Castellani, C E S; Cani, S P N; Segatto, M E V; Pontes, M J; Romero, M A
2009-12-01
In this paper we discuss the use of photonic crystal fibers (PCFs) as discrete devices for simultaneous wideband dispersion compensation and Raman amplification. The performance of the PCFs in terms of gain, ripple, optical signal-to-noise ratio (OSNR) and required fiber length for complete dispersion compensation is compared with conventional dispersion compensating fibers (DCFs). The main goal is to determine the minimum PCF loss beyond which its performance surpasses a state-of-the-art DCF and justifies practical use in telecommunication systems. PMID:20052245
Computation of Parameters for Dispersion Compensating Photonic Crystal Fiber Using a Novel Approach
NASA Astrophysics Data System (ADS)
Ghobadi, Changiz; Ehteshami, Nasrin
2012-06-01
In this article, an efficient compact two dimensional finite-difference frequency-domain (2-D FDFD) method has been used to model photonic Crystal fiber (PCF). Different values of dispersion coefficient can be obtained by changing fiber parameters using FDFD method. Since for each one of these parameters there exists a different value for dispersion coefficient, selection of optimal point will be a time consuming process. Here, first of all, we calculate parameter
Li, Ming; Wu, Guiling; Guo, Pan; Li, Xinwan; Chen, Jianping
2009-09-28
In this paper, the timing jitter induced by the fiber dispersion in photonic A/D converters using time-wavelength interweaved sampling clocks generated by optical time-division-multiplexing (OTDM) with fiber delay lines is analyzed and effective bit loss is calculated. A compensation method is proposed to decrease the dispersion-induced jitter. Simulations are performed and the results show the validity of the proposed compensation method. An experimental demonstration is carried out to verify the theoretical expression derived. PMID:19907563
Dispersion in photonic crystals
NASA Astrophysics Data System (ADS)
Witzens, Jeremy
2005-11-01
Investigations on the dispersive properties of photonic crystals, modified scattering in ring-resonators, monolithic integration of vertical-cavity surface-emitting lasers and advanced data processing techniques for the finite-difference time-domain method are presented. Photonic crystals are periodic mesoscopic arrays of scatterers that modify the propagation properties of electromagnetic waves in a similar way as "natural" crystals modify the properties of electrons in solid-state physics. In this thesis photonic crystals are implemented as planar photonic crystals, i.e., optically thin semiconductor films with periodic arrays of holes etched into them, with a hole-to-hole spacing of the order of the wavelength of light in the dielectric media. Photonic crystals can feature forbidden frequency ranges (the band-gaps) in which light cannot propagate. Even though most work on photonic crystals has focused on these band-gaps for application such as confinement and guiding of light, this thesis focuses on the allowed frequency regions (the photonic bands) and investigates how the propagation of light is modified by the crystal lattice. In particular the guiding of light in bulk photonic crystals in the absence of lattice defects (the self-collimation effect) and the angular steering of light in photonic crystals (the superprism effect) are investigated. The latter is used to design a planar lightwave circuit for frequency domain demultiplexion. Difficulties such as efficient insertion of light into the crystal are resolved and previously predicted limitations on the resolution are circumvented. The demultiplexer is also fabricated and characterized. Monolithic integration of vertical-cavity surface-emitting lasers by means of resonantly enhanced grating couplers is investigated. The grating coupler is designed to bend light through a ninety-degree angle and is characterized with the finite-difference time-domain method. The vertical-cavity surface-emitting lasers are
Varshney, Shailendra; Fujisawa, Takeshi; Saitoh, Kunimasa; Koshiba, Masanori
2005-11-14
In this paper, we report, for the first time, an inherently gain-flattened discrete highly nonlinear photonic crystal fiber (HNPCF) Raman amplifier (HNPCF-RA) design which shows 13.7 dB of net gain (with +/-0.85-dB gain ripple) over 28-nm bandwidth. The wavelength dependent leakage loss property of HNPCF is used to flatten the Raman gain of the amplifier module. The PCF structural design is based on W-shaped refractive index profile where the fiber parameters are well optimized by homely developed genetic algorithm optimization tool integrated with an efficient vectorial finite element method (V-FEM). The proposed fiber design has a high Raman gain efficiency of 4.88 W(-1) . km(-1) at a frequency shift of 13.1 THz, which is precisely evaluated through V-FEM. Additionally, the designed module, which shows ultra-wide single mode operation, has a slowly varying negative dispersion coefficient (-107.5 ps/nm/km at 1550 nm) over the operating range of wavelengths. Therefore, our proposed HNPCF-RA module acts as a composite amplifier with dispersion compensator functionality in a single component using a single pump. PMID:19503154
Dispersion compensation for attosecond electron pulses
Hansen, Peter; Baumgarten, Cory; Batelaan, Herman; Centurion, Martin
2012-08-20
We propose a device to compensate for the dispersion of attosecond electron pulses. The device uses only static electric and magnetic fields and therefore does not require synchronization to the pulsed electron source. Analogous to the well-known optical dispersion compensator, an electron dispersion compensator separates paths by energy in space. Magnetic fields are used as the dispersing element, while a Wien filter is used for compensation of the electron arrival times. We analyze a device with a size of centimeters, which can be applied to ultrafast electron diffraction and microscopy, and fundamental studies.
Dispersion-compensated Fresnel lens
Johnson, K.C.
1992-11-03
A transmission grating is used to reduce chromatic aberration in a Fresnel lens, wherein the lens chromatic dispersion is offset and substantially canceled by the grating's diffraction-induced dispersion. The grating comprises a Fresnel-type pattern of microscopic facets molded directly into the lens surface. The facets would typically have a profile height of around 4[times]10[sup [minus]5] inch and a profile width of at least 10[sup [minus]3] inch. In its primary intended application, the invention would function to improve the optical performance of a Fresnel lens used to concentrate direct sunlight. 10 figs.
Dispersion-compensated fresnel lens
Johnson, Kenneth C.
1992-01-01
A transmission grating is used to reduce chromatic aberration in a Fresnel lens, wherein the lens chromatic dispersion is offset and substantially canceled by the grating's diffraction-induced dispersion. The grating comprises a Fresnel-type pattern of microscopic facets molded directly into the lens surface. The facets would typically have a profile height of around 4.multidot.10.sup.-5 inch and a profile width of at least 10.sup.-3 inch. In its primary intended application, the invention would function to improve the optical performance of a Fresnel lens used to concentrate direct sunlight.
Wei, Haiqing; Plant, David V
2005-09-15
A method of packaging dispersion-compensating fibers (DCFs) is discussed that achieves optimal nonlinearity compensation and a good signal-to-noise ratio simultaneously. An optimally packaged dispersion-compensating module (DCM) may consist of portions of DCFs with higher and lower loss coefficients. Such optimized DCMs may be paired with transmission fibers to form scaled translation-symmetric lines that could effectively compensate for signal distortions due to dispersion and nonlinearity, with or without optical phase conjugation. PMID:16196322
Dispersion Compensation of Fiber Optic Systems for KSC Applications
NASA Technical Reports Server (NTRS)
Kozaitis, Samuel P.; Hand, Larry
1996-01-01
Installed fibers such as those at the Kennedy Space Center (KSC) are optimized for use at 1310 nm because they have zero dispersion at that wavelength. An installed fiber system designed to operate at 1310 nm will operate at a much lower data rate when operated at 1550 nm because the dispersion is not zero at 1550 nm. Using dispersion measurements of both installed and dispersion compensating fibers, we compensated a 21.04 km length of installed fiber with 4.25 km of dispersion compensating fiber. Using the compensated fiber-optic link, we reduced the dispersion to 0.494 ps/nm-km, from an uncompensated dispersion of 16.8 ps/nm-km. The main disadvantage of the compensated link using DC fiber was an increase in attenuation. Although the increase was not necessarily severe, it could be significant when insertion losses, connector losses, and fiber attenuation are taken into account.
Dispersion compensation in chirped pulse amplification systems
Bayramian, Andrew James; Molander, William A.
2014-07-15
A chirped pulse amplification system includes a laser source providing an input laser pulse along an optical path. The input laser pulse is characterized by a first temporal duration. The system also includes a multi-pass pulse stretcher disposed along the optical path. The multi-pass pulse stretcher includes a first set of mirrors operable to receive input light in a first plane and output light in a second plane parallel to the first plane and a first diffraction grating. The pulse stretcher also includes a second set of mirrors operable to receive light diffracted from the first diffraction grating and a second diffraction grating. The pulse stretcher further includes a reflective element operable to reflect light diffracted from the second diffraction grating. The system further includes an amplifier, a pulse compressor, and a passive dispersion compensator disposed along the optical path.
Compressive sensing spectral domain optical coherence tomography with dispersion compensation
NASA Astrophysics Data System (ADS)
Xu, Daguang; Huang, Yong; Kang, Jin U.
2014-03-01
In this paper, we describe a novel CS method that incorporates dispersion compensation into the CS reconstruction of spectral domain OCT (SD OCT) signal. We show that A-scans with dispersion compensation can be obtained by multiplying the dispersion correcting term to the undersampled linear-in-wavenumber spectral data before the CS reconstruction. We also implemented fast CS reconstruction by taking the advantage of fast Fourier transform (FFT). The matrix-vector multiplication commonly used in the CS reconstruction is implemented by a two-step procedure. Compared to the CS reconstruction with matrix multiplication, our method can obtain dispersion compensated A-scan at least 5 times faster. Experimental results show that the proposed method can achieve high quality image with dispersion compensation.
Three dispersion compensation methods for radio-over-fiber system
NASA Astrophysics Data System (ADS)
Pu, Tao; Meng, Fanqiu; Zhao, Jiyong; Fang, Tao; Zheng, Jilin; Huang, Long
2016-03-01
This paper introduces three different dispersion compensation methods based on superstructure fiber Bragg grating (SSFBG) and an injection distributed feedback (DFB) laser. First, an SSFBG with a nonlinearity group delay spectrum was designed to achieve tunable dispersion compensation. Second, an approach is proposed for realizing single-sideband modulation with an optimum optical carrier to sideband ratio for maximizing the transmission performance of a radio-over-fiber (RoF) system based on a strong optical injection-locked DFB laser. Finally, a broadband chromatic dispersion compensation scheme using an optical phase conjugator based on a DFB semiconductor laser is proposed and experimentally demonstrated in RoF links.
Mode separation of Lamb waves based on dispersion compensation method.
Xu, Kailiang; Ta, Dean; Moilanen, Petro; Wang, Weiqi
2012-04-01
Ultrasonic Lamb modes typically propagate as a combination of multiple dispersive wave packets. Frequency components of each mode distribute widely in time domain due to dispersion and it is very challenging to separate individual modes by traditional signal processing methods. In the present study, a method of dispersion compensation is proposed for the purpose of mode separation. This numerical method compensates, i.e., compresses, the individual dispersive waveforms into temporal pulses, which thereby become nearly un-overlapped in time and frequency and can thus be extracted individually by rectangular time windows. It was further illustrated that the dispersion compensation also provided a method for predicting the plate thickness. Finally, based on reversibility of the numerical compensation method, an artificial dispersion technique was used to restore the original waveform of each mode from the separated compensated pulse. Performances of the compensation separation techniques were evaluated by processing synthetic and experimental signals which consisted of multiple Lamb modes with high dispersion. Individual modes were extracted with good accordance with the original waveforms and theoretical predictions. PMID:22501050
Photon dispersion in a supernova core
NASA Astrophysics Data System (ADS)
Kopf, Alexander; Raffelt, Georg
1998-03-01
While the photon forward-scattering amplitude on free magnetic dipoles (e.g. free neutrons) vanishes, the nucleon magnetic moments still contribute significantly to the photon dispersion relation in a supernova (SN) core where the nucleon spins are not free due to their interaction. We study the frequency dependence of the relevant spin susceptibility in a toy model with only neutrons which interact by one-pion exchange. Our approach amounts to calculating the photon absorption rate from the inverse bremsstrahlung process γnn-->nn, and then deriving the refractive index nrefr with the help of the Kramers-Kronig relation. In the static limit (ω-->0) the dispersion relation is governed by the Pauli susceptibility χPauli so that n2refr-1~χPauli>0. For ω somewhat above the neutron spin-relaxation rate Γσ we find n2refr-1<0, and for ω>>Γσ the photon dispersion relation acquires the form ω2-k2=m2γ. An exact expression for the ``transverse photon mass'' mγ is given in terms of the f-sum of the neutron spin autocorrelation function; an estimate is m2γ~χPauliTΓσ. The dominant contribution to nrefr in a SN core remains the electron plasma frequency so that the Cherenkov processes γν<-->ν remain forbidden for all photon frequencies.
Chirped-cavity dispersion-compensation filter design
NASA Astrophysics Data System (ADS)
Li, Ya-Ping; Chen, Sheng-Hui; Lee, Cheng-Chung
2006-03-01
A new basic structure of a dispersive-compensation filter, called a chirped-cavity dispersion-compensator (CCDC) filter, was designed to offer the advantages of small ripples in both reflectance and group-delay dispersion (GDD). This filter provides a high dispersion compensation, like the Gires-Tournois interferometer (GTI) filter, and a wide working bandwidth, like the chirped mirror (CM). The structure of the CCDC is a cavity-type Fabry-Perot filter with a spacer layer (2 mH or 2 mL) and a chirped high reflector. The CCDC filter can provide a negative GDD of -50 fs2 over a bandwidth of 56 THz with half the optical thickness of the CM or the GTI.
Highly dispersive photonic band-gap prism.
Lin, S Y; Hietala, V M; Wang, L; Jones, E D
1996-11-01
We propose the concept of a photonic band-gap (PBG) prism based on two-dimensional PBG structures and realize it in the millimeter-wave spectral regime. We recognize the highly nonlinear dispersion of PBG materials near Brillouin zone edges and utilize the dispersion to achieve strong prism action. Such a PBG prism is very compact if operated in the optical regime, ~20 mm in size for lambda ~ 700 nm, and can serve as a dispersive element for building ultracompact miniature spectrometers. PMID:19881796
Design optimization of flattop interleaver and its dispersion compensation.
Wei, L; Lit, J W Y
2007-05-14
The objective of this paper is to present a general strategy for design optimization of flattop interleavers, and dispersion compensation for the interleavers, in order to achieve superior optical performance. The interleaver is formed by two multi-cavity Gire-Tournois etalons (MC-GTE) in a Michelson Interferometer (MI). An interleaver that has m cavities in one etalon and n cavities in the other is called an mn-GTE interleaver. Our optimization strategy exploits the general flattop condition and the technique of ripple equalization. Any mn-GTE interleaver may be optimized. The spectral performance can be greatly improved by the optimization process. As an illustration, we present a comprehensive analysis for a 11-GTE and a 21-GTE interleaver. The analytical expressions for flattop conditions, peak and trough positions are derived for optimization. The optimal performance of the interleavers can be controlled by the reflection coefficients and the parameters m and n. To achieve low-dispersion mn-GTE flattop interleavers, we propose to use one additional MC-GTE as a dispersion compensator to compensate for the chromatic dispersion. The analytical expressions of group delays and chromatic dispersions for an MC-GTE interleaver are derived. The optimization strategy of dispersion-ripple equalization is explained. The results show that the dispersion performance can be tailored by changing the reflection coefficients of the MC-GTE, and the dispersion and bandwidth can be enhanced by increasing the number of cavities of the MC-GTE. PMID:19546950
Kerr-lens mode locking without dispersion compensation.
Gatz, S; Herrmann, J; Müller, M
1996-10-01
We propose and theoretically investigate a novel operating regime of femtosecond Kerr-lens mode-locked solidstate lasers that avoids group-velocity dispersion compensation by use of a nonresonant semiconductor plate in the focused resonator section that provides an overall negative nonlinear refractive index per round trip. The saturable loss of the laser resonator with an effective self-defocusing nonlinearity is derived from a generalized ABCD matrix formalism, and the correspondingly calculated steady-state pulse parameters show that a Kerrlens mode-locked laser with an overall negative nonlinear refractive index generates stable femtosecond pulses without any dispersion compensation. PMID:19881729
Optical dispersion compensation in 300-pin MSA transponders
NASA Astrophysics Data System (ADS)
Mendlovic, David; Shabtay, Gal
2005-02-01
The 300-pin Multi Source Agreement (MSA) and other MSAs provide basic requirements from a transponder or transceiver used in 10Gb/s optical networks. These MSAs typically address a wide range of applications, including: SONET/SDH, 10GbE and 10GFC for Metro, long-haul (LH) and ultra-long-haul (ULH) networks. Nonetheless, being a basic standard, the 300-pin MSA addresses the minimal required specifications set and does not cover the whole set of requirements and applications that system vendors are interested in. For example, widely tunable and extended reach transponders are not included in the 300-pin MSA. Chromatic dispersion is one of the major reach limiting factors in optical networks. In reconfigurable optical networks, chunks of DWDM channels may travel through different routes and therefore require tunable dispersion compensation. In static ULH optical networks, the number of dispersion compensation fibers (DCFs) dictates the amount of residual chromatic dispersion. This residual chromatic dispersion differs from one DWDM channel to the other. Unless it is compensated at the receiver, it further restricts the link length and reduces the distance between one regenerator to the other. This results in shorter links and more O-E-O blocks, which dramatically increases the cost of the network. This paper discusses a specially designed optical dispersion compensation (ODC) device that is packaged in a standard butterfly package and can fit into a 300-pin MSA transponder. A transponder with the proposed ODC can still satisfy all the basic requirements that are described in the 300-pin MSA while providing improved chromatic dispersion tolerance.
Kerr-lens mode locking without dispersion compensation
Gatz, S.; Herrmann, J.; Mueller, M.
1996-10-01
We propose and theoretically investigate a novel operating regime of femtosecond Kerr-lens mode-locked solid-state lasers that avoids group-velocity dispersion compensation by use of a nonresonant semiconductor plate in the focused resonator section that provides an overall negative nonlinear refractive index per round trip. The saturable loss of the laser resonator with an effective self-defocusing nonlinearity is derived from a generalized {ital ABCD} matrix formalism, and the correspondingly calculated steady-state pulse parameters show that a Kerr-lens mode-locked laser with an overall negative nonlinear refractive index generates stable femtosecond pulses without any dispersion compensation. {copyright} {ital 1996 Optical Society of America.}
Dispersion Compensation Requirements for Optical CDMA Using WDM Lasers
Mendez, A J; Hendandez, V J; Feng, H X C; Heritage, J P; Lennon, W J
2001-12-10
Optical code division multiple access (O-CDMA) uses very narrow transmission pulses and is thus susceptible to fiber optic link impairments. When the O-CDMA is implemented as wavelength/time (W/T) matrices which use wavelength division multiplexing (WDM) sources such as multi-frequency laser transmitters, the susceptibility may be higher due to: (a) the large bandwidth utilized and (b) the requirement that the various wavelength components of the codes be synchronized at the point of modulation and encoding as well as after (optical) correlation. A computer simulation based on the nonlinear Schroedinger equation, developed to study optical networking on the National Transparent Optical Network (NTON), was modified to characterize the impairments on the propagation and decoding of W/T matrix codes over a link of the NTON. Three critical link impairments were identified by the simulation: group velocity dispersion (GVD); the flatness of the optical amplifier gain; and the slope of the GVD. Subsequently, experiments were carried out on the NTON link to verify and refine the simulations as well as to suggest improvements in the W/T matrix signal processing design. The NTON link measurements quantified the O-CDMA dispersion compensation requirements. Dispersion compensation management is essential to assure the performance of W/T matrix codes.
Flexible OFDM-based access systems with intrinsic function of chromatic dispersion compensation
NASA Astrophysics Data System (ADS)
Konishi, Tsuyoshi; Murakawa, Takuya; Nagashima, Tomotaka; Hasegawa, Makoto; Shimizu, Satoshi; Hattori, Kuninori; Okuno, Masayuki; Mino, Shinji; Himeno, Akira; Uenohara, Hiroyuki; Wada, Naoya; Cincotti, Gabriella
2015-12-01
Cost-effective and tunable chromatic dispersion compensation in a fiber link are still an open issue in metro and access networks to cope with increasing costs and power consumption. Intrinsic chromatic dispersion compensation functionality of optical fractional orthogonal frequency division multiplexing is discussed and experimentally demonstrated using dispersion-tunable transmitter and receiver based on wavelength selective switching devices.
NASA Astrophysics Data System (ADS)
Deng, Guo; Pan, Wei; Zou, Xihua
2010-09-01
Optical pulse compression using high-order dispersion compensation is proposed and theoretically analyzed. Firstly, the required dispersion profile for the high-order dispersion compensation is derived, according to the linear chirp and the nonlinear chirp of a phase-modulated continuous-wave (CW) laser source. With the use of the high-order dispersion compensation, such as the combination compensation of the second order dispersion (SOD) and the fourth order dispersion (FOD), an efficient pulse compression having a less time-bandwidth product and a greater peak power is realized. A sampled fiber Bragg grating (FBG) with both the SOD and the FOD is then designed using the equivalent chirp and the reconstruction algorithm. Finally, in the numerical simulation an optical pulse with a time-bandwidth product of 0.79 is generated via high-order dispersion compensation that is performed by using the sampled FBG.
Highly dispersive photonic band-gap-edge optofluidic biosensors
NASA Astrophysics Data System (ADS)
Xiao, S.; Mortensen, N. A.
2006-11-01
Highly dispersive photonic band-gap-edge optofluidic biosensors are studied theoretically. We demonstrate that these structures are strongly sensitive to the refractive index of the liquid, which is used to tune dispersion of the photonic crystal. The upper frequency band-gap edge shifts about 1.8 nm for δ n=0.002, which is quite sensitive. Results from transmission spectra agree well with those obtained from the band structure theory.
Dispersion-compensating dual-mode optical fibers desirable for erbium-doped-fiber-amplified systems
Eguchi, Masashi
2001-06-01
A broadband dispersion-compensating dual-mode optical fiber with a double-layer profile core is proposed to compensate for positive dispersion in conventional single-mode optical fibers operating near 1.55 {mu}m. This wavelength band is suitable for erbium-doped-fiber-amplified systems. It is known that the first higher-order mode of dual-mode fibers exhibits large negative waveguide dispersion, and double-layer profile core fibers are dispersion-shifted fibers whose transmission and bending losses are lower than those of simple core-cladding dispersion-shifted fibers. Such advantages are attractive for commercial devices or modules. Here, a dispersion-compensating dual-mode fiber with a double-layer profile core that satisfies both low bending loss and broadband dispersion compensation is proposed. {copyright} 2001 Optical Society of America
Efficient reflection grisms for pulse compression and dispersion compensation of femtosecond pulses
NASA Astrophysics Data System (ADS)
Gibson, Emily A.; Gaudiosi, David M.; Kapteyn, Henry C.; Jimenez, Ralph; Kane, Steve; Huff, Rachel; Durfee, Charles; Squier, Jeff
2006-11-01
Efficient reflection grisms for pulse-compression and material-dispersion compensation have been designed and demonstrated in a 40 fs, 300 μJ, 5 kHz downchirped pulse amplification system for the first time to our knowledge. A grism design for 800nm femtosecond laser pulse dispersion compensation applications is realized by using standard, commercial diffraction gratings.
A novel method for combating dispersion induced power fading in dispersion compensating fiber.
Lebedev, Alexander; Olmos, J J Vegas; Iglesias, Miguel; Forchhammer, Søren; Monroy, Idelfonso Tafur
2013-06-01
We experimentally investigate the performance of 60 GHz double sideband (DSB) radio over fiber (RoF) links that employ dispersion compensating fiber (DCF). Error free transmission of 3 Gbps signals over 1 m of wireless distance is reported. In order to overcome experimentally observed chromatic dispersion (CD) induced power fading of radio frequency (RF) signal, we propose a method for improvement of RF carrier-to-noise (C/N) ratio through introduction of a degree of RF frequency tunability. Overall results improve important aspects of directly modulated RoF systems and demonstrate the feasibility of high carrier frequency and wide bandwidth RF signals delivery in RoF links including DCF fiber. Error free performance that we obtain for 3 Gbps amplitude shift-keying (ASK) signals enables uncompressed high-definition 1080p video delivery. PMID:23736614
High-energy femtosecond Yb-doped dispersion compensation free fiber laser.
Ortaç, B; Schmidt, O; Schreiber, T; Limpert, J; Tünnermann, A; Hideur, A
2007-08-20
We report on a mode-locked high energy fiber laser operating in the dispersion compensation free regime. The sigma cavity is constructed with a saturable absorber mirror and short-length large-mode-area photonic crystal fiber. The laser generates positively-chirped pulses with an energy of 265 nJ at a repetition rate of 10.18 MHz in a stable and self-starting operation. The pulses are compressible down to 400 fs leading to a peak power of 500 kW. Numerical simulations accurately reflect the experimental results and reveal the mechanisms for self consistent intracavity pulse evolution. With this performance mode-locked fiber lasers can compete with state-of-the-art bulk femtosecond oscillators for the first time and pulse energy scaling beyond the muJ-level appears to be feasible. PMID:19547427
Enhanced dispersion compensation capability of angular elements based on beam expansion.
Du, Rui; Jiang, Runhua; Fu, Ling
2009-09-14
We demonstrate that beam size manipulation plays an important role in dispersion compensation. With expanded beam, the maximal negative group delay dispersion (GDD) provided by angular elements increases by an order of magnitude compared with original beam. Both calculation and experimental results show that a modest 2 x and 4 x expanded beams can improve dispersion compensation capability of prisms or acousto-optical deflectors: the restored minimal pulse width decreases by 50% and the corresponding distance between angular elements is shortened more than 70 cm. These findings will be helpful for designing dispersion compensation schemes for femtosecond pulse laser application systems such as multiphoton microscopy or laser micromachining. PMID:19770855
Marhic, M E; Kagi, N; Chiang, T K; Kazovsky, L G
1995-04-15
We show that in principle it is possible to cancel third-order nonlinear effects in optical fiber links. The necessary conditions exist in two-segment links, with dispersion compensation, phase conjugation, and amplification between the two, as well as opposite chromatic dispersion coefficients in the segments. The cancellation is independent of loss, modulation format, and modulation frequency. PMID:19859355
Sinefeld, David; Ben-Ezra, Shalva; Doerr, Christopher R; Marom, Dan M
2011-04-15
We propose and demonstrate a compact tunable optical dispersion compensation (TODC) device with a 100 GHz free spectral range capable of mitigating chromatic dispersion impairments. The TODC is based on longitudinal movement of a waveguide grating router, resulting in chromatic dispersion compensation of ±1000 ps/nm. We employed our TODC device for compensating 42.8 Gbit/sec differential phase-shifting keying signal, transmitted over 50 km fiber with a -2 dB power penalty at 10⁻⁹. PMID:21499373
NASA Astrophysics Data System (ADS)
Kane, Steve; Tortajada, Fred; Dinger, Herb; Touzet, Bruno; Huff, Rachel; Squier, Jeff; Durfee, Charles; Gibson, Emily; Jimenez, Ralph; Gaudiosi, David; Kapteyn, Henry
Efficient reflection grisms for pulse compression and material-dispersion compensation have been designed and demonstrated in a CPA system. Designs for 800-nm and 1030-nm ultrafast applications are characterized using off-the-shelf diffraction gratings.
Compensation of spatial dispersion of an acousto-optic deflector with a special Keplerian telescope.
Hu, Qinglei; Zhou, Zhenqiao; Lv, Xiaohua; Zeng, Shaoqun
2016-01-15
Compensation of spatial dispersion caused by the acousto-optic deflector (AOD) when using a femtosecond laser is difficult across the whole scanning range of the system, and this is a significant impediment to its use. In conventional methods, the dispersion of the AOD was compensated only when it was at a particular position, while at other positions, the quality of the light beam was reduced. We developed a novel method for compensating the spatial dispersion within the entire scanning range using a special Keplerian telescope. Our experimental results show that the residual dispersion of the AOD is compensated sufficiently, and the focal spots of the laser reach the diffraction limit within a 40-MHz ultrasound bandwidth. PMID:26766675
Ultrashort Laguerre-Gaussian pulses with angular and group velocity dispersion compensation.
