscopy of transient stellar-mass black holes in outburst has clearly revealed accretion disk winds in soft, disk-dominated states, in apparent anti-correlation with relativistic jets in low/hard states. These disk winds are observed to be highly ionized. dense. and to have typical velocities of approx 1000 km/s or less projected along our line of sight. Here. we present an analysis of two Chandra High Energy Transmission Grating spectra of the Galactic black hole candidate IGR J17091-3624 and contemporaneous EVLA radio observations. obtained in 2011. The second Chandra observation reveals an absorption line at 6.91+/-0.01 keV; associating this line with He-like Fe XXV requires a blue-shift of 9300(+500/-400) km/ s (0.03c. or the escape velocity at 1000 R(sub schw)). This projected outflow velocity is an order of magnitude higher than has previously been observed in stellar-mass black holes, and is broadly consistent with some of the fastest winds detected in active galactic nuclei. A potential feature at 7.32 keV, if due to Fe XXVI, would imply a velocity of approx 14600 km/s (0.05c), but this putative feature is marginal. Photoionization modeling suggests that the accretion disk wind in IGR J17091-3624 may originate within 43,300 Schwarzschild radii of the black hole, and may be expelling more gas than accretes. The contemporaneous EVLA observations strongly indicate that jet activity was indeed quenched at the time of our Chandra observations. We discuss the results in the context of disk winds, jets, and basic accretion disk physics in accreting black hole systems

  1. Mean Sea Level Derived from Altimetry and Wind-Driven Numerical Models in the Indian Ocean

    NASA Technical Reports Server (NTRS)

    Perigaud, C.; Delecluse, P.; Greiner, E.; Rogel, P.

    1995-01-01

    Wind-driven model skill in simulating sea level variations in the Indian Ocean depends on our knowledge of the mean ocean dynamic topography. This is demonstrated by running the nonlinear or linear version of a shallow-water model driven by observed winds over Geosat and TOPEX periods. Geosat variations are assimilated in the nonlinear shallow-water model with the objective of obtaining topography data.

  2. TURBULENCE IN THE OUTER REGIONS OF PROTOPLANETARY DISKS. II. STRONG ACCRETION DRIVEN BY A VERTICAL MAGNETIC FIELD

    SciTech Connect

    Simon, Jacob B.; Armitage, Philip J.; Beckwith, Kris; Bai, Xue-Ning; Stone, James M.

    2013-09-20

    We carry out a series of local, vertically stratified shearing box simulations of protoplanetary disks that include ambipolar diffusion and a net vertical magnetic field. The ambipolar diffusion profiles we employ correspond to 30 AU and 100 AU in a minimum mass solar nebula (MMSN) disk model, which consists of a far-ultraviolet-ionized surface layer and low-ionization disk interior. These simulations serve as a follow-up to Simon et al., in which we found that without a net vertical field, the turbulent stresses that result from the magnetorotational instability (MRI) are too weak to account for observed accretion rates. The simulations in this work show a very strong dependence of the accretion stresses on the strength of the background vertical field; as the field strength increases, the stress amplitude increases. For a net vertical field strength (quantified by β{sub 0}, the ratio of gas to magnetic pressure at the disk mid-plane) of β{sub 0} = 10{sup 4} and β{sub 0} = 10{sup 5}, we find accretion rates M-dot ∼10{sup -8}-10{sup –7} M{sub ☉} yr{sup –1}. These accretion rates agree with observational constraints, suggesting a vertical magnetic field strength of ∼60-200 μG and 10-30 μG at 30 AU and 100 AU, respectively, in a MMSN disk. Furthermore, the stress has a non-negligible component due to a magnetic wind. For sufficiently strong vertical field strengths, MRI turbulence is quenched, and the flow becomes largely laminar, with accretion proceeding through large-scale correlations in the radial and toroidal field components as well as through the magnetic wind. In all simulations, the presence of a low-ionization region near the disk mid-plane, which we call the ambipolar damping zone, results in reduced stresses there.

  3. Effect of Pressing Force Applied to a Rotor on Disk-Type Ultrasonic Motor Driven by Self-Oscillation

    NASA Astrophysics Data System (ADS)

    Kusakabe, Chiharu; Tomikawa, Yoshiro; Takahashi, Sadayuki; Takano, Takehiro

    1998-05-01

    In this paper the relationship between the pressing force applied to a rotor and the rotation characteristic of an ultrasonic motor driven by self-oscillation are discussed.The motor used here is an in-phase drive-type ultrasonic motor using two degenerate bending vibration modes of a disk.The picking-up electrical signal caused by self-oscillation is positively fed back into the piezoelectric ceramics for driving through an operational amplifier and a step-up transformer. The pressing force applied to a rotor was measured using a force gauge coupled to the shaft of the ultrasonic motor. As a result, it was confirmed that the selection of the picking-up position for the feedback signal is important for a stable starting and running of the disk-type ultrasonic motor driven by self-oscillation.

  4. Wake Flow Simulations for a Mid-Sized Rim Driven Wind Turbine

    SciTech Connect

    Rob O. Hovsapian; Various

    2014-06-01

    The onshore land where wind farms with conventional wind turbines can be places is limited by various factors including a requirement for relatively high wind speed for turbines' efficient operations. Where such a requirement cannot be met, mid-and small-sized turbines can be a solution. In the current paper simulations for near and for wakes behind a mid-sized Rim Driven Wind Turbine developed by Keuka Energy LLC is analyzed. The purposes of this study is to better understand the wake structure for more efficient wind farm planning. Simulations are conducted with the commercial CFD software STARCCM+

  5. EFFECTS OF AN ACCRETION DISK WIND ON THE PROFILE OF THE BALMER EMISSION LINES FROM ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Flohic, Helene M. L. G.; Eracleous, Michael; Bogdanovic, Tamara E-mail: mce@astro.psu.edu

    2012-07-10

    We explore the connection between active galactic nuclei (AGNs) with single- and double-peaked broad Balmer emission lines by using models dealing with radiative transfer effects through a disk wind. Our primary goal is to assess the applicability of the Murray and Chiang model by making an extensive and systematic comparison of the model predictions with data. In the process, we also verify the original derivation and evaluate the importance of general relativistic effects. As the optical depth through the emission layer increases, the peaks of a double-peaked profile move closer and eventually merge, producing a single peak. The properties of the emission line profile depend as sensitively on the geometric parameters of the line-emitting portion of the disk as they do on the disk-wind parameters. Using a parameter range that encompasses the expected characteristics of the broad-line regions in AGNs, we construct a database of model profiles and measure a set of diagnostic properties. Comparisons of the model profiles with emission lines from a subset of Sloan digital Sky Survey quasars show that observed lines are consistent with moderately large optical depth in the disk wind and a range of disk inclinations i {approx}< 45 Degree-Sign . Including relativistic effects is necessary to produce the asymmetries of observed line profiles.

  6. MAGNETOHYDRODYNAMIC ACCRETION DISK WINDS AS X-RAY ABSORBERS IN ACTIVE GALACTIC NUCLEI

    SciTech Connect

    Fukumura, Keigo; Kazanas, Demosthenes; Behar, Ehud

    2010-05-20

    We present the two-dimensional ionization structure of self-similar magnetohydrodynamic winds off accretion disks around and irradiated by a central X-ray point source. On the basis of earlier observational clues and theoretical arguments, we focus our attention on a subset of these winds, namely those with radial density dependence n(r) {proportional_to} 1/r (r is the spherical radial coordinate). We employ the photoionization code XSTAR to compute the ionic abundances of a large number of ions of different elements and then compile their line-of-sight (LOS) absorption columns. We focus our attention on the distribution of the column density of the various ions as a function of the ionization parameter {xi} (or equivalently r) and the angle {theta}. Particular attention is paid to the absorption measure distribution (AMD), namely their hydrogen-equivalent column per logarithmic {xi} interval, dN{sub H}/dlog {xi}, which provides a measure of the winds' radial density profiles. For the chosen density profile n(r) {proportional_to} 1/r, the AMD is found to be independent of {xi}, in good agreement with its behavior inferred from the X-ray spectra of several active galactic nuclei (AGNs). For the specific wind structure and X-ray spectrum, we also compute detailed absorption line profiles for a number of ions to obtain their LOS velocities, v {approx} 100-300 km s{sup -1} (at log {xi} {approx} 2-3) for Fe XVII and v {approx} 1000-4000 km s{sup -1} (at log {xi} {approx} 4-5) for Fe XXV, in good agreement with the observation. Our models describe the X-ray absorption properties of these winds with only two parameters, namely the mass-accretion rate m-dot and the LOS angle {theta}. The probability of obscuration of the X-ray ionizing source in these winds decreases with increasing m-dot and increases steeply with the LOS inclination angle {theta}. As such, we concur with previous authors that these wind configurations, viewed globally, incorporate all the requisite

  7. How Spirals and Gaps Driven by Companions in Protoplanetary Disks Appear in Scattered Light at Arbitrary Viewing Angles

    NASA Astrophysics Data System (ADS)

    Dong, Ruobing; Fung, Jeffrey; Chiang, Eugene

    2016-07-01

    Direct imaging observations of protoplanetary disks at near-infrared (NIR) wavelengths have revealed structures of potentially planetary origin. Investigations of observational signatures from planet-induced features have so far focused on disks viewed face-on. Combining 3D hydrodynamics and radiative transfer simulations, we study how the appearance of the spiral arms and the gap produced in a disk by a companion varies with inclination and position angle in NIR scattered light. We compare the cases of a 3M J and a 0.1M ⊙ companion, and make predictions suitable for testing with Gemini/GPI, Very Large Telescope/NACO/SPHERE, and Subaru/HiCIAO/SCExAO. We find that the two trailing arms produced by an external perturber can have a variety of morphologies in inclined systems—they may appear as one trailing arm; two trailing arms on the same side of the disk; or two arms winding in opposite directions. The disk ring outside a planetary gap may also mimic spiral arms when viewed at high inclinations. We suggest potential explanations for the features observed in HH 30, HD 141569 A, AK Sco, HD 100546, and AB Aur. We emphasize that inclined views of companion-induced features cannot be converted into face-on views using simple and commonly practiced image deprojections.

  8. The Disk Wind Model of the Broad Line Regions in Active Galactic Nuclei and Cataclysmic Variables

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell

    2002-01-01

    This is the final progress report for our Astrophysics Theory Program (NRA 97-OSS12) grant NAG5-7723. We have made considerable progress on incorporating photoionization calculations with a 2.5D hydrodynamical code to model disk winds in AGNs. Following up on our simultaneous broad band monitoring campaign of the type I Seyfert galaxy NGC 5548, we have investigated the constraints imposed on models of accretion in Seyfert galaxies by their optical, UV, and X-ray spectral energy distributions (SEDs). Using results from thermal Comptonization models that relate the physical properties of the hot inner accretion flow to the thermal reprocessing that occurs in the surrounding colder thin disk, we find that we can constrain the central black hole mass, accretion rate and size scale of the hot central flow. We have applied our model to observations of Seyfert galaxies NGC 3516, NGC 7469 and NGC 5548. Our mass and accretion rate estimates for these objects roughly agree with those found using other methods.

  9. Numerical Simulation and Wake Modeling of Wind Turbine Rotor as AN Actuator Disk

    NASA Astrophysics Data System (ADS)

    Shen, Xiang; Wang, Tongguang; Zhong, Wei

    Numerical simulations of flow fields around the wind turbine rotor simplified as an actuator disk (AD) with zero thickness have been made to investigate the flow structure and wake development in different operation states. A N-S solver has been used and the energy extracted by the rotor is represented by a discontinuous pressure jump through the actuator disk. Axial pressure and velocity development from far upstream to far downstream is fully described by the simulations, which could never be obtained by the momentum theory. It is showed that there are significant differences in wake development between inviscid and viscous conditions. In inviscid simulations, the axial velocity keeps decreasing along the oncoming flow direction, which is consistent with the momentum theory. In viscous simulations, however, the axial velocity first decreases but then gradually recovers approaching to the undisturbed velocity, due to momentum transport from outer flow to wake flow by viscous shear effect. Based on the numerical analysis, the work of this paper is also focused on wake modeling. A new two-dimensional models based on nonlinear wake development has been developed, which is capable to describe the far wake more accurately.

  10. RW Sextantis, a disk with a hot, high-velocity wind

    NASA Technical Reports Server (NTRS)

    Greenstein, J. L.; Oke, J. B.

    1982-01-01

    The continuum spectrum of the flickering blue variable RW Sex was observed from 10,000 to 1150 A. The star is a cataclysmic variable currently stabilized at maximum, and the spectrum is dominated by an accretion disk, with flat spectrum in the ultraviolet, except at more than 5000 A, where a blackbody near 7000 K is seen. A distance of 400 pc is derived, if the latter arises from an F type main sequence star. The accretion rate required is near 10 to the -8th solar masses per year. Only weak emission is seen, except for Lyman alpha; strong, broad UV absorption lines are seen with centers displaced up to -3000 km/s, with terminal velocities up to -4500 km/s, the velocity of escape from a white dwarf. The low X-ray flux may arise from absorption within an unusually dense, hot wind from the innermost portions of the disk. The estimated mass loss rate is nearly 10 to the -12th solar masses per year.

  11. Wind effect on diurnal thermally driven flow in vegetated nearshore of a lake

    NASA Astrophysics Data System (ADS)

    Lin, Y. T.

    2014-12-01

    In this study, a highly idealized model is developed to discuss the interplay of diurnal heating/cooling induced buoyancy and wind stress on thermally driven flow over a vegetated slope. Since the model is linear, the horizontal velocity components can be broken into buoyancy-driven and surface wind-driven parts. Due to the presence of rooted emergent vegetation, the circulation strength even under the surface wind condition is still significantly reduced, and the transient (adjustment) stage for the initial conditions is shorter than that without vegetation. The flow in shallows is dominated by a viscosity/buoyancy balance as the case without wind, while the effect of wind stress is limited to the upper layer in deep water. In the lower layer of deep regions, vegetative drag is prevailing except the near bottom regions, where viscosity dominates. Under the unidirectional wind condition, a critical dimensionless shear stress to stop the induced flow can be found and is a function of horizontal location . For the periodic wind condition, if the two forcing mechanisms work in concert, the circulation magnitude can be increased. For the case where buoyancy and wind shear stress act against each other, the circulation strength is reduced and its structure becomes more complex. However, the flow magnitudes near the bottom for and are comparable because surface wind almost has no influence.

  12. Predicting wind-driven waves in small reservoirs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The earthen levees commonly used for irrigation reservoirs are subjected to significant embankment erosion due to wind-generated waves. The design of bank protection measures relies on adequate prediction of wave characteristics based on wind conditions and fetch length. Current formulations are ba...

  13. Ionization and thermal equilibrium models for O star winds based on time-independent radiation-driven wind theory

    NASA Technical Reports Server (NTRS)

    Drew, J. E.

    1989-01-01

    Ab initio ionization and thermal equilibrium models are calculated for the winds of O stars using the results of steady state radiation-driven wind theory to determine the input parameters. Self-consistent methods are used for the roles of H, He, and the most abundant heavy elements in both the statistical and the thermal equilibrium. The model grid was chosen to encompass all O spectral subtypes and the full range of luminosity classes. Results of earlier modeling of O star winds by Klein and Castor (1978) are reproduced and used to motivate improvements in the treatment of the hydrogen equilibrium. The wind temperature profile is revealed to be sensitive to gross changes in the heavy element abundances, but insensitive to other factors considered such as the mass-loss rate and velocity law. The reduced wind temperatures obtained in observing the luminosity dependence of the Si IV lambda 1397 wind absorption profile are shown to eliminate any prospect of explaining the observed O VI lambda 1036 line profiles in terms of time-independent radiation-driven wind theory.

  14. Infrared Spectro-Interferometry of Massive Stars: Disks, Winds, Outflows, and Stellar Multiplicity

    NASA Astrophysics Data System (ADS)

    Kraus, Stefan

    2007-06-01

    Interferometry is the ultimate technology for overcoming the limitations which diffraction and the atmosphere-induced seeing impose on the resolution achievable with ground-based telescopes. The latest generation of long-baseline interferometric instruments (in particular VLTI/AMBER and VLTI/MIDI), combines the high spatial resolution (typically a few milliarcseconds) with spectroscopic capabilities, allowing one to characterize the geometry of a continuum-emitting region over a wide spectral range or to spatially resolve the emitting region of Doppler-broadened spectral lines in many velocity channels. One branch of astrophysics which might particularly benefit from these advances in technology is the study of massive (O-B type) stars. In order to characterize these stars and their companions and to study accretion and outflow processes in their vicinity with unprecedented angular resolution, we have performed interferometric studies on four key objects, representing the still most enigmatic evolutionary phases of massive stars; namely the pre-main-sequence (MWC 147, NGC 7538 IRS1, Theta 1 Orionis C) and the post-main-sequence phase (Eta Carinae). MWC 147: As indicated by its strong infrared excess, this young Herbig Be star (B6-type) is still associated with residual material from its formation; maybe arranged in a circumstellar disk. In order to investigate the geometry of the material, we combined, for the first time, long-baseline spectro-interferometric observations at near- (NIR) and mid-infrared (MIR) wavelengths (using VLTI/AMBER, VLTI/MIDI, and archival PTI data). Fitting analytic models to the obtained interferometric data revealed a significant elongation of the continuum-emitting region. For a physical interpretation, we modeled the geometry of the dust distribution using 2-D radiative transfer simulations of Keplerian disks with and without a puffed-up inner rim, simultaneously fitting the wavelength-dependent visibilities and the SED, which we

  15. GOne with the Wind ON_Mars (GOWON): A Wind-Driven Networked System of Mobile Sensors on Mars

    NASA Astrophysics Data System (ADS)

    Davoodi, F.; Hajimiri, A.; Murphy, N.; Nikzad, S. H.; Nesnas, I.; Mischna, M.; Nesmith, B.

    2012-06-01

    A revolutionary way of studying the surface of Mars using a wind-driven network of mobile sensors. GOWON could achieve NASA's scientific objectives on Mars in a cost-effective way, leaving a long lasting sensing and searching infrastructure on Mars.

  16. Wind-Driven Ecological Flow Regimes Downstream from Hydropower Dams

    NASA Astrophysics Data System (ADS)

    Kern, J.; Characklis, G. W.

    2012-12-01

    Conventional hydropower can be turned on and off quicker and less expensively than thermal generation (coal, nuclear, or natural gas). These advantages enable hydropower utilities to respond to rapid fluctuations in energy supply and demand. More recently, a growing renewable energy sector has underlined the need for flexible generation capacity that can complement intermittent renewable resources such as wind power. While wind power entails lower variable costs than other types of generation, incorporating it into electric power systems can be problematic. Due to variable and unpredictable wind speeds, wind power is difficult to schedule and must be used when available. As a result, integrating large amounts of wind power into the grid may result in atypical, swiftly changing demand patterns for other forms of generation, placing a premium on sources that can be rapidly ramped up and down. Moreover, uncertainty in wind power forecasts will stipulate increased levels of 'reserve' generation capacity that can respond quickly if real-time wind supply is less than expected. These changes could create new hourly price dynamics for energy and reserves, altering the short-term financial signals that hydroelectric dam operators use to schedule water releases. Traditionally, hourly stream flow patterns below hydropower dams have corresponded in a very predictable manner to electricity demand, whose primary factors are weather (hourly temperature) and economic activity (workday hours). Wind power integration has the potential to yield more variable, less predictable flows at hydro dams, flows that at times could resemble reciprocal wind patterns. An existing body of research explores the impacts of standard, demand-following hydroelectric dams on downstream ecological flows; but weighing the benefits of increased reliance on wind power against further impacts to ecological flows may be a novel challenge for the environmental community. As a preliminary step in meeting this

  17. Data-driven RANS for prediction of wind turbine wakes

    NASA Astrophysics Data System (ADS)

    Iungo, Giacomo Valerio; Viola, Francesco; Ciri, Umberto; Camarri, Simone; Rotea, Mario A.; Leonardi, Stefano

    2015-11-01

    Wind turbine wakes are highly turbulent flows resulting from the interaction between the atmospheric boundary layer and wake vorticity structures. Measurement technologies, such as wind LiDARs, are currently available to perform velocity measurements in a set of locations of wakes past utility-scale wind turbines; however, computational methods are still needed to predict wake downstream evolution. In this work, a low-computational cost and accurate algorithm is proposed for prediction of the spatial evolution of wind turbine wakes. Reynolds-averaged Navier Stokes equations (RANS) are formulated in cylindrical coordinates and simplified by using a boundary layer type approximation. Turbulence effects are taken into account with a mixing length model calibrated on the available observations. In this study, observations of wind turbine wakes consist in LES data of wakes produced by a wind turbine operating with different incoming wind and loading conditions. The mixing length calibrated on the LES data is constant in the near wake and only affected by the incoming turbulence, whereas further downstream it increases roughly linearly with the downstream position and with increased slope for increasing rotational speed of the turbine.

  18. Origins of wind-driven intraseasonal sea level variations in the North Indian Ocean coastal waveguide

    NASA Astrophysics Data System (ADS)

    Suresh, I.; Vialard, J.; Lengaigne, M.; Han, W.; McCreary, J.; Durand, F.; Muraleedharan, P. M.

    2013-11-01

    this paper, we show that a linear, continuously stratified ocean model reproduces observed wind-driven intraseasonal sea level variability in the coastal waveguide of the Northern Indian Ocean (NIO). Sensitivity experiments with intraseasonal wind forcing selectively applied in the equatorial region, Bay of Bengal, and Arabian Sea show that a large part of the basin-scale sea level variations are driven by zonal wind fluctuations along the equator. Within the NIO coastal waveguide, the contribution of remote equatorial forcing decreases from ~80-90% in the Andaman Sea to ~50% northeast of Sri Lanka and then increases to ~60-70% along the west coast of India. During the southwest monsoon, intraseasonal wind variations become stronger over the NIO, resulting in a larger contribution of local wind forcing to sea level variability along the west (up to 60%) and east (up to 40%) coasts of India.

  19. Radiatively driven winds for different power law spectra. [for explaining narrow and broad quasar absorption lines

    NASA Technical Reports Server (NTRS)

    Beltrametti, M.

    1980-01-01

    The analytic solutions for radiatively driven winds are given for the case in which the winds are driven by absorption of line and continuum radiation. The wind solutions are analytically estimated for different parameters of the central source and for different power law spectra. For flat spectra, three sonic points can exist; it is shown, however, that only one of these sonic points is physically realistic. Parameters of the central source are given which generate winds of further interest for explaining the narrow and broad absorption lines in quasars. For the quasar model presented here, winds which could give rise to the narrow absorption lines are generated by central sources with parameters which are not realistic for quasars.

  20. SLOW RADIATION-DRIVEN WIND SOLUTIONS OF A-TYPE SUPERGIANTS

    SciTech Connect

    Cure, M.; Cidale, L.; Granada, A.

    2011-08-10

    The theory of radiation-driven winds succeeded in describing terminal velocities and mass-loss rates of massive stars. However, for A-type supergiants the standard m-CAK solution predicts values of mass loss and terminal velocity higher than the observed values. Based on the existence of a slow wind solution in fast rotating massive stars, we explore numerically the parameter space of radiation-driven flows to search for new wind solutions in slowly rotating stars that could explain the origin of these discrepancies. We solve the one-dimensional hydrodynamical equation of rotating radiation-driven winds at different stellar latitudes and explore the influence of ionization changes throughout the wind in the velocity profile. We have found that for particular sets of stellar and line-force parameters, a new slow solution exists over the entire star when the rotational speed is slow or even zero. In the case of slow rotating A-type supergiant stars, the presence of this novel slow solution at all latitudes leads to mass losses and wind terminal velocities which are in agreement with the observed values. The theoretical wind-momentum-luminosity relationship derived with these slow solutions shows very good agreement with the empirical relationship. In addition, the ratio between the terminal and escape velocities, which provides a simple way to predict stellar wind energy and momentum input into the interstellar medium, is also properly traced.

  1. NGC 1365: A low column density state unveiling a low ionization disk wind

    SciTech Connect

    Braito, V.; Reeves, J. N.; Gofford, J.; Nardini, E.; Porquet, D.; Risaliti, G.

    2014-11-01

    We present the time-resolved spectral analysis of the XMM-Newton data of NGC 1365 collected during one XMM-Newton observation, which caught this 'changing-look' active galactic nucleus in a high flux state characterized also by a low column density (N {sub H} ∼ 10{sup 22} cm{sup –2}) of the X-ray absorber. During this observation, the low-energy photoelectric cut-off is at about ∼1 keV and the primary continuum can be investigated with the XMM-Newton-RGS data, which show strong spectral variability that can be explained as a variable low N {sub H} that decreased from N {sub H} ∼ 10{sup 23} cm{sup –2} to 10{sup 22} cm{sup –2} in a 100 ks timescale. The spectral analysis of the last segment of the observation revealed the presence of several absorption features that can be associated with an ionized (log ξ ∼ 2 erg cm s{sup –1}) outflowing wind (v {sub out} ∼ 2000 km s{sup –1}). We detected for the first time a possible P-Cygni profile of the Mg XII Lyα line associated with this mildly ionized absorber indicative of a wide angle outflowing wind. We suggest that this wind is a low ionization zone of the highly ionized wind present in NGC 1365, which is responsible for the iron K absorption lines and is located within the variable X-ray absorber. At the end of the observation, we detected a strong absorption line at E ∼ 0.76 keV most likely associated with a lower ionization zone of the absorber (log ξ ∼ 0.2 erg cm s{sup –1}, N {sub H} ∼ 10{sup 22} cm{sup –2}), which suggests that the variable absorber in NGC 1365 could be a low ionization zone of the disk wind.

  2. Grain Retention and Formation of Planetesimals near the Snow Line in MRI-driven Turbulent Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Kretke, Katherine A.; Lin, D. N. C.

    2007-07-01

    The first challenge in the formation of both terrestrial planets and the cores of gas giants is the retention of grains in protoplanetary disks. In most regions of these disks, gas attains sub-Keplerian speeds as a consequence of a negative pressure gradient. Hydrodynamic drag leads to orbital decay and depletion of the solid material in the disk, with characteristic timescales as short as only a few hundred years for meter-sized objects at 1 AU. In this Letter, we suggest a particle retention mechanism that promotes the accumulation of grains and the formation of planetesimals near the water sublimation front or ``snow line.'' This model is based on the assumption that, in the regions most interesting for planet formation, the viscous evolution of the disk is due to turbulence driven by the magnetorotational instability (MRI) in the surface layers of the disk. The depth to which MRI effectively generates turbulence is a strong function of grain size and abundance. A sharp increase in the grain-to-gas density ratio across the snow line reduces the column depth of the active layer. As the disk evolves toward a quasi-steady state, this change in the active layer creates a local maximum in radial distribution of the gas surface density and pressure, causing the gas to rotate at super-Keplerian speed and halting the inward migration of grains. This scenario presents a robust process for grain retention that may aid in the formation of proto-gas giant cores preferentially near the snow line.

  3. Emission of gravitational waves by precession of slim accretion disks dynamically driven by the Bardeen-Petterson effect

    NASA Astrophysics Data System (ADS)

    Alfonso, W. D.; Sánchez, L. A.; Mosquera, H. J.

    2015-11-01

    The electromagnetic radiation emitted from some astrophysical objects such as active galactic nuclei (AGN), micro-quasars (M-QSRs), and central engines of gamma-ray burst (GRBs), seems to have a similar physical origin: a powerful jet of plasma ejected from a localized system, presumably composed of an accretion disk encircling a compact object. This radiation is generally beamed in the polar directions and in some cases, it appears to have a spiral-like structure that could be explained if the central system itself precesses. In this work, we use the slim disk accretion model, presented by Popham et al. (1999), to studying the gravitational waves (GWs) emitted by the precession of the accretion disk around a solar-mass Kerr black hole (KBH). For practical purposes, this model describes the central engine of a class of GRBs when some astrophysical constrains are fulfilled. The induced precession considered here is driven by the Bardeen-Petterson effect, which results from the combination of viscous effects in such disks and the relativistic frame-dragging effect. We evaluate the feasibility of direct detection of the GWs computed for such a model and show that the precession of this kind of systems could be detected by gravitational wave observatories like DECIGO, ultimate-DECIGO, and BBO, with higher probability if such a class of sources are placed at distances less than 1 Mpc.

  4. Surface Alfven Wave Contribution to Coronal Heating in a Wave-Driven Solar Wind Model

    NASA Astrophysics Data System (ADS)

    Evans, Rebekah M.; Opher, M.; Oran, R.; Sokolov, I. V.

    2010-05-01

    We present results from the development of a solar wind model driven by Alfven waves with realistic damping mechanisms. We investigate the contribution of surface Alfven wave damping to the heating of the corona and acceleration of the solar wind. These waves are present and damp in regions of strong gradients in density or magnetic field (e.g., the border between open and closed magnetic fields). Recently Oran et al. (2009) implemented a first principle solar wind model driven by a spectrum of Alfven waves into the Space Weather Modeling Framework. The wave transport equation, including wave advection and dissipation, is coupled to the MHD equations for the wind. The waves contribute to the momentum and energy of the wind through the action of wave pressure. Here we extend this model to include surface Alfven wave damping as a dissipation mechanism, considering waves with frequencies lower than those damped in the chromosphere and on the order of those dominating the heliosphere (0.0001 to 100 Hz.) We demonstrate the influence of the damping by quantifying the differences between a solution that includes surface Alfven wave damping and one driven solely by Alfven wave pressure. We relate to possible observational signatures of heat transfer by surface Alfven wave damping. This work is the first to study surface Alfven waves self-consistently as an energy driven for the solar wind in a 4D (three in space and one in frequency) environment. This work is supported by the NSF CAREER Grant.

  5. Soil erosion rates by wind-driven rain from a sandy soil in Denmark

    NASA Astrophysics Data System (ADS)

    Fister, W.; Kuhn, N. J.; Itin, N.; Tesch, S.; Heckrath, G.; Ries, J. B.

    2012-04-01

    Soil erosion by wind and water is able to cause severe soil loss from agricultural fields. Laboratory studies in recent years have shown that wind most probably has an increasing effect on soil erosion rates by water. However, field studies have so far not been able to quantify and proof this assumption explicitly. Especially the differentiation between the influence of windless and wind-driven erosion seems to be the major issue. The objectives of this study were, therefore, to explicitly investigate the importance of wind-driven rain in relation to erosion rates without the effect of wind by applying a newly developed Portable Wind and Rainfall Simulator (PWRS) that is able to simulate the processes both separately and simultaneously. The PWRS was used on bare sandy soil near Viborg, Denmark. Prior to simulation the soil was ploughed and after consolidation harrowed to create surface structures and roughness representing typical conditions after seed bed preparation. To facilitate the separation of specific influences by wind-driven rain and to avoid systematic errors a defined order of four consecutive test runs was established: 0) single wind test run for 10 min, 1) single rainfall test run on dry soil, 2) single rainfall test run on moist soil, 3) simultaneous wind and rainfall test run (wind-driven rainfall). Each rainfall simulation lasted for 30 minutes with a 30 min break in between to allow for initial drainage of the soil and for remounting sediment catchers. By utilizing a gutter in combination with wedge-shaped sediment traps it was possible to separate between splash and runoff erosion from the 2.2 m2 plot. The results show a wide range of soil detachment raging from zero up to more than 500 g m-2 in 30 minutes. Five out of nine test sequences support the theory that wind-driven rain causes more erosion than windless rain. The relation between the two processes is therefore not as clear as expected and seems to be dominated by the natural variability

  6. Wind effects on the lateral structure of density-driven circulation in Chesapeake Bay

    NASA Astrophysics Data System (ADS)

    Guo, Xinyu; Valle-Levinson, Arnoldo

    2008-10-01

    The response of the density-driven circulation in the Chesapeake Bay to wind forcing was studied with numerical experiments. A model of the bay with realistic bathymetry was first applied to produce the density-driven flow under average river discharge and tidal forcing. Subsequently, four spatially uniform wind fields (northeasterly, northwesterly, southwesterly, and southeasterly) were imposed to examine the resulting cross-estuary structure of salinity and flow fields. In general, northeasterly and northwesterly winds intensified the density-driven circulation in the upper and middle reaches of the bay, whereas southeasterly and southwesterly winds weakened it. The response was different in the lower bay, where downwind flow from the upper and middle reaches of the bay competed with onshore/offshore coastal flows. Wind remote effects were dominant, over local effects, on volume transports through the bay entrance. However, local effects were more influential in establishing the sea-level slopes that drove subtidal flows and salinity fields in most of the bay. The effect of vertical stratification on wind-induced flows was also investigated by switching it off. The absence of stratification allowed development of Ekman layers that reached depths of the same order as the water depth. Consequently, bathymetric effects became influential on the homogeneous flow structure causing the wind-induced flow inside the bay to show a marked transverse structure: downwind over the shallow areas and upwind in the channels. In the presence of stratification, Ekman layers became shallower and the wind-induced currents showed weaker transverse structure than those that developed in the absence of stratification. In essence, the wind-driven flows were horizontally sheared under weak stratification and vertically sheared under stratified conditions.

  7. Geomagnetic and solar wind driven signatures in the temperature and zonal wind re-analysis data in Antarctica

    NASA Astrophysics Data System (ADS)

    Regi, Mauro; De Lauretis, Marcello; Redaelli, Gianluca; Francia, Patrizia

    2016-04-01

    Recent experimental results suggest that changes in the atmospheric conductivity, due to energetic electrons precipitation, as well as high latitude potential variations, both associated to geomagnetic activity driven by the solar wind, can affect the atmospheric dynamics. In this work we present an investigation of the correspondence of temperature/zonal wind velocity fluctuations in the stratosphere and troposphere with geomagnetic ULF power fluctuations and polar cap potential difference during the solar cycle 23. Daily values of the ERA-Interim temperature and zonal wind over Antarctica are compared with the daily geomagnetic ULF power, in the Pc5 (1-7 mHz) and Pc1-2 (100 mHz-1 Hz) frequency ranges, at Terra Nova Bay (Antarctica, corrected geomagnetic latitude λ~ 80°S) and with solar wind data.

  8. THE DISK WIND IN THE RAPIDLY SPINNING STELLAR-MASS BLACK HOLE 4U 1630–472 OBSERVED WITH NuSTAR

    SciTech Connect

    King, Ashley L.; Miller, Jon M.; Walton, Dominic J.; Fürst, Felix; Harrison, Fiona A.; Barret, Didier; Boggs, Steven E.; Craig, William W.; Krivonos, Roman; Tomsick, John A.; Christensen, Finn E.; Fabian, Andy C.; Hailey, Charles J.; Mori, Kaya; Natalucci, Lorenzo; Stern, Daniel; Zhang, William W.

    2014-03-20

    We present an analysis of a short NuSTAR observation of the stellar-mass black hole and low-mass X-ray binary 4U 1630–472. Reflection from the inner accretion disk is clearly detected for the first time in this source, owing to the sensitivity of NuSTAR. With fits to the reflection spectrum, we find evidence for a rapidly spinning black hole, a{sub ∗}=0.985{sub −0.014}{sup +0.005} (1σ statistical errors). However, archival data show that the source has relatively low radio luminosity. Recently claimed relationships between jet power and black hole spin would predict either a lower spin or a higher peak radio luminosity. We also report the clear detection of an absorption feature at 7.03 ± 0.03 keV, likely signaling a disk wind. If this line arises in dense, moderately ionized gas (log ξ=3.6{sub −0.3}{sup +0.2}) and is dominated by He-like Fe XXV, the wind has a velocity of v/c=0.043{sub −0.007}{sup +0.002} (12900{sub −2100}{sup +600} km s{sup –1}). If the line is instead associated with a more highly ionized gas (log ξ=6.1{sub −0.6}{sup +0.7}), and is dominated by Fe XXVI, evidence of a blueshift is only marginal, after taking systematic errors into account. Our analysis suggests the ionized wind may be launched within 200-1100 Rg, and may be magnetically driven.

  9. The influence of wind-driven ocean circulation on earth rotation

    SciTech Connect

    Steinberg, D.J.

    1992-01-01

    In this work, the authors have studied the role of barotropic, wind driven ocean circulation in exciting polar motion and the length of day at weekly to seasonal frequencies. The rotation of the earth is variable in length of day and in position of the rotation pole. The sources of these variations are not fully known. They have used the Cox and Bryan (1984) general circulation ocean model driven by daily NMC global winds to compute first the ocean currents and sea level variations, and then the rotational excitation functions, between 1980 and 1986. It is found that the wind driven ocean circulation can explain much of the residual power in the length of day which is not accounted for by atmospheric angular momentum. It also appears that there is significant power, as much as 50% of that needed, in polar motion excitation at the Chandler and seasonal frequencies.

  10. Radiatively driven winds from magnetic, fast-rotating stars

    NASA Technical Reports Server (NTRS)

    Nerney, S.

    1986-01-01

    An analytical procedure is developed to solve the magnetohydrodynamic equations for the stellar wind problem in the strong-magnetic field, optically thick limit for hot stars. The slow-mode, Alfven, and fast-mode critical points are modified by the radiation terms in the force equation but in a manner that can be treated relatively easily. Once the velocities at the critical points and the distances to the points are known, the streamline constants are determined in a straight-forward manner. This allows the structure of the wind to be elucidated without recourse to complicated computational schemes.

  11. High-Performance Computing and Visualization of Tsunamis and Wind-Driven Waves

    NASA Astrophysics Data System (ADS)

    Liu, Y. S.; Zhang, H.; Yuen, D. A.; Wang, M.

    2005-12-01

    The Sumatran earthquake and the tsunami waves produced have awakened great scientific interest in wave-propagation over undulated bottom topography and along complicated coastlines. The recent hurricane Katrina has also called our attention to shorter period waves near the coast. Analytical approximations are valid over long wavelengths in the far field. For near field regions with complex geography and other complications, such as islands and harbors, numerical simulations must be employed to obtain accurate predictions in time and space. Nowadays using 10**7 to 10**8 grid points become quite routine with massively parallel computers and large RAM and disk memories. Besides tsunamis, river discharges from upstream events and waves driven by hurricanes are also of societal relevance, especially in central China and now also in U.S.A. Using automatic grid generation methods, we have devised a finite-element based code, for the three stages which culminates with the use of the augmented Lagrangian method for the run-up process, as well as the Arbitrary Lagrange- Euler Configuration method to tackle the free surface problem near the seashore. This formulation allows for the wave surface to be self-consistently determined within a linearized framework and is computationally very fast. Our continuous efforts are focussed on seeking novel algorithms and state of art techniques, in order to unravel the mysteries associated with tsunami wave propagation and wind-driven waves in 3-D. We have cast the Navier-Stokes equations within the framework of a compressible model with an equation of state for sea-water. Our formulation allows the tracking and simulation of three stages , principally the formation, propagation and run-up stages of tsunami and waves coming ashore. The sequential version of this code can run on a workstation with 4 Gbyte memory less than 2 minutes per time step for one million grid points. This code has also been parallelized with MPI-2 and has good

  12. Effects of El Niño-driven changes in wind patterns on North Pacific albatrosses.

    PubMed

    Thorne, L H; Conners, M G; Hazen, E L; Bograd, S J; Antolos, M; Costa, D P; Shaffer, S A

    2016-06-01

    Changes to patterns of wind and ocean currents are tightly linked to climate change and have important implications for cost of travel and energy budgets in marine vertebrates. We evaluated how El Niño-Southern Oscillation (ENSO)-driven wind patterns affected breeding Laysan and black-footed albatross across a decade of study. Owing to latitudinal variation in wind patterns, wind speed differed between habitat used during incubation and brooding; during La Niña conditions, wind speeds were lower in incubating Laysan (though not black-footed) albatross habitat, but higher in habitats used by brooding albatrosses. Incubating Laysan albatrosses benefited from increased wind speeds during El Niño conditions, showing increased travel speeds and mass gained during foraging trips. However, brooding albatrosses did not benefit from stronger winds during La Niña conditions, instead experiencing stronger cumulative headwinds and a smaller proportion of trips in tailwinds. Increased travel costs during brooding may contribute to the lower reproductive success observed in La Niña conditions. Furthermore, benefits of stronger winds in incubating habitat may explain the higher reproductive success of Laysan albatross during El Niño conditions. Our findings highlight the importance of considering habitat accessibility and cost of travel when evaluating the impacts of climate-driven habitat change on marine predators. PMID:27278360

  13. Wind Tunnel Test of Subscale Ringsail and Disk-Gap-Band Parachutes

    NASA Technical Reports Server (NTRS)

    Zumwalt, Carlie H.; Cruz, Juan R.; Keller, Donald F.; O'Farrell, Clara

    2016-01-01

    A subsonic wind tunnel test was conducted to determine the drag and static aerodynamic coefficients, as well as to capture the dynamic motions of a new Supersonic Ringsail parachute developed by the Low Density Supersonic Decelerator Project. To provide a comparison against current Mars parachute technology, the Mars Science Laboratory's Disk-Gap-Band parachute was also included in the test. To account for the effect of fabric permeability, two fabrics ("low" and "standard" permeability) were used to fabricate each parachute canopy type, creating four combinations of canopy type and fabric material. A wide range of test conditions were covered during the test, spanning Mach numbers from 0.09 to 0.5, and static pressures from 103 to 2116 pounds per square inch (psf) (nominal values). The fabric permeability is shown to have a first-order effect on the aerodynamic coefficients and dynamic motions of the parachutes. For example, for a given parachute type and test condition, models fabricated from "low" permeability fabric always have a larger drag coefficient than models fabricated from "standard" permeability material. This paper describes the test setup and conditions, how the results were analyzed, and presents and discusses a sample of the results. The data collected during this test is being used to create and improve parachute aerodynamic databases for use in flight dynamics simulations for missions to Mars.

  14. Radar remote sensing of wind-driven land degradation processes in northeastern Patagonia.

    PubMed

    del Valle, H F; Blanco, P D; Metternicht, G I; Zinck, J A

    2010-01-01

    Wind-driven land degradation negatively impacts on rangeland production and infrastructure in the Valdes Peninsula, northeastern Patagonia. The Valdes Peninsula has the most noticeable dunefields of the Patagonian drylands. Wind erosion has been assessed at different scales in this region, but often with limited data. In general, terrain features caused by wind activity are better discriminated by active microwaves than by sensors operating in the visible and infrared regions of the electromagnetic spectrum. This paper aims to analyze wind-driven land degradation processes that control the radar backscatter observed in different sources of radar imagery. We used subsets derived from SIR-C, ERS-1 and 2, ENVISAT ASAR, RADARSAT-1, and ALOS PALSAR data. The visibility of aeolian features on radar images is mostly a function of wavelength, polarization, and incidence angle. Stabilized sand deposits are clearly observed in radar images, with defined edges but also signals of ongoing wind erosion. One of the most conspicuous features corresponds to old track sand dunes, a mixture of active and inactive barchanoid ridges and parabolic dunes. This is a clear example of deactivation of migrating dunes under the influence of vegetation. The L-band data reveal details of these sand ridges, whereas the C-band data only allow detecting a few of the larger tracks. The results of this study enable us to make recommendations about the utility of some radar sensor configurations for wind-driven land degradation reconnaissance in mid-latitude regions. PMID:20048294

  15. Lateral circulation driven by axial winds in an idealized, partially mixed estuary

    NASA Astrophysics Data System (ADS)

    Chen, S.; Sanford, L. P.; Ralston, D. K.

    2008-12-01

    A 3D hydrodynamic model (ROMS) is used to investigate lateral circulation driven by axial wind events in a partially mixed estuary. The channel is straight with a triangular cross-section. The model results suggest that driving mechanisms for lateral circulation during axial wind events are different between stratified and unstratified conditions. When the water column is stratified, the lateral flow and salinity structures below the halocline closely resemble those driven by boundary mixing, and rotational effects are important. When the water column mixes vertically, rotational effects do not drive significant lateral circulation. Instead, differential advection of the axial salinity gradient by wind-driven axial flow is responsible for controlling lateral salinity gradients that in turn drive bottom-divergent lateral circulation during down-estuary wind and bottom- convergent lateral circulation during up-estuary winds. The wind-induced and tidally-induced lateral shear interacts to drive the variability of lateral flow. A Hansen-Rattray-like scaling is applied and shows good predictive skills for lateral flows under unstratified conditions. Supporting observations from the Hudson River estuary is provided.

  16. Spatial development of the wind-driven water surface flow

    NASA Astrophysics Data System (ADS)

    Chemin, Rémi; Caulliez, Guillemette

    2015-04-01

    The water velocity field induced by wind and waves beneath an air-water interface is investigated experimentally versus fetch in the large Marseille-Luminy wind wave tank. Measurements of the vertical velocity profiles inside the subsurface shear layer were performed by a three-component Nortek acoustic Doppler velocimeter. The surface drift current was also derived from visualizations of small floating drifters recorded by a video camera looking vertically from above the water surface. Surface wave height and slopes were determined simultaneously by means of capacitance gauges and a single-point laser slope system located in the immediate vicinity of the profiler. Observations were made at steady low to moderate wind speeds and various fetches ranging between 1 and 15 meters. This study first corroborates that the thin subsurface water boundary layer forced by wind at the leading edge of the water sheet is laminar. The surface drift current velocity indeed increases gradually with fetch, following a 1/3 power law characteristic of an accelerated flat-plate laminar boundary layer. The laminar-turbulent transition manifests itself by a sudden decrease in the water surface flow velocity and a rapid deepening of the boundary layer due to the development of large-scale longitudinal vortices. Further downstream, when characteristic capillary-gravity wind waves develop at the surface, the water flow velocity increases again rapidly within a sublayer of typically 4 mm depth. This phenomenon is explained by the occurrence of an intense momentum flux from waves to the mean flow due to the dissipation of parasitic capillaries generated ahead of the dominant wave crests. This phenomenon also sustains significant small-scale turbulent motions within the whole boundary layer. However, when gravity-capillary waves of length longer than 10 cm then grow at the water surface, the mean flow velocity field decreases drastically over the whole boundary layer thickness. At the same

  17. Shrinking galaxy disks with fountain-driven accretion from the halo

    SciTech Connect

    Elmegreen, Bruce G.; Struck, Curtis; Hunter, Deidre A. E-mail: curt@iastate.edu

    2014-12-01

    Star formation in most galaxies requires cosmic gas accretion because the gas consumption time is short compared to the Hubble time. This accretion presumably comes from a combination of infalling satellite debris, cold flows, and condensation of hot halo gas at the cool disk interface, perhaps aided by a galactic fountain. In general, the accretion will have a different specific angular momentum than the part of the disk that receives it, even if the gas comes from the nearby halo. The gas disk then expands or shrinks over time. Here we show that condensation of halo gas at a rate proportional to the star formation rate in the fountain model will preserve an initial shape, such as an exponential, with a shrinking scale length, leaving behind a stellar disk with a slightly steeper profile of younger stars near the center. This process is slow for most galaxies, producing imperceptible radial speeds, and it may be dominated by other torques, but it could be important for blue compact dwarfs, which tend to have large, irregular gas reservoirs and steep blue profiles in their inner stellar disks.

