Science.gov

Sample records for dispersed fluorescence techniques

  1. Analysis of tincal ore waste by energy dispersive X-ray fluorescence (EDXRF) Technique

    NASA Astrophysics Data System (ADS)

    Kalfa, Orhan Murat; Üstündağ, Zafer; Özkırım, Ilknur; Kagan Kadıoğlu, Yusuf

    2007-01-01

    Etibank Borax Plant is located in Kırka-Eskişehir, Turkey. The borax waste from this plant was analyzed by means of energy dispersive X-ray fluorescence (EDXRF). The standard addition method was used for the determination of the concentration of Al, Fe, Zn, Sn, and Ba. The results are presented and discussed in this paper.

  2. Non-destructive analysis of didymium and praseodymium molybdate crystals using energy dispersive X-ray fluorescence technique

    NASA Astrophysics Data System (ADS)

    Bhat, C. K.; Joseph, Daisy; Pandita, Sanjay; Kotru, P. N.

    2016-08-01

    Analysis of didymium (Di) and praseodymium molybdate crystals were carried out using energy dispersive X-ray fluorescence (EDXRF). The assigned empirical chemical formulae of the composites were tested and verified by the EDXRF technique by estimating experimental major elemental concentration ratios. On the Basis of these ratios, the established formulae for some of the composite materials have been verified and suggestions made for their refinement. Non-destructive technique used in this analysis enables to retain the original crystal samples and makes rapid simultaneous scan of major elements such as La, Pr, Ned and Mo as well as impurities such as Ce. Absence of samarium(Sm) in the spectrum during analysis of didymium molybdate crystals indicated an incomplete growth of mixed rare earth single crystal. These crystals (e.g.,Di) are shown to be of modified stoichiometry with Ce as trace impurity.

  3. Dispersive liquid-liquid microextraction using diethyldithiocarbamate as a chelating agent and the dried-spot technique for the determination of Fe, Co, Ni, Cu, Zn, Se and Pb by energy-dispersive X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Kocot, Karina; Zawisza, Beata; Sitko, Rafal

    2012-07-01

    Dispersive liquid-liquid microextraction (DLLME) using sodium diethyldithiocarbamate (DDTC) as a chelating agent was investigated for the simultaneous determination of iron, cobalt, nickel, copper, zinc, selenium and lead ions in water samples. The procedure was performed using 5 mL of the sample, 100 μL of a 0.5% solution of DDTC, 30 μL of carbon tetrachloride (extraction phase) and 500 μL of methanol (disperser solvent). The experiments showed that Fe, Co, Ni, Cu, Zn and Pb can be simultaneously extracted at a pH of 5 and that Se can be extracted at a pH of 2-3. The results were compared with those obtained using ammonium pyrrolidine dithiocarbamate as a chelating agent. For all analytes, a linear range was observed up to 0.4 μg mL- 1. If Fe and Zn are present in concentrations 10 times higher than those of the other analytes, then the linearity is observed up to 0.2 μg mL- 1. In the present study, the organic phase that contained preconcentrated elements was deposited onto a Millipore filter and measured using energy-dispersive X-ray fluorescence spectrometry. The obtained detection limits were 2.9, 1.5, 2.0, 2.3, 2.5, 2.0 and 3.9 ng mL- 1 for Fe, Co, Ni, Cu, Zn, Se and Pb, respectively. This combination of DLLME and the dried-spot technique is promising for multielement analyses using other spectroscopy techniques, such as laser ablation-inductively coupled plasma-mass spectrometry, laser-induced breakdown spectroscopy or total-reflection X-ray fluorescence spectrometry.

  4. Fog dispersion. [charged particle technique

    NASA Technical Reports Server (NTRS)

    Christensen, L. S.; Frost, W.

    1980-01-01

    The concept of using the charged particle technique to disperse warm fog at airports is investigated and compared with other techniques. The charged particle technique shows potential for warm fog dispersal, but experimental verification of several significant parameters, such as particle mobility and charge density, is needed. Seeding and helicopter downwash techniques are also effective for warm fog disperals, but presently are not believed to be viable techniques for routine airport operations. Thermal systems are currently used at a few overseas airports; however, they are expensive and pose potential environmental problems.

  5. Interference techniques in fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Dogan, Mehmet

    We developed a set of interference-based optical microscopy techniques to study biological structures through nanometer-scale axial localization of fluorescent biomarkers. Spectral self-interference fluorescence microscopy (SSFM) utilizes interference of direct and reflected waves emitted from fluorescent molecules in the vicinity of planar reflectors to reveal the axial position of the molecules. A comprehensive calculation algorithm based on Green's function formalism is presented to verify the validity of approximations used in a far-field approach that describes the emission of fluorescent markers near interfaces. Using the validated model, theoretical limits of axial localization were determined with emphasis given to numerical aperture (NA) dependence of localization uncertainty. SSFM was experimentally demonstrated in conformational analysis of nucleoproteins. In particular, interaction between surface-tethered 75-mer double strand DNA and integration host factor (IHF) protein was probed on Si-SiO2 substrates by determining the axial position of fluorescent labels attached to the free ends of DNA molecules. Despite its sub-nanometer precision axial localization capability, SSFM lacks high lateral resolution due to the low-NA requirement for planar reflectors. We developed a second technique, 4Pi-SSFM, which improves the lateral resolution of a conventional SSFM system by an order of magnitude while achieving nanometer-scale axial localization precision. Using two opposing high-NA objectives, fluorescence signal is interferometrically collected and spectral interference pattern is recorded. Axial position of emitters is found from analysis of the spectra. The 4Pi-SSFM technique was experimentally demonstrated by determining the surface profiles of fabricated glass surfaces and outer membranes of Shigella, a type of Gram-negative bacteria. A further discussion is presented to localize surface O antigen, which is an important oligosaccharide structure in the

  6. Cytoskeleton dynamics studied by dispersion-relation fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Ru; Lei, Lei; Wang, Yingxiao; Levine, Alex; Popescu, Gabriel

    2013-03-01

    Fluorescence is the most widely used microscopy technique for studying the dynamics and function in both medical and biological sciences due to its sensitivity and specificity. Inspired by the spirit of spatial fluorescence correlation spectroscopy, we propose a new method to study the transport dynamics over a broad range of spatial and temporal scales. The molecules of interest are labeled with a fluorophore whose motion gives rise to spontaneous fluorescence intensity fluctuations that can be further analyzed to quantify the governing molecular mass transport dynamics. We analyze these data by the dispersion relation in the form of a power law, Γ(q) ~qα , which describe the relaxation rate of fluorescence intensity fluctuations, Γ, vs. the wavenumber, q. We used this approach to study the interplay of various cytoskeletal components in intracellular transport under the influence of protein-motor inhibitors. We found that after actin is depolymerized, the transport becomes completely random for a few minutes and then it starts to organize deterministically again. We conclude that the disrupted cytoskeletal components first diffuse in the cytoplasm, but then become attached to microtubules and get transported deterministically.

  7. Wavelength dispersive analysis with the synchrotron x ray fluorescence microprobe

    NASA Technical Reports Server (NTRS)

    Rivers, M. L.; Thorn, K. S.; Sutton, S. R.; Jones, K. W.; Bajt, S.

    1993-01-01

    A wavelength dispersive spectrometer (WDS) was tested on the synchrotron x ray fluorescence microprobe at Brookhaven National Laboratory. Compared to WDS spectra using an electron microprobe, the synchrotron WDS spectra have much better sensitivity and, due to the absence of bremsstrahlung radiation, lower backgrounds. The WDS spectrometer was successfully used to resolve REE L fluorescence spectra from standard glasses and transition metal K fluorescence spectra from kamacite.

  8. Étude comparative des techniques d'analyse par fluorescence X à dispersion d'énergie (ED-XRF) et à dispersion de longueur d'onde (WD-XRF), et par spectrométrie d'émission atomique à source plasma couplée par induction (ICP-AES)

    NASA Astrophysics Data System (ADS)

    Rahmani, A.; Benyaïch, F.; Bounakhla, M.; Bilal, E.; Moutte, J.; Gruffat, J. J.; Zahry, F.

    2004-11-01

    Dans ce travail, nous présentons une étude comparative des techniques d'analyse par fluorescence X à dispersion d'énergie (ED-XRF) et à dispersion de longueur d'onde (WD-XRF), et par spectrométrie d'émission atomique à source plasma couplée par induction (ICP-AES). Les résultats de la calibration des spectromètres à dispersion d'énergie, à excitation par sources radioactives (55Fe, 109Cd et 241Am) et à excitation secondaire (cible secondaire Mo et Cu) du Centre National pour l'Energie, les Sciences et les Techniques Nucléaires (CNESTEN, Rabat, Maroc) sur des échantillons étalons de références de l'Agence International de l'Energie Atomique (AIEA) et du Community Bureau of Référence (BCR) ont été comparés aux résultats d'analyse des mêmes échantillons étalons par la spectrométrie X à dispersion de longueur d'onde (WD-XRF) et par spectrométrie d'émission atomique à source plasma couplé par induction (ICP-AES) au département GENERIC du centre SPIN à l'Ecole des Mines de Saint-Etienne (France). Les trois techniques d'analyse utilisées donnent des résultats comparables pour le dosage des éléments majeurs, alors que pour les traces on note des déviations importantes à cause des effets de matrice qui sont difficiles à corriger dans le cas de la fluorescence X.

  9. Paper-based diffusive gradients in thin films technique coupled to energy dispersive X-ray fluorescence spectrometry for the determination of labile Mn, Co, Ni, Cu, Zn and Pb in river water

    NASA Astrophysics Data System (ADS)

    Almeida, Eduardo de; Nascimento Filho, Virgílio Franco do; Menegário, Amauri Antonio

    2012-05-01

    The diffusive gradients in thin films (DGT) technique has shown enormous potential for labile metal monitoring in fresh water due to the preconcentration, time-integrated, matrix interference removal and speciation analytical features. In this work, the coupling of energy dispersive X-ray fluorescence (EDXRF) with paper-based DGT devices was evaluated for the direct determination of Mn, Co, Ni, Cu, Zn and Pb in fresh water. The DGT samplers were assembled with cellulose (Whatman 3 MM chromatography paper) as the diffusion layer and a cellulose phosphate ion exchange membrane (Whatman P 81 paper) as the binding agent. The diffusion coefficients of the analytes on 3 MM chromatography paper were calculated by deploying the DGT samplers in synthetic solutions containing 500 μg L- 1 of Mn, Co, Ni, Cu, Zn and Pb (4 L at pH 5.5 and ionic strength at 0.05 mol L- 1). After retrieval, the DGT units were disassembled and the P 81 papers were dried and analysed by EDXRF directly. The 3 MM chromatographic paper diffusion coefficients of the analytes ranged from 1.67 to 1.87 × 10- 6 cm2 s- 1. The metal retention and phosphate group homogeneities on the P 81 membrane was studied by a spot analysis with a diameter of 1 mm. The proposed approach (DGT-EDXRF coupling) was applied to determine the analytes at five sampling sites (48 h in situ deployment) on the Piracicaba river basin, and the results (labile fraction) were compared with 0.45 μm dissolved fractions determined by synchrotron radiation-excited total reflection X-ray fluorescence (SR-TXRF). The limits of detection of DGT-EDXRF coupling for the analytes (from 7.5 to 26 μg L- 1) were similar to those obtained by the sensitive SR-TXRF technique (3.8 to 9.1 μg L- 1).

  10. Fluorescence Lifetime Techniques in Medical Applications

    PubMed Central

    Marcu, Laura

    2012-01-01

    This article presents an overview of time-resolved (lifetime) fluorescence techniques used in biomedical diagnostics. In particular, we review the development of time-resolved fluorescence spectroscopy (TRFS) and fluorescence lifetime imaging (FLIM) instrumentation and associated methodologies which allows for in vivo characterization and diagnosis of biological tissues. Emphasis is placed on the translational research potential of these techniques and on evaluating whether intrinsic fluorescence signals provide useful contrast for the diagnosis of human diseases including cancer (gastrointestinal tract, lung, head and neck, and brain), skin and eye diseases, and atherosclerotic cardiovascular disease. PMID:22273730

  11. Measurement of Fluorescence Spectra from Ambient Aerosol Particles Using Laser-induced Fluorescence Technique

    NASA Astrophysics Data System (ADS)

    Taketani, F.; Kanaya, Y.; Nakamura, T.; Moteki, N.; Takegawa, N.

    2011-12-01

    To obtain the information of composition of organic aerosol particles in atmosphere, we developed an instrument using laser-induced fluorescence (LIF) technique. To measure the fluorescence from a particle, we employed two lasers. Scattering light signal derived from a single particle upon crossing the 635nm-CW laser triggers the 266nm-pulsed laser to excite the particle. Fluorescence from the particle in the wavelength range 300-600nm is spectrally dispersed by a grating spectrometer and then detected by a 32-Ch photo-multiplier tube(PMT). The aerosol stream is surrounded by a coaxial sheath air flow and delivered to the optical chamber at atmospheric pressure. Using PSL particles with known sizes, we made a calibration curve to estimate particle size from scattering light intensity. With the current setup of the instrument we are able to detect both scattering and fluorescence from particles whose diameters are larger than 0.5um. Our system was able to differentiate particles composed of mono-aromatic species (e.g. Tryptophan) from those of Riboflavin, by their different fluorescence wavelengths. Also, measurements of fluorescence spectra of ambient particles were demonstrated in our campus in Yokosuka city, facing Tokyo bay in Japan. We obtained several types of florescence spectra in the 8 hours. Classification of the measured fluorescence spectra will be discussed in the presentation.

  12. Dispersion-reduction technique using subcarrier multiplexing

    SciTech Connect

    Sargis, P.D.; Haigh, R.E.; McCammon, K.G.

    1995-10-18

    We have developed a novel dispersion-reduction technique using subcarrier multiplexing (SCM) which permits the transmission of multiple 2.5 Gbit/s data channels over hundreds of kilometers of conventional fiber-optic cable with negligible dispersion. Using a lithium niobate external modulator having a modulation bandwidth of 20 GHz, we are able to multiplex several high-speed data channels at a single wavelength. At the receiving end, we demultiplex the data and detect each channel using a 2-GHz bandwidth optical detector. All of the hardware in our system consists of off-the-shelf components and can be integrated to reduce the overall cost. We demonstrated our dispersion-reduction technique in a recent field trial by transmitting two 2.5 Gbit/s data channels over 90 km of commercially-installed single-mode fiber, followed by 210 km of spooled fiber. For comparison, we substituted the 300 km of fiber with equivalent optical attenuation. We also ran computer simulations to evaluate link behavior. Technical details and field trial results will be presented.

  13. Application of fluorescence and PARAFAC to assess vertical distribution of subsurface hydrocarbons and dispersant during the Deepwater Horizon oil spill.

    PubMed

    Mendoza, Wilson G; Riemer, Daniel D; Zika, Rod G

    2013-05-01

    We evaluated the use of excitation and emission matrix (EEM) fluorescence and parallel factorial analysis (PARAFAC) modeling techniques for monitoring crude oil components in the water column. Four of the seven derived PARAFAC loadings were associated with the Macondo crude oil components. The other three components were associated with the dispersant, an unresolved component and colored dissolved organic matter (CDOM). The fluorescence of the associated benzene and naphthalene-like components of crude oil exhibited a maximum at ∼1200 m. The maximum fluorescence of the component associated with the dispersant (i.e., Corexit EC9500A) was observed at the same depth. The plume observed at this depth was attributed to the dispersed crude oil from the Deepwater Horizon oil spill. Results demonstrate the application of EEM and PARAFAC to simultaneously monitor selected PAH, dispersant-containing and humic-like fluorescence components in the oil spill region in the Gulf of Mexico. PMID:23546220

  14. Fast fluorescence techniques for crystallography beamlines

    PubMed Central

    Stepanov, Sergey; Hilgart, Mark; Yoder, Derek W.; Makarov, Oleg; Becker, Michael; Sanishvili, Ruslan; Ogata, Craig M.; Venugopalan, Nagarajan; Aragão, David; Caffrey, Martin; Smith, Janet L.; Fischetti, Robert F.

    2011-01-01

    This paper reports on several developments of X-ray fluorescence techniques for macromolecular crystallography recently implemented at the National Institute of General Medical Sciences and National Cancer Institute beamlines at the Advanced Photon Source. These include (i) three-band on-the-fly energy scanning around absorption edges with adaptive positioning of the fine-step band calculated from a coarse pass; (ii) on-the-fly X-ray fluorescence rastering over rectangular domains for locating small and invisible crystals with a shuttle-scanning option for increased speed; (iii) fluorescence rastering over user-specified multi-segmented polygons; and (iv) automatic signal optimization for reduced radiation damage of samples. PMID:21808424

  15. TECHNIQUES FOR MIXING DISPERSANTS WITH SPILLED OIL

    EPA Science Inventory

    The effective use of some oil spill dispersants requires the addition of mixing energy to the dispersant-treated slick. Various methods of energy application have included the use of fire hose streams directed to the water surface, outboard motors mounted on work boats, and the f...

  16. Laser-induced fluorescence and dispersed fluorescence spectroscopy of jet-cooled 1-phenylpropargyl radical

    NASA Astrophysics Data System (ADS)

    Reilly, Neil J.; Nakajima, Masakazu; Gibson, Bligh A.; Schmidt, Timothy W.; Kable, Scott H.

    2009-04-01

    The D1(A2″)-D0(A2″) electronic transition of the resonance-stabilized 1-phenylpropargyl radicalooled discharge of 3-phenyl-1-propyne, has been investigated in detail by laser-induced fluorescence excitation and dispersed single vibronic level fluorescence (SVLF) spectroscopy. The transition is dominated by the origin band at 21 007 cm-1, with weaker Franck-Condon activity observed in a' fundamentals and even overtones and combinations of a″ symmetry. Ab initio and density functional theory calculations of the D0 and D1 geometries and frequencies were performed to support and guide the experimental assignments throughout. Analysis of SVLF spectra from 16 D1 vibronic levels has led to the assignment of 15 fundamental frequencies in the excited state and 19 fundamental frequencies in the ground state; assignments for many more normal modes not probed directly by fluorescence spectroscopy are also suggested. Duschinsky mixing, in which the excited state normal modes are rotated with respect to the ground state modes, is prevalent throughout, in vibrations of both a' and a″ symmetry.

  17. New Information Dispersal Techniques for Trustworthy Computing

    ERIC Educational Resources Information Center

    Parakh, Abhishek

    2011-01-01

    Information dispersal algorithms (IDA) are used for distributed data storage because they simultaneously provide security, reliability and space efficiency, constituting a trustworthy computing framework for many critical applications, such as cloud computing, in the information society. In the most general sense, this is achieved by dividing data…

  18. Photon-counting technique for rapid fluorescence-decay measurement.

    PubMed

    Pack, S D; Renfro, M W; King, G B; Laurendeau, N M

    1998-08-01

    We report on a novel laser-induced fluorescence triple-integration method (LIFTIME) that is capable of making rapid, continuous fluorescence lifetime measurements by a unique photon-counting technique. The LIFTIME has been convolved with picosecond time-resolved laser-induced fluorescence, which employs a high-repetition-rate mode-locked laser, permitting the eventual monitoring of instantaneous species concentrations in turbulent flames. We verify the technique by application of the LIFTIME to two known fluorescence media, diphenyloxazole (PPO) and quinine sulfate monohydrate (QSM). PPO has a fluorescence lifetime of 1.28 ns, whereas QSM has a fluorescence lifetime that can be varied from 1.0 to 3.0 ns. From these liquid samples we demonstrate that fluorescence lifetime can currently be monitored at a sampling rate of up to 500 Hz with less than 10% uncertainty (1 sigma) . PMID:18087478

  19. Ligand Assisted Stabilization of Fluorescence Nanoparticles; an Insight on the Fluorescence Characteristics, Dispersion Stability and DNA Loading Efficiency of Nanoparticles.

    PubMed

    Rhouati, Amina; Hayat, Akhtar; Mishra, Rupesh K; Bueno, Diana; Shahid, Shakir Ahmad; Muñoz, Roberto; Marty, Jean Louis

    2016-07-01

    This work reports on the ligand assisted stabilization of Fluospheres® carboxylate modified nanoparticles (FCMNPs), and subsequently investigation on the DNA loading capacity and fluorescence response of the modified particles. The designed fluorescence bioconjugate was characterized with enhanced fluorescence characteristics, good stability and large surface area with high DNA loading efficiency. For comparison purpose, bovine serum albumin (BSA) and polyethylene glycol (PEG) with three different length strands were used as cross linkers to modify the particles, and their DNA loading capacity and fluorescence characteristics were investigated. By comparing the performance of the particles, we found that the most improved fluorescence characteristics, enhanced DNA loading and high dispersion stability were obtained, when employing PEG of long spacer arm length. The designed fluorescence bioconjugate was observed to maintain all its characteristics under varying pH over an extended period of time. These types of bioconjugates are in great demand for fluorescence imaging and in vivo fluorescence biomedical application, especially when most of the as synthesized fluorescence particles cannot withstand to varying in vivo physiological conditions with decreases in fluorescence response and DNA loading efficiency. PMID:27209005

  20. Multispectral fluorescence imaging techniques for nondestructive food safety inspection

    NASA Astrophysics Data System (ADS)

    Kim, Moon S.; Lefcourt, Alan M.; Chen, Yud-Ren

    2004-03-01

    The use of spectral sensing has gained acceptance as a rapid means for nondestructive inspection of postharvest food produce. Current technologies generally use color or a single wavelength camera technology. The applicability and sensitivity of these techniques can be expanded through the use of multiple wavelengths. Reflectance in the Vis/NIR is the prevalent spectral technique. Fluorescence, compared to reflectance, is regarded as a more sensitive technique due to its dynamic responses to subtle changes in biological entities. Our laboratory has been exploring fluorescence as a potential means for detection of quality and wholesomeness of food products. Applications of fluorescence sensing require an understanding of the spectral characteristics emanating from constituents and potential contaminants. A number of factors affecting fluorescence emission characteristics are discussed. Because of relatively low fluorescence quantum yield from biological samples, a system with a powerful pulse light source such as a laser coupled with a gated detection device is used to harvest fluorescence, in the presence of ambient light. Several fluorescence sensor platforms developed in our laboratory, including hyperspectral imaging, and laser-induced fluorescence (LIF) and steady-state fluorescence imaging systems with multispectral capabilities are presented. We demonstrate the potential uses of recently developed fluorescence imaging platforms in food safety inspection of apples contaminated with animal feces.

  1. Multi-element analysis of pyrite ores using polarized energy-dispersive X-ray fluorescence spectrometry.

    PubMed

    Ustündağ, Zafer; Ustündağ, Ilknur; Kağan Kadioğlu, Yusuf

    2007-07-01

    X-ray fluorescence (XRF) spectrometry is used worldwide in geological material analysis. This study, applies polarized energy-dispersive X-ray fluorescence (PEDXRF) Spectrometer and compares in the samples of Rize-Cayeli and Mardin pyrite ores. The samples of pyrite ore were collected from the Rize and Mardin in Turkey. The prepared samples were analyzed using a PEDXRF spectrometer. The result of the analysis shows the presence of many elements including rare-earth elements (from Na to Th). The accuracy and precision of the technique for chemical analysis is demonstrated by analyzing USGS standards, GEOL, GBW 7109 and GBW-7309 sediment. PMID:17459714

  2. Biologic fluorescence decay characteristics: determination by Laguerre expansion technique

    NASA Astrophysics Data System (ADS)

    Snyder, Wendy J.; Maarek, Jean-Michel I.; Papaioannou, Thanassis; Marmarelis, Vasilis Z.; Grundfest, Warren S.

    1996-04-01

    Fluorescence decay characteristics are used to identify biologic fluorophores and to characterize interactions with the fluorophore environment. In many studies, fluorescence lifetimes are assessed by iterative reconvolution techniques. We investigated the use of a new approach: the Laguerre expansion of kernels technique (Marmarelis, V.Z., Ann. Biomed., Eng. 1993; 21, 573-589) which yields the fluorescence impulse response function by least- squares fitting of a discrete-time Laguerre functions expansion. Nitrogen (4 ns FWHM) and excimer (120 ns FWHM) laser pulses were used to excite the fluorescence of an anthracene and of type II collagen powder. After filtering (monochromator) and detection (MCP-PMT), the fluorescence response was digitized (digital storage oscilloscope) and transferred to a personal computer. Input and output data were deconvolved by the Laguerre expansion technique to compute the impulse response function which was then fitted to a multiexponential function for determination of the decay constants. A single exponential (time constant: 4.24 ns) best approximated the fluorescence decay of anthracene, whereas the Type II collagen response was best approximated by a double exponential (time constants: 2.24 and 9.92 ns) in agreement with previously reported data. The results of the Laguerre expansion technique were compared to the least-squares iterative reconvolution technique. The Laguerre expansion technique appeared computationally efficient and robust to experimental noise in the data. Furthermore, the proposed method does not impose a set multiexponential form to the decay.

  3. Swept frequency technique for dispersion measurement of microstrip lines

    NASA Technical Reports Server (NTRS)

    Lee, R. Q.

    1986-01-01

    Microstrip lines used in microwave integrated circuits are dispersive. Because a microstrip line is an open structure, the dispersion can not be derived with pure TEM, TE, or TM mode analysis. Dispersion analysis has commonly been done using a spectral domain approach, and dispersion measurement has been made with high Q microstrip ring resonators. Since the dispersion of a microstrip line is fully characterized by the frequency dependent phase velocity of the line, dispersion measurement of microstrip lines requires the measurement of the line wavelength as a function of frequency. In this paper, a swept frequency technique for dispersion measurement is described. The measurement was made using an automatic network analyzer with the microstrip line terminated in a short circuit. Experimental data for two microstrip lines on 10 and 30 mil Cuflon substrates were recorded over a frequency range of 2 to 20 GHz. Agreement with theoretical results computed by the spectral domain approach is good. Possible sources of error for the discrepancy are discussed.

  4. Transport and dispersion of fluorescent tracer particles for the dune-bed condition, Atrisco Feeder Canal near Bernalillo, New Mexico

    USGS Publications Warehouse

    Rathbun, R.E.; Kennedy, Vance C.

    1978-01-01

    A fluorescent tracer technique was used to study the rates of transport and dispersion of sediment particles of various diameters and specific gravities for a dune-bed condition in an alluvial channel, Atrisco Feeder Canal near Bernalillo, N. Mex. The total transport rates of bed material measured by the steady-dilution and spatial-integration procedures were within the range of transport rates computed by the modified Einstein procedure. Lateral dispersion of the tracer particles increased with increase in the size of the tracer particles, whereas longitudinal dispersion decreased. The velocities of the tracer particles decreased with increase in the size of the tracer particles; dependence on particle diameter was large for the small particles, small for the large particles. Tracers were found at larger depths in the bed than would be expected on the basis of the sizes of the dunes in the channel. (Woodard-USGS)

  5. Laser-induced fluorescence, dispersed fluorescence and lifetime measurements of jet-cooled chloro-substituted benzyl radicals

    NASA Astrophysics Data System (ADS)

    Hamatani, Satoshi; Tsuji, Kazuhide; Kawai, Akio; Shibuya, Kazuhiko

    2002-07-01

    We measured the laser-induced fluorescence (LIF) and dispersed fluorescence (DF) spectra of jet-cooled α-, o- and m-chlorobenzyl radicals after they were generated by the 193 nm photolysis of the corresponding parent molecules. The vibronically resolved spectra were obtained to analyze their D1-D0 transitions. The fluorescence lifetimes of α-, o-, m- and p-chlorobenzyls in the zeroth vibrational levels of the D1 states were measured to estimate the oscillator strengths of a series of benzyl derivatives. It was found that the α-substitution is inefficient to break the `accidental forbiddenness' of the D1-D0 transition of benzyl, while the ring-substitution enhances the oscillator strength by 50%.

  6. Energy-Dispersive X-Ray Fluorescence Spectrometry: A Long Overdue Addition to the Chemistry Curriculum

    ERIC Educational Resources Information Center

    Palmer, Peter T.

    2011-01-01

    Portable Energy-Dispersive X-Ray Fluorescence (XRF) analyzers have undergone significant improvements over the past decade. Salient advantages of XRF for elemental analysis include minimal sample preparation, multielement analysis capabilities, detection limits in the low parts per million (ppm) range, and analysis times on the order of 1 min.…

  7. Refinement of Techniques Metallographic Analysis of Highly Dispersed Structures

    NASA Astrophysics Data System (ADS)

    Khammatov, A.; Belkin, D.; Barbina, N.

    2016-01-01

    Flaws are regularly made while developing standards and technical specifications. They can come out as minor misprints, as an insufficient description of a technique. In spite the fact that the flaws are well known, it does not come to the stage of introducing changes to standards. In this paper shows that in the normative documents is necessary to clarify the requirements for metallurgical microscopes, which are used for analysis of finely-dispersed.

  8. Dispersal

    USGS Publications Warehouse

    2001-01-01

    The ability of species to migrate and disperse is a trait that has interested ecologists for many years. Now that so many species and ecosystems face major environmental threats from habitat fragmentation and global climate change, the ability of species to adapt to these changes by dispersing, migrating, or moving between patches of habitat can be crucial to ensuring their survival. This book provides a timely and wide-ranging overview of the study of dispersal and incorporates much of the latest research. The causes, mechanisms, and consequences of dispersal at the individual, population, species and community levels are considered. The potential of new techniques and models for studying dispersal, drawn from molecular biology and demography, is also explored. Perspectives and insights are offered from the fields of evolution, conservation biology and genetics. Throughout the book, theoretical approaches are combined with empirical data, and care has been taken to include examples from as wide a range of species as possible.

  9. Toward chromium speciation in solids using wavelength dispersive X-ray fluorescence spectrometry Cr Kβ lines.

    PubMed

    Malherbe, J; Claverie, F

    2013-04-22

    The determination of chromium speciation in solid samples is critical for environmental and industrial purposes. Several analytical methods exist to perform such a determination either directly in solid state or liquid state after an extraction step, each of them having some limitations. In this study, the use of a high-resolution wavelength-dispersive X-ray fluorescence spectrometer to determine and quantify chromium species is investigated by looking at the differences in the Kβ transition profiles between Cr(0), Cr(III) and Cr(VI) compounds. Three different approaches were tested and compared to determine the Cr(VI) fraction of known mixtures: relative height and peak fitting using calibration mixtures, partial least square regression (PLS) of pure compounds, and principal component regression (PCR) of pure compounds. The accuracy of these methods was found to be about the same with an average relative error in the range of 15%. However, PLS and PCR can be easily implemented in an automated way contrary to peak fitting which can be sometimes perceived as analyst-dependant. Another advantage of using PLS and PCR is that information concerning the other oxidation states present in the sample can be retrieved. Finally, PLS and the peak height approach can be used up to 0.5% total chromium which make the XRF an alternative technique to X-ray induced photoelectron spectroscopy (XPS) for chromium speciation in solid state. PMID:23561904

  10. Processive cytoskeletal motors studied with single-molecule fluorescence techniques

    PubMed Central

    Belyy, Vladislav; Yildiz, Ahmet

    2014-01-01

    Processive cytoskeletal motors from the myosin, kinesin, and dynein families walk on actin filaments and microtubules to drive cellular transport and organization in eukaryotic cells. These remarkable molecular machines are able to take hundreds of successive steps at speeds of up to several microns per second, allowing them to effectively move vesicles and organelles throughout the cytoplasm. Here, we focus on single-molecule fluorescence techniques and discuss their wide-ranging applications to the field of cytoskeletal motor research. We cover both traditional fluorescence and sub-diffraction imaging of motors, providing examples of how fluorescence data can be used to measure biophysical parameters of motors such as coordination, stepping mechanism, gating, and processivity. We also outline some remaining challenges in the field and suggest future directions. PMID:24882363

  11. Probing Endoplasmic Reticulum Dynamics using Fluorescence Imaging and Photobleaching Techniques

    PubMed Central

    Costantini, Lindsey; Snapp, Erik

    2013-01-01

    This UNIT describes approaches and tools for studying the dynamics and organization of endoplasmic reticulum (ER) membranes and proteins in living cells using commercially available widefield and confocal laser scanning microscopes (CLSM). It has been long appreciated that the ER plays a number of key roles in secretory protein biogenesis, calcium regulation, and lipid synthesis. However, study of these processes has been often restricted to biochemical assays that average the behaviors of millions of lysed cells or to imaging static fixed cells. Now, with new fluorescent protein reporter tools, highly sensitive commercial microscopes, and photobleaching techniques, it is possible to interrogate the behaviors of ER proteins, membranes, and stress pathways in single cells with exquisite spatial and temporal resolution. The ER presents a unique set of imaging challenges including the high mobility of ER membranes, a diverse range of dynamic ER structures, and the influence of post-translational modifications on fluorescent protein reporters. Solutions to these challenges are described and considerations for performing photobleaching assays, especially Fluorescence Recovery after Photobleaching (FRAP) and Fluorescence Loss in Photobleaching (FLIP) for ER proteins will be discussed. In addition, ER reporters and ER-specific pharmacologic compounds are presented with a focus on misfolded secretory protein stress and the Unfolded Protein Response (UPR). PMID:24510787

  12. Micro energy dispersive X-ray fluorescence analysis of polychrome lead-glazed Portuguese faiences

    NASA Astrophysics Data System (ADS)

    Guilherme, A.; Pessanha, S.; Carvalho, M. L.; dos Santos, J. M. F.; Coroado, J.

    2010-04-01

    Several glazed ceramic pieces, originally produced in Coimbra (Portugal), were submitted to elemental analysis, having as premise the pigment manufacture production recognition. Although having been produced in Coimbra, their location changed as time passed due to historical reasons. A recent exhibition in Coimbra brought together a great number of these pieces and in situ micro Energy Dispersive X-ray Fluorescence (µ-EDXRF) analyses were performed in order to achieve some chemical and physical data on the manufacture of faiences in Coimbra. A non-commercial µ-EDXRF equipment for in situ analysis was employed in this work, carrying some important improvements when compared to the conventional ones, namely, analyzing spot sizes of about 100 µm diameter. The combination of a capillary X-ray lens with a new generation of low power microfocus X-ray tube and a drift chamber detector enabled a portable unit for micro-XRF with a few tens of µm lateral resolution. The advantages in using a portable system emphasized with polycapillary optics enabled to distinguish proximal different pigmented areas, as well as the glaze itself. These first scientific results on the pigment analysis of the collection of faiences seem to point to a unique production center with own techniques and raw materials. This conclusion arose with identification of the blue pigments having in its constitution Mn, Fe Co and As and the yellows as a result of the combination between Pb and Sb. A statistical treatment was used to reveal groups of similarities on the pigments elemental profile.

  13. Application of X-ray fluorescence analytical techniques in phytoremediation and plant biology studies

    NASA Astrophysics Data System (ADS)

    Nečemer, Marijan; Kump, Peter; Ščančar, Janez; Jaćimović, Radojko; Simčič, Jurij; Pelicon, Primož; Budnar, Miloš; Jeran, Zvonka; Pongrac, Paula; Regvar, Marjana; Vogel-Mikuš, Katarina

    2008-11-01

    Phytoremediation is an emerging technology that employs the use of higher plants for the clean-up of contaminated environments. Progress in the field is however handicapped by limited knowledge of the biological processes involved in plant metal uptake, translocation, tolerance and plant-microbe-soil interactions; therefore a better understanding of the basic biological mechanisms involved in plant/microbe/soil/contaminant interactions would allow further optimization of phytoremediation technologies. In view of the needs of global environmental protection, it is important that in phytoremediation and plant biology studies the analytical procedures for elemental determination in plant tissues and soil should be fast and cheap, with simple sample preparation, and of adequate accuracy and reproducibility. The aim of this study was therefore to present the main characteristics, sample preparation protocols and applications of X-ray fluorescence-based analytical techniques (energy dispersive X-ray fluorescence spectrometry—EDXRF, total reflection X-ray fluorescence spectrometry—TXRF and micro-proton induced X-ray emission—micro-PIXE). Element concentrations in plant leaves from metal polluted and non-polluted sites, as well as standard reference materials, were analyzed by the mentioned techniques, and additionally by instrumental neutron activation analysis (INAA) and atomic absorption spectrometry (AAS). The results were compared and critically evaluated in order to assess the performance and capability of X-ray fluorescence-based techniques in phytoremediation and plant biology studies. It is the EDXRF, which is recommended as suitable to be used in the analyses of a large number of samples, because it is multi-elemental, requires only simple preparation of sample material, and it is analytically comparable to the most frequently used instrumental chemical techniques. The TXRF is compatible to FAAS in sample preparation, but relative to AAS it is fast

  14. Estimation of Fluorescence Lifetimes Via Rotational Invariance Techniques.

    PubMed

    Yu, Hongqi; Saleeb, Rebecca; Dalgarno, Paul; Day-Uei Li, David

    2016-06-01

    Estimation of signal parameters via rotational invariance techniques is a classical algorithm widely used in array signal processing for direction-of-arrival estimation of emitters. Inspired by this method, a new signal model and new fluorescence lifetime estimation via rotational invariance techniques (FLERIT) were developed for multiexponential fluorescence lifetime imaging (FLIM) experiments. The FLERIT only requires a few time bins of a histogram generated by a time-correlated single-photon counting FLIM system, greatly reducing the data throughput from the imager to the signal processing units. As a noniterative method, the FLERIT does not require initial conditions, prior information nor model selection that are usually required by widely used traditional fitting methods, including nonlinear least square methods or maximum-likelihood methods. Moreover, its simplicity means it is suitable for implementations in embedded systems for real-time applications. FLERIT was tested on synthesized and experimental fluorescent cell data showing the potentials to be widely applied in FLIM data analysis. PMID:26571506

  15. Time-resolved fluorescence spectra of arterial fluorescent compounds: reconstruction with the Laguerre expansion technique.

    PubMed

    Maarek, J M; Marcu, L; Snyder, W J; Grundfest, W S

    2000-02-01

    The time-resolved fluorescence spectra of the main arterial fluorescent compounds were retrieved using a new algorithm based on the Laguerre expansion of kernels technique. Samples of elastin, collagen and cholesterol were excited with a pulsed nitrogen laser and the emission was measured at 29 discrete wavelengths between 370 and 510 nm. The expansion of the fluorescence impulse response function on the Laguerre basis of functions was optimized to reproduce the observed fluorescence emission. Collagen lifetime (5.3 ns at 390 nm) was substantially larger than that of elastin (2.3 ns) and cholesterol (1.3 ns). Two decay components were identified in the emission decay of the compounds. For collagen, the decay components were markedly wavelength dependent and hydration dependent such that the emission decay became shorter at higher emission wavelengths and with hydration. The decay characteristics of elastin and cholesterol were relatively unchanged with wavelength and with hydration. The observed variations in the time-resolved spectra of elastin, collagen and cholesterol were consistent with the existence of several fluorophores with different emission characteristics. Because the compounds are present in different proportions in healthy and atherosclerotic arterial walls, characteristic differences in their time-resolved emission spectra could be exploited to assess optically the severity of atherosclerotic lesions. PMID:10687392

  16. DAPI staining and fluorescence microscopy techniques for phytoplasmas.

    PubMed

    Andrade, Nancy M; Arismendi, Nolberto L

    2013-01-01

    The 4',6-diamidino-2-phenylindole (DAPI) stain technique is a simple method that was developed for confirming the presence of phytoplasmas in hand-cut or freezing microtome sections of infected tissues. DAPI binds AT-rich DNA preferentially, so that phytoplasmas, localized among phloem cells, can be visualized in a fluorescence microscope. The procedure is quick, easy to use, inexpensive, and can be used as a preliminary or quantitative method to detect or quantify phytoplasma-like bodies in infected plants. PMID:22987410

  17. Total reflection X-ray fluorescence and energy-dispersive X-ray fluorescence analysis of runoff water and vegetation from abandoned mining of Pb Zn ores

    NASA Astrophysics Data System (ADS)

    Marques, A. F.; Queralt, I.; Carvalho, M. L.; Bordalo, M.

    2003-12-01

    The present work reports on the heavy metal content: Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Cd and Pb in running waters and vegetation around abandoned mining areas. Two species of mosses ( Dicranum sp. and Pleurocarpus sp.) and three different species of wild grass ( Bromus sp., Rumex sp. and Pseudoavena sp.) growing on the surrounding areas of old lead-zinc mines (Aran Valley, Pyrenees, NE Spain) have been analyzed. Both water and vegetation were collected in two different sampling places: (a) near the mine gallery water outlets and (b) on the landfill close to the abandoned mineral concentration factories. For the heavy metal content determination, two different techniques were used: total reflection X-ray fluorescence for water analysis and energy-dispersive X-ray fluorescence for vegetation study. Surface waters around mine outlets exhibit anomalous content of Co, Ni, Zn, Cd. Stream waters running on mining landfills exhibit higher Cu, Zn, Cd and Pb than those of the waters at the mine gallery outlets. The results allow us to assess the extent of the environmental impact of the mining activities on the water quality. The intake of these elements by vegetation was related with the sampling place, reflecting the metal water content and the substrate chemistry. Accumulation of metals in mosses is higher than those exhibited in wild grasses. Furthermore, different levels of accumulation were found in different wild grass. Rumex sp. presented the lowest metal concentrations, while Pseudoavena sp. reported the highest metal content.

  18. A robust X-ray fluorescence technique for multielemental analysis of solid samples.

    PubMed

    Kallithrakas-Kontos, Nikolaos; Foteinis, Spyros; Paigniotaki, Katherine; Papadogiannakis, Minos

    2016-02-01

    X-ray fluorescence (XRF) quantitation software programs are widely used for analyzing environmental samples due to their versatility but at the expense of accuracy. In this work, we propose an accurate, robust, and versatile technique for multielemental X-ray fluorescence analytical applications, by spiking solid matrices with standard solutions. National Institute of Standards and Technology (NIST)-certified soil standards were spiked with standard solutions, mixed well, desiccated, and analyzed by an energy dispersive XRF. Homogenous targets were produced and low error calibration curves, for the added and not added, neighboring, elements, were obtained. With the addition of few elements, the technique provides reliable multielemental analysis, even for concentrations of the order of milligram per kilogram (ppm). When results were compared to the ones obtained from XRF commercial quantitation software programs, which are widely used in environmental monitoring and assessment applications, they were found to fit certified values better. Moreover, in all examined cases, results were reliable. Hence, this technique can also be used to overcome difficulties associated with interlaboratory consistency and for cross-validating results. The technique was applied to samples with an environmental interest, collected from a ship/boat repainting area. Increased copper, zinc, and lead loads were observed (284, 270, and 688 mg/kg maximum concentrations in soil, respectively), due to vessels being paint stripped and repainted. PMID:26815558

  19. Determination of selenium in biological samples with an energy-dispersive X-ray fluorescence spectrometer.

    PubMed

    Li, Xiaoli; Yu, Zhaoshui

    2016-05-01

    Selenium is both a nutrient and a toxin. Selenium-especially organic selenium-is a core component of human nutrition. Thus, it is very important to measure selenium in biological samples. The limited sensitivity of conventional XRF hampers its widespread use in biological samples. Here, we describe the use of high-energy (100kV, 600W) linearly polarized beam energy-dispersive X-Ray fluorescence spectroscopy (EDXRF) in tandem with a three-dimensional optics design to determine 0.1-5.1μgg(-1) levels of selenium in biological samples. The effects of various experimental parameters such as applied voltage, acquisition time, secondary target and various filters were thoroughly investigated. The detection limit of selenium in biological samples via high-energy (100kV, 600W) linearly polarized beam energy-dispersive X-ray fluorescence spectroscopy was decreased by one order of magnitude versus conventional XRF (Paltridge et al., 2012) and found to be 0.1μg/g. To the best of our knowledge, this is the first report to describe EDXRF measurements of Se in biological samples with important implications for the nutrition and analytical chemistry communities. PMID:26922394

  20. Evaluation of the reasons why freshly appearing citrus peel fluorescence during automatic inspection by fluorescent imaging technique

    NASA Astrophysics Data System (ADS)

    Momin, Md. Abdul; Kondo, Naoshi; Kuramoto, Makoto; Ogawa, Yuichi; Yamamoto, Kazuya; Shiigi, Tomoo; Ninomiya, Kazunori

    2011-07-01

    Defective unshu oranges (Citrus reticulate Blanco var. unshu) were sorted based on fluorescent imaging technique in a commercial packinghouse but fresh appearing unshu were rejected due to fluorescence appearing on their peel. We studied the various visible patterns based on colour, fluorescence and microscopic images, where even areas of the peel that are not obviously damaged can have fluorescence, to provide a categorization of fluorescence reasons. The categorization corresponded to: 1) hole and flow; 2) influenced by damaged or rotten fruits that have released peel oil onto it; 3) immature or poor peel quality; 4) whitish fluorescence due to agro-chemicals and 5) variation of the growing season. The identification of such patterns of fluorescence might be useful for citrus grading industry to take some initiatives to make the entire automated system more efficient.

  1. Detection limits for actinides in a monochromatic, wavelength-dispersive x-ray fluorescence instrument

    SciTech Connect

    Collins, Michael L; Havrilla, George J

    2009-01-01

    Recent developments in x-ray optics have made it possible to examine the L x-rays of actinides using doubly-curved crystals in a bench-top device. A doubly-curved crystal (DCC) acts as a focusing monochromatic filter for polychromatic x-rays. A Monochromatic, Wavelength-Dispersive X-Ray Fluorescence (MWDXRF) instrument that uses DCCs to measure Cm and Pu in reprocessing plant liquors was proposed in 2007 by the authors at Los Alamos National Laboratory. A prototype design of this MWDXRF instrument was developed in collaboration with X-ray Optical Systems Inc. (XOS), of East Greenbush, New York. In the MWDXRF instrument, x-rays from a Rhodium-anode x-ray tube are passed through a primary DCC to produce a monochromatic beam of 20.2-keV photons. This beam is focused on a specimen that may contain actinides. The 20.2-keV interrogating beam is just above the L3 edge of Californium; each actinide (with Z = 90 to 98) present in the specimen emits characteristic L x-rays as the result of L3-shell vacancies. In the LANL-XOS prototype MWDXRf, these x-rays enter a secondary DCC optic that preferentially passes 14.961-keV photons, corresponding to the L-alpha-1 x-ray peak of Curium. In the present stage of experimentation, Curium-bearing specimens have not been analyzed with the prototype MWDXRF instrument. Surrogate materials for Curium include Rubidium, which has a K-beta-l x-ray at 14.961 keV, and Yttrium, which has a K-alpha-1 x-ray at 14.958 keV. In this paper, the lower limit of detection for Curium in the LANL-XOS prototype MWDXRF instrument is estimated. The basis for this estimate is described, including a description of computational models and benchmarking techniques used. Detection limits for other actinides are considered, as well as future safeguards applications for MWDXRF instrumentation.

  2. Online analysis of sulfur in diesel line by a monochromatic wavelength dispersive x-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Pérez-Careta, Eduardo; López-Ramírez, Juan Antonio; Reynoso-Whitaker, Gilberto; Sánchez-Mondragon, Javier; Torres-Cisneros, Miguel

    2009-09-01

    This paper proposes the application of a monochromatic wavelength dispersive X-ray fluorescence (MWDXRF) technique developed in the X-ray Optical Systems laboratory Inc. The technique measures low-level sulfur (uls) in fuel. Data for ultra low sulfur in diesel were collected and analyzed using the combination of the mentioned technique and the usage of engineering tools as a fastloop array and a measurement technique. This provides a qualitative method for Diesel sulfur analysis of the Refinery Ing. Antonio M Amor (RIAMA) in Salamanca, Guanajuato. The pooled limit of quantification (PLOQ) for ultra-low-sulfur diesel was found to be less than 1.5 ppm in this study. The reproducibility of 15-ppm sulfur diesel fuel was determined to be better than 3 ppm (95 % confident level). This work shows the performance of the production of Diesel with less than 15-ppm in sulfur lines in the Hydrodesulfurizer Unit of Diesel (HDD) of the refinery. Results and conclusions discusses the better and cheaper method for the production of ultra low sulfur Diesel in the refinery.

  3. Ultrafast fluorescence upconversion technique and its applications to proteins.

    PubMed

    Chosrowjan, Haik; Taniguchi, Seiji; Tanaka, Fumio

    2015-08-01

    The basic principles and main characteristics of the ultrafast time-resolved fluorescence upconversion technique (conventional and space-resolved), including requirements for nonlinear crystals, mixing spectral bandwidth, acceptance angle, etc., are presented. Applications to flavoproteins [wild-type (WT) FMN-binding protein and its W32Y, W32A, E13R, E13K, E13Q and E13T mutants] and photoresponsive proteins [WT photoactive yellow protein and its R52Q mutant in solution and as single crystals] are demonstrated. For flavoproteins, investigations elucidating the effects of ionic charges on ultrafast electron transfer (ET) dynamics are summarized. It is shown that replacement of the ionic amino acid Glu13 and the resulting modification of the electrostatic charge distribution in the protein chromphore-binding pocket substantially alters the ultrafast fluorescence quenching dynamics and ET rate in FMN-binding protein. It is concluded that, together with donor-acceptor distances, electrostatic interactions between ionic photoproducts and other ionic groups in the proteins are important factors influencing the ET rates. In WT photoactive yellow protein and the R52Q mutant, ultrafast photoisomerization dynamics of the chromophore (deprotonated trans-p-coumaric acid) in liquid and crystal phases are investigated. It is shown that the primary dynamics in solution and single-crystal phases are quite similar; hence, the photocycle dynamics and structural differences observed at longer time scales arise mostly from the structural restraints imposed by the crystal lattice rigidity versus the flexibility in solution. PMID:25532707

  4. Fluorescent techniques for discovery and characterization of phosphopantetheinyl transferase inhibitors

    PubMed Central

    Kosa, Nicolas M.; Foley, Timothy L.; Burkart, Michael D.

    2016-01-01

    Phosphopantetheinyl transferase (E.C. 2.7.8.-) activates biosynthetic pathways that synthesize both primary and secondary metabolites in bacteria. Inhibitors of these enzymes have the potential to serve as antibiotic compounds that function through a unique mode of action and possess clinical utility. Here we report a direct and continuous assay for this enzyme class based upon monitoring polarization of a fluorescent phosphopantetheine analog as it is transferred from a low molecular weight coenzyme A substrate to higher molecular weight protein acceptor. We demonstrate the utility of this method for the biochemical characterization of phosphopantetheinyl transferase Sfp, a canonical representative from this class. We also establish the portability of this technique to other homologs by adapting the assay to function with the human phosphopantetheinyl transferase, a target for which a microplate detection method does not currently exist. Comparison of these targets provides a basis to predict therapeutic index of inhibitor candidates and offers a valuable characterization of enzyme activity. PMID:24192555

  5. Multielemental fast analysis of vegetation samples by wavelength dispersive X-ray fluorescence spectrometry: Possibilities and drawbacks

    NASA Astrophysics Data System (ADS)

    Marguí, E.; Hidalgo, M.; Queralt, I.

    2005-10-01

    X-ray fluorescence spectroscopy (XRF) is universally recognized as a non-destructive method for rapid and sequential, or simultaneous analysis of elemental composition of a material. The use of this technique for the direct determination of chemical elements in plant matrices has increased over the last few years. In the present study, a wavelength dispersive X-ray fluorescence (WDXRF) method for the quantitative analysis of some major elements (Na, Mg, Al, P, S, K, Ca), trace elements (Mn, Fe, Co, Zn, As) and non-essential elements (Sr, Pb) in vegetation specimens has been developed. The method uses a quick and easy sample preparation procedure since only drying, pulverizing and pressing of the samples are necessary. The calibration procedure was established by employing four plant reference materials and several synthetic cellulose calibrators spiked with appropriate amounts of analytes. Matrix effects were corrected employing the method of the influence coefficients on the basis of the computerized routine program linked to the equipment. Trueness of the experimental procedure was checked by using the standard reference material GBW07602 "Bush branches and leaves". In general, good agreement was achieved between certified values and the measured ones with recoveries ranging from 94% to 107%. Moreover, quality parameters, including repeatability and reproducibility of the developed method, were also evaluated. On the whole, from results obtained, WDXRF method proposed prove to be good and effective tool for environmental investigation and quality control processes in vegetation specimens.

  6. [Energy-dispersive x-ray fluorescence spectrometry--a forensic chemistry method for determination of shooting distance].

    PubMed

    Havel, J

    2003-10-01

    The article follows up the experiences Energo-dispersive X-ray fluorescence spectrometry (EDXRF) as the forensic necrochemical method as the tool for detection of metals (gunshot residues--GSR) in connection with gunshot-wounds of persons--authors: dipl. Ing. J. Havel and dipl. Ing. K. Zelenka and Energo-dispersive X-ray fluorescence spectrometry (EDXRF) as the forensic method as the tool for identification of inlets (gunshot--entries) and outlets (gunshot--exits)--author: dipl. Ing. J. Havel. PMID:14661530

  7. Analysis of nuclear materials by energy dispersive x-ray fluorescence and spectral effects of alpha decay

    SciTech Connect

    Worley, Christopher G

    2009-01-01

    Energy dispersive X-ray fluorescence (EDXRF) spectra collected from alpha emitters are complicated by artifacts inherent to the alpha decay process, particularly when using portable instruments. For example, {sup 239}Pu EDXRF spectra exhibit a prominent uranium L X-ray emission peak series due to sample alpha decay rather than source-induced X-ray fluorescence. A portable EDXRF instrument was used to collect spectra from plutonium, americium, and a Pu-contaminated steel sample. The plutonium sample was also analyzed by wavelength dispersive XRF to demonstrate spectral differences observed when using these very different instruments.

  8. Soil characterization by energy dispersive X-ray fluorescence: sampling strategy for in situ analysis.

    PubMed

    Custo, Graciela; Boeykens, Susana; Dawidowski, L; Fox, L; Gómez, D; Luna, F; Vázquez, Cristina

    2005-07-01

    This work describes a sampling strategy that will allow the use of portable EDXRF (energy dispersive X-ray fluorescence) instruments for "in situ" soil analysis. The methodology covers a general approach to planning field investigations for any type of environmental studies and it was applied for a soil characterization study in the zone of Campana, Argentina, by evaluating data coming from an EDXRF spectrometer with a radioisotope excitation source. Simulating non-treated sampled as "in situ" samples and a soil characterization for Campana area was intended. "In situ" EDXRF methodology is a powerful analytical modality with the advantage of providing data immediately, allowing a fast general screening of the soil composition. PMID:16038489

  9. Evaluation on determination of iodine in coal by energy dispersive X-ray fluorescence

    USGS Publications Warehouse

    Wang, B.; Jackson, J.C.; Palmer, C.; Zheng, B.; Finkelman, R.B.

    2005-01-01

    A quick and inexpensive method of relative high iodine determination from coal samples was evaluated. Energy dispersive X-ray fluorescence (EDXRF) provided a detection limit of about 14 ppm (3 times of standard deviations of the blank sample), without any complex sample preparation. An analytical relative standard deviation of 16% was readily attainable for coal samples. Under optimum conditions, coal samples with iodine concentrations higher than 5 ppm can be determined using this EDXRF method. For the time being, due to the general iodine concentrations of coal samples lower than 5 ppm, except for some high iodine content coal, this method can not effectively been used for iodine determination. More work needed to meet the requirement of determination of iodine from coal samples for this method. Copyright ?? 2005 by The Geochemical Society of Japan.

  10. Determining ammonia emissions from a cattle feedlot with an inverse dispersion technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An inverse-dispersion technique is used to calculate ammonia (NH3) gas emissions from a cattle feedlot. The technique relies on a simple backward Lagrangian stochastic (bLS) dispersion model to relate atmospheric NH3 concentration to the emission rate Qbls. Because the wind and the source configurat...

  11. Dispersed Fluorescence Spectroscopy of Jet-Cooled Isobutoxy and 2-Methyl-1-butoxy Radicals.

    PubMed

    Reza, Md Asmaul; Paul, Anam C; Reilly, Neil J; Alam, Jahangir; Liu, Jinjun

    2016-09-01

    We report dispersed fluorescence (DF) spectra of the isobutoxy and 2-methyl-1-butoxy radicals produced by photolysis of corresponding nitrites in supersonic jet expansion. Different vibrational structures have been observed in the DF spectra when different vibronic bands in the laser-induced fluorescence (LIF) spectra of each radical were pumped, which suggests that those vibronic bands be assigned to different conformers. Spectra simulated using calculated vibrational frequencies and Franck-Condon factors well reproduce the experimentally observed ones and support the assignment of the vibronic bands in the LIF spectra to the two lowest-energy conformers of each radical. DF spectra obtained by pumping the B̃ ← X̃ origin bands of the LIF spectra are dominated by CO stretch progressions because of the large difference in CO bond length between the ground (X̃) and the second excited (B̃) electronic states. Furthermore, with non-CO stretch bands pumped, the DF spectra are dominated by progressions of combination bands of the CO stretch and the pumped modes as a result of Duschinsky mixing. Ã-X̃ separation of both conformers of the isobutoxy radical has also been determined in the experiment. PMID:27504673

  12. Dispersed Fluorescence Spectroscopy of Jet-Cooled Isobutoxy, 2-METHYL-1-BUTOXY, and Isopentoxy Radicals

    NASA Astrophysics Data System (ADS)

    Reza, Md Asmaul; Reilly, Neil J.; Alam, Jahangir; Mason, Amy; Liu, Jinjun

    2015-06-01

    It is well known that rate constants of certain reactions of alkoxy radicals, e.g., unimolecular dissociation (decomposition by C-C bond fission) and isomerization via 1,5 H-shift, are highly sensitive to the molecular structure. In the present and the next talks, we report dispersed fluorescence (DF) spectra of various alkoxy radicals obtained under supersonic jet-cooled conditions by pumping different vibronic bands of their tilde B ← tilde X laser induced fluorescence (LIF) excitation spectra. This talk focuses on the DF spectra of 2-methyl-1-propoxy (isobutoxy), 2-methyl-1-butoxy, and 3-methyl-1-butoxy (isopentoxy). In all cases, strong CO-stretch progressions were observed, as well as transitions to other vibrational levels, including low-frequency ones. Quantum chemical calculations were carried out to aid the assignment of the DF spectra. Franck-Condon factors were calculated using the ezSpectrum program. Wu, Q.; Liang, G.; Zu, L.; Fang, W. J. Phys. Chem A 2012, 116, 3156-3162. Lin, J.; Wu, Q.; Liang, G.; Zu, L.; Fang, W. RSC Adv. 2012, 2, 583-589. Liang, G.; Liu , C.; Hao, H.; Zu, L.; Fang, W. J. Phys. Chem. A 2013, 117, 13229- 13235. V. Mozhayskiy and A. I. Krylov, http://iopenshell.usc.edu/

  13. Quenching of fluorene fluorescence by single-walled carbon nanotube dispersions with surfactants: application for fluorene quantification in wastewater.

    PubMed

    Palencia, Sergio; Vera, Soledad; Díez-Pascual, Ana María; San Andrés, María Paz

    2015-06-01

    The fluorescence of fluorene in aqueous solutions of surfactants of different natures, anionic sodium dodecylsulphate (SDS), cationic cetyltrimethyl ammonium chloride (CTAC) and non-ionic polyoxyethylene-23-lauryl ether (Brij 35), as well as in single-walled carbon nanotube (SWCNT) dispersions in these surfactants, has been studied and compared. A fluorescence quenching phenomenon has been observed in the presence of SWCNT, the effect being stronger for dispersions in CTAC, related to the improved dispersion capability of this surfactant as revealed by microscopic observations and its stronger adsorption onto the SWCNT surfaces as inferred from the Raman spectra. SWCNT interact with fluorene causing a fluorescence quenching. The fluorescence intensity ratio, calculated in the absence and in the presence of SWCNT, follows the Stern-Volmer equation. For the CTAC concentration that provides the highest quenching effect, the analytical characteristics of the fluorimetric method like sensitivity, detection and quantification limits, repeatability, reproducibility and robustness have been calculated. Results demonstrate that it is possible to determine fluorene in a fortified wastewater sample in aqueous solutions of CTAC and SWCNT/CTAC dispersions, showing recoveries close to 100 %. The quenching effect found in this work could be useful for the development of an optical device that uses SWCNT-based receptors for fluorene detection and quantification in aqueous surfactant solutions. Graphical abstract Distribution of fluorene between single-walled carbon nanotubes and micelles. PMID:25893803

  14. Fluorescence microscopy as an alternative to electron microscopy for microscale dispersion evaluation of organic-inorganic composites.

    PubMed

    Guan, Weijiang; Wang, Si; Lu, Chao; Tang, Ben Zhong

    2016-01-01

    Inorganic dispersion is of great importance for actual implementation of advanced properties of organic-inorganic composites. Currently, electron microscopy is the most conventional approach for observing dispersion of inorganic fillers from ultrathin sections of organic-inorganic composites at the nanoscale by professional technicians. However, direct visualization of macrodispersion of inorganic fillers in organic-inorganic composites using high-contrast fluorescent imaging method is hampered. Here we design and synthesize a unique fluorescent surfactant, which combines the properties of the aggregation-induced emission (AIE) and amphiphilicity, to image macrodispersion of montmorillonite and layered double hydroxide fillers in polymer matrix. The proposed fluorescence imaging provides a number of important advantages over electron microscope imaging, and opens a new avenue in the development of direct three-dimensional observation of inorganic filler macrodispersion in organic-inorganic composites. PMID:27251015

  15. Fluorescence microscopy as an alternative to electron microscopy for microscale dispersion evaluation of organic-inorganic composites

    NASA Astrophysics Data System (ADS)

    Guan, Weijiang; Wang, Si; Lu, Chao; Tang, Ben Zhong

    2016-06-01

    Inorganic dispersion is of great importance for actual implementation of advanced properties of organic-inorganic composites. Currently, electron microscopy is the most conventional approach for observing dispersion of inorganic fillers from ultrathin sections of organic-inorganic composites at the nanoscale by professional technicians. However, direct visualization of macrodispersion of inorganic fillers in organic-inorganic composites using high-contrast fluorescent imaging method is hampered. Here we design and synthesize a unique fluorescent surfactant, which combines the properties of the aggregation-induced emission (AIE) and amphiphilicity, to image macrodispersion of montmorillonite and layered double hydroxide fillers in polymer matrix. The proposed fluorescence imaging provides a number of important advantages over electron microscope imaging, and opens a new avenue in the development of direct three-dimensional observation of inorganic filler macrodispersion in organic-inorganic composites.

  16. Fluorescence microscopy as an alternative to electron microscopy for microscale dispersion evaluation of organic–inorganic composites

    PubMed Central

    Guan, Weijiang; Wang, Si; Lu, Chao; Tang, Ben Zhong

    2016-01-01

    Inorganic dispersion is of great importance for actual implementation of advanced properties of organic–inorganic composites. Currently, electron microscopy is the most conventional approach for observing dispersion of inorganic fillers from ultrathin sections of organic–inorganic composites at the nanoscale by professional technicians. However, direct visualization of macrodispersion of inorganic fillers in organic–inorganic composites using high-contrast fluorescent imaging method is hampered. Here we design and synthesize a unique fluorescent surfactant, which combines the properties of the aggregation-induced emission (AIE) and amphiphilicity, to image macrodispersion of montmorillonite and layered double hydroxide fillers in polymer matrix. The proposed fluorescence imaging provides a number of important advantages over electron microscope imaging, and opens a new avenue in the development of direct three-dimensional observation of inorganic filler macrodispersion in organic–inorganic composites. PMID:27251015

  17. Solubility and dissolution enhancement of etoricoxib by solid dispersion technique using sugar carriers.

    PubMed

    Das, Abhisekh; Nayak, Amit Kumar; Mohanty, Biswaranjan; Panda, Satyabrata

    2011-01-01

    The aim of the present study was to improve solubility and dissolution of the poorly aqueous soluble drug, etoricoxib by solvent evaporation technique using various sugar carriers, such as lactose, sucrose, and mannitol. Etoricoxib solid dispersions and their respective physical mixtures using lactose, sucrose, and mannitol were prepared in different ratios by solvent evaporation technique. The percent yield, drug content, saturation solubility, and in vitro dissolution of etoricoxib solid dispersions and physical mixtures were analyzed. Etoricoxib solid dispersions were characterized by FTIR spectroscopy, XRD, and DSC analysis. The FTIR spectroscopic analysis revealed the possibility of intermolecular hydrogen bonding in various solid dispersions. The XRD and DSC studies indicated the transformation of crystalline etoricoxib (in pure drug) to amorphous etoricoxib (in solid dispersions) by the solid dispersion technology. Both the aqueous solubility and dissolution of etoricoxib were observed in all etoricoxib solid dispersions as compared with pure etoricoxib and their physical mixtures. The in vitro dissolution studies exhibited improved dissolution in case of solid dispersion using lactose than the solid dispersions using both sucrose and mannitol. The in vitro dissolution of etoricoxib from these solid dispersions followed Hixson-Crowell model. PMID:22389861

  18. A rapid signal processing technique to remove the effect of dispersion from guided wave signals.

    PubMed

    Wilcox, Paul D

    2003-04-01

    Guided acoustic and ultrasonic waves have been utilized in various manners for non-destructive evaluation and testing. If a guided wave mode is dispersive, a pulse of energy will spread out in space and time as it propagates. For a long-range guided wave inspection application, this constrains the choice of operating point to regions on the dispersion curves where dispersion effects are small. A signal processing technique is presented that enables this constraint on operating point to be relaxed. The technique makes use of a priori knowledge of the dispersion characteristics of a guided wave mode to map signals from the time to distance domains. In the mapping process, dispersed signals are compressed to their original shape. The theoretical basis of the technique is described and an efficient numerical implementation is presented. The robustness of the technique to inaccuracies in the dispersion data is also addressed. The application of the technique to experimental data is shown and the resulting improvement in spatial resolution is demonstrated. The implications of using dispersion compensation in practical systems are briefly discussed. PMID:12744398

  19. Refractive index determination using the central focal masking technique with dispersion colors.

    USGS Publications Warehouse

    Wilcox, R.E.

    1983-01-01

    The procedures, precision, advantages and limitations of central focal masking ("dispersion staining'), a technique for determining the refractive indices of microfragments by the immersion method and for distinguishing between minerals in an immersion mount, are described. -J.A.Z.

  20. Spectroscopic studies of the internal modes of aminoaromatics by fluorescence excitation and dispersed emission in supersonic jet

    SciTech Connect

    Yan, S.

    1992-01-01

    A systematic study for the NH[sub 2] inversional mode in aniline and para substituted anilines has been performed using the techniques of fluorescence excitation and dispersed emission in supersonic jet. The transitions of the nitrogen inversion mode in aniline and para substituted anilines have been assigned in both the fluorescence excitation and dispersed emission spectra, which are strongly supported by the evidence of a large deuterium shift, the presence of a strong hot band, and the intense second overtone transition of the amino inversion in the excitation spectra of all the aniline molecules. The potential surface of each aniline has been fit using the observed inversional levels in both the ground and excited states. The molecular structure of each aniline has been investigated based on the experimental results. The NH[sub 2] torsional transition is assigned in the excitation spectrum of each aniline molecule for the first time. The absence of a torsional hot band and no observable tunneling splitting in the NH[sub 2] torsional mode indicates that the NH[sub 2] torsion mode in the anilines must have a very high first quanta in the ground state. The mechanism of I[sup 2][sub 0] and T[sup 2][sub 0] splittings in the excitation spectrum of p-toluidine has been explained by using molecular symmetry. The splittings are caused by the torsion-torsion coupling between the NH[sub 2] and CH[sub 3] groups. The structure of p-amino-p[prime]-methyl-trans-stilbene (PPTS) has been studied by spectroscopic methods and X-ray diffraction. The nearly planar geometry of the proton donor in the PPTS crystal dimer provides important evidence that the structure of gas phase PPTS is planar in the ground state. The absence of the hot band and I[sup 2][sub 0] in the excitation spectrum of PPTS indicates that the potential surface of PPTS must be a single well in both states, which is consistent with the X-ray result.

  1. Elemental analysis of mining wastes by energy dispersive X-ray fluorescence (EDXRF)

    NASA Astrophysics Data System (ADS)

    Gonzalez-Fernandez, O.; Queralt, I.; Carvalho, M. L.; Garcia, G.

    2007-08-01

    An energy dispersive X-ray fluorescence (EDXRF) tri-axial geometry experimental spectrometer has been employed to determine the concentrations of 13 different elements (K, Ca, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr and Pb) in mine wastes from different depths of two mine tailings from the Cartagena-La Union (Spain) mining district. The elements were determined and quantified using the fundamental parameters method. The concentrations of Cr, Ni, Cu, Zn and Pb were compared to the values from the European and Spanish legislation to evaluate the environmental risk and to classify the wastes as inert wastes or as wastes that have to be control land-filled. The results obtained demonstrate that these wastes can be considered as inert for the considered elements, apart from the concentration levels of Zn and Pb. Whilst Zn slightly overpasses the regulatory levels, Pb mean value exceeds three to six times the value to be considered as Class I potential land-filling material.

  2. High temperature monitoring of silicon carbide ceramics by confocal energy dispersive X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Li, Fangzuo; Liu, Zhiguo; Sun, Tianxi

    2016-04-01

    In the present work, we presented an alternative method for monitoring of the oxidation situation of silicon carbide (SiC) ceramics at various high temperatures in air by measuring the Compton-to-Rayleigh intensity ratios (ICo/IRa) and effective atomic numbers (Zeff) of SiC ceramics with the confocal energy dispersive X-ray fluorescence (EDXRF) spectrometer. A calibration curve of the relationship between ICo/IRa and Zeff was established by using a set of 8 SiC calibration samples. The sensitivity of this approach is so high that it can be easily distinguished samples of Zeff differing from each other by only 0.01. The linear relationship between the variation of Zeff and the variations of contents of C, Si and O of SiC ceramics were found, and the corresponding calculation model of the relationship between the ΔZ and the ΔCC, ΔCSi, and ΔCO were established. The variation of contents of components of the tested SiC ceramics after oxidation at high temperature was quantitatively calculated based on the model. It was shown that the results of contents of carbon, silicon and oxygen obtained by this method were in good agreement with the results obtained by XPS, giving values of relative deviation less than 1%. It was concluded that the practicality of this proposed method for monitoring of the oxidation situation of SiC ceramics at high temperatures was acceptable.

  3. Micro energy-dispersive x-ray fluorescence spectrometry study of dentin coating with nanobiomaterials

    NASA Astrophysics Data System (ADS)

    Soares, Luís. Eduardo Silva; Nahorny, Sídnei; Marciano, Fernanda Roberta; Zanin, Hudson; Lobo, Anderson de Oliveira

    2015-06-01

    New biomaterials such as multi-walled carbon nanotubes oxide/graphene oxide (MWCNTO/GO), nanohydroxyapatite (nHAp) and combination of them together or not to acidulated phosphate fluoride gel (F) have been tested as protective coating before root dentin erosion. Fourteen bovine teeth were cleaned, polished, divided into two parts (n=28) and assigned to seven groups: (Control) - without previous surface treatment; F treatment; nHAp; MWCNTO/GO; F+nHAp; F+MWCNTO/GO and F+MWCNTO/GO/nHAp composites. Each sample had two sites of pre-treatments: acid etched area and an area without treatment. After the biomaterials application, the samples were submitted to six cycles (demineralization: orange juice, 10 min; remineralization: artificial saliva, 1 h). Micro energy-dispersive X-ray fluorescence spectrometry (μ-EDXRF) mapping area analyses were performed after erosive cycling on both sites (n=84). μ-EDXRF mappings showed that artificial saliva and MWCNTO/GO/nHAp/F composite treatments produced lower dentin demineralization than in the other groups. Exposed dentin tubules allowed better interaction of nanobiomaterials than in smear layer covered dentin. Association of fluoride with other biomaterials had a positive influence on acid etched dentin. MWCNTO/GO/nHAp/F composite treatment resulted in levels of demineralization similar to the control group.

  4. Real-time quantitative fluorescence imaging using a single snapshot optical properties technique for neurosurgical guidance

    NASA Astrophysics Data System (ADS)

    Valdes, Pablo A.; Angelo, Joseph; Gioux, Sylvain

    2015-03-01

    Fluorescence imaging has shown promise as an adjunct to improve the extent of resection in neurosurgery and oncologic surgery. Nevertheless, current fluorescence imaging techniques do not account for the heterogeneous attenuation effects of tissue optical properties. In this work, we present a novel imaging system that performs real time quantitative fluorescence imaging using Single Snapshot Optical Properties (SSOP) imaging. We developed the technique and performed initial phantom studies to validate the quantitative capabilities of the system for intraoperative feasibility. Overall, this work introduces a novel real-time quantitative fluorescence imaging method capable of being used intraoperatively for neurosurgical guidance.

  5. Inverse-dispersion technique for assessing lagoon gas emissions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measuring gas emissions from treatment lagoons and storage ponds poses challenging conditions for existing micrometeorological techniques because of non-ideal wind conditions, such as those induced by trees and crops surrounding the lagoons, and lagoons with dimensions too small to establish equilib...

  6. Advanced liquefaction using coal swelling and catalyst dispersion techniques

    SciTech Connect

    Curtis, C.W. ); Gutterman, C. ); Chander, S. )

    1992-08-26

    Research in this project centers upon developing a new approach to the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates all aspects of the coal liquefaction process including coal selection, pretreatment, coal swelling with catalyst impregnation, coal liquefaction experimentation, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. On May 28, 1992, the Department of Energy authorized starting the experimental aspects of this projects; therefore, experimentation at Amoco started late in this quarterly report period. Research contracts with Auburn University, Pennsylvania State University, and Foster Wheeler Development Corporation were signed during June, 1992, so their work was just getting underway. Their work will be summarized in future quarterly reports. A set of coal samples were sent to Hazen Research for beneficiation. The samples were received and have been analyzed. The literature search covering coal swelling has been up-dated, and preliminary coal swelling experiments were carried out. Further swelling experimentation is underway. An up-date of the literature on the liquefaction of coal using dispersed catalysts is nearing completion; it will be included in the next quarterly report.

  7. Agricultural pest monitoring using fluorescence lidar techniques. Feasibility study

    NASA Astrophysics Data System (ADS)

    Mei, L.; Guan, Z. G.; Zhou, H. J.; Lv, J.; Zhu, Z. R.; Cheng, J. A.; Chen, F. J.; Löfstedt, C.; Svanberg, S.; Somesfalean, G.

    2012-03-01

    The fluorescence of different types of planthopper ( Hemiptera) and moth ( Lepidoptera), which constitute important Chinese agricultural pests, was investigated both in situ in a laboratory setting and remotely using a fluorescence light detection and ranging (lidar) system operating at a range of about 50 m. The natural autofluorescence of different species, as well as the fluorescence from insects that had been dusted with fluorescent dye powder for identification were studied. Autofluorescence spectra of both moths and planthoppers show a maximum intensity peak around 450 nm. Bleaching upon long-time laser illumination was modest and did not affect the shape of the spectrum. A single dyed rice planthopper, a few mm in size, could be detected at 50 m distance by using the fluorescence lidar system. By employing various marking dyes, different types of agricultural pest could be determined. We suggest that lidar may be used in studies of migration and movement of pest insects, including studies of their behavior in the vicinity of pheromone traps and in pheromone-treated fields.

  8. Characterization of Japanese color sticks by energy dispersive X-ray fluorescence, X-ray diffraction and Fourier transform infrared analysis

    NASA Astrophysics Data System (ADS)

    Manso, M.; Valadas, S.; Pessanha, S.; Guilherme, A.; Queralt, I.; Candeias, A. E.; Carvalho, M. L.

    2010-04-01

    This work comprises the use of energy dispersive X-ray fluorescence (EDXRF), X-ray diffraction (XRD) and Fourier transformed infrared (FTIR) techniques for the study of the composition of twentieth century traditional Japanese color sticks. By using the combination of analytical techniques it was possible to obtain information on inorganic and organic pigments, binders and fillers present in the sticks. The colorant materials identified in the sticks were zinc and titanium white, chrome yellow, yellow and red ochre, vermillion, alizarin, indigo, Prussian and synthetic ultramarine blue. The results also showed that calcite and barite were used as inorganic mineral fillers while Arabic gum was the medium used. EDXRF offered great potential for such investigations since it allowed the identification of the elements present in the sample preserving its integrity. However, this information alone was not enough to clearly identify some of the materials in study and therefore it was necessary to use XRD and FTIR techniques.

  9. Determination of leucomalachite green, leucocrystal violet and their chromic forms using excitation-emission matrix fluorescence coupled with second-order calibration after dispersive liquid-liquid microextraction.

