NASA Astrophysics Data System (ADS)
Bona, J. L.; Chen, M.; Saut, J.-C.
2004-05-01
In part I of this work (Bona J L, Chen M and Saut J-C 2002 Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media I: Derivation and the linear theory J. Nonlinear Sci. 12 283-318), a four-parameter family of Boussinesq systems was derived to describe the propagation of surface water waves. Similar systems are expected to arise in other physical settings where the dominant aspects of propagation are a balance between the nonlinear effects of convection and the linear effects of frequency dispersion. In addition to deriving these systems, we determined in part I exactly which of them are linearly well posed in various natural function classes. It was argued that linear well-posedness is a natural necessary requirement for the possible physical relevance of the model in question. In this paper, it is shown that the first-order correct models that are linearly well posed are in fact locally nonlinearly well posed. Moreover, in certain specific cases, global well-posedness is established for physically relevant initial data. In part I, higher-order correct models were also derived. A preliminary analysis of a promising subclass of these models shows them to be well posed.
NASA Astrophysics Data System (ADS)
Yakura, S. Joe
2001-06-01
The Perfectly Matched Layer (PML) method is used to absorb outgoing electromanetic waves in finite difference time domain (FDTD) numerical simulations to create the notion of infinity within the finite numerical simulation volume. Starting with unsplit-field uniaxial PML formulation, a FDTD/PML algorithm, that is accurate to second order in time, is obtained for the first time using the piecewise-linear approximation for linear and nonlinear dispersive media. Use of the FDTD/PML algorithm results in the proper long time limit behavior where the electric field value decrease exponentially to zero inside a PML medium long after an electromagnetic pulse is incident on the PML medium. The behavior is consistent with the other PML algorithm, such as Gedney's two-step approach in the case of the linear dispersive medium. Also, in the case of the nonlinear dispersive medium, FDTD/PML algorithm reduces to the usual nonlinear dispersive FDTD algorithm [1] in the absence of the PML interface. Ref. [1]: S. J. Yakura, J. MacGillivray and David Dietz, "Finite-Difference Time-Domain Calculations Based on Recursive Convolution Approach for Propagation of Electromagnetic Waves in Nonlinear Dispersive Media," Accepted for publication in the Applied Computational Electromagnetics Society (ACES) Journal in 2001.
NASA Astrophysics Data System (ADS)
Nikitenkova, S.; Singh, N.; Stepanyants, Y.
2015-12-01
In this paper, we revisit the problem of modulation stability of quasi-monochromatic wave-trains propagating in a media with the double dispersion occurring both at small and large wavenumbers. We start with the shallow-water equations derived by Shrira [Izv., Acad. Sci., USSR, Atmos. Ocean. Phys. (Engl. Transl.) 17, 55-59 (1981)] which describes both surface and internal long waves in a rotating fluid. The small-scale (Boussinesq-type) dispersion is assumed to be weak, whereas the large-scale (Coriolis-type) dispersion is considered as without any restriction. For unidirectional waves propagating in one direction, only the considered set of equations reduces to the Gardner-Ostrovsky equation which is applicable only within a finite range of wavenumbers. We derive the nonlinear Schrödinger equation (NLSE) which describes the evolution of narrow-band wave-trains and show that within a more general bi-directional equation the wave-trains, similar to that derived from the Ostrovsky equation, are also modulationally stable at relatively small wavenumbers k < kc and unstable at k > kc, where kc is some critical wavenumber. The NLSE derived here has a wider range of applicability: it is valid for arbitrarily small wavenumbers. We present the analysis of coefficients of the NLSE for different signs of coefficients of the governing equation and compare them with those derived from the Ostrovsky equation. The analysis shows that for weakly dispersive waves in the range of parameters where the Gardner-Ostrovsky equation is valid, the cubic nonlinearity does not contribute to the nonlinear coefficient of NLSE; therefore, the NLSE can be correctly derived from the Ostrovsky equation.
Nikitenkova, S; Singh, N; Stepanyants, Y
2015-12-01
In this paper, we revisit the problem of modulation stability of quasi-monochromatic wave-trains propagating in a media with the double dispersion occurring both at small and large wavenumbers. We start with the shallow-water equations derived by Shrira [Izv., Acad. Sci., USSR, Atmos. Ocean. Phys. (Engl. Transl.) 17, 55-59 (1981)] which describes both surface and internal long waves in a rotating fluid. The small-scale (Boussinesq-type) dispersion is assumed to be weak, whereas the large-scale (Coriolis-type) dispersion is considered as without any restriction. For unidirectional waves propagating in one direction, only the considered set of equations reduces to the Gardner-Ostrovsky equation which is applicable only within a finite range of wavenumbers. We derive the nonlinear Schrödinger equation (NLSE) which describes the evolution of narrow-band wave-trains and show that within a more general bi-directional equation the wave-trains, similar to that derived from the Ostrovsky equation, are also modulationally stable at relatively small wavenumbers k < kc and unstable at k > kc, where kc is some critical wavenumber. The NLSE derived here has a wider range of applicability: it is valid for arbitrarily small wavenumbers. We present the analysis of coefficients of the NLSE for different signs of coefficients of the governing equation and compare them with those derived from the Ostrovsky equation. The analysis shows that for weakly dispersive waves in the range of parameters where the Gardner-Ostrovsky equation is valid, the cubic nonlinearity does not contribute to the nonlinear coefficient of NLSE; therefore, the NLSE can be correctly derived from the Ostrovsky equation. PMID:26723152
Aseeva, N. V. Gromov, E. M.; Tyutin, V. V.
2015-12-15
The dynamics of high-frequency field solitons is considered using the extended nonhomogeneous nonlinear Schrödinger equation with induced scattering from damped low-frequency waves (pseudoinduced scattering). This scattering is a 3D analog of the stimulated Raman scattering from temporal spatially homogeneous damped low-frequency modes, which is well known in optics. Spatial inhomogeneities of secondorder linear dispersion and cubic nonlinearity are also taken into account. It is shown that the shift in the 3D spectrum of soliton wavenumbers toward the short-wavelength region is due to nonlinearity increasing in coordinate and to decreasing dispersion. Analytic results are confirmed by numerical calculations.