Zeylikovich, I; Sztul, H I; Kartazaev, V; Le, T; Alfano, R R
2007-07-15
Coherent optical vortices are generated from ultrashort 6.4 fs pulses. Our results demonstrate angular dispersion compensation of ultrashort 6.4 fs Laguerre-Gaussian (LG) pulses as well as what is believed to be the first direct autocorrelation measurement of 80 fs LG amplified pulses. A reflective-mirror-based 4f-compressor is proposed to compensate the angular and group velocity dispersion of the ultrashort LG pulses. PMID:17632631
Ultrafast optics in dispersion-flattened photonic crystal fiber
Reeves, W. H.; Knight, J. C.; Russell, P. S. J.; Skryabin, D. V.; Omenetto, F. G.; Efimov, A. V.; Taylor, Antoinette J.,
2002-01-01
llOfs pulses at 1550nm wavelength were launched in to various ultra flattened dispersion photonic crystal fibers. For output powers of around 100mW spectral components were generated in a range greater than 350-22OOnm.
Dispersive photonic crystals from the plane wave method
NASA Astrophysics Data System (ADS)
Guevara-Cabrera, E.; Palomino-Ovando, M. A.; Flores-Desirena, B.; Gaspar-Armenta, J. A.
2016-03-01
Nowadays photonic crystals are widely used in many different applications. One of the most used methods to compute their band structure is the plane wave method (PWM). However, it can only be applied directly to non-dispersive media and be extended to systems with a few model dielectric functions. We explore an extension of the PWM to photonic crystals containing dispersive materials, that solves an eigenvalue equation for the Bloch wave vectors. First we compare our calculation with analytical results for one dimensional photonic crystals containing Si using experimental values of its optical parameters, and obtainig very well agreement, even for the spectrum region with strong absorption. Then, using the same method, we computed the band structure for a two dimensional photonic crystal without absorption, formed by an square array of MgO cylinders in air. The optical parameters for MgO were modeled with the Lorentz dielectric function. Finally, we studied an array of MgO cylinders in a metal, using Drude model without absorption, for the metal dielectric function. For this last case, we study the gap-midgap ratio as a function of the filling fraction for both the square and triangular lattice. The gap-midgap ratio is larger for the triangular lattice, with a maximum value of 10% for a filling fraction of 0.6. Our results show that the method can be applied to dispersive materials, and then to a wide range of applications where photonic crystals can be used.
Compensating for dispersion and the nonlinear Kerr effect without phase conjugation.
Paré, C; Villeneuve, A; Bélanger, P A; Doran, N J
1996-04-01
We propose the use of a dispersive medium with a negative nonlinear refractive-index coefficient as a way to compensate for the dispersion and the nonlinear effects resulting from pulse propagation in an optical fiber. The undoing of pulse interaction might allow for increased bit rates. PMID:19865438
Tailoring of nearly zero flattened dispersion photonic crystal fibers
NASA Astrophysics Data System (ADS)
Hsu, Jui-Ming
2016-02-01
This work theoretically tailored the dispersion in a photonic crystal fiber (PCF), and then designed two types of nearly zero dispersion flattened PCFs (DFPCFs) by rod-doping or liquid-filling some of the cladding holes. The numeric results show that the DFPCF type 1, rod-doped with arbitrary indices, achieves the dispersion values between 0±1 ps/nm km over a bandwidth range of 460 nm. The DFPCF type 2, filled with the available liquids, performs the dispersion values between 0±1.5 ps/nm km over a bandwidth range of 520 nm. Finally, the confinement losses of the two types of DFPCFs are estimated. The numeric results show that the confinement losses of the two types of the proposed DFPCFs are extremely low, in the order of 10-5 or 10-6 dB/km, which even can be disregarded.
Experimental study of solitonic dispersive wave in photonic crystal fiber
NASA Astrophysics Data System (ADS)
Bose, Surajit; Roy, Samudra; Bhadra, Shyamal K.
2015-06-01
We experimentally observed the emission of phase-matched resonant radiation in the form of solitonic dispersive wave in a fabricated photonic crystal fiber by pumping picosecond and femtosecond pulses close to zero-dispersion wavelength in normal dispersion regime. The generation of such phase matched radiation does not require a soliton to be formed and red-shifted in nature. Shock front from the leading edge of the input pump initiates the resonant radiation. The radiation develops in the anomalous dispersion domain and found to be confined both in spectral and temporal domain. The resonance mechanism can be well explained from the numerical simulation governed by generalized nonlinear Schrödinger equation.
NASA Astrophysics Data System (ADS)
Zheng, Ye; Yang, Yifeng; Wang, Jianhua; Hu, Man; Liu, Guangbo; Chen, Xiaolong; Liu, Kai; Zhao, Chun; Gong, Weichao; Bai, Gang; Bai, Yang; He, Bing; Zhou, Jun
2016-06-01
We achieve effective dispersion compensation by employing a single-multilayer dielectric diffraction grating and a variable-linewidth fiber amplifier. Both theoretical and experimental studies on the diffracted beam quality have been performed. The experimental results show that when the linewidth reaches 0.41 nm the beam quality in the dispersive plane reduces dramatically from 5.4 for the first-time diffracted beam to 2.08 for the second-time diffracted beam. This dispersion compensation technology relaxes the requirement on the linewidth of the incident beam source, which is beneficial for high-brightness spectral beam combining.
Dual-core chiral planar waveguide-based compact and efficient dispersion compensator
NASA Astrophysics Data System (ADS)
Iqbal, N.; Choudhury, P. K.
2016-01-01
The paper is devoted to the design of dispersion compensator comprised of dual-core planar chiral waveguide having different refractive indices, and cladded with homogeneous dielectric mediums. It has been found that the supermodes play vital role in tuning the group velocity dispersion (GVD) with the aid of chirality parameters, which is evident from the achieved giant GVD with narrow bandwidth. Apart from the material parameters, the effect of core spacing on the features of GVD is also investigated. It is expected that such dispersion compensators would be trendy and greatly useful in communication systems.
Nucleon effects on the photon dispersion relations in matter
NASA Astrophysics Data System (ADS)
D'olivo, Juan Carlos; Nieves, José F.
1998-03-01
We calculate the nucleon contribution to the photon self-energy in a plasma, including the effect of the anomalous magnetic moment of the nucleons. General formulas for the transverse and longitudinal components of the self-energy are obtained and we give explicit results in various limits of physical interest. The formulas are relevant for the study of the photon dispersion relations and the dynamical susceptibility in a nuclear medium such as the core of a supernova, and has implications with regard to the recent suggestion that the Cherenkov process ν-->νγ can take place in such a system.
Broadband dispersion-compensating fiber for high-bit-rate transmission network use.
Semenov, V A; Belov, A V; Dianov, E M; Abramov, A A; Bubnov, M M; Semjonov, S L; Shchebunjaev, A G; Khopin, V F; Guryanov, A N; Vechkanov, N N
1995-08-20
The optimum refractive-index profile and drawing temperature were investigated so as to maximize the figure of merit for multicladding broadband dispersion-compensating fibers. Based on the results of the investigation, the authors have fabricated a highly bend-resistant fiber with a 92.6-ps/(nm dB) figure of merit using the modified chemical-vapor deposition method for dispersion compensation in the 1.5-1.6-µm wavelength region. The manufactured dispersion compensator does not suffer bend loss at 1.55 µm for curvatures of radia of 6.3 and 3.3 cm, and it has a 1.1-dB/km bend loss at a curvature of radius of 1.6 cm. Codoping the germanium silicate core with fluorine diminishes the optical loss down to 0.70 dB/km at a 1.55-µm wavelength. PMID:21060352
Broadband dispersion-compensating fiber for high-bit-rate transmission network use
NASA Astrophysics Data System (ADS)
Semenov, V. A.; Belov, A. V.; Dianov, E. M.; Abramov, A. A.; Bubnov, M. M.; Semjonov, S. L.; Shchebunjaev, A. G.; Khopin, V. F.; Guryanov, A. N.; Vechkanov, N. N.
1995-08-01
The optimum refractive-index profile and drawing temperature were investigated so as to maximize the figure of merit for multicladding broadband dispersion-compensating fibers. Based on the results of the investigation, the authors have fabricated a highly bend-resistant fiber with a 92.6-ps/(nm dB) figure of merit using the modified chemical-vapor deposition method for dispersion compensation in the 1.5-1.6- mu m wavelength region. The manufactured dispersion compensator does not suffer bend loss at 1.55 mu m for curvatures of radia of 6.3 and 3.3 cm, and it has a 1.1-dB/km bend loss at a curvature of radius of 1.6 cm. Codoping the germanium silicate core with fluorine diminishes the optical loss down to 0.70 dB/km at a 1.55- mu m wavelength.
Mohammed, Nazmi A; Solaiman, Mohammad; Aly, Moustafa H
2014-10-10
In this work, various dispersion compensation methods are designed and evaluated to search for a cost-effective technique with remarkable dispersion compensation and a good pulse shape. The techniques consist of different chirp functions applied to a tanh fiber Bragg grating (FBG), a dispersion compensation fiber (DCF), and a DCF merged with an optimized linearly chirped tanh FBG (joint technique). The techniques are evaluated using a standard 10 Gb/s optical link over a 100 km long haul. The linear chirp function is the most appropriate choice of chirping function, with a pulse width reduction percentage (PWRP) of 75.15%, lower price, and poor pulse shape. The DCF yields an enhanced PWRP of 93.34% with a better pulse quality; however, it is the most costly of the evaluated techniques. Finally, the joint technique achieved the optimum PWRP (96.36%) among all the evaluated techniques and exhibited a remarkable pulse shape; it is less costly than the DCF, but more expensive than the chirped tanh FBG. PMID:25322426
NASA Astrophysics Data System (ADS)
Yang, Hua; Han, Fang; Hu, Hui; Wang, Weibin; Zeng, Qilin
2014-03-01
Based on the generalized nonlinear Schrödinger equation, we present a numerical investigation of dispersive wave generation in photonic crystal fibers pumped with femtosecond pulses in the anomalous dispersion region. Both positive dispersion slope and negative dispersion slope for pump wavelength are studied. It is demonstrated that the wavelength of the dispersive wave can be blue-shifted or red-shifted relative to the center wavelength of the soliton, depending on the dispersion slope of the pump wavelength. The spectral-temporal dynamics of dispersive wave generation is shown using the cross-correlation frequency-resolved optical gating (X-FROG) technique, which is numerically computed with a windowed Fourier transform. Further, we find a phenomenon that the X-FROG spectrogram of the corresponding output signal exhibits a parabolic shape, which is consistent with the wavelength dependence of the group delay. In particular, the phenomenon of soliton trapping of the dispersive wave is observed with an increase of pump power.
Achromatic flat optical components via compensation between structure and material dispersions
NASA Astrophysics Data System (ADS)
Li, Yang; Li, Xiong; Pu, Mingbo; Zhao, Zeyu; Ma, Xiaoliang; Wang, Yanqin; Luo, Xiangang
2016-01-01
Chromatism causes great quality degradation of the imaging system, especially for diffraction imaging. The most commonly method to overcome chromatism is refractive/diffractive hybrid optical system which, however, sacrifices the light weight and integration property of diffraction elements. A method through compensation between the structure dispersion and material dispersion is proposed to overcome the chromatism in flat integrated optical components. This method is demonstrated by making use of silver nano-slits waveguides to supply structure dispersion of surface plasmon polaritons (SPP) in metal-insulator-metal (MIM) waveguide to compensate the material dispersion of metal. A broadband deflector and lens are designed to prove the achromatic property of this method. The method demonstrated here may serve as a solution of broadband light manipulation in flat integrated optical systems.
High gain Raman amplifier with inherent gain flattening and dispersion compensation
NASA Astrophysics Data System (ADS)
Kakkar, Charu; Thyagarajan, K.
2005-06-01
We report here an inherently gain-flattened, high-gain discrete Raman fiber amplifier design with 21 dB net gain (±1.4 dB gain ripple) over 25 nm bandwidth. The amplifier design is based on a W-shape highly nonlinear fiber, in which, optimized spectral variation of leakage loss has been used to achieve inherent gain flattening of Raman gain. The proposed fiber has an additional advantage of having a high negative dispersion coefficient (∼-84 ps/km nm) over the operating range of wavelength and thus the designed discrete amplifier module, based on this fiber, is also capable of compensating dispersion accumulated in one span (70 km) of transmission through G.652 fiber. Hence, the designed module is proposed as a composite amplifier and dispersion-compensating unit for 25 nm bandwidth, which is capable of handling both attenuation and dispersion of one span of G. 652 transmission.
Achromatic flat optical components via compensation between structure and material dispersions.
Li, Yang; Li, Xiong; Pu, Mingbo; Zhao, Zeyu; Ma, Xiaoliang; Wang, Yanqin; Luo, Xiangang
2016-01-01
Chromatism causes great quality degradation of the imaging system, especially for diffraction imaging. The most commonly method to overcome chromatism is refractive/diffractive hybrid optical system which, however, sacrifices the light weight and integration property of diffraction elements. A method through compensation between the structure dispersion and material dispersion is proposed to overcome the chromatism in flat integrated optical components. This method is demonstrated by making use of silver nano-slits waveguides to supply structure dispersion of surface plasmon polaritons (SPP) in metal-insulator-metal (MIM) waveguide to compensate the material dispersion of metal. A broadband deflector and lens are designed to prove the achromatic property of this method. The method demonstrated here may serve as a solution of broadband light manipulation in flat integrated optical systems. PMID:26794855
Achromatic flat optical components via compensation between structure and material dispersions
Li, Yang; Li, Xiong; Pu, Mingbo; Zhao, Zeyu; Ma, Xiaoliang; Wang, Yanqin; Luo, Xiangang
2016-01-01
Chromatism causes great quality degradation of the imaging system, especially for diffraction imaging. The most commonly method to overcome chromatism is refractive/diffractive hybrid optical system which, however, sacrifices the light weight and integration property of diffraction elements. A method through compensation between the structure dispersion and material dispersion is proposed to overcome the chromatism in flat integrated optical components. This method is demonstrated by making use of silver nano-slits waveguides to supply structure dispersion of surface plasmon polaritons (SPP) in metal-insulator-metal (MIM) waveguide to compensate the material dispersion of metal. A broadband deflector and lens are designed to prove the achromatic property of this method. The method demonstrated here may serve as a solution of broadband light manipulation in flat integrated optical systems. PMID:26794855
Active compensation of large dispersion of femtosecond pulses for precision laser ranging.
Lee, Sang-Hyun; Lee, Joohyung; Kim, Young-Jin; Lee, Keunwoo; Kim, Seung-Woo
2011-02-28
We describe an active way of compensation for large dispersion induced in the femtosecond light pulses travelling in air for laser ranging. The pulse duration is consistently regulated at 250 fs by dispersion control, allowing sub-micrometer resolution in measuring long distances by means of time-of-flight measurement. This method could facilitate more reliable applications of femtosecond pulses for satellite laser ranging, laser altimetry and active LIDAR applications. PMID:21369227
Photon backscattering tissue characterization by energy dispersive spectroscopy evaluations.
Tartari, A; Casnati, E; Fernandez, J E; Felsteiner, J; Baraldi, C
1994-02-01
Techniques for in vivo tissue characterization based on scattered photons have usually been confined to evaluating coherent and Compton peaks. However, information can also be obtained from the energy analysis of the Compton scattered distribution. This paper looks at the extension of a technique validated by the authors for characterizing tissues composed of low-atomic-number elements. To this end, an EDXRS (energy dispersive x-ray spectrometry) computer simulation procedure was performed and applied to test the validity of a figure of merit able to characterize binary compounds. This figure of merit is based on the photon fluence values in a restricted energy interval of the measured distribution of incoherently scattered photons. After careful experimental tests with 59.54 keV incident photons at scattering angles down to 60degrees, the simulation procedure was applied to quasi-monochromatic and polychromatic high-radiance sources. The results show that the characterization by the figure of merit, which operates satisfactorily with monochromatic sources, is unsatisfactory in the latter cases, which seem to favour a different parameter for compound characterization. PMID:15552121
Compensation of nonlinear phase shifts with third-order dispersion in short-pulse fiber amplifiers.
Zhou, Shian; Kuznetsova, Lyuba; Chong, Andy; Wise, Frank
2005-06-27
We show that nonlinear phase shifts and third-order dispersion can compensate each other in short-pulse fiber amplifiers. This compen-sation can be exploited in any implementation of chirped-pulse amplification, with stretching and compression accomplished with diffraction gratings, single-mode fiber, microstructure fiber, fiber Bragg gratings, etc. In particular, we consider chirped-pulse fiber amplifiers at wavelengths for which the fiber dispersion is normal. The nonlinear phase shift accumulated in the amplifier can be compensated by the third-order dispersion of the combination of a fiber stretcher and grating compressor. A numerical model is used to predict the compensation, and experimental results that exhibit the main features of the calculations are presented. In the presence of third-order dispersion, an optimal nonlinear phase shift reduces the pulse duration, and enhances the peak power and pulse contrast compared to the pulse produced in linear propagation. Contrary to common belief, fiber stretchers can perform as well or better than grating stretchers in fiber amplifiers, while offering the major practical advantages of a waveguide medium. PMID:19498473
Correlated few-photon transport in one-dimensional waveguides: Linear and nonlinear dispersions
Roy, Dibyendu
2011-04-15
We address correlated few-photon transport in one-dimensional waveguides coupled to a two-level system (TLS), such as an atom or a quantum dot. We derive exactly the single-photon and two-photon current (transmission) for linear and nonlinear (tight-binding sinusoidal) energy-momentum dispersion relations of photons in the waveguides and compare the results for the different dispersions. A large enhancement of the two-photon current for the sinusoidal dispersion has been seen at a certain transition energy of the TLS away from the single-photon resonances.
Higgs boson decay to two photons and dispersion relations
NASA Astrophysics Data System (ADS)
Melnikov, Kirill; Vainshtein, Arkady
2016-03-01
We discuss the computation of the Higgs boson decay amplitude to two photons through the W -loop using dispersion relations. The imaginary part of the form factor FW(s ) that parametrizes this decay is unambiguous in four dimensions. When it is used to calculate the unsubtracted dispersion integral, the finite result for the form factor FW(s ) is obtained. However, the FW(s ) obtained in this way differs by a constant term from the result of a diagrammatic computation, based on dimensional regularization. It is easy to accommodate the missing constant by writing a once-subtracted dispersion relation for FW(s ) but it is unclear why the subtraction needs to be done. The goal of this paper is to investigate this question in detail. We show that the correct constant can be recovered within a dispersive approach in a number of ways that, however, either require an introduction of an ultraviolet regulator or unphysical degrees of freedom; unregulated and unsubtracted computations in the unitary gauge are insufficient, in spite of the fact that such computations give a finite result.
An Experiment of GMPLS-Based Dispersion Compensation Control over In-Field Fibers
NASA Astrophysics Data System (ADS)
Seno, Shoichiro; Horiuchi, Eiichi; Yoshida, Sota; Sugihara, Takashi; Onohara, Kiyoshi; Kamei, Misato; Baba, Yoshimasa; Kubo, Kazuo; Mizuochi, Takashi
As ROADMs (Reconfigurable Optical Add/Drop Multiplexers) are becoming widely used in metro/core networks, distributed control of wavelength paths by extended GMPLS (Generalized MultiProtocol Label Switching) protocols has attracted much attention. For the automatic establishment of an arbitrary wavelength path satisfying dynamic traffic demands over a ROADM or WXC (Wavelength Cross Connect)-based network, precise determination of chromatic dispersion over the path and optimized assignment of dispersion compensation capabilities at related nodes are essential. This paper reports an experiment over in-field fibers where GMPLS-based control was applied for the automatic discovery of chromatic dispersion, path computation, and wavelength path establishment with dynamic adjustment of variable dispersion compensation. The GMPLS-based control scheme, which the authors called GMPLS-Plus, extended GMPLS's distributed control architecture with attributes for automatic discovery, advertisement, and signaling of chromatic dispersion. In this experiment, wavelength paths with distances of 24km and 360km were successfully established and error-free data transmission was verified. The experiment also confirmed path restoration with dynamic compensation adjustment upon fiber failure.
Unified dispersive approach to real and virtual photon-photon scattering at low energy
NASA Astrophysics Data System (ADS)
Moussallam, B.
2013-09-01
Previous representations of pion-pair production amplitudes by two real photons at low energy, which combine dispersion theoretical constraints with elastic unitarity, chiral symmetry and soft-photon constraints are generalised to the case where one photon is virtual. The constructed amplitudes display explicitly the dependence on the ππ phase-shifts, on pion form factors and on pion polarisabilities. They apply both for space-like and time-like virtualities despite the apparent overlap of the left- and right-hand cuts, by implementing a definition of resonance exchange amplitudes complying with analyticity and consistent limiting prescriptions for the energy variables. Applications are made to the pion generalised polarisabilies, to vector-meson radiative decays, and to the σγ electromagnetic form factor. Finally, an evaluation of the contribution of γππ states in the hadronic vacuum polarisation to the muon g-2 is given, which should be less model dependent than previous estimates.
Zhang, Ellen Ziyi; Oh, Wang-Yuhl; Villiger, Martin L.; Chen, Liang; Bouma, Brett E.; Vakoc, Benjamin J.
2013-01-01
Polarization mode dispersion (PMD), which can be induced by circulators or even moderate lengths of optical fiber, is known to be a dominant source of instrumentation noise in fiber-based PS-OCT systems. In this paper we propose a novel PMD compensation method that measures system PMD using three fixed calibration signals, numerically corrects for these instrument effects and reconstructs an improved sample image. Using a frequency multiplexed PS-OFDI setup, we validate the proposed method by comparing birefringence noise in images of intralipid, muscle, and tendon with and without PMD compensation. PMID:23389009
Supercontinuum generation at 800 nm in all-normal dispersion photonic crystal fiber.
Sukhoivanov, Igor A; Iakushev, Sergii O; Shulika, Oleksiy V; AndradeLucio, Jose Amparao; Díez, Antonio; Andrés, Miguel
2014-12-01
We have numerically investigated the supercontinuum generation and pulse compression in a specially designed all-normal dispersion photonic crystal fiber with a flat-top dispersion curve, pumped by typical pulses from state of the art Ti:Sapphire lasers at 800 nm. The optimal combination of pump pulse parameters for a given fiber was found, which provides a wide octave-spanning spectrum with superb spectral flatness (a drop in spectral intensity of ~1.7 dB). With regard to the pulse compression for these spectra, multiple-cycle pulses (~8 fs) can be obtained with the use of a simple quadratic compressor and nearly single-cycle pulses (3.3 fs) can be obtained with the application of full phase compensation. The impact of pump pulse wavelength-shifting relative to the top of the dispersion curve on the generated SC and pulse compression was also investigated. The optimal pump pulse wavelength range was found to be 750 nm < λp < 850 nm, where the distortions of pulse shape are quite small (< -3.3 dB). The influences of realistic fiber fabrication errors on the SC generation and pulse compression were investigated systematically. We propose that the spectral shape distortions generated by fiber fabrication errors can be significantly attenuated by properly manipulating the pump. PMID:25606954
NASA Astrophysics Data System (ADS)
Mahmud, Russel Reza; Goffar Khan, Muhammad Abdul; Razzak, S. M. Abdur
2016-04-01
An octagonal photonic crystal fiber (O-PCF) for numerical structure design and analysis of some particular properties are presented in this paper. The proposed design is suitable for residual dispersion compensation (RDC) with polarization maintaining (PM) applications as it offers extremely high-negative flattened average chromatic dispersion (DT) and absolute dispersion variation (ΔD) of around -(708±10) ps nm-1 km-1 and average high birefringence (B) of the order 10-2 for the wavelength limits of 1.46 to 1.67 μm (bandwidth of 210 nm that covers S+C+L+U bands in the infrared region of the optical third window). In addition, it exhibits very low confinement loss of 10-3.5 to 10-2.5 dB/m for that bandwidth. Moreover, to evaluate the sensitivity of the fiber properties (DT and B) during fabrication, ±0.02 μm variation in the optimum parameters is also studied.
Investigation of 2D laterally dispersive photonic crystal structures : LDRD 33602 final report.
Subramania,Ganapathi Subramanian; Vawter, Gregory Allen; Wendt, Joel Robert; Peake, Gregory Merwin; Guo, Junpeng; Peters, David William; Hadley, G. Ronald
2003-12-01
Artificially structured photonic lattice materials are commonly investigated for their unique ability to block and guide light. However, an exciting aspect of photonic lattices which has received relatively little attention is the extremely high refractive index dispersion within the range of frequencies capable of propagating within the photonic lattice material. In fact, it has been proposed that a negative refractive index may be realized with the correct photonic lattice configuration. This report summarizes our investigation, both numerically and experimentally, into the design and performance of such photonic lattice materials intended to optimize the dispersion of refractive index in order to realize new classes of photonic devices.
Xie, Chen; Liu, Bowen; Niu, Hailiang; Song, Youjian; Li, Yi; Hu, Minglie; Zhang, Yueguang; Shen, Weidong; Liu, Xu; Wang, Chingyue
2011-11-01
We report on a femtosecond nonlinear amplification fiber laser system using a vector-dispersion compressor, which consists of a transmission grating pair and multipass cell based Gires-Tournois interferometer mirrors. The mirror is designed with nearly zero group-delay dispersion and large negative third-order dispersion. As a result, the third-order dispersion of the compressor can be adjusted independently to compensate the nonlinear phase shift of amplified pulses to reduce the pulse pedestal. With this scheme, the system outputs 44 fs laser pulses with little wing at 26.6 W output average power and 531 nJ pulse energy, corresponding to 10.8 MW peak power. PMID:22048347
Legg, Mathew; Yücel, Mehmet K; Kappatos, Vassilios; Selcuk, Cem; Gan, Tat-Hean
2015-09-01
Overhead Transmission Line (OVTL) cables can experience structural defects and are, therefore, inspected using Non-Destructive Testing (NDT) techniques. Ultrasonic Guided Waves (UGW) is one NDT technique that has been investigated for inspection of these cables. For practical use, it is desirable to be able to inspect as long a section of cable as possible from a single location. This paper investigates increasing the UGW inspection range on Aluminium Conductor Steel Reinforced (ACSR) cables by compensating for dispersion using dispersion curve data. For ACSR cables, it was considered to be difficult to obtain accurate dispersion curves using modelling due to the complex geometry and unknown coupling between wire strands. Group velocity dispersion curves were, therefore, measured experimentally on an untensioned, 26.5m long cable and a method of calculating theoretical dispersion curves was obtained. Attenuation and dispersion compensation were then performed for a broadband Maximum Length Sequence (MLS) excitation signal. An increase in the Signal to Noise Ratio (SNR) of about 4-8dB compared to that of the dispersed signal was obtained. However, the main benefit was the increased ability to resolve the individual echoes from the end of the cable and an introduced defect in the form of a cut, which was 7 to at least 13dB greater than that of the dispersed signal. Five echoes were able to be clearly detected using MLS excitation signal, indicating the potential for an inspection range of up to 130m in each direction. To the best of the authors knowledge, this is the longest inspection range for ACSR cables reported in the literature, where typically cables, which were only one or two meter long, have been investigated previously. Narrow band tone burst and Hann windowed tone burst excitation signal also showed increased SNR and ability to resolve closely spaced echoes. PMID:25991388
The key to OC-192 deployment dispersion compensation using fiber Bragg grating
NASA Astrophysics Data System (ADS)
Su, C.; Kung, Peter; Loh, W. H.
1998-12-01
The effects and characteristics of group delay ripple of chirped fiber gratings on the performance of a 10 Gb/s NRZ transmission system has been experimentally investigated. For the power penalty less than 1 dB at bit-error-rate of 10-9, our experiment results show that the ripple magnitude of dispersion compensating gratings should be less than +/- 20 ps within its pass-band for 10 Gb/s systems.