  18. The multiphase starburst-driven galactic wind in NGC 5394

    NASA Astrophysics Data System (ADS)

    Martín-Fernández, Pablo; Jiménez-Vicente, Jorge; Zurita, Almudena; Mediavilla, Evencio; Castillo-Morales, África

    2016-05-01

    We present a detailed study of the neutral and ionised gas phases in the galactic wind for the nearby starburst galaxy NGC 5394 based on new integral field spectroscopy obtained with the INTEGRAL fibre system at the William Herschel Telescope. The neutral gas phase in the wind is detected via the interstellar Na I D doublet absorption. After a careful removal of the stellar contribution to these lines, a significant amount of neutral gas (˜107 M⊙) is detected in a central region of ˜1.75 kpc size. This neutral gas is blueshifted by ˜165 km s-1 with respect to the underlying galaxy. The mass outflow of neutral gas is comparable to the star formation rate of the host galaxy. Simultaneously, several emission lines (Hα, [N II], [S II]) are also analysed looking for the ionised warm phase counterpart of the wind. A careful kinematic decomposition of the line profiles reveals the presence of a secondary, broader, kinematic component. This component is found roughly in the same region where the Na I D absorption is detected. It presents higher [N II]/Hα and [S II]/Hα line ratios than the narrow component at the same locations, indicative of contamination by shock ionization. This secondary component also presents blueshifted velocities, although smaller than those measured for the neutral gas, averaging to ˜-30 km s-1. The mass and mass outflow rate of the wind is dominated by the neutral gas, of which a small fraction might be able to escape the gravitational potential of the host galaxy. The observations in this system can be readily understood within a bipolar gas flow scenario.

  19. The multiphase starburst-driven galactic wind in NGC 5394

    NASA Astrophysics Data System (ADS)

    Martín-Fernández, Pablo; Jiménez-Vicente, Jorge; Zurita, Almudena; Mediavilla, Evencio; Castillo-Morales, África

    2016-09-01

    We present a detailed study of the neutral and ionized gas phases in the galactic wind for the nearby starburst galaxy NGC 5394 based on new integral field spectroscopy obtained with the INTEGRAL fibre system at the William Herschel Telescope. The neutral gas phase in the wind is detected via the interstellar Na I D doublet absorption. After a careful removal of the stellar contribution to these lines, a significant amount of neutral gas (˜107 M⊙) is detected in a central region of ˜1.75 kpc size. This neutral gas is blueshifted by ˜165 km s-1 with respect to the underlying galaxy. The mass outflow of neutral gas is comparable to the star formation rate of the host galaxy. Simultaneously, several emission lines (Hα, [N II], [S II]) are also analysed looking for the ionized warm phase counterpart of the wind. A careful kinematic decomposition of the line profiles reveals the presence of a secondary, broader, kinematic component. This component is found roughly in the same region where the Na I D absorption is detected. It presents higher [N II]/Hα and [S II]/Hα line ratios than the narrow component at the same locations, indicative of contamination by shock ionization. This secondary component also presents blueshifted velocities, although smaller than those measured for the neutral gas, averaging to ˜-30 km s-1. The mass and mass outflow rate of the wind is dominated by the neutral gas, of which a small fraction might be able to escape the gravitational potential of the host galaxy. The observations in this system can be readily understood within a bipolar gas flow scenario.

  20. Data-driven Reduced Order Model for prediction of wind turbine wakes

    NASA Astrophysics Data System (ADS)

    Iungo, G. V.; Santoni-Ortiz, C.; Abkar, M.; Porté-Agel, F.; Rotea, M. A.; Leonardi, S.

    2015-06-01

    In this paper a new paradigm for prediction of wind turbine wakes is proposed, which is based on a reduced order model (ROM) embedded in a Kalman filter. The ROM is evaluated by means of dynamic mode decomposition performed on high fidelity LES numerical simulations of wind turbines operating under different operational regimes. The ROM enables to capture the main physical processes underpinning the downstream evolution and dynamics of wind turbine wakes. The ROM is then embedded within a Kalman filter in order to produce a time-marching algorithm for prediction of wind turbine wake flows. This data-driven algorithm enables data assimilation of new measurements simultaneously to the wake prediction, which leads to an improved accuracy and a dynamic update of the ROM in presence of emerging coherent wake dynamics observed from new available data. Thanks to its low computational cost, this numerical tool is particularly suitable for real-time applications, control and optimization of large wind farms.

  1. Atlantic to Mediterranean Sea Level Difference Driven by Winds near Gibraltar Strait

    NASA Technical Reports Server (NTRS)

    Menemenlis, Dimitris; Fukumori, Ichiro; Lee, Tong

    2006-01-01

    Observations and numerical simulations show that winds near Gibraltar Strait cause an Atlantic Ocean to Mediterranean Sea sea level difference of 20 cm peak to peak with a 3-cm standard deviation for periods of days to years. Theoretical arguments and numerical experiments establish that this wind-driven sea level difference is caused in part by storm surges due to alongshore winds near the North African coastline on the Atlantic side of Gibraltar. The fraction of the Moroccan coastal current offshore of the 284-m isobath is deflected across Gibraltar Strait, west of Camarinal Sill, resulting in a geostrophic surface pressure gradient that contributes to a sea level difference at the stationary limit. The sea level difference is also caused in part by the along-strait wind setup, with a contribution proportional to the along-strait wind stress and to the length of Gibraltar Strait and adjoining regions and inversely proportional to its depth.

  2. Solar wind driven dust acoustic instability with Lorentzian kappa distribution

    SciTech Connect

    Arshad, Kashif; Ehsan, Zahida; Khan, S. A.; Mahmood, S.

    2014-02-15

    In a three species electron-ion-dust plasma following a generalized non-Maxwellian distribution function (Lorentzian or kappa), it is shown that a kinetic instability of dust-acoustic mode exists. The instability threshold is affected when such (quasineutral) plasma permeates through another static plasma. Such case is of interest when the solar wind is streaming through the cometary plasma in the presence of interstellar dust. In the limits of phase velocity of the waves larger and smaller than the thermal velocity of dust particles, the dispersion properties and growth rate of dust-acoustic mode are investigated analytically with validation via numerical analysis.

  3. Analysis of rotation-driven electrokinetic flow in microscale gap regions of rotating disk systems.

    PubMed

    Soong, C Y; Wang, S H

    2004-01-15

    In the present study, a novel theoretical model is developed for the analysis of rotating thermal-fluid flow characteristics in the presence of electrokinetic effects in the microscale gap region between two parallel disks under specified electrostatic, rotational, and thermal boundary conditions. The major flow configuration considered is a rotor-stator disk system. Axisymmetric Navier-Stokes equations with consideration of electric body force stemming from streaming potential are employed in the momentum balance. Variations of the fluid viscosity and permittivity with the local fluid temperature are considered. Between two disks, the axial distribution of the electric potential is determined by the Poisson equation with the concentration distributions of positive and negative ions obtained from Nernst-Planck equations for convection-diffusion of the ions in the flow field. Effects of disk rotation and electrostatic and thermal conditions on the electrokinetic flow and thermal characteristics are investigated. The electrohydrodynamic mechanisms are addressed with an interpretation of the coupling nature of the electric and flow fields. Finally, solutions with electric potential determined by employing nonlinear or linearized Poisson-Boltzmann equation and/or invoking assumptions of constant properties are compared with the predictions of the present model for justification of various levels of approximation in solution of the electrothermal flow behaviors in rotating microfluidic systems. PMID:14654411

  4. ANGULAR MOMENTUM TRANSPORT AND VARIABILITY IN BOUNDARY LAYERS OF ACCRETION DISKS DRIVEN BY GLOBAL ACOUSTIC MODES

    SciTech Connect

    Belyaev, Mikhail A.; Stone, James M.; Rafikov, Roman R.

    2012-11-20

    Disk accretion onto a weakly magnetized central object, e.g., a star, is inevitably accompanied by the formation of a boundary layer near the surface, in which matter slows down from the highly supersonic orbital velocity of the disk to the rotational velocity of the star. We perform high-resolution two-dimensional hydrodynamical simulations in the equatorial plane of an astrophysical boundary layer with the goal of exploring the dynamics of non-axisymmetric structures that form there. We generically find that the supersonic shear in the boundary layer excites non-axisymmetric quasi-stationary acoustic modes that are trapped between the surface of the star and a Lindblad resonance in the disk. These modes rotate in a prograde fashion, are stable for hundreds of orbital periods, and have a pattern speed that is less than and of the order of the rotational velocity at the inner edge of the disk. The origin of these intrinsically global modes is intimately related to the operation of a corotation amplifier in the system. Dissipation of acoustic modes in weak shocks provides a universal mechanism for angular momentum and mass transport even in purely hydrodynamic (i.e., non-magnetized) boundary layers. We discuss the possible implications of these trapped modes for explaining the variability seen in accreting compact objects.

  5. Generalized Wind Turbine Actuator Disk Parameterization in the Weather Research and Forecasting (WRF) Model for Real-World Simulations

    NASA Astrophysics Data System (ADS)

    Marjanovic, N.; Mirocha, J. D.; Chow, F. K.

    2013-12-01

    In this work, we examine the performance of a generalized actuator disk (GAD) model embedded within the Weather Research and Forecasting (WRF) atmospheric model to study wake effects on successive rows of turbines at a North American wind farm. These wake effects are of interest as they can drastically reduce down-wind energy extraction and increase turbulence intensity. The GAD, which is designed for turbulence-resolving simulations, is used within downscaled large-eddy simulations (LES) forced with mesoscale simulations and WRF's grid nesting capability. The GAD represents the effects of thrust and torque created by a wind turbine on the atmosphere within a disk representing the rotor swept area. The lift and drag forces acting on the turbine blades are parameterized using blade-element theory and the aerodynamic properties of the blades. Our implementation permits simulation of turbine wake effects and turbine/airflow interactions within a realistic atmospheric boundary layer flow field, including resolved turbulence, time-evolving mesoscale forcing, and real topography. The GAD includes real-time yaw and pitch control to respond realistically to changing flow conditions. Simulation results are compared to SODAR data from operating wind turbines and an already existing WRF mesoscale turbine drag parameterization to validate the GAD parameterization.

  6. Assisted stellar suicide: the wind-driven evolution of the recurrent nova T Pyxidis

    NASA Astrophysics Data System (ADS)

    Knigge, Ch.; King, A. R.; Patterson, J.

    2000-12-01

    We show that the extremely high luminosity of the short-period recurrent nova T Pyx in quiescence can be understood if this system is a wind-driven supersoft x-ray source (SSS). In this scenario, a strong, radiation-induced wind is excited from the secondary star and accelerates the binary evolution. The accretion rate is therefore much higher than in an ordinary cataclysmic binary at the same orbital period, as is the luminosity of the white dwarf primary. In the steady state, the enhanced luminosity is just sufficient to maintain the wind from the secondary. The accretion rate and luminosity predicted by the wind-driven model for T Pyx are in good agreement with the observational evidence. X-ray observations with Chandra or XMM may be able to confirm T Pyx's status as a SSS. T Pyx's lifetime in the wind-driven state is on the order of a million years. Its ultimate fate is not certain, but the system may very well end up destroying itself, either via the complete evaporation of the secondary star, or in a Type Ia supernova if the white dwarf reaches the Chandrasekhar limit. Thus either the primary, the secondary, or both may currently be committing assisted stellar suicide.

  7. Wind-driven upwelling around grounded tabular icebergs

    NASA Astrophysics Data System (ADS)

    Stern, Alon A.; Johnson, Eric; Holland, David M.; Wagner, Till J. W.; Wadhams, Peter; Bates, Richard; Abrahamsen, E. Povl; Nicholls, Keith W.; Crawford, Anna; Gagnon, Jonathan; Tremblay, Jean-Eric

    2015-08-01

    Temperature and salinity data collected around grounded tabular icebergs in Baffin Bay in 2011, 2012, and 2013 indicate wind-induced upwelling at certain locations around the icebergs. These data suggest that along one side of the iceberg, wind forcing leads to Ekman transport away from the iceberg, which causes upwelling of the cool saline water from below. The upwelling water mixes with the water above the thermocline, causing the mixed layer to become cooler and more saline. Along the opposite side of the iceberg, the surface Ekman transport moves towards the iceberg, which causes a sharpening of the thermocline as warm fresh water is trapped near the surface. This results in higher mixed layer temperatures and lower mixed layer salinities on this side of the iceberg. Based on these in situ measurements, we hypothesize that the asymmetries in water properties around the iceberg, caused by the opposing effects of upwelling and sharpening of the thermocline, lead to differential deterioration around the iceberg. Analysis of satellite imagery around iceberg PII-B-1 reveals differential decay around the iceberg, in agreement with this mechanism.

  8. Kawasaki disease and ENSO-driven wind circulation

    NASA Astrophysics Data System (ADS)

    Ballester, Joan; Burns, Jane C.; Cayan, Dan; Nakamura, Yosikazu; Uehara, Ritei; Rodó, Xavier

    2013-05-01

    disease (KD) is the most common cause of acquired heart disease in children worldwide. Recently, a climatological study suggested that KD may be triggered by a windborne agent traveling across the north Pacific through the westerly wind flow prevailing at midlatitudes. Here we use KD records to describe the association between enhanced disease activity on opposite sides of the basin and different phases of the El Niño-Southern Oscillation (ENSO) phenomenon, via the linkage to these tropospheric winds. Results show that years with higher-than-normal KD cases in Japan preferentially occur during either El Niño Modoki or La Niña conditions, while in San Diego during the mature phase of El Niño or La Niña events. Given that ENSO offers a degree of predictability at lead times of 6 months, these modulations suggest that seasonal predictions of KD could be used to alert clinicians to periods of increased disease activity.

  9. Atmospheric escape by magnetically driven wind from gaseous planets

    SciTech Connect

    Tanaka, Yuki A.; Suzuki, Takeru K.; Inutsuka, Shu-ichiro

    2014-09-01

    We calculate the mass loss driven by magnetohydrodynamic (MHD) waves from hot Jupiters by using MHD simulations in one-dimensional flux tubes. If a gaseous planet has a magnetic field, MHD waves are excited by turbulence at the surface, dissipate in the upper atmosphere, and drive gas outflows. Our calculation shows that mass-loss rates are comparable to the observed mass-loss rates of hot Jupiters; therefore, it is suggested that gas flow driven by MHD waves can play an important role in the mass loss from gaseous planets. The mass-loss rate varies dramatically with the radius and mass of a planet: a gaseous planet with a small mass but an inflated radius produces a very large mass-loss rate. We also derive an analytical expression for the dependence of mass-loss rate on planet radius and mass that is in good agreement with the numerical calculation. The mass-loss rate also depends on the amplitude of the velocity dispersion at the surface of a planet. Thus, we expect to infer the condition of the surface and the internal structure of a gaseous planet from future observations of mass-loss rate from various exoplanets.

  10. Production of Light-element Primary Process Nuclei in Neutrino-driven Winds

    NASA Astrophysics Data System (ADS)

    Arcones, A.; Montes, F.

    2011-04-01

    We present first comparisons between light-element primary process (LEPP) abundances observed in some ultra metal-poor (UMP) stars and nucleosynthesis calculations based on long-time hydrodynamical simulations of core-collapse supernovae and their neutrino-driven wind. UMP star observations indicate that Z >= 38 elements include the contributions of at least two nucleosynthesis components: r-process nuclei that are synthesized by rapid neutron capture in a yet unknown site and LEPP elements (mainly Sr, Y, and Zr). We show that neutrino-driven wind simulations can explain the observed LEPP pattern. We explore in detail the sensitivity of the calculated abundances to the electron fraction, which is a key nucleosynthesis parameter but poorly known due to uncertainties in neutrino interactions and transport. Our results show that the observed LEPP pattern can be reproduced in proton- and neutron-rich winds.

  11. The solar-wind driven magnetosphere{endash}ionosphere as a complex dynamical system

    SciTech Connect

    Horton, W.; Smith, J.P.; Weigel, R.; Crabtree, C.; Doxas, I.; Goode, B.; Cary, J.

    1999-11-01

    The solar-wind driven magnetosphere{endash}ionosphere system is a classic example of a complex dynamical system (CDS). The defining properties of a CDS are (1) sensitivity to initial conditions; (2) multiple space-time scales; (3) bifurcation sequences with hysteresis in transitions between attractors; and (4) noncompositionality. Noncompositionality means that the behavior of the system as a whole is different from the dynamics of its subcomponents taken with passive or no couplings. In particular the dynamics of the geomagnetic tail plasma depends on its coupling to the dissipative ionospheric plasma and on the nature of the solar-wind driving electric field over a suitably long (many hours) previous time interval. These complex dynamical system features are shown here in detail using the known WINDMI model for the solar-wind driven magnetosphere{endash}ionosphere (MI) system. Numerous features in the bifurcation sequence are identified with known substorm and storm characteristics. {copyright} {ital 1999 American Institute of Physics.}

  12. PRODUCTION OF LIGHT-ELEMENT PRIMARY PROCESS NUCLEI IN NEUTRINO-DRIVEN WINDS

    SciTech Connect

    Arcones, A.; Montes, F.

    2011-04-10

    We present first comparisons between light-element primary process (LEPP) abundances observed in some ultra metal-poor (UMP) stars and nucleosynthesis calculations based on long-time hydrodynamical simulations of core-collapse supernovae and their neutrino-driven wind. UMP star observations indicate that Z {>=} 38 elements include the contributions of at least two nucleosynthesis components: r-process nuclei that are synthesized by rapid neutron capture in a yet unknown site and LEPP elements (mainly Sr, Y, and Zr). We show that neutrino-driven wind simulations can explain the observed LEPP pattern. We explore in detail the sensitivity of the calculated abundances to the electron fraction, which is a key nucleosynthesis parameter but poorly known due to uncertainties in neutrino interactions and transport. Our results show that the observed LEPP pattern can be reproduced in proton- and neutron-rich winds.

  13. Chandra Spectroscopy of MAXI J1305-704: Detection of an Infalling Black Hole Disk Wind?

    NASA Astrophysics Data System (ADS)

    Miller, J. M.; Raymond, J.; Kallman, T. R.; Maitra, D.; Fabian, A. C.; Proga, D.; Reynolds, C. S.; Reynolds, M. T.; Degenaar, N.; King, A. L.; Cackett, E. M.; Kennea, J. A.; Beardmore, A.

    2014-06-01

    active galactic nuclei, as well as the potential role of failed winds in emerging connections between disk outflows and black hole state transitions.

  14. Fluid Aspects of Solar Wind Disturbances Driven by Coronal Mass Ejections. Appendix 3

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.; Riley, Pete

    2001-01-01

    Transient disturbances in the solar wind initiated by coronal eruptions have been modeled for many years, beginning with the self-similar analytical models of Parker and Simon and Axford. The first numerical computer code (one-dimensional, gas dynamic) to study disturbance propagation in the solar wind was developed in the late 1960s, and a variety of other codes ranging from simple one-dimensional gas dynamic codes through three-dimensional gas dynamic and magnetohydrodynamic codes have been developed in subsequent years. For the most part, these codes have been applied to the problem of disturbances driven by fast CMEs propagating into a structureless solar wind. Pizzo provided an excellent summary of the level of understanding achieved from such simulation studies through about 1984, and other reviews have subsequently become available. More recently, some attention has been focused on disturbances generated by slow CMEs, on disturbances driven by CMEs having high internal pressures, and disturbance propagation effects associated with a structured ambient solar wind. Our purpose here is to provide a brief tutorial on fluid aspects of solar wind disturbances derived from numerical gas dynamic simulations. For the most part we illustrate disturbance evolution by propagating idealized perturbations, mimicking different types of CMEs, into a structureless solar wind using a simple one-dimensional, adiabatic (except at shocks), gas dynamic code. The simulations begin outside the critical point where the solar wind becomes supersonic and thus do not address questions of how the CMEs themselves are initiated. Limited to one dimension (the radial direction), the simulation code predicts too strong an interaction between newly ejected solar material and the ambient wind because it neglects azimuthal and meridional motions of the plasma that help relieve pressure stresses. Moreover, the code ignores magnetic forces and thus also underestimates the speed with which

  15. Solar Polar Jets Driven by Magnetic Reconnection, Gravity, and Wind

    NASA Astrophysics Data System (ADS)

    DeVore, C. Richard; Karpen, Judith T.; Antiochos, Spiro K.

    2014-06-01

    Polar jets are dynamic, narrow, radially extended structures observed in solar EUV emission near the limb. They originate within the open field of coronal holes in “anemone” regions, which are intrusions of opposite magnetic polarity. The key topological feature is a magnetic null point atop a dome-shaped fan surface of field lines. Applied stresses readily distort the null into a current patch, eventually inducing interchange reconnection between the closed and open fields inside and outside the fan surface (Antiochos 1996). Previously, we demonstrated that magnetic free energy stored on twisted closed field lines inside the fan surface is released explosively by the onset of fast reconnection across the current patch (Pariat et al. 2009, 2010). A dense jet comprised of a nonlinear, torsional Alfvén wave is ejected into the outer corona along the newly reconnected open field lines. Now we are extending those exploratory simulations by including the effects of solar gravity, solar wind, and expanding spherical geometry. We find that the model remains robust in the resulting more complex setting, with explosive energy release and dense jet formation occurring in the low corona due to the onset of a kink-like instability, as found in the earlier Cartesian, gravity-free, static-atmosphere cases. The spherical-geometry jet including gravity and wind propagates far more rapidly into the outer corona and inner heliosphere than a comparison jet simulation that excludes those effects. We report detailed analyses of our new results, compare them with previous work, and discuss the implications for understanding remote and in-situ observations of solar polar jets.This work was supported by NASA’s LWS TR&T program.

  16. Using Wind Driven Tumbleweed Rovers to Explore Martian Gully Features

    NASA Technical Reports Server (NTRS)

    Antol, Jeffrey; Woodard, Stanley E.; Hajos, Gregory A.; Heldmann, Jennifer L.; Taylor, Bryant D.

    2004-01-01

    Gully features have been observed on the slopes of numerous Martian crater walls, valleys, pits, and graben. Several mechanisms for gully formation have been proposed, including: liquid water aquifers (shallow and deep), melting ground ice, snow melt, CO2 aquifers, and dry debris flow. Remote sensing observations indicate that the most likely erosional agent is liquid water. Debate concerns the source of this water. Observations favor a liquid water aquifer as the primary candidate. The current strategy in the search for life on Mars is to "follow the water." A new vehicle known as a Tumbleweed rover may be able to conduct in-situ investigations in the gullies, which are currently inaccessible by conventional rovers. Deriving mobility through use of the surface winds on Mars, Tumbleweed rovers would be lightweight and relatively inexpensive thus allowing multiple rovers to be deployed in a single mission to survey areas for future exploration. NASA Langley Research Center (LaRC) is developing deployable structure Tumbleweed concepts. An extremely lightweight measurement acquisition system and sensors are proposed for the Tumbleweed rover that greatly increases the number of measurements performed while having negligible mass increase. The key to this method is the use of magnetic field response sensors designed as passive inductor-capacitor circuits that produce magnetic field responses whose attributes correspond to values of physical properties for which the sensors measure. The sensors do not need a physical connection to a power source or to data acquisition equipment resulting in additional weight reduction. Many of the sensors and interrogating antennae can be directly placed on the Tumbleweed using film deposition methods such as photolithography thus providing further weight reduction. Concepts are presented herein for methods to measure subsurface water, subsurface metals, planetary winds and environmental gases.

  17. Using Wind Driven Tumbleweed Rovers to Explore Martian Gully Features

    NASA Technical Reports Server (NTRS)

    Antol, Jeffrey; Woodard, Stanley E.; Hajos, Gregory A.; Heldmann, Jennifer L.; Taylor, Bryant D.

    2005-01-01

    Gully features have been observed on the slopes of numerous Martian crater walls, valleys, pits, and graben. Several mechanisms for gully formation have been proposed, including: liquid water aquifers (shallow and deep), melting ground ice, snow melt, CO2 aquifers, and dry debris flow. Remote sensing observations indicate that the most likely erosional agent is liquid water. Debate concerns the source of this water. Observations favor a liquid water aquifer as the primary candidate. The current strategy in the search for life on Mars is to "follow the water." A new vehicle known as a Tumbleweed rover may be able to conduct in-situ investigations in the gullies, which are currently inaccessible by conventional rovers. Deriving mobility through use of the surface winds on Mars, Tumbleweed rovers would be lightweight and relatively inexpensive thus allowing multiple rovers to be deployed in a single mission to survey areas for future exploration. NASA Langley Research Center (LaRC) is developing deployable structure Tumbleweed concepts. An extremely lightweight measurement acquisition system and sensors are proposed for the Tumbleweed rover that greatly increases the number of measurements performed while having negligible mass increase. The key to this method is the use of magnetic field response sensors designed as passive inductor-capacitor circuits that produce magnetic field responses whose attributes correspond to values of physical properties for which the sensors measure. The sensors do not need a physical connection to a power source or to data acquisition equipment resulting in additional weight reduction. Many of the sensors and interrogating antennae can be directly placed on the Tumbleweed using film deposition methods such as photolithography thus providing further weight reduction. Concepts are presented herein for methods to measure subsurface water, subsurface metals, planetary winds and environmental gases.

  18. The relevance of wind-driven rain for future soil erosion research

    NASA Astrophysics Data System (ADS)

    Fister, Wolfgang; Marzen, Miriam; Iserloh, Thomas; Seeger, Manuel; Heckrath, Goswin; Greenwood, Philip; Kuhn, Nikolaus J.; Ries, Johannes B.

    2014-05-01

    The influence of wind on falling raindrops and its potential to alter soil erosion rates was already proposed during the 1960s, but never really reached broad awareness in the soil erosion research community. Laboratory investigations over the last 15 years confirmed earlier findings and have proven that wind modifies the characteristics of falling raindrops in many ways. Most importantly, the impact angles and impact frequencies, as well as the drop velocities, drop sizes and hence the kinetic energy are modified. Consequently, the results of laboratory experiments on highly disturbed, loose, and mostly sandy substrates indicate that soil detachment and transport/splash distances of particles increase under the influence of wind. However, these experiments cannot reflect the complexity of naturally developed soils and a direct transfer of these findings to field conditions is therefore limited. So far, only a few field studies have reported increased erosion rates due to splash drift or increased runoff by wind-driven rain. Because of the lack of simultaneous reference measurements without the influence of wind, these studies were not able to discriminate between the different processes and thus couldn not clearly prove the relevance of wind-driven rainfall. Despite all these findings, the awareness of this phenomenon is, in our opinion, still limited. Almost all rainfall simulations exclude the factor of wind as a disturbance to reach more representative rainfall conditions on the plot. We think, that among other reasons, this underestimation of the influence of wind could be due to the absence of an adequate measurement device to simulate these processes and additionally, due to the fact that the relevance of wind-driven rain in a landscape context has not yet been proven. To overcome this lack of a useful device, and to take the research from the laboratory to the field on real soils again, the first portable wind and rainfall simulator was developed within

  19. Sub-arcsecond [Fe ii] spectro-imaging of the DG Tauri jet. Periodic bubbles and a dusty disk wind?

    NASA Astrophysics Data System (ADS)

    Agra-Amboage, V.; Dougados, C.; Cabrit, S.; Reunanen, J.

    2011-08-01

    Context. The origin of protostellar jets as well as their impact on the regulation of angular momentum and the inner disk physics are still crucial open questions in star formation. Aims: We aim to test the different proposed ejection processes in T Tauri stars through high-angular resolution observations of forbidden-line emission from the inner DG Tauri microjet. Methods: We present spectro-imaging observations of the DG Tauri jet obtained with SINFONI/VLT in the lines of [Fe ii]λ1.64 μm, 1.53 μm with 0.15 arcsec angular resolution and R = 3000 spectral resolution. We analyze the morphology and kinematics, derive electronic densities and mass-flux rates and discuss the implications for proposed jet launching models. Results: (1) We observe an onion-like velocity structure in [Fe ii] in the blueshifted jet, similar to that observed in optical lines. High-velocity (HV) gas at ≃ -200 km s-1 is collimated inside a half-opening angle of 4° and medium-velocity (MV) gas at ≃ -100 km s-1 in a cone with an half-opening angle 14° (2) Two new axial jet knots are detected in the blue jet, as well as a more distant bubble with corresponding counter-bubble. The periodic knot ejection timescale is revised downward to 2.5 yrs. (3) The redshifted jet is detected only beyond 0.7 arcsec from the star, yielding revised constraints on the disk surface density. (4) From comparison to [O i] data we infer iron depletion of a factor 3 at high velocities and a factor 10 at speeds below -100 km s-1. (5) The mass-fluxes in each of the medium and high-velocity components of the blueshifted lobe are ≃1.6 ± 0.8 × 10-8 M⊙ yr-1, representing 0.02 - 0.2 of the disk accretion rate. Conclusions: The medium-velocity conical [Fe ii] flow in the DG Tau jet is too fast and too narrow to trace photo-evaporated matter from the disk atmosphere. Both its kinematics and collimation cannot be reproduced by the X-wind, nor can the "conical magnetospheric wind". The level of Fe gas phase

  20. Wind-driven coastal upwelling and westward circulation in the Yucatan shelf

    NASA Astrophysics Data System (ADS)

    Ruiz-Castillo, Eugenio; Gomez-Valdes, Jose; Sheinbaum, Julio; Rioja-Nieto, Rodolfo

    2016-04-01

    The wind-driven circulation and wind-induced coastal upwelling in a large shelf sea with a zonally oriented coast are examined. The Yucatan shelf is located to the north of the Yucatan peninsula in the eastern Gulf of Mexico. This area is a tropical shallow body of water with a smooth sloping bottom and is one of the largest shelves in the world. This study describes the wind-driven circulation and wind-induced coastal upwelling in the Yucatan shelf, which is forced by easterly winds throughout the year. Data obtained from hydrographic surveys, acoustic current profilers and environmental satellites are used in the analysis. Hydrographic data was analyzed and geostrophic currents were calculated in each survey. In addition an analytical model was applied to reproduce the currents. The results of a general circulation model were used with an empirical orthogonal function analysis to study the variability of the currents. The study area is divided in two regions: from the 40 m to the 200 m isobaths (outer shelf) and from the coast to the 40 m isobath (inner shelf). At the outer shelf, observations revealed upwelling events throughout the year, and a westward current with velocities of approximately 0.2 m s-1 was calculated from the numerical model output and hydrographic data. In addition, the theory developed by Pedlosky (2007) for a stratified fluid along a sloping bottom adequately explains the current's primary characteristics. The momentum of the current comes from the wind, and the stratification is an important factor in its dynamics. At the inner shelf, observations and numerical model output show a wind-driven westward current with maximum velocities of 0.20 m s-1. The momentum balance in this region is between local acceleration and friction. A cold-water band is developed during the period of maximum upwelling.

  1. Wind-driven Water Bodies : a new paradigm for lake geology

    NASA Astrophysics Data System (ADS)

    Nutz, A.; Schuster, M.; Ghienne, J. F.; Roquin, C.; Bouchette, F. A.

    2015-12-01

    In this contribution we emphasize the importance in some lakes of wind-related hydrodynamic processes (fair weather waves, storm waves, and longshore, cross-shore and bottom currents) as a first order forcing for clastics remobilization and basin infill. This alternative view contrasts with more classical depositional models for lakes where fluvial-driven sedimentation and settling dominates. Here we consider three large lakes/paleo-lakes that are located in different climatic and geodynamic settings: Megalake Chad (north-central Africa), Lake Saint-Jean (Québec, Canada), and Lake Turkana (Kenya, East African Rift System). All of these three lake systems exhibit well developed modern and ancient high-energy littoral morphosedimentary structures which directly derive from wind-related hydrodynamics. The extensive paleo-shorelines of Megalake Chad are composed of beach-foredune ridges, spits, wave-dominated deltas, barriers, and wave-ravinment surface. For Lake Saint-Jean the influence of wind is also identified below the wave-base at lake bottom from erosional surfaces, and sediment drifts. In the Lake Turkana Basin, littoral landforms and deposits are identified for three different time intervals (today, Holocene, Plio-Pleistocene) evidencing that wind-driven hydrodynamics can be preserved in the geological record. Moreover, a preliminary global survey suggests that numerous modern lakes (remote sensing) and paleo-lakes (bibliographic review) behave as such. We thus coin the term "Wind-driven Water Bodies" (WWB) to refer to those lake systems where sedimentation (erosion, transport, deposition) is dominated by wind-induced hydrodynamics at any depth, as it is the case in the marine realm for shallow seas. Integrating wind forcing in lake models has strong implications for basin analysis (paleoenvironments and paleoclimates restitutions, resources exploration), but also for coastal engineering, wildlife and reservoirs management, or leisure activities.

  2. Magnetically Driven Accretion Flows in the Kerr Metric. IV. Dynamical Properties of the Inner Disk

    NASA Astrophysics Data System (ADS)

    Krolik, Julian H.; Hawley, John F.; Hirose, Shigenobu

    2005-04-01

    This paper continues the analysis of a set of general relativistic three-dimensional MHD simulations of accreting tori in the Kerr metric with different black hole spins. We focus on bound matter inside the initial pressure maximum, where the time-averaged motion of gas is inward and an accretion disk forms. We use the flows of mass, angular momentum, and energy in order to understand dynamics in this region. The sharp reduction in accretion rate with increasing black hole spin reported in the first paper of this series is explained by a strongly spin-dependent outward flux of angular momentum conveyed electromagnetically; when a/M>=0.9, this flux can be comparable to the inward angular momentum flux carried by the matter. In all cases, there is outward electromagnetic angular momentum flux throughout the flow; in other words, contrary to the assertions of traditional accretion disk theory, there is in general no ``stress edge,'' no surface within which the stress is zero. The retardation of accretion in the inner disk by electromagnetic torques also alters the radial distribution of surface density, an effect that may have consequences for observable properties, such as Compton reflection. The net accreted angular momentum is sufficiently depressed by electromagnetic effects that in the most rapidly spinning black holes mass growth can lead to spin-down. Spinning black holes also lose energy by Poynting flux; this rate is also a strongly increasing function of black hole spin, rising to >~10% of the rest-mass accretion rate at very high spin. As the black hole spins faster, the path of the Poynting flux changes from being predominantly within the accretion disk to being predominantly within the funnel outflow.

  3. Instabilities of spin torque driven auto-oscillations of a ferromagnetic disk magnetized in plane

    NASA Astrophysics Data System (ADS)

    Mancilla-Almonacid, D.; Arias, R. E.

    2016-06-01

    The stability of the magnetization auto-oscillations of the ferromagnetic free layer of a cylindrical nanopillar structure is studied theoretically using a classical Hamiltonian formalism for weakly interacting nonlinear waves, in a weakly dissipative system. The free layer corresponds to a very thin circular disk, made of a soft ferromagnetic material like Permalloy, and it is magnetized in plane by an externally applied magnetic field. There is a dc electric current that traverses the structure, becomes spin polarized by a fixed layer, and excites the modes of the free layer through the transfer of spin angular momentum. If this current exceeds a critical value, it is possible to generate a large amplitude periodic auto-oscillation of a dynamic mode of the magnetization. We separate our theoretical study into two parts. First, we consider an approximate expression for the demagnetizing field in the disk, i.e., H⃗D=-4 π Mzz ̂ or a very thin film approximation, and secondly we consider the effect of the full demagnetizing field, where one sees important effects due to the edges of the disk. In both cases, as the applied current density is increased, we determine the modes that will first auto-oscillate and when these become unstable to the growth of other modes, i.e., their ranges of "isolated" auto-oscillation.

  4. Resonant behavior of stochastic oscillations of general relativistic disks driven by a memory-damped friction

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Yun; Chen, Pei-Jie; Zhang, Liang-Ying

    2015-05-01

    By using a generalized Langevin equation to describe the vertical oscillations of a general relativistic disk subjected to a memory-damped friction and a stochastic force, we derive the power spectrum density (PSD) of accretion disk oscillating luminosity by the method of Laplace transform, and discuss the influence of the system parameters on the resonant behavior in PSD curves. The results show that as the damping strength α and memory time τ of the friction increase, the variation of PSD with spectrum frequency f from monotonous decreasing to occurring maximums, and the phenomenon of a general stochastic resonance (SR) with a single peak and multi-peaks can be found in PSD curves. The radial distance parameter n, the mass M, and spin parameter a* of the black hole determine the inherent frequency of vertical oscillations in the disk, and they have significant influences on the SR phenomena in a system of black hole binaries. Project supported by the National Natural Science Foundation of China (Grant No. 11045004) and the Key Program of the Scientific Research Foundation of the Education Bureau of Hubei Province, China (Grant No. D20132603).

  5. Wind tunnel tests of modified cross, hemisflo, and disk-gap-band parachutes with emphasis in the transonic range

    NASA Technical Reports Server (NTRS)

    Foughner, J. T., Jr.; Alexander, W. C.

    1974-01-01

    Transonic wind-tunnel studies were conducted with modified cross, hemisflo, and disk-gap-band parachute models in the wake of a cone-cylinder shape forebody. The basic cross design was modified with the addition of a circumferential constraining band at the lower edge of the canopy panels. The tests covered a Mach number range of 0.3 to 1.2 and a dynamic pressure range from 479 Newtons per square meter to 5746 Newtons per square meter. The parachute models were flexible textile-type structures and were tethered to a rigid forebody with a single flexible riser. Different size models of the modified cross and disk-gap-band canopies were tested to evaluate scale effects. Model reference diameters were 0.30, 0.61, and 1.07 meters (1.0, 2.0, and 3.5 ft) for the modified cross; and nominal diameters of 0.25 and 0.52 meter (0.83 and 1.7 ft) for the disk-gap-band; and 0.55 meter (1.8 ft) for the hemisflo. Reefing information is presented for the 0.61-meter-diameter cross and the 0.52-meter-diameter disk-gap-band. Results are presented in the form of the variation of steady-state average drag coefficient with Mach number. General stability characteristics of each parachute are discussed. Included are comments on canopy coning, spinning, and fluttering motions.

  6. MIGRATION OF EXTRASOLAR PLANETS: EFFECTS FROM X-WIND ACCRETION DISKS

    SciTech Connect

    Adams, Fred C.; Cai, Mike J.; Lizano, Susana

    2009-09-10

    Magnetic fields are dragged in from the interstellar medium during the gravitational collapse that forms star/disk systems. Consideration of mean field magnetohydrodynamics in these disks shows that magnetic effects produce sub-Keplerian rotation curves and truncate the inner disk. This Letter explores the ramifications of these predicted disk properties for the migration of extrasolar planets. Sub-Keplerian flow in gaseous disks drives a new migration mechanism for embedded planets and modifies the gap-opening processes for larger planets. This sub-Keplerian migration mechanism dominates over Type I migration for sufficiently small planets (m{sub P} {approx}< 1 M {sub +}) and/or close orbits (r {approx}< 1 AU). Although the inclusion of sub-Keplerian torques shortens the total migration time by only a moderate amount, the mass accreted by migrating planetary cores is significantly reduced. Truncation of the inner disk edge (for typical system parameters) naturally explains final planetary orbits with periods P {approx} 4 days. Planets with shorter periods, P {approx} 2 days, can be explained by migration during FU-Orionis outbursts, when the mass accretion rate is high and the disk edge moves inward. Finally, the midplane density is greatly increased at the inner truncation point of the disk (the X-point); this enhancement, in conjunction with continuing flow of gas and solids through the region, supports the in situ formation of giant planets.

  7. Potential errors in using one anemometer to characterize the wind power over an entire rotor disk

    NASA Technical Reports Server (NTRS)

    Simon, R. L.

    1982-01-01

    Wind data collected at four levels on a 90-m tower in a prospective wind farm area are used to evaluate how well the 10-m wind speed data with and without intermittent vertical profile measurements compare with the 90-m tower data. If a standard, or even predictable, wind speed profile existed, there would be no need for a large, expensive tower. This cost differential becomes even more significant if several towers are needed to study a prospective wind farm.

  8. Data-driven modeling of the solar wind from 1 Rs to 1 AU

    NASA Astrophysics Data System (ADS)

    Feng, Xueshang; Ma, Xiaopeng; Xiang, Changqing

    2015-12-01

    We present here a time-dependent three-dimensional magnetohydrodynamic (MHD) solar wind simulation from the solar surface to the Earth's orbit driven by time-varying line-of-sight solar magnetic field data. The simulation is based on the three-dimensional (3-D) solar-interplanetary (SIP) adaptive mesh refinement (AMR) space-time conservation element and solution element (CESE) MHD (SIP-AMR-CESE MHD) model. In this simulation, we first achieve the initial solar wind background with the time-relaxation method by inputting a potential field obtained from the synoptic photospheric magnetic field and then generate the time-evolving solar wind by advancing the initial 3-D solar wind background with continuously varying photospheric magnetic field. The model updates the inner boundary conditions by using the projected normal characteristic method, inputting the high-cadence photospheric magnetic field data corrected by solar differential rotation, and limiting the mass flux escaping from the solar photosphere. We investigate the solar wind evolution from 1 July to 11 August 2008 with the model driven by the consecutive synoptic maps from the Global Oscillation Network Group. We compare the numerical results with the previous studies on the solar wind, the solar coronal observations from the Extreme ultraviolet Imaging Telescope board on Solar and Heliospheric Observatory, and the measurements from OMNI at 1 astronomical unit (AU). Comparisons show that the present data-driven MHD model's results have overall good agreement with the large-scale dynamical coronal and interplanetary structures, including the sizes and distributions of the coronal holes, the positions and shapes of the streamer belts, the heliocentric distances of the Alfvénic surface, and the transitions of the solar wind speeds. However, the model fails to capture the small-sized equatorial holes, and the modeled solar wind near 1 AU has a somewhat higher density and weaker magnetic field strength than

  9. An Investigation of Hydrodynamic Instabilities in Wind-Driven Flames

    NASA Astrophysics Data System (ADS)

    Miller, Colin; Verma, Salman; Trouve, Arnaud; Finney, Mark; Forthofer, Jason; McAllister, Sara; Gollner, Michael

    2015-11-01

    Recent findings on the importance of convective heating by direct flame contact in wildland fire spread have highlighted the importance of fluid dynamics in the flame spread process. Researchers have observed several dominant coherent structures in the three-dimensional flame in both small and large-scale experiments. This experimental study seeks an understanding of the physical mechanisms by which coherent structures are induced by hydrodynamic instabilities. Experimental data is derived from both a nonreactive hot plate and a stationary burner in a well-characterized laminar flow wind tunnel. Streamwise vortices promote upwash and downwash regions of the flow, and scaling analyses of temperature and velocity maps are proposed. Emphasis is placed on elucidating the regimes in which certain instability mechanisms dominate. The relative strength of shear forces and buoyant forces at certain locations in the boundary layer are examined as contributors to behavior analogous to Klebanoff modes, Gortler vortices, Rayleigh-Taylor instabilities, or Tollmien-Schlichting waves. To further supplement experimental results, comparisons to numerical simulations of hot plates will be made.

  10. Shelfbreak current over the Canadian Beaufort Sea continental slope: Wind-driven events in January 2005

    NASA Astrophysics Data System (ADS)

    Dmitrenko, Igor A.; Kirillov, Sergei A.; Forest, Alexandre; Gratton, Yves; Volkov, Denis L.; Williams, William J.; Lukovich, Jennifer V.; Belanger, Claude; Barber, David G.

    2016-04-01

    The shelfbreak current over the Beaufort Sea continental slope is known to be one of the most energetic features of the Beaufort Sea hydrography. In January 2005, three oceanographic moorings deployed over the Canadian (eastern) Beaufort Sea continental slope simultaneously recorded two consecutive shelfbreak current events with along-slope eastward bottom-intensified flow up to 120 cm s-1. Both events were generated by the local wind forcing associated with two Pacific-born cyclones passing north of the Beaufort Sea continental slope toward the Canadian Archipelago. Over the mooring array, the associated westerly wind exceeded 15 m s-1. These two cyclones generated storm surges along the Beaufort Sea coast with sea surface height (SSH) rising up to 1.4 m following the two westerly wind maxima. We suggest that the westerly along-slope wind generated a surface Ekman onshore transport. The associated SSH increase over the shelf produced a cross-slope pressure gradient that drove an along-slope eastward geostrophic current, in the same direction as the wind. This wind-driven barotropic flow was superimposed on the background baroclinic bottom-intensified shelfbreak current that consequently amplified. Summer-fall satellite altimetry data for 1992-2013 show that the SSH gradient in the southeastern Beaufort Sea is enhanced over the upper continental slope in response to frequent storm surge events. Because the local wind forcing and/or sea-ice drift could not explain the reduction of sea-ice concentration over the Beaufort Sea continental slope in January 2005, we speculate that wind-driven sea level fluctuations may impact the sea-ice cover in winter.

  11. Freshwater transport in the coastal buoyancy-driven current affected by variable downwelling-favorable winds

    NASA Astrophysics Data System (ADS)

    Yankovsky, A. E.; Rogers-Cotrone, J.; Maze, G.; Weingartner, T. J.

    2009-04-01

    A typical feature of coastal circulation in mid- and high latitudes is the existence of buoyancy-driven currents originating from multiple or continuous sources of fresh (or brackish) water and propagating downstream, in the direction of a Kelvin wave. The examples include the Alaska Coastal Current (ACC), the East Greenland Coastal Current, the Norwegian Coastal Current, and the coastal current in the Gulf of Maine. These systems are affected by wind forcing, and previous studies found that downwelling-favorable winds trap buoyant water near the coast, steepen the isopycnals, and enhance the downstream velocity and freshwater transport in the coastal current. In this study we present a series of numerical experiments demonstrating that under certain conditions the downwelling favorable winds reduce the downstream freshwater transport compared to no-wind conditions due to some freshwater being transported offshore. These situations include: 1. Light average wind stresses (0.025 Pa or less), especially when the wind varies alongshore. The offshore freshwater transport is eddy-driven and is enhanced in the areas of converging wind stress. Eddy generation is associated with the wind-induced deepening of a buoyant layer near the coast. When the surface boundary layer is thin under light wind, this deepening translates into an enhanced vertical shear of the alongshore current through the thermal wind balance (geostrophic shear). 2. The cyclonic atmospheric system coming ashore builds up a sea level bulge at the coast upstream from the cyclone's center. This high pressure forms a filament transporting the freshwater offshore along the upstream flank of the cyclone. We apply the Regional Ocean Modeling System (ROMS) configured as a periodic channel and forced by multiple freshwater sources in the central part of the domain, and by the downwelling-favorable wind stress, both constant and variable. In particular, a moving cyclonic atmospheric system in the gradient wind

  12. The wind driven currents on the Middle Atlantic Bight inner shelf

    NASA Astrophysics Data System (ADS)

    Wong, Kuo-Chuin

    1999-05-01

    A set of month-long current meter data from two moorings deployed at the 20 and 30 m isobaths to the southeast of Atlantic City, New Jersey are examined to characterize the structure of the wind-induced subtidal currents in the Middle Atlantic Bight under summer time conditions. The wind stress and currents are dominated by variability at the 2-4 d time scales. The majority of the wind stress variance is oriented in the along-shelf direction (35°T), but the subtidal currents at both moorings also show substantial across-shelf variability, with the standard deviation of the across-shelf current component exceeding 50% of that of the along-shelf current component. Furthermore, there is an appreciable reduction in magnitude and a change in orientation of the subtidal current vector with depth. The currents from the mooring located at the 30 m isobath are significantly coherent with the wind stress, with surface current rotating clockwise and bottom current rotating anticlockwise of the wind. With an upwelling favorable wind, there is a significant offshore flow in the upper layer and an onshore flow in the lower layer, consistent with Ekman transport. The situation reverses with a downwelling favorable wind. The depth-averaged current is dominated by variability in the along-shelf direction. Wind stress and along-shelf surface slope are the leading terms in the depth-integrated along-shelf momentum balance, but bottom stress also plays an important role in the balance. The currents at the inner shelf mooring (20 m isobath) are much less coherent with the wind, particularly for the surface current. The reduced linear correlation between the wind and the observed subtidal current there may be caused by the influence of the buoyancy-driven coastal current originating from the Hudson River estuary to the north of the mooring site.