Tomography of dispersive media
Ernst; Herman
2000-07-01
When waves propagate through layered structures, the phase velocity is frequency dependent (dispersive). If one wants to reconstruct the velocity variations in this medium, conventional traveltime-based tomographic methods cannot be used, since each frequency component has a different traveltime. A tomographic method is presented for reconstructing the phase velocity of guided waves in laterally varying media. The dispersive character of guided waves is explicitly accounted for by using a phase-based error criterium instead of "picked" traveltimes. Phase velocity and source waveform can be reconstructed to within a few percent, and the algorithm is shown to be robust in the presence of interference noise. When applied to seismic field data, the reconstructed phase velocity field correlates well with the topography of the area. PMID:10923876
NASA Astrophysics Data System (ADS)
Milgrom, Mordehai
2002-02-01
I investigate the properties of forces on bodies in theories governed by the generalized Poisson equation μ(|ϕ| /a0)ϕ] ∝ Gρ, for the potential ϕ produced by a distribution of sources ρ. This equation describes, inter alia, media with a response coefficient, μ, that depends on the field strength, such as in nonlinear, dielectric or diamagnetic, media; nonlinear transport problems with field-strength-dependent conductivity or diffusion coefficient; nonlinear electrostatics, as in the Born-Infeld theory; certain stationary potential flows in compressible fluids, in which case the forces act on sources or obstacles in the flow. The expressions for the force on a point charge are derived exactly for the limits of very low and very high charge. The force on an arbitrary body in an external field of asymptotically constant gradient, -g0, is shown to be F = Qg0, where Q is the total effective charge of the body. The corollary Q = 0 → F = 0 is a generalization of d'Alembert's paradox. I show that for G > 0 (as in Newtonian gravity) two point charges of the same (opposite) sign still attract (repel). The opposite is true for G < 0. I discuss its generalization to extended bodies and derive virial relations.
Spatiotemporal coupling in dispersive nonlinear planar waveguides
NASA Astrophysics Data System (ADS)
Ryan, Andrew T.; Agrawal, Govind P.
1995-12-01
The multidimensional nonlinear Schrodinger equation governs the spatial and temporal evolution of an optical field inside a nonlinear dispersive medium. Although spatial (diffractive) and temporal (dispersive) effects can be studied independently in a linear medium, they become mutually coupled in a nonlinear medium. We present the results of numerical simulations showing this spatiotemporal coupling for ultrashort pulses propagating in dispersive Kerr media. We investigate how spatiotemporal coupling affects the behavior of the optical field in each of the four regimes defined by the type of group-velocity dispersion (normal or anomalous) and the type of nonlinearity (focusing or defocusing). We show that dispersion, through spatiotemporal coupling, can either enhance or suppress self-focusing and self-defocusing. Similarly, we demonstrate that diffraction can either enhance or suppress pulse compression or broadening. We also discuss how these effects can be controlled with optical phase modulation, such as that provided by a lens (spatial phase modulation) or frequency chirping (temporal phase modulation). Copyright (c) 1995 Optical Society of America
ACOUSTIC RECTIFICATION IN DISPERSIVE MEDIA
Cantrell, John H.
2009-03-03
It is shown that the shapes of acoustic radiation-induced static strain and displacement pulses (rectified acoustic pulses) are defined locally by the energy density of the generating waveform. Dispersive properties are introduced analytically by assuming that the rectified pulses are functionally dependent on a phase factor that includes both dispersive and nonlinear terms. The dispersion causes an evolutionary change in the shape of the energy density profile that leads to the generation of solitons experimentally observed in fused silica.
Acoustic Rectification in Dispersive Media
NASA Technical Reports Server (NTRS)
Cantrell, John H.
2008-01-01
It is shown that the shapes of acoustic radiation-induced static strain and displacement pulses (rectified acoustic pulses) are defined locally by the energy density of the generating waveform. Dispersive properties are introduced analytically by assuming that the rectified pulses are functionally dependent on a phase factor that includes both dispersive and nonlinear terms. The dispersion causes an evolutionary change in the shape of the energy density profile that leads to the generation of solitons experimentally observed in fused silica.
Kalocsai, A.G.
1992-12-31
An asymptotic analysis is presented for two distinct and independent problems: (I) Wave propagation in dispersive optical media with quadratic nonlinearity (II) Hypersonic flows with three dimensional self-similarity. In the optics problem, we at first study single and multiple input propagating waves at frequencies away from dielectric resonances. Here we compare the Slowly Varying Envelope Approximation to the Method of Multiple Scales and show that the Method of Multiple Scales is a superior technique that can be applied self consistently to any perturbation order which in turn predicts new physical effects. For the single slowly modulated input wave problem, under appropriate conditions, we shown that at the O({epsilon}{sup 2}) perturbation, we obtain the cubic nonlinear Schrodinger equation. This means that for the single input wave propagating in a quadratic nonlinear medium, self-modulation effects and soliton behavior may be observed depending on the boundary conditions. For the single input wave near a classical dielectric resonance, we find that the wave number becomes amplitude dependent. The method of multiple scales is replaced by Whitham`s averaged Lagrangian. We derive the associated modulated envelope equations. We investigate an effective medium regime and the full nonlinear problem. The hypersonic flow problem requires the use of asymptotic matching that arises from the geometry from the problem. Here the pressure field and lift to drag C{sup 3/2}{sub L}/C{sub D} is evaluated for a wide delta wing with small power law curvature. Use is made of Hypersonic Small Disturbance Theory and three dimensional power law similarity. It is shown that an improvement for C{sup 3/2}{sub L}/C{sub D} occurs for wings with power law curvatures greater than one, when compared to flat delta wings. This improvement in performance agrees qualitatively with other types of concave wings.