Pulsed bismuth fibre laser with the intracavity-compensated group velocity dispersion
Krylov, Aleksandr A; Kryukov, P G; Dianov, Evgenii M; Okhotnikov, O G; Guina, M
2009-01-31
Passive mode locking is achieved in a bismuth-doped fibre laser with the help of a SESAM saturable absorber optimised for operation in the spectra range from 1100 to 1200 nm. Pumping was performed by a 2-W cw ytterbium fibre laser at 1075 nm. The oscillation of the laser with an intracavity group-velocity-dispersion compensator based on a pair of diffraction gratings is studied. Laser pulses with the minimum duration of {approx}5 ps are generated. (lasers)
Electronic dispersion compensation for PMD in 40-GB/s optical links
NASA Astrophysics Data System (ADS)
Yang, Kang; Liu, Jianfei; Zeng, Xiangye
2009-11-01
In 40-Gb/s optical systems, it is impossible to neglect the electronic dispersion of polarization-mode dispersion (PMD). As the data rate is increased, the maximum useful length of the fiber decreases according to the square of the increase. With the development of VLSI and DSP technologies, the electronic dispersion compensation for optical network has aroused greater world attention. In this paper, the performance of decision feedback equalizer (DFE) in PMD-limited 40-GB/s optical links is analyzed by using Matlab/Simulink. A simple equalizer circuit, in fold-cascade traveling-wave filter topology, is presented and the results based on S-parameter simulations show that a DFE equalizer consisting of a 3-tap feed forward equalizer (FFE) and a 2-tap feed back equalizer (FBE) can mitigate PMD effectively.
Chromatic dispersion and nonlinear phase noise compensation based on KLMS method
NASA Astrophysics Data System (ADS)
Nouri, Mahdi; Shayesteh, Mahrokh G.; Farhangian, Nooshin
2015-09-01
In this study, kernel least mean square (KLMS) algorithm with fractionally spaced equalizing structure is proposed for electrical compensation of chromatic dispersion (CD) and nonlinear phase noise (NLPN) in a dual polarization optical communications system with coherent detection. We consider single mode fiber channel. At the receiver, the additive optical noise is represented as additive white Gaussian noise. Phase modification is utilized at high signal powers to maintain the validity of Gaussian model of noise. We consider QAM and PSK modulations and evaluate the performance of the proposed method in terms of error rate, phase error, and error vector magnitude (EVM). The results are obtained in both linear and nonlinear regimes. In the linear region, the KLMS algorithm can compensate CD and NLPN effectively and outperforms the existing compensation methods such as LMS, minimum mean square error (MMSE), and time domain FIR filter. In nonlinear regime, where the input power is higher, NLPN is stronger which results in compensation performance degradation. However, KLMS still achieves better results than the above algorithms.
NASA Astrophysics Data System (ADS)
Siwicki, Bartłomiej; Kasztelanic, Rafał; Klimczak, Mariusz; Cimek, Jarosław; Pysz, Dariusz; Stępień, Ryszard; Buczyński, Ryszard
2016-06-01
The bandwidth of coherent supercontinuum generated in optical fibres is strongly determined by the all-normal dispersion characteristic of the fibre. We investigate all-normal dispersion limitations in all-solid oxide-based soft glass photonic crystal fibres with various relative inclusion sizes and lattice constants. The influence of material dispersion on fibre dispersion characteristics for a selected pair of glasses is also examined. A relation between the material dispersion of the glasses and the fibre dispersion has been described. We determined the parameters which limit the maximum range of flattened all-normal dispersion profile achievable for the considered pair of heavy-metal-oxide soft glasses.
Yen, Chih-Ta; Chen, Wen-Bin
2016-01-01
Chromatic dispersion from optical fiber is the most important problem that produces temporal skews and destroys the rectangular structure of code patterns in the spectra-amplitude-coding-based optical code-division multiple-access (SAC-OCDMA) system. Thus, the balance detection scheme does not work perfectly to cancel multiple access interference (MAI) and the system performance will be degraded. Orthogonal frequency-division multiplexing (OFDM) is the fastest developing technology in the academic and industrial fields of wireless transmission. In this study, the radio-over-fiber system is realized by integrating OFDM and OCDMA via polarization multiplexing scheme. The electronic dispersion compensation (EDC) equalizer element of OFDM integrated with the dispersion compensation fiber (DCF) is used in the proposed radio-over-fiber (RoF) system, which can efficiently suppress the chromatic dispersion influence in long-haul transmitted distance. A set of length differences for 10 km-long single-mode fiber (SMF) and 4 km-long DCF is to verify the compensation scheme by relative equalizer algorithms and constellation diagrams. In the simulation result, the proposed dispersion mechanism successfully compensates the dispersion from SMF and the system performance with dispersion equalizer is highly improved. PMID:27618042
Design of a broadband highly dispersive pure silica photonic crystal fiber.
Subbaraman, Harish; Ling, Tao; Jiang, YongQiang; Chen, Maggie Y; Cao, Peiyan; Chen, Ray T
2007-06-01
A highly dispersive dual-concentric-core pure silica photonic crystal fiber is designed with a maximum chromatic dispersion value of about -9500 ps/(nm km) around the 1.56 microm wavelength region and a full width at half-maximum (FWHM) of 55 nm. The change in the dispersion-bandwidth product as a function of period is carefully studied by using the plane wave expansion method. The coupled mode theory matches well with the plane wave expansion method that was used to simulate the chromatic dispersion. This kind of a photonic crystal fiber structure is suitable for high-dispersion application in phased array antenna systems based on photonic crystal fiber arrays. PMID:17514284
Xia, Cen; Liu, Xiang; Chandrasekhar, S; Fontaine, N K; Zhu, Likai; Li, G
2014-03-10
We demonstrate nonlinearity compensation of 37.5-GHz-spaced 128-Gb/s PDM-QPSK signals using dispersion-folded digital-backward-propagation and a spectrally-sliced receiver that simultaneously receives three WDM signals, showing mitigation of intra-channel and inter-channel nonlinear effects in a 2560-km dispersion-managed TWRS-fiber link. Intra-channel and adjacent inter-channel nonlinear compensation gains when WDM channels are fully populated in the C-band are estimated based on the GN-model. PMID:24663923
Gain dispersion in Visible Light Photon Counters as a function of counting rate
Bross, A.; Buscher, V.; Estrada, J.; Ginther, G.; Molina, J.; /Rio de Janeiro State U.
2005-03-01
We present measurements of light signals using Visible Light Photon Counters (VLPC), that indicate an increase in gain dispersion as the counting rate increases. We show that this dispersion can be understood on the basis of a recent observation of localized field reduction in VLPCs at high input rates.
1.55- μm supercontinuum based on dispersion-flattened photonic crystal fiber
NASA Astrophysics Data System (ADS)
Zhang, Xia; Xu, Yong-Zhao; Huang, Yong-Qing; Ren, Xiao-Min
2007-09-01
A dispersion-flattened photonic crystal fiber with normal dispersion is designed for generating flat wideband supercontinuum, and the supercontinuum generation in this fiber is numerically analyzed. The results show that by appropriately designing the photonic crystal fiber, it can achieve flattened dispersion in the normal dispersion region. It is found that a fiber characterized by a flattened dispersion with a small normal dispersion is suitable for a flat wideband supercontinuum generation. In the process of spectral broadening, self-phase modulation effect plays a dominant role. By filtering the supercontinuum, pulses with different central wavelength over a wide spectral range can be obtained. The pulse width is determined by the bandwidth of the filter.
Kim, Kyung Taec; Kim, Chul Min; Umesh, G.; Nam, Chang Hee; Baik, Moon-Gu
2004-05-01
A method for obtaining a single sub-50-attosecond pulse using harmonic radiation is proposed. For the generation of broad harmonic radiation during a single half-optical cycle, atoms are driven by a femtosecond laser pulse with intensity above the saturation intensity for optical field ionization and hence experience a large nonadiabatic increase of the laser electric field between optical cycles. Although the chirped structure of the harmonic radiation imposes a limit on the minimum achievable pulse duration, we demonstrate that its positive chirp can be compensated by the negative group delay dispersion of an appropriately selected x-ray filter material, used also for the spectral selection, resulting in a single attosecond pulse with a duration less than 50 as.
Slow light with low group-velocity dispersion at the edge of photonic graphene
Ouyang Chunfang; Dong Biqin; Liu Xiaohan; Zi Jian; Xiong Zhiqiang; Zhao Fangyuan; Hu Xinhua
2011-07-15
We theoretically study the light propagation at the zigzag edges of a honeycomb photonic crystal (PC), or photonic graphene. It is found that the corresponding edge states have a sinusoidal dispersion similar to those found in PC coupled resonator optical waveguides [CROWs; M. Notomi et al., Nature Photon. 2, 741 (2008)]. The sinusoidal dispersion curve can be made very flat by carefully tuning edge parameters. As a result, low group velocity and small group velocity dispersion can be simultaneously obtained for light propagating at the zigzag edge of photonic graphene. Compared with PC CROWs, our slow-light system exhibits no intrinsic radiation loss and has a larger group velocity bandwidth product. Our results could find applications in on-chip optical buffers and enhanced light-matter interaction.
Finlayson, C E; Cattaneo, F; Perney, N M B; Baumberg, J J; Netti, M C; Zoorob, M E; Charlton, M D B; Parker, G J
2006-01-01
We report time-of-flight experiments on photonic-crystal waveguide structures using optical Kerr gating of a femtosecond white-light supercontinuum. These photonic-crystal structures, based on engineered silicon-nitride slab waveguides, possess broadband low-loss guiding properties, allowing the group velocity dispersion of optical pulses to be directly tracked as a function of wavelength. This dispersion is shown to be radically disrupted by the spectral band gaps associated with the photonic-crystal periodicity. Increased time-of-flight effects, or "slowed light," are clearly observed at the edges of band gaps in agreement with two-dimensional plane-wave theoretical models of group velocity dispersion. A universal model for slow light in such photonic crystals is proposed, which shows that slow light is controlled predominantly by the detuning from, and the size of, the photonic band gaps. Slowed light observed up to time delays of approximately 1 ps, corresponds to anomalous dispersion of approximately 3.5 ps/nm per mm of the photonic crystal structure. From the decreasing intensity of time-gated slow light as a function of time delay, we estimate the characteristic losses of modes which are guided in the spectral proximity of the photonic band gaps. PMID:16486307
An alternative approach to compensators design for photon beams used in radiotherapy
NASA Astrophysics Data System (ADS)
Jurković, S.; Žauhar, G.; Bistrović, M.; Faj, D.; Kaliman, Z.; Smilović Radojčić, Đ.
2007-09-01
The use of compensators in order to achieve desired dose distribution has a long history and is a well-established technique in radiation therapy planning. There are several different calculation methods for determining a compensator's thickness. An alternative method that is based on the Cunningham's modification of Clarkson's method to calculate scattered radiation in beams with an inhomogeneous cross-section is proposed. It is well known that the total dose distribution of radiotherapy photon beam consists of the contributions of the primary beam, attenuated by the tissue layer, and the scattered radiation generated by the primary radiation in single and multiple photon scatter events. The scattered component can be represented as a function of the primary radiation. The central point of our method is the numerical estimation of the primary distribution required to achieve the desired total distribution. Now using the calculated primary distribution, the shape of the modulator could be determined. In this way the contribution of the scattered component is validated in a more accurate way than using effective attenuation coefficients, which is a common practice. The method is verified in various clinical situations and compared with the standard method. The accuracy, although dependent on geometry, was improved by at least 2%. With more complex geometries there is an even higher gain in accuracy with our method when compared to the standard method.
Wang, Jia-Rong; Chen, Xiao-Dong; Zhao, Fu-Li; Dong, Jian-Wen
2016-01-01
Photonic conical dispersion has been found in either transverse magnetic or transverse electric polarization, and the predominant zero-refractive-index behavior in a two-dimensional photonic crystal is polarization-dependent. Here, we show that two-dimensional photonic hypercrystals can be designed that exhibit polarization independent conical dispersion at the Brillouin zone center, as two sets of triply-degenerate point for each polarization are accidentally at the same Dirac frequency. Such photonic hypercrystals consist of periodic dielectric cylinders embedded in elliptic metamaterials, and can be viewed as full-polarized near zero-refractive-index materials around Dirac frequency by using average eigen-field evaluation. Numerical simulations including directional emissions and invisibility cloak are employed to further demonstrate the double-zero-index characteristics for both polarizations in the photonic hypercrystals. PMID:26956377
NASA Astrophysics Data System (ADS)
Wang, Jia-Rong; Chen, Xiao-Dong; Zhao, Fu-Li; Dong, Jian-Wen
2016-03-01
Photonic conical dispersion has been found in either transverse magnetic or transverse electric polarization, and the predominant zero-refractive-index behavior in a two-dimensional photonic crystal is polarization-dependent. Here, we show that two-dimensional photonic hypercrystals can be designed that exhibit polarization independent conical dispersion at the Brillouin zone center, as two sets of triply-degenerate point for each polarization are accidentally at the same Dirac frequency. Such photonic hypercrystals consist of periodic dielectric cylinders embedded in elliptic metamaterials, and can be viewed as full-polarized near zero-refractive-index materials around Dirac frequency by using average eigen-field evaluation. Numerical simulations including directional emissions and invisibility cloak are employed to further demonstrate the double-zero-index characteristics for both polarizations in the photonic hypercrystals.
Wang, Jia-Rong; Chen, Xiao-Dong; Zhao, Fu-Li; Dong, Jian-Wen
2016-01-01
Photonic conical dispersion has been found in either transverse magnetic or transverse electric polarization, and the predominant zero-refractive-index behavior in a two-dimensional photonic crystal is polarization-dependent. Here, we show that two-dimensional photonic hypercrystals can be designed that exhibit polarization independent conical dispersion at the Brillouin zone center, as two sets of triply-degenerate point for each polarization are accidentally at the same Dirac frequency. Such photonic hypercrystals consist of periodic dielectric cylinders embedded in elliptic metamaterials, and can be viewed as full-polarized near zero-refractive-index materials around Dirac frequency by using average eigen-field evaluation. Numerical simulations including directional emissions and invisibility cloak are employed to further demonstrate the double-zero-index characteristics for both polarizations in the photonic hypercrystals. PMID:26956377
Lu, Cheng; Liu, Guodong; Liu, Bingguo; Chen, Fengdong; Hu, Tao; Zhuang, Zhitao; Xu, Xinke; Gan, Yu
2015-12-14
We establish a theoretical model of dispersion mismatch in absolute distance measurements using swept-wavelength interferometry (SWI) and propose a novel dispersion mismatch compensation method called chirp decomposition. This method separates the dispersion coefficient and distance under test, which ensures dispersion mismatch compensation without introducing additional random errors. In the measurement of a target located at 3.9 m, a measurement resolution of 45.9 μm is obtained, which is close to the theoretical resolution, and a standard deviation of 0.74 μm is obtained, which is better than the traditional method. The measurement results are compared to a single-frequency laser interferometer. The target moves from 1 m to 3.7 m, and the measurement precision using the new method is less than 0.81 μm. PMID:26698959
NASA Astrophysics Data System (ADS)
Steinmeyer, G.
2003-09-01
A novel design approach for dispersion-compensating chirped mirrors with greater-than-octave bandwidth is proposed. The commonly encountered problem of dispersion ripple is overcome by impedance matching via Brewster incidence in respect to the top-layer coating material. This approach totally suppresses undesired reflections off the interface to the ambient medium without any need for complicated matching sections. It is shown that Brewster-angled chirped mirrors can deliver ultrabroadband dispersion compensation over a much wider bandwidth than conventional doublechirped mirrors and without the mechanical complexity of back-deposition approaches. Due to their relatively simple structure, the sensitivity of the dispersion of the Brewster-angled designs towards growth errors is greatly reduced. Therefore, this new generation of chirped mirrors appears ideal for compression of continuum pulses with a potential of pulse durations in the single-cycle regime.
Kurita, Takashi; Yoshida, Hidetsugu; Furuse, Hiroaki; Kawashima, Toshiyuki; Miyanaga, Noriaki
2011-12-01
We investigate the effect of dispersion compensation on temporal characteristics in mode-locking by nonlinear polarization rotation in an ytterbium-doped fiber (YDF) oscillator with intracavity and external grating pairs. A short fixed length YDF was spliced with a longer single-mode fiber (SMF). Using experimentally measured dispersion characteristics of the YDF, SMF and cavity optics, we control the group velocity dispersion (GVD) and spectral broadening in a cavity by changing the SMF length. As a result, the oscillator generated 29.4-fs transform-limited wing-free pulses, which are to our knowledge the shortest and cleanest pulses achieved without the use of additional optics like a prism pair for high-order dispersion compensation. The results show that a precise balance of higher order terms of the GVD and self-phase modulation is essential for shortening pulse duration. PMID:22273911
Single photon energy dispersive x-ray diffraction
Higginbotham, Andrew; Patel, Shamim; Ciricosta, Orlando; Suggit, Matthew J.; Wark, Justin S.; Hawreliak, James A.; Collins, Gilbert W.; Coppari, Federica; Eggert, Jon H.; Tang, Henry
2014-03-15
With the pressure range accessible to laser driven compression experiments on solid material rising rapidly, new challenges in the diagnosis of samples in harsh laser environments are emerging. When driving to TPa pressures (conditions highly relevant to planetary interiors), traditional x-ray diffraction techniques are plagued by increased sources of background and noise, as well as a potential reduction in signal. In this paper we present a new diffraction diagnostic designed to record x-ray diffraction in low signal-to-noise environments. By utilising single photon counting techniques we demonstrate the ability to record diffraction patterns on nanosecond timescales, and subsequently separate, photon-by-photon, signal from background. In doing this, we mitigate many of the issues surrounding the use of high intensity lasers to drive samples to extremes of pressure, allowing for structural information to be obtained in a regime which is currently largely unexplored.
Few-photon scattering in dispersive waveguides with multiple qubits.
Ekin Kocabaş, Şükrü
2016-06-01
We extend the Krylov-subspace-based time-dependent numerical simulation technique for a qubit interacting with photons in a waveguide to the multiple qubit case. We analyze photon scattering from two qubits and derive expressions for the bound states in the continuum (BICs). We show how the BIC can be excited. We use the BIC in a recent Pauli-Z gate proposal involving decoherence free subspaces and obtain the gate fidelity as a function of the gate parameters. The techniques presented in this Letter are useful for investigating the time evolution of quantum gates and other many-body systems with multiple quenches in the Hamiltonian. PMID:27244407
Few-photon scattering in dispersive waveguides with multiple qubits
NASA Astrophysics Data System (ADS)
Ekin Kocabaş, Şükrü
2016-06-01
We extend the Krylov-subspace based time-dependent numerical simulation technique for a qubit interacting with photons in a waveguide to the multiple qubit case. We analyze photon scattering from two qubits analytically and derive expressions for the bound states in the continuum (BIC). We show how the BIC can be excited. We use the BIC in a recent Pauli-Z gate proposal involving decoherence free subspaces and obtain the gate fidelity as a function of the gate parameters. The techniques presented in the paper are useful for investigating the time evolution of quantum gates and other many-body systems with multiple quenches in the Hamiltonian.
Tunable delay control of entangled photons based on dispersion cancellation.
Odele, Ogaga D; Lukens, Joseph M; Jaramillo-Villegas, Jose A; Langrock, Carsten; Fejer, Martin M; Leaird, Daniel E; Weiner, Andrew M
2015-08-24
We propose and demonstrate a novel approach for controlling the temporal position of the biphoton correlation function using pump frequency tuning and dispersion cancellation; precise waveguide engineering enables biphoton generation at different pump frequencies while the idea of nonlocal dispersion cancellation is used to create the relative signal-idler delay and simultaneously prevents broadening of their correlation. Experimental results for delay shifts up to ±15 times the correlation width are shown along with discussions of the performance metrics of this approach. PMID:26368161
Nonlinear wavelength conversion in photonic crystal fibers with three zero-dispersion points
Stark, S. P.; Biancalana, F.; Podlipensky, A.; St. J. Russell, P.
2011-02-15
In this theoretical study, we show that a simple endlessly single-mode photonic crystal fiber can be designed to yield, not just two, but three zero-dispersion wavelengths. The presence of a third dispersion zero creates a rich phase-matching topology, enabling enhanced control over the spectral locations of the four-wave-mixing and resonant-radiation bands emitted by solitons and short pulses. The greatly enhanced flexibility in the positioning of these bands has applications in wavelength conversion, supercontinuum generation, and pair-photon sources for quantum optics.
Spectral response compensation for photon-counting clinical x-ray CT using sinogram restoration
NASA Astrophysics Data System (ADS)
Srivastava, Somesh; Cammin, Jochen; Fung, George S. K.; Tsui, Benjamin M. W.; Taguchi, Katsuyuki
2012-03-01
The x-ray spectrum recorded by a photon-counting x-ray detector (PCXD) is distorted due to the following physical effects which are independent of the count rate: finite energy-resolution, Compton scattering, charge-sharing, and Kescape. If left uncompensated, the spectral response (SR) of a PCXD due to the above effects will result in image artifacts and inaccurate material decomposition. We propose a new SR compensation (SRC) algorithm using the sinogram restoration approach. The two main contributions of our proposed algorithm are: (1) our algorithm uses an efficient conjugate gradient method in which the first and second derivatives of the cost functions are directly calculated analytically, whereas a slower optimization method that requires numerous function evaluations was used in other work; (2) our algorithm guarantees convergence by combining the non-linear conjugate gradient method with line searches that satisfy Wolfe conditions, whereas the algorithm in other work is not backed by theorems from optimization theory to guarantee convergence. In this study, we validate the performance of the proposed algorithm using computer simulations. The bias was reduced to zero from 11%, and image artifacts were removed from the reconstructed images. Quantitative K-edge imaging in possible only when SR compensation is done.
Photon-counting CT: modeling and compensating of spectral distortion effects
NASA Astrophysics Data System (ADS)
Cammin, Jochen; Kappler, Steffen; Weidinger, Thomas; Taguchi, Katsuyuki
2015-03-01
Spectral computed tomography (CT) with photon-counting detectors (PCDs) has the potential to substantially advance diagnostic CT imaging by reducing image noise and dose to the patient, by improving contrast and tissue specificity, and by enabling molecular and functional imaging. However, the current PCD technology is limited by two main factors: imperfect energy measurement (spectral response effects, SR) and count rate non-linearity (pulse pileup effects, PP, due to detector deadtimes) resulting in image artifacts and quantitative inaccuracies for material specification. These limitations can be lifted with image reconstruction algorithms that compensate for both SR and PP. A prerequisite for this approach is an accurate model of the count losses and spectral distortions in the PCD. In earlier work we developed a cascaded SR-PP model and evaluated it using a physical PCD. In this paper we show the robustness of our approach by modifying the cascaded SR-PP model for a faster PCD with smaller pixels and a different pulse shape. We compare paralyzable and non-paralyzable detector models. First, the SR-PP model is evaluated at low and high count rates using two sets of attenuators. Then, the accuracy of the compensation is evaluated by estimating the thicknesses of three basis functions.
Energy dispersive photon counting detectors for breast imaging
NASA Astrophysics Data System (ADS)
Barber, William C.; Wessel, Jan C.; Malakhov, Nail; Wawrzyniak, Gregor; Hartsough, Neal E.; Gandhi, Thulasidharan; Nygard, Einar; Iwanczyk, Jan S.
2013-09-01
We report on our efforts toward the development of silicon (Si) strip detectors for energy-resolved clinical breast imaging. Typically, x-ray integrating detectors based on scintillating cesium iodide CsI(Tl) or amorphous selenium (a- Se) are used in most commercial systems. Recently, mammography instrumentation has been introduced based on photon counting silicon Si strip detectors. Mammography requires high flux from the x-ray generator, therefore, in order to achieve energy resolved single photon counting, a high output count rate (OCR) for the detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel, provided that the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions. We present our methods and results from the optimization of prototype detectors based on Si strip structures. We describe the detector optimization and the development of ASIC readout electronics that provide the required spatial resolution, low noise, high count rate capabilities and minimal power consumption.
Supercontinuum generated in a dispersion-flattened photonic crystal fiber
NASA Astrophysics Data System (ADS)
Li, Xingliang; Zhang, Shumin; Han, Mengmeng; Zhang, Huaxing; Yang, Hong; Yuan, Ting
2014-11-01
We have experimentally investigated supercontinuum generated by using different pulse dynamics patterns as the pump pulses. These patterns, which include conventional mode-locked single pulse, condensed phase pulses and pulsed bunches, were all directly produced from a mode-locked erbium-doped fiber laser based on a multi-layer graphene saturable absorber. The strong third-order optical nonlinearity of graphene and all fiber cavity configuration led to the multi-pulses operation states at a low pump power. A flat supercontinuum with 20-dB width of 550 nm from 1200 nm to 1750 nm have all been obtained by seeding the amplified conventional mode-locked single pulse and condensed phase pulses into a segment of photonic crystal fiber. On the other hand, experimental results also show that the pulsed bunches was not conducive to form a flat supercontinuum.
Multipole study of dispersion and structural losses of photonic crystal fibers
NASA Astrophysics Data System (ADS)
Kuhlmey, Boris T.; Renversez, G.; Maystre, Daniel R.; White, T.; McPhedran, Ross C.; Botten, Lindsay C.; de Sterke, Martijn
2002-04-01
We describe a multipole theory of photonic crystal or more generally microstructured optical fibers (MOF). We review basic MOF properties such-as losses and number of modes-obtained with our method and expose considerations and results on dispersion management taking into account the losses.
Effects of modal dispersion on few-photon-qubit scattering in one-dimensional waveguides
NASA Astrophysics Data System (ADS)
Kocabaş, Şükrü Ekin
2016-03-01
We study one- and two-photon scattering from a qubit embedded in a one-dimensional waveguide in the presence of modal dispersion. We use a resolvent based analysis and utilize techniques borrowed from the Lee model studies. Modal dispersion leads to atom-photon bound states which necessitate the use of multichannel scattering theory. We present multichannel scattering matrix elements in terms of the solution of a Fredholm integral equation of the second kind. Through the use of the Lippmann-Schwinger equation, we derive an infinite series of Feynman diagrams that represent the solution to the integral equation. We use the Feynman diagrams as vertex correction terms to come up with closed-form formulas that successfully predict the trapping rate of a photon in the atom-photon bound state. We verify our formalism through Krylov-subspace based numerical studies with pulsed excitations. Our results provide the tools to calculate the complex correlations between scattered photons in a dispersive environment.
Zhang HaiFeng; Liu Shaobin; Yang Huan; Kong Xiangkun
2013-03-15
In this paper, the magnetooptical effects in dispersive properties for two types of three-dimensional magnetized plasma photonic crystals (MPPCs) containing homogeneous dielectric and magnetized plasma with diamond lattices are theoretically investigated for electromagnetic (EM) wave based on plane wave expansion (PWE) method, as incidence EM wave vector is parallel to the external magnetic field. The equations for two types of MPPCs with diamond lattices (dielectric spheres immersed in magnetized plasma background or vice versa) are theoretically deduced. The influences of dielectric constant, plasma collision frequency, filling factor, the external magnetic field, and plasma frequency on the dispersive properties for both types of structures are studied in detail, respectively, and some corresponding physical explanations are also given. From the numerical results, it has been shown that the photonic band gaps (PBGs) for both types of MPPCs can be manipulated by plasma frequency, filling factor, the external magnetic field, and the relative dielectric constant of dielectric, respectively. Especially, the external magnetic field can enlarge the PBG for type-2 structure (plasma spheres immersed in dielectric background). However, the plasma collision frequency has no effect on the dispersive properties of two types of three-dimensional MPPCs. The locations of flatbands regions for both types of structures cannot be tuned by any parameters except for plasma frequency and the external magnetic field. The analytical results may be informative and of technical use to design the MPPCs devices.