    PubMed

    Ju, Saiqin; Deng, Jian; Cheng, Jianlin; Xiao, Ni; Huang, Kaihui; Hu, Canhui; Zhao, Haiqing; Xie, Jin; Zhan, Xiaozhu

    2015-10-15

    A novel spectrofluorimetric method has been developed for the simultaneous determination of leucomalachite green (LMG), leucocrystal violet (LCV), malachite green (MG) and crystal violet (CV) by combining the sensitivity of molecular fluorescence and the selectivity of the second-order calibration. Residues of LMG, LCV, MG and CV were simultaneously extracted from fish and shrimp muscle with acetonitrile. The non-fluorescent CV and MG were then reduced to the corresponding fluorescent LMG and LCV by reacting with sodium borohydride. After preconcentration with dispersive liquid-liquid microextraction technique, the extracts were analyzed by using excitation-emission matrix fluorescence coupled with second-order calibration methods based on parallel factor analysis (PARAFAC) and alternating trilinear decomposition (ATLD) algorithms. The limits of detection obtained were 2.21-2.65 ng g(-1) by PARAFAC and 2.30-2.86 ng g(-1) by ATLD, respectively. The developed method was successfully applied to simultaneous determination of the four analytes in grass carp and shrimp samples with recoveries of 90.53-103.03% for PARAFAC and 90.40-102.75% for ATLD. The accuracy of this novel method was also verified by high performance liquid chromatography. PMID:25952896

  10. Multielemental analysis of dried residue from metal-bearing waters by wavelength dispersive X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Gonzalez-Fernandez, Oscar; Margui, Eva; Queralt, Ignacio

    2009-02-01

    The purpose of this work was evaluation of instrumental sensitivity and detection limits for determination of elemental composition (20 different elements ranging from Na to Pb) of liquid mining samples by using conventional Wavelength Dispersive X-Ray Fluorescence (WDXRF) instrumentation. Preconcentration of elements from liquid samples was performed by means of a simple dried residue process, and spectral evaluation was carried out by integration of the peak area (using WinQXAS/AXIL package software, International Atomic Energy Agency (IAEA)) instead of the common net peak line intensity traditionally used in conventional WDXRF systems. With the proposed methodology, the calculated detection limits were in the µg L - 1 range (from 0.005 to 0.1 mg L - 1 level depending on the element) in all cases, which is suitable for element determination in most liquid samples involved in environmental studies such as metal mining liquid effluents. The detection limits are also below the established limits of the TCLP 1311 (United States Environmental Protection Agency (US-EPA)) and DIN 38414-S4 (German Standard legislation) procedures, which are commonly used to evaluate the leaching of metals from landfill disposal. Accuracy of the procedure was confirmed by analysis, based on the German Standard Method DIN 3814-S4, of water lixiviates from three overbank sediment samples collected in two abandoned mining areas. The attained results were compared with those obtained by inductively coupled plasma (ICP) techniques, and acceptable agreement for elements with Z > 20 was found. This study highlights the possibility of using a simple methodology for analysis of liquid mining samples using the WDXRF technique, commonly employed for geochemical exploration of solid samples in environmental studies.

  11. Registering plant dysfunction in artificial biosystems through fluorescence imaging technique

    NASA Astrophysics Data System (ADS)

    Nikolova, Alexandra; Krumov, Alexandar; Vassilev, Vesselin

    Humanity ambitions in space exploration and long-term men-operated space missions evoke an increasing interest to artificial ecosystem researches. Advanced studies of plant biosystems provoke development of new innovative technologies for plant cultivation in man-made environment. Closed ecosystems of different types and structure are now used for space horticulture, cultivation of genetically modified species, bio-products for pharmacies and industry etc. New technologies are required to monitor and control basic parameters of future bioregenerative life support system, especially of plants photosynthetic activity as the most fundamental biological process. Authors propose a conception for a non-invasive control of plant physiological status in closed biosystem through spatial registration of chlorophyll fluorescence. This approach allows an early detection of stress impact on plants, reveal the dynamic and direction of the negative influence and the level of plant stress. Technical requirements for obtaining plant fluorescence images are examined in close relation with plant illumination conditions. Problems related with optimised plant illumination are discussed. Examples of fluorescence images of healthy and stressed plants demonstrate the sensibility and rapidity of signal changes caused by plant dysfunction. Proposed conception could be used for developing new technical solutions in autocontrolled bio-support systems, based on real time analysis of fluorescence images.

  12. Comments on the isotope technique of determining fluorescent whitening agents.

    PubMed

    Theidel, H

    1975-01-01

    The notes on the specific marking of fluorescent whitening agents (FWAs) refer to publications in the literature and the example of an autoradiographic measurement of an 35S-labelled FWA of the 1,3-diphenyl-2-pyrazoline type. PMID:1064528

  13. Using Fluorescent Dyes to Demonstrate Solution-Mixing Techniques.

    ERIC Educational Resources Information Center

    Shmaefsky, Brian; Shmaefsky, Mary Jo

    1994-01-01

    Describes a demonstration using a variety of clear solutions in which the instructor asks students whether the solutions appear homogeneous or inadequately mixed. The solutions are then induced to fluoresce with ultraviolet light to provide visible evidence of homogeneity or nonhomogeneity. (PR)

  14. Monochromatic wavelength dispersive x-ray fluorescence providing sensitive and selective detection of uranium

    SciTech Connect

    Havrilla, George J; Collins, Michael L; Montoya, Velma M; Chen, Zewu; Wei, Fuzhong

    2010-01-01

    Monochromatic wavelength dispersive X-ray fluorescence (MWDXRF) is a sensitive and selective method for elemental compositional analyses. The basis for this instrumental advance is the doubly curved crystal (DCC) optic. Previous work has demonstrated the feasibility of sensitive trace element detection for yttrium as a surrogate for curium in aqueous solutions. Additional measurements have demonstrated similar sensitivity in several different matrix environments which attests to the selectivity of the DCC optic as well as the capabilities of the MWDXRF concept. The objective of this effort is to develop an improved Pu characterization method for nuclear fuel reprocessing plants. The MWDXRF prototype instrument is the second step in a multi-year effort to achieve an improved Pu assay. This work will describe a prototype MWDXRF instrument designed for uranium detection and characterization. The prototype consists of an X-ray tube with a rhodium anode and a DCC excitation optic incorporated into the source. The DCC optic passes the RhK{alpha} line at 20.214 keV for monochromatic excitation of the sample. The source is capable of 50 W power at 50 kV and 1.0 mA operation. The x-ray emission from the sample is collected by a DCC optic set at the UL{alpha} line of 13.613 keV. The collection optic transmits the UL{alpha} x-rays to the silicon drift detector. The x-ray source, sample, collection optic and detector are all mounted on motion controlled stages for the critical alignment of these components. The sensitivity and selectivity of the instrument is obtained through the monochromatic excitation and the monochromatic detection. The prototype instrument performance has a demonstrated for sensitivity for uranium detection of around 2 ppm at the current state of development. Further improvement in sensitivity is expected with more detailed alignment.

  15. Preparation and application of new fluorescein-labeled fumonisins B1 in fluorescence polarization analysis technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: To prepare a new fluorescent tracer against common mycotoxins such as fumonisin B1 in order to replace 6-(4,6-Dichlorotriazinyl) aminofluorescein (6-DTAF), an expensive marker, and to develop a technique for quick detection of fumonisin B1 based on the principle of fluorescence polarizati...

  16. Detection of fecal residue on poultry carcasses by laser induced fluorescence imaging techniques

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The potential use of laser-induced fluorescence imaging techniques was investigated for the detection of diluted fecal matters from various parts of the digestive tract, including colon, ceca, small intestine, and duodenum, on poultry carcasses. One of the challenges for using fluorescence imaging f...

  17. The effect of dispersion technique of montmorillonite on polyisocyanurate nanocomposites

    NASA Astrophysics Data System (ADS)

    Cabulis, U.; Fridrihsone, A.; Andersons, J.; Vlcek, T.

    2014-05-01

    The biomass represents an abundant, renewable, competitive and low cost resource that can play an alternative role to petrochemical resources. The central topic of the research activity reported is the use of rape seed oil (RO) as a raw material for the production of rigid polyisocyanurate foams (PIR). The content of the renewable resource-derived polymers achieved in ready foams is up to 20%. By using biopolymers as a matrix, a prospective way is to reinforce them with nanoparticles, organically modified clays, for improvement of mechanical properties while, at the same time, replacing petrochemical raw materials. Organoclay Cloisite® 15A was tested as a filler of PIR foams. Three different techniques - ultrasonification, mixing by three-roll mills, and high-pressure homogenization were used for dispergation of nanoclays in polyols. Composite polyisocyanurate foams and solid polymer samples were produced and tested for stiffness and strength. This paper discusses the studies into the use of RO as a renewable source in rigid PIR foams filled with organomodified montmorillonite clay with loadings from 1 to 5% by weight.

  18. Amorphous solid dispersion technique for improved drug delivery: basics to clinical applications.

    PubMed

    Mishra, Dinesh Kumar; Dhote, Vinod; Bhargava, Arpit; Jain, Dinesh Kumar; Mishra, Pradyumna Kumar

    2015-12-01

    Solid dispersion has emerged as a method of choice and has been extensively investigated to ascertain the in vivo improved performance of many drug formulations. It generally involves dispersion of drug in amorphous particles (clusters) or in crystalline particles. Comparatively, in the last decade, amorphous drug-polymer solid dispersion has evolved into a platform technology for delivering poorly water-soluble small molecules. However, the success of this technique in the pharmaceutical industry mainly relies on different drug-polymer attributes like physico-chemical stability, bioavailability and manufacturability. The present review showcases the efficacy of amorphous solid dispersion technique in the research and evolution of different drug formulations particularly for those with poor water soluble properties. Apart from the numerous mechanisms of action involved, a comprehensive summary of different key parameters required for the solubility enhancement and their translational efficacy to clinics is also emphasized. PMID:26306524

  19. Determination of heavy metals in suspended waste water collected from Oued El Harrach Algiers River by Energy Dispersive X-Ray Fluorescence

    NASA Astrophysics Data System (ADS)

    Ouziane, S.; Amokrane, A.; Toumert, I.

    2013-12-01

    A preliminary study of the atmospheric pollution in the centre of Algiers is one of the important fields of applications in the environmental science. Nowadays, we need to evaluate the level of the contamination which has an unfavourable effect on physicochemical properties of soils and plants and namely also on human health. In the present work, water samples collected from Oued El-Harrach Algiers River, have been filtered in 0.45 μm Millipore filters to be analysed by Energy Dispersive X-Ray Fluorescence technique using 109Cd radioisotope source. Concentrations of the toxic elements like heavy metals are determined and compared with the published ones values by Yoshida [1] and those obtained using PIXE and NAA techniques [6].

  20. New developments of X-ray fluorescence imaging techniques in laboratory

    NASA Astrophysics Data System (ADS)

    Tsuji, Kouichi; Matsuno, Tsuyoshi; Takimoto, Yuki; Yamanashi, Masaki; Kometani, Noritsugu; Sasaki, Yuji C.; Hasegawa, Takeshi; Kato, Shuichi; Yamada, Takashi; Shoji, Takashi; Kawahara, Naoki

    2015-11-01

    X-ray fluorescence (XRF) analysis is a well-established analytical technique with a long research history. Many applications have been reported in various fields, such as in the environmental, archeological, biological, and forensic sciences as well as in industry. This is because XRF has a unique advantage of being a nondestructive analytical tool with good precision for quantitative analysis. Recent advances in XRF analysis have been realized by the development of new x-ray optics and x-ray detectors. Advanced x-ray focusing optics enables the making of a micro x-ray beam, leading to micro-XRF analysis and XRF imaging. A confocal micro-XRF technique has been applied for the visualization of elemental distributions inside the samples. This technique was applied for liquid samples and for monitoring chemical reactions such as the metal corrosion of steel samples in the NaCl solutions. In addition, a principal component analysis was applied for reducing the background intensity in XRF spectra obtained during XRF mapping, leading to improved spatial resolution of confocal micro-XRF images. In parallel, the authors have proposed a wavelength dispersive XRF (WD-XRF) imaging spectrometer for a fast elemental imaging. A new two dimensional x-ray detector, the Pilatus detector was applied for WD-XRF imaging. Fast XRF imaging in 1 s or even less was demonstrated for Euro coins and industrial samples. In this review paper, these recent advances in laboratory-based XRF imaging, especially in a laboratory setting, will be introduced.

  1. [Energy dispersive x-ray fluorescence spectrometry--a forensic chemistry method for detection of bullet metal residue in gunshot wounds].

    PubMed

    Havel, J; Zelenka, K

    2003-04-01

    The article describes using of energo-dispersive X-ray fluorescence spectrometry (EDXRF) as the forensic method as the tool for detection of metals (gunshot residues--GSR) in connection with gunshot-wounds of persons. PMID:12874887

  2. Review of fluorescence guided surgery visualization and overlay techniques

    PubMed Central

    Elliott, Jonathan T.; Dsouza, Alisha V.; Davis, Scott C.; Olson, Jonathan D.; Paulsen, Keith D.; Roberts, David W.; Pogue, Brian W.

    2015-01-01

    In fluorescence guided surgery, data visualization represents a critical step between signal capture and display needed for clinical decisions informed by that signal. The diversity of methods for displaying surgical images are reviewed, and a particular focus is placed on electronically detected and visualized signals, as required for near-infrared or low concentration tracers. Factors driving the choices such as human perception, the need for rapid decision making in a surgical environment, and biases induced by display choices are outlined. Five practical suggestions are outlined for optimal display orientation, color map, transparency/alpha function, dynamic range compression, and color perception check. PMID:26504628

  3. Artificial neural network approaches for fluorescence lifetime imaging techniques.

    PubMed

    Wu, Gang; Nowotny, Thomas; Zhang, Yongliang; Yu, Hong-Qi; Li, David Day-Uei

    2016-06-01

    A novel high-speed fluorescence lifetime imaging (FLIM) analysis method based on artificial neural networks (ANN) has been proposed. In terms of image generation, the proposed ANN-FLIM method does not require iterative searching procedures or initial conditions, and it can generate lifetime images at least 180-fold faster than conventional least squares curve-fitting software tools. The advantages of ANN-FLIM were demonstrated on both synthesized and experimental data, showing that it has great potential to fuel current revolutions in rapid FLIM technologies. PMID:27244414

  4. Fast elemental screening of soil and sediment profiles using small-spot energy-dispersive X-ray fluorescence: application to mining sediments geochemistry.

    PubMed

    Gonzalez-Fernandez, Oscar; Queralt, Ignacio

    2010-09-01

    Elemental analysis of different sediment cores originating from the Cartagena-La Union mining district in Spain was carried out by means of a programmable small-spot energy-dispersive X-ray fluorescence (EDXRF) spectrometer to study the distribution of heavy metals along soil profiles. Cores were obtained from upstream sediments of a mining creek, from the lowland sedimentation plain, and from a mining landfill dump (tailings pile). A programmable two-dimensional (2D) stage and a focal spot resolution of 600 μm allow us to obtain complete core mapping. Geochemical results were verified using a more powerful wavelength-dispersion X-ray fluorescence (WDXRF) technique. The data obtained was processed in order to study the statistical correlations within the elemental compositions. The results obtained allow us to observe the differential in-depth distribution of heavy metals among the sampled zones. Dump site cores exhibit a homogeneous distribution of heavy metals, whereas the alluvial plain core shows accumulation of heavy metals in the upper part. This approach can be useful for the fast screening of heavy metals in depositional environments around mining sites. PMID:20828442

  5. Perturbation Facilitated Dispersed Fluorescence and Stimulated Emission Pumping Spectroscopies of HCP

    NASA Astrophysics Data System (ADS)

    Ishikawa, Haruki; Muramoto, Yasuhiko; Namai, Masahito; Mikami, Naohiko

    2011-06-01

    Perturbations among molecular rovibronic levels provide us with mainly two benefits. Perturbations themselves are characteristic features of structure and dynamics of molecules. We have been investigating dynamics of highly excited vibrational levels of HCP in the tilde{X} ^1Σ^+ state by dispersed fluorescence (DF) and stimulated emission pumping (SEP) spectroscopies of the tilde{C} ^1A^' - tilde{X} ^1Σ^+ transition. In the case of tilde{X} ^1Σ^+ HCP, its vibrational dynamics is well described by the Fermi resonance between the bend and the CP stretch modes. Based on the analysis of the Fermi resonance, we have succeeded in revealing the change in character of the bending motion in highly excited vibrational levels. In addition, perturbations enable us to explore rovibrational levels into much wider region that cannot be accessed under limits of selection rules. Jacobson and Child showed that the Coriolis interaction becomes very strong in the highly excited levels near and the above the CPH barrier. For the experimental confirmation of their prediction, the observation of the VCH≠0 and the ℓ'' ≠ 0 levels are necessary. However, due to the selection rules and the Franck-Condon selectivity, only the VCH=0 and the ℓ''=0 levels had been observed. In the course of our study, we have found a perturbed level in the tilde{C} state. In general, a very clear even-v_2 progression appears in the DF spectra of HCP. However, in the DF spectra measured by using the perturbed level as the intermediate both the odd- and even-v_2 levels are observed. Moreover, several VCH=1 levels are observed in the spectra. The perturbation-facilitated DF and SEP spectroscopies are very powerful tools to exploring the highly excited vibrational levels of HCP. Details of the perturbation-facilitated DF and SEP spectroscopies are presented in the paper. H. Ishikawa, et al. J. Chem. Phys. 109, 492 (1998); H. Ishikawa, et al. Annu. Rev. Phys. Chem. 50, 443 (1999). M. P. Jacobson and M. S

  6. Layer-by-layer films and colloidal dispersions of graphene oxide nanosheets for efficient control of the fluorescence and aggregation properties of the cationic dye acridine orange.

    PubMed

    Hansda, Chaitali; Chakraborty, Utsav; Hussain, Syed Arshad; Bhattacharjee, Debajyoti; Paul, Pabitra Kumar

    2016-03-15

    Chemically derived graphene oxide (GO) nanosheets have received great deal of interest for technological application such as optoelectronic and biosensors. Aqueous dispersions of GO become an efficient template to induce the association of cationic dye namely Acridine Orange (AO). Interactions of AO with colloidal GO was governed by both electrostatic and π-π stacking cooperative interactions. The type of dye aggregations was found to depend on the concentration of GO in the mixed ensemble. Spectroscopic calculations revealed the formation of both H and J-type dimers, but H-type aggregations were predominant. Preparation of layer-by-layer (LbL) electrostatic self-assembled films of AO and GO onto poly (allylamine hydrochloride) (PAH) coated quartz substrate is also reported in this article. UV-Vis absorption, steady state and time resolve fluorescence and Raman spectroscopic techniques have been employed to explore the detail photophysical properties of pure AO, AO/GO mixed solution and AO/GO LbL films. Scanning electron microscopy was also used for visual evidence of the synthesized nanodimensional GO sheets. The fluorescence quenching of AO in the presence of GO in aqueous solution was due to the interfacial photoinduced electron transfer (PET) from photoexcited AO to GO i.e. GO acts as an efficient quenching agent for the fluorescence emission of AO. The quenching is found to be static in nature. Raman spectroscopic results also confirmed the interaction of AO with GO and the electron transfer. The formation of AO/GO complex via very fast excited state electron transfer mechanism may be proposed as to prepare GO-based fluorescence sensor for biomolecular detection without direct labeling the biomolecules by fluorescent probe. PMID:26722674

  7. Layer-by-layer films and colloidal dispersions of graphene oxide nanosheets for efficient control of the fluorescence and aggregation properties of the cationic dye acridine orange

    NASA Astrophysics Data System (ADS)

    Hansda, Chaitali; Chakraborty, Utsav; Hussain, Syed Arshad; Bhattacharjee, Debajyoti; Paul, Pabitra Kumar

    2016-03-01

    Chemically derived graphene oxide (GO) nanosheets have received great deal of interest for technological application such as optoelectronic and biosensors. Aqueous dispersions of GO become an efficient template to induce the association of cationic dye namely Acridine Orange (AO). Interactions of AO with colloidal GO was governed by both electrostatic and π-π stacking cooperative interactions. The type of dye aggregations was found to depend on the concentration of GO in the mixed ensemble. Spectroscopic calculations revealed the formation of both H and J-type dimers, but H-type aggregations were predominant. Preparation of layer-by-layer (LbL) electrostatic self-assembled films of AO and GO onto poly (allylamine hydrochloride) (PAH) coated quartz substrate is also reported in this article. UV-Vis absorption, steady state and time resolve fluorescence and Raman spectroscopic techniques have been employed to explore the detail photophysical properties of pure AO, AO/GO mixed solution and AO/GO LbL films. Scanning electron microscopy was also used for visual evidence of the synthesized nanodimensional GO sheets. The fluorescence quenching of AO in the presence of GO in aqueous solution was due to the interfacial photoinduced electron transfer (PET) from photoexcited AO to GO i.e. GO acts as an efficient quenching agent for the fluorescence emission of AO. The quenching is found to be static in nature. Raman spectroscopic results also confirmed the interaction of AO with GO and the electron transfer. The formation of AO/GO complex via very fast excited state electron transfer mechanism may be proposed as to prepare GO-based fluorescence sensor for biomolecular detection without direct labeling the biomolecules by fluorescent probe.

  8. Portable energy dispersive X-ray fluorescence and X-ray diffraction and radiography system for archaeometry

    NASA Astrophysics Data System (ADS)

    Mendoza Cuevas, Ariadna; Perez Gravie, Homero

    2011-03-01

    Starting on a laboratory developed portable X-ray fluorescence (PXRF) spectrometer; three different analytical results can be performed: analysis of chemical elements, analysis of major chemical crystalline phase and structural analysis, which represents a contribution to a new, low cost development of portable X-ray analyzer; since these results are respectively obtained with independent equipments for X-ray fluorescence, X-ray diffraction and radiography. Detection limits of PXRF were characterized using standard reference materials for ceramics, glass, bronze and bones, which are the main materials requiring quantitative analysis in art and archeological objects. A setup for simultaneous energy dispersive X-ray fluorescence and diffraction (ED (XRF-XRD)) in the reflection mode has been tested for in situ and non-destructive analysis according to the requirements of art objects inspection. The system uses a single low power X-ray tube and an X-ray energy dispersive detector to measure X-ray diffraction spectrum at a fixed angle. Application to the identification of jadeite-jade mineral in archeological objects by XRD is presented. A local high resolution radiography image obtained with the same low power X-ray tube allows for studies in painting and archeological bones.

  9. Enhancement of bioavailability and anthelmintic efficacy of albendazole by solid dispersion and cyclodextrin complexation techniques.

    PubMed

    Kalaiselvan, R; Mohanta, G P; Madhusudan, S; Manna, P K; Manavalan, R

    2007-08-01

    The objective of this study was to improve the oral bioavailability and therapeutic efficacy of albendazole (ABZ) employing solid dispersion and cyclodextrin complexation techniques. Solid dispersion (dispersion) was prepared using ABZ and polyvinylpyrrolidone (PVP) polymer (1:1 weight ratio). Ternary inclusion complex (ternary complex) was prepared using ABZ, hydroxypropyl beta-cyclodextrin (HPbetaCD) and L-tartaric acid (1:1:1 molar ratio). In rabbits with high gastric acidity (gastric pH approximately 1), ternary complex and solid dispersion showed a bioavailability enhancement of 3.2 and 2.4 fold respectively, compared to a commercial suspension (p < 0.05). The rise in gastric pH (pH > 5) caused a 62% reduction in AUC (area under the plasma level curve) for the commercial suspension, whereas the reduction in case of PVP dispersion and ternary complex was only 43% and 37% respectively. The rapid absorption of the drug from solid dispersion and ternary complex was reflected in improved anthelmintic efficacy against the systemic phases of Trichinella spiralis. The ternary complex was significantly more efficient than solid dispersion and exhibited the highest larvicidal activity (90%) at a dose of 50 mg x kg(-1) (p < 0.05). These results suggest that the bioavailability and therapeutic efficacy of the ternary complex might be high even if there is a great variation in the gastric pH. PMID:17867556

  10. Impulse radar imaging for dispersive concrete using inverse adaptive filtering techniques

    SciTech Connect

    Arellano, J.; Hernandez, J.M.; Brase, J.

    1993-05-01

    This publication addresses applications of a delayed inverse model adaptive filter for modeled data obtained from short-pulse radar reflectometry. To determine the integrity of concrete, a digital adaptive filter was used, which allows compensation of dispersion and clutter generated by the concrete. A standard set of weights produced by an adaptive filter are used on modeled data to obtain the inverse-impulse response of the concrete. The data for this report include: Multiple target, nondispersive data; single-target, variable-size dispersive data; single-target, variable-depth dispersive data; and single-target, variable transmitted-pulse-width dispersive data. Results of this simulation indicate that data generated by the weights of the adaptive filter, coupled with a two-dimensional, synthetic-aperture focusing technique, successfully generate two-dimensional images of targets within the concrete from modeled data.

  11. Measuring Agarwood Formation Ratio Quantitatively by Fluorescence Spectral Imaging Technique.

    PubMed

    Huang, Botao; Nguyen, Duykien; Liu, Tianyi; Jiang, Kaibin; Tan, Jinfen; Liu, Chunxin; Zhao, Jing; Huang, Shaowei

    2015-01-01

    Agarwood is a kind of important and precious traditional Chinese medicine. With the decreasing of natural agarwood, artificial cultivation has become more and more important in recent years. Quantifying the formation of agarwood is an essential work which could provide information for guiding cultivation and controlling quality. But people only can judge the amount of agarwood qualitatively by experience before. Fluorescence multispectral imaging method is presented to measure the agarwood quantitatively in this paper. A spectral cube from 450 nm to 800 nm was captured under the 365 nm excitation sources. The nonagarwood, agarwood, and rotten wood in the same sample were distinguished based on analyzing the spectral cube. Then the area ratio of agarwood to the whole sample was worked out, which is the quantitative information of agarwood area percentage. To our knowledge, this is the first time that the formation of agarwood was quantified accurately and nondestructively. PMID:26089935

  12. Determination of trace elements in Syrian medicinal plants and their infusions by energy dispersive X-ray fluorescence and total reflection X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Khuder, A.; Sawan, M. Kh.; Karjou, J.; Razouk, A. K.

    2009-07-01

    X-ray fluorescence (XRF) and total-reflection X-ray fluorescence (TXRF) techniques suited well for a multi-element determination of K, Ca, Mn, Fe, Cu, Zn, Rb, and Sr in some Syrian medicinal plant species. The accuracy and the precision of both techniques were verified by analyzing the Standard Reference Materials (SRM) peach-1547 and apple leaves-1515. A good agreement between the measured concentrations of the previously mentioned elements and the certified values were obtained with errors less than 10.7% for TXRF and 15.8% for XRF. The determination of Br was acceptable only by XRF with an error less than 24%. Furthermore, the XRF method showed a very good applicability for the determination of K, Ca, Mn, Fe, Cu, Zn, Rb, Sr, and Br in infusions of different Syrian medicinal plant species, namely anise ( Anisum vulgare), licorice root ( Glycyrrhiza glabra), and white wormwood ( Artemisia herba-alba).

  13. A unified planar measurement technique for compressible flows using laser-induced iodine fluorescence

    NASA Technical Reports Server (NTRS)

    Hartfield, Roy J., Jr.; Hollo, Steven D.; Mcdaniel, James C.

    1992-01-01

    A unified laser-induced fluorescence technique for conducting planar measurements of temperature, pressure and velocity in nonreacting, highly compressible flows has been developed, validated and demonstrated. Planar fluorescence from iodine, seeded into air, was induced by an argon-ion laser and collected using a liquid-nitrogen cooled CCD camera. In the measurement technique, temperature is determined from the fluorescence induced with the laser operated broad band. Pressure and velocity are determined from the shape and position of the fluorescence excitation spectrum which is measured with the laser operated narrow band. The measurement approach described herein provides a means of obtaining accurate, spatially-complete maps of the primary flow field parameters in a wide variety of cold supersonic and transonic flows.

  14. Benchtop Antigen Detection Technique using Nanofiltration and Fluorescent Dyes

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian C.; Varaljay, Vanessa

    2009-01-01

    The designed benchtop technique is primed to detect bacteria and viruses from antigenic surface marker proteins in solutions, initially water. This inclusive bio-immunoassay uniquely combines nanofiltration and near infrared (NIR) dyes conjugated to antibodies to isolate and distinguish microbial antigens, using laser excitation and spectrometric analysis. The project goals include detecting microorganisms aboard the International Space Station, space shuttle, Crew Exploration Vehicle (CEV), and human habitats on future Moon and Mars missions, ensuring astronaut safety. The technique is intended to improve and advance water contamination testing both commercially and environmentally as well. Lastly, this streamlined technique poses to greatly simplify and expedite testing of pathogens in complex matrices, such as blood, in hospital and laboratory clinics.

  15. In situ multi-element analyses by energy-dispersive X-ray fluorescence on varnishes of historical violins

    NASA Astrophysics Data System (ADS)

    Echard, Jean-Philippe

    2004-10-01

    Varnishes of Italian violins and other historical stringed instruments have been analyzed by energy-dispersive X-ray fluorescence (EDXRF). The instruments whose varnishes were to be analyzed were chosen from the collection kept in Musée de la Musique in Paris. Direct analyses were performed on instrument varnishes, without any sampling and non-destructively, showing inorganic elements such as lead, mercury and iron that could be related to siccatives or pigments. Analytical results and their comparison with old formulae or traditional recipes of violin varnishes, as with the few previous analytical results, will be discussed.

  16. A new background subtraction method for energy dispersive X-ray fluorescence spectra using a cubic spline interpolation

    NASA Astrophysics Data System (ADS)

    Yi, Longtao; Liu, Zhiguo; Wang, Kai; Chen, Man; Peng, Shiqi; Zhao, Weigang; He, Jialin; Zhao, Guangcui

    2015-03-01

    A new method is presented to subtract the background from the energy dispersive X-ray fluorescence (EDXRF) spectrum using a cubic spline interpolation. To accurately obtain interpolation nodes, a smooth fitting and a set of discriminant formulations were adopted. From these interpolation nodes, the background is estimated by a calculated cubic spline function. The method has been tested on spectra measured from a coin and an oil painting using a confocal MXRF setup. In addition, the method has been tested on an existing sample spectrum. The result confirms that the method can properly subtract the background.

  17. Neutron, fluorescence, and optical imaging: An in situ combination of complementary techniques

    NASA Astrophysics Data System (ADS)

    Wagner, D.; Börgardts, M.; Grünzweig, C.; Lehmann, E.; Müller, T. J. J.; Egelhaaf, S. U.; Hermes, H. E.

    2015-09-01

    An apparatus which enables the simultaneous combination of three complementary imaging techniques, optical imaging, fluorescence imaging, and neutron radiography, is presented. While each individual technique can provide information on certain aspects of the sample and their time evolution, a combination of the three techniques in one setup provides a more complete and consistent data set. The setup can be used in transmission and reflection modes and thus with optically transparent as well as opaque samples. Its capabilities are illustrated with two examples. A polymer hydrogel represents a transparent sample and the diffusion of fluorescent particles into and through this polymer matrix is followed. In reflection mode, the absorption of solvent by a nile red-functionalized mesoporous silica powder and the corresponding change in fluorescent signal are studied.

  18. Neutron, fluorescence, and optical imaging: An in situ combination of complementary techniques

    SciTech Connect

    Wagner, D.; Egelhaaf, S. U.; Hermes, H. E.; Börgardts, M.; Müller, T. J. J.; Grünzweig, C.; Lehmann, E.

    2015-09-15

    An apparatus which enables the simultaneous combination of three complementary imaging techniques, optical imaging, fluorescence imaging, and neutron radiography, is presented. While each individual technique can provide information on certain aspects of the sample and their time evolution, a combination of the three techniques in one setup provides a more complete and consistent data set. The setup can be used in transmission and reflection modes and thus with optically transparent as well as opaque samples. Its capabilities are illustrated with two examples. A polymer hydrogel represents a transparent sample and the diffusion of fluorescent particles into and through this polymer matrix is followed. In reflection mode, the absorption of solvent by a nile red-functionalized mesoporous silica powder and the corresponding change in fluorescent signal are studied.

  19. Neutron, fluorescence, and optical imaging: An in situ combination of complementary techniques.

    PubMed

    Wagner, D; Börgardts, M; Grünzweig, C; Lehmann, E; Müller, T J J; Egelhaaf, S U; Hermes, H E

    2015-09-01

    An apparatus which enables the simultaneous combination of three complementary imaging techniques, optical imaging, fluorescence imaging, and neutron radiography, is presented. While each individual technique can provide information on certain aspects of the sample and their time evolution, a combination of the three techniques in one setup provides a more complete and consistent data set. The setup can be used in transmission and reflection modes and thus with optically transparent as well as opaque samples. Its capabilities are illustrated with two examples. A polymer hydrogel represents a transparent sample and the diffusion of fluorescent particles into and through this polymer matrix is followed. In reflection mode, the absorption of solvent by a nile red-functionalized mesoporous silica powder and the corresponding change in fluorescent signal are studied. PMID:26429447

  20. Applications of synchrotron x-ray fluorescence microprobe techniques to photochromic materials

    SciTech Connect

    Perry, D.L.

    1996-12-31

    Applications of synchrotron x-ray fluorescence microprobe techniques to photochromic materials are presented regarding dopant metal ions in the crystal matrices. Types of samples that are amenable to the technique will be discussed, along with sample format and experimental conditions. The chemical information that one can obtain from samples will be presented, and examples of copant contaminant studies in crystals will be given. New types of samples that are possible to study using this technique will be presented.

  1. Methodology toward 3D micro X-ray fluorescence imaging using an energy dispersive charge-coupled device detector.

    PubMed

    Garrevoet, Jan; Vekemans, Bart; Tack, Pieter; De Samber, Björn; Schmitz, Sylvia; Brenker, Frank E; Falkenberg, Gerald; Vincze, Laszlo

    2014-12-01

    A new three-dimensional (3D) micro X-ray fluorescence (μXRF) methodology based on a novel 2D energy dispersive CCD detector has been developed and evaluated at the P06 beamline of the Petra-III storage ring (DESY) in Hamburg, Germany. This method is based on the illumination of the investigated sample cross-section by a horizontally focused beam (vertical sheet beam) while fluorescent X-rays are detected perpendicularly to the sheet beam by a 2D energy dispersive (ED) CCD detector allowing the collection of 2D cross-sectional elemental images of a certain depth within the sample, limited only by signal self-absorption effects. 3D elemental information is obtained by a linear scan of the sample in the horizontal direction across the vertically oriented sheet beam and combining the detected cross-sectional images into a 3D elemental distribution data set. Results of the 3D μXRF analysis of mineral inclusions in natural deep Earth diamonds are presented to illustrate this new methodology. PMID:25346101

  2. LIFES: Laser Induced Fluorescence and Environmental Sensing. [remote sensing technique for marine environment

    NASA Technical Reports Server (NTRS)

    Houston, W. R.; Stephenson, D. G.; Measures, R. M.

    1975-01-01

    A laboratory investigation has been conducted to evaluate the detection and identification capabilities of laser induced fluorescence as a remote sensing technique for the marine environment. The relative merits of fluorescence parameters including emission and excitation profiles, intensity and lifetime measurements are discussed in relation to the identification of specific targets of the marine environment including crude oils, refined petroleum products, fish oils and algae. Temporal profiles displaying the variation of lifetime with emission wavelength have proven to add a new dimension of specificity and simplicity to the technique.

  3. Synthesis of bi-phase dispersible core-shell FeAu@ZnO magneto-opto-fluorescent nanoparticles

    PubMed Central

    Li, Xue-Mei; Liu, Hong-Ling; Liu, Xiao; Fang, Ning; Wang, Xian-Hong; Wu, Jun-Hua

    2015-01-01

    Bi-phase dispersible core-shell FeAu@ZnO magneto-opto-fluorescent nanoparticles were synthesized by a modified nanoemulsion process using poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEO-PPO-PEO) as the surfactant. The morphology and crystal structure of the nanoparticles were studied by TEM/HRTEM and XRD. The nanoparticles manifest soft ferromagnetic and/or near superparamagnetic behavior with a small coercivity of ~19 Oe at room temperature. The corresponding magnetic hysteresis curves were elucidated by the modified Langevin equation. The FTIR study confirms the PEO-PPO-PEO molecules on the surface of the nanoparticles. The UV-vis and PL results reveal the well-behaved absorption bands including surface plasmon resonance and multiple visible fingerprint photoluminescent emissions of the nanoparticles dispersed in both hydrophilic and hydrophobic solvents. Moreover, the processes of solvent dispersion-collection of the nanoparticles were demonstrated for application readiness of such core-shell nanostructures. PMID:26548369

  4. Synthesis of bi-phase dispersible core-shell FeAu@ZnO magneto-opto-fluorescent nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Xue-Mei; Liu, Hong-Ling; Liu, Xiao; Fang, Ning; Wang, Xian-Hong; Wu, Jun-Hua

    2015-11-01

    Bi-phase dispersible core-shell FeAu@ZnO magneto-opto-fluorescent nanoparticles were synthesized by a modified nanoemulsion process using poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol) (PEO-PPO-PEO) as the surfactant. The morphology and crystal structure of the nanoparticles were studied by TEM/HRTEM and XRD. The nanoparticles manifest soft ferromagnetic and/or near superparamagnetic behavior with a small coercivity of ~19 Oe at room temperature. The corresponding magnetic hysteresis curves were elucidated by the modified Langevin equation. The FTIR study confirms the PEO-PPO-PEO molecules on the surface of the nanoparticles. The UV-vis and PL results reveal the well-behaved absorption bands including surface plasmon resonance and multiple visible fingerprint photoluminescent emissions of the nanoparticles dispersed in both hydrophilic and hydrophobic solvents. Moreover, the processes of solvent dispersion-collection of the nanoparticles were demonstrated for application readiness of such core-shell nanostructures.

  5. Recapture rate of diaphorina citri kuwayama (hemiptera: psyllidae) marked with fluorescent dust in dispersal studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Knowledge on the dispersal capacity of the insect vector Diaphorina citri Kuwayama is necessary to answer questions related to Huanglongbing epidemiology and improve current management strategies for the disease. The objectives of this field study were to determine the recapture rate and distance o...

  6. Demonstration of a stabilized alumina/ethanol colloidal dispersion technique for seeding high temperature air flows

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Skoch, Gary J.; Wernet, Judith H.

    1995-01-01

    Laser anemometry enables the measurement of complex flow fields via the light scattered from small particles entrained in the flow. In the study of turbomachinery, refractory seed materials are required for seeding the flow due to the high temperatures encountered. In this work we present a pH stabilization technique commonly employed in ceramic processing to obtain stable dispersions for generating aerosols of refractory seed material. By adding submicron alumina particles to a preadjusted pH solution of ethanol, a stable dispersion is obtained which when atomized, produces a high quality aerosol. Commercial grade alumina powder is used with a moderate size distribution. Other metal oxide powders in various polar solvents could also be used once the point of zero charge (pH(pzc)) of the powder in the solvent has been determined. Laser anemometry measurements obtained using the new seeding technique are compared to measurements obtained using Polystyrene Latex (PSL) spheres as the seed material.

  7. Demonstration of a stabilized alumina/ethanol colloidal dispersion technique for seeding high temperature air flows

    NASA Astrophysics Data System (ADS)

    Wernet, Mark P.; Skoch, Gary J.; Wernet, Judith H.

    1995-06-01

    Laser anemometry enables the measurement of complex flow fields via the light scattered from small particles entrained in the flow. In the study of turbomachinery, refractory seed materials are required for seeding the flow due to the high temperatures encountered. In this work we present a pH stabilization technique commonly employed in ceramic processing to obtain stable dispersions for generating aerosols of refractory seed material. By adding submicron alumina particles to a preadjusted pH solution of ethanol, a stable dispersion is obtained which when atomized, produces a high quality aerosol. Commercial grade alumina powder is used with a moderate size distribution. Other metal oxide powders in various polar solvents could also be used once the point of zero charge (pH(pzc)) of the powder in the solvent has been determined. Laser anemometry measurements obtained using the new seeding technique are compared to measurements obtained using Polystyrene Latex (PSL) spheres as the seed material.

  8. Direct fluorescent antibody technique for the detection of bacterial kidney disease in paraffin-embedded tissues

    USGS Publications Warehouse

    Ochiai, T.; Yasutake, W.T.; Gould, R.W.

    1985-01-01

    The direct fluorescent antibody technique (FAT) was successfully used to detect the causative agent of bacterial kidney disease (BKD), Renibacterium salmoninarum, in Bouin's solution flexed and paraffinembedded egg and tissue sections. This method is superior to gram stain and may be particularly useful in detecting the BKD organism in fish with low-grade infection.

  9. REVIEW OF LASER RAMAN AND FLUORESCENCE TECHNIQUES FOR PRACTICAL COMBUSTION DIAGNOSTICS

    EPA Science Inventory

    The report gives results of a detailed examination of four techniques for practical combustion diagnostics: spontaneous and near-resonant Raman scattering, laser fluorescence, and coherent anti-Stokes Raman scattering (CARS). For diagnosis of highly luminous, particle-laden flame...

  10. 9 CFR 113.47 - Detection of extraneous viruses by the fluorescent antibody technique.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Detection of extraneous viruses by the fluorescent antibody technique. 113.47 Section 113.47 Animals and Animal Products ANIMAL AND PLANT HEALTH... at least 6 cm2. (3) Positive control monolayers may be fixed (processed so as to arrest growth...

  11. 9 CFR 113.47 - Detection of extraneous viruses by the fluorescent antibody technique.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Detection of extraneous viruses by the fluorescent antibody technique. 113.47 Section 113.47 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE VIRUSES, SERUMS, TOXINS, AND ANALOGOUS PRODUCTS; ORGANISMS AND VECTORS STANDARD...

  12. 9 CFR 113.47 - Detection of extraneous viruses by the fluorescent antibody technique.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Detection of extraneous viruses by the fluorescent antibody technique. 113.47 Section 113.47 Animals and Animal Products ANIMAL AND PLANT HEALTH... at least 6 cm2. (3) Positive control monolayers may be fixed (processed so as to arrest growth...

  13. A fluorescent imaging technique for quantifying spray deposits on plant leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because of the unique characteristics of electrostatically-charged sprays, use of traditional methods to quantify deposition from these sprays has been challenging. A new fluorescent imaging technique was developed to quantify spray deposits from electrostatically-charged sprays on natural plant lea...

  14. Analysis of trace elements during different developmental stages of somatic embryogenesis in Plantago ovata Forssk using energy dispersive X-ray fluorescence.

    PubMed

    Saha, Priyanka; Raychaudhuri, Sarmistha Sen; Sudarshan, Mathummal; Chakraborty, Anindita

    2010-06-01

    Energy dispersive X-ray fluorescence (ED-XRF) technique has been used for the determination of trace element profile during different developmental stages of somatic embryogenic callus of an economically important medicinal plant, Plantago ovata Forssk. Somatic embryogenesis is a plant tissue culture-based technique, which is used for plant regeneration and crop improvement. In the present investigation, elemental content was analysed using ED-XRF technique during different developmental stages and also determine the effect of additives--casein hydrolysate and coconut water on the trace elemental profile of embryogenic callus tissue of P. ovata. Subsequent experiments showed significant alteration in the concentration of K, Ca, Mn, Fe, Zn, Cu, Br, and Sr in both the embryogenic and non-embryogenic callus. Higher K, Ca, Fe, Cu, and Zn accumulation was in embryogenic tissue stage compared to other stages, suggesting these elements are crucial for successful embryogenesis. The results suggest that this information could be useful for formulating a media for in vitro embryo induction of P. ovata. PMID:19696971

  15. Analysis of heterogeneous gallstones using laser-induced breakdown spectroscopy (LIBS) and wavelength dispersive X-ray fluorescence (WD-XRF).

    PubMed

    Jaswal, Brij Bir S; Kumar, Vinay; Sharma, Jitendra; Rai, Pradeep K; Gondal, Mohammed A; Gondal, Bilal; Singh, Vivek K

    2016-04-01

    Laser-induced breakdown spectroscopy (LIBS) is an emerging analytical technique with numerous advantages such as rapidity, multi-elemental analysis, no specific sample preparation requirements, non-destructiveness, and versatility. It has been proven to be a robust elemental analysis tool attracting interest because of being applied to a wide range of materials including biomaterials. In this paper, we have performed spectroscopic studies on gallstones which are heterogeneous in nature using LIBS and wavelength dispersive X-ray fluorescence (WD-XRF) techniques. It has been observed that the presence and relative concentrations of trace elements in different kind of gallstones (cholesterol and pigment gallstones) can easily be determined using LIBS technique. From the experiments carried out on gallstones for trace elemental mapping and detection, it was found that LIBS is a robust tool for such biomedical applications. The stone samples studied in the present paper were classified using the Fourier transform infrared (FTIR) spectroscopy. WD-XRF spectroscopy has been applied for the qualitative and quantitative analysis of major and trace elements present in the gallstone which was compared with the LIBS data. The results obtained in the present paper show interesting prospects for LIBS and WD-XRF to study cholelithiasis better. PMID:26886588

  16. Dissolution Improvement of Atorvastatin Calcium using Modified Locust Bean Gum by the Solid Dispersion Technique.

    PubMed

    Panghal, Dharmila; Nagpal, Manju; Thakur, Gurjeet Singh; Arora, Sandeep

    2014-03-01

    The present research was aimed at the enhancement of the dissolution rate of atorvastatin calcium by the solid dispersion technique using modified locust bean gum. Solid dispersions (SD) using modified locust bean gum were prepared by the modified solvent evaporation method. Other mixtures were also prepared by physical mixing, co-grinding, and the kneading method. The locust bean gum was subjected to heat for modification. The prepared solid dispersions and other mixtures were evaluated for equilibrium solubility studies, content uniformity, FTIR, DSC, XRD, in vitro drug release, and in vivo pharmacodynamic studies. The equilibrium solubility was enhanced in the solid dispersions (in a drug:polymer ratio of 1:6) and other mixtures such as the co-grinding mixture (CGM) and kneading mixture (KM). Maximum dissolution rate was observed in the solid dispersion batch SD3 (i.e. 50% within 15 min) with maximum drug release after 2 h (80%) out of all solid dispersions. The co-grinding mixture also exhibited a significant enhancement in the dissolution rate among the other mixtures. FTIR studies revealed the absence of drug-polymer interaction in the solid dispersions. Minor shifts in the endothermic peaks of the DSC thermograms of SD3 and CGM indicated slight changes in drug crystallinity. XRD studies further confirmed the results of DSC and FTIR. Topological changes were observed in SEM images of SD3 and CGM. In vivo pharmacodynamic studies indicated an improved efficacy of the optimized batch SD3 as compared to the pure drug at a dose of 3 mg/kg/day. Modified locust bean gum can be a promising carrier for solubility enhancement of poorly water-soluble drugs. The lower viscosity and wetting ability of MLBG, reduction in particle size, and decreased crystallinity of the drug are responsible for the dissolution enhancement of atorvastatin. The co-grinding mixture can be a good alternative to solid dispersions prepared by modified solvent evaporation due to its ease of

  17. Dendrochemical patterns of calcium, zinc, and potassium related to internal factors detected by energy dispersive X-ray fluorescence (EDXRF)

    USGS Publications Warehouse

    Smith, Kevin T.; Balouet, Jean Christophe; Shortle, Walter C.; Chalot, Michel; Beaujard, François; Grudd, Håkan; Vroblesky, Don A.; Burkem, Joel G.

    2014-01-01

    Energy dispersive X-ray fluorescence (EDXRF) provides highly sensitive and precise spatial resolution of cation content in individual annual growth rings in trees. The sensitivity and precision have prompted successful applications to forensic dendrochemistry and the timing of environmental releases of contaminants. These applications have highlighted the need to distinguish dendrochemical effects of internal processes from environmental contamination. Calcium, potassium, and zinc are three marker cations that illustrate the influence of these processes. We found changes in cation chemistry in tree rings potentially due to biomineralization, development of cracks or checks, heartwood/sapwood differentiation, intra-annual processes, and compartmentalization of infection. Distinguishing internal from external processes that affect dendrochemistry will enhance the value of EDXRF for both physiological and forensic investigations.

  18. Dendrochemical patterns of calcium, zinc, and potassium related to internal factors detected by energy dispersive X-ray fluorescence (EDXRF).

    PubMed

    Smith, Kevin T; Balouet, Jean Christophe; Shortle, Walter C; Chalot, Michel; Beaujard, François; Grudd, Håkan; Vroblesky, Don A; Burken, Joel G

    2014-01-01

    Energy dispersive X-ray fluorescence (EDXRF) provides highly sensitive and precise spatial resolution of cation content in individual annual growth rings in trees. The sensitivity and precision have prompted successful applications to forensic dendrochemistry and the timing of environmental releases of contaminants. These applications have highlighted the need to distinguish dendrochemical effects of internal processes from environmental contamination. Calcium, potassium, and zinc are three marker cations that illustrate the influence of these processes. We found changes in cation chemistry in tree rings potentially due to biomineralization, development of cracks or checks, heartwood/sapwood differentiation, intra-annual processes, and compartmentalization of infection. Distinguishing internal from external processes that affect dendrochemistry will enhance the value of EDXRF for both physiological and forensic investigations. PMID:24034830

  19. Studies on the effect of mobile phone radiation on DNA using laser induced fluorescence technique

    NASA Astrophysics Data System (ADS)

    Vishnu, K.; Nithyaja, B.; Pradeep, C.; Sujith, R.; Mohanan, P.; Nampoori, V. P. N.

    2011-11-01

    In the present study we have investigated the effect of mobile phone radiation on deoxyribonucleic acid by using fluorescence technique. Absorption spectra shows increase in absorption of DNA after exposure to radiation from mobile phone with different SAR values and microwave frequency which give information about unwinding of the DNA double strand. Fluorescence intensity of dye doped DNA solution is getting reduced suggesting that the absorbed energy is used for unwinding of double strand of DNA after irradiating with microwave radiation. Unwinding of the DNA is very sensitive to power of the microwave radiation.

  20. Towards sorting of biolibraries using single-molecule fluorescence detection techniques.

    PubMed

    Visser, Antonie J W G; Kunst, Beno H; Keller, Hans; Schots, Arjen

    2004-04-01

    The selection of specific binding molecules like peptides and proteins from biolibraries using, for instance, phage display methods can be quite time-consuming. It is therefore desirable to develop a strategy that is much faster in selection and sorting of potential binders out of a biolibrary. In this contribution we separately discuss the current achievements in generation of biolibraries, single-molecule detection techniques and microfluidic devices. A high-throughput microfluidic platform is then proposed that combines the propulsion of liquid containing fluorescent components of the biolibrary through microchannels, single-molecule fluorescence photon burst detection and real-time sorting of positive hits. PMID:15078151

  1. Development of a new technique using glass beads for dry dispersion of airborne fungal spores.

    PubMed

    Shimasaki, Noriko; Okaue, Akira; Kikuno, Ritsuko; Okuda, Shunji; Abe, Keiko

    2015-01-01

    To evaluate the removal of airborne microbes by air cleaners, a technique for generating airborne fungal spores in the dry state in a test chamber (dry dispersion) become necessary. The Society of Indoor Environment Japan (SIEJ) published SIEJ Standard Method No. 20110001 (SIEJ standard),in which an aerial ultrasonic oscillator was used as the device for dry dispersion. However, a more versatile apparatus is also necessary from a practical point of view. Therefore, we developed a new device using glass beads for the dispersion. Glass beads and a fungal sheet containing spores of Wallemia sebi were set in a midget impinger, which was connected to a compressor and a compact test chamber (1 m(3)). Air was blown into the impinger from the compressor. The spores on the fungal sheet were released by impingement of the glass beads when the beads were induced to float by the air blown into the impinger, and the spores were introduced to the chamber by the airflow. This newly developed technique can be used in a compact chamber system and could be applicable as an improved method for generating airborne fungal spores in the dry state in the SIEJ standard. PMID:25817813

  2. Molecular imaging with optics: primer and case for near-infrared fluorescence techniques in personalized medicine

    PubMed Central

    Sevick-Muraca, Eva M.; Rasmussen, John C.

    2010-01-01

    We compare and contrast the development of optical molecular imaging techniques with nuclear medicine with a didactic emphasis for initiating readers into the field of molecular imaging. The nuclear imaging techniques of gamma scintigraphy, single-photon emission computed tomography, and positron emission tomography are first briefly reviewed. The molecular optical imaging techniques of bioluminescence and fluorescence using gene reporter/probes and gene reporters are described prior to introducing the governing factors of autofluorescence and excitation light leakage. The use of dual-labeled, near-infrared excitable and radio-labeled agents are described with comparative measurements between planar fluorescence and nuclear molecular imaging. The concept of time-independent and -dependent measurements is described with emphasis on integrating time-dependent measurements made in the frequency domain for 3-D tomography. Finally, we comment on the challenges and progress for translating near-infrared (NIR) molecular imaging agents for personalized medicine. PMID:19021311

  3. Distinction between entrance and exit wounds by energy dispersive X-ray fluorescence spectrometry.

    PubMed

    Tanaka, Naoko; Kinoshita, Hiroshi; Takakura, Ayaka; Jamal, Mostofa; Ito, Asuka; Kumihashi, Mitsuru; Tsutsui, Kunihiko; Kimura, Shoji; Ameno, Kiyoshi

    2016-09-01

    We investigated gunshot wounds in two autopsy cases using energy dispersive X-ray spectrometry (EDX). Lead and copper were detected in the entrance wound of one case and lead, antimony, and copper were detected in that of the other case. In the exit wounds of both cases, lead, antimony, and copper were below detection limits. These findings indicate that the detection of metallic elements, such as lead, antimony, and copper, which are found in bullets, may be useful for differentiating entrance from exit wounds using EDX. PMID:27591531

  4. Screening Platform toward New Anti-HIV Aptamers Set on Molecular Docking and Fluorescence Quenching Techniques.

    PubMed

    Oliviero, Giorgia; Stornaiuolo, Mariano; D'Atri, Valentina; Nici, Fabrizia; Yousif, Ali Munaim; D'Errico, Stefano; Piccialli, Gennaro; Mayol, Luciano; Novellino, Ettore; Marinelli, Luciana; Grieco, Paolo; Carotenuto, Alfonso; Noppen, Sam; Liekens, Sandra; Balzarini, Jan; Borbone, Nicola

    2016-02-16

    By using a new rapid screening platform set on molecular docking simulations and fluorescence quenching techniques, three new anti-HIV aptamers targeting the viral surface glycoprotein 120 (gp120) were selected, synthesized, and assayed. The use of the short synthetic fluorescent peptide V35-Fluo mimicking the V3 loop of gp120, as the molecular target for fluorescence-quenching binding affinity studies, allowed one to measure the binding affinities of the new aptamers for the HIV-1 gp120 without the need to obtain and purify the full recombinant gp120 protein. The almost perfect correspondence between the calculated Kd and the experimental EC50 on HIV-infected cells confirmed the reliability of the platform as an alternative to the existing methods for aptamer selection and measuring of aptamer-protein equilibria. PMID:26810800

  5. Fluorescence measurements for evaluating the application of multivariate analysis techniques to optically thick environments.

    SciTech Connect

    Reichardt, Thomas A.; Timlin, Jerilyn Ann; Jones, Howland D. T.; Sickafoose, Shane M.; Schmitt, Randal L.

    2010-09-01

    Laser-induced fluorescence measurements of cuvette-contained laser dye mixtures are made for evaluation of multivariate analysis techniques to optically thick environments. Nine mixtures of Coumarin 500 and Rhodamine 610 are analyzed, as well as the pure dyes. For each sample, the cuvette is positioned on a two-axis translation stage to allow the interrogation at different spatial locations, allowing the examination of both primary (absorption of the laser light) and secondary (absorption of the fluorescence) inner filter effects. In addition to these expected inner filter effects, we find evidence that a portion of the absorbed fluorescence is re-emitted. A total of 688 spectra are acquired for the evaluation of multivariate analysis approaches to account for nonlinear effects.

  6. Monitoring the gelation of polyacrylamide-sodium alginate composite by fluorescence technique

    NASA Astrophysics Data System (ADS)

    Akın Evingür, Gülşen; Tezcan, Filiz; Bedia Erim, F.; Pekcan, Önder

    2012-06-01

    Polyacrylamide (PAAm)-sodium alginate (SA) composite was prepared with different amounts of SA varying in the range between 0.06% and 2% (w/v). The PAAm-SA composite was characterized by the steady-state fluorescence technique. Pyranine was added as a fluoroprobe for monitoring the polymerization. It was observed that pyranine molecules bind to AAm and SA chains upon the initiation of the polymerization. Thus, the fluorescence spectra of the bonded pyranines shift to the shorter wavelengths. Fluorescence spectra from the bonded pyranines allowed us to monitor the sol-gel phase transition, and to test the universality of the sol-gel transition as a function of SA contents. Observations around the critical point show that the gel fraction exponent, β, and the weight average degree of polymerization exponent, γ, agreed with the percolation result for (<0.25% (w/v)) SA contents. However, classical results were produced at (<2% (w/v)) SA contents.

  7. Confocal, two-photon laser-induced fluorescence technique for the detection of nitric oxide.

    PubMed

    Reeves, M; Musculus, M; Farrell, P

    1998-10-01

    We describe a confocal two-photon laser-induced fluorescence scheme for the detection of gaseous NO. Excitation from a simple YAG-pumped Coumarin 450 dye system near 452.6 nm was used to promote the two-photon NO(A (2)?(+), nu? = 0 ? X (2)?, nu? = 0) transition in the gamma(0, 0) band. Subsequent fluorescence detection in the range 200-300 nm permitted almost total rejection of elastic and geometric scatter of laser radiation for excellent signal/noise ratio characteristics. The goal of the research was to apply NO fluorescence to a relatively realistic limited optical access combustion environment. A confocal optical arrangement was demonstrated for single-point measurements of NO concentration in gas samples and in atmospheric-pressure flames. The technique is suitable for applications that offer only a single direction for optical access and when significant elastic scatter is present. PMID:18301470

  8. Determination of lead in environmental waters with dispersive liquid-liquid microextraction prior to atomic fluorescence spectrometry.

    PubMed

    Zhou, Qingxiang; Zhao, Na; Xie, Guohong

    2011-05-15

    This paper established a new, rapid and sensitive method for the determination of lead in water samples preconcentrated by dispersive liquid-liquid microextraction (DLLME) prior to atomic fluorescence spectrometry. Dithizone was used as the chelating agent. In the DLLME procedure, lead formed lead-dithizone complex and migrated into the carbon tetrachloride micro-droplets. Important factors that would affect the extraction efficiency had been investigated including the kind and volume of extraction solvent and dispersive solvent, sample pH, the amount of chelating agent, extraction time and centrifugation time. The results showed that the coexisting ions containing in water samples had no obvious negative effect on the determination of lead. The experimental results indicated that the proposed method had a good linear range of 0.01-100 ng mL(-1) (r(2) = 0.9990). The precision was 2.12% (RSD, n = 7) and the detection limit was 0.95 ng L(-1). Proposed method was validated with four real environmental samples and the results indicated that the proposed method was excellent for the future use and satisfied spiked recoveries were in the range of 92.9-97.4%. PMID:21398026

  9. Low cost methodology for estrogens monitoring in water samples using dispersive liquid-liquid microextraction and HPLC with fluorescence detection.

    PubMed

    Lima, Diana L D; Silva, Carla Patrícia; Otero, Marta; Esteves, Valdemar I

    2013-10-15

    A new low cost methodology for estrogens' analysis in water samples was developed in this work. Based on dispersive liquid-liquid microextraction followed by high-performance liquid chromatography with fluorescence detection, the developed method is fast, cheap, easy-to-use, uses low volumes of organic solvents and has the possibility of a large number of samples to be extracted in parallel. Under optimum conditions (sample volume: 8 mL; extraction solvent: 200 μL of chlorobenzene; dispersive solvent: 2000 μL of acetone), the enrichment factor and extraction recoveries were 145 and 72% for 17β-estradiol (E2) and 178 and 89% for 17α-ethinylestradiol (EE2), respectively. Limits of detection of 2.0 ng L(-1) for E2 and 6.5 ng L(-1) for EE2 were achieved, allowing the detection and quantification of these compounds in surface and waste water samples with concentrations from 12 to 32 ng L(-1) for E2 and from 11 to 18 ng L(-1) for EE2. Also, recovery tests were performed to evaluate possible matrix effects. Recoveries between 98% and 106% were obtained using humic acids (HA) to simulate the effect of organic matter, and between 86% and 120% in real water samples. PMID:24054691

  10. Fluorescence techniques for determination of the membrane potentials in high throughput screening.

    PubMed

    Przybylo, Magda; Borowik, Tomasz; Langner, Marek

    2010-11-01

    The characterization of small molecules requires identification and evaluation of several predictive parameters, when selecting compounds for pharmacological applications and/or determining their toxicity. A number of them are correlated with the compound interaction with biological membranes and/or capacity to cross them. The knowledge of the extent of adsorption, partition coefficient and permeability along with the compound ability to alter membrane properties are critical for such studies. Lipid bilayers are frequently used as the adequate experimental models of a biological membrane despite their simple structure and a limited number of components. A significant number of the biologically relevant lipid bilayer properties are related to its electrostatics. Three electrostatic potentials were defined for the lipid bilayer; the intrinsic or induced surface electrostatic potential, the dipole potential and the membrane potential. Each of them was measured with dedicated methodologies. The complex measurement protocols and technically demanding instrumentation made the development of efficient HTS approaches for complete characterization of membrane electrostatics practically impossible. However, the rapid development of fluorescence techniques accompanied by rapid growth in diversity and number of dedicated fluorescent probes enabled characterization of lipid bilayer electrostatics in a moderately simple manner. Technically advanced, compact and automated workstations, capable of measuring practically all fluorescence parameters, are now available. Therefore, the proper selection of fluorescent probes with measuring procedures can be designed to evaluate drug candidates in context of their ability to alter membrane electrostatics. In the paper we present a critical review of available fluorescence methods, useful for the membrane electrostatics evaluation and discuss the feasibility of their adaptation to HTS procedures. The significance of the presented

  11. LABORATORY MEASUREMENTS OF NiH BY FOURIER TRANSFORM DISPERSED FLUORESCENCE

    SciTech Connect

    Vallon, Raphael; Richard, Cyril; Crozet, Patrick; Wannous, Ghassan; Ross, Amanda

    2009-05-01

    Red and orange bands of laser-induced fluorescence in NiH have been recorded on a Fourier transform interferometer at Doppler resolution. The spectra show strong transitions to low-lying vibronic states which are not thermally populated in a laboratory source, and therefore do not appear in laser excitation spectra, but which would be expected to contribute significantly to any stellar spectrum. The strongest bands belong to the G[{omega}' 5/2]-X {sub 2} {sup 2}{delta}{sub 3/2}, I[{omega}' 3/2]-X {sub 2}, and {sup 2}{delta}{sub 3/2} I[{omega}' 3/2]-W {sub 1} {sup 2}{pi}{sub 3/2} systems. Measurements are reported for {sup 58}NiH, {sup 60}NiH, and {sup 62}NiH.

  12. Novel, in-situ Raman and fluorescence measurement techniques: Imaging using optical waveguides

    NASA Astrophysics Data System (ADS)

    Carter, Jerry Chance

    The following dissertation describes the development of methods for performing standoff and in- situ Raman and fluorescence spectroscopy for chemical imaging and non-imaging analytical applications. The use of Raman spectroscopy for the in- situ identification of crack cocaine and cocaine.HCl using a fiberoptic Raman probe and a portable Raman spectrograph has been demonstrated. We show that the Raman spectra of both forms of cocaine are easily distinguishable from common cutting agents and impurities such as benzocaine and lidocaine. We have also demonstrated the use of Raman spectroscopy for in-situ identification of drugs separated by thin layer chromatography. We have investigated the use of small, transportable, Raman systems for standoff Raman spectroscopy (e.g. <20 m). For this work, acousto-optical (AOTF) and liquid crystal tunable filters (LCTF) are being used both with, and in place of dispersive spectrographs and fixed filtering devices. In addition, we improved the flexibility of the system by the use of a modified holographic fiber-optic probe for light and image collection. A comparison of tunable filter technologies for standoff Raman imaging is discussed along with the merits of image transfer devices using small diameter image guides. A standoff Raman imaging system has been developed that utilizes a unique polymer collection mirror. The techniques used to produce these mirrors make it easy to design low f/# polymer mirrors. The performance of a low f/# polymer mirror system for standoff Raman chemical imaging has been demonstrated and evaluated. We have also demonstrated remote Raman hyperspectral imaging using a dimension-reduction, 2-dimensional (2-D) to 1-dimensional (1-D), fiber optic array. In these studies, a modified holographic fiber-optic probe was combined with the dimension-reduction fiber array for remote Raman imaging. The utility of this setup for standoff Raman imaging is demonstrated by monitoring the polymerization of

  13. Techniques for fluorescence detection of protoporphyrin IX in skin cancers associated with photodynamic therapy

    PubMed Central

    Rollakanti, Kishore R.; Kanick, Stephen C.; Davis, Scott C.; Pogue, Brian W.

    2014-01-01

    Photodynamic therapy (PDT) is a treatment modality that uses a specific photosensitizing agent, molecular oxygen, and light of a particular wavelength to kill cells targeted by the therapy. Topically administered aminolevulinic acid (ALA) is widely used to effectively treat cancerous and precancerous skin lesions, resulting in targeted tissue damage and little to no scarring. The targeting aspect of the treatment arises from the fact that ALA is preferentially converted into protoporphyrin IX (PpIX) in neoplastic cells. To monitor the amount of PpIX in tissues, techniques have been developed to measure PpIX-specific fluorescence, which provides information useful for monitoring the abundance and location of the photosensitizer before and during the illumination phase of PDT. This review summarizes the current state of these fluorescence detection techniques. Non-invasive devices are available for point measurements, or for wide-field optical imaging, to enable monitoring of PpIX in superficial tissues. To gain access to information at greater tissue depths, multi-modal techniques are being developed which combine fluorescent measurements with ultrasound or optical coherence tomography, or with microscopic techniques such as confocal or multiphoton approaches. The tools available at present, and newer devices under development, offer the promise of better enabling clinicians to inform and guide PDT treatment planning, thereby optimizing therapeutic outcomes for patients. PMID:25599015

  14. Detection of malformations in sea urchin plutei exposed to mercuric chloride using different fluorescent techniques.

    PubMed

    Buttino, Isabella; Hwang, Jiang-Shiou; Romano, Giovanna; Sun, Chi-Kuang; Liu, Tzu-Ming; Pellegrini, David; Gaion, Andrea; Sartori, Davide

    2016-01-01

    Embryos of Mediterranean sea urchin Paracentrotus lividus and subtropical Echinometra mathaei were exposed to 5,10, 15 and 20µgL(-1), and to 1, 2, 3 and 4µgL(-1) mercuric chloride (HgCl2), respectively. The effective concentration (EC50) inducing malformation in 50% of 4-arm pluteus stage (P4) was 16.14µgL(-1) for P. lividus and 2.41µgL(-1) for E. mathaei. Two-photon (TP), second (SHG) and third harmonic generation (THG) microscopy techniques, TUNEL staining, propidium iodide (PI) and Hoechst 33342 probes were used to detect light signals or to stain apoptotic and necrotic cells in fixed and alive plutei. Signals were detected differently in the two species: TP fluorescence, commonly associated with apoptotic cells, did not increase with increasing HgCl2 concentrations in P. lividus and in fact, the TUNEL did not reveal induction of apoptosis. PI fluorescence increased in P. lividus in a dose-dependent manner, suggesting a loss of cell permeability. In E. mathaei plutei TP fluorescence increased at increasing HgCl2 concentrations. THG microscopy revealed skeletal rods in both species. Different fluorescent techniques, used in this study, are proposed as early-warning systems to visualize malformations and physiological responses in sea urchin plutei. PMID:26254716

  15. [Chemical composition analysis of early neolithic pottery unearthed from Xiaohuangshang site, Zhejiang Province and Jiahu site, Henan Province by energy disperse X-ray fluorescence].

    PubMed

    Chen, Qian-Qian; Yang, Yu-Zhang; Zhang, Ju-Zhong; Cui, Wei

    2011-11-01

    The major elements in the early neolithic potteries unearthed from Xiaohuangshan site, Zhejiang Province and Jiahu site, Henan Province were determined by energy disperse X-ray fluorescence (EDXRF). The results show that the chemical compositions of the potteries from these two sites possess obvious regional features respectively. Compared with the specimen from Jiahu site, the potteries from Xiaohuangshan site have the common feature of ancient Chinese southern ceramics with high silicon and low aluminum contents. Simultaneously, the chemical composition of Xiaohuangshan pottery samples nearly unchanged from its early stage to the last stage. This phenomenon indicates that the source of the ceramic raw materials of Xiaohuangshan site was stable, and the continuous improvement of its pottery quality was mainly due to the progress in sintering techniques. However, the chemical composition of Jiahu potteries changed a lot in its three different periods. This change occurred because a large number of admixtures were added to the pottery bodies to improve their operating performances. These results also show that the improvements of pottery making techniques in different Chinese areas may have their own evolution directions respectively for the different geographical environments. PMID:22242535

  16. Solubility enhancement of lovastatin by modified locust bean gum using solid dispersion techniques.

    PubMed

    Patel, Manjil; Tekade, Avinash; Gattani, Surendra; Surana, Sanjay

    2008-01-01

    The aim of the present study was to improve the solubility of poorly water soluble drug lovastatin (LS) by solid dispersion (SD) techniques using modified locust bean gum (MLBG) as a carrier. The locust bean gum (LBG) was modified by heating and there observed irreversible decrease in viscosity, whereas swelling property remains unaffected. The advantage of modification of LBG was illustrated by difference in dissolution profiles of their SD. Effect of polymer concentration and methods of preparation on solubility enhancement were studied using solubility and dissolution studies, respectively. The result of solubility study showed increase in solubility of LS with increase in concentration of MLBG. It was found that the dissolution rate of LS from its SD was dependent on the method of preparation of solid dispersions. Dissolution study revealed that the modified solvent evaporation is most convenient and effective method for solubility enhancement of poorly water soluble drug LS, among various methods of preparation of SD. The prepared SDs were characterized by differential scanning calorimetry, scanning electron microscopy, and X-ray diffraction study. In vivo study was performed by measuring 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG Co-A) reductase inhibition activity. Significant reduction in HMG Co-A reductase activity was observed in case of solid dispersions of LS than plain LS. In conclusion, MLBG could be used as a potential carrier in enhancing the dissolution rate and bioavailability of LS. PMID:19115112

  17. Time-Domain Fluorescence Lifetime Imaging Techniques Suitable for Solid-State Imaging Sensor Arrays

    PubMed Central

    Li, David Day-Uei; Ameer-Beg, Simon; Arlt, Jochen; Tyndall, David; Walker, Richard; Matthews, Daniel R.; Visitkul, Viput; Richardson, Justin; Henderson, Robert K.

    2012-01-01

    We have successfully demonstrated video-rate CMOS single-photon avalanche diode (SPAD)-based cameras for fluorescence lifetime imaging microscopy (FLIM) by applying innovative FLIM algorithms. We also review and compare several time-domain techniques and solid-state FLIM systems, and adapt the proposed algorithms for massive CMOS SPAD-based arrays and hardware implementations. The theoretical error equations are derived and their performances are demonstrated on the data obtained from 0.13 μm CMOS SPAD arrays and the multiple-decay data obtained from scanning PMT systems. In vivo two photon fluorescence lifetime imaging data of FITC-albumin labeled vasculature of a P22 rat carcinosarcoma (BD9 rat window chamber) are used to test how different algorithms perform on bi-decay data. The proposed techniques are capable of producing lifetime images with enough contrast. PMID:22778606

  18. Accessing gelling ability of vegetable proteins using rheological and fluorescence techniques.

    PubMed

    Batista, Ana Paula; Portugal, Carla A M; Sousa, Isabel; Crespo, João G; Raymundo, Anabela

    2005-08-01

    This work aims to present a comprehensive study about the macroscopic characteristics of globular vegetable proteins, in terms of their gelling ability, by understanding their molecular behaviour, when submitted to a thermal gelling process. The gels of soy, pea and lupin proteins were characterized by rheological techniques. Gelation kinetics, mechanical spectra, as well as the texture of these gels were analyzed and compared. Additionally, capillary viscometry, steady-state fluorescence and fluorescence anisotropy were used to monitor the structural changes induced by the thermal denaturation, which constitutes the main condition for the formation of a gel structure. Based on these techniques it was possible to establish a relationship between the gelling ability of each protein isolate and their structural resistance to thermal unfolding, enabling us to explain the weakest and the strongest gelling ability observed for lupin and soy proteins isolates, respectively. PMID:15996729

  19. Laser-induced fluorescence technique for velocity field measurements in subsonic gas flows

    NASA Technical Reports Server (NTRS)

    Hiller, B.; Mcdaniel, J. C.; Rea, E. C., Jr.; Hanson, R. K.

    1983-01-01

    A nonintrusive optical technique is reported for multiple-point velocity measurements in subsonic flows. The technique is based on the detection of fluorescence from a Doppler-shifted absorption line of seeded iodine molecules excited at a laser frequency fixed in the wing of the line. Counterpropagating laser sheets are used to illuminate the flow, in the present case a nitrogen round jet, thereby eliminating the need for an unshifted reference signal. The fluorescence is detected simultaneously at 10,000 points in a plane of the flow using a 100 x 100 element photodiode-array camera. The velocity at each point is computed from four successive camera frames, each recorded with a different beam direction. The measured mean velocities between 5 and 50 m/sec agree well with data from the literature.

  20. Determination of total proton release in purple membrane suspension by umbelliferone fluorescence quenching technique.

    PubMed

    Sonar, S; Singh, A K

    1992-06-01

    A technique for determining total proton release from purple membrane suspension under steady illumination has been described. Illuminated purple membrane is found to quench the fluorescence life-time of umbelliferone indicating the release of protons in the medium. Besides the "stoichiometric" release of protons from bacteriorhodopsin, there seems to be release of protons from sources other than protonated retinylidene Schiff base moiety also. PMID:1324883

  1. Evaluation of a fluorescent lectin-based staining technique for some acidophilic mining bacteria

    SciTech Connect

    Fife, D.J.; Bruhn, D.F.; Miller, K.S.; Stoner, D.L.

    2000-05-01

    A fluorescence-labeled wheat germ agglutinin staining technique was modified and found to be effective for staining gram-positive, acidophilic mining bacteria. Bacteria identified by others as being gram positive through 16S rRNA sequence analyses, yet clustering near the divergence of that group, stained weakly. Gram-negative bacteria did not stain. Background staining of environmental samples was negligible, and pyrite and soil particles in the samples did not interfere with the staining procedure.

  2. The Fluorescent-Oil Film Method and Other Techniques for Boundary-Layer Flow Visualization

    NASA Technical Reports Server (NTRS)

    Loving, Donald L.; Katzoff, S.

    1959-01-01

    A flow-visualization technique, known as the fluorescent-oil film method, has been developed which appears to be generally simpler and to require less experience and development of technique than previously published methods. The method is especially adapted to use in the large high-powered wind tunnels which require considerable time to reach the desired test conditions. The method consists of smearing a film of fluorescent oil over a surface and observing where the thickness is affected by the shearing action of the boundary layer. These films are detected and identified, and their relative thicknesses are determined by use of ultraviolet light. Examples are given of the use of this technique. Other methods that show promise in the study of boundary-layer conditions are described. These methods include the use of a temperature-sensitive fluorescent paint and the use of a radiometer that is sensitive to the heat radiation from a surface. Some attention is also given to methods that can be used with a spray apparatus in front of the test model.

  3. A dissociative fluorescence enhancement technique for one-step time-resolved immunoassays

    PubMed Central

    Mukkala, Veli-Matti; Hakala, Harri H. O.; Mäkinen, Pauliina H.; Suonpää, Mikko U.; Hemmilä, Ilkka A.

    2010-01-01

    The limitation of current dissociative fluorescence enhancement techniques is that the lanthanide chelate structures used as molecular probes are not stable enough in one-step assays with high concentrations of complexones or metal ions in the reaction mixture since these substances interfere with lanthanide chelate conjugated to the detector molecule. Lanthanide chelates of diethylenetriaminepentaacetic acid (DTPA) are extremely stable, and we used EuDTPA derivatives conjugated to antibodies as tracers in one-step immunoassays containing high concentrations of complexones or metal ions. Enhancement solutions based on different β-diketones were developed and tested for their fluorescence-enhancing capability in immunoassays with EuDTPA-labelled antibodies. Characteristics tested were fluorescence intensity, analytical sensitivity, kinetics of complex formation and signal stability. Formation of fluorescent complexes is fast (5 min) in the presented enhancement solution with EuDTPA probes withstanding strong complexones (ethylenediaminetetra acetate (EDTA) up to 100 mM) or metal ions (up to 200 μM) in the reaction mixture, the signal is intensive, stable for 4 h and the analytical sensitivity with Eu is 40 fmol/L, Tb 130 fmol/L, Sm 2.1 pmol/L and Dy 8.5 pmol/L. With the improved fluorescence enhancement technique, EDTA and citrate plasma samples as well as samples containing relatively high concentrations of metal ions can be analysed using a one-step immunoassay format also at elevated temperatures. It facilitates four-plexing, is based on one chelate structure for detector molecule labelling and is suitable for immunoassays due to the wide dynamic range and the analytical sensitivity. Figure   PMID:21161513

  4. Tests of a Two-Photon Technique for Measuring Polarization Mode Dispersion With Subfemtosecond Precision

    PubMed Central

    Dauler, Eric; Jaeger, Gregg; Muller, Antoine; Migdall, A.; Sergienko, A.