NASA Technical Reports Server (NTRS)
Goorjian, Peter M.; Taflove, Allen
1992-01-01
The initial results for femtosecond electromagnetic soliton propagation and collision obtained from first principles, i.e., by a direct time integration of Maxwell's equations are reported. The time integration efficiently implements linear and nonlinear convolutions for the electric polarization and can take into account such quantum effects as Kerr and Raman interactions. The present approach is robust and should permit the modeling of 2D and 3D optical soliton propagation, scattering, and switching from the full-vector Maxwell's equations.
NASA Astrophysics Data System (ADS)
Avesani, Diego; Herrera, Paulo; Chiogna, Gabriele; Bellin, Alberto; Dumbser, Michael
2015-06-01
Most numerical schemes applied to solve the advection-diffusion equation are affected by numerical diffusion. Moreover, unphysical results, such as oscillations and negative concentrations, may emerge when an anisotropic dispersion tensor is used, which induces even more severe errors in the solution of multispecies reactive transport. To cope with this long standing problem we propose a modified version of the standard Smoothed Particle Hydrodynamics (SPH) method based on a Moving-Least-Squares-Weighted-Essentially-Non-Oscillatory (MLS-WENO) reconstruction of concentrations. This scheme formulation (called MWSPH) approximates the diffusive fluxes with a Rusanov-type Riemann solver based on high order WENO scheme. We compare the standard SPH with the MWSPH for different a few test cases, considering both homogeneous and heterogeneous flow fields and different anisotropic ratios of the dispersion tensor. We show that, MWSPH is stable and accurate and that it reduces the occurrence of negative concentrations compared to standard SPH. When negative concentrations are observed, their absolute values are several orders of magnitude smaller compared to standard SPH. In addition, MWSPH limits spurious oscillations in the numerical solution more effectively than classical SPH. Convergence analysis shows that MWSPH is computationally more demanding than SPH, but with the payoff a more accurate solution, which in addition is less sensitive to particles position. The latter property simplifies the time consuming and often user dependent procedure to define the initial dislocation of the particles.
NASA Astrophysics Data System (ADS)
Bona, G.; Chen, J. A.; Saut, Jing Ping
2002-08-01
Considered herein are a number of variants of the classical Boussinesq system and their higher-order generalizations. Such equations were first derived by Boussinesq to describe the two-way propagation of small-amplitude, long wavelength, gravity waves on the surface of water in a canal. These systems arise also when modeling the propagation of long-crested waves on large lakes or the ocean and in other contexts. Depending on the modeling of dispersion, the resulting system may or may not have a linearization about the rest state which is well posed. Even when well posed, the linearized system may exhibit a lack of conservation of energy that is at odds with its status as an approximation to the Euler equations. In the present script, we derive a four-parameter family of Boussinesq systems from the two-dimensional Euler equations for free-surface flow and formulate criteria to help decide which of these equations one might choose in a given modeling situation. The analysis of the systems according to these criteria is initiated.
Diffractive wave transmission in dispersive media
NASA Astrophysics Data System (ADS)
Lescarret, Vincent
The aim of this paper is to study the reflection-transmission of diffractive geometrical optic rays described by semi-linear symmetric hyperbolic systems such as the Maxwell-Lorentz equations with the anharmonic model of polarization. The framework is that of P. Donnat's thesis [P. Donnat, Quelques contributions mathématiques en optique non linéaire, chapters 1 and 2, thèse, 1996] and V. Lescarret [V. Lescarret, Wave transmission in dispersive media, M3AS 17 (4) (2007) 485-535]: we consider an infinite WKB expansion of the wave over long times/distances O(1/ɛ) and because of the boundary, we decompose each profile into a hyperbolic (purely oscillating) part and elliptic (evanescent) part as in M. William [M. William, Boundary layers and glancing blow-up in nonlinear geometric optics, Ann. Sci. École Norm. Sup. 33 (2000) 132-209]. Then to get the usual sublinear growth on the hyperbolic part of the profiles, for every corrector, we consider E, the space of bounded functions decomposing into a sum of pure transports and a "quasi compactly" supported part. We make a detailed analysis on the nonlinear interactions on E which leads us to make a restriction on the set of resonant phases. We finally give a convergence result which justifies the use of "quasi compactly" supported profiles.
Perturbation approach to dispersion curves calculation for nonlinear Lamb waves
NASA Astrophysics Data System (ADS)
Packo, Pawel; Staszewski, Wieslaw J.; Uhl, Tadeusz; Leamy, Michael J.
2015-05-01
Analysis of elastic wave propagation in nonlinear media has gained recent research attention due to the recognition of their amplitude-dependent behavior. This creates opportunities for increased accuracy of damage detection and localization, development of new structural monitoring strategies, and design of new structures with desirable acoustic behavior (e.g., amplitude-dependent frequency bandgaps, wave beaming, and filtering). This differs from more traditional nonlinear analysis approaches which target the prediction of higher harmonic growth. Of particular interest in this work is the analysis of amplitude-dependent shifts in Lamb wave dispersion curves. Typically, dispersion curves are calculated for nominally linear material parameters and geometrical features of a waveguide, even when the constitutive law is nonlinear. Instead, this work employs a Lindstedt - Poincare perturbation approach to calculate amplitude-dependent dispersion curves, and shifts thereof, for nonlinearly-elastic plates. As a result, a set of first order corrections to frequency (or equivalently wavenumber) are calculated. These corrections yield significant amplitude dependence in the spectral characteristics of the calculated waves, especially for high frequency waves, which differs fundamentally from linear analyses. Numerical simulations confirm the analytical shifts predicted. Recognition of this amplitude-dependence in Lamb wave dispersion may suggest, among other things, that the analysis of guided wave propagation phenomena within a fully nonlinear framework needs to revisit mode-mode energy flux and higher harmonics generation conditions.
Acoustic nonlinearity in dispersive solids
NASA Technical Reports Server (NTRS)
Cantrell, John H.; Yost, William T.