Heidt, Alexander M; Rothhardt, Jan; Hartung, Alexander; Bartelt, Hartmut; Rohwer, Erich G; Limpert, Jens; Tünnermann, Andreas
2011-07-18
We demonstrate nonlinear pulse compression based on recently introduced highly coherent broadband supercontinuum (SC) generation in all-normal dispersion photonic crystal fiber (ANDi PCF). The special temporal properties of the octave-spanning SC spectra generated with 15 fs, 1.7 nJ pulses from a Ti:Sapphire oscillator in a 1.7 mm fiber piece allow the compression to 5.0 fs high quality pulses by linear chirp compensation with a compact chirped mirror compressor. This is the shortest pulse duration achieved to date from the external recompression of SC pulses generated in PCF. Numerical simulations in excellent agreement with the experimental results are used to discuss the scalability of the concept to the single-cycle regime employing active phase shaping. We show that previously reported limits to few-cycle pulse generation from compression of SC spectra generated in conventional PCF possessing one or more zero dispersion wavelengths do not apply for ANDi PCF. PMID:21934748
Saitoh, Kunimasa; Koshiba, Masanori
2004-05-17
We propose a new structure of highly nonlinear dispersion-flattened (HNDF) photonic crystal fiber (PCF) with nonlinear coefficient as large as 30 W(-1)km(-1) at 1.55 microm designed by varying the diameters of the air-hole rings along the fiber radius. This innovative HNDF-PCF has a unique effective-index profile that can offer not only a large nonlinear coefficient but also flat dispersion slope and low leakage losses. It is shown through numerical results that the novel microstructured optical fiber with small normal group-velocity dispersion and nearly zero dispersion slope offers the possibility of efficient supercontinuum generation in the telecommunication window using a few ps pulses. PMID:19475038
NASA Astrophysics Data System (ADS)
Saitoh, Kunimasa; Koshiba, Masanori
2004-05-01
We propose a new structure of highly nonlinear dispersion-flattened (HNDF) photonic crystal fiber (PCF) with nonlinear coefficient as large as 30 W-1km-1 at 1.55 Âµm designed by varying the diameters of the air-hole rings along the fiber radius. This innovative HNDF-PCF has a unique effective-index profile that can offer not only a large nonlinear coefficient but also flat dispersion slope and low leakage losses. It is shown through numerical results that the novel microstructured optical fiber with small normal group-velocity dispersion and nearly zero dispersion slope offers the possibility of efficient supercontinuum generation in the telecommunication window using a few ps pulses.
Ghosh, Prasenjit; Sarkar, Somenath
2016-01-20
Based on a simple but accurate semivectorial solution of Helmholtz's equation by the finite difference method devised with a mode-field convergence technique, we have shown an interesting and significant effect showing an almost ultraflat zero group velocity dispersion in photonic crystal fiber when the holes of the first ring of the fiber are filled with water. Crosschecking our results with earlier results involving a deeply involved multipole method for the central core of photonic crystal fiber filled with water and fused silica, our observation in the case of filling the first ring holes with water reveals potential information in studies of supercontinuum generation. PMID:26835922
Dispersion properties of a 2D magnetized plasma metallic photonic crystal
Fu, T.; Yang, Z.; Shi, Z.; Lan, F.; Li, D.; Gao, X.
2013-02-15
This is a study on a 2D magnetized plasma-filled metal photonic crystal (PMPC). We analyze the dispersion relation of the magnetized PMPC by using the finite-difference time-domain method. Results show a cutoff frequency for the PMPC, and two flat bands and new forbidden band gaps appear due to the external magnetic field. Adjusting the external magnetic field can control the positions of the flat bands, cutoff frequency, and location and width of the local gap. These results provide theoretical basis for designing tunable photonic crystal devices.
REVIEW ARTICLE: Dispersion engineered slow light in photonic crystals: a comparison
NASA Astrophysics Data System (ADS)
Schulz, S. A.; O'Faolain, L.; Beggs, D. M.; White, T. P.; Melloni, A.; Krauss, T. F.
2010-10-01
We review the different types of dispersion engineered photonic crystal waveguides that have been developed for slow light applications. We introduce the group index bandwidth product (GBP) and the loss per delay in terms of dB ns - 1 as two key figures of merit to describe such structures and compare the different experimental realizations based on these figures. A key outcome of the comparison is that slow light based on photonic crystals performs as well or better than slow light based on coupled ring resonators.
Design of highly nonlinear photonic crystal fibers with flattened chromatic dispersion.
Li, Xuyou; Xu, Zhenlong; Ling, Weiwei; Liu, Pan
2014-10-10
A novel (to our knowledge) type of photonic crystal fiber (PCF) with high nonlinearity and flattened dispersion is proposed. The propagation characteristics of chromatic dispersion, effective area, and nonlinearity are studied numerically by using the full-vector finite element method. Several PCF designs with high nonlinearity and nearly zero flattened dispersion or broadband flattened, and even ultraflattened, dispersion over different wavelength bands are obtained by optimizing the structural parameters. One optimized PCF has a nearly zero ultraflattened dispersion of 2.3 ps/(nm·km) with a dispersion variation of 0.2 ps/(nm·km) over the C+L+U wavelength bands. In addition, the dispersion slope and nonlinear coefficient at 1.55 μm can be up to 2.2×10(-3) ps/nm(2)·km and 33.2 W(-1)·km(-1), respectively. The designs proposed in this paper have bright prospects for applications in all-optical format conversion, supercontinuum generation, optical wavelength conversion, and many other fields. PMID:25322369
NASA Astrophysics Data System (ADS)
Olyaee, Saeed; Taghipour, Fahimeh
2011-02-01
Photonic crystal fibers (PCFs) are highly suitable transmission media for wavelength-division-multiplexing (WDM) systems, in which low and ultra-flattened dispersion of PCFs is extremely desirable. It is also required to concurrently achieve both a low confinement loss as well as a large effective area in a wide range of wavelengths. Relatively low dispersion with negligible variation has become feasible in the wavelength range of 1.1 to 1.8μm through the proposed design in this paper. According to a new structure of PCF presented in this study, the dispersion slope is 6.8×10-4ps/km.nm2 and the confinement loss reaches below 10-6 dB/km in this range, while at the same time an effective area of more than 50μm2 has been attained. For the analysis of this PCF, finite-difference time-domain (FDTD) method with the perfectly matched layers (PML) boundary conditions has been used.
NASA Astrophysics Data System (ADS)
Chen, Ying; Yang, Bo; Chi, Hao; Jin, Xiaofeng; Zheng, Shilie; Zhang, Xianmin
2013-04-01
A novel photonic approach to realize the instantaneous microwave frequency measurement with digital output is proposed and demonstrated experimentally. Based on the power fading function of a double-sideband modulated microwave signal transmitting in a dispersive fiber channel, the microwave frequency to digital code mapping can be realized in a multi-channel system where each channel is configured with a predetermined amount of dispersion. The coding process involved here is similar to that of the photonic analog-to-digital conversion. The principle of the system is discussed in detail. An experiment is carried out, in which the frequency identification with 4-bit quantization levels in 17.5 GHz measurement range is demonstrated. The measurement range and the resolution are discussed theoretically and numerically.
Dispersion engineering in nonlinear soft glass photonic crystal fibers infiltrated with liquids.
Pniewski, Jacek; Stefaniuk, Tomasz; Van, Hieu Le; Long, Van Cao; Van, Lanh Chu; Kasztelanic, Rafał; Stępniewski, Grzegorz; Ramaniuk, Aleksandr; Trippenbach, Marek; Buczyński, Ryszard
2016-07-01
We present a numerical study of the dispersion characteristic modification of nonlinear photonic crystal fibers infiltrated with liquids. A photonic crystal fiber based on the soft glass PBG-08, infiltrated with 17 different organic solvents, is proposed. The glass has a light transmission window in the visible-mid-IR range of 0.4-5 μm and has a higher refractive index than fused silica, which provides high contrast between the fiber structure and the liquids. A fiber with air holes is designed and then developed in the stack-and-draw process. Analyzing SEM images of the real fiber, we calculate numerically the refractive index, effective mode area, and dispersion of the fundamental mode for the case when the air holes are filled with liquids. The influence of the liquids on the fiber properties is discussed. Numerical simulations of supercontinuum generation for the fiber with air holes only and infiltrated with toluene are presented. PMID:27409187
Dispersion and Mirage of Surface Plasmon Waves in Metallic Photonic Crystals
NASA Astrophysics Data System (ADS)
Chau, Cheung Wai; Chan, Yun San; Zheng, Ming Jie; Yu, Kin Wah
2011-03-01
We have studied the dispersion and propagation of surface plasmon (SP) waves in a one-dimensional metallic photonic crystal composed of metal-dielectric multilayered films by a transfer matrix method. By virtue of Bloch theorem, we are able to obtain the dispersion (frequency-wavevector) relation for arbitrary oblique propagation of SP waves for various non-zero transverse wavevectors. Model calculations are performed for alternative gold and Mg F2 films to obtain the photonic band-gap structure. For a progressively decreasing gold film thickness, the band (gap) width increases (decreases), rendering a precise and feasible tunability of photonic band gaps. Moreover, by imposing a gradual variation in the thickness of dielectric along the multilayers, it is possible to alter the dispersion relation locally, allowing us to study the bending of SP wave at various incident angles. We use Hamiltonian optics approach to obtain the trajectories of propagation. As the transverse wavevector is a constant of motion for a certain incident angle, we obtain different mirage at various oblique incidence. The results are useful for achieving superbending of SP waves. Supported by the General Research Fund of the HKSAR Government.
NASA Astrophysics Data System (ADS)
Yamamoto, T.; Kubota, H.; Kawanishi, S.; Tanaka, M.; Yamaguchi, S.
2003-06-01
We demonstrate the generation of symmetrical supercontinuum of over 40 nm in the 1.55 m region (1540 - 1580 nm) by injecting 1562 nm, 2.2 ps, 40 GHz optical pulses into a 200 m-long, dispersion-flattened polarization-maintaining photonic crystal fiber. The chromatic dispersion and dispersion slope of the fiber at 1.55 m are -0.23 ps/km/nm and 0.01 ps/km/nm2, respectively. This is the first report of 1.55 m band supercontinuum generation in a dispersion-flattened and polarization-maintaining photonic crystal fiber.
Yamamoto, T; Kubota, H; Kawanishi, S; Tanaka, M; Yamaguchi, S
2003-06-30
We demonstrate the generation of symmetrical supercontinuum of over 40 nm in the 1.55 m region (1540 - 1580 nm) by injecting 1562 nm, 2.2 ps, 40 GHz optical pulses into a 200 m-long, dispersion-flattened polarization-maintaining photonic crystal fiber. The chromatic dispersion and dispersion slope of the fiber at 1.55 m are -0.23 ps/km/nm and 0.01 ps/km/nm2, respectively. This is the first report of 1.55 m band supercontinuum generation in a dispersion-flattened and polarization-maintaining photonic crystal fiber. PMID:19466027
Refractive index dispersion sensing using an array of photonic crystal resonant reflectors
NASA Astrophysics Data System (ADS)
Hermannsson, Pétur G.; Vannahme, Christoph; Smith, Cameron L. C.; Sørensen, Kristian T.; Kristensen, Anders
2015-08-01
Refractive index sensing plays a key role in various environmental and biological sensing applications. Here, a method is presented for measuring the absolute refractive index dispersion of liquids using an array of photonic crystal resonant reflectors of varying periods. It is shown that by covering the array with a sample liquid and measuring the resonance wavelength associated with transverse electric polarized quasi guided modes as a function of period, the refractive index dispersion of the liquid can be accurately obtained using an analytical expression. This method is compact, can perform measurements at arbitrary number of wavelengths, and requires only a minute sample volume. The ability to sense a material's dispersion profile offers an added dimension of information that may be of benefit to optofluidic lab-on-a-chip applications.
Refractive index dispersion sensing using an array of photonic crystal resonant reflectors
Hermannsson, Pétur G.; Vannahme, Christoph; Smith, Cameron L. C.; Sørensen, Kristian T.; Kristensen, Anders
2015-08-10
Refractive index sensing plays a key role in various environmental and biological sensing applications. Here, a method is presented for measuring the absolute refractive index dispersion of liquids using an array of photonic crystal resonant reflectors of varying periods. It is shown that by covering the array with a sample liquid and measuring the resonance wavelength associated with transverse electric polarized quasi guided modes as a function of period, the refractive index dispersion of the liquid can be accurately obtained using an analytical expression. This method is compact, can perform measurements at arbitrary number of wavelengths, and requires only a minute sample volume. The ability to sense a material's dispersion profile offers an added dimension of information that may be of benefit to optofluidic lab-on-a-chip applications.
Long, Fang; Tian, Huiping; Ji, Yuefeng
2010-09-01
A low dispersion photonic crystal waveguide with triangular lattice elliptical airholes is proposed for compact, high-performance optical buffering applications. In the proposed structure, we obtain a negligible-dispersion bandwidth with constant group velocity ranging from c/41 to c/256, by optimizing the major and minor axes of bulk elliptical holes and adjusting the position and the hole size of the first row adjacent to the defect. In addition, the limitations of buffer performance in a dispersion engineering waveguide are well studied. The maximum buffer capacity and the maximum data rate can reach as high as 262bits and 515 Gbits/s, respectively. The corresponding delay time is about 255.4ps. PMID:20820224
Three octave spanning supercontinuum by red-shifted dispersive wave in photonic crystal fibers
NASA Astrophysics Data System (ADS)
Sharma, Mohit; Konar, S.
2016-03-01
This article presents a three-layer index guided lead silicate (SF57) photonic crystal fiber which simultaneously promises to yield large effective optical nonlinear coefficient and low anomalous dispersion that makes it suitable for supercontinuum (SC) generation. At an operating wavelength 1550 nm, the typical optimized value of anomalous dispersion and effective nonlinear coefficient turns out to be ~4 ps/km/nm and ~1078 W-1km-1, respectively. Through numerical simulation, it is realized that the designed fiber promises to exhibit three octave spanning SC from 900 to 7200 nm using 50 fs 'sech' optical pulses of 5 kW peak power. Due to the cross-phase modulation and four-wave mixing processes, a long range of red-shifted dispersive wave generated, which assists to achieve such large broadening. In addition, we have investigated the compatibility of SC generation with input pulse peak power increment and briefly discussed the impact of nonlinear processes on SC generation.
Zheng, Ye; Yang, Yifeng; Wang, Jianhua; Hu, Man; Liu, Guangbo; Zhao, Xiang; Chen, Xiaolong; Liu, Kai; Zhao, Chun; He, Bing; Zhou, Jun
2016-05-30
We report an 8-element spectral beam combination of Yb-doped all fiber superfluorescent sources around 1070 nm wavelength. Each source consists of a 60 mW front-end and a 1.5 kW three-stage fiber amplifier chain. The eight output beamlets are spectrally combined using a home-made polarization-independent multilayer dielectric reflective diffraction grating. 10.8 kW output power is achieved with an efficiency of 94%. Besides, both theoretical and experimental studies of dual grating dispersion compensation scheme have been performed, which is proved to be a prospective way for high brightness spectral beam combination. PMID:27410127
Dynamics of dispersive photon-number QND measurements in a micromaser
Kozlovskii, A. V.
2007-04-15
A numerical analysis of dispersive quantum nondemolition measurement of the photon number of a microwave cavity field is presented. Simulations show that a key property of the dispersive atom-field interaction used in Ramsey interferometry is the extremely high sensitivity of the dynamics of atomic and field states to basic parameters of the system. When a monokinetic atomic beam is sent through a microwave cavity, a qualitative change in the field state can be caused by an uncontrollably small deviation of parameters (such as atom path length through the cavity, atom velocity, cavity mode frequency detuning, or atom-field coupling constants). The resulting cavity field can be either in a Fock state or in a super-Poissonian state (characterized by a large photon-number variance). When the atoms have a random velocity spread, the field is squeezed to a Fock state for arbitrary values of the system's parameters. However, this makes detection of Ramsey fringes impossible, because the probability of detecting an atom in the upper or lower electronic state becomes a random quantity almost uniformly distributed over the interval between zero and unity, irrespective of the cavity photon number.
Ha, Jeong-Hyon; Lee, Kyung-Koo; Park, Kwang-Hee; Choi, Jun-Ho; Jeon, Seung-Joon; Cho, Minhaeng
2009-05-28
By means of integrated and dispersed IR photon echo measurement methods, the vibrational dynamics of C-N stretch modes in 4-cyanophenol and 4-cyanophenoxide in methanol is investigated. The vibrational frequency-frequency correlation function (FFCF) is retrieved from the integrated photon echo signals by assuming that the FFCF is described by two exponential functions with about 400 fs and a few picosecond components. The excited state lifetimes of the C-N stretch modes of neutral and anionic 4-cyanophenols are 1.45 and 0.91 ps, respectively, and the overtone anharmonic frequency shifts are 25 and 28 cm(-1). At short waiting times, a notable underdamped oscillation, which is attributed to a low-frequency intramolecular vibration coupled to the CN stretch, in the integrated and dispersed vibrational echo as well as transient grating signals was observed. The spectral bandwidths of IR absorption and dispersed vibrational echo spectra of the 4-cyanophenoxide are significantly larger than those of its neutral form, indicating that the strong interaction between phenoxide and methanol causes large frequency fluctuation and rapid population relaxation. The resonance effects in a paradisubstituted aromatic compound would be of interest in understanding the conjugation effects and their influences on chemical reactivity of various aromatic compounds in organic solvents. PMID:19485459
NASA Astrophysics Data System (ADS)
Zuo, Yanlei; Zhou, Kainan; Wu, Zhaohui; Wang, Xiao; Xie, Na; Su, Jingqin; Zeng, Xiaoming
2016-05-01
It is necessary to eliminate third-order dispersion to acquire an ultrashort pulse of less than 30 fs. We demonstrate for the first time, to the best of our knowledge, the alignment of a petawatt-class laser compressor using the equiphase lines in the spatial and spectral interference patterns. Third-order dispersion has been completely eliminated and a Fourier-transform-limited pulsewidth of 19.6 fs has been approached.
Zhao, Xingtao; Liu, Xiaoxu; Wang, Shutao; Wang, Wei; Han, Ying; Liu, Zhaolun; Li, Shuguang; Hou, Lantian
2015-10-19
Photonic crystal fibers with three and four zero-dispersion wavelengths are presented through special design of the structural parameters, in which the closing to zero and ultra-flattened dispersion can be obtained. The unique phase-matching properties of the fibers with three and four zero-dispersion wavelengths are analyzed. Variation of the phase-matching wavelengths with the pump wavelengths, pump powers, dispersion properties, and fiber structural parameters is analyzed. The presence of three and four zero-dispersion wavelengths can realize wavelength conversion of optical soliton between two anomalous dispersion regions, generate six phase-matching sidebands through four-wave mixing and create more new photon pairs, which can be used for the study of supercontinuum generation, optical switches and quantum optics. PMID:26480448
Dauler, Eric; Jaeger, Gregg; Muller, Antoine; Migdall, A.; Sergienko, A.
1999-01-01
An investigation is made of a recently introduced quantum interferometric method capable of measuring polarization mode dispersion (PMD) on sub-femtosecond scales, without the usual interferometric stability problems associated with such small time scales. The technique makes use of the extreme temporal correlation of orthogonally polarized pairs of photons produced via type-II phase-matched spontaneous parametric down-conversion. When sent into a simple polarization interferometer these photon pairs produce a sharp interference feature seen in the coincidence rate. The PMD of a given sample is determined from the shift of that interference feature as the sample is inserted into the system. The stability and resolution of this technique is shown to be below 0.2 fs. We explore how this precision is improved by reducing the length of the down-conversion crystal and increasing the spectral band pass of the system.
Extremely low-loss, dispersion flattened porous-core photonic crystal fiber for terahertz regime
NASA Astrophysics Data System (ADS)
Islam, Saiful; Islam, Mohammad Rakibul; Faisal, Mohammad; Arefin, Abu Sayeed Muhammad Shamsul; Rahman, Hasan; Sultana, Jakeya; Rana, Sohel
2016-07-01
A porous-core octagonal photonic crystal fiber (PC-OPCF) with ultralow effective material loss (EML), high core power fraction, and ultra flattened dispersion is proposed for terahertz (THz) wave propagation. At an operating frequency of 1 THz and core diameter of 345 μm, simulation results display an extremely low EML of 0.047 cm-1, 49.1% power transmission through core air holes, decreased confinement loss with the increase of frequency, and dispersion variation of 0.15 ps/THz/cm. In addition, the proposed PCF can successfully operate in single-mode condition. All the simulations are performed with finite-element modeling package, COMSOL v4.2. The design can be fabricated using a stacking and drilling method. Thus, the proposed fiber has the potential of being an effective transmission medium of broadband THz waves.
Dispersion properties of transverse anisotropic liquid crystal core photonic crystal fibers
NASA Astrophysics Data System (ADS)
Karasawa, Naoki
2016-04-01
The dispersion properties of liquid crystal core photonic crystal fibers for different core diameters have been calculated by a full vectorial finite difference method. In calculations, air holes are assumed to be arranged in a regular hexagonal array in fused silica and a central hole is filled with liquid crystal to create a core. In this study, three types of transverse anisotropic configurations, where liquid crystal molecules are oriented in a transverse plane, and a planar configuration, where liquid crystal molecules are oriented in a propagation direction, are considered. The large changes of the dispersion properties are found when the orientation of the liquid crystal molecules is changed from a planar configuration to a uniform configuration, where all molecules are oriented in the same direction in a transverse plane. Since the orientation of liquid crystal molecules may be controlled by applying an electric field, it could be utilized for various applications including the spectral control of supercontinuum generation.
Dispersion engineering in soft glass photonic crystal fibers infiltrated with liquids
NASA Astrophysics Data System (ADS)
Stefaniuk, Tomasz; Le Van, Hieu; Pniewski, Jacek; Cao Long, Van; Ramaniuk, Aleksandr; Grajewski, Karol; Chu Van, Lanh; Karpierz, Mirosław; Trippenbach, Marek; Buczynski, Ryszard
2015-12-01
We present a numerical study of the dispersion characteristic modification in a nonlinear photonic crystal fibre (PCF) infiltrated with organic solvents. The PCF is made of PBG08 glass and was developed in the stack-and-draw process. The PBG08 glass has a high refractive index (n < 2.0), high nonlinear refractive index (n2 = 4.3×10-19 m2/W) and good rheological properties that allow for thermal processing of the glass without crystallization. In the numerical study 18 different solvents were used. The dispersion, mode area, and losses characteristics were calculated. The zero dispersion wavelength (ZDW) of the fibre can be shifted towards longer wavelengths by approx. 150 nm by using Nitrobenzene as infiltrating liquid and by a smaller value using other liquids. At the same time the mode area of the fundamental mode increases by approx. 5 to 15% depending on the wavelength considered. The confinement losses increase significantly for six analysed liquids by a few orders of magnitude up to 102 dB/m. Our approach allows to combine high nonlinearities of the soft glass with the possibility to tune zero dispersion wavelength to the desired value.
NASA Astrophysics Data System (ADS)
Arora, Sumeeta
both the comb-generator pulses and the non-regular, data-like "1011" pulse pattern, we study the impact of chromatic dispersion on the optical pulse width and pulse performance. Chromatic dispersion has been used in previous studies as a means of compressing the gain-switched pulses. For comb-generated pulses, we find that an increase in the bias current applied to the laser diode results in a decrease in the magnitude of chromatic dispersion required to compress the gain-switched optical pulse. Also the percentage change in the width of the gain-switched pulse on passing through a dispersion source increases with the increase in bias current even though the applied chromatic dispersion is decreased. The optical pulses generated using data pattern are more uniform in terms of peak power of the optical pulses when chromatic dispersion in a particular range is applied. A reduction in jitter is also seen for that range of dispersion while it increases for higher and lower values of dispersion. During the course of my thesis work, I activated a gain-switched optical pulse source in the Photonic Systems Laboratory at RIT for the first time. This source will be used to support future research projects. I also developed a suite of MATLAB code for study of gain-switching and dispersion compensation.
Quantum-rod dispersed photopolymers for multi-dimensional photonic applications.
Li, Xiangping; Chon, James W M; Evans, Richard A; Gu, Min
2009-02-16
Nanocrystal quantum rods (QRs) have been identified as an important potential key to future photonic devices because of their unique two-photon (2P) excitation, large 2P absorption cross section and polarization sensitivity. 2P excitation in a conventional solid photosensitive medium has driven all-optical devices towards three-dimensional (3D) platform architectures such as 3D photonic crystals, optical circuits and optical memory. The development of a QR-sensitized medium should allow for a polarization-dependent change in refractive index. Such a localized polarization control inside the focus can confine the light not only in 3D but also in additional polarization domain. Here we report on the first 2P absorption excitation of QR-dispersed photopolymers and its application to the fabrication of polarization switched waveguides, multi-dimensional optical patterning and optical memory. This fabrication was achieved by a 2P excited energy transfer process between QRs and azo dyes which facilitated 3D localized polarization sensitivity resulting in the control of light in four dimensions. PMID:19219199
Multiple Bragg diffraction in opal-based photonic crystals: Spectral and spatial dispersion
NASA Astrophysics Data System (ADS)
Shishkin, I. I.; Rybin, M. V.; Samusev, K. B.; Golubev, V. G.; Limonov, M. F.
2014-01-01
We present an experimental and theoretical study of multiple Bragg diffraction from synthetic opals. An original setup permits us to overcome the problem of the total internal light reflection in an opal film and to investigate the diffraction from both the (111) and (1¯11) systems of planes responsible for the effect. As a result, angle- and frequency-resolved diffraction and transmission measurements create a picture of multiple Bragg diffraction that includes general agreement between dips in the transmission spectra and diffraction peaks for each incident white light angle and a twin-peak structure at frequencies of the photonic stop band edges. Two opposite cases of the interference are discussed: an interference of two narrow Bragg bands that leads to multiple Bragg diffraction with anticrossing regime for dispersion photonic branches and an interference of a narrow Bragg band and broad disorder-induced Mie background that results in a Fano resonance. A good quantitative agreement between the experimental data and calculated photonic band structure has been obtained.
Studying the VCSEL to VCSEL injection locking for enhanced chromatic dispersion compensation
NASA Astrophysics Data System (ADS)
Li, Linfu
2010-11-01
In order to supply a theoretical guide for digital chaotic telecommunication, the technique of Optical injection locking (OIL) of semiconductor lasers on the chaotic communication have been investigated based on the theoretical models used to describe the dynamics of solitary VCSEL subjected to the external optical injection and signal transmission in fiber. The numerical simulation results show that, the frequency chirp and time-resolved chirp are reduced in magnitude, using a VCSEL laser as master and another VCSEL as slave, it leads to a no-penalty transmission over 50 km of uncompensated in SSMF at 10Gb/s, and it could be higher rate and more remote if there were appropriate compensation.
NASA Astrophysics Data System (ADS)
Zhang, Ya-Ni
2013-01-01
A simple type of photonic crystal fiber (PCF) for supercontinuum generation is proposed for the first time. The proposed PCF is composed of a solid silica core and a cladding with square lattice uniform elliptical air holes, which offers not only a large nonlinear coefficient but also a high birefringence and low leakage losses. The PCF with nonlinear coefficient as large as 46 W-1 · km-1 at the wavelength of 1.55 μm and a total dispersion as low as ±2.5 ps · nm-1 · km-1 over an ultra-broad waveband range of the S—C—L band (wavelength from 1.46 μm to 1.625 μm) is optimized by adjusting its structure parameter, such as the lattice constant Λ, the air-filling fraction f, and the air-hole ellipticity η. The novel PCF with ultra-flattened dispersion, highly nonlinear coefficient, and nearly zero negative dispersion slope will offer a possibility of efficient super-continuum generation in telecommunication windows using a few ps pulses.
NASA Astrophysics Data System (ADS)
Böswetter, Pascal; Baselt, Tobias; Ebert, Frank; Basan, Fabiola; Hartmann, Peter
2011-02-01
Optical fibers are used in various applications, e. g. optical communication, material processing, as a laser medium or to generate efficient supercontinua. For most of these applications the knowledge of the dispersion is an essential prerequisite. The dispersion and modal properties of photonic crystal fibers (PCF) strongly depend on the hole diameter and pitch. Since fabrication tolerances affect the structure of the photonic lattice, the dispersion behavior as well as the number of guided transverse modes can differ from numerical calculations. Dispersion measurement of singlemode photonic crystal fibers has been well described in recent papers. However, the determination of dispersion in the presence of higher-order modes is much more difficult. To measure the dispersion of optical fibers with high accuracy, a time-domain white-light interferometer based on a Mach-Zehnder interferometer is presented. The experimental setup allows to determine the wavelength-dependent differential group delay of light travelling through conventional fibers and PCFs within the wavelength range from VIS to NIR. Interferences appear due to superposition of two laser beams, one propagating through the tested fiber and the other travelling through air. Measuring the different group delays of a step-index fiber shows the sufficient accuracy of the interferometer. This paper demonstrates a simple yet effective way to suppress higher-order modes, making it possible to measure the chromatic dispersion of singlemode as well as multimode fibers.