  13. Hydrodynamic states in a wind-driven microtidal estuary (Alfacs Bay)

    NASA Astrophysics Data System (ADS)

    Llebot, Clara; Rueda, Francisco J.; Solé, Jordi; Artigas, Mireia Lara; Estrada, Marta

    2014-01-01

    A conceptual model of the physical behavior of a shallow (6 m deep) micro-tidal estuary (Alfacs Bay) is proposed, based on the interpretation of a field data set, and subsequently tested against the results of three-dimensional hydrodynamic simulations. At seasonal timescales, the buoyancy associated with freshwater inflows dominates the tidal forcing, yielding a strongly stratified two-layered system, with the surface and the bottom layers flowing in opposite directions (classical estuarine circulation). Wind controls the physical behavior of the bay at shorter (days to weeks) timescales. Three scenarios or states have been defined, depending on the strength of stratification relative to the predominant direction and magnitude of the wind forcing, parameterized through the Wedderburn number, W. For weak winds (scenario 1), with W ≫ 1, mixing occurs as a consequence of stirring and convective cooling, and the mixed layer deepens slowly. For strong winds, with W ≪ 1/2, mixing is fast and is largely driven by shear at the pycnocline. Two scenarios are further identified for W ≪ 1/2 depending on the directionality of the winds: one for persistent NW winds (scenario 2) and another for diurnal SW winds (scenario 3). In scenario 2, the water is pushed laterally, overturning the stratification and generating transverse density gradients. In scenario 3, the estuarine circulation is weakened and even reversed, yielding strong longitudinal density gradients. The bay waters relax quickly (within 10-18 h) back to the original state, after the wind ceases, as a result of the horizontal density gradients developed under wind forcing. Bay-sea exchange rates are shown to decrease significantly in the low W scenarios, the magnitudes of these changes being largely dependent on wind direction. These scenarios have important implications for the ecology of the bay, including the occurrence of phenomena such as harmful algal blooms.

  14. Wind power demonstration and siting problems. [for recharging electrically driven automobiles

    NASA Technical Reports Server (NTRS)

    Bergey, K. H.

    1973-01-01

    Technical and economic feasibility studies on a small windmill to provide overnight charging for an electrically driven car are reported. The auxiliary generator provides power for heating and cooling the vehicle which runs for 25 miles on battery power alone, and for 50 miles with the onboard charger operating. The blades for this windmill have a diameter of 12 feet and are coupled through to a conventional automobile alternator so that they are able to completely recharge car batteries in 8 hours. Optimization of a windmill/storage system requires detailed wind velocity information which permits rational sitting of wind power system stations.

  15. Effect of eddy diffusivity on wind-driven currents in a two-layer stratified lake

    NASA Technical Reports Server (NTRS)

    Gedney, R. T.; Lick, W.; Molls, F. B.

    1972-01-01

    The steady state wind-driven circulation was numerically calculated in a rectangular stratified lake. The lake is composed of two layers having uniform but unequal densities and eddy diffusivities. The position in thermocline and the three-dimensional velocities in both layers calculated using shallow lake equations. The results show that, as the eddy diffusivity in the hypolimnion is increased, the thermocline tilt and hypolimnetic velocities increase. The effect of the other variables such as wind stress, density, basin length, and mean thermocline depth are also shown.

  16. Proton-driven electromagnetic instabilities in high-speed solar wind streams

    NASA Technical Reports Server (NTRS)

    Abraham-Shrauner, B.; Asbridge, J. R.; Bame, S. J.; Feldman, W. C.

    1979-01-01

    Electromagnetic instabilities of the field-aligned, right-hand circularly polarized magnetosonic wave and the left-hand circularly polarized Alfven wave driven by two drifted proton components are analyzed for model parameters determined from Imp 7 solar wind proton data measured during high-speed flow conditions. Growth rates calculated using bi-Lorentzian forms for the main and beam proton as well as core and halo electron velocity distributions do not differ significantly from those calculated using bi-Maxwellian forms. Using distribution parameters determined from 17 measured proton spectra, we show that considering the uncertainties the magnetosonic wave may be linearly stable and the Alfven wave is linearly unstable. Because proton velocity distribution function shapes are observed to persist for times long compared to the proton gyroperiod, the latter result suggests that linear stability theory fails for proton-driven ion cyclotron waves in the high-speed solar wind.

  17. Was there a wind-driven Tethys circumglobal current in the Late Cretaceous?

    NASA Astrophysics Data System (ADS)

    Cousin-Rittemard, N. M. M.; Dijkstra, H. A.; Zwagers, T.

    2002-10-01

    The problem of the existence of a Tethys circumglobal current (TCC) in the Late Cretaceous continental geometry (Campanian) is addressed. Within an ocean model which is expected to strongly overestimate the wind-driven TCC volume transport, a relatively weak TCC is found for the reconstructed Campanian paleogeography used. As a measure of the strength of the TCC, a circumglobal flow index is introduced. This index is based on volume fluxes through meridional sections within the equatorial part of the domain. The impact of changes in the paleogeography on the TCC is considered by computing steady flows for different shapes of Eurasia. The results on the extent of Eurasia such that a strong TCC appears provide support that no strong wind-driven TCC has existed during the Campanian.

  18. An analytical model for wind-driven Arctic summer sea ice drift

    NASA Astrophysics Data System (ADS)

    Park, H.-S.; Stewart, A. L.

    2016-01-01

    The authors present an analytical model for wind-driven free drift of sea ice that allows for an arbitrary mixture of ice and open water. The model includes an ice-ocean boundary layer with an Ekman spiral, forced by transfers of wind-input momentum both through the sea ice and directly into the open water between the ice floes. The analytical tractability of this model allows efficient calculation of the ice velocity provided that the surface wind field is known and that the ocean geostrophic velocity is relatively weak. The model predicts that variations in the ice thickness or concentration should substantially modify the rotation of the velocity between the 10 m winds, the sea ice, and the ocean. Compared to recent observational data from the first ice-tethered profiler with a velocity sensor (ITP-V), the model is able to capture the dependencies of the ice speed and the wind/ice/ocean turning angles on the wind speed. The model is used to derive responses to intensified southerlies on Arctic summer sea ice concentration, and the results are shown to compare closely with satellite observations.

  19. Effect of wave-current interaction on wind-driven circulation in narrow, shallow embayments

    USGS Publications Warehouse

    Signell, Richard P.; Beardsley, Robert C.; Graber, H. C.; Capotondi, A.

    1990-01-01

    The effect of wind waves on the steady wind-driven circulation in a narrow, shallow bay is investigated with a two-dimensional (y, z) circulation model and the Grant and Madsen [1979] bottom-boundary layer model, which includes wave-current interaction. A constant wind stress is applied in the along-channel x direction to a channel with a constant cross-sectional profile h(y). The wind-induced flushing of shallow bays is shown to be sensitive to both the shape of the cross section and the effects of surface waves. The flushing increases with increasing , where h′ is the standard deviation of cross-channel depth and  is the mean depth. This is consistent with the findings of Hearn et al. [1987]. The flushing decreases, however, with the inclusion of surface wave effects which act to increase the bottom drag felt by the currents. Increasing effective bottom friction reduces the strength of the circulation, while the along-bay surface slope, bottom stress and the structure of current profiles remain nearly unchanged. An implication of the circulation dependence on wave-current interaction is that low-frequency oscillatory winds may drive a mean circulation when the wave field changes with wind direction.

  20. Predictive Understanding of the Oceans' Wind-Driven Circulation on Interdecadal Time Scales

    SciTech Connect

    Michael Ghil; Temam, Roger; Y. Feliks; Simonnet, E.; Tachim-Medjo, T.

    2008-09-30

    The goal of this project was to obtain a predictive understanding of a major component of the climate system's interdecadal variability: the oceans' wind-driven circulation. To do so, we developed and applied advanced computational and statistical methods to the problem of climate variability and climate change. The methodology was developed first for models of intermediate complexity, such as the quasi-geostrophic and the primitive equations, which describe the wind-driven, near-surface flow in mid-latitude ocean basins. Our computational work consisted in developing efficient multi-level methods to simulate this flow and study its dependence on physically relevant parameters. Our oceanographic and climate work consisted in applying these methods to study the bifurcations in the wind-driven circulation and their relevance to the flows observed at present and those that might occur in a warmer climate. Both aspects of the work are crucial for the efficient treatment of large-scale, eddy-resolving numerical simulations of the oceans and an increased understanding and better prediction of climate change. Considerable progress has been achieved in understanding ocean-atmosphere interaction in the mid-latitudes. An important by-product of this research is a novel approach to explaining the North Atlantic Oscillation.

  1. Wind-Driven Wireless Networked System of Mobile Sensors for Mars Exploration

    NASA Technical Reports Server (NTRS)

    Davoodi, Faranak; Murphy, Neil

    2013-01-01

    A revolutionary way is proposed of studying the surface of Mars using a wind-driven network of mobile sensors: GOWON. GOWON would be a scalable, self-powered and autonomous distributed system that could allow in situ mapping of a wide range of environmental phenomena in a much larger portion of the surface of Mars compared to earlier missions. It could improve the possibility of finding rare phenomena such as "blueberries' or bio-signatures and mapping their occurrence, through random wind-driven search. It would explore difficult terrains that were beyond the reach of previous missions, such as regions with very steep slopes and cluttered surfaces. GOWON has a potentially long life span, as individual elements can be added to the array periodically. It could potentially provide a cost-effective solution for mapping wide areas of Martian terrain, enabling leaving a long-lasting sensing and searching infrastructure on the surface of Mars. The system proposed here addresses this opportunity using technology advances in a distributed system of wind-driven sensors, referred to as Moballs.

  2. Data-Driven Topographic Feature Selection for Mean Wind Speed Mapping

    NASA Astrophysics Data System (ADS)

    Foresti, L.; Pozdnoukhov, A.; Kanevski, M.

    2009-04-01

    Accurate spatial mapping of long term mean wind speeds is of great importance for renewable resources evaluation and wind farm location planning. This task is conventionally approached with a physical model further corrected with some geostatistical or semi-empirical method to take into account local topography and land cover effects. In mountainous regions of complex topographies, however, the evaluation of mean wind speed with this procedure is less precise. A variety of small-scale topographic features has to be incorporated into the model to take into account the factors affecting the wind speed, such as hill and tunnel effects. Large number of topographic features can be computed from digital elevation models to be integrated into a prediction model. Spatial prediction of the wind speeds by using a large set of input features is a high dimensional and non-linear problem. In conventional scheme, one relies here on many empirical correction coefficients and various topographic indices to take into account the influence of terrain. However, there is an emerging field of machine learning algorithms, which are the data-driven methods well-suited to solve such problems. They are aimed at modelling the non-linear dependencies between the high dimensional input features and a target variable such as the wind speed. There is a noticeable interest for using these methods for wind mapping. The presented research provides an application of machine learning methods (neural networks and support vector methods) for spatial prediction of mean wind speeds with a particular attention paid to the problem of feature selection. The number of features which can be generated from digital elevation model is countless as the features can be computed at various spatial scales. For example, a difference of terrains smoothed at different spatial scales enables to highlight the ridges and valleys. Feature selection methods allow finding the features and correspondingly the spatial scales

  3. θ Car: X-ray Emission from Low Density Radiation-Driven Winds

    NASA Astrophysics Data System (ADS)

    Doyle (Mizusawa), Trisha; Petit, Veronique; Held Cohen, David; Fullerton, Alexander W.; Gagne, Marc; Leutenegger, Maurice A.; Li, Zequn; Owocki, Stanley P.; Sundqvist, Jon; Wade, Gregg

    2016-01-01

    We present Chandra X-ray grating spectroscopy (and IUE spectroscopy) of the B0.2 V star, θ Carina. θ Car is in a critical transition region between the earliest B stars and the latest O stars, where the density of the wind is observed to decrease more than theoretically expected. In general, X-ray emission in this low-density wind regime should be less prominent, but observations have shown that there is a higher than expected production of X-ray emission from the winds of these stars; this severely challenges predictions of radiatively driven wind theory. We measure the f/i ratio, widths, and velocities of several Helium-like lines in the X-ray spectrum. The f/i ratio is a diagnostic of the radial location of the X-ray emitting plasma, which is sensitive to the specific transition of each He-like ion. We use θ Car to study the radiatively-driven mass-loss of early B-type stars.

  4. Accretion disk wind in the AGN broad-line region: Spectroscopically resolved line profile variations in Mrk 110

    NASA Astrophysics Data System (ADS)

    Kollatschny, W.

    2003-08-01

    Detailed line profile variability studies of the narrow line Seyfert 1 galaxy Mrk 110 are presented. We obtained the spectra in a variability campaign carried out with the 9.2 m Hobby-Eberly Telescope at McDonald Observatory. The integrated Balmer and helium (He I, II) emission lines are delayed by 3 to 33 light days to the optical continuum variations respectively. The outer wings of the line profiles respond much faster to continuum variations than the central regions. The comparison of the observed profile variations with model calculations of different velocity fields indicates an accretion disk structure of the broad line emitting region in Mrk 110. Comparing the velocity-delay maps of the different emission lines among each other a clear radial stratification in the BLR can be recognized. Furthermore, delays of the red line wings are slightly shorter than those of the blue wings. This indicates an accretion disk wind in the BLR of Mrk 110. We determine a central black hole mass of M = 1.8x 107 Msun. Because of the poorly known inclination angle of the accretion disk this is a lower limit only. Based on observations obtained with the Hobby-Eberly Telescope, which is a joint project of the University of Texas at Austin, the Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universität München, and Georg-August-Universität Göttingen.

  5. An Ultra-fast X-Ray Disk Wind in the Neutron Star Binary GX 340+0

    NASA Astrophysics Data System (ADS)

    Miller, J. M.; Raymond, J.; Cackett, E.; Grinberg, V.; Nowak, M.

    2016-05-01

    We present a spectral analysis of a brief Chandra/HETG observation of the neutron star low-mass X-ray binary GX 340+0. The high-resolution spectrum reveals evidence of ionized absorption in the Fe K band. The strongest feature, an absorption line at approximately 6.9 keV, is required at the 5σ level of confidence via an F-test. Photoionization modeling with XSTAR grids suggests that the line is the most prominent part of a disk wind with an apparent outflow speed of v = 0.04c. This interpretation is preferred at the 4σ level over a scenario in which the line is H-like Fe xxvi at a modest redshift. The wind may achieve this speed owing to its relatively low ionization, enabling driving by radiation pressure on lines; in this sense, the wind in GX 340+0 may be the stellar-mass equivalent of the flows in broad absorption line quasars. If the gas has a unity volume filling factor, the mass ouflow rate in the wind is over 10‑5 M ⊙ yr‑1, and the kinetic power is nearly 1039 erg s‑1 (or, 5–6 times the radiative Eddington limit for a neutron star). However, geometrical considerations—including a small volume filling factor and low covering factor—likely greatly reduce these values.

  6. A magnetic field parameter study of turbulence-driven solar wind

    NASA Astrophysics Data System (ADS)

    Woolsey, L. N.; Cranmer, S. R.

    2012-12-01

    field geometry. We also investigate the observed anticorrelation between the freezing-in temperature of the O7+/O6+ ion ratio and wind speed, which has been attributed to solar wind acceleration by reconnection and loop opening. Any relation that we see between these two properties in our model output must be due to wave-driven processes.

  7. Dust-driven winds of AGB stars: The critical interplay of atmospheric shocks and luminosity variations

    NASA Astrophysics Data System (ADS)

    Liljegren, S.; Höfner, S.; Nowotny, W.; Eriksson, K.

    2016-04-01

    Context. Winds of AGB stars are thought to be driven by a combination of pulsation-induced shock waves and radiation pressure on dust. In dynamic atmosphere and wind models, the stellar pulsation is often simulated by prescribing a simple sinusoidal variation in velocity and luminosity at the inner boundary of the model atmosphere. Aims: We experiment with different forms of the luminosity variation in order to assess the effects on the wind velocity and mass-loss rate, when progressing from the simple sinusoidal recipe towards more realistic descriptions. This will also give an indication of how robust the wind properties derived from the dynamic atmosphere models are. Methods: Using state-of-the-art dynamical models of C-rich AGB stars, a range of different asymmetric shapes of the luminosity variation and a range of phase shifts of the luminosity variation relative to the radial variation are tested. These tests are performed on two stellar atmosphere models. The first model has dust condensation and, as a consequence, a stellar wind is triggered, while the second model lacks both dust and wind. Results: The first model with dust and stellar wind is very sensitive to moderate changes in the luminosity variation. There is a complex relationship between the luminosity minimum, and dust condensation: changing the phase corresponding to minimum luminosity can either increase or decrease mass-loss rate and wind velocity. The luminosity maximum dominates the radiative pressure on the dust, which in turn, is important for driving the wind. An earlier occurrence of the maximum, with respect to the propagation of the pulsation-induced shock wave, then increases the wind velocity, while a later occurrence leads to a decrease. These effects of changed luminosity variation are coupled with the dust formation. In contrast there is very little change to the structure of the model without dust. Conclusions: Changing the luminosity variation, both by introducing a phase shift

  8. Dust-driven winds of AGB stars: The critical interplay of atmospheric shocks and luminosity variations

    NASA Astrophysics Data System (ADS)

    Liljegren, S.; Höfner, S.; Nowotny, W.; Eriksson, K.

    2016-05-01

    Context. Winds of AGB stars are thought to be driven by a combination of pulsation-induced shock waves and radiation pressure on dust. In dynamic atmosphere and wind models, the stellar pulsation is often simulated by prescribing a simple sinusoidal variation in velocity and luminosity at the inner boundary of the model atmosphere. Aims: We experiment with different forms of the luminosity variation in order to assess the effects on the wind velocity and mass-loss rate, when progressing from the simple sinusoidal recipe towards more realistic descriptions. This will also give an indication of how robust the wind properties derived from the dynamic atmosphere models are. Methods: Using state-of-the-art dynamical models of C-rich AGB stars, a range of different asymmetric shapes of the luminosity variation and a range of phase shifts of the luminosity variation relative to the radial variation are tested. These tests are performed on two stellar atmosphere models. The first model has dust condensation and, as a consequence, a stellar wind is triggered, while the second model lacks both dust and wind. Results: The first model with dust and stellar wind is very sensitive to moderate changes in the luminosity variation. There is a complex relationship between the luminosity minimum, and dust condensation: changing the phase corresponding to minimum luminosity can either increase or decrease mass-loss rate and wind velocity. The luminosity maximum dominates the radiative pressure on the dust, which in turn, is important for driving the wind. An earlier occurrence of the maximum, with respect to the propagation of the pulsation-induced shock wave, then increases the wind velocity, while a later occurrence leads to a decrease. These effects of changed luminosity variation are coupled with the dust formation. In contrast there is very little change to the structure of the model without dust. Conclusions: Changing the luminosity variation, both by introducing a phase shift

  9. Wind-driven Modulation of Cross-shelf Exchange Driven by Gravitational Relaxation on a Shelf During Winter

    NASA Astrophysics Data System (ADS)

    Lockhart, Stephen; Seim, Harvey

    2015-04-01

    A field program was conducted during the Winter of 2012 at Long Bay, off the coast of South Carolina, USA. Previous studies have shown that this region has unusually high wintertime productivity. During winter, the water on this shallow shelf (shelf break at approximately 60m depth) is often well-mixed, characterized by nearly vertical isotherms and a horizontal density gradient. Interestingly, we observed several wintertime stratification events. Integrating data from several sources (gliders, moorings, towed body, weather buoy, satellite), we implemented an energetics analysis to quantify the various physical processes that influence stratification. The analysis shows the importance of the horizontal advection of buoyancy, driven by downwelling favorable winds and Gulf Stream filaments.

  10. The Primordial Destruction of Moons around Giant Exoplanets through Disk-Driven Planetary Migration

    NASA Astrophysics Data System (ADS)

    Spalding, Christopher; Batygin, Konstantin; Adams, Fred C.

    2015-11-01

    The extensive array of satellites around Jupiter and Saturn makes it reasonable to suspect that similar systems of moons might exist around giant extrasolar planets. Observational surveys have revealed a significant population of such giant planets residing at distances of about 1 AU, leading to speculation that some of these 'exomoons' might be capable of maintaining liquid water on their surfaces. Accordingly, many recent efforts have specifically hunted for moons around giant exoplanets. Owing to the lack of detections thus far, it is worth asking whether certain processes intrinsic to planet formation might lead to the loss of moons. Here, we highlight that giant planets are thought to undergo inward migration within their natal disks and show that the very process of migration naturally captures moons into a so-called "evection resonance". Within this resonance, the lunar orbit's eccentricity grows until the moon is lost, either by collision with the planet or through tidal disruption. Whether moons survive or not is critically dependent upon where the planet began its inward trek. In this way, the presence or absence of exomoons can inform us on the extent of inward migration, for which no reliable observational proxy currently exists.

  11. THE OPTICAL STRUCTURE OF THE STARBURST GALAXY M82. I. DYNAMICS OF THE DISK AND INNER-WIND

    SciTech Connect

    Westmoquette, M. S.; Smith, L. J.; Konstantopoulos, I. S.; Gallagher, J. S.; Trancho, G.

    2009-05-01

    We present Gemini-North GMOS-IFU observations of the central starburst clumps and inner wind of M82, together with WIYN DensePak IFU observations of the inner 2 x 0.9 kpc of the disk. These cover the emission lines of H{alpha}, [N II], [S II], and [S III] at a spectral resolution of 45-80 km s{sup -1}. The high signal-to-noise of the data is sufficient to accurately decompose the emission line profiles into multiple narrow components (FWHM {approx} 30-130 km s{sup -1}) superimposed on a broad (FWHM {approx} 150-350 km s{sup -1}) feature. This paper is the first of a series examining the optical structure of M82's disk and inner wind; here we focus on the ionized gaseous and stellar dynamics and present maps of the relevant emission line properties. Our observations show that ionized gas in the starburst core of M82 is dynamically complex with many overlapping expanding structures located at different radii. Localised line splitting of up to 100 km s{sup -1} in the narrow component is associated with expanding shells of compressed, cool, photoionized gas at the roots of the superwind outflow. We have been able to associate some of this inner-wind gas with a distinct outflow channel characterised by its dynamics and gas density patterns, and we discuss the consequences of this discovery in terms of the developing wind outflow. The broad optical emission line component is observed to become increasingly important moving outward along the outflow channel, and in general with increasing height above/below the plane. Following our recent work on the origins of this component, we associate it with turbulent gas in wind-clump interface layers and hence sites of mass loading, meaning that the turbulent mixing of cooler gas into the outflowing hot gas must become increasingly important with height, and provides powerful direct evidence for the existence of mass-loading over a large, spatially extended area reaching far into the inner wind. We discuss the consequences and

  12. Evolution of wind-driven flows in the Yellow Sea during winter

    NASA Astrophysics Data System (ADS)

    Tak, Yong-Jin; Cho, Yang-Ki; Seo, Gwang-Ho; Choi, Byoung-Ju

    2016-03-01

    To examine the evolution of the wind-driven flows in the Yellow Sea (YS) during winter, ocean circulation was simulated using a three-dimensional ocean model with realistic topography and atmospheric forcing. The simulated sea surface temperature, ocean currents, and path of the Yellow Sea Warm Current (YSWC) agreed with observations. Southward currents along the Korean coast and the Chinese coast in winter were also effectively identified. Spectra of the daily mean winds and the YSWC velocities in the subsurface layer had dominant peaks at 12 and 20 day periods. Time-lagged correlation analysis suggested that the downwind flow in the surface layer reacts concurrently to the northwesterly wind in winter whereas the subsurface layer responds with a delay. One day after the wind burst, an upwind current in the subsurface layer appeared in the center of the trough, whereas the downwind flow in the surface layer decreased significantly. Two days later, the upwind flow in the subsurface layer shifted to the west of the trough while the downwind flow along the Korean coast strengthened. These flow responses to the wind variations resulted in a clockwise circulation in the YS during winter.

  13. A radiation-driven stellar wind model with a line force cutoff

    NASA Technical Reports Server (NTRS)

    Abbott, Mark J.; Friend, David B.

    1989-01-01

    This paper presents a model for a radiation-driven stellar wind in which the driving force is abruptly cut off at an adjustable distance from the star. The model is intended to give a first approximation of the effects of ionizing shocks in a stellar wind on the terminal velocity and mass-loss rate. As expected, the wind velocity is found to decrease after the line force is cut off. The terminal velocity depends directly on the velocity of the wind at the point where the driving force is cut off. The mass-loss rate is found to be unaffected as long as the cutoff is outside the critical point of the flow. The model is applied to the star Tau Sco, a strong X-ray source with an anomalously low terminal velocity. It is shown that this low terminal velocity can be caused by a cutoff of the line force at a distance which is consistent with the idea that the observed X-rate emission is produced by shocks in the wind.

  14. Unveiling the X-ray/UV properties of disk winds in active galactic nuclei using broad and mini-broad absorption line quasars

    NASA Astrophysics Data System (ADS)

    Giustini, M.

    2016-05-01

    We present the results of the uniform analysis of 46 XMM-Newton observations of six BAL and seven mini-BAL QSOs belonging to the Palomar-Green Quasar catalogue. Moderate-quality X-ray spectroscopy was performed with the EPIC-pn, and allowed to characterise the general source spectral shape to be complex, significantly deviating from a power law emission. A simple power law analysis in different energy bands strongly suggests absorption to be more significant than reflection in shaping the spectra. If allowing for the absorbing gas to be either partially covering the continuum emission source or to be ionised, large column densities of the order of 1022-1024 cm-2 are inferred. When the statistics was high enough, virtually every source was found to vary in spectral shape on various time scales, from years to hours. All in all these observational results are compatible with radiation driven accretion disk winds shaping the spectra of these intriguing cosmic sources.

  15. Suppression of star formation in the galaxy NGC 253 by a starburst-driven molecular wind.

    PubMed

    Bolatto, Alberto D; Warren, Steven R; Leroy, Adam K; Walter, Fabian; Veilleux, Sylvain; Ostriker, Eve C; Ott, Jürgen; Zwaan, Martin; Fisher, David B; Weiss, Axel; Rosolowsky, Erik; Hodge, Jacqueline

    2013-07-25

    The under-abundance of very massive galaxies in the Universe is frequently attributed to the effect of galactic winds. Although ionized galactic winds are readily observable, most of the expelled mass (that is, the total mass flowing out from the nuclear region) is likely to be in atomic and molecular phases that are cooler than the ionized phases. Expanding molecular shells observed in starburst systems such as NGC 253 (ref. 12) and M 82 (refs 13, 14) may facilitate the entrainment of molecular gas in the wind. Although shell properties are well constrained, determining the amount of outflowing gas emerging from such shells and the connection between this gas and the ionized wind requires spatial resolution better than 100 parsecs coupled with sensitivity to a wide range of spatial scales, a combination hitherto not available. Here we report observations of NGC 253, a nearby starburst galaxy (distance ∼ 3.4 megaparsecs) known to possess a wind, that trace the cool molecular wind at 50-parsec resolution. At this resolution, the extraplanar molecular gas closely tracks the Hα filaments, and it appears to be connected to expanding molecular shells located in the starburst region. These observations allow us to determine that the molecular outflow rate is greater than 3 solar masses per year and probably about 9 solar masses per year. This implies a ratio of mass-outflow rate to star-formation rate of at least 1, and probably ∼3, indicating that the starburst-driven wind limits the star-formation activity and the final stellar content. PMID:23887428

  16. Solar wind driving of magnetospheric ULF waves: Pulsations driven by velocity shear at the magnetopause

    NASA Astrophysics Data System (ADS)

    Claudepierre, S. G.; Elkington, S. R.; Wiltberger, M.

    2008-05-01

    We present results from global, three-dimensional magnetohydrodynamic (MHD) simulations of the solar wind/magnetosphere interaction. These MHD simulations are used to study ultra low frequency (ULF) pulsations in the Earth's magnetosphere driven by shear instabilities at the flanks of the magnetopause. We drive the simulations with idealized, constant solar wind input parameters, ensuring that any discrete ULF pulsations generated in the simulation magnetosphere are not due to fluctuations in the solar wind. The simulations presented in this study are driven by purely southward interplanetary magnetic field (IMF) conditions, changing only the solar wind driving velocity while holding all of the other solar wind input parameters constant. We find surface waves near the dawn and dusk flank magnetopause and show that these waves are generated by the Kelvin-Helmholtz (KH) instability. We also find that two KH modes are generated near the magnetopause boundary. One mode, the magnetopause KH mode, propagates tailward along the magnetopause boundary. The other mode, the inner KH mode, propagates tailward along the inner edge of the boundary layer (IEBL). We find large vortical structures associated with the inner KH mode that are centered on the IEBL. The phase velocities, wavelengths, and frequencies of the two KH modes are computed. The KH waves are found to be fairly monochromatic with well-defined wavelengths. In addition, the inner and magnetopause KH modes are coupled and lead to a coupled oscillation of the low-latitude boundary layer. The boundary layer thickness, d, is computed and we find maximum wave growth for kd = 0.5-1.0, where k is the wave number, consistent with the linear theory of the KH instability. We comment briefly on the effectiveness of these KH waves in the energization and transport of radiation belt electrons.

  17. Combined tidal and wind driven flows and bedload transport over a flat bottom

    NASA Astrophysics Data System (ADS)

    Holmedal, Lars Erik; Myrhaug, Dag

    2013-08-01

    The combined tidal and wind driven flow and resulting sediment transport in the ocean over a flat bottom at intermediate water depth has been investigated, using a simple one dimensional two-equation turbulence closure model. This model has been verified against field measurements of a tidal flow in the Celtic Sea. The tidal velocity ellipses and the time series of the horizontal velocity components at given elevations above the bottom are well predicted through the water column although there are some deviations between the predicted and measured velocities near the bottom due to the uncertainty of the bottom roughness. For the combined tidal and wind driven flows the velocity profiles, turbulent kinetic energy profiles and surface particle trajectories are predicted for weak and strong winds. Furthermore, the bottom shear stress and the resulting bedload transport have been predicted; the parts of the particle trajectories in the close vicinity of the bottom where the bedload transport exists are displayed. Finally, the direction and magnitude of the surface drift, the depth-averaged mean velocity and the mean bedload transport are given, and the effect of the bottom roughness on the sea surface drift is investigated.

  18. A CME-driven solar wind distrubance observed at both low and high heliographic latitudes

    SciTech Connect

    Gosling, J.T.; McComas, D.J.; Phillips, J.L.

    1995-07-01

    A solar wind disturbance produced by a fast coronal mass ejection, CME, that departed from the Sun on Feburary 20, 1994 was observed in the ecliptic plane at 1 AU by IMP 8 and at high heliographic latitudes at 3.53 AU by Ulysses. In the ecliptic the disturbance included a strong forward shock but no reverse shock, while at high latitudes the disturbance was bounded by a relatively weak forward-reverse shock pair. It is clear that the disturbance in the ecliptic plane was driven primarily by the relative speed between the CME and a slower ambient solar wind ahead, whereas at higher latitudes the disturbance was driven by expansion of the CME. The combined IMP 8 and Ulysses observations thus provide a graphic illustration of how a single fast CME can produce very different types of solar wind disturbances at low and high heliographic latitudes. Simple numerical simulations help explain observed differences at the two spacecraft. 12 refs., 3 figs.

  19. Solar wind-magnetosphere coupling efficiency during ejecta and sheath-driven geomagnetic storms

    NASA Astrophysics Data System (ADS)

    Myllys, M.; Kilpua, E. K. J.; Lavraud, B.; Pulkkinen, T. I.

    2016-05-01

    We have investigated the effect of key solar wind driving parameters on solar wind-magnetosphere coupling efficiency during sheath and magnetic cloud-driven storms. The particular focus of the study was on the coupling efficiency dependence with Alfvén Mach number (MA). The efficiency has been estimated using the dawn-dusk component of the interplanetary electric field (EY), Newell and Borovsky functions as a proxy for the energy inflow and the polar cap potential (PCN), and auroral electrojet (AE) and SYM-H indices as the measure of the energy output. We have also performed a time delay analysis between the input parameters and the geomagnetic indices. The optimal time lag and smoothing window length depend on the coupling function used and on the solar wind driver. For example, turbulent sheaths are more sensitive to the time shift and the averaging interval than smoother magnetic clouds. The results presented in this study show that the solar wind-magnetosphere coupling efficiency depends strongly on the definition used, and it increases with increasing MA. We demonstrate that the PCN index distinctively shows both a Mach number dependent saturation and a Mach number independent saturation, pointing to the existence of at least two underlying physical mechanisms for the saturation of the index. By contrast, we show that the AE index saturates but that the saturation of this index is independent of the solar wind Mach number. Finally, we find that the SYM-H index does not seem to saturate and that the absence of saturation is independent of the Mach number regime. We highlight the difference between the typical MA conditions during sheath regions and magnetic clouds. The lowest MA values are related to the magnetic clouds. As a consequence, sheaths typically have higher solar wind-magnetosphere coupling efficiencies than magnetic clouds.

  20. Thermal and Driven Stochastic Growth of Langmuir Waves in the Solar Wind and Earth's Foreshock

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.; Robinson, P. A.; Anderson, R. R.

    2000-01-01

    Statistical distributions of Langmuir wave fields in the solar wind and the edge of Earth's foreshock are analyzed and compared with predictions for stochastic growth theory (SGT). SGT quantitatively explains the solar wind, edge, and deep foreshock data as pure thermal waves, driven thermal waves subject to net linear growth and stochastic effects, and as waves in a pure SGT state, respectively, plus radiation near the plasma frequency f(sub p). These changes are interpreted in terms of spatial variations in the beam instability's growth rate and evolution toward a pure SGT state. SGT analyses of field distributions are shown to provide a viable alternative to thermal noise spectroscopy for wave instruments with coarse frequency resolution, and to separate f(sub p) radiation from Langmuir waves.

  1. Analytical solutions for radiation-driven winds in massive stars. I. The fast regime

    SciTech Connect

    Araya, I.; Curé, M.; Cidale, L. S.

    2014-11-01

    Accurate mass-loss rate estimates are crucial keys in the study of wind properties of massive stars and for testing different evolutionary scenarios. From a theoretical point of view, this implies solving a complex set of differential equations in which the radiation field and the hydrodynamics are strongly coupled. The use of an analytical expression to represent the radiation force and the solution of the equation of motion has many advantages over numerical integrations. Therefore, in this work, we present an analytical expression as a solution of the equation of motion for radiation-driven winds in terms of the force multiplier parameters. This analytical expression is obtained by employing the line acceleration expression given by Villata and the methodology proposed by Müller and Vink. On the other hand, we find useful relationships to determine the parameters for the line acceleration given by Müller and Vink in terms of the force multiplier parameters.

  2. Wind-driven Variability of the Atlantic Water Transport to the Nordic Sea

    NASA Astrophysics Data System (ADS)

    Yang, Jiayan

    2016-04-01

    The Greenland-Iceland-Scotland Ridge (GISR) is a major barrier for oceanic heat transport from the Atlantic to the Arctic Ocean. The mean transport is believed to be driven by the buoyancy forcing, i.e., the northward transport of the Atlantic Ocean water is drawn into the Nordic Seas to compensate the southward overflow transport across the GISR. Seasonal to decadal variability, however, is strongly affected by the wind stress in both the Atlantic Ocean and the Nordic Seas. In this study, analyses of both in situ and satellite observations, data-assimilated model products and numerical modeling experiments are used to elucidate the key forcing mechanisms and processes. It is found that transport is enhanced when the wind-stress curl is anomalously positive over the GISR area and in the subpolar North Atlantic Basin. The wind-stress curl inside the Nordic Sea also exerts a strong influence on the transport over the GISR through its impacts on the East Greenland Current and on the overflow transport. Our analyses indicate that the wind-stress forcing is a main mechanism for season-to-decadal variability of the transport cross the GISR.

  3. Dynamics and Internal Structure of the Cross-Shelf Circulation During Wind-Driven Coastal Upwelling

    NASA Astrophysics Data System (ADS)

    Choboter, P. F.

    2007-12-01

    A two-dimensional theory of wind-driven coastal upwelling is developed that is comprised of a surface Ekman layer, an interior frictionless layer, and a frictional bottom boundary layer. The theory is built upon the Lentz- Chapman upwelling theory, which has been used to demonstrate the importance of nonlinear cross-shelf momentum flux divergence during upwelling. The new model retains spatially-varying structure in the interior density and velocity fields. The dynamical model for the interior flow is based upon the nonlinear upwelling theory of Pedlosky, which maintains thermal wind balance between the cross-shelf density gradient and the vertical shear in the alongshelf velocity while retaining the cross-shelf advection of density and alongshelf momentum. The structure of the cross-shelf circulation is studied as a function of alongshelf wind stress and Burger number S = α N/f, where α is the topographic slope, N is the buoyancy frequency, and f is the Coriolis parameter. Predictions of the dynamical model are compared with two-dimensional numerical model simulations. During upwelling winds, the dynamical model predicts interior onshore flow high in the water column for large Burger number, and onshore flow in the bottom boundary layer for small Burger number, consistent with the numerical model and with observations.

  4. EU Del: exploring the onset of pulsation-driven winds in giant stars

    NASA Astrophysics Data System (ADS)

    McDonald, I.; Zijlstra, A. A.; Sloan, G. C.; Lagadec, E.; Johnson, C. I.; Uttenthaler, S.; Jones, O. C.; Smith, C. L.

    2016-03-01

    We explore the wind-driving mechanism of giant stars through the nearby (117 pc), intermediate-luminosity (L ≈ 1600 L⊙) star EU Del (HIP 101810, HD 196610). Atacama Pathfinder Experiment observations of the CO (3-2) and (2-1) transitions are used to derive a wind velocity of 9.51 ± 0.02 km s-1, a 12C/13C ratio of 14^{+9}_{-4} and a mass-loss rate of a few × 10-8 M⊙ yr-1. Analysis of published spectra show the star has a metallicity of [Fe/H] = -0.27 ± ˜0.30 dex. The star's dusty envelope lacks a clear 10-μm silicate feature, despite the star's oxygen-rich nature. Radiative transfer modelling cannot fit a wind acceleration model which relies solely on radiation pressure on condensing dust. We compare our results to VY Leo (HIP 53449), a star with similar temperature and luminosity, but different pulsation properties. We suggest the much stronger mass-loss from EU Del may be driven by long-period stellar pulsations, due to its potentially lower mass. We explore the implications for the mass-loss rate and wind velocities of other stars.

  5. Calculation of wind-driven surface currents in the North Atlantic Ocean

    NASA Technical Reports Server (NTRS)

    Rees, T. H.; Turner, R. E.

    1976-01-01

    Calculations to simulate the wind driven near surface currents of the North Atlantic Ocean are described. The primitive equations were integrated on a finite difference grid with a horizontal resolution of 2.5 deg in longitude and latitude. The model ocean was homogeneous with a uniform depth of 100 m and with five levels in the vertical direction. A form of the rigid-lid approximation was applied. Generally, the computed surface current patterns agreed with observed currents. The development of a subsurface equatorial countercurrent was observed.

  6. Slotted-wall research with disk and parachute models in the DSMA low-speed wind tunnel

    SciTech Connect

    Van Every, D.; Harris, J.L. )

    1990-06-01

    A test program investigated the effects of wall open area ratio (OAR) and model axial position on the measured drag of disk and parachute models in a low-speed wind tunnel. The data and discussion presented in this report provide new insight into the nature of slotted-wall interference for bluff bodies in steady flow and give the first quantitative information on nonsteady wall interference and airflow response during the inflation of a parachute. The report concludes that a fixed OAR of between 5% and 15% should eliminate wall interference during inflation and greatly reduce steady-flow interference for geometric blockages up to 15%. Preliminary arguments suggest that an optimum OAR may be found that alleviates wall interference for large models at low speeds while providing for acceptable testing of smaller models in the transonic speed range. 10 refs., 36 figs., 14 tabs.

  7. Turbulent aerosol fluxes over the Arctic Ocean: 2. Wind-driven sources from the sea

    NASA Astrophysics Data System (ADS)

    Nilsson, E. D.; Rannik, Ü.; Swietlicki, E.; Leck, C.; Aalto, P. P.; Zhou, J.; Norman, M.

    2001-12-01

    An eddy-covariance flux system was successfully applied over open sea, leads and ice floes during the Arctic Ocean Expedition in July-August 1996. Wind-driven upward aerosol number fluxes were observed over open sea and leads in the pack ice. These particles must originate from droplets ejected into the air at the bursting of small air bubbles at the water surface. The source flux F (in 106 m-2 s-1) had a strong dependency on wind speed, log>(F>)=0.20U¯-1.71 and 0.11U¯-1.93, over the open sea and leads, respectively (where U¯ is the local wind speed at about 10 m height). Over the open sea the wind-driven aerosol source flux consisted of a film drop mode centered at ˜100 nm diameter and a jet drop mode centered at ˜1 μm diameter. Over the leads in the pack ice, a jet drop mode at ˜2 μm diameter dominated. The jet drop mode consisted of sea-salt, but oxalate indicated an organic contribution, and bacterias and other biogenic particles were identified by single particle analysis. Particles with diameters less than -100 nm appear to have contributed to the flux, but their chemical composition is unknown. Whitecaps were probably the bubble source at open sea and on the leads at high wind speed, but a different bubble source is needed in the leads owing to their small fetch. Melting of ice in the leads is probably the best candidate. The flux over the open sea was of such a magnitude that it could give a significant contribution to the condensation nuclei (CCN) population. Although the flux from the leads were roughly an order of magnitude smaller and the leads cover only a small fraction of the pack ice, the local source may till be important for the CCN population in Arctic fogs. The primary marine aerosol source will increase both with increased wind speed and with decreased ice fraction and extent. The local CCN production may therefore increase and influence cloud or fog albedo and lifetime in response to greenhouse warming in the Arctic Ocean region.

  8. Suppression of star formation in the galaxy NGC 253 by a starburst-driven molecular wind

    NASA Astrophysics Data System (ADS)

    Warren, Steven R.; Bolatto, A. D.; Leroy, A. K.; Walter, F.; Veilleux, S.; Ostriker, E. C.; Ott, J.; Zwaan, M.; Fisher, D. B.; Weiss, A.; Rosolowsky, E.; Hodge, J.

    2014-01-01

    We present Atacama Large (Sub)Millimeter Array (ALMA) CO (J=1-0) observations of the nearby, nuclear starburst galaxy NGC 253. NGC 253 is host to a "superwind" emanating from the central ~200 pc. Galaxy superwinds are thought to help shape the galactic mass function, play a critical role in galaxy evolution, and pollute the intergalactic medium with heavy metals. Detailed studies of nearby systems frequently focus on the warm or hot phases of the wind, visible in X-ray or Halpha emission. However, most of the mass in the outflowing material is thought to be in the form of neutral atomic and molecular gas. We use the observed CO luminosities and velocities to estimate the mass, mass loss rate, and energetics of the molecular wind. We compute an outflow mass of M_mo 6.6x10^6 Msun. The observed projected velocities of the CO filaments range from ~30-60 km s^-1 resulting in a mass loss rate of ~9 Msun yr^-1. The nuclear region of NGC 253 has a star formation rate of ~3 Msun yr^-1 resulting in a mass loading parameter 1-3. It is not immediately clear if the outflowing gas will escape the halo or eventually rain back onto the disk. What is clear is that NGC 253 will exhaust its nuclear star forming gas in ~60-120 Myr at its current mass loss rate, cementing the superwind as an important contributor in the evolution of NGC 253.

  9. Stochastic Forcing of the North Atlantic Wind-Driven Ocean Circulation

    NASA Astrophysics Data System (ADS)

    Chhak, K. C.; Moore, A. M.; Milliff, R. F.; Branstator, G.; Holland, W. R.; Fisher, M.

    2004-12-01

    At midlatitudes, the magnitude of stochastic wind stress forcing due to atmospheric weather is comparable to that associated with the seasonal cycle. Stochastic forcing is therefore likely to have a significant influence on the ocean circulation. In this work, we examine the influence of the stochastic component of the wind stress forcing on the large-scale, wind-driven circulation of the North Atlantic Ocean. To this end a quasi-geostrophic model of the North Atlantic was forced with estimates of the stochastic component of wind stress curl obtained from the NCAR Community Climate Model. Analysis reveals that much of the stochastically-induced variability in the ocean circulation occurs in the vicinity of the western boundary and some major bathymetric features. Using the ideas of generalized stability theory (GST), we find that the patterns of wind stress curl that are most effective for inducing variability in the model have their largest projection on the most nonnormal eigenmodes of the system. These eigenmodes are confined primarily to the western boundary region and are composed of long Rossby wave packets that are Doppler shifted by the Gulf Stream to have eastward group velocity. Linear interference of these eigenmodes yields transient growth of stochastically-induced perturbations, and it is this process that maintains the variance of the stochastically-induced circulations. By examining the model pseudospectra, we find that the nonnormal nature of the system enhances the transient growth of perturbation enstrophy and therefore elevates and also maintains the variance of the stochastically-induced circulations in the aforementioned regions.

  10. Analysis of grid connected induction generators driven by hydro/wind turbines under realistic system constraints

    SciTech Connect

    urthy, S.S.; Jha, C.S. ); Rao, P.S.N. )

    1990-03-01

    Results of an investigation dealing with the behavior of grid connected induction generators (GCIG) driven by typical prime movers such as mini-hydro/wind turbines are presented. Certain practical operational problems of such systems are identified. Analytical techniques are developed to study the behavior of such systems. The system consists of the induction generator (IG) feeding a 11 kV grid through a step up transformer and a transmission line. Terminal capacitors to compensate for the lagging VAR are included in the study. Computer simulation is carried out to predict the system performance at the given input power from the turbine. Effects of variations in grid voltage, frequency, input power and terminal capacitance on the machine and system performance are studied. Analysis of self excitation conditions on disconnection of supply has been carried out. Behavior of a 200 kW hydel system and 55/11 kW 22 kW wind driven system corresponding to actual field conditions are presented and discussed.

  11. Blue crab megalopal influx to Chesapeake Bay: Evidence for a wind-driven mechanism

    NASA Astrophysics Data System (ADS)

    Goodrich, David M.; van Montfrans, Jacques; Orth, Robert J.