1991-01-01
An investigation to consider the effects of dispersion on the generation of the static acoustic wave component is presented. It is considered that an acoustic toneburst may be modeled as a modulated continuous waveform and that the generated initial static displacement pulse may be viewed as a modulation-confined disturbance. A theoretical model for the generation of the acoustic modulation solitons evolved is developed and experimental evidence in samples of vitreous silica demonstrating the essential validity of the model is provided.
Nonlinear rheology of colloidal dispersions.
Brader, J M
2010-09-15
Colloidal dispersions are commonly encountered in everyday life and represent an important class of complex fluid. Of particular significance for many commercial products and industrial processes is the ability to control and manipulate the macroscopic flow response of a dispersion by tuning the microscopic interactions between the constituents. An important step towards attaining this goal is the development of robust theoretical methods for predicting from first-principles the rheology and nonequilibrium microstructure of well defined model systems subject to external flow. In this review we give an overview of some promising theoretical approaches and the phenomena they seek to describe, focusing, for simplicity, on systems for which the colloidal particles interact via strongly repulsive, spherically symmetric interactions. In presenting the various theories, we will consider first low volume fraction systems, for which a number of exact results may be derived, before moving on to consider the intermediate and high volume fraction states which present both the most interesting physics and the most demanding technical challenges. In the high volume fraction regime particular emphasis will be given to the rheology of dynamically arrested states. PMID:21386516
Electromagnetic energy momentum in dispersive media
Philbin, T. G.
2011-01-15
The standard derivations of electromagnetic energy and momentum in media take Maxwell's equations as the starting point. It is well known that for dispersive media this approach does not directly yield exact expressions for the energy and momentum densities. Although Maxwell's equations fully describe electromagnetic fields, the general approach to conserved quantities in field theory is not based on the field equations, but rather on the action. Here an action principle for macroscopic electromagnetism in dispersive, lossless media is used to derive the exact conserved energy-momentum tensor. The time-averaged energy density reduces to Brillouin's simple formula when the fields are monochromatic. The time-averaged momentum density for monochromatic fields corresponds to the familiar Minkowski expression DxB, but for general fields in dispersive media the momentum density does not have the Minkowski value. The results are unaffected by the debate over momentum balance in light-matter interactions.
Effective higher-order nonlinear coefficients of composites with weakly nonlinear media
NASA Astrophysics Data System (ADS)
Natenapit, Mayuree; Thongboonrithi, Chaivej
2010-05-01
The field equations, based on the third-order perturbation expansion of electrostatic potential, are derived, and our general formulae for higher-order effective nonlinear coefficients based on the energy definition, are presented and applied to dielectric composites consisting of dilute linear cylindrical inclusions randomly dispersed in a weakly nonlinear host media. The effective nonlinear coefficients are determined up to the ninth order. In addition, the results are also compared to those obtained using the average field method and likely to provide more accurate predictions of effective higher-order nonlinear responses.
Hawking Radiation in Dispersive Media
NASA Astrophysics Data System (ADS)
Robertson, Scott James
2011-06-01
Hawking radiation, despite its presence in theoretical physics for over thirty years, remains elusive and undetected. It also suffers, in its original context of gravitational black holes, from conceptual difficulties. Of particular note is the trans-Planckian problem, which is concerned with the apparent origin of the radiation in absurdly high frequencies. In order to gain better theoretical understanding and, it is hoped, experimental verification of Hawking radiation, much study is being devoted to systems which model the spacetime geometry of black holes, and which, by analogy, are also thought to emit Hawking radiation. These analogue systems typically exhibit dispersion, which regularizes the wave behaviour at the horizon but does not lend itself well to analytic treatment, thus rendering Hawking's prediction less secure. A general analytic method for dealing with Hawking radiation in dispersive systems has proved difficult to find. This thesis presents new numerical and analytic results for Hawking emission spectra in dispersive systems. It examines two black-hole analogue systems: it begins by introducing the well-known acoustic model, presenting some original results in that context; then, through analogy with the acoustic model, goes on to develop the lesser-known fibre-optical model.
Dispersivity in heterogeneous permeable media
Chesnut, D.A.
1994-01-01
When one fluid displaces another through a one-dimensional porous medium, the composition changes from pure displacing fluid at the inlet to pure displaced fluid some distance downstream. The distance over which an arbitrary percentage of this change occurs is defined as the mixing zone length, which increases with increasing average distance traveled by the displacement front. For continuous injection, the mixing zone size can be determined from a breakthrough curve as the time required for the effluent displacing fluid concentration to change from, say, 10% to 90%. In classical dispersion theory, the mixing zone grows in proportion to the square root of the mean distance traveled, or, equivalently, to the square root of the mean breakthrough time. In a multi-dimensional heterogeneous medium, especially at field scales, the size of the mixing zone grows almost linearly with mean distance or travel time. If an observed breakthrough curve is forced to fit the, clinical theory, the resulting effective dispersivity, instead of being constant, also increases almost linearly with the spatial or temporal scale of the problem. This occurs because the heterogeneity in flow properties creates a corresponding velocity distribution along the different flow pathways from the inlet to the outlet of the system. Mixing occurs mostly at the outlet, or wherever the fluid is sampled, rather than within the medium. In this paper, we consider the effects. of this behavior on radionuclide or other contaminant migration.
Dispersion of nonlinearity and modulation instability in subwavelength semiconductor waveguides.
Gorbach, A V; Zhao, X; Skryabin, D V
2011-05-01
Tight confinement of light in subwavelength waveguides induces substantial dispersion of their nonlinear response. We demonstrate that this dispersion of nonlinearity can lead to the modulational instability in the regime of normal group velocity dispersion through the mechanism independent from higher order dispersions of linear waves. A simple phenomenological model describing this effect is the nonlinear Schrödinger equation with the intensity dependent group velocity dispersion. PMID:21643190
Nonlinear Biot waves in granular media
NASA Astrophysics Data System (ADS)
Dazel, Olivier; Tournat, V.