NASA Astrophysics Data System (ADS)
Kanka, Jiri
2009-05-01
For most telecom nonlinear applications a high effective nonlinearity, low group velocity dispersion with a low dispersion slope and a short fibre length are the key parameters. Combining photonic crystal fibre (PCF) technology with highly nonlinear glasses could meet these requirements very well. We have performed dispersion optimization of PCFs made from selected nonlinear glasses with a solid core and small number of hexagonally arrayed air holes. The optimization procedure employs the Nelder-Mead downhill simplex algorithm. For the modal analysis of the photonic crystal fibre structure a fully-vectorial mode solver based on the finite element method is used. We have obtained two types of dispersion optimized nonlinear PCF designs: PCFs of the first type are single-mode and highly nonlinear with a small and flattened dispersion in the 1500-1600 nm range. These PCF structures have air holes hexagonally arrayed in from 3 to 5 rings, however, their dispersion characteristics are very sensitive to variations in structural parameters. PCFs of the second type are two-ring PCFs with larger multi-mode cores. They have fundamental mode's zero dispersion wavelength around 1550 nm with non-zero moderate dispersion slopes which are less sensitive to structural variation. It is supposed that this alternative PCF design will be easier to fabricate. The effects of fabrication imprecision on the dispersion characteristics for both PCF designs are demonstrated numerically and discussed in the context of nonlinear telecom applications.
Towards hybrid pixel detectors for energy-dispersive or soft X-ray photon science.
Jungmann-Smith, J H; Bergamaschi, A; Brückner, M; Cartier, S; Dinapoli, R; Greiffenberg, D; Huthwelker, T; Maliakal, D; Mayilyan, D; Medjoubi, K; Mezza, D; Mozzanica, A; Ramilli, M; Ruder, Ch; Schädler, L; Schmitt, B; Shi, X; Tinti, G
2016-03-01
JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications at free-electron lasers and synchrotron light sources. The JUNGFRAU 0.4 prototype presented here is specifically geared towards low-noise performance and hence soft X-ray detection. The design, geometry and readout architecture of JUNGFRAU 0.4 correspond to those of other JUNGFRAU pixel detectors, which are charge-integrating detectors with 75 µm × 75 µm pixels. Main characteristics of JUNGFRAU 0.4 are its fixed gain and r.m.s. noise of as low as 27 e(-) electronic noise charge (<100 eV) with no active cooling. The 48 × 48 pixels JUNGFRAU 0.4 prototype can be combined with a charge-sharing suppression mask directly placed on the sensor, which keeps photons from hitting the charge-sharing regions of the pixels. The mask consists of a 150 µm tungsten sheet, in which 28 µm-diameter holes are laser-drilled. The mask is aligned with the pixels. The noise and gain characterization, and single-photon detection as low as 1.2 keV are shown. The performance of JUNGFRAU 0.4 without the mask and also in the charge-sharing suppression configuration (with the mask, with a `software mask' or a `cluster finding' algorithm) is tested, compared and evaluated, in particular with respect to the removal of the charge-sharing contribution in the spectra, the detection efficiency and the photon rate capability. Energy-dispersive and imaging experiments with fluorescence X-ray irradiation from an X-ray tube and a synchrotron light source are successfully demonstrated with an r.m.s. energy resolution of 20% (no mask) and 14% (with the mask) at 1.2 keV and of 5% at 13.3 keV. The performance evaluation of the JUNGFRAU 0.4 prototype suggests that this detection system could be the starting point for a future detector development effort for either applications in the soft X-ray energy regime or for an energy-dispersive
Mesaritakis, Charis; Bogris, Adonis; Kapsalis, Alexandros; Syvridis, Dimitris
2015-07-15
In this Letter, we present and fully model a photonic scheme that allows the high-speed identification of images acquired through the dispersive Fourier technique. The proposed setup consists of a photonic reservoir-computing scheme that is based on the nonlinear response of randomly interconnected InGaAsP microring resonators. This approach allowed classification errors of 0.6%, whereas it alleviates the need for complex high-cost optoelectronic sampling and digital processing. PMID:26176483
NASA Astrophysics Data System (ADS)
Hasan, Md. Rabiul; Anower, Md. Shamim; Hasan, Md. Imran
2016-05-01
A simple hexagonal photonic crystal fiber is proposed to simultaneously achieve ultrahigh birefringence, large nonlinear coefficient, and two zero dispersion wavelengths (ZDWs). The finite element method with circular perfectly matched layer boundary condition is used to simulate the designed structure. Simulation results show that it is possible to achieve two closely lying ZDWs of 1.08 and 1.29 μm for x-polarization with 0.88 and 1.20 μm for y-polarization modes, respectively. In addition, an ultrahigh birefringence of 3.15×10-2 and a high nonlinear coefficient of 58 W-1 km-1 are also obtained at the excitation wavelength of 1.55 μm. The proposed fiber can have important applications in supercontinuum generation, parametric amplification, four-wave mixing, and optical sensors design.
NASA Astrophysics Data System (ADS)
Wahle, Markus; Kitzerow, Heinz-Siegfried
2015-11-01
We present a liquid crystal (LC) infiltrated photonic crystal fiber, which enables the electrical tuning of the position of zero dispersion wavelengths (ZDWs). A dual frequency addressable liquid crystal is aligned perpendicular on the inclusion walls of a photonic crystal fiber, which results in an escaped radial director field. The orientation of the LC is controlled by applying an external electric field. Due to the high index of the liquid crystal the fiber guides light by the photonic band gap effect. Multiple ZDWs exist in the visible and near infrared. The positions of the ZDWs can be either blue or red shifted depending on the frequency of the applied voltage.
Wahle, Markus Kitzerow, Heinz-Siegfried
2015-11-16
We present a liquid crystal (LC) infiltrated photonic crystal fiber, which enables the electrical tuning of the position of zero dispersion wavelengths (ZDWs). A dual frequency addressable liquid crystal is aligned perpendicular on the inclusion walls of a photonic crystal fiber, which results in an escaped radial director field. The orientation of the LC is controlled by applying an external electric field. Due to the high index of the liquid crystal the fiber guides light by the photonic band gap effect. Multiple ZDWs exist in the visible and near infrared. The positions of the ZDWs can be either blue or red shifted depending on the frequency of the applied voltage.
Askari, Nasim; Eslami, Esmaeil; Mirzaie, Reza
2015-11-15
The photonic band gap of obliquely incident terahertz electromagnetic waves in a one-dimensional plasma photonic crystal is studied. The periodic structure consists of lossless dielectric and inhomogeneous plasma with a parabolic density profile. The dispersion relation and the THz wave transmittance are analyzed based on the electromagnetic equations and transfer matrix method. The dependence of effective plasma frequency and photonic band gap characteristics on dielectric and plasma thickness, plasma density, and incident angle are discussed in detail. A theoretical calculation for effective plasma frequency is presented and compared with numerical results. Results of these two methods are in good agreement.
NASA Astrophysics Data System (ADS)
Maghrebi, Mohammad F.; Jaffe, Robert L.; Kardar, Mehran
2014-07-01
We study the implications of quantum fluctuations of a dispersive medium, under steady rotation, either in or out of thermal equilibrium with its environment. A rotating object exhibits a quantum instability by dissipating its mechanical motion via spontaneous emission of photons, as well as internal heat generation. Universal relations are derived for the radiated energy and angular momentum as trace formulas involving the object's scattering matrix. We also compute the quantum noise by deriving the full statistics of the radiated photons out of thermal and/or dynamic equilibrium. The (entanglement) entropy generation is quantified and the total entropy is shown to be always increasing. Furthermore, we derive a Fokker-Planck equation governing the stochastic angular motion resulting from the fluctuating backreaction frictional torque. As a result, we find a quantum limit on the uncertainty of the object's angular velocity in steady rotation. Finally, we show in some detail that a rotating object drags nearby objects, making them spin parallel to its axis of rotation. A scalar toy model is introduced to simplify the technicalities and ease the conceptual complexities and then a detailed discussion of quantum electrodynamics is presented.
Inverse dispersion method for calculation of complex photonic band diagram and PT symmetry
NASA Astrophysics Data System (ADS)
Rybin, Mikhail V.; Limonov, Mikhail F.
2016-04-01
We suggest an inverse dispersion method for calculating a photonic band diagram for materials with arbitrary frequency-dependent dielectric functions. The method is able to calculate the complex wave vector for a given frequency by solving the eigenvalue problem with a non-Hermitian operator. The analogy with PT -symmetric Hamiltonians reveals that the operator corresponds to the momentum as a physical quantity, and the singularities at the band edges are related to the branch points and responses for the features on the band edges. The method is realized using a plane wave expansion technique for a two-dimensional periodic structure in the case of TE and TM polarizations. We illustrate the applicability of the method by the calculation of the photonic band diagrams of an infinite two-dimensional square lattice composed of dielectric cylinders using the measured frequency-dependent dielectric functions of different materials (amorphous hydrogenated carbon, silicon, and chalcogenide glass). We show that the method allows one to distinguish unambiguously between Bragg and Mie gaps in the spectra.
Linearization of an intensity-modulated analog photonic link using an FBG and a dispersive fiber
NASA Astrophysics Data System (ADS)
Gao, Yongsheng; Wen, Aijun; Chen, Yan; Zhang, Huixing; Xiang, Shuiying
2015-03-01
An optical linearization technique for an intensity-modulated analog photonic link is proposed and demonstrated. Conventional double-sideband intensity modulation is applied to modulate the radio frequency (RF) signal onto the optical carrier; then a fiber Bragg grating (FBG) is used to suppress part of the optical carrier and a single mode fiber (SMF) is followed to introduce some dispersion. By properly adjusting the dispersion-induced phase shift, the third-order intermodulation distortion can be suppressed. The proposed scheme is simple and low cost. The FBG can be also used to optimize the power ratio of the optical carrier and sidebands, thus improving the link gain, while the SMF can act as a transmission medium to deliver the RF signal. Experimental results show that an improvement of 12.6 dB in the spurious-free dynamic range and 3.8 dB in the link gain is achieved after linearization. The frequency tunability of the linearization technique is also evaluated by the transmission of RF signals with different center frequencies and bandwidths.
NASA Astrophysics Data System (ADS)
Namihira, Yoshinori; Hossain, Md. Anwar; Koga, Taito; Islam, Md. Ashraful; Razzak, S. M. Abdur; Kaijage, Shubi F.; Hirako, Yuki; Higa, Hiroki
2012-03-01
In this paper, we propose a highly nonlinear dispersion flattened hexagonal photonic crystal fiber (HNDF-HPCF) with nonlinear coefficients as large as 57.5W-1 km-1 at 1.31 μm wavelength for dental optical coherence tomography (OCT) applications. This HNDF-HPCF offers not only large nonlinear coefficient but also very flat dispersion slope and very low confinement losses. Using these characteristics of our proposed PCF, it is shown through simulations by using finite difference method with an anisotropic perfectly matched boundary layer that this PCF offers the efficient supercontinuum (SC) generation for dental OCT applications at 1.31 μm wavelength using a picosecond pulse easily produced by commercially available less expensive laser sources. Coherent length of light source using SC is found 10 μm and the spatial resolutions in the depth direction for dental applications of OCT are found about 6.1 μm for enamel and 6.5 μm for dentin.
Numerical analysis for a solid-core photonic crystal fiber with tunable zero dispersion wavelengths
NASA Astrophysics Data System (ADS)
Barrientos-García, A.; Sukoivanov, Igor A.; Andrade-Lucio, J. A.; Guryev, Igor; Shulika, Oleksiy V.; Hernandez-García, J. C.; Ramos-Ortiz, G.
2014-09-01
Here we propose a simple design for a solid-core photonic crystal fiber made of silica by keeping the golden ratio (1.618) between pitch and air hole diameter Λ /d in a subset of six rings of air-holes with hexagonal arrangement. In the case when we have a pitch equal to one micron (Λ =1 μm), we need air-holes diameters d=0.618 μm in order to obtain the golden ratio parameter (Λ/d=1.618), and achieve two zero dispersion wavelength (ZDW) points at 725 nm and 1055 nm; this gives us the possibility to use this fiber in supercontinuum generation using a laser emission close to that points. We analyzed a series of fibers using this relation and show the possibilities of tunable ZDW in a wide range of wavelengths from 725 nm to 2000 nm with low losses and small effective area. In agreement with the ZDW point needed, the geometry of the structure can be modified to the point of having only three rings of air holes that surround the solid core with low losses and good confinement mode. The design proposed here is analyzed using the finite element method (FEM) with perfectly matched layers (PML), including the material dispersion directly into the model applying the Sellmeier's equation.
NASA Astrophysics Data System (ADS)
Thylen, Lars
2010-03-01
Nanophotonics and plasmonics have received much attention recently, fuelled by a general interest in nanotechnology but also by rapid advances in integrated photonics, mainly brought about by using silicon, with larger refractive index difference than previously employed [L. Thylen et al, J. Zhejiang Univ. SCIENCE 2006 7(12)]. Plasmonics offers a possibility for devices with field sizes much smaller than the wavelength of light in aa host medium. But the tighter the field confinement, the greater are generally the optical losses, determined by the imaginary part of epsilon. This remains a critical issue. Dissipative losses impede the ubiquitous usefulness of nanophotonics light wave circuits. Recently, optical gain in quantum dots for reducing or compensate losses was analyzed [A Bratkovsky et al, Applied Physics Letters 93, 193106 (2008)]. However, the concomitant effects of the high (but not unreachable) gain required for this are high power dissipation and signal to noise ratio degradation. Power dissipation is primarily due to the losses of the metal structures and Auger recombination in the quantum dots. A general and square chip size independent expression for the information capacity of a lossless (by amplification) plasmonic chip is given, using the allowed values for integrated electronics power dissipation. In conclusion, with amplification and with current understanding, it appears possible to sizewise come close to CMOS dimensions for isolated integrated photonic devices, but not in integration density. This is due to power dissipation in currently employed negative epsilon materials.
NASA Astrophysics Data System (ADS)
Zhou, Hong-Song; Li, Shu-Guang; Fu, Bo; Yao, Yan-Yan; Zhang, Lei
2010-01-01
A kind of double-cladding photonic crystal fiber (DC-PCF) with high birefringence and two zero-dispersion wavelengths is proposed. It is found that the birefringence of DC-PCF with inner cladding air holes pitch 1.0 μm and diameter 0.8 μm is 1.001 × 10-2 in the optical communication band at wavelength 1.55 μm by the multipole method. It is demonstrated that two zero dispersion wavelengths can be achieved in the optical communication band between 0.8 μm and 1.7 μm, and the first zero-dispersion wavelength is in the working wave band of the Ti:sapphire oscillator, which contributes to the frequency conversion of the Ti:sapphire femtosecond laser. PCF with two zero-dispersion wavelengths can make strong power supercontinuum spectral in the near infrared band.
Moreira, Renan; Gundavarapu, Sarat; Blumenthal, Daniel J
2016-07-25
A tunable eye-opening lattice filter for dispersion compensation is demonstrated on an ultra low-loss waveguide platform based on a compact high-aspect ratio Si_{3}N_{4} core. A programmable 10th order lattice filter is demonstrated by cascading a total of 21 Mach-Zehnder interferometers with programmable delay lines of lengths designed at the baseband data rate. The filter has a footprint of 2.23 cm^{2} with continuously tunable dispersion from -500 ps/nm to 500 ps/nm. The filter shows a periodic transfer function with a measured FSR of 100 GHz capable of compensating multiple WDM channels with a single device. PMID:27464127
Dispersion-compensation-free femtosecond Tm-doped all-fiber laser with a 248 MHz repetition rate.
Sun, Biao; Luo, Jiaqi; Ng, Boon Ping; Yu, Xia
2016-09-01
In this Letter, we report a dispersion-compensation-free ultrafast thulium-doped all-fiber laser based on nonlinear polarization evolution (NPE) mode locking, delivering 330 fs soliton pulses at 1950 nm. A multifunctional hybrid fiberized device was applied in the oscillator to minimize the physical cavity length to ∼80 cm with a total dispersion of -0.045 ps^{2}, enabling a state-of-the-art fundamental mode-locking repetition rate of 248 MHz in an NPE-based oscillator at ∼2 μm. PMID:27607970
Cao, Z; Qian, L
1997-04-01
This study examined the effects of focal point displacement on image quality in cone beam single photon emission computed tomography (SPECT). A new image reconstruction algorithm that accounts for the focal point shift was derived and three shift geometries were investigated. The geometries included a lateral shift with a fixed focal length but off-center focusing, a linear axial shift with a variable focal length that depends linearly on the distance between a bin of the detector and the center of the detector, and a random axial shift with a randomly varying focal length. Computer simulation was conducted to evaluate the shift effects with a phantom that was composed of 118 small spherical sources. The results demonstrated that the lateral shift of the focal point was more critical to image quality than was the axial shift. With a 0.64 cm (1 pixel) lateral shift, noticeable artifacts was observed, while an axial shift resulted in minimal changes in image quality until it reached 8 cm (12.5 pixels). The derived reconstruction algorithm eliminated most of the artifacts caused by a fixed lateral shift or a linear axial shift of the focal point, but failed to do so for a random axial shift since the linear distribution assumed in image reconstruction did not match the random shift occurred in acquisition of the data. PMID:9291002
NASA Astrophysics Data System (ADS)
Stichel, T.; Hecht, B.; Houbertz, R.; Sextl, G.
2015-10-01
Two-photon polymerization using femtosecond laser pulses at a wavelength of 515 nm is used for three-dimensional patterning of photosensitive, biocompatible inorganic-organic hybrid polymers (ORMOCER®s). In order to fabricate millimeter-sized biomedical scaffold structures with interconnected pores, medium numerical aperture air objectives with long working distances are applied which allow voxel lengths of several micrometers and thus the solidification of large scaffolds in an adequate time. It is demonstrated that during processing the refraction of the focused laser beam at the air/material interface leads to strong spherical aberration which decreases the peak intensity of the focal point spread function along with shifting and severely extending the focal region in the direction of the beam propagation. These effects clearly decrease the structure integrity, homogeneity and the structure details and therefore are minimized by applying a positioning and laser power adaptation throughout the fabrication process. The results will be discussed with respect to the resulting structural homogeneity and its application as biomedical scaffold.
NASA Astrophysics Data System (ADS)
Xu, Zuowei; Fu, Hongyan; Chen, Hao; Wu, Congxian; Xu, Huiying; Cai, Zhiping
2015-09-01
In this article, we propose and experimentally demonstrate a novel microwave photonics filter (MPF) with two independently tunable passbands. The MPF is based on a sliced broadband optical source and a dispersive medium, and two paralleled fiber Mach-Zehnder interferometers (FMZIs) have been employed as the optical spectrum slicer. A coil of single-mode fiber has been used as a dispersion medium, which introduces time delay for each tap. A stable dual-passband MPF has been obtained, and the experimental results show that each passband of the MPF can be tuned freewill by adjusting the variable optical delay line (VODL) in each of the FMZIs.
2001-01-01
The ability of species to migrate and disperse is a trait that has interested ecologists for many years. Now that so many species and ecosystems face major environmental threats from habitat fragmentation and global climate change, the ability of species to adapt to these changes by dispersing, migrating, or moving between patches of habitat can be crucial to ensuring their survival. This book provides a timely and wide-ranging overview of the study of dispersal and incorporates much of the latest research. The causes, mechanisms, and consequences of dispersal at the individual, population, species and community levels are considered. The potential of new techniques and models for studying dispersal, drawn from molecular biology and demography, is also explored. Perspectives and insights are offered from the fields of evolution, conservation biology and genetics. Throughout the book, theoretical approaches are combined with empirical data, and care has been taken to include examples from as wide a range of species as possible.
Wahle, Markus; Kitzerow, Heinz
2014-08-15
Liquid crystal-filled photonic crystal fibers (PCFs) are promising candidates for electrically tunable integrated photonic devices. In this Letter, we present group velocity measurements on such fibers. A large mode area PCF, LMA8, was infiltrated with the liquid crystal mixture, E7. The measurements were performed with an interferometric setup. The fiber exhibits several spectral transmission windows in the visible wavelength regime that originate from the bandgap guiding mechanism. The dispersion of these windows is very unusual compared to typical fibers. Our measurements show that it can change from -2500 ps km(-1) nm(-1) to +2500 ps km(-1) nm(-1) within a spectral range of only 15 nm. This leads to multiple zero dispersion wavelengths in the visible wavelength range. PMID:25121882
NASA Astrophysics Data System (ADS)
Siwicki, Bartłomiej; Klimczak, Mariusz; Stępień, Ryszard; Buczyński, Ryszard
2015-10-01
We study supercontinuum generation enhancement in an all-normal dispersion, all-glass photonic crystal fiber made of lead-silicate glasses. Dispersion characteristics were optimized through adjustment of regular hexagonal lattice of photonic crystal fiber in case of three different, thermally matched pairs of glasses. Supercontinuum generation was simulated with split-step Fourier method using the model that takes into account frequency-dependent effective mode area and losses, Raman response of the medium and temporal shape of the input pulse. An octave-spanning coherent supercontinuum has been obtained for all-glass fiber with lattice constant Λ = 1.73 μm and filling factor d/Λ = 0.8, made of silicate SF6/F2, spanning 850-2200 nm wavelengths in 10 dB dynamic range and pumped with pulses with energy as low as 3 nJ at 1550 nm.
NASA Astrophysics Data System (ADS)
Stepniewski, G.; Klimczak, M.; Bookey, H.; Siwicki, B.; Pysz, D.; Stepien, R.; Kar, A. K.; Waddie, A. J.; Taghizadeh, M. R.; Buczynski, R.
2014-05-01
We report on octave-spanning supercontinuum generation under pumping with 1360 nm, 120 fs pulses, in an all-solid, all-normal dispersion photonic crystal fiber. The fiber was drawn from thermally matched oxide soft glasses with a hexagonal lattice 35 µm in diameter, 2.5 µm solid core and pitch of Λ/d = 0.9. The fiber was designed for normal dispersion broadly flattened in the 1200-2800 nm range. Experimentally recorded supercontinuum spectrum covered a 900-1900 nm bandwidth and was reconstructed with good agreement using numerical modeling. To the best of our knowledge, this is the first report of an experimentally demonstrated octave-spanning supercontinuum bandwidth, reaching as far as 1900 nm in the all-normal dispersion regime.
Xu, Chao; Ban, Dayan
2016-06-13
The strategies and approaches of designing chirped Distributed Bragg Reflector for group velocity compensation in metal-metal waveguide terahertz quantum cascade laser are investigated through 1D and 3D models. The results show the depth of the corrugation periods plays an important role on achieving broad-band group velocity compensation in terahertz range. However, the deep corrugation also brings distortion to the group delay behavior. A two-section chirped DBR is proposed to provide smoother group delay compensation while still maintain the broad frequency range (octave) operation within 2 THz to 4 THz. PMID:27410366
NASA Astrophysics Data System (ADS)
Okano, Masayuki; Lim, Hwan Hong; Okamoto, Ryo; Nishizawa, Norihiko; Kurimura, Sunao; Takeuchi, Shigeki
2015-12-01
Quantum information technologies harness the intrinsic nature of quantum theory to beat the limitations of the classical methods for information processing and communication. Recently, the application of quantum features to metrology has attracted much attention. Quantum optical coherence tomography (QOCT), which utilizes two-photon interference between entangled photon pairs, is a promising approach to overcome the problem with optical coherence tomography (OCT): As the resolution of OCT becomes higher, degradation of the resolution due to dispersion within the medium becomes more critical. Here we report on the realization of 0.54 μm resolution two-photon interference, which surpasses the current record resolution 0.75 μm of low-coherence interference for OCT. In addition, the resolution for QOCT showed almost no change against the dispersion of a 1 mm thickness of water inserted in the optical path, whereas the resolution for OCT dramatically degrades. For this experiment, a highly-efficient chirped quasi-phase-matched lithium tantalate device was developed using a novel ‘nano-electrode-poling’ technique. The results presented here represent a breakthrough for the realization of quantum protocols, including QOCT, quantum clock synchronization, and more. Our work will open up possibilities for medical and biological applications
Okano, Masayuki; Lim, Hwan Hong; Okamoto, Ryo; Nishizawa, Norihiko; Kurimura, Sunao; Takeuchi, Shigeki
2015-01-01
Quantum information technologies harness the intrinsic nature of quantum theory to beat the limitations of the classical methods for information processing and communication. Recently, the application of quantum features to metrology has attracted much attention. Quantum optical coherence tomography (QOCT), which utilizes two-photon interference between entangled photon pairs, is a promising approach to overcome the problem with optical coherence tomography (OCT): As the resolution of OCT becomes higher, degradation of the resolution due to dispersion within the medium becomes more critical. Here we report on the realization of 0.54 μm resolution two-photon interference, which surpasses the current record resolution 0.75 μm of low-coherence interference for OCT. In addition, the resolution for QOCT showed almost no change against the dispersion of a 1 mm thickness of water inserted in the optical path, whereas the resolution for OCT dramatically degrades. For this experiment, a highly-efficient chirped quasi-phase-matched lithium tantalate device was developed using a novel 'nano-electrode-poling' technique. The results presented here represent a breakthrough for the realization of quantum protocols, including QOCT, quantum clock synchronization, and more. Our work will open up possibilities for medical and biological applications. PMID:26657190
Okano, Masayuki; Lim, Hwan Hong; Okamoto, Ryo; Nishizawa, Norihiko; Kurimura, Sunao; Takeuchi, Shigeki
2015-01-01
Quantum information technologies harness the intrinsic nature of quantum theory to beat the limitations of the classical methods for information processing and communication. Recently, the application of quantum features to metrology has attracted much attention. Quantum optical coherence tomography (QOCT), which utilizes two-photon interference between entangled photon pairs, is a promising approach to overcome the problem with optical coherence tomography (OCT): As the resolution of OCT becomes higher, degradation of the resolution due to dispersion within the medium becomes more critical. Here we report on the realization of 0.54 μm resolution two-photon interference, which surpasses the current record resolution 0.75 μm of low-coherence interference for OCT. In addition, the resolution for QOCT showed almost no change against the dispersion of a 1 mm thickness of water inserted in the optical path, whereas the resolution for OCT dramatically degrades. For this experiment, a highly-efficient chirped quasi-phase-matched lithium tantalate device was developed using a novel ‘nano-electrode-poling’ technique. The results presented here represent a breakthrough for the realization of quantum protocols, including QOCT, quantum clock synchronization, and more. Our work will open up possibilities for medical and biological applications PMID:26657190
NASA Astrophysics Data System (ADS)
Heidt, Alexander M.
2014-03-01
This talk will give an overview of the unique properties of supercontinuum generation (SCG) in all-normal dispersion (ANDi) fibers pumped by ultrashort pulses and the possibilities they offer for ultrafast photonics applications. In contrast to their anomalously pumped counterparts, the SCG process in ANDi fibers conserves a single ultrashort pulse in the time domain, completely suppresses soliton formation and decay, and avoids noise-amplifying nonlinear dynamics. The resulting spectra combine the best of both worlds - the broad, more than octave-spanning bandwidths usually associated with anomalous dispersion pumping with the high temporal coherence, pulse-to-pulse stability and well-defined temporal pulse characteristics known from the normal dispersion regime. These characteristics are ideally suited for ultrafast photonics, and I will present application examples including the generation of high quality single-cycle pulses and their amplification, as well as ultrafast spectroscopy. This talk will also explore the exciting new possibilities enabled by extending this approach into the mid-IR spectral region using novel soft glass fiber designs.
NASA Astrophysics Data System (ADS)
Sokolov, Andrii
2016-03-01
We determine the optimal parameters for a simple and efficient scheme of dispersive readout of a qubit. Depending on the qubit state (ground or excited), the resonance of a cavity is shifted either to the red or to the blue side. Qubit state is inferred by detecting the photon number transmitted through the cavity. It turns out that this kind of detection provides better measurement fidelity than the detection of the presence or absence of photons only. We show that radiating the cavity on either of the frequencies it shifts to results in a suboptimal measurement. The optimal frequency of the probe photons is determined, as well as the optimal ratio of the shift to the resonator leakage. It is shown that to maximize the fidelity of a long-lasting measurement, it is sufficient to use the parameters optimizing the signal-to-noise ratio in the photon count. One can reach 99% fidelity for a single-shot measurement in various physical realizations of the scheme.