    1999-01-01

    An investigation is made of a recently introduced quantum interferometric method capable of measuring polarization mode dispersion (PMD) on sub-femtosecond scales, without the usual interferometric stability problems associated with such small time scales. The technique makes use of the extreme temporal correlation of orthogonally polarized pairs of photons produced via type-II phase-matched spontaneous parametric down-conversion. When sent into a simple polarization interferometer these photon pairs produce a sharp interference feature seen in the coincidence rate. The PMD of a given sample is determined from the shift of that interference feature as the sample is inserted into the system. The stability and resolution of this technique is shown to be below 0.2 fs. We explore how this precision is improved by reducing the length of the down-conversion crystal and increasing the spectral band pass of the system.

  5. Refractive index dispersion of swift heavy ion irradiated BFO thin films using Surface Plasmon Resonance technique

    NASA Astrophysics Data System (ADS)

    Paliwal, Ayushi; Sharma, Savita; Tomar, Monika; Singh, Fouran; Gupta, Vinay

    2016-07-01

    Swift heavy ion irradiation (SHI) is an effective technique to induce defects for possible modifications in the material properties. There is growing interest in studying the optical properties of multiferroic BiFeO3 (BFO) thin films for optoelectronic applications. In the present work, BFO thin films were prepared by sol-gel spin coating technique and were irradiated using the 15 UD Pelletron accelerator with 100 MeV Au9+ ions at a fluence of 1 × 1012 ions cm-2. The as-grown films became rough and porous on ion irradiation. Surface Plasmon Resonance (SPR) technique has been identified as a highly sensitive and powerful technique for studying the optical properties of a dielectric material. Optical properties of BFO thin films, before and after irradiation were studied using SPR technique in Otto configuration. Refractive index is found to be decreasing from 2.27 to 2.14 on ion irradiation at a wavelength of 633 nm. Refractive index dispersion of BFO thin film (from 405 nm to 633 nm) before and after ion radiation was examined.

  6. Technique for real-time tissue characterization based on scanning multispectral fluorescence lifetime spectroscopy (ms-TRFS)

    PubMed Central

    Ma, Dinglong; Bec, Julien; Gorpas, Dimitris; Yankelevich, Diego; Marcu, Laura

    2015-01-01

    We report a novel technique for continuous acquisition, processing and display of fluorescence lifetimes enabling real-time tissue diagnosis through a single hand held or biopsy fiber-optic probe. A scanning multispectral time-resolved fluorescence spectroscopy (ms-TRFS) with self-adjustable photon detection range was developed to account for the dynamic changes of fluorescence intensity typically encountered in clinical application. A fast algorithm was implemented in the ms-TRFS software platform, providing up to 15 Hz continuous display of fluorescence lifetime values. Potential applications of this technique, including biopsy guidance, and surgical margins delineation were demonstrated in proof-of-concept experiments. Current results showed accurate display of fluorescence lifetimes values and discrimination of distinct fluorescence markers and tissue types in real-time (< 100 ms per data point). PMID:25798320

  7. [Influence of the Experiment Energy Dispersive X-Ray Fluorescence Measurement of Uranium by Different Excitation Source].

    PubMed

    Xiong, Chao; Ge, Liang-quan; Liu, Duan; Zhang, Qing-xian; Gu, Yi; Luo, Yao-yao; Zhao, Jian-kun

    2016-03-01

    Aiming at the self-excitation effect on the interference of measurements which exist in the process of Energy dispersive X-ray fluorescence method for uranium measurement. To solve the problem of radioactive isotopes only used as excitation source in determination of uranium. Utilizing the micro X-ray tube to test Self-excitation effect to get a comparison of the results obtained by three different uranium ore samples--109 Cd, 241 Am and Mirco X-ray tube. The results showed that self-excitation effect produced the area measure of characteristic X-ray peak is less than 1% of active condition, also the interference of measurements can be negligible. Photoelectric effect cross-section excited by 109 Cd is higher, corresponding fluorescence yield is higher than excited by 241 Am as well due to characteristics X-ray energy of 109 Cd, 22.11 & 24.95 KeV adjacent to absorption edge energy of L(α), 21.75 KeV, based on the above, excitation efficiency by 109 Cd is higher than 241 Am; The fact that measurement error excited by 241 Am is significantly greater than by 109 Cd is mainly due to peak region overlap between L energy peaks of uranium and Scattering peak of 241 Am, 26.35 keV, These factors above caused the background of measured Spectrum higher; The error between the uranium content in ore samples which the X-ray tube as the excitation source and the chemical analysis results is within 10%. Conclusion: This paper come to the conclusion that the technical quality of uranium measurement used X-ray tube as excitation source is superior to that in radioactive source excitation mode. PMID:27400534

  8. Advanced Time-Resolved Fluorescence Microscopy Techniques for the Investigation of Peptide Self-Assembly

    NASA Astrophysics Data System (ADS)

    Anthony, Neil R.

    The ubiquitous cross beta sheet peptide motif is implicated in numerous neurodegenerative diseases while at the same time offers remarkable potential for constructing isomorphic high-performance bionanomaterials. Despite an emerging understanding of the complex folding landscape of cross beta structures in determining disease etiology and final structure, we lack knowledge of the critical initial stages of nucleation and growth. In this dissertation, I advance our understanding of these key stages in the cross-beta nucleation and growth pathways using cutting-edge microscopy techniques. In addition, I present a new combined time-resolved fluorescence analysis technique with the potential to advance our current understanding of subtle molecular level interactions that play a pivotal role in peptide self-assembly. Using the central nucleating core of Alzheimer's Amyloid-beta protein, Abeta(16 22), as a model system, utilizing electron, time-resolved, and non-linear microscopy, I capture the initial and transient nucleation stages of peptide assembly into the cross beta motif. In addition, I have characterized the nucleation pathway, from monomer to paracrystalline nanotubes in terms of morphology and fluorescence lifetime, corroborating the predicted desolvation process that occurs prior to cross-beta nucleation. Concurrently, I have identified unique heterogeneous cross beta domains contained within individual nanotube structures, which have potential bionanomaterials applications. Finally, I describe a combined fluorescence theory and analysis technique that dramatically increases the sensitivity of current time-resolved techniques. Together these studies demonstrate the potential for advanced microscopy techniques in the identification and characterization of the cross-beta folding pathway, which will further our understanding of both amyloidogenesis and bionanomaterials.

  9. Review of Fluorescence-Based Velocimetry Techniques to Study High-Speed Compressible Flows

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Johansen, Criag; Inman, Jennifer A.; Jones, Stephen B.; Danehy, Paul M.

    2013-01-01

    This paper reviews five laser-induced fluorescence-based velocimetry techniques that have been used to study high-speed compressible flows at NASA Langley Research Center. The techniques discussed in this paper include nitric oxide (NO) molecular tagging velocimetry (MTV), nitrogen dioxide photodissociation (NO2-to-NO) MTV, and NO and atomic oxygen (O-atom) Doppler-shift-based velocimetry. Measurements of both single-component and two-component velocity have been performed using these techniques. This paper details the specific application and experiment for which each technique has been used, the facility in which the experiment was performed, the experimental setup, sample results, and a discussion of the lessons learned from each experiment.

  10. Quantitative comparison of multiframe data association techniques for particle tracking in time-lapse fluorescence microscopy.

    PubMed

    Smal, Ihor; Meijering, Erik

    2015-08-01

    Biological studies of intracellular dynamic processes commonly require motion analysis of large numbers of particles in live-cell time-lapse fluorescence microscopy imaging data. Many particle tracking methods have been developed in the past years as a first step toward fully automating this task and enabling high-throughput data processing. Two crucial aspects of any particle tracking method are the detection of relevant particles in the image frames and their linking or association from frame to frame to reconstruct the trajectories. The performance of detection techniques as well as specific combinations of detection and linking techniques for particle tracking have been extensively evaluated in recent studies. Comprehensive evaluations of linking techniques per se, on the other hand, are lacking in the literature. Here we present the results of a quantitative comparison of data association techniques for solving the linking problem in biological particle tracking applications. Nine multiframe and two more traditional two-frame techniques are evaluated as a function of the level of missing and spurious detections in various scenarios. The results indicate that linking techniques are generally more negatively affected by missing detections than by spurious detections. If misdetections can be avoided, there appears to be no need to use sophisticated multiframe linking techniques. However, in the practically likely case of imperfect detections, the latter are a safer choice. Our study provides users and developers with novel information to select the right linking technique for their applications, given a detection technique of known quality. PMID:26176413

  11. Shot noise limited detection of OH using the technique of laser induced fluorescence

    NASA Technical Reports Server (NTRS)

    Bakalyar, D. M.; Davis, L. I., Jr.; Guo, C.; James, J. V.; Kakos, S.; Morris, P. T.; Wang, C. C.

    1984-01-01

    Nearly shot-noise limited detection of OH using the technique of laser-induced fluorescence is reported. A LIDAR configuration is used to excite fluorescence in a large volume and a narrow-bandwidth interference filter provides spectral discrimination. This arrangement alleviates the effect of ozone interference and facilitates image processing at relatively close distances. The detection limit is determined mainly by the shot-noise of the solar background. Ground-based measurements in Dearborn indicate a detection limit of better than 1 x 10 to the 6th power OH/cubic cm over a forty-minute acquisition period. Under favorable conditions, a comparable detection limit was also observed for airborne measurements.

  12. Distribution of toxic elements in teeth treated with amalgam using μ-energy dispersive X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Guerra, M.; Ferreira, C.; Carvalho, M. L.; Santos, J. P.; Pessanha, S.

    2016-08-01

    Over the years, the presence of mercury in amalgam fillings has raised some safety concerns. Amalgam is one of the most commonly used tooth fillings and contains approximately 50% of elemental mercury and 50% of other metals, mostly silver, tin and copper. Amalgam can release small amounts of mercury vapor over time, and patients can absorb these vapors by inhaling or ingesting them. In this study, 10 human teeth treated with dental amalgam were analyzed using energy dispersive X-ray fluorescence (EDXRF) to study the diffusion of its constituents, Ag, Cu, Sn and Hg. The used EDXRF setup, makes use of a polycapillary lens to focus radiation up to 25 μm allowing the mapping of the elemental distribution in the samples. Quantification was performed using the inbuilt software based on the Fundamental Parameters method for bulk samples, considering a hydroxyapatite matrix. The teeth were longitudinally cut and each slice was scanned from the surface enamel to the inner region (dentin and pulp cavity). Mercury concentration profiles show strong levels of this element close to the amalgam region, decreasing significantly in the dentin, and increasing again up to 40,000 μg·g- 1 in the cavity were the pulp used to exist when the tooth was vital.

  13. Rapid determination of trace thiabendazole in apple juice utilizing dispersive liquid-liquid microextraction combined with fluorescence spectrophotometry.

    PubMed

    Li, Wei; Wang, Yuning; Huang, Limin; Wu, Ting; Hu, Huilian; Du, Yiping

    2015-09-01

    Food safety has become a large concern and prompts an urgent need for the development of rapid, simple and sensitive analytical methods that can monitor pesticide residues in foods. This study aimed to provide a method for quantitative determination of trace thiabendazole in apple juice. Due to its high sensitivity and selectivity, fluorescence spectrophotometry was utilized as a front end to dispersive liquid-liquid microextraction (DLLME). The experimental parameters that influenced the extraction were systematically investigated. Under optimum conditions, the whole procedure, including DLLME and analysis of one sample, was carried out within 5 min, and linearity was found in the 5-50 µg/L range with a correlation coefficient (r) of 0.9987. The limit of detection value was 2.2 µg/L. Good reproducibility was achieved based with a less than 4.5% relative standard deviation (RSD) for five replicates at different sample concentrations. This method was shown to be suitable for rapid and sensitive quantification of thiabendazole in apple juice. PMID:25645350

  14. Wavelength dispersive X-ray fluorescence analysis using fundamental parameter approach of Catha edulis and other related plant samples

    NASA Astrophysics Data System (ADS)

    Shaltout, Abdallah A.; Moharram, Mohammed A.; Mostafa, Nasser Y.

    2012-01-01

    This work is the first attempt to quantify trace elements in the Catha edulis plant (Khat) with a fundamental parameter approach. C. edulis is a famous drug plant in east Africa and Arabian Peninsula. We have previously confirmed that hydroxyapatite represents one of the main inorganic compounds in the leaves and stalks of C. edulis. Comparable plant leaves from basil, mint and green tea were included in the present investigation as well as trifolium leaves were included as a non-related plant. The elemental analyses of the plants were done by Wavelength Dispersive X-Ray Fluorescence (WDXRF) spectroscopy. Standard-less quantitative WDXRF analysis was carried out based on the fundamental parameter approaches. According to the standard-less analysis algorithms, there is an essential need for an accurate determination of the amount of organic material in the sample. A new approach, based on the differential thermal analysis, was successfully used for the organic material determination. The obtained results based on this approach were in a good agreement with the commonly used methods. Depending on the developed method, quantitative analysis results of eighteen elements including; Al, Br, Ca, Cl, Cu, Fe, K, Na, Ni, Mg, Mn, P, Rb, S, Si, Sr, Ti and Zn were obtained for each plant. The results of the certified reference materials of green tea (NCSZC73014, China National Analysis Center for Iron and Steel, Beijing, China) confirmed the validity of the proposed method.

  15. Determination of selenium at trace levels in geologic materials by energy-dispersive X-ray fluorescence spectrometry

    USGS Publications Warehouse

    Wahlberg, J.S.

    1981-01-01

    Low levels of selenium (0.1-500 ppm) in both organic and inorganic geologic materials can be semiquantitatively measured by isolating Se as a thin film for presentation to an energy-dispersive X-ray fluorescence spectrometer. Suitably pulverized samples are first digested by fusing with a mixture of Na2CO3 and Na2O2. The fusion cake is dissolved in distilled water, buffered with NH4Cl, and filtered to remove Si and the R2O3 group. A carrier solution of Na2TeO4, plus solid KI, hydrazine sulfate and Na2SO3, is added to the filtrate. The solution is then vacuum-filtered through a 0.45-??m pore-size filter disc. The filter, with the thin film of precipitate, is supported between two sheets of Mylar?? film for analysis. Good agreement is shown between data reported in this study and literature values reported by epithermal neutron-activation analysis and spectrofluorimetry. The method can be made quantitative by utilizing a secondary precipitation to assure complete recovery of the Se. The X-ray method offers fast turn-around time and a reasonably high production rate. ?? 1981.

  16. Two dimensional laser induced fluorescence spectroscopy: A powerful technique for elucidating rovibronic structure in electronic transitions of polyatomic molecules

    NASA Astrophysics Data System (ADS)

    Gascooke, Jason R.; Alexander, Ula N.; Lawrance, Warren D.

    2011-05-01

    We demonstrate the power of high resolution, two dimensional laser induced fluorescence (2D-LIF) spectroscopy for observing rovibronic transitions of polyatomic molecules. The technique involves scanning a tunable laser over absorption features in the electronic spectrum while monitoring a segment, in our case 100 cm-1 wide, of the dispersed fluorescence spectrum. 2D-LIF images separate features that overlap in the usual laser induced fluorescence spectrum. The technique is illustrated by application to the S1-S0 transition in fluorobenzene. Images of room temperature samples show that overlap of rotational contours by sequence band structure is minimized with 2D-LIF allowing a much larger range of rotational transitions to be observed and high precision rotational constants to be extracted. A significant advantage of 2D-LIF imaging is that the rotational contours separate into their constituent branches and these can be targeted to determine the three rotational constants individually. The rotational constants determined are an order of magnitude more precise than those extracted from the analysis of the rotational contour and we find the previously determined values to be in error by as much as 5% [G. H. Kirby, Mol. Phys. 19, 289 (1970), 10.1080/00268977000101291]. Comparison with earlier ab initio calculations of the S0 and S1 geometries [I. Pugliesi, N. M. Tonge, and M. C. R. Cockett, J. Chem. Phys. 129, 104303 (2008), 10.1063/1.2970092] reveals that the CCSD/6-311G** and RI-CC2/def2-TZVPP levels of theory predict the rotational constants, and hence geometries, with comparable accuracy. Two ground state Fermi resonances were identified by the distinctive patterns that such resonances produce in the images. 2D-LIF imaging is demonstrated to be a sensitive method capable of detecting weak spectral features, particularly those that are otherwise hidden beneath stronger bands. The sensitivity is demonstrated by observation of the three isotopomers of fluorobenzene

  17. Fluorescence dilution technique for measurement of albumin reflection coefficient in isolated glomeruli.

    PubMed

    Fan, Fan; Chen, Chun Cheng Andy; Zhang, Jin; Schreck, Carlos M N; Roman, Eric A; Williams, Jan M; Hirata, Takashi; Sharma, Mukut; Beard, Daniel A; Savin, Virginia J; Roman, Richard J

    2015-12-15

    This study describes a high-throughput fluorescence dilution technique to measure the albumin reflection coefficient (σAlb) of isolated glomeruli. Rats were injected with FITC-dextran 250 (75 mg/kg), and the glomeruli were isolated in a 6% BSA solution. Changes in the fluorescence of the glomerulus due to water influx in response to an imposed oncotic gradient was used to determine σAlb. Adjustment of the albumin concentration of the bath from 6 to 5, 4, 3, and 2% produced a 10, 25, 35, and 50% decrease in the fluorescence of the glomeruli. Pretreatment of glomeruli with protamine sulfate (2 mg/ml) or TGF-β1 (10 ng/ml) decreased σAlb from 1 to 0.54 and 0.48, respectively. Water and solute movement were modeled using Kedem-Katchalsky equations, and the measured responses closely fit the predicted behavior, indicating that loss of albumin by solvent drag or diffusion is negligible compared with the movement of water. We also found that σAlb was reduced by 17% in fawn hooded hypertensive rats, 33% in hypertensive Dahl salt-sensitive (SS) rats, 26% in streptozotocin-treated diabetic Dahl SS rats, and 21% in 6-mo old type II diabetic nephropathy rats relative to control Sprague-Dawley rats. The changes in glomerular permeability to albumin were correlated with the degree of proteinuria in these strains. These findings indicate that the fluorescence dilution technique can be used to measure σAlb in populations of isolated glomeruli and provides a means to assess the development of glomerular injury in hypertensive and diabetic models. PMID:26447220

  18. Odour emissions from a waste treatment plant using an inverse dispersion technique

    NASA Astrophysics Data System (ADS)

    Schauberger, Günther; Piringer, Martin; Knauder, Werner; Petz, Erwin

    2011-03-01

    The determination of the in situ emission rate of pollution sources can often not be done directly. In the absence of emission measurements, the emission rate of the source can be assessed by an inverse dispersion technique using ambient concentration measurements and meteorological parameters as input. The dispersion model used is the Austrian regulatory Gaussian model. The method is applied to a thermal waste recycling plant. Seven chemical species (butyl acetate, benzene, ethyl acetate, toluene, m/p-xylene, o-xylene and α-pinene), are identified as odorants and measured over a period of 1½ years in the prevailing wind direction leeward of the plant. The overall odour emission rate is calculated by adding the odour emission rate of all single species, using the individual odour threshold concentration. The estimated odour emission rates range between 206 and 8950 OU s -1, caused by the wide variety of the odour thresholds of the seven species. The higher value is in the upper range of odour emission rates of modern thermal treatment plants for waste.

  19. Experimental verification of dispersed fringe sensing as a segment phasing technique using the Keck telescope.

    PubMed

    Shi, Fang; Chanan, Gary; Ohara, Catherine; Troy, Mitchell; Redding, David C

    2004-08-10

    Dispersed fringe sensing (DFS) is an efficient and robust method for coarse phasing of segmented primary mirrors (from one quarter of a wavelength to as much as the depth of focus of a single segment, typically several tens of microns). Unlike phasing techniques currently used for ground-based segmented telescopes, DFS does not require the use of edge sensors in order to sense changes in the relative heights of adjacent segments; this makes it particularly well suited for phasing of space-borne segmented telescopes, such as the James Webb Space Telescope. We validate DFS by using it to measure the piston errors of the segments of one of the Keck telescopes. The results agree with those of the Shack-Hartmann-based phasing scheme currently in use at Keck to within 2% over a range of initial piston errors of +/-16 microm. PMID:15376423

  20. Identification Of Natural Dyes On Archaeological Textile Objects Using Laser Induced Fluorescent Technique

    SciTech Connect

    Abdel-Kareem, O.; Eltokhy, A.; Harith, M. A.

    2011-09-22

    This study aims to evaluate the use of Laser Fluorescent as a non-destructive technique for identification of natural dyes on archaeological textile objects. In this study wool textile samples were dyed with 10 natural dyes such as cochineal, cutch, henna, indigo, Lac, madder, safflower, saffron, sumac and turmeric. These dyes common present on archaeological textile objects to be used as standard dyed textile samples. These selected natural dyes will be used as known references that can be used a guide to identify unknown archaeological dyes. The dyed textile samples were investigated with laser radiation in different wavelengths to detect the best wavelengths for identification each dye. This study confirms that Laser Florescent is very useful and a rapid technique can be used as a non-destructive technique for identification of natural dyes on archaeological textile objects. The results obtained with this study can be a guide for all conservators in identification of natural organic dyes on archaeological textile objects.

  1. Identification Of Natural Dyes On Archaeological Textile Objects Using Laser Induced Fluorescent Technique

    NASA Astrophysics Data System (ADS)

    Abdel-Kareem, O.; Eltokhy, A.; Harith, M. A.

    2011-09-01

    This study aims to evaluate the use of Laser Fluorescent as a non-destructive technique for identification of natural dyes on archaeological textile objects. In this study wool textile samples were dyed with 10 natural dyes such as cochineal, cutch, henna, indigo, Lac, madder, safflower, saffron, sumac and turmeric. These dyes common present on archaeological textile objects to be used as standard dyed textile samples. These selected natural dyes will be used as known references that can be used a guide to identify unknown archaeological dyes. The dyed textile samples were investigated with laser radiation in different wavelengths to detect the best wavelengths for identification each dye. This study confirms that Laser Florescent is very useful and a rapid technique can be used as a non-destructive technique for identification of natural dyes on archaeological textile objects. The results obtained with this study can be a guide for all conservators in identification of natural organic dyes on archaeological textile objects.

  2. Monte Carlo uncertainty analyses of a bLS inverse-dispersion technique for measuring gas emissions from livestock operations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The backward Lagrangian stochastic (bLS) inverse-dispersion technique has been used to measure fugitive gas emissions from livestock operations. The accuracy of the bLS technique, as indicated by the percentages of gas recovery in various tracer-release experiments, has generally been within ± 10% o...

  3. Detection of citrus canker and Huanglongbing using fluorescence imaging spectroscopy and support vector machine technique.

    PubMed

    Wetterich, Caio Bruno; Felipe de Oliveira Neves, Ruan; Belasque, José; Marcassa, Luis Gustavo

    2016-01-10

    Citrus canker and Huanglongbing (HLB) are citrus diseases that represent a serious threat to the citrus production worldwide and may cause large economic losses. In this work, we combined fluorescence imaging spectroscopy (FIS) and a machine learning technique to discriminate between these diseases and other ordinary citrus conditions that may be present at citrus orchards, such as citrus scab and zinc deficiency. Our classification results are highly accurate when discriminating citrus canker from citrus scab (97.8%), and HLB from zinc deficiency (95%). These results show that it is possible to accurately identify citrus diseases that present similar symptoms. PMID:26835778

  4. Evaluation of a fluorescent lectin-based staining technique for some acidophilic mining bacteria.

    PubMed

    Fife, D J; Bruhn, D F; Miller, K S; Stoner, D L

    2000-05-01

    A fluorescence-labeled wheat germ agglutinin staining technique (R. K. Sizemore et al., Appl. Environ. Microbiol. 56:2245-2247, 1990) was modified and found to be effective for staining gram-positive, acidophilic mining bacteria. Bacteria identified by others as being gram positive through 16S rRNA sequence analyses, yet clustering near the divergence of that group, stained weakly. Gram-negative bacteria did not stain. Background staining of environmental samples was negligible, and pyrite and soil particles in the samples did not interfere with the staining procedure. PMID:10788401

  5. Oxygen diffusion into multiwalled carbon nanotube doped polystrene latex films using fluorescence technique.

    PubMed

    Yargı, Onder; Uğur, Saziye; Pekcan, Onder

    2013-05-01

    This study examines the oxygen diffusion into polystyrene (PS) latex/multiwalled carbon nanotube (MWNT) nanocomposite films (PS/MWNT) consisting of various amounts of MWNT via steady state fluorescence technique (SSF). PS/MWNT films were prepared from the mixture of MWNT and pyrene (P)-labeled PS latexes at various compositions at room temperature. These films were then annealed at 170 °C above glass transition (Tg) temperature of PS. Fluorescence quenching measurements were performed for each film separately to evaluate the effect of MWNT content on oxygen diffusion. The Stern-Volmer equation for fluorescence quenching is combined with Fick's law for diffusion to derive the mathematical expressions. Diffusion coefficients (D) were produced and found to be increased from 1.1 × 10(-12) to 41 × 10(-12) cm(2)s(-1) with increasing MWNT content. This increase was explained via the existence of large amounts of pores in composite films which facilitate oxygen penetration into the structure. PMID:23334487

  6. Energy dispersive X-ray fluorescence analysis of ancient coins: The case of Greek silver drachmae from the Emporion site in Spain

    NASA Astrophysics Data System (ADS)

    Pitarch, A.; Queralt, I.

    2010-05-01

    Greek colonizers arrived at the Iberian Peninsula at the beginning of the sixth century B.C. and founded a small colony known as Emporion in north-east Spain. By the fifth century B.C., this colony became a small polis with a well-organized administrative structure. In this context, the necessity of coinage was a fact and the first coins were minted [1]. Some of these coins were characterized by using energy dispersive X-ray fluorescence equipment. The analytical study focused on the elemental characterization of the coins minted from the fourth century to the first century B.C. and their compositional evolution during this period. The investigation has pointed out a very high fineness of the alloys throughout the time, with an average silver content around 98.32%, and the feasibility of energy dispersive X-ray fluorescence as a screening tool for the characterization of the alloys.

  7. Validation and evaluation of a novel time-resolved laser-induced fluorescence technique

    NASA Astrophysics Data System (ADS)

    Durot, C. J.; Gallimore, A. D.; Smith, T. B.

    2014-01-01

    We present a novel technique to measure time-resolved laser-induced fluorescence signals in plasma sources that have a relatively constant Fourier spectrum of oscillations in steady-state operation, but are not periodically pulsed, e.g., Hall thrusters. The technique uses laser modulation of the order of MHz and recovers signal via a combination of band-pass filtering, phase-sensitive detection, and averaging over estimated transfer functions calculated for many different cycles of the oscillation. Periodic discharge current oscillations were imposed on a hollow cathode. Measurements were validated by comparison with independent measurements from a lock-in amplifier and by comparing the results of the transfer function average to an independent analysis technique triggering averaging over many oscillation cycles in the time domain. The performance of the new technique is analyzed and compared to prior techniques, and it is shown that this new technique has a niche in measurements where the analog photomultiplier signal has a nonwhite noise spectral density and cycles of oscillation are not sufficiently repeatable to allow for reliable triggering or a meaningful average waveform in the time domain.

  8. Validation and evaluation of a novel time-resolved laser-induced fluorescence technique.

    PubMed

    Durot, C J; Gallimore, A D; Smith, T B

    2014-01-01

    We present a novel technique to measure time-resolved laser-induced fluorescence signals in plasma sources that have a relatively constant Fourier spectrum of oscillations in steady-state operation, but are not periodically pulsed, e.g., Hall thrusters. The technique uses laser modulation of the order of MHz and recovers signal via a combination of band-pass filtering, phase-sensitive detection, and averaging over estimated transfer functions calculated for many different cycles of the oscillation. Periodic discharge current oscillations were imposed on a hollow cathode. Measurements were validated by comparison with independent measurements from a lock-in amplifier and by comparing the results of the transfer function average to an independent analysis technique triggering averaging over many oscillation cycles in the time domain. The performance of the new technique is analyzed and compared to prior techniques, and it is shown that this new technique has a niche in measurements where the analog photomultiplier signal has a nonwhite noise spectral density and cycles of oscillation are not sufficiently repeatable to allow for reliable triggering or a meaningful average waveform in the time domain. PMID:24517766

  9. Spectral fluorescence signature techniques and absorption measurements for continuous monitoring of biofuel-producing microalgae cultures

    NASA Astrophysics Data System (ADS)

    Martín de la Cruz, M. C.; Gonzalez Vilas, L.; Yarovenko, N.; Spyrakos, E.; Torres Palenzuela, J. M.

    2013-08-01

    Biofuel production from microalgae can be both sustainable and economically viable. Particularly in the case of algal growth in wastewater an extra benefit is the removal or biotransformation of pollutants from these types of waters. A continuous monitoring system of the microalgae status and the concentration of different wastewater contaminants could be of great help in the biomass production and the water characterisation. In this study we present a system where spectral fluorescence signature (SFS) techniques are used along with absorption measurements to monitor microalgae cultures in wastewater and other mediums. This system aims to optimise the microalgae production for biofuel applications or other uses and was developed and tested in prototype indoor photo-bioreactors at the University of Vigo. SFS techniques were applied using the fluorescence analyser INSTAND-SCREENER developed by Laser Diagnostic Instruments AS. INSTAND-SCREENER permits wavelength scanning in two modes, one in UV and another in VIS. In parallel, it permits the on-line monitoring and rapid analysis of both water quality and phytoplankton status without prior treatment of the sample. Considering that different contaminants and microalgae features (density, status etc.) have different spectral signatures of fluorescence and absorption properties, it is possible to characterise them developing classification libraries. Several algorithms were used for the classification. The implementation of this system in an outdoor raceway reactor in a Spanish wastewater treatment plant is also discussed. This study was part of the Project EnerBioAlgae (http://www.enerbioalgae.com/), which was funded by the Interreg SUDOE and led by the University of Vigo.

  10. High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity

    SciTech Connect

    Wang, Xin

    1996-12-01

    X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXAFS). The spin polarization in K fluorescence could be used to generate spin selective XANES or spin-polarized EXAFS, which provides a new measure of the spin density, or the nature of magnetic neighboring atoms. Finally, dramatic line-sharpening effects by the combination of absorption and emission processes allow observation of structure that is normally unobservable. All these unique characters can enormously simplify a complex x-ray spectrum. Applications of this novel technique have generated information from various transition-metal model compounds to metalloproteins. The absorption and emission spectra by high resolution fluorescence detection are interdependent. The ligand field multiplet model has been used for the analysis of K{alpha} and K{beta} emission spectra. First demonstration on different chemical states of Fe compounds has shown the applicability of site selectivity and spin polarization. Different interatomic distances of the same element in different chemical forms have been detected using site-selective EXAFS.

  11. Invited Review Article: Imaging techniques for harmonic and multiphoton absorption fluorescence microscopy

    PubMed Central

    Carriles, Ramón; Schafer, Dawn N.; Sheetz, Kraig E.; Field, Jeffrey J.; Cisek, Richard; Barzda, Virginijus; Sylvester, Anne W.; Squier, Jeffrey A.

    2009-01-01

    We review the current state of multiphoton microscopy. In particular, the requirements and limitations associated with high-speed multiphoton imaging are considered. A description of the different scanning technologies such as line scan, multifoci approaches, multidepth microscopy, and novel detection techniques is given. The main nonlinear optical contrast mechanisms employed in microscopy are reviewed, namely, multiphoton excitation fluorescence, second harmonic generation, and third harmonic generation. Techniques for optimizing these nonlinear mechanisms through a careful measurement of the spatial and temporal characteristics of the focal volume are discussed, and a brief summary of photobleaching effects is provided. Finally, we consider three new applications of multiphoton microscopy: nonlinear imaging in microfluidics as applied to chemical analysis and the use of two-photon absorption and self-phase modulation as contrast mechanisms applied to imaging problems in the medical sciences. PMID:19725639

  12. Vibrational techniques applied to photosynthesis: Resonance Raman and fluorescence line-narrowing.

    PubMed

    Gall, Andrew; Pascal, Andrew A; Robert, Bruno

    2015-01-01

    Resonance Raman spectroscopy may yield precise information on the conformation of, and the interactions assumed by, the chromophores involved in the first steps of the photosynthetic process. Selectivity is achieved via resonance with the absorption transition of the chromophore of interest. Fluorescence line-narrowing spectroscopy is a complementary technique, in that it provides the same level of information (structure, conformation, interactions), but in this case for the emitting pigment(s) only (whether isolated or in an ensemble of interacting chromophores). The selectivity provided by these vibrational techniques allows for the analysis of pigment molecules not only when they are isolated in solvents, but also when embedded in soluble or membrane proteins and even, as shown recently, in vivo. They can be used, for instance, to relate the electronic properties of these pigment molecules to their structure and/or the physical properties of their environment. These techniques are even able to follow subtle changes in chromophore conformation associated with regulatory processes. After a short introduction to the physical principles that govern resonance Raman and fluorescence line-narrowing spectroscopies, the information content of the vibrational spectra of chlorophyll and carotenoid molecules is described in this article, together with the experiments which helped in determining which structural parameter(s) each vibrational band is sensitive to. A selection of applications is then presented, in order to illustrate how these techniques have been used in the field of photosynthesis, and what type of information has been obtained. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems. PMID:25268562

  13. Finite-difference time-domain-based optical microscopy simulation of dispersive media facilitates the development of optical imaging techniques

    NASA Astrophysics Data System (ADS)

    Zhang, Di; Capoglu, Ilker; Li, Yue; Cherkezyan, Lusik; Chandler, John; Spicer, Graham; Subramanian, Hariharan; Taflove, Allen; Backman, Vadim

    2016-06-01

    Combining finite-difference time-domain (FDTD) methods and modeling of optical microscopy modalities, we previously developed an open-source software package called Angora, which is essentially a "microscope in a computer." However, the samples being simulated were limited to nondispersive media. Since media dispersions are common in biological samples (such as cells with staining and metallic biomarkers), we have further developed a module in Angora to simulate samples having complicated dispersion properties, thereby allowing the synthesis of microscope images of most biological samples. We first describe a method to integrate media dispersion into FDTD, and we validate the corresponding Angora dispersion module by applying Mie theory, as well as by experimentally imaging gold microspheres. Then, we demonstrate how Angora can facilitate the development of optical imaging techniques with a case study.

  14. Standoff detection: classification of biological aerosols using laser induced fluorescence (LIF) technique

    NASA Astrophysics Data System (ADS)

    Hausmann, Anita; Duschek, Frank; Fischbach, Thomas; Pargmann, Carsten; Aleksejev, Valeri; Poryvkina, Larisa; Sobolev, Innokenti; Babichenko, Sergey; Handke, Jürgen

    2014-05-01

    The challenges of detecting hazardous biological materials are manifold: Such material has to be discriminated from other substances in various natural surroundings. The detection sensitivity should be extremely high. As living material may reproduce itself, already one single bacterium may represent a high risk. Of course, identification should be quite fast with a low false alarm rate. Up to now, there is no single technique to solve this problem. Point sensors may collect material and identify it, but the problems of fast identification and especially of appropriate positioning of local collectors are sophisticated. On the other hand, laser based standoff detection may instantaneously provide the information of some accidental spillage of material by detecting the generated thin cloud. LIF technique may classify but hardly identify the substance. A solution can be the use of LIF technique in a first step to collect primary data and - if necessary- followed by utilizing these data for an optimized positioning of point sensors. We perform studies on an open air laser test range at distances between 20 and 135 m applying LIF technique to detect and classify aerosols. In order to employ LIF capability, we use a laser source emitting two wavelengths alternatively, 280 and 355 nm, respectively. Moreover, the time dependence of fluorescence spectra is recorded by a gated intensified CCD camera. Signal processing is performed by dedicated software for spectral pattern recognition. The direct comparison of all results leads to a basic classification of the various compounds.

  15. A Lanczos model-order reduction technique to efficiently simulate electromagnetic wave propagation in dispersive media

    NASA Astrophysics Data System (ADS)

    Zimmerling, Jörn; Wei, Lei; Urbach, Paul; Remis, Rob

    2016-06-01

    In this paper we present a Krylov subspace model-order reduction technique for time- and frequency-domain electromagnetic wave fields in linear dispersive media. Starting point is a self-consistent first-order form of Maxwell's equations and the constitutive relation. This form is discretized on a standard staggered Yee grid, while the extension to infinity is modeled via a recently developed global complex scaling method. By applying this scaling method, the time- or frequency-domain electromagnetic wave field can be computed via a so-called stability-corrected wave function. Since this function cannot be computed directly due to the large order of the discretized Maxwell system matrix, Krylov subspace reduced-order models are constructed that approximate this wave function. We show that the system matrix exhibits a particular physics-based symmetry relation that allows us to efficiently construct the time- and frequency-domain reduced-order models via a Lanczos-type reduction algorithm. The frequency-domain models allow for frequency sweeps meaning that a single model provides field approximations for all frequencies of interest and dominant field modes can easily be determined as well. Numerical experiments for two- and three-dimensional configurations illustrate the performance of the proposed reduction method.

  16. Identification of scleractinian coral recruits using fluorescent censusing and DNA barcoding techniques.

    PubMed

    Hsu, Chia-Min; de Palmas, Stéphane; Kuo, Chao-Yang; Denis, Vianney; Chen, Chaolun Allen

    2014-01-01

    The identification of coral recruits has been problematic due to a lack of definitive morphological characters being available for higher taxonomic resolution. In this study, we tested whether fluorescent detection of coral recruits used in combinations of different DNA-barcoding markers (cytochrome oxidase I gene [COI], open reading frame [ORF], and nuclear Pax-C intron [PaxC]) could be useful for increasing the resolution of coral spat identification in ecological studies. One hundred and fifty settlement plates were emplaced at nine sites on the fringing reefs of Kenting National Park in southern Taiwan between April 2011 and September 2012. A total of 248 living coral spats and juveniles (with basal areas ranging from 0.21 to 134.57 mm(2)) were detected on the plates with the aid of fluorescent light and collected for molecular analyses. Using the COI DNA barcoding technique, 90.3% (224/248) of coral spats were successfully identified into six genera, including Acropora, Isopora, Montipora, Pocillopora, Porites, and Pavona. PaxC further separated I. cuneata and I. palifera of Isopora from Acropora, and ORF successfully identified the species of Pocillopora (except P. meandrina and P. eydouxi). Moreover, other cnidarian species such as actinarians, zoanthids, and Millepora species were visually found using fluorescence and identified by COI DNA barcoding. This combination of existing approaches greatly improved the taxonomic resolution of early coral life stages, which to date has been mainly limited to the family level based on skeletal identification. Overall, this study suggests important improvements for the identification of coral recruits in ecological studies. PMID:25211345

  17. Identification of Scleractinian Coral Recruits Using Fluorescent Censusing and DNA Barcoding Techniques

    PubMed Central

    Hsu, Chia-Min; de Palmas, Stéphane; Kuo, Chao-Yang; Denis, Vianney; Chen, Chaolun Allen

    2014-01-01

    The identification of coral recruits has been problematic due to a lack of definitive morphological characters being available for higher taxonomic resolution. In this study, we tested whether fluorescent detection of coral recruits used in combinations of different DNA-barcoding markers (cytochrome oxidase I gene [COI], open reading frame [ORF], and nuclear Pax-C intron [PaxC]) could be useful for increasing the resolution of coral spat identification in ecological studies. One hundred and fifty settlement plates were emplaced at nine sites on the fringing reefs of Kenting National Park in southern Taiwan between April 2011 and September 2012. A total of 248 living coral spats and juveniles (with basal areas ranging from 0.21 to 134.57 mm2) were detected on the plates with the aid of fluorescent light and collected for molecular analyses. Using the COI DNA barcoding technique, 90.3% (224/248) of coral spats were successfully identified into six genera, including Acropora, Isopora, Montipora, Pocillopora, Porites, and Pavona. PaxC further separated I. cuneata and I. palifera of Isopora from Acropora, and ORF successfully identified the species of Pocillopora (except P. meandrina and P. eydouxi). Moreover, other cnidarian species such as actinarians, zoanthids, and Millepora species were visually found using fluorescence and identified by COI DNA barcoding. This combination of existing approaches greatly improved the taxonomic resolution of early coral life stages, which to date has been mainly limited to the family level based on skeletal identification. Overall, this study suggests important improvements for the identification of coral recruits in ecological studies. PMID:25211345

  18. Glutardialdehyde induced fluorescence technique (GIFT): a new method for the imaging of platelet adhesion on biomaterials.

    PubMed

    Frank, R D; Dresbach, H; Thelen, H; Sieberth, H G

    2000-11-01

    One of the major limitations of biomaterials used in medicine is the adhesion and subsequent activation of platelets upon contact with blood. The development of new or modified materials necessitates adequate methods for the detection and quantification of platelet/material interactions. These interactions are commonly investigated by means of scanning electron microscopy (SEM), radioisotope and immunological techniques, or by quantification of released platelet contents. Given the lack of a simple, rapid, and inexpensive assay, we developed a novel method for the accurate assessment of platelet adhesion after contact with foreign surfaces, which enables quantitative measurements as well as imaging of the platelet shape change, and which omits conventional or immunological staining and time-consuming preparative steps. The glutardialdehyde induced fluorescence technique (GIFT) uses the epifluorescence of glutardialdehyde-fixed platelets detected by fluorescence microscopy and is suitable for opaque and transparent materials. Combined with computer-aided image analysis, numbers of adherent platelets, platelet-covered surface, and average platelet spread area can be determined as markers of surface thrombogenicity. To validate the technique, four materials of different thrombogenicity [polypropylene (PP), poly(D,L-lactide) (PDLLA), 2-hydroxyethyl-methacrylate-grafted PDLLA (PDLLA-HEMA), and heparin-coupled PDLLA-HEMA] were investigated by GIFT and SEM. We found concordant results with SEM and GIFT with the following ranking of thrombogenicity: PP > PDLLA > PDLLA-HEMA > or = PDLLA-HEMA-heparin. GIFT significantly discriminated between the investigated materials. The surface modifications led to improved thromboresistance with reduced platelet adhesion and shape change. The main advantages of GIFT as compared with SEM are: no vacuum-drying or dehydration, less time-consuming procedure, fixation and fluorescence "staining" in one step, and suitability for computer

  19. Assessment of damage accumulation in thermal barrier coatings using a fluorescent dye infiltration technique

    NASA Astrophysics Data System (ADS)

    Barber, B.; Jordan, E.; Gell, M.; Geary, A.

    1999-03-01

    Thermal barrier coatings, used extensively on hot section gas turbine engine components, weaken and spall after repeated thermal exposure during normal engine operation. A new technique has been developed, involving the use of vacuum impregnation of the porous ceramic with a mixture of epoxy and fluorescent dye (rhodamine-B) and the ASTM C 633 79 direct pull test, to preserve and reveal incipient damage and accumulated damage prior to spallation in thermal barrier coatings. Excellent definition of damage is provided by the dye in electron beam physical vapor deposited coatings, but the damage is more difficult to distinguish in the highly porous plasma coatings. Image processing is used to quantify the area fraction of debonding. For the electron beam physical vapor deposited yttria-stabilized zirconia coating evaluated, a local area fraction of debonding of up to 20% was observed at 80% of spallation life.

  20. Applications of surface analytical techniques for study of the interactions between mercury and fluorescent lamp materials.

    PubMed

    Dang, Twan A; Frisk, T A; Grossman, M W

    2002-08-01

    Several surface analytical techniques, including electron spectroscopy for chemical analysis (ESCA)(X-ray photoelectron spectroscopy) and sputtered neutral mass spectrometry (SNMS), were used to study the interaction between Hg and other components of fluorescent lamps, a very critical issue in lighting industries. Active sites, responsible for Hg interaction/deposition, can be successfully identified by comparing the x- y distribution (obtained by ESCA mapping) and depth distribution (available through SNMS) of respective lamp components with that of Hg. A correlation in both depth and x- y distribution is strong evidence of site preference for Hg interaction/deposition. A burial mechanism is, however, proposed when only depth distribution, not x- y, is correlated. Other modes of ESCA (high resolution, angle-resolved, etc.) were also helpful. Information about the valence states of the interacted Hg species would help to define the nature of the interaction. PMID:12185568

  1. Dispersed fluorescence spectrometry from the VIS to VUV spectral range for experiments at heavy-ion storage facilities

    NASA Astrophysics Data System (ADS)

    Reiß, Philipp; Schmidt, Philipp; Ozga, Christian; Knie, André; Ehresmann, Arno

    2015-11-01

    For the electronic- and charge-state specific determination of VUV-VIS fluorescence emission cross sections after collisions between heavy ions and neutral gases or electrons a fluorescence spectrometer for the VUV-VIS spectral range is planned. Tentative experiments showed that signal rates after collisions between Xe atoms and {{Xe}}54+ ions are high enough to allow efficient experiments.

  2. Simultaneous measurements of mobility, dispersion, and orientation of DNA during steady-field gel electrophoresis coupling a fluorescence recovery after photobleaching apparatus with a fluorescence detected linear dichroism setup

    NASA Astrophysics Data System (ADS)

    Tinland, B.; Meistermann, L.; Weill, G.

    2000-06-01

    Orientation of molecules is responsible for the loss of separability during steady-field gel electrophoresis. In this work we develop a technique to measure simultaneously the relevant parameters involved in the separation mechanism: electrophoretic mobility, band broadening, and molecular orientation. To do that we have associated a fluorescence recovery after photobleaching (FRAP) apparatus with a fluorescence detected linear dichroism setup. This coupling allows one to follow the buildup of orientation during the FRAP experiment. Because orientation involves a change in the angular distribution of fluorescence, we have added a fluorescence polarization setup which can be used in parallel with the FRAP and gives an exact value of the steady-state orientation factor. We illustrate the possibilities of these combined experiments by analyzing the coupling of electrophoretic transport and orientation of λ DNA in 1% agarose gels.

  3. Signal processing techniques for recovering input waveforms in dispersive Lamb wave propagation

    NASA Astrophysics Data System (ADS)

    Jeong, Hyunjo

    2014-02-01

    Lamb waves are extensively used in plate-like structure inspection because of their guided nature. However, their dispersive properties often limit their use in flaw detection and other applications. Dispersion weakens and defocuses interrogating Lamb waves and makes it difficult to accurately interpret signals reflected from defects or boundaries. Time reversal (TR) processing can be applied to compensate for the effect of dispersive Lamb waves. Thus, the TR operation will enable the amplification of dispersive Lamb wave signals by signal compression in time. In this study, experiments are performed in order to examine the refocusing and recovering the initial input waveform in the long range propagation of dispersive Lamb waves in a plate. Two different time reversal processes (regular TR and reciprocal TR or inverse filtering) are tested and the experimental results are compared.

  4. Remote measurement of photosynthetic efficiency using laser induced fluorescence transient (LIFT) technique.

    NASA Astrophysics Data System (ADS)

    Pieruschka, R.; Rascher, U.; Klimov, D.; Kolber, Z. S.; Berry, J. A.

    2007-12-01

    An understanding of spatial and temporal diversity of photosynthetic processes, water and energy exchange of complex plant canopies is essential for carbon and climate models. Remote sensing from space or aircraft platforms provides the only practical way to characterize the vast extent of plant canopies around the globe, but the basis for relating physiological processes to remote sensing is still largely theoretical. Experiments that bridge this gap are needed. Chlorophyll fluorescence measurements have been widely applied to quantify photosynthetic efficiency and non- photochemical energy dissipation non-destructively in photosynthetically active organisms. The most commonly used Pulse Amplitude Modulated (PAM) technique provides a saturating light pulse and is not practical at the canopy scale. We report here on a recently developed technique, Laser Induced Fluorescence Transient (LIFT), capable of remote measurement of photosynthetic efficiency of selected leaves at a distance of up to 50 m and we present here continuous studies on plans growing under natural conditions during the beginning of the winter season and the onset of summer drought in this Mediterranean climate. i) Lichens showed a strong diurnal variation in photosynthetic efficiency which correlated with relative humidity; ii) Photosynthetic efficiency of annual grass decreased with progressing drought stress; iii) An oak canopy showed very little variation of quantum yield from leaf out in spring to summer; iv) The combined effect of low temperature and high light intensity during an early winter strongly reduced the photosynthetic efficiency of four different species in response to chilling stress. These measures with the LIFT correlated well with (more limited) sampling by PAM fluoromentry and gas exchange. The ability to make continuous, automatic and remote measurements of photosynthetic efficiency of leaves with the LIFT provides a new approach for studying the heterogeneity of

  5. Detection of Biomass in New York City Aerosols: Light Scattering and Optical Fluorescence Techniques

    NASA Astrophysics Data System (ADS)

    Niebauer, M.; Alimova, A.; Katz, A.; Xu, M.; Rudolph, E.; Steiner, J.; Alfano, R. R.

    2005-12-01

    Optical spectroscopy is an ideal method for detecting bacteria and spores in real time. Optical fluorescence spectroscopy examination of New York City aerosols is used to quantify the mass of bacteria spores present in air masses collected at 14 liters/minute onto silica fiber filters, and on silica fiber ribbons using an Environmental Beta Attenuation Monitor manufactured by MetOne Instruments configured for the PM2.5 fraction. Dipicolinic acid (DPA), a molecule found primarily in bacterial spores, is the most characteristic component of spores in trial experiments on over 200 collected aerosol samples. DPA is extracted from the spores using a heat bath and chelated with Terbium. The DPA:Tb is detected by measuring its characteristic fluorescence with emission bands at 490, 545 and 585 nm for 270 nm excitation. Light scattering also measures the size distribution for a number of a variety of bacteria - Bacillus subtilis (rod shaped), Staphylococcus aureus (spherical) and Pseudomonas aeruginosa (short rods) establishing that optical techniques satisfactorily distinguish populations based on their variable morphology. Size and morphology are obtained by applying a variation of the Gaussian Ray Approximation theory of anomalous diffraction theory to an analysis of the transmission spectra in the range of 0.4 to 1.0 microns. In test experiments, the refractive index of the inner spore core of Bacillus subtilis decreases from 1.51 to 1.39 while the spore radius enlarges from 0.38 to 0.6 micrometers. Optical determinations are verified by oil-immersion techniques and by scanning electron microscope measurements. Characterization of spores, germinating spore materials, and bacteria is considered vital to tracing bacteria in the environment, for the development of life-detection systems for planetary exploration, monitoring pathogens in environmental systems, and for the preparation of anti-terrorism strategies.

  6. Portable X-ray fluorescence spectroscopy as a rapid screening technique for analysis of TiO2 and ZnO in sunscreens

    NASA Astrophysics Data System (ADS)

    Bairi, Venu Gopal; Lim, Jin-Hee; Quevedo, Ivan R.; Mudalige, Thilak K.; Linder, Sean W.

    2016-02-01

    This investigation reports a rapid and simple screening technique for the quantification of titanium and zinc in commercial sunscreens using portable X-ray fluorescence spectroscopy (pXRF). A highly evolved technique, inductively coupled plasma-mass spectroscopy (ICP-MS) was chosen as a comparative technique to pXRF, and a good correlation (r2 > 0.995) with acceptable variations (≤ 25%) in results between both techniques was observed. Analytical figures of merit such as detection limit, quantitation limit, and linear range of the method are reported for the pXRF technique. This method has a good linearity (r2 > 0.995) for the analysis of titanium (Ti) in the range of 0.4-14.23 wt%, and zinc (Zn) in the range of 1.0-23.90 wt%. However, most commercial sunscreens contain organic ingredients, and these ingredients are known to cause matrix effects. The development of appropriate matrix matched working standards to obtain the calibration curve was found to be a major challenge for the pXRF measurements. In this study, we have overcome the matrix effect by using metal-free commercial sunscreens as a dispersing media for the preparation of working standards. An easy extension of this unique methodology for preparing working standards in different matrices was also reported. This method is simple, rapid, and cost-effective and, in comparison to conventional techniques (e.g., ICP-MS), did not generate toxic wastes during sample analysis.

  7. Development of a fluorescent in situ hybridization (FISH) technique for visualizing CGMMV in plant tissues.

    PubMed

    Shargil, D; Zemach, H; Belausov, E; Lachman, O; Kamenetsky, R; Dombrovsky, A

    2015-10-01

    Cucumber green mottle mosaic virus (CGMMV), which belongs to the genus Tobamovirus, is a major pathogen of cucurbit crops grown indoors and in open fields. Currently, immunology (e.g., ELISA) and molecular amplification techniques (e.g., RT-PCR) are employed extensively for virus detection in plant tissues and commercial seed lots diagnostics. In this study, a fluorescent in situ hybridization (FISH) technique, using oligonucleotides whose 5'-terminals were labeled with red cyanine 3 (Cy3) or green fluorescein isothiocyanate (FITC), was developed for the visualization of the pathogen in situ. This simple and reliable method allows detection and localization of CGMMV in the vegetative and reproductive tissues of cucumber and melon. When this technique was applied in male flowers, anther tissues were found to be infected; whereas the pollen grains were found to be virus-free. These results have meaningful epidemiological implications for the management of CGMMV, particularly with regard to virus transfer via seed and the role of insects as CGMMV vectors. PMID:26231788

  8. Online identification of the fluorescent whitening agent 4,4-bis(2-sulfostyrol)biphenyl using a sweeping technique combined with capillary electrophoresis/77 K fluorescence spectroscopy.

    PubMed

    Kuo, Ting-Yang; Wang, Shu-Ping; Lin, Cheng-Huang

    2005-11-01

    The feasibility of combining the techniques of online concentration and CE/low-temperature fluorescence spectroscopy in the detection and identification of E,E-4,4'-bis(2-sulfostyryl)biphenyl (DSBP) in synthetic detergents at 77 K is demonstrated. The technique involves the use of sweeping-MEKC, and was used for the initial online concentration and separation, after which a cryogenic molecular fluorescence experiment was performed at 77 K. The proposed method not only permits the separation and detection of E,E-DSBP in a synthetic detergent sample, but also ensures that the online spectrum is readily distinguishable and can be unambiguously assigned at 77 K. The photoconversion and isomer separation of DSBP are also described. PMID:16240298

  9. Preparation and characterization of fast dissolving flurbiprofen and esomeprazole solid dispersion using spray drying technique.

    PubMed

    Pradhan, Roshan; Tran, Tuan Hiep; Kim, Sung Yub; Woo, Kyu Bong; Choi, Yong Joo; Choi, Han-Gon; Yong, Chul Soon; Kim, Jong Oh

    2016-04-11

    We aimed to develop an immediate-release flurbiprofen (FLU) and esomeprazole (ESO) combination formulation with enhanced gastric aqueous solubility and dissolution rate. Aqueous solubility can be enhanced by formulating solid dispersions (SDs) with a polyvinylpyrrolidone (PVP)-K30 hydrophilic carrier, using spray-drying technique. Aqueous and gastric pH dissolution can be achieved by macro-environmental pH modulation using sodium bicarbonate (NaHCO3) and magnesium hydroxide (Mg(OH)2) as the alkaline buffer. FLU/ESO-loaded SDs (FLU/ESO-SDs) significantly improved aqueous solubility of both drugs, compared to each drug powder. Dissolution studies in gastric pH and water were compared with the microenvironmental pH modulated formulations. The optimized FLU/ESO-SD powder formulation consisted of FLU/ESO/PVP-K30/sodium carbonate (Na2CO3) in a weight ratio 1:0.22:1.5:0.3, filled in the inner capsule. The outer capsule consisted of NaHCO3 and Mg(OH)2, which created the macro-environmental pH modulation. Increased aqueous and gastric pH dissolution of FLU and ESO from the SD was attributed to the alkaline buffer effects and most importantly, to drug transformation from crystalline to amorphous SD powder, clearly revealed by scanning electron microscopy, differential scanning calorimetry, and powder X-ray diffraction studies. Thus, the combined FLU and ESO SD powder can be effectively delivered as an immediate-release formulation using the macro-environmental pH modulation concept. PMID:26899979

  10. Multispectral fluorescence imaging technique for discrimination of cucumber (Cucumis Sativus) seed viability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this study, we developed a nondestructive method for discriminating viable cucumber (Cucumis sativus) seeds based on hyperspectral fluorescence imaging. The fluorescence spectra of cucumber seeds in the 420–700 nm range were extracted from hyperspectral fluorescence images obtained using 365 nm u...

  11. Comparison of In Situ Polymerization and Solution-Dispersion Techniques in the Preparation of Polyimide/Montmorillonite (MMT) Nanocomposites

    PubMed Central

    Ahmad, Mansor Bin; Gharayebi, Yadollah; Salit, Mohd. Sapuan; Hussein, Mohd. Zobir; Shameli, Kamyar

    2011-01-01

    In this paper, Polyimide/Montmorillonite Nanocomposites (PI/MMT NCs), based on aromatic diamine (4-Aminophenyl sulfone) (APS) and aromatic dianhydride (3,3′,4,4′-benzophenonetetracarboxylic dianhydride) (BTDA) were prepared using in situ polymerization and solution-dispersion techniques. The prepared PI/MMT NCs films were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA). The XRD results showed that at the content of 1.0 wt % Organo Montmorillonite (OMMT) for two techniques and 3.0 wt % OMMT for the in situ polymerization technique, the OMMT was well-intercalated, exfoliated and dispersed into polyimide matrix. The OMMT agglomerated when its amount exceeded 10 wt % and 3.0 wt % for solution-dispersion and in situ polymerization techniques respectively. These results were confirmed by the TEM images of the prepared PI/MMT NCs. The TGA thermograms indicated that thermal stability of prepared PI/MMT NCs were increased with the increase of loading that, the effect is higher for the samples prepared by in situ polymerization technique. PMID:22016643

  12. Backscattered electron imaging and windowless energy dispersive x-ray microanalysis: a new technique for gallstone analysis

    SciTech Connect

    Kaufman, H.S.; Lillemoe, K.D.; Magnuson, T.H.; Frasca, P.; Pitt, H.A. )

    1990-12-01

    Scanning electron microscopy with or without conventional energy dispersive x-ray microanalysis is currently used to identify gallstone microstructure and inorganic composition. Organic calcium salts are among many biliary constituents thought to have a role in gallstone nidation and growth. However, current analytical techniques which identify these salts are destructive and compromise gallstone microstructural data. We have developed a new technique for gallstone analysis which provides simultaneous structural and compositional identification of calcium salts within gallstones. Backscattered electron imaging is used to localize calcium within cholesterol at minimum concentrations of 0.01%. Windowless energy dispersive x-ray microanalysis produces elemental spectra of gallstone calcium salts which are qualitatively and quantitatively different. These combined techniques provide simultaneous structural and compositional information obtained from intact gallstone cross-sections and have been used to identify calcium salts in gallstones obtained at cholecystectomy from 106 patients.

  13. Intrinsic Tryptophan Fluorescence in the Detection and Analysis of Proteins: A Focus on Förster Resonance Energy Transfer Techniques

    PubMed Central

    Ghisaidoobe, Amar B. T.; Chung, Sang J.

    2014-01-01

    Förster resonance energy transfer (FRET) occurs when the distance between a donor fluorophore and an acceptor is within 10 nm, and its application often necessitates fluorescent labeling of biological targets. However, covalent modification of biomolecules can inadvertently give rise to conformational and/or functional changes. This review describes the application of intrinsic protein fluorescence, predominantly derived from tryptophan (λEX ∼ 280 nm, λEM ∼ 350 nm), in protein-related research and mainly focuses on label-free FRET techniques. In terms of wavelength and intensity, tryptophan fluorescence is strongly influenced by its (or the protein’s) local environment, which, in addition to fluorescence quenching, has been applied to study protein conformational changes. Intrinsic Förster resonance energy transfer (iFRET), a recently developed technique, utilizes the intrinsic fluorescence of tryptophan in conjunction with target-specific fluorescent probes as FRET donors and acceptors, respectively, for real time detection of native proteins. PMID:25490136

  14. Quantification of β-carotene, retinol, retinyl acetate and retinyl palmitate in enriched fruit juices using dispersive liquid-liquid microextraction coupled to liquid chromatography with fluorescence detection and atmospheric pressure chemical ionization-mass spectrometry.

    PubMed

    Viñas, Pilar; Bravo-Bravo, María; López-García, Ignacio; Hernández-Córdoba, Manuel

    2013-02-01

    A detailed optimization of dispersive liquid-liquid microextraction (DLLME) was carried out for developing liquid chromatographic (HPLC) techniques, using both fluorescence and atmospheric pressure chemical ionization mass spectrometric (APCI-MS) detection, for the simultaneous analysis of preforms of vitamin A: retinol (R), retinyl acetate (RA), retinyl palmitate (RP) and β-carotene (β-C). The HPLC analyses were carried out using a mobile phase composed of methanol and water, with gradient elution. The APCI-MS and fluorescence spectra permitted the correct identification of compounds in the analyzed samples. Parameters affecting DLLME were optimized using 2 mL of methanol (disperser solvent) containing 150 μL carbon tetrachloride (extraction solvent). The precision ranged from 6% to 8% (RSD) and the limits of detection were between 0.03 and 1.4 ng mL(-1), depending on the compound. The enrichment factor values were in the 21-44 range. Juice samples were analyzed without saponification and no matrix effect was found when using fluorescence detection, so calibration was possible with aqueous standards. However, a matrix effect appeared with APCI-MS, in which case it was necessary to apply matrix-matched calibration. There was great variability in the forms of vitamin A present in the juices, the most abundant ester being retinyl acetate (0.04 to 3.4 μg mL(-1)), followed by the amount of retinol (0.01 to 0.16 μg mL(-1)), while retinyl palmitate was not detected, except in the milk-containing juice, in which RP was the main form. The representative carotenoid β-carotene was present in the orange, peach, mango and multifruit juices in high amounts. The method was validated using two certified reference materials. PMID:23290361

  15. Effect of κ-carrageenan on volume phase transition for polyacrylamide (PAAm) hydrogel using the fluorescence technique

    NASA Astrophysics Data System (ADS)

    Aktaş, Demet Kaya

    2014-03-01

    Steady-state fluorescence (SSF) technique was employed for studying swelling of polyacrylamide (PAAm) gels with various content of κ-carrageenan ( κC). Disc shaped composite hydrogels were prepared by free-radical crosslinking copolymerization of acrylamide (AAm) with various amounts κC. N, N'-methylenebis (acrylamide) (BIS) and ammonium persulfate (APS) were used as crosslinker and initiator, respectively. Pyranine was introduced as a fluorescence probe. Fluorescence intensity of pyranine was monitored during in situ swelling processes of composite gels. It was observed that fluorescence intensity values decreased as swelling is proceeded. Li-Tanaka equation was used to determine the swelling time constants, τ and cooperative diffusion coefficients, D from intensity variations during the swelling processes. It was shown that swelling time constants, τ decreased and diffusion coefficients, D increased as the κC content in the composites are increased.

  16. Multispectral scanning time-resolved fluorescence spectroscopy (TRFS) technique for intravascular diagnosis

    PubMed Central

    Xie, Hongtao; Bec, Julien; Liu, Jing; Sun, Yang; Lam, Matthew; Yankelevich, Diego R.; Marcu, Laura

    2012-01-01

    This study describes a scanning time-resolved fluorescence spectroscopy (TRFS) system designed to continuously acquire fluorescence emission and to reconstruct fluorescence lifetime images (FLIM) from a luminal surface by using a catheter-based optical probe with rotary joint and pull-back device. The ability of the system to temporally and spectrally resolve the fluorescence emission from tissue was validated using standard dyes and tissue phantoms (e.g., ex vivo pig aorta phantom). Current results demonstrate that this system is capable to reliably resolve the fluorescence emission of multiple fluorophores located in the lumen; and suggest its potential for intravascular detection of distinct biochemical features of atherosclerotic plaques. PMID:22808425

  17. Patterning titania with the conventional and modified micromolding in capillaries technique from sol-gel and dispersion solutions

    NASA Astrophysics Data System (ADS)

    Ullah Khan, Sajid; ten Elshof, Johan E.

    2012-04-01

    We report TiO2 patterns obtained by a soft-lithographic technique called 'micromolding in capillaries' using sol-gel and dispersion solutions. A comparison between patterning with a sol-gel and dispersion solutions has been performed. The patterns obtained from sol-gel solutions showed good adhesion to the substrate and uniform shapes, but large shrinkage, whereas those obtained from dispersion solution had high solid content, but exhibited poor adhesion and non-uniform shapes. A fabrication method of a layer-by-layer structured pattern is also demonstrated. This type of pattern may find application in sensors, waveguides and other photonics elements. The occurrence of an undesirable residue layer, which hinders the fabrication of isolated patterns, is highlighted and a method of prevention is suggested.

  18. [Application of fluorescence microscopic imaging technique with self-ordered ring to residues detection of antibiotics].

    PubMed

    Liu, Ying; Feng, Jin-Chao; Li, Dan; Cui, Jian; Xu, Si-Fan; Shen, Gang-Yi

    2009-08-01

    Fluorescence microscopic self-ordered ring (SOR) technique with microwave heating is proposed for minocycline based on the capillary flow of solvent on the surface of hydrophobic glass slide and applied to residues detection of the antibiotics in milks of Inner Mongolia. In the reaction medium of hexahydropyridine containing polyvinyl alcohol-124 (PVA-124), a SOR of minocycline with the outer diameter of 1.54 mm and the ring belt width of 22.6 microm can be formed. When a 0.30 microL droplet of minocycline mixture was spotted on the solid surface, minocycline in the range of 4.2 x 10(-2)-1.8 x 10(-11) mol x ring(-1) (1.4 x 10(-6)-0.60 x 10(-5) mol x L(-1)) can be detected, the maximum fluorescence intensity was found to be proportional to the minocycline concentration, and the limit of detection can reach 4.2 x 10(-13) mol x ring(-1) (1.4 x 10(-7) mol x L(-1)) with three times of signal to noise ratio. With the present method, the contents of minocycline in milk samples of Inner Mongolia and minocycline hydrochloride capsule sample were satisfactorily determined with recoveries of 97.2%-103% and 99.4%-102%, respectively, and RSD lower than 1.2%, correspondingly. Therefore, a highly sensitive and selective analysis method for detecting content of trace drug contaminations was established. The method provided theory basis to quantificational analysis of the residues of the antibiotics in milks which was Inner Mongolia' preponderant resource products. It has important realistic meaning and broad application prospect. PMID:19839342

  19. Jet-cooled laser-induced dispersed fluorescence spectroscopy of TaN: Observation of a3Δ and A1Δ states

    NASA Astrophysics Data System (ADS)

    Mukund, Sheo; Bhattacharyya, Soumen; Nakhate, S. G.

    2016-07-01

    Laser-induced dispersed fluorescence spectra of TaN molecules, produced in a free-jet apparatus, have been studied. Two spin components of the lowest-lying a3Δ state along with their vibrational structure have been observed. The A1Δ state, which was predicted earlier by ab initio calculation has also been observed. The X1Σ+ ground state vibrational progression up to v = 9 has been recorded. The experimentally determined term energies and vibrational constants at equilibrium for the ground and a3Δ states are in fairly good agreement with the ab initio values reported earlier.

  20. Determination of the major constituents in fruit of Arctium lappa L. by matrix solid-phase dispersion extraction coupled with HPLC separation and fluorescence detection.

    PubMed

    Liu, He; Zhang, Yupu; Sun, Yantao; Wang, Xue; Zhai, Yujuan; Sun, Ye; Sun, Shuo; Yu, Aimin; Zhang, Hanqi; Wang, Yinghua

    2010-10-15

    The arctiin and arctigenin in the fruit of Arctium lappa L. were extracted by matrix solid-phase dispersion (MSPD) and determined by high-performance liquid chromatography (HPLC) with fluorescence detection. The experimental conditions for the MSPD were optimized. Silica gel was selected as dispersion adsorbent and methanol as elution solvent. The calibration curve showed good relationship (r>0.9998) in the concentration range of 0.010-5.0μgmL(-1) for arctiin and 0.025-7.5μgmL(-1) for arctigenin. The recoveries were between 74.4% and 100%. The proposed method consumed less sample, time and solvent compared with conventional methods, including ultrasonic and Soxhlet extraction. PMID:20810325

  1. Seed dispersal into wetlands: Techniques and results for a restored tidal freshwater marsh

    USGS Publications Warehouse

    Neff, K.P.; Baldwin, A.H.

    2005-01-01

    Although seed dispersal is assumed to be a major factor determining plant community development in restored wetlands, little research exists on density and species richness of seed available through dispersal in these systems. We measured composition and seed dispersal rates at a restored tidal freshwater marsh in Washington, DC, USA by collecting seed dispersing through water and wind. Seed dispersal by water was measured using two methods of seed collection: (1) stationary traps composed of coconut fiber mat along an elevation gradient bracketing the tidal range and (2) a floating surface trawl net attached to a boat. To estimate wind dispersal rates, we collected seed from stationary traps composed of coconut fiber mat positioned above marsh vegetation. We also collected a small number of samples of debris deposited along high tide lines (drift lines) and feces of Canada Goose to explore their seed content. We used the seedling emergence method to determine seed density in all samples, which involved placing the fiber mats or sample material on top of potting soil in a greenhouse misting room and enumerating emerging seedlings. Seedlings from a total of 125 plant species emerged during this study (including 82 in river trawls, 89 in stationary water traps, 21 in drift lines, 39 in wind traps, and 10 in goose feces). The most abundant taxa included Bidens frondosa, Boehmeria cylindrica, Cyperus spp., Eclipta prostrata, and Ludwigia palustris. Total seedling density was significantly greater for the stationary water traps (212 + 30.6 seeds/m2/month) than the equal-sized stationary wind traps (18 + 6.0 seeds/m(2)/month). Lower-bound estimates of total species richness based on the non-parametric Chao 2 asymptotic estimators were greater for seeds in water (106 + 1.4 for stationary water traps and 104 + 5.5 for trawl samples) than for wind (54 + 6.4). Our results indicate that water is the primary source of seeds dispersing to the site and that a species-rich pool

  2. Itraconazole solid dispersion prepared by a supercritical fluid technique: preparation, in vitro characterization, and bioavailability in beagle dogs.

    PubMed

    Yin, Xuezhi; Daintree, Linda Sharon; Ding, Sheng; Ledger, Daniel Mark; Wang, Bing; Zhao, Wenwen; Qi, Jianping; Wu, Wei; Han, Jiansheng

    2015-01-01

    This research aimed to develop a supercritical fluid (SCF) technique for preparing a particulate form of itraconazole (ITZ) with good dissolution and bioavailability characteristics. The ITZ particulate solid dispersion was formulated with hydroxypropyl methylcellulose, Pluronic F-127, and L-ascorbic acid. Aggregated particles showed porous structure when examined by scanning electron microscopy. Powder X-ray diffraction and Fourier transform infrared spectra indicated an interaction between ITZ and excipients and showed that ITZ existed in an amorphous state in the composite solid dispersion particles. The solid dispersion obtained by the SCF process improved the dissolution of ITZ in media of pH 1.0, pH 4.5, and pH 6.8, compared with a commercial product (Sporanox(®)), which could be ascribed to the porous aggregated particle shape and amorphous solid state of ITZ. While the solid dispersion did not show a statistical improvement (P=0.50) in terms of oral bioavailability of ITZ compared with Sporanox(®), the C max (the maximum plasma concentration of ITZ in a pharmacokinetic curve) of ITZ was raised significantly (P=0.03) after oral administration. Thus, the SCF process has been shown to be an efficient, single step process to form ITZ-containing solid dispersion particles with good dissolution and oral bioavailability characteristics. PMID:26060397

  3. Itraconazole solid dispersion prepared by a supercritical fluid technique: preparation, in vitro characterization, and bioavailability in beagle dogs

    PubMed Central

    Yin, Xuezhi; Daintree, Linda Sharon; Ding, Sheng; Ledger, Daniel Mark; Wang, Bing; Zhao, Wenwen; Qi, Jianping; Wu, Wei

    2015-01-01

    This research aimed to develop a supercritical fluid (SCF) technique for preparing a particulate form of itraconazole (ITZ) with good dissolution and bioavailability characteristics. The ITZ particulate solid dispersion was formulated with hydroxypropyl methylcellulose, Pluronic F-127, and L-ascorbic acid. Aggregated particles showed porous structure when examined by scanning electron microscopy. Powder X-ray diffraction and Fourier transform infrared spectra indicated an interaction between ITZ and excipients and showed that ITZ existed in an amorphous state in the composite solid dispersion particles. The solid dispersion obtained by the SCF process improved the dissolution of ITZ in media of pH 1.0, pH 4.5, and pH 6.8, compared with a commercial product (Sporanox®), which could be ascribed to the porous aggregated particle shape and amorphous solid state of ITZ. While the solid dispersion did not show a statistical improvement (P=0.50) in terms of oral bioavailability of ITZ compared with Sporanox®, the Cmax (the maximum plasma concentration of ITZ in a pharmacokinetic curve) of ITZ was raised significantly (P=0.03) after oral administration. Thus, the SCF process has been shown to be an efficient, single step process to form ITZ-containing solid dispersion particles with good dissolution and oral bioavailability characteristics. PMID:26060397

  4. Optical constants and dispersion energy parameters of NiO thin films prepared by radio frequency magnetron sputtering technique

    NASA Astrophysics Data System (ADS)

    Usha, K. S.; Sivakumar, R.; Sanjeeviraja, C.

    2013-09-01

    In this paper, we report on rf power induced change in the structural and optical properties of nickel oxide (NiO) thin films deposited onto glass substrates by rf magnetron sputtering technique. The crystallinity of the film was found to increase with increasing rf power and the deposited film belong to cubic phase. The maximum optical transmittance of 95% was observed for the film deposited at 100 W. The slight shift in transmission threshold towards higher wavelength region with increasing rf power revealed the systematic reduction in optical energy band gap (3.93 to 3.12 eV) of the films. The dispersion curve of the refractive index shows an anomalous dispersion in the absorption region and a normal dispersion in the transparent region. It was observed that the dispersion data obeyed the single oscillator of the Wemple-Didomenico model, from which the dispersion parameters, dielectric constants, relaxation time, and optical non-linear susceptibility were evaluated. We have made an attempt to discuss and correlate these results with the light of possible mechanisms underlying the phenomena.

  5. [Determination of the ofloxacin in the biologic samples by fluorescence microscopic imaging technique].

    PubMed

    Liu, Ying; Yu, Yan-Min; Li, Hui; Li, Jin-Shu

    2011-11-01

    The method of CTMAB-Al(3+)-OFLX ternary complex fluorescence microscopic imaging technique was established for the determination of ofloxacin based on the capillary effect of solvent on solid supports, and the concentration in the serum after the chicken was burdened with ofloxacin tablet, the concentration in the human urines and the percentage composition in the honeies, ofloxacin tablets and eye-drops were measured with satisfaction, respectively. In the presence of pH 9. 50 NH3-NH4Cl buffer solution and PVA-124, CTMAB-Al(3+)-OFLX ternary complex can form a self-ordered ring on the hydrophobic supports with the diameter of 1.63 mm and its ring belt width of 50 microm. When a 0.20 microL droplet was spotted, the fluorescence intensity of the ring had a favorable linear relation (r = 0.999 2) with the drug concentration in the range of 3.30 x 10(-13) - 1.65 x 10(-12) mol x ring(-1) (0.60-2.98 mg x L(-1)) and the limit of detection can reach 4.10 x 10(-15) mol x ring(-1) (7.41 microg x L(-1)) with three times of signal to noise ratio. This method has been applied to the average concentration of ofloxacin in the chicken serum with the recovery of 96.4%-101.2% after two hours of being burdened with ofloxacin tablet. Then the technique was applied to the determination of ofloxacin in the three healthy volunteer's urines after oral administration with recovery of 98.2% - 106.%. It was found that the concentrations of ofloxacin in urines were the highest after three hours of taking medicine; the result was similar to reports in the literature. The residues of ofloxacin in three different honey samples were satisfactorily determined with the recoveries of 98.2% - 106.1%, and RSD was less than 2.3%. The contents of active constituent in tablet samples and eye-drops sample were determined with recoveries of 93.5%-101.5% and 95.8%-104.2%, and RSD was 3.5% and 3.6%, respectively, which were similar to marked values. PMID:22242500

  6. Measurement of resistance to solute transport across surfactant-laden interfaces using a Fluorescence Recovery After Photobleaching (FRAP) technique

    NASA Technical Reports Server (NTRS)

    Browne, Edward P.; Nivaggioli, Thierry; Hatton, T. Alan

    1994-01-01

    A noninvasive fluorescence recovery after photobleaching (FRAP) technique is under development to measure interfacial transport in two phase systems without disturbing the interface. The concentration profiles of a probe solute are measured in both sides of the interface by argon-ion laser, and the system relaxation is then monitored by a microscope-mounted CCD camera.

  7. One-dimensional cavity mode-dispersion spectroscopy for validation of CRDS technique

    NASA Astrophysics Data System (ADS)

    Cygan, Agata; Wójtewicz, Szymon; Zaborowski, Mikołaj; Wcisło, Piotr; Guo, Ruimin; Ciuryło, Roman; Lisak, Daniel

    2016-04-01

    Detection of systematic errors of the measurement method is a demanding task, since it requires an independent, high-accuracy reference method for comparison. Here, we validate the cavity ring-down spectroscopy (CRDS) in relation to the one-dimensional cavity mode-dispersion spectroscopy (1D-CMDS). The complex line-shape function is used for the first time in the simultaneous analysis of absorptive and dispersive spectra and its potential in accurate line-shape studies is indicated. A new approach providing insensitivity of the 1D-CMDS to the drift of the laser-to-cavity locking point is demonstrated.