2010-01-01
The nonlinear propagation through unconsolidated model granular media is investigated in the frame of the Biot-Allard theory extended to the case of a nonlinear quadratic behavior of the solid frame (the elastic beads and their contacts). We evaluate the importance of mode coupling between solid and fluid waves, depending on the actual fluid and the bead diameter. The application of these results to other media supporting Biot's waves (trabecular bones, porous ceramics, polymer foams...) is straightforward, provided the parameters of the Biot-Allard model are available for these media.
Relativistic radiation transport in dispersive media
Kichenassamy, S.; Krikorian, R.A.
1985-10-15
A general-relativistic radiative transfer equation in an isotropic, weakly absorbing, nonmagnetized dispersive medium is derived using the kinetic-theoretical approach and the relativistic Hamiltonian theory of geometrical optics in those media. It yields the generally accepted classical equation in the special-relativistic approximation and in stationary conditions. The influence of the gravitational field and of space-time variations of the refractive index n on the radiation distribution is made explicit in the case of spherical symmetry.
Viscous Fluid Conduits as a Prototypical Nonlinear Dispersive Wave Platform
NASA Astrophysics Data System (ADS)
Lowman, Nicholas K.
This thesis is devoted to the comprehensive characterization of slowly modulated, nonlinear waves in dispersive media for physically-relevant systems using a threefold approach: analytical, long-time asymptotics, careful numerical simulations, and quantitative laboratory experiments. In particular, we use this interdisciplinary approach to establish a two-fluid, interfacial fluid flow setting known as viscous fluid conduits as an ideal platform for the experimental study of truly one dimensional, unidirectional solitary waves and dispersively regularized shock waves (DSWs). Starting from the full set of fluid equations for mass and linear momentum conservation, we use a multiple-scales, perturbation approach to derive a scalar, nonlinear, dispersive wave equation for the leading order interfacial dynamics of the system. Using a generalized form of the approximate model equation, we use numerical simulations and an analytical, nonlinear wave averaging technique, Whitham-El modulation theory, to derive the key physical features of interacting large amplitude solitary waves and DSWs. We then present the results of quantitative, experimental investigations into large amplitude solitary wave interactions and DSWs. Overtaking interactions of large amplitude solitary waves are shown to exhibit nearly elastic collisions and universal interaction geometries according to the Lax categories for KdV solitons, and to be in excellent agreement with the dynamics described by the approximate asymptotic model. The dispersive shock wave experiments presented here represent the most extensive comparison to date between theory and data of the key wavetrain parameters predicted by modulation theory. We observe strong agreement. Based on the work in this thesis, viscous fluid conduits provide a well-understood, controlled, table-top environment in which to study universal properties of dispersive hydrodynamics. Motivated by the study of wave propagation in the conduit system, we
Ultrashort Pulse Propagation in Nonlinear Dispersive Fibers
NASA Astrophysics Data System (ADS)
Agrawal, Govind P.
Ultrashort optical pulses are often propagated through optical waveguides for a variety of applications including telecommunications and supercontinuum generation [1]. Typically the waveguide is in the form of an optical fiber but it can also be a planar waveguide. The material used to make the waveguide is often silica glass, but other materials such as silicon or chalcogenides have also been used in recent years. What is common to all such materials is they exhibit chromatic dispersion as well as the Kerr nonlinearity. The former makes the refractive index frequency dependent, whereas the latter makes it to depend on the intensity of light propagating through the medium [2]. Both of these effects become more important as optical pulses become shorter and more intense. For pulses not too short (pulse widths > 1 ns) and not too intense (peak powers < 10 mW), the waveguide plays a passive role (except for small optical losses) and acts as a transporter of optical pulses from one place to another, without significantly affecting their shape or spectrum. However, as pulses become shorter and more intense, both the dispersion and the Kerr nonlinearity start to affect the shape and spectrum of an optical pulse during its propagation inside the waveguide. This chapter focuses on silica fibers but similar results are expected for other waveguides made of different materials
Interface solitons in thermal nonlinear media
Ma Xuekai; Yang Zhenjun; Lu Daquan; Hu Wei
2011-05-15
We demonstrate the existence of fundamental and dipole interface solitons in one-dimensional thermal nonlinear media with a step in linear refractive index. Fundamental interface solitons are found to be always stable and the stability of dipole interface solitons depends on the difference in linear refractive index. The mass center of interface solitons always locates in the side with higher refractive index. The two intensity peaks of dipole interface solitons are unequal except under some specific conditions, which is different from their counterparts in uniform thermal nonlinear media.
Nonlinear flow in porous media
NASA Astrophysics Data System (ADS)
Rojas, Sergio Jesus
1998-07-01
Numerical solutions of the Navier-Stokes equations in two-dimensional quasi-periodic and quasi-isotropic random media were obtained to analyze the local and large scale aspects of finite Reynolds number flow. For Reynolds number less than one, the results show a first correction to Darcy's law which is cubic in the Darcy (averaged) velocity, while for Reynolds number greater than one, the results are in agreement with Forchheimer equation. That is, the correction to Darcy's law is quadratic in the average (Darcy) velocity. The cubic correction to Darcy's law support Mei and Auriault's (1991) theoretical study, based on homogenization theory. In addition, the results show support to a unifying empirical equation describing fluid flow in porous media of similar structure, first proposed by Beavers and Sparrow (1969). Also, the results show agreement, except by a multiplicative constant, with Sangani and Acrivos (1982) equation for the drag on dilute array of cylinders.
Spiraling multivortex solitons in nonlocal nonlinear media.
Buccoliero, Daniel; Desyatnikov, Anton S; Krolikowski, Wieslaw; Kivshar, Yuri S
2008-01-15
We demonstrate the existence of a broad class of higher-order rotating spatial solitons in nonlocal nonlinear media. We employ the generalized Hermite-Laguerre-Gaussian ansatz for constructing multivortex soliton solutions and study numerically their dynamics and stability. We discuss in detail the tripole soliton carrying two spiraling phase dislocations, or self-trapped optical vortices. PMID:18197238
Nonlinear acoustics of micro-inhomogeneous media
NASA Astrophysics Data System (ADS)
Nazarov, Veniamin E.; Ostrovsky, Lev A.; Soustova, Irina A.; Sutin, Aleksandr M.