NASA Astrophysics Data System (ADS)
Yuan, Jin-Hui; Sang, Xin-Zhu; Yu, Chong-Xiu; Shen, Xiang-Wei; Wang, Kui-Ru; Yan, Bin-Bin; Han, Ying; Zhou, Gui-Yao; Hou, Lan-Tian
2012-10-01
Blue-shifted dispersive waves (DWs) are efficiently generated from the red-shifted solitons by coupling the 120 fs pulses into the fundamental mode of the multi-knots of a photonic crystal fiber cladding. When the femtosecond pulses at the wavelength of 825 nm and the average power of 300 mW are coupled into knots 1-3, the conversion efficiency ηDW of 32% and bandwidth BDW of 50 nm are obtained. The ultrashort pulses generated by the DWs can be tunable over the whole visible wavelength by adjusting the wavelengths of the pump pulses coupled into different knots. It can be believed that this widely wavelength-tunable ultrashort visible pulse source has important applications in ultrafast photonics and resonant Raman scattering.
Lim, Hyang-Tag; Hong, Kang-Hee; Kim, Yoon-Ho
2016-01-01
An inexpensive and compact frequency multi-mode diode laser enables a compact two-photon polarization entanglement source via the continuous wave broadband pumped spontaneous parametric down-conversion (SPDC) process. Entanglement degradation caused by polarization mode dispersion (PMD) is one of the critical issues in optical fiber-based polarization entanglement distribution. We theoretically and experimentally investigate how the initial entanglement is degraded when the two-photon polarization entangled state undergoes PMD. We report an effect of PMD unique to broadband pumped SPDC, equally applicable to pulsed pumping as well as cw broadband pumping, which is that the amount of the entanglement degradation is asymmetrical to the PMD introduced to each quantum channel. We believe that our results have important applications in long-distance distribution of polarization entanglement via optical fiber channels. PMID:27174100
NASA Astrophysics Data System (ADS)
Lim, Hyang-Tag; Hong, Kang-Hee; Kim, Yoon-Ho
2016-05-01
An inexpensive and compact frequency multi-mode diode laser enables a compact two-photon polarization entanglement source via the continuous wave broadband pumped spontaneous parametric down-conversion (SPDC) process. Entanglement degradation caused by polarization mode dispersion (PMD) is one of the critical issues in optical fiber-based polarization entanglement distribution. We theoretically and experimentally investigate how the initial entanglement is degraded when the two-photon polarization entangled state undergoes PMD. We report an effect of PMD unique to broadband pumped SPDC, equally applicable to pulsed pumping as well as cw broadband pumping, which is that the amount of the entanglement degradation is asymmetrical to the PMD introduced to each quantum channel. We believe that our results have important applications in long-distance distribution of polarization entanglement via optical fiber channels.
Lim, Hyang-Tag; Hong, Kang-Hee; Kim, Yoon-Ho
2016-01-01
An inexpensive and compact frequency multi-mode diode laser enables a compact two-photon polarization entanglement source via the continuous wave broadband pumped spontaneous parametric down-conversion (SPDC) process. Entanglement degradation caused by polarization mode dispersion (PMD) is one of the critical issues in optical fiber-based polarization entanglement distribution. We theoretically and experimentally investigate how the initial entanglement is degraded when the two-photon polarization entangled state undergoes PMD. We report an effect of PMD unique to broadband pumped SPDC, equally applicable to pulsed pumping as well as cw broadband pumping, which is that the amount of the entanglement degradation is asymmetrical to the PMD introduced to each quantum channel. We believe that our results have important applications in long-distance distribution of polarization entanglement via optical fiber channels. PMID:27174100
Heidt, Alexander M; Hartung, Alexander; Bosman, Gurthwin W; Krok, Patrizia; Rohwer, Erich G; Schwoerer, Heinrich; Bartelt, Hartmut
2011-02-14
We present the first detailed demonstrations of octave-spanning SC generation in all-normal dispersion photonic crystal fibers (ANDi PCF) in the visible and near-infrared spectral regions. The resulting spectral profiles are extremely flat without significant fine structure and with excellent stability and coherence properties. The key benefit of SC generation in ANDi PCF is the conservation of a single ultrashort pulse in the time domain with smooth and recompressible phase distribution. For the first time we confirm the exceptional temporal properties of the generated SC pulses experimentally and demonstrate their applicability in ultrafast transient absorption spectroscopy. The experimental results are in excellent agreement with numerical simulations, which are used to illustrate the SC generation dynamics by self-phase modulation and optical wave breaking. To our knowledge, we present the broadest spectra generated in the normal dispersion regime of an optical fiber. PMID:21369202
NASA Astrophysics Data System (ADS)
Sharma, Varshali; Sharma, Ritu
2016-04-01
A design of two-dimensional hybrid photonic crystal fiber (PCF) with elliptical and circular air holes and its analyses for large flattened dispersion and high birefringence is presented. The PCF has hexagonal layout with triangular lattice. There are five rings around the solid core. The inner three rings around the core have elliptical air holes while the outer two rings have circular air holes. Three such layouts are designed, analyzed, and compared with the layout having only circular air hole using full-vector finite difference time domain method. The layout with hybrid structure having combined elliptical and circular air hole gives a large flattened dispersion of the order of 4.88 ps/nm/km for the wavelength range of 1.2 to 1.8 μm and magnitude of modal birefringence is 1.238×10-3 at 1.55-μm wavelength.
Bolea, Mario; Mora, José; Ortega, Beatriz; Capmany, José
2012-03-12
A novel all-optical technique based on the incoherent processing of optical signals using high-order dispersive elements is analyzed for microwave arbitrary pulse generation. We show an approach which allows a full reconfigurability of a pulse in terms of chirp, envelope and central frequency by the proper control of the second-order dispersion and the incoherent optical source power distribution, achieving large values of time-bandwidth product. PMID:22418557
NASA Astrophysics Data System (ADS)
Diamantopoulos, N. P.; Nakazawa, M.; Yoshida, Y.; Maruta, A.; Maruyama, R.; Kuwaki, N.; Matsuo, S.; Kitayama, K.
2015-11-01
Mode-division multiplexing (MDM) over wavelength division multiplexed (WDM) networks is studied, particularly for the deployment of metro area networks (MAN) using two-mode fibers (TMF). Full C-band differential mode group delay (DMGD)-compensated TMF links are adopted for decreasing the computational complexity of real-time multiple-input multiple-output (MIMO) signal processing. The effect of modal crosstalk to the maximum delay spread of the channel is validated through numerical simulations. Finally, the 2×2 MIMO channel state information (CSI) of a 102.6-km DMGD-compensated TMF link is experimentally estimated for mode path provisioning based upon routing and mode assignment (RMA) in MDM networks. The results confirm close-to-zero total DMGD value over the entire C-band.
NASA Astrophysics Data System (ADS)
Rippa, Massimo; Bobeico, Eugenia; Umeton, Cesare P.; Petti, Lucia
2015-09-01
By exploiting Metamaterials (MTMs) and Photonic Quasi-Crystals (PQCs), it is possible to realize man-made structures characterized by a selective EM response, which can be also controlled by combining the distinctive properties of reconfigurable soft-matter. By finely controlling lattice parameters of a given photonic structure, it is possible to optimize its extraction characteristics at a precise wavelength, or minimize the extraction of undesired modes. In general, however, once a structure is realized, its extraction properties cannot be varied. To cross this problem, it is possible to combine capabilities offered by both MTMs and PQCs with the reconfigurable properties of smart materials, such as Liquid Crystals (LCs); in this way, a completely new class of "reconfigurable metamaterials" (R-MTM) can be realized. We report here on the realization and characterization of a switchable photonic device, working in the visible range, based on nanostructured photonic quasi-crystals, layered with an azodye-doped nematic LC (NLC). The experimental characterization shows that its filtering effect is remarkable with its extraction spectra which can be controlled by applying an external voltage or by means of a laser light. The vertical extraction of the light, by the coupling of the modes guided by the PQC slab to the free radiation via Bragg scattering, consists of an extremely narrow orange emission band at 621 nm with a full width at half-maximum (FWHM) of 8 nm. In our opinion, these results represent a breakthrough in the realization of innovative MTMs based active photonic devices such as tunable MTMs or reconfigurable lasers and active filters.
Yang, Yi; Foster, Mark; Khurgin, Jacob B; Cooper, A Brinton
2012-07-30
A novel coherent optical code-division multiple access (OCDMA) scheme is proposed that uses spectral line pairing to generate signals suitable for heterodyne decoding. Both signal and local reference are transmitted via a single optical fiber and a simple balanced receiver performs sourceless heterodyne detection, canceling speckle noise and multiple-access interference (MAI). To validate the idea, a 16 user fully loaded phase encoded system is simulated. Effects of fiber dispersion on system performance are studied as well. Both second and third order dispersion management is achieved by using a spectral phase encoder to adjust phase shifts of spectral components at the optical network unit (ONU). PMID:23038313
NASA Astrophysics Data System (ADS)
Begum, Feroza; Namihira, Yoshinori; Kinjo, Tatsuya; Kaijage, Shubi
2011-02-01
This paper presents a simple index-guiding square photonic crystal fiber (SPCF) where the core is surrounded by air holes with two different diameters. The proposed design is simulated through an efficient full-vector modal solver based on the finite difference method with anisotropic perfectly matched layers absorbing boundary condition. The nearly zero ultra-flattened dispersion SPCF with low confinement loss, small effective area as well as broadband supercontinuum (SC) spectra is targeted. Numerical results show that the designed SPCF has been achieved at a nearly zero ultra-flattened dispersion of 0 ± 0.25 ps/(nm·km) in a wavelength range of 1.38 μm to 1.89 μm (510 nm band) which covers E, S, C, L and U communication bands, a low confinement loss of less than 10 -7 dB/m in a wavelength range of 1.3 μm to 2.0 μm and a wide SC spectrum (FWHM = 450 nm) by using picosecond pulses at a center wavelength of 1.55 μm. We then analyze the sensitivity of chromatic dispersion to small variations from the optimum value of specific structural parameters. The proposed index-guiding SPCF can be applicable in supercontinuum generation (SCG) covering such diverse fields as spectroscopy applications and telecommunication dense wavelength division multiplexing (DWDM) sources.
NASA Astrophysics Data System (ADS)
Tian, Liang; Wei, Li; Guoying, Feng
2015-01-01
A photonic crystal fiber (PCF) filled with commercial index-matching liquids is designed to control the dispersion properties of PCF. Numerical simulation of supercontinuum (SC) generation in these liquid-filled PCFs is then conducted at a temperature of 25 °C. The definition of spectral flatness measure (SFM) is introduced to quantitatively describe the SC flatness. Numerical simulations are performed to study the propagation of femtosecond pulse in the liquid-filled PCFs. Results show that using the index-matching liquids in PCF, the dispersion properties of the PCF can be easily engineered without changing in the geometry. Simulations also show that 50 fs pulses with a center wavelength of 1060 nm generate relatively flat SC spectra in the 25 cm-long PCF with two Oil2-filled rings. With an applied pump power of 24 kW, a flat (SFM=0.9670) spectral bandwidth of 700 nm (900-1400 nm) is achieved. Results further demonstrate that using index-matching liquids to fill the PCF inner ring can exactly control its dispersion properties and generate a flat SC spectrum in the specified wavelength region.
Four-wave mixing stability in hybrid photonic crystal fibers with two zero-dispersion wavelengths.
Sévigny, Benoit; Vanvincq, Olivier; Valentin, Constance; Chen, Na; Quiquempois, Yves; Bouwmans, Géraud
2013-12-16
The four-wave mixing process in optical fibers is generally sensitive to dispersion uniformity along the fiber length. However, some specific phase matching conditions show increased robustness to longitudinal fluctuations in fiber dimensions, which affect the dispersion, even for signal and idler wavelengths far from the pump. In this paper, we present the method by which this point is found, how the fiber design characteristics impact on the stable point and demonstrate the stability through propagation simulations using the non-linear Schrödinger equation. PMID:24514659
Zito, Gianluigi; Pissadakis, Stavros
2013-09-01
A polymer/liquid crystal-based fiber Bragg grating (PLC-FBG) is fabricated with visible two-beam holography by photo-induced modulation of a prepolymer/liquid crystal solution infiltrated into the hollow channels of a solid core photonic crystal fiber (PCF). The fabrication process and effects related to the photonic bandgap guidance into the infiltrated PCF, and characterization of the PLC-FBG, are discussed. Experimental data presented here demonstrate that the liquid crystal inclusions of the PLC-FBG lead to high thermal and bending sensitivities. The microscopic behavior of the polymer/liquid crystal phase separation inside the PCF capillaries is examined using scanning electron microscopy, and is discussed further. PMID:23988927
NASA Astrophysics Data System (ADS)
Niigaki, Ryu; Kida, Yuichiro; Imasaka, Totaro
2016-02-01
Three color continuous-wave (CW) laser emissions with constant frequency separation are generated in the near-infrared (NIR) region using a dispersion-compensated optical cavity filled with hydrogen gas. By focusing these laser emissions into second-harmonic generation (SHG) crystals, multiple second harmonic signals and sum-frequency signals are generated in the near-ultraviolet (NUV) with a constant frequency spacing. Up to five colors of these NUV CW laser emissions can be generated simultaneously by using SHG crystals with different orientations. The interference between the second-harmonic signal of one NIR laser emission and the sum-frequency signal of the other two NIR emissions was observed experimentally, indicating mutual phase coherence among the NIR laser emissions. The phase coherence allows the synthesis of a train of ultrashort pulses with a THz repetition rate in both the NUV and the NIR by using the CW emission lines.
NASA Astrophysics Data System (ADS)
Gao, Chao; Huang, Shanguo; Xiao, Jinghua; Gao, Xinlu; Wang, Qian; Wei, Yongfeng; Zhai, Wensheng; Xu, Wenjing; Gu, Wanyi
2014-10-01
This paper demonstrates the theory of chromatic dispersion (CD)-induced constellation rotation (CR) in a radio-over-fiber (ROF) link, and a symmetry theory for compensation. A 60 GHz full-duplex ROF system with vector signal transmission using frequency-tripling modulation (FTM) is also proposed. The simulations for both 5 Gbps and 200 Mbps 16 QAM signal transmission show that the CD-induced CR can be entirely overcome due to the proposed method, and the proposed ROF schedule still maintains good performance even after 500 km of 200 Mbps vector signal transmission. Meanwhile, the central station is significantly simplified and cost-effective since only one 15 GHz local oscillator is needed for both the generation of an optical millimeter-wave signal and the carrier of the downlink intermediate-frequency (IF) signal.
Waegemans, Robert; Herbst, Stefan; Holbein, Ludwig; Watts, Philip; Bayvel, Polina; Fürst, Cornelius; Killey, Robert I
2009-05-11
We present an experimental demonstration of simultaneous chromatic dispersion and self-phase modulation compensation at 10.7 Gb/s using real-time electronic digital signal processing. This was achieved using a pre-distorting transmitter based on commercially available field programmable gate arrays and 21.4 GS/s, 6-bit resolution digital-to-analog converters. The digital signal processing employed look-up tables stored in RAM. This resulted in the achievement of a BER of 10(-6) at an OSNR of 16 dB after transmission over a 450 km link of uncompensated standard single mode fiber with + 4 dBm launch power. PMID:19434196
NASA Astrophysics Data System (ADS)
Sun, Hao; Yang, Shen; Zhang, Jing; Rong, Qiangzhou; Liang, Lei; Xu, Qinfang; Xiang, Guanghua; Feng, Dingyi; Du, Yanying; Feng, Zhongyao; Qiao, Xueguang; Hu, Manli
2012-12-01
We proposed an optical fiber sensor with simple multimode fiber (MMF)-dispersion compensation fiber (DCF)-multimode fiber structure based on Mach-Zehnder Interferometer (MZI) and researched its temperature and refractive index (RI) sensing characteristics. The sensing principle is based on the interference between core and cladding modes of DCF due to the large core diameter mismatch. Spectral analyses demonstrate that the transmission spectrum is mainly formed by the interference between the dominant excited cladding mode and core modes. The experimental results show that the proposed sensor has high temperature sensitivity of 0.118 nm/°C in the range of 20-250 °C and RI sensitivity of 66.32 nm/RIU within the linear sensing range of 1.33-1.39 RIU. Therefore, the characteristics of compact size, low cost, easy fabrication, high sensitivities, and good anti-interference ability make this sensor have extensive application prospects.
NASA Astrophysics Data System (ADS)
Guillan-Lorenzo, Omar; Diaz-Otero, Francisco J.
2016-01-01
We analyze the properties of a photonic crystal waveguide as a device capable of producing slow light along a wide bandwidth. The proposed structure consists of a square lattice of hollow silicon cylinders rotated 45° immersed on a colloidal suspension of magnetic nanoparticles; this arrangement produces "U-type" group index-frequency curves. The cylinder inner radius is carefully chosen to maximize the normalized delay bandwidth product (NDBP) and the concentration of the magnetic fluid is changed in order to make the device tunable in frequency.
NASA Astrophysics Data System (ADS)
Melo, E. G.; Carvalho, D. O.; Ferlauto, A. S.; Alvarado, M. A.; Carreño, M. N. P.; Alayo, M. I.
2016-01-01
Photonic crystal slabs with a lower-index material surrounding the core layer are an attractive choice to circumvent the drawbacks in the fabrication of membranes suspended in air. In this work we propose a photonic crystal (PhC) slab structure composed of a triangular pattern of air holes in a multilayer thin film of aluminum nitride embedded in silicon dioxide layers designed for operating around 450 nm wavelengths. We show the design of an ideal structure and analyze the effects of material dispersion based on a first-order correction perturbation theory approach using dielectric functions obtained by experimental measurements of the thin film materials. Numerical methods were used to investigate the effects of fabrication induced disorder of typical nanofabrication processes on the bandgap size and spectral response of the proposed device. Deviation in holes radii and positions were introduced in the proposed PhC slab model with a Gaussian distribution profile. Impacts of slope in holes sidewalls that might result from the dry etching of AlN were also evaluated. The results show that for operation at the midgap frequency, slope in holes sidewalls is more critical than displacements in holes sizes and positions.
Self-stabilized and dispersion-compensated passively mode-locked Yb:Yttrium aluminum garnet laser
NASA Astrophysics Data System (ADS)
Agnesi, A.; Guandalini, A.; Reali, G.
2005-04-01
Self-stabilized passive mode-locking of a diode-pumped Yb:yttrium aluminum garnet laser with a semiconductor saturable absorber was achieved using an off-phase-matching second-harmonic crystal. According to the numerical model, such a condition is accomplished by self-defocusing in the nonlinear crystal in the presence of positive intracavity dispersion. Robust mode locking with Fourier-limited 1.0-ps pulses was obtained, whereas mode locking, unassisted by the nonlinear crystal, yielded 2.2-ps pulses, with the laser operating near the edge of the stability region in order to minimize the saturation energy of the semiconductor device.
NASA Astrophysics Data System (ADS)
Martin, Eamonn; Barry, Liam
2014-02-01
The research and technical community have designated a band of 7 GHz between 57 and 64 GHz for short-range wireless communications. This paper utilizes a simple and cost effective technique for generating a 60 GHz millimeter-wave (mm-wave) signal using an optical comb source based on a gain-switched laser (GSL). This research investigates the effects unwanted comb lines have on the overall system performance with 2.5 Gb/s data transmission. To do this, a programmable optical filter is used to suppress the unwanted comb lines to varying levels. Bit-error rate (BER) measurements were carried out against received optical power to demonstrate the detrimental effects the unwanted comb lines have on the modulated mm-wave signal when not sufficiently suppressed. As chromatic dispersion is a limiting factor to the system's transmission distance, this work also investigates pre-compensation for dispersion utilizing the programmable group delay capabilities of the programmable optical filter, demonstrating the ability to extend the transmission distance by 12 km. All experimental results obtained are reinforced through simulation.
Instrumentation for time-resolved dispersive studies at Advanced Photon Source beamline 1-BM
Brauer, S.; Rodricks, B.
1996-07-01
We describe progress in optics and instrumentation at beamline 1-BM, designed in part for time-resolved dispersive x-ray absorption fine structure (XAFS) measurements. The key optical element is a horizontally focusing curved-crystal monochromator that invokes a 4-point bending scheme and a liquid-metal cooling bath. The device has been designed for dispersive studies in the 5-24 keV range, with a horizontal focal spot size of {le}100 micrometers FWHM. To minimize thermal distortions and thermal equilibration time, the 355 {times} 32 {times} 0.8 mm crystal is nearly half submerged in a bath of Ga-In-Sn-Zn alloy, which thermally couples the crystal to the water-cooled Cu frame, while permitting the required crystal bending. Harmonic rejection, focusing schemes and the novel spectrometer positioning system will be described. For microsecond-resolution time-resolved studies, a fast CCD streak camera detector has been developed. Results from commissioning tests of the instrumentation are described. 11 refs., 4 figs.
Hasan, Md Rabiul; Hasan, Md Imran; Anower, Md Shamim
2015-11-10
A defected-core spiral photonic crystal fiber is proposed to achieve very large negative flattened dispersion and small confinement loss. Simulation results reveal that the designed structure exhibits very large flattened dispersion over S+C+L+U wavelength bands and an average dispersion of about -720.7 ps nm(-1) km(-1) with an absolute dispersion variation of 12.7 ps nm(-1) km(-1) over the wavelength ranging from 1.45 to 1.65 μm. The proposed fiber has five air-hole rings in the cladding leading to very small confinement loss of 0.00111 dB/km at the excitation wavelength of 1.55 μm. The tolerance of the fiber dispersion of ±2% changing in the structural parameters is investigated for practical conditions. PMID:26560773
Hillmann, Dierck; Bonin, Tim; Lührs, Christian; Franke, Gesa; Hagen-Eggert, Martin; Koch, Peter; Hüttmann, Gereon
2012-03-12
Swept-source optical coherence tomography (SS-OCT) is sensitive to sample motion during the wavelength sweep, which leads to image blurring and image artifacts. In line-field and full-field SS-OCT parallelization is achieved by using a line or area detector, respectively. Thus, approximately 1000 lines or images at different wavenumbers are acquired. The sweep duration is identically with the acquisition time of a complete B-scan or volume, rendering parallel SS-OCT more sensitive to motion artifacts than scanning OCT. The effect of axial motion on the measured spectra is similar to the effect of non-balanced group velocity dispersion (GVD) in the interferometer arms. It causes the apparent optical path lengths in the sample arm to vary with the wavenumber. Here we propose the cross-correlation of sub-bandwidth reconstructions (CCSBR) as a new algorithm that is capable of detecting and correcting the artifacts induced by axial motion in line-field or full-field SS-OCT as well as GVD mismatch in any Fourier-domain OCT (FD-OCT) setup. By cross-correlating images which were reconstructed from a limited spectral range of the interference signal, a phase error is determined which is used to correct the spectral modulation prior to the calculation of the A-scans. Performance of the algorithm is demonstrated on in vivo full-field SS-OCT images of skin and scanning FD-OCT of skin and retina. PMID:22418560
Kono, Shunsuke; Watanabe, Hideki; Koda, Rintaro; Fuutagawa, Noriyuki; Narui, Hironobu
2015-12-14
Blue-violet optical pulses of 140-fs duration and 60-W peak power were obtained from a dispersion-compensated GaInN mode-locked semiconductor laser diode using a nonlinear pulse compression technique. Wavelength-dependent group velocity dispersion expressed by third-order phase dispersion was applied to the optical pulses using a pulse compressor with a spatial light modulator. The obtained optical pulses had the shortest duration ever obtained for a mode-locked semiconductor laser diode using edge-emitting type devices. PMID:26698968
An Overview of High-Resolution, Non-Dispersive, Imaging Spectrometers for High-Energy Photons
NASA Technical Reports Server (NTRS)
Kilbourne, Caroline
2010-01-01
High-resolution x-ray spectroscopy has become a powerful tool for studying the evolving universe. The grating spectrometers on the XMM and Chandra satellites initiated a new era in x-ray astronomy. Despite their successes, there is still need for instrumentation that can provide higher spectral resolution with high throughput in the Fe-K band and for extended sources. What is needed is a non-dispersive imaging spectrometer - essentially a 14-bit x-ray color camera. And a requirement for a nondispersive spectrometer designed to provide eV-scale spectral resolution is a temperature below 0.1 K. The required spectral resolution and the constraints of thermodynamics and engineering dictate the temperature regime nearly independently of the details of the sensor or the read-out technology. Low-temperature spectrometers can be divided into two classes - - equilibrium and non-equilibrium. In the equilibrium devices, or calorimeters, the energy is deposited in an isolated thermal mass and the resulting increase in temperature is measured. In the non-equilibrium devices, the absorbed energy produces quantized excitations that are counted to determine the energy. The two approaches have different strong points, and within each class a variety of optimizations have been pursued. I will present the basic fundamentals of operation and the details of the most successful device designs to date. I will also discuss how the measurement priorities (resolution, energy band, count rate) influence the optimal choice of detector technology.
All-fiber nonlinearity- and dispersion-managed dissipative soliton nanotube mode-locked laser
Zhang, Z.; Popa, D. Wittwer, V. J.; Milana, S.; Hasan, T.; Jiang, Z.; Ferrari, A. C.; Ilday, F. Ö.
2015-12-14
We report dissipative soliton generation from an Yb-doped all-fiber nonlinearity- and dispersion-managed nanotube mode-locked laser. A simple all-fiber ring cavity exploits a photonic crystal fiber for both nonlinearity enhancement and dispersion compensation. The laser generates stable dissipative solitons with large linear chirp in the net normal dispersion regime. Pulses that are 8.7 ps long are externally compressed to 118 fs, outperforming current nanotube-based Yb-doped fiber laser designs.
NASA Astrophysics Data System (ADS)
Kundu, Dipankar; Sarkar, Somenath
2012-06-01
Within the scalar framework, a simple and complete formulation for the normalized propagation constants of the infinite cladding region of a photonic crystal fiber (PCF) with triangular lattice of air-holes is presented, which is dependent only on the ratio of air-hole diameters and their separation. The accuracy of the proposed formulation is depicted by comparing our results with those obtained by Russell. Then the refractive indices of the fundamental space-filling mode (nFSM) in the cladding region of the PCF from Russell's equation and the proposed relations are evaluated and the two indices are observed to match quite excellently for different values of relative air-hole size and wavelength. An equivalence between the two approaches of Russell and Saitoh is also sought. Finally, in order to check the validity of the formulation in problems of practical interest, the proposed relations are applied to evaluate the total chromatic dispersion in a PCF, treating it as a conventional step index fiber having its core and cladding indices as those of silica and nFSM, respectively. On comparison with the available results of Saitoh, the results match nicely.
Novoa, D; Cassataro, M; Travers, J C; Russell, P St J
2015-07-17
We propose a scheme for the emission of few-cycle dispersive waves in the midinfrared using hollow-core photonic crystal fibers filled with noble gas. The underlying mechanism is the formation of a plasma cloud by a self-compressed, subcycle pump pulse. The resulting free-electron population modifies the fiber dispersion, allowing phase-matched access to dispersive waves at otherwise inaccessible frequencies, well into the midinfrared. Remarkably, the pulses generated turn out to have durations of the order of two optical cycles. In addition, this ultrafast emission, which occurs even in the absence of a zero dispersion point between pump and midinfrared wavelengths, is tunable over a wide frequency range simply by adjusting the gas pressure. These theoretical results pave the way to a new generation of compact, fiber-based sources of few-cycle midinfrared radiation. PMID:26230794
Naeimi, Ghasem; Alipour, Samira; Khademi, Siamak
2016-01-01
Recently, the master equations for the interaction of two-mode photons with a three-level Λ-type atom are exactly solved for the coherence terms. In this paper the exact absorption spectrum is applied for the presentation of a non-demolition photon counting method, for a few number of coupling photons, and its benefits are discussed. The exact scheme is also applied where the coupling photons are squeezed and the photon counting method is also developed for the measurement of the squeezing parameter of the coupling photons. PMID:27610321
NASA Astrophysics Data System (ADS)
Xu, Yong-zhao; Han, Tao; Song, Jian-xun; Ling, Dong-xiong; Li, Hong-tao
2014-11-01
We demonstrate the generation of supercontinuum (SC) spectrum covering S+C+L band of optical communication by injecting 1.4 ps optical pulses with center wavelength of 1 552 nm and repetition rate of 10 GHz into an all-normal dispersion photonic crystal fiber (PCF) with length of 80 m. The experimental results are in good agreement with the numerical simulations, which are used to illustrate the SC generation dynamics by self-phase modulation and optical wave breaking (WB).