  8. Residual Stress Relaxation and Stiffness-Confinement Effects in Polymer Films: Characterization by Non-Contact Ellipsometry and Fluorescence Techniques

    NASA Astrophysics Data System (ADS)

    Askar, Shadid; Torkelson, John

    2015-03-01

    The relaxation of residual stresses in spin-coated polymer films is characterized using two optical techniques: ellipsometry and fluorescence. Both techniques show that residual stresses relax over hours at several tens of degrees above the film glass transition temperature (Tg). Ellipsometry shows that thickness can increase or decrease during residual stress relaxation depending on thermal history of the film. However, the presence or relaxation of stresses has no measurable effect on Tg as measured by ellipsometry. We have adapted the well-known sensitivity of the pyrene dye fluorescence spectral shape to local environment polarity in order to characterize stress relaxation and to monitor stiffness-confinement effects. The spectral shape of the pyrene fluorescence spectrum shows similar stress relaxation regardless of whether relaxation is accompanied by increases or decreases in film thickness. Fluorescence also indicates that single-layer polystyrene films supported on silica stiffen with decreasing nanoscale thickness. For the first time, stiffness gradients as a function of distance from interfaces are demonstrated using pyrene label fluorescence in conjunction with multilayer films.

  9. A dispersed fluorescence and ab initio investigation of the X~ 2B1 and A~ 2A1 electronic states of the PH2 molecule

    NASA Astrophysics Data System (ADS)

    Jakubek, Z. J.; Bunker, P. R.; Zachwieja, M.; Nakhate, S. G.; Simard, B.; Yurchenko, S. N.; Thiel, W.; Jensen, Per

    2006-03-01

    In this work, the X˜B12 and ÃA12 electronic states of the phosphino (PH2) free radical have been studied by dispersed fluorescence and ab initio methods. PH2 molecules were produced in a molecular free-jet apparatus by laser vaporizing a silicon rod in the presence of phosphine (PH3) gas diluted in helium. The laser-induced fluorescence, from the excited ÃA12 electronic state down to the ground electronic state, was dispersed and analyzed. Ten (υ1υ2υ3) vibrationally excited levels of the ground electronic state, with υ1⩽2, υ2⩽6, and υ3=0, have been observed. Ab initio potential-energy surfaces for the X˜B12 and ÃA12 electronic states have been calculated at 210 points. These two states correlate with a Πu2 state at linearity and they interact by the Renner-Teller coupling and spin-orbit coupling. Using the ab initio potential-energy surfaces with our RENNER computer program system, the vibronic structure and relative intensities of the ÃA12→X˜B12 emission band system have been calculated in order to corroborate the experimental assignments.

  10. Multi-scale and Multi-modal Analysis of Metamorphic Rocks Coupling Fluorescence and TXM Techniques

    NASA Astrophysics Data System (ADS)

    De Andrade, V. J. D.; Gursoy, D.; Wojcik, M.; DeCarlo, F.; Ganne, J.; Dubacq, B.

    2014-12-01

    Rocks are commonly polycrystalline systems presenting multi-scale chemical and structural heterogeneities inherited from crystallization processes or successive metamorphic events. Through different applications on metamorphic rocks involving fluorescence microprobes and full-field spectroscopy, one will illustrate how spatially resolved analytical techniques allow rock compositional variations to be related to large-scale geodynamic processes. Those examples also stress the importance of multi-modality instruments with zoom-in capability to study samples from mm to several μm large fields of view, with micrometer down to sub-100 nanometer spatial resolutions. In this perspective, imaging capabilities offered by the new ultra-bright diffraction limited synchrotron sources will be described based on experimental data. At last, the new hard X-ray Transmission X-ray Microscope (TXM) at Sector 32 of the APS at Argonne National Laboratory, performing nano computed tomography with in situ capabilities will be presented. The instrument benefit from several R&D key activities like the fabrication of new zone plates in the framework of the Multi-Bend Achromat Lattice (MBA) upgrade at APS, or the development of powerful tomography reconstruction algorithms able to operate with a limited number of projections.

  11. Disentangling who is who during rhizosphere acidification in root interactions: combining fluorescence with optode techniques.

    PubMed

    Faget, Marc; Blossfeld, Stephan; von Gillhaussen, Philipp; Schurr, Ulrich; Temperton, Vicky M

    2013-01-01

    Plant-soil interactions can strongly influence root growth in plants. There is now increasing evidence that root-root interactions can also influence root growth, affecting architecture and root traits such as lateral root formation. Both when species grow alone or in interaction with others, root systems are in turn affected by as well as affect rhizosphere pH. Changes in soil pH have knock-on effects on nutrient availability. A limitation until recently has been the inability to assign species identity to different roots in soil. Combining the planar optode technique with fluorescent plants enables us to distinguish between plant species grown in natural soil and in parallel study pH dynamics in a non-invasive way at the same region of interest (ROI). We measured pH in the rhizosphere of maize and bean in rhizotrons in a climate chamber, with ROIs on roots in proximity to the roots of the other species as well as not-close to the other species. We found clear dynamic changes of pH over time and differences between the two species in rhizosphere acidification. Interestingly, when roots of the two species were interacting, the degree of acidification or alkalization compared to bulk soil was less strong then when roots were not growing in the vicinity of the other species. This cutting-edge approach can help provide a better understanding of plant-plant and plant-soil interactions. PMID:24137168

  12. Determination of damages of photosynthetic metabolism caused by herbicides using a delayed fluorescence technique

    NASA Astrophysics Data System (ADS)

    Zhang, Lingrui; Xing, Da; Zhou, Xiaoming; Li, Qiang

    2007-11-01

    The structure and function of chloroplast in plant can be affected by herbicide, resulting in the decrease in photosynthetic capacity. The photosystem II (PSII) in plants is considered to be the primary site where light-induced delayed fluorescence (DF) is produced. In this study, a simple analytical model of DF has been developed to diagnose the damages of photosynthesis caused by herbicides based on the charge recombination theory. Using a home-made portable DF detection system, we have studied the effects of two different kinds of herbicides on decay kinetics of DF in soybean (Glycine max (L.), Jinghuang No. 3). Current investigations have demonstrated that the analytic equation of DF decay dynamics we proposed here can accurately determine the extent of damage of herbicides to photosynthetic metabolism and truly reflect the mechanism and site about which herbicides inhibit photosynthetic electron transport chain. Therefore, the decay kinetics of DF with proper calibration may provide a promisingly new and practical means for pharmacological analysis of herbicides and damage-diagnosis of photosynthetic metabolism. The DF technique could be potentially useful for detecting the effects of herbicide on plant performance in vivo and screening new generation of promising herbicides with low toxicity and superhigh efficiency.

  13. A Phase Shift Demodulation Technique: Verification and Application in Fluorescence Phase Based Oxygen Sensors

    NASA Astrophysics Data System (ADS)

    Jia, Chuanwu; Chang, Jun; Wang, Fupeng; Jiang, Hao; Zhu, Cunguang; Wang, Pengpeng

    2016-06-01

    A phase shift demodulation technique based on subtraction capable of measuring 0.03 phase degree limit between sinusoidal signals is presented in this paper. A self-gain module and a practical subtracter act the kernel parts of the phase shift demodulation system. Electric signals in different phases are used to verify the performance of the system. In addition, a new designed optical source, laser fiber differential source (LFDS), capable of generating mini phase is used to further verify the system reliability. R-square of 0.99997 in electric signals and R-square of 0.99877 in LFDS are achieved, and 0.03 degree measurement limit is realized in experiments. Furthermore, the phase shift demodulation system is applied to the fluorescence phase based oxygen sensors to realize the fundamental function. The experimental results reveal that a good repetition and better than 0.02% oxygen concentration measurement accuracy are realized. In addition, the phase shift demodulation system can be easily integrated to other applications.

  14. Ambient measurements of biological aerosol particles near Killarney, Ireland: a comparison between real-time fluorescence and microscopy techniques

    NASA Astrophysics Data System (ADS)

    Healy, D. A.; Huffman, J. A.; O'Connor, D. J.; Pöhlker, C.; Pöschl, U.; Sodeau, J. R.

    2014-08-01

    Primary biological aerosol particles (PBAPs) can contribute significantly to the coarse particle burden in many environments. PBAPs can thus influence climate and precipitation systems as cloud nuclei and can spread disease to humans, animals, and plants. Measurement data and techniques for PBAPs in natural environments at high time- and size resolution are, however, sparse, and so large uncertainties remain in the role that biological particles play in the Earth system. In this study two commercial real-time fluorescence particle sensors and a Sporewatch single-stage particle impactor were operated continuously from 2 August to 2 September 2010 at a rural sampling location in Killarney National Park in southwestern Ireland. A cascade impactor was operated periodically to collect size-resolved particles during exemplary periods. Here we report the first ambient comparison of a waveband integrated bioaerosol sensor (WIBS-4) with a ultraviolet aerodynamic particle sizer (UV-APS) and also compare these real-time fluorescence techniques with results of fluorescence and optical microscopy of impacted samples. Both real-time instruments showed qualitatively similar behavior, with increased fluorescent bioparticle concentrations at night, when relative humidity was highest and temperature was lowest. The fluorescent particle number from the FL3 channel of the WIBS-4 and from the UV-APS were strongly correlated and dominated by a 3 μm mode in the particle size distribution. The WIBS FL2 channel exhibited particle modes at approx. 1 and 3 μm, and each was correlated with the concentration of fungal spores commonly observed in air samples collected at the site (ascospores, basidiospores, Ganoderma spp.). The WIBS FL1 channel exhibited variable multimodal distributions turning into a broad featureless single mode after averaging, and exhibited poor correlation with fungal spore concentrations, which may be due to the detection of bacterial and non-biological fluorescent

  15. Relationship of conventional and fluorescent microscopic technique to assess in vitro semen quality status of Murrah buffalo males

    PubMed Central

    Shivahre, P. R; Gupta, A. K; Panmei, A; Yadav, B. R; Bhakat, M; Mohanty, T. K; Kumaresan, A; Kumar, V; Dash, S. K; Singh, S

    2015-01-01

    In vitro fertility assessment using fluorescent technique is a better predictor of fertility status of bulls as compared to traditional semen quality assessment techniques, therefore, the study was planned to assess in vitro fertility status of bulls based on conventional and fluorescent techniques. Seventy-three ejaculates were collected from 12 Murrah buffalo bulls maintained at Artificial Breeding Research Centre, NDRI, Karnal, India for the experiment and subjected to statistical analysis using SYSTAT. The mean values of ejaculate volume (ml), mass activity, individual motility (%), sperm concentration (millions/ml), live sperm (%), total abnormalities (%), HOST (%) and acrosomal integrity (%) were 2.70 ± 0.28, 2.8 ± 0.14, 63.8 ± 2.16, 1749.7 ± 122.24, 77.3 ± 2.48, 6.2 ± 0.51, 75.1 ± 1.81 and 84.5 ± 2.26, respectively. The repeatability estimates were significant (P<0.05) for ejaculate volume (0.34 ± 0.137), acrosomal integrity (0.29 ± 0.134) and live percentage (0.28 ± 0.133), indicating sufficient bull to bull variation for the parameters. The mean values of seminal attributes of fluorescent based criteria of CMA3 (Chromomycin A3), SYBR-PI and FITC-PNA (fluorescent isothiocynate-conjugated peanut agglutinin) were 5.25 ± 0.41, 67.91 ± 1.24 and 82.00 ± 1.25 percent, respectively. Bulls were ranked on the basis of expected producing ability (EPA) for semen characteristics assessed by conventional and fluorescent criteria. Rank correlations were found to be significant for FITC with most of the parameters evaluated by conventional methods. In conclusion, among the conventional criteria, individual motility (%) revealed ranking of bulls almost similar to that of fluorescent criteria. PMID:27175204

  16. Proximal Sensing of Plant-Pathogen Interactions in Spring Barley with Three Fluorescence Techniques

    PubMed Central

    Leufen, Georg; Noga, Georg; Hunsche, Mauricio

    2014-01-01

    In the last years fluorescence spectroscopy has come to be viewed as an essential approach in key research fields of applied plant sciences. However, the quantity and particularly the quality of information produced by different equipment might vary considerably. In this study we investigate the potential of three optical devices for the proximal sensing of plant-pathogen interactions in four genotypes of spring barley. For this purpose, the fluorescence lifetime, the image-resolved multispectral fluorescence and selected indices of a portable multiparametric fluorescence device were recorded at 3, 6, and 9 days after inoculation (dai) from healthy leaves as well as from leaves inoculated with powdery mildew (Blumeria graminis) or leaf rust (Puccinia hordei). Genotype-specific responses to pathogen infections were revealed already at 3 dai by higher fluorescence mean lifetimes in the spectral range from 410 to 560 nm in the less susceptible varieties. Noticeable pathogen-induced modifications were also revealed by the ‘Blue-to-Far-Red Fluorescence Ratio’ and the ‘Simple Fluorescence Ratio’. Particularly in the susceptible varieties the differences became more evident in the time-course of the experiment i.e., following the pathogen development. The relevance of the blue and green fluorescence to exploit the plant-pathogen interaction was demonstrated by the multispectral fluorescence imaging system. As shown, mildewed leaves were characterized by exceptionally high blue fluorescence, contrasting the values observed in rust inoculated leaves. Further, we confirm that the intensity of green fluorescence depends on the pathogen infection and the stage of disease development; this information might allow a differentiation of both diseases. Moreover, our results demonstrate that the detection area might influence the quality of the information, although it had a minor impact only in the current study. Finally, we highlight the relevance of different excitation

  17. Proximal sensing of plant-pathogen interactions in spring barley with three fluorescence techniques.

    PubMed

    Leufen, Georg; Noga, Georg; Hunsche, Mauricio

    2014-01-01

    In the last years fluorescence spectroscopy has come to be viewed as an essential approach in key research fields of applied plant sciences. However, the quantity and particularly the quality of information produced by different equipment might vary considerably. In this study we investigate the potential of three optical devices for the proximal sensing of plant-pathogen interactions in four genotypes of spring barley. For this purpose, the fluorescence lifetime, the image-resolved multispectral fluorescence and selected indices of a portable multiparametric fluorescence device were recorded at 3, 6, and 9 days after inoculation (dai) from healthy leaves as well as from leaves inoculated with powdery mildew (Blumeria graminis) or leaf rust (Puccinia hordei). Genotype-specific responses to pathogen infections were revealed already at 3 dai by higher fluorescence mean lifetimes in the spectral range from 410 to 560 nm in the less susceptible varieties. Noticeable pathogen-induced modifications were also revealed by the 'Blue-to-Far-Red Fluorescence Ratio' and the 'Simple Fluorescence Ratio'. Particularly in the susceptible varieties the differences became more evident in the time-course of the experiment i.e., following the pathogen development. The relevance of the blue and green fluorescence to exploit the plant-pathogen interaction was demonstrated by the multispectral fluorescence imaging system. As shown, mildewed leaves were characterized by exceptionally high blue fluorescence, contrasting the values observed in rust inoculated leaves. Further, we confirm that the intensity of green fluorescence depends on the pathogen infection and the stage of disease development; this information might allow a differentiation of both diseases. Moreover, our results demonstrate that the detection area might influence the quality of the information, although it had a minor impact only in the current study. Finally, we highlight the relevance of different excitation

  18. Two facets of the x-ray microanalysis at low voltage: The secondary fluorescence x-rays emission and the microcalorimeter energy-dispersive spectrometer

    NASA Astrophysics Data System (ADS)

    Demers, Hendrix

    The best spatial resolution, for a microanalysis with a scanning electron microscope (SEND, is achieved by using a low voltage electron beam. But the x-ray microanalysis was developed for high electron beam energy (greater than 10 keV). Also, the specimen will often contain light and medium elements and the analyst will have to use a mixture of K, L, and sometime M x-ray peaks for the x-ray microanalysis. With a mixture of family lines, it will be common to have secondary fluorescence x-rays emission by K--L and L--K interactions. The accuracy of the fluorescence correction models presently used by the analyst are not well known for these interactions. This work shows that the modified secondary fluorescence x-rays emission correction models can improve the accuracy of the microanalysis for K--L and L--K interactions. The general equation derived in this work allows the identification of three factors which influence the secondary fluorescence x-rays emission. The fluorescence production factor epsilonƒ can be used to predict the importance of the secondary fluorescence x-rays emission. A large value of epsilonƒ indicates that a fluorescence correction is needed. Another disadvantage of using a low voltage is that there are more frequent occurrences of x-ray peaks overlap. A new microanalysis instruments that combines the high-spatial resolution and high-energy resolution for x-ray detection is needed. The microcalorimeter energy-dispersive spectrometer (muEDS) should improve the low voltage microanalysis, but the maturity of this technology has to be evaluated first. One of the first commercial muEDS for x-ray microanalysis in a SEM is studied and analyzed in this work. This commercial muEDS has an excellent energy resolution (˜ 15 eV) and can detect x-rays of low energy. This x-ray detector can be used as a high-spatial resolution and high-energy resolution microanalysis instrument. There are still hurdles that this technology must overcome before its

  19. ENERGY DISPERSIVE X-RAY FLUORESCENCE ANALYSIS OF DUST COLLECTED USING A VERTICAL ELUTRIATOR COTTON DUST SAMPLER

    EPA Science Inventory

    X-ray fluorescence (XRF) spectroscopy has been used to analyze trace element concentrations in cotton dusts collected on verticle elutriator filter media. Twenty-three samples collected from ten bales of cotton processed in a model card room have been analyzed. The major elements...

  20. ASSESSING THE MATURITY OF APPLES BY INTEGRATING HYPERSPECTRAL REFLECTANCE AND FLUORESCENCE IMAGING TECHNIQUES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fluorescence and reflectance are two different forms of light interaction with the matter, and they can be complementary in measuring fruit maturity and quality. In this research, a hyperspectral imaging system was used to acquire both reflectance and fluorescence images from 'Golden Delicious' appl...

  1. INVESTIGATION OF SATURATED LASER FLUORESCENCE AND CARS SPECTROSCOPIC TECHNIQUES FOR COMBUSTION DIAGNOSTICS

    EPA Science Inventory

    The report gives results of comparisons of saturated laser-excited molecular fluorescence measurements of CH and CN in atmospheric pressure acetylene flames with absorption measurements of these flame radicals. It was found possible to saturate the fluorescence intensity of both ...

  2. Multiwavelength laser induced fluorescence of algae in-vivo - A new remote sensing technique

    NASA Technical Reports Server (NTRS)

    Mumola, P. B.; Jarrett, O., Jr.; Brown, C. A., Jr.

    1973-01-01

    In order to accurately determine the quantity of chlorophyll a in living algae by fluorescence spectrometry, either remotely or in the laboratory, the fluorescence excitation cross section must be known. Laboratory fluorescence studies of a number of different algae species representative of the various color groups were performed. These measurements indicate distinct maximum spectral excitation regions which differ from one color group to another. Within each color group, however, the fluorescent properties were nearly identical, regardless of species. These two key features - namely, the similarity of fluorescent properties within a color group, and the distinct spectral differences between color groups - make possible the simultaneous determination of chlorophyll a content of an unknown mixture of phytoplankton and the distribution of chlorophyll a among the various color groups.

  3. Lagrangian Analysis of Nonreactive Pollutant Dispersion in Porous Media by Means of the Particle Image Velocimetry Technique

    NASA Astrophysics Data System (ADS)

    Cenedese, Antonio; Viotti, Paolo

    1996-08-01

    An experimental technique based on image analysis was used to perform a Lagrangian description of passive pollutant particle motion in a three-dimensional saturated porous medium. To allow for optical access, the experiment was carried out with Pyrex grains as the solid matrix and glycerol as the liquid phase in order to have two phases with the same refractive index. Statistical analysis of the experimental data allowed for estimation of velocity and displacement probability density functions (pdf), velocity component correlation functions, Lagrangian integral scales, and mechanical dispersion coefficient tensor components. The results obtained suggest that the longitudinal velocity component has a log normal pdf while the transversal component has a symmetrical pdf, which is nevertheless not Gaussian for high values of the kurtosis. Furthermore, the velocity components' autocorrelation functions are well represented by exponential laws, and the integral scale is dependent on filtration velocity and grain size. As foreseen in the theory the total displacement pdf shows the tendency to reach normal distribution after many integral scales. The evaluated dispersion coefficient tensor components are dependent on travel time; the components start from zero and reach an asymptotic value after several integral scales. Furthermore, the tensor is anisotropic, with the longitudinal component greater than the transversal one by about 1 order of magnitude. Comparison with other experimental data shows agreement at least for the longitudinal dispersion component. Dagan's linear theory has been used for comparing the analytical longitudinal component of the dispersion tensor with that obtained by means of the experiments.

  4. Thermal characterization of ZnO-DMSO (dimethyl sulfoxide) colloidal dispersions using the inverse photopyroelectric technique.

    PubMed

    Marín, E; Calderón, A; Díaz, D

    2009-05-01

    Nanofluids, i.e., colloidal dispersions of nanoparticles in a base liquid (solvent), have received considerable attention in the last years due to their potential applications. One attractive feature of these systems is that their thermal conductivity can exceed the corresponding values of the base fluid and of the fluid with large particles of the same chemical composition. However, there is a lack of agreement between published results and the suggested mechanisms which explain the thermal conductivity enhancement. Here we show the possibilities of the inverse photopyroelectric method for the determination of the effective thermal effusivity of the system constituted by small ZnO nanoparticles dispersed in dimethyl sulfoxide, as a function of the nanoparticles volumetric fraction. Using a phenomenological model we estimated the thermal conductivity of these colloidal samples without observing any significant enhancement of this parameter above effective medium predictions. PMID:19430157

  5. A study of the Interaction Between Cetirizine and Plasma Membrane of Eosinophils, Neutrophils, Platelets and Lymphocytes using A fluorescence Technique

    PubMed Central

    Oggiano, N.; Giorgi, P. L.; Rihoux, J-P.

    1994-01-01

    The effect of cetirizine on plasma membrane fluidity and heterogeneity of human eosinophils, neutrophils, platelets and lymphocytes was investigated using a fluorescence technique. Membrane fluidity and heterogeneity were studied by measuring the steady-state fluorescence anisotropy and fluorescence decay of 1-(4- trimethylammonium-phenyl)-6-phenyl-1, 3, 5-hexatriene (TMA-DPH) incorporated in the membrane. The results demonstrate that cetirizine (1 μg/ml) induced a significant increase in the Hpid order in the exterior part of the membrane and a decrease in membrane heterogeneity in eosinophils, neutrophils and platelets. Moreover, cetirizine blocked the PAF induced changes in membrane fluidity in these cells. Cetirizine did not influence significantly the plasma membrane of lymphocytes. These data may partially explain the effect ofcetirizine on inflammatory cell activities. PMID:18472948

  6. Enhancement of the dissolution profile of allopurinol by a solid dispersion technique.

    PubMed

    Samy, A M; Marzouk, M A; Ammar, A A; Ahmed, M K

    2010-04-01

    The aim of the present study was to improve the solubility, and therefore the dissolution of poorly water-soluble allopurinol. Solid dispersions of allopurinol were prepared with different polymers or carriers such as polyvinylpyrrolidone (PVP K30 and PVP K90), polyethylene glycol (PEG 4000 and PEG 6000), urea and mannitol at two drug : carrier ratios (1:1) and (1:2). Different methods such as melting and solvent evaporation methods were used to improve dissolution characteristics and solubility of allopurinol. The solid dispersions were characterized using a differential scanning calorimeter (DSC) and X-ray diffraction (XRD) while the interactions which took place were identified with fourier transform infrared (FTIR) spectroscopy. Due to formation of hydrogen bonds between allopurinol and urea and mannitol, a transition of allopurinol from the crystalline to amorphous state was achieved. The DSC thermograms of the solid dispersions indicated the potential of heat induced interactions between allopurinol and the carriers used could influence dissolution rate of the drug. The dissolution amount (%) of pure allopurinol was 80% at 45 min. F5, F3, F6, F7, and F1 showed better dissolution percentages of 100, 93, 92.4, 90.6, and 89%, respectively, at 45 min. PMID:22491164

  7. Ambient measurements of biological aerosol particles near Killarney, Ireland: a comparison between real-time fluorescence and microscopy techniques

    NASA Astrophysics Data System (ADS)

    Healy, D. A.; Huffman, J. A.; O'Connor, D. J.; Pöhlker, C.; Pöschl, U.; Sodeau, J. R.

    2014-02-01

    Primary biological aerosol particles (PBAP) can contribute significantly to the coarse particle burden in many environments, may thus influence climate and precipitation systems as cloud nuclei, and can spread disease to humans, animals, and plants. Measurements of PBAP in natural environments taken at high time- and size- resolution are, however, sparse and so large uncertainties remain in the role that biological particles play in the Earth system. In this study two commercial real-time fluorescence particle sensors and a Sporewatch single-stage particle impactor were operated continuously from 2 August to 2 September 2010 at a rural sampling location in Killarney National Park in south western Ireland. A cascade impactor was operated periodically to collect size-resolved particles during exemplary periods. Here we report the first ambient comparison of the waveband integrated bioaerosol sensor (WIBS-4) with the ultraviolet aerodynamic particle sizer (UV-APS) and also compare these real-time fluorescence techniques with results of fluorescence and optical microscopy of impacted samples. Both real-time instruments showed qualitatively similar behaviour, with increased fluorescent bioparticle concentrations at night when relative humidity was highest and temperature was lowest. The fluorescent particle number from the FL3 channel of the WIBS-4 and from the UV-APS were strongly correlated and dominated by a 3 μm mode in the particle size distribution. The WIBS FL2 channel exhibited particle modes at approx. 1 and 3 μm, and each were correlated with the concentration of fungal spores commonly observed in air samples collected at the site (ascospores, basidiospores, Ganoderma spp.). The WIBS FL1 channel exhibited variable multi-modal distributions turning into a broad featureless single mode after averaging and exhibited poor correlation with fungal spore concentrations, which may be due to the detection of bacterial and non-biological fluorescent particles

  8. Fluorescence emission of Disperse Red 1 in PS-b-P4VP micelles controlled by a toluene/ethanol solvent mixture.

    PubMed

    Ali, Nauman; Park, Soo-Young

    2009-12-01

    The effects of Disperse Red 1 (DR1) in the poly(styrene-block-4-vinylpyridine) (PS-b-P4VP) micelle on micellar morphology and fluorescence emission were studied using small-angle X-ray scattering (SAXS), generalized indirect Fourier transform (GIFT), Fourier transform infrared (FT-IR), transmission electron microscopy (TEM), and photoluminescence (PL). PS-b-P4VP was coupled with DR1 in 10 mg/mL toluene/ethanol mixture solutions where ethanol and toluene were P4VP and PS selective, respectively. Hydrogen bonds were formed between the -OH group of DR1 and the pyridine ring in PS-b-P4VP. DR1 (which was coupled with P4VP) was confined in the core or corona of the micelle depending on the location of P4VP. The micellar structure was strongly dependent on varphi (weight percentage of toluene in a toluene/ethanol mixture). The PS-b-P4VP-DR1 complex in the mixture solutions showed the spherical micelle with the cores of P4VP and PS in ethanol-rich and toluene-rich solvents, respectively. The quenching phenomenon was observed for DR1 in the corona of PS-b-P4VP micelles [at varphi = 0 (ethanol)], while the fluorescence quantum yield decreased. However, significant increases in the fluorescence quantum yields at varphi = 100 were observed when DR1 was confined in the core of the PS-b-P4VP micelles. The confinement of DR1 in the hard core was more effective in fluorescence emission than that in the soft corona due to the slow trans-to-cis transition of DR1. PMID:19764779

  9. Determination of phosphorus in steel by the combined technique of laser induced breakdown spectrometry with laser induced fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Kondo, Hiroyuki; Hamada, Naoya; Wagatsuma, Kazuaki

    2009-09-01

    Laser induced breakdown spectrometry (LIBS) combined with laser induced fluorescence spectrometry (LIFS) has been applied for detection of trace-level phosphorus in steel. The plasma induced by irradiation of Nd:YAG laser pulse for ablation was illuminated by the 3rd harmonic of Ti:Sapphire laser tuned to one of the resonant lines for phosphorus in the wavelength region of 253-256 nm. An excitation line for phosphorus was selected to give the highest signal-to-noise ratio. Fluorescence signals, P213.62 and P214.91 nm, were observed with high selectivity at the contents as low as several tens µg g - 1 . Fluorescence intensities were in a good linear correlation with the contents. Fluorescence intensity ratio of a collisionally assisted line (213.62 nm) to a direct transition line (214.91 nm) was discussed in terms of the analytical conditions and experimental results were compared with a calculation based on rate equations. Since the fluorescence signal light in the wavelength range longer than 200 nm can be transmitted relatively easily, even through fiber optics of moderate length, LIBS/LIFS would be a versatile technique in on-site applications for the monitoring of phosphorus contents in steel.

  10. Periodic Evolution of a Xe I Population in an Oscillatory Discharge Captured Through Time-Synchronized Laser Induced Fluorescence Techniques

    NASA Astrophysics Data System (ADS)

    Lucca Fabris, Andrea; Young, Christopher; Cappelli, Mark

    2014-10-01

    We track the evolution of the Xe I 6 s '[ 1 / 2 ] 1 - 6 p '[ 3 / 2 ] 2 (834.68 nm air) transition lineshape in a plasma discharge oscillating at 60 Hz. Two time-synchronized laser induced fluorescence techniques based on phase sensitive detection of the fluorescence signal are demonstrated, yielding consistent results. One approach used previously involves a sample-and-hold procedure that collects fluorescence signal at a particular phase in the oscillation period and holds the average value until the following sample. The second method is based on fast switching of the fluorescence signal; only the signal collected inside the acquisition gate is sent to a lock-in amplifier for processing. Both methods rely on modulating the exciting laser beam and the latter permits operation at a much higher frequency range with reduced spectral noise density. The maximum observed peak fluorescence intensity occurs at low discharge currents, although the peak intensity drops to zero at zero discharge current. The peak intensity also decreases at the discharge current maximum. Time-varying properties of the xenon neutrals are extracted from a lineshape analysis. This work is sponsored by the U.S. Air Force Office of Scientific Research with Dr. Mitat Birkan as program manager. CVY acknowledges support from the DOE NNSA Stewardship Science Graduate Fellowship under Contract DE-FC52-08NA28752.

  11. Interactions of dissolved humic substances with oppositely charged fluorescent dyes for tracer techniques.

    PubMed

    Hafuka, Akira; Ding, Qing; Yamamura, Hiroshi; Yamada, Koji; Satoh, Hisashi

    2015-11-15

    To investigate interactions between oppositely charged fluorescent dyes and dissolved humic substances, fluorescence quenching of fluorescein and rhodamine 6G with dissolved humic substances was performed. Binding coefficients were obtained by the Stern-Volmer equation. The fluorescence of rhodamine 6G was largely quenched by the addition of humic acid and a non-linear Stern-Volmer plot was obtained. This strong quenching may be caused by the electrostatic interaction between cationic rhodamine 6G and humic acid and strengthened by the hydrophobic repulsion. In contrast, the quenching and interactive effects of dissolved humic substances for fluorescein were relatively weak. PMID:26318652

  12. Bimolecular fluorescence complementation (BiFC) technique in yeast Saccharomyces cerevisiae and mammalian cells.

    PubMed

    Weber-Boyvat, Marion; Li, Shiqian; Skarp, Kari-Pekka; Olkkonen, Vesa M; Yan, Daoguang; Jäntti, Jussi

    2015-01-01

    Visualization of protein-protein interactions in vivo offers a powerful tool to resolve spatial and temporal aspects of cellular functions. The bimolecular fluorescence complementation (BiFC) makes use of nonfluorescent fragments of green fluorescent protein or its variants that are added as "tags" to target proteins under study. Only upon target protein interaction is a fluorescent protein complex assembled, and the site of interaction can be monitored by microscopy. In this chapter, we describe the method and tools for the use of BiFC in the yeast Saccharomyces cerevisiae and in mammalian cells. PMID:25702124

  13. A bio-aerosol detection technique based on tryptophan intrinsic fluorescence measurement

    NASA Astrophysics Data System (ADS)

    Cai, Shuyao; Zhang, Pei; Zhu, Linglin; Zhao, Yongkai; Huang, Huijie

    2011-12-01

    Based on the measurement of intrinsic fluorescence, a set of bio-aerosol including virus aerosols detection instrument is developed, with which a method of calibration is proposed using tryptophan as the target. The experimental results show a good linear relationship between the fluorescence voltage of the instrument and the concentration of the tryptophan aerosol. An excellent correlation (R2>=0.99) with the sensitivity of 4000PPL is obtained. The research demonstrates the reliability of the bio-aerosol detection by measuring the content of tryptophan. Further more the feasibility of prejudgment to the species of bio-aerosol particles with the multi-channel fluorescence detection technology is discussed.

  14. Thermo-physical property measurement of nano-gold dispersed water based nanofluids prepared by chemical precipitation technique.

    PubMed

    Paul, G; Pal, T; Manna, I

    2010-09-01

    Nano-gold dispersed water based nanofluid has been prepared following the chemical reduction method. Crystallite size, particle size/shape/morphology, and purity of the nanoparticles have been characterized using X-ray diffraction, scanning and transmission electron microscopy and energy dispersion spectroscopy, respectively. The degree of thermal conductivity enhancement of the nanofluid (with respect to the base fluid) as a function of concentration and size of gold nanoparticle has been determined using the transient hot-wire technique. The degree of enhancement increases with increase in concentration and decrease in size of nanoparticles. The maximum enhancement recorded is approximately 48% at 0.00026 vol.% concentration and 21nm average particle size. PMID:20609848

  15. Detection of illicit drugs with the technique of spectral fluorescence signatures (SFS)

    NASA Astrophysics Data System (ADS)

    Poryvkina, Larisa; Babichenko, Sergey

    2010-10-01

    The SFS technology has already proved its analytical capabilities in a variety of industrial and environmental tasks. Recently it has been introduced for forensic applications. The key features of the SFS method - measuring a 3-dimensional spectrum of fluorescence of the sample (intensity versus excitation and emission wavelengths) with following recognition of specific spectral patterns of SFS responsible for individual drugs - provide an effective tool for the analysis of untreated seized samples, without any separation of the substance of interest from its mixture with accompanying cutting agents and diluents as a preparatory step. In such approach the chemical analysis of the sample is substituted by the analysis of SFS matrix visualized as an optical image. The SFS technology of drug detection is realized by NarTest® NTX2000 analyzer, compact device intended to measure suspicious samples in liquid, solid and powder forms. It simplifies the detection process due to fully automated procedures of SFS measuring and integrated expert system for recognition of spectral patterns. Presently the expert system of NTX2000 is able to detect marijuana, cocaine, heroin, MDMA, amphetamine and methamphetamine with the detection limit down to 5% of the drug concentration in various mixtures. The numerous tests with street samples confirmed that the use of SFS method provides reliable results with high sensitivity and selectivity for identification of drugs of abuse. More than 3000 street samples of the aforesaid drugs were analyzed with NTX2000 during validation process, and the correspondence of SFS results and conclusions of standard forensic analyses with GC/MS techniques was in 99.4% cases.

  16. Energy dispersive X-ray fluorescence spectroscopy/Monte Carlo simulation approach for the non-destructive analysis of corrosion patina-bearing alloys in archaeological bronzes: The case of the bowl from the Fareleira 3 site (Vidigueira, South Portugal)

    NASA Astrophysics Data System (ADS)

    Bottaini, C.; Mirão, J.; Figuereido, M.; Candeias, A.; Brunetti, A.; Schiavon, N.

    2015-01-01

    Energy dispersive X-ray fluorescence (EDXRF) is a well-known technique for non-destructive and in situ analysis of archaeological artifacts both in terms of the qualitative and quantitative elemental composition because of its rapidity and non-destructiveness. In this study EDXRF and realistic Monte Carlo simulation using the X-ray Monte Carlo (XRMC) code package have been combined to characterize a Cu-based bowl from the Iron Age burial from Fareleira 3 (Southern Portugal). The artifact displays a multilayered structure made up of three distinct layers: a) alloy substrate; b) green oxidized corrosion patina; and c) brownish carbonate soil-derived crust. To assess the reliability of Monte Carlo simulation in reproducing the composition of the bulk metal of the objects without recurring to potentially damaging patina's and crust's removal, portable EDXRF analysis was performed on cleaned and patina/crust coated areas of the artifact. Patina has been characterized by micro X-ray Diffractometry (μXRD) and Back-Scattered Scanning Electron Microscopy + Energy Dispersive Spectroscopy (BSEM + EDS). Results indicate that the EDXRF/Monte Carlo protocol is well suited when a two-layered model is considered, whereas in areas where the patina + crust surface coating is too thick, X-rays from the alloy substrate are not able to exit the sample.

  17. Evaluation of the photocatalytic activity of Ln3+-TiO2 nanomaterial using fluorescence technique for real wastewater treatment.

    PubMed

    Saif, M; Aboul-Fotouh, S M K; El-Molla, S A; Ibrahim, M M; Ismail, L F M

    2014-07-15

    Evaluation the photocatalytic activity of different Ln(3+) modified TiO2 nanomaterials using fluorescence based technique has rarely been reported. In the present work, xmol Ln(3+) modified TiO2 nanomaterials (Ln = Nd(3+), Sm(3+), Eu(3+), Gd(3+), Dy(3+) and Er(3+) ions; x = 0.005, 0.008, 0.01, 0.02 and 0.03) were synthesized by sol-gel method and characterized using different advanced techniques. The photocatalytic efficiency of the modified TiO2 expressed in the charge carrier separation and OH radicals formation were assigned using TiO2 fluorescence quenching and fluorescence probe methods, respectively. The obtained fluorescence measurements confirm that doping treatment significantly decreases the electron-hole recombination probability in the obtained Ln(3+)/TiO2. Moreover, the rate of OH radicals formation is increased by doping. The highly active nanoparticles (0.02Gd(3+)/TiO2 and 0.01Eu(3+)/TiO2) were applied for industrial wastewater treatment using solar radiation as a renewable energy source. PMID:24667419

  18. Portable X-ray fluorescence spectroscopy as a rapid screening technique for analysis of TiO2 and ZnO in sunscreens

    PubMed Central

    Bairi, Venu Gopal; Lim, Jin-Hee; Quevedo, Ivan R.; Mudalige, Thilak K.; Linder, Sean W.

    2016-01-01

    This investigation reports a rapid and simple screening technique for the quantification of titanium and zinc in commercial sunscreens using portable X-ray fluorescence spectroscopy (pXRF). A highly evolved technique, inductively coupled plasma-mass spectroscopy (ICP-MS) was chosen as a comparative technique to pXRF, and a good correlation (r2 > 0.995) with acceptable variations (≤25%) in results between both techniques was observed. Analytical figures of merit such as detection limit, quantitation limit, and linear range of the method are reported for the pXRF technique. This method has a good linearity (r2 > 0.995) for the analysis of titanium (Ti) in the range of 0.4–14.23 wt%, and zinc (Zn) in the range of 1.0–23.90 wt%. However, most commercial sunscreens contain organic ingredients, and these ingredients are known to cause matrix effects. The development of appropriate matrix matched working standards to obtain the calibration curve was found to be a major challenge for the pXRF measurements. In this study, we have overcome the matrix effect by using metal-free commercial sunscreens as a dispersing media for the preparation of working standards. An easy extension of this unique methodology for preparing working standards in different matrices was also reported. This method is simple, rapid, and cost-effective and, in comparison to conventional techniques (e.g., ICP-MS), did not generate toxic wastes during sample analysis. PMID:27076699

  19. A Preliminary Study on Sinus Fungus Ball with MicroCT and X-Ray Fluorescence Technique

    PubMed Central

    Jiang, Zidong; Zhang, Kai; Huang, Wanxia; Yuan, Qingxi

    2016-01-01

    Background Sinus fungus ball, an accumulation of fungal dense concretions, is a common disease in practice, and might cause fatal complications or lead to death once converted into invasive type. Early preoperative diagnosis of this disease can lead to appropriate treatment for patients and prevent multiple surgical procedures. Up to now, the diagnostic criteria of sinus fungus ball have been defined and computed tomography (CT) scan was considered as a valuable preoperative diagnostic tool. However, the sensitivity of clinical CT is only about 62%. Thus, investigating the factors which influence sensitivity is necessary for clinical CT to be a more valuable preoperative diagnosis tool. Furthermore, CT scan usually presents micro-calcifications or spots with metallic density in sinus fungus ball. Previous literatures show that there are some metallic elements such as calcium and zinc in fungus ball, and they concluded that endodontic treatment has a strong correlation with the development of maxillary sinus fungus ball and zinc ion was an exogenous risk factor. But the pathogenesis of sinus fungus ball still remains unclear because fungus ball can also develop in other non-maxillary sinuses or the maxillary sinus without root canal treatment. Is zinc ion the endogenous factor? Study on this point might be also helpful for investigating the pathogenesis of sinus fungus ball. In this paper, we tried to investigate the factors which influence the sensitivity of clinical CT by imaging sinus fungus ball with microCT. The origin of zinc ion was also studied through elements test for different fungal ball samples using x-ray fluorescence technique. Methods Specimens including fungal ball material and sinus mucosa from patients confirmed by pathological findings were extracted after surgery. All fungal ball specimens came from sphenoid sinus, ethmoidal sinus and maxillary sinus with or without previous endodontic treatment respectively. All of them were imaged by micro

  20. TU-F-18A-05: An X-Ray Fluorescence Technique for Energy Calibration of Photon-Counting Detectors

    SciTech Connect

    Ding, H; Cho, H; Molloi, S; Barber, W; Iwanczyk, J

    2014-06-15

    Purpose: To investigate the feasibility of energy response calibration of a Si strip photon-counting detector by using the x-ray fluorescence technique. Methods: X-ray fluorescence was generated by using a pencil beam from a tungsten anode x-ray tube with 2 mm Al filtration. Spectra were acquired at 90° from the primary beam direction with an energy-resolved photon-counting detector based on Si strips. The distances from the source to target and the target to detector were approximately 19 and 11 cm, respectively. Four different materials, containing Ag, I, Ba, and Gd, were placed in small plastic aliquots with a diameter of approximately 0.7 cm for x-ray fluorescence measurements. Linear regression analysis was performed to derive the gain and offset values for the correlation between the measured fluorescence peak center and the known energies for materials. The energy resolution was derived from the full width at half maximum (FWHM) of the fluorescence peaks. In addition, the angular dependence of the recorded fluorescence spectra was studied at 30°, 60°, and 120°. Results: Strong fluorescence signals of all four target materials were recorded with the investigated geometry for the Si strip detector. The recorded pulse height was calibrated with respect to photon energy and the gain and offset values were calculated to be 7.0 mV/keV and −69.3 mV, respectively. Negligible variation in energy calibration was observed among the four energy thresholds. The variation among different pixels was estimated to be approximately 1 keV. The energy resolution of the detector was estimated to be 7.9% within the investigated energy range. Conclusion: The performance of a spectral imaging system using energy-resolved photon-counting detectors is very dependent on the energy calibration of the detector. The proposed x-ray fluorescence technique provides an accurate and efficient way to calibrate the energy response of a photon-counting detector.

  1. Enhancement of dissolution rate of class II drugs (Hydrochlorothiazide); a comparative study of the two novel approaches; solid dispersion and liqui-solid techniques

    PubMed Central

    Khan, Amjad; Iqbal, Zafar; Shah, Yasar; Ahmad, Lateef; Ismail; Ullah, Zia; Ullah, Aman

    2015-01-01

    Liqui-solid technique and solid dispersion formation are two novel approaches for enhancement of dissolution rate of BCS class II drugs. Liqui-solid compact converts a liquid drug or drug solution into a free flowing powder with enhanced dissolution rate. In case of solid dispersion drug is molecularly dispersed in a hydrophilic polymer in solid state. In the present study, Liqui-solid and solid dispersion techniques were applied to enhance the dissolution of the Hydrochlorothiazide. Three formulations of Hydrochlorothiazide were prepared by liqui-solid technique using micro crystalline cellulose as carrier material and colloidal silicon dioxide as coating material. Water, poly ethylene glycol-400 and Tween-60 were used as solvent system. Solid dispersions of Hydrochlorothiazide were prepared by solvent fusion method using PEG-4000 as carrier polymer. Tablets were subjected to evaluation of various physical and chemical characteristics. Dissolution profiles of tablets prepared by the novel techniques were compared with marketed conventional tablets. Model independent techniques including similarity factor, dissimilarity factor and dissolution efficiency were applied for comparison of dissolution profiles. The results obtained indicated that liqui-solid compact formulations were more effective in enhancing the dissolution rate compared with solid dispersion technique. The liqui-solid compacts improved the dissolution rate up to 95% while the solid dispersion increased it to 88%. PMID:26702260

  2. Enhancement of dissolution rate of class II drugs (Hydrochlorothiazide); a comparative study of the two novel approaches; solid dispersion and liqui-solid techniques.

    PubMed

    Khan, Amjad; Iqbal, Zafar; Shah, Yasar; Ahmad, Lateef; Ismail; Ullah, Zia; Ullah, Aman

    2015-11-01

    Liqui-solid technique and solid dispersion formation are two novel approaches for enhancement of dissolution rate of BCS class II drugs. Liqui-solid compact converts a liquid drug or drug solution into a free flowing powder with enhanced dissolution rate. In case of solid dispersion drug is molecularly dispersed in a hydrophilic polymer in solid state. In the present study, Liqui-solid and solid dispersion techniques were applied to enhance the dissolution of the Hydrochlorothiazide. Three formulations of Hydrochlorothiazide were prepared by liqui-solid technique using micro crystalline cellulose as carrier material and colloidal silicon dioxide as coating material. Water, poly ethylene glycol-400 and Tween-60 were used as solvent system. Solid dispersions of Hydrochlorothiazide were prepared by solvent fusion method using PEG-4000 as carrier polymer. Tablets were subjected to evaluation of various physical and chemical characteristics. Dissolution profiles of tablets prepared by the novel techniques were compared with marketed conventional tablets. Model independent techniques including similarity factor, dissimilarity factor and dissolution efficiency were applied for comparison of dissolution profiles. The results obtained indicated that liqui-solid compact formulations were more effective in enhancing the dissolution rate compared with solid dispersion technique. The liqui-solid compacts improved the dissolution rate up to 95% while the solid dispersion increased it to 88%. PMID:26702260

  3. Determination of major elements by wavelength-dispersive X-ray fluorescence spectrometry and trace elements by inductively coupled plasma mass spectrometry in igneous rocks from the same fused sample (110 mg)

    NASA Astrophysics Data System (ADS)

    Amosova, Alena A.; Panteeva, Svetlana V.; Chubarov, Victor M.; Finkelshtein, Alexandr L.

    2016-08-01

    The fusion technique is proposed for simultaneous determination of 35 elements from the same sample. Only 110 mg of rock sample was used to obtain fused glasses for quantitative determination of 10 major elements by wavelength dispersive X-ray fluorescence analysis, 16 rare earth elements and some other trace elements by inductively coupled plasma mass spectrometry analysis. Fusion was performed with 1.1 g of lithium metaborate and LiBr solution as the releasing agent in platinum crucible in electric furnace at 1100 °C. The certified reference materials of ultramafic, mafic, intermediate and felsic igneous rocks have been applied to obtain the calibration curves for rock-forming oxides (Na2O, MgO, Al2O3, SiO2, P2O5, K2O, CaO, TiO2, MnO, Fe2O3) and some trace elements (Ba, Sr, Zr) determination by X-ray fluorescence analysis. The repeatability does not exceed the allowable standard deviation for a wide range of concentrations. In the most cases the relative standard deviation was less than 5%. Obtained glasses were utilized for the further determination of rare earth (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) and some other (Ba, Sr, Zr, Rb, Cs, Y, Nb, Hf, Ta, Th and U) trace elements by inductively coupled plasma mass spectrometry analysis with the same certified reference materials employed. The results could mostly be accepted as satisfactory. The proposed procedure essentially reduces the expenses in comparison with separate sample preparation for inductively coupled plasma mass spectrometry and X-ray fluorescence analysis.

  4. Recent improvements in optimizing use of dispersants as a cost-effective oil spill countermeasure technique

    SciTech Connect

    Daling, P.S.; Indrebo, G.

    1996-12-31

    Several oil spill incidents during recent years have demonstrated that the physico-chemical properties of spilled oil and the effectiveness of available combat methods are, in addition to the prevailing environmental and weather conditions, key factors that determine the consequences of an oil spill. Pre-spill analyses of the feasibility and effectiveness of different response strategies, such as mechanical recovery and dispersants, for actual oils under various environmental conditions should therefore be an essential part of any oil spill contingency planning to optimize the overall {open_quotes}Net Environmental Benefit{close_quotes} of a combat operation. During the four-year research program ESCOST ({open_quotes}ESSO-SINTEF Coastal Oil Spill Treatment Program{close_quotes}), significant improvements have been made in oil spill combat methods and in tools for use in contingency planning and decision-making during oil spill operations. This paper will present an overview of the main findings obtained with respect to oil weathering and oil spill dispersant treatment.

  5. Field Observations of Bioaerosols: What We've Learned from Fluorescence, Genetic, and Microscopic Techniques (Invited)

    NASA Astrophysics Data System (ADS)

    Huffman, J. A.; Fröhlich-Nowoisky, J.; Després, V. R.; Elbert, W.; Sinha, B.; Andreae, M. O.; Pöschl, U.

    2009-12-01

    Biogenic aerosols are ubiquitous in the Earth’s atmosphere, influencing atmospheric chemistry and physics, the biosphere, climate, and public health. They play an important role in the spread of biological organisms, and they can cause or enhance human, animal, and plant diseases. Moreover, they can initiate the formation of clouds and precipitation as cloud condensation and ice nuclei (CCN, IN). Primary biogenic aerosol particles (PBAP) such as pollen, fungal spores, and bacteria are emitted directly from the biosphere to the atmosphere. Microscopic investigations have shown that PBAP account for up to ~30% of fine and up to ~70% of coarse particulate matter in rural and rain forest air, and the estimates of PBA emissions range from ~60 Tg a-1 of fine particles up to ~1000 Tg a-1 of total particulate matter. Fungal spores account for a large proportion of PBA with typical number and mass concentrations of ~104 m-3 and ~1 μg m-3 in continental boundary layer air and estimated global emissions of the order of ~50 Tg a-1 and 200 m-2 s-1, respectively [1]. The actual abundance, variability and diversity of PBAP are still poorly understood and quantified, however. By measuring fluorescence at excitation and emission wavelengths specific to viable cells, online techniques with time resolution of minutes are able to detect fluorescent biological aerosol particles (FBAP), which represent a lower limit for the actual abundance of coarse (> 1 μm) PBAP [2]. Continuous sampling (1 - 4 months) was performed at various locations including pristine rain forest, rural and polluted urban sites. Each study exhibited a similar average particle number distribution dominated by a peak at ~3 μm, with coarse FBAP concentrations of the order of ~5x104 m-3 and ~1 μg m-3. Recent advances in the DNA analysis and molecular genetic characterization of aerosol filter samples yield new information about the sources and composition of PBA and provide new insight into regional and global

  6. Determination and speciation of trace and ultratrace selenium ions by energy-dispersive X-ray fluorescence spectrometry using graphene as solid adsorbent in dispersive micro-solid phase extraction.

    PubMed

    Kocot, Karina; Leardi, Riccardo; Walczak, Beata; Sitko, Rafal

    2015-03-01

    A dispersive micro-solid phase extraction (DMSPE) with graphene as a solid adsorbent and ammonium pyrrolidinedithiocarbamate (APDC) as a chelating agent was proposed for speciation and detemination of inorganic selenium by the energy-dispersive X-ray fluorescence spectrometry (EDXRF). In developed DMSPE, graphene particles are dispersed throughout the analyzed solution, therefore reaction between Se(IV)-APDC complexes and graphene nanoparticles occurs immediately. The concentration of Se(VI) is calculated as the difference between the concentration of selenite after and before prereduction of selenate. A central composite face-centered design with 3 center points was performed in order to optimize conditions and to study the effect of four variables (pH of the sample, concentration of APDC, concentration of Triton-X-100, and sample volume). The best results were obtained when suspension consisting of 200 µg of graphene nanosheets, 1.2 mg of APDC and 0.06 mg of Triton-X-100 was rapidly injected to the 50 mL of the analyzed solution. Under optimized conditions Se ions can be determined with a very good recovery (97.7±5.0% and 99.2±6.6% for Se(IV) and Se(VI), respectively) and precision (RSD=5.1-6.6%). Proposed DMSPE/EDXRF procedure allowed to obtain low detection limits (0.032 ng mL(-1)) and high enrichment factor (1013±15). The proposed methodology was successfully applied for the determination of Se in mineral, tap, lake and sea water samples as well as in biological materials (Lobster Hepatopancreas and Pig Kidney). PMID:25618680

  7. Thickness measurement of semiconductor thin films by energy dispersive X-ray fluorescence benchtop instrumentation: Application to GaN epilayers grown by molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Queralt, I.; Ibañez, J.; Marguí, E.; Pujol, J.

    2010-07-01

    The importance of thin films in modern high technology products, such as semiconductors, requires fast and non-destructive analysis. A methodology to determine the thickness of single layers with benchtop energy dispersive X-ray fluorescence (EDXRF) instrumentation is described and tested following analytical validation criteria. The experimental work was carried out on gallium nitride thin films epitaxially grown on sapphire substrate. The results of samples with layers in the range from 400 to 1000 nm exhibit a good correlation with the layer thickness determined by optical reflectance. Spectral data obtained using thin layered samples indicate the possibility to precisely evaluate layer thickness from 5 nm, with a low relative standard deviation (RSD < 2%) of the results. In view of the limits of optical reflectance for very thin layer determination, EDXRF analysis offers the potential for the thickness determination of such kind of samples.

  8. Improved instrumental sensitivity for Cd determination in aqueous solutions using Wavelength Dispersive X-ray Fluorescence Spectrometry, Rh-target tube instrumentation

    NASA Astrophysics Data System (ADS)

    Marguí, Eva; Fontàs, Clàudia; Hidalgo, Manuela; Queralt, Ignacio

    2008-11-01

    This work was aimed at improving the instrumental sensitivity and detection limits for Cd determination in liquid samples by using conventional Wavelength Dispersive X-ray Fluorescence (WDXRF) instrumentation equipped with Rh-anode X-ray sources. The fact that the background is drastically reduced when using activated membranes as a preconcentration tool to collect Cd from liquid samples permits an improvement of the sensitivity compared with the direct analysis of liquid samples. Instrumental WDXRF parameters, as well as the study of Cd-K and Cd-L series spectral lines, were evaluated to select the best conditions for Cd quantitation. The Cd-L α spectral line was found to be the best choice in terms of sensitivity and repeatability. The calculated detection limit when this spectral line was used to carry out the measurements was 0.17 mg L - 1 Cd, which is suitable for Cd determination in most liquid samples involved in environmental studies.

  9. Analysis of Catalonian silver coins from the Spanish War of Independence period (1808-1814) by Energy Dispersive X-ray Fluorescence

    NASA Astrophysics Data System (ADS)

    Pitarch, A.; Queralt, I.; Alvarez-Perez, A.

    2011-02-01

    Between the years 1808 and 1814, the Spanish War of Independence took place. This period, locally known as "Guerra del Francès", generated the need for money and consequently five mints were opened around the Catalan territory. To mark the 200th anniversary of the beginning of the war, an extensive campaign of Energy Dispersive X-ray Fluorescence measurements of some of these "emergency coins" was carried out. Apart from the silver (major constituent of all the studied coins) it has been possible to recognize copper as main metal alloying element. Likewise, the presence of zinc, tin, lead, gold, platinum, antimony, nickel and iron has been also identified. The obtained results have been useful not only for the characterization of the alloys, but also to determine the differences and analogies between the emissions and for historical explanations.

  10. Liver concentrations of copper, zinc, iron and molybdenum in sheep and goats from northern Greece, determined by energy-dispersive X-ray fluorescence spectrometry.

    PubMed

    Papachristodoulou, Christina; Stamoulis, Konstantinos; Tsakos, Panagiotis; Vougidou, Christina; Vozikis, Vasileios; Papadopoulou, Chrissanthy; Ioannides, Konstantinos

    2015-04-01

    Energy-dispersive X-Ray fluorescence spectrometry was used to determine the concentrations of copper (Cu), zinc, iron and molybdenum in the liver of 76 sheep and goats from the regions of Macedonia-Thrace, northern Greece. In general, metal concentrations were in the adequate range, with one main exception of Cu-deficiency observed in all of the examined goat liver samples and Cu-toxicity found in 4 % of the sheep liver samples. One-way analysis of variance was carried out to determine significant differences among means depending on animal species, sex and age. Pearson correlation analysis was used to explore correlations between metal concentrations. The results obtained in the present study are discussed in the framework of diagnostic ranges, suggested for classifying the metal status of sheep and goats, and are compared with liver metal concentrations reported world-wide. PMID:25694162

  11. Supramolecular-based dispersive liquid-liquid microextraction: a novel sample preparation technique utilizes coacervates and reverse micelles.

    PubMed

    Jafarvand, Sanaz; Shemirani, Farzaneh

    2011-02-01

    The present study reports a novel sample enrichment method termed supramolecular-based dispersive liquid-liquid microextraction (SM-DLLME). The SM solvent selected was made up of reversed micelles of decanoic acid dispersed in tetrahydrofuran (THF)-water. THF plays double role, not only acts as a disperser solvent but also causes self-assembly of decanoic acid. The contaminant used as a model was Malachite Green (MG). It was a cationic dye and was preconcentrated without any derivatization or ion-pair formation reaction. In SM-DLLME, the most important advantages of DLLME technique and preconcentration strategy based on the coacervation and reverse micelles have come together. Moreover, in this method, disadvantages of DLLME such as extraction capability of only hydrophobic analytes and hiring toxic and hazardous organic solvents as the extraction solvent and disadvantages of coacervation-based extraction method such as tedious, labor-intensive and time-consuming stirring procedure have been avoided. Several variables affecting the microextraction efficiency were investigated and optimized. Under the optimized conditions and preconcentration of only 5.00 mL of sample, the enhancement factor was 52, limit of detection (LOD) was 4 μg/L and relative standard deviations (RSDs) for 145 and 36 μg/L of MG in textile industry wastewater were 1.8 and 3.2%, respectively (n = 6). PMID:21254398

  12. Synchrotron Radiation and Energy Dispersive X-Ray Fluorescence Applications on Elemental Distribution in Human Hair and Bones

    SciTech Connect

    Carvalho, M.L.; Marques, A.F.; Brito, J.

    2003-01-24

    This work is an application of synchrotron microprobe X- Ray fluorescence in order to study elemental distribution along human hair samples of contemporary citizens. Furthermore, X-Ray fluorescence spectrometry is also used to analyse human bones of different historical periods: Neolithic and contemporary subjects. The elemental content in the bones allowed us to conclude about environmental contamination, dietary habits and health status influence in the corresponding citizens. All samples were collected post-mortem. Quantitative analysis was performed for Mn, Fe, Co, Ni, Cu, Zn, Br, Rb, Sr and Pb. Mn and Fe concentration were much higher in bones from pre-historic periods. On the contrary, Pb bone concentrations of contemporary subjects are much higher than in pre-historical ones, reaching 100 {mu}g g-1, in some cases. Very low concentrations for Co, Ni, Br and Rb were found in all the analysed samples. Cu concentrations, allows to distinguish Chalcolithic bones from the Neolithic ones. The distribution of trace elements along human hair was studied for Pb and the obtained pattern was consistent with the theoretical model, based on the diffusion of this element from the root and along the hair. Therefore, the higher concentrations in hair for Pb of contemporary individuals were also observed in the bones of citizens of the same sampling sites. All samples were analysed directly without any chemical treatment.

  13. Abundance and Night Hourly Dispersal of the Vesicating Beetles of the Genus Paederus (Coleoptera: Staphylinidae) Attracted to Fluorescent, Incandescent, and Black Light Sources in the Brazilian Savanna.

    PubMed

    Lima, D C B; Costa, A A V; Silva, F S

    2015-01-01

    Paederus beetles are cosmopolitan medically important insects that cause dermatitis linearis to humans. In Brazil, despite the medical importance of these beetles, no studies focusing directly on the abundance and ecological features of harmful species exist. Therefore, this study aims at determining the abundance and the nocturnal hourly dispersal of Paederus species attracted to fluorescent, incandescent, and black light sources in the Brazilian savanna. Paederus species were captured from May to September for three consecutive years, between 2011 and 2013. The specimens were caught hourly, from 1800 to 0600 hours. Paederus beetles were attracted to incandescent, fluorescent, and black light lamps as light sources. A total of 959 individuals of five species were collected. The collected species were Paederus protensus Sharp (59.85%), Paederus columbinus Laporte de Castelnau (29.20%), Paederus mutans Sharp (7.09%), Paederus brasiliensis Erichson (3.34%), and Paederus ferus Erichson (0.52%). The black light was the most attractive source, and the darkest collecting point was the most representative for the number of individuals. The lowest catches were captured at full moon, and the highest catches were between 2200 and 0100 hours. Future investigations are needed to better understand the role of night temperature and soil humidity affecting the seasonal growth of Paederus beetle populations of northeastern Brazil. PMID:26336279

  14. A bead-based fluorescence immunosensing technique enabled by the integration of Förster resonance energy transfer and optoelectrokinetic concentration.

    PubMed

    Wang, Jhih-Cheng; Ku, Hu-Yao; Shieh, Dar-Bin; Chuang, Han-Sheng

    2016-01-01

    Bead-based immunosensing has been growing as a promising technology in the point-of-care diagnostics due to great flexibility. For dilute samples, functionalized particles can be used to collect dispersed analytes and act as carriers for particle manipulation. To realize rapid and visual immunosensing, Förster resonance energy transfer (FRET) was used herein to ensure only the diabetic biomarker, lipocalin 1, to be detected. The measurement was made in an aqueous droplet sandwiched between two parallel plate electrodes. With an electric field and a focused laser beam applying on the microchip simultaneously, the immunocomplexes in the droplet were further concentrated to enhance the FRET fluorescent signal. The optoelectrokinetic technique, termed rapid electrokinetic patterning (REP), has been proven to be excellent in dynamic and programmable particle manipulation. Therefore, the detection can be complete within several tens of seconds. The lower detection limit of the REP-enabled bead-based diagnosis reached nearly 5 nM. The combinative use of FRET and the optoelectrokinetic technique for the bead-based immunosensing enables a rapid measure to diagnose early stage diseases and dilute analytes. PMID:26865906

  15. Laser induced fluorescence in algae: A new technique for remote detection

    NASA Technical Reports Server (NTRS)

    Friedman, E. J.; Hickman, G. D.

    1972-01-01

    Measurements of the absorption and fluorescence spectra were obtained for four various types of marine and fresh water algae using a pulsed N2/Ne dye laser as the source of excitation. The absorption maxima for the algae ranged from 420 to 675 nm, while their fluorescent spectra ranged from 580 to 685 nm. It appears feasible that various algal species can be identified by detection of their fluorescent signatures using a tunable laser as the excitation source. However, if one is concerned only with detection of chlorophyll a, the optimum excitation is approximately 600 + 50 nm while detection is at 685 nm. An analysis of both calculations and laboratory results indicates that it should be feasible to measure chlorophyll a in concentrations as low as 1.0 mg/m3 using a 100 kW peak pulsed laser from an altitude of 500 meters.

  16. Lipid dynamics in boar sperm studied by advanced fluorescence imaging techniques.

    PubMed

    Schröter, Filip; Jakop, Ulrike; Teichmann, Anke; Haralampiev, Ivan; Tannert, Astrid; Wiesner, Burkhard; Müller, Peter; Müller, Karin

    2016-03-01

    The (re)organization of membrane components is of special importance to prepare mammalian sperm to fertilization. Establishing suitable methods to examine physico-chemical membrane parameters is of high interest. We characterized the behavior of fluorescent (NBD) analogs of sphingomyelin (SM), phosphatidylserine (PS), and cholesterol (Ch) in the acrosomal and postacrosomal macrodomain of boar sperm. Due to their specific transverse membrane distribution, a leaflet-specific investigation of membrane properties is possible. The behavior of lipid analogs in boar sperm was investigated by fluorescence lifetime imaging microscopy (FLIM), fluorescence recovery after photobleaching (FRAP), and fluorescence correlation spectroscopy (FCS). The results were compared with regard to the different temporal and spatial resolution of the methods. For the first time, fluorescence lifetimes of lipid analogs were determined in sperm cell membrane and found to be in a range characteristic for the liquid-disordered phase in artificial lipid membranes. FLIM analyses further indicate a more fluid microenvironment of NBD-Ch and NBD-PS in the postacrosomal compared to the acrosomal region. The concept of a more fluid cytoplasmic leaflet is supported by lower fluorescence lifetime and higher average D values (FCS) for NBD-PS in both head compartments. Whereas FLIM analyses did not indicate coexisting distinct liquid-ordered and -disordered domains in any of the head regions, comparisons between FRAP and FCS measurements suggest the incorporation of NBD-SM as well as NBD-PS in postacrosomal subpopulations with different diffusion velocity. The analog-specific results indicate that the lipid analogs used are suitable to report on the various physicochemical properties of different microenvironments. PMID:26481472

  17. Characterizing Subcore Heterogeneity: A New Analytical Model and Technique to Observe the Spatial Variation of Transverse Dispersion

    NASA Astrophysics Data System (ADS)

    Boon, Maartje; Niu, Ben; Krevor, Sam

    2015-04-01

    of the NaI aqueous solution at steady state for the different Peclet numbers. The average transverse dispersion coefficient (Dt) was calculated from the change in variance of the transverse distance travelled by the NaI solution along the core. A Dt of 2.396e-04 cm2/min was obtained for Peclet nr 0.5 and a Dt of 4.771e-04 cm2/min for Peclet nr 2. These values coincide precisely with the Dt calculated from the pore scale modelling on Berea sandstone of Bijeljic and Blunt, 2007, and serves as a benchmark demonstrating the utility and repeatability of the technique. This new technique shows promise for use in characterising average transport characteristics and analysing the impacts of natural rock heterogeneity. Acknowledgement: This work was carried out as part of the Qatar Carbonates and Carbon Storage Research Centre (QCCSRC). The authors gratefully acknowledge the funding of QCCSRC provided jointly by Qatar Petroleum, Shell, and the Qatar Science & Technology Park and for supporting the present project and the permission to present this research. References: 1. Blackwell, 1962 - Laboratory studies of microscopic dispersion phenomena. Society of Petroleum Engineers Journal 2, no.1:1-8 2. Bijeljic, B., and M. J. Blunt (2007), Pore-scale modeling of transverse dispersion in porous media, Water Resour. Res., 43, W12S11, doi:10.1029/2006WR005700. 3. Han, N.W., Bhakta, J and Carbonell, R.G., 1985 - Longitudinal and lateral dispersion in packed beds: Effect of column length and particle size distribution. AIChE Journal31, no.2:277-288. 4. Harleman, D.R., and R.R. Rumer. 1963. Longitudinal and lateral dispersion in an isotropic porous medium. Journal of Fluid Mechanics16, no. 2:385-394. 5. Hassinger, R.C. and Von Rosenberg, D.U., 1968 - A mathematical and experimental examination of transverse dispersion coefficients. Society of Petroleum Engineers Journal 8, no.1:195-204.

  18. Far-ultraviolet fluorescence of carbon monoxide in the red giant Arcturus. II - Analysis of high-dispersion IUE spectra

    NASA Technical Reports Server (NTRS)

    Ayres, T. R.

    1986-01-01

    Faint, diffuse emissions near 1380 A in deeply exposed IUE spectrograms of the red giant Arcturus very likely are associated with bands of the A-X fourth-positive system of carbon monoxide, fluoresced by multiplet UV2 of neutral oxygen near 1305 A. Numerical simulations indicate that the strength of the CO bands is exceedingly sensitive, in the best available one-dimensional model of the chromosphere of Arcturus, to a delicate balance between the rapid inward attenuation of the oxygen radiation field and the rapid outward decline of the molecular absorptivity. The fortuitous character of the overlap region in the single-component model argues that one should also consider the possibility that the pumping occurs in a highly inhomogeneous chromosphere, of the type proposed in previous studies of Arcturus based on observations of the infrared absorption bands of CO.

  19. Noncontact, nondestructive elasticity evaluation of sound and demineralized human dental enamel using a laser ultrasonic surface wave dispersion technique

    NASA Astrophysics Data System (ADS)

    Wang, Hsiao-Chuan; Fleming, Simon; Lee, Yung-Chun; Law, Susan; Swain, Michael; Xue, Jing

    2009-09-01

    Laser ultrasonic nondestructive evaluation (NDE) methods have been proposed to replace conventional in vivo dental clinical diagnosis tools that are either destructive or incapable of quantifying the elasticity of human dental enamel. In this work, a laser NDE system that can perform remote measurements on samples of small dimensions is presented. A focused laser line source is used to generate broadband surface acoustic wave impulses that are detected with a simplified optical fiber interferometer. The measured surface wave velocity dispersion spectrum is in turn used to characterize the elasticity of the specimen. The NDE system and the analysis technique are validated with measurements of different metal structures and then applied to evaluate human dental enamel. Artificial lesions are prepared on the samples to simulate different states of enamel elasticity. Measurement results for both sound and lesioned regions, as well as lesions of different severity, are clearly distinguishable from each other and fit well with physical expectations and theoretical value. This is the first time, to the best of our knowledge, that a laser-based surface wave velocity dispersion technique is successfully applied on human dental enamel, demonstrating the potential for noncontact, nondestructive in vivo detection of the development of carious lesions.

  20. Ultrasonic ablation as a novel technique for producing pure aluminium nanoparticles dispersed in different liquids for different applications

    NASA Astrophysics Data System (ADS)

    Ismail, Yasser A. M.; Kishi, Naoki; Soga, Tetsuo

    2015-07-01

    In this paper, we introduce a novel physical method for producing surfactant-free aluminium nanoparticles (Al NPs) by irradiating ultrasonic waves on Al thin films immersed in different liquids used for different applications. We suggest naming this technique “ultrasonic ablation”. Our method has many advantages compared with other chemical and physical methods such as (1) fabrication of Al NPs using low-cost and easy procedures, (2) fabrication of pure Al NPs without any chemical additives, (3) fabrication of Al NPs dispersed in different liquids used for different applications, and (4) fabrication of individual Al NPs without aggregations. We have prepared Al NPs in 1,2-dichlorobenzene, which is used as a solvent for preparing active layer solutions of organic solar cells (OSCs), poly(3,4-ethylenedioxythiophene)-blend-poly(styrene sulfonate) (PEDOT:PSS), which is a representative aqueous solution used as a buffer layer in OSCs, and ethanol, which is a representative polar solvent used for different applications. Scanning electron microscopy (SEM) and optical absorption techniques have verified the fabrication of individual and surfactant-free Al NPs dispersed in different liquids that can be safely used in different applications.

  1. Enhanced dissolution and oral bioavailability of valsartan solid dispersions prepared by a freeze-drying technique using hydrophilic polymers.

    PubMed

    Xu, Wei-Juan; Xie, Hong-Juan; Cao, Qing-Ri; Shi, Li-Li; Cao, Yue; Zhu, Xiao-Yin; Cui, Jing-Hao

    2016-01-01

    This study aimed to improve the dissolution rate and oral bioavailability of valsartan (VAL), a poorly soluble drug using solid dispersions (SDs). The SDs were prepared by a freeze-drying technique with polyethylene glycol 6000 (PEG6000) and hydroxypropylmethylcellulose (HPMC 100KV) as hydrophilic polymers, sodium hydroxide (NaOH) as an alkalizer, and poloxamer 188 as a surfactant without using any organic solvents. In vitro dissolution rate and physicochemical properties of the SDs were characterized using the USP paddle method, differential scanning calorimetry (DSC), X-ray diffractometry (XRD) and Fourier transform-infrared (FT-IR) spectroscopy, respectively. In addition, the oral bioavailability of SDs in rats was evaluated by using VAL (pure drug) as a reference. The dissolution rates of the SDs were significantly improved at pH 1.2 and pH 6.8 compared to those of the pure drug. The results from DSC, XRD showed that VAL was molecularly dispersed in the SDs as an amorphous form. The FT-IR results suggested that intermolecular hydrogen bonding had formed between VAL and its carriers. The SDs exhibited significantly higher values of AUC 0-24 h and Cmax in comparison with the pure drug. In conclusion, hydrophilic polymer-based SDs prepared by a freeze-drying technique can be a promising method to enhance dissolution rate and oral bioavailability of VAL. PMID:24735247

  2. Line Raman, Rayleigh, and laser-induced predissociation fluorescence technique for combustion with a tunable KrF excimer laser.

    PubMed

    Mansour, M S; Chen, Y C

    1996-07-20

    We have applied a line UV Raman, Rayleigh, and laser-induced predissociation fluorescence technique for measurement of turbulent hydrocarbon flames. The species concentration of CO(2), O(2), CO, N(2), CH(4), H(2)O, OH, and H(2) and the temperature are measured instantaneously and simultaneously along a line of 11.4 mm, from which the gradients with respect to mixture fraction and spatial direction are obtained. The technique has been successfully tested in a laminar premixed stoichiometric methane flame and a laminar hydrogen diffusion flame. In addition the technique has been tested in a highly turbulent rich premixed methane flame. The data show that the technique can be used to provide instantaneous measurements of local profiles that describe the local flame structure in highly turbulent flames. PMID:21102834

  3. Determination of rhenium in molybdenite by X-ray fluorescence. A combined chemical-spectrometric technique

    USGS Publications Warehouse

    Solt, M.W.; Wahlberg, J.S.; Myers, A.T.

    1969-01-01

    Rhenium in molybdenite is separated from molybdenum by distillation of rhenium heptoxide from a perchloric-sulphuric acid mixture. It is concentrated by precipitation of the sulphide and then determined by X-ray fluorescence. From 3 to 1000 ??g of rhenium can be measured with a precision generally within 2%. The procedure tolerates larger amounts of molybdenum than the usual colorimetric methods. ?? 1969.

  4. Fluorescence technique for on-line monitoring of state of hydrogen-producing microorganisms

    DOEpatents

    Seibert, Michael; Makarova, Valeriya; Tsygankov, Anatoly A.; Rubin, Andrew B.

    2007-06-12

    In situ fluorescence method to monitor state of sulfur-deprived algal culture's ability to produce H.sub.2 under sulfur depletion, comprising: a) providing sulfur-deprived algal culture; b) illuminating culture; c) measuring onset of H.sub.2 percentage in produced gas phase at multiple times to ascertain point immediately after anerobiosis to obtain H.sub.2 data as function of time; and d) determining any abrupt change in three in situ fluorescence parameters; i) increase in F.sub.t (steady-state level of chlorophyll fluorescence in light adapted cells); ii) decrease in F.sub.m', (maximal saturating light induced fluorescence level in light adapted cells); and iii) decrease in .DELTA.F/F.sub.m'=(F.sub.m'-F.sub.t)/F.sub.m' (calculated photochemical activity of photosystem II (PSII) signaling full reduction of plastoquinone pool between PSII and PSI, which indicates start of anaerobic conditions that induces synthesis of hydrogenase enzyme for subsequent H.sub.2 production that signal oxidation of plastoquinone pool asmain factor to regulate H.sub.2 under sulfur depletion.

  5. Potential of Fluorescence Imaging Techniques To Monitor Mutagenic PAH Uptake by Microalga

    PubMed Central

    2015-01-01

    Benzo[a]pyrene (BaP), a polycyclic aromatic hydrocarbon (PAH), is one of the major environmental pollutants that causes mutagenesis and cancer. BaP has been shown to accumulate in phytoplankton and zooplankton. We have studied the localization and aggregation of BaP in Chlorella sp., a microalga that is one of the primary producers in the food chain, using fluorescence confocal microscopy and fluorescence lifetime imaging microscopy with the phasor approach to characterize the location and the aggregation of BaP in the cell. Our results show that BaP accumulates in the lipid bodies of Chlorella sp. and that there is Förster resonance energy transfer between BaP and photosystems of Chlorella sp., indicating the close proximity of the two molecular systems. The lifetime of BaP fluorescence was measured to be 14 ns in N,N-dimethylformamide, an average of 7 ns in Bold’s basal medium, and 8 ns in Chlorella cells. Number and brightness analysis suggests that BaP does not aggregate inside Chlorella sp. (average brightness = 5.330), while it aggregates in the supernatant. In Chlorella grown in sediments spiked with BaP, in 12 h the BaP uptake could be visualized using fluorescence microscopy. PMID:25020149

  6. Measuring gas emissions from animal waste lagoons with an inverse-dispersion technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Measuring gas emissions from treatment lagoons and storage ponds poses challenging conditions for existing micrometeorological techniques due to non-ideal conditions such as trees and crops surrounding the lagoons, and short fetch to establish equilibrated microclimate conditions within the water bo...