1988-01-01
Acoustic waves can interact in micro-inhomogeneous media much more intensively than in homogeneous media. This has been repeatedly observed in experiments with ground species, marine sediments, porous materials and metals. This paper considers two models of such media which seem to be applicable to the description of these results. One of them is based on the consideration of nonlinear sound scattering by separate spherical cavities in liquids and solids. The second model is based on the phenomenological stress-deformation relation in solids with microplasticity which often has hysteresis (heritage) properties associated with the micro-inhomogeneities. In metals, for example, it is caused by the movement of dislocations. Different nonlinear effects in such media (harmonic and combination frequency generation, nonlinear, variations of resonance frequency amplitude-dependent losses) are considered. Some results of experiments with metallic resonators supporting the theory developed here are also presented. These mechanisms may determine the nonlinear properties of real soils and rocks summarized in a table given in the paper.
Electric field in media with power-law spatial dispersion
NASA Astrophysics Data System (ADS)
Tarasov, Vasily E.
2016-04-01
In this paper, we consider electric fields in media with power-law spatial dispersion (PLSD). Spatial dispersion means that the absolute permittivity of the media depends on the wave vector. Power-law type of this dispersion is described by derivatives and integrals of non-integer orders. We consider electric fields of point charge and dipole in media with PLSD, infinite charged wire, uniformly charged disk, capacitance of spherical capacitor and multipole expansion for PLSD-media.
Computational studies of nonlinear dispersive plasma systems
NASA Astrophysics Data System (ADS)
Qian, Xin
Plasma systems with dispersive waves are ubiquitous. Dispersive waves have the property that their wave velocity depends on the wave number of the wave. These waves show up in weakly as well as strongly coupled plasmas, and play a significant role in the underlying plasma dynamics. Dispersive waves bring new challenges to the computer simulation of nonlinear phenomena. The goal of this thesis is to discuss two computational studies of plasma phenomena, one drawn from strongly coupled complex or dusty plasmas, and the other from weakly coupled hydrogen plasmas. In the realm of dusty plasmas, we focus on the problem of three-dimensional (3D) Mach cones which we study by means of Molecular Dynamics (MD) simulations, assuming that the dust particles interact via a Yukawa potential. While laboratory and MD simulations have explored thoroughly the properties of Mach cones in 2D, elucidating the important role of dispersive waves in the formation of multiple cones, the simulations presented in this thesis represent the first 3D MD studies of Mach cones in strongly coupled dusty plasmas. These results have qualitative similarities with experimental observations on 3D Mach cones from the PK-3 plus project, which studies complex plasmas under microgravity conditions aboard the International Space station. In the realm of weakly coupled plasmas, we present results on the application of non-oscillatory central schemes to Hall MHD reconnection problems, in which the presence of dispersive whistler waves presents a formidable challenge for numerical algorithms that rely on explicit time-stepping schemes. In particular, we focus on the semi-discrete central formulation of Kurganov and Tadmor (2000), which has the advantage that it allow for larger time steps, and with significantly smaller numerical viscosity, than fully discrete schemes. We implement the Hall MHD equations through the CentPACK software package that implements the Kurganov-Tadmor formulation for a wide range of
Amplitude-dependent Lamb wave dispersion in nonlinear plates.
Packo, Pawel; Uhl, Tadeusz; Staszewski, Wieslaw J; Leamy, Michael J
2016-08-01
The paper presents a perturbation approach for calculating amplitude-dependent Lamb wave dispersion in nonlinear plates. Nonlinear dispersion relationships are derived in closed form using a hyperelastic stress-strain constitutive relationship, the Green-Lagrange strain measure, and the partial wave technique integrated with a Lindstedt-Poincaré perturbation approach. Solvability conditions are derived using an operator formalism with inner product projections applied against solutions to the adjoint problem. When applied to the first- and second-order problems, these solvability conditions lead to amplitude-dependent, nonlinear dispersion corrections for frequency as a function of wavenumber. Numerical simulations verify the predicted dispersion shifts for an example nonlinear plate. The analysis and identification of amplitude-dependent, nonlinear Lamb wave dispersion complements recent research focusing on higher harmonic generation and internally resonant waves, which require precise dispersion relationships for frequency-wavenumber matching. PMID:27586758
Lajunen, Hanna; Torres-Company, Víctor; Lancis, Jesús; Silvestre, Enrique; Andrès, Pedro
2010-07-01
We propose a numerical method for analyzing extensively the evolution of the coherence functions of nonstationary optical pulses in dispersive, instantaneous nonlinear Kerr media. Our approach deals with the individual propagation of samples from a properly selected ensemble that reproduces the coherence properties of the input pulsed light. In contrast to the usual strategy assuming Gaussian statistics, our numerical algorithm allows us to model the propagation of arbitrary partially coherent pulses in media with strong and instantaneous nonlinearities. PMID:20639984
Dispersion and nonlinear effects in OFDM-RoF system
NASA Astrophysics Data System (ADS)
Alhasson, Bader H.; Bloul, Albe M.; Matin, M.
2010-08-01
The radio-over-fiber (RoF) network has been a proven technology to be the best candidate for the wireless-access technology, and the orthogonal frequency division multiplexing (OFDM) technique has been established as the core technology in the physical layer of next generation wireless communication system, as a result OFDM-RoF has drawn attentions worldwide and raised many new research topics recently. At the present time, the trend of information industry is towards mobile, wireless, digital and broadband. The next generation network (NGN) has motivated researchers to study higher-speed wider-band multimedia communication to transmit (voice, data, and all sorts of media such as video) at a higher speed. The NGN would offer services that would necessitate broadband networks with bandwidth higher than 2Mbit/s per radio channel. Many new services emerged, such as Internet Protocol TV (IPTV), High Definition TV (HDTV), mobile multimedia and video stream media. Both speed and capacity have been the key objectives in transmission. In the meantime, the demand for transmission bandwidth increased at a very quick pace. The coming of 4G and 5G era will provide faster data transmission and higher bit rate and bandwidth. Taking advantages of both optical communication and wireless communication, OFDM Radio over Fiber (OFDM-RoF) system is characterized by its high speed, large capacity and high spectral efficiency. However, up to the present there are some problems to be solved, such as dispersion and nonlinearity effects. In this paper we will study the dispersion and nonlinearity effects and their elimination in OFDM-radio-over-fiber system.