    1989-09-01

    Field surveys indicate that blue crab larvae and postlarvae develop in shelf waters adjacent to the Chesapeake Bay entrance, and that postlarvae return to the estuary for settlement into nursery areas. The postlarval form is the megalopa, and in the offshore area most of these are found near the surface. However, the surface mean flow at the Bay entrance is seaward. Megalopae must either drop to the bottom to become entrained in the density-driven inflow or employ another transport process in the surface. A potentially important mechanism by which these megalopae can return is through episonic wind-driven exchange, which is a prominent feature of the circulation in this region. Using sea level data, the magnitude of the wind-induced changes in Bay volume can be calculated for any period when these data are available. During 1985-1987, megalopae were collected daily in the York River (a tributary of Chesapeake Bay) from August through November. Their temporal distribution was characterized by pulses of individuals, separated by periods when very few were collected. A total of 12 of 16 observed megalopal pulses occurred during positive volume anomalies. In particular, the largest peak of 1985 occurred during the massive storm surge associated with Hurricane Juan, implying large-scale transport of megalopae from the shelf. Analysis of 28 years of subtidal volume data indicates that an average of 10 major inflow events per year occur during the period when megalopae are present. This indicates that these wind-induced inflow events are not fortuitous but rather are a stable feature of the flow climate at the Bay entrance.

  12. IS WX CEN A POSSIBLE TYPE Ia SUPERNOVA PROGENITOR WITH WIND-DRIVEN MASS TRANSFER?

    SciTech Connect

    Qian, S.-B.; Shi, G.; Zhu, L.-Y.; Liu, L.; Zhao, E.-G.; Li, L.-J.; Fernandez Lajus, E.; Di Sisto, R. P.

    2013-08-01

    WX Cen is one of a few compact binary supersoft X-ray sources (CBSS) in the Galaxy that is a possible Type Ia supernova (SN Ia) progenitor. The supersoft X-ray radiation is explained as hydrostatic nuclear burning on the surface of the white dwarf component that is accreting hydrogen from a stellar companion at a high rate. If the mass donor in this system has a low mass, as has been suggested in the literature, one would expect a high wind-driven mass transfer rate. In that case, the orbital period of the system should increase. To test this theoretical prediction, we have monitored the system photometrically since 2010. By using four newly determined eclipse timings together with those collected from the literature, we discovered that the orbital period is decreasing at a rate of dP/dt = -5.15 Multiplication-Sign 10{sup -7} days yr{sup -1}. The long-term decrease in the orbital period is contrary to the prediction that the system is powered by wind-driven accretion. It therefore seems plausible that the mass donor could be more massive than the white dwarf, and that the mass transfer is driven by the thermal instability of the donor star. This finding suggests that WX Cen is a key object to check the physical mechanisms of mass accretion in CBSS. The corresponding timescale of the period change is about P/P-dot {approx} 0.81 x 10{sup 6} yr, indicating that WX Cen may evolve into an SNe Ia within one million years in the Galaxy.

  13. Wind-driven evolution of white dwarf binaries to type Ia supernovae

    SciTech Connect

    Ablimit, Iminhaji; Xu, Xiao-jie; Li, X.-D.

    2014-01-01

    In the single-degenerate scenario for the progenitors of Type Ia supernovae (SNe Ia), a white dwarf rapidly accretes hydrogen- or helium-rich material from its companion star and appears as a supersoft X-ray source. This picture has been challenged by the properties of the supersoft X-ray sources with very low mass companions and the observations of several nearby SNe Ia. It has been pointed out that the X-ray radiation or the wind from the accreting white dwarf can excite winds or strip mass from the companion star, thus significantly influencing the mass transfer processes. In this paper, we perform detailed calculations of the wind-driven evolution of white dwarf binaries. We present the parameter space for the possible SN Ia progenitors and for the surviving companions after the SNe. The results show that the ex-companion stars of SNe Ia have characteristics more compatible with the observations, compared with those in the traditional single-degenerate scenario.

  14. Time-dependent ventilation flows driven by opposing wind and buoyancy

    NASA Astrophysics Data System (ADS)

    Coomaraswamy, I.; Caulfield, C. P.

    2009-11-01

    We consider an enclosure containing an isolated heat source, ventilated by a windward high level opening and a leeward low level opening, so that prevailing wind acts to oppose buoyancy driven flow. By conducting dynamically similar salt bath experiments in a recirculating flume tank (Hunt & Linden, J. Fluid Mech. 527, 27 (2005).), we investigate the initial value problem of ``box filling'' with constant opposing wind for a number of different opening sizes and wind strengths. We employ a novel method of flow visualisation (Dalziel, Patterson, Caulfield & Coomaraswamy, Phys. Fluids 20, 065106 (2008).), backlighting apparatus with a panel of electroluminescent tape and employing dye attenuation techniques, allowing us to track the evolution of the stratification within the interior. Our findings demonstrate that some unusual transient phenomena can occur, as predicted by theoretical models we have previously developed for the system. We evaluate the accuracy of these models with regard to the types of transient and final states seen for each set of conditions, and also use our experimental data for the interior density distribution to examine the validity of the models' underlying assumptions.

  15. Intensity statistics of very high frequency sound scattered from wind-driven waves.

    PubMed

    Walstead, Sean P; Deane, Grant B

    2016-05-01

    The interaction of vhf 100-1000 kHz underwater sound with the ocean surface is explored. The bistatic forward scatter of 300 kHz sound is measured in a wind driven wave channel. Fluctuations in arrival amplitude are described by the scintillation index (SI) which is a measure of arrival intensity variance. SI initially increases with wind speed but eventually saturates to a value of 0.5 when the root-mean-square (rms) roughness is 0.5 mm. An adjusted scintillation index (SI*) is suggested that accounts for the multiple arrivals and properly saturates to a value of 1. Fluctuations in arrival time do not saturate and increase proportionately to the dominant surface wave component. Forward scattering is modeled at frequencies ranging from 50 to 2000 kHz using the Helmholtz-Kirchhoff integral with surface wave realizations derived from wave gauge data. The amplitude and temporal statistics of the simulated scattering agree well with measured data. Intensity saturation occurs at lower wind speeds for higher frequency sound. Both measured and modeled vhf sound is characterized by many surface arrivals at saturation. Doppler shifts associated with wave motion are expected to vary rapidly for vhf sound however further analysis is required. PMID:27250171

  16. Earthward Flow Bursts in the Magnetotail Driven by Solar Wind Pressure Impulse

    NASA Astrophysics Data System (ADS)

    Kim, Khan-Hyuk; Kwak, Young-Sil; Lee, Jae-Jin; Hwang, Junga

    2008-12-01

    On August 31, 2001, ˜1705-1718 UT, Cluster was located near the midnight magnetotail, GSE (x, y, z) ˜ (-19, -2, 2) RE, and observed fast earthward flow bursts in the vicinity of the neutral sheet. They occurred while the tail magnetic field suddenly increased. Using simultaneous measurements in the solar wind, at geosynchronous orbit, and on the ground, it is confirmed that tail magnetic field enhancement is due to an increased solar wind pressure. In the neutral sheet region, strongly enhanced earthward flow bursts perpendicular to the local magnetic field (V_{bot x}) were observed. Auroral brightenings localized in the pre-midnight sector (˜2200-2400 MLT) occurred during the interval of the V_{bot x} enhancements. The V_{bot x} bursts started ˜2 minutes before the onset of auroral brightenings. Our observations suggest that the earthward flow bursts are associated with tail reconnection directly driven by a solar wind pressure impulse and that V_{bot x} caused localized auroral brightenings.

  17. Ion Runaway Instability in Low-Density, Line-driven Stellar Winds

    NASA Astrophysics Data System (ADS)

    Owocki, Stanley P.; Puls, Joachim

    2002-04-01

    We examine the linear instability of low-density, line-driven stellar winds to runaway of the heavy minor ions when the drift speed of these ions relative to the bulk, passive plasma of hydrogen and helium approaches or exceeds the plasma thermal speed. We first focus on the surprising results of recent steady state, two-component models, which indicate that the limited Coulomb coupling associated with suprathermal ion drift leads not to an ion runaway, but instead to a relatively sharp shift of both the ion and passive fluids to a much lower outward acceleration. Drawing on analogies with subsonic outflow in the solar wind, we provide a physical discussion of how this lower acceleration is the natural consequence of the weaker frictional coupling, allowing the ion line driving to maintain its steady state balance against collisional drag with a comparatively shallow ion velocity gradient. However, we then carry out a time-dependent, linearized stability analysis of these two-component steady solutions and thereby find that, as the ion drift increases from sub- to suprathermal speeds, a wave mode characterized by separation between the ion versus passive plasma goes from being strongly damped to being strongly amplified. Unlike the usual line-driven flow instability of high-density, strongly coupled flows, this ion separation instability occurs even in the long-wavelength Sobolev limit, although with only a modest spatial growth rate. At shorter wavelengths, the onset of instability occurs for ion drift speeds that are still somewhat below the plasma thermal speed and, moreover, generally has a very large spatial growth. For all wavelengths, however, the temporal growth rate exceeds the already rapid growth of line-driven instability by a typical factor of ~100, corresponding to the mass-density ratio between the bulk plasma and the driven minor ions. We further show that this ion separation mode has an inward propagation speed that is strongly enhanced (at its

  18. Flight and wind-tunnel measurements showing base drag reduction provided by a trailing disk for high Reynolds number turbulent flow for subsonic and transonic Mach numbers

    NASA Technical Reports Server (NTRS)

    Powers, Sheryll Goecke; Huffman, Jarrett K.; Fox, Charles H., Jr.

    1986-01-01

    The effectiveness of a trailing disk, or trapped vortex concept, in reducing the base drag of a large body of revolution was studied from measurements made both in flight and in a wind tunnel. Pressure data obtained for the flight experiment, and both pressure and force balance data were obtained for the wind tunnel experiment. The flight test also included data obtained from a hemispherical base. The experiment demonstrated the significant base drag reduction capability of the trailing disk to Mach 0.93 and to Reynolds numbers up to 80 times greater than for earlier studies. For the trailing disk data from the flight experiment, the maximum decrease in base drag ranged form 0.08 to 0.07 as Mach number increased from 0.70 to 0.93. Aircraft angles of attack ranged from 3.9 to 6.6 deg for the flight data. For the trailing disk data from the wind tunnel experiment, the maximum decrease in base and total drag ranged from 0.08 to 0.05 for the approximately 0 deg angle of attack data as Mach number increased from 0.30 to 0.82.

  19. A New Look at Ionized Disk Winds in Seyfert-1 AGN

    NASA Astrophysics Data System (ADS)

    Bostrom, Allison; Miller, Jon M.

    2016-04-01

    We present an analysis of deep, high signal-to-noise Chandra/HETG observations of four Seyfert-1 galaxies with known warm absorbers (outflowing winds), including NGC 4151, MCG-6-30-15, NGC 3783, and NGC 3516. Focusing on the 4-10 keV Fe K-band, we fit the spectra using grids of models characterized by photoion- ized absorption. Even in this limited band, the sensitive, time-averaged spectra all require 2-3 zones within the outflow. In an improvement over most previous studies, re-emission from the winds was self-consistently included in our models. The broadening of these emission components, when attributed to Keplerian rotation, yields new launching radius estimations that are largely consistent with the broad-line region. If this is correct, the hot outflow may supply the pressure needed to confine clumps within the broad-line region. NGC 4151 and NGC 3516 each appear to have a high-velocity component with speeds comparable to 0.01c. The winds in each of the four objects have kinetic luminosities greater than 0.5% of the host galaxy bolometric luminosity for a filling factor of unity, indicating that they may be significant agents of AGN feedback.

  20. Nucleosynthesis of elements between Sr and Ag in neutron- and proton-rich neutrino-driven winds

    NASA Astrophysics Data System (ADS)

    Arcones, A.; Bliss, J.

    2014-04-01

    Neutrino-driven winds that follow core collapse supernovae were thought to be the site where half of the heavy elements are produced by the r-process. Although recent hydrodynamic simulations show that the conditions in the wind are not enough for the r-process, lighter heavy elements like Sr, Y, and Zr can be produced. However, it is still not clear whether the conditions in the wind are slightly neutron-rich or proton-rich. Here, we investigate the nucleosynthesis in neutrino-driven winds for both these conditions and systematically explore the impact of wind parameters on abundances. Our results show the difficulty of obtaining a robust abundance pattern in neutron-rich winds, where an over production of Sr, Y, and Zr is also likely. In proton-rich conditions, the abundances smoothly change when varying wind parameters. Constraints for wind parameters and neutrino energies and luminosities will soon become available by combining nucleosynthesis studies, like the one presented here, with new and future experimental data and observations.

  1. Directional microphone arrays: Reducing wind noise without killing your signal or filling up your disk

    NASA Astrophysics Data System (ADS)

    Zumberge, M. A.; Walker, K. T.; Dewolf, S.; Hedlin, M. A.; Shearer, P. M.; Berger, J.

    2008-12-01

    The bane of infrasound signal detection is the noise generated by the wind. While the physics of the noise is still a subject of investigation, it is clear that sampling pressure at many points over a length scale larger than the spatial coherence length of wind turbulence attenuates the noise. A dense array of microphones can exploit this approach, but this presents different challenges. Two mechanical wind filters using this approach are commonly employed by the nuclear monitoring community (rosette pipe and porous-hoses networks) and attach to a central microphone. To get large wind noise reduction and a low signal detection threshold in the frequency band of interest, these filters require large apertures. However, these wind filters with such large apertures have a poor omnidirectional instrument response for typical infrasound signals because the pressure signal propagates at the speed of sound through the pipes/hoses to the central microphone. A simple, but improved averaging approach would be to instantaneously sample a long length of the infrasound signal wavefront. Optical fiber infrasound sensors (OFIS) are an implementation of this idea. These sensors are compliant sealed tubes wrapped with two optical fibers that integrate pressure change instantaneously along the length of the tube with laser interferometery. Infrasound arrays typically consist of several microbarometers with wind filters separated by distances that provide predictable signal time separations, forming the basis for processing techniques that estimate the phase velocity direction. An analogous approach is to form an array of OFIS arms. The OFIS instrument response is a predictable function of the orientation of the arm with respect to the signal wavefront. An array of many OFIS arms with different azimuths permits at least one OFIS to record any signal without the signal attenuation inherent in equivalently-sized onmi-directional mechanical filters. OFIS arms that are wavefront

  2. Dynamics and predictability of a low-order wind-driven ocean - atmosphere model

    NASA Astrophysics Data System (ADS)

    Vannitsem, Stéphane

    2013-04-01

    The dynamics of a low order coupled wind-driven Ocean-Atmosphere (OA) system is investigated with emphasis on its predictability properties. The low-order coupled deterministic system is composed of a baroclinic atmosphere for which 12 dominant dynamical modes are only retained (Charney and Straus, 1980) and a wind-driven, quasi-geostrophic and reduced-gravity shallow ocean whose field is truncated to four dominant modes able to reproduce the large scale oceanic gyres (Pierini, 2011). The two models are coupled through mechanical forcings only. The analysis of its dynamics reveals first that under aperiodic atmospheric forcings only dominant single gyres (clockwise or counterclockwise) appear. This feature is expected to be related with the specific domain choice over which the coupled system is defined. Second the dynamical quantities characterizing the short-term predictability (Lyapunov exponents, Lyapunov dimension, Kolmogorov-Sinaï (KS) entropy) displays a complex dependence as a function of the key parameters of the system, namely the coupling strength and the external thermal forcing. In particular, the KS-entropy is increasing as a function of the coupling in most of the experiments, implying an increase of the rate of loss of information about the localization of the system on his attractor. Finally the dynamics of the error is explored and indicates, in particular, a rich variety of short term behaviors of the error in the atmosphere depending on the (relative) amplitude of the initial error affecting the ocean, from polynomial (at2 + bt3 + ct4) up to purely exponential evolutions. These features are explained and analyzed in the light of the recent findings on error growth (Nicolis et al, 2009). References Charney J G, Straus DM (1980) Form-Drag Instability, Multiple Equilibria and Propagating Planetary Waves in Baroclinic, Orographically Forced, Planetary Wave Systems. J Atmos Sci 37: 1157-1176. Nicolis C, Perdigao RAP, Vannitsem S (2009) Dynamics of

  3. Analytical solution for the wind-driven circulation in a lake containing an island

    NASA Technical Reports Server (NTRS)

    Goldstein, M. E.; Gedney, R. T.

    1971-01-01

    An analysis was carried out to determine analytically the effect of an island on the wind driven currents in a shallow lake (or sea). A general analysis is developed that can be applied to a large class of lake and island geometries and bottom topographies. Detailed numerical results are obtained for a circular island located eccentrically or concentrically in a circular lake with a logarithmic bottom topography. It is shown that an island can produce volume flow (vertically integrated velocities) gyres that are completely different from those produced by a normal basin without an island. These gyres in the neighborhood of the island will produce different velocity patterns, which include the acceleration of flow near the island shore.

  4. Southern Annular Mode and westerly-wind-driven changes in Indian-Atlantic exchange mechanisms

    NASA Astrophysics Data System (ADS)

    Loveday, B. R.; Penven, P.; Reason, C. J. C.

    2015-06-01

    The dynamical link between the Indian Ocean and Atlantic Meridional Overturning Circulation (AMOC) remains poorly understood. This partly arises from the complex Agulhas leakage, which occurs via rings, cyclones, and non-eddy flux. Hindcast simulations suggest that leakage has recently increased but have not decomposed this signal into its constituent mechanisms. Here these are isolated in a realistic ocean model. Increases in simulated leakage are attributed to stronger eddy and non-eddy-driven transports, and a strong warming and salinification, especially within Agulhas rings. Variability in both regimes is associated with strengthening Indian Ocean westerly winds, reflecting an increasingly positive Southern Annular Mode. While eddy and non-eddy flux signals are tied through turbulent eddy dissipation, the ratio between the two varies decadally. Consequently, while altimetry suggests a recent increase in retroflection turbulence and implied leakage, non-eddy flux may also play a significant role in modulating the leakage AMOC connection.

  5. Preliminary Dynamic Feasibility and Analysis of a Spherical, Wind-Driven (Tumbleweed), Martian Rover

    NASA Technical Reports Server (NTRS)

    Flick, John J.; Toniolo, Matthew D.

    2005-01-01

    The process and findings are presented from a preliminary feasibility study examining the dynamics characteristics of a spherical wind-driven (or Tumbleweed) rover, which is intended for exploration of the Martian surface. The results of an initial feasibility study involving several worst-case mobility situations that a Tumbleweed rover might encounter on the surface of Mars are discussed. Additional topics include the evaluation of several commercially available analysis software packages that were examined as possible platforms for the development of a Monte Carlo Tumbleweed mission simulation tool. This evaluation lead to the development of the Mars Tumbleweed Monte Carlo Simulator (or Tumbleweed Simulator) using the Vortex physics software package from CM-Labs, Inc. Discussions regarding the development and evaluation of the Tumbleweed Simulator, as well as the results of a preliminary analysis using the tool are also presented. Finally, a brief conclusions section is presented.

  6. Application of order cyclostationary demodulation to damage detection in a direct-driven wind turbine bearing

    NASA Astrophysics Data System (ADS)

    Liu, Xiaofeng; Bo, Lin; Peng, Chang

    2014-02-01

    This paper presents a method of fault detection and isolation for a direct-driven wind turbine (DWT) bearing. Computed order tracking is employed to convert the non-stationary envelope signal in the time domain into a quasi-stationary signal in the angular domain by even-angle resampling. Cyclostationary demodulation is then utilized to expose the orders related to fault characteristics in the demodulation spectrum. In order to realize the automatic fault diagnosis and emit a stable alarm about bearing damage, the peak value of the demodulation spectrum is scaled and compared to a defined threshold. The significant advantage of the proposed method is the implementation of an automatic algorithm for DWT bearing diagnostics under randomly varying speed and highly alternating load. Practical applications are provided to show that the proposed approach is able to achieve reliable failure warning in the bearing condition monitoring of a DWT.

  7. Potential export of unattached benthic macroalgae to the deep sea through wind-driven Langmuir circulation

    NASA Astrophysics Data System (ADS)

    Dierssen, H. M.; Zimmerman, R. C.; Drake, L. A.; Burdige, D. J.

    2009-02-01

    Carbon export to the deep sea is conventionally attributed to the sinking of open ocean phytoplankton. Here, we report a Langmuir supercell event driven by high winds across the shallow Great Bahama Bank that organized benthic non-attached macroalgae, Colpomenia sp., into visible windrows on the seafloor. Ocean color satellite imagery obtained before and after the windrows revealed a 588 km2 patch that rapidly shifted from highly productive macroalgae to bare sand. We assess a number of possible fates for this macroalgae and contend that this event potentially transported negatively buoyant macroalgae to the deep Tongue of the Ocean in a pulsed export of >7 × 1010 g of carbon. This is equivalent to the daily carbon flux of phytoplankton biomass in the pelagic tropical North Atlantic and 0.2-0.8% of daily carbon flux from the global ocean. Coastal banks and bays are highly productive ecosystems that may contribute substantially to carbon export to the deep sea.

  8. Detecting ozone- and greenhouse gas-driven wind trends with observational data.

    PubMed

    Lee, Sukyoung; Feldstein, Steven B

    2013-02-01

    Modeling studies suggest that Antarctic ozone depletion and, to a lesser degree, greenhouse gas (GHG) increase have caused the observed poleward shift in the westerly jet during the austral summer. Similar studies have not been performed previously with observational data because of difficulties in separating the two contributions. By applying a cluster analysis to daily ERA-Interim data, we found two 7- to 11-day wind clusters, one resembling the models' responses to GHG forcing and the other resembling ozone depletion. The trends in the clusters' frequency of occurrence indicate that the ozone contributed about 50% more than GHG toward the jet shift, supporting the modeling results. Moreover, tropical convection apparently plays an important role for the GHG-driven trend. PMID:23372010

  9. A forecasting model of the magnetosphere driven by an optimal solar wind coupling function

    NASA Astrophysics Data System (ADS)

    Tsyganenko, N. A.; Andreeva, V. A.

    2015-10-01

    A new empirical magnetospheric magnetic field model is described, driven by interplanetary parameters including a coupling function by Newell et al. (2007), termed henceforth as "N index." The model uses data from Polar, Geotail, Cluster, and Time History of Events and Macroscale Interactions during Substorms satellites, obtained in 1995-2013 at distances 3-60 RE. The model magnetopause is based on Lin et al. (2010) boundary driven by the solar wind pressure, IMF Bz, and the geodipole tilt. The model field includes contributions from the symmetric ring current (SRC), partial ring current (PRC) with associated Region 2 field-aligned currents (R2 FAC), tail, Region 1 (R1) FAC, and a penetrated IMF. Increase in the N index results in progressively larger magnitudes of all the field sources, the most dramatic and virtually linear growth being found for the PRC and R1 FAC. The solar wind dynamic pressure Pdyn affects the model magnetotail current in proportion to the factor [Pdyn/] ζ, where the exponent ζ on the order of 0.4-0.6 steadily decreases with increasing N index. The PRC peaks near midnight at N ˜ 0 but turns duskward with growing N. At ionospheric altitudes, both R1 and R2 FAC expand equatorward with growing N and Pdyn, and the R2 zone rotates westward. Larger values of N result in a more efficient penetration of the IMF into the magnetosphere and larger magnetic flux connection across the magnetopause. Growing dipole tilt is accompanied by a persistent and significant decrease of the total current in all magnetospheric field sources.

  10. The HEAO-2 Guest Investigator Program: Non-linear growth of instabilities in line-driven stellar winds

    NASA Technical Reports Server (NTRS)

    Rybicki, G. B.

    1985-01-01

    The linear instability of line-driven stellar winds to take proper account of the dynamical effect of scattered radiation were analyzed. It is found that: (1) the drag effect of the mean scattered radiation does greatly reduce the contribution of scattering lines to the instability at the very base of the wind, but the instability growth rate associated with such lines rapidly increases as the flow moves outward from the base, reaching more than 50% of the growth rate for pure absorption lines within a stellar radius of the surface, and eventually reaching 80% of that rate at large radii; (2) perturbations in the scattered radiation field may be important for the propagation of wind disturbances, but they have little effect on the wind instability; and (3) the contribution of strongly shadowed lines to the wind instability is often reduced compared to that of unshadowed lines, but their overall effect is not one of damping in the outer parts of the wind. It is concluded that, even when all scattering effects are taken into account, the bulk of the flow in a line-driven stellar wind is still highly unstable.

  11. INSTABILITIES DRIVEN BY THE DRIFT AND TEMPERATURE ANISOTROPY OF ALPHA PARTICLES IN THE SOLAR WIND

    SciTech Connect

    Verscharen, Daniel; Bourouaine, Sofiane; Chandran, Benjamin D. G. E-mail: s.bourouaine@unh.edu

    2013-08-20

    We investigate the conditions under which parallel-propagating Alfven/ion-cyclotron (A/IC) waves and fast-magnetosonic/whistler (FM/W) waves are driven unstable by the differential flow and temperature anisotropy of alpha particles in the solar wind. We focus on the limit in which w{sub Parallel-To {alpha}} {approx}> 0.25v{sub A}, where w{sub Parallel-To {alpha}} is the parallel alpha-particle thermal speed and v{sub A} is the Alfven speed. We derive analytic expressions for the instability thresholds of these waves, which show, e.g., how the minimum unstable alpha-particle beam speed depends upon w{sub Parallel-To {alpha}}/v{sub A}, the degree of alpha-particle temperature anisotropy, and the alpha-to-proton temperature ratio. We validate our analytical results using numerical solutions to the full hot-plasma dispersion relation. Consistent with previous work, we find that temperature anisotropy allows A/IC waves and FM/W waves to become unstable at significantly lower values of the alpha-particle beam speed U{sub {alpha}} than in the isotropic-temperature case. Likewise, differential flow lowers the minimum temperature anisotropy needed to excite A/IC or FM/W waves relative to the case in which U{sub {alpha}} = 0. We discuss the relevance of our results to alpha particles in the solar wind near 1 AU.

  12. Effects of large-scale wind driven turbulence on sound propagation

    NASA Technical Reports Server (NTRS)

    Noble, John M.; Bass, Henry E.; Raspet, Richard

    1990-01-01

    Acoustic measurements made in the atmosphere have shown significant fluctuations in amplitude and phase resulting from the interaction with time varying meteorological conditions. The observed variations appear to have short term and long term (1 to 5 minutes) variations at least in the phase of the acoustic signal. One possible way to account for this long term variation is the use of a large scale wind driven turbulence model. From a Fourier analysis of the phase variations, the outer scales for the large scale turbulence is 200 meters and greater, which corresponds to turbulence in the energy-containing subrange. The large scale turbulence is assumed to be elongated longitudinal vortex pairs roughly aligned with the mean wind. Due to the size of the vortex pair compared to the scale of the present experiment, the effect of the vortex pair on the acoustic field can be modeled as the sound speed of the atmosphere varying with time. The model provides results with the same trends and variations in phase observed experimentally.

  13. An Empirically Driven Time-Dependent Model of the Solar Wind

    NASA Astrophysics Data System (ADS)

    Linker, Jon A.; Caplan, Ronald M.; Downs, Cooper; Lionello, Roberto; Riley, Pete; Mikic, Zoran; Henney, Carl J.; Arge, Charles N.; Kim, Tae; Pogorelov, Nikolai

    2016-05-01

    We describe the development and application of a time-dependent model of the solar wind. The model is empirically driven, starting from magnetic maps created with the Air Force Data Assimilative Photospheric flux Transport (ADAPT) model at a daily cadence. Potential field solutions are used to model the coronal magnetic field, and an empirical specification is used to develop boundary conditions for an MHD model of the solar wind. The time-dependent MHD simulation shows classic features of stream structure in the interplanetary medium that are seen in steady-state models; it also shows time evolutionary features that do not appear in a steady-state approach. The model results compare reasonably well with 1 AU OMNI observations. Data gaps when SOLIS magnetograms were unavailable hinder the model performance. The reasonable comparisons with observations suggest that this modeling approach is suitable for driving long term models of the outer heliosphere. Improvements to the ingestion of magnetograms in flux transport models will be necessary to apply this approach in a time-dependent space weather model.

  14. Instabilities Driven by the Drift and Temperature Anisotropy of Alpha Particles in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Verscharen, Daniel; Bourouaine, Sofiane; Chandran, Benjamin D. G.

    2013-08-01

    We investigate the conditions under which parallel-propagating Alfvén/ion-cyclotron (A/IC) waves and fast-magnetosonic/whistler (FM/W) waves are driven unstable by the differential flow and temperature anisotropy of alpha particles in the solar wind. We focus on the limit in which w ∥α >~ 0.25v A, where w ∥α is the parallel alpha-particle thermal speed and v A is the Alfvén speed. We derive analytic expressions for the instability thresholds of these waves, which show, e.g., how the minimum unstable alpha-particle beam speed depends upon w ∥α/v A, the degree of alpha-particle temperature anisotropy, and the alpha-to-proton temperature ratio. We validate our analytical results using numerical solutions to the full hot-plasma dispersion relation. Consistent with previous work, we find that temperature anisotropy allows A/IC waves and FM/W waves to become unstable at significantly lower values of the alpha-particle beam speed U α than in the isotropic-temperature case. Likewise, differential flow lowers the minimum temperature anisotropy needed to excite A/IC or FM/W waves relative to the case in which U α = 0. We discuss the relevance of our results to alpha particles in the solar wind near 1 AU.

  15. Performance Analysis of a Wind Turbine Driven Swash Plate Pump for Large Scale Offshore Applications

    NASA Astrophysics Data System (ADS)

    Buhagiar, D.; Sant, T.

    2014-12-01

    This paper deals with the performance modelling and analysis of offshore wind turbine-driven hydraulic pumps. The concept consists of an open loop hydraulic system with the rotor main shaft directly coupled to a swash plate pump to supply pressurised sea water. A mathematical model is derived to cater for the steady state behaviour of entire system. A simplified model for the pump is implemented together with different control scheme options for regulating the rotor shaft power. A new control scheme is investigated, based on the combined use of hydraulic pressure and pitch control. Using a steady-state analysis, the study shows how the adoption of alternative control schemes in a the wind turbine-hydraulic pump system may result in higher energy yields than those from a conventional system with an electrical generator and standard pitch control for power regulation. This is in particular the case with the new control scheme investigated in this study that is based on the combined use of pressure and rotor blade pitch control.

  16. Solar wind driven empirical forecast models of the time derivative of the ground magnetic field

    NASA Astrophysics Data System (ADS)

    Wintoft, Peter; Wik, Magnus; Viljanen, Ari

    2015-03-01

    Empirical models are developed to provide 10-30-min forecasts of the magnitude of the time derivative of local horizontal ground geomagnetic field (|dBh/dt|) over Europe. The models are driven by ACE solar wind data. A major part of the work has been devoted to the search and selection of datasets to support the model development. To simplify the problem, but at the same time capture sudden changes, 30-min maximum values of |dBh/dt| are forecast with a cadence of 1 min. Models are tested both with and without the use of ACE SWEPAM plasma data. It is shown that the models generally capture sudden increases in |dBh/dt| that are associated with sudden impulses (SI). The SI is the dominant disturbance source for geomagnetic latitudes below 50° N and with minor contribution from substorms. However, at occasions, large disturbances can be seen associated with geomagnetic pulsations. For higher latitudes longer lasting disturbances, associated with substorms, are generally also captured. It is also shown that the models using only solar wind magnetic field as input perform in most cases equally well as models with plasma data. The models have been verified using different approaches including the extremal dependence index which is suitable for rare events.

  17. A Leaky Waveguide Model for MHD Wave Driven Winds from Coronal Holes

    NASA Technical Reports Server (NTRS)

    Davila, J. M.

    1985-01-01

    Magnetohydrodynamic (MHD) waves, driven by the large scale convective motions of the photosphere are suggested as a possible source of additional acceleration for the stellar wind. Most of the turbulent power in a coronal hole is carried by MHD waves with periods of a few hundred seconds or longer. This is evident from direct observations of turbulence in the solar photosphere, as well as in situ observations of turbulence in the solar wind. But waves with periods this long have wavelengths which are typically as large as the transverse scale of the coronal hole flux tube itself. For these waves boundary effects are important and the coronal hole must be treated as a waveguide. The propagation of MHD waves using this waveguide approach is discussed. The simple model presented demonstrates that coronal holes can act as waveguides for MHD waves. For typical solar parameters the waves are compressible and can generate a wave tensile force which tends to cancel at least part of the wave pressure force. This effect tends to decrease the efficiency of MHD wave acceleration.

  18. Mean kinetic energy transport and event classification in a model wind turbine array versus an array of porous disks: Energy budget and octant analysis

    NASA Astrophysics Data System (ADS)

    Camp, Elizabeth H.; Cal, Raúl Bayoán

    2016-08-01

    An array of model rotating wind turbines is compared experimentally to an array of static porous disks in order to quantify the similarities and differences in the mean kinetic energy transport within the wakes produced in these two cases. Stereo particle image velocimetry measurements are done in a wind tunnel bracketing the center turbine in the fourth row of a 4 ×3 array of model turbines. Equivalent sets of rotors and porous disks are created by matching their respective induction factors. The primary difference in the mean velocity components is found in the spanwise mean velocity component, which is as much as 190% different between the rotor and disk case. Horizontal averages of mean kinetic energy transport terms in the region where rotation is most important show percent differences in the range 3%-41%, which decrease to 1%-6% at streamwise coordinates where rotation is less important. Octant analysis is performed on the most significant term related to vertical mean kinetic energy flux u'v' ¯U . The average percent difference between corresponding octants is as much as 68% different in the near wake and as much as 17% different in the far wake. Furthermore, octant analysis elucidates the three-dimensional nature of sweeps and ejections in the near wake of the rotor case. Together, these results imply that a stationary porous disk adequately represents the mean kinetic energy transport of a rotor in the far wake where rotation is less important, while significant discrepancies exist at streamwise locations where rotation is a key phenomenon. This comparison has implications in the use of an actuator disk to model the wind turbine rotor in computational simulations specifically for studies where Reynolds stresses, turbulence intensity, or interactions with the atmosphere are of interest.

  19. Solar r-process-constrained actinide production in neutrino-driven winds of supernovae

    NASA Astrophysics Data System (ADS)

    Goriely, S.; Janka, H.-Th.

    2016-07-01

    Long-lived radioactive nuclei play an important role as nucleo-cosmochronometers and as cosmic tracers of nucleosynthetic source activity. In particular, nuclei in the actinide region like thorium, uranium, and plutonium can testify to the enrichment of an environment by the still enigmatic astrophysical sources that are responsible for the production of neutron-rich nuclei by the rapid neutron-capture process (r-process). Supernovae and merging neutron-star (NS) or NS-black hole binaries are considered as most likely sources of the r-nuclei. But arguments in favour of one or the other or both are indirect and make use of assumptions; they are based on theoretical models with remaining simplifications and shortcomings. An unambiguous observational determination of a production event is still missing. In order to facilitate searches in this direction, e.g. by looking for radioactive tracers in stellar envelopes, the interstellar medium or terrestrial reservoirs, we provide improved theoretical estimates and corresponding uncertainty ranges for the actinide production (232Th, 235, 236, 238U, 237Np, 244Pu, and 247Cm) in neutrino-driven winds of core-collapse supernovae. Since state-of-the-art supernova models do not yield r-process viable conditions - but still lack, for example, the effects of strong magnetic fields - we base our investigation on a simple analytical, Newtonian, adiabatic and steady-state wind model and consider the superposition of a large number of contributing components, whose nucleosynthesis-relevant parameters (mass weight, entropy, expansion time-scale, and neutron excess) are constrained by the assumption that the integrated wind nucleosynthesis closely reproduces the Solar system distribution of r-process elements. We also test the influence of uncertain nuclear physics.

  20. Solar r-process-constrained actinide production in neutrino-driven winds of supernovae

    NASA Astrophysics Data System (ADS)

    Goriely, S.; Janka, H.-Th.

    2016-04-01

    Long-lived radioactive nuclei play an important role as nucleo-cosmochronometers and as cosmic tracers of nucleosynthetic source activity. In particular nuclei in the actinide region like thorium, uranium, and plutonium can testify to the enrichment of an environment by the still enigmatic astrophysical sources that are responsible for the production of neutron-rich nuclei by the rapid neutron-capture process (r-process). Supernovae and merging neutron-star (NS) or NS-black hole binaries are considered as most likely sources of the r-nuclei. But arguments in favour of one or the other or both are indirect and make use of assumptions; they are based on theoretical models with remaining simplifications and shortcomings. An unambiguous observational determination of a production event is still missing. In order to facilitate searches in this direction, e.g. by looking for radioactive tracers in stellar envelopes, the interstellar medium or terrestrial reservoirs, we provide improved theoretical estimates and corresponding uncertainty ranges for the actinide production (232Th, 235, 236, 238U, 237Np, 244Pu, and 247Cm) in neutrino-driven winds of core-collapse supernovae. Since state-of-the-art supernova models do not yield r-process viable conditions -but still lack, for example, the effects of strong magnetic fields- we base our investigation on a simple analytical, Newtonian, adiabatic and steady-state wind model and consider the superposition of a large number of contributing components, whose nucleosynthesis-relevant parameters (mass weight, entropy, expansion time scale, and neutron excess) are constrained by the assumption that the integrated wind nucleosynthesis closely reproduces the solar system distribution of r-process elements. We also test the influence of uncertain nuclear physics.

  1. Development of Solar Wind Model Driven by Empirical Heat Flux and Pressure Terms

    NASA Technical Reports Server (NTRS)

    Sittler, Edward C., Jr.; Ofman, L.; Selwa, M.; Kramar, M.

    2008-01-01

    We are developing a time stationary self-consistent 2D MHD model of the solar corona and solar wind as suggested by Sittler et al. (2003). Sittler & Guhathakurta (1999) developed a semiempirical steady state model (SG model) of the solar wind in a multipole 3-streamer structure, with the model constrained by Skylab observations. Guhathakurta et al. (2006) presented a more recent version of their initial work. Sittler et al. (2003) modified the SG model by investigating time dependent MHD, ad hoc heating term with heat conduction and empirical heating solutions. Next step of development of 2D MHD models was performed by Sittler & Ofman (2006). They derived effective temperature and effective heat flux from the data-driven SG model and fit smooth analytical functions to be used in MHD calculations. Improvements of the Sittler & Ofman (2006) results now show a convergence of the 3-streamer topology into a single equatorial streamer at altitudes > 2 R(sub S). This is a new result and shows we are now able to reproduce observations of an equatorially confined streamer belt. In order to allow our solutions to be applied to more general applications, we extend that model by using magnetogram data and PFSS model as a boundary condition. Initial results were presented by Selwa et al. (2008). We choose solar minimum magnetogram data since during solar maximum the boundary conditions are more complex and the coronal magnetic field may not be described correctly by PFSS model. As the first step we studied the simplest 2D MHD case with variable heat conduction, and with empirical heat input combined with empirical momentum addition for the fast solar wind. We use realistic magnetic field data based on NSO/GONG data, and plan to extend the study to 3D. This study represents the first attempt of fully self-consistent realistic model based on real data and including semi-empirical heat flux and semi-empirical effective pressure terms.

  2. A wind-driven, hybrid latent and sensible heat coastal polynya off Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Hirano, Daisuke; Fukamachi, Yasushi; Watanabe, Eiji; Ohshima, Kay I.; Iwamoto, Katsushi; Mahoney, Andrew R.; Eicken, Hajo; Simizu, Daisuke; Tamura, Takeshi

    2016-01-01

    The nature of the Barrow Coastal Polynya (BCP), which forms episodically off the Alaska coast in winter, is examined using mooring data, atmospheric reanalysis data, and satellite-derived sea-ice concentration and production data. We focus on oceanographic conditions such as water mass distribution and ocean current structure beneath the BCP. Two moorings were deployed off Barrow, Alaska in the northeastern Chukchi Sea from August 2009 to July 2010. For sea-ice season from December to May, a characteristic sequence of five events associated with the BCP has been identified; (1) dominant northeasterly wind parallel to the Barrow Canyon, with an offshore component off Barrow, (2) high sea-ice production, (3) upwelling of warm and saline Atlantic Water beneath the BCP, (4) strong up-canyon shear flow associated with displaced density surfaces due to the upwelling, and (5) sudden suppression of ice growth. A baroclinic current structure, established after the upwelling, caused enhanced vertical shear and corresponding vertical mixing. The mixing event and open water formation occurred simultaneously, once sea-ice production had stopped. Thus, mixing events accompanied by ocean heat flux from the upwelled warm water into the surface layer played an important role in formation/maintenance of the open water area (i.e., sensible heat polynya). The transition from a latent to a sensible heat polynya is well reproduced by a high-resolution pan-Arctic ice-ocean model. We propose that the BCP, previously considered to be a latent heat polynya, is a wind-driven hybrid latent and sensible heat polynya, with both features caused by the same northeasterly wind.

  3. Coupling the Weather Research and Forecasting (WRF) model and Large Eddy Simulations with Actuator Disk Model: predictions of wind farm power production

    NASA Astrophysics Data System (ADS)

    Garcia Cartagena, Edgardo Javier; Santoni, Christian; Ciri, Umberto; Iungo, Giacomo Valerio; Leonardi, Stefano

    2015-11-01

    A large-scale wind farm operating under realistic atmospheric conditions is studied by coupling a meso-scale and micro-scale models. For this purpose, the Weather Research and Forecasting model (WRF) is coupled with an in-house LES solver for wind farms. The code is based on a finite difference scheme, with a Runge-Kutta, fractional step and the Actuator Disk Model. The WRF model has been configured using seven one-way nested domains where the child domain has a mesh size one third of its parent domain. A horizontal resolution of 70 m is used in the innermost domain. A section from the smallest and finest nested domain, 7.5 diameters upwind of the wind farm is used as inlet boundary condition for the LES code. The wind farm consists in six-turbines aligned with the mean wind direction and streamwise spacing of 10 rotor diameters, (D), and 2.75D in the spanwise direction. Three simulations were performed by varying the velocity fluctuations at the inlet: random perturbations, precursor simulation, and recycling perturbation method. Results are compared with a simulation on the same wind farm with an ideal uniform wind speed to assess the importance of the time varying incoming wind velocity. Numerical simulations were performed at TACC (Grant CTS070066). This work was supported by NSF, (Grant IIA-1243482 WINDINSPIRE).

  4. Time-dependent models of radiatively driven stellar winds. I - Nonlinear evolution of instabilities for a pure absorption model

    NASA Technical Reports Server (NTRS)

    Owocki, Stanley P.; Castor, John I.; Rybicki, George B.

    1988-01-01

    Numerical radiation-hydrodynamics simulations of the nonlinear evolution of instabilities in radiatively driven stellar winds have been performed. The results show a strong tendency for the unstable flow to form rather sharp rarefactions in which the highest speed material has very low density. The qualitative features of the model agree well with the reqirements of displaced narrow absorption components in UV lines.

  5. AN APPROACH TO CALCULATING WIND-DRIVEN CURRENTS AND TRANSPORT OF SUBSTANCES IN UNSTRATIFIED WATER BODIES USING CURVILINEAR COORDINATES

    EPA Science Inventory

    A model of wind-driven currents and transport of substances in unstratified water bodies is presented. he model employs a coordinate system, consisting of curvilinear functions that are orthogonal in the horizontal plane and a coordinate of "normalized depth." The method of mergi...

  6. The steady state solutions of radiatively driven stellar winds for a non-Sobolev, pure absorption model

    NASA Technical Reports Server (NTRS)

    Poe, C. H.; Owocki, S. P.; Castor, J. I.

    1990-01-01

    The steady state solution topology for absorption line-driven flows is investigated for the condition that the Sobolev approximation is not used to compute the line force. The solution topology near the sonic point is of the nodal type with two positive slope solutions. The shallower of these slopes applies to reasonable lower boundary conditions and realistic ion thermal speed v(th) and to the Sobolev limit of zero of the usual Castor, Abbott, and Klein model. At finite v(th), this solution consists of a family of very similar solutions converging on the sonic point. It is concluded that a non-Sobolev, absorption line-driven flow with a realistic values of v(th) has no uniquely defined steady state. To the extent that a pure absorption model of the outflow of stellar winds is applicable, radiatively driven winds should be intrinsically variable.

  7. Global eddy-resolving ocean simulations driven by 1985-1995 atmospheric winds

    NASA Astrophysics Data System (ADS)

    Maltrud, Mathew E.; Smith, Richard D.; Semtner, Albert J.; Malone, Robert C.

    1998-12-01

    Results are presented from a high-resolution global ocean model that is driven through three decadal cycles of increasingly realistic prescribed atmospheric forcing from the period 1985-1995. The model used (the Parallel Ocean Program) is a z level primitive equation model with active thermohaline dynamics based on the formulation of Bryan [1969] rewritten for massively parallel computers. Improvements to the model include an implicit free-surface formulation of the barotropic mode [Dukowicz and Smith, 1994] and the use of pressure averaging for increasing the numerical time step. This study extends earlier 0.5° simulations of Semtner and Chervin [1992] to higher horizontal resolution with improved treatments of ocean geometry and surface forcing. The computational grid is a Mercator projection covering the global ocean from 77°N to 77°S and has 20 vertical levels. Three successive simulations have been performed on the CM-5 Connection Machine system at Los Alamos using forcing fields from the European Centre for Medium-Range Weather Forecasts (ECMWF). The first run uses monthly wind stresses for 1985-1995 and restoring of surface temperature and salinity to the Levitus [1982] seasonal climatology. The second run is the same but with 3 day-averaged rather than monthly averaged wind stress fields, and the third is the same as the second but uses the monthly climatological ECMWF heat fluxes of Barnier et al. [1995] instead of restoring to climatological sea surface temperatures. Many features of the wind-driven circulation are well represented in the model solutions, such as the overall current patterns, the numerous regions of hydrodynamic instability which correspond to those observed by satellite altimetry, and the filamented structure of the Antarctic Circumpolar Current. However, some features such as the separation points of the Gulf Stream and Kuroshio and the transport through narrow passages such as the Florida Straits are clearly inaccurate and indicate

  8. SUSTAINING STAR FORMATION RATES IN SPIRAL GALAXIES: SUPERNOVA-DRIVEN TURBULENT ACCRETION DISK MODELS APPLIED TO THINGS GALAXIES

    SciTech Connect

    Vollmer, Bernd; Leroy, Adam K.

    2011-01-15

    Gas disks of spiral galaxies can be described as clumpy accretion disks without a coupling of viscosity to the actual thermal state of the gas. The model description of a turbulent disk consisting of emerging and spreading clumps contains free parameters, which can be constrained by observations of molecular gas, atomic gas, and the star formation rate for individual galaxies. Radial profiles of 18 nearby spiral galaxies from THINGS, HERACLES, SINGS, and GALEX data are used to compare the observed star formation efficiency, molecular fraction, and velocity dispersion to the model. The observed radially decreasing velocity dispersion can be reproduced by the model. In the framework of this model, the decrease in the inner disk is due to the stellar mass distribution which dominates the gravitational potential. Introducing a radial break in the star formation efficiency into the model improves the fits significantly. This change in the star formation regime is realized by replacing the free-fall time in the prescription of the star formation rate with the molecule formation timescale. Depending on the star formation prescription, the break radius is located near the transition region between the molecular-gas-dominated and atomic-gas-dominated parts of the galactic disk or closer to the optical radius. It is found that only less massive galaxies (log M(M{sub sun}) {approx}< 10) can balance gas loss via star formation by radial gas accretion within the disk. These galaxies can thus access their gas reservoirs with large angular momentum. On the other hand, the star formation of massive galaxies is determined by the external gas mass accretion rate from a putative spherical halo of ionized gas or from satellite accretion. In the absence of this external accretion, star formation slowly exhausts the gas within the optical disk within the star formation timescale.