  7. Ocular dispersion

    NASA Astrophysics Data System (ADS)

    Hammer, Daniel X.; Noojin, Gary D.; Thomas, Robert J.; Stolarski, David J.; Rockwell, Benjamin A.; Welch, Ashley J.

    1999-06-01

    Spectrally resolved white-light interferometry (SRWLI) was used to measure the wavelength dependence of refractive index (i.e., dispersion) for various ocular components. The accuracy of the technique was assessed by measurement of fused silica and water, the refractive indices of which have been measured at several different wavelengths. The dispersion of bovine and rabbit aqueous and vitreous humor was measured from 400 to 1100 nm. Also, the dispersion was measured from 400 to 700 nm for aqueous and vitreous humor extracted from goat and rhesus monkey eyes. For the humors, the dispersion did not deviate significantly from water. In an additional experiment, the dispersion of aqueous and vitreous humor that had aged up to a month was compared to freshly harvested material. No difference was found between the fresh and aged media. An unsuccessful attempt was also made to use the technique for dispersion measurement of bovine cornea and lens. Future refinement may allow measurement of the dispersion of cornea and lens across the entire visible and near-infrared wavelength band. The principles of white- light interferometry including image analysis, measurement accuracy, and limitations of the technique, are discussed. In addition, alternate techniques and previous measurements of ocular dispersion are reviewed.

  8. Techniques of Fluorescence Cholangiography During Laparoscopic Cholecystectomy for Better Delineation of the Bile Duct Anatomy

    PubMed Central

    Kono, Yoshiharu; Ishizawa, Takeaki; Tani, Keigo; Harada, Nobuhiro; Kaneko, Junichi; Saiura, Akio; Bandai, Yasutsugu; Kokudo, Norihiro

    2015-01-01

    Abstract To evaluate the clinical and technical factors affecting the ability of fluorescence cholangiography (FC) using indocyanine green (ICG) to delineate the bile duct anatomy during laparoscopic cholecystectomy (LC). Application of FC during LC began after laparoscopic fluorescence imaging systems became commercially available. In 108 patients undergoing LC, FC was performed by preoperative intravenous injection of ICG (2.5 mg) during dissection of Calot's triangle, and clinical factors affecting the ability of FC to delineate the extrahepatic bile ducts were evaluated. Equipment-related factors associated with bile duct detectability were also assessed among 5 laparoscopic systems and 1 open fluorescence imaging system in ex vivo studies. FC delineated the confluence between the cystic duct and common hepatic duct (CyD–CHD) before and after dissection of Calot's triangle in 80 patients (74%) and 99 patients (92%), respectively. The interval between ICG injection and FC before dissection of Calot's triangle was significantly longer in the 80 patients in whom the CyD–CHD confluence was detected by fluorescence imaging before dissection (median, 90 min; range, 15–165 min) than in the remaining 28 patients in whom the confluence was undetectable (median, 47 min; range, 21–205 min; P < 0.01). The signal contrast on the fluorescence images of the bile duct samples was significantly different among the laparoscopic imaging systems and tended to decrease more steeply than those of the open imaging system as the target-laparoscope distance increased and porcine tissues covering the samples became thicker. FC is a simple navigation tool for obtaining a biliary roadmap to reach the “critical view of safety” during LC. Key factors for better bile duct identification by FC are administration of ICG as far in advance as possible before surgery, sufficient extension of connective tissues around the bile ducts, and placement of the tip of

  9. Beyond radio-displacement techniques for Identification of CB1 Ligands: The First Application of a Fluorescence-quenching Assay

    PubMed Central

    Bruno, Agostino; Lembo, Francesca; Novellino, Ettore; Stornaiuolo, Mariano; Marinelli, Luciana

    2014-01-01

    Cannabinoid type 1 Receptor (CB1) belongs to the GPCR family and it has been targeted, so far, for the discovery of drugs aimed at the treatment of neuropathic pain, nausea, vomit, and food intake disorders. Here, we present the development of the first fluorescent assay enabling the measurement of kinetic binding constants for CB1orthosteric ligands. The assay is based on the use of T1117, a fluorescent analogue of AM251. We prove that T1117 binds endogenous and recombinant CB1 receptors with nanomolar affinity. Moreover, T1117 binding to CB1 is sensitive to the allosteric ligand ORG27569 and thus it is applicable to the discovery of new allosteric drugs. The herein presented assay constitutes a sustainable valid alternative to the expensive and environmental impacting radiodisplacement techniques and paves the way for an easy, fast and cheap high-throughput drug screening toward CB1 for identification of new orthosteric and allosteric modulators. PMID:24441508

  10. DNAzyme-based biosensor for Cu(2+) ion by combining hybridization chain reaction with fluorescence resonance energy transfer technique.

    PubMed

    Chen, Ying; Chen, Ling; Ou, Yidian; Wang, Zhenhua; Fu, Fengfu; Guo, Liangqia

    2016-08-01

    A novel signal amplification strategy based on Cu(2+)-dependent DNAzyme was developed for sensing Cu(2+) ion by combining hybridization chain reaction (HCR) with fluorescence resonance energy transfer (FRET) technique. In the presence of Cu(2+) ion, the substrate strands of Cu(2+)-dependent DNAzyme immobilized on magnetic beads were specifically cleaved and released. The released strands initiated the HCR process of hairpin H1 and H2 labeled with FAM as the donor and TAMRA as the acceptor, respectively. Long nicked dsDNA structures were self-assembled to bring the donor and the acceptor in close proximity, resulting in a FRET process. The relative ratio of fluorescent intensities of the acceptor and donor was used to quantitatively detect Cu(2+) ion with a limit of detection of 0.5nmolL(-1). This proposed biosensor was applied to detect Cu(2+) ion in tap water with satisfactory results. PMID:27216680

  11. Beyond radio-displacement techniques for identification of CB1 ligands: the first application of a fluorescence-quenching assay.

    PubMed

    Bruno, Agostino; Lembo, Francesca; Novellino, Ettore; Stornaiuolo, Mariano; Marinelli, Luciana

    2014-01-01

    Cannabinoid type 1 Receptor (CB1) belongs to the GPCR family and it has been targeted, so far, for the discovery of drugs aimed at the treatment of neuropathic pain, nausea, vomit, and food intake disorders. Here, we present the development of the first fluorescent assay enabling the measurement of kinetic binding constants for CB1 orthosteric ligands. The assay is based on the use of T1117, a fluorescent analogue of AM251. We prove that T1117 binds endogenous and recombinant CB1 receptors with nanomolar affinity. Moreover, T1117 binding to CB1 is sensitive to the allosteric ligand ORG27569 and thus it is applicable to the discovery of new allosteric drugs. The herein presented assay constitutes a sustainable valid alternative to the expensive and environmental impacting radiodisplacement techniques and paves the way for an easy, fast and cheap high-throughput drug screening toward CB1 for identification of new orthosteric and allosteric modulators. PMID:24441508

  12. Determination of eight fluoroquinolones in groundwater samples with ultrasound-assisted ionic liquid dispersive liquid-liquid microextraction prior to high-performance liquid chromatography and fluorescence detection.

    PubMed

    Vázquez, M M Parrilla; Vázquez, P Parrilla; Galera, M Martínez; García, M D Gil

    2012-10-20

    An ultrasound-assisted ionic liquid dispersive liquid-liquid microextraction (US-IL-DLLME) procedure was developed for the extraction of eight fluoroquinolones (marbofloxacin, norfloxacin, ciprofloxacin, lomefloxacin, danofloxacin, enrofloxacin, oxolinic acid and nalidixic acid) in groundwater, using high-performance liquid chromatography with fluorescence detection (HPLC-FD). The ultrasound-assisted process was applied to accelerate the formation of the fine cloudy solution using a small volume of disperser solvent (0.4 mL of methanol), which increased the extraction efficiency and reduced the equilibrium time. For the DLLME procedure, the IL 1-octyl-3-methylimidazolium hexafluorophosphate ([C(8)MIM] [PF(6)]) and methanol (MeOH) were used as extraction and disperser solvent, respectively. By comparing [C(8)MIM] [PF(6)] with 1-hexyl-3-methylimidazolium hexafluorophosphate ([C(6)MIM] [PF(6)]) and 1-butyl-3-methylimidazolium hexafluorophosphate ([C(4)MIM] [PF(6)]) as extraction solvents, it was observed that when using [C(8)MIM] [PF(6)] the cloudy solution was formed more readily than when using [C(6)MIM] [PF(6)] or [C(4)MIM] [PF(6)]. The factors affecting the extraction efficiency, such as the type and volume of ionic liquid, type and volume of disperser solvent, cooling in ice-water, sonication time, centrifuging time, sample pH and ionic strength, were optimised. A slight increase in the recoveries of fluoroquinolones was observed when an ice-water bath extraction step was included in the analytical procedure (85-107%) compared to those obtained without this step (83-96%). Under the optimum conditions, linearity of the method was observed over the range 10-300 ng L(-1) with correlation coefficient >0.9981. The proposed method has been found to have excellent sensitivity with limit of detection between 0.8 and 13 ng L(-1) and precision with relative standard deviation values between 4.8 and 9.4% (RSD, n=5). Good enrichment factors (122-205) and recoveries (85

  13. Structural investigation of nuclear RNP particles containing pre-mRNA by different fluorescence techniques.

    PubMed Central

    Borissova, O F; Krichevskaya, A A; Samarina, O P

    1981-01-01

    Ethidium bromide (EB) adsorption isotherms on 30S nuclear RNP particles isolated from liver nuclei has revealed 6% of double-stranded regions in pre-mRNA (dsRNA). It has been established by measurements of the EB fluorescence polarization that the bulk of dsRNA regions in RNP is rigidly attached to RNP. They are longer than 45 degree A. The increase of NaCl concentration from 0.1 up to 0.4 M causes a significant loosening of dsRNA-protein bonds. As a result the dsRNA segments become more flexible. Measurements of energy transfer from fluorescamine (covalently bound to the protein) to EB (adsorbed on dsRNA) have yielded information about dsRNA location. The fact that absorbtion of exciting light by fluorescamine causes pronounced increase of EB fluorescence is consistent with the idea that helical regions of RNA are located outside the RNP particles. PMID:7220348

  14. Structural investigation of nuclear RNP particles containing pre-mRNA by different fluorescence techniques.

    PubMed

    Borissova, O F; Krichevskaya, A A; Samarina, O P

    1981-02-11

    Ethidium bromide (EB) adsorption isotherms on 30S nuclear RNP particles isolated from liver nuclei has revealed 6% of double-stranded regions in pre-mRNA (dsRNA). It has been established by measurements of the EB fluorescence polarization that the bulk of dsRNA regions in RNP is rigidly attached to RNP. They are longer than 45 degree A. The increase of NaCl concentration from 0.1 up to 0.4 M causes a significant loosening of dsRNA-protein bonds. As a result the dsRNA segments become more flexible. Measurements of energy transfer from fluorescamine (covalently bound to the protein) to EB (adsorbed on dsRNA) have yielded information about dsRNA location. The fact that absorbtion of exciting light by fluorescamine causes pronounced increase of EB fluorescence is consistent with the idea that helical regions of RNA are located outside the RNP particles. PMID:7220348

  15. A video imaging technique for assessing dermal exposure. II. Fluorescent tracer testing.

    PubMed

    Fenske, R A; Wong, S M; Leffingwell, J T; Spear, R C

    1986-12-01

    Laboratory and field evaluations were conducted to determine the suitability of employing a fluorescent tracer in conjunction with video imaging analysis to measure dermal exposure during pesticide applications. The Fluorescent Whitening Agent 4-methyl-7-diethylaminocoumarin and the organophosphate malathion were highly correlated (r = .985) when sprayed under controlled conditions. Deposition levels during field studies were correlated similarly (r = .942); however, variability in deposition ratios requires that field sampling be conducted to determine the ratio for a particular application. Penetration of the two compounds through cotton/polyester workshirt material demonstrated a high correlation (r = .979), whereas penetration of cotton/polyester coverall material was more variable (r = .834). The slopes of the regression lines for the two materials were not significantly different. The ratio of pesticide and tracer recovered from targets was consistently higher than the initial tank ratio due to differences in solubility and mixing. PMID:3799477

  16. Application of the Total Reflection X-ray Fluorescence technique to trace elements determination in tobacco

    NASA Astrophysics Data System (ADS)

    Martinez, T.; Lartigue, J.; Zarazua, G.; Avila-Perez, P.; Navarrete, M.; Tejeda, S.

    2008-12-01

    Many studies have identified an important number of toxic elements along with organic carcinogen molecules and radioactive isotopes in tobacco. In this work we have analyzed by Total Reflection X-Ray Fluorescence 9 brands of cigarettes being manufactured and distributed in the Mexican market. Two National Institute of Standards and Technology standards and a blank were equally treated at the same time. Results show the presence of some toxic elements such as Pb and Ni. These results are compared with available data for some foreign brands, while their implications for health are discussed. It can be confirmed that the Total Reflection X-Ray Fluorescence method provides precise (reproducible) and accuracy (trueness) data for 15 elements concentration in tobacco samples.

  17. Hyperspectral fluorescence imaging coupled with multivariate image analysis techniques for contaminant screening of leafy greens

    NASA Astrophysics Data System (ADS)

    Everard, Colm D.; Kim, Moon S.; Lee, Hoyoung

    2014-05-01

    The production of contaminant free fresh fruit and vegetables is needed to reduce foodborne illnesses and related costs. Leafy greens grown in the field can be susceptible to fecal matter contamination from uncontrolled livestock and wild animals entering the field. Pathogenic bacteria can be transferred via fecal matter and several outbreaks of E.coli O157:H7 have been associated with the consumption of leafy greens. This study examines the use of hyperspectral fluorescence imaging coupled with multivariate image analysis to detect fecal contamination on Spinach leaves (Spinacia oleracea). Hyperspectral fluorescence images from 464 to 800 nm were captured; ultraviolet excitation was supplied by two LED-based line light sources at 370 nm. Key wavelengths and algorithms useful for a contaminant screening optical imaging device were identified and developed, respectively. A non-invasive screening device has the potential to reduce the harmful consequences of foodborne illnesses.

  18. Atmospheric and dispersion modeling in areas of highly complex terrain employing a four-dimensional data assimilation technique

    SciTech Connect

    Fast, J.D.; O`Steen, B.L.

    1994-12-31

    The results of this study indicate that the current data assimilation technique can have a positive impact on the mesoscale flow fields; however, care must be taken in its application to grids of relatively fine horizontal resolution. Continuous FDDA is a useful tool in producing high-resolution mesoscale analysis fields that can be used to (1) create a better initial conditions for mesoscale atmospheric models and (2) drive transport models for dispersion studies. While RAMS is capable of predicting the qualitative flow during this evening, additional experiments need to be performed to improve the prognostic forecasts made by RAMS and refine the FDDA procedure so that the overall errors are reduced even further. Despite the fact that a great deal of computational time is necessary in executing RAMS and LPDM in the configuration employed in this study, recent advances in workstations is making applications such as this more practical. As the speed of these machines increase in the next few years, it will become feasible to employ prognostic, three-dimensional mesoscale/transport models to routinely predict atmospheric dispersion of pollutants, even to highly complex terrain. For example, the version of RAMS in this study could be run in a ``nowcasting`` model that would continually assimilate local and regional observations as soon as they become available. The atmospheric physics in the model would be used to determine the wind field where no observations are available. The three-dimensional flow fields could be used as dynamic initial conditions for a model forecast. The output from this type of modeling system will have to be compared to existing diagnostic, mass-consistent models to determine whether the wind field and dispersion forecasts are significantly improved.

  19. The modified fluorescence based vesicle fluctuation spectroscopy technique for determination of lipid bilayer bending properties.

    PubMed

    Drabik, Dominik; Przybyło, Magda; Chodaczek, Grzegorz; Iglič, Aleš; Langner, Marek

    2016-02-01

    Lipid bilayer is the main constitutive element of biological membrane, which confines intracellular space. The mechanical properties of biological membranes may be characterized by various parameters including membrane stiffness or membrane bending rigidity, which can be measured using flicker noise spectroscopy. The flicker noise spectroscopy exploits the spontaneous thermal undulations of the membrane. The method is based on the quantitative analysis of a series of microscopic images captured during thermal membrane fluctuations. Thus, measured bending rigidity coefficient depends on the image quality as well as the selection of computational tools for image processing and mathematical model used. In this work scanning and spinning disc confocal microscopies were used to visualize fluctuating membranes of giant unilamellar vesicles. The bending rigidity coefficient was calculated for different acquisition modes, using different fluorescent probes and different image processing methods. It was shown that both imaging approaches gave similar bending coefficient values regardless of acquisition time. Using the developed methodology the effect of fluorescent probe type and aqueous phase composition on the value of the membrane bending rigidity coefficient was measured. Specifically it was found that the bending rigidity coefficient of DOPC bilayer in water is smaller than that determined for POPC membrane. It has been found that the POPC and DOPC bending rigidities coefficient in sucrose solution was lower than that in water. Fluorescence imaging makes possible the quantitative analysis of membrane mechanical properties of inhomogeneous membrane. PMID:26615919

  20. Development of a digital fluorescence sensing technique to monitor the response of macrophages to external hypoxia

    NASA Astrophysics Data System (ADS)

    Asiedu, Jacob K.; Jin, Ji; Nguyen, Mai; Rosenzweig, Nitsa; Rosenzweig, Zeev

    2001-04-01

    Oxygen plays a very important role in living cells. The intracellular level of oxygen is under tight control, as even a small deviation from normal oxygen level affects major cellular metabolic processes and is likely to result in cellular damage or cell death. This paper describes the use of the oxygen sensitive fluorescent dye tris (1,10- phenanthroline) ruthenium chloride [Ru(phen)3] as an intracellular oxygen probe. Ru(phen)3 exhibits high photostability, a relatively high excitation coefficient at 450 nm (18000 M-1 cm-1), high emission quantum yield (approximately 0.5), and a large Stoke shift (peak emission at 604 nm). It is effectively quenched by molecular oxygen due to its long excited state lifetime of around 1 microsecond(s) . The luminescence of Ru(phen)3 decreases with increasing oxygen concentrations and the oxygen levels are determined using the Stern-Volmer equation. In our studies, J774 Murine Macrophages are loaded with Ru(phen)3, which passively permeates into the cells. Fluorescence spectroscopy and digital fluorescence imaging microscopy are used to observe the cells and monitor their response to changing oxygen levels. The luminescence intensity of the cells decreases when exposed to hypoxia and recovers once normal oxygen conditions are restored. The analytical properties of the probe and its application in monitoring the cellular response to hypoxia are described.

  1. Solid Dispersion Matrix Tablet Comprising Indomethacin-PEG-HPMC Fabricated with Fusion and Mold Technique

    PubMed Central

    Mesnukul, A.; Yodkhum, K.; Phaechamud, T.

    2009-01-01

    The purpose of this study is to fabricate the polyethylene glycol matrix tablet by mold technique. Indomethacin and hydroxypropylmethylcellulose were used as model drug and polymer, respectively, in PEG matrix system. The physical and drug release characteristics of developed matrix tablet were studied. This inert carrier system comprising 7:3 polyethylene glycol 4000: polyethylene glycol 400 could effectively enhance the solubility of indomethacin and an addition of hydroxypropylmethylcellulose could sustain the drug release. Scanning electron microscope photomicrograph indicated the drug diffusion outward through the porous network of this developed matrix tablet into the dissolution fluid. Least square fitting the experimental dissolution data to the mathematical expressions (power law, first-order, Higuchi's and zero-order) indicated the drug release kinetics primarily as Fickian diffusion. Both the enhancement of drug dissolution and the prolongation of the drug release could be achieved for aqueous insoluble drug such as, indomethacin, by using polyethylene glycol-hydroxypropylmethylcellulose matrix system prepared with melting and mold technique. PMID:20502547

  2. Solid Dispersion Matrix Tablet Comprising Indomethacin-PEG-HPMC Fabricated with Fusion and Mold Technique.

    PubMed

    Mesnukul, A; Yodkhum, K; Phaechamud, T

    2009-07-01

    The purpose of this study is to fabricate the polyethylene glycol matrix tablet by mold technique. Indomethacin and hydroxypropylmethylcellulose were used as model drug and polymer, respectively, in PEG matrix system. The physical and drug release characteristics of developed matrix tablet were studied. This inert carrier system comprising 7:3 polyethylene glycol 4000: polyethylene glycol 400 could effectively enhance the solubility of indomethacin and an addition of hydroxypropylmethylcellulose could sustain the drug release. Scanning electron microscope photomicrograph indicated the drug diffusion outward through the porous network of this developed matrix tablet into the dissolution fluid. Least square fitting the experimental dissolution data to the mathematical expressions (power law, first-order, Higuchi's and zero-order) indicated the drug release kinetics primarily as Fickian diffusion. Both the enhancement of drug dissolution and the prolongation of the drug release could be achieved for aqueous insoluble drug such as, indomethacin, by using polyethylene glycol-hydroxypropylmethylcellulose matrix system prepared with melting and mold technique. PMID:20502547

  3. Preparation of solid dispersion of dronedarone hydrochloride with Soluplus(®) by hot melt extrusion technique for enhanced drug release.

    PubMed

    Han, Sang Duk; Jung, Sang Won; Jang, Sun Woo; Jung, Hyuck Jun; Son, Miwon; Kim, Byoung Moon; Kang, Myung Joo

    2015-01-01

    In order to enhance the dissolution rate of dronedarone hydrochloride (DRN), a novel Soluplus(®) (polyethyleneglycol-polyvinyl caprolactam-polyvinyl acetate grafted copolymer)-based solid dispersion (SD) was formulated using a hot melt extrusion technique. The physical characteristics determined using scanning electron microscopy and X-ray powder diffraction, revealed that the active compound was molecularly dispersed in the amphiphilic polymer in a stable amorphous form. The dissolution rate of DRN from the tablet dosage form of SD extrudate consisted of the drug and Soluplus(®) in a weight ratio of 1 : 1, and was obviously more rapid and higher than that of the intact drug and marketed product (Multaq(®), Sanofi, U.S.A.) at pH 1.2, 4.0 and 6.8. This suggests that Soluplus(®)-based SD formula can be a promising approach for enhancing the dissolution and oral absorption of DRN with a simple preparation process. PMID:25832024

  4. Development of advanced image analysis techniques for the in situ characterization of multiphase dispersions occurring in bioreactors.

    PubMed

    Galindo, Enrique; Larralde-Corona, C Patricia; Brito, Teresa; Córdova-Aguilar, Ma Soledad; Taboada, Blanca; Vega-Alvarado, Leticia; Corkidi, Gabriel

    2005-03-30

    Fermentation bioprocesses typically involve two liquid phases (i.e. water and organic compounds) and one gas phase (air), together with suspended solids (i.e. biomass), which are the components to be dispersed. Characterization of multiphase dispersions is required as it determines mass transfer efficiency and bioreactor homogeneity. It is also needed for the appropriate design of contacting equipment, helping in establishing optimum operational conditions. This work describes the development of image analysis based techniques with advantages (in terms of data acquisition and processing), for the characterization of oil drops and bubble diameters in complex simulated fermentation broths. The system consists of fully digital acquisition of in situ images obtained from the inside of a mixing tank using a CCD camera synchronized with a stroboscopic light source, which are processed with a versatile commercial software. To improve the automation of particle recognition and counting, the Hough transform (HT) was used, so bubbles and oil drops were automatically detected and the processing time was reduced by 55% without losing accuracy with respect to a fully manual analysis. The system has been used for the detailed characterization of a number of operational conditions, including oil content, biomass morphology, presence of surfactants (such as proteins) and viscosity of the aqueous phase. PMID:15707687

  5. A Fluorescence Recovery After Photobleaching (FRAP) Technique for the Measurement of Solute Transport Across Surfactant-Laden Interfaces

    NASA Technical Reports Server (NTRS)

    Browne, Edward P.; Hatton, T. Alan

    1996-01-01

    The technique of Fluorescence Recovery After Photobleaching (FRAP) has been applied to the measurement of interfacial transport in two-phase systems. FRAP exploits the loss of fluorescence exhibited by certain fluorophores when over-stimulated (photobleached), so that a two-phase system, originally at equilibrium, can be perturbed without disturbing the interface by strong light from an argon-ion laser and its recovery monitored by a microscope-mounted CCD camera as it relaxes to a new equilibrium. During this relaxation, the concentration profiles of the probe solute are measured on both sides of the interface as a function of time, yielding information about the transport characteristics of the system. To minimize the size of the meniscus between the two phases, a photolithography technique is used to selectively treat the glass walls of the cell in which the phases are contained. This allows concentration measurements to be made very close to the interface and increases the sensitivity of the FRAP technique.

  6. Quantitative evaluation of material composition of composites using x-ray energy-dispersive NDE technique

    SciTech Connect

    Ting, J.

    1993-09-01

    This technique worked well for determining the thickness and densities for composite components having the higher linear attenuation coefficient; it accurately determined thickness of epoxy-resin and Al metal, and the denisty of bone, to {le} 4% in the graphite-epoxy, bone-plexiglas, and Al-Al corrosion composites. Accuracy is dictated by the magnitude and uncertainty of the linear attenuation coefficient. Use of Ge detector and multichannel analyzer are limited by inspection time (1 day for point measurement) and access limitation. Immediate development of a rapid in-service inspection tool is limited by the amplifier and MCA systems. The MCA should be replaced with a single-channel analyzer, and an electronic device should be built for monitoring the incoming signal for Pile-Up-Rejection.

  7. Continuous energy diffraction spectroscopy: A new d-space matching technique for energy dispersive synchrotron radiation diffraction

    NASA Astrophysics Data System (ADS)

    Lee, P. L.; Beno, M. A.; Knapp, G. S.; Jennings, G.

    1994-07-01

    In this article, a new technique, continuous energy diffraction spectroscopy (CEDS) is described, for diffraction experiments using a synchrotron energy dispersive polychromatic beamline. This type of beamline uses a curved crystal monochromator (polychromator) to focus a range of x-ray energies (bandwidth ˜1 keV) into a narrow (100-120 μm) line image. With a sample at this image point, using an 2D detector, we are able to measure diffracted intensities for the entire energy range of the incident beam simultaneously with limited or no motion of the sample. This method allows the collection of anomalous scattering and diffraction anomalous fine structure (DAFS) data faster and more accurately than with conventional methods. Because of the speed with which these types of diffraction experiments can be done, this method creates new options for time resolved diffraction experiments and provides new data collection strategies.

  8. Zirconium (IV)-based metal organic framework (UIO-67) as efficient sorbent in dispersive solid phase extraction of plant growth regulator from fruits coupled with HPLC fluorescence detection.

    PubMed

    Liu, Lijie; Xia, Lian; Wu, Chuanxiang; Qu, Fengli; Li, Guoliang; Sun, Zhiwei; You, Jinmao

    2016-07-01

    A stable zirconium (Ⅳ)-based metal organic frameworks (UIO-67) material possessing good chemical, thermal and water stability was synthesized and applied as a sorbent for the dispersive solid phase extraction (DSPE) of 8 plant growth regulators (PGRs) in fruit samples. Fluorescence labeling combined with high performance liquid chromatography fluorescence detection (HPLC-FLD), was used to quantify the target analytes. Characterization of the UIO-67 material was performed by X-ray diffraction(XRD) and scanning electron microscopy (SEM). The experimental parameters, such as amount of UIO-67, type and volume of eluting solvent, adsorption and desorption time, were optimized. Under the optimized conditions, good linearity was observed in the range of 10-1000 pmol/mL with R(2)>0.9989. The limits of detection and limits of quantification were in the range of 0.21-0.57ng/mL and 0.81-1.91ng/mL, respectively. The intra-day and inter-day precisions (based on the relative standard deviation, n=3) of the PGR derivatives were under 3.1% and 5.3% respectively and the accuracies of the method for the PGRs were in the range from 89.3% to 102.3%. The developed method was successfully applied to analyze PGRs residues in fruit samples. The proposed method is proved to be simple, environment-friendly and inexpensive and it is feasible to directly use UIO-67 as sorbent to extract targets by varying conditions. PMID:27154644

  9. Fluorescent derivatization combined with aqueous solvent-based dispersive liquid-liquid microextraction for determination of butyrobetaine, l-carnitine and acetyl-l-carnitine in human plasma.

    PubMed

    Chen, Yi-Ching; Tsai, Chia-Ju; Feng, Chia-Hsien

    2016-09-16

    A novel aqueous solvent-based dispersive liquid-liquid microextraction (AS-DLLME) method was combined with narrow-bore liquid chromatography and fluorescence detection for the determination of hydrophilic compounds. A remover (non-polar solvent) and extractant (aqueous solution) were introduced into the derivatization system (acetonitrile) to obtain a water-in-oil emulsion state that increased the mass transfer of analytes. As a proof of concept, three quaternary ammonium substances, including butyrobetaine, l-carnitine and acetyl-l-carnitine, were also used as analytes and determined in pharmaceuticals, personal care products, food and human plasma. The analytes were derivatized with 4-bromomethylbiphenyl for fluorescence detection and improved retention in the column. The linear response was 10-2000nM for l-carnitine and acetyl-l-carnitine with a good determination coefficient (r(2)>0.998) in the standard solution. The detection limit for l-carnitine and acetyl-l-carnitine was 4.5 fmol. The method was also successfully applied to a 1μL sample of human plasma. In the linearity calculations for determining butyrobetaine, l-carnitine and acetyl-l-carnitine in human plasma, the determination coefficients ranged from 0.996 to 0.999. Linear regression exhibited good reproducibility and a relative standard deviation better than 7.50% for the slope and 9.06% for the intercept. To characterize highly hydrophilic compounds in various samples, the proposed method provides good sensitivity for a small sample volume with a low consumption of toxic solvents. PMID:27562416

  10. Numerical evaluation of droplet sizing based on the ratio of fluorescent and scattered light intensities (LIF/Mie technique)

    SciTech Connect

    Charalampous, Georgios; Hardalupas, Yannis

    2011-03-20

    The dependence of fluorescent and scattered light intensities from spherical droplets on droplet diameter was evaluated using Mie theory. The emphasis is on the evaluation of droplet sizing, based on the ratio of laser-induced fluorescence and scattered light intensities (LIF/Mie technique). A parametric study is presented, which includes the effects of scattering angle, the real part of the refractive index and the dye concentration in the liquid (determining the imaginary part of the refractive index). The assumption that the fluorescent and scattered light intensities are proportional to the volume and surface area of the droplets for accurate sizing measurements is not generally valid. More accurate sizing measurements can be performed with minimal dye concentration in the liquid and by collecting light at a scattering angle of 60 deg. rather than the commonly used angle of 90 deg. Unfavorable to the sizing accuracy are oscillations of the scattered light intensity with droplet diameter that are profound at the sidescatter direction (90 deg.) and for droplets with refractive indices around 1.4.

  11. Application of image restoration and three-dimensional visualization techniques to frog microvessels in-situ loaded with fluorescent indicators

    NASA Astrophysics Data System (ADS)

    Pagakis, Stamatis N.; Curry, Fitz-Roy E.; Lenz, Joyce F.

    1993-07-01

    In situ experiments on microvessels require image sensors of wide dynamic range due to large variations of the intensity in the scene, and 3D visualization due to the thickness of the preparation. The images require restoration because of the inherent tissue movement, out-of- focus-light contamination, and blur. To resolve the above problems, we developed an imaging system for quantitative imaging based on a 12 bits/pixel cooled CCD camera and a PC based digital imaging system. We applied the optical sectioning technique with image restoration using a modified nearest neighbor algorithm and iterative constrained deconvolution on each of the 2D optical sections. For the 3D visualization of the data, a volume rendering software was used. The data provided 3D images of the distribution of fluorescent indicators in intact microvessels. Optical cross sections were also compared with cross sections of the same microvessels examined in the electron microscope after their luminal surfaces were labeled with a tracer which was both electron dense and fluorescent. This procedure enabled precise identification of the endothelial cells in the microvessel wall as the principal site of accumulation of the fluorescent calcium indicator, fura-2, during microperfusion experiments.

  12. Quantification of methane emissions from full-scale open windrow composting of biowaste using an inverse dispersion technique.

    PubMed

    Hrad, Marlies; Binner, Erwin; Piringer, Martin; Huber-Humer, Marion

    2014-12-01

    An inverse dispersion technique in conjunction with Open-Path Tunable-Diode-Laser-Spectroscopy (OP-TDLS) and meteorological measurements was applied to characterise methane (CH4) emissions from an Austrian open-windrow composting plant treating source-separated biowaste. Within the measurement campaigns from July to September 2012 different operating conditions (e.g. before, during and after turning and/or sieving events) were considered to reflect the plant-specific process efficiency. In addition, the tracer technique using acetylene (C2H2) was applied during the measurement campaigns as a comparison to the dispersion model. Plant-specific methane emissions varied between 1.7 and 14.3 gCH4/m(3)d (1.3-10.7 kg CH4/h) under real-life management assuming a rotting volume of 18,000 m(3). In addition, emission measurements indicated that the turning frequency of the open windrows appears to be a crucial factor controlling CH4 emissions when composting biowaste. The lowest CH4 emission was measured at a passive state of the windrows without any turning event ("standstill" and "sieving of matured compost"). Not surprisingly, higher CH4 emissions occurred during turning events, which can be mainly attributed to the instant release of trapped CH4. Besides the operation mode, the meteorological conditions (e.g. wind speed, atmospheric stability) may be further factors that likely affect the release of CH4 emissions at an open windrow system. However, the maximum daily CH4 emissions of 1m(3) rotting material of the composting plant are only 0.7-6.5% of the potential daily methane emissions released from 1m(3) of mechanically-biologically treated (MBT) waste being landfilled according to the required limit values given in the Austrian landfill ordinance. PMID:25242603

  13. Dissolution enhancement of glibenclamide by solid dispersion: solvent evaporation versus a supercritical fluid-based solvent -antisolvent technique

    PubMed Central

    Tabbakhian, M.; Hasanzadeh, F.; Tavakoli, N.; Jamshidian, Z.

    2014-01-01

    Glibenclamide (GLIB) is a poorly soluble drug with formulation-dependent bioavailability. Therefore, we attempted in this study to improve GLIB dissolution rate by preparing drug solid dispersions by solvent evaporation (SE) and supercritical fluid solvent-antisolvent techniques (SCF-SAS). A D-optimal mixture design was used to investigate the effects of different ratios of HPMCE5 (50-100%), PEG6000 (0-40%), and Poloxamer407 (0-20%) on drug dissolution from different solid dispersion (SD) formulations prepared by SE. The ratios of carriers used in SCF-SAS method were HPMCE5 (fixed at 60%), PEG6000 (20-40%), and Poloxamer407 (0-20%). A constant drug: carrier weight ratio of 1:10 was used in all experiments. The SDs obtained were physically characterized and subjected to the dissolution study. The major GLIB bands in FTIR spectra were indicative of drug integrity. The reduced intensity and the fewer number of peaks observed in X-ray diffractograms (XRD) of GLIB formulations was the indicative of at least partial transformation of crystalline to amorphous GLIB. This change and/or dilution of drug in much higher amounts of carriers present caused disappearance of distinctive endothermic peaks in differential scanning calorimetry thermograms of GLIB formulations. The model generated according to the results of the D-optimal mixture design indicated that GLIB formulations comprising HPMC (50%-60%), PEG (34-40%), and poloxamer (6-10%) had enhanced dissolution performances. As compared to SE method, the SCF-SAS technique produced formulations of higher dissolution performances, likely due to the effects of solution and the supercritical CO2 (SC-CO2) on enhanced plasticization of polymers and thus increased diffusion of the drug into the polymer matrix. PMID:25657806

  14. On the distribution of uranium in hair: Non-destructive analysis using synchrotron radiation induced X-ray fluorescence microprobe techniques

    NASA Astrophysics Data System (ADS)

    Israelsson, A.; Eriksson, M.; Pettersson, H. B. L.

    2015-06-01

    In the present study the distribution of uranium in single human hair shafts has been evaluated using two synchrotron radiation (SR) based micro X-ray fluorescence techniques; SR μ-XRF and confocal SR μ-XRF. The hair shafts originated from persons that have been exposed to elevated uranium concentrations. Two different groups have been studied, i) workers at a nuclear fuel fabrication factory, exposed mainly by inhalation and ii) owners of drilled bedrock wells exposed by ingestion of water. The measurements were carried out on the FLUO beamline at the synchrotron radiation facility ANKA, Karlsruhe. The experiment was optimized to detect U with a beam size of 6.8 μm × 3 μm beam focus allowing detection down to ppb levels of U in 10 s (SR μ-XRF setup) and 70 s (SR confocal μ-XRF setup) measurements. It was found that the uranium was present in a 10-15 μm peripheral layer of the hair shafts for both groups studied. Furthermore, potential external hair contamination was studied by scanning of unwashed hair shafts from the workers. Sites of very high uranium signal were identified as particles containing uranium. Such particles, were also seen in complementary analyses using variable pressure electron microscope coupled with energy dispersive X-ray analyzer (ESEM-EDX). However, the particles were not visible in washed hair shafts. These findings can further increase the understanding of uranium excretion in hair and its potential use as a biomonitor.

  15. Characterization of the binding of paylean and DNA by fluorescence, UV spectroscopy and molecular docking techniques.

    PubMed

    Zhou, Huifeng; Bi, Shuyun; Wang, Yu; Zhao, Tingting

    2016-06-01

    The interaction of paylean (PL) with calf thymus DNA (ctDNA) was investigated using fluorescence spectroscopy, UV absorption, melting studies, ionic strength, viscosity experiments and molecular docking under simulated physiological conditions. Values for the binding constant Ka between PL and DNA were 5.11 × 10(3) , 2.74 × 10(3) and 1.74 × 10(3)  L mol(-1) at 19, 29 and 39°C respectively. DNA quenched the intrinsic fluorescence of PL via a static quenching procedure as shown from Stern-Volmer plots. The relative viscosity and the melting temperature of DNA were basically unchanged in the presence of PL. The fluorescence intensity of PL-DNA decreased with increasing ionic strength. The value of Ka for PL with double-stranded DNA (dsDNA) was larger than that for PL with single-stranded DNA (ssDNA). All the results revealed that the binding mode was groove binding, and molecular docking further indicated that PL was preferentially bonded to A-T-rich regions of DNA. The values for ΔH, ΔS and ΔG suggested that van der Waals forces or hydrogen bonding might be the main acting forces between PL and DNA. The binding distance was determined to be 3.37 nm based on the theory of Förster energy transference, which indicated that a non-radiation energy transfer process occurred. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26597997

  16. Multimodal in vivo imaging of oral cancer using fluorescence lifetime, photoacoustic and ultrasound techniques

    PubMed Central

    Fatakdawala, Hussain; Poti, Shannon; Zhou, Feifei; Sun, Yang; Bec, Julien; Liu, Jing; Yankelevich, Diego R.; Tinling, Steven P.; Gandour-Edwards, Regina F.; Farwell, D. Gregory; Marcu, Laura

    2013-01-01

    This work reports a multimodal system for label-free tissue diagnosis combining fluorescence lifetime imaging (FLIm), ultrasound backscatter microscopy (UBM), and photoacoustic imaging (PAI). This system provides complementary biochemical, structural and functional features allowing for enhanced in vivo detection of oral carcinoma. Results from a hamster oral carcinoma model (normal, precancer and carcinoma) are presented demonstrating the ability of FLIm to delineate biochemical composition at the tissue surface, UBM and related radiofrequency parameters to identify disruptions in the tissue microarchitecture and PAI to map optical absorption associated with specific tissue morphology and physiology. PMID:24049693

  17. Fluorescence techniques as suitable methods to discriminate wheat genotypes under drought and high-temperature conditions

    NASA Astrophysics Data System (ADS)

    Balota, Maria; Sowinska, Malgorzata; Buschmann, Claus; Lichtenthaler, Hartmut K.; Heisel, Francine; Babani, Fardbardha

    1999-05-01

    The chlorophyll fluorescence parameters Fv/Fo and Fd/Fs (equals Rfd690), related to the quantum conversion capacity at dark-adapted and light-adapted state of the photosynthetic apparatus respectively, have been evaluated as possible indicators of drought and heat tolerance in winter wheat. The measurements were carried out on primary leaves of 8-day old seedlings. Rfd values decreased in 8 days by 20% (p less than or equal to 0.01) only under severe water limitation and for the drought susceptible genotype. The photosynthetic apparatus was more sensitive to high temperature with both ratios, Fv/Fo and Rfd690, showing mean decrease (p less than or equal to 0.001) of 27% and 43%, respectively, in 5 days at 35 degrees Celsius. The susceptible cultivars decreased of up to 42% and 65% and the drought and heat tolerant genotypes only 7% and 12% for Fv/Fo and Rfd690, respectively. The Fv/Fo ratio correlated well (p less than or equal to 0.05 and p less than or equal to 0.01) with seedling responses to oxidative and osmotic stresses. The Rfd690-values correlated better with all physiological parameters considered and with the deviations from linear regression of drought susceptibility index DSI (r equals -0.84, p less than or equal to 0.01) on yield potential showing the highest potential to predict drought and heat tolerance. In addition the blue, green, red and far-red fluorescence have been determined using a laser-induced-fluorescence imaging system in entire seedlings of wheat and triticale grown under optimal laboratory conditions. The ratios F690/F740 and F440/F520 correlated well (p less than or equal to 0.05) with the total chlorophyll content (detected by the SPAD-chlorophyll-meter) and the specific leaf dry weight (SLDW) showing the potential of the both fluorescence ratios to discriminate genetic differences between cultivars for these leaf structural sources of water use efficiency (WUE) improvement.

  18. NIR-NIR fluorescence: A new genre of fingermark visualisation techniques.

    PubMed

    King, Roberto S P; Hallett, Peter M; Foster, Doug

    2016-05-01

    A preliminary study reveals that finely divided cuprorivaite powder may be used to efficiently develop and subsequently image latent fingermarks across a range of highly patterned, coloured non-porous and semi-porous substrates using near infrared illumination and imaging. Problematic multi-coloured backgrounds provide very little interference under the illumination conditions used, and invoked fluorescence observed, when using this material. This is the first reported example of a NIR-NIR fluorophore for use within latent fingermark visualisation and offers the potential for application at the scene and in the laboratory. PMID:27040305

  19. The phenomenon of fluorescence in immunosensors.

    PubMed

    Kłos-Witkowska, Aleksandra

    2016-01-01

    The phenomenon of fluorescence in immunosensors is described in this paper. Both structure and characteristics of biosensors and immunosensors are presented. Types of immunosensors and the response of bioreceptor layers to the reaction with analytes as well as measurements of electrochemical, piezoelectric and optical parameters in immunosensors are also presented. In addition, detection techniques used in studies of optical immunosensors based on light-matter interactions (absorbance, reflectance, dispersion, emission) such as: UV/VIS spectroscopy, reflectometric interference spectroscopy (RIfs), surface plasmon resonance (SPR), optical waveguide light-mode spectroscopy (OWLS), fluorescence spectroscopy. The phenomenon of fluorescence in immunosensors and standard configurations of immunoreactions between an antigen and an antibody (direct, competitive, sandwich, displacement) is described. Fluorescence parameters taken into account in analyses and fluorescence detection techniques used in research of immunosensors are presented. Examples of immunosensor applications are given. PMID:27192088

  20. Fog dispersion

    NASA Technical Reports Server (NTRS)

    Frost, W.; Christensen, L. S.; Collins, F. G.; Camp, D. W.

    1980-01-01

    A study of economically viable techniques for dispersing warm fog at commercial airports is presented. Five fog dispersion techniques are examined: evaporation suppression, downwash, mixing, seeding with hygroscopic material, thermal techniques, and charged particle techniques. Thermal techniques, although effective, were found to be too expensive for routine airport operations, and detrimental to the environment. Seeding or helicopter downwash are practical for small-scale or temporary fog clearing, but are probably not useful for airport operations on a routine basis. Considerable disagreement exists on the capability of charged particle techniques, which stems from the fact that different assumptions and parameter values are used in the analytical models. Recommendations resulting from the review of this technique are listed, and include: experimental measurements of the parameters in question; a study to ascertain possible safety hazards, such as increased electrical activity or fuel ignition during refueling operations which could render charged particle techniques impractical; and a study of a single charged particle generator.

  1. The importance of humin in soil characterisation: A study on Amazonian soils using different fluorescence techniques.

    PubMed

    Tadini, Amanda Maria; Nicolodelli, Gustavo; Mounier, Stephane; Montes, Célia Regina; Milori, Débora Marcondes Bastos Pereira

    2015-12-15

    Soil organic matter (SOM) is a complex mixture of molecules with different physicochemical properties, with humic substances (HS) being the main component as it represents around 20-50% of SOM structure. Soil of the Amazon region is considered one of the larger carbon pools of the world; thus, studies of the humic fractions are important for understanding the dynamics of organic matter (OM) in these soils. The aim of this study was to use laser-induced fluorescence spectroscopy (LIFS) and a combination of excitation-emission matrix (EEM) fluorescence with Parallel Factor Analysis (CP/PARAFAC) to assess the characteristics of humin (HU) extracted from Amazonian soils. The results obtained using LIFS showed that there was an increasing gradient of humification degree with depth, the deeper horizon presenting a higher amount of aromatic groups in the structure of HU. From the EEM, the contribution of two fluorophores with similar behaviour in the structures of HU and whole soil was assessed. Additionally, the results showed that the HU fraction might represent a larger fraction of SOM than previously thought: about 80-93% of some Amazon soils. Therefore, HU is an important humic fraction, thus indicating its role in environmental analysis, mainly in soil analysis. PMID:26282749

  2. Determination of water-soluble hexavalent chromium in clinker samples by wavelength-dispersive X-ray fluorescence spectrometry after concentration in activated layers.

    PubMed

    Marguí, Eva; Fontàs, Claudia; Toribio, Marta; Guillem, Manel; Hidalgo, Manuela; Queralt, Ignacio

    2010-05-01

    The determination of hexavalent chromium (Cr(VI)) in cement-related material extracts is frequently monitored in cement industries to comply with the European Directive (2003/53/EC) that limits the use of cements containing more than 2 mg kg(-1) of water-soluble Cr(VI). In the present work, a rapid and simple method for the determination of water-soluble Cr(VI) in clinker samples has been developed. The analytical methodology is based on the combined use of a low cost Cr(VI) isolation procedure using activated layers followed by their analysis using wavelength-dispersive X-ray fluorescence (WDXRF) spectrometry. WDXRF instrumentation is a common tool used for determining the chemical composition of all materials involved in cement production and also for the quality control of the products produced in cement and concrete factories. Therefore, the presented methodology does not imply the use of additional instrumentation in cement-industries laboratories and can be used as a comparative method to the spectrophotometric reference (EN 196-10:2006). The analytical parameters evaluated (selectivity, limit of detection, linearity, and precision) prove to be suitable for the intended purpose, and the methodology has successfully been applied to determine water-soluble Cr(VI) in several clinker samples. PMID:20482975

  3. One-pot synthesis of water-dispersible Ag2S quantum dots with bright fluorescent emission in the second near-infrared window

    NASA Astrophysics Data System (ADS)

    Yang, Hua-Yan; Zhao, Yu-Wei; Zhang, Zheng-Yong; Xiong, Huan-Ming; Yu, Shao-Ning

    2013-02-01

    The second near-infrared window (NIR-II, wavelength of 1.0-1.4 μm) is optimal for the bioimaging of live animals due to their low albedo and endogenous autofluorescence. Herein, we report a facile and one-pot biomimetic synthesis approach to prepare water-dispersible NIR-II-emitting ultrasmall Ag2S quantum dots (QDs). Photoluminescence spectra showed that the emission peaks could be tuned from 1294 to 1050 nm as the size of the Ag2S QDs varied from 6.8 to 1.6 nm. The x-ray diffraction patterns and x-ray photoelectron spectra confirmed that the products were monoclinic α-Ag2S. Fourier transform infrared spectrograph analysis indicated that the products were protein-conjugated Ag2S QDs. Examination of cytotoxicity and the hemolysis test showed that the obtained Ag2S QDs had good biocompatibility, indicating that such a nanomaterial could be a new kind of fluorescent label for in vivo imaging.

  4. Role of trace elements (Zn, Sr, Fe) in bone development: energy dispersive X-ray fluorescence study of rat bone and tooth tissue.

    PubMed

    Maciejewska, Karina; Drzazga, Zofia; Kaszuba, Michał

    2014-01-01

    Osteoporosis is one of the most common debilitating disease around the world and it is more and more established among young people. There are well known recommendations for nutrition of newborns and children concerning adequate calcium and vitamin D intake in order to maintain proper bone density. Nevertheless, important role in structure and function of a healthy bone tissue is played by an integration between all constituents including elements other than Ca, like trace elements, which control vital processes in bone tissue. It is important from scientific point of view as well as prevention of bone diseases, to monitor the mineralization process considering changes of the concentration of minerals during first stage of bone formation. This work presents studies of trace element (zinc, strontium, and iron) concentration in bones and teeth of Wistar rats at the age of 7, 14, and 28 days. Energy dispersive X-ray fluorescence (EDXRF) was used to examine mandibles, skulls, femurs, tibiae, and incisors. The quantitative analysis was performed using fundamental parameters method (FP). Zn and Sr concentrations were highest for the youngest individuals and decreased with age of rats, while Fe content was stable in bone matrix for most studied bones. Our results reveal the necessity of monitoring concentration of not only major, but also minor elements, because the trace elements play special role in the first period of bone development. PMID:24615876

  5. Speciation of inorganic arsenic in drinking water by wavelength-dispersive X-ray fluorescence spectrometry after in situ preconcentration with miniature solid-phase extraction disks.

    PubMed

    Hagiwara, Kenta; Inui, Tetsuo; Koike, Yuya; Aizawa, Mamoru; Nakamura, Toshihiro

    2015-03-01

    A rapid and simple method using wavelength-dispersive X-ray fluorescence (WDXRF) spectrometry after in situ solid-phase extraction (SPE) was developed for the speciation and evaluation of the concentration of inorganic arsenic (As) in drinking water. The method involves the simultaneous collection of As(III) and As(V) using 13 mm ϕ SPE miniature disks. The removal of Pb(2+) from the sample water was first conducted to avoid the overlapping PbLα and AsKα spectra on the XRF spectrum. To this end, a 50 mL aqueous sample (pH 5-9) was passed through an iminodiacetate chelating disk. The filtrate was adjusted to pH 2-3 with HCl, and then ammonium pyrrolidine dithiocarbamate solution was added. The solution was passed through a hydrophilic polytetrafluoroethylene filter placed on a Zr and Ca loaded cation-exchange disk at a flow rate of 12.5 mL min(-1) to separate As(III)-pyrrolidine dithiocarbamate complex and As(V). Each SPE disk was affixed to an acrylic plate using adhesive cellophane tape, and then examined by WDXRF spectrometry. The detection limits of As(III) and As(V) were 0.8 and 0.6 μg L(-1), respectively. The proposed method was successfully applied to screening for As speciation and concentration evaluation in spring water and well water. PMID:25618730

  6. [The evaluation of uncertainty in the results for elements rubidium, strontium, yttrium and zirconium in silicate geological samples by polarized energy dispersive X-ray fluorescence spectrometry].

    PubMed

    Wang, Yi-Ya; Zhan, Xiu-Chun; Yuan, Ji-Hai; Fan, Xing-Tao

    2011-06-01

    A method for evaluation of uncertainty was established with standard deviation of relative error. Utilizing a polarized energy dispersive X ray fluorescence spectrometer (P-EDXRF)X-lab 2000 with pressed polyethylene-backed pellets, 76 national reference materials and 89 geological examination samples were analyzed, the results indicated that the relative errors consist with the normal distribution with confidence level 95%. The section standard deviations of relative errors acted as method global relative uncertainty and expanded factor was 2. The section relative uncertainty caused by precision was analyzed and relative uncertainty caused by accuracy based on the error transfer formula was isolated. The ratio of relative uncertainty caused by accuracy to the global relative uncertainty was different with different levels and elements. Two methods validated that the evaluation of global uncertainty is reasonable, with the first method being the formula of audited results in laboratory, and the second being the comparison of standard value with expanded uncertainty and a revised value with expanded uncertainty. PMID:21847963

  7. Speciation of As(III) and As(V) in fruit juices by dispersive liquid-liquid microextraction and hydride generation-atomic fluorescence spectrometry.

    PubMed

    Lai, Guoxin; Chen, Guoying; Chen, Tuanwei

    2016-01-01

    A sensitive method was developed to speciate and quantify As(III) and As(V) in fruit juices. At pH 3.0, As(III) and ammonium pyrrolidine dithiocarbamate (APDC) formed a complex, which was extracted into CCl4 by dispersive liquid-liquid microextraction (DLLME) and subsequently quantified by hydride generation-atomic fluorescence spectrometry (HG-AFS). After As(V) was reduced by thiosulphate at pH 1.7-1.8, total inorganic arsenic (iAs) was determined following the same protocol and As(V) was calculated from the difference. Interference from methylarsonic acid (MMA) was managed at <10% by controlling the pH of the reduction reaction. This procedure achieved 1.2 μg L(-1) limit of detection (3σ) and 92-102% recovery at 10 μg L(-1), and is applicable to most fruit juices except certain pear juice that may contain considerable MMA. PMID:26212955

  8. [Chemical composition analysis of bluish-white porcelain unearthed from Fanchang kiln, Anhui province by wave disperse X-ray fluorescence].

    PubMed

    Yang, Yu-zhang; Zhang, Ju-zhong; Zan, Yi

    2010-08-01

    Fanchang kiln was the earliest Chinese bluish-white porcelain kiln which first fired this special porcelain class as early as in Five Dynasties (AD 907-960). However, this important kiln declined rapidly in the middle North Song dynasty (AD 1023-1085). As to the decline reason, it is still not clearly identified till now. In order to find the truth, wavelength-dispersive X-ray fluorescence (WDXRF) was used to determine the elemental abundance patterns of its porcelain bodies in Five Dynasties, the early North Song dynasty and the middle North Song dynasty. The analytical results indicate that the chemical compositions of major, minor and trace elements in porcelain bodies changed greatly in the middle North Song dynasty. Combined with the results of INAA and glaze study, this change in elemental composition should be caused by the change in porcelain raw materials or body-making crafts. Meanwhile, it was just this change that led to the quality decline of raw material and rapid collapse of Fan-chang kiln in the middle North Song dynasty shortly after its establishment. PMID:20939361

  9. Rapid quantitative determination of major and trace elements in silicate rocks and soils employing fused glass discs using wavelength dispersive X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Krishna, A. Keshav; Khanna, Tarun C.; Mohan, K. Rama

    2016-08-01

    This paper introduces a calibration procedure and provides the data achieved for accuracy, precision, reproducibility and the detection limits for major (Si, Al, Fe, Mn, Mg, Ca, Na, K, Ti, P) and trace (Ba, Cr, Cu, Hf, La, Nb, Ni, Pb, Rb, Sr, Ta, Th, U, Y, Zn, Zr) elements in the routine analysis of geological and environmental samples. Forty-two rock and soil reference materials were used to calibrate and evaluate the analytical method using a sequential wavelength dispersive X-ray fluorescence spectrometer. Samples were prepared as fused glass discs and analysis performed with a total measuring time of thirty-one minutes. Another set of twelve independent reference materials were analyzed for the evaluation of accuracy. The detection limits and accuracy obtained for the trace elements (1-2 mg/kg) are adequate both for geochemical exploration and environmental studies. The fitness for purpose of the results was also evaluated by the quality criteria test proposed by the International Global Geochemical Mapping Program (IGCP) from which it can be deduced that the method is adequate considering geochemical mapping application and accuracy obtained is within the expected interval of certified values in most cases.

  10. Performance of a gaseous detector based energy dispersive X-ray fluorescence imaging system: Analysis of human teeth treated with dental amalgam

    NASA Astrophysics Data System (ADS)

    Silva, A. L. M.; Figueroa, R.; Jaramillo, A.; Carvalho, M. L.; Veloso, J. F. C. A.

    2013-08-01

    Energy dispersive X-ray fluorescence (EDXRF) imaging systems are of great interest in many applications of different areas, once they allow us to get images of the spatial elemental distribution in the samples. The detector system used in this study is based on a micro patterned gas detector, named Micro-Hole and Strip Plate. The full field of view system, with an active area of 28 × 28 mm2 presents some important features for EDXRF imaging applications, such as a position resolution below 125 μm, an intrinsic energy resolution of about 14% full width at half maximum for 5.9 keV X-rays, and a counting rate capability of 0.5 MHz. In this work, analysis of human teeth treated by dental amalgam was performed by using the EDXRF imaging system mentioned above. The goal of the analysis is to evaluate the system capabilities in the biomedical field by measuring the drift of the major constituents of a dental amalgam, Zn and Hg, throughout the tooth structures. The elemental distribution pattern of these elements obtained during the analysis suggests diffusion of these elements from the amalgam to teeth tissues.

  11. Morphological and chemical changes in dentin after using endodontic agents: Fourier transform Raman spectroscopy, energy-dispersive x-ray fluorescence spectrometry, and scanning electron microscopy study

    NASA Astrophysics Data System (ADS)

    Pascon, Fernanda Miori; Kantovitz, Kamila Rosamilia; Soares, Luís Eduardo Silva; Santo, Ana Maria do Espírito; Martin, Airton Abraha~o.; Puppin-Rontani, Regina Maria

    2012-07-01

    We examine the morphological and chemical changes in the pulp chamber dentin after using endodontic agents by scanning electron microscopy (SEM), Fourier transform Raman spectroscopy (FT-Raman), and micro energy-dispersive x-ray fluorescence spectrometry (μEDXRF). Thirty teeth were sectioned exposing the pulp chamber and divided by six groups (n=5): NT-no treatment; CHX-2% chlorhexidine; CHXE-2% chlorhexidine+17% EDTA E-17% EDTA; SH5-5.25% NaOCl; SH5E-5.25% NaOCl+17% EDTA. The inorganic and organic content was analyzed by FT-Raman. μEDXRF examined calcium (Ca) and phosphorus (P) content as well as Ca/P ratio. Impressions of specimens were evaluated by SEM. Data were submitted to Kruskal-Wallis and Dunn tests (p<0.05). Differences were observed among groups for the 960 cm-1 peak. Ca and P content differences were significant (SH5>NT=SH5E>CHX>E>CHXE). CHXE and E presented the highest Ca/P ratio values compared to the other groups (p<0.05). The SEM images in the EDTA-treated groups had the highest number of open tubules. Erosion in the tubules was observed in CHX and SH5E groups. Endodontic agents change the inorganic and organic content of pulp chamber dentin. NaOCl used alone, or in association with EDTA, was the most effective agent considering chemical and morphological approaches.

  12. Effects of Er:YAG laser irradiation and manipulation treatments on dentin components, part 2: energy-dispersive X-ray fluorescence spectrometry study

    NASA Astrophysics Data System (ADS)

    Silva Soares, Luís Eduardo; Do Espírito Santo, Ana Maria; Brugnera, Aldo; Zanin, Fátima Antônia Aparecida; Martin, Airton Abraha~O.

    2009-03-01

    The effects of laser etching, decontamination, and storage treatments on dentin components were studied by energy-dispersive X-ray fluorescence spectrometry (EDXRF). Thirty bovine incisors were prepared to expose the dentin surface and then divided into two main groups based upon the decontamination process and storage procedure: autoclaved (group A, n=15) or stored in aqueous thymol solution (group B, n=15). The surfaces of the dentin slices were schematically divided into four areas, with each one corresponding to a treatment subgroup. The specimens were either etched with phosphoric acid (control subgroup) or irradiated with erbium-doped yttrium-aluminum-garnet (Er:YAG) laser (subgroups: I-80 mJ, II-120 mJ, and III-180 mJ). Samples were analyzed by micro-EDXRF, yielding three spectra for each area (before and after treatment). Surface mappings covering an area of 80×60 points with steps of 20 μm were also performed on selected specimens. The amount of Ca and P in group A specimens decreased significantly (P<0.05) after the acid etching and the Ca/P ratio increased (P<0.001). Er:YAG laser-etching using lower laser energies did not produce significant changes in dentin components. The mapping data support the hypothesis that acid etching on dentin produced a more chemically homogeneous surface and thus a more favorable surface for the diffusion of adhesive monomers.

  13. Elemental concentration analysis in soil contaminated with recyclable urban garbage by tube-excited energy-dispersive X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Anjos, M. J.; Lopes, R. T.; Jesus, E. F. O.; Assis, J. T.; Cesareo, R.; Barroso, R. C.; Barradas, C. A. A.

    2002-11-01

    Soil and radish (Raphanus Sp) samples from areas treated with organic compost of recyclable urban garbage were quantitatively analyzed by using tube-excited energy-dispersive X-ray fluorescence analysis. Soils treated with 10, 20 and 30 t/ha of recyclable urban garbage and control soil were analyzed. The layer soils were collected at 0-5, 5-10, 10-20, 20-40, 40-60 cm depth. It was possible simultaneously to determine the elemental concentration of various elements: K, Ca, Ti, Mn, Fe, Cu, Zn, Br, Rb, Sr, Zr and Pb in recyclable urban garbage, soil treated with organic compost of recyclable urban garbage and radish plants cultivated in these soils. The elemental concentration of K, Ca, Ti and Fe were determined at percent level (macro-elements) and the other elements at ppm level (micro-elements). It was also possible to observe a significant increase in the contents of K, Ca, Zn, Rb, Sr, Zr and Pb in the soil treated in comparison with the control soil and it was also verified whether the transport of these elements to radish plants cultivated in these soils occurred.

  14. Use of Modern Chemical Protein Synthesis and Advanced Fluorescent Assay Techniques to Experimentally Validate the Functional Annotation of Microbial Genomes

    SciTech Connect

    Kent, Stephen

    2012-07-20

    The objective of this research program was to prototype methods for the chemical synthesis of predicted protein molecules in annotated microbial genomes. High throughput chemical methods were to be used to make large numbers of predicted proteins and protein domains, based on microbial genome sequences. Microscale chemical synthesis methods for the parallel preparation of peptide-thioester building blocks were developed; these peptide segments are used for the parallel chemical synthesis of proteins and protein domains. Ultimately, it is envisaged that these synthetic molecules would be ‘printed’ in spatially addressable arrays. The unique ability of total synthesis to precision label protein molecules with dyes and with chemical or biochemical ‘tags’ can be used to facilitate novel assay technologies adapted from state-of-the art single molecule fluorescence detection techniques. In the future, in conjunction with modern laboratory automation this integrated set of techniques will enable high throughput experimental validation of the functional annotation of microbial genomes.

  15. Characterization of uranium bearing material using x-ray fluorescence and direct gamma-rays measurement techniques

    NASA Astrophysics Data System (ADS)

    Mujaini, M.; Chankow, N.; Yusoff, M. Z.; Hamid, N. A.

    2016-01-01

    Uranium ore can be easily detected due to various gamma-ray energies emitted from uranium daughters particularly from 238U daughters such as 214Bi, 214Pb and 226Ra. After uranium is extracted from uranium ore, only low energy gamma-rays emitted from 235U may be detected if the detector is placed in close contact to the specimen. In this research, identification and characterization of uranium bearing materials is experimentally investigated using direct measurement of gamma-rays from 235U in combination with the x-ray fluorescence (XRF) technique. Measurement of gamma-rays can be conducted by using high purity germanium (HPGe) detector or cadmium telluride (CdTe) detector while a 57Coradioisotope-excited XRF spectrometer using CdTe detector is used for elemental analysis. The proposed technique was tested with various uranium bearing specimens containing natural, depleted and enriched uranium in both metallic and powder forms.

  16. DIRECT AND INDIRECT FLUORESCENT-ANTIBODY TECHNIQUES FOR THE PSITTACOSIS-LYMPHOGRANULOMA VENEREUM-TRACHOMA GROUP OF AGENTS1

    PubMed Central

    Ross, Martin R.; Borman, Earle K.

    1963-01-01

    Ross, Martin R. (Connecticut State Department of Health, Hartford) and Earle K. Borman. Direct and indirect fluorescent-antibody techniques for the psittacosis-lymphogranuloma venereum-trachoma group of agents. J. Bacteriol. 85:851–858. 1963.—Direct and indirect fluorescent-antibody (FA) techniques were developed for the detection of group antigen in infected tissue cultures and the titration of group antibody in human antiserum. The growth of the agent of meningopneumonitis (MP) in mouse embryo lung cell monolayers was followed by infectivity and complement-fixing (CF) antigen titrations, and cytological examination of FA stained cultures. Although infectivity and CF antigen reached a peak at 2 days and remained constant for an additional 3 days, only cells tested 2 to 3 days after infection were suitable for FA staining with labeled anti-MP serum because of excessive artifacts in the older cultures. Fluorescein isothiocyanate-labeled rooster and guinea pig anti-MP serums and human antipsittacosis serums were titrated in direct FA and hemagglutination-inhibition (HI) tests. The rooster conjugate showed brighter staining and higher antibody titers than the guinea pig or human conjugates and was more effective in detecting minimal amounts of virus antigen. FA staining reactions with 1 and 2 units of labeled rooster serum were inhibited by unlabeled rooster serum but clear-cut inhibition with human antipsittacosis serum could not be demonstrated. The indirect FA technique was successfully used for the titration of group antibody in human serum. A comparison of the indirect FA, HI, and CF tests showed the indirect FA technique to be intermediate in sensitivity between the HI and CF tests. None of the three tests showed significant cross reactions with human serums reactive for influenza A and B; parainfluenza 1, 2, and 3; respiratory syncytial virus; Q fever; or the primary atypical pneumonia agent. PMID:14044954

  17. Fluorescence lifetime imaging of optically levitated aerosol: a technique to quantitatively map the viscosity of suspended aerosol particles.

    PubMed

    Fitzgerald, C; Hosny, N A; Tong, H; Seville, P C; Gallimore, P J; Davidson, N M; Athanasiadis, A; Botchway, S W; Ward, A D; Kalberer, M; Kuimova, M K; Pope, F D

    2016-08-21

    We describe a technique to measure the viscosity of stably levitated single micron-sized aerosol particles. Particle levitation allows the aerosol phase to be probed in the absence of potentially artefact-causing surfaces. To achieve this feat, we combined two laser based techniques: optical trapping for aerosol particle levitation, using a counter-propagating laser beam configuration, and fluorescent lifetime imaging microscopy (FLIM) of molecular rotors for the measurement of viscosity within the particle. Unlike other techniques used to measure aerosol particle viscosity, this allows for the non-destructive probing of viscosity of aerosol particles without interference from surfaces. The well-described viscosity of sucrose aerosol, under a range of relative humidity conditions, is used to validate the technique. Furthermore we investigate a pharmaceutically-relevant mixture of sodium chloride and salbutamol sulphate under humidities representative of in vivo drug inhalation. Finally, we provide a methodology for incorporating molecular rotors into already levitated particles, thereby making the FLIM/optical trapping technique applicable to real world aerosol systems, such as atmospheric aerosols and those generated by pharmaceutical inhalers. PMID:27430158

  18. X-ray Fluorescence Spectroscopy: the Potential of Astrophysics-developed Techniques

    NASA Astrophysics Data System (ADS)

    Elvis, M.; Allen, B.; Hong, J.; Grindlay, J.; Kraft, R.; Binzel, R. P.; Masterton, R.

    2012-12-01

    X-ray fluorescence from the surface of airless bodies has been studied since the Apollo X-ray fluorescence experiment mapped parts of the lunar surface in 1971-1972. That experiment used a collimated proportional counter with a resolving power of ~1 and a beam size of ~1degree. Filters separated only Mg, Al and SI lines. We review progress in X-ray detectors and imaging for astrophysics and show how these advances enable much more powerful use of X-ray fluorescence for the study of airless bodies. Astrophysics X-ray instrumentation has developed enormously since 1972. Low noise, high quantum efficiency, X-ray CCDs have flown on ASCA, XMM-Newton, the Chandra X-ray Observatory, Swift and Suzaku, and are the workhorses of X-ray astronomy. They normally span 0.5 to ~8 keV with an energy resolution of ~100 eV. New developments in silicon based detectors, especially individual pixel addressable devices, such as CMOS detectors, can withstand many orders of magnitude more radiation than conventional CCDs before degradation. The capability of high read rates provides dynamic range and temporal resolution. Additionally, the rapid read rates minimize shot noise from thermal dark current and optical light. CMOS detectors can therefore run at warmer temperatures and with ultra-thin optical blocking filters. Thin OBFs mean near unity quantum efficiency below 1 keV, thus maximizing response at the C and O lines.such as CMOS detectors, promise advances. X-ray imaging has advanced similarly far. Two types of imager are now available: specular reflection and coded apertures. X-ray mirrors have been flown on the Einstein Observatory, XMM-Newton, Chandra and others. However, as X-ray reflection only occurs at small (~1degree) incidence angles, which then requires long focal lengths (meters), mirrors are not usually practical for planetary missions. Moreover the field of view of X-ray mirrors is comparable to the incident angle, so can only image relatively small regions. More useful

  19. Use of Fluorescent Techniques to Study the In Vitro Movement of Myosins

    PubMed Central

    Toepfer, Christopher

    2014-01-01

    Myosins are a large superfamily of actin-dependent molecule motors that carry out many functions in cells. Some myosins are cargo carriers that move processively along actin which means that a single molecule of myosin can take many ATP-dependent steps on actin per initial encounter. Other myosins are designed to work in large ensembles such as myosin thick filaments. In vitro motility assays are a powerful method for studying the function of myosins. These assays in general use small amounts of protein, are simple to implement, and can be done on microscopes commonly found in many laboratories. There are two basic versions of the assay which involve different geometries. In the sliding actin in vitro motility assay, myosin molecules are bound to a coverslip surface in a simply constructed microscopic flow chamber. Fluorescently labeled actin filaments are added to the flow chamber in the presence of ATP, and the movement of these actin filaments powered by the surface-bound myosins is observed. This assay has been used widely for a variety of myosins including both processive and nonprocessive ones. From this assay, one can easily measure the rate at which myosin is translocating actin. The single-molecule motility assay uses an inverted geometry compared to the sliding actin in vitro motility assay. It is most useful for processive myosins. Here, actin filaments are affixed to the coverslip surface. Fluorescently labeled single molecules of myosins (usually ones with processive kinetics) are introduced, and the movement of single molecules along the actin filaments is observed. This assay typically uses total internal reflection fluorescent (TIRF) microscopy to reduce the background signal arising from myosins in solution. From this assay, one can measure the velocity of movement, the frequency of movement, and the run length. If sufficient photons can be collected, one can use Gaussian fitting of the point spread function to determine the position of the labeled

  20. A study of density measurements in hypersonic helium tunnels using an electron beam fluorescence technique

    NASA Technical Reports Server (NTRS)

    Honaker, W. C.; Hunter, W. W., Jr.; Woods, W. C.

    1979-01-01

    A series of experiments have been conducted at Langley Research Center to determine the feasibility of using electron-beam fluorescence to measure the free-stream static density of gaseous helium flow over a wide range of conditions. These experiments were conducted in the Langley hypersonic helium tunnel facility and its 3-inch prototype. Measurements were made for a range of stagnation pressures and temperatures and produced free-stream number densities of 1.53 x 10 to the 23rd to 1.25 x 10 to the 24th molecules/cu m and static temperatures from 2 K to 80 K. The results showed the collision quenching cross section to be 4.4 x 10 to the -15th sq cm at 1 K and to have a weak temperature dependence of T to the 1/6. With knowledge of these two values, the free-stream number density can be measured quite accurately.

  1. Improved oral absorption and chemical stability of everolimus via preparation of solid dispersion using solvent wetting technique.

    PubMed

    Jang, Sun Woo; Kang, Myung Joo

    2014-10-01

    The aim of this study was to improve the physicochemical properties and oral absorption of poorly water-soluble everolimus via preparation of a solid dispersion (SD) system using a solvent wetting (SW) technique. The physicochemical properties, drug release profile, and bioavailability of SD prepared by SW process were also compared to SD prepared by the conventional co-precipitation method. Solid state characterizations using scanning electron microscopy, particle size analysis and X-ray powder diffraction indicated that drug homogeneously dispersed and existed in an amorphous state within the intact polymeric carrier. Whereas, a film-like mass was obtained by a co-precipitation method and further pulverization step was needed for tabletization. The drug release from the SD tablet prepared by SW process at a ratio of drug to hydroxypropyl methylcellulose of 1:15 was markedly higher than the drug alone and equivalent to the marketed product (Afinitor(®), Novartis Pharmaceuticals), a SD tablet prepared by co-precipitation method, archiving over 75% the drug release after 30 min. At the accelerated (40°C/75% R.H.) and stress (80°C) stability tests, the novel formula was more stable than drug powder and provided comparable drug stability with the commercially available product, which contains a potentially risky antioxidant, butylated hydroxyl toluene. The pharmacokinetic parameters after single oral administration in beagles showed no significant difference (P>0.01) between the novel SD-based tablet and the marketed product. The results of this study, therefore, suggest that the novel SD system prepared by the solvent wetting process may be a promising approach for improving the physicochemical stability and oral absorption of the sirolimus derivatives. PMID:25003829

  2. Application of film-casting technique to investigate drug-polymer miscibility in solid dispersion and hot-melt extrudate.

    PubMed

    Parikh, Tapan; Gupta, Simerdeep Singh; Meena, Anuprabha K; Vitez, Imre; Mahajan, Nidhi; Serajuddin, Abu T M

    2015-07-01

    Determination of drug-polymer miscibility is critical for successful development of solid dispersions. This report details a practical method to predict miscibility and physical stability of drug with various polymers in solid dispersion and, especially, in melt extrudates by applying a film-casting technique. Mixtures of itraconazole (ITZ) with hydroxypropylmethylcellulose phthalate (HPMCP), Kollidon(®) VA 64, Eudragit(®) E PO, and Soluplus(®) were film-casted, exposed to 40°C/75% RH for 1 month and then analyzed using differential scanning calorimetry (DSC), powder X-ray diffractometry, and polarized light microscopy (PLM). ITZ had the highest miscibility with HPMCP, being miscible at drug to polymer ratio of 6:4 (w/w). There was a downward trend of lower miscibility with Soluplus(®) (miscible at 3:7, w/w, and a few microcrystals present at 4:6, w/w), Kollidon(®) VA 64 (2:8, w/w) and Eudragit(®) E PO (<1:9, w/w). PLM was found more sensitive to detect drug crystallization than DSC and powder X-ray diffractometry. There was general correlation between results of film casting and hot-melt extrusion (HME) using a twin screw extruder. For ITZ-Soluplus(®) mixtures, HME at 4:6 (w/w) resulted in a single phase, whereas drug crystallization was observed at higher drug load. HME of ITZ-Kollidon(®) VA 64 mixtures also correlated well with the miscibility predicted by film casting. PMID:25917333

  3. Studies of cytochrome c-551 unfolding using fluorescence correlation spectroscopy and other biophysical techniques.

    PubMed

    Sil, Pallabi; Paul, Simanta Sarani; Silvio, Eva Di; Travaglini-Allocatelli, Carlo; Chattopadhyay, Krishnananda

    2016-09-21

    In this paper, we have studied the equilibrium unfolding transitions of cytochrome c from Pseudomonas aeruginosa (cytc551), a small bacterial protein. Similar to eukaryotic cytochrome c, cytc551 folds sequentially, although significant differences exist in the order of folding units (foldons). There are two regions of cytc551 (N-terminal helix with residue number 3 to 10 and the loop 2 region containing residues 34 to 45), in which no foldon unit could be assigned. In addition, the helix containing the Cys-X-X-Cys-His motif, adjacent to the N-terminal helix (residue number 3 to 10), shows unexplained ultra-fast collapse. To obtain further insights, we have studied cytc551 site-directed mutants using fluorescence correlation spectroscopy (FCS) and molecular dynamics simulation. We have found out that cytc551 unfolds through the formation of a fluorescently dark intermediate state and the amplitude of the dark component depends on the position of labeling. We have utilized this position dependence to propose a shape change model during the unfolding of cytc551. The present results show that the N-terminal helix remains in a collapsed position even in the completely unfolded state and this helix may act as a rigid support to guide the folding of its adjacent helix. This rigid support may be responsible for the ultra-fast collapse of the adjacent helix region, which occurs during the initial events of folding. The present results also show that the C-terminal end of loop 2 traverses a large distance during unfolding compared to the N-terminal end, which justifies the observed flexibility of the loop 2 region. PMID:27538920

  4. Innovative separation and preconcentration technique of coagulating homogenous dispersive micro solid phase extraction exploiting graphene oxide nanosheets.