Dispersion of solutes in porous media
NASA Astrophysics Data System (ADS)
Hunt, A. G.; Skinner, T. E.; Ewing, R. P.; Ghanbarian-Alavijeh, B.
2011-04-01
A recently introduced theory of solute transport in porous media is tested by comparison with experiment. The solute transport is predicted using an adaptation of the cluster statistics of percolation theory to critical path analysis together with knowledge of how the structure of such percolation clusters affects the time of transport across them. Only the effects of a single scale of medium heterogeneity are incorporated, and a minimal amount of information regarding the structure of the medium is required. This framework is used to find effectively the distributions of solute velocities and travel distances and thus generate arrival time distributions. The comparison with experiment focuses on the dispersivity (the ratio of the second to the first moment of the spatial solute distribution). The predictions of the theory in the absence of diffusion are verified by comparing with over 2200 experiments over length scales from a few microns to 100 km. At larger length scales (centimeters on up) about 95% of the data lie within our predicted bounds. At smaller length scales approximately 99.8% of the data lie where we predict. These comparisons are not trivial as the typical values of the dispersivity increase by ten orders of magnitude over ten orders of magnitude of length scale. Noteworthy is that the classical advection-dispersion (ADE) equation predicts that the dispersivity should be independent of length scale! This agreement with experiment requires rethinking of the relevance of diffusion and multi-scale heterogeneity and would also appear to signal the complete inappropriateness of using the classical ADE or any of its derivatives to model solute transport.
Absorbing Boundary Conditions For Optical Pulses In Dispersive, Nonlinear Materials
NASA Technical Reports Server (NTRS)
Goorjian, Peter M.; Kwak, Dochan (Technical Monitor)
1995-01-01
This paper will present results in computational nonlinear optics. An algorithm will be described that provides absorbing boundary conditions for optical pulses in dispersive, nonlinear materials. A new numerical absorber at the boundaries has been developed that is responsive to the spectral content of the pulse. Also, results will be shown of calculations of 2-D electromagnetic nonlinear waves computed by directly integrating in time the nonlinear vector Maxwell's equations. The results will include simulations of "light bullet" like pulses. Here diffraction and dispersion will be counteracted by nonlinear effects. Comparisons will be shown of calculations that use the standard boundary conditions and the new ones.
Dispersion of Sound in Dilute Suspensions with Nonlinear Particle Relaxation
NASA Technical Reports Server (NTRS)
Kandula, Max
2010-01-01
The theory accounting for nonlinear particle relaxation (viscous and thermal) has been applied to the prediction of dispersion of sound in dilute suspensions. The results suggest that significant deviations exist for sound dispersion between the linear and nonlinear theories at large values of Omega(Tau)(sub d), where Omega is the circular frequency, and Tau(sub d) is the Stokesian particle relaxation time. It is revealed that the nonlinear effect on the dispersion coefficient due to viscous contribution is larger relative to that of thermal conduction
Discrete spectral incoherent solitons in nonlinear media with noninstantaneous response
Michel, Claire; Kibler, Bertrand; Picozzi, Antonio
2011-02-15
We show theoretically that nonlinear optical media characterized by a finite response time may support the existence of discrete spectral incoherent solitons. The structure of the soliton consists of three incoherent spectral bands that propagate in frequency space toward the low-frequency components in a discrete fashion and with a constant velocity. Discrete spectral incoherent solitons do not exhibit a confinement in the space-time domain, but exclusively in the frequency domain. The kinetic theory describes in detail all the essential properties of discrete spectral incoherent solitons: A quantitative agreement has been obtained between simulations of the kinetic equation and the nonlinear Schroedinger equation. Discrete spectral incoherent solitons may be supported in both the normal dispersion regime or the anomalous dispersion regime. These incoherent structures find their origin in the causality condition inherent to the nonlinear response function of the material. Considering the concrete example of the Raman effect, we show that discrete incoherent solitons may be spontaneously generated through the process of supercontinuum generation in photonic crystal fibers.
Soliton dispersion management in nonlinear optical fibers
NASA Astrophysics Data System (ADS)
Ganapathy, R.
2012-12-01
We consider the concept of quasisoliton propagation in a dispersion management fiber and study the soliton dynamics for soliton dispersion management case, soliton energy control case and guiding center soliton case. We also study the interaction scenario in detail for all the cases.
Chromatic dispersions in highly nonlinear glass nanofibers
NASA Astrophysics Data System (ADS)
Chaudhari, Chitrarekha; Suzuki, Takenobu; Ohishi, Yasutake
2008-08-01
We design air cladding tellurite (TeO2), bismuth oxide (Bi2O3) based, and chalcogenide (As2S3) nanofibers, and calculate the chromatic dispersions. For each material, wavelength dependent propagation constants of the nanofiber are obtained from the exact solutions of the Maxwell's equations, and from the propagation constants the chromatic dispersion is calculated. We tailor the dispersion to zero at the communication wavelength, 1.5 μm, by proper selection of the core diameter of the nanofiber for all the above materials. We further explain the technique for flattening the zero dispersion in telecommunication window, using glass instead of air, as the cladding of the nanofiber structure. Using the glass cladding has the advantage of easy handling, specially, for the communication purposes. Further, the glass cladding causes larger effective index difference between various modes of the nanofiber, thus reducing the mode coupling. We present the numerical results of the dispersion flattening technique by assuming the borosilicate glass cladding to the chalcogenide As2S3 glass core nanofiber. With the borosilicate cladding the dispersion characteristics of the nanofiber change drastically and flattening of the zero dispersion is achieved at 1.408 μm wavelength, when the core diameter is 724 nm.