  9. Formation and Growth of Wind-Driven Waves on Titan's Hydrocarbon Seas

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.; Hayes, A. G.

    2012-04-01

    Titan’s hydrocarbon seas are an exotic and appealing aspect of that world, yet so far no wind-driven waves have been identified: radar backscatter, altimetry data and near-IR glints show liquid surfaces to be as flat as a millpond. Yet there are shoreline geomorphological indications of wave action. As we move into northern summer, Global Circulation Models predict winds in the north, home to the large seas Kraken and Ligeia, will freshen. Will Cassini observe waves? First, an analysis of onset and growth mechanisms of capillary-gravity waves on Titan (Hayes et al., submitted) reveals liquid viscosity, surface tension, and density to be significant factors. Methane-rich liquids may begin growing with windspeeds U10=0.4m/s. On the other hand, waves may not form at all in more viscous ethane-rich compositions (likely for the large seas) until U10=0.7m/s, a much less frequent occurrence. Once waves form, the dense Titan atmosphere causes them to grow. A model of gravity wave growth (Lorenz and Hayes, submitted) shows that Titan’s dense atmosphere causes growth rather faster than previously predicted by Ghafoor et al. (2000) but that the limiting (‘fully-developed’) significant wave height (SWH) is similar, and is ~0.2U10^2/g - thus 1m/s winds lead to 0.2m waves. SWH is the average of the highest one third of wave heights: individual heights typically follow a Rayleigh distribution. Thus in a 3 month period one wave with a height of 2.7 times the SWH might be expected to appear. Combined with GCM predictions (in which there may be calm days even in the windy season), these statistical models can be used to estimate the wave/tide balance of shoreline processes. These wind-wave models suggest that even in the windy summer, observable waves might not always be present - even with the most sensitive techniques of glint and altimetry - and thus any interpretation of Cassini observations to refine or validate windspeed models should be done probabilistically.

  10. Revealing the location and structure of the accretion disk wind in PDS 456

    SciTech Connect

    Gofford, J.; Reeves, J. N.; Nardini, E.; Costa, M. T.; Matzeu, G. A.; Braito, V.; O'Brien, P.; Ward, M.; Turner, T. J.; Miller, L.

    2014-03-20

    We present evidence for the rapid variability of the high-velocity iron K-shell absorption in the nearby (z = 0.184) quasar PDS 456. From a recent long Suzaku observation in 2013 (∼1 Ms effective duration), we find that the equivalent width of iron K absorption increases by a factor of ∼5 during the observation, increasing from <105 eV within the first 100 ks of the observation, toward a maximum depth of ∼500 eV near the end. The implied outflow velocity of ∼0.25 c is consistent with that claimed from earlier (2007, 2011) Suzaku observations. The absorption varies on timescales as short as ∼1 week. We show that this variability can be equally well attributed to either (1) an increase in column density, plausibly associated with a clumpy time-variable outflow, or (2) the decreasing ionization of a smooth homogeneous outflow which is in photo-ionization equilibrium with the local photon field. The variability allows a direct measure of absorber location, which is constrained to within r = 200-3500 r {sub g} of the black hole. Even in the most conservative case, the kinetic power of the outflow is ≳ 6% of the Eddington luminosity, with a mass outflow rate in excess of ∼40% of the Eddington accretion rate. The wind momentum rate is directly equivalent to the Eddington momentum rate which suggests that the flow may have been accelerated by continuum scattering during an episode of Eddington-limited accretion.

  11. Dynamics and predictability of a low-order wind-driven ocean-atmosphere coupled model

    NASA Astrophysics Data System (ADS)

    Vannitsem, Stéphane

    2014-04-01

    The dynamics of a low-order coupled wind-driven ocean-atmosphere system is investigated with emphasis on its predictability properties. The low-order coupled deterministic system is composed of a baroclinic atmosphere for which 12 dominant dynamical modes are only retained (Charney and Straus in J Atmos Sci 37:1157-1176, 1980) and a wind-driven, quasi-geostrophic and reduced-gravity shallow ocean whose field is truncated to four dominant modes able to reproduce the large scale oceanic gyres (Pierini in J Phys Oceanogr 41:1585-1604, 2011). The two models are coupled through mechanical forcings only. The analysis of its dynamics reveals first that under aperiodic atmospheric forcings only dominant single gyres (clockwise or counterclockwise) appear, while for periodic atmospheric solutions the double gyres emerge. In the present model domain setting context, this feature is related to the level of truncation of the atmospheric fields, as indicated by a preliminary analysis of the impact of higher wavenumber ("synoptic" scale) modes on the development of oceanic gyres. In the latter case, double gyres appear in the presence of a chaotic atmosphere. Second the dynamical quantities characterizing the short-term predictability (Lyapunov exponents, Lyapunov dimension, Kolmogorov-Sinaï (KS) entropy) displays a complex dependence as a function of the key parameters of the system, namely the coupling strength and the external thermal forcing. In particular, the KS-entropy is increasing as a function of the coupling in most of the experiments, implying an increase of the rate of loss of information about the localization of the system on its attractor. Finally the dynamics of the error is explored and indicates, in particular, a rich variety of short term behaviors of the error in the atmosphere depending on the (relative) amplitude of the initial error affecting the ocean, from polynomial ( at 2 + bt 3 + ct 4) up to exponential-like evolutions. These features are explained

  12. The Systematic Properties of the Warm Phase of Starburst-Driven Galactic Winds

    NASA Astrophysics Data System (ADS)

    Heckman, Timothy M.; Alexandroff, Rachel M.; Borthakur, Sanchayeeta; Overzier, Roderik; Leitherer, Claus

    2015-08-01

    Using ultraviolet absorption lines, we analyze the systematic properties of the warm ionized phase of starburst-driven winds in a sample of 39 low-redshift objects that spans broad ranges in starburst and galaxy properties. Total column densities for the outflows are ˜1021 cm-2. The outflow velocity (vout) correlates only weakly with the galaxy stellar mass ({M}*), or circular velocity (vcir), but strongly with both SFR and SFR/area. The normalized outflow velocity ({v}{out}/{v}{cir}) correlates well with both SFR/area and SFR/{M}*. The estimated outflow rates of warm ionized gas (\\dot{M}) are ˜1-4 times the SFR, and the ratio \\dot{M}/{SFR} does not correlate with vout. We show that a model of a population of clouds accelerated by the combined forces of gravity and the momentum flux from the starburst matches the data. We find a threshold value for the ratio of the momentum flux supplied by the starburst to the critical momentum flux needed for the wind to overcome gravity acting on the clouds (Rcrit). For {R}{crit} \\gt 10 (strong-outflows) the outflow’s momentum flux is similar to the total momentum flux from the starburst and the outflow velocity exceeds the galaxy escape velocity. Neither of these is the case for the weak outflows ({R}{crit} \\lt 10). For the weak-outflows, the data severely disagree with many prescriptions in numerical simulations or semi-analytic models of galaxy evolution. The agreement is better for the strong outflows, and we advocate the use of Rcrit to guide future prescriptions.

  13. A Wind-Driven, Hybrid Latent and Sensible Heat Coastal Polynya at Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Hirano, D.; Fukamachi, Y.; Watanabe, E.; Iwamoto, K.; Mahoney, A. R.; Eicken, H.; Shimizu, D.; Ohshima, K. I.; Tamura, T.

    2014-12-01

    The nature of the Barrow Coastal Polynya (BCP) formed off the Alaska Coast in winter is examined using mooring data (temperature, salinity, and ocean current), atmospheric re-analysis data (ERA-Interim), and AMSR-E-derived sea-ice concentration and production data (Iwamoto et al., 2014). Previously, the BCP has been considered to be a latent heat polynya formed by predominantly offshore winds resulting in sea-ice divergence. Recently, it has been suggested that the sea-ice production rate in the BCP is suppressed by warm Pacific- or Atlantic-origin waters distributed beneath the BCP (e.g. Itoh et al., 2012). In this study, we focus on the oceanographic conditions such as water mass distribution and ocean current structure beneath the BCP, which have not been fully documented. A mooring was deployed off Barrow, Alaska in the northeast Chukchi Sea (71.23°N, 157.65°W, water depth 55 m) from August 2009 to July 2010. During the freeze-up period from December to May, five BCP events occurred in the same manner; 1) dominant wind parallel to Barrow Canyon, with an offshore component near Barrow, 2) high sea-ice production followed by sudden cessation of ice growth, 3) upwelling of warm (>2 K above freezing point) and saline (>34) Atlantic Water (AW) beneath the BCP, 4) strong up-canyon flow (>100cm/s) associated with density fluctuations. A baroclinic current structure, established after the upwelling, resulted in enhanced vertical shear, promoting vertical mixing. The mixing event and open water formation occurred simultaneously, once sea-ice production had stopped. Thus, mixing events accompanied by ocean heat flux from AW into the surface layer were likely to form/maintain the open water area that is a sensible heat polynya. The transition from a latent to a sensible heat polynya was well reproduced by a pan-Arctic ice-ocean model (COCO). We propose that the BCP is a hybrid latent and sensible heat polynya, with both processes driven by the same offshore wind.

  14. Agglomeration of a comprehensive model for the wind-driven sand transport at the Belgian Coast

    NASA Astrophysics Data System (ADS)

    Strypsteen, Glenn; Rauwoens, Pieter

    2016-04-01

    Although a lot of research has been done in the area of Aeolian transport, it is only during the last years that attention has been drawn to Aeolian transport in coastal areas. In these areas, the physical processes are more complex, due to a large number of transport limiting parameters. In this PhD-project, which is now in its early stage, a model will be developed which relates the wind-driven sand transport at the Belgian coast with physical parameters such as the wind speed, humidity and grain size of the sand, and the slope of beach and dune surface. For the first time, the interaction between beach and dune dynamics is studied at the Belgian coast. The Belgian coastline is only 67km long, but densely populated and therefore subject to coastal protection and safety. The coast mostly consists of sandy beaches and dikes. Although, still 33km of dunes exist, whose dynamics are far less understood. The overall research approach consists of three pathways: (i) field measurements, (ii) physical model tests, and (iii) numerical simulations. Firstly and most importantly, several field campaigns will provide accurate data of meteo-marine conditions, morphology, and sand transport events on a wide beach at the Belgian Coastline. The experimental set-up consists of a monitoring station, which will provide time series of vegetation cover, shoreline position, fetch distances, surficial moisture content, wind speed and direction and transport processes. The horizontal and vertical variability of the event scale Aeolian sand transport is analyzed with 8 MWAC sand traps. Two saltiphones register the intensity and variations of grain impacts over time. Two meteo-masts, each with four anemometers and one wind vane, provide quantitative measurements of the wind flow at different locations on the beach. Surficial moisture is measured with a moisture sensor. The topography measurements are typically done with laser techniques. To start, two sites are selected for measurement

  15. Laser experiments to simulate coronal mass ejection driven magnetospheres and astrophysical plasma winds on compact magnetized stars

    NASA Astrophysics Data System (ADS)

    Horton, W.; Ditmire, T.; Zakharov, Yu. P.

    2010-06-01

    Laboratory experiments using a plasma wind generated by laser-target interaction are proposed to investigate the creation of a shock in front of the magnetosphere and the dynamo mechanism for creating plasma currents and voltages. Preliminary experiments are shown where measurements of the electron density gradients surrounding the obstacles are recorded to infer the plasma winds. The proposed experiments are relevant to understanding the electron acceleration mechanisms taking place in shock-driven magnetic dipole confined plasmas surrounding compact magnetized stars and planets. Exploratory experiments have been published [P. Brady, T. Ditmire, W. Horton, et al., Phys. Plasmas 16, 043112 (2009)] with the one Joule Yoga laser and centimeter sized permanent magnets.

  16. Challenges in Measuring External Currents Driven by the Solar Wind-Magnetosphere Interaction

    NASA Technical Reports Server (NTRS)

    Le, Guan; Slavin, James A.; Pfaff, Robert F.

    2014-01-01

    In studying the Earth's geomagnetism, it has always been a challenge to separate magnetic fields from external currents originating from the ionosphere and magnetosphere. While the internal magnetic field changes very slowly in time scales of years and more, the ionospheric and magnetospheric current systems driven by the solar wind -magnetosphere interaction are very dynamic. They are intimately controlled by the ionospheric electrodynamics and ionospheremagnetosphere coupling. Single spacecraft observations are not able to separate their spatial and temporal variations, and thus to accurately describe their configurations. To characterize and understand the external currents, satellite observations require both good spatial and temporal resolutions. This paper reviews our observations of the external currents from two recent LEO satellite missions: Space Technology 5 (ST-5), NASA's first three-satellite constellation mission in LEO polar orbit, and Communications/Navigation Outage Forecasting System (C/NOFS), an equatorial satellite developed by US Air Force Research Laboratory. We present recommendations for future geomagnetism missions based on these observations.

  17. Numerical simulation and design of a radiatively driven hypersonic wind tunnel

    NASA Astrophysics Data System (ADS)

    Anderson, Robert Wade

    The radiatively driven hypersonic wind tunnel (RDHWT) is a new concept for extending hypersonic ground testing capabilities to higher Mach numbers while maintaining true flight conditions. The RDHWT is based upon the idea that if the total stagnation enthalpy required in the test section is generated not only in the plenum, but also by the addition of heat from a radiative source to the supersonic portion of the flow, the maximum static temperature of the flow can be substantially lowered, and the operational envelope can be considerably extended. This concept is investigated using a hierarchy of models ranging from pure thermodynamics to the full compressible Reynolds Averaged Navier Stokes equations with algebraic turbulent closure. An idealized thermodynamic theory of operation provides a goal for one dimensional synthesis of potential designs. Two-dimensional planar and axisymmetric models are used to analyze fundamental questions regarding the coupled flow-radiation system, in particular the question of stability and flow quality for the case of laser based heat addition. A fundamental optical-fluid unsteady interaction is identified, and investigation of model problems reveal insight into its implications for laser based RDHWT operation. A method for implementing near-wall boundary conditions in turbulent boundary layers of real gas flows is introduced to relieve the numerical ill-conditioning associated with high Reynolds number turbulent boundary layer flows. This method enables unsteady calculations of laser energy addition at high pressure with turbulent boundary layers to examine fully coupled unsteady system dynamics.

  18. Evaluation of lightning accommodation systems for wind-driven turbine rotors

    SciTech Connect

    Bankaitis, H

    1982-03-01

    Several concepts of lightning accommodation systems for wind-driven turbine rotor blades were evaluated by submitting them to simulated lightning tests. Test samples representative of epoxy-fiberglass and wood-epoxy composite structural materials were submitted to a series of high-voltage and high-current damage tests. The high-voltage tests were designed to determine the strike points and current paths through the sample and the need for, and the most proper type of, lightning accommodation. The high-current damage tests were designed to determine the capability of the potential lightning accommodation system to sustain the 200-kA lightning current without causing damage to the composite structure. The observations and data obtained in the series of tests of lightning accommodation systems clearly led to the conclusions that composite-structural-material rotor blades require a lightning accommodation system; that the concepts tested prevent internal streamering; and that keeping discharge currents on the blade surface precludes structure penetration. Induced voltage effects or any secondary effects on the integral components of the total system could not be addressed. Further studies should be carried out to encompass effects on the total system design.

  19. Subproton-scale Cascades in Solar Wind Turbulence: Driven Hybrid-kinetic Simulations

    NASA Astrophysics Data System (ADS)

    Cerri, S. S.; Califano, F.; Jenko, F.; Told, D.; Rincon, F.

    2016-05-01

    A long-lasting debate in space plasma physics concerns the nature of subproton-scale fluctuations in solar wind (SW) turbulence. Over the past decade, a series of theoretical and observational studies were presented in favor of either kinetic Alfvén wave (KAW) or whistler turbulence. Here, we investigate numerically the nature of the subproton-scale turbulent cascade for typical SW parameters by means of unprecedented high-resolution simulations of forced hybrid-kinetic turbulence in two real-space and three velocity-space dimensions. Our analysis suggests that small-scale turbulence in this model is dominated by KAWs at β ≳ 1 and by magnetosonic/whistler fluctuations at lower β. The spectral properties of the turbulence appear to be in good agreement with theoretical predictions. A tentative interpretation of this result in terms of relative changes in the damping rates of the different waves is also presented. Overall, the results raise interesting new questions about the properties and variability of subproton-scale turbulence in the SW, including its possible dependence on the plasma β, and call for detailed and extensive parametric explorations of driven kinetic turbulence in three dimensions.

  20. Photoevaporation and Disk Dispersal

    NASA Astrophysics Data System (ADS)

    Gorti, Uma

    2016-01-01

    Protoplanetary disks are depleted of their mass on short timescales by viscous accretion, which removes both gas and solids, and by photoevaporation which removes mainly gas. Photoevaporation may facilitate planetesimal formation by lowering the gas/dust mass ratio in disks. Disk dispersal sets constraints on planet formation timescales, and by controlling the availability of gas determines the type of planets that form in the disk. Photoevaporative wind mass loss rates are theoretically estimated to range from ~ 10-10 to 10-8 M ⊙, and disk lifetimes are typically ~ few Myr.

  1. Effect of scattering on the transonic solution topology and intrinsic variability of line-driven stellar winds

    NASA Astrophysics Data System (ADS)

    Sundqvist, Jon O.; Owocki, Stanley P.

    2015-11-01

    For line-driven winds from hot, luminous OB stars, we examine the subtle but important role of diffuse, scattered radiation in determining both the topology of steady-state solutions and intrinsic variability in the transonic wind base. We use a smooth source function formalizm to obtain non-local, integral expressions for the direct and diffuse components of the line-force that account for deviations from the usual localized, Sobolev forms. As the scattering source function is reduced, we find the solution topology in the transonic region transitions from X-type, with a unique wind solution, to a nodal type, characterized by a degenerate family of solutions. Specifically, in the idealized case of an optically thin source function and a uniformly bright stellar disc, the unique X-type solution proves to be a stable attractor to which time-dependent numerical radiation-hydrodynamical simulations relax. But in models where the scattering strength is only modestly reduced, the topology instead turns nodal, with the associated solution degeneracy now manifest by intrinsic structure and variability that persist down to the photospheric wind base. This highlights the potentially crucial role of diffuse radiation for the dynamics and variability of line-driven winds, and seriously challenges the use of Sobolev theory in the transonic wind region. Since such Sobolev-based models are commonly used in broad applications like stellar evolution and feedback, this prompts development of new wind models, not only for further quantifying the intrinsic variability found here, but also for computing new theoretical predictions of global properties like velocity laws and mass-loss rates.

  2. Low extreme-ultraviolet luminosities impinging on protoplanetary disks

    SciTech Connect

    Pascucci, I.; Hendler, N. P.; Ricci, L.; Gorti, U.; Hollenbach, D.; Brooks, K. J.; Contreras, Y.

    2014-11-01

    The amount of high-energy stellar radiation reaching the surface of protoplanetary disks is essential to determine their chemistry and physical evolution. Here, we use millimetric and centimetric radio data to constrain the extreme-ultraviolet (EUV) luminosity impinging on 14 disks around young (∼2-10 Myr) sun-like stars. For each object we identify the long-wavelength emission in excess to the dust thermal emission, attribute that to free-free disk emission, and thereby compute an upper limit to the EUV reaching the disk. We find upper limits lower than 10{sup 42} photons s{sup –1} for all sources without jets and lower than 5 × 10{sup 40} photons s{sup –1} for the three older sources in our sample. These latter values are low for EUV-driven photoevaporation alone to clear out protoplanetary material in the timescale inferred by observations. In addition, our EUV upper limits are too low to reproduce the [Ne II] 12.81 μm luminosities from three disks with slow [Ne II]-detected winds. This indicates that the [Ne II] line in these sources primarily traces a mostly neutral wind where Ne is ionized by 1 keV X-ray photons, implying higher photoevaporative mass loss rates than those predicted by EUV-driven models alone. In summary, our results suggest that high-energy stellar photons other than EUV may dominate the dispersal of protoplanetary disks around sun-like stars.

  3. Low Extreme-ultraviolet Luminosities Impinging on Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Pascucci, I.; Ricci, L.; Gorti, U.; Hollenbach, D.; Hendler, N. P.; Brooks, K. J.; Contreras, Y.

    2014-11-01

    The amount of high-energy stellar radiation reaching the surface of protoplanetary disks is essential to determine their chemistry and physical evolution. Here, we use millimetric and centimetric radio data to constrain the extreme-ultraviolet (EUV) luminosity impinging on 14 disks around young (~2-10 Myr) sun-like stars. For each object we identify the long-wavelength emission in excess to the dust thermal emission, attribute that to free-free disk emission, and thereby compute an upper limit to the EUV reaching the disk. We find upper limits lower than 1042 photons s-1 for all sources without jets and lower than 5 × 1040 photons s-1 for the three older sources in our sample. These latter values are low for EUV-driven photoevaporation alone to clear out protoplanetary material in the timescale inferred by observations. In addition, our EUV upper limits are too low to reproduce the [Ne II] 12.81 μm luminosities from three disks with slow [Ne II]-detected winds. This indicates that the [Ne II] line in these sources primarily traces a mostly neutral wind where Ne is ionized by 1 keV X-ray photons, implying higher photoevaporative mass loss rates than those predicted by EUV-driven models alone. In summary, our results suggest that high-energy stellar photons other than EUV may dominate the dispersal of protoplanetary disks around sun-like stars.

  4. TWT Driven by a Large Diameter Annular Electron Beam in a Disk-on-Rod Slow-Wave Structure

    NASA Astrophysics Data System (ADS)

    Wong, P.; Simon, D. H.; Zhang, Peng; Lau, Y. Y.; Gilgenbach, R. M.; Hoff, B.

    2014-10-01

    This paper studies the viability of a high-power traveling wave tube (TWT) using a disk-on-rod slow-wave structure (SWS), which admits a large diameter, high current, annular electron beam. The annular electron beam would achieve much higher current than a pencil beam. The cold-tube as well as the hot-tube dispersion relations are analytically studied and compared to numerical simulations. The Pierce gain parameter, C , is calculated by two very different methods: the exact formulation of the space-charge wave on the disk-on-rod SWS, and the calculation of the action of the beam on the operating circuit mode. Both methods yield identical results of C. The so-called Pierce AC space charge effect parameter, QC, is calculated rigorously for the first time for the disk-on-rod SWS TWT. Proof-of-principle experiment is designed based on the combined analytic and simulation studies. This work is supported by AFOSR, and by L-3 Communications Electron Devices.

  5. Wind-driven changes of surface current, temperature, and chlorophyll observed by satellites north of New Guinea

    NASA Astrophysics Data System (ADS)

    Radenac, Marie-Hélène; Léger, Fabien; Messié, Monique; Dutrieux, Pierre; Menkes, Christophe; Eldin, Gérard

    2016-04-01

    Satellite observations of wind, sea level and derived currents, sea surface temperature (SST), and chlorophyll are used to expand our understanding of the physical and biological variability of the ocean surface north of New Guinea. Based on scarce cruise and mooring data, previous studies differentiated a trade wind situation (austral winter) when the New Guinea Coastal Current (NGCC) flows northwestward and a northwest monsoon situation (austral summer) when a coastal upwelling develops and the NGCC reverses. This circulation pattern is confirmed by satellite observations, except in Vitiaz Strait where the surface northwestward flow persists. We find that intraseasonal and seasonal time scale variations explain most of the variance north of New Guinea. SST and chlorophyll variabilities are mainly driven by two processes: penetration of Solomon Sea waters and coastal upwelling. In the trade wind situation, the NGCC transports cold Solomon Sea waters through Vitiaz Strait in a narrow vein hugging the coast. Coastal upwelling is generated in westerly wind situations (westerly wind event, northwest monsoon). Highly productive coastal waters are advected toward the equator and, during some westerly wind events, toward the eastern part of the warm pool. During El Niño, coastal upwelling events and northward penetration of Solomon Sea waters combine to influence SST and chlorophyll anomalies.

  6. Herniated disk

    MedlinePlus

    ... the disk. This may place pressure on nearby nerves or the spinal cord. ... Lumbar radiculopathy; Cervical radiculopathy; Herniated intervertebral disk; Prolapsed intervertebral disk; Slipped disk; Ruptured disk; Herniated nucleus pulposus

  7. Instabilities in line-driven stellar winds. III - Wave propagation in the case of pure line absorption

    NASA Technical Reports Server (NTRS)

    Owocki, S. P.; Rybicki, G. B.

    1986-01-01

    The spatial and temporal evolution of small-amplitude velocity perturbations is examined in the idealized case of a stellar wind that is driven by pure line absorption of the star's continuum radiation. It is established that the instability in the supersonic region is of the advective type relative to the star, but of the absolute type relative to the wind itself. It is also shown that the inward propagation of information in such a wind is limited to the sound speed, in contrast to the theory of Abbott, which predicts inward propagation faster than sound. This apparent contradiction is resolved through an extensive discussion of the analytically soluble case of zero sound speed.

  8. Changes in the onset and intensity of wind-driven upwelling and downwelling along the North American Pacific coast

    NASA Astrophysics Data System (ADS)

    Bylhouwer, Brian; Ianson, Debby; Kohfeld, Karen

    2013-05-01

    The timing, duration, and intensity of wind-driven upwelling and downwelling along the North American Pacific coast play an integral role in coastal circulation and basinwide ecosystem composition. It has been suggested that global warming will cause changes in these winds. Here we develop a new set of objective criteria to unambiguously determine the onset, duration, and intensity of upwelling and downwelling seasons due to local wind forcing. We use these criteria to examine and better characterize temporal trends in wind-driven coastal currents over the previous 60 years and relate them to global warming and large-scale climate oscillations in the coastal ocean between northern California and Vancouver Island (37°N and 51°N). We find an exceptionally variable onset of upwelling at all locations. Some significant temporal trends are found in summer onset and upwelling intensity time series near the Juan de Fuca Strait and off the coast of Oregon. Positive phases of the Pacific Decadal Oscillation are correlated to later and shorter upwelling seasons with weaker upwelling. Warm phases of the El Niño Southern Oscillation are associated with a later onset of summer upwelling south of Oregon and with more intense downwelling throughout the study area. Our analysis identifies strong interannual to interdecadal variability, and emphasizes the importance of time series length when isolating physical temporal trends influenced by large-scale oscillatory behavior of the climate.

  9. Origin of outflows and winds

    NASA Technical Reports Server (NTRS)

    Koenigl, Arieh; Ruden, Steven P.

    1993-01-01

    Recent developments concerning the accretion-outflow connection and the role of magnetic fields are examined. It is argued that the weakly ionized wind most likely represents an MHD outflow driven centrifugally from the disk surfaces or from the boundary between the disk and the star. Specific wind models for each of these alternatives are presented, and it is contended that both provide a natural explanation of the observed correlation between accretion and outflow. The kinematic, thermal, and chemical wind properties predicted by these models are described and their observational implications are considered. It is suggested that the wind characteristics may be reflected in the observed forbidden line and IR continuum emission of T Tauri stars and in the measured abundances of various molecular species.

  10. Modeling Reconnection-Driven Solar Polar Jets with Gravity and Wind

    NASA Astrophysics Data System (ADS)

    Karpen, Judith T.; DeVore, C. R.; Antiochos, S. K.

    2013-07-01

    Solar polar jets are dynamic, narrow, radially extended structures observed in EUV emission. They have been found to originate within the open magnetic field of coronal holes in “anemone” regions, which are generally accepted to be intrusions of opposite polarity. The associated embedded-dipole topology consists of a spine line emanating from a null point atop a dome-shaped fan surface. Previous work (Pariat et al. 2009, 2010) has validated the idea that magnetic free energy stored on twisted closed field lines within the fan surface can be released explosively by the onset of fast reconnection between the highly stressed closed field inside the null and the unstressed open field outside (Antiochos 1996). The simulations showed that a dense jet comprising a nonlinear, torsional Alfven wave is ejected into the outer corona on the newly reconnected open field lines. While proving the principle of the basic model, those simulations neglected the important effects of gravity, the solar wind, and an expanding spherical geometry. We introduce those additional physical processes in new simulations of reconnection-driven jets, to determine whether the model remains robust in the resulting more realistic setting, and to begin establishing the signatures of the jets in the inner heliosphere for comparison with observations. Initial results demonstrate explosive energy release and a jet in the low corona very much like that in the earlier Cartesian, gravity-free, static-atmosphere runs. We report our analysis of the results, their comparison with previous work, and their implications for observations. This work was supported by NASA’s LWS TR&T program.Abstract (2,250 Maximum Characters): Solar polar jets are dynamic, narrow, radially extended structures observed in EUV emission. They have been found to originate within the open magnetic field of coronal holes in “anemone” regions, which are generally accepted to be intrusions of opposite polarity. The associated

  11. Radiative ablation of disks around massive stars

    NASA Astrophysics Data System (ADS)

    Kee, Nathaniel Dylan

    Hot, massive stars (spectral types O and B) have extreme luminosities (10. 4 -10. 6 L?) that drive strong stellar winds through UV line-scattering.Some massive stars also have disks, formed by either decretion from the star (as in the rapidly rotating "Classical Be stars"), or accretion during the star's formation. This dissertation examines the role of stellar radiation in driving (ablating) material away from these circumstellar disks. A key result is that the observed month to year decay of Classical Be disks can be explained by line-driven ablation without, as previously done, appealing to anomalously strong viscous diffusion. Moreover, the higher luminosity of O stars leads to ablation of optically thin disks on dynamical timescales of order a day, providing a natural explanation for the lack of observed Oe stars. In addition to the destruction of Be disks, this dissertation also introduces a model for their formation by coupling observationally inferred non-radial pulsation modes and rapid stellar rotation to launch material into orbiting Keplerian disks of Be-like densities. In contrast to such Be decretion disks, star-forming accretion disks are much denser and so are generally optically thick to continuum processes. To circumvent the computational challenges associated with radiation hydrodynamics through optically thick media, we develop an approximate method for treating continuum absorption in the limit of geometrically thin disks. The comparison of ablation with and without continuum absorption shows that accounting for disk optical thickness leads to less than a 50% reduction in ablation rate, implying that ablation rate depends mainly on stellar properties like luminosity. Finally, we discuss the role of "thin-shell mixing" in reducing X-rays from colliding wind binaries. Laminar, adiabatic shocks produce well understood X-ray emission, but the emission from radiatively cooled shocks is more complex due to thin-shell instabilities. The parameter

  12. Extreme Fire Severity Patterns in Topographic, Convective and Wind-Driven Historical Wildfires of Mediterranean Pine Forests

    PubMed Central

    Lecina-Diaz, Judit; Alvarez, Albert; Retana, Javier

    2014-01-01

    Crown fires associated with extreme fire severity are extremely difficult to control. We have assessed fire severity using differenced Normalized Burn Ratio (dNBR) from Landsat imagery in 15 historical wildfires of Pinus halepensis Mill. We have considered a wide range of innovative topographic, fuel and fire behavior variables with the purposes of (1) determining the variables that influence fire severity patterns among fires (considering the 15 wildfires together) and (2) ascertaining whether different variables affect extreme fire severity within the three fire types (topographic, convective and wind-driven fires). The among-fires analysis showed that fires in less arid climates and with steeper slopes had more extreme severity. In less arid conditions there was more crown fuel accumulation and closer forest structures, promoting high vertical and horizontal fuel continuity and extreme fire severity. The analyses carried out for each fire separately (within fires) showed more extreme fire severity in areas in northern aspects, with steeper slopes, with high crown biomass and in climates with more water availability. In northern aspects solar radiation was lower and fuels had less water limitation to growth which, combined with steeper slopes, produced more extreme severity. In topographic fires there was more extreme severity in northern aspects with steeper slopes and in areas with more water availability and high crown biomass; in convection-dominated fires there was also more extreme fire severity in northern aspects with high biomass; while in wind-driven fires there was only a slight interaction between biomass and water availability. This latter pattern could be related to the fact that wind-driven fires spread with high wind speed, which could have minimized the effect of other variables. In the future, and as a consequence of climate change, new zones with high crown biomass accumulated in non-common drought areas will be available to burn as extreme

  13. Extreme fire severity patterns in topographic, convective and wind-driven historical wildfires of Mediterranean pine forests.

    PubMed

    Lecina-Diaz, Judit; Alvarez, Albert; Retana, Javier

    2014-01-01

    Crown fires associated with extreme fire severity are extremely difficult to control. We have assessed fire severity using differenced Normalized Burn Ratio (dNBR) from Landsat imagery in 15 historical wildfires of Pinus halepensis Mill. We have considered a wide range of innovative topographic, fuel and fire behavior variables with the purposes of (1) determining the variables that influence fire severity patterns among fires (considering the 15 wildfires together) and (2) ascertaining whether different variables affect extreme fire severity within the three fire types (topographic, convective and wind-driven fires). The among-fires analysis showed that fires in less arid climates and with steeper slopes had more extreme severity. In less arid conditions there was more crown fuel accumulation and closer forest structures, promoting high vertical and horizontal fuel continuity and extreme fire severity. The analyses carried out for each fire separately (within fires) showed more extreme fire severity in areas in northern aspects, with steeper slopes, with high crown biomass and in climates with more water availability. In northern aspects solar radiation was lower and fuels had less water limitation to growth which, combined with steeper slopes, produced more extreme severity. In topographic fires there was more extreme severity in northern aspects with steeper slopes and in areas with more water availability and high crown biomass; in convection-dominated fires there was also more extreme fire severity in northern aspects with high biomass; while in wind-driven fires there was only a slight interaction between biomass and water availability. This latter pattern could be related to the fact that wind-driven fires spread with high wind speed, which could have minimized the effect of other variables. In the future, and as a consequence of climate change, new zones with high crown biomass accumulated in non-common drought areas will be available to burn as extreme

  14. Disk-cathode flash X-ray tube driven by a repetitive two-stage Marx pulser.

    PubMed

    Kimura, S; Sato, E; Sagae, M; Shikoda, A; Oizumi, T; Takahashi, K; Tamakawa, Y; Yanagisawa, T

    1993-07-01

    Fundamental studies of a repetitive flash X-ray generator using a disk-cathode radiation tube are described. The high-voltage pulser employed a modified two-stage surge-Marx circuit. The two condensers in the pulser were charged from 40 to 60 kV, and the electric charges were discharged to the X-ray tube repetitively to generate flash X-rays. The total capacity during the main discharge was 425 pF, and the maximum output voltage from the pulser was about 1.9 times the charged voltage. The flash X-ray tube was of the demountable-diode type and was composed of a rod-shaped anode tip made of tungsten, a disk cathode made of graphite and a tube body made of polymethylmethacrylate. The peak tube voltage was primarily determined by the anode-cathode (A-C) space, and the peak tube current was less than 0.5 kA. Thus the maximum photon energy could be easily controlled by varying the A-C space, and the tube current roughly increased according to increases in the charged voltage. The pulse width ranged from 40 to 100 ns, and the X-ray intensity was less than 1.1 microC kg-1 at 0.5 m per pulse. The repetition rate was less than 50 Hz, and the effective focal spot size was equivalent to the anode diameter. PMID:8231324

  15. On the impact of radiation pressure on the dynamics and inner structure of dusty wind-driven shells

    SciTech Connect

    Martínez-González, Sergio; Silich, Sergiy; Tenorio-Tagle, Guillermo

    2014-04-20

    Massive young stellar clusters are strong sources of radiation and mechanical energy. Their powerful winds and radiation pressure sweep up interstellar gas into thin expanding shells that trap the ionizing radiation produced by the central clusters affecting the dynamics and the distribution of their ionized gas. Here we continue our comparison of the star cluster winds and radiation pressure effects on the dynamics of shells around young massive clusters. We calculate the impact that radiation pressure has on the distribution of matter and thermal pressure within such shells, as well as on the density-weighted ionization parameter U{sub w} , and put our results on the diagnostic diagram, which allows one to discriminate between the wind-dominated and radiation-dominated regimes. We found that model-predicted values of the ionization parameter agree well with typical values found in local starburst galaxies. Radiation pressure may affect the inner structure and the dynamics of wind-driven shells, but only during the earliest stages of evolution (before ∼3 Myr) or if a major fraction of the star cluster mechanical luminosity is dissipated or radiated away within the star cluster volume and thus the star cluster mechanical energy output is significantly smaller than star cluster synthetic models predict. However, even in these cases radiation dominates over the wind dynamical pressure only if the exciting cluster is embedded into a high-density ambient medium.

  16. Subsurface Observations in a Wind-Driven Flow in Littoral Waters off the East Coast of Florida

    NASA Astrophysics Data System (ADS)

    Chernys, M.; Dhanak, M.

    2001-12-01

    Observations of distribution of currents, temperature, salinity and density over a 1km by 0.5km spatial region in littoral waters (~20m deep) off the east coast of Florida during a passage of a low-pressure atmospheric front will be described. Meteorological and ocean surface current radar (OSCR) observations clearly show the passage of a low pressure front, during April 8-9, 2000, involving a period of warm onshore winds (~10m/s) followed by one of cold offshore winds (~14m/s) over a period of around 40 hours. Subsurface current observations from a bottom-mounted acoustic Doppler current profiler (ADCP) and from an autonomous underwater vehicle (AUV) over an 18-hour period show almost co-incident shift in current direction with the corresponding shift in the wind direction, suggesting that the currents were dominantly wind driven. Dominant currents were approximately 30 degrees to the right of the wind direction, consistent with Ekman flow. The associated magnitude of the depth of the Ekman layer and supporting temperature, salinity and water density observations from the AUV and ship-based casts will be presented. Acknowledgements: The work is part of an on-going effort, supported by ONR (Program Manager: Dr Thomas Curtin), involving AUV-based subsurface observations during adverse atmospheric conditions. Other observation elements (OSCR, bottom-mounted ADCP, moored buoys) are supported by University of Miami, NSWC, Nova Southeastern University, University of South Florida and other partners of the South Florida Ocean Measurement Center.

  17. Solar Energetic Particle Production by Coronal Mass Ejection-driven Shocks in Solar Fast-Wind Regions

    NASA Astrophysics Data System (ADS)

    Kahler, S. W.; Reames, D. V.

    2003-02-01

    Gradual solar energetic particle (SEP) events at 1 AU are produced by coronal/interplanetary shocks driven by coronal mass ejections (CMEs). Fast (vCME>~900 km s-1) CMEs might produce stronger shocks in solar slow-wind regions, where the flow and fast-mode MHD wave speeds are low, than in fast-wind regions, where those speeds are much higher. At 1 AU the O+7/O+6 ratios distinguish between those two kinds of wind streams. We use the 20 MeV proton event intensities from the EPACT instrument on Wind, the associated CMEs observed with the LASCO coronagraph on SOHO, and the ACE SWICS solar wind values of O+7/O+6 to look for variations of peak SEP intensities as a function of O+7/O+6. No significant dependence of the SEP intensities on O+7/O+6 is found for either poorly connected or well-connected CME source regions or for different CME speed ranges. However, in the 3 yr study period we find only five cases of SEP events in fast wind, defined by regions of O+7/O+6<0.15. We suggest that in coronal holes SEP acceleration may take place only in the plume regions, where the flow and Alfvén speeds are low. A broad range of angular widths are associated with fast (vCME>=900 km s-1) CMEs, but we find that no fast CMEs with widths less than 60° are associated with SEP events. On the other hand, nearly all fast halo CMEs are associated with SEP events. Thus, the CME widths are more important in SEP production than previously thought, but the speed of the solar wind source regions in which SEPs are produced may not be a factor.

  18. Aneesur Rahman Prize for Computational Physics Talk: Numerical Modeling of Accretion Disk Dynamos driven by the MRI

    NASA Astrophysics Data System (ADS)

    Stone, James

    2011-04-01

    Numerical methods have proved crucial for the study of the nonlinear regime of the magnetorotational instability (MRI) and resulting dynamo action. After a brief introduction to the methods, a variety of results from new simulations of the MRI in both local (shearing box approximation) and global domains will be presented. Previous work on the saturation level and numerical convergence in both stratified and unstratified domains with no net flux (both with and without explicit dissipation) will be described, and the connection to dynamo theory will be mentioned. Results from several groups in which the size of the computational domain, and the vertical boundary conditions, are varied will be discussed. Finally, new work on the direct comparison between high-resolution global and shearing box simulations will be presented, and new studies of stratified disks with radiative transfer will be introduced.

  19. Potential fate of SOC eroded from natural crusted soil surface under simulated wind driven storm

    NASA Astrophysics Data System (ADS)

    Xiao, Liangang; Fister, Wolfgang; Greenwood, Philip; Hu, Yaxian; Kuhn, Nikolaus J.

    2016-04-01

    Improving the assessment of the impact of soil erosion on carbon (C) cycling requires a better understanding of the redistribution of eroded sediment and associated soil organic carbon (SOC) across agricultural landscapes. Recent studies conducted on dry-sieved aggregates in the laboratory demonstrated that aggregation can profoundly skew SOC redistribution and its subsequent fate by accelerating settling velocities of aggregated sediment compared to mineral grains, which in turn can increase SOC mineralization into greenhouse gases. However, the erodibility of the soil in the field is more variable than in the laboratory due to tillage, crus formation, drying-wetting and freeze-thaw cycles, and biological effects. This study aimed to investigate the potential fate of the SOC eroded from naturally developed soil surface and to compare the observations with those made in the laboratory. Simulated, short, high intensity wind driven storms were conducted on a crusted loam in the field. The sediments were fractionated with a settling tube according to their potential transport distances. The soil mass, SOC concentration and cumulative 80-day CO2 emission of each fraction were identified. The results show: 1) 53% of eroded sediment and 62% of eroded SOC from the natural surface in the field would be deposited across landscapes, which is six times and three times higher compared to that implied by mineral grains, respectively; 2) the preferential deposition of SOC-rich fast-settling sediment potentially releases approximately 50% more CO2 than the same layer of the non-eroded soil; 3) the respiration of the slow-settling fraction that is potentially transported to the aquatic systems was much more active compared to the other fractions and the bulk soil. Our results confirm in general the conclusions drawn from laboratory and thus demonstrate that aggregation can affect the redistribution of sediment associated SOC under field conditions, including an increase in

  20. THE LARGE-SCALE MAGNETIC FIELDS OF THIN ACCRETION DISKS

    SciTech Connect

    Cao Xinwu; Spruit, Hendrik C. E-mail: henk@mpa-garching.mpg.de

    2013-03-10

    Large-scale magnetic field threading an accretion disk is a key ingredient in the jet formation model. The most attractive scenario for the origin of such a large-scale field is the advection of the field by the gas in the accretion disk from the interstellar medium or a companion star. However, it is realized that outward diffusion of the accreted field is fast compared with the inward accretion velocity in a geometrically thin accretion disk if the value of the Prandtl number P{sub m} is around unity. In this work, we revisit this problem considering the angular momentum of the disk to be removed predominantly by the magnetically driven outflows. The radial velocity of the disk is significantly increased due to the presence of the outflows. Using a simplified model for the vertical disk structure, we find that even moderately weak fields can cause sufficient angular momentum loss via a magnetic wind to balance outward diffusion. There are two equilibrium points, one at low field strengths corresponding to a plasma-beta at the midplane of order several hundred, and one for strong accreted fields, {beta} {approx} 1. We surmise that the first is relevant for the accretion of weak, possibly external, fields through the outer parts of the disk, while the latter one could explain the tendency, observed in full three-dimensional numerical simulations, of strong flux bundles at the centers of disk to stay confined in spite of strong magnetororational instability turbulence surrounding them.

  1. Validating a time-dependent turbulence-driven model of the solar wind

    SciTech Connect

    Lionello, Roberto; Downs, Cooper; Linker, Jon A.; Mikić, Zoran; Velli, Marco; Verdini, Andrea E-mail: cdowns@predsci.com E-mail: mikic@predsci.com E-mail: verdini@oma.be

    2014-04-01

    Although the mechanisms responsible for heating the Sun's corona and accelerating the solar wind are still being actively investigated, it is largely accepted that photospheric motions provide the energy source and that the magnetic field must play a key role in the process. Verdini et al. presented a model for heating and accelerating the solar wind based on the turbulent dissipation of Alfvén waves. We first use a time-dependent model of the solar wind to reproduce one of Verdini et al.'s solutions; then, we extend its application to the case where the energy equation includes thermal conduction and radiation losses, and the upper chromosphere is part of the computational domain. Using this model, we explore the parameter space and describe the characteristics of a fast solar wind solution. We discuss how this formulation may be applied to a three-dimensional MHD model of the corona and solar wind.

  2. Observed vulnerability of Filchner-Ronne Ice Shelf to wind-driven inflow of warm deep water

    PubMed Central

    Darelius, E.; Fer, I.; Nicholls, K. W.

    2016-01-01

    The average rate of melting at the base of the large Filchner-Ronne Ice Shelf in the southern Weddell Sea is currently low, but projected to increase dramatically within the next century. In a model study, melt rates increase as changing ice conditions cause a redirection of a coastal current, bringing warm water of open ocean origin through the Filchner Depression and into the Filchner Ice Shelf cavity. Here we present observations from near Filchner Ice Shelf and from the Filchner Depression, which show that pulses of warm water already arrive as far south as the ice front. This southward heat transport follows the eastern flank of the Filchner Depression and is found to be directly linked to the strength of a wind-driven coastal current. Our observations emphasize the potential sensitivity of Filchner-Ronne Ice Shelf melt rates to changes in wind forcing. PMID:27481659

  3. Observed vulnerability of Filchner-Ronne Ice Shelf to wind-driven inflow of warm deep water

    NASA Astrophysics Data System (ADS)

    Darelius, E.; Fer, I.; Nicholls, K. W.

    2016-08-01

    The average rate of melting at the base of the large Filchner-Ronne Ice Shelf in the southern Weddell Sea is currently low, but projected to increase dramatically within the next century. In a model study, melt rates increase as changing ice conditions cause a redirection of a coastal current, bringing warm water of open ocean origin through the Filchner Depression and into the Filchner Ice Shelf cavity. Here we present observations from near Filchner Ice Shelf and from the Filchner Depression, which show that pulses of warm water already arrive as far south as the ice front. This southward heat transport follows the eastern flank of the Filchner Depression and is found to be directly linked to the strength of a wind-driven coastal current. Our observations emphasize the potential sensitivity of Filchner-Ronne Ice Shelf melt rates to changes in wind forcing.

  4. Observed vulnerability of Filchner-Ronne Ice Shelf to wind-driven inflow of warm deep water.

    PubMed

    Darelius, E; Fer, I; Nicholls, K W

    2016-01-01

    The average rate of melting at the base of the large Filchner-Ronne Ice Shelf in the southern Weddell Sea is currently low, but projected to increase dramatically within the next century. In a model study, melt rates increase as changing ice conditions cause a redirection of a coastal current, bringing warm water of open ocean origin through the Filchner Depression and into the Filchner Ice Shelf cavity. Here we present observations from near Filchner Ice Shelf and from the Filchner Depression, which show that pulses of warm water already arrive as far south as the ice front. This southward heat transport follows the eastern flank of the Filchner Depression and is found to be directly linked to the strength of a wind-driven coastal current. Our observations emphasize the potential sensitivity of Filchner-Ronne Ice Shelf melt rates to changes in wind forcing. PMID:27481659

  5. System efficiency of a tap transformer based grid connection topology applied on a direct driven generator for wind power.