    PubMed

    Ghazaghi, Mehri; Mousavi, Hassan Zavvar; Rashidi, Ali Morad; Shirkhanloo, Hamid; Rahighi, Reza

    2016-01-01

    A uniquely novel, fast, and facile technique is introduced for the first time in which a scant amount of graphene oxide (GO), without modification, has been utilized in dispersive mode of solid phase extraction (SPE) for an efficient yet simple separation. The proposed method of coagulating homogenous dispersive micro solid phase extraction (CHD-µSPE) is based on coagulation of homogeneous GO solution with the aid of polyetheneimine (PEI). CHD-µSPE use full adsorption capacity of GO because in this method was used GO solution obtained from synthesis process without drying step and stacking nanosheets. In optimized condition, 30 µL GO solution (7 mg mL(-1)), obtained in synthesis process, was injected into 1.5 mL the sample solution followed by immediate injection of 53 µL PEI solution (1 mg mL(-1)). After inserting PEI, GO sheets aggregate and can be readily separated by centrifugation. PEI not only cause aggregation of GO, but also form three-dimensional network of GO with easy handling in following separation steps. Lead, cadmium, and chromium were selected as model analytes and the effecting parameters including the amount of GO, concentration of PEI, sample pH, extraction time, and type of desorption solvent were investigated and optimized. The results indicate that the proposed CHD-µSPE method can be successfully applied GO in dispersive mode of SPE without effecting on good capability adsorption of GO. The novel method was applied in determination of lead, cadmium, and chromium in water, human saliva, and urine samples by electrothermal atomic absorption spectrometry. The detection limits are as low as 0.035, 0.005, and 0.012 µg L(-1) for Pb, Cd, and Cr respectively. The intra-day precisions (RSDs) were lower than 3.8%. CHD-µSPE method showed a good linear ranges of 0.24-15.6, 0.015-0.95 and 0.039-2.33 µg L(-1) for Pb, Cd and Cr respectively. Method performance was investigated by determination of mentioned metal ions in river water, human urine and

  5. Quantitative Techniques for Assessing and Controlling the Dispersion and Biological Effects of Multi-walled Carbon Nanotubes in Mammalian Tissue Culture Cells

    PubMed Central

    Wang, Xiang; Xia, Tian; Ntim, Susana Addo; Ji, Zhaoxia; George, Saji; Meng, Huan; Zhang, Haiyuan; Castranova, Vincent; Mitra, Somenath; Nel, André E.

    2014-01-01

    In vivo studies have demonstrated that the state of dispersion of carbon nanotubes (CNT) plays an important role in generating adverse pulmonary effects. However, little has been done to develop reproducible and quantifiable dispersion techniques to conduct mechanistic studies in vitro. This study was to evaluate the dispersion of multi-walled carbon nanotubes (MWCNT) in tissue culture media, with particular emphasis on understanding the forces that govern agglomeration and how to modify these forces. Quantitative techniques such as hydrophobicity index, suspension stability index, attachment efficiency and dynamic light scattering were used to assess the effects of agglomeration and dispersion of as-prepared (AP), purified (PD) or carboxylated (COOH) MWCNT on bronchial epithelial and fibroblast cell lines. We found that hydrophobicity is the major factor determining AP- and PD-MWCNT agglomeration in tissue culture media but that the ionic strength is the main factor determining COOH-MWCNT suspendability. Bovine serum albumin (BSA) was an effective dispersant for MWCNT, providing steric and electrosteric hindrance that are capable of overcoming hydrophobic attachment and the electrostatic screening of double layer formation in ionic media. Thus, BSA was capable of stabilizing all tube versions. Dipalmitoylphosphatidylcholine (DPPC) provided additional stability for AP-MWCNT in epithelial growth medium (BEGM). While dispersion state did not affect cytotoxicity, improved dispersion of AP- and PD-MWCNT increased TGF-β1 production in epithelial cells and fibroblast proliferation. In summary, we demonstrate how quantitative techniques can be used to assess the agglomeration state of MWCNT when conducting mechanistic studies on the effects of dispersion on tissue culture cells. PMID:21067152

  6. Fluorescence background subtraction technique for hybrid fluorescence molecular tomography/x-ray computed tomography imaging of a mouse model of early stage lung cancer

    NASA Astrophysics Data System (ADS)

    Ale, Angelique; Ermolayev, Vladimir; Deliolanis, Nikolaos C.; Ntziachristos, Vasilis

    2013-05-01

    The ability to visualize early stage lung cancer is important in the study of biomarkers and targeting agents that could lead to earlier diagnosis. The recent development of hybrid free-space 360-deg fluorescence molecular tomography (FMT) and x-ray computed tomography (XCT) imaging yields a superior optical imaging modality for three-dimensional small animal fluorescence imaging over stand-alone optical systems. Imaging accuracy was improved by using XCT information in the fluorescence reconstruction method. Despite this progress, the detection sensitivity of targeted fluorescence agents remains limited by nonspecific background accumulation of the fluorochrome employed, which complicates early detection of murine cancers. Therefore we examine whether x-ray CT information and bulk fluorescence detection can be combined to increase detection sensitivity. Correspondingly, we research the performance of a data-driven fluorescence background estimator employed for subtraction of background fluorescence from acquisition data. Using mice containing known fluorochromes ex vivo, we demonstrate the reduction of background signals from reconstructed images and sensitivity improvements. Finally, by applying the method to in vivo data from K-ras transgenic mice developing lung cancer, we find small tumors at an early stage compared with reconstructions performed using raw data. We conclude with the benefits of employing fluorescence subtraction in hybrid FMT-XCT for early detection studies.

  7. Multivariate optimisation of an ultrasound assisted-matrix solid-phase dispersion method combined with LC-fluorescence detection for simultaneous extraction and determination of aflatoxins in pistachio nut samples.

    PubMed

    Manoochehri, Mahboobeh; Asgharinezhad, Ali Akbar; Safaei, Mahdi

    2013-01-01

    This paper describes the application of ultrasound-assisted matrix solid-phase dispersion as an extraction and clean-up procedure for aflatoxins (B1, B2, G1 and G2) and subsequent determination by LC-fluorescence detection. A Box-Behnken design was used to determine the parameters influencing the extraction procedure through response surface methodology and experimental design. The influence of different variables including type of dispersing phase, sample-to-dispersing phase ratio, type and quantity of clean-up phase, ultrasonication time, ultrasonication temperature, nature and volume of the elution solvent were investigated in the optimisation study. C18, graphitic carbon black and acetonitrile were selected as dispersing phase, clean-up phase and elution solvent, respectively. The optimised values were sample-to-dispersing phase ratio of 1:1, 50 mg of graphitic carbon black, 11 min ultrasonication time, 30°C ultrasonication temperature and 3 ml acetonitrile. Under the optimal conditions the limits of detection (LODs) were ranged from 0.04-0.11 µg kg(-1) and the relative standard deviations (RSDs) of the extraction method were less than 8.6%. The recoveries of the matrix solid-phase dispersion process ranged from 74% to 78% with relative standard deviation lower than 9% in all cases. Finally, the matrix solid-phase dispersion was successfully applied to extraction of trace amounts of aflatoxins in pistachio samples. PMID:24053673

  8. Measurement of the internal pH of mast cell granules using microvolumetric fluorescence and isotopic techniques

    SciTech Connect

    De Young, M.B.; Nemeth, E.F.; Scarpa, A.

    1987-04-01

    The intragranular pH of isolated mast cell granules was measured. Because of the minute amounts of isolated granules available, two techniques were developed by modifying aminoacridine fluorescence and (/sup 14/C)methylamine accumulation techniques to permit measurements with microliter sample volumes. Granule purity was demonstrated by electron microscopy, ruthenium red exclusion, and biochemical (histamine, mast cell granule protease) analysis. The internal pH was determined to be 5.55 +/- 0.06, indicating that the pH environment within mast cell granules is not significantly different from that of previously studied granule types (i.e., chromaffin, platelet, pancreatic islet, and pituitary granules). Collapse of the pH gradient by NH+4 was demonstrated with both techniques. No evidence of Cl-/OH- or specific cation/H+ transport was found, and major chloride permeability could not be unequivocably demonstrated. Ca/sup 2 +/ and Cl- at concentrations normally present extracellularly destabilized granules in the presence of NH+4, but this phenomenon does not necessarily indicate a role for these ions in the exocytotic release of granule contents from intact cells. The pH measurement techniques developed for investigating the properties of granules in mast cells may be useful for studying other granules that can be obtained only in limited quantities.

  9. Fluorescence/bioluminescence resonance energy transfer techniques to study G-protein-coupled receptor activation and signaling.

    PubMed

    Lohse, Martin J; Nuber, Susanne; Hoffmann, Carsten

    2012-04-01

    Fluorescence and bioluminescence resonance energy transfer (FRET and BRET) techniques allow the sensitive monitoring of distances between two labels at the nanometer scale. Depending on the placement of the labels, this permits the analysis of conformational changes within a single protein (for example of a receptor) or the monitoring of protein-protein interactions (for example, between receptors and G-protein subunits). Over the past decade, numerous such techniques have been developed to monitor the activation and signaling of G-protein-coupled receptors (GPCRs) in both the purified, reconstituted state and in intact cells. These techniques span the entire spectrum from ligand binding to the receptors down to intracellular second messengers. They allow the determination and the visualization of signaling processes with high temporal and spatial resolution. With these techniques, it has been demonstrated that GPCR signals may show spatial and temporal patterning. In particular, evidence has been provided for spatial compartmentalization of GPCRs and their signals in intact cells and for distinct physiological consequences of such spatial patterning. We review here the FRET and BRET technologies that have been developed for G-protein-coupled receptors and their signaling proteins (G-proteins, effectors) and the concepts that result from such experiments. PMID:22407612

  10. Rapid development of vasopressin-induced hydroosmosis in kidney collecting tubules measured by a new fluorescence technique.

    PubMed Central

    Kuwahara, M.; Berry, C. A.; Verkman, A. S.

    1988-01-01

    The pre-steady-state kinetics of the vasopressin-induced increase in collecting tubule osmotic water permeability (Pf) has been measured by a new fluorescence technique. Isolated cortical collecting tubules (CCT) from rabbit kidney were perfused with physiological buffers containing the impermeant fluorophores fluorescein sulfonate (FS) and pyrenetetrasulfonic acid (PTSA). Tubules were subject to a 120 mOsm bath-to-lumen osmotic gradient in the presence and absence of 250 microU/ml vasopressin. The magnitude of transepithelial volume flow was determined from the self-quenching of FS, or from the ratio of PTSA/FS fluorescence, measured at 380 nm excitation and 420 +/- 10 nm (PTSA) and greater than 530 nm (FS) emission wavelengths. Pf was calculated from the magnitude of transepithelial volume flow, lumen and bath osmolarities, lumen perfusion rate, and tubule geometry. The instrument response time for a change in bath osmolality was less than 3 s. At 37 degrees C, CCT Pf was (in units of cm/s x 10(4] 13 +/- 2 (mean +/- SE, 16 tubules) before, and 227 +/- 10 after addition of vasopressin to the bath. CCT Pf began to increase in 23 +/- 3 s after vasopressin addition and was half-maximal after 186 +/- 20 s. At 23 degrees C, Pf was 9 +/- 1 (seven tubules) before, and 189 +/- 12 after vasopressin addition. Pf began to increase in 40 +/- 4 s and was half-maximal after 195 +/- 35 s. After vasopressin removal from the bath, Pf decreased to its baseline value with a half-time of 14 min. These results establish a direct fluorescence method to monitor instantaneous transepithelial Pf in perfused tubules and show a very fast stimulation of CCT Pf in response to vasopressin. Images FIGURE 2 PMID:3224145

  11. A Rapid, Fluorescence-Based Field Screening Technique for Organic Species in Soil and Water Matrices.

    PubMed

    Russell, Amber L; Martin, David P; Cuddy, Michael F; Bednar, Anthony J

    2016-06-01

    Real-time detection of hydrocarbon contaminants in the environment presents analytical challenges because traditional laboratory-based techniques are cumbersome and not readily field portable. In the current work, a method for rapid and semi-quantitative detection of organic contaminants, primarily crude oil, in natural water and soil matrices has been developed. Detection limits in the parts per million and parts per billion were accomplished when using visual and digital detection methods, respectively. The extraction technique was modified from standard methodologies used for hydrocarbon analysis and provides a straight-forward separation technique that can remove interference from complex natural constituents. For water samples this method is semi-quantitative, with recoveries ranging from 70 % to 130 %, while measurements of soil samples are more qualitative due to lower extraction efficiencies related to the limitations of field-deployable procedures. PMID:26988223

  12. Elemental analysis of human amniotic fluid and placenta by total-reflection X-ray fluorescence and energy-dispersive X-ray fluorescence: child weight and maternal age dependence

    NASA Astrophysics Data System (ADS)

    Carvalho, M. L.; Custódio, P. J.; Reus, U.; Prange, A.

    2001-11-01

    This work is an attempt to evaluate the possible influence of the mother's age in trace element concentrations in human amniotic fluid and placenta and whether these concentrations are correlated to the weight of the newborn infants. Total-reflection X-ray fluorescence (TXRF) was used to analyze 16 amniotic fluid samples, and the placenta samples were analyzed by energy dispersive X-ray fluorescence (EDXRF). The whole samples were collected during delivery from healthy mothers and healthy infants and full-term pregnancies. According to the age of the mother, three different groups were considered: 20-25, 25-30 and 30-40 years old. Only two mothers were aged more than 35 years. The weight of the infants ranged from 2.56 to 4.05 kg and three groups were also considered: 2.5-3, 3-3.5 and 3.5-4 kg. The organic matrix of the amniotic fluid samples was removed by treatment with HNO 3 followed by oxygen plasma ashing. Yttrium was used as the internal standard for TXRF analysis. Placenta samples were lyophilized and analyzed by EDXRF without any chemical treatment. Very low levels of Ni and Sr were found in the amniotic fluid samples, and were independent of the age of the mother and weight of the child. Cr, Mn, Se and Pb were at the level of the detection limit. Zn, considered one of the key elements in neonatal health, was not significantly different in the samples analyzed; however, it was weakly related to birth weigh. The concentrations obtained ranged from 0.11 to 0.92 mg/l and 30 to 65 μg/g in amniotic fluid and placenta, respectively. The only two elements which seemed to be significantly correlated with mother's age and newborn weight were Ca and Fe for both types of sample: Ca levels were increased in heavier children and older mothers; however, Fe increased with increasing maternal age, but decreased for heavier babies. The same conclusions were obtained for placenta and amniotic fluid samples. Cu is closely associated with Fe in its function in the organism

  13. In vivo monitoring of toxic metals: assessment of neutron activation and x-ray fluorescence techniques

    SciTech Connect

    Ellis, K.J.

    1986-01-01

    To date, cadmium, lead, aluminum, and mercury have been measured in vivo in humans. The possibilities of monitoring other toxic metals have also been demonstrated, but no human studies have been performed. Neutron activation analysis appears to be most suitable for Cd and Al measurements, while x-ray fluorescence is ideally suited for measurement of lead in superficial bone. Filtered neutron beams and polarized x-ray sources are being developed which will improve in vivo detection limits. Even so, several of the current facilities are already suitable for use in epidemiological studies of selected populations with suspected long-term low-level ''environmental'' exposures. Evaluation and diagnosis of patients presenting with general clinical symptoms attributable to possible toxic metal exposure may be assisted by in vivo examination. Continued in vivo monitoring of industrial workers, especially follow-up measurements, will provide the first direct assessment of changes in body burden and a direct measure of the biological life-times of these metals in humans. 50 refs., 4 figs., 2 tabs.

  14. Process and formulation variables in the preparation of wax microparticles by a melt dispersion technique. I. Oil-in-water technique for water-insoluble drugs.

    PubMed

    Bodmeier, R; Wang, J; Bhagwatwar, H

    1992-01-01

    Ibuprofen-wax (carnauba, paraffin, beeswax, and the semisynthetic glyceryl esters--Gelucire 64/02 and Precirol ATO5) microparticles were prepared without organic solvents as an alternative to polymeric microparticles. In the melt dispersion technique, the drug-wax melt was emulsified into a heated aqueous phase followed by cooling to form the microparticles. The microparticles were characterized with respect to their drug loading, and morphological and release properties. They were spherical and non-agglomerated and drug loading close to 60 per cent were achieved. The more hydrophilic waxes (Gelucire 64/02 or Precirol ATO5) could be prepared without the use of surfactants. With the other waxes, increasing amounts of sodium lauryl sulphate in the external aqueous phase decreased the drug loading because of drug solubilization when compared to the polymeric stabilizer, poly(vinyl alcohol). The type of wax, the rate of cooling, and the temperature of the aqueous phase had no significant effect on the drug loading because of the low solubility of the drug in the external aqueous phase. The drug release was controlled by the hydrophobicity of the wax. Besides ibuprofen, other water-soluble drugs (ketoprofen, indomethacin, hydrocortisone) were also encapsulated by this method. The wax microparticles could be formulated into an aqueous sustained-release oral suspension dosage form. PMID:1613647

  15. Analysis of caspase3 activation in ChanSu-induced apoptosis of ASTC-a-1 cells by fluorescence techniques

    NASA Astrophysics Data System (ADS)

    Sun, Lei; Chen, Tongsheng; Wang, Longxiang; Wang, Huiying

    2008-02-01

    ChanSu(CS), a traditional Chinese medicine, is composed of many chemical compoments. It is isolated from the dried white secretion of the auricular and skin glands of toads, and it has been widely used for treating the heart diseases and other systemic illnesses. However, it is difficult to judge antitumor effect of agents derived from ChanSu and the underlying mechanism of ChanSu inducing cell apoptosis is still unclear. This report was performed to explore the inhibitory effect and mechanism of ChanSu on human lung adenocarcinoma cells (ASTC-a-1). Fluorescence emission spectra and fluorescence resonance energy transfer (FRET) were used to study the caspase-3 activation during the ChanSu-induced human lung adenocarcinoma (ASTC-a-1) cell apoptosis. CCK-8 was used to assay the inhibition of ChanSu on the cell viability. The cells expressing stably with SCAT3 was used to examine if caspase-3 was activated by ChanSu using acceptor photobleaching technique. Our data showed that treatment of ASTC-a-1 cell with ChanSu resulted in the inhibition of viability and induction of apoptosis in a dose-dependent manner and the SCAT3 was almost cleaved 24 h after ChanSu treatment, implying that ChanSu induced cell apoptosis via a caspase-3-dependent death pathway. Our findings extend the knowledge about the cellular signaling mechanisms mediating ChanSu-induced apoptosis.

  16. A comparison of hyperspectral reflectance and fluorescence imaging techniques for detection of contaminants on leafy greens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ensuring the supply of safe, contaminant free fresh fruit and vegetables is of importance to consumers, suppliers and governments worldwide. In this study, three hyperspectral imaging (HSI) configurations coupled with two multivariate image analysis techniques are compared for detection of fecal con...

  17. Wear Characterizations of Polyoxymethylene (POM) Reinforced with Carbon Nanotubes (POM/CNTs) Using the Paraffin Oil Dispersion Technique

    NASA Astrophysics Data System (ADS)

    Yousef, Samy; Visco, A. M.; Galtieri, G.; Njuguna, James

    2016-01-01

    The wear of polyoxymethylene (POM) is considered a key design parameter of polymer gears and some mechanical applications, and it determines the service time span. This work investigates the influence of carbon nanotubes (CNTs) on the specific wear rate of POM/CNT nanocomposites by using a pin-on-disk test rig (sliding only). The CNTs were synthesized with a fully automatic machine via the arc-discharge multi-electrode technique and subsequently dispersed in a POM matrix to manufacture test specimens. The CNT weight percentages were varied within the range 0-0.03 wt.% in three different operating media (air, distilled water, and mineral oil). The wear mechanism was examined by microscopy. The mechanical and thermal properties of POM/CNT were studied by using calorimetric analysis and by mechanical tensile testing. In addition, the thermal and mechanical properties were improved to an optimum CNT ratio of 0.02 wt.% due to the improvement in crystallinity of POM and a decrease in the fusion defects. The crystallinity degree increased by 7%, and the melting temperature also increased. The results further indicate that the specific wear rate (Ws) for POM/CNT containing 0.03 wt.% CNT in air and water media was improved by 73% and 66%, respectively, compared with virgin POM. In addition, the tensile strength of the mechanical properties and Young's modulus increased by 31% and 29%, respectively.

  18. All optical up-converted signal generation with high dispersion tolerance using frequency quadrupling technique for radio over fiber system

    NASA Astrophysics Data System (ADS)

    Gu, Yiying; Zhao, Jiayi; Hu, Jingjing; Kang, Zijian; Zhu, Wenwu; Fan, Feng; Han, Xiuyou; Zhao, Mingshan

    2016-05-01

    A novel all optical up-converted signal generation scheme with optical single-sideband (OSSB) technique for radio over fiber (RoF) application is presented and experimentally demonstrated using low-bandwidth devices. The OSSB signal is generated by one low-bandwidth intensity LiNbO3 Mach-Zehnder modulator (LN-MZM) under frequency quadrupling modulation scheme and one low-bandwidth LN-MZM under double sideband carrier suppressed modulation (DSB-CS) scheme. The proposed all OSSB generation scheme is capable of high tolerance of fiber chromatic dispersion induced power fading (DIPF) effect. Benefiting from this novel OSSB generation scheme, a 26 GHz radio frequency (RF) signal up-conversion is realized successfully when one sideband of the optical LO signal is reused as the optical carrier for intermediate frequency (IF) signal modulation. The received vector signal transmission over long distance single-mode fiber (SMF) shows negligible DIPF effect with the error vector magnitude (EVM) of 15.7% rms. In addition, a spurious free dynamic range (SFDR) of the OSSB up-converting system is measured up to 81 dB Hz2/3. The experiment results indicate that the proposed system may find potential applications in future wireless communication networks, especially in microcellular personal communication system (MPCS).

  19. Determination of heavy metals concentrations in airborne particulates matter (APM) from Manjung district, Perak using energy dispersive X-ray fluorescence (EDXRF) spectrometer

    NASA Astrophysics Data System (ADS)

    Arshad, Nursyairah; Hamzah, Zaini; Wood, Ab. Khalik; Saat, Ahmad; Alias, Masitah

    2015-04-01

    Airborne particulates trace metals are considered as public health concern as it can enter human lungs through respiratory system. Generally, any substance that has been introduced to the atmosphere that can cause severe effects to living things and the environment is considered air pollution. Manjung, Perak is one of the development districts that is active with industrial activities. There are many industrial activities surrounding Manjung District area such as coal fired power plant, quarries and iron smelting which may contribute to the air pollution into the environment. This study was done to measure the concentrations of Hg, U, Th, K, Cu, Fe, Cr, Zn, As, Se, Pb and Cd in the Airborne Particulate Matter (APM) collected at nine locations in Manjung District area within 15 km radius towards three directions (North, North-East and South-East) in 5 km intervals. The samples were collected using mini volume air sampler with cellulose filter through total suspended particulate (TSP). The sampler was set up for eight hours with the flow rate of 5 L/min. The filter was weighed before and after sample collection using microbalance, to get the amount of APM and kept in desiccator before analyzing. The measurement was done using calibrated Energy Dispersive X-Ray Fluorescence (EDXRF) Spectrometer. The air particulate concentrations were found below the Malaysia Air Quality Guidelines for TSP (260 µg/m3). All of the metals concentrations were also lower than the guidelines set by World Health Organization (WHO), Ontario Ministry of the Environment and Argonne National Laboratory, USA NCRP (1975). From the concentrations, the enrichment factor were calculated.

  20. Quantitative determinations and imaging in different structures of buried human bones from the XVIII-XIXth centuries by energy dispersive X-ray fluorescence - Postmortem evaluation.

    PubMed

    Guimarães, D; Dias, A A; Carvalho, M; Carvalho, M L; Santos, J P; Henriques, F R; Curate, F; Pessanha, S

    2016-08-01

    In this work, a non-commercial triaxial geometry energy dispersive X-ray Fluorescence (EDXRF) setup and a benchtop µ-XRF system were used to identify postmortem contamination in buried bones. For two of the individuals, unusually high concentrations of Cu and Pb, but also Zn (in one individual) were observed. The pigments of the burial shroud coverings have been identified as the source of contamination. Accurate and precise quantitative results were obtained by nondestructive process using fundamental parameters method taking into account the matrix absorption effects. A total of 30 bones from 13 individuals, buried between the mid-XVIIIth to early XIXth centuries, were analyzed to study the elemental composition and elemental distribution. The bones were collected from a church in Almada (Portugal), called Ermida do Espírito Santo, located near the Tagus River and at the sea neighbourhood. The triaxial geometry setup was used to quantify Ca, Fe, Cu, Zn, Br, Sr and Pb of powder pressed bone pellets (n=9 for each bone). Cluster analysis was performed considering the elemental concentrations for the different bones. There was a clear association between some bones regarding Fe, Cu, Zn, Br and Pb content but not a categorization between cortical and trabecular bones. The elemental distribution of Cu, Zn and Pb were assessed by the benchtop μ-analysis, the M4 Tornado, based on a polycapillary system which provides multi-elemental 2D maps. The results showed that contamination was mostly on the surface of the bone confirming that it was related to the burial shroud covering the individuals. PMID:27216663

  1. Determination of rare earth elements in combustion ashes from selected Polish coal mines by wavelength dispersive X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Smoliński, Adam; Stempin, Marek; Howaniec, Natalia

    2016-02-01

    The aim of the experimental works presented in this paper was to develop a method using wavelength dispersive X-ray fluorescence spectrometry (WDXRF) in order to determine the content of 16 rare earth elements (REEs) and the concentration of the said elements in 169 samples of combustion ash of coals coming from ten Polish coal mines, as well as to validate the method. It was found out that there is a clear diversity in the levels and ranges of the variability of REEs occurrence in coal ashes. The average content of cerium, lanthanum, and scandium amounts to 198.8 μg • g- 1, 76.5 μg • g- 1, and 52.4 μg • g- 1 respectively, whereas for such metals as europium, holmium, lutetium, terbium, and thulium, the average content does not exceed the level of 5 μg • g- 1 (the average content for these metals amounts to 1.2 μg • g- 1, 1.4 μg • g- 1, 0.3 μg • g- 1, 1.3 μg • g- 1, and 0.6 μg • g- 1, respectively). In addition, this paper presents an analysis of data obtained by means of hierarchical clustering analysis. Simultaneous interpretation of the dendrogram of objects (coal ash samples) and the color map of the experimental data allowed a more in-depth analysis of the relationships between the clustered coal ash samples from different coal mines and the content of the rare earth elements.

  2. Determination of inorganic nutrients in wheat flour by laser-induced breakdown spectroscopy and energy dispersive X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Peruchi, Lidiane Cristina; Nunes, Lidiane Cristina; de Carvalho, Gabriel Gustinelli Arantes; Guerra, Marcelo Braga Bueno; de Almeida, Eduardo; Rufini, Iolanda Aparecida; Santos, Dário; Krug, Francisco José

    2014-10-01

    Laser-induced breakdown spectroscopy (LIBS) and energy dispersive X-ray fluorescence spectrometry (EDXRF) were evaluated for the determination of P, K, Ca, Mg, S, Fe, Cu, Mn and Zn in pressed pellets of wheat flours. EDXRF and LIBS calibration models were built with analytes mass fractions determined by inductively coupled plasma optical emission spectrometry after microwave-assisted acid digestion in a set of 25 wheat flour laboratory samples. Test samples consisted of pressed pellets prepared from wheat flour mixed with 30% mm- 1 cellulose binder. Experiments were carried out with a LIBS setup consisted of a Q-switched Nd:YAG laser and a spectrometer with Echelle optics and ICCD, and a benchtop EDXRF system fitted with a Rh target X-ray tube and a Si(Li) semiconductor detector. The correlation coefficients from the linear calibration models of P, K, Ca, Mg, S, Fe, Mn and Zn determined by LIBS and/or EDXRF varied from 0.9705 for Zn to 0.9990 for Mg by LIBS, and from 0.9306 for S to 0.9974 for K by EDXRF. The coefficients of variation of measurements varied from 1.2 to 20% for LIBS, and from 0.3 to 24% for EDXRF. The predictive capabilities based on RMSEP (root mean square error of prediction) values were appropriate for the determination of P, Ca, Mg, Fe, Mn and Zn by LIBS, and for P, K, S, Ca, Fe, and Zn by EDXRF. In general, results from the analysis of NIST SRM 1567a Wheat flour by LIBS and EDXRF were in agreement with their certified mass fractions.

  3. Cutaneous tumors in vivo investigations using fluorescence and diffuse reflectance techniques

    NASA Astrophysics Data System (ADS)

    Borisova, E.; Troyanova, P.; Nikolova, E.; Avramov, L.

    2008-06-01

    In the recent years, there has been growing interest in the common use of laser-induced autofluorescence (LIAF) and reflectance spectroscopy (RS) to differentiate disease from normal surrounding tissue - so called optical biopsy method. Painless, instant diagnoses from optical biopsies will soon be a reality. These forms of optical diagnoses are preferable to the removal of several square millimeters of tissue surface - common in traditional biopsies - followed by delays while samples are sent for clinical analysis. The goal of this work was investigation of cutaneous benign and malignant lesions by the methods of LIAFS and RS. A nitrogen laser at 337 nm was applied for the needs of autofluorescence excitation. Broad-spectrum halogen lamp (from 400 to 900 nm) was applied for diffuse reflectance measurements. An associated microspectrometer detected in vivo the fluorescence and reflectance signals from human skin. The main spectral features of benign lesions - compound nevus, dysplastic nevi, heamangioma and basal cell papilloma and malignant lesions - pigmented, amelanotic and secondary malignant melanoma, as well as basal cell carcinoma are discussed and their possible origins are indicated. Spectra from healthy skin areas near to the lesion were detected to be used posteriori to reveal changes between healthy and lesion skin spectra. Influence of the main skin pigments on the spectra detected is discussed and evaluation of possibilities for differentiation between malignant and benign lesions is made based on their spectral properties. This research shows that non-invasive and high-sensitive in vivo detection by means of appropriate light sources and detectors should be possible, related to real-time determination of existing pathological conditions.

  4. Early diagnosis of tongue malignancy using laser induced fluorescence spectroscopy technique

    NASA Astrophysics Data System (ADS)

    Patil, Ajeetkumar; Unnikrishnan V., K.; Ongole, Ravikiran; Pai, Keerthilatha M.; Kartha, V. B.; Chidangil, Santhosh

    2015-07-01

    Oral cancer together with pharyngeal cancer is the sixth most common malignancy reported worldwide and one with high mortality ratio among all malignancies [1]. Worldwide 450,000 new cases are estimated in 2014[2]. About 90% are a type of cancer called squamous cell carcinoma (SCC). SCC of the tongue is the most common oral malignancy accounting for approximately 40% of all oral carcinomas. One of the important factors for successful therapy of any malignancy is early diagnosis. Although considerable progress has been made in understanding the cellular and molecular mechanisms of tumorigenesis, lack of reliable diagnostic methods for early detection leading to delay in therapy is an important factor responsible for the increase in the mortality rate in various types of cancers. Spectroscopy techniques are extremely sensitive for the analysis of biochemical changes in cellular systems. These techniques can provide a valuable information on alterations that occur during the development of cancer. This is especially important in oral cancer, where "tumor detection is complicated by a tendency towards field cancerization, leading to multi-centric lesions" and "current techniques detect malignant change too late" [3], and "biopsies are not representative of the whole premalignant lesion". [4

  5. Thermoanalytical and Fourier transform infrared spectral curve-fitting techniques used to investigate the amorphous indomethacin formation and its physical stability in Indomethacin-Soluplus® solid dispersions.

    PubMed

    Lin, Shan-Yang; Lin, Hong-Liang; Chi, Ying-Ting; Huang, Yu-Ting; Kao, Chi-Yu; Hsieh, Wei-Hsien

    2015-12-30

    The amorphous form of a drug has higher water solubility and faster dissolution rate than its crystalline form. However, the amorphous form is less thermodynamically stable and may recrystallize during manufacturing and storage. Maintaining the amorphous state of drug in a solid dosage form is extremely important to ensure product quality. The purpose of this study was to quantitatively determine the amount of amorphous indomethacin (INDO) formed in the Soluplus® solid dispersions using thermoanalytical and Fourier transform infrared (FTIR) spectral curve-fitting techniques. The INDO/Soluplus® solid dispersions with various weight ratios of both components were prepared by air-drying and heat-drying processes. A predominate IR peak at 1683cm(-1) for amorphous INDO was selected as a marker for monitoring the solid state of INDO in the INDO/Soluplus® solid dispersions. The physical stability of amorphous INDO in the INDO/Soluplus® solid dispersions prepared by both drying processes was also studied under accelerated conditions. A typical endothermic peak at 161°C for γ-form of INDO (γ-INDO) disappeared from all the differential scanning calorimetry (DSC) curves of INDO/Soluplus® solid dispersions, suggesting the amorphization of INDO caused by Soluplus® after drying. In addition, two unique IR peaks at 1682 (1681) and 1593 (1591)cm(-1) corresponded to the amorphous form of INDO were observed in the FTIR spectra of all the INDO/Soluplus® solid dispersions. The quantitative amounts of amorphous INDO formed in all the INDO/Soluplus® solid dispersions were increased with the increase of γ-INDO loaded into the INDO/Soluplus® solid dispersions by applying curve-fitting technique. However, the intermolecular hydrogen bonding interaction between Soluplus® and INDO were only observed in the samples prepared by heat-drying process, due to a marked spectral shift from 1636 to 1628cm(-1) in the INDO/Soluplus® solid dispersions. The INDO/Soluplus® solid

  6. Techniques and Protocols for Dispersing Nanoparticle Powders in Aqueous Media-Is there a Rationale for Harmonization?

    PubMed

    Hartmann, Nanna B; Jensen, Keld Alstrup; Baun, Anders; Rasmussen, Kirsten; Rauscher, Hubert; Tantra, Ratna; Cupi, Denisa; Gilliland, Douglas; Pianella, Francesca; Riego Sintes, Juan M

    2015-01-01

    Selecting appropriate ways of bringing engineered nanoparticles (ENP) into aqueous dispersion is a main obstacle for testing, and thus for understanding and evaluating, their potential adverse effects to the environment and human health. Using different methods to prepare (stock) dispersions of the same ENP may be a source of variation in the toxicity measured. Harmonization and standardization of dispersion methods applied in mammalian and ecotoxicity testing are needed to ensure a comparable data quality and to minimize test artifacts produced by modifications of ENP during the dispersion preparation process. Such harmonization and standardization will also enhance comparability among tests, labs, and studies on different types of ENP. The scope of this review was to critically discuss the essential parameters in dispersion protocols for ENP. The parameters are identified from individual scientific studies and from consensus reached in larger scale research projects and international organizations. A step-wise approach is proposed to develop tailored dispersion protocols for ecotoxicological and mammalian toxicological testing of ENP. The recommendations of this analysis may serve as a guide to researchers, companies, and regulators when selecting, developing, and evaluating the appropriateness of dispersion methods applied in mammalian and ecotoxicity testing. However, additional experimentation is needed to further document the protocol parameters and investigate to what extent different stock dispersion methods affect ecotoxicological and mammalian toxicological responses of ENP. PMID:26397955

  7. The effect of flow reduction on microphytobenthos development in an alpine river stretch using novel fluorescence techniques

    NASA Astrophysics Data System (ADS)

    Ganglbauer, A.; Bondar-Kunze, E.; Hein, T.; Zeiringer, B.

    2009-04-01

    . The measurements included field surveys and two experimental settings. During May 2008 we conducted an in-situ experiment with artificial substrata to investigate the effect of flow velocity changes. We exposed glass slides in baskets along two transects in the River Ybbs at two sampling sites and eight different positions. After a period of about four weeks with weekly recurrent measurements including flow velocity, water depth, chlorophyll a content and electron transport rate (ETR) we started our experiment. Glass slides were taken from each position and were exposed in a flow reduced impounded area in the river Ybbs near Göstling. There low flow velocity was used to test the effect on microphytobenthos development. The next ten days daily measurements of flow velocity, water depth, chlorophyll-a content and electron transport rate (ETR) with the pulse amplitude modulated fluorescence method and microscopic analysis were undertaken. Based on these daily measurements under almost stable environmental conditions we could ascertain a shift in the benthic algae community. To assess the distribution along a river stretch we measured 70 sampling points at each sampling side. To characterize the biomass and activity of the microphytobenthos we used Pulse Amplitude Modulated Fluorescence (PAM-Fluorescence). Using this technique allow to measure the biomass (Chlorophyll a) and the ETR (electron transport rate) simultaneously without destroying the structure. With this technique it is possible to The PAM technique measure directly the fluorescence of chlorophyll a in the photosystem two. The quantum yield you get is the probability that a photon can be used photochemically. The quantum yield offers the possibility to illustrate the fitness of algae. Based on these measurements short term responses can be measured and combined with the results of field surveys. These analytical results were used for a habitat modelling approach to describe the microphytobenthos development

  8. Europium Uptake and Partitioning in Oat (Avena sativa) Roots as studied By Laser-Induced Fluorescence Spectroscopy and Confocal Microscopy Profiling Technique

    SciTech Connect

    Fellows, Robert J.; Wang, Zheming; Ainsworth, Calvin C.

    2003-11-15

    The uptake of Eu3+ by elongating oat plant roots was studied by fluorescence spectroscopy, fluorescence lifetime measurement, as well as laser excitation time-resolved confocal fluorescence profiling technique. The results of this work indicated that the initial uptake of Eu(III) by oat root was most evident within the apical meristem of the root just proximal to the root cap. Distribution of assimilated Eu(III) within the roots differentiation and elongation zone was non-uniform. Higher concentrations were observed within the vascular cylinder, specifically in the phloem and developing xylem parenchyma. Elevated levels of the metal were also observed in the root hairs of the mature root. The concentration of assimilated Eu3+ dropped sharply from the apical meristem to the differentiation and elongation zone and then gradually decreased as the distance from the root cap increased. Fluorescence spectroscopic characteristics of the assimilated Eu3+ suggested that the Eu3+ exists a s inner-sphere mononuclear complexes inside the root. This work has also demonstrated the effectiveness of a time-resolved Eu3+ fluorescence spectroscopy and confocal fluorescence profiling techniques for the in vivo, real-time study of metal[Eu3+] accumulation by a functioning intact plant root. This approach can prove valuable for basic and applied studies in plant nutrition and environmental uptake of actinide radionuclides.

  9. Quantifying Dispersal of European Culicoides (Diptera: Ceratopogonidae) Vectors between Farms Using a Novel Mark-Release-Recapture Technique

    PubMed Central

    Kirkeby, Carsten; Bødker, René; Stockmarr, Anders; Lind, Peter; Heegaard, Peter M. H.

    2013-01-01

    Studying the dispersal of small flying insects such as Culicoides constitutes a great challenge due to huge population sizes and lack of a method to efficiently mark and objectively detect many specimens at a time. We here describe a novel mark-release-recapture method for Culicoides in the field using fluorescein isothiocyanate (FITC) as marking agent without anaesthesia. Using a plate scanner, this detection technique can be used to analyse thousands of individual Culicoides specimens per day at a reasonable cost. We marked and released an estimated 853 specimens of the Pulicaris group and 607 specimens of the Obsoletus group on a cattle farm in Denmark. An estimated 9,090 (8,918–9,260) Obsoletus group specimens and 14,272 (14,194–14,448) Pulicaris group specimens were captured in the surroundings and subsequently analysed. Two (0.3%) Obsoletus group specimens and 28 (4.6%) Pulicaris group specimens were recaptured. The two recaptured Obsoletus group specimens were caught at the release point on the night following release. Eight (29%) of the recaptured Pulicaris group specimens were caught at a pig farm 1,750 m upwind from the release point. Five of these were recaptured on the night following release and the three other were recaptured on the second night after release. This is the first time that movement of Culicoides vectors between farms in Europe has been directly quantified. The findings suggest an extensive and rapid exchange of disease vectors between farms. Rapid movement of vectors between neighboring farms may explain the the high rate of spatial spread of Schmallenberg and bluetongue virus (BTV) in northern Europe. PMID:23630582

  10. Macroscopic optical imaging technique for wide-field estimation of fluorescence depth in optically turbid media for application in brain tumor surgical guidance

    NASA Astrophysics Data System (ADS)

    Kolste, Kolbein K.; Kanick, Stephen C.; Valdés, Pablo A.; Jermyn, Michael; Wilson, Brian C.; Roberts, David W.; Paulsen, Keith D.; Leblond, Frederic

    2015-02-01

    A diffuse imaging method is presented that enables wide-field estimation of the depth of fluorescent molecular markers in turbid media by quantifying the deformation of the detected fluorescence spectra due to the wavelength-dependent light attenuation by overlying tissue. This is achieved by measuring the ratio of the fluorescence at two wavelengths in combination with normalization techniques based on diffuse reflectance measurements to evaluate tissue attenuation variations for different depths. It is demonstrated that fluorescence topography can be achieved up to a 5 mm depth using a near-infrared dye with millimeter depth accuracy in turbid media having optical properties representative of normal brain tissue. Wide-field depth estimates are made using optical technology integrated onto a commercial surgical microscope, making this approach feasible for real-world applications.

  11. Macroscopic optical imaging technique for wide-field estimation of fluorescence depth in optically turbid media for application in brain tumor surgical guidance

    PubMed Central

    Kolste, Kolbein K.; Kanick, Stephen C.; Valdés, Pablo A.; Jermyn, Michael; Wilson, Brian C.; Roberts, David W.; Paulsen, Keith D.; Leblond, Frederic

    2015-01-01

    Abstract. A diffuse imaging method is presented that enables wide-field estimation of the depth of fluorescent molecular markers in turbid media by quantifying the deformation of the detected fluorescence spectra due to the wavelength-dependent light attenuation by overlying tissue. This is achieved by measuring the ratio of the fluorescence at two wavelengths in combination with normalization techniques based on diffuse reflectance measurements to evaluate tissue attenuation variations for different depths. It is demonstrated that fluorescence topography can be achieved up to a 5 mm depth using a near-infrared dye with millimeter depth accuracy in turbid media having optical properties representative of normal brain tissue. Wide-field depth estimates are made using optical technology integrated onto a commercial surgical microscope, making this approach feasible for real-world applications. PMID:25652704

  12. Determination of sulfadiazine based on its derivatization with fluorescamine by self-ordered ring fluorescence microscopic imaging technique.

    PubMed

    Yang, Le; Liu, Ying

    2012-09-01

    A self-ordered ring (SOR) fluorescence microscopic imaging technique has been developed for the determination of trace amounts of sulfadiazine based on its derivatization with fluorescamine. In the presence of HAc-NaAc buffer solution (pH 3.12) and polyvinyl alcohol-124 (PVA-124), the droplet containing fluorescamine derivatized sulfadiazine can form a SOR on the solid support after solvent evaporation with the diameter of 1.86 mm and its ring belt width of 54.9 microm. The quantitative analysis of sulfadiazine is achieved with the linear range of 7.8 x 10(-14)-1.8 x 10(-12) mol x ring(-1) (3.9 x 10(-7)-9.0 x 10(-6) mol x L(-1) and detection limit of 7.8 x 10(-5) mol x ring(-1) (3.9 x 10(-8) mol x L(-1)) when 0.2 microL droplet was spotted. The technique has been satisfactorily applied to the determination of sulfadiazine in the tablet, synthetic sample and residues in six different milk samples with the recoveries of 91.0%-105.8%, respectively, and RSDs less than 4.4%. PMID:23240417

  13. Using chemical, microbial and fluorescence techniques to understand contaminant sources and pathways to wetlands in a conservation site.

    PubMed

    Rhymes, J; Jones, L; Lapworth, D J; White, D; Fenner, N; McDonald, J E; Perkins, T L

    2015-04-01

    Nutrients and faecal contaminants can enter wetland systems in a number of ways, with both biological and potentially human-health implications. In this study we used a combination of inorganic chemistry, dissolved organic matter (DOM) fluorescence and Escherichia coli and total coliform (TC) count techniques to study the sources and multiple pathways of contamination affecting a designated sand dune site of international conservation importance, surrounded by agricultural land. Analysis of stream samples, groundwater and dune slack wetlands revealed multiple input pathways. These included riverbank seepage, runoff events and percolation of nutrients from adjacent pasture into the groundwater, as well as some on-site sources. The combined techniques showed that off-site nutrient inputs into the sand dune system were primarily from fertilisers, revealed by high nitrate concentrations, and relatively low tryptophan-like fulvic-like ratios<0.4Ramanunits (R.U.). The E. coli and TC counts recorded across the site confirm a relatively minor source of bacterial and nutrient inputs from on-site grazers. Attenuation of the nutrient concentrations in streams, in groundwater and in run-off inputs occurs within the site, restoring healthier groundwater nutrient concentrations showing that contaminant filtration by the sand dunes provides a valuable ecosystem service. However, previous studies show that this input of nutrients has a clear adverse ecological impact. PMID:25616189

  14. Spatial and temporal single-cell volume estimation by a fluorescence imaging technique with application to astrocytes in primary culture

    NASA Astrophysics Data System (ADS)

    Khatibi, Siamak; Allansson, Louise; Gustavsson, Tomas; Blomstrand, Fredrik; Hansson, Elisabeth; Olsson, Torsten

    1999-05-01

    Cell volume changes are often associated with important physiological and pathological processes in the cell. These changes may be the means by which the cell interacts with its surrounding. Astroglial cells change their volume and shape under several circumstances that affect the central nervous system. Following an incidence of brain damage, such as a stroke or a traumatic brain injury, one of the first events seen is swelling of the astroglial cells. In order to study this and other similar phenomena, it is desirable to develop technical instrumentation and analysis methods capable of detecting and characterizing dynamic cell shape changes in a quantitative and robust way. We have developed a technique to monitor and to quantify the spatial and temporal volume changes in a single cell in primary culture. The technique is based on two- and three-dimensional fluorescence imaging. The temporal information is obtained from a sequence of microscope images, which are analyzed in real time. The spatial data is collected in a sequence of images from the microscope, which is automatically focused up and down through the specimen. The analysis of spatial data is performed off-line and consists of photobleaching compensation, focus restoration, filtering, segmentation and spatial volume estimation.

  15. Studying gas-sheared liquid film in horizontal rectangular duct with laser-induced fluorescence technique

    NASA Astrophysics Data System (ADS)

    Cherdantsev, Andrey; Hann, David; Azzopardi, Barry

    2013-11-01

    High-speed LIF-technique is applied to study gas-sheared liquid film in horizontal rectangular duct with 161 mm width. Instantaneous distributions of film thickness resolved in both longitudinal and transverse coordinates were obtained with a frequency of 10 kHz and spatial resolution from 0.125 mm to 0.04 mm. Processes of generation of fast and slow ripples by disturbance waves are the same as described in literature for downwards annular pipe flow. Disturbance waves are often localized by transverse coordinate and may have curved or slanted fronts. Fast ripples, covering disturbance waves, are typically horseshoe-shaped and placed in staggered order. Their characteristic transverse size is of order 1 cm and it decreases with gas velocity. Entrainment of liquid from film surface can also be visualized. Mechanisms of ripple disruption, known as ``bag break-up'' and ``ligament break-up,'' were observed. Both mechanisms may occur on the same disturbance waves. Various scenarios of droplet deposition on the liquid film are observed, including the impact, slow sinking and bouncing, characterized by different outcome of secondary droplets or entrapped bubbles. Number and size of bubbles increase greatly inside the disturbance waves. Both quantities increase with gas and liquid flow rates. EPSRC Programme Grant MEMPHIS (EP/K003976/1), and Roll-Royce UTC (Nottingham, for access to flow facility).

  16. In vivo effects of focused shock waves on tumor tissue visualized by fluorescence staining techniques.

    PubMed

    Lukes, Petr; Zeman, Jan; Horak, Vratislav; Hoffer, Petr; Pouckova, Pavla; Holubova, Monika; Hosseini, S Hamid R; Akiyama, Hidenori; Sunka, Pavel; Benes, Jiri

    2015-06-01

    Shock waves can cause significant cytotoxic effects in tumor cells and tissues both in vitro and in vivo. However, understanding the mechanisms of shock wave interaction with tissues is limited. We have studied in vivo effects of focused shock waves induced in the syngeneic sarcoma tumor model using the TUNEL assay, immunohistochemical detection of caspase-3 and hematoxylin-eosin staining. Shock waves were produced by a multichannel pulsed-electrohydraulic discharge generator with a cylindrical ceramic-coated electrode. In tumors treated with shock waves, a large area of damaged tissue was detected which was clearly differentiated from intact tissue. Localization and a cone-shaped region of tissue damage visualized by TUNEL reaction apparently correlated with the conical shape and direction of shock wave propagation determined by high-speed shadowgraphy. A strong TUNEL reaction of nuclei and nucleus fragments in tissue exposed to shock waves suggested apoptosis in this destroyed tumor area. However, specificity of the TUNEL technique to apoptotic cells is ambiguous and other apoptotic markers (caspase-3) that we used in our study did not confirmed this observation. Thus, the generated fragments of nuclei gave rise to a false TUNEL reaction not associated with apoptosis. Mechanical stress from high overpressure shock wave was likely the dominant pathway of tumor damage. PMID:25200989

  17. Dispersion Modeling.

    ERIC Educational Resources Information Center

    Budiansky, Stephen

    1980-01-01

    This article discusses the need for more accurate and complete input data and field verification of the various models of air pollutant dispension. Consideration should be given to changing the form of air quality standards based on enhanced dispersion modeling techniques. (Author/RE)

  18. Dispersed Fluorescence Spectroscopy of the ˜{B} ^2E' - ˜{X} ^2A_2' Transition of Jet Cooled ^{14}NO_3 and ^{15}NO_3

    NASA Astrophysics Data System (ADS)

    Fukushima, Masaru; Ishiwata, Takashi

    2013-06-01

    We have generated NO_3 in supersonic free jet expansions and observed laser induced fluorescence ( LIF ) of the ˜{B} ^2E' - ˜{X} ^2A_2' transition. We have measured LIF excitation spectra and dispersed fluorescence ( DF ) spectra from the single vibronic levels ( SVL's ) of the ˜{B} ^2E' state of ^{14}NO_3 and ^{15}NO_3. The vibrational structure of the ˜{X} ^2A_2' state has been analyzed by comparing the vibrational structures of the DF spectra of the two isotopomers. The 1,053 cm^{-1} band of ^{14}NO_3 is observed as two bands at 1,039 and 1,053 cm^{-1} with an intensity ratio of 4 : 5, respectively, for ^{15}NO_3, which are observed in the DF spectra with our standard resolution ( ˜ 7 cm^{-1} in FWHM ). Higher resolution measurements ( ˜ 2 cm^{-1} in FWHM ) of the DF spectra show that the 1,053 cm^{-1} band of ^{14}NO_3 is also observed as two bands at 1,051 and 1,056 cm^{-1} with an intensity ratio of 5 : 3, respectively. The 1,051 cm^{-1} band is attributed to be the ν_1 ( a_1' ) fundamental, because of its little isotope shift. There are two possibilities for another band, the band at 1,056 and 1,038 cm^{-1} for ^{14}NO_3 and ^{15}NO_3, respectively; (1) the ν_3 ( e' ) fundamental band, and (2) the ν_2 + ν_4 ( a_2'' and e', respectively ) combination band. If this is the case (1), the ν_3 band should be observed in IR spectrum, but it has yet to be observed. If (2), the intensity must be stolen from the ˜{B} ^2E' - ˜{A} ^2E'' transition through the ν_2 mode, the considerable transition moment of which has been predicted. A simple consideration for the vibronic coupling between the ˜{A} ^2E'' and ˜{X} ^2A_2' states through the ν_2 mode can understand about 20 % of the combination band intensity to that of the ν_1 fundamental. The higher resolution measurements of the DF spectra also show that the 1,499 cm^{-1} band of ^{14}NO_3 is much stronger than the 1,492 cm^{-1} band in the electronic spectrum, while the latter is the strongest band in

  19. Method for the determination of Pd-catalyst residues in active pharmaceutical ingredients by means of high-energy polarized-beam energy dispersive X-ray fluorescence.

    PubMed

    Marguí, E; Van Meel, K; Van Grieken, R; Buendía, A; Fontàs, C; Hidalgo, M; Queralt, I

    2009-02-15

    In medicinal chemistry, Pd is perhaps the most-widely utilized precious metal, as catalyst in reactions which represent key transformations toward the synthesis of new active pharmaceutical ingredients (APIs). The disadvantage of this metal-catalyzed chemistry is that expensive and toxic metal residues are invariably left bound to the desired product. Thus, stringent regulatory guidelines exist for the amount of residual Pd that a drug candidate is allowed to contain. In this work, a rapid and simple method for the determination of Pd in API samples by high-energy polarized-beam energy dispersive X-ray fluorescence spectrometry has been developed and validated according to the specification limits of current legislation (10 mg kg(-1) Pd) and the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH guidelines). Sample and calibration standards preparation includes a first step of homogenization and then, in a second step, the pressing of the powdered material into pellets without any chemical treatment. The use of several synthetic calibration standards made of cellulose to simulate the API matrix appears to be an effective means to obtain reliable calibration curves with a good spread of data points over the working range. With the use of the best measuring conditions, the limit of detection (0.11 mg kg(-1) Pd) as well as the limit of quantitation (0.37 mg kg(-1) Pd) achieved meet rigorous requirements. The repeatability of the XRF measurement appeared to be less than 2%, while the precision of the whole method was around 7%. Trueness was evaluated by analyzing spiked API samples at the level of the specification limit and calculating the recovery factor, which was better than 95%. To study the applicability of the developed methodology for the intended purpose, three batches of the studied API were analyzed for their Pd content, and the attained results were comparable to those obtained by the

  20. Feasibility of wavelength dispersive X-ray fluorescence spectrometry for the determination of metal impurities in pharmaceutical products and dietary supplements in view of regulatory guidelines.

    PubMed

    Figueiredo, Alexandra; Fernandes, Tânia; Costa, Isabel Margarida; Gonçalves, Luísa; Brito, José

    2016-04-15

    The aim of this study was to investigate the feasibility of Wavelength Dispersive X-ray Fluorescence (WDXRF) spectrometry for the measurement of As, Cd, Cr, Cu, Hg, Ir, Mn, Mo, Ni, Os, Pb, Pd, Pt, Rh, Ru and V impurities in pharmaceuticals and dietary supplements, in view of the requirements by EMA and USP for the measurement of elemental impurities in drug products and according to the International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use (ICH guidelines). For that purpose, a 4 kW WDXRF spectrometer (S4 Pioneer, Bruker AXS) was used after system calibration. The linearity of the method was demonstrated by correlation coefficients in excess of 0.9 and by appropriate test of lack of fit, except for Cd, Hg, Pd, V and As, which were excluded from analysis. The calculated limits of detection and quantification were in the ranges 0.6-5.4 μg/g and 1.7-16.4 μg/g meeting defined acceptance criteria, except for Pb. The accuracy of the method, determined by the percent recovery (R) of known amounts of each element added to a selected drug, at 3 different concentration levels, was in the acceptance range 70-150% except for Os and Pt, in which case R was marginally outside that range. The repeatability of the method, assessed as the % residual standard deviation (%RSD) of 3 replicate measurements at 3 concentration levels, produced %RSD values lower than 20%, as required. These results show that the WDXRF method complies with the validation requirements defined by the European Pharmacopeia for Cu, Cr, Ir, Mn, Mo, Ni, Os, and Pt, and by the United States Pharmacopeia for Ir, Ni, Os and Pt. Therefore, it may be an alternative to the compendial analytical procedures recommended for such elements. The novelty of the present work is the application of WDXRF to final medicines and not only to active pharmaceutical ingredients and/or excipients. PMID:26845202

  1. Assessment of the effects of laser photobiomodulation on peri-implant bone repair through energy dispersive x-ray fluorescence: A study of dogs

    NASA Astrophysics Data System (ADS)

    Menezes, R. F.; Araújo, N. C.; Carneiro, V. S. M.; Moreno, L. M.; Guerra, L. A. P.; Santos Neto, A. P.; Gerbi, M. E. M.

    2016-03-01

    Bone neoformation is essential in the osteointegration of implants and has been correlated with the repair capacity of tissues, the blood supply and the function of the cells involved. Laser therapy accelerates the mechanical imbrication of peri-implant tissue by increasing osteoblastic activity and inducing ATP, osteopontin and the expression of sialoproteins. Objective: The aim of the present study was to assess peri-implant bone repair using the tibia of dogs that received dental implants and laser irradiation (AsGaAl 830nm - 40mW, CW, f~0.3mm) through Energy Dispersive X-ray Fluorescence (EDXRF). Methodology: Two groups were established: G1 (Control, n=20; two dental implants were made in the tibia of each animal; 10 animals); G2 (Experimental, n=20, two dental implants were made in the tibia each animal + Laser therapy; 10 animals). G2 was irradiated every 48 hours for two weeks, with a total of seven sessions. The first irradiation was conducted during the surgery, at which time a point in the surgical alveolus was irradiated prior to the placement of the implant and four new spatial positions were created to the North, South, East and West (NSEW) of the implant. The subsequent sessions involved irradiation at these four points and at one infra-implant point (in the direction of the implant apex). Each point received 4J/cm2 and a total dose of 20J/cm2 per session (treatment dose=140J/cm2). The specimens were removed 15 and 30 days after the operation for the EDXRF test. The Mann- Whitney statistical test was used to assess the results. Results: The increase in the calcium concentration in the periimplant region of the irradiated specimens (G2) was statistically significant (p < 0.05), when compared with the control group (G1). Conclusion: The results of the present study show that irradiation with the AsGaAl laser promoted an acceleration in bone repair in the peri-implant region.

  2. Mercury in Environmental and Biological Samples Using Online Combustion with Sequential Atomic Absorption and Fluorescence Measurements: A Direct Comparison of Two Fundamental Techniques in Spectrometry

    ERIC Educational Resources Information Center

    Cizdziel, James V.

    2011-01-01

    In this laboratory experiment, students quantitatively determine the concentration of an element (mercury) in an environmental or biological sample while comparing and contrasting the fundamental techniques of atomic absorption spectrometry (AAS) and atomic fluorescence spectrometry (AFS). A mercury analyzer based on sample combustion,…

  3. A blue fluorescent labeling technique utilizing micro- and nanoparticles for tracking in LIVE/DEAD® stained pathogenic biofilms of Staphylococcus aureus and Burkholderia cepacia

    PubMed Central

    Klinger-Strobel, Mareike; Ernst, Julia; Lautenschläger, Christian; Pletz, Mathias W; Fischer, Dagmar; Makarewicz, Oliwia

    2016-01-01

    Strategies that target and treat biofilms are widely applied to bacterial cultures using popular live/dead staining techniques with mostly red or green fluorescent markers (eg, with SYTO® 9, propidium iodide, fluorescein). Therefore, visualizing drugs or micro- and nanoparticulate delivery systems to analyze their distribution and effects in biofilms requires a third fluorescent dye that does not interfere with the properties of the live/dead markers. The present study establishes and evaluates a model for tracking polymeric particles in fluorescently stained biological material. To this end, poly(d,l-lactide-co-glycolide) (PLGA)-based micro- and nanoparticles were used as well-established model systems, which, because of their favorable safety profiles, are expected to play important future roles with regard to drug delivery via inhalation. PLGA was covalently and stably labeled with 7-amino-4-methyl-3-coumarinylacetic acid (AMCA), after which blue fluorescent poly(ethylene glycol)-block-PLGA (PEG-PLGA) particles were prepared using a mixture of fluorescent AMCA-PLGA and PEG-PLGA. Because chitosan is known to reduce negative surface charge, blue fluorescent PEG-PLGA-particles with chitosan were also prepared. These micro- and nanoparticles were physicochemically characterized and could be clearly distinguished from live/dead stained bacteria in biofilms using confocal laser scanning microscopy. PMID:26917959

  4. A blue fluorescent labeling technique utilizing micro- and nanoparticles for tracking in LIVE/DEAD® stained pathogenic biofilms of Staphylococcus aureus and Burkholderia cepacia.

    PubMed

    Klinger-Strobel, Mareike; Ernst, Julia; Lautenschläger, Christian; Pletz, Mathias W; Fischer, Dagmar; Makarewicz, Oliwia

    2016-01-01

    Strategies that target and treat biofilms are widely applied to bacterial cultures using popular live/dead staining techniques with mostly red or green fluorescent markers (eg, with SYTO(®) 9, propidium iodide, fluorescein). Therefore, visualizing drugs or micro- and nanoparticulate delivery systems to analyze their distribution and effects in biofilms requires a third fluorescent dye that does not interfere with the properties of the live/dead markers. The present study establishes and evaluates a model for tracking polymeric particles in fluorescently stained biological material. To this end, poly(D,L-lactide-co-glycolide) (PLGA)-based micro- and nanoparticles were used as well-established model systems, which, because of their favorable safety profiles, are expected to play important future roles with regard to drug delivery via inhalation. PLGA was covalently and stably labeled with 7-amino-4-methyl-3-coumarinylacetic acid (AMCA), after which blue fluorescent poly(ethylene glycol)-block-PLGA (PEG-PLGA) particles were prepared using a mixture of fluorescent AMCA-PLGA and PEG-PLGA. Because chitosan is known to reduce negative surface charge, blue fluorescent PEG-PLGA-particles with chitosan were also prepared. These micro- and nanoparticles were physicochemically characterized and could be clearly distinguished from live/dead stained bacteria in biofilms using confocal laser scanning microscopy. PMID:26917959

  5. Tracer-based laser-induced fluorescence measurement technique for quantitative fuel/air-ratio measurements in a hydrogen internal combustion engine.

    PubMed

    Blotevogel, Thomas; Hartmann, Matthias; Rottengruber, Hermann; Leipertz, Alfred

    2008-12-10

    A measurement technique for the quantitative investigation of mixture formation processes in hydrogen internal combustion engines (ICEs) has been developed using tracer-based laser-induced fluorescence (TLIF). This technique can be employed to fired and motored engine operation. The quantitative TLIF fuel/air-ratio results have been verified by means of linear Raman scattering measurements. Exemplary results of the simultaneous investigation of mixture formation and combustion obtained at an optical accessible hydrogen ICE are shown. PMID:19079454

  6. Measurement of time of travel and dispersion in streams by dye tracing

    USGS Publications Warehouse

    Hubbard, E.F.; Kilpatrick, F.A.; Martens, L.A.; Wilson, J.F., Jr.

    1982-01-01

    The use of fluorescent dyes and tracing techniques provides a means for measuring the time-of-travel and dispersion characteristics of steady and gradually varied flow in streams. Measurements of the dispersion and concentration of dyes give insight into the behavior of soluble contaminants that may be introduced into a stream. This manual describes methods of measuring time of travel of water and waterborne solutes by dye tracing. The fluorescent dyes, measuring equipment used, and the field and laboratory procedures are also described. Methods of analysis and presentation to illustrate time-oftravel and dispersion characteristics of streams are provided.

  7. Development of an x-ray fluorescence microprobe at the National Synchrotron Light Source, Brookhaven National Laboratory: Early results: Comparison with data from other techniques

    SciTech Connect

    Smith, J.V.; Rivers, M.L.; Sutton, S.R.; Jones, K.W.; Hanson, A.L.; Gordon, B.M.

    1986-01-01

    Theoretical predictions for the detection levels in x-ray fluorescence analysis with a synchrotron storage ring are being achieved experimentally at several laboratories. This paper is deliberately restricted to the state of development of the Brookhaven National Laboratory/University of Chicago instruments. Analyses at the parts per million (ppM) level are being made using white light apertured to 20 ..mu..m and an energy dispersive system. This system is particularly useful for elements with Z > 20 in materials dominated by elements with Z < 20. Diffraction causes an interference for crystalline materials. Development of a focusing microprobe for tunable monochromatic x-rays and a wavelength dispersive spectrometer (WDS) is delayed by problems in shaping an 8:1 focusing mirror to the required accuracy. Reconnaissance analyses with a wiggler source on the CHESS synchrotron have been made in the K spectrum up to Z = 80.

  8. Two simplified fluorescent staining techniques to observe infection structures of the oomycete Plasmopara viticola in grapevine leaf tissues.

    PubMed

    Díez-Navajas, Ana María; Greif, Charles; Poutaraud, Anne; Merdinoglu, Didier

    2007-01-01

    Plasmopara viticola, the causal agent of grapevine downy mildew, is an obligate biotrophic oomycete that grows in the intercellular spaces of host tissues and develops haustoria in the cells. Histological observations are the most effective methods to visualize and quantify the development of the infection structures. We chose two staining techniques leading to high resolution and contrast between parasite structures and host-plant tissues with a minimum of sample preparation: Blankophor and KOH-aniline blue fluorescent stainings. Blankophor (50 ppm in water or 15% KOH) staining was used to study the zoospore encystement on the leaf surface after release from sporangia. The aniline blue dye (0.05% in 0.067 M K(2)HPO(4), pH 9-9.5, after hot KOH whitening) was used to observe the invasive structures inside host tissues that lead to the production of sporangiophores and infectious sporangia. We tested modifications of some parameters of the procedures to determine the most appropriate for high throughput analyses adapted to our pathosystem and equipment facilities. PMID:17107808

  9. A novel method for rapid and non-invasive detection of plants senescence using delayed fluorescence technique

    NASA Astrophysics Data System (ADS)

    Zhang, Lingrui; Xing, Da; Wang, Junsheng; Zeng, Lizhang; Li, Qiang

    2007-05-01

    Plants senescence is a phase of plants ontogeny marked by declining photosynthetic activity that is paralleled by a decline in chloroplast function. The photosystem II ( PSII ) in a plant is considered the primary site where light-induced delayed fluorescence (DF) is produced. With the leaves of Catharanthus roseus (Catharanthus roseus (L.) G.Don) as testing models, we have studied the effects of plants senescence induced by dark and/or exogenous hormones treatments on characteristics of DF by using a home-made portable DF detection system, which can enable various DF parameters, such as DF decay kinetic curve and DF intensity, to be rapidly produced for the plants in a short time. The results show that the changes in DF intensity of green plants can truly reflect the changes in photosynthetic capacity and chlorophyll content. Therefore, DF may be used an important means of evaluating in vivo plants senescence physiology. The changes in DF intensity may provide a new approach for the rapid and early detection of plants senescence caused by age or other senescence-related factors. DF technique could be potential useful for high throughput screening and less time-consuming and automated identifying the interesting mutants with genetic modifications that change plants senescence progress.

  10. Monitoring changes in whiting (Merlangius merlangus) fillets stored under modified atmosphere packaging by front face fluorescence spectroscopy and instrumental techniques.

    PubMed

    Hassoun, Abdo; Karoui, Romdhane

    2016-06-01

    Quality assessment of whiting (Merlangius merlangus) fillets stored in normal air (control group) and modified atmosphere packaging (MAP1: 50% N2/50% CO2 and MAP2: 80% N2/20% CO2) for up to 15 days at 4 °C was performed. The physico-chemical [pH, drip loss, moisture content, total volatile basic nitrogen (TVB-N), thiobarbituric acid reactive substances (TBARS) and peroxide value (PV)], textural (i.e., hardness, fragility, gumminess, chewiness, springiness, cohesiveness), and color (i.e., L(∗), a(∗), b(∗)) parameters were determined. Front face fluorescence spectroscopy (FFFS) emission spectra were also scanned on the same samples with excitation set at 290 and 360 nm. The results indicated that MAP treatment, particularly MAP1 had an obvious preservative effect on fish quality by reducing pH value, TBARS and TVB-N contents, and retarding the softening of fish texture compared to control samples. Principal component analysis (PCA) applied to physico-chemical and instrumental data sets showed a clear discrimination of fish samples according to both their storage time and condition. A complete (100%) of correct classification was obtained by the concatenation of spectral, physico-chemical, and instrumental data sets. The results demonstrated that storage under MAP can be recommended to improve quality of whiting fillets, which in turn, can be evaluated by FFFS as a rapid and non-destructive technique. PMID:26830598

  11. Designing optical metamaterial with hyperbolic dispersion based on Al:ZnO/ZnO nano-layered structure using Atomic Layer Deposition technique

    DOE PAGESBeta

    Kelly, Priscilla; Liu, Mingzhao; Kuznetsova, Lyuba

    2016-04-07

    In this study, nano-layered Al:ZnO/ZnO hyperbolic dispersion metamaterial with a large number of layers was fabricated using the atomic layer deposition (ALD) technique. Experimental dielectric functions for Al:ZnO/ZnO structures are obtained by an ellipsometry technique in the visible and near-infrared spectral ranges. The theoretical modeling of the Al:ZnO/ZnO dielectric permittivity is done using effective medium approximation. A method for analysis of spectroscopic ellipsometry data is demonstrated to extract the optical permittivity for this highly anisotropic nano-layered metamaterial. The results of the ellipsometry analysis show that Al:ZnO/ZnO structures with a 1:9 ALD cycle ratio exhibit hyperbolic dispersion transition change near 1.8more » μm wavelength.« less

  12. Designing optical metamaterial with hyperbolic dispersion based on an Al:ZnO/ZnO nano-layered structure using the atomic layer deposition technique.

    PubMed

    Kelly, Priscilla; Liu, Mingzhao; Kuznetsova, Lyuba

    2016-04-10

    Nano-layered Al:ZnO/ZnO hyperbolic dispersion metamaterial with a large number of layers was fabricated using the atomic layer deposition (ALD) technique. Experimental dielectric functions for Al:ZnO/ZnO structures are obtained by an ellipsometry technique in the visible and near-infrared spectral ranges. The theoretical modeling of the Al:ZnO/ZnO dielectric permittivity is done using effective medium approximation. A method for analysis of spectroscopic ellipsometry data is demonstrated to extract the optical permittivity for this highly anisotropic nano-layered metamaterial. The results of the ellipsometry analysis show that Al:ZnO/ZnO structures with a 1:9 ALD cycle ratio exhibit hyperbolic dispersion transition change near 1.8 μm wavelength. PMID:27139865

  13. Structural and biophysical characterisation of G protein-coupled receptor ligand binding using resonance energy transfer and fluorescent labelling techniques.

    PubMed

    Ward, Richard J; Milligan, Graeme

    2014-01-01

    The interaction between ligands and the G protein-coupled receptors (GPCRs) to which they bind has long been the focus of intensive investigation. The signalling cascades triggered by receptor activation, due in most cases to ligand binding, are of great physiological and medical importance; indeed, GPCRs are targeted by in excess of 30% of small molecule therapeutic medicines. Attempts to identify further pharmacologically useful GPCR ligands, for receptors with known and unknown endogenous ligands, continue apace. In earlier days direct assessment of such interactions was restricted largely to the use of ligands incorporating radioactive isotope labels as this allowed detection of the ligand and monitoring its interaction with the GPCR. This use of such markers has continued with the development of ligands labelled with fluorophores and their application to the study of receptor-ligand interactions using both light microscopy and resonance energy transfer techniques, including homogenous time-resolved fluorescence resonance energy transfer. Details of ligand-receptor interactions via X-ray crystallography are advancing rapidly as methods suitable for routine production of substantial amounts and stabilised forms of GPCRs have been developed and there is hope that this may become as routine as the co-crystallisation of serine/threonine kinases with ligands, an approach that has facilitated widespread use of rapid structure-based ligand design. Conformational changes involved in the activation of GPCRs, widely predicted by biochemical and biophysical means, have inspired the development of intramolecular FRET-based sensor forms of GPCRs designed to investigate the events following ligand binding and resulting in a signal propagation across the cell membrane. Finally, a number of techniques are emerging in which ligand-GPCR binding can be studied in ways that, whilst indirect, are able to monitor its results in an unbiased and integrated manner. This article is part

  14. Laser-induced fluorescence of green plants. I - A technique for the remote detection of plant stress and species differentiation

    NASA Technical Reports Server (NTRS)

    Chappelle, E. W.; Wood, F. M., Jr.; Mcmurtrey, J. E., III; Newcomb, W. W.

    1984-01-01

    The laser-induced fluorescence (LIF) of green plants was evaluated as a means of remotely detecting plant stress and determining plant type. Corn and soybeans were used as representatives of monocots and dicots, respectively, in these studies. The fluorescence spectra of several plant pigments was excited with a nitrogen laser emitting at 337 nm. Intact leaves from corn and soybeans also fluoresced using the nitrogen laser. The two plant species exhibited fluorescence spectra which had three maxima in common at 440, 690, and 740 nm. However, the relative intensities of these maxima were distinctly different for the two species. Soybeans had an additional slight maxima at 525 nm. Potassium deficiency in corn caused an increase in fluorescence at 690 and 740 nm. Simulated water stress in soybeans resulted in increased fluorescence at 440, 525, 690, and 740 nm. The inhibition of photosynthesis in soybeans by 3-(3-4-dichlorophenyl)-1-1-dimethyl urea (DCMU) gave incresed fluorescence primarily at 690 and 740 nm. Chlorosis as occurring in senescent soybean leaves caused a decrease in fluorescence at 690 and 740 nm. These studies indicate that LIF measurements of plants offer the potential for remotely detecting certain types of stress condition and also for differentiating plant species.

  15. Thermoelectrically cooled semiconductor detectors for non-destructive analysis of works of art by means of energy dispersive X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Cesareo, Roberto; Ettore Gigante, Giovanni; Castellano, Alfredo

    1999-06-01

    Thermoelectrically cooled semiconductor detectors, such as Si-PIN, Si-drift, Cd1-xZnxTe and HgI 2, coupled to miniaturized low-power X-ray tubes, are well suited in portable systems for energy-dispersive X-ray fluorescence (EDXRF), analysis of archaeological samples. The Si-PIN detector is characterized by a thickness of about 300 μm, an area of about 2×3 mm 2, an energy resolution of about 200-250 eV at 5.9 keV and an entrance window of 25-75 μm. The Si-drift detector has approximately the same area and thickness, but an energy resolution of 155 eV at 5.9 keV. The efficiency of these detectors is around 100% from 4 to 10 keV, and then decreases versus energy, reaching ˜9% at 30 keV. Coupled to a miniaturized 10 kV, 0.1 mA, Ca-anode or to a miniaturized 30 kV, 0.1 mA, W-anode X-ray tubes, portable systems can be constructed, which are able to analyse K-lines of elements up to about silver, and L-lines of heavy elements. The Cd 1- xZn xTe detector has an area of 4 mm 2 and a thickness of 3 mm. It has an energy resolution of about 300 eV at 5.9 keV, and an efficiency of 100% over the whole range of X-rays. Finally the HgI 2 detector has an efficiency of about 100% in the whole range of X-rays, and an energy resolution of about 200 eV at 5.9 keV. Coupled to a small 50-60 kV, 1 mA, W-anode X-ray tube, portable systems can be constructed, for the analysis of practically all elements. These systems were applied to analysis in the field of archaeometry and in all applications for which portable systems are needed or at least useful (for example X-ray transmission measurements, X-ray microtomography and so on). Results of in-field use of these detectors and a comparison among these room temperature detectors in relation to concrete applications are presented. More specifically, concerning EDXRF analysis, ancient gold samples were analysed in Rome, in Mexico City and in Milan, ancient bronzes in Sassari, in Bologna, in Chieti and in Naples, and sulfur (due to pollution

  16. Binding of fluorescent acridine dyes acridine orange and 9-aminoacridine to hemoglobin: Elucidation of their molecular recognition by spectroscopy, calorimetry and molecular modeling techniques.

    PubMed

    Chatterjee, Sabyasachi; Kumar, Gopinatha Suresh

    2016-06-01

    The molecular interaction between hemoglobin (HHb), the major human heme protein, and the acridine dyes acridine orange (AO) and 9-aminoacridine (9AA) was studied by various spectroscopic, calorimetric and molecular modeling techniques. The dyes formed stable ground state complex with HHb as revealed from spectroscopic data. Temperature dependent fluorescence data showed the strength of the dye-protein complexation to be inversely proportional to temperature and the fluorescence quenching was static in nature. The binding-induced conformational change in the protein was investigated using circular dichroism, synchronous fluorescence, 3D fluorescence and FTIR spectroscopy results. Circular dichroism data also quantified the α-helicity change in hemoglobin due to the binding of acridine dyes. Calorimetric studies revealed the binding to be endothermic in nature for both AO and 9AA, though the latter had higher affinity, and this was also observed from spectroscopic data. The binding of both dyes was entropy driven. pH dependent fluorescence studies revealed the existence of electrostatic interaction between the protein and dye molecules. Molecular modeling studies specified the binding site and the non-covalent interactions involved in the association. Overall, the results revealed that a small change in the acridine chromophore leads to remarkable alteration in the structural and thermodynamic aspects of binding to HHb. PMID:27077554

  17. Investigation of Essential Element Distribution in the Equine Metacarpophalangeal Joint using a Synchrotron Radiation Micro X-Ray Fluorescence Technique

    SciTech Connect

    Kaabar, Wejdan; Gundogdu, O.; Attenburrow, D.; Bradley, D. A.; Tzaphlidou, M.; Janousch, M.

    2008-05-20

    In articular cartilage, Ca, P, K and S are among some of the well known co-factors of the metalloproteinases enzymatic family, the latter playing a pivotal role in the growth and degeneration of the collagenous bone-cartilage interface of articulating joints. Current study forms part of a larger investigation concerning the distribution of these and other key elements in such media. For the purpose of evaluating these low atomic number elements (Z{<=}20), use was made of the capabilities of the LUCIA Station, located at the synchrotron facility of the Paul Scherrer Institute (PSI). Using an incident radiation energy of 4.06 keV, a synchrotron radiation micro x-ray fluorescence (SR-{mu}XRF) technique was applied in examining the distribution of the essential elements Ca, P, K and S in the bone-cartilage interface of both healthy and diseased (osteoarthritic) areas of an equine metacarpophalangeal joint. The SR-{mu}XRF mappings and line profile patterns have revealed remarkable changes in both the pattern and absolute distributions of these elements, agreeing with the findings of others. The elemental presence shown in the individual area scans encompassing the lesion each reflect the visibly abraded outer surface of the cartilage and change in shape of the bone surface. One of the area scans for the bone-cartilage interface shows a marked change in both the pattern and absolute elemental presence for all three elements compared to that observed at two other scan sites. The observation of change in bone cartilage composition around the surface of the articulating joint is thought to be novel, the variation being almost certainly due to the differing weight-bearing role of the subchondral bone at each locati0008.