NASA Astrophysics Data System (ADS)
Kodama, Hajime; Sato, Eiichi; Sagae, Michiaki; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Watanabe, Manabu; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira
2013-09-01
X-ray photon counting was performed using a readymade silicon-PIN photodiode (Si-PIN-PD) at tube voltages ranging from 42 to 60 kV, and X-ray photons are directly detected using the 100 MHz Si-PIN-PD without a scintillator. Photocurrent from the diode is amplified using charge-sensitive and shaping amplifiers. Using a multichannel analyzer, X-ray spectra at a tube voltage of 60 kV could easily be measured. The photon-counting computed tomography (PCCT) is accomplished by repeated linear scans and rotations of an object, and projection curves of the object are obtained by the linear scan. In the PC-CT, we confirmed the energy-dispersive effect with changes in lower-level voltage of the event pulse using a comparator.
Vetrov, S Ya; Timofeev, I V; Pankin, P S
2014-09-30
We have studied the spectral properties of a one-dimensional photonic crystal with a structure defect that represents an anisotropic nanocomposite layer sandwiched between two multilayer dielectric mirrors. The nanocomposite consists of metallic nanoscale inclusions of orientationally ordered spheroidal shape, dispersed in a transparent matrix, and is characterised by an effective resonant permittivity. Each of the two orthogonal polarisations of probe radiation corresponds to a particular plasmon resonant frequency of the nanocomposite. The problem of calculating the transmittance spectrum of the waves with s- and p-polarisations for such structures is solved. Spectral manifestation of splitting of the defect mode depending on the structure parameters and volumetric fraction of the nanospheroids is studied. The essential dependence of the position of maxima of the defect modes in the bandgap of the photonic crystal and their splitting on the incidence angle, polarisation, and the ratio of lengths of the polar and equatorial semi-axes of the spheroidal nanoparticles is shown. (photonic crystals)
NASA Astrophysics Data System (ADS)
Kanka, Jiri
2011-05-01
Photonic crystal fiber long-period gratings (PCF-LPGs) operating near the phase-matching turning point to achieve high sensitivity to the refractive index of gas and liquid analytes infiltrated into cladding air holes are designed by numerical optimization. The vectorial finite element method is employed for the modal analysis of an index-guiding PCF and the calculation of the phase matching curves. The geometrical parameters of PCF (pitch and diameter of air holes arranged in a periodic triangular array) are optimized by using the down-hill simplex technique to engineer the dispersion of modes coupled by a LPG to obtain the turning point in the phase-matching curve at a desired wavelength for a given analyte refractive index. The resonant wavelength is subsequently extremely sensitive to the analyte refractive index, however, its large shifts can be detected with a substantially reduced resolution because the resonance dip in the LPG transmission spectrum is very broad. On the other hand, the broad resonance provides a broadband operation of a PCF-LPG sensor and its high sensitivity to the refractive index can still be achieved by relying on changes in the coupling strength (and consequently in the transmission loss) rather than in the resonant wavelength of LPG. We consider coupling between the fundamental core mode and the first-order symmetric cladding mode. We also explore an alternative approach based on coupling between the fundamental core mode and the fundamental space-filling mode instead of the individual cladding mode. The PCF-LPG structure optimized for refractive-index sensing is also assessed for label-free biosensing.
Klimczak, Mariusz; Siwicki, Bartłomiej; Skibiński, Piotr; Pysz, Dariusz; Stępień, Ryszard; Heidt, Alexander; Radzewicz, Czesław; Buczyński, Ryszard
2014-07-28
Supercontinuum spanning over an octave from 900 - 2300 nm is reported in an all-normal dispersion, soft glass photonic crystal fiber. The all-solid microstructured fiber was engineered to achieve a normal dispersion profile flattened to within -50 to -30 ps/nm/km in the wavelength range of 1100 - 2700 nm. Under pumping with 75 fs pulses centered at 1550 nm, the recorded spectral flatness is 7 dB in the 930 - 2170 nm range, and significantly less if cladding modes present in the uncoated photonic crystal fiber are removed. To the best of our knowledge, this is the first report of an octave-spanning, all-normal dispersion supercontinuum generation in a non-silica microstructured fiber, where the spectrum long-wavelength edge is red-shifted to as far as 2300 nm. This is also an important step in moving the concept of ultrafast coherent supercontinuum generation in all-normal dispersion fibers further towards the mid-infrared spectral region. PMID:25089500
Li, Liwei; Yi, Xiaoke; Huang, Thomas X H; Minasian, Robert A
2013-04-01
A simple microwave photonic processor structure with single passband response, and widely tunable capability, is demonstrated. It is based on the principle of shifted dispersion-induced radio-frequency (RF) fading by using a dual-input Mach-Zehnder electro-optic modulator (EOM) that is fed from a broadband optical source with unbalanced input fiber lengths into the upper and lower arms of the EOM, in combination with a dispersive medium. This topology consequently produces a spectral response equivalent to the curve of the dispersion-induced RF fading that is shifted from the conventional baseband location to high frequencies. Therefore, an equivalent single passband is formed without the requirement of the conventional tap coefficients. Experimental results verify the structure and demonstrate a continuously tunable microwave filter exhibiting shape invariance and a single passband. In addition, the filter response sidelobe suppression is also significantly improved by applying a Gaussian windowed profile to the broadband optical source. PMID:23546278
NASA Astrophysics Data System (ADS)
Ermolov, A.; Mak, K. F.; Frosz, M. H.; Travers, J. C.; Russell, P. St. J.
2015-09-01
We report on the generation of a three-octave-wide supercontinuum extending from the vacuum ultraviolet (VUV) to the near infrared, spanning at least 113-1000 nm (i.e., 11 -1.2 eV ), in He-filled hollow-core kagome-style photonic crystal fiber. Numerical simulations confirm that the main mechanism is an interaction between dispersive-wave emission and plasma-induced blue-shifted soliton recompression around the fiber zero dispersion frequency. The VUV part of the supercontinuum, the modeling of which proves to be coherent and possesses a simple phase structure, has sufficient bandwidth to support single-cycle pulses of 500 asec duration. We also demonstrate, in the same system, the generation of narrower-band VUV pulses through dispersive-wave emission, tunable from 120 to 200 nm with efficiencies exceeding 1 % and VUV pulse energies in excess of 50 nJ.
NASA Astrophysics Data System (ADS)
Li, Donghai; Deng, Yongkai; Chu, Saisai; Jiang, Hongbing; Wang, Shufeng; Gong, Qihuang
2016-07-01
Single-nanoparticle two-photon microscopy shows great application potential in super-resolution cell imaging. Here, we report in situ adaptive optimization of single-nanoparticle two-photon luminescence signals by phase and polarization modulations of broadband laser pulses. For polarization-independent quantum dots, phase-only optimization was carried out to compensate the phase dispersion at the focus of the objective. Enhancement of the two-photon excitation fluorescence intensity under dispersion-compensated femtosecond pulses was achieved. For polarization-dependent single gold nanorod, in situ polarization optimization resulted in further enhancement of two-photon photoluminescence intensity than phase-only optimization. The application of in situ adaptive control of femtosecond pulse provides a way for object-oriented optimization of single-nanoparticle two-photon microscopy for its future applications.
Tu, Haohua; Liu, Yuan; Liu, Xiaomin; Turchinovich, Dmitry; Lægsgaard, Jesper; Boppart, Stephen A.
2012-01-01
Dispersion-flattened dispersion-decreased all-normal dispersion (DFDD-ANDi) photonic crystal fibers have been identified as promising candidates for high-spectral-power coherent supercontinuum (SC) generation. However, the effects of the unintentional birefringence of the fibers on the SC generation have been ignored. This birefringence is widely present in nonlinear non-polarization maintaining fibers with a typical core size of 2 µm, presumably due to the structural symmetry breaks introduced in the fiber drawing process. We find that an intrinsic form-birefringence on the order of 10−5 profoundly affects the SC generation in a DFDD-ANDi photonic crystal fiber. Conventional simulations based on the scalar generalized nonlinear Schrödinger equation (GNLSE) fail to reproduce the prominent observed features of the SC generation in a short piece (9-cm) of this fiber. However, these features can be qualitatively or semi-quantitatively understood by the coupled GNLSE that takes into account the form-birefringence. The nonlinear polarization effects induced by the birefringence significantly distort the otherwise simple spectrotemporal field of the SC pulses. We therefore propose the fabrication of polarization-maintaining DFDD-ANDi fibers to avoid these adverse effects in pursuing a practical coherent fiber SC laser. PMID:22274457
Hui, Zhan-Qiang
2014-01-01
All-optical multicasting of performing data routing from single node to multiple destinations in the optical domain is promising for next generation ultrahigh-peed photonic networks. Based on the self-phase modulation in dispersion flattened highly nonlinear photonic crystal fiber and followed spectral filtering, simultaneous 1-to-8 all-optical wavelength multicasting return-to-zero (RZ) signal at 20 Gbit/s with 100 GHz channel spaced is achieved. Wavelength tunable range and dynamic characteristic of proposed wavelength multicasting scheme is further investigated. The results show our designed scheme achieve operation wavelength range of 25 nm, OSNR of 32.01 dB and Q factor of 12.8. Moreover, the scheme has simple structure as well as high tolerance to signal power fluctuation. PMID:24711738
Wu, Po-Chang; Yeh, En-Rong; Zyryanov, Victor Ya; Lee, Wei
2014-08-25
This paper investigates the spectral properties of a one-dimensional photonic crystal (PC) containing an inhomogeneous polymer- dispersed liquid crystal (PDLC) as a defect layer. Experimental results indicate that the voltage-induced reorientation of LC molecules between the light-scattering and transparent states in the PDLC enables the electrical tuning of the transmittance of defect-mode peaks in the spectrum of the PC/PDLC cell. Specifically, owing to the unique configuration of the spatial distribution of LC droplet sizes in the defect layer, a concept concerning the spatial switching in the wavelength of defect modes is proposed. As a result, the PC/PDLC hybrid cell is suggested as a potential element for realizing an electrically tunable and spatially switchable photonic bandgap device, which is polarizer-free and requires no alignment layers in the fabrication process. PMID:25321237
Tu, Haohua; Liu, Yuan; Lægsgaard, Jesper; Sharma, Utkarsh; Siegel, Martin; Kopf, Daniel; Boppart, Stephen A
2010-12-20
We quantitatively predict the observed continuum-like spectral broadening in a 90-mm weakly birefringent all-normal dispersion-flattened photonic crystal fiber pumped by 1041-nm 229-fs 76-MHz pulses from a solid-state Yb:KYW laser. The well-characterized continuum pulses span a bandwidth of up to 300 nm around the laser wavelength, allowing high spectral power density pulse shaping useful for various coherent control applications. We also identify the nonlinear polarization effect that limits the bandwidth of these continuum pulses, and therefore report the path toward a series of attractive alternative broadband coherent optical sources. PMID:21197060
Tu, Haohua; Liu, Yuan; Lægsgaard, Jesper; Sharma, Utkarsh; Siegel, Martin; Kopf, Daniel; Boppart, Stephen A.
2010-01-01
We quantitatively predict the observed continuum-like spectral broadening in a 90-mm weakly birefringent all-normal dispersion-flattened photonic crystal fiber pumped by 1041-nm 229-fs 76-MHz pulses from a solid-state Yb:KYW laser. The well-characterized continuum pulses span a bandwidth of up to 300 nm around the laser wavelength, allowing high spectral power density pulse shaping useful for various coherent control applications. We also identify the nonlinear polarization effect that limits the bandwidth of these continuum pulses, and therefore report the path toward a series of attractive alternative broadband coherent optical sources. PMID:21197060
Dong, Ningning; Li, Yuanxin; Zhang, Saifeng; McEvoy, Niall; Zhang, Xiaoyan; Cui, Yun; Zhang, Long; Duesberg, Georg S; Wang, Jun
2016-09-01
Both the nonlinear absorption and nonlinear refraction properties of WS_{2} and WSe_{2} semiconductor films have been characterized by using Z-scan technique with femtosecond pulses at the wavelength of 1040 nm. It is found that these films have two-photon absorption response with the nonlinear absorption coefficient of ∼10^{3} cm GW^{-1}, and a dispersion of nonlinear refractive index in the WS_{2} films that translated from positive in the monolayer to negative in bulk materials. PMID:27607941
NASA Astrophysics Data System (ADS)
Klimczak, Mariusz; Siwicki, Bartłomiej; Soboń, Grzegorz; Sotor, Jarosław; Pysz, Dariusz; Stepień, Ryszard; Martynkien, Tadeusz; Abramski, Krzysztof; Buczyński, Ryszard
2014-02-01
Supercontinuum generation (SG) in photonic crystal fibers (PCFs) usually takes advantage of soliton dynamics, when pump wavelength is located in the anomalous dispersion region near the zero-dispersion wavelength of the fiber. This results in broader bandwidth than pumping in the normal dispersion region (NDR). SG in NDR is of interest, because of its potential for high degree of coherence and low intensity fluctuations. It was experimentally demonstrated in silica fibers and PCFs pumped around 1000 nm, covering the visible and near-infrared. We developed an all-solid PCF with hexagonal lattice made from N-F2 capillaries, with lattice constant Λ=2.275 μm, filling factor d/Λ=0.9, and a solid N-F2 core with 2,5μm diameter. The capillaries were filled with thermally matched borosilicate glass rods with lower refractive index. The PCF has all-normal dispersion, flattened within 1400- 2750 nm (-35 to -29 ps/nm/km) and a local maximum of -29 ps/nm/km at 1550 nm. Measured attenuation in 1500-1600 nm is around 3.2 dB/m. Nonlinear coefficient calculated at 1550 nm is 17/W/m. We numerically investigate the evolution of supercontinuum formation with a maximum bandwidth of 900-2400 nm. Considered pump pulse lengths were between 1 ps and 50 fs, with corresponding peak powers from 20 kW to 200 kW. Measured coupling efficiency using 20× microscope objective was 50%. One-photon-per-mode noise was used to simulate pump noise and multi-shot SG spectra were calculated. Preliminary experimental results are in good agreement with developed model.
NASA Astrophysics Data System (ADS)
Kmon, P.; Maj, P.; Gryboś, P.; Szczygieł, R.
2016-01-01
We present a new method of an in-pixel threshold dispersion correction implemented in a prototype readout integrated circuit (IC) operating in a single photon counting mode. The new threshold correction method was implemented in a readout IC of area 9.6× 14.9 mm2 containing 23552 square pixels with the pitch of 75 μm designed and fabricated in CMOS 130 nm technology. Each pixel of the IC consists of a charge sensitive amplifier, a shaper, two discriminators, two 14-bit counters and a low-area trim DACs for threshold correction. The user can either control the range of the trim DAC globally for all the pixels in the integrated circuit or modify the trim DACs characteristics locally in each pixel independently. Using a simulation tool based on the Monte-Carlo methods, we estimated how much we could improve the offset trimming by increasing the number of bits in the trim DACs or implementing additional bits in a pixel to modify the characteristics of the trim DACs. The measurements of our IC prototype show that it is possible to reduce the effective threshold dispersion in large-area single-photon counting chips below 10 electrons rms.
Zhang, Hai-Feng E-mail: lsb@nuaa.edu.cn; Liu, Shao-Bin E-mail: lsb@nuaa.edu.cn; Tang, Yi-Jun; Zhen, Jian-Ping
2014-03-15
In this paper, the properties of the right circular polarized (RCP) waves in the three-dimensional (3D) dispersive photonic crystals (PCs) consisting of the magnetized plasma and uniaxial material with face-centered-cubic (fcc) lattices are theoretically investigated by the plane wave expansion method, which the homogeneous anisotropic dielectric spheres (the uniaxial material) immersed in the magnetized plasma background, as the Faraday effects of magnetized plasma are considered (the incidence electromagnetic wave vector is parallel to the external magnetic field at any time). The equations for calculating the anisotropic photonic band gaps (PBGs) for the RCP waves in the first irreducible Brillouin zone are theoretically deduced. The anisotropic PBGs and a flatbands region can be obtained. The effects of the ordinary-refractive index, extraordinary-refractive index, anisotropic dielectric filling factor, plasma frequency, and plasma cyclotron frequency (the external magnetic field) on the properties of first two anisotropic PBGs for the RCP waves are investigated in detail, respectively. The numerical results show that the anisotropy can open partial band gaps in fcc lattices at U and W points, and the complete PBGs for the RCP waves can be achieved compared to the conventional 3D dispersive PCs composed of the magnetized plasma and isotropic material. It is also shown that the first two anisotropic PBGs can be tuned by those parameters as mentioned above. Those PBGs can be enlarged by introducing the uniaxial material into such 3D PCs as the Faraday effects are considered.
Parametric down-conversion with optimized spectral properties in nonlinear photonic crystals
Corona, Maria; U'Ren, Alfred B.
2007-10-15
We study the joint spectral properties of photon pairs generated by spontaneous parametric down-conversion in a one-dimensional nonlinear photonic crystal in a collinear, degenerate, type-II geometry. We show that the photonic crystal properties may be exploited to compensate for material dispersion and obtain photon pairs that are nearly factorable, in principle, for arbitrary materials and spectral regions, limited by the ability to fabricate the nonlinear crystal with the required periodic variation in the refractive indices for the ordinary and extraordinary waves.
NASA Astrophysics Data System (ADS)
Gulian, A.; Wood, K.; van Vechten, D.; Fritz, G.
2004-09-01
''QVD'' detectors are based on thermoelectric heat-to-voltage (Q → V) conversion and digital (V → D) readout. We have devised and analyzed the performance of QVD detectors with several different sensor designs that enable use of high thermoelectric figure of merit samples, be they of thin film, bulk crystal, or whisker form. Our first QVD devices had the well-studied material Au-Fe as thin film sensors. More recently, we have confirmed the literature reports of substantially higher Seebeck coefficient at cryogenic temperatures in lanthanum (cerium) hexaborides. We have also investigated the kinetic properties of La(Ce)B6 crystals with different La-Ce ratios. Currently we are exploring prototype devices based on bulk single-crystalline sensors. These include a successfully tested candidate with a sharp-end hexaboride sensor and small-size bismuth absorber - a whisker prototype. In theory, QVD sensors are competitive with superconducting tunnel junction (STJ) and transition edge sensor (TES) devices in energy resolution ability. However, QVD sensors ought to be able to respond at very much faster rates than these competitors; the lanthanum-cerium hexaboride sensors are expected to reach rates of 100 MHz counting rates for UV/optical photons. In addition to traditional astrophysical applications, these detectors can be applied to the tasks of quantum computing and communication.
Kepp, Kasper P
2011-10-01
Porphyrins are much studied due to their biochemical relevance and many applications. The density functional TPSSh has previously accurately described the energy of close-lying electronic states of transition metal systems such as porphyrins. However, a recent study questioned this conclusion based on calculations of five iron(III) porphines. Here, we compute the geometries of 80 different electronic configurations and the free energies of the most stable configurations with the functionals TPSSh, TPSS, and B3LYP. Zero-point energies and entropy favor high-spin by ~4kJ/mol and 0-10kJ/mol, respectively. When these effects are included, and all electronic configurations are evaluated, TPSSh correctly predicts the spin of all the four difficult phenylporphine cases and is within the lower bound of uncertainty of any known theoretical method for the fifth, iron(III) chloroporphine. Dispersion computed with DFT-D3 favors low-spin by 3-53kJ/mol (TPSSh) or 4-15kJ/mol (B3LYP) due to the attractive r(-6) term and the shorter distances in low-spin. The very large and diverse corrections from TPSS and TPSSh seem less consistent with the similarity of the systems than when calculated from B3LYP. If the functional-specific corrections are used, B3LYP and TPSSh are of equal accuracy, and TPSS is much worse, whereas if the physically reasonable B3LYP-computed dispersion effect is used for all functionals, TPSSh is accurate for all systems. B3LYP is significantly more accurate when dispersion is added, confirming previous results. PMID:21855825
ERIC Educational Resources Information Center
Roady, Celia
2008-01-01
Congress, the news media, and the Internal Revenue Service (IRS) continue to cast a wary eye on the compensation of nonprofit leaders. Hence, any college or university board that falls short of IRS expectations in its procedures for setting the president's compensation is putting the president, other senior officials, and board members at…
NASA Astrophysics Data System (ADS)
Bauerschmidt, S. T.; Novoa, D.; Russell, P. St. J.
2015-12-01
In 1964 Bloembergen and Shen predicted that Raman gain could be suppressed if the rates of phonon creation and annihilation (by inelastic scattering) exactly balance. This is only possible if the momentum required for each process is identical, i.e., phonon coherence waves created by pump-to-Stokes scattering are identical to those annihilated in pump-to-anti-Stokes scattering. In bulk gas cells, this can only be achieved over limited interaction lengths at an oblique angle to the pump axis. Here we report a simple system that provides dramatic Raman gain suppression over long collinear path lengths in hydrogen. It consists of a gas-filled hollow-core photonic crystal fiber whose zero dispersion point is pressure adjusted to lie close to the pump laser wavelength. At a certain precise pressure, stimulated generation of Stokes light in the fundamental mode is completely suppressed, allowing other much weaker phenomena such as spontaneous Raman scattering to be explored at high pump powers.
Bauerschmidt, S T; Novoa, D; Russell, P St J
2015-12-11
In 1964 Bloembergen and Shen predicted that Raman gain could be suppressed if the rates of phonon creation and annihilation (by inelastic scattering) exactly balance. This is only possible if the momentum required for each process is identical, i.e., phonon coherence waves created by pump-to-Stokes scattering are identical to those annihilated in pump-to-anti-Stokes scattering. In bulk gas cells, this can only be achieved over limited interaction lengths at an oblique angle to the pump axis. Here we report a simple system that provides dramatic Raman gain suppression over long collinear path lengths in hydrogen. It consists of a gas-filled hollow-core photonic crystal fiber whose zero dispersion point is pressure adjusted to lie close to the pump laser wavelength. At a certain precise pressure, stimulated generation of Stokes light in the fundamental mode is completely suppressed, allowing other much weaker phenomena such as spontaneous Raman scattering to be explored at high pump powers. PMID:26705636
High-performance transmission in analog photonic links
NASA Astrophysics Data System (ADS)
Chen, Zhiyu; Yan, Lianshan; Jiang, Hengyun; Ye, Jia; Pan, Wei; Luo, Bin; Zou, Xihua
2013-12-01
Analog photonic link (APL) has been considered to be a promising technique due to the low insertion loss, broad bandwidth and immunity to electromagnetic interference. It is essential for many microwave systems, such as avionics, modern electronic warfare, and wireless communication systems. However, polarization effect, chromatic dispersion (CD), fiber Kerr effect and RF nonlinearity are four main problems in APL. All of them degrade the performance of the link. Therefore, APL needs to be optimized according to the different requirements in various applications. In this paper, we firstly establish a propagation model and provide the general expressions for the analog signal in photonic link based on coupled-mode theory and the small-signal analysis. Such model can describe the interaction of polarization effect, CD and nonlinearity. We also investigate the noise figure (NF) and spurious-free dynamic range (SFDR) in dispersive nonlinear link based on the proposed model. Subsequently, we review and introduce different compensation schemes for these impairments, such as CD compensation based on double sideband (DSB) modulation, and simultaneous compensation for CD and nonlinearity by employing a phase modulator (PM). After compensations, the SFDR of the link can be improved greatly. In addition, recent experimental results show that APL might be a supporting technique for the 4G or higher speed optical-wireless communication systems in near future.
Ören, Ünal; Herrnsdorf, Lars; Gunnarsson, Mikael; Mattsson, Sören; Rääf, Christopher L
2016-06-01
The objective of this study was to investigate the characteristics of a solid-state detector commonly available at hospitals for parallel use as a real-time personal radiation monitor following radiation emergency situations. A solid-state detector probe with an inherent filtration (R100, RTI Electronics AB, Mölndal, Sweden) was chosen for evaluation. The energy dependence and the linearity in signal response with kerma in air were examined, and the detector was exposed to both X-ray beams using a conventional X-ray unit with effective photon energies ranging between 28.5 and 48.9 keV and to gamma rays 1.17 and 1.33 MeV from (60)Co. The R100 exhibited ∼1.7 times over-response at the lowest X-ray energy relative to the (60)Co source. The detector demonstrated a linear response (R(2) = 1) when irradiated with (60)Co to air kerma values in the range of 20-200 mGy. The conclusion is that high-energy photons such as those from (60)Co can be detected by the R100 with an energy response within a factor of <2 over the energy range examined and that the detector can provide real-time dose measurements following nuclear or radiological events. PMID:26622043
Zou, Dan; Zheng, Xiaoping; Li, Shangyuan; Zhang, Hanyi; Zhou, Bingkun
2014-07-01
A novel structure consisting of an idler-free microwave photonic mixer integrated with a widely tunable and highly selective microwave photonic filter is presented, which is comprised of a spectrum-sliced broadband optical source, a dual-parallel Mach-Zehnder modulator (DPMZM), and a spatial light amplitude and phase processor (SLAPP). By adjusting the optical phase shift in the DPMZM, the dispersion-induced mixing power fading can be eliminated. By applying a phase processor with the SLAPP, the distortion of the mixing filter brought upon by third-order dispersion is also compensated. Experiments are performed and show that the up/down-conversion signal has a clean spectrum and the mixing filter can be tuned from 12 to 20 GHz without any change to the passband shape. The out-of-band suppression ratio of the mixing filter is more than 40 dB, and the 3 dB bandwidth is 140 MHz. PMID:24978780
NASA Astrophysics Data System (ADS)
Yamashita, Shinji; Takubo, Yuya
2011-05-01
We proposed a wide and fast wavelength-swept fiber lasers based on the dispersion tuning for the optical coherence tomography (OCT) applications. So far, we have achieved the sweep rate of ~200kHz at the sweep bandwidth of ~180nm. The sweep rate is only limited by the photon lifetime, which is proportional to the cavity length. Since we used a dispersion compensating fiber (DCF) as the dispersive medium, the long cavity length (~100m) was the limit of the sweep rate. In this paper, we demonstrate faster sweep rate up to ~500kHz by using a wideband chirped fiber Bragg grating (CFBG).
Visualization of high-order dispersion for compression of few-cycle pulses
NASA Astrophysics Data System (ADS)
Zheng, Jiaan; Kobayashi, Wataru; Hamann, Thomas; Nürenberg, Daniel; Lührmann, Markus; L'huillier, Johannes A.; Wallenstein, Richard; Zacharias, Helmut
2014-09-01
We present a visually intuitive method for higher-order dispersion compensation based on multi-photon interpulse interference pulse scans. The dispersion values obtained from these scans are fed back as a correction to an acousto-optical programmable dispersive filter to compensate residual higher-order dispersions up to fifth order. This method is applied to the dispersion management of a non-collinear optical parametric chirped-pulse amplifier. A grism-pair stretcher is designed based on a global dispersion balance which provides a large stretching factor and supports a spectral bandwidth of up to 320 nm. It is implemented in a two-stage three-pass non-collinear optical parametric chirped-pulse amplifier and stretches 6-fs seed pulses to about 80 ps from 700 to 1,000 nm. The amplified pulses are compressed by material dispersion. Pulses of less than 10-fs duration with a pulse energy of 125 μJ are obtained at 20-kHz repetition rate.
Photonic crystal and photonic wire device structures
NASA Astrophysics Data System (ADS)
De La Rue, Richard; Sorel, Marc; Johnson, Nigel; Rahman, Faiz; Ironside, Charles; Cronin, Lee; Watson, Ian; Martin, Robert; Jin, Chongjun; Pottier, Pierre; Chong, Harold; Gnan, Marco; Jugessur, Aju; Camargo, Edilson; Erwin, Grant; Md Zain, Ahmad; Ntakis, Iraklis; Hobbs, Lois; Zhang, Hua; Armenise, Mario; Ciminelli, Caterina; Coquillat, Dominique
2005-09-01
Photonic devices that exploit photonic crystal (PhC) principles in a planar environment continue to provide a fertile field of research. 2D PhC based channel waveguides can provide both strong confinement and controlled dispersion behaviour. In conjunction with, for instance, various electro-optic, thermo-optic and other effects, a range of device functionality is accessible in very compact PhC channel-guide devices that offer the potential for high-density integration. Low enough propagation losses are now being obtained with photonic crystal channel-guide structures that their use in real applications has become plausible. Photonic wires (PhWs) can also provide strong confinement and low propagation losses. Bragg-gratings imposed on photonic wires can provide dispersion and frequency selection in device structures that are intrinsically simpler than 2D PhC channel guides--and can compete with them under realistic conditions.