    PubMed

    Apelfröjd, Senad; Eriksson, Sandra

    2014-01-01

    Results from experiments on a tap transformer based grid connection system for a variable speed vertical axis wind turbine are presented. The tap transformer based system topology consists of a passive diode rectifier, DC-link, IGBT inverter, LCL-filter, and tap transformer. Full range variable speed operation is enabled by using the different step-up ratios of a tap transformer. Simulations using MATLAB/Simulink have been performed in order to study the behavior of the system. A full experimental set up of the system has been used in the laboratory study, where a clone of the on-site generator was driven by an induction motor and the system was connected to a resistive load to better evaluate the performance. Furthermore, the system is run and evaluated for realistic wind speeds and variable speed operation. For a more complete picture of the system performance, a case study using real site Weibull parameters is done, comparing different tap selection options. The results show high system efficiency at nominal power and an increase in overall power output for full tap operation in comparison with the base case, a standard transformer. In addition, the loss distribution at different wind speeds is shown, which highlights the dominant losses at low and high wind speeds. Finally, means for further increasing the overall system efficiency are proposed. PMID:25258733

  6. System Efficiency of a Tap Transformer Based Grid Connection Topology Applied on a Direct Driven Generator for Wind Power

    PubMed Central

    2014-01-01

    Results from experiments on a tap transformer based grid connection system for a variable speed vertical axis wind turbine are presented. The tap transformer based system topology consists of a passive diode rectifier, DC-link, IGBT inverter, LCL-filter, and tap transformer. Full range variable speed operation is enabled by using the different step-up ratios of a tap transformer. Simulations using MATLAB/Simulink have been performed in order to study the behavior of the system. A full experimental set up of the system has been used in the laboratory study, where a clone of the on-site generator was driven by an induction motor and the system was connected to a resistive load to better evaluate the performance. Furthermore, the system is run and evaluated for realistic wind speeds and variable speed operation. For a more complete picture of the system performance, a case study using real site Weibull parameters is done, comparing different tap selection options. The results show high system efficiency at nominal power and an increase in overall power output for full tap operation in comparison with the base case, a standard transformer. In addition, the loss distribution at different wind speeds is shown, which highlights the dominant losses at low and high wind speeds. Finally, means for further increasing the overall system efficiency are proposed. PMID:25258733

  7. Generation and diagnostics of atmospheric pressure CO{sub 2} plasma by laser driven plasma wind tunnel

    SciTech Connect

    Matsui, Makoto; Yamagiwa, Yoshiki; Tanaka, Kensaku; Arakawa, Yoshihiro; Nomura, Satoshi; Komurasaki, Kimiya

    2012-08-01

    Atmospheric pressure CO{sub 2} plasma was generated by a laser driven plasma wind tunnel. At an ambient pressure of 0.38 MPa, a stable plasma was maintained by a laser power of 1000 W for more than 20 min. The translational temperature was measured using laser absorption spectroscopy with the atomic oxygen line at 777.19 nm. The measured absorption profiles were analyzed by a Voigt function considering Doppler, Stark, and pressure-broadening effects. Under the assumption of thermochemical equilibrium, all broadening effects were consistent with each other. The measured temperature ranged from 8500 K to 8900 K.

  8. Turbulence-driven coronal heating and improvements to empirical forecasting of the solar wind

    SciTech Connect

    Woolsey, Lauren N.; Cranmer, Steven R.

    2014-06-01

    Forecasting models of the solar wind often rely on simple parameterizations of the magnetic field that ignore the effects of the full magnetic field geometry. In this paper, we present the results of two solar wind prediction models that consider the full magnetic field profile and include the effects of Alfvén waves on coronal heating and wind acceleration. The one-dimensional magnetohydrodynamic code ZEPHYR self-consistently finds solar wind solutions without the need for empirical heating functions. Another one-dimensional code, introduced in this paper (The Efficient Modified-Parker-Equation-Solving Tool, TEMPEST), can act as a smaller, stand-alone code for use in forecasting pipelines. TEMPEST is written in Python and will become a publicly available library of functions that is easy to adapt and expand. We discuss important relations between the magnetic field profile and properties of the solar wind that can be used to independently validate prediction models. ZEPHYR provides the foundation and calibration for TEMPEST, and ultimately we will use these models to predict observations and explain space weather created by the bulk solar wind. We are able to reproduce with both models the general anticorrelation seen in comparisons of observed wind speed at 1 AU and the flux tube expansion factor. There is significantly less spread than comparing the results of the two models than between ZEPHYR and a traditional flux tube expansion relation. We suggest that the new code, TEMPEST, will become a valuable tool in the forecasting of space weather.

  9. Modeling of the Water Surface Variation Driven By Local Winds at an Shallow Estuary

    NASA Astrophysics Data System (ADS)

    Lee, J.; Yun, S. L.; Oh, H. C.; Kim, S. K.; Lee, J.

    2014-12-01

    A three-dimensional ocean circulation model was applied to a shallow estuary, Mobile Bay, to study local wind setup and setdown. Tides started from the northern Gulf of Mexico propagates up to the Mobile River system which is located in the north of the Mobile Bay. However, the tides started in the south of Mobile Bay were distorted when travelling upstream while affected by river discharge and local winds. The water surface elevation was less/over predicted responding north/south winds, respectively, when winds only at the Dauphin Island station (DPI) were used. However, the model predicted water surface elevation better when using two local winds from DPI and Mobile Downtown Airport (MDA). Wind speeds were greatly reduced (~ 88 %) in about 43 km distance between DPI and MDA, and the canopy effects may be the reason for this. For this reason, the local winds are greatly responsible for local surface elevation setup and setdown especially at the shallow estuary like Mobile Bay.

  10. Reverse shock emission driven by post-merger millisecond magnetar winds: Effects of the magnetization parameter

    NASA Astrophysics Data System (ADS)

    Liu, L. D.; Wang, L. J.; Dai, Z. G.

    2016-08-01

    The study of short-duration gamma-ray bursts provides growing evidence that a good fraction of double neutron star mergers lead to the formation of stable millisecond magnetars. The launch of Poynting flux by the millisecond magnetars could leave distinct electromagnetic signatures that reveal the energy dissipation processes in the magnetar wind. In previous studies, we assume that the magnetar wind becomes completely lepton-dominated so that electrons/positrons in the magnetar wind are accelerated by a diffusive shock. However, theoretical modeling of pulsar wind nebulae shows that in many cases the magnetic field energy in the pulsar wind may be strong enough to suppress diffusive shock acceleration. In this paper, we investigate the reverse shock emission and the forward shock emission with an arbitrary magnetization parameter σ of a magnetar wind. We find that the reverse shock emission strongly depends on σ, and in particular that σ ~ 0.3 leads to the strongest reverse shock emission. Future observations would be helpful to diagnose the composition of the magnetar wind.

  11. Turbulence-driven Coronal Heating and Improvements to Empirical Forecasting of the Solar Wind

    NASA Astrophysics Data System (ADS)

    Woolsey, Lauren N.; Cranmer, Steven R.

    2014-06-01

    Forecasting models of the solar wind often rely on simple parameterizations of the magnetic field that ignore the effects of the full magnetic field geometry. In this paper, we present the results of two solar wind prediction models that consider the full magnetic field profile and include the effects of Alfvén waves on coronal heating and wind acceleration. The one-dimensional magnetohydrodynamic code ZEPHYR self-consistently finds solar wind solutions without the need for empirical heating functions. Another one-dimensional code, introduced in this paper (The Efficient Modified-Parker-Equation-Solving Tool, TEMPEST), can act as a smaller, stand-alone code for use in forecasting pipelines. TEMPEST is written in Python and will become a publicly available library of functions that is easy to adapt and expand. We discuss important relations between the magnetic field profile and properties of the solar wind that can be used to independently validate prediction models. ZEPHYR provides the foundation and calibration for TEMPEST, and ultimately we will use these models to predict observations and explain space weather created by the bulk solar wind. We are able to reproduce with both models the general anticorrelation seen in comparisons of observed wind speed at 1 AU and the flux tube expansion factor. There is significantly less spread than comparing the results of the two models than between ZEPHYR and a traditional flux tube expansion relation. We suggest that the new code, TEMPEST, will become a valuable tool in the forecasting of space weather.

  12. Super-Eddington stellar winds driven by near-surface energy deposition

    NASA Astrophysics Data System (ADS)

    Quataert, Eliot; Fernández, Rodrigo; Kasen, Daniel; Klion, Hannah; Paxton, Bill

    2016-05-01

    We develop analytic and numerical models of the properties of super-Eddington stellar winds, motivated by phases in stellar evolution when super-Eddington energy deposition (via, e.g. unstable fusion, wave heating, or a binary companion) heats a region near the stellar surface. This appears to occur in the giant eruptions of luminous blue variables (LBVs), Type IIn supernovae progenitors, classical novae, and X-ray bursts. We show that when the wind kinetic power exceeds Eddington, the photons are trapped and behave like a fluid. Convection does not play a significant role in the wind energy transport. The wind properties depend on the ratio of a characteristic speed in the problem v_crit˜ (dot{E} G)^{1/5} (where dot{E} is the heating rate) to the stellar escape speed near the heating region vesc(rh). For vcrit ≳ vesc(rh), the wind kinetic power at large radii dot{E}_w ˜ dot{E}. For vcrit ≲ vesc(rh), most of the energy is used to unbind the wind material and thus dot{E}_w ≲ dot{E}. Multidimensional hydrodynamic simulations without radiation diffusion using FLASH and one-dimensional hydrodynamic simulations with radiation diffusion using MESA are in good agreement with the analytic predictions. The photon luminosity from the wind is itself super-Eddington but in many cases the photon luminosity is likely dominated by `internal shocks' in the wind. We discuss the application of our models to eruptive mass-loss from massive stars and argue that the wind models described here can account for the broad properties of LBV outflows and the enhanced mass-loss in the years prior to Type IIn core-collapse supernovae.

  13. Thermally driven wind variability in the planetary boundary layer above Lima, Peru

    NASA Astrophysics Data System (ADS)

    Enfield, D. B.

    Land-sea thermal forcing of the coastal wind near Lima, Peru, is examined as a mechanism to explain the observed wind variability there, in particular the simularity between monthly anomalies of sea surface temperature and wind speeds on the interannual time scales typical of El Niño occurrences. Aerological and surface meteorological observations from Peru coastal sites are analyzed for two time scales; over 15-20 year periods (1958-1977) for monthly averaged data and over a year (1976-1977) for daily data. Wind profile characteristics and annual cycles, and their relation to the cross-coastal temperature gradient are qualitatively and quantitatively consistent with the thermally forces boundary-layer model proposed by Lettau (1978) to explain the Peru coastal wind. The cross-coastal air temperature difference between Lima and Callao explained 55% of the variance in the surface wind speeds at Lima during 1976-1977. The mean annual cycles of the surface wind at Lima and other Peru coastal locations are in phase with the annual solar heating cycle where the seasonality of low cloudiness is large but with the annual cycle of the southeast trade circulation where it is not. This suggests that insolation over the desert is the principal source of thermal forcing variability. During El Niño periods the alongshore wind and the cross-coastal circulation above Lima intensify, in conjuction wtih anomalously warm sea surface temperatures. The planetary boundary layer is destabilized, and the base of the winter inversion is eroded upward. The observations are consistent with a reduction of desert cloudiness during El Niño events owing to air-sea exchange and a consequent increase in the thermal forcing of the wind.

  14. Investigating wind turbine impacts on near-wake flow using profiling Lidar data and large-eddy simulations with an actuator disk model

    SciTech Connect

    Mirocha, Jeffrey D.; Rajewski, Daniel A.; Marjanovic, Nikola; Lundquist, Julie K.; Kosovic, Branko; Draxl, Caroline; Churchfield, Matthew J.

    2015-08-27

    In this study, wind turbine impacts on the atmospheric flow are investigated using data from the Crop Wind Energy Experiment (CWEX-11) and large-eddy simulations (LESs) utilizing a generalized actuator disk (GAD) wind turbine model. CWEX-11 employed velocity-azimuth display (VAD) data from two Doppler lidar systems to sample vertical profiles of flow parameters across the rotor depth both upstream and in the wake of an operating 1.5 MW wind turbine. Lidar and surface observations obtained during four days of July 2011 are analyzed to characterize the turbine impacts on wind speed and flow variability, and to examine the sensitivity of these changes to atmospheric stability. Significant velocity deficits (VD) are observed at the downstream location during both convective and stable portions of four diurnal cycles, with large, sustained deficits occurring during stable conditions. Variances of the streamwise velocity component, σu, likewise show large increases downstream during both stable and unstable conditions, with stable conditions supporting sustained small increases of σu , while convective conditions featured both larger magnitudes and increased variability, due to the large coherent structures in the background flow. Two representative case studies, one stable and one convective, are simulated using LES with a GAD model at 6 m resolution to evaluate the compatibility of the simulation framework with validation using vertically profiling lidar data in the near wake region. Virtual lidars were employed to sample the simulated flow field in a manner consistent with the VAD technique. Simulations reasonably reproduced aggregated wake VD characteristics, albeit with smaller magnitudes than observed, while σu values in the wake are more significantly underestimated. The results illuminate the limitations of using a GAD in combination with coarse model resolution in the simulation of near wake physics, and validation thereof using VAD data.

  15. Investigating wind turbine impacts on near-wake flow using profiling Lidar data and large-eddy simulations with an actuator disk model

    DOE PAGESBeta

    Mirocha, Jeffrey D.; Rajewski, Daniel A.; Marjanovic, Nikola; Lundquist, Julie K.; Kosovic, Branko; Draxl, Caroline; Churchfield, Matthew J.

    2015-08-27

    In this study, wind turbine impacts on the atmospheric flow are investigated using data from the Crop Wind Energy Experiment (CWEX-11) and large-eddy simulations (LESs) utilizing a generalized actuator disk (GAD) wind turbine model. CWEX-11 employed velocity-azimuth display (VAD) data from two Doppler lidar systems to sample vertical profiles of flow parameters across the rotor depth both upstream and in the wake of an operating 1.5 MW wind turbine. Lidar and surface observations obtained during four days of July 2011 are analyzed to characterize the turbine impacts on wind speed and flow variability, and to examine the sensitivity of thesemore » changes to atmospheric stability. Significant velocity deficits (VD) are observed at the downstream location during both convective and stable portions of four diurnal cycles, with large, sustained deficits occurring during stable conditions. Variances of the streamwise velocity component, σu, likewise show large increases downstream during both stable and unstable conditions, with stable conditions supporting sustained small increases of σu , while convective conditions featured both larger magnitudes and increased variability, due to the large coherent structures in the background flow. Two representative case studies, one stable and one convective, are simulated using LES with a GAD model at 6 m resolution to evaluate the compatibility of the simulation framework with validation using vertically profiling lidar data in the near wake region. Virtual lidars were employed to sample the simulated flow field in a manner consistent with the VAD technique. Simulations reasonably reproduced aggregated wake VD characteristics, albeit with smaller magnitudes than observed, while σu values in the wake are more significantly underestimated. The results illuminate the limitations of using a GAD in combination with coarse model resolution in the simulation of near wake physics, and validation thereof using VAD data.« less

  16. Wind- and Tide-Driven Cross-Inlet Circulation at New River Inlet, NC

    NASA Astrophysics Data System (ADS)

    Wargula, A.; Raubenheimer, B.; Elgar, S.

    2014-12-01

    The importance of cross-channel wind forcing to inlet circulation is examined using observations of winds, waves, water levels, and currents collected in and near New River Inlet, NC during May 2012. Although the direct effect of local wind forcing may be neglected in the subtidal along-inlet momentum balance, which is dominated by the pressure gradient, wave radiation stress gradient, and bottom friction, cross-inlet winds may have a significant effect on along-inlet dynamics by driving cross-inlet flows (approximately 0.1 to 0.3 m/s), which can mix lateral and vertical gradients in momentum and water properties. New River Inlet is 1000 m wide at the mouth and tapers to 100 m wide about 1000 m away from the mouth after two sharp 90° bends. Five colocated pressure gages and current profilers were deployed from the shallow (2-3 m water depth) ebb shoal outside the mouth through the deep (5-10 m depth) inlet channel to 200 m beyond the first 90° bend. The inlet is well mixed, and along-inlet tidal currents ranged from +/- 1.5 m/s, offshore significant wave heights from 0.5 to 2.5 m, and wind speeds from 0 to 16 m/s. Time series of currents and winds were lowpass-filtered to examine subtidal wind effects. At the first 90° bend, both surface and bottom cross-inlet flows were correlated (r2 = 0.6) with cross-inlet wind velocity. On the shallow ebb shoal, the cross-inlet flows also were correlated with cross-inlet wind velocity (r2 = 0.6). Cross-inlet flows exhibited a two-layer response to the wind inside the inlet and a depth-uniform response outside the mouth. The observations will be used to examine the momentum balance governing temporal and spatial variations in cross-inlet wind effects on inlet circulation. Funding provided by the Office of Naval Research, the Assistant Secretary of Defense for Research and Engineering, and a National Defense Science and Engineering Graduate Fellowship.

  17. A TURBULENCE-DRIVEN MODEL FOR HEATING AND ACCELERATION OF THE FAST WIND IN CORONAL HOLES

    SciTech Connect

    Verdini, A.; Velli, M.; Matthaeus, W. H.; Oughton, S.; Dmitruk, P.

    2010-01-10

    A model is presented for generation of fast solar wind in coronal holes, relying on heating that is dominated by turbulent dissipation of MHD fluctuations transported upward in the solar atmosphere. Scale-separated transport equations include large-scale fields, transverse Alfvenic fluctuations, and a small compressive dissipation due to parallel shears near the transition region. The model accounts for proton temperature, density, wind speed, and fluctuation amplitude as observed in remote sensing and in situ satellite data.

  18. Geomagnetic forecasts driven by thermal wind dynamics in the Earth's core

    NASA Astrophysics Data System (ADS)

    Aubert, J.

    2015-12-01

    There exists a fundamental as well as practical interest in being able to accurately forecast the future evolution of Earth's magnetic field at decadal to secular ranges. This work enables such forecasts by combining geomagnetic data with an Earth-like numerical model of a convection-driven fluid dynamo. The underlying data assimilation framework builds on recent progress in inverse geodynamo modelling, a method which estimates an internal dynamic structure for Earth's core from a snapshot of the magnetic field and its instantaneous rate of change at the surface, and takes advantage of linear relationships and long-range correlations between observed and hidden state variables. Here the method is further evolved into a single-epoch ensemble Kalman filter, in order to initialise at a given epoch an ensemble of states compatible with the observations and representative of the uncertainties in the estimation of hidden quantities. The ensemble dynamics, obtained by subsequent numerical integration of the prognostic model equations, are found to be governed by a thermal wind balance or equilibrium between buoyancy forces, the Coriolis force and the pressure gradient. The resulting core fluid flow pattern is a quasi-steady eccentric gyre organised in a column parallel to Earth's rotation axis, in equilibrium with a longitudinal hemispheric convective density anomaly pattern. The flow provides induction for the magnetic field, which also undergoes a realistic amount of diffusion. Predictions of the present magnetic field from data taken within the past century show that the ensemble has an average retaining good consistency with the true geomagnetic evolution and an acceptable spread well representative of prediction errors, up to at least a secular range. The predictability of the geodynamo thus appears to significantly exceed previous theoretical expectations based on the chaotic divergence of ensemble members. The assimilation generally outperforms the linear

  19. Wind-Driven Angular Dependence of Sea-Surface Reflectance Measured with an Airborne Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Tratt, David M.; Menzies, Robert T.; Cutten, Dean R.

    1998-01-01

    The effects of wind-stress on the optical properties of the ocean surface have been studied for several decades. In particular, the classic study by Cox and Munk (1954) linking sea-surface wind field to wave slope statistics provides a phenomenology by which the sea-surface wind velocity can be estimated from direct measurement of the wave-modulated surface reflectance. A limited number of studies along these lines have been conducted using airborne or spaceborne lidar systems. In these instances, truthing was provided by in situ ship reports or satellite microwave remote sensing instruments (e.g., ERS scatterometer, SSM/I). During the second deployment of the MACAWS Doppler wind lidar in the summer of 1996 measurements of sea-surface reflectance as a function of azimuth- and nadir-viewing angles were acquired off the California coast. MACAWS data products include directly measured winds, as well as calibrated backscatter/reflectance profiles, thus enabling comparison of the winds inferred from sea-surface reflectance measurements with those deriving from the Doppler-processed direct line-of-sight (LOS) estimates. Additional validation data was extracted from the ERS and SSM/I satellite microwave sensor archives maintained by the JPL Physical Oceanography Distributed Active Archive Center (PO- DAAC).

  20. Remote Sensing Marine Ecology: Wind-driven algal blooms in the open oceans and their ecological impacts

    NASA Astrophysics Data System (ADS)

    Tang, DanLing

    2016-07-01

    Algal bloom not only can increase the primary production but also could result in negative ecological consequence, e.g., Harmful Algal Blooms (HABs). According to the classic theory for the formation of algal blooms "critical depth" and "eutrophication", oligotrophic sea area is usually difficult to form a large area of algal blooms, and actually the traditional observation is only sporadic capture to the existence of algal blooms. Taking full advantage of multiple data of satellite remote sensing, this study: 1), introduces "Wind-driven algal blooms in open oceans: observation and mechanisms" It explained except classic coastal Ekman transport, the wind through a variety of mechanisms affecting the formation of algal blooms. Proposed a conceptual model of "Strong wind -upwelling-nutrient-phytoplankton blooms" in Western South China Sea (SCS) to assess role of wind-induced advection transport in phytoplankton bloom formation. It illustrates the nutrient resources that support long-term offshore phytoplankton blooms in the western SCS; 2), Proposal of the theory that "typhoons cause vertical mixing, induce phytoplankton blooms", and quantify their important contribution to marine primary production; Proposal a new ecological index for typhoon. Proposed remote sensing inversion models. 3), Finding of the spatial and temporaldistributions pattern of harmful algal bloom (HAB)and species variations of HAB in the South Yellow Sea and East China Sea, and in the Pearl River estuary, and their oceanic dynamic mechanisms related with monsoon; The project developed new techniques and generated new knowledge, which significantly improved understanding of the formation mechanisms of algal blooms. 1), It proposed "wind-pump" mechanism integrates theoretical system combing "ocean dynamics, development of algal blooms, and impact on primary production", which will benefit fisheries management. 2), A new interdisciplinary subject "Remote Sensing Marine Ecology"(RSME) has been

  1. Three-dimensional structure of the wind-driven water surface flow

    NASA Astrophysics Data System (ADS)

    Caulliez, Guillemette

    2014-05-01

    The structure of the water boundary layer forced by wind underneath surface wind waves is investigated experimentally in the large Marseille-Luminy wind wave tank. Measurements of the vertical velocity profiles inside the subsurface shear layer were performed by a three-component Nortek acoustic Doppler velocimeter. An overview of the water surface flow patterns which develop at larger scales was provided by simultaneous flow visualizations. To that end, tiny hydrogen bubbles were generated by electrolysis along a 60 cm long thin wire set up crosswise to the wind direction at a short distance from the water surface. The bubble motions were recorded by a video camera looking vertically from below or above the water surface. Observations were made at low to moderate wind speeds for four fetches ranging from 2 to 26 m. This work reveals that under such steady wind conditions, the transition of the water surface boundary layer to turbulent flow is marked by the fast development of coherent longitudinal vortices downstream the surface wave generation area observed at short fetches. These structures are characterized by the occurrence of intense upwellings localized in narrow streaks in the crosswise direction. There, the upper wind-induced shear flow is confined in a very thin layer. In the wider areas between these streaks, the surface flow exhibits a much more turbulent behaviour over a deeper but slightly-sheared boundary layer. In accordance with this inhomogeneous flow pattern, the velocity field observed at a fixed location over one vertical profile is highly variable in time. These three-dimensional large-scale structures present strong similarities with the so-called Langmuir circulations. This work will focus on the description of the qualitative and quantitative properties of these longitudinal vortices, in particular the conditions of their occurence and the dependency of their characteristic scales on wind forcing and surface wave development. The main

  2. AGN obscuration from winds: from dusty infrared-driven to warm and X-ray photoionized

    PubMed Central

    Dorodnitsyn, A.; Kallman, T.

    2016-01-01

    We present calculations of AGN winds at ~parsec scales, along with the associated obscuration. We take into account the pressure of infrared radiation on dust grains and the interaction of X-rays from a central black hole with hot and cold plasma. Infrared radiation (IR) is incorporated in radiation-hydrodynamic simulations adopting the flux-limited diffusion approximation. We find that in the range of X-ray luminosities L=0.05 – 0.6Ledd, the Compton-thick part of the flow (aka torus) has an opening angle of approximately 72° – 75° regardless of the luminosity. At L ≳ 0.1 the outflowing dusty wind provides the obscuration with IR pressure playing a major role. The global flow consists of two phases: the cold flow at inclinations θ ≳ 70° and a hot, ionized wind of lower density at lower inclinations. The dynamical pressure of the hot wind is important in shaping the denser IR supported flow. At luminosities ≤0.1Ledd episodes of outflow are followed by extended periods when the wind switches to slow accretion.

  3. A solid-state controller for a wind-driven slip-ring induction generator

    NASA Astrophysics Data System (ADS)

    Velayudhan, C.; Bundell, J. H.; Leary, B. G.

    1984-08-01

    The three-phase induction generator appears to become the preferred choice for wind-powered systems operated in parallel with existing power systems. A problem arises in connection with the useful operating speed range of the squirrel-cage machine, which is relatively narrow, as, for instance, in the range from 1 to 1.15. Efficient extraction of energy from a wind turbine, on the other hand, requires a speed range, perhaps as large as 1 to 3. One approach for 'matching' the generator to the turbine for the extraction of maximum power at any usable wind speed involves the use of a slip-ring induction machine. The power demand of the slip-ring machine can be matched to the available output from the wind turbine by modifying the speed-torque characteristics of the generator. A description is presented of a simple electronic rotor resistance controller which can optimize the power taken from a wind turbine over the full speed range.

  4. AGN Obscuration from Winds: From Dusty Infrared-Driven to Warm and X-Ray Photoionized

    NASA Technical Reports Server (NTRS)

    Dorodnitsyn, A.; Kallman, T.

    2012-01-01

    We present calculations of AGN winds at approximate parsec scales, along with the associated obscuration. We take into account the pressure of infrared radiation on dust grains and the interaction of X-rays from a central black hole with hot and cold plasma. Infrared radiation (IR) is incorporated in radiation-hydrodynamic simulations adopting the flux-limited diffusion approximation. We find that in the range of X-ray luminosities L=0.05 - 0.6L(sub Edd) the Compton-thick part of the flow (aka torus) has an opening angle of approximately 72? -75? regardless of the luminosity. At L 0.1 the outflowing dusty wind provides the obscuration with IR pressure playing a major role. The global flow consists of two phases: the cold flow at inclinations (theta) greater than or approximately 70? and a hot, ionized wind of lower density at lower inclinations. The dynamical pressure of the hot wind is important in shaping the denser IR supported flow. At luminosities less than or equal to 0.1L(sub Edd) episodes of outflow are followed by extended periods when the wind switches to slow accretion.

  5. Power control for direct-driven permanent magnet wind generator system with battery storage.

    PubMed

    Guang, Chu Xiao; Ying, Kong

    2014-01-01

    The objective of this paper is to construct a wind generator system (WGS) loss model that addresses the loss of the wind turbine and the generator. It aims to optimize the maximum effective output power and turbine speed. Given that the wind generator system has inertia and is nonlinear, the dynamic model of the wind generator system takes the advantage of the duty of the Buck converter and employs feedback linearization to design the optimized turbine speed tracking controller and the load power controller. According to that, this paper proposes a dual-mode dynamic coordination strategy based on the auxiliary load to reduce the influence of mode conversion on the lifetime of the battery. Optimized speed and power rapid tracking as well as the reduction of redundant power during mode conversion have gone through the test based on a 5 kW wind generator system test platform. The generator output power as the capture target has also been proved to be efficient. PMID:25050405

  6. Power Control for Direct-Driven Permanent Magnet Wind Generator System with Battery Storage

    PubMed Central

    Guang, Chu Xiao; Ying, Kong

    2014-01-01

    The objective of this paper is to construct a wind generator system (WGS) loss model that addresses the loss of the wind turbine and the generator. It aims to optimize the maximum effective output power and turbine speed. Given that the wind generator system has inertia and is nonlinear, the dynamic model of the wind generator system takes the advantage of the duty of the Buck converter and employs feedback linearization to design the optimized turbine speed tracking controller and the load power controller. According to that, this paper proposes a dual-mode dynamic coordination strategy based on the auxiliary load to reduce the influence of mode conversion on the lifetime of the battery. Optimized speed and power rapid tracking as well as the reduction of redundant power during mode conversion have gone through the test based on a 5 kW wind generator system test platform. The generator output power as the capture target has also been proved to be efficient. PMID:25050405

  7. Baroclinic dynamics of wind-driven circulation in a stratified bay: A numerical study using models of varying complexity

    NASA Astrophysics Data System (ADS)

    Zhai, Li; Sheng, Jinyu; Greatbatch, Richard J.

    2008-10-01

    The baroclinic response of a stratified coastal embayment (Lunenburg Bay of Nova Scotia) to the observed wind forcing is examined using two numerical models. A linear baroclinic model based on the normal mode approach shows skill at reproducing the observed isotherm movements and sub-surface currents during a time of strong stratification in the bay. The linear model also shows that the isotherm movement in Lunenburg Bay is influenced by the wind forcing and propagation of baroclinic Kelvin waves from neighbouring Mahone Bay. The effects of nonlinearity and topography are investigated using a three-dimensional nonlinear coastal circulation model. The nonlinear model results demonstrate that the nonlinear advection terms generate a gyre circulation at the entrance of Lunenburg Bay, and the slope bottom topography at the mouth of the bay strengthens the sub-surface time-mean inflow on the southern side of the bay. A comparison of model-calculated currents in different numerical experiments clearly shows that baroclinicity plays a dominant role in the dynamics of wind-driven circulation in Lunenburg Bay.

  8. Thermal instabilities in radiatively driven winds - Application to emission line clouds of quasars and active galactic nuclei

    NASA Technical Reports Server (NTRS)

    Beltrametti, M.

    1981-01-01

    It is shown that radiatively driven, optically thin winds from active galactic nuclei are thermally unstable, provided that the mass loss rates are not smaller than about 50 solar masses/year. Clouds form at distances of less than about 1 pc, with electron densities greater than 100 million/cu cm, temperatures of more than 10,000 K, and radii between 3 x 10 to the 14th and 10 to the 15th cm. These values agree with the values deduced from observations. Since the clouds are formed in a high velocity wind, this model, as does the model by Eilek and Caroff (1979), avoids problems of disruption inherent in using radiation pressure to accelerate clouds from rest to velocities up to 0.1 c needed to explain the emission line widths. The thermal balance of the gas is discussed, the criteria for thermal instability are given, and a perturbation analysis is made. This analysis is restricted to objects with bolometric luminosities lower than approximately 2 x 10 to the 46th ergs/sec. For more luminous objects, only winds slightly optically thick to electron scattering can be unstable, provided one can extend this analysis to the optically thick case.

  9. An evidence for prompt electric field disturbance driven by changes in the solar wind density under northward IMF Bz condition

    NASA Astrophysics Data System (ADS)

    Rout, Diptiranjan; Chakrabarty, D.; Sekar, R.; Reeves, G. D.; Ruohoniemi, J. M.; Pant, Tarun K.; Veenadhari, B.; Shiokawa, K.

    2016-05-01

    Before the onset of a geomagnetic storm on 22 January 2012 (Ap = 24), an enhancement in solar wind number density from 10/cm3 to 22/cm3 during 0440-0510 UT under northward interplanetary magnetic field (IMF Bz) condition is shown to have enhanced the high-latitude ionospheric convection and also caused variations in the geomagnetic field globally. Conspicuous changes in ΔX are observed not only at longitudinally separated low-latitude stations over Indian (prenoon), South American (midnight), Japanese (afternoon), Pacific (afternoon) and African (morning) sectors but also at latitudinally separated stations located over high and middle latitudes. The latitudinal variation of the amplitude of the ΔX during 0440-0510 UT is shown to be consistent with the characteristics of prompt penetration electric field disturbances. Most importantly, the density pulse event caused enhancements in the equatorial electrojet strength and the peak height of the F layer (hmF2) over the Indian dip equatorial sector. Further, the concomitant enhancements in electrojet current and F layer movement over the dip equator observed during this space weather event suggest a common driver of prompt electric field disturbance at this time. Such simultaneous variations are found to be absent during magnetically quiet days. In absence of significant change in solar wind velocity and magnetospheric substorm activity, these observations point toward perceptible prompt electric field disturbance over the dip equator driven by the overcompression of the magnetosphere by solar wind density enhancement.

  10. Implementation of a generalized actuator disk wind turbine model into the weather research and forecasting model for large-eddy simulation applications

    SciTech Connect

    Mirocha, J. D.; Kosovic, B.; Aitken, M. L.; Lundquist, J. K.

    2014-01-10

    A generalized actuator disk (GAD) wind turbine parameterization designed for large-eddy simulation (LES) applications was implemented into the Weather Research and Forecasting (WRF) model. WRF-LES with the GAD model enables numerical investigation of the effects of an operating wind turbine on and interactions with a broad range of atmospheric boundary layer phenomena. Numerical simulations using WRF-LES with the GAD model were compared with measurements obtained from the Turbine Wake and Inflow Characterization Study (TWICS-2011), the goal of which was to measure both the inflow to and wake from a 2.3-MW wind turbine. Data from a meteorological tower and two light-detection and ranging (lidar) systems, one vertically profiling and another operated over a variety of scanning modes, were utilized to obtain forcing for the simulations, and to evaluate characteristics of the simulated wakes. Simulations produced wakes with physically consistent rotation and velocity deficits. Two surface heat flux values of 20 W m–2 and 100 W m–2 were used to examine the sensitivity of the simulated wakes to convective instability. Simulations using the smaller heat flux values showed good agreement with wake deficits observed during TWICS-2011, whereas those using the larger value showed enhanced spreading and more-rapid attenuation. This study demonstrates the utility of actuator models implemented within atmospheric LES to address a range of atmospheric science and engineering applications. In conclusion, validated implementation of the GAD in a numerical weather prediction code such as WRF will enable a wide range of studies related to the interaction of wind turbines with the atmosphere and surface.

  11. Wind-driven upwelling in the vicinity of Cape Finisterre, Spain

    NASA Technical Reports Server (NTRS)

    Mclain, C. R.; Chao, S.-Y.; Atkinson, L. P.; Blanton, J. O.; De Castillejo, F.

    1986-01-01

    Observations and numerical simulations of the evolution of upswelling and the resultant coastal circulation in response to two wind events occurring along the Galician coast of Spain during the April 18-26, 1982 period are presented. In situ measurements include shipboard determinations of hydrographic and biological parameters, and wind stress estimates obtained from the ship winds and from surface pressure charts. Sea surface temperature information was derived from NOAA 7 satellite images, and pigment concentration information was acquired from the Nimbus 7 coastal zone color scanner. The indication from the simulations that the greatest upswelling will occur either at Cape Finisterre or along the northern coast was confirmed by observations, and it is suggested that wave disturbances propagate northward along the coast at a speed of 120-160 km/day, and that organic material formed north of Cape Finisterre is advected out to sea northwest of the cape.

  12. A DATA-DRIVEN, TWO-TEMPERATURE SOLAR WIND MODEL WITH ALFVEN WAVES

    SciTech Connect

    Van der Holst, B.; Manchester, W. B.; Frazin, R. A.; Toth, G.; Gombosi, T. I.; Vasquez, A. M.

    2010-12-10

    We have developed a new three-dimensional magnetohydrodynamic (MHD) solar wind model coupled to the Space Weather Modeling Framework (SWMF) that solves for the different electron and proton temperatures. The collisions between the electrons and protons are taken into account as well as the anisotropic thermal heat conduction of the electrons. The solar wind is assumed to be accelerated by the Alfven waves. In this paper, we do not consider the heating of closed magnetic loops and helmet streamers but do address the heating of the protons by the Kolmogorov dissipation of the Alfven waves in open field-line regions. The inner boundary conditions for this solar wind model are obtained from observations and an empirical model. The Wang-Sheeley-Arge model is used to determine the Alfven wave energy density at the inner boundary. The electron density and temperature at the inner boundary are obtained from the differential emission measure tomography applied to the extreme-ultraviolet images of the STEREO A and B spacecraft. This new solar wind model is validated for solar minimum Carrington rotation 2077 (2008 November 20 through December 17). Due to the very low activity during this rotation, this time period is suitable for comparing the simulated corotating interaction regions (CIRs) with in situ ACE/WIND data. Although we do not capture all MHD variables perfectly, we do find that the time of occurrence and the density of CIRs are better predicted than by our previous semi-empirical wind model in the SWMF that was based on a spatially reduced adiabatic index to account for the plasma heating.

  13. Theoretical and experimental studies of a brushless disk rotor motor with permanent magnetic excitation and gap windings

    NASA Astrophysics Data System (ADS)

    Walkhoff, Lutz-Ruediger

    1989-12-01

    With the utilization of high value magnets with stiff magnetization, it is possible to establish a 3-D, analytic field calculation process in which the influence of the permeability is taken into account. The process is based on the reflection laws for the scalar magnetic potential and allows examination of the influence of the permeability on the profile of the induction in gap. The inductivity of the windings is approximately obtained with the magnetic field of the stator windings, that is found three dimensionally in the winding area. Since the permanent magnet material used is a good electrical conductor, eddy current losses can appear in the magnet with phase currents. For the first losses estimation, the stationary stator field in the magnet area was calculated. The induction in the rotor is relatively low for maximal currents so that only very minimal losses occur. The dissipation was calculated with the Paynting vector from the vector potential.

  14. SMALL-SCALE PRESSURE-BALANCED STRUCTURES DRIVEN BY OBLIQUE SLOW MODE WAVES MEASURED IN THE SOLAR WIND

    SciTech Connect

    Yao Shuo; He, J.-S.; Tu, C.-Y.; Wang, L.-H.; Marsch, E.

    2013-09-01

    Recently, small-scale pressure-balanced structures (PBSs) were identified in the solar wind, but their formation mechanism remains unclear. This work aims to reveal the dependence of the properties of small-scale PBSs on the background magnetic field (B{sub 0}) direction and thus to corroborate the in situ mechanism that forms them. We analyze the plasma and magnetic field data obtained by WIND in the quiet solar wind at 1 AU. First, we use a developed moving-average method to obtain B{sub 0}(s, t) for every temporal scale (s) at each time moment (t). By wavelet cross-coherence analysis, we obtain the correlation coefficients between the thermal pressure P{sub th} and the magnetic pressure P{sub B}, distributing against the temporal scale and the angle {theta}{sub xB} between B{sub 0}(s, t) and Geocentric Solar Ecliptic coordinates (GSE)-x. We note that the angle coverage of a PBS decreases with shorter temporal scale, but the occurrence of the PBSs is independent of {theta}{sub xB}. Suspecting that the isolated small PBSs are formed by compressive waves in situ, we continue this study by testing the wave modes forming a small-scale PBS with B{sub 0}(s, t) quasi-parallel to GSE-x. As a result, we identify that the cross-helicity and the compressibility attain values for a slow mode from theoretical calculations. The wave vector is derived from minimum variance analysis. Besides, the proton temperatures obey T < T{sub Parallel-To} derived from the velocity distribution functions, excluding a mirror mode, which is the other candidate for the formation of PBSs in situ. Thus, a small-scale PBS is shown to be driven by oblique, slow-mode waves in the solar wind.

  15. Evidence for Wind-Driven Rain Erosion on Sunflower Stubble Land in the Northern Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil-crop production systems in the northern Great Plains have undergone species diversification to include those with non-durable residues. To assess hazards when lands with such crops are tilled or fallowed, a wind erosion study was established in central North Dakota on silt loam soil (Haplustoll...

  16. Modifying landscape connectivity by reducing wind driven sediment redistribution, northern Chihuahuan Desert, USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Shrub encroachment into perennial grasslands is occurring in many arid and semi-arid parts of the world. As shrubs displace perennial grasslands, bare patches coalesce to enhance soil erosion and sediment fluxes by wind and water transport. Reducing the connectedness of these sediment transport path...

  17. Wind driven vertical transport in a vegetated, wetland water column with air-water gas exchange

    NASA Astrophysics Data System (ADS)

    Poindexter, C.; Variano, E. A.

    2010-12-01

    Flow around arrays of cylinders at low and intermediate Reynolds numbers has been studied numerically, analytically and experimentally. Early results demonstrated that at flow around randomly oriented cylinders exhibits reduced turbulent length scales and reduced diffusivity when compared to similarly forced, unimpeded flows (Nepf 1999). While horizontal dispersion in flows through cylinder arrays has received considerable research attention, the case of vertical dispersion of reactive constituents has not. This case is relevant to the vertical transfer of dissolved gases in wetlands with emergent vegetation. We present results showing that the presence of vegetation can significantly enhance vertical transport, including gas transfer across the air-water interface. Specifically, we study a wind-sheared air-water interface in which randomly arrayed cylinders represent emergent vegetation. Wind is one of several processes that may govern physical dispersion of dissolved gases in wetlands. Wind represents the dominant force for gas transfer across the air-water interface in the ocean. Empirical relationships between wind and the gas transfer coefficient, k, have been used to estimate spatial variability of CO2 exchange across the worlds’ oceans. Because wetlands with emergent vegetation are different from oceans, different model of wind effects is needed. We investigated the vertical transport of dissolved oxygen in a scaled wetland model built inside a laboratory tank equipped with an open-ended wind tunnel. Plastic tubing immersed in water to a depth of approximately 40 cm represented emergent vegetation of cylindrical form such as hard-stem bulrush (Schoenoplectus acutus). After partially removing the oxygen from the tank water via reaction with sodium sulfite, we used an optical probe to measure dissolved oxygen at mid-depth as the tank water re-equilibrated with the air above. We used dissolved oxygen time-series for a range of mean wind speeds to estimate the

  18. WIND VARIABILITY IN BZ CAMELOPARDALIS

    SciTech Connect

    Honeycutt, R. K.; Kafka, S.; Robertson, J. W. E-mail: skafka@dtm.ciw.edu

    2013-02-01

    Sequences of spectra of the nova-like cataclysmic variable (CV) BZ Cam were acquired on nine nights in 2005-2006 in order to study the time development of episodes of wind activity known to occur frequently in this star. We confirm the results of Ringwald and Naylor that the P-Cygni absorption components of the lines mostly evolve from higher expansion velocity to lower velocity as an episode progresses. We also commonly find blueshifted emission components in the H{alpha} line profile, whose velocities and durations strongly suggest that they are also due to the wind. Curiously, Ringwald and Naylor reported common occurrences of redshifted H{alpha} emission components in their BZ Cam spectra. We have attributed these emission components in H{alpha} to occasions when gas concentrations in the bipolar wind (both front side and back side) become manifested as emission lines as they move beyond the disk's outer edge. We also suggest, based on changes in the P-Cygni profiles during an episode, that the progression from larger to smaller expansion velocities is due to the higher velocity portions of a wind concentration moving beyond the edge of the continuum light of the disk first, leaving a net redward shift of the remaining absorption profile. We derive a new orbital ephemeris for BZ Cam, using the radial velocity of the core of the He I {lambda}5876 line, finding P = 0.15353(4). Using this period, the wind episodes in BZ Cam are found to be concentrated near the inferior conjunction of the emission line source. This result helps confirm that the winds in nova-like CVs are often phase dependent, in spite of the puzzling implication that such winds lack axisymmetry. We argue that the radiation-driven wind in BZ Cam receives an initial boost by acting on gas that has been lifted above the disk by the interaction of the accretion stream with the disk, thereby imposing flickering timescales onto the wind events, as well as leading to an orbital modulation of the wind

  19. Axisymmetric Two-Dimensional Computation of Magnetic Field Dragging in Accretion Disks

    NASA Technical Reports Server (NTRS)

    Reyes-Ruiz, Mauricio; Stepinski, Tomasz F.

    1996-01-01

    In this paper we model a geometrically thin accretion disk interacting with an externally imposed, uniform, vertical magnetic field. The accretion flow in the disk drags and distorts field lines, amplifying the magnetic field in the process. Inside the disk the radial component of the field is sheared into a toroidal component. The aim of this work is to establish the character of the resultant magnetic field and its dependence on the disk's parameters. We concentrate on alpha-disks driven by turbulent viscosity. Axisymmetric, two-dimensional solutions are obtained without taking into account the back-reaction of the magnetic field on the structure of the disk. The character of the magnetic field depends strongly on the magnitude of the magnetic Prandtl number, P . We present two illustrative examples of viscous disks: a so-called 'standard' steady state model of a disk around a compact star (e.g., cataclysmic variable), and a steady state model of a proto-planetary disk. In both cases, P = 1, P = 10(sup -1), and P = 10(sup -2) scenarios are calculated. Significant bending and magnification of the magnetic field is possible only for disks characterized by P of the order of 10(sup -2). In such a case, the field lines are bent sufficiently to allow the development of a centrifugally driven wind. Inside the disk the field is dominated by its toroidal component. We also investigate the dragging of the magnetic field by a nonviscous protoplanetary disk described by a phenomenological model. This scenario leads to large distortion and magnification of the magnetic field.

  20. A Unified Directional Spectrum for Long and Short Wind-Driven Waves

    NASA Technical Reports Server (NTRS)

    Elfouhaily, T.; Chapron, B.; Katsaros, K.; Vandemark, D.

    1997-01-01

    Review of several recent ocean surface wave models finds that while comprehensive in many regards, these spectral models do not satisfy certain additional, but fundamental, criteria. We propose that these criteria include the ability to properly describe diverse fetch conditions and to provide agreement with in situ observations of Cox and Munk [1954] and Jiihne and Riemer [1990] and Hara et al. [1994] data in the high-wavenumber regime. Moreover, we find numerous analytically undesirable aspects such as discontinuities across wavenumber limits, nonphysical tuning or adjustment parameters, and noncentrosymmetric directional spreading functions. This paper describes a two-dimensional wavenumber spectrum valid over all wavenumbers and analytically amenable to usage in electromagnetic models. The two regime model is formulated based on the Joint North Sea Wave Project (JONSWAP) in the long-wave regime and on the work of Phillips [1985] and Kitaigorodskii [1973] at the high wavenumbers. The omnidirectional and wind-dependent spectrum is constructed to agree with past and recent observations including the criteria mentioned above. The key feature of this model is the similarity of description for the high- and low-wavenumber regimes; both forms are posed to stress that the air-sea interaction process of friction between wind and waves (i.e., generalized wave age, u/c) is occurring at all wavelengths simultaneously. This wave age parameterization is the unifying feature of the spectrum. The spectrum's directional spreading function is symmetric about the wind direction and has both wavenumber and wind speed dependence. A ratio method is described that enables comparison of this spreading function with previous noncentrosymmetric forms. Radar data are purposefully excluded from this spectral development. Finally, a test of the spectrum is made by deriving roughness length using the boundary layer model of Kitaigorodskii. Our inference of drag coefficient versus wind speed

  1. Protostars and Disks

    NASA Technical Reports Server (NTRS)

    Ho, Paul

    1997-01-01

    The research concentrated on high angular resolution (arc-second scale) studies of molecular cloud cores associated with very young star formation. New ways to study disks and protoplanetary systems were explored. Findings from the areas studied are briefly summarized: (1) molecular clouds; (2) gravitational contraction; (3) jets, winds, and outflows; (4) Circumstellar Disks (5) Extrasolar Planetary Systems. A bibliography of publications and submitted papers produced during the grant period is included.