  18. Investigation of Essential Element Distribution in the Equine Metacarpophalangeal Joint using a Synchrotron Radiation Micro X-Ray Fluorescence Technique

    NASA Astrophysics Data System (ADS)

    Kaabar, Wejdan; Gundogdu, O.; Tzaphlidou, M.; Janousch, M.; Attenburrow, D.; Bradley, D. A.

    2008-05-01

    In articular cartilage, Ca, P, K and S are among some of the well known co-factors of the metalloproteinases enzymatic family, the latter playing a pivotal role in the growth and degeneration of the collagenous bone-cartilage interface of articulating joints. Current study forms part of a larger investigation concerning the distribution of these and other key elements in such media. For the purpose of evaluating these low atomic number elements (Z⩽20), use was made of the capabilities of the LUCIA Station, located at the synchrotron facility of the Paul Scherrer Institute (PSI). Using an incident radiation energy of 4.06 keV, a synchrotron radiation micro x-ray fluorescence (SR-μXRF) technique was applied in examining the distribution of the essential elements Ca, P, K and S in the bone-cartilage interface of both healthy and diseased (osteoarthritic) areas of an equine metacarpophalangeal joint. The SR-μXRF mappings and line profile patterns have revealed remarkable changes in both the pattern and absolute distributions of these elements, agreeing with the findings of others. The elemental presence shown in the individual area scans encompassing the lesion each reflect the visibly abraded outer surface of the cartilage and change in shape of the bone surface. One of the area scans for the bone-cartilage interface shows a marked change in both the pattern and absolute elemental presence for all three elements compared to that observed at two other scan sites. The observation of change in bone cartilage composition around the surface of the articulating joint is thought to be novel, the variation being almost certainly due to the differing weight-bearing role of the subchondral bone at each location.

  19. Modeling techniques and fluorescence imaging investigation of the interactions of an anthraquinone derivative with HSA and ctDNA

    NASA Astrophysics Data System (ADS)

    Fu, Zheng; Cui, Yanrui; Cui, Fengling; Zhang, Guisheng

    2016-01-01

    A new anthraquinone derivative (AORha) was synthesized. Its interactions with human serum albumin (HSA) and calf thymus DNA (ctDNA) were investigated by fluorescence spectroscopy, UV-visible absorption spectroscopy and molecular modeling. Cell viability assay and cell imaging experiment were performed using cervical cancer cells (HepG2 cells). The fluorescence results revealed that the quenching mechanism was static quenching. At different temperatures (290, 300, 310 K), the binding constants (K) and the number of binding sites (n) were determined, respectively. The positive ΔH and ΔS values showed that the binding of AORha with HSA was hydrophobic force, which was identical with the molecular docking result. Studying the fluorescence spectra, UV spectra and molecular modeling also verified that the binding mode of AORha and ctDNA might be intercalative. When HepG2 cells were treated with AORha, the fluorescence became brighter and turned green, which could be used for bioimaging.

  20. Novel supercritical carbon dioxide impregnation technique for the production of amorphous solid drug dispersions: a comparison to hot melt extrusion.

    PubMed

    Potter, Catherine; Tian, Yiwei; Walker, Gavin; McCoy, Colin; Hornsby, Peter; Donnelly, Conor; Jones, David S; Andrews, Gavin P

    2015-05-01

    The formulation of BCS Class II drugs as amorphous solid dispersions has been shown to provide advantages with respect to improving the aqueous solubility of these compounds. While hot melt extrusion (HME) and spray drying (SD) are among the most common methods for the production of amorphous solid dispersions (ASDs), the high temperatures often required for HME can restrict the processing of thermally labile drugs, while the use of toxic organic solvents during SD can impact on end-product toxicity. In this study, we investigated the potential of supercritical fluid impregnation (SFI) using carbon dioxide as an alternative process for ASD production of a model poorly water-soluble drug, indomethacin (INM). In doing so, we produced ASDs without the use of organic solvents and at temperatures considerably lower than those required for HME. Previous studies have concentrated on the characterization of ASDs produced using HME or SFI but have not considered both processes together. Dispersions were manufactured using two different polymers, Soluplus and polyvinylpyrrolidone K15 using both SFI and HME and characterized for drug morphology, homogeneity, presence of drug-polymer interactions, glass transition temperature, amorphous stability of the drug within the formulation, and nonsink drug release to measure the ability of each formulation to create a supersaturated drug solution. Fully amorphous dispersions were successfully produced at 50% w/w drug loading using HME and 30% w/w drug loading using SFI. For both polymers, formulations containing 50% w/w INM, manufactured via SFI, contained the drug in the γ-crystalline form. Interestingly, there were lower levels of crystallinity in PVP dispersions relative to SOL. FTIR was used to probe for the presence of drug-polymer interactions within both polymer systems. For PVP systems, the nature of these interactions depended upon processing method; however, for Soluplus formulations this was not the case. The area under

  1. Tracking the dispersion of Scaphoideus titanus Ball (Hemiptera: Cicadellidae) from wild to cultivated grapevine: use of a novel mark-capture technique.

    PubMed

    Lessio, F; Tota, F; Alma, A

    2014-08-01

    The dispersion of Scaphoideus titanus Ball adults from wild to cultivated grapevines was studied using a novel mark-capture technique. The crowns of wild grapevines located at a distance from vineyards ranging from 5 to 330 m were sprayed with a water solution of either cow milk (marker: casein) or chicken egg whites (marker: albumin) and insects captured in yellow sticky traps placed on the canopy of grapes were analyzed via an indirect ELISA for markers' identification. Data were subject to exponential regression as a function of distance from wild grapevine, and to spatial interpolation (Inverse Distance Weighted and Kernel interpolation with barriers) using ArcGIS Desktop 10.1 software. The influence of rainfall and time elapsed after marking on markers' effectiveness, and the different dispersion of males and females were studied with regression analyses. Of a total of 5417 insects analyzed, 43% were positive to egg; whereas 18% of 536 tested resulted marked with milk. No influence of rainfall or time elapsed was observed for egg, whereas milk was affected by time. Males and females showed no difference in dispersal. Marked adults decreased exponentially along with distance from wild grapevine and up to 80% of them were captured within 30 m. However, there was evidence of long-range dispersal up to 330 m. The interpolation maps showed a clear clustering of marked S. titanus close to the treated wild grapevine, and the pathways to the vineyards did not always seem to go along straight lines but mainly along ecological corridors. S. titanus adults are therefore capable of dispersing from wild to cultivated grapevine, and this may affect pest management strategies. PMID:24725361

  2. Quantum dots fluorescence quantum yield measured by Thermal Lens Spectroscopy.

    PubMed

    Estupiñán-López, Carlos; Dominguez, Christian Tolentino; Cabral Filho, Paulo E; Fontes, Adriana; de Araujo, Renato E

    2014-01-01

    An essential parameter to evaluate the light emission properties of fluorophores is the fluorescence quantum yield, which quantify the conversion efficiency of absorbed photons to emitted photons. We detail here an alternative nonfluorescent method to determine the absolute fluorescence quantum yield of quantum dots (QDs). The method is based in the so-called Thermal Lens Spectroscopy (TLS) technique, which consists on the evaluation of refractive index gradient thermally induced in the fluorescent material by the absorption of light. Aqueous dispersion carboxyl-coated cadmium telluride (CdTe) QDs samples were used to demonstrate the Thermal Lens Spectroscopy technical procedure. PMID:25103802

  3. Nondestructive characterization of municipal-solid-waste-contaminated surface soil by energy-dispersive X-ray fluorescence and low-Z (atomic number) particle electron probe X-ray microanalysis.

    PubMed

    Gupta, Dhrubajyoti; Ghosh, Rita; Mitra, Ajoy K; Roy, Subinit; Sarkar, Manoranjan; Chowdhury, Subhajit; Bhowmik, Asit; Mukhopadhyay, Ujjal; Maskey, Shila; Ro, Chul-Un

    2011-11-01

    The long-term environmental impact of municipal solid waste (MSW) landfilling is still under investigation due to the lack of detailed characterization studies. A MSW landfill site, popularly known as Dhapa, in the eastern fringe of the metropolis of Kolkata, India, is the subject of present study. A vast area of Dhapa, adjoining the current core MSW dump site and evolving from the raw MSW dumping in the past, is presently used for the cultivation of vegetables. The inorganic chemical characteristics of the MSW-contaminated Dhapa surface soil (covering a 2-km stretch of the area) along with a natural composite (geogenic) soil sample (from a small countryside farm), for comparison, were investigated using two complementary nondestructive analytical techniques, energy-dispersive X-ray fluorescence (EDXRF) for bulk analysis and low-Z (atomic number) particle electron probe X-ray microanalysis (low-Z particle EPMA) for single-particle analysis. The bulk concentrations of K, Rb, and Zr remain almost unchanged in all the soil samples. The Dhapa soil is found to be polluted with heavy metals such as Cu, Zn, and Pb (highly elevated) and Ti, Cr, Mn, Fe, Ni, and Sr (moderately elevated), compared to the natural countryside soil. These high bulk concentration levels of heavy metals were compared with the Ecological Soil Screening Levels for these elements (U.S. Environment Protection Agency) to assess the potential risk on the immediate biotic environment. Low-Z particle EPMA results showed that the aluminosilicate-containing particles were the most abundant, followed by SiO2, CaCO3-containing, and carbonaceous particles in the Dhapa samples, whereas in the countryside sample only aluminosilicate-containing and SiO2 particles were observed. The mineral particles encountered in the countryside sample are solely of geogenic origin, whereas those from the Dhapa samples seem to have evolved from a mixture of raw dumped MSW, urban dust, and other contributing factors such as wind

  4. Quantification of OH and HO2 radicals during the low-temperature oxidation of hydrocarbons by Fluorescence Assay by Gas Expansion technique

    PubMed Central

    Blocquet, Marion; Schoemaecker, Coralie; Amedro, Damien; Herbinet, Olivier; Battin-Leclerc, Frédérique; Fittschen, Christa

    2013-01-01

    •OH and •HO2 radicals are known to be the key species in the development of ignition. A direct measurement of these radicals under low-temperature oxidation conditions (T = 550–1,000 K) has been achieved by coupling a technique named fluorescence assay by gas expansion, an experimental technique designed for the quantification of these radicals in the free atmosphere, to a jet-stirred reactor, an experimental device designed for the study of low-temperature combustion chemistry. Calibration allows conversion of relative fluorescence signals to absolute mole fractions. Such radical mole fraction profiles will serve as a benchmark for testing chemical models developed to improve the understanding of combustion processes. PMID:24277836

  5. Evidence for the production of marine fluorescence dissolved organic matter in coastal environments and a possible mechanism for formation and dispersion

    EPA Science Inventory

    A positive linear relationship between salinity and fluorescent dissolved organic matter (FDOM) was observed on several occasions along the West Florida shelf at salinities greater than 36.5. This represents a departure from the typical inverse relationship between FDOM and salin...

  6. Ionic liquid foam floatation coupled with ionic liquid dispersive liquid-liquid microextraction for the separation and determination of estrogens in water samples by high-performance liquid chromatography with fluorescence detection.

    PubMed

    Zhang, Rui; Wang, Chuanliu; Yue, Qiaohong; Zhou, Tiecheng; Li, Na; Zhang, Hanqi; Hao, Xiaoke

    2014-11-01

    An ionic liquid foam floatation coupled with ionic liquid dispersive liquid-liquid microextraction method was proposed for the extraction and concentration of 17-α-estradiol, 17-β-estradiol-benzoate, and quinestrol in environmental water samples by high-performance liquid chromatography with fluorescence detection. 1-Hexyl-3-methylimidazolium tetrafluoroborate was applied as foaming agent in the foam flotation process and dispersive solvent in microextraction. The introduction of the ion-pairing and salting-out agent NH4 PF6 was beneficial to the improvement of recoveries for the hydrophobic ionic liquid phase and analytes. Parameters of the proposed method including concentration of 1-hexyl-3-methylimidazolium tetrafluoroborate, flow rate of carrier gas, floatation time, types and concentration of ionic liquids, salt concentration in samples, extraction time, and centrifugation time were evaluated. The recoveries were between 98 and 105% with relative standard deviations lower than 7% for lake water and well water samples. The isolation of the target compounds from the water was found to be efficient, and the enrichment factors ranged from 4445 to 4632. This developing method is free of volatile organic solvents compared with regular extraction. Based on the unique properties of ionic liquids, the application of foam floatation, and dispersive liquid-liquid microextraction was widened. PMID:25146581

  7. Speciation of AsIII and AsV in fruit juices by dispersive liquid–liquid microextraction and hydride generation-atomic fluorescence spectrometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new procedure was developed to speciate and quantify As(III) and As(V) in fruit juices. At pH 3.0, As(III) and ammonium pyrrolidine dithiocarbamate (APDC) formed a complex, which was extracted into carbon tetrachloride by dispersive liquid–liquid microextraction (DLLME) and subsequently quantified...

  8. DIBENZYLAMMONIUM AND SODIUM DIBENZYLDITHIOCARBAMATES AS PRECIPITANTS FOR PRECONCENTRATION OF TRACE ELEMENTS IN WATER FOR ANALYSIS BY ENERGY DISPERSIVE X-RAY FLUORESCENCE

    EPA Science Inventory

    Precipitation with combined dibenzylammonium dibenzyldithiocarbamate and sodium dibenzyldithiocarbamate at pH 5.0 can be used to separate 22 trace elements from water. Membrane filtration on the precipitate yielded a thin sample, suitable for analysis by energy dispersive X-ray f...

  9. Comparing phototoxicity during the development of a zebrafish craniofacial bone using confocal and light sheet fluorescence microscopy techniques.

    PubMed

    Jemielita, Matthew; Taormina, Michael J; Delaurier, April; Kimmel, Charles B; Parthasarathy, Raghuveer

    2013-12-01

    The combination of genetically encoded fluorescent proteins and three-dimensional imaging enables cell-type-specific studies of embryogenesis. Light sheet microscopy, in which fluorescence excitation is provided by a plane of laser light, is an appealing approach to live imaging due to its high speed and efficient use of photons. While the advantages of rapid imaging are apparent from recent work, the importance of low light levels to studies of development is not well established. We examine the zebrafish opercle, a craniofacial bone that exhibits pronounced shape changes at early developmental stages, using both spinning disk confocal and light sheet microscopies of fluorescent osteoblast cells. We find normal and aberrant opercle morphologies for specimens imaged with short time intervals using light sheet and spinning disk confocal microscopies, respectively, under equivalent exposure conditions over developmentally-relevant time scales. Quantification of shapes reveals that the differently imaged specimens travel along distinct trajectories in morphological space. PMID:23242824

  10. In vivo fluorescence imaging of lysosomes: a potential technique to follow dye accumulation in the context of PDT?

    NASA Astrophysics Data System (ADS)

    Devoisselle, Jean-Marie; Mordon, Serge R.; Soulie-Begu, Sylvie

    1995-03-01

    Lysosomes and intracellular acidic compartments seem to play an important role in the context of PDT. Some photosensitizers are localized in the lysosomes of tumor-associated macrophages. Liposomes, which are lysosomotropic drug carriers, are used to deliver photosensitizers in tumors. Liposomes are taken up by the liver cells after intravenous injection. Intracellular pathway and liposomes localization in the different liver cells require sacrifice of the animals, cell separation, and observation by electronic microscopy. Little is known about liposomes kinetic uptake by the acidic intracellular compartments in vivo. We propose in this study a new method to follow liposomes uptake in the liver in vivo using a fluorescent pH-sensitive probe. We have already demonstrated the ability of fluorescence spectroscopy and imaging using a pH-dependent probe to monitor pH in living tissues. As pH of lysosome is very low, the kinetic of liposome uptake in this intracellular acidic compartment is followed by monitoring the pH of the whole liver in vivo and ex vivo. Liposomes-encapsulated carboxyfluorescein are prepared by the sonication procedure. Carboxyfluorescein is used at high concentration (100 mM) in order to quench its fluorescence. Liposomes are injected to Wistar rats into the peinil vein. After laparotomy, fluorescence spectra and images are recorded during two hours. Results show a rapid fluorescence increase followed by a slow phase of fluorescence decrease. pH decreases from physiological value to 6.0. After sacrifice and flush with cold saline solution, pH of liver ex vivo is found to be 5.0 - 5.5. These data show a rapid clearance of released dye and an uptake of liposomes by the liver cells and, as liposomes penetrate in the acidic compartment, dye is released from liposomes and is delivered in lysosomes leading to the decrease of pH.

  11. Evaluation of particle dispersal from mining and milling operations using lead isotopic fingerprinting techniques, Rio Pilcomayo Basin, Bolivia.

    PubMed

    Miller, Jerry R; Lechler, Paul J; Mackin, Gail; Germanoski, Dru; Villarroel, Lionel F

    2007-10-01

    Mining and milling of ores from the Cerro Rico de Potosí precious metal-polymetallic tin deposits of Bolivia have led to severe contamination of water and sediments of the Rio Pilcomayo drainage system. Lead (Pb) isotopic data were used in this study to first document downstream dispersal patterns of Pb contaminated sediment within the channel of the Rio Pilcomayo, and then to determine the relative contribution of Pb from Cerro Rico within alluvial terrace soils that are used for agriculture. The concentration and isotopic composition of Pb within channel bed sediments differed significantly between 2000, 2002, and 2004. These differences presumably reflect changes in the type of ore mined and milled at Cerro Rico, and alterations in dispersal and grain-size dilution mechanisms associated with interannual variations in rainfall and runoff. Within agricultural terrace soils, both Pb concentrations and the percentage of Pb from Cerro Rico: (1) semi-systematically decrease downstream, (2) were found to decrease with terrace height above the channel, and (3) reflect the use of contaminated irrigation water. In upstream reaches (within 30 km of the mills), Pb from mining represents the most significant Pb source, accounting for more than 80% of Pb in the examined agricultural fields. At Sotomayor, located approximately 170 km from the mills, the relative contribution of Pb from Cerro Rico is highly variable between fields, but can be significant, ranging from approximately 15% to 35%. The analysis demonstrates that Pb isotopic ratios can be used to effectively trace contaminated particles through river systems and into adjacent alluvial soils, even where multiple Pb sources exist and Pb concentrations are similar to background values. PMID:17590419

  12. Measurement of Bluetongue Virus Binding to a Mammalian Cell Surface Receptor by an In Situ Immune Fluorescent Staining Technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A quantifiable in situ immune fluorescent assay (IFA) was developed to measure bluetongue virus (BTV) binding to mammalian cells. The utility of the assay was demonstrated with both Chinese hamster ovary (CHO) and bovine pulmonary artery endothelial (CPAE) cells. Since heparin sulfate (HS) has been ...

  13. Dielectric controlled excited state relaxation pathways of a representative push-pull stilbene: A mechanistic study using femtosecond fluorescence up-conversion technique

    NASA Astrophysics Data System (ADS)

    Rafiq, Shahnawaz; Sen, Pratik

    2013-02-01

    Femtosecond fluorescence up-conversion technique was employed to reinvestigate the intriguing dependence of fluorescence quantum yield of trans-4-dimethylamino-4'-nitrostilbene (DNS) on dielectric properties of the media. In polar solvents, such as methanol and acetonitrile, the two time components of the fluorescence transients were assigned to intramolecular charge transfer (ICT) dynamics and to the depletion of the ICT state to the ground state via internal conversion along the torsional coordinate of nitro moiety. The viscosity independence of the first time component indicates the absence of any torsional coordinate in the charge transfer process. In slightly polar solvent (carbon tetrachloride) the fluorescence transients show a triple exponential behavior. The first time component was assigned to the formation of the ICT state on a 2 ps time scale. Second time component was assigned to the relaxation of the ICT state via two torsion controlled channels. First channel involves the torsional motion about the central double bond leading to the trans-cis isomerization via a conical intersection or avoided crossing. The other channel contributing to the depopulation of ICT state involves the torsional coordinates of dimethylanilino and/or nitrophenyl moieties and leads to the formation of a conformationally relaxed state, which subsequently relaxes back to the ground state radiatively, and is responsible for the high fluorescence quantum yield of DNS in slightly polar solvents such as carbon tetrachloride, toluene, etc. The excited singlet state which is having a dominant π-π* character may also decay via intersystem crossing to the n-π* triplet manifold and thus accounts for the observed triplet yield of the molecule in slightly polar solvents.

  14. A comparison of planar, laser-induced fluorescence, and high-sensitivity interferometry techniques for gas-puff nozzle density measurements

    SciTech Connect

    Jackson, S. L.; Weber, B. V.; Mosher, D.; Phipps, D. G.; Stephanakis, S. J.; Commisso, R. J.; Qi, N.; Failor, B. H.; Coleman, P. L.

    2008-10-15

    The distribution of argon gas injected by a 12-cm-diameter triple-shell nozzle was characterized using both planar, laser-induced fluorescence (PLIF) and high-sensitivity interferometry. PLIF is used to measure the density distribution at a given time by detecting fluorescence from an acetone tracer added to the gas. Interferometry involves making time-dependent, line-integrated gas density measurements at a series of chordal locations that are then Abel inverted to obtain the gas density distribution. Measurements were made on nominally identical nozzles later used for gas-puff Z-pinch experiments on the Saturn pulsed-power generator. Significant differences in the mass distributions obtained by the two techniques are presented and discussed, along with the strengths and weaknesses of each method.

  15. Oil species identification technique developed by Gabor wavelet analysis and support vector machine based on concentration-synchronous-matrix-fluorescence spectroscopy.

    PubMed

    Wang, Chunyan; Shi, Xiaofeng; Li, Wendong; Wang, Lin; Zhang, Jinliang; Yang, Chun; Wang, Zhendi

    2016-03-15

    Concentration-synchronous-matrix-fluorescence (CSMF) spectroscopy was applied to discriminate the oil species by characterizing the concentration dependent fluorescence properties of petroleum related samples. Seven days weathering experiment of 3 crude oil samples from the Bohai Sea platforms of China was carried out under controlled laboratory conditions and showed that weathering had no significant effect on the CSMF spectra. While different feature extraction methods, such as PCA, PLS and Gabor wavelet analysis, were applied to extract discriminative patterns from CSMF spectra, classifications were made via SVM to compare their respective performance of oil species recognition. Ideal correct rates of oil species recognition of 100% for the different types of oil spill samples and 92% for the closely-related source oil samples were achieved by combining Gabor wavelet with SVM, which indicated its advantages to be developed to a rapid, cost-effective, and accurate forensic oil spill identification technique. PMID:26795119

  16. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report, July--September 1992

    SciTech Connect

    Curtis, C.W.; Gutterman, C.; Chander, S.

    1992-12-31

    The experimental study of coal swelling ratios have been determined with a wide variety of solvents. Only marginal levels of coal swelling were observed for the hydrocarbon solvents, but high levels were found with solvents having heteroatom functionality. Blends were superior to pure solvents. The activity of various catalyst precursors for pyrene hydrogenation and coal conversion was measured. Higher coal conversions were observed for the S0{sub 2}-treated coal than the raw coal, regardless of catalyst type. Coal conversions were highest for Molyvan-L, molybdenum naphthenate, and nickel octoate, respectively. Bottoms processing consists of a combination of the ASCOT process coupling solvent deasphalting with delayed coking. Initial results indicate that a blend of butane and pentane used near the critical temperature of butane is the best solvent blend for producing a yield/temperature relationship of proper sensitivity and yet retaining an asphalt phase of reasonable viscosity. The literature concerning coal swelling, both alone and in combination with coal liquefaction, and the use of dispersed or unsupported catalysts in coal liquefaction has been updated.

  17. Advanced liquefaction using coal swelling and catalyst dispersion techniques. Quarterly technical progress report, April--June 1992

    SciTech Connect

    Curtis, C.W.; Gutterman, C.; Chander, S.

    1992-08-26

    Research in this project centers upon developing a new approach to the direct liquefaction of coal to produce an all-distillate product slate at a sizable cost reduction over current technology. The approach integrates all aspects of the coal liquefaction process including coal selection, pretreatment, coal swelling with catalyst impregnation, coal liquefaction experimentation, product recovery with characterization, alternate bottoms processing, and a technical assessment including an economic evaluation. The project is being carried out under contract to the United States Department of Energy. On May 28, 1992, the Department of Energy authorized starting the experimental aspects of this projects; therefore, experimentation at Amoco started late in this quarterly report period. Research contracts with Auburn University, Pennsylvania State University, and Foster Wheeler Development Corporation were signed during June, 1992, so their work was just getting underway. Their work will be summarized in future quarterly reports. A set of coal samples were sent to Hazen Research for beneficiation. The samples were received and have been analyzed. The literature search covering coal swelling has been up-dated, and preliminary coal swelling experiments were carried out. Further swelling experimentation is underway. An up-date of the literature on the liquefaction of coal using dispersed catalysts is nearing completion; it will be included in the next quarterly report.

  18. Determination of calcium stearate in polyolefin samples by gas chromatographic technique after performing dispersive liquid-liquid microextraction.

    PubMed

    Ranji, Ali; Ghorbani Ravandi, Mahboobeh; Farajzadeh, Mir Ali

    2008-05-01

    In this study, a gas chromatographic method is presented for the determination of calcium stearate after its conversion to stearic acid in a polymeric matrix. A solution of hydrochloric acid in 2-propanol is used as an extracting solvent of calcium stearate and its converter to stearic acid. For stearic acid preconcentration before its injection to a separation system, a recently presented extraction method, dispersive liquid-liquid microextraction, using carbon tetrachloride as an extracting solvent is used. Finally, 1 microL of the organic phase collected at the bottom of a conical test tube after centrifuging is injected into a gas chromatograph (GC) for quantification. This method has a relatively broad linear dynamic range (50 - 2000 mg/L) with a limit of detection (LOD) of 15 mg/L for stearic acid in solution. The LOD of the proposed method in a polymeric sample using 10 mg of polymer is 60 ppm as calcium stearate. Some effective parameters, such as the time and temperature of heating, the concentration of hydrochloric acid and the volume of distilled water, were studied. PMID:18469468

  19. Development of a Dispersive Liquid-Liquid Microextraction Technique for the Extraction and Spectrofluorimetric Determination of Fluoxetine in Pharmaceutical Formulations and Human Urine

    PubMed Central

    Bavili Tabrizi, Ahad; Rezazadeh, Ahmad

    2012-01-01

    Purpose: Fluoxetine is the most prescribed antidepressant drug worldwide. In this work, a new dispersive liquid-liquid microextraction (DLLME) method combined with spectrofluorimetry has been developed for the extraction and determination of FLX in pharmaceutical formulations and human urine. Methods: For FLX determination, the pH of a 10 mL of sample solution containing FLX, was adjusted to 11.0. Then, 800 µL of ethanol containing 100 µL of chloroform was injected rapidly into the sample solution. A cloudy solution was formed and FLX extracted into the fine droplets of chloroform. After centrifugation, the extraction solvent was sedimented and supernatant aqueous phase was readily decanted. The remained organic phase was diluted with ethanol and its fluorescence was measured at 292±3 nm after excitation at 234±3 nm. Results: Some important parameters influencing microextraction efficiency were investigated. Under the optimum extraction conditions, a linear calibration curve in the range of 10 to 800 ng/mL with a correlation coefficient of r2 = 0.9993 was obtained. Limit of detection (LOD) and limit of quantification (LOQ) were found to be 2.78 and 9.28 ng/mL, respectively. The relative standard deviations (RSDs) were less than 4%. Average recoveries for spiked samples were 93–104%. Conclusion: The proposed method gives a very rapid, simple, sensitive, wide dynamic range and low–cost procedure for the determination of FLX. PMID:24312787

  20. Spectroscopy in an extremely thin vapor cell: Comparing the cell-length dependence in fluorescence and in absorption techniques

    NASA Astrophysics Data System (ADS)

    Sarkisyan, D.; Varzhapetyan, T.; Sarkisyan, A.; Malakyan, Yu.; Papoyan, A.; Lezama, A.; Bloch, D.; Ducloy, M.

    2004-06-01

    We compare the behavior of absorption and of resonance fluorescence spectra in an extremely thin Rb vapor cell as a function of the ratio of L/λ , with L the cell thickness (L˜150 1800 nm) and λ the wavelength of the Rb D2 line (λ=780 mn) . The Dicke-type coherent narrowing [

    G. Dutier et al., Europhys. Lett. 63, 35 (2003)
    ] is observed only in transmission measurements, in the linear regime, with its typical collapse and revival, which reaches a maximum for L= (2n+1) λ/2 ( n integer). It is shown not to appear in fluorescence, whose behavior-amplitude, and spectral width, is more monotonic with L . Conversely, at high-intensity, the sub-Doppler saturation effects are shown to be the most visible in transmission around L=nλ .

  1. Comparison of drug release from liquid crystalline monoolein dispersions and solid lipid nanoparticles using a flow cytometric technique

    PubMed Central

    Dawoud, Mohamed Z.; Nasr, Mohamed

    2016-01-01

    Colloidal lipid particles such as solid lipid nanoparticles and liquid crystalline nanoparticles have great opportunities as drug carriers especially for lipophilic drugs intended for intravenous administration. In order to evaluate drug release from these nanoparticles and determine their behavior after administration, emulsion droplets were used as a lipophilic compartment to which the transfer of a model drug was measured. The detection of the model drug transferred from monoolein cubic particles and trimyristin solid lipid nanoparticles into emulsion droplets was performed using a flow cytometric technique. A higher rate and amount of porphyrin transfer from the solid lipid nanoparticles compared to the monoolein cubic particles was observed. This difference might be attributed to the formation of a highly ordered particle which leads to the expulsion of drug to the surface of the crystalline particle. Furthermore, the sponge-like structure of the monoolein cubic particles decreases the rate and amount of drug transferred. In conclusion, the flow cytometric technique is a suitable technique to study drug transfer from these carriers to large lipophilic acceptors. Monoolein cubic particles with their unique structure can be used successfully as a drug carrier with slow drug release compared with trimyristin nanoparticles. PMID:27006901

  2. Fluorescence photon migration techniques for the on-farm measurement of somatic cell count in fresh cow's milk

    NASA Astrophysics Data System (ADS)

    Khoo, Geoffrey; Kuennemeyer, Rainer; Claycomb, Rod W.

    2005-04-01

    Currently, the state of the art of mastitis detection in dairy cows is the laboratory-based measurement of somatic cell count (SCC), which is time consuming and expensive. Alternative, rapid, and reliable on-farm measurement methods are required for effective farm management. We have investigated whether fluorescence lifetime measurements can determine SCC in fresh, unprocessed milk. The method is based on the change in fluorescence lifetime of ethidium bromide when it binds to DNA from the somatic cells. Milk samples were obtained from a Fullwood Merlin Automated Milking System and analysed within a twenty-four hour period, over which the SCC does not change appreciably. For reference, the milk samples were also sent to a testing laboratory where the SCC was determined by traditional methods. The results show that we can quantify SCC using the fluorescence photon migration method from a lower bound of 4x105 cells mL-1 to an upper bound of 1 x 107 cells mL-1. The upper bound is due to the reference method used while the cause of the lower boundary is unknown, yet.

  3. Comparing phototoxicity during the development of a zebrafish craniofacial bone using confocal and light sheet fluorescence microscopy techniques

    PubMed Central

    Jemielita, Matthew; Taormina, Michael J.; DeLaurier, April; Kimmel, Charles B.; Parthasarathy, Raghuveer

    2013-01-01

    The combination of genetically encoded fluorescent proteins and three-dimensional imaging enables cell-type-specific studies of embryogenesis. Light sheet microscopy, in which fluorescence excitation is provided by a plane of laser light, is an appealing approach to live imaging due to its high speed and efficient use of photons. While the advantages of rapid imaging are apparent from recent work, the importance of low light levels to studies of development is not well established. We examine the zebrafish opercle, a craniofacial bone that exhibits pronounced shape changes at early developmental stages, using both spinning disk confocal and light sheet microscopies of fluorescent osteoblast cells. We find normal and aberrant opercle morphologies for specimens imaged with short time intervals using light sheet and spinning disk confocal microscopies, respectively, under equivalent exposure conditions over developmentally-relevant time scales. Quantification of shapes reveals that the differently imaged specimens travel along distinct trajectories in morphological space. (A) Schematic: Light sheet microscopy of zebrafish embryos. Opercle-forming osteoblasts following twenty-four hours of (B) light sheet imaging, showing normal growth, and (C) spinning disk confocal imaging, showing aberrant growth. PMID:23242824

  4. A turn-on fluorescence-sensing technique for glucose determination based on graphene oxide-DNA interaction.

    PubMed

    Zhang, Hao; Huang, Hui; Lin, Zihan; Su, Xingguang

    2014-11-01

    Graphene is a two-dimensional carbon nanomaterial one atom thick. Interactions between graphene oxide (GO) and ssDNA containing different numbers of bases have been proved to be remarkably different. In this paper we propose a novel approach for turn-on fluorescence sensing determination of glucose. Hydrogen peroxide (H2O2) is produced by glucose oxidase-catalysed oxidation of glucose. In the presence of ferrous iron (Fe(2+)) the hydroxyl radical (•OH) is generated from H2O2 by the Fenton reaction. This attacks FAM-labelled long ssDNA causing irreversible cleavage, as a result of the oxidative effect of •OH, producing an FAM-linked DNA fragment. Because of the weak interaction between GO and short FAM-linked DNA fragments, restoration of DNA fluorescence can be achieved by addition of glucose. Due to the excellent fluorescence quenching efficiency of GO and the specific catalysis of glucose oxidase, the sensitivity and selectivity of this method for GO-DNA sensing are extremely high. The linear range is from 0.5 to 10 μmol L(-1) and the detection limit for glucose is 0.1 μmol L(-1). The method has been successfully used for analysis of glucose in human serum. PMID:24830395

  5. Examination of the Thermal Transformation of Chrysotile by Using Dispersion Staining and Conventional X-ray Diffraction Techniques

    NASA Astrophysics Data System (ADS)

    Crummett, C. D.; Candela, P. A.; Wylie, A. G.; Earnest, D. J.

    2004-12-01

    Chrysotile has been used industrially as a component of refractory products, and in friction products, such as brake linings. Examining the decomposition or transformation of chrysotile as a function of time and temperature will help clarify the characteristics of particulates released during processes such as automotive braking. Previous studies have reported that the thermal treatment of chrysotile alters both its surface and structure, resulting in deviations from its natural properties, possibly reducing its biological activity (Langer, 2003: Reg Tox Pharm, v38, p71). In past studies, the nonequilibrium thermal decomposition of chrysotile has been investigated by using static dehydration, X-ray diffraction, differential thermal analysis, and thermogravimetric analysis. These studies suggest that the thermal transformation of chrysotile follows a two step sequence of dehydroxylation/dehydration and recrystallization where (1) chrysotile yields forsterite + silica + water with (2) forsterite + silica later forming enstatite (Ball and Taylor, 1963: Mineral. Mag. v33, p467, Brindley and Hayami, 1965: Mineral. Mag. v35, p189). In this research the decomposition of chrysotile from Thetford Quebec was studied. Samples were heated isothermally in air at temperatures from 200° C to 1000° C. After heating for up to 24 hours the refractive indices of remaining chrysotile fibers were measured by using dispersion staining. In addition, reaction products were identified by optical methods, electron probe microanalysis, and X-ray diffraction performed after the termination of the experiment. Preliminary results show that there is no change in optical properties of chrysotile heated to 400° C for 24 hours. From 400° C to 575° C for 24 hours, the index of refraction increases parallel to the length of the fiber from 1.552 to 1.560. From 400° C to 575° C for 24 hours, the index of refraction perpendicular to the length of the fiber varies irregularly from 1.538-1.548. The

  6. Wavelength-dispersive total-reflection X-ray fluorescence with an efficient Johansson spectrometer and an undulator X-ray source: detection of 10-16 g-level trace metals.

    PubMed

    Sakurai, Kenji; Eba, Hiromi; Inoue, Katsuaki; Yagi, Naoto

    2002-09-01

    The present paper reports significant enhancement of the detection power for total-reflection X-ray fluorescence (TXRF). The employment of an efficient wavelength-dispersive spectrometer rather than a conventional Si(Li) detector, as well as the use of a quasi-monochromatic undulator X-ray source, completely changed the quality of X-ray florescence spectra. The energy resolution is 20 times better, which effectively contributes to reducing the low-energy tail of the scattering background and to separating neighboring X-ray florescence peaks. Another advantage is its capability with respect to high-counting-rate measurements, which ensure the detection of weak signals from trace materials. The absolute and relative detection limit for nickel are 3.1 x 10(-16) g and 3.1 ppt (pg/g) for a 0.1-microL droplet of pure water, respectively, which is nearly 50 times better than the current best data achieved by conventional energy-dispersive TXRF using a Si(Li) detector system. PMID:12236366

  7. Simultaneous determination of six triterpenic acids in some Chinese medicinal herbs using ultrasound-assisted dispersive liquid-liquid microextraction and high-performance liquid chromatography with fluorescence detection.

    PubMed

    Wu, Hongliang; Li, Guoliang; Liu, Shucheng; Liu, Di; Chen, Guang; Hu, Na; Suo, Yourui; You, Jinmao

    2015-03-25

    A novel analytical method was developed for simultaneous determination of six triterpenic acids using ultrasound-assisted dispersive liquid-liquid microextraction (UA-DLLME) follow by high-performance liquid chromatography (HPLC) with fluorescence detection. Six triterpenic acids (ursolic acid, oleanolic acid, betulinic acid, maslinic acid, betulonic acid and corosolic acid) were extracted by UA-DLLME using chloroform and acetone as the extraction and disperser solvents, respectively. After the extraction and nitrogen flushing, the extracts were rapidly derivatized with 2-(12,13-dihydro-7H-dibenzo[a,g]carbazol-7-yl)ethyl4-methylbenzenesulfonate. The main experimental parameters affecting extraction efficiency and derivatization yield were investigated and optimized by response surface methodology (RSM) combined with Box-Behnken design (BBD). The limits of detection (LODs) and the limits of quantification (LOQs) were in the range of 0.95-1.36 ng mL(-1) and 3.17-4.55 ng mL(-1), respectively. Under the optimum conditions, the method has been successfully applied for the analysis of triterpenic acids in six different traditional Chinese medicinal herbs. PMID:25569287

  8. Determination of tungsten in tantalum-tungsten alloy by X-ray fluorescence spectrometry using fusion, thin layer, and pressed powder pellet techniques

    NASA Astrophysics Data System (ADS)

    Tian, Lunfu; Zou, Deshuang; Dai, Yichun; Tang, Guangping

    2015-08-01

    A method is described for the X-ray fluorescence (XRF) determination of tungsten in tantalum-tungsten alloy over the range of 10.5%-13.5%. The sample was prepared by three methods, namely, borate fusion, filter paper disk, and pressed powder pellet, respectively. We compared the feature of the three methods of specimen preparation and found that filter paper disk method was the most suitable technique for specimen preparation. Furthermore, the results were compared with those given by inductively coupled plasma optical emission spectrometry (ICP-OES), and the relative standard deviation was less than 2%, which could meet the requirement of this application.

  9. In vivo validation of a bimodal technique combining time-resolved fluorescence spectroscopy and ultrasonic backscatter microscopy for diagnosis of oral carcinoma

    NASA Astrophysics Data System (ADS)

    Sun, Yang; Xie, Hongtao; Liu, Jing; Lam, Matthew; Chaudhari, Abhijit J.; Zhou, Feifei; Bec, Julien; Yankelevich, Diego R.; Dobbie, Allison; Tinling, Steven L.; Gandour-Edwards, Regina F.; Monsky, Wayne L.; Gregory Farwell, D.; Marcu, Laura

    2012-11-01

    Tissue diagnostic features generated by a bimodal technique integrating scanning time-resolved fluorescence spectroscopy (TRFS) and ultrasonic backscatter microscopy (UBM) are investigated in an in vivo hamster oral carcinoma model. Tissue fluorescence is excited by a pulsed nitrogen laser and spectrally and temporally resolved using a set of filters/dichroic mirrors and a fast digitizer, respectively. A 41-MHz focused transducer (37-μm axial, 65-μm lateral resolution) is used for UBM scanning. Representative lesions of the different stages of carcinogenesis show that fluorescence characteristics complement ultrasonic features, and both correlate with histological findings. These results demonstrate that TRFS-UBM provide a wealth of co-registered, complementary data concerning tissue composition and structure as it relates to disease status. The direct co-registration of the TRFS data (sensitive to surface molecular changes) with the UBM data (sensitive to cross-sectional structural changes and depth of tumor invasion) is expected to play an important role in pre-operative diagnosis and intra-operative determination of tumor margins.

  10. In vivo validation of a bimodal technique combining time-resolved fluorescence spectroscopy and ultrasonic backscatter microscopy for diagnosis of oral carcinoma.

    PubMed

    Sun, Yang; Xie, Hongtao; Liu, Jing; Lam, Matthew; Chaudhari, Abhijit J; Zhou, Feifei; Bec, Julien; Yankelevich, Diego R; Dobbie, Allison; Tinling, Steven L; Gandour-Edwards, Regina F; Monsky, Wayne L; Farwell, D Gregory; Marcu, Laura

    2012-11-01

    Tissue diagnostic features generated by a bimodal technique integrating scanning time-resolved fluorescence spectroscopy (TRFS) and ultrasonic backscatter microscopy (UBM) are investigated in an in vivo hamster oral carcinoma model. Tissue fluorescence is excited by a pulsed nitrogen laser and spectrally and temporally resolved using a set of filters/dichroic mirrors and a fast digitizer, respectively. A 41-MHz focused transducer (37-μm axial, 65-μm lateral resolution) is used for UBM scanning. Representative lesions of the different stages of carcinogenesis show that fluorescence characteristics complement ultrasonic features, and both correlate with histological findings. These results demonstrate that TRFS-UBM provide a wealth of co-registered, complementary data concerning tissue composition and structure as it relates to disease status. The direct co-registration of the TRFS data (sensitive to surface molecular changes) with the UBM data (sensitive to cross-sectional structural changes and depth of tumor invasion) is expected to play an important role in pre-operative diagnosis and intra-operative determination of tumor margins. PMID:23117798

  11. Topical delivery enhancement with multilamellar liposomes into pilosebaceous units: I. In vitro evaluation using fluorescent techniques with the hamster ear model.

    PubMed

    Lieb, L M; Ramachandran, C; Egbaria, K; Weiner, N

    1992-07-01

    Evidence suggesting liposomal delivery into the pilosebaceous unit of the male Syrian hamster ear membrane was found using two fluorescent techniques, quantitative fluorescence microscopy (QFM), and a scraping method where the various tissue strata of treated skin are analyzed using fluorescence spectrophotometry. Whole ears were mounted on Franz diffusion cells and treated for 24 h with 40 microliters of the following test formulations, each containing approximately 100 micrograms/ml carboxyfluorescein (CF): i) multilamellar phosphatidylcholine: cholesterol: phosphatidylserine liposomes; ii) HEPES buffer (pH, 7.4); iii) 5% propylene glycol; iv) 10% ethanol; v) 0.05% sodium lauryl sulfate; and vi) a suspension of the same lipids used to form the liposomes that were not processed so as to produce a bilayer configuration. Topical application of the liposomally based formulation resulted in a significantly higher accumulation of CF in the pilosebaceous units than the application of any of the other non-liposomal formulations. There was excellent correlation between the two analytical methods used to determine CF deposition into the sebaceous glands. PMID:1607674

  12. [Determination of antibiotics residues in the raw fresh milk of farms in the Miyun County of Beijing with Mg2+ -sensitized metacycline fluorescence microscopic imaging technique].

    PubMed

    Liu, Ying; Yang, Le

    2010-05-01

    Mg(2+) -sensitized metacycline fluorescence microscopic imaging technique was applied to detect the raw fresh milk of four cows breeding farms in the Miyun County of Beijing based on the capillary effect of solvent on solid supports. In the presence of NH3-NH4 Cl buffer solution (pH 9.99) and PVA-124, Mg2+ and metacycline can form a strong fluorescence complex of 1 : 1, and Mg(2+) -metacycline complex can form an SOR on the hydrophobic supports with the diameter of 0.93 mm and its ring belt width of 26.2 microm. By measuring the fluorescence intensity of the ring, the quantitative analysis of metacycline was achieved with the detection limit (3sigma) of 8.8 x 10(-14) mol x ring(-1) (1.8 x 10(-7) mol x L(-1)) and linear range of 2.2 x 10(-13) -3.6 x 10(-12) mol x ring(-1) (4.4 x 10(-7) -7.2 x 10(-6) mol x L(-1)) when 0.50 microL droplet was spotted. This method has been satisfactorily applied to the determination of metacycline in the raw fresh milk samples with the recovery of 93.8%-108% and RSD less than 4.3%. PMID:20672618

  13. Magnetic nanoparticles based dispersive micro-solid-phase extraction as a novel technique for the determination of estrogens in pork samples.

    PubMed

    Wang, Juan; Chen, Zhiyan; Li, Zhiming; Yang, Yaling

    2016-08-01

    A simple and rapid magnetic nanoparticles (MNPs) based dispersive micro-solid-phase extraction (D-μ-SPE) method coupled with HPLC-DAD has been proposed for simultaneous determination of three estrogens (17β-estradiol (E2), estrone (E1) and diethylstilbestrol (DES)) in pork samples. In this paper, the synthesis of cetyltrimethyl ammonium bromide (CTAB)-coated Fe3O4@caprylic acid NPs as an efficient sorbent for its high surface area, excellent adsorption capacity, good dispersion ability and high super-paramagnetic property was successfully applied to adsorb estrogens. Vortex was used to enhance mass transfer rate as it provided mild and effective mixing of sample solution and increased the contact between analytes and MNPs. The parameters affecting the extraction efficiency were investigated in detail. The dosages of sorbent and eluate are 100μL and 500μL, respectively. The extraction equilibrium was achieved within 2min and the MNPs can be reused. The proposed technique provided high recoveries (93.3-106.7%), good linearity (0.9993-0.9999), low LODs (0.021-0.033ngmL(-1)) and repeatability (RSD%=1.87-2.92). PMID:26988486

  14. The study of in vivo x-ray fluorescence (XRF) technique for gadolinium (Gd) measurements in human bone

    NASA Astrophysics Data System (ADS)

    Mostafaei, F.; Nie, L. H.

    2016-08-01

    An in vivo K x-ray fluorescence system, based on 109Cd source, for the detection of gadolinium has been investigated. Gd is of interest because of the extensive use of Gd-based contrast agents in MR imaging. A human simulating bone phantom set has been developed. The phantoms were doped with seven concentrations of Gd. Additional elements important for in vivo x-ray fluorescence, Na, Cl and Ca, were also included to create an overall elemental composition consistent with the Reference Man. A new 5 GBq 109Cd source was purchased to improve the source activity in comparison to the previous study (0.17 GBq). The previously published minimum detection limit (MDL) for Gd phantom measurements using KXRF system was 3.3 ppm. In this study the minimum detection limit for bare bone phantoms was found to reduce the MDL to 0.8, a factor of 4.1. The previous published data used only three layers of plastic as soft tissue equivalent materials and found the MDL of 4–4.8 ppm. In this study we have used the plastic with more realistic thicknesses to simulate a soft tissue at tibia. The detection limits for phantoms with Lucite as a tissue equivalent, using a new source, was determined to be 1.81 to 3.47 ppm (μg Gd per gram phantom). Our next study would be testing an in vivo K x-ray fluorescence system, based on 109Cd source on human volunteers who went through MR imaging and were injected by Gd.

  15. BIOCOMPATIBLE FLUORESCENT MICROSPHERES: SAFE PARTICLES FOR MATERIAL PENETRATION STUDIES

    SciTech Connect

    Farquar, G; Leif, R

    2009-07-15

    Biocompatible polymers with hydrolyzable chemical bonds have been used to produce safe, non-toxic fluorescent microspheres for material penetration studies. The selection of polymeric materials depends on both biocompatibility and processability, with tailored fluorescent properties depending on specific applications. Microspheres are composed of USFDA-approved biodegradable polymers and non-toxic fluorophores and are therefore suitable for tests where human exposure is possible. Micropheres were produced which contain unique fluorophores to enable discrimination from background aerosol particles. Characteristics that affect dispersion and adhesion can be modified depending on use. Several different microsphere preparation methods are possible, including the use of a vibrating orifice aerosol generator (VOAG), a Sono-Tek atomizer, an emulsion technique, and inkjet printhead. Applications for the fluorescent microspheres include challenges for biodefense system testing, calibrants for biofluorescence sensors, and particles for air dispersion model validation studies.

  16. Application of cytoplasmic Ca2+ fluorescence imaging techniques to study the molecular mechanisms of exercise-induced fatigue eliminated by Chinese medicine ginseng extract

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Zhao, Yanping; Zhang, Heming; Liu, Songhao

    2009-11-01

    The exercise-induced fatigue eliminated by Chinese medicine offers advantages including good efficiency and smaller side-effects, however, the exact mechanisms have not been classified. A lot of literatures indicated the cytosolic free Ca2+ concentrations of skeletal muscle cells increased significantly during exercise-induced fatigue. This study is aimed to establish a rat skeletal muscle cell model of exercise-induced fatigue. We applied cytoplasmic Ca2+ fluorescence imaging techniques to study the molecular mechanisms of exercise-induced fatigue eliminated by Chinese medicine ginseng extract. In our research, the muscle tissues from the newborn 3 days rats were taken out and digested into cells. The cells were randomly divided into the ginseng extract group and the control group. The cells from the two groups were cultured in the medium respectively added 2mg/ml ginseng extract and 2mg/ml D-hanks solution. After differentiating into myotubes, the two groups of cells treated with a fluorescent probe Fluo-3 AM were put on the confocal microscope and the fluorescence intensity of cells pre- and post- stimulation with dexamethasone were detected. It was found that cytoplasmic Ca2+ concentrations of the two groups of cells both increased post-stimulation, however, the increasing amplitude of fluorescence intensity of the ginseng extract group was significantly lower than that of the control group. In conclusion, stimulating the cells with dexamethasone is a kind of workable cell models of exercise-induced fatigue, and the molecular mechanisms of exercise-induced fatigue eliminated by ginseng extract may be connected to regulatating cytosolic free Ca2+ concentrations.

  17. Enhancing the bioavailability of mebendazole by integrating the principles solid dispersion and nanocrystal techniques, for safe and effective management of human echinococcosis.

    PubMed

    Chaudhary, Sushant; Garg, Tarun; Rath, Goutam; Murthy, Rs Rayasa; Goyal, Amit K

    2016-05-01

    The method based on integrating the principles of solid dispersion and nanocrystal techniques was developed to prepare polymer crystals (PCs) of mebendazole (MBZ) and polyethylene glycol (PEG). Powder X-Ray diffraction (PXRD) of the PC crystals shows the required integrated crystalline and amorphous regions. The in vitro solubility studies showed a 32-fold increase in the solubility of the drug. Tests of dissolution of the PCs showed that the crystals have an enhanced dissolution rate in comparison to those in the MF. The results of the pharmacokinetic study showed a 2.12-fold increase in the bioavailability of the drug. Thus, the present study has proved the potential in enhancing solubility, dissolution, and bioavailability of the drug. PMID:25783855

  18. Development, validation, and uncertainty measurement of multi-residue analysis of organochlorine and organophosphorus pesticides using pressurized liquid extraction and dispersive-SPE techniques.

    PubMed

    Sanyal, Doyeli; Rani, Anita; Alam, Samsul; Gujral, Seema; Gupta, Ruchi

    2011-11-01

    Simple and efficient multi-residue analytical methods were developed and validated for the determination of 13 organochlorine and 17 organophosphorous pesticides from soil, spinach and eggplant. Techniques namely accelerated solvent extraction and dispersive SPE were used for sample preparations. The recovery studies were carried out by spiking the samples at three concentration levels (1 limit of quantification (LOQ), 5 LOQ, and 10 LOQ). The methods were subjected to a thorough validation procedure. The mean recovery for soil, spinach and eggplant were in the range of 70-120% with median CV (%) below 10%. The total uncertainty was evaluated taking four main independent sources viz., weighing, purity of the standard, GC calibration curve and repeatability under consideration. The expanded uncertainty was well below 10% for most of the pesticides and the rest fell in the range of 10-20%. PMID:21210211

  19. Time-resolved study on dynamic chemical state conversion of SiO2-supported Co species by means of dispersive XAFS technique

    NASA Astrophysics Data System (ADS)

    Chotiwan, S.; Tomiga, H.; Yamashita, S.; Katayama, M.; Inada, Y.

    2016-05-01

    The chemical state conversion of the Co species supported on SiO2 was investigated using the in-situ and the time-resolved XAFS techniques. The supported Co3O4 species was finally reduced to metallic Co with the stable intermediate state of CoO for both the temperature-programmed and time-course processes. The oxidation of Co0 traced the reverse route to Co3O4, whereas the relative stability of the Co3O4 species to the CoO intermediate under the oxidative environment diminished the composition of CoO. The time-resolved measurement for the oxidation reaction showed an additional intermediate at the early stage of the CoO intermediate formation suggesting the Co0 particle dispersion.

  20. Enhanced global Radionuclide Source Attribution for the Nuclear-Test-Ban Verification by means of the Adjoint Ensemble Dispersion Modeling Technique applied at the IDC/CTBTO.

    NASA Astrophysics Data System (ADS)

    Becker, A.; Wotawa, G.; de Geer, L.

    2006-05-01

    findings of the ensemble dispersion modeling (EDM) technique No. 5 efforts performed by Galmarini et al, 2004 (Atmos. Env. 38, 4607-4617). As the scope of the adjoint EDM methodology is not limited to CTBT verification but can be applied to any kind of nuclear event monitoring and location it bears the potential to improve the design of manifold emergency response systems towards preparedness concepts as needed for mitigation of disasters (like Chernobyl) and pre-emptive estimation of pollution hazards.

  1. Use of open-path FTIR and inverse dispersion technique to quantify gaseous nitrogen loss from an intensive vegetable production site

    NASA Astrophysics Data System (ADS)

    Bai, Mei; Suter, Helen; Lam, Shu Kee; Sun, Jianlei; Chen, Deli

    2014-09-01

    An open-path Fourier transform infrared (OP-FTIR) spectroscopic technique in combination with a backward Lagrangian stochastic (bLS) dispersion model (WindTrax) can be used to simultaneously measure gaseous emissions of N2O, NH3, CH4 and CO2. We assessed the capability of this technique for measuring NH3 and N2O emissions following the application of calcium nitrate (Ca(NO3)2), Nitrophoska (NPK) and chicken manure on a celery farm at Boneo, Victoria, during April and May 2013. We found that the OP-FTIR/WindTrax method was able to measure the diurnal variation in NH3 flux from the field site following application of chicken manure with measured emissions ranging from approximately 0.1-9.8 kg NH3-N ha-1 day-1. The OP-FTIR/WindTrax method also detected a diurnal variation in N2O flux of 1.5-6.2 kg N2O-N ha-1 day-1 and N2O flux increased in response to application of the Ca(NO3)2. We concluded that the OP-FTIR/WindTrax technique can quantify gaseous N loss from vegetable production systems.

  2. The Physicochemical Stability of Complex Intravenous Lipid Dispersions Supported by Light Obscuration and Dynamic Light Scattering Techniques.

    NASA Astrophysics Data System (ADS)

    Driscoll, David Francis

    1994-01-01

    Procedures. The physicochemical stability of 45 clinically relevant intravenous nutritional emulsions were assessed employing a balanced fractional factorial design. Six factors were identified as influencing stability and included final concentrations of (1) Amino acids (%); (2) Glucose (%); (3) Lipids (%); (4) Monovalent Cations (mEq/L); (5) Divalent Cations (mEq/L); (6) Trivalent Cations (mg/L) Stability assessments included particle size analysis, pH changes and the visual development of cream layers and phase separation of free oil. Particle size analyses were accomplished employing laser techniques for particle counting and distribution. Particle sizing and counting was achieved using light obscuration and particle distributions were constructed with the aid of dynamic light scatter techniques. Results. Multiple stepwise regression analyses revealed that trivalent cation concentrations (as iron dextran) was the only variable to have any significant effect on the emulsions accounting for almost 60% of the adverse changes in the emulsions (increasing lipid particle sizes) during the course of the investigation. In addition, when the percent fat (PFAT) from time 0 comprised > 0.4% in the size range of >5 μm in diameter, it was associated with, highly unstable and potentially dangerous infusions. Importantly, these unstable emulsions were visually detectable only about 65% of the time. Assessment of the potential danger of these formulations with respect to pulmonary embolism was performed by infusing the admixture with the worst emulsion profile, yet was visually acceptable, in two groups of guinea pigs. Group 1 received the admixture which contained iron dextran and Group 2 received the identical admixture without iron dextran. The admixtures were prepared 24 hours prior to infusion and given to the animals over the last six hours of its expiration date. Prior to infusion, particle size analysis revealed a 100-fold increase in PFAT >5 μm in the iron dextran

  3. Estimating the removal efficiency of refractory dissolved organic matter in wastewater treatment plants using a fluorescence technique.

    PubMed

    Hur, Jin; Lee, Tae-Hwan; Lee, Bo-Mi

    2011-12-01

    The spectroscopic characteristics and relative distribution of refractory dissolved organic matter (R-DOM) in sewage have been investigated using the influent and the effluent samples collected from 15 large-scale biological wastewater treatment plants (WWTPs). Correlation between the characteristics of the influent and the final removal efficiency was also examined. Enhancement of specific ultraviolet absorbance (SUVA) and a higher R-DOM distribution ratio were observed for the effluent DOM compared with the influent DOM. However, the use of conventional rather than advanced biological treatments did not appear to affect either the effluent DOM or the removal efficiency, and there was no statistical significant difference between the two. No consistent trend was observed in the changes in the synchronous fluorescence spectra of the DOM after biological treatment. Irrespective of the treatment option, the removal efficiency of DOM was greater when the influent DOM had a lower SUVA, reduced DOC-normalized humic substance-like fluorescence, and a lower R-DOM distribution. These results suggest that selected characteristics of the influent may provide an indication of DOM removal efficiency in WWTPs. For R-DOM removal efficiency, however, similar characteristics of the influent did not show a negative relationship, and even exhibited a slight positive correlation, suggesting that the presence of refractory organic carbon structures in the influent sewage may stimulate microbial activity and inhibit the production of R-DOM during biological treatment. PMID:22439572

  4. Oil dispersants

    SciTech Connect

    Flaherty, L.M.

    1989-01-01

    This book contains papers presented at a symposium of the American Society for Testing and Materials. The topics covered include: The effect of elastomers on the efficiency of oil spill dispersants; planning for dispersant use; field experience with dispersants for oil spills on land; and measurements on natural dispersion.

  5. NO2 flux evaluation using laser induced fluorescence measurements and eddy covariance technique, in the Borneo forest during OP3 campaign

    NASA Astrophysics Data System (ADS)

    Dari Salisburgo, Cesare; di Carlo, Piero; Aruffo, E.; Langford, Ben; Dorsey, James; Giammaria, F.

    2010-05-01

    Emissions (both anthropogenic and biogenic) are extremely important to reduce the uncertainty of most models used to predict the atmospheric chemical species evolution. Measurements of emission of compounds such as nitrogen dioxide (NO2) are very rare because they require measures with high sensitivity and frequencies (above 5 Hz). Direct measurements of NO2 using laser-induced fluorescence (at 10Hz) combined with those of three components of wind are used to quantify directly the NO2 flux applying the eddy covariance technique. In this presentation will be described the technique of measurements and results of the observations made in the forests of Borneo (Malaysia) during the OP3 campaign in summer 2008.

  6. Temperature imaging in low-pressure flames using diode laser two-line atomic fluorescence employing a novel indium seeding technique

    NASA Astrophysics Data System (ADS)

    Borggren, Jesper; Burns, Iain S.; Sahlberg, Anna-Lena; Aldén, Marcus; Li, Zhongshan

    2016-03-01

    The use of diode lasers for spatially resolved temperature imaging is demonstrated in low-pressure premixed methane-air flames using two-line atomic fluorescence of seeded indium atoms. This work features the advantages of using compact diode lasers as the excitation sources with the benefits of two-dimensional planar imaging, which is normally only performed with high-power pulsed lasers. A versatile and reliable seeding technique with minimal impact on flame properties is used to introduce indium atoms into the combustion environment for a wide range of flame equivalence ratios. A spatial resolution of around 210 µm for this calibration-free thermometry technique is achieved for three equivalence ratios at a pressure of 50 mbar in a laminar flat flame.

  7. Laser Scanning–Based Tissue Autofluorescence/Fluorescence Imaging (LS-TAFI), a New Technique for Analysis of Microanatomy in Whole-Mount Tissues

    PubMed Central

    Mori, Hidetoshi; Borowsky, Alexander D.; Bhat, Ramray; Ghajar, Cyrus M.; Seiki, Motoharu; Bissell, Mina J.

    2012-01-01

    Intact organ structure is essential in maintaining tissue specificity and cellular differentiation. Small physiological or genetic variations lead to changes in microanatomy that, if persistent, could have functional consequences and may easily be masked by the heterogeneity of tissue anatomy. Current imaging techniques rely on histological, two-dimensional sections requiring sample manipulation that are essentially two dimensional. We have developed a method for three-dimensional imaging of whole-mount, unsectioned mammalian tissues to elucidate subtle and detailed micro- and macroanatomies in adult organs and embryos. We analyzed intact or dissected organ whole mounts with laser scanning–based tissue autofluorescence/fluorescence imaging (LS-TAFI). We obtained clear visualization of microstructures within murine mammary glands and mammary tumors and other organs without the use of immunostaining and without probes or fluorescent reporter genes. Combining autofluorescence with reflected light signals from chromophore-stained tissues allowed identification of individual cells within three-dimensional structures of whole-mounted organs. This technique could be useful for rapid diagnosis of human clinical samples and possibly the effect of subtle variations such as low dose radiation. PMID:22542846

  8. The fabrication of wavelength shifting lightguides from clear acrylic sheet by disperse dyeing

    NASA Astrophysics Data System (ADS)

    McMillan, J. E.

    2015-06-01

    Wavelength shifting lightguides have found extensive use as a means of collecting scintillation or cherenkov light from large areas onto a smaller area photodetector and for matching the emitted spectrum to the spectral response of the photodetector. Conventionally, such lightguides are fabricated by casting acrylic polymer with the fluorescent dye incorporated in the bulk. A technique has been developed in which plain cast acrylic sheet is disperse dyed in an aqueous bath. The resulting lightguide has the fluorescent dye held in a thin layer at the surface of the material. A number of different fluorescent dyes are demonstrated

  9. A Characterization of the CH 2ã1A1(1,2,0),(2,0,0),(0,5,0),(1,3,0) and b˜1B1(1,14 2,0),(0,18 0,0),(0,19 1,0) Vibronic Levels by Fourier-Transform Dispersed Fluorescence Spectroscopy

    NASA Astrophysics Data System (ADS)

    Qin, D.; Hartland, G. V.; Dai, H. L.

    1994-12-01

    The CH2ã1A1, (1, 2, 0), (2, 0, 0), (0, 5, 0), (1, 3, 0) and b˜1B1 (1, 142, 0), (0, 180, 0), (0, 191, 0) levels are characterized by Fourier-transform dispersed fluorescence spectroscopy (FTDFS). Rotational transitions in the b˜ ← ã 1102140, 2180, and 2190 fluorescence excitation bands and those of the b˜ → ã 1012162, 1012172, 1022160, 2185, 2195, 1012183 and 1102193 bands in dispersed fluorescence spectra have been assigned. The rotational constants and vibrational term values for these vibrational levels have been obtained. Due to the limits brought by Renner-Teller coupling and Franck-Condon factors, this work, along with previous studies on lower vibrational levels, has characterized almost all ã vibrational levels detectable in the b˜↔ã transitions.

  10. A detection method of vegetable oils in edible blended oil based on three-dimensional fluorescence spectroscopy technique.

    PubMed

    Xu, Jing; Liu, Xiao-Fei; Wang, Yu-Tian

    2016-12-01

    Edible blended vegetable oils are made from two or more refined oils. Blended oils can provide a wider range of essential fatty acids than single vegetable oils, which helps support good nutrition. Nutritional components in blended oils are related to the type and content of vegetable oils used, and a new, more accurate, method is proposed to identify and quantify the vegetable oils present using cluster analysis and a Quasi-Monte Carlo integral. Three-dimensional fluorescence spectra were obtained at 250-400nm (excitation) and 260-750nm (emission). Mixtures of sunflower, soybean and peanut oils were used as typical examples to validate the effectiveness of the method. PMID:27374508

  11. Fluorescence in situ hybridization techniques (FISH) to detect changes in CYP19a gene expression of Japanese medaka (Oryzias latipes)

    SciTech Connect

    Park, June-Woo; Tompsett, Amber; Zhang, Xiaowei; Newsted, John L.; Jones, Paul D.; Au, Doris; Kong, Richard; Wu, Rudolf S.S.; Giesy, John P. Hecker, Markus

    2008-10-15

    The aim of this study was to develop a sensitive in situ hybridization methodology using fluorescence-labeled riboprobes (FISH) that allows for the evaluation of gene expression profiles simultaneously in multiple target tissues of whole fish sections of Japanese medaka (Oryzias latipes). To date FISH methods have been limited in their application due to autofluorescence of tissues, fixatives or other components of the hybridization procedure. An optimized FISH method, based on confocal fluorescence microscopy was developed to reduce the autofluorescence signal. Because of its tissue- and gender-specific expression and relevance in studies of endocrine disruption, gonadal aromatase (CYP19a) was used as a model gene. The in situ hybridization (ISH) system was validated in a test exposure with the aromatase inhibitor fadrozole. The optimized FISH method revealed tissue-specific expression of the CYP19a gene. Furthermore, the assay could differentiate the abundance of CYP19a mRNA among cell types. Expression of CYP19a was primarily associated with early stage oocytes, and expression gradually decreased with increasing maturation. No expression of CYP19a mRNA was observed in other tissues such as brain, liver, or testes. Fadrozole (100 {mu}g/L) caused up-regulation of CYP19a expression, a trend that was confirmed by RT-PCR analysis on excised tissues. In a combination approach with gonad histology, it could be shown that the increase in CYP19a expression as measured by RT-PCR on a whole tissue basis was due to a combination of both increases in numbers of CYP19a-containing cells and an increase in the amount of CYP19a mRNA present in the cells.

  12. The evaluation of the x-ray fluorescence (XRF) technique for process monitoring of vitreous slag from thermal waste treatment systems: A comparative study of the analysis of Plasma Hearth slag for Ce, Fe and Cr by XRF and inductively coupled plasma spectrometries

    SciTech Connect

    Sutton, M.A.H.; Crane, P.J.; Cummings, D.G.; Carney, K.P.

    1995-05-01

    Slag material produced by the Plasma Hearth Process (PHP) varies in chemical composition due to the heterogeneous nature of the input sample feed. X-ray fluorescence (XRF) is a spectroscopic technique which has been evaluated to perform elemental analyses on surrogate slag material for process control. Vitreous slag samples were ground to a fine powder in an impact ball mill and analyzed directly using laboratory prepared standards. The fluorescent intensities of Si, Al and Fe in the slag samples was utilized to determine the appropriate matrix standard set for the determination of Ce. The samples were analyzed for Cr, Ni, Fe and Ce using a wavelength dispersive XRF polychromator. Split samples were dissolved and analyzed by Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES). The precision of the XRF technique was better than 5% RSD. The limit of detection for Ce varied with sample matrix and was typically below 0.01% by weight. The linear dynamic range for the technique was evaluated over two orders of magnitude. Typical calibration standards ranged from 0.01% Ce to 1% Ce. The Ce determinations performed directly on ground slag material by the XRF techniques were similar to ICP-AES analyses. Various chemical dissolution and sample preparation techniques were evaluated for the analysis of Ce in slag samples. A fusion procedure utilizing LiBO{sub 2} was found to provide reliable analyses for the actinide surrogate in a variety of slag matrices. The use of the XRF technique reduced the time of analysis for Ce and Cr from three days to one day for five samples. No additional waste streams were created from the analyses by the XRF technique, while the ICP technique generated several liters of liquid waste.

  13. Application of a charge-coupled device photon-counting technique to three-dimensional element analysis of a plant seed (alfalfa) using a full-field x-ray fluorescence imaging microscope

    SciTech Connect

    Hoshino, Masato; Ishino, Toyoaki; Namiki, Takashi; Yamada, Norimitsu; Watanabe, Norio; Aoki, Sadao

    2007-07-15

    A full-field x-ray fluorescence imaging microscope using a Wolter mirror was constructed at Photon Factory BL3C2. White x rays from a bending magnet were used to excite x-ray fluorescence and to enhance the x-ray fluorescence intensity. A photon-counting method using a charge-coupled device was applied to obtain an x-ray fluorescence spectrum at the image plane. The spatial distributions of some specific atoms such as Fe and Zn were obtained from photon-counting calculations. An energy resolution of 220 eV at the Fe K{alpha} line was obtained from the x-ray fluorescence spectrum by the photon-counting method. The newly developed three-dimensional element mappings of the specific atoms were accomplished by the photon-counting method and a reconstruction technique using computed tomography.

  14. X-RAY FLUORESCENCE ANALYSIS OF FILTER-COLLECTED AEROSOL PARTICLES

    EPA Science Inventory

    X-ray fluorescence (XRF) has become an effective technique for determining the elemental content of aerosol samples. For quantitative analysis, the aerosol particles must be collected as uniform deposits on the surface of Teflon membrane filters. An energy dispersive XRF spectrom...

  15. A new LigaSure technique for the formation of segmental plane by intravenous indocyanine green fluorescence during thoracoscopic anatomical segmentectomy

    PubMed Central

    Dejima, Hitoshi; Mizumo, Tetsuya; Sakakura, Noriaki; Sakao, Yukinori

    2016-01-01

    Background The purpose of this study was to present a new approach to the formation of a segmental plane by LigaSure (Covidien, Mansfield, MA, USA) with indocyanine green (ICG) fluorescence system during thoracoscopic segmentectomy. Methods This was a consecutive study that compared 12 patients who underwent a new LigaSure technique (LT) for segmental plane formation during thoracoscopic anatomical segmentectomy with 38 patients who underwent conventional methods using the staple technique (ST). Eleven patients were followed up more than 3 months after discharge. Results The mean age of the patients was 66 years in the LT group and 67 years in ST. The mean duration for the formation of segmental plane and the mean number of staples was 22.8 min and 1.8 per surgery, respectively, in the LT group; and 16.2 min and 3.4 per surgery, respectively, in ST. No patient had a prolonged air leak (PAL) of more than 7 days. Minor air leak was identified early in two and was delayed in one. Two-thirds of patients with early minor air leak had low index of prolonged air leak (IPAL) score. There was no air leak in the patients with high IPAL score. Eventually, we deduced that the cause of the minor air leak was a technical problem. Conclusions In the formation of segmental plane during thoracoscopic segmentectomy, a combination of ICG fluorescence and LigaSure may be beneficial for patients. As a new operative instrument, LT constitutes, in our opinion, a feasible and easy alternative to other thoracoscopic techniques. PMID:27293839

  16. Quantitative analysis of human remains from 18(th)-19(th) centuries using X-ray fluorescence techniques: The mysterious high content of mercury in hair.

    PubMed

    Pessanha, Sofia; Carvalho, Marta; Carvalho, Maria Luisa; Dias, António

    2016-01-01

    In this work, we report the unusual concentration of mercury in the hair of an individual buried in the 18th to mid-19th centuries and the comparison with the elemental composition of other remains from the same individual. Two energy dispersive X-ray fluorescence (EDXRF) setups, one with tri-axial geometry and the second one with micro-beam capabilities and a vacuum system, for light elements detection, have been used. Quantitative evaluation of the obtained spectra were made by fundamental parameters and winAXIL program by compare mode method. The levels of Hg in the hair of buried samples presented a concentration over 5% (w/w), a significantly lower presence of this element in the cranium, and no Hg in the remaining organs. Furthermore, there was no evidence of Hg in the burial soil, which has been also analyzed. From this result, we could conclude that the possibility of post-mortem contamination from the burial surroundings is very unlikely. The obtained results are indicative of the apparent use of a mercury-based compound for medical purposes, most likely lice infestation. PMID:26653740

  17. X-ray fluorescence (conventional and 3D) and scanning electron microscopy for the investigation of Portuguese polychrome glazed ceramics: Advances in the knowledge of the manufacturing techniques

    NASA Astrophysics Data System (ADS)

    Guilherme, A.; Coroado, J.; dos Santos, J. M. F.; Lühl, L.; Wolff, T.; Kanngießer, B.; Carvalho, M. L.

    2011-05-01

    This work shows the first analytical results obtained by X-Ray Fluorescence (XRF) (conventional and 3D) and Scanning Electron Microscopy with Energy Dispersive System (SEM-EDS) on original Portuguese ceramic pieces produced between the 16th and 18th centuries in Coimbra and Lisbon. Experts distinguished these productions based only on the color, texture and brightness, which originates mislabeling in some cases. Thanks to lateral and spatial resolution in the micrometer regime, the results obtained with μ-XRF were essential in determining the glaze and pigment thicknesses by monitoring the profile of the most abundant element in each "layer". Furthermore, the dissemination of these elements throughout the glaze is different depending on the glaze composition, firing temperature and on the pigment itself. Hence, the crucial point of this investigation was to analyze and understand the interfaces color/glaze and glaze/ceramic support. Together with the XRF results, images captured by SEM and the corresponding semi-quantitative EDS data revealed different manufacturing processes used by the two production centers. Different capture modes were suitable to distinguish different crystals from the minerals that confer the color of the pigments used and to enhance the fact that some of them are very well spread through the glassy matrix, sustaining the theory of an evolved and careful procedure in the manufacturing process of the glaze.

  18. Application of the fluorescent-antibody technique to the study of a methanogenic bacterium in lake sediments.

    PubMed

    Strayer, R F; Tiedje, J M

    1978-01-01

    Fluorescent antibody (FA) was prepared for a methanogenic bacterium isolated from Wintergreen Lake pelagic sediment. The isolate resembles Methanobacterium formicicum. The FA did not cross-react with 9 other methanogens, including M. formicicum strains, or 24 heterotrophs, 18 of which had been isolated from Wintergreen Lake sediment. FA-reacting methanogens were detected in heat-fixed smears of several different lake sediments and anaerobic sewage sludge. Pretreatment of all samples with either rhodamine-conjugated geletin or bovine serum albumin adequately controlled nonspecific absorption of the FA. Autofluorescent particles were observed in the sediment samples but, with experience, they could easily be distinguished from FA-reacting bacteria. FA direct counts of the specific methanogen in Wintergreen Lake sediments were made on four different sampling dates and compared with five-tube most-probable-number estimates of the total methanogenic population that was present in the same samples. The FA counts ranged from 3.1 X 10(6) to 1.4 X 10(7)/g of dry sediment. The highest most-probable-number estimates were at least an order ofmagnitude lower. PMID:341807

  19. Distribution of actin in etoposide-induced human leukemia cell line K-562 using fluorescence and immunoelectron microscopy technique.

    PubMed

    Grzanka, Alina; Grzanka, Dariusz

    2002-01-01

    Localization of actin was studied in erythroleukemic cell line K-562 after treatment with etoposide for 72 hours in a range of concentrations 0.02-200 microM/L. Actin was visualised by fluorescence microscopy and streptavidingold method. These findings indicate that changes in actin after treatment with etoposide were dose-dependent. Significant changes in the cellular distribution of F-actin in K-562 cells were obtained after treatment with 20 and 200 microM/L etoposide. In comparison with control cells, the number of the cells decreased and cells were larger especially at 200 microM/L. F-actin was diffusely distributed throughout the cell at 20 microM/L. Treatment of cells with 200 microM/L etoposide showed F-actin diffusely distributed throughout the cell with local actin assemblies and also at the cell periphery. Immunogold labelling of actin was observed in cells treated with all doses of etoposide and control cells. Labelling was found in the nucleus and also in the cytoplasm. At the ultrastructural level, cells treated with 200 microM/L etoposide showed protrusions at the surface, in which increase of actin was often observed. Etoposide causes changes in actin distribution of K-562 cells, and the changes in expression of actin were not only restricted to cell with features of apoptosis. PMID:12140866

  20. Assessment of serum selenium levels in 2-month-old sucking calves using total reflection X-ray fluorescence technique

    NASA Astrophysics Data System (ADS)

    Buoso, M. C.; Ceccato, D.; Moschini, G.; Bernardini, D.; Testoni, S.; Torboli, A.; Valdes, M.