Radially varying dispersion in high-numerical-aperture focusing
NASA Astrophysics Data System (ADS)
Mueller, Michiel; Brakenhoff, G. J.; Simon, Ulrich; Squier, Jeffrey A.
1998-05-01
Over the last few years a number of microscopical techniques have been developed that take advantage of ultrashort optical pulses. All these techniques rely on temporal pulse integrity at the focal point of a high-numerical aperture (NA) focusing system. We have investigated the dispersion induced broadening for pulses on the optical axis, using the two-photon absorption autocorrelation (TPAA) technique. We demonstrate that the induced broadening can be pre- compensated for by a properly designed dispersion pre- compensation unit for pulses as short as 15 femtosecond. Another source of pulse broadening in high-NA focusing systems is due to radial variations in the dispersion over the pupil of the objective. This may cause differences in the group delay between on-axis and outer ray wave packets, as well as differences in the broadening of the wave packets themselves. In this paper we present experimental results on the measurement of these radial variations in the dispersion characteristics over the aperture of high-NA microscope objectives, using a slightly modified TPAA technique.
Polarization-maintaining fiber pulse compressor by birefringent hollow-core photonic bandgap fiber.
Shirakawa, Akira; Tanisho, Motoyuki; Ueda, Ken-Ichi
2006-12-11
Structural birefringent properties of a hollow-core photonic-bandgap fiber were carefully investigated and applied to all-fiber chirped-pulse amplification as a compressor. The group birefringence of as high as 6.9x10(-4) and the dispersion splitting by as large as 149 ps/nm/km between the two principal polarization modes were observed at 1557 nm. By launching the amplifier output to one of the polarization modes a 17-dB polarization extinction ratio was obtained without any pulse degradation originating from polarization-mode dispersion. A hybrid fiber stretcher effectively compensates the peculiar dispersion of the photonic-bandgap fiber and pedestal-free 440-fs pulses with a 1-W average power and 21-nJ pulse energy were obtained. Polarization-maintaining fiber-pigtail output of high-power femtosecond pulses is useful for various applications. PMID:19529631
Octave-spanning spectral phase control for single-cycle bi-photons
NASA Astrophysics Data System (ADS)
Shaked, Yaakov; Yefet, Shai; Geller, Tzahi; Pe'er, Avi
2015-07-01
The quantum correlation of octave-spanning time-energy entangled bi-photons can be as short as a single optical cycle. Many experiments designed to explore and exploit this correlation require a uniform spectral phase (transform-limited) with very low loss. So far, transform-limited single-cycle bi-photons have not been demonstrated, primarily due to the lack of precise, broadband control of their spectral phase. Here, we demonstrate the correction of the spectral-phase of near-octave spanning bi-photons to \\varphi \\lt π /20 over an octave in frequency ≈ 1330-2600 nm). Using a prism-pair with an effectively negative separation for shaping the bi-photons’ spectral phase, we obtain a tuned, very low-loss compensation of both the second and fourth dispersion orders. An essential requisite for precise tuning over such a broad bandwidth is a measure of the spectral phase that provides feedback for the tuning even when the overall dispersion is far from compensated. This is achieved by a non-classical bi-photon interference, which enables direct verification of the corrected bi-photon spectral phase.
NASA Astrophysics Data System (ADS)
Medjouri, Abdelkader; Simohamed, Lotfy Mokhtar; Ziane, Omar; Boudrioua, Azzedine; Becer, Zoubir
2015-08-01
In this paper, we present and numerically investigate a new and simple design of Circular Lattice Photonic Crystal Fiber (CL-PCF) with near zero ultra-flattened chromatic dispersion. The near zero dispersion is obtained by introducing a defect into the solid core and the dispersion flatness is achieved by appropriately reducing the diameter of the core-neighboring air holes ring. Simulations are performed by using the finite-difference frequency-domain (FDFD) method combined with the perfectly matched layer (PML) boundary condition. Results show that an ultra-flattened chromatic dispersion as small as ±0.66 ps/nm km is obtained over a broad band of 400 nm with high nonlinearity and ultra-low confinement loss. Furthermore, the supercontinuum (SC) generation over a short length of the proposed CL-PCF is numerically investigated. Results indicate that flat SC spectrum with a Full Width at Half Maximum (FWHM) of 600 nm is achieved with 25 cm of fiber length.
Frequency-bin entangled comb of photon pairs from a Silicon-on-Insulator micro-resonator.
Chen, Jun; Levine, Zachary H; Fan, Jingyun; Migdall, Alan L
2011-01-17
We present a quantum-mechanical theory to describe narrowband photon-pair generation via four-wave mixing in a Silicon-on-Insulator (SOI) micro-resonator. We also provide design principles for efficient photon-pair generation in an SOI micro-resonator through extensive numerical simulations. Microring cavities are shown to have a much wider dispersion-compensated frequency range than straight cavities. A microring with an inner radius of 8 μm can output an entangled photon comb of 21 pairwise-correlated peaks (42 comb lines) spanning from 1.3 μm to 1.8 μm. Such on-chip quantum photonic devices offer a path toward future integrated quantum photonics and quantum integrated circuits. PMID:21263689
Two-photon spectroscopy of excitons with entangled photons
Schlawin, Frank; Mukamel, Shaul
2013-12-28
The utility of quantum light as a spectroscopic tool is demonstrated for frequency-dispersed pump-probe, integrated pump-probe, and two-photon fluorescence signals which show Ramsey fringes. Simulations of the frequency-dispersed transmission of a broadband pulse of entangled photons interacting with a three-level model of matter reveal how the non-classical time-bandwidth properties of entangled photons can be used to disentangle congested spectra, and reveal otherwise unresolved features. Quantum light effects are most pronounced at weak intensities when entangled photon pairs are well separated, and are gradually diminished at higher intensities when different photon pairs overlap.
X-Chromosome dosage compensation.
Meyer, Barbara J
2005-01-01
In mammals, flies, and worms, sex is determined by distinctive regulatory mechanisms that cause males (XO or XY) and females (XX) to differ in their dose of X chromosomes. In each species, an essential X chromosome-wide process called dosage compensation ensures that somatic cells of either sex express equal levels of X-linked gene products. The strategies used to achieve dosage compensation are diverse, but in all cases, specialized complexes are targeted specifically to the X chromosome(s) of only one sex to regulate transcript levels. In C. elegans, this sex-specific targeting of the dosage compensation complex (DCC) is controlled by the same developmental signal that establishes sex, the ratio of X chromosomes to sets of autosomes (X:A signal). Molecular components of this chromosome counting process have been defined. Following a common step of regulation, sex determination and dosage compensation are controlled by distinct genetic pathways. C. elegans dosage compensation is implemented by a protein complex that binds both X chromosomes of hermaphrodites to reduce transcript levels by one-half. The dosage compensation complex resembles the conserved 13S condensin complex required for both mitotic and meiotic chromosome resolution and condensation, implying the recruitment of ancient proteins to the new task of regulating gene expression. Within each C. elegans somatic cell, one of the DCC components also participates in the separate mitotic/meiotic condensin complex. Other DCC components play pivotal roles in regulating the number and distribution of crossovers during meiosis. The strategy by which C. elegans X chromosomes attract the condensin-like DCC is known. Small, well-dispersed X-recognition elements act as entry sites to recruit the dosage compensation complex and to nucleate spreading of the complex to X regions that lack recruitment sites. In this manner, a repressed chromatin state is spread in cis over short or long distances, thus establishing the
Pulse compression to 14 fs by third-order dispersion control in a hybrid grating-prism compressor.
Zeytunyan, Aram; Yesayan, Garegin; Mouradian, Levon
2013-11-10
A pulse compressor consisting of a fiber and a compact hybrid grating-prism dispersive delay line (DDL) is used to compress readily-available 140-fs pulses from a Ti:sapphire laser. We generate broadband pulses of up to 75 THz FWHM bandwidth in normally-dispersive single-mode conventional and photonic crystal fibers, with a potential of compression to 6 fs. Pulse dechirping in our hybrid DDL through second- and third-order dispersion (TOD) compensation results in 10× compression to 14 fs, limited by the bandwidth of the DDL transfer function and higher-order dispersion. The large tunability of the TOD of the hybrid DDL is shown. PMID:24216734
Reactive power compensating system
Williams, Timothy J.; El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.
1987-01-01
The reactive power of an induction machine is compensated by providing fixed capacitors on each phase line for the minimum compensation required, sensing the current on one line at the time its voltage crosses zero to determine the actual compensation required for each phase, and selecting switched capacitors on each line to provide the balance of the compensation required.
Solitonization of a dispersive wave.
Braud, F; Conforti, M; Cassez, A; Mussot, A; Kudlinski, A
2016-04-01
We report the observation of a nonlinear propagation scenario in which a dispersive wave is transformed into a fundamental soliton in an axially varying optical fiber. The dispersive wave is initially emitted in the normal dispersion region and the fiber properties change longitudinally so that the dispersion becomes anomalous at the dispersive wave wavelength, which allows it to be transformed into a soliton. The solitonic nature of the field is demonstrated by solving the direct Zakharov-Shabat scattering problem. Experimental characterization performed in spectral and temporal domains show evidence of the solitonization process in an axially varying photonic crystal fiber. PMID:27192249
NASA Astrophysics Data System (ADS)
Wu, Xiang-Yao; Zhang, Bai-Jun; Yang, Jing-Hai; Liu, Xiao-Jing; Ba, Nuo; Wu, Yi-Heng; Wang, Qing-Cai
2011-07-01
In this paper, we present a new kind of function photonic crystals (PCs), whose refractive index is a function of space position. Conventional PCs structure grows from two materials, A and B, with different dielectric constants εA and εB. Based on Fermat principle, we give the motion equations of light in one-dimensional, two-dimensional and three-dimensional function photonic crystals. For one-dimensional function photonic crystals, we give the dispersion relation, band gap structure and transmissivity, and compare them with conventional photonic crystals, and we find the following: (1) For the vertical and non-vertical incidence light of function photonic crystals, there are band gap structures, and for only the vertical incidence light, the conventional PCs have band gap structures. (2) By choosing various refractive index distribution functions n( z), we can obtain more wider or more narrower band gap structure than conventional photonic crystals.
Dispersionless gaps and cavity modes in photonic crystals containing hyperbolic metamaterials
NASA Astrophysics Data System (ADS)
Xue, Chun-hua; Ding, Yaqiong; Jiang, Hai-tao; Li, Yunhui; Wang, Zhan-shan; Zhang, Ye-wen; Chen, Hong
2016-03-01
We theoretically study dispersionless gaps and cavity modes in one-dimensional photonic crystals composed of hyperbolic metamaterials and dielectric. Bragg gaps in conventional all-dielectric photonic crystals are always dispersive because propagating phases in two kinds of dielectrics decrease with incident angle. Here, based on phase variation compensation between a hyperbolic metamaterial layer and an isotropic dielectric layer, the dispersion of the gap can be offset and thus a dispersionless gap can be realized. Moreover, the dispersionless property of such gap has a wide parameter space. The dispersionless gap can be used to realize a dispersionless cavity mode. The dispersionless gaps and cavity modes will possess significant applications for all-angle reflectors, high-Q filters excited with finite-sized sources, and nonlinear wave mixing processes.
NASA Astrophysics Data System (ADS)
Kodama, Hajime; Watanabe, Manabu; Sato, Eiichi; Oda, Yasuyuki; Hagiwara, Osahiko; Matsukiyo, Hiroshi; Osawa, Akihiro; Enomoto, Toshiyuki; Kusachi, Shinya; Sato, Shigehiro; Ogawa, Akira
2013-07-01
X-ray photons are directly detected using a 100 MHz ready-made silicon P-intrinsic-N X-ray diode (Si-PIN-XD). The Si-PIN-XD is shielded using an aluminum case with a 25-µm-thick aluminum window and a BNC connector. The photocurrent from the Si-PIN-XD is amplified by charge sensitive and shaping amplifiers, and the event pulses are sent to a multichannel analyzer (MCA) to measure X-ray spectra. At a tube voltage of 90 kV, we observe K-series characteristic X-rays of tungsten. Photon-counting computed tomography (PC-CT) is accomplished by repeated linear scans and rotations of an object, and projection curves of the object are obtained by linear scanning at a tube current of 2.0 mA. The exposure time for obtaining a tomogram is 10 min with scan steps of 0.5 mm and rotation steps of 1.0°. At a tube voltage of 90 kV, the maximum count rate is 150 kcps. We carry out PC-CT using gadolinium media and confirm the energy-dispersive effect with changes in the lower level voltage of the event pulse using a comparator.
Optical tracking telescope compensation
NASA Technical Reports Server (NTRS)
Gilbart, J. W.
1973-01-01
In order to minimize the effects of parameter variations in the dynamics of an optical tracking telescope, a model referenced parameter adaptive control system is described that - in conjunction with more traditional forms of compensation - achieves a reduction of rms pointing error by more than a factor of six. The adaptive compensation system utilizes open loop compensation, closed loop compensation, and model reference compensation to provide the precise input to force telescope axis velocity to follow the ideal velocity.
Sasaki, Kazuya; Varshney, Shailendra K; Wada, Keisuke; Saitoh, Kunimasa; Koshiba, Masanori
2007-03-01
This paper focuses on the optimization of pump spectra to achieve low Raman gain ripples over C-band in ultra-low loss photonic crystal fiber (PCF) and dispersion compensating PCFs (DCPCFs). Genetic algorithm (GA), a multivariate stochastic optimization algorithm, is applied to optimize the pump powers and the wavelengths for the aforesaid fiber designs. In addition, the GA integrated with full-vectorial finite element method with curvilinear edge/nodal elements is used to optimize the structural parameters of DCPCF. The optimized DCPCF provides broadband dispersion compensation over C-band with low negative dispersion coefficient of -530 ps/nm/km at 1550 nm, which is five times larger than the conventional dispersion compensating fibers with nearly equal effective mode area (21.7 mum(2)). A peak gain of 8.4 dB with +/-0.21 dB gain ripple is achieved for a 2.73 km long DCPCF module when three optimized pumps are used in the backward direction. The lowest gain ripple of +/-0.36 dB is attained for a 10 km long ultra-low loss PCF with three backward pumps. Sensitivity analysis has been performed and it is found that within the experimental fabrication tolerances of +/-2%, the absolute magnitude of dispersion may vary by +/-16%, while the Raman gain may change by +/-7%. Through tolerance study, it is examined that the ring core's hole-size is more sensitive to the structural deformations. PMID:19532502
Burke, D.L.
1982-10-01
Studies of photon-photon collisions are reviewed with particular emphasis on new results reported to this conference. These include results on light meson spectroscopy and deep inelastic e..gamma.. scattering. Considerable work has now been accumulated on resonance production by ..gamma gamma.. collisions. Preliminary high statistics studies of the photon structure function F/sub 2//sup ..gamma../(x,Q/sup 2/) are given and comments are made on the problems that remain to be solved.
Energy Science and Technology Software Center (ESTSC)
2003-06-03
COMPERA is a decision support system designed to facilitate the compensation review process. With parameters provided by the user(s), the system generates recommendations for base increases and nonbase compensation that strives to align total compensation with performance compensation targets. The user(s) prescribe(s) compensation targets according to performance (or value of contribution) designators. These targets are presented in look-up tables, which are then used by embedded formulas in the worksheet to determine the recommended compensation formore » each individual.« less
Experiments on a compact and robust polarization-entangled photon source
NASA Astrophysics Data System (ADS)
Zhang, Shi-Wei; Zhang, Tong-Yi; Yao, Yin-Ping; Wan, Ren-Gang; Zou, Sheng-Wu
2012-02-01
We construct a compact polarization-entangled photon source using type-II degenerate spontaneous parametric down-conversion (SPDC) in beta-barium borate (BBO) crystal pumped by a 405 nm violet laser diode. In order to compensate the spatial displacement and the temporal delay due to the birefringence and dispersion effect of signal and idler photons, we make the down-converted photon pairs pass through a half wave plate and an additional BBO crystal with the half thickness of the original one. This improves the visibility of two-photon interference by eliminating the distinguishability of the paired photons. We measure the polarization correlations by two adjustable polarization analyzers in two conjugate bases, H/V and +45°/-45°, respectively. The polarization analyzer consists of a polarization beam splitter cube preceded by a rotatable half wave plate. When rotating one of the half wave plates and keeping the other one at fixed angle, we obtain the expected sin2 dependence of the coincidence counts. The highly visible sinusoidal coincidence indicates the violation of the Bell inequality and demonstrates the high quality of the polarization-entangled photon source. This compact polarization-entangled photon source is easily configurable and robust to demonstrate optical quantum information processing.
Flaherty, L.M.
1989-01-01
This book contains papers presented at a symposium of the American Society for Testing and Materials. The topics covered include: The effect of elastomers on the efficiency of oil spill dispersants; planning for dispersant use; field experience with dispersants for oil spills on land; and measurements on natural dispersion.
Brodsky, S.J.
1988-07-01
Highlights of the VIIIth International Workshop on Photon-Photon Collisions are reviewed. New experimental and theoretical results were reported in virtually every area of ..gamma gamma.. physics, particularly in exotic resonance production and tests of quantum chromodynamics where asymptotic freedom and factorization theorems provide predictions for both inclusive and exclusive ..gamma gamma.. reactions at high momentum transfer. 73 refs., 12 figs.
PMD tolerant nonlinear compensation using in-line phase conjugation.
McCarthy, M E; Al Kahteeb, M A Z; Ferreira, F M; Ellis, A D
2016-02-22
In this paper, we numerically investigate the impact of polarisation mode dispersion on the efficiency of compensation of nonlinear transmission penalties for systems employing one of more inline phase conjugation devices. We will show that reducing the spacing between phase conjugations allows for significantly improved performance in the presence polarisation mode dispersion or a significant relaxation in the acceptable level of polarization mode dispersion. We show that these results are consistent with previously presented full statistical analysis of nonlinear transmission appropriately adjusted for the reduced section length undergoing compensation. PMID:26906997
Brodsky, S.J.
1985-01-01
The study of photon-photon collisions has progressed enormously, stimulated by new data and new calculational tools for QCD. In the future we can expect precise determinations of ..cap alpha../sub s/ and ..lambda../sup ms/ from the ..gamma..*..gamma.. ..-->.. ..pi../sup 0/ form factor and the photon structure function, as well as detailed checks of QCD, determination of the shape of the hadron distribution amplitudes from ..gamma gamma.. ..-->.. H anti H, reconstruction of sigma/sub ..gamma gamma../ from exclusive channels at low W/sub ..gamma gamma../, definitive studies of high p/sub T/ hadron and jet production, and studies of threshold production of charmed systems. Photon-photon collisions, along with radiative decays of the psi and UPSILON, are ideal for the study of multiquark and gluonic resonances. We have emphasized the potential for resonance formation near threshold in virtually every hadronic exclusive channel, including heavy quark states c anti c c anti c, c anti c u anti u, etc. At higher energies SLC, LEP, ...) parity-violating electroweak effects and Higgs production due to equivalent Z/sup 0/ and W/sup + -/ beams from e ..-->.. eZ/sup 0/ and e ..-->.. nu W will become important. 44 references.
Robust springback compensation
NASA Astrophysics Data System (ADS)
Carleer, Bart; Grimm, Peter
2013-12-01
Springback simulation and springback compensation are more and more applied in productive use of die engineering. In order to successfully compensate a tool accurate springback results are needed as well as an effective compensation approach. In this paper a methodology has been introduce in order to effectively compensate tools. First step is the full process simulation meaning that not only the drawing operation will be simulated but also all secondary operations like trimming and flanging. Second will be the verification whether the process is robust meaning that it obtains repeatable results. In order to effectively compensate a minimum clamping concept will be defined. Once these preconditions are fulfilled the tools can be compensated effectively.
Anderson, R C
1985-01-01
Congress has demonstrated interest in toxic compensation legislation, but not enough agreement to make significant progress. Advocates of reform claim that the legal system is heavily weighed against victims who seek compensation through the courts. Proposed reforms include a compensation fund and a cause of action in federal court. Critics have questioned whether these changes in the law would represent an improvement. Existing income replacement, medical cost reimbursement, and survivor insurance programs largely cover the losses of individuals with chronic disease. Thus, the need for an additional compensation is not clear. Furthermore, experience with compensation funds such as the Black Lung Fund suggests that political rather than scientific criteria may be used to determine eligibility. Finally, under the proposed financing mechanisms the compensation funds that are being debated would not increase incentives for care in the handling of hazardous wastes or toxic substances. PMID:4085440
Photonic crystal surface-emitting lasers
Chua, Song Liang; Lu, Ling; Soljacic, Marin
2015-06-23
A photonic-crystal surface-emitting laser (PCSEL) includes a gain medium electromagnetically coupled to a photonic crystal whose energy band structure exhibits a Dirac cone of linear dispersion at the center of the photonic crystal's Brillouin zone. This Dirac cone's vertex is called a Dirac point; because it is at the Brillouin zone center, it is called an accidental Dirac point. Tuning the photonic crystal's band structure (e.g., by changing the photonic crystal's dimensions or refractive index) to exhibit an accidental Dirac point increases the photonic crystal's mode spacing by orders of magnitudes and reduces or eliminates the photonic crystal's distributed in-plane feedback. Thus, the photonic crystal can act as a resonator that supports single-mode output from the PCSEL over a larger area than is possible with conventional PCSELs, which have quadratic band edge dispersion. Because output power generally scales with output area, this increase in output area results in higher possible output powers.
Accuracy of numerically produced compensators.
Thompson, H; Evans, M D; Fallone, B G
1999-01-01
A feasibility study is performed to assess the utility of a computer numerically controlled (CNC) mill to produce compensating filters for conventional clinical use and for the delivery of intensity-modulated beams. A computer aided machining (CAM) software is used to assist in the design and construction of such filters. Geometric measurements of stepped and wedged surfaces are made to examine the accuracy of surface milling. Molds are milled and filled with molten alloy to produce filters, and both the molds and filters are examined for consistency and accuracy. Results show that the deviation of the filter surfaces from design does not exceed 1.5%. The effective attenuation coefficient is measured for CadFree, a cadmium-free alloy, in a 6 MV photon beam. The effective attenuation coefficients at the depth of maximum dose (1.5 cm) and at 10 cm in solid water phantom are found to be 0.546 cm-1 and 0.522 cm-1, respectively. Further attenuation measurements are made with Cerrobend to assess the variations of the effective attenuation coefficient with field size and source-surface distance. The ability of the CNC mill to accurately produce surfaces is verified with dose profile measurements in a 6 MV photon beam. The test phantom is composed of a 10 degrees polystyrene wedge and a 30 degrees polystyrene wedge, presenting both a sharp discontinuity and sloped surfaces. Dose profiles, measured at the depth of compensation (10 cm) beneath the test phantom and beneath a flat phantom, are compared to those produced by a commercial treatment planning system. Agreement between measured and predicted profiles is within 2%, indicating the viability of the system for filter production. PMID:10100166
Doerry, Armin W.
2004-07-20
Movement of a GMTI radar during a coherent processing interval over which a set of radar pulses are processed may cause defocusing of a range-Doppler map in the video signal. This problem may be compensated by varying waveform or sampling parameters of each pulse to compensate for distortions caused by variations in viewing angles from the radar to the target.
Wang, Yiping; Wang, Ming; Xia, Wei; Ni, Xiaoqi
2016-08-01
In this paper, a new fiber Bragg grating (FBG) sensor exploiting microwave photonics filter technique for transverse load sensing is firstly proposed and experimentally demonstrated. A two-tap incoherent notch microwave photonics filter (MPF) based on a transverse loaded FBG, a polarization beam splitter (PBS), a tunable delay line (TDL) and a length of dispersion compensating fiber (DCF) is demonstrated. The frequency response of the filter with respect to the transverse load is studied. By detecting the resonance frequency shifts of the notch MPF, the transverse load can be determined. The theoretical and experimental results show that the proposed FBG sensor has a higher resolution than traditional methods based on optical spectrum analysis. The sensitivity of the sensor is measured to be as high as 2.5 MHz/N for a sensing fiber with a length of 18mm. Moreover, the sensitivity can be easily adjusted. PMID:27505763
NASA Astrophysics Data System (ADS)
Hammer, Daniel X.; Noojin, Gary D.; Thomas, Robert J.; Stolarski, David J.; Rockwell, Benjamin A.; Welch, Ashley J.
1999-06-01
Spectrally resolved white-light interferometry (SRWLI) was used to measure the wavelength dependence of refractive index (i.e., dispersion) for various ocular components. The accuracy of the technique was assessed by measurement of fused silica and water, the refractive indices of which have been measured at several different wavelengths. The dispersion of bovine and rabbit aqueous and vitreous humor was measured from 400 to 1100 nm. Also, the dispersion was measured from 400 to 700 nm for aqueous and vitreous humor extracted from goat and rhesus monkey eyes. For the humors, the dispersion did not deviate significantly from water. In an additional experiment, the dispersion of aqueous and vitreous humor that had aged up to a month was compared to freshly harvested material. No difference was found between the fresh and aged media. An unsuccessful attempt was also made to use the technique for dispersion measurement of bovine cornea and lens. Future refinement may allow measurement of the dispersion of cornea and lens across the entire visible and near-infrared wavelength band. The principles of white- light interferometry including image analysis, measurement accuracy, and limitations of the technique, are discussed. In addition, alternate techniques and previous measurements of ocular dispersion are reviewed.
Turbulence compensation: an overview
NASA Astrophysics Data System (ADS)
van Eekeren, Adam W. M.; Schutte, Klamer; Dijk, Judith; Schwering, Piet B. W.; van Iersel, Miranda; Doelman, Niek J.
2012-06-01
In general, long range visual detection, recognition and identification are hampered by turbulence caused by atmospheric conditions. Much research has been devoted to the field of turbulence compensation. One of the main advantages of turbulence compensation is that it enables visual identification over larger distances. In many (military) scenarios this is of crucial importance. In this paper we give an overview of several software and hardware approaches to compensate for the visual artifacts caused by turbulence. These approaches are very diverse and range from the use of dedicated hardware, such as adaptive optics, to the use of software methods, such as deconvolution and lucky imaging. For each approach the pros and cons are given and it is indicated for which scenario this approach is useful. In more detail we describe the turbulence compensation methods TNO has developed in the last years and place them in the context of the different turbulence compensation approaches and TNO's turbulence compensation roadmap. Furthermore we look forward and indicate the upcoming challenges in the field of turbulence compensation.
El-Sharkawi, M.A.; Venkata, S.S.; Chen, M.; Andexler, G.; Huang, T.
1992-07-28
A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation. 26 figs.
El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.; Chen, Mingliang; Andexler, George; Huang, Tony
1992-01-01
A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation.
NASA Astrophysics Data System (ADS)
Maji, Partha Sona; Roy Chaudhuri, Partha
2016-04-01
The guiding properties of a new type of photonic crystal fibers where air-holes are arranged in a circular pattern (C-PCF) with a silica matrix have been investigated. The dispersion properties of the fiber with different spacing of circle and air-hole diameter have been studied in detail. It is shown that C-PCFs with smaller values of radius and higher air-filling fraction can be used as dispersion compensating fiber. A comparison between fibers with circular and triangular lattice has also been performed, taking into account the dispersion properties and the effective area in the wavelength range between 1200 nm and 1600 nm. C-PCF can better compensate the inline dispersion for both single wavelength and broadband wavelength applications which is a unique property not observed by regular triangular-lattice or square-lattice PCFs. The fiber provides higher effective area, making it a better candidate for high power accumulations in the core of the fiber. The fiber also shows red-shifting of the first zero dispersion wavelength (ZDW), flatter dispersion slope and lower Group Velocity Dispersion (GVD) in the normal dispersion region thereby making it a better candidate for high power nonlinear applications like super-continuum generation, soliton pulse propagation etc. With the above advantages, we have considered a series study of these circular-lattice structures for various geometrical parameters and temporal pulses in order to explore the characteristics of broadband supercontinuum generation. This design study for high power supercontinuum generation will be very helpful for potential application of new sources in various fields like astronomy, climatology, spectroscopy optical tomography and sensing etc. to name a few.