  2. Radio pulsar disk electrodynamics

    NASA Technical Reports Server (NTRS)

    Michel, F. C.

    1983-01-01

    Macroscopic physics are discussed for the case of a disk close to an isolated, magnetized, rotating neutron star that acts as a Faraday disk dynamo, while the disk acts as both a load and a neutral sheet. This sheet allows the polar cap current to return to the neutron star, splitting a dipolar field into two monopolar halves. The dominant energy loss is from the stellar wind torque, and the next contribution is dissipation in the auroral zones, where the current returns to the star in a 5 cm-thick sheet. The disk itself may be a source of visible radiation comparable to that in pulsed radio frequency emission. As the pulsar ages, the disk expands and narrows into a ring which, it is suggested, may lead to a cessation of pulsed emission at periods of a few sec.

  3. XMM-NEWTON MONITORING OF THE CLOSE PRE-MAIN-SEQUENCE BINARY AK SCO. EVIDENCE OF TIDE-DRIVEN FILLING OF THE INNER GAP IN THE CIRCUMBINARY DISK

    SciTech Connect

    Gomez de Castro, Ana Ines; Lopez-Santiago, Javier; Talavera, Antonio; Sytov, A. Yu.; Bisikalo, D.

    2013-03-20

    AK Sco stands out among pre-main-sequence binaries because of its prominent ultraviolet excess, the high eccentricity of its orbit, and the strong tides driven by it. AK Sco consists of two F5-type stars that get as close as 11 R{sub *} at periastron passage. The presence of a dense (n{sub e} {approx} 10{sup 11} cm{sup -3}) extended envelope has been unveiled recently. In this article, we report the results from an XMM-Newton-based monitoring of the system. We show that at periastron, X-ray and UV fluxes are enhanced by a factor of {approx}3 with respect to the apastron values. The X-ray radiation is produced in an optically thin plasma with T {approx} 6.4 Multiplication-Sign 10{sup 6} K and it is found that the N{sub H} column density rises from 0.35 Multiplication-Sign 10{sup 21} cm{sup -2} at periastron to 1.11 Multiplication-Sign 10{sup 21} cm{sup -2} at apastron, in good agreement with previous polarimetric observations. The UV emission detected in the Optical Monitor band seems to be caused by the reprocessing of the high-energy magnetospheric radiation on the circumstellar material. Further evidence of the strong magnetospheric disturbances is provided by the detection of line broadening of 278.7 km s{sup -1} in the N V line with Hubble Space Telescope/Space Telescope Imaging Spectrograph. Numerical simulations of the mass flow from the circumbinary disk to the components have been carried out. They provide a consistent scenario with which to interpret AK Sco observations. We show that the eccentric orbit acts like a gravitational piston. At apastron, matter is dragged efficiently from the inner disk border, filling the inner gap and producing accretion streams that end as ring-like structures around each component of the system. At periastron, the ring-like structures come into contact, leading to angular momentum loss, and thus producing an accretion outburst.

  4. Nonlinear unstable auroral-arc driven thermospheric winds in an ionosphere-magnetosphere coupled model

    NASA Technical Reports Server (NTRS)

    Keskinen, M. J.; Satyanarayana, P.

    1993-01-01

    The nonlinear evolution of thermospheric winds in an ionosphere-magnetosphere coupled model has been studied for the first time for a dynamic unstable auroral-arc environment. We treat the problem using a multi-layer, quasi-three-dimensional model which averages in altitude the thermospheric dynamics over each layer. For the upper thermosphere, we find that (1) the thermosphere can respond to the ionospheric Kelvin-Helmholtz (KH) instability on temporal scales on the order of an hour, depending on ambient conditions, and on spatial scales of tens to hundreds of kilometers, (2) strong thermospheric meridional and zonal vortical flows with embedded nonlinear jet-like structures can be generated by the ionospheric/magnetospheric KH instability and (3) neutral thermospheric winds, vortices, and associated power spectra develop in a distinctly different manner in the presence of magnetospheric coupling effects. Comparison with recent observations is made.

  5. A large volume 2000 MPA air source for the radiatively driven hypersonic wind tunnel

    SciTech Connect

    Constantino, M

    1999-07-14

    An ultra-high pressure air source for a hypersonic wind tunnel for fluid dynamics and combustion physics and chemistry research and development must provide a 10 kg/s pure air flow for more than 1 s at a specific enthalpy of more than 3000 kJ/kg. The nominal operating pressure and temperature condition for the air source is 2000 MPa and 900 K. A radial array of variable radial support intensifiers connected to an axial manifold provides an arbitrarily large total high pressure volume. This configuration also provides solutions to cross bore stress concentrations and the decrease in material strength with temperature. [hypersonic, high pressure, air, wind tunnel, ground testing

  6. Wind-driven freshwater buildup and release in the Beaufort Gyre constrained by mesoscale eddies

    NASA Astrophysics Data System (ADS)

    Manucharyan, Georgy E.; Spall, Michael A.

    2016-01-01

    Recently, the Beaufort Gyre has accumulated over 20,000 km3 of freshwater in response to strong anticyclonic atmospheric winds that have prevailed over the gyre for almost two decades. Here we explore key physical processes affecting the accumulation and release of freshwater within an idealized eddy-resolving model of the Beaufort Gyre. We demonstrate that a realistic halocline can be achieved when its deepening tendency due to Ekman pumping is counteracted by the cumulative action of mesoscale eddies. Based on this balance, we derive analytical scalings for the depth of the halocline and its spin-up time scale and emphasize their explicit dependence on eddy dynamics. Our study further suggests that the Beaufort Gyre is currently in a state of high sensitivity to atmospheric winds. However, an intensification of surface stress would inevitably lead to a saturation of the freshwater content—a constraint inherently set by the intricacies of the mesoscale eddy dynamics.

  7. A Gyrokinetic Approach to Low Frequency Anisotropy-Driven Instabilities in the Solar Wind

    NASA Astrophysics Data System (ADS)

    Johnson, J.; Porazik, P.

    2014-12-01

    Observational surveys of temperature anisotropy in the solar wind indicate that anisotropy is bounded over a wide range of plasma beta and the anisotropy bounds appear to be predominately controlled by wave-particle interactions associated with mirror and oblique firehose instabilities. We present a reduced kinetic description that exploits gyrosymmetry (a symmetry associated with the gyromotion), providing an efficient, self-consistent approach that can be utilized in global models of the solar wind. We discuss the underlying physics of the mirror and firehose instabilities that allow for a reduced gyrokinetic description, and we verify the approach through comparisons of theory and simulations using gyrokinetic, hybrid, and fully kinetic descriptions. We present simulations showing the nonlinear development and saturation of the mirror instability and explain the amplitude and structure of the nonlinear state in terms of particle trapping. We also consider the nonlinear development of the oblique firehose instability and the associated wave spectra.

  8. OVATION Prime -2013: Solar Wind Driven Precipitation Model Extended to Higher Geomagnetic Activity Levels (Invited)

    NASA Astrophysics Data System (ADS)

    Newell, P. T.; Liou, K.; Zhang, Y.; Paxton, L.; Sotirelis, T.; Mitchell, E. J.

    2013-12-01

    OVATION Prime is an auroral precipitation model parameterized by solar wind driving. Distinguishing features of the model include an optimized solar wind-magnetosphere coupling function (dΦMP/dt) which predicts auroral power far better than Kp or other traditional parameters, the separation of aurora into categories (diffuse aurora, monoenergetic, broadband, and ion), the inclusion of seasonal variations, and separate parameter fits for each MLATxMLT bin, thus permitting each type of aurora and each location to have differing responses to season and solar wind input (as indeed they do). We here introduce OVATION Prime-2013, an upgrade to the 2008 version currently widely available. The most notable advantage of OP-2013 is that it uses UV images from the GUVI instrument on the satellite TIMED for high disturbance levels (dΦMP/dt > 12,000 (nT2/3 (km/s)4/3 which roughly corresponds to Kp = 5+ or 6-). The range of validity is thought to be about 0 < dΦMP/dt = 30000 (say Kp = 8 or 8+). Other upgrades include a reduced susceptibility to salt and pepper noise, and smoother interpolation across the postmidnight data gap. We will also provide a comparison of the advantages and disadvantages of other current precipitation models, especially OVATION-SuperMAG, which produces particularly good estimates for total auroral power, at the expense of working best on an historical basis. OVATION Prime-2013, for high solar wind driving, as TIMED GUVI data takes over from DMSP

  9. Langmuir turbulence driven by beams in solar wind plasmas with long wavelength density fluctuations

    NASA Astrophysics Data System (ADS)

    Krafft, C.; Volokitin, A.

    2016-03-01

    The self-consistent evolution of Langmuir turbulence generated by electron beams in solar wind plasmas with density inhomogeneities is calculated by numerical simulations based on a 1D Hamiltonian model. It is shown, owing to numerical simulations performed with parameters relevant to type III solar bursts' conditions at 1 AU, that the presence of long-wavelength random density fluctuations of sufficiently large average level crucially modifies the well-known process of beam interaction with Langmuir waves in homogeneous plasmas.

  10. Use of variational methods in the determination of wind-driven ocean circulation

    NASA Technical Reports Server (NTRS)

    Gelos, R.; Laura, P. A. A.

    1976-01-01

    Simple polynomial approximations and a variational approach were used to predict wind-induced circulation in rectangular ocean basins. Stommel's and Munk's models were solved in a unified fashion by means of the proposed method. Very good agreement with exact solutions available in the literature was shown to exist. The method was then applied to more complex situations where an exact solution seems out of the question.

  11. High-velocity, multistage, nozzled, ion driven wind generator and method of operation of the same adaptable to mesoscale realization

    NASA Technical Reports Server (NTRS)

    Dunn-Rankin, Derek (Inventor); Rickard, Matthew J. A. (Inventor)

    2011-01-01

    Gas flows of modest velocities are generated when an organized ion flux in an electric field initiates an ion-driven wind of neutral molecules. When a needle in ambient air is electrically charged to a potential sufficient to produce a corona discharge near its tip, such a gas flow can be utilized downstream of a ring-shaped or other permeable earthed electrode. In view of the potential practical applications of such devices, as they represent blowers with no moving parts, a methodology for increasing their flow velocities includes exploitation of the divergence of electric field lines, avoidance of regions of high curvature on the second electrode, control of atmospheric humidity, and the use of linear arrays of stages, terminating in a converging nozzle. The design becomes particularly advantageous when implemented in mesoscale domains.

  12. Conversion of piston-driven shocks from powerful solar flares to blast waves in the solar wind

    NASA Technical Reports Server (NTRS)

    Pinter, S.; Dryer, M.

    1990-01-01

    Published observational data on 39 combined type-II/type-IV solar radio bursts from the period 1972-1982 are analyzed, with a focus on the potential use of the type-IV burst duration to predict the time of arrival at earth of piston-driven shock waves (extending and modifying the prediction method proposed by Smart and Shea, 1985). The data and analysis results are presented in tables and graphs and characterized in detail. It is found that a typical shock of this type leaves the solar flare at velocity 1560 km/sec and continues for a distance of 0.12 AU, decelerates as it is convected by the solar wind, and has a travel time of about 48.5 h. The mean deviation between predicted and measured arrival times is 1.40 h, with standard deviation 1.25 h.

  13. On the Launching and Structure of Radiatively Driven Winds in Wolf-Rayet Stars

    NASA Astrophysics Data System (ADS)

    Ro, Stephen; Matzner, Christopher D.

    2016-04-01

    Hydrostatic models of Wolf-Rayet (WR) stars typically contain low-density outer envelopes that inflate the stellar radii by a factor of several and are capped by a denser shell of gas. Inflated envelopes and density inversions are hallmarks of envelopes that become super-Eddington as they cross the iron-group opacity peak, but these features disappear when mass loss is sufficiently rapid. We re-examine the structures of steady, spherically symmetric wind solutions that cross a sonic point at high optical depth, identifying the physical mechanism through which the outflow affects the stellar structure, and provide an improved analytical estimate for the critical mass-loss rate above which extended structures are erased. Weak-flow solutions below this limit resemble hydrostatic stars even in supersonic zones; however, we infer that these fail to successfully launch optically thick winds. WR envelopes will therefore likely correspond to the strong, compact solutions. We also find that wind solutions with negligible gas pressure are stably stratified at and below the sonic point. This implies that convection is not the source of variability in WR stars, as has been suggested; however, acoustic instabilities provide an alternative explanation. Our solutions are limited to high optical depths by our neglect of Doppler enhancements to the opacity, and do not account for acoustic instabilities at high Eddington factors; yet, they do provide useful insights into WR stellar structures.

  14. On the Launching and Structure of Radiatively Driven Winds in Wolf–Rayet Stars

    NASA Astrophysics Data System (ADS)

    Ro, Stephen; Matzner, Christopher D.

    2016-04-01

    Hydrostatic models of Wolf–Rayet (WR) stars typically contain low-density outer envelopes that inflate the stellar radii by a factor of several and are capped by a denser shell of gas. Inflated envelopes and density inversions are hallmarks of envelopes that become super-Eddington as they cross the iron-group opacity peak, but these features disappear when mass loss is sufficiently rapid. We re-examine the structures of steady, spherically symmetric wind solutions that cross a sonic point at high optical depth, identifying the physical mechanism through which the outflow affects the stellar structure, and provide an improved analytical estimate for the critical mass-loss rate above which extended structures are erased. Weak-flow solutions below this limit resemble hydrostatic stars even in supersonic zones; however, we infer that these fail to successfully launch optically thick winds. WR envelopes will therefore likely correspond to the strong, compact solutions. We also find that wind solutions with negligible gas pressure are stably stratified at and below the sonic point. This implies that convection is not the source of variability in WR stars, as has been suggested; however, acoustic instabilities provide an alternative explanation. Our solutions are limited to high optical depths by our neglect of Doppler enhancements to the opacity, and do not account for acoustic instabilities at high Eddington factors; yet, they do provide useful insights into WR stellar structures.

  15. OVATION Prime -2013: Solar Wind Driven Precipitation Model Extended to Higher Geomagnetic Activity Levels

    NASA Astrophysics Data System (ADS)

    Newell, Patrick; Liou, Kan; Zhang, Yongliang; Sotirelis, Thomas; Paxton, Larry; Mitchell, Elizabeth

    2014-05-01

    OVATION Prime is an auroral precipitation model parameterized by solar wind driving. Distinguishing features of the model include an optimized solar wind-magnetosphere coupling function (dΦMP/dt) which predicts auroral power far better than Kp or other traditional parameters, the separation of aurora into categories (diffuse aurora, monoenergetic, broadband, and ion), the inclusion of seasonal variations, and separate parameter fits for each MLATxMLT bin, thus permitting each type of aurora and each location to have differing responses to season and solar wind input (as indeed they do). We here introduce OVATION Prime-2013, an upgrade to the 2008 version currently widely available. The most notable advantage of OP-2013 is that it uses UV images from the GUVI instrument on the satellite TIMED for high disturbance levels (dΦMP/dt > 12,000 (nT2/3 (km/s)4/3 which roughly corresponds to Kp = 5+ or 6-). The range of validity is thought to be about 0 < dΦMP/dt = 30000 (say Kp = 8 or 8+). Other upgrades include a reduced susceptibility to salt and pepper noise, and smoother interpolation across the postmidnight data gap. We will also provide a comparison of the advantages and disadvantages of other current precipitation models, especially OVATION-SuperMAG, which produces particularly good estimates for total auroral power, at the expense of working best on an historical basis.

  16. Data-driven reduced order model for prediction of wind turbine wake dynamics

    NASA Astrophysics Data System (ADS)

    Debnath, Mithu; Santoni, Christian; Rotea, Mario A.; Leonardi, Stefano; Iungo, Giacomo Valerio

    2015-11-01

    Wind turbine wakes are highly turbulent flows for which coherent vorticity structures lead to complex dynamics and instabilities. In this study, high-fidelity large eddy simulations (LES) data of a utility-scale wind turbine is analyzed through proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD) in order to detect the main dynamic contributions to the temporal and spatial evolution of a wind turbine wake. Eigenmodes obtained from modal decomposition are clustered as a function of their physical origin, energy, spectral contribution and growth rate. A subset of the eigenmodes is then selected accordingly to a customized objective function in order to represent an optimal blend of the different dynamic contributions. The selected eigenmodes are embedded in a time-marching algorithm enabling the prediction of the wake velocity field and loads on downstream turbines. This reduced order model is characterized by a relatively low rank compared to the dimension of the physical space of the original LES data, thus by a low computational cost. The reduced order model is then embedded within a Kalman filter in order to perform data assimilation of new available observations in order to maximize agreement between the forecast and observations.

  17. Two wind-driven modes of winter sea ice variability in the Barents Sea

    NASA Astrophysics Data System (ADS)

    Herbaut, Christophe; Houssais, Marie-Noëlle; Close, Sally; Blaizot, Anne-Cécile

    2015-12-01

    The interannual variability of the winter sea ice area in the Barents Sea is investigated using SMMR-SSM/I data and a coupled ocean-sea ice model over the period 1979-2012. Our analysis reveals that the sea ice area in the northern and eastern parts of the Barents Sea do not covary. This contrast in behavior allows us to associate two distinct modes of variability with these two regions, with the variability of the overall Barents Sea ice cover being predominantly captured by the northern mode. Both modes show a dominant, near in-phase response to the surface wind, both being associated with different spatial patterns. The northern mode emerges in response to northwesterly wind anomalies which favor the export of ice and surface polar water from the Arctic between Svalbard and Franz Josef Land. Atlantic Water temperature anomalies, formed concomitantly with northerly wind anomalies in the vicinity of the Barents Sea Opening, also influence the northern mode in the following winter. These temperature anomalies are linked to local convergence of the oceanic heat transport. The delayed influence of the ocean on the sea ice is found primarily in the northeastern Barents Sea and occurs through the re-emergence of the Atlantic water temperature anomalies at the surface in the following fall and winter. An ocean-to-atmosphere feedback initiated by October SST anomalies in the central Barents Sea is further identified. This feedback is hypothesized to enhance the sea ice response in the northern Barents Sea by promoting the formation of meridional wind anomalies. In contrast, the eastern mode of variability of the Barents Sea ice mainly responds to wind anomalies with a strong zonal component, and is less influenced by the Atlantic Water temperature variability than the northern mode. While our results clearly highlight a role of the ocean in the Barents Sea ice variability, this role appears to be more spatially restricted following the sudden northward retreat of the ice

  18. Discovery of very high velocity outflow in V Hydra - Wind from an accretion disk in a binary?

    NASA Technical Reports Server (NTRS)

    Sahai, R.; Wannier, P. G.

    1988-01-01

    High-resolution observations of lines from the CO v = 1-0 vibration-rotation band at 4.6 microns, taken with the FTS/KPNO 4-m telescope, are reported for the carbon-rich red giant V Hydra, which is surrounded by an extended expanding molecular envelope resulting from extensive mass loss. The spectrum shows, in addition to the expected absorption at the outflow velocity of the envelope, absorption extending up to 120 km/s bluewards of the stellar velocity. A comparison of the spectrum observed at two epochs shows that the high-velocity absorption features change with time. It is suggested that the observed high-velocity features in V Hydra arise in a high-velocity polar outflow from an accretion disk in a binary system, as proposed in the mass-loss model for bipolar envelopes by Morris (1988).

  19. A neural network Dst index model driven by input time histories of the solar wind-magnetosphere interaction

    NASA Astrophysics Data System (ADS)

    Revallo, M.; Valach, F.; Hejda, P.; Bochníček, J.

    2014-04-01

    A model to forecast 1-hour lead Dst index is proposed. Our approach is based on artificial neural networks (ANN) combined with an analytical model of the solar wind-magnetosphere interaction. Previously, the hourly solar wind parameters have been considered in the analytical model, all of them provided by registration of the ACE satellite. They were the solar wind magnetic field component Bz, velocity V, particle density n and temperature T. The solar wind parameters have been used to compute analytically the discontinuity in magnetic field across the magnetopause, denoted as [Bt]. This quantity has been shown to be important in connection with ground magnetic field variations. The method was published, in which the weighted sum of a sequence of [Bt] was proposed to produce the value of Dst index. The maximum term in the sum, possessing the maximum weight, is the one denoting the contribution of the current state of the near-Earth solar wind. The role of the older states is less important - the weights exponentially decay. Moreover, the terms turn to zero if Bz⪯0. In this study, we set up a more comprehensive model on the basis of the ANNs. The model is driven by input time histories of the discontinuity in magnetic field [Bt], which are provided by the analytical model. At the output of such revised model, the Dst index is obtained and compared with the real data records. In this way we replaced those exponential weights in the published method with another set of weights determined by the neural networks. We retrospectively tested our models with real data from solar cycle 23. The ANN approach provided better results than a simple method based on exponentially decaying weights. Moreover, we have shown that our ANN model could be used to predict Dst 1 h ahead. We assessed the predictive capability of the model with a set of independent events and found correlation coefficient CC=0.74±0.13 and prediction efficiency PE=0.44±0.15. We also compared our model with

  20. On the rejection of internal and external disturbances in a wind energy conversion system with direct-driven PMSG.

    PubMed

    Li, Shengquan; Zhang, Kezhao; Li, Juan; Liu, Chao

    2016-03-01

    This paper deals with the critical issue in a wind energy conversion system (WECS) based on a direct-driven permanent magnet synchronous generator (PMSG): the rejection of lumped disturbance, including the system uncertainties in the internal dynamics and unknown external forces. To simultaneously track the motor speed in real time and capture the maximum power, a maximum power point tracking strategy is proposed based on active disturbance rejection control (ADRC) theory. In real application, system inertia, drive torque and some other parameters change in a wide range with the variations of disturbances and wind speeds, which substantially degrade the performance of WECS. The ADRC design must incorporate the available model information into an extended state observer (ESO) to compensate the lumped disturbance efficiently. Based on this principle, a model-compensation ADRC is proposed in this paper. Simulation study is conducted to evaluate the performance of the proposed control strategy. It is shown that the effect of lumped disturbance is compensated in a more effective way compared with the traditional ADRC approach. PMID:26775089

  1. Impact of Neutrino Flavor Oscillations on the Neutrino-Driven Wind Nucleosynthesis of an Electron-Capture Supernova

    NASA Astrophysics Data System (ADS)

    Pllumbi, Else; Tamborra, Irene; Wanajo, Shinya; Janka, Hans-Thomas; Hüdepohl, Lorenz

    2015-08-01

    Neutrino oscillations, especially to light sterile states, can affect nucleosynthesis yields because of their possible feedback effect on the electron fraction (Ye). For the first time, we perform nucleosynthesis calculations for neutrino-driven wind trajectories from the neutrino-cooling phase of an 8.8 {M}⊙ electron-capture supernova (SN), whose hydrodynamic evolution was computed in spherical symmetry with sophisticated neutrino transport and whose Ye evolution was post-processed by including neutrino oscillations between both active and active-sterile flavors. We also take into account the α-effect as well as weak magnetism and recoil corrections in the neutrino absorption and emission processes. We observe effects on the Ye evolution that depend in a subtle way on the relative radial positions of the sterile Mikheyev-Smirnov-Wolfenstein resonances, on collective flavor transformations, and on the formation of α particles. For the adopted SN progenitor, we find that neutrino oscillations, also to a sterile state with eV mass, do not significantly affect the element formation and in particular cannot make the post-explosion wind outflow neutron-rich enough to activate a strong r-process. Our conclusions become even more robust when, in order to mimic equation-of-state-dependent corrections due to nucleon potential effects in the dense-medium neutrino opacities, six cases with reduced Ye in the wind are considered. In these cases, despite the conversion of active neutrinos to sterile neutrinos, Ye increases or is not significantly lowered compared to the values obtained without oscillations and active flavor transformations. This is a consequence of a complicated interplay between sterile-neutrino production, neutrino-neutrino interactions, and α-effect.

  2. THE OPTICAL STRUCTURE OF THE STARBURST GALAXY M82. II. NEBULAR PROPERTIES OF THE DISK AND INNER WIND

    SciTech Connect

    Westmoquette, M. S.; Smith, L. J.; Konstantopoulos, I. S.; Gallagher, J. S.; Trancho, G.

    2009-12-01

    In this second paper of the series, we present the results from optical Gemini-North GMOS-IFU and WIYN DensePak IFU spectroscopic observations of the starburst and inner wind zones of M82, with a focus on the state of the T approx 10{sup 4} K ionized interstellar medium. Our electron density maps show peaks of a few 1000 cm{sup -3} (implying very high thermal pressures), local small spatial-scale variations, and a falloff in the minor axis direction. We discuss the implications of these results with regards to the conditions/locations that may favor the escape of individual cluster winds that ultimately power the large-scale superwind. Our findings, when combined with the body of literature built up over the last decade on the state of the interstellar medium (ISM) in M82, imply that the starburst environment is highly fragmented into a range of clouds from small/dense clumps with low-filling factors (<1 pc, n {sub e} approx> 10{sup 4} cm{sup -3}) to larger filling factor, less dense gas. The most compact clouds seem to be found in the cores of the star cluster complexes, whereas the cloud sizes in the inter-complex region are larger. These dense clouds are bathed with an intense radiation field and embedded in an extensive high temperature (T approx> 10{sup 6} K), X-ray-emitting ISM that is a product of the high star formation rates in the starburst zones of M82. The near-constant state of the ionization state of the approx10{sup 4} K gas throughout the M82 starburst zone can be explained as a consequence of the small cloud sizes, which allow the gas conditions to respond quickly to any changes. In Paper I, we found that the observed emission lines are composed of multiple components, including a broad (FWHM approx 150-350 km s{sup -1}) feature that we associate with emission from turbulent mixing layers on the surfaces of the gas clouds, resulting from the interaction of the fast wind outflows from the synchrotron self-Comptons. The large number of compact clouds

  3. Modifying landscape connectivity by reducing wind driven sediment redistribution, Northern Chihuahuan Desert, USA

    NASA Astrophysics Data System (ADS)

    Rachal, D. M.; Okin, G. S.; Alexander, C.; Herrick, J. E.; Peters, D. P. C.

    2015-06-01

    Shrub encroachment into perennial grasslands is occurring in many arid parts of the world. As shrubs displace perennial grasslands, bare patches can coalesce creating sediment transport pathways that further enhance sediment fluxes by wind transport. Reducing the connectedness of these pathways could slow or stop grassland loss by limiting sediment redistribution. To test this hypothesis, sediment retention structures, hereafter called "Connectivity Modifiers" (Con-Mods), were placed in bare gaps of existing shrublands to block sediment movement by wind transport on two sites: the basin floor and a bajada (i.e. piedmont slope) at the Jornada Basin LTER in southern New Mexico. Wind blown sediment collectors and short-lived radionuclides (210Pbex, 137Cs, and 7Be) were used to determine if these structures are affecting seasonal aeolian sediment transport within bare gaps. Net sediment flux rates at 10 cm height indicate a loss of 2.5-14.2 g m-2 d-1 for both sites for the monsoon season (Jul-Nov), while the basin floor site was the most responsive in reducing sediment transport by collecting 16.5 g m-2 d-1 over the windy season (Dec-May). Con-Mods contained 30-50% higher surface radionuclide activities than the control plots for both transport seasons on the basin floor. However, there was no detectible difference between surface concentrations for the structures and controls seasonally on the bajada site. This study demonstrates that changes in connectivity can influence sediment movement. Altering sediment transport through bare gaps could influence ecosystem state changes in arid systems; thereby increasing the likelihood of recruitment of native plants.

  4. CORONAL FARADAY ROTATION FLUCTUATIONS AND A WAVE/TURBULENCE-DRIVEN MODEL OF THE SOLAR WIND

    SciTech Connect

    Hollweg, Joseph V.; Cranmer, Steven R.; Chandran, Benjamin D. G. E-mail: scranmer@cfa.harvard.ed

    2010-10-20

    Some recent models for coronal heating and the origin of the solar wind postulate that the source of energy and momentum consists of Alfven waves of solar origin dissipating via MHD turbulence. We use one of these models to predict the level of Faraday rotation fluctuations (FRFs) that should be imposed on radio signals passing through the corona. This model has the virtue of specifying the correlation length of the turbulence, knowledge of which is essential for calculating the FRFs; previous comparisons of observed FRFs with models suffered from the fact that the correlation length had to be guessed. We compare the predictions with measurements of FRFs obtained by the Helios radio experiment during occultations in 1975 through 1977, close to solar minimum. We show that only a small fraction of the FRFs are produced by density fluctuations; the bulk of the FRFs must be produced by coronal magnetic field fluctuations. The observed FRFs have periods of hours, suggesting that they are related to Alfven waves which are observed in situ by spacecraft throughout the solar wind; other evidence also suggests that the FRFs are due to coronal Alfven waves. We choose a model field line in an equatorial streamer which has background electron concentrations that match those inferred from the Helios occultation data. The predicted FRFs are found to agree very well with the Helios data. If the FRFs are in fact produced by Alfven waves with the assumed correlation length, our analysis leads us to conclude that wave-turbulence models should continue to be pursued with vigor. But since we cannot prove that the FRFs are produced by Alfven waves, we state the more conservative conclusion, still subject to the correctness of the assumed correlation length, that the corona contains long-period magnetic fluctuations with sufficient energy to heat the corona and drive the solar wind.

  5. A 2-Liter, 2000 MPa Air Source for the Radiatively Driven Hypersonic Wind Tunnel

    SciTech Connect

    Costantino, M; Lofftus, D

    2002-05-30

    The A2 LITE is a 2 liter, 2000 MPa, 750 K ultra-high pressure (UHP) vessel used to demonstrate UHP technology and to provide an air flow for wind tunnel nozzle development. It is the largest volume UHP vessel in the world. The design is based on a 100:1 pressure intensification using a hydraulic ram as a low pressure driver and a three-layer compound cylinder UHP section. Active control of the 900 mm piston stroke in the 63.5 mm bore permits pressure-time profiles ranging from static to constant pressure during flow through a 1 mm throat diameter nozzle for 1 second.

  6. Simulation of wind-driven dispersion of fire pollutants in a street canyon using FDS.

    PubMed

    Pesic, Dusica J; Blagojevic, Milan Dj; Zivkovic, Nenad V

    2014-01-01

    Air quality in urban areas attracts great attention due to increasing pollutant emissions and their negative effects on human health and environment. Numerous studies, such as those by Mouilleau and Champassith (J Loss Prevent Proc 22(3): 316-323, 2009), Xie et al. (J Hydrodyn 21(1): 108-117, 2009), and Yassin (Environ Sci Pollut Res 20(6): 3975-3988, 2013) focus on the air pollutant dispersion with no buoyancy effect or weak buoyancy effect. A few studies, such as those by Hu et al. (J Hazard Mater 166(1): 394-406, 2009; J Hazard Mater 192(3): 940-948, 2011; J Civ Eng Manag (2013)) focus on the fire-induced dispersion of pollutants with heat buoyancy release rate in the range from 0.5 to 20 MW. However, the air pollution source might very often be concentrated and intensive, as a consequence of the hazardous materials fire. Namely, transportation of fuel through urban areas occurs regularly, because it is often impossible to find alternative supply routes. It is accompanied with the risk of fire accident occurrences. Accident prevention strategies require analysis of the worst scenarios in which fire products jeopardize the exposed population and environment. The aim of this article is to analyze the impact of wind flow on air pollution and human vulnerability to fire products in a street canyon. For simulation of the gasoline tanker truck fire as a result of a multivehicle accident, computational fluid dynamics large eddy simulation method has been used. Numerical results show that the fire products flow vertically upward, without touching the walls of the buildings in the absence of wind. However, when the wind velocity reaches the critical value, the products touch the walls of the buildings on both sides of the street canyon. The concentrations of carbon monoxide and soot decrease, whereas carbon dioxide concentration increases with the rise of height above the street canyon ground level. The longitudinal concentration of the pollutants inside the street

  7. Constrained Evolution of a Radially Magnetized Protoplanetary Disk: Implications for Planetary Migration

    NASA Astrophysics Data System (ADS)

    Russo, Matthew; Thompson, Christopher

    2015-12-01

    We consider the inner ˜1 AU of a protoplanetary disk (PPD) at a stage where angular momentum transport is driven by the mixing of a radial magnetic field into the disk from a T Tauri wind. Because the radial profile of the imposed magnetic field is well constrained, a constrained calculation of the disk mass flow becomes possible. The vertical disk profiles obtained in Paper I imply a stronger magnetization in the inner disk, faster accretion, and a secular depletion of the disk material. Inward transport of solids allows the disk to maintain a broad optical absorption layer even when the grain abundance becomes too small to suppress its ionization. Thus, a PPD may show a strong mid- to near-infrared spectral excess even while its mass profile departs radically from the minimum-mass solar nebula. The disk surface density is buffered at ˜30 g cm-2 below this, X-rays trigger magnetorotational turbulence at the midplane strong enough to loft millimeter- to centimeter-sized particles high in the disk, followed by catastrophic fragmentation. A sharp density gradient bounds the inner depleted disk and propagates outward to ˜1-2 AU over a few megayears. Earth-mass planets migrate through the inner disk over a similar timescale, whereas the migration of Jupiters is limited by the supply of gas. Gas-mediated migration must stall outside 0.04 AU, where silicates are sublimated and the disk shifts to a much lower column. A transition disk emerges when the dust/gas ratio in the MRI-active layer falls below Xd ˜ 10-6 (ad/μm), where ad is the grain size.

  8. Connecting wind-driven upwelling and offshore stratification to nearshore internal bores and oxygen variability

    NASA Astrophysics Data System (ADS)

    Walter, Ryan K.; Woodson, C. Brock; Leary, Paul R.; Monismith, Stephen G.

    2014-06-01

    This study utilizes field observations in southern Monterey Bay, CA, to examine how regional-scale upwelling and changing offshore (shelf) conditions influence nearshore internal bores. We show that the low-frequency wind forcing (e.g., upwelling/relaxation time scales) modifies the offshore stratification and thermocline depth. This in turn alters the strength and structure of observed internal bores in the nearshore. An internal bore strength index is defined using the high-pass filtered potential energy density anomaly in the nearshore. During weak upwelling favorable conditions and wind relaxations, the offshore thermocline deepens. In this case, both the amplitude of the offshore internal tide and the strength of the nearshore internal bores increase. In contrast, during strong upwelling conditions, the offshore thermocline shoals toward the surface, resulting in a decrease in the offshore internal tide amplitude. As a result, cold water accumulates in the nearshore (nearshore pooling), and the internal bore strength index decreases. Empirical orthogonal functions are utilized to support the claim that the bore events contribute to the majority of the variance in cross-shelf exchange and transport in the nearshore. Observed individual bores can drive shock-like drops in dissolved oxygen (DO) with rapid onset times, while extended upwelling periods with reduced bore activity produce longer duration, low DO events.

  9. Viscous and Inviscid Predictions for a Radiatively Driven Hypersonic Wind Tunnel

    NASA Astrophysics Data System (ADS)

    Brown, G. L.; Girgis, I. G.; Miles, R. B.

    2001-11-01

    A new concept for a missile scale hypersonic wind tunnel that will provide a Mach number from 7 to 12 at true flight conditions is presented. This new concept is based on ultra high pressure conditions (up to 23 kBar) and energy addition, using a high power electron beam, to the supersonic airflow in the expansion section and downstream from the throat. In this way the stagnation temperature upstream of the throat can be kept very low. Very important aspects of the hypersonic wind tunnel design are the heat transfer rates to the wall and to a lesser extent the boundary layer displacement thickness. Since the electron beam heating region is controlled by an applied magnetic field, the heated core has been designed to be largely isolated from an unheated outer flow. Euler simulations predict that the expansion to the test-section will cause the outer unheated flow to condense in the free stream. Viscous calculations however indicate that practically all of this two phase flow would be eliminated by heating in the turbulent boundary layer at the wall. The Reynolds number for the boundary layer in the heated region is 1.8E+9 based on distance from the throat (0.16m) and throat static conditions. The thermodynamics and fluid mechanics of the real gas flow field and the heat transfer to the wall at these extreme flow conditions are discussed from both a physical and computational point of view.

  10. Dynamics of wind-driven upwelling off the northeastern coast of Hainan Island

    NASA Astrophysics Data System (ADS)

    Lin, Peigen; Cheng, Peng; Gan, Jianping; Hu, Jianyu

    2016-02-01

    Both observational and reanalysis sea surface temperature data reveal that upwelling occurs frequently off the northeastern coast of Hainan Island (downstream of the change in topography off Tongluo Cape), which cannot be attributed to the along-shelf wind alone. To identify dynamics of the upwelling, we conduct a numerical experiment using an idealized topography that is simplified from the actual topography off the eastern and northeastern coasts of Hainan Island. The result indicates that the upwelling downstream of the change in topography is associated with onshore cross-isobath transport. Analysis of the vertically integrated momentum balance shows that the upwelling-linked onshore transport is primarily intensified by the along-isobath barotropic pressure gradient force (PGT), but is weakened by the along-isobath baroclinic pressure gradient force (PGC). The along-isobath PGT is linked to the advection of relative vorticity, the bottom stress curl and the gradient of momentum flux in vorticity equation. On the other hand, the PGC-related process is diagnosed by potential vorticity (PV) balance. Similar to the negative PV term from wind stress, the negative PV terms of the joint effect of baroclinicity and relief and the baroclinic bottom pressure torque weaken the upwelling-linked onshore transport downstream of the change in topography. The onshore transport is enhanced by the positive PV from bottom stress. In addition, the cross-isobath forces play an important role in upwelling intensification in the shallow nearshore region.

  11. Radiation driven winds of hot luminous stars. XIV. Line statistics and radiative driving

    NASA Astrophysics Data System (ADS)

    Puls, J.; Springmann, U.; Lennon, M.

    2000-01-01

    This paper analyzes the inter-relation between line-statistics and radiative driving in massive stars with winds (excluding Wolf-Rayets) and provides insight into the qualitative behaviour of the well-known force-multiplier parameters k_cak, alpha and delta , with special emphasis on alpha . After recapitulating some basic properties of radiative line driving, the correspondence of the local exponent of (almost) arbitrary line-strength distribution functions and alpha , which is the ratio of optically thick to total line-force, is discussed. Both quantities are found to be roughly equal as long as the local exponent is not too steep. We compare the (conventional) parameterization applied in this paper with the so-called bar Q-formalism introduced by Gayley (\\cite{Gayley95}) and conclude that the latter can be applied alternatively in its most general form. Its ``strongest form'', however (requiring the Ansatz bar Q = Q_o to be valid, with Q_o the line-strength of the strongest line), is justified only under specific conditions, typically for Supergiants with T_eff >~ 35 000 K. The central part of this paper considers the question concerning the shape of the line-strength distribution function, with line-strength k_L as approximate depth independent ratio of line and Thomson opacity. Since k_L depends on the product of oscillator strength, excitation- and ionization fraction as well as on elemental abundance, all of these factors have their own, specific influence on the final result. At first, we investigate the case of hydrogenic ions, which can be treated analytically. We find that the exponent of the differential distribution is -4/3 corresponding to alpha = 2/3, as consequence of the underlying oscillator strength distribution. Furthermore, it is shown that for trace ions one stage below the major one (e.g., Hi in hot winds) the equality alpha + delta ~ 1 is valid throughout the wind. For the majority of non-hydrogenic ions, we follow the statistical approach

  12. Equilibrium configuration and stability of a stratus floating above accretion disks

    NASA Astrophysics Data System (ADS)

    Nakai, Takuya; Fukue, Jun

    2016-04-01

    We examine the equilibrium configurations of a stratus floating above an accretion disk, using the radiative force from the luminous disk just below the stratus. For various disk luminosities and optical depths of the stratus, the stratus can stably float on the outer disk, while a stable configuration does not exist on the inner disk. When the disk luminosity normalized by the Eddington luminosity is unity, and the stratus optical depth is around unity, the stable configuration disappears at r ≲ 50rg, rg being the Schwarzschild radius, and the stratus would be blown off as a cloudy wind, which consists of many strati with appropriate conditions. In the outer region of r ≳ 50rg, on the other hand, we find that the stable floating height is z ˜ 20rg, which is approximately two times larger than in the case of the particle. This difference is due to the anisotropic scattering effect; the stratus can get twice the momentum from radiation than it can in the particle case. The present results, that the radiation-driven cloudy wind can be easily blown off from the luminous disk, can explain observed outflows in broad absorption line quasars and ultra-fast outflow objects.

  13. DETECTING THE WIND-DRIVEN SHAPES OF EXTRASOLAR GIANT PLANETS FROM TRANSIT PHOTOMETRY

    SciTech Connect

    Barnes, Jason W.; Cooper, Curtis S.; Showman, Adam P.; Hubbard, William B.

    2009-11-20

    Several processes can cause the shape of an extrasolar giant planet's shadow, as viewed in transit, to depart from circular. In addition to rotational effects, cloud formation, non-homogenous haze production and movement, and dynamical effects (winds) could also be important. When such a planet transits its host star as seen from the Earth, the asphericity will introduce a deviation in the transit light curve relative to the transit of a perfectly spherical (or perfectly oblate) planet. We develop a theoretical framework to interpret planetary shapes. We then generate predictions for transiting planet shapes based on a published theoretical dynamical model of HD189733b. Using these shape models we show that planet shapes are unlikely to introduce detectable light-curve deviations (those >1 x 10{sup -5} of the host star), but that the shapes may lead to astrophysical sources of systematic error when measuring planetary oblateness, transit time, and impact parameter.

  14. The potential of current- and wind-driven transport for environmental management of the Baltic Sea.

    PubMed

    Soomere, Tarmo; Döös, Kristofer; Lehmann, Andreas; Meier, H E Markus; Murawski, Jens; Myrberg, Kai; Stanev, Emil

    2014-02-01

    The ever increasing impact of the marine industry and transport on vulnerable sea areas puts the marine environment under exceptional pressure and calls for inspired methods for mitigating the impact of the related risks. We describe a method for preventive reduction of remote environmental risks caused by the shipping and maritime industry that are transported by surface currents and wind impact to the coasts. This method is based on characterizing systematically the damaging potential of the offshore areas in terms of potential transport to vulnerable regions of an oil spill or other pollution that has occurred in a particular area. The resulting maps of probabilities of pollution to be transported to the nearshore and the time it takes for the pollution to reach the nearshore are used to design environmentally optimized fairways for the Gulf of Finland, Baltic Proper, and south-western Baltic Sea. PMID:24414808

  15. Sea Ice Deformation Rates in the Arctic: from Wind-Driven Synoptic Variability to Seasonal Trends

    NASA Astrophysics Data System (ADS)

    Glowacki, O.; Herman, A.

    2012-12-01

    Deformation mechanisms of the Arctic Ocean ice sheet are characterized by high spatial and temporal variability, in which ice ridges and leads tend to be concentrated in elongated, narrow zones. Present state-of-the-art numerical models, especially those based on various versions of viscous-plastic rheology, are still far from perfection in terms of reproducing localized and intermittent characteristics of sea ice deformation. In this study, the relationship (and its variability) between scaling properties of sea ice deformation and 10-m wind speed is analyzed. We used NCEP-DOE Reanalysis 2 data to determine area-averaged atmospheric drag force. Gridded sea ice total deformation rates from Radarsat Geophysical Processor System (RGPS) data were obtained from the NASA Jet Propulsion Laboratory, with a time resolution of 3 days and a spatial resolution of 12.55 km. Our analysis covers 11 winter seasons from 1996/1997 to 2007/2008. We calculated the moments mq, L of probability distribution functions (pdfs) of total sea ice deformation rates for a range of spatial scales L. The logarithms of the moments are significantly correlated with basin-scale wind forcing, especially for low values of q (with Pearson correlation coefficient reaching 0.7). It can be well-described by simplified momentum equations and a very general rheology model. Furthermore, the strength of this relationship varies seasonally and reaches its minimum in March, due to changeable thickness and consolidation of the Arctic Ocean ice sheet. This effect is clearly seen in comparison with trend lines of time-varying values of moments. Finally, there is a positive trend in seasonally-averaged power of correlation, which is probably associated with decreasing area of the multi-year ice. As a result, the course of sea ice deformation process in the Arctic is a possible indicator of climate change.

  16. No breakdown of the radiatively driven wind theory in low-metallicity environments

    NASA Astrophysics Data System (ADS)

    Bouret, J.-C.; Lanz, T.; Hillier, D. J.; Martins, F.; Marcolino, W. L. F.; Depagne, E.

    2015-05-01

    We present a spectroscopic analysis of Hubble Space Telescope/Cosmic Origins Spectrograph observations of three massive stars in the low metallicity dwarf galaxies IC 1613 and WLM. These stars, were previously observed with Very Large Telescope (VLT)/X-shooter by Tramper et al., who claimed that their mass-loss rates are higher than expected from theoretical predictions for the underlying metallicity. A comparison of the far ultraviolet (FUV) spectra with those of stars of similar spectral types/luminosity classes in the Galaxy, and the Magellanic Clouds provides a direct, model-independent check of the mass-loss-metallicity relation. Then, a quantitative spectroscopic analysis is carried out using the non-LTE (NLTE) stellar atmosphere code CMFGEN. We derive the photospheric and wind characteristics, benefiting from a much better sensitivity of the FUV lines to wind properties than Hα. Iron and CNO abundances are measured, providing an independent check of the stellar metallicity. The spectroscopic analysis indicates that Z/Z⊙ = 1/5, similar to a Small Magellanic Cloud-type environment, and higher than usually quoted for IC 1613 and WLM. The mass-loss rates are smaller than the empirical ones by Tramper et al., and those predicted by the widely used theoretical recipe by Vink et al. On the other hand, we show that the empirical, FUV-based, mass-loss rates are in good agreement with those derived from mass fluxes computed by Lucy. We do not concur with Tramper et al. that there is a breakdown in the mass-loss-metallicity relation.