    2001-11-01

    The assessment of selenium status of livestock plays an important role in the production of medicine since low serum Se levels influence disease resistance in ruminants. It has been proved that Se deficiency may cause muscular dystrophy, cardiomyopathy and even death. Serum level has been widely used to evaluate the Se short-term status in animals since there is a good association between serum Se level and the dietary intake of the element over a wide range. The purpose of this work was to determine the Se serum concentration in a population of 78 sucking 2-month-old calves, in order to corroborate a clinical diagnosis of severe deficiency status. The samples were analyzed by total reflection X-ray fluorescence (TXRF) at the ITAL STRUCTURES Research Laboratory. The results obtained from the serum samples presented Se concentrations varying from 10 to 66 ng/ml. The comparison between the obtained values and the expected serum selenium values (60-80 ng/ml), confirmed a mild to severe deficiency status in the investigated population.

  1. Investigation of high-contrast velocity selective optical pumping resonance at the cycling transition of Cs using fluorescence technique

    NASA Astrophysics Data System (ADS)

    Dey, Saswati; Ray, Biswajit; Ghosh, Pradip Narayan; Cartaleva, Stefka; Slavov, Dimitar

    2015-12-01

    A high contrast (∼48%) Velocity Selective Optical Pumping (VSOP) resonance at the closed transition Fg=4→Fe=5 of Cs-D2 line is obtained in the fluorescence signal under co-propagating pump-probe configuration. We use a 5.2 μm cell operating at reduced temperature (∼55 °C) and the intensity of the pump-laser is kept lower than that of the probe-laser. The observed sharp narrow structure is suitable for side-arms frequency-locking of the cooling- (i.e. probe-) laser in a cold atom experiment, with possibility for "-Γ" to "-4Γ" red-detuning and "+Γ" to "+10Γ" blue-detuning using the standard properties of the commercially available electronics. We have developed a theoretical model corresponding to the thin cell, incorporating the atomic time-of-flight dependent optical pumping decay rate to describe the dimensional anisotropy of the thin cell. The model shows good qualitative agreement with the observation and simulates as well the cases of cells with smaller thickness. It also describes correctly the temperature dependence of the line broadening and shows the potential for further optimization and red-shift detuning above "-4Γ". It may be of interest for further development of miniaturized modules, like the recently developed portable small magneto-optical traps.

  2. Application of the fluorescent-antibody technique to the study of a methanogenic bacterium in lake sediments.

    PubMed Central

    Strayer, R F; Tiedje, J M

    1978-01-01

    Fluorescent antibody (FA) was prepared for a methanogenic bacterium isolated from Wintergreen Lake pelagic sediment. The isolate resembles Methanobacterium formicicum. The FA did not cross-react with 9 other methanogens, including M. formicicum strains, or 24 heterotrophs, 18 of which had been isolated from Wintergreen Lake sediment. FA-reacting methanogens were detected in heat-fixed smears of several different lake sediments and anaerobic sewage sludge. Pretreatment of all samples with either rhodamine-conjugated geletin or bovine serum albumin adequately controlled nonspecific absorption of the FA. Autofluorescent particles were observed in the sediment samples but, with experience, they could easily be distinguished from FA-reacting bacteria. FA direct counts of the specific methanogen in Wintergreen Lake sediments were made on four different sampling dates and compared with five-tube most-probable-number estimates of the total methanogenic population that was present in the same samples. The FA counts ranged from 3.1 X 10(6) to 1.4 X 10(7)/g of dry sediment. The highest most-probable-number estimates were at least an order ofmagnitude lower. Images PMID:341807

  3. Exploring the heat-induced structural changes of β-lactoglobulin -linoleic acid complex by fluorescence spectroscopy and molecular modeling techniques.

    PubMed

    Simion Ciuciu, Ana-Maria; Aprodu, Iuliana; Dumitrașcu, Loredana; Bahrim, Gabriela Elena; Alexe, Petru; Stănciuc, Nicoleta

    2015-12-01

    Linoleic acid (LA) is the precursor of bioactive oxidized linoleic acid metabolites and arachidonic acid, therefore is essential for human growth and plays an important role in good health in general. Because of the low water solubility and sensitivity to oxidation, new ways of LA delivery without compromising the sensory attributes of the enriched products are to be identified. The major whey protein, β-lactoglobulin (β-Lg), is a natural carrier for hydrophobic molecules. The thermal induced changes of the β-Lg-LA complex were investigated in the temperature range from 25 to 85 °C using fluorescence spectroscopy techniques in combination with molecular modeling study and the results were compared with those obtained for β-Lg. Experimental results indicated that, regardless of LA binding, the polypeptide chain rearrangements at temperatures higher than 75 °C lead to higher exposure of hydrophobic residues causing the increase of fluorescence intensity. Phase diagram indicated an all or none transition between two conformations. The LA surface involved in the interaction with β-Lg was about 497 Ǻ(2), indicating a good affinity between those two components even at high temperatures. Results obtained in this study provide important details about heat-induced changes in the conformation of β-Lg-LA complex. The thermal treatment at high temperature does not affect the LA binding and carrier functions of β-Lg. PMID:26604382

  4. Continuous Monitoring of Specific mRNA Expression Responses with a Fluorescence Resonance Energy Transfer-Based DNA Nano-tweezer Technique That Does Not Require Gene Recombination.

    PubMed

    Shigeto, Hajime; Nakatsuka, Keisuke; Ikeda, Takeshi; Hirota, Ryuichi; Kuroda, Akio; Funabashi, Hisakage

    2016-08-16

    This letter discusses the feasibility of continuously monitoring specific mRNA expression responses in a living cell with a probe structured as a fluorescence resonance energy transfer (FRET)-based DNA nano-tweezer (DNA-NT). The FRET-based DNA-NT, self-assembled from three single-stranded DNAs, alters its structure from an open state to a closed state in recognition of a target mRNA, resulting in the closing of the distal relation of previously modified FRET-paired fluorescent dyes and generating a FRET signal. The expressions of glucose transporters (GLUT) 1 and 4 in a mouse hepato-carcinoma (Hepa 1-6 cells) were selected as the target model. Live-cell imaging analysis of Hepa 1-6 cells with both FRET-based DNA-NTs indicated that the behaviors of the FRET signals integrated in each individual cell were similar to those measured with the conventional mass analysis technique of semiquantitative real-time (RT) polymerase chain reaction (PCR). From these results, it is concluded that continuous monitoring of gene expression response without gene recombination is feasible with a FRET-based DNA-NT, even in a single cell manner. PMID:27458920

  5. Rapid Detection and Identification of Streptococcus Iniae Using a Monoclonal Antibody-Based Indirect Fluorescent Antibody Technique

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Streptococcus iniae is among the major pathogens of a large number of fish species cultured in fresh and marine recirculating and net pen production systems . The traditional plate culture technique to detect and identify S. iniae is time consuming and may be problematic due to phenotypic variations...

  6. Optimization of immunohistochemical and fluorescent antibody techniques for localization of foot-and-mouth disease virus in animal tissues

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Immunohistochemical (IHC) and immunofluorescent (IF) techniques were optimized for the detection of foot-and-mouth disease virus (FMDV) structural and non-structural proteins in frozen and paraformaldehyde-fixed paraffin embedded (PFPE) tissues of bovine and porcine origin. Immunohistochemical local...

  7. Interferences removal for cadmium determination in samples with complex matrices by hydride generation coupled with non-dispersive atomic fluorescence spectrometry.

    PubMed

    Li, Zhongxi; Zhou, Liping

    2006-01-01

    An intermittent on-line concentration and separation system coupled with HG-AFS was developed to eliminate serious interferences from Cu2+, Pb2+ and Zn2+ on the determination of cadmium. In the present method, the interferences from common coexisting ions, such as Cu2+, Pb2+, Zn2+, Fe3+ and Ni2+, were greatly reduced. Under the optimized conditions, a detection limit of 3 pg ml(-1) (3sigma, n=11) and a precision of 1.9% RSD for 1 ng ml(-1) of Cd were obtained. The method was successfully applied to the determination of cadmium in a series of Chinese Geological Reference Materials (SRMs) and GBW01621 ferronickel alloy using simple aqueous standard calibration technique. The results obtained were in good agreement with the certified values. PMID:16429786

  8. Identification of Actinomyces israelii and Actinomyces naeslundii by Fluorescent-Antibody and Agar-Gel Diffusion Techniques1

    PubMed Central

    Lambert, Frank W.; Brown, June M.; Georg, Lucille K.

    1967-01-01

    This study was an attempt to develop a fluorescent-antibody (FA) test to differentiate Actinomyces israelii and A. naeslundii as an aid in their laboratory identification. Two strains of A. israelii (X522 and A601) and two strains of A. naeslundii (X454 and X600), which had received intensive study by several investigators, were used for the immunization of rabbits. Working titers, based on tests with antigens prepared from the homologous strains and from well-established heterologous strains, were determined for each labeled antibody preparation. These conjugates and their normal serum control conjugates were used separately to stain 85 cultures of Actinomyes species and 23 strains of other species that might be confused with them. Acetone-precipitated soluble antigens from these same strains were tested with different antisera in the agar-gel diffusion test. Results showed that A. israelii (X522 and A601) and A. naeslundii (X454 and X600) labeled antiglobulins, when used at their working titers, stained most strains of their homologous species. Agar-gel diffusion results showed general agreement with those of the FA tests. The two tests appear to be equal in sensitivity, but the FA test is more specific, since several cross-reactions were noted with the agar-gel diffusion test whereas no cross-reactions were obtained with the FA reagents. Agar-gel and FA studies suggest that at least two serotypes of A. israelii may be associated with human disease. Although the majority of strains tested in this study appear to belong to a common serotype, “serotype 1,” two strains of an apparent second serotype, “serotype 2,” were encountered. FA staining of tissue impression smears from experimentally infected mice was successful when a counterstain, Evans Blue dye, was used. PMID:4964473

  9. Determination of trace amounts of hexavalent chromium in drinking waters by dispersive microsolid-phase extraction using modified multiwalled carbon nanotubes combined with total reflection X-ray fluorescence spectrometry

    NASA Astrophysics Data System (ADS)

    Bahadir, Z.; Bulut, V. N.; Hidalgo, M.; Soylak, M.; Marguí, E.

    2015-05-01

    A methodology based on the combination of dispersive microsolid-phase extraction (DMSPE) with total reflection X-ray fluorescence (TXRF) spectrometry is proposed for the determination of hexavalent chromium in drinking waters. Multiwalled carbon nanotubes (MWCNTs) modified with the anionic exchanger tricaprylmethylammonium chloride (Aliquat 336) were used as solid sorbents. After the sorption process of Cr(VI) on the modified MWCNTs, the aqueous sample was separated by centrifugation and the loaded MWCNTs were suspended using a small volume of an internal standard solution and analyzed directly by a benchtop TXRF spectrometer, without any elution step. Parameters affecting the extraction process (pH and volume of the aqueous sample, amount of MWCNTs, extraction time) and TXRF analysis (volume of internal standard, volume of deposited suspension on the reflector, drying mode, and instrumental parameters) have been carefully evaluated to test the real capability of the developed methodology for the determination of Cr(VI) at trace levels. Using the best analytical conditions, it was found that the minimum Cr(VI) content that can be detected in an aqueous solution was 3 μg L- 1. This value is almost 20 times lower than the maximum hexavalent chromium content permissible in drinking waters, according to the World Health Organization (WHO). Recoveries for spiked tap and mineral water samples were, in most cases, in the range of 101-108% which demonstrates the suitability of the TXRF methodology for monitoring Cr(VI) at trace levels in drinking water samples.

  10. Determination of bisphenol A, 4-n-nonylphenol, and 4-tert-octylphenol by temperature-controlled ionic liquid dispersive liquid-phase microextraction combined with high performance liquid chromatography-fluorescence detector.

    PubMed

    Zhou, Qingxiang; Gao, Yuanyuan; Xie, Guohong

    2011-09-15

    Present study described a simple, sensitive, and viable method for the determination of bisphenol A, 4-n-nonylphenol and 4-tert-octylphenol in water samples using temperature-controlled ionic liquid dispersive liquid-phase microextraction coupled to high performance liquid chromatography-fluorescence detector. In this experiment, 1-octyl-3-methylimidazolium hexafluorophosphate ([C(8)MIM][PF(6)]) was used as the extraction solvent, and bisphenol A, 4-n-nonylphenol and 4-tert-octylphenol were selected as the model analytes. Parameters affecting the extraction efficiency such as the volume of [C(8)MIM][PF(6)], dissolving temperature, extraction time, sample pH, centrifuging time and salting-out effect have been investigated in detail. Under the optimized conditions, good linear relationship was found in the concentration range of 1.0-100 μg L(-1) for BPA, 1.5-150 μg L(-1) for 4-NP, and 3-300 μg L(-1) for 4-OP, respectively. Limits of detection (LOD, S/N=3) were in the range of 0.23-0.48 μg L(-1). Intra day and inter day precisions (RSDs, n=6) were in the range of 4.6-5.5% and 8.5-13.3%, respectively. This method has been also successfully applied to analyze the real water samples at two different spiked concentrations and excellent results were obtained. PMID:21807227

  11. The use of wavelength dispersive X-ray fluorescence and discriminant analysis in the identification of the elemental composition of cumin samples and the determination of the country of origin.

    PubMed

    Hondrogiannis, E; Peterson, K; Zapf, C M; Roy, W; Blackney, B; Dailey, K

    2012-12-15

    Sixteen elements found in 33 cumin spice samples from China, India, Syria, and Turkey were analysed by wavelength dispersive X-ray fluorescence (WDXRF) spectroscopy using the commercially available Bruker - AXS S4 Explorer for the purpose of using the elements to discriminate among country of origin. Pellets were prepared of the samples and elemental concentrations calculated from calibration curves constructed using four National Institute of Standards and Technology (NIST) standards. A separate NIST tomato standard (1573a) was used as a validation check, while the WDXRF data for six of the cumin samples was further validated using inductively coupled plasma-atomic emission spectroscopy (ICP-AES). The elements measured included Ca, Mg, K, P, S, Al, Ba, Br, Cl, Fe, Na, Mn, Rb, Sr, Cu, and Zn and were detected in the range from an average mean of 4.3 mg kg(-1) for Ba up to 19223.8 mg kg(-1) for K. Analysis of variance (ANOVA) was used to determine which elemental concentrations were statistically different from one another, and discriminant analysis was used to classify the cumin samples by country of origin. Using only eight elements (Ca, Mg, K, Fe, Na, Mn, Sr, and Zn) we were able to differentiate among cumin samples from four different geographic origins. Validation of the model with the validation set yielded 87.50% accuracy. Successful discrimination with just eight elements will allow for higher throughput in the screening of cumin samples using WDXRF for origin verification in less time. PMID:22980878

  12. A new device to mount portable energy dispersive X-ray fluorescence spectrometers (p-ED-XRF) for semi-continuous analyses of split (sediment) cores and solid samples

    NASA Astrophysics Data System (ADS)

    Hoelzmann, Philipp; Klein, Torsten; Kutz, Frank; Schütt, Brigitta

    2016-04-01

    Portable energy-dispersive X-ray fluorescence spectrometers (p-ED-XRF) have become increasingly popular in sedimentary laboratories to quantify the chemical composition of a range of materials such as sediments, solid samples, and artefacts. Here, we introduce a low-cost, clearly arranged unit that functions as a sample chamber (German industrial property right no. 20 2014 106 048.0) for p-ED-XRF devices to facilitate economic, non-destructive, fast, and semi-continuous analysis of (sediment) cores and/or other solid samples. The spatial resolution of the measurements is limited to the specifications of the applied p-ED-XRF device - in our case a Thermo Scientific NITON XL3t p-ED-XRF spectrometer with a maximum spatial resolution of 1 cm and equipped with a charge-coupled device (CCD)-camera to document the measurement spot. We demonstrate the strength of combining p-ED-XRF analyses with this new sample chamber to identify Holocene facies changes (e.g. marine vs terrestrial sedimentary facies) using a sediment core from an estuarine environment in context of a geoarchaeological investigation at the Atlantic coast of southern Spain.

  13. High-energy polarized-beam energy-dispersive X-ray fluorescence analysis combined with activated thin layers for cadmium determination at trace levels in complex environmental liquid samples.

    PubMed

    Marguí, Eva; Fontàs, Clàudia; Van Meel, Katleen; Van Grieken, René; Queralt, Ignasi; Hidalgo, Manuela

    2008-04-01

    In this paper, we describe a new method for trace level Cd determination in complex environmental liquid samples. Thin layers activated with the extractant Aliquat 336 were prepared either by direct impregnation of commercial polymeric supports or by physical inclusion in a cellulose triacetate matrix, and both were effectively used to collect Cd present at low concentration in different aqueous matrixes. Quantitation of Cd contained in the thin layers was performed by high-energy polarized-beam energy-dispersive X-ray fluorescence. The effects of various experimental parameters such as layer composition, equilibration time, and instrumental conditions have been investigated. The analysis of different impregnated layers contacted with solutions ranging from 5 to 8000 microg L-1 Cd showed a linear response between the Cd concentration in the aqueous solutions and the metal present in the thin layer, with a detection limit of 0.7 microg L-1. The accuracy of the proposed method was confirmed by analyzing spiked seawater samples and a synthetic water sample containing, besides Cd, high amounts of other metal pollutants such as Ni, Cu, and Pb. The attained results were comparable to those obtained by anodic stripping voltammetry or inductively coupled plasma spectrometry. PMID:18327919

  14. Use of fluorescence, a novel technique to determine reduction in Bemisia tabaci (Hemiptera: Aleyrodidae) nymph feeding when exposed to Benevia and other insecticides.

    PubMed

    Cameron, Rachel; Lang, Edward B; Annan, I Billy; Portillo, Hector E; Alvarez, Juan M

    2013-04-01

    The sweet potato whitefly, Bemisia tabaci (Gennadius), is an economically important pest in the United States and other countries. Growers in many places rely on the use of insecticides to reduce populations of B. tabaci. However, insecticides may take a few days to cause B. tabaci mortality and some do not reduce feeding before death. Earlier reduction of feeding of whiteflies would decrease the physiological effects on plants, reduce the production of sooty mold and potentially reduce the transmission of viruses. Measuring the reduction in feeding after the exposure of B. tabaci to an insecticide has proven difficult. This series of laboratory experiments demonstrate the usefulness of fluorescence in determining B. tabaci feeding cessation. Fluorescein sodium salt is systemically transported in the xylem from the roots to the plant leaves and absorbed by B. tabaci nymphs feeding on these plants. Nymphs start fluorescing shortly after the cotton plant root system is submerged in the fluorescein sodium salt. Using this novel technique, the effect of three insecticides with different modes of action, cyantraniliprole, imidacloprid, and spirotetramat on B. tabaci was evaluated and compared to determine reduction in feeding. Results indicate that B. tabaci nymphs feeding on a plant treated with Benevia have a significant reduction of feeding when compared with nymphs feeding on plants treated with imidacloprid or spirotetramat. Both Benevia and spirotetramat caused significant nymphal mortality by 48 h after exposure. This novel technique will be useful to demonstrate the feeding cessation or reduction in feeding produced by different insecticides in several sucking insect groups. PMID:23786044

  15. Planar Sauter Mean Diameter measurements in liquid centered swirl coaxial injector using Laser Induced Fluorescence, Mie scattering and laser diffraction techniques

    NASA Astrophysics Data System (ADS)

    Kannaiyan, Kamalakannan; Banda, Manoj Venkata Krishna; Vaidyanathan, Aravind

    2016-06-01

    An experimental technique is carried out to demonstrate the measurement of planar Sauter Mean Diameter (SMD or D32) distribution in a liquid centered swirl coaxial injector (LCSC) using simultaneous measurements of Mie scattering, Planar Laser-Induced Fluorescence (PLIF) and Laser diffraction technique (LDT). Here water is used as the test fluid with addition of optimized quantities of the organic dye (Rhodamine 6 g) for PLIF measurements. Experiments are carried out at three experimental conditions with momentum flux ratios of 6.25, 12.14, and 19.95 respectively. Experiments are carried out to study the effect of dye concentration in LDT. LDT (line of sight) is corrected for multiple scattering effects. The SMD distribution obtained from Liquid Sheet Drop Sizing (LSDS) technique is calibrated using LDT (Malvern particle analyzer) that utilizes the principle of diffraction; the results obtained from both the methods are compared and analyzed using the respective histograms. The variations in the distribution of droplet diameter along the axial and radial locations in the spray field are also studied in detail.

  16. Fluorescence characteristics of carbon nanoemitters derived from sucrose by green hydrothermal and microwave methods.

    PubMed

    Patidar, Rajesh; Rebary, Babulal; Bhadu, Gopala Ram

    2016-12-01

    In this work, fluorescent carbon nanoparticles (CNPs) were prepared through two green methods i.e. microwave and hydrothermal, using sucrose as carbon precursor. Both of these methods have offered fluorescent CNPs as characterized by TEM, FTIR, zeta potential, absorbance and emission techniques. Excitation dependent emission spectra were exhibited by aqueous dispersion of these CNPs when they were subjected to different excitation wavelengths. The luminous characteristics of CNPs obtained from both of these methods were studied and compared. Their fluorescence stability in water and buffer was monitored for about three months. Influence of pH and various metal ions on emission spectra were investigated. PMID:27314910

  17. Dispersive solid-phase extraction as a simplified clean-up technique for biological sample extracts. Determination of polybrominated diphenyl ethers by gas chromatography-tandem mass spectrometry.

    PubMed

    Fontana, Ariel R; Camargo, Alejandra; Martinez, Luis D; Altamirano, Jorgelina C

    2011-05-01

    Dispersive solid-phase extraction (DSPE) is proposed for the first time as a simplified, fast and low cost clean-up technique of biological sample extracts for polybrominated diphenyl ethers (PBDEs) determination. The combination of a traditional extraction technique, such as ultrasound-assisted leaching (USAL) with DSPE was successfully applied for sample preparation prior to gas chromatography-tandem mass spectrometry (GC-MS/MS) analysis. The analytes were first extracted from 1g homogenized sample in n-hexane:dichloromethane (8:2) by applying USAL technique and further cleaned-up using DSPE with 0.20 g C(18)-silica as sorbent material. Different solvent mixtures, sorbent type and amount, and lipid digestion procedures were evaluated in terms of clean-up and extraction efficiency. Under optimum conditions, the method detection limits (MDLs) for PBDEs, calculated as three times the signal-to-noise ratio (S/N) were within the range 9-44 pg g(-1) wet weight. The calibration graphs were linear within the concentration range of 53-500,000 pg g(-1), 66-500,000 pg g(-1), 89-500,000 pg g(-1) and 151-500,000 pg g(-1) for BDE-47, BDE-100, BDE-99 and BDE-153, respectively; and the coefficient of determination (r(2)) exceeded 0.9992 for all analytes. The proposed methodology was compared with a reference solid-phase extraction technique. The applicability of the methodology for the screening of PBDEs has been demonstrated by analyzing spiked and real samples of biological nature (fish, egg and chicken) with different lipid content as well as reference material (WELL-WMF-01). Recovery values ranged between 75% and 114% and the measured concentrations in certified material showed a reasonable agreement with the certified ones. BDE-47, BDE-100 and BDE-99 were quantified in three of the seven analyzed samples and the concentrations ranged between 91 and 140 pg g(-1). In addition, this work is the first description of PBDEs detected in fish of Argentinean environment. PMID

  18. Protein-Flavonoid Interaction Studies by a Taylor Dispersion Surface Plasmon Resonance (SPR) Technique: A Novel Method to Assess Biomolecular Interactions

    PubMed Central

    Vachali, Preejith P.; Li, Binxing; Besch, Brian M.; Bernstein, Paul S.

    2016-01-01

    Flavonoids are common polyphenolic compounds widely distributed in fruits and vegetables. These pigments have important pharmacological relevance because emerging research suggests possible anti-cancer and anti-inflammatory properties as well other beneficial health effects. These compounds are relatively hydrophobic molecules, suggesting the role of blood transport proteins in their delivery to tissues. In this study, we assess the binding interactions of four flavonoids (kaempferol, luteolin, quercetin, and resveratrol) with human serum albumin (HSA), the most abundant protein in the blood, and with glutathione S-transferase pi isoform-1 (GSTP1), an enzyme with well-characterized hydrophobic binding sites that plays an important role in detoxification of xenobiotics with reduced glutathione, using a novel Taylor dispersion surface plasmon resonance (SPR) technique. For the first time, HSA sites revealed a high-affinity binding site for flavonoid interactions. Out of the four flavonoids that we examined, quercetin and kaempferol showed the strongest equilibrium binding affinities (KD) of 63 ± 0.03 nM and 37 ± 0.07 nM, respectively. GSTP1 displayed lower affinities in the micromolar range towards all of the flavonoids tested. The interactions of flavonoids with HSA and GSTP1 were studied successfully using this novel SPR assay method. The new method is compatible with both kinetic and equilibrium analyses. PMID:26927197

  19. Toxicity study of the oil dispersant Corexit 9527 on Macrobrachium rosenbergii (de Man) egg hatchability by using a flow-through bioassay technique.

    PubMed

    Law, A T

    1995-01-01

    The effect of the oil-spill dispersant Corexit 9527 on egg-hatching rate of Macrobrachium rosenbergii (de Man) was studied by using an innovated flow-through bioassay technique. This bioassay method relies on the fact that M. rosenbergii fertilized eggs when detached from the mother prawn were able to hatch artificially. The flow-through system generated a stable and good water quality environment for hatching the eggs successfully. The Corexit 9527 had a pronounced effect on hatching rate of the M. rosenbergii eggs. In the control, the hatching rate of the eggs was 95.55% +/- 1.74%. However, it was reduced drastically with increasing concentrations of Corexit 9527. A 100% inhibition of egg hatchability was found when the level of Corexit 9527 was higher than 250 mg litre(-1). The EC(50) and the EC(95) values estimated by the probit method were 80.4 +/- 5.5 mg litre(-1) and 193.5 +/- 39.9 mg litre(-1) respectively (P = 0.05). The recommended safety level of Corexit 9527 for M. rosenbergii in Malaysian estuarine waters is below 40 mg litre(-1). PMID:15091547

  20. Protein-Flavonoid Interaction Studies by a Taylor Dispersion Surface Plasmon Resonance (SPR) Technique: A Novel Method to Assess Biomolecular Interactions.

    PubMed

    Vachali, Preejith P; Li, Binxing; Besch, Brian M; Bernstein, Paul S

    2016-03-01

    Flavonoids are common polyphenolic compounds widely distributed in fruits and vegetables. These pigments have important pharmacological relevance because emerging research suggests possible anti-cancer and anti-inflammatory properties as well other beneficial health effects. These compounds are relatively hydrophobic molecules, suggesting the role of blood transport proteins in their delivery to tissues. In this study, we assess the binding interactions of four flavonoids (kaempferol, luteolin, quercetin, and resveratrol) with human serum albumin (HSA), the most abundant protein in the blood, and with glutathione S-transferase pi isoform-1 (GSTP1), an enzyme with well-characterized hydrophobic binding sites that plays an important role in detoxification of xenobiotics with reduced glutathione, using a novel Taylor dispersion surface plasmon resonance (SPR) technique. For the first time, HSA sites revealed a high-affinity binding site for flavonoid interactions. Out of the four flavonoids that we examined, quercetin and kaempferol showed the strongest equilibrium binding affinities (K(D)) of 63 ± 0.03 nM and 37 ± 0.07 nM, respectively. GSTP1 displayed lower affinities in the micromolar range towards all of the flavonoids tested. The interactions of flavonoids with HSA and GSTP1 were studied successfully using this novel SPR assay method. The new method is compatible with both kinetic and equilibrium analyses. PMID:26927197

  1. Particle Image Velocimetry Applications Using Fluorescent Dye-Doped Particles

    NASA Technical Reports Server (NTRS)

    Petrosky, Brian J.; Maisto, Pietro; Lowe, K. Todd; Andre, Matthieu A.; Bardet, Philippe M.; Tiemsin, Patsy I.; Wohl, Christopher J.; Danehy, Paul M.

    2015-01-01

    Polystyrene latex sphere particles are widely used to seed flows for velocimetry techniques such as Particle Image Velocimetry (PIV) and Laser Doppler Velocimetry (LDV). These particles may be doped with fluorescent dyes such that signals spectrally shifted from the incident laser wavelength may be detected via Laser Induced Fluorescence (LIF). An attractive application of the LIF signal is achieving velocimetry in the presence of strong interference from laser scatter, opening up new research possibilities very near solid surfaces or at liquid/gas interfaces. Additionally, LIF signals can be used to tag different fluid streams to study mixing. While fluorescence-based PIV has been performed by many researchers for particles dispersed in water flows, the current work is among the first in applying the technique to micron-scale particles dispersed in a gas. A key requirement for such an application is addressing potential health hazards from fluorescent dyes; successful doping of Kiton Red 620 (KR620) has enabled the use of this relatively safe dye for fluorescence PIV for the first time. In this paper, basic applications proving the concept of PIV using the LIF signal from KR620-doped particles are exhibited for a free jet and a twophase flow apparatus. Results indicate that while the fluorescence PIV techniques are roughly 2 orders of magnitude weaker than Mie scattering, they provide a viable method for obtaining data in flow regions previously inaccessible via standard PIV. These techniques have the potential to also complement Mie scattering signals, for example in multi-stream and/or multi-phase experiments.

  2. Investigating Early/Middle Bronze Age copper and bronze axes by micro X-ray fluorescence spectrometry and neutron imaging techniques

    NASA Astrophysics Data System (ADS)

    Figueiredo, Elin; Pereira, Marco A. Stanojev; Lopes, Filipa; Marques, José G.; Santos, Joana P.; Araújo, M. Fátima; Silva, Rui J. C.; Senna-Martinez, João C.

    2016-08-01

    Micro X-ray fluorescence (micro-XRF) analysis and neutron imaging techniques, namely 2D radiography and 3D tomography, have been applied for the study of four metal axes from the Early/Middle Bronze Age in Western Iberia, a period characterized by a metallurgical change in the use of copper to bronze. Micro-XRF analysis has shown that one of the axes was produced in copper with some arsenic while the other three were produced in a copper-tin alloy (bronze) with variable tin contents and some arsenic and lead. Neutron radiography and tomography were applied to study internal heterogeneities of the axes in a non-invasive way since the specificities of neutron interaction with matter allow a suitable penetration of these relatively thick copper-based objects when compared to the use of a conventional X-ray radiography. Neutron imaging allowed the visualization of internal fissures and pores and the evaluation of their distribution, size and shape. Relevant information for the reconstruction of ancient manufacturing techniques was gathered, revealing that one ax was produced with the mold in an angle of ≈ 25°, probably to facilitate gas escape during metal pouring. Also, information regarding physical weaknesses of the axes was collected, providing relevant data for their conservation. The combination of these non-destructive techniques allowed the evaluation of the metal composition and the internal structure of the axes. Micro-XRF allowed the distinction among copper and bronze axes, and provided data about the composition of early bronzes for which data is scarce. The neutron imaging study allowed for the first time the visualization of internal heterogeneities in early bronze axes, namely pores and large voids, providing relevant information for the reconstruction of ancient manufacturing techniques and raising pertinent information regarding physical weaknesses of these types of objects.

  3. Studies of the laser-induced fluorescence of explosives and explosive compositions.

    SciTech Connect

    Hargis, Philip Joseph, Jr.; Thorne, Lawrence R.; Phifer, Carol Celeste; Parmeter, John Ethan; Schmitt, Randal L.

    2006-10-01

    Continuing use of explosives by terrorists throughout the world has led to great interest in explosives detection technology, especially in technologies that have potential for standoff detection. This LDRD was undertaken in order to investigate the possible detection of explosive particulates at safe standoff distances in an attempt to identify vehicles that might contain large vehicle bombs (LVBs). The explosives investigated have included the common homogeneous or molecular explosives, 2,4,6-trinitrotoluene (TNT), pentaerythritol tetranitrate (PETN), cyclonite or hexogen (RDX), octogen (HMX), and the heterogeneous explosive, ammonium nitrate/fuel oil (ANFO), and its components. We have investigated standard excited/dispersed fluorescence, laser-excited prompt and delayed dispersed fluorescence using excitation wavelengths of 266 and 355 nm, the effects of polarization of the laser excitation light, and fluorescence imaging microscopy using 365- and 470-nm excitation. The four nitro-based, homogeneous explosives (TNT, PETN, RDX, and HMX) exhibit virtually no native fluorescence, but do exhibit quenching effects of varying magnitude when adsorbed on fluorescing surfaces. Ammonium nitrate and fuel oil mixtures fluoresce primarily due to the fuel oil, and, in some cases, due to the presence of hydrophobic coatings on ammonium nitrate prill or impurities in the ammonium nitrate itself. Pure ammonium nitrate shows no detectable fluorescence. These results are of scientific interest, but they provide little hope for the use of UV-excited fluorescence as a technique to perform safe standoff detection of adsorbed explosive particulates under real-world conditions with a useful degree of reliability.

  4. Determination of sparfloxacin concentrations in chicken serums and residues in chicken tissues and manures using self-ordered ring fluorescence microscopic imaging technique.

    PubMed

    Dong, Cheng-Yu; Liu, Yuan-Yuan; Liu, Ying

    2012-10-01

    Based on the self-ordered ring (SOR) fluorescence microscopic imaging technique on a hydrophobic glass slide with Zn2+ and cetyltrimethyl ammonium bromide (CTMAB) as sensitizer, and poly (vinyl alcohol) 124 (PVA-124) and NH3-NH4Cl (pH 10.00) as the medium, a method has been developed for determining sparfloxacin (SPFX) concentrations in chicken serum and residues in chicken tissues and manures. When the droplet volume was 0.20 microL, SPFX was determined in the range of 1.38 x 10(-13)-2.03 x 10(-12) mol x ring(-1) (or 6.90 x 10(-7)-1.02 x 10(-5) mol x L(-1)), and the limit of detection (LOD) was 14 fmol x ring (or 6.90 x 10(-8) mol x L(-1)). The recoveries of SPFX at all different spiked levels are in the range of 90.74%-106.61% when the methanol or acetonitrile were used as extracting agent, respectively, and the relative standard deviations (RSDs) are less than 3.0%. This study expands the applied fields of SOR technique in drug concentrations and residues determination. PMID:23285882

  5. Novel KCNQ2 channel activators discovered using fluorescence-based and automated patch-clamp-based high-throughput screening techniques

    PubMed Central

    Yue, Jin-feng; Qiao, Guan-hua; Liu, Ni; Nan, Fa-jun; Gao, Zhao-bing

    2016-01-01

    Aim: To establish an improved, high-throughput screening techniques for identifying novel KCNQ2 channel activators. Methods: KCNQ2 channels were stably expressed in CHO cells (KCNQ2 cells). Thallium flux assay was used for primary screening, and 384-well automated patch-clamp IonWorks Barracuda was used for hit validation. Two validated activators were characterized using a conventional patch-clamp recording technique. Results: From a collection of 80 000 compounds, the primary screening revealed a total of 565 compounds that potentiated the fluorescence signals in thallium flux assay by more than 150%. When the 565 hits were examined in IonWorks Barracuda, 38 compounds significantly enhanced the outward currents recorded in KCNQ2 cells, and were confirmed as KCNQ2 activators. In the conventional patch-clamp recordings, two validated activators ZG1732 and ZG2083 enhanced KCNQ2 currents with EC50 values of 1.04±0.18 μmol/L and 1.37±0.06 μmol/L, respectively. Conclusion: The combination of thallium flux assay and IonWorks Barracuda assay is an efficient high-throughput screening (HTS) route for discovering KCNQ2 activators. PMID:26725738

  6. Bench-Top Antigen Detection Technique that Utilizes Nanofiltration and Fluorescent Dyes which Emit and Absorb Light in the Near Infrared

    NASA Technical Reports Server (NTRS)

    Varaljay-Spence, Vanessa A.; Scardelletti, Maximilian C.

    2007-01-01

    This article discusses the development of a bench-top technique to detect antigens in fluids. The technique involves the use of near infrared NIR fluorescent dyes conjugated to antibodies, centrifugation, nanofilters, and spectrometry. The system used to detect the antigens utilizes a spectrometer, fiber optic cables, NIR laser, and laptop computer thus making it portable and ideally suited for desk top analysis. Using IgM as an antigen and the secondary antibody, anti-IgM conjugated to the near infrared dye, IRDye (trademark) 800, for detection, we show that nanofiltration can efficiently and specifically separate antibody-antigen complexes in solution and that the complexes can be detected by a spectrometer and software using NIR laser excitation at 778 nm and NIR dye offset emission at 804 nm. The peak power detected at 778 nm for the excitation emission and at 804 nm for the offset emission is 879 pW (-60.06 dBm) and 35.7 pW (-74.5 dBm), respectively.

  7. Comprehensive analysis of mitochondrial permeability transition pore activity in living cells using fluorescence-imaging-based techniques.

    PubMed

    Bonora, Massimo; Morganti, Claudia; Morciano, Giampaolo; Giorgi, Carlotta; Wieckowski, Mariusz R; Pinton, Paolo

    2016-06-01

    Mitochondrial permeability transition (mPT) refers to a sudden increase in the permeability of the inner mitochondrial membrane. Long-term studies of mPT revealed that this phenomenon has a critical role in multiple pathophysiological processes. mPT is mediated by the opening of a complex termed the mPT pore (mPTP), which is responsible for the osmotic influx of water into the mitochondrial matrix, resulting in swelling of mitochondria and dissipation of the mitochondrial membrane potential. Here we provide three independent optimized protocols for monitoring mPT in living cells: (i) measurement using a calcein-cobalt technique, (ii) measurement of the mPTP-dependent alteration of the mitochondrial membrane potential, and (iii) measurement of mitochondrial swelling. These procedures can easily be modified and adapted to different cell types. Cell culture and preparation of the samples are estimated to take ∼1 d for methods (i) and (ii), and ∼3 d for method (iii). The entire experiment, including analyses, takes ∼2 h. PMID:27172167

  8. Development of a two photon/laser induced fluorescence technique for the detection of atmospheric OH radicals

    NASA Technical Reports Server (NTRS)

    Bradshaw, John

    1990-01-01

    The development of a new mid-IR laser source was the primary goal. Backward propagating stimulated D2 Raman frequency down conversion of a commercially available 1.06 micron Nd:YAG laser was shown to generate an efficient source of 1.56 micron radiation with near diffraction limited beam quality. The efficient generation of a 2.9 micron laser source was also achieved using backward propagating CH4 Raman frequency down conversion of the 1.56 micron pump. Slightly higher efficiencies were obtained for frequency down conversion of the 1.06 micron Nd:YAG using the H2 Raman shift yielding a near diffraction limited source in the 200 mJ range at 1.9 micron. Similar conversion efficiencies are anticipated as a result of extending the wavelength coverage of recently available Ti:sapphire pulse laser to not only cover the 740 to 860 nm fundamental wavelength range but also the .95 to 1.15 and 1.06 to 1.33 micron range using D2 and H2, respectively. The anticipated sensitivity of a TP-LIF OH sensor using this mid-IR source would give signal limited detection of 1.4 x 10(exp 5) OH/cu cm under boundary layer conditions and 5.5 x 10(exp 4) OH/cu cm under free troposphere sampling conditions for a five minute signal integration period. This level of performance coupled with the techniques non-perturbing nature and freedom from both interferences and background would allow reliable tropospheric OH measurement to be obtained under virtually any ambient condition of current interest, including interstitial and sampling.

  9. Method for in situ characterization of a medium of dispersed matter in a continuous phase

    DOEpatents

    Kaufman, E.N.

    1995-03-07

    A method is described for the in situ characterization of a medium of a dispersed phase in a continuous phase, including the steps of adding a fluorescent dye to one phase capable of producing fluorescence therein when the fluorescent dye is optically excited, optically exciting the fluorescent dye at a wavelength to produce fluorescence in the one phase, and monitoring the fluorescence to distinguish the continuous phase from the dispersed phase. 2 figs.

  10. Method for in situ characterization of a medium of dispersed matter in a continuous phase

    DOEpatents

    Kaufman, Eric N.

    1995-01-01

    A method for in situ characterization of a medium of a dispersed phase in a continuous phase, including the steps of adding a fluorescent dye to one phase capable of producing fluorescence therein when the fluorescent dye is optically excited, optically exciting the fluorescent dye at a wavelength to produce fluorescence in the one phase, and monitoring the fluorescence to distinguish the continuous phase from the dispersed phase.

  11. Determination of bisphenol A, 4-octylphenol, and 4-nonylphenol in soft drinks and dairy products by ultrasound-assisted dispersive liquid-liquid microextraction combined with derivatization and high-performance liquid chromatography with fluorescence detection.

    PubMed

    Lv, Tao; Zhao, Xian-En; Zhu, Shuyun; Qu, Fei; Song, Cuihua; You, Jinmao; Suo, Yourui

    2014-10-01

    A novel hyphenated method based on ultrasound-assisted dispersive liquid-liquid microextraction coupled to precolumn derivatization has been established for the simultaneous determination of bisphenol A, 4-octylphenol, and 4-nonylphenol by high-performance liquid chromatography with fluorescence detection. Different parameters that influence microextraction and derivatization have been optimized. The quantitative linear range of analytes is 5.0-400.0 ng/L, and the correlation coefficients are more than 0.9998. Limits of detection for soft drinks and dairy products have been obtained in the range of 0.5-1.2 ng/kg and 0.01-0.04 μg/kg, respectively. Relative standard deviations of intra- and inter-day precision for retention time and peak area are in the range of 0.47-2.31 and 2.76-8.79%, respectively. Accuracy is satisfactory in the range of 81.5-118.7%. Relative standard deviations of repeatability are in the range of 0.35-1.43 and 2.36-4.75% for retention time and peak area, respectively. Enrichment factors for bisphenol A, 4-octylphenol, and 4-nonylphenol are 170.5, 240.3, and 283.2, respectively. The results of recovery and matrix effect are in the range of 82.7-114.9 and 92.0-109.0%, respectively. The proposed method has been applied to the determination of bisphenol A, 4-octylphenol, and 4-nonylphenol in soft drinks and dairy products with much higher sensitivity than many other methods. PMID:25045130

  12. Novel functionalized fluorescent polymeric nanoparticles for immobilization of biomolecules

    NASA Astrophysics Data System (ADS)

    Jain, Swati; Chattopadhyay, Sruti; Jackeray, Richa; Abid, C. K. V. Zainul; Singh, Harpal

    2013-07-01

    Novel, size controlled fluorescent polymeric nanoparticles (FPNP) were synthesized having acetoacetoxy functionality on the surface for immobilization of biomolecules which can be utilized as biomarkers and labels in fluoroimmunoassays. Core-shell nanoparticles of poly(styrene, St-methyl methacrylate, MMA-acetoacetoxy ethyl methacrylate, AAEM), stabilized by various concentrations of surfactant, sodium lauryl sulphate (SLS), were obtained by facile miniemulsion co-polymerization encapsulated with pyrene molecules in their hydrophobic core. Analytical, spectroscopic and imaging characterization techniques revealed the formation of stable, monodisperse, spherical nano sized particles exhibiting high luminescence properties. Particles with 1% SLS (S1) showed good dispersion stability and fluorescence intensity and were chosen as ideal candidates for further immobilization studies. Steady state fluorescence studies showed 10 times higher fluorescence intensity of S1 nanoparticles than that of pyrene solution in solvent-toluene at the same concentration. Environmental factors such as pH, ionic strength and time were found to have no effect on fluorescence intensity of FPNPs. Surface β-di-ketone groups were utilized for the covalent immobilization of enzyme conjugated antibodies without any activation or pre-treatment of nanoparticles.Novel, size controlled fluorescent polymeric nanoparticles (FPNP) were synthesized having acetoacetoxy functionality on the surface for immobilization of biomolecules which can be utilized as biomarkers and labels in fluoroimmunoassays. Core-shell nanoparticles of poly(styrene, St-methyl methacrylate, MMA-acetoacetoxy ethyl methacrylate, AAEM), stabilized by various concentrations of surfactant, sodium lauryl sulphate (SLS), were obtained by facile miniemulsion co-polymerization encapsulated with pyrene molecules in their hydrophobic core. Analytical, spectroscopic and imaging characterization techniques revealed the formation of stable

  13. Formation of the dispersed particles composed of retinol and phosphatidylchiline.

    PubMed

    Asai, Yasuyuki

    2003-03-01

    The purpose of this study was to investigate the dispersal mechanism of retinol (Vitamin A, VA) into phospholipid. VA was dispersed with soybean phosphatidylcholine (PC) using sonication and the dispersal mechanism was evaluated by characterizing the dispersed particles using dynamic light scattering, fluorescence spectroscopy and surface monolayer techniques. The dispersions in the VA mole fraction range of 0.1-0.7 were stable at room temperature for 3 days. A limited amount of VA was incorporated into PC bilayer membranes (approximately 3 mol%). The excess VA separated from the PC bilayers was stabilized as emulsion particles by the PC surface monolayer. When the PC content was less than the solubility in VA (mole fraction of VA: more than 0.8), the PC monolayer did not completely cover the hydrophobic VA particle surfaces. In the case, the particle size increased drastically and the separation into oil/water occurred. The miscibility between VA and PC and the lipid composition were critically important for the stability of the dispersed particles (coexistence of emulsion particles (surface monolayer of PC+core of VA) with vesicular particles (bilayer)) of the lipid mixtures. PMID:12593940

  14. Selective detection of uranium by laser-induced fluorescence: a potential remote-sensing technique. 1: Optical characteristics of uranyl geologic targets.

    PubMed

    Deneufville, J P; Kasdan, A; Chimenti, R J

    1981-04-15

    The remote sensing of laser-induced uranyl ion fluorescence is examined as a potential indicator of uranium occurring in geologic materials at the earth's surface. The lifetime and brightness of the fluorescence from a wide variety of rocks, minerals, and soils are reported. The distinctive characteristics of uranyl ion absorption and fluorescence were observed in diverse geologic materials such as chalcedonies and opals containing 15-3000 ppm of uranium and in surface coatings of uranyl minerals such as metaautunite, liebigite, and an-dersonite. The conditions which permit the excitation and selective detection of uranyl ion fluorescence from such targets are described. PMID:20309303

  15. A Novel Technique of Synthesis of Highly Fluorescent Carbon Nanoparticles from Broth Constituent and In-vivo Bioimaging of C. elegans.

    PubMed

    Pramanik, A; Kole, A K; Krishnaraj, R N; Biswas, S; Tiwary, C S; Varalakshmi, P; Rai, S K; Kumar, B A; Kumbhakar, P

    2016-09-01

    Here we have demonstrated a novel single step technique of synthesis of highly fluorescent carbon nanoparticles (CNPs) from broth constituent and in vivo bioimaging of Caenorhabditis elegans (C. elegans) with the synthesized CNPs has been presented. The synthesized CNPs has been characterized by the UV-visible (UV-Vis) absorption spectroscopy, transmission electron microscopy (TEM) and Raman studies. The sp (2) cluster size of the synthesized samples has been determined from the measured Raman spectra by fitting it with the theoretical skew Lorentzian (Breit-Wigner- Fano (BWF)) line shape. The synthesised materials are showing excitation wavelength dependent tunable photoluminescence (PL) emission characteristics with a high quantum yield (QY) of 3 % at a very low concentration of CNPs. A remarkable increase in the intensity of PL emission from 16 % to 39 % in C. elegans has also been observed when the feeding concentration of CNPs to C. elegans is increased from 0.025 % to 0.1 % (w/v). The non-toxicity and water solubility of the synthesized material makes it ideal candidate for bioimaging. PMID:27380200

  16. Reaction dynamics of V(a 4FJ)+NO-->VO(X 4Σ-)+N studied by a crossed-beam laser-induced fluorescence technique

    NASA Astrophysics Data System (ADS)

    Ishida, M.; Yamashiro, R.; Matsumoto, Y.; Honma, Kenji

    2006-05-01

    The dynamics of the reaction, V(aFJ4)+NO →VO(XΣ-4)+N was studied by using a crossed-beam technique at 16.4kJ/mol of collision energy. The V atomic beam was generated by laser vaporization and crossed with the O2 beam at a right angle. The laser-induced fluorescence (LIF) for the transition of VO(BΠ4-XΣ4) was used to determine the rotational state distribution of the reaction product in the vibrational ground state. Almost pure V(aFJ4) beam was obtained by using the mixture of NH3 with N2 as a carrier gas. Comparing the LIF spectra of VO measured for two carrier gases, i.e., NH3/N2 and pure N2, it was concluded that the vibrational ground state of VO(XΣ-4) is formed almost entirely from the reaction of V(aFJ4) and the contribution of the metastable V(aDJ6) is negligible. The observed rotational distribution was similar to a statistical prior prediction, and suggested that the title reaction proceeds via a long-lived intermediate, which is consistent with an electron transfer mechanism.

  17. Masking Agents Evaluation for Lead Determination by Flow Injection-Hydride Generation-Atomic Fluorescence Spectrometry Technique: Effect of KI, L-Cysteine, and 1,10-Phenanthroline

    PubMed Central

    Beltrán, Blanca G.; Ferrer, Laura; Cerdà, Víctor

    2016-01-01

    Hydride generation (HG) of lead technique presents interferences from foreign ions of complex matrix samples. In order to minimize these interferences, the effect of masking agents such as KI, L-cysteine, and 1,10-phenanthroline was studied in the absence and in the presence of selected interfering species (As, Cr, Cu, and Fe). Different modes of addition of masking agents were accomplished, that is, to either sample or KBH4 reducing solution. The lead determinations were performed using a flow injection analysis (FIA) system coupled to HG and atomic fluorescence spectrometry (AFS). The linearity of calibration curves (1–10 μg Pb L−1) was not affected by the addition of the masking agents. The use of KI in the reducing solution diminished interferences from concentrations of As and Cu, while 1,10-phenanthroline showed a positive effect on the interference by As. Moreover, Cr and Cu appeared to be the most serious interfering ions for plumbane (PbH4), because they drastically reduced the analytical signal of lead. Fe did not present any interference under the employed experimental conditions, even at high levels. The accuracy was established through the analysis of certified reference material (i.e., BCR-610, groundwater) using KI as masking agent. The detection limit reached by FIA-HG-AFS proposed methodology was 0.03 μg Pb L−1. PMID:27148365

  18. Masking Agents Evaluation for Lead Determination by Flow Injection-Hydride Generation-Atomic Fluorescence Spectrometry Technique: Effect of KI, L-Cysteine, and 1,10-Phenanthroline.

    PubMed

    Beltrán, Blanca G; Leal, Luz O; Ferrer, Laura; Cerdà, Víctor

    2016-01-01

    Hydride generation (HG) of lead technique presents interferences from foreign ions of complex matrix samples. In order to minimize these interferences, the effect of masking agents such as KI, L-cysteine, and 1,10-phenanthroline was studied in the absence and in the presence of selected interfering species (As, Cr, Cu, and Fe). Different modes of addition of masking agents were accomplished, that is, to either sample or KBH4 reducing solution. The lead determinations were performed using a flow injection analysis (FIA) system coupled to HG and atomic fluorescence spectrometry (AFS). The linearity of calibration curves (1-10 μg Pb L(-1)) was not affected by the addition of the masking agents. The use of KI in the reducing solution diminished interferences from concentrations of As and Cu, while 1,10-phenanthroline showed a positive effect on the interference by As. Moreover, Cr and Cu appeared to be the most serious interfering ions for plumbane (PbH4), because they drastically reduced the analytical signal of lead. Fe did not present any interference under the employed experimental conditions, even at high levels. The accuracy was established through the analysis of certified reference material (i.e., BCR-610, groundwater) using KI as masking agent. The detection limit reached by FIA-HG-AFS proposed methodology was 0.03 μg Pb L(-1). PMID:27148365

  19. Characterizing the compositional variation of dissolved organic matter over hydrophobicity and polarity using fluorescence spectra combined with principal component analysis and two-dimensional correlation technique.

    PubMed

    Su, Ben-Sheng; Qu, Zhen; He, Xiao-Song; Song, Ying-Hao; Jia, Li-Min

    2016-05-01

    Dissolved organic matter (DOM) obtained from three leachates with different landfill ages was fractionated, and its compositional variation based on hydrophobicity and polarity was characterized by synchronous fluorescence spectra combined with principal component analysis (PCA) and two-dimensional correlation technique. The results showed that the bulk DOM and its fractions were comprised of tryosine-, tryptophan-, fulvic-, and humic-like substances. Tyrosine-like matter was dominant in the young leachate DOM and its fractions, while tryptophan-, fulvic-, and humic-like substances were the main components in the intermediate and old leachate DOMs and their fractions. Tryosine-, tryptophan-, fulvic-, and humic-like substances varied concurrently with the hydrophobicity and polarity. However, the change ratio of these substances was different for the three leachates. Tyrosine-like matter, humic-like materials, and fulvic-like substances were the most sensitive to the hydrophobicity and polarity in the young, intermediate, and old leachates, respectively. Such an integrated approach jointly enhances the characterization of the hydrophobicity- and polarity-dependent DOM fractions and provides a promising way to elucidate the environmental behaviors of different DOM species. PMID:26841775

  20. Determination of mercury species by the diffusive gradient in thin film technique and liquid chromatography--atomic fluorescence spectrometry after microwave extraction.

    PubMed

    Pelcová, Pavlína; Dočekalová, Hana; Kleckerová, Andrea

    2015-03-25

    A diffusive gradient in thin films technique (DGT) was combined with liquid chromatography (LC) and cold vapor atomic fluorescence spectrometry (CV-AFS) for the simultaneous quantification of four mercury species (Hg(2+), CH3Hg(+), C2H5Hg(+), and C6H5Hg(+)). After diffusion through an agarose diffusive layer, the mercury species were accumulated in resin gels containing thiol-functionalized ion-exchange resins (Duolite GT73, and Ambersep GT74). A microwave-assisted extraction (MAE) in the presence of 6M HCl and 5 M HCl (55 °C, 15 min) was used for isolation of mercury species from Ambersep and Duolite resin gels, respectively. The extraction efficiency was higher than 95.0% (RSD 3.5%). The mercury species were separated with a mobile phase containing 6.2% methanol+0.05% 2-mercaptoethanol+0.02 M ammonium acetate with a stepwise increase of methanol content up to 80% in the 16th min on a Zorbax C18 reverse phase column. The LODs of DGT-MAE-LC-CV-AFS method were 38 ng L(-1) for CH3Hg(+), 13 ng L(-1) for Hg(2+), 34 ng L(-1) for C2H5Hg(+) and 30 ng L(-1) for C6H5Hg(+) for 24 h DGT accumulation at 25 °C. PMID:25732689

  1. Application of planar laser-induced fluorescence measurement techniques to study the heat transfer characteristics of parallel-plate heat exchangers in thermoacoustic devices

    NASA Astrophysics Data System (ADS)

    Shi, Lei; Mao, Xiaoan; Jaworski, Artur J.

    2010-11-01

    This paper describes the development of an experimental arrangement and the application of acetone-based planar laser-induced fluorescence (PLIF) measurement techniques to study the unsteady characteristics of heat transfer processes in the parallel-plate heat exchangers of thermoacoustic devices. The experimental rig is a quarter-wavelength acoustic resonator where a standing wave imposes oscillatory flow conditions. Two mock-up heat exchangers, 'hot' and 'cold', have their fins kept at constant temperatures by electrical heating and water cooling, respectively. A purpose-designed acetone tracer seeding mechanism is used for PLIF temperature measurement. Acetone concentration is optimized from the viewpoint of PLIF signal intensity. Two-dimensional temperature distributions in the gas surrounding the heat exchanger plates, as a function of phase angle in the acoustic cycle, are obtained. Local and global (instantaneous and cycle-averaged) heat flux values on the fin surface are estimated and used to obtain the dependence of the space-cycle averaged Nusselt versus Reynolds number. Measurement uncertainties are discussed.

  2. Application of fluorescence resonance energy transfer techniques to the study of lectin-binding site distribution on Paramecium primaurelia (Protista, Ciliophora) cell surface.

    PubMed

    Locatelli, D; Delmonte Corrado, M U; Politi, H; Bottiroli, G

    1998-01-01

    Fluorescence resonance energy transfer (FRET) is a photophysical phenomenon occurring between the molecules of two fluorochromes with suitable spectral characteristics (donor-acceptor dye pair), and consisting in an excitation energy migration through a non-radiative process. Since the efficiency of the process is strictly dependent on the distance and reciprocal orientation of the donor and acceptor molecules, FRET-based techniques can be successfully applied to the study of biomolecules and cell component organisation and distribution. These techniques have been employed in studying Paramecium primaurelia surface membrane for the reciprocal distribution of N-acetylneuraminic acid (NeuAc) and N-acetylglucosamine (GlcNAc) glycosidic residues, which were found to be involved in mating cell pairing. NeuAc and GlcNAc were detected by their specific binding lectins, Limulus polyphemus agglutinin (LPA) and wheat germ agglutinin (WGA), respectively. Microspectrofluorometric analysis afforded the choice of fluorescein isothiocyanate and Texas red conjugated with LPA and WGA, respectively, as a suitable donor-acceptor couple efficiently activating FRET processes. Studies performed both in solution and in cells allowed to define the experimental conditions favourable for a FRET analysis. The comparative study carried out both on the conjugating-region and the non conjugating region of the surface membrane, indicates that FRET distribution appears quite homogeneous in mating-competent mating type (mt) I, whereas, in mating-competent mt II cells, FRET distribution seems to be preferentially localised on the conjugating-region functionally involved in mating cell pairing. This difference in the distribution of lectin-binding sites is suggested to be related to mating-competence acquisition. PMID:9857246

  3. Some aspects of analytical chemistry as applied to water quality assurance techniques for reclaimed water: The potential use of X-ray fluorescence spectrometry for automated on-line fast real-time simultaneous multi-component analysis of inorganic pollutants in reclaimed water

    NASA Technical Reports Server (NTRS)

    Ling, A. C.; Macpherson, L. H.; Rey, M.

    1981-01-01

    The potential use of isotopically excited energy dispersive X-ray fluorescence (XRF) spectrometry for automated on line fast real time (5 to 15 minutes) simultaneous multicomponent (up to 20) trace (1 to 10 parts per billion) analysis of inorganic pollutants in reclaimed water was examined. Three anionic elements (chromium 6, arsenic and selenium) were studied. The inherent lack of sensitivity of XRF spectrometry for these elements mandates use of a preconcentration technique and various methods were examined, including: several direct and indirect evaporation methods; ion exchange membranes; selective and nonselective precipitation; and complexation processes. It is shown tha XRF spectrometry itself is well suited for automated on line quality assurance, and can provide a nondestructive (and thus sample storage and repeat analysis capabilities) and particularly convenient analytical method. Further, the use of an isotopically excited energy dispersive unit (50 mCi Cd-109 source) coupled with a suitable preconcentration process can provide sufficient sensitivity to achieve the current mandated minimum levels of detection without the need for high power X-ray generating tubes.

  4. Dispersion coefficients for coastal regions

    SciTech Connect

    MacRae, B.L.; Kaleel, R.J.; Shearer, D.L.

    1983-03-01

    The Nuclear Regulatory Commission (NRC) has undertaken an extensive atmospheric dispersion research and measurement program from which it is intended will emerge improved predictive techniques for employment in licensing decisions and for emergency planning and response. Through this program the NRC has conducted field measurement programs over a wide range of geographic and topographic locations, and are using the acquired tracer and meteorological measurements to evaluate existing dispersion models and prediction techniques, and to develop new techniques when necessary.

  5. Analysis of eight argonne premium coal samples by X-ray fluorescence spectrometry

    USGS Publications Warehouse

    Evans, J.R.; Sellers, G.A.; Johnson, R.G.; Vivit, D.V.; Kent, J.

    1990-01-01

    X-ray fluorescence spectrometric methods were used in the analysis of eight Argonne Premium Coal Samples. Trace elements (Cr, Ni, Cu, Zn, Rb, Sr, Y, Zr, Nb, Ba, La, and Ce) in coal ash were determined by energy-dispersive X-ray fluorescence spectrometry; major elements (Na, Mg, Al, Si, P, S, K, Ca, Ti, Mn, and Fe) in coal ash and trace elements (Cl and P) in whole coal were determined by wavelength-dispersive X-ray fluorescence spectrometry. The results of this study will be used in a geochemical database compiled for these materials from various analytical techniques. The experimental XRF methods and procedures used to determine these major and trace elements are described.

  6. Snapshot imaging Fraunhofer line discriminator for detection of plant fluorescence

    NASA Astrophysics Data System (ADS)

    Gupta Roy, S.; Kudenov, M. W.

    2015-05-01

    Non-invasive quantification of plant health is traditionally accomplished using reflectance based metrics, such as the normalized difference vegetative index (NDVI). However, measuring plant fluorescence (both active and passive) to determine photochemistry of plants has gained importance. Due to better cost efficiency, lower power requirements, and simpler scanning synchronization, detecting passive fluorescence is preferred over active fluorescence. In this paper, we propose a high speed imaging approach for measuring passive plant fluorescence, within the hydrogen alpha Fraunhofer line at ~656 nm, using a Snapshot Imaging Fraunhofer Line Discriminator (SIFOLD). For the first time, the advantage of snapshot imaging for high throughput Fraunhofer Line Discrimination (FLD) is cultivated by our system, which is based on a multiple-image Fourier transform spectrometer and a spatial heterodyne interferometer (SHI). The SHI is a Sagnac interferometer, which is dispersion compensated using blazed diffraction gratings. We present data and techniques for calibrating the SIFOLD to any particular wavelength. This technique can be applied to quantify plant fluorescence at low cost and reduced complexity of data collection.

  7. Effect of polarization and geometric factors on quantitative laser-induced fluorescence- to-Raman intensity ratios of water samples and a new calibration technique

    NASA Astrophysics Data System (ADS)

    Sivaprakasam, Vasanthi; Killinger, Dennis K.

    2003-09-01

    A 266-nm laser-induced fluorescence system was used to study the effect of polarization of the excitation source and geometry of the collection optics on the ratio of the signal from a fluorescence standard, quinine sulfate, and the Raman scatter from water. Although the ratio is sometimes considered to be a constant and is used for intersystem comparisons, our studies showed that the Raman signal and, thus, the ratio can vary by a factor of up to 3.6. These experimental values agree with previous studies by others involving gas and flame Raman spectroscopy and suggest a new calibration method for intersystem comparison of different fluorescence systems.

  8. Comparison of two fluorescent antibody techniques (FATS) for detection and quantification of Renibacterium salmoninarum in coelomic fluid of spawning chinook salmon Oncorhynchus tshawytscha

    USGS Publications Warehouse

    Elliott, D.G.; McKibben, C.L.

    1997-01-01

    Two versions of the fluorescent antibody technique (FAT) were compared for detection and quantification of Renibacterium salmoninarum in coelomic fluid samples from naturally infected spawning chinook salmon Oncorhynchus tshawytscha. For the membrane filtration-FAT (MF-FAT), trypsin-treated samples were passed through 0.2 ??m polycarbonate filters to concentrate bacteria for direct enumeration by immunofluorescence microscopy. For the smear-FAT (S-FAT), samples were centrifuged at 8800 x g for 10 min and the pelleted material was smeared on slides for immunofluorescence staining Detected prevalences of Renibacterium salmoninarum were 1.8 to 3.4 times higher by the MF-FAT than by the S-FAT: differences were significant at p ??? 0.0002. The S-FAT consistently detected R. salmoninarum only in samples with calculated bacterial concentrations ??? 2.4 x 103 cells ml-1 by MF-FAT testing. Increasing the area examined on a filter or slide from 50 to 100 microscope fields at 1000x magnification resulted in the detection of a maximum of 4% additional positive samples by the MF-FAT and 7% additional positive samples by the S-FAT. In individual samples for which bacterial counts were obtained by both the MF-FAT and the S-FAT, the counts averaged from 47 times (??30 SD) to 175 times (??165 SD) higher by the MF-FAT. Centrifugation of samples at 10000 x g for 10 min resulted in a 4-fold increase in mean bacterial counts by the S-FAT compared with a 10-min centrifugation at 2000 x g, but the highest calculated bacterial concentration obtained by S-FAT testing was more than 6-fold lower than that obtained for the same sample by MF-FAT testing. Because of its greater sensitivity, the MF-FAT is preferable to the S-FAT for use in critical situations requiring the detection of low numbers of R. salmoninarum.

  9. Stage-dependency of apoptosis and the blood-testis barrier in the dogfish shark (Squalus acanthias): cadmium-induced changes as assessed by vital fluorescence techniques.

    PubMed

    McClusky, Leon M

    2006-09-01

    Naturally occurring heavy metals and synthetic compounds are potentially harmful for testicular function but evidence linking heavy metal exposure to reduced semen parameters is inconclusive. Elucidation of the exact stage at which the toxicant interferes with spermatogenesis is difficult because the various germ cell stages may have different sensitivities to any given toxicant, germ cell development is influenced by supporting testicular somatic cells and the presence of inter-Sertoli cell tight junctions create a blood-testis barrier, sequestering meiotic and postmeiotic germ cells in a special microenvironment. Sharks such as Squalus acanthias provide a suitable model for studying aspects of vertebrate spermatogenosis because of their unique features: spermatogenesis takes place within spermatocysts and relies mainly on Sertoli cells for somatic cell support; spermatocysts are linearly arranged in a maturational order across the diameter of the elongated testis; spermatocysts containing germ cells at different stages of development are topographically separated, resulting in visible zonation in testicular cross sections. We have used the vital dye acridine orange and a novel fluorescence staining technique to study this model to determine (1) the efficacy of these methods in assays of apoptosis and blood-testis barrier function, (2) the sensitivity of the various spermatogonial generations in Squalus to cadmium (as an illustrative spermatotoxicant) and (3) the way that cadmium might affect more mature spermatogenic stages and other physiological processes in the testis. Our results show that cadmium targets early spermatogenic stages, where it specifically activates a cell death program in susceptible (mature) spermatogonial clones, and negatively affects blood-testis barrier function. Since other parameters are relatively unaffected by cadmium, the effects of this toxicant on apoptosis are presumably process-specific and not attributable to general toxicity

  10. Realizing up-conversion fluorescence tuning in lanthanide-doped nanocrystals by femtosecond pulse shaping method

    PubMed Central

    Zhang, Shian; Yao, Yunhua; Shuwu, Xu; Liu, Pei; Ding, Jingxin; Jia, Tianqing; Qiu, Jianrong; Sun, Zhenrong

    2015-01-01

    The ability to tune color output of nanomaterials is very important for their applications in laser, optoelectronic device, color display and multiplexed biolabeling. Here we first propose a femtosecond pulse shaping technique to realize the up-conversion fluorescence tuning in lanthanide-doped nanocrystals dispersed in the glass. The multiple subpulse formation by a square phase modulation can create different excitation pathways for various up-conversion fluorescence generations. By properly controlling these excitation pathways, the multicolor up-conversion fluorescence can be finely tuned. This color tuning by the femtosecond pulse shaping technique is realized in single material by single-color laser field, which is highly desirable for further applications of the lanthanide-doped nanocrystals. This femtosecond pulse shaping technique opens an opportunity to tune the color output in the lanthanide-doped nanocrystals, which may bring a new revolution in the control of luminescence properties of nanomaterials. PMID:26290391

  11. Emission Properties from ZnO Quantum Dots Dispersed in SiO{sub 2} Matrix

    SciTech Connect

    Panigrahi, Shrabani; Basak, Durga

    2011-07-15

    Dispersion of ZnO quantum dots in SiO{sub 2} matrix has been achieved in two techniques based on StOeber method to form ZnO QDs-SiO{sub 2} nanocomposites. Sample A is formed with random dispersion by adding tetraethyl orthosilicate (TEOS) to an ethanolic solution of ZnO nanoparticles and sample B is formed with a chain-like ordered dispersion by adding ZnO nanoparticles to an already hydrolyzed ethanolic TEOS solution. The photoluminescence spectra of the as-grown nanocomposites show strong emission in the ultraviolet region. When annealed at higher temperature, depending on the sample type, these show strong red or white emission. Interestingly, when the excitation is removed, the orderly dispersed ZnO QDs-SiO{sub 2} composite shows a very bright blue fluorescence visible by naked eyes for few seconds indicating their promise for display applications.

  12. Effect of Controlled Deposition of ZnS Shell on the Photostability of CdTe Quantum Dots as Studied by Conventional Fluorescence and FCS Techniques.

    PubMed

    Patra, Satyajit; Seth, Sudipta; Samanta, Anunay

    2015-12-21

    The effect of one and two monolayers of ZnS shells on the photostability of CdTe quantum dots (QDs) in aqueous and nonaqueous media has been studied by monitoring the fluorescence behavior of the QDs under ensemble and single-molecule conditions. ZnS capping of the CdTe QDs leads to significant enhancement of the fluorescence brightness of these QDs. Considerable enhancement of the photostability of the shell-protected QDs, including the suppression of photoactivation, is also observed. Fluorescence correlation spectroscopy measurements reveal an increase in the number of particles undergoing reversible fluorescent on-off transitions in the volume under observation with increasing excitation power; this effect is found to be more pronounced in the case of core-only QDs than for core-shell QDs. PMID:26432977

  13. BIOCOMPATIBLE FLUORESCENT MICROSPHERES: SAFE PARTICLES FOR MATERIAL PENETRATION STUDIES

    SciTech Connect

    farquar, G; Leif, R

    2008-09-12

    Biocompatible polymers with hydrolyzable chemical bonds are being used to produce safe, non-toxic fluorescent microspheres for material penetration studies. The selection of polymeric materials depends on both biocompatibility and processability, with tailored fluorescent properties depending on specific applications. Microspheres are composed of USFDA-approved biodegradable polymers and non-toxic fluorophores and are therefore suitable for tests where human exposure is possible. Micropheres are being produced which contain unique fluorophores to enable discrimination from background aerosol particles. Characteristics that affect dispersion and adhesion can be modified depending on use. Several different microsphere preparation methods are possible, including the use of a vibrating orifice aerosol generator (VOAG), a Sono-Tek atomizer, an emulsion technique, and inkjet printhead. The advantages and disadvantages of each method will be presented and discussed in greater detail along with fluorescent and charge properties of the aerosols. Applications for the fluorescent microspheres include challenges for biodefense system testing, calibrants for biofluorescence sensors, and particles for air dispersion model validation studies.

  14. Selective detection of uranium by laser-induced fluorescence: a potential remote-sensing technique. 2: Experimental assessment of the remote sensing of uranyl geologic targets.

    PubMed

    Kasdan, A; Chimenti, R J; Deneufville, J P

    1981-04-15

    An analysis is presented of a method to detect selectively uranyl ion fluorescence from geologic targets. Limitations to the sensitivity which are imposed by system parameters and noise sources are discussed. A ground-based laser system designed and constructed as part of this study is described, and data obtained with this system are presented. Finally the operating criteria of a conceptual airborne system for regional mapping of uranyl fluorescence anomalies are considered. PMID:20309304

  15. X-ray fluorescence analysis major elements in silicate minerals

    SciTech Connect

    Hagan, R.C.

    1982-09-01

    An automated wavelength-dispersive x-ray fluorescence spectrometer is operational for analysis of major elements in rocks and minerals. Procedures for trace-element analysis are being developed. Sample preparation methods and analytical techniques are similar to those commonly used elsewhere, but data reduction is conducted by the Fundamental Parameters program developed by Criss. Unlike empirically derived calibration curves, this data reduction method considers x-ray absorption and secondary fluorescence, which vary with differences in sample composition. X-ray intensities for each element from several standards are averaged to develop a theoretical standard for comparison with samples of unknown composition. Accurate data for samples with wide compositional ranges result from these data reduction and standardization techniques.

  16. Measurement of Nanoparticle Magnetic Hyperthermia Using Fluorescent Microthermal Imaging

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaowan; van Keuren, Edward

    Nanoparticle magnetic hyperthermia uses the application of an AC magnetic field to ferromagnetic nanoparticles to elevate the temperature of cancer cells. The principle of hyperthermia as a true cell-specific therapy is that tumor cells are more sensitive to high temperature, so it is of great importance to control the locality and magnitude of the temperature differences. One technique to measure temperature variations on microscopic length scales is fluorescent microthermal imaging (FMI). Since it is the local temperature that is measured in FMI, effects such as heating due to nearby field coils can be accounted for. A dye, the rare earth chelate europium thenoyltrifluoroacetonate (Eu:TTA), with a strong temperature-dependent fluorescence emission has been incorporated into magnetic nanoparticles dispersed in a polymer films. FMI experiments were carried out on these samples under an applied high frequency magnetic field. Preliminary results show that FMI is a promising technique for characterizing the local generation of heat in nanoparticle magnetic hyperthermia.

  17. Thermal, Mechanical and Rheological Behaviors of Nanocomposites Based on UHMWPE/Paraffin Oil/Carbon Nanofiller Obtained by Using Different Dispersion Techniques

    NASA Astrophysics Data System (ADS)

    Visco, Annamaria; Yousef, Samy; Galtieri, Giovanna; Nocita, Davide; Pistone, Alessandro; Njuguna, James

    2016-04-01

    Ultra-high molecular weight polyethylene (UHMWPE) is a very attractive polymer employed as a high performance material. For its high viscosity, dispersion of fillers is considered a critical point in UHMWPE nanocomposites preparation process. Currently, paraffin oil (PO) is used extensively to overcome this issue in an assisted melt-mixing process. In this work, we have prepared nanocomposites based on UHMWPE, carbon nanofiller (CNF) and PO mixed by different mixing methods: magnetic stirring, ball milling (BM), ultrasonic and Mini-Lab extruder (EX). The aim of this work was to check the effect of the dispersion method on the mechanical and thermal features of UHMWPE/CNF nano composites in order to obtain a material with improved mechanical and physical properties. The samples were characterized by calorimetric, density, mechanical tensile and rheological analyses. Experimental results highlighted that the nanocomposites produced by EX and BM exhibits the best dispersion, good filler matrix interaction and had significantly improved mechanical properties compared to pure UHMWPE. For instance, for the BM method, the yield strength improved to 18.6 MPa (+96%), the yield strain improved by 60%, while stress at break improved by 13%. In summary, the EX improved the stiffness while the BM produced better ductility, melting temperature and the crystalline degree of the nanocomposites.

  18. Janus nanobelts: fabrication, structure and enhanced magnetic-fluorescent bifunctional performance

    NASA Astrophysics Data System (ADS)

    Ma, Qianli; Yu, Wensheng; Dong, Xiangting; Wang, Jinxian; Liu, Guixia

    2014-02-01

    A new nanostructure of magnetic-fluorescent bifunctional Janus nanobelts with Fe3O4/PMMA as one half and Tb(BA)3phen/PMMA as the other half has been successfully fabricated by a specially designed parallel spinneret electrospinning technology. The morphology and properties of the final products were investigated in detail by X-ray diffractometry (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), biological microscopy (BM), vibrating sample magnetometry (VSM) and fluorescence spectroscopy. The results revealed that the [Fe3O4/PMMA]//[Tb(BA)3phen/PMMA] magnetic-fluorescent bifunctional Janus nanobelts possess superior magnetic and fluorescent properties due to their special nanostructure. Compared with Fe3O4/Tb(BA)3phen/PMMA composite nanobelts, the magnetic-fluorescent bifunctional Janus nanobelts provided better performance. The new magnetic-fluorescent bifunctional Janus nanobelts have potential applications in novel nano-bio-label materials, drug target delivery materials and future nanodevices due to their excellent magnetic-fluorescent properties, flexibility and insolubility. Moreover, the construction technique for the Janus nanobelts is of universal significance for the fabrication of other multifunctional Janus nanobelts.A new nanostructure of magnetic-fluorescent bifunctional Janus nanobelts with Fe3O4/PMMA as one half and Tb(BA)3phen/PMMA as the other half has been successfully fabricated by a specially designed parallel spinneret electrospinning technology. The morphology and properties of the final products were investigated in detail by X-ray diffractometry (XRD), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), biological microscopy (BM), vibrating sample magnetometry (VSM) and fluorescence spectroscopy. The results revealed that the [Fe3O4/PMMA]//[Tb(BA)3phen/PMMA] magnetic-fluorescent bifunctional Janus nanobelts possess superior magnetic and fluorescent properties due to their special

  19. Integrating fluorescence and interactance measurements to improve apple maturity assessment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Fluorescence and interactance are promising techniques for measuring fruit quality and condition. Our previous research showed that a hyperspectral imaging technique integrating fluorescence and reflectance could improve predictions of selected quality parameters compared to single sensing technique...

  20. Elemental analysis of waste glass by x-ray fluorescence spectrometry

    SciTech Connect

    Bickford, D.F.; Jurgensen, A.R.; Resce, J.L.; Ragsdale, R.G.; Overcamp, T.J.

    1995-05-01

    An X-ray fluorescence (XRF) technique is reported which shows promise for the elemental analysis of low-level mixed waste glasses. This technique can be used for both quantitative laboratory analysis and process control. The glass-forming melts are cast into graphite molds and resulting disks are annealed and polished. The disk is then analyzed with a wavelength dispersive X-ray fluorescence spectrometer and the elemental intensities are converted into concentration with a fundamental parameters routine without the use of matrix-matched standards. Precision of elemental determinations are all better than one percent relative standard deviation. The XRF analysis has been compared with a reference method utilizing conventional wet chemical dissolution techniques followed by atomic spectroscopic determination. Results show that there is no significant difference between these two techniques, however, the XRF technique is much simpler and faster than the wet chemical methods.