  17. Foehn winds link climate-driven warming to ice shelf evolution in Antarctica

    NASA Astrophysics Data System (ADS)

    Cape, M. R.; Vernet, Maria; Skvarca, Pedro; Marinsek, Sebastián.; Scambos, Ted; Domack, Eugene

    2015-11-01

    Rapid warming of the Antarctic Peninsula over the past several decades has led to extensive surface melting on its eastern side, and the disintegration of the Prince Gustav, Larsen A, and Larsen B ice shelves. The warming trend has been attributed to strengthening of circumpolar westerlies resulting from a positive trend in the Southern Annular Mode (SAM), which is thought to promote more frequent warm, dry, downsloping foehn winds along the lee, or eastern side, of the peninsula. We examined variability in foehn frequency and its relationship to temperature and patterns of synoptic-scale circulation using a multidecadal meteorological record from the Argentine station Matienzo, located between the Larsen A and B embayments. This record was further augmented with a network of six weather stations installed under the U.S. NSF LARsen Ice Shelf System, Antarctica, project. Significant warming was observed in all seasons at Matienzo, with the largest seasonal increase occurring in austral winter (+3.71°C between 1962-1972 and 1999-2010). Frequency and duration of foehn events were found to strongly influence regional temperature variability over hourly to seasonal time scales. Surface temperature and foehn winds were also sensitive to climate variability, with both variables exhibiting strong, positive correlations with the SAM index. Concomitant positive trends in foehn frequency, temperature, and SAM are present during austral summer, with sustained foehn events consistently associated with surface melting across the ice sheet and ice shelves. These observations support the notion that increased foehn frequency played a critical role in precipitating the collapse of the Larsen B ice shelf.

  18. Large eddy simulation model for wind-driven sea circulation in coastal areas

    NASA Astrophysics Data System (ADS)

    Petronio, A.; Roman, F.; Nasello, C.; Armenio, V.

    2013-12-01

    In the present paper a state-of-the-art large eddy simulation model (LES-COAST), suited for the analysis of water circulation and mixing in closed or semi-closed areas, is presented and applied to the study of the hydrodynamic characteristics of the Muggia bay, the industrial harbor of the city of Trieste, Italy. The model solves the non-hydrostatic, unsteady Navier-Stokes equations, under the Boussinesq approximation for temperature and salinity buoyancy effects, using a novel, two-eddy viscosity Smagorinsky model for the closure of the subgrid-scale momentum fluxes. The model employs: a simple and effective technique to take into account wind-stress inhomogeneity related to the blocking effect of emerged structures, which, in turn, can drive local-scale, short-term pollutant dispersion; a new nesting procedure to reconstruct instantaneous, turbulent velocity components, temperature and salinity at the open boundaries of the domain using data coming from large-scale circulation models (LCM). Validation tests have shown that the model reproduces field measurement satisfactorily. The analysis of water circulation and mixing in the Muggia bay has been carried out under three typical breeze conditions. Water circulation has been shown to behave as in typical semi-closed basins, with an upper layer moving along the wind direction (apart from the anti-cyclonic veering associated with the Coriolis force) and a bottom layer, thicker and slower than the upper one, moving along the opposite direction. The study has shown that water vertical mixing in the bay is inhibited by a large level of stable stratification, mainly associated with vertical variation in salinity and, to a minor extent, with temperature variation along the water column. More intense mixing, quantified by sub-critical values of the gradient Richardson number, is present in near-coastal regions where upwelling/downwelling phenomena occur. The analysis of instantaneous fields has detected the presence of

  19. Comparison of chaparral regrowth patterns between Santa Ana wind-driven and non-Santa Ana fire areas

    NASA Astrophysics Data System (ADS)

    Rachels, Diane Helen

    Wildfires are a common occurrence in California shrublands and island forests. Fire has a fundamental role in maintaining the ecosystem functions in chaparral where fire intensity and severity play important roles in the regeneration of species. In San Diego, the Cedar Fire that occurred in the fall of 2003 was unique in that one side was burned with wildfire fueled by dry, strong easterly Santa Ana winds that later died down, burning the remainder of the area under a mild westerly wind, allowing fuel-fed conditions. The objective of this study was to understand the connection between vegetation type and structure and environmental response to extreme fire events by analyzing life form regrowth in chaparral communities from the Santa Ana wind driven, Santa Ana backing, and non-Santa Ana fire types. Environmental factors of slope angle, aspect, elevation and soils were investigated in an effort to isolate shrub regrowth patterns. Fire burn characteristics, anthropogenic disturbance, fire history, and moisture availability were also analyzed to identify additional factors that may have influenced shrub regrowth. Shrub extents before the fire and six year after the fire were examined per slope aspect, slope angle, elevation, and fire characteristic categories. The closed canopy and natural features of the chaparral environment make ground based mapping very difficult. Remote sensing data and methods can be very helpful to evaluate the health of the vegetation and condition of the watershed for flood, erosion, and fire control. This study used high spatial resolution aerial imagery and a machine learning algorithm with a spatial contextual classifier to map three different areas from within the Cedar Fire perimeter. Geographic information science (GIS), field mapping, and image interpretation methods were used to identify vegetation samples for the classification and accuracy assessment of the vegetation maps. Object-based image samples were selected for the classifier

  20. Coastal cape and canyon effects on wind-driven upwelling in northern Taiwan Strait

    NASA Astrophysics Data System (ADS)

    Chen, Zhaoyun; Yan, Xiao-Hai; Jiang, Yuwu

    2014-07-01

    A combination of observations and numerical model is used to reveal the upwelling features and mechanisms in the northern Taiwan Strait during summer. In situ data give evidence of the upwelling in the form of thermocline tilting upward onshore. The remote sensing data show a strip of upwelling in the coastal region, which occurs more than half a summer. The upwelling probability map indicates there are two upwelling cores, one located downstream of Pingtan Island formed as cape effect and the other over the coastal canyon off the Sansha Bay. Remote sensing data and numerical model results suggest that the southerly wind plays a key role in shaping this upwelling strip, while the tides regulate the upwelling location through tidal mixing effect in the shallow water region, especially lee of Pingtan Island. Further numerical experiments using idealized cape and coastal canyon topography show that vertical velocity is intensified downstream of the cape and canyon. The vorticity equation shows that relative vorticity change along a streamline and frictional diffusion of vorticity are responsible for the vertical velocity off the cape and within and around the canyon. According to the conservation of potential vorticity, the variation of relative vorticity along a streamline over irregular topography, e.g., cape and canyon, is the main mechanism for the two upwelling cores in the northern Taiwan Strait.

  1. Solar-wind-driven changes to the ionospheric electric potential lead to changes in tropospheric temperature and geopotential height

    NASA Astrophysics Data System (ADS)

    Lam, Mai Mai; Chisham, Gareth; Freeman, Mervyn P.

    2015-04-01

    There are a large number of responses, on the day-to-day timescale, of the dynamics of the troposphere to regional changes in the downward current of the global atmospheric electric circuit (GEC). They provide compelling evidence that, via the GEC, the solar wind plays a role in influencing surface weather and climate. We use reanalysis data to estimate the altitude and time lag dependence of one such response - the Mansurov effect. This effect was first observed as a correlation between the duskward component By of the interplanetary magnetic field (IMF) and surface pressure anomalies in Antarctica. Additionally, we have more recently shown that the polar Mansurov effect can affect mid-latitude atmospheric planetary waves, the amplitude of the effect being comparable to typical initial analysis uncertainties in ensemble numerical weather prediction. Here we shed light on the origins of the polar surface effect by examining the correlation between IMF By and geopotential height anomalies throughout the Antarctic troposphere and lower stratosphere. We find that the correlation is highly statistically significant within the troposphere, and not so in the stratosphere. The peak in the correlation occurs at greater time lags at the tropopause (~ 6 - 8 days) and in the mid troposphere (~ 4 days) than in the lower troposphere (~ 1 day). This supports a mechanism involving the action on lower tropospheric clouds of the GEC, modified by variations in the solar wind (through modulations of the spatial variation in ionospheric potential). The increase in time lag with increasing altitude is consistent with the upward propagation by conventional atmospheric processes of the solar wind-induced variability in the lower troposphere. This is in contrast to the downward propagation of atmospheric effects to the lower troposphere from the stratosphere due to solar variability-driven mechanisms involving ultraviolet radiation or energetic particle precipitation. We also find a

  2. Chemistry in Disks. III. Photochemistry and X-ray Driven Chemistry Probed by the Ethynyl Radical (CCH) in DM Tau, LkCa 15, and MWC 480

    NASA Astrophysics Data System (ADS)

    Henning, Th.; Semenov, D.; Guilloteau, St.; Dutrey, A.; Hersant, F.; Wakelam, V.; Chapillon, E.; Launhardt, R.; Piétu, V.; Schreyer, K.

    2010-05-01

    We studied several representative circumstellar disks surrounding the Herbig Ae star MWC 480 and the T Tauri stars LkCa 15 and DM Tau at (sub-)millimeter wavelengths in lines of CCH. Our aim is to characterize photochemistry in the heavily UV-irradiated MWC 480 disk and compare the results to the disks around cooler T Tauri stars. We detected and mapped CCH in these disks with the IRAM Plateau de Bure Interferometer in the C and D configurations in the (1-0) and (2-1) transitions. Using an iterative minimization technique, the CCH column densities and excitation conditions are constrained. Very low excitation temperatures are derived for the T Tauri stars. These values are compared with the results of advanced chemical modeling, which is based on a steady-state flared disk structure with a vertical temperature gradient, and a gas-grain chemical network with surface reactions. Both model and observations suggest that CCH is a sensitive tracer of the X-ray and UV irradiation. The predicted radial dependency and source-to-source variations of CCH column densities qualitatively agree with the observed values, but the predicted column densities are too low by a factor of several. The chemical model fails to reproduce high concentrations of CCH in very cold disk midplane as derived from the observed low excitation condition for both the (1-0) and (2-1) transitions.

  3. Current-controlled Sedimentary Features into Lake Saint-Jean (Québec, Canada): a Record of Wind-driven Processes?

    NASA Astrophysics Data System (ADS)

    Nutz, A.; Schuster, M.; Ghienne, J. F.; Roquin, C.; Hay, M. B.; Retif, F.; Certain, R.; Robin, N.; Raynal, O.; Cousineau, P. A.; Bouchette, F. A.

    2014-12-01

    Lake Saint-Jean is the third largest natural lake in Québec (Canada), however very few studies have focused on the basin-scale limnogeology of this lake. An initial very high-resolution seismic survey of Lake Saint-Jean was conducted in 2011, providing more than 300 km of seismic sections throughout the lake. These seismic profiles permitted the identification of numerous depositional units at a basin-scale (Nutz et al., Boreas 2014). In this contribution, we focus on prominent large-scale, high-energy sedimentary features that are rather atypical in lakes: a sand-prone sedimentary shelf, sediment drifts and extensive erosional surfaces. All of these features may be attributed to wind-driven hydrodynamics affecting the central portion of the lake, at depths well below the wave base. Coupling the seismic profiles with a series of sediment cores and recent dating results, we now can propose a detailed characterization of these sedimentary features including age and context of emplacement, as well as the dominant depositional processes at work. Indeed, a numerical simulation of wind-induced bottom-current distribution based on realistic wind regimes was also applied in order to validate our previous wind-forcing interpretation. This research provides a more thorough understanding of depositional processes at the origin of fine-grained sediment accumulations in lakes. The prevalence of wind-driven processes in some lacustrine depositional systems is also addressed through the presentation of a conceptual depositional model well-suited for high-energy, wind-driven water-bodies. This model is of interest to all geoscientists dealing with present-day lake systems (e.g., reservoir lake management) as well as researchers working with paleo-lacustrine records and strata (e.g., bottom lake anoxia, hiatial surfaces, hydrocarbon exploration).

  4. Integrated real-time monitoring system to investigate the hypoxia in a shallow wind-driven bay.

    PubMed

    Islam, Mohammad Shahidul; Bonner, James S; Page, Cheryl; Ojo, Temitope O

    2011-01-01

    Corpus Christi Bay (Texas, USA) is a shallow wind-driven bay which experiences hypoxia (dissolved oxygen < 2 mg/L) during the summer. Since this bay is a very dynamic system, the processes that control the hypoxia can last on the order of hours to days. Monitoring systems installed on a single type of platform cannot fully capture these processes at the spatial and temporal scales of interest. Therefore, we have integrated monitoring systems installed on three different platform types: (1) fixed robotic, (2) mobile, and (3) remote. On the fixed robotic platform, an automated profiler system vertically moves a suite of water quality measuring sensors within the water column for continuous measurements. An integrated data acquisition, communication and control system has been configured on our mobile platform (research vessel) for synchronized measurements of hydrodynamic and water quality parameters at greater spatial resolution. In addition, a high-frequency radar system has been installed on remote platforms to generate surface current maps for the bay. With our integrated system, we were able to capture evidence of a hypoxic event in summer 2007; moreover, we detected low dissolved oxygen conditions in a part of the bay with no previously reported history of hypoxia. PMID:20131092

  5. Sandwave movement under tidal and wind-driven currents in a shallow marine environment: Adolphus Channel, northeastern Australia

    NASA Astrophysics Data System (ADS)

    Harris, Peter T.

    1989-11-01

    Synoptic bathymetric surveys and current meter data collected over a sandwave field in Adolphus Channel (20 m water depth), Australia, yield average estimated celebrities of 0.75 and 0.25 m day -1, respectively. The sandwaves average 3.9 m in height, 102 m in wavelength and are comprised of up to 96% carbonate, consisting primarily of intact and fragmented calcareous alga Halimeda, benthic foraminifers, bryozoans and molluscs. The sand has a modal grain size of 0.8 mm. Current speeds measured 1 m above the bed averaged 0.42 m -1 and reached a peak of 1.36 m -1. Surveys carried out in September and February show that the sandwaves reversed their asymmetric orientation over this time interval, which is attributed to a change in the direction of the wind-driven currents during the monsoon season. The reversal of asymmetry was accompanied by a statistically significant change in the degree of sandwave asymmetry (ratio of stoss and lee slope lengths) whereas no change in mean wavelength was detected. The reversal is estimated to have required 47 days to occur based upon estimates of average sandwave cross-sectional area and bedload transport rates predicted from the current meter data.

  6. MAGNETICALLY DRIVEN WINDS FROM DIFFERENTIALLY ROTATING NEUTRON STARS AND X-RAY AFTERGLOWS OF SHORT GAMMA-RAY BURSTS

    SciTech Connect

    Siegel, Daniel M.; Ciolfi, Riccardo; Rezzolla, Luciano

    2014-04-10

    Besides being among the most promising sources of gravitational waves, merging neutron star binaries also represent a leading scenario to explain the phenomenology of short gamma-ray bursts (SGRBs). Recent observations have revealed a large subclass of SGRBs with roughly constant luminosity in their X-ray afterglows, lasting 10-10{sup 4} s. These features are generally taken as evidence of a long-lived central engine powered by the magnetic spin-down of a uniformly rotating, magnetized object. We propose a different scenario in which the central engine powering the X-ray emission is a differentially rotating hypermassive neutron star (HMNS) that launches a quasi-isotropic and baryon-loaded wind driven by the magnetic field, which is built-up through differential rotation. Our model is supported by long-term, three-dimensional, general-relativistic, and ideal magnetohydrodynamic simulations, showing that this isotropic emission is a very robust feature. For a given HMNS, the presence of a collimated component depends sensitively on the initial magnetic field geometry, while the stationary electromagnetic luminosity depends only on the magnetic energy initially stored in the system. We show that our model is compatible with the observed timescales and luminosities and express the latter in terms of a simple scaling relation.

  7. Herniated Disk

    MedlinePlus

    Your backbone, or spine, is made up of 26 bones called vertebrae. In between them are soft disks filled with a jelly-like substance. These disks cushion the vertebrae and keep them in place. As you age, ...

  8. Soil slip/debris flow localized by site attributes and wind-driven rain in the San Francisco Bay region storm of January 1982

    USGS Publications Warehouse

    Pike, R.J.; Sobieszczyk, S.

    2008-01-01

    GIS analysis at 30-m resolution reveals that effectiveness of slope-destabilizing processes in the San Francisco Bay area varies with compass direction. Nearly half the soil slip/debris flows mapped after the catastrophic rainstorm of 3-5 January 1982 occurred on slopes that face S to WSW, whereas fewer than one-quarter have a northerly aspect. Azimuthal analysis of hillside properties for susceptible terrain near the city of Oakland suggests that the skewed aspect of these landslides primarily reflects vegetation type, ridge and valley alignment, and storm-wind direction. Bedrock geology, soil expansivity, and terrain height and gradient also were influential but less so; the role of surface curvature is not wholly resolved. Normalising soil-slip aspect by that of the region's NNW-striking topography shifts the modal azimuth of soil-slip aspect from SW to SE, the direction of origin of winds during the 1982 storm-but opposite that of the prevailing WNW winds. Wind from a constant direction increases rainfall on windward slopes while diminishing it on leeward slopes, generating a modelled difference in hydrologically effective rainfall of up to 2:1 on steep hillsides in the Oakland area. This contrast is consistent with numerical simulations of wind-driven rain and with rainfall thresholds for debris-flow activity. We conclude that storm winds from the SE in January 1982 raised the vulnerability of the Bay region's many S-facing hillsides, most of which are covered in shallow-rooted shrub and grass that offer minimal resistance to soil slip. Wind-driven rainfall also appears to have controlled debris-flow location in a major 1998 storm and probably others. Incorporating this overlooked influence into GIS models of debris-flow likelihood would improve predictions of the hazard in central California and elsewhere.

  9. Convective flow patterns in an eight-box cube driven by combined wind stress, thermal and saline forcing. (Reannouncement with new availability information). Technical report

    SciTech Connect

    Huang, R.X.; Stommel, H.M.

    1992-02-15

    An eight-box cube model ocean, simulating the subpolar gyre in the North Atlantic, is formulated in order to understand how the wind-induced horizontal gyre affects the thermohaline circulation and its catastrophe. The model is forced from above by thermal conduction and freshwater flux. The structure of the thermohaline circulation and its catastrophe during the process of gradually increasing or reducing the evaporation/precipitation are examined. The results indicate that, although adding the third dimension and a wind-driven horizontal gyre of medium strength splits the catastrophe into several separate ones, only some of these catastrophes remain of significant amplitude. With choice of parameters appropriate for the North Atlantic, the model predicts a single stable state, circulating in the thermal sense (sinking at the pole). This can be driven smoothly to a reversed saline sense (sinking at the equator), without catastrophe, by increasing the precipitation/evaporation rate beyond 3 times the present-day value.

  10. BLACK HOLE GROWTH AND ACTIVE GALACTIC NUCLEI OBSCURATION BY INSTABILITY-DRIVEN INFLOWS IN HIGH-REDSHIFT DISK GALAXIES FED BY COLD STREAMS

    SciTech Connect

    Bournaud, Frederic; Teyssier, Romain; Daddi, Emanuele; Dekel, Avishai; Cacciato, Marcello; Juneau, Stephanie; Shankar, Francesco E-mail: dekel@phys.huji.ac.il

    2011-11-10

    Disk galaxies at high redshift have been predicted to maintain high gas surface densities due to continuous feeding by intense cold streams leading to violent gravitational instability, transient features, and giant clumps. Gravitational torques between the perturbations drive angular momentum out and mass in, and the inflow provides the energy for keeping strong turbulence. We use analytic estimates of the inflow for a self-regulated unstable disk at a Toomre stability parameter Q {approx} 1, and isolated galaxy simulations capable of resolving the nuclear inflow down to the central parsec. We predict an average inflow rate {approx}10 M{sub Sun} yr{sup -1} through the disk of a 10{sup 11} M{sub Sun} galaxy, with conditions representative of z {approx} 2 stream-fed disks. The inflow rate scales with disk mass and (1 + z){sup 3/2}. It includes clump migration and inflow of the smoother component, valid even if clumps disrupt. This inflow grows the bulge, while only a fraction of {approx}> 10{sup -3} of it needs to accrete onto a central black hole (BH), in order to obey the observed BH-bulge relation. A galaxy of 10{sup 11} M{sub Sun} at z {approx} 2 is expected to host a BH of {approx}10{sup 8} M{sub Sun }, accreting on average with moderate sub-Eddington luminosity L{sub X} {approx} 10{sup 42}-10{sup 43} erg s{sup -1}, accompanied by brighter episodes when dense clumps coalesce. We note that in rare massive galaxies at z {approx} 6, the same process may feed {approx}10{sup 9} M{sub Sun} BH at the Eddington rate. High central gas column densities can severely obscure active galactic nuclei in high-redshift disks, possibly hindering their detection in deep X-ray surveys.

  11. Forecasting surface wind speeds over offshore islands near Taiwan during tropical cyclones: Comparisons of data-driven algorithms and parametric wind representations

    NASA Astrophysics Data System (ADS)

    Wei, Chih-Chiang

    2015-03-01

    Tropical cyclones often affect the western North Pacific region. Between May and October annually, enormous flood damage is frequently caused by typhoons in Taiwan. This study adopted machine learning techniques to forecast the hourly wind speeds over offshore islands near Taiwan during tropical cyclones. To develop a highly reliable surface wind speed prediction technique, the four kernel-based support vector machines for regression (SVR) models, comprising radial basis function, linear, polynomial, and Pearson VII universal kernels were used. To ensure the accuracy of the SVR model, traditional regressions and the parametric wind representations, comprising the modified Rankine profile, Holland wind profile, and DeMaria wind profile were used to compare wind speed forecasts. The methodology was applied to two islands near Taiwan, Lanyu, and Pengjia Islets. The forecasting horizon ranged from 1 to 6 h. The results indicated that the Pearson VII SVR is the most precise of the kernel-based SVR models, regressions, and parametric wind representations. Additionally, Typhoons Nanmadol and Saola which made landfall over Taiwan during 2011 and 2012 were simulated and examined. The results showed that the Pearson VII SVR yielded more favorable results than did the regressions and Holland wind profile. In addition, we observed that Holland wind profile seems applicable to open ocean but unsuitable for areas affected by topographic effects, such as the Central Mountain Range of Taiwan.

  12. Reconstruction of wave features in wind-driven water film flow using ultrasonic pulse-echo technique

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Bond, Leonard J.; Hu, Hui

    2016-02-01

    Aircraft operating in weather conditions that can cause glaze icing face the risk of performance degradation, and increased costs in de-icing procedures. The water run-back in glaze ice accretion can redistribute the impinging water mass and disturb the local flow field, and hence, affect the morphology of ice accretion. Understanding the mechanism of the surface water film transportation is important and challenging, and critical to enabling improvement in the modeling of glaze icing. In this study, an ultrasonic multi-transducer (sparse array) pulse-echo (UMTPE) technique was developed to measure thin film thickness fluctuation. The technical basis for UMTPE technique and the factors that influence the measurements are described. The UMTPE technique was configured to provide time-resolved multi-point thickness measurements. Quantitative measurements of the wind-driven water film flow are achieved by using the UMTPE technique. Point-wise thickness variations can be obtained from each individual channel in the UMTPE system. Span-wise thickness profile can be derived by interpolating the point-wise measurements. The span-wise thickness profiles can be expanded in time domain, which shows the overall flow structures. The velocity of surface wave features is derived by performing a cross-correlation of the upstream and downstream thickness variations, which is then used to transform the temporal thickness fluctuation into the spatial wave structures. The time-resolved spatial flow structures are obtained by applying the transformation along time axis, which present more details of wave structures and the evolution of wave features.

  13. Theoretical uncertainty of (α ,n ) reactions relevant for the nucleosynthesis of light r -process nuclei in neutrino-driven winds

    NASA Astrophysics Data System (ADS)

    Pereira, J.; Montes, F.

    2016-03-01

    Background: Neutrino-driven winds following core-collapse supernova explosions have been proposed as a possible site where light r -process nuclei (between Fe and Ag) might be synthesized. In these events, (α ,n ) reactions are key to moving matter towards the region of higher proton number. Abundance network calculations are very sensitive to the rates for this type of reactions. Purpose: The present work aims at evaluating the theoretical uncertainty of these (α ,n ) reactions calculated with reaction codes based on the Hauser-Feshbach model. Method: We compared several (α ,n ) rates taken from talys and the non-smoker database to determine the uncertainties owing to the existing technical differences between both codes. In addition, we evaluated the sensitivity of talys rates to variations in the α optical potentials, masses, level densities, optical potentials, preequilibrium intranuclear transition rates, level structure, radiative transmission coefficients, and width-fluctuation correction factors. Results: The main source of uncertainty at low temperature is mostly attributable to the use of different α optical potentials. Differences between talys and non-smoker at high temperatures arise from the energy-binning algorithm used by each code. We have also noticed that the (α ,n ) rates from the non-smoker database correspond to the inclusive reaction, instead of the exclusive (α ,1 n ) channel calculated in the present work and used in network calculations. Conclusions: Theoretical uncertainties in calculated reaction rates can be as high as one to two orders of magnitude and strongly dependent on the temperature of the environment. Besides direct measurements of the inclusive and exclusive (α ,1 n ) reaction rates, experimental studies of α optical potentials are crucial to improve the performance of reaction codes.

  14. ACCRETION OUTBURSTS IN CIRCUMPLANETARY DISKS

    SciTech Connect

    Lubow, S. H.; Martin, R. G.

    2012-04-20

    We describe a model for the long-term evolution of a circumplanetary disk that is fed mass from a circumstellar disk and contains regions of low turbulence (dead zones). We show that such disks can be subject to accretion-driven outbursts, analogous to outbursts previously modeled in the context of circumstellar disks to explain FU Ori phenomena. Circumplanetary disks around a proto-Jupiter can undergo outbursts for infall accretion rates onto the disks in the range M-dot{sub infall} approx. 10{sup -9} to 10{sup -7} M{sub Sun} yr{sup -1}, typical of accretion rates in the T Tauri phase. During outbursts, the accretion rate and disk luminosity increases by several orders of magnitude. Most of the planet mass growth during planetary gas accretion may occur via disk outbursts involving gas that is considerably hotter than predicted by steady state models. For low infall accretion rates M-dot{sub infall} {approx}< 10{sup -10} M{sub sun} yr{sup -1} that occur in late stages of disk accretion, disk outbursts are unlikely to occur, even if dead zones are present. Such conditions are favorable for the formation of icy satellites.

  15. THE MAGNETIC FIELD IN THE CLASS 0 PROTOSTELLAR DISK OF L1527

    SciTech Connect

    Segura-Cox, Dominique M.; Looney, Leslie W.; Stephens, Ian W.; Fernández-López, Manuel; Crutcher, Richard; Kwon, Woojin; Tobin, John J.; Li, Zhi-Yun

    2015-01-01

    We present subarcsecond (∼0.''35) resolved observations of the 1.3 mm dust polarization from the edge-on circumstellar disk around the Class 0 protostar L1527. The inferred magnetic field is consistent with a dominantly toroidal morphology; there is no significantly detected vertical poloidal component to which observations of an edge-on disk are most sensitive. This suggests that angular momentum transport in Class 0 protostars (when large amounts of material are fed down to the disk from the envelope and accreted onto the protostar) is driven mainly by magnetorotational instability rather than magnetocentrifugal winds at 50 AU scales. In addition, with the data to date there is an early, tentative trend that R > 30 AU disks have so far been found in Class 0 systems with average magnetic fields on the 1000 AU scale strongly misaligned with the rotation axis. The absence of such a disk in the aligned case could be due to efficient magnetic braking that disrupts disk formation. If this is the case, this implies that candidate Class 0 disk systems could be identified by the average magnetic field direction at ∼1000 AU spatial scales.

  16. A Steady-state Picture of Solar Wind Acceleration and Charge State Composition Derived from a Global Wave-driven MHD Model

    NASA Astrophysics Data System (ADS)

    Oran, R.; Landi, E.; van der Holst, B.; Lepri, S. T.; Vásquez, A. M.; Nuevo, F. A.; Frazin, R.; Manchester, W.; Sokolov, I.; Gombosi, T. I.

    2015-06-01

    The higher charge states found in slow (<400 km s-1) solar wind streams compared to fast streams have supported the hypothesis that the slow wind originates in closed coronal loops and is released intermittently through reconnection. Here we examine whether a highly ionized slow wind can also form along steady and open magnetic field lines. We model the steady-state solar atmosphere using the Alfvén Wave Solar Model (AWSoM), a global MHD model driven by Alfvén waves, and apply an ionization code to calculate the charge state evolution along modeled open field lines. This constitutes the first charge state calculation covering all latitudes in a realistic magnetic field. The ratios {{O}+7}/{{O}+6} and {{C}+6}/{{C}+5} are compared to in situ Ulysses observations and are found to be higher in the slow wind, as observed; however, they are underpredicted in both wind types. The modeled ion fractions of S, Si, and Fe are used to calculate line-of-sight intensities, which are compared to Extreme-ultraviolet Imaging Spectrometer (EIS) observations above a coronal hole. The agreement is partial and suggests that all ionization rates are underpredicted. Assuming the presence of suprathermal electrons improved the agreement with both EIS and Ulysses observations; importantly, the trend of higher ionization in the slow wind was maintained. The results suggest that there can be a sub-class of slow wind that is steady and highly ionized. Further analysis shows that it originates from coronal hole boundaries (CHBs), where the modeled electron density and temperature are higher than inside the hole, leading to faster ionization. This property of CHBs is global and observationally supported by EUV tomography.

  17. Burst-Disk Device Simulates Effect Of Pyrotechnic Device

    NASA Technical Reports Server (NTRS)

    Rogers, James P.; Sexton, James H.

    1995-01-01

    Expendable disks substituted for costly pyrotechnic devices for testing actuators. Burst-disk device produces rush of pressurized gas similar to pyrotechnic device. Designed to reduce cost of testing pyrotechnically driven emergency actuators (parachute-deploying mechanisms in original application).

  18. Static property and current-driven precession of 2π-vortex in nano-disk with Dzyaloshinskii-Moriya interaction

    SciTech Connect

    Liu, Xianyin; Zhu, Qiyuan; Zhang, Senfu; Liu, Qingfang E-mail: wangjb@lzu.edu.cn; Wang, Jianbo E-mail: wangjb@lzu.edu.cn

    2015-08-15

    An interesting type of skyrmion-like spin texture, 2π-vortex, is obtained in a thin nano-disk with Dzyaloshinskii-Moriya interaction. We have simulated the existence of 2π-vortex by micromagnetic method. Furthermore, the spin polarized current is introduced in order to drive the motion of 2π-vortex in a nano-disk with diameter 2 R = 140 nm. When the current density matches with the current injection area, 2π-vortex soon reaches a stable precession (3∼4 ns). The relationship between the precession frequency of 2π-vortex and the current density is almost linear. It may have potential use in spin torque nano-oscillators.

  19. A forward-reverse shock pair in the solar wind driven by over-expansion of a coronal mass ejection: Ulysses observations

    SciTech Connect

    Gosling, J.T.; Bame, S.J.; McComas, D.J.; Phillips, J.L.; Scime, E.E. ); Pizzo, V.J. ); Goldstein, B.E. ); Balogh, A. )

    1994-02-01

    A previously unidentified type of solar wind forward-reverse shock pair has been observed by Ulysses at 4.64 AU and S32.5[degrees]. In contrast to most solar wind forward-reverse shock pairs, which are driven by the speed difference between fast solar wind plasma and slower plasma ahead, this particular shock pair was driven purely by the over-expansion of a coronal mass ejection, CME, in transit from the Sun. A simple numerical simulation indicates that the over-expansion was a result of a high initial internal plasma and magnetic field pressure within the CME. The CME observed at 4.64 AU had the internal field structure of a magnetic flux rope. This event was associated with a solar disturbance in which new magnetic loops formed in the corona almost directly beneath Ulysses [approximately]11 days earlier. This association suggests that the flux rope was created as a result of reconnection between the the legs' of neighboring magnetic loops within the rising CME.

  20. Dust in circumstellar disks

    NASA Astrophysics Data System (ADS)

    Rodmann, Jens

    2006-02-01

    This thesis presents observational and theoretical studies of the size and spatial distribution of dust particles in circumstellar disks. Using millimetre interferometric observations of optically thick disks around T Tauri stars, I provide conclusive evidence for the presence of millimetre- to centimetre-sized dust aggregates. These findings demonstrate that dust grain growth to pebble-sized dust particles is completed within less than 1 Myr in the outer disks around low-mass pre-main-sequence stars. The modelling of the infrared spectral energy distributions of several solar-type main-sequence stars and their associated circumstellar debris disks reveals the ubiquity of inner gaps devoid of substantial amounts of dust among Vega-type infrared excess sources. It is argued that the absence of circumstellar material in the inner disks is most likely the result of the gravitational influence of a large planet and/or a lack of dust-producing minor bodies in the dust-free region. Finally, I describe a numerical model to simulate the dynamical evolution of dust particles in debris disks, taking into account the gravitational perturbations by planets, photon radiation pressure, and dissipative drag forces due to the Poynting-Robertson effect and stellar wind. The validity of the code it established by several tests and comparison to semi-analytic approximations. The debris disk model is applied to simulate the main structural features of a ring of circumstellar material around the main-sequence star HD 181327. The best agreement between model and observation is achieved for dust grains a few tens of microns in size locked in the 1:1 resonance with a Jupiter-mass planet (or above) on a circular orbit.

  1. Optical Disks.

    ERIC Educational Resources Information Center

    Gale, John C.; And Others

    1985-01-01

    This four-article section focuses on information storage capacity of the optical disk covering the information workstation (uses microcomputer, optical disk, compact disc to provide reference information, information content, work product support); use of laser videodisc technology for dissemination of agricultural information; encoding databases…

  2. Persistent Patterns in Accretion Disks

    SciTech Connect

    Amin, Mustafa A.; Frolov, Andrei V.; /KIPAC, Menlo Park

    2006-04-03

    We present a set of new characteristic frequencies associated with accretion disks around compact objects. These frequencies arise from persistent rotating patterns in the disk that are finite in radial extent and driven purely by the gravity of the central body. Their existence depends on general relativistic corrections to orbital motion and, if observed, could be used to probe the strong gravity region around a black hole. We also discuss a possible connection to the puzzle of quasi-periodic oscillations.

  3. Subtidal currents over the central California slope: Evidence for offshore veering of the undercurrent and for direct, wind-driven slope currents

    USGS Publications Warehouse

    Noble, M.A.; Ramp, S.R.

    2000-01-01

    In February 1991, an array of six current-meter moorings was deployed for one year across the central California outer shelf and slope. The main line of the array extended 30 km offshore of the shelf break, out to water depths of 1400 m. A more sparsely-instrumented line, displaced 30 km to the northwest, extended 14 km offshore. Though shorter, the northern line spanned similar water depths because the gradient of the topography steepened in the northern region. A poleward flow pattern, typical of the California undercurrent, was seen across both lines in the array over most of the year. The poleward flow was surface intensified. In general, the portion of the undercurrent that crossed the southern line had larger amplitudes and penetrated more deeply into the water column than the portion that crossed the northern line. Transport over the year ranged from 0 to 2.5 Sverdrups (Sv) poleward across the southern line; 0 to 1 Sv poleward across the northern line. We suggest the difference in transport was caused by topographic constraints, which tended to force the poleward flow offshore of the northern measurement sites. The slope of the topography steepened too abruptly to allow the poleward flow to follow isobaths when currents were strong. When current velocities lessened, a more coherent flow pattern was seen across both lines in the array. In general, the poleward flow patterns in the undercurrent were not affected by local winds or by the local alongshore pressure gradient. Nor was a strong seasonal pattern evident. Rather unexpectedly, a small but statistically significant fraction of the current variance over the mid- and outer slope was driven by the surface wind stress. An alongshelf wind stress caused currents to flow along the slope, parallel to the wind field, down to depths of 400 m below the surface and out to distances of 2 Rossby radii past the shelf break. The transfer functions were weak, 3-4 cm/s per dyn cm-2, but comparable to wind-driven current

  4. Zero-beta MHD simulations of a solar eruption driven by a solar wind in the corona

    NASA Astrophysics Data System (ADS)

    Lee, Hwanhee; Magara, Tetsuya; Kang, Jihye

    2016-05-01

    Solar winds always exist in the corona, continuously carrying out magnetized plasmas from the solar surface toward the interplanetary space. We assume that a solar wind also plays an important role in producing a solar eruption. To confirm this hypothesis, we construct a solar eruption model in which a solar wind upflow is imposed at the top boundary of three-dimensional zero-beta magnetogydrodynamic (MHD) simulations. The initial magnetic field is given by nonlinear force-free field (NLFFF) reconstruction that is applied to the surface field provided by a flux emergence simulation. The simulation demonstrates that a solar eruption occurs due to the imbalance between magnetic pressure gradient force and magnetic tension force caused by a solar wind that gradually transports the envelope flux outward. This result provides important insights into the role of solar winds in producing solar eruptions.

  5. The influence of wind-driven currents on the circulation and bay dynamics of a semi-enclosed reefal bay, Wreck Bay, Jamaica

    NASA Astrophysics Data System (ADS)

    Maxam, Ava M.; Webber, Dale F.

    2010-05-01

    Investigations into the descriptive hydrodynamics of a semi-enclosed reefal bay showed that inner bay waters re-circled the reef and particular forcing conditions of wind and tide retarded or enhanced this circulation. Fringing reef parabola, partially enclosing bays, are generally accepted as the limit of the bay dynamics. The dynamics displayed at Wreck Bay, on the southeast coast of Jamaica, however, showed the reef as the heart of main circulation and therefore the centre of the functioning bay. Results from field measurements of the spatial and temporal variability in circulation revealed that inner bay water surging from the back-reef exited quickly through a gap in the reef (channel flow, up to 60 cm s -1), diverged on the fore-reef, then either re-entered the back-reef to become closed circum-reef circulation (CRC), or continued along the fore-reef as open CRC. Variation in the wind regime controlled the relative importance of wind or tides to driving circulation and bay emanation. Wind speeds above 5 m s -1 were found to be the dominant forcing factor and, combined with tides, accounted for 60% of the variability in CRC when the sea-breeze developed during early summer and again when the land-breeze strengthened during the winter deployment. Open CRC was extended seawards when channel flow currents displayed occasional surges associated with strong wind-driven currents combined with similar incident wave approach. This led to change in bay dynamics by extreme expansion in bay characteristics. The opposite scenario occurred on rare occasions of low tide with wind calms, when channel flow reversed into the inner bay and flow over the emergent reef was reduced, leading to the most extreme contraction of bay characteristics.

  6. A note on the symmetric and antisymmetric constituents of weakly nonlinear solutions of a classical wind-driven ocean circulation model

    NASA Astrophysics Data System (ADS)

    Crisciani, Fulvio; Badin, Gualtiero

    2014-07-01

    A classical model of wind-driven ocean circulation is studied in the weakly nonlinear approximation. An asymptotic expansion for small Rossby number is applied to the separate symmetric and asymmetric components of the stream function, where the symmetry refers to a north-south reflection transformation. The asymptotic expansion allows for the formulation of a coupled set of nonlinear partial differential equations for the two components. Results show that the asymmetric component is responsible for the formation of steady cyclones and anticyclones that cause the deformation of the total stream function of the system. Higher-order components of the stream function in the asymptotic expansion are forced by an effective wind stress arising from lower-order entries in the Jacobian term, and these effective stresses act only to redistribute vorticity.

  7. On the Role Played by Lines in Radiatively Driven Stellar Winds Depending on the Position of the Stars in the HR Diagram

    NASA Technical Reports Server (NTRS)

    Migozzi, M. C.; Lafon, J. P. J.

    1985-01-01

    The radiative force due to transfer in ultraviolet lines is always an important mechanism in hot star wind dynamics. However, it is not clear when it is the dominant mechanism and which are the noise parameters. To investigate the efficiency of purely radiative momentum/energy transfer in hot star winds and in various regions of the HR diagram, the Leroy and Lafon model was improved and put to its limits; correlations between the mass loss rate, the luminosity and other parameters and the theoretical and the observational results, looking for observed stars violating the model were compared. It is concluded that in widespread region of the HR diagram, line driven models are consistent with observations, the radiative equilibrium physics is relevant throughout the expanding atmospheres and the mass loss rate is quasilinearly correlated with the luminosity.

  8. Cross-shore variation of wind-driven flows on the inner shelf in Long Bay, South Carolina, United States

    NASA Astrophysics Data System (ADS)

    Gutierrez, Benjamin T.; Voulgaris, George; Work, Paul A.

    2006-03-01

    The cross-shore structure of subtidal flows on the inner shelf (7 to 12 m water depth) of Long Bay, South Carolina, a concave-shaped bay, is examined through the analysis of nearly 80 days of near-bed (1.7-2.2 m above bottom) current observations acquired during the spring and fall of 2001. In the spring and under northeastward winds (upwelling favorable) a two-layered flow was observed at depths greater than 10 m, while closer to the shore the currents were aligned with the wind. The two-layered flow is attributed to the presence of stratification, which has been observed under similar conditions in the South Atlantic Bight. When the wind stress was southwestward (downwelling favorable) and exceeded 0.1 N/m2, vertical mixing occurred, the two-layered flow pattern disappeared, and currents were directed alongshore with the wind at all sites and throughout the water column. In the fall, near-bed flows close to the shore (water depth <7 m) were often reduced compared to or opposed those measured farther offshore under southwestward winds. A simplified analysis of the depth-averaged, alongshore momentum balance illustrates that the alongshore pressure gradient approached or exceeded the magnitude of the alongshore wind stress at the same time that the nearshore alongshore current opposed the wind stress and alongshore currents farther offshore. In addition, the analysis suggests that the wind stress is reduced closer to shore so that the alongshore pressure gradient is large enough to drive the flow against the wind.

  9. Magnetic disk

    NASA Technical Reports Server (NTRS)

    Mallinson, John C.

    1991-01-01

    Magnetic disk recording was invented in 1953 and has undergone intensive development ever since. As a result of this 38 years of development, the cost per byte and the areal density has halved and doubled, respectively every 2 to 2 1/2 years. Today, the cost per byte is lower than 10(exp -6) dollars per byte and area densities exceed 100 x 10(exp 6) bits per square inch. The recent achievements in magnetic disk recording will first be surveyed briefly. Then the principal areas of current technical development will be outlined. Finally, some comments will be made about the future of magnetic disk recording.

  10. The high-efficiency jets magnetically accelerated from a thin disk in powerful lobe-dominated FRII radio galaxies

    SciTech Connect

    Li, Shuang-Liang

    2014-06-10

    A maximum jet efficiency line R ∼ 25 (R = L {sub jet}/L {sub bol}), found in FRII radio galaxies by Fernandes et al., was extended to cover the full range of jet power by Punsly. Recent general relativistic magnetohydrodynamic simulations of jet formation have mainly focused on the enhancement of jet power. In this work, we suggest that the jet efficiency could be very high even for conventional jet power if the radiative efficiency of disks was much smaller. We adopt the model of a thin disk with magnetically driven winds to investigate the observational high-efficiency jets in FRII radio galaxies. It is found that the structure of a thin disk can be significantly altered by the feedback of winds. The temperature of a disk gradually decreases with increasing magnetic field; the disk density, surface density, and pressure also change enormously. The lower temperature and higher surface density in the inner disk result in the rapid decrease of radiative efficiency. Thus, the jet efficiency is greatly improved even if the jet power is conventional. Our results can explain the observations quite well. The theoretical maximum jet efficiency of R ∼ 1000 suggested by our calculations is large enough to explain all of the high jet efficiency in observations, even considering the episodic activity of jets.

  11. Hoyle-Lyttleton Accretion from a Planar Wind

    NASA Astrophysics Data System (ADS)

    Raymer, Eric

    2014-01-01

    Two-dimensional hydrodynamic simulations of Hoyle-Lyttleton accretion have informed predictions about the evolution of wind-driven accretion systems for over two decades. These simulations frequently exhibit dramatic nonlinear behavior such as the flip-flop instability and the formation of transient accretion disks. During disk accretion, the mass accretion rate is suppressed and angular momentum accretion occurs at quasi-Keplerian rates. These results have been used to interpret neutron star accretion from the equatorially enhanced wind of a Be star in Be/X-ray Binaries. We employ large-scale hydrodynamic simulations to investigate whether the flip-flop instability is possible in three dimensions or is simply a consequence of the restrictions on a 2D flow. We do not observe the flip-flop instability in 3D for any values of the wind scale height or density. Moreover, the angular momentum vector of the accreting gas is typically found to be in the plane of the disk wind rather than perpendicular to it as one might expect based on the results of 2D planar simulations. We measure large-scale asymmetries about the plane of the disk wind that arise due to rotational flow near the accretor. Gas is driven above and below the plane, where it interacts with the bow shock and results in a time-varying shock structure. Winds with scale heights of 0.25 Ra enter locked rotation modes that remain stable for the duration of our computational runs. During this phase, the mass accretion rate is suppressed by up to two orders of magnitude below the analytical prediction and angular momentum accretion occurs at sub-Keplerian values.

  12. Disk Dispersal Around Young Stars

    NASA Technical Reports Server (NTRS)

    Hollenbach, David

    2004-01-01

    We first review the evidence pertaining to the lifetimes of planet-forming disks of gas and dust around young stars and discuss possible disk dispersal mechanisms: 1) viscous accretion of material onto the central source, 2) close stellar encounters, 3) stellar winds, and 4) photoevaporation caused by the heating of the disk surface by ultraviolet radiation. Photoevaporation is likely the most important dispersal mechanism for the outer regions of disks, and this talk focuses on the evaporation caused by the presence of a nearby, luminous star rather than the central star itself. We also focus on disks around low-mass stars like the Sun rather than high-mass stars, which we have treated previously. Stars often form in clusters and the ultraviolet flux from the most luminous star in the cluster can have a dramatic effect on the disk orbiting a nearby low-mass star. We apply our theoretical models to the evaporating protoplanetary disks (or "proplyds") in the Trapezium cluster in Orion, to the formation of gas giant planets like Jupiter around Sun-like stars in the Galaxy, and to the formation of Kuiper belts around low mass stars. We find a possible explanation for the differences between Neptune and Jupiter, and make a prediction concerning recent searches for giant planets in large clusters. We discuss recent models of the infrared spectra from gaseous disks around young stars.

  13. Rossby-Khantadze electromagnetic planetary waves driven by sheared zonal winds in the E-layer ionosphere

    NASA Astrophysics Data System (ADS)

    Futatani, S.; Horton, W.; Kahlon, L. Z.; Kaladze, T. D.

    2015-01-01

    Nonlinear simulations of electromagnetic Rossby and Khantadze planetary waves in the presence of a shearless and sheared zonal flows in the weakly ionized ionospheric E-layer are carried out. The simulations show that the nonlinear action of the vortex structures keeps the solitary character in the presence of shearless zonal winds as well as the ideal solutions of solitary vortex in the absence of zonal winds. In the presence of sheared zonal winds, the zonal flows result in breaking into separate multiple smaller pieces. A passively convected scalar field is shown to clarify the transport associated with the vortices. The work shows that the zonal shear flows provide an energy source into the vortex structure according to the shear rate of the zonal winds.

  14. Rossby-Khantadze electromagnetic planetary waves driven by sheared zonal winds in the E-layer ionosphere

    SciTech Connect

    Futatani, S.; Horton, W.; Kahlon, L. Z.; Kaladze, T. D.

    2015-01-15

    Nonlinear simulations of electromagnetic Rossby and Khantadze planetary waves in the presence of a shearless and sheared zonal flows in the weakly ionized ionospheric E-layer are carried out. The simulations show that the nonlinear action of the vortex structures keeps the solitary character in the presence of shearless zonal winds as well as the ideal solutions of solitary vortex in the absence of zonal winds. In the presence of sheared zonal winds, the zonal flows result in breaking into separate multiple smaller pieces. A passively convected scalar field is shown to clarify the transport associated with the vortices. The work shows that the zonal shear flows provide an energy source into the vortex structure according to the shear rate of the zonal winds.

  15. Offshore Floating