A single expression for solute and heat dispersion in homogeneous porous media
NASA Astrophysics Data System (ADS)
van Milligen, Boudewijn Ph.; Bons, Paul D.
2014-05-01
A variety of expressions have been proposed for dispersion in homogeneous porous media. These expressions are either for heat (thermal) or solute dispersion, and often only valid for a limited range of flow rates, typically expressed in terms of the Péclet number. We present a single, universal expression for both the heat and solute dispersion coefficient (both transverse and longitudinal) in homogeneous porous media, valid over a wide range of Péclet numbers as long as flow is laminar. The expression covers the complex intermediate regime between diffusion and advection controlled dispersion, where dispersion increases non-linearly with flow velocity. Using numerical simulations of pore channel networks, we show that that the intermediate regime can be regarded as a phase transition between random, diffusive transport at low flow velocity and ordered transport controlled by the geometry of the pore space at high flow velocities. This phase transition explains the first-order behavior in the intermediate regime. A new quantifier, the ratio of the amount of solute in dominantly advective versus dominantly diffusive pore channels, plays the role of "order parameter" of this phase transition. Bons, P.D., van Milligen, B.P., Blum, P. 2013. A general unified expression for solute and heat dispersion in homegeneous porous media. Water Resources Research 49, 1-13. van Milligen, B.Ph., Bons, P.D. 2012. Analytical model for tracer dispersion in porous media. Physical Review E 85.
Measurement of the Acoustic Nonlinearity Parameter for Biological Media.
NASA Astrophysics Data System (ADS)
Cobb, Wesley Nelson
In vitro measurements of the acoustic nonlinearity parameter are presented for several biological media. With these measurements it is possible to predict the distortion of a finite amplitude wave in biological tissues of current diagnostic and research interest. The measurement method is based on the finite amplitude distortion of a sine wave that is emmitted by a piston source. The growth of the second harmonic component of this wave is measured by a piston receiver which is coaxial with and has the same size as the source. The experimental measurements and theory are compared in order to determine the nonlinearity parameter. The density, sound speed, and attenuation for the medium are determined in order to make this comparison. The theory developed for this study accounts for the influence of both diffraction and attenuation on the experimental measurements. The effects of dispersion, tissue inhomogeneity and gas bubbles within the excised tissues are studied. To test the measurement method, experimental results are compared with established values for the nonlinearity parameter of distilled water, ethylene glycol and glycerol. The agreement between these values suggests that the measurement uncertainty is (+OR-) 5% for liquids and (+OR-) 10% for solid tissues. Measurements are presented for dog blood and bovine serum albumen as a function of concentration. The nonlinearity parameters for liver, kidney and spleen are reported for both human and canine tissues. The values for the fresh tissues displayed little variation (6.8 to 7.8). Measurements for fixed, normal and cirrhotic tissues indicated that the nonlinearity parameter does not depend strongly on pathology. However, the values for fixed tissues were somewhat higher than those of the fresh tissues.
An integrable shallow water equation with linear and nonlinear dispersion.
Dullin, H R; Gottwald, G A; Holm, D D
2001-11-01
We use asymptotic analysis and a near-identity normal form transformation from water wave theory to derive a 1+1 unidirectional nonlinear wave equation that combines the linear dispersion of the Korteweg-deVries (KdV) equation with the nonlinear/nonlocal dispersion of the Camassa-Holm (CH) equation. This equation is one order more accurate in asymptotic approximation beyond KdV, yet it still preserves complete integrability via the inverse scattering transform method. Its traveling wave solutions contain both the KdV solitons and the CH peakons as limiting cases. PMID:11690414
Nonlinear, dispersive, elliptically polarized Alfven wavaes
NASA Technical Reports Server (NTRS)
Kennel, C. F.; Buti, B.; Hada, T.; Pellat, R.
1988-01-01
The derivative nonlinear Schroedinger (DNLS) equation is derived by an efficient means that employs Lagrangian variables. An expression for the stationary wave solutions of the DNLS that contains vanishing and nonvanishing and modulated and nonmodulated boundary conditions as subcases is then obtained. The solitary wave solutions for elliptically polarized quasiparallel Alfven waves in the magnetohydrodynamic limit (nonvanishing, unmodulated boundary conditions) are obtained. These converge to the Korteweg-de Vries and the modified Korteweg-de Vries solitons obtained previously for oblique propagation, but are more general. It is shown that there are no envelope solitary waves if the point at infinity is unstable to the modulational instability. The periodic solutions of the DNLS are characterized.
Adiabatic nonlinear waves with trapped particles. II. Wave dispersion
Dodin, I. Y.; Fisch, N. J.
2012-01-15
A general nonlinear dispersion relation is derived in a nondifferential form for an adiabatic sinusoidal Langmuir wave in collisionless plasma, allowing for an arbitrary distribution of trapped electrons. The linear dielectric function is generalized, and the nonlinear kinetic frequency shift {omega}{sub NL} is found analytically as a function of the wave amplitude a. Smooth distributions yield {omega}{sub NL}{proportional_to}{radical}(a), as usual. However, beam-like distributions of trapped electrons result in different power laws, or even a logarithmic nonlinearity, which are derived as asymptotic limits of the same dispersion relation. Such beams are formed whenever the phase velocity changes, because the trapped distribution is in autoresonance and thus evolves differently from the passing distribution. Hence, even adiabatic {omega}{sub NL}(a) is generally nonlocal.
Statistical theory for incoherent light propagation in nonlinear media.
Hall, B; Lisak, M; Anderson, D; Fedele, R; Semenov, V E
2002-03-01
A statistical approach based on the Wigner transform is proposed for the description of partially incoherent optical wave dynamics in nonlinear media. An evolution equation for the Wigner transform is derived from a nonlinear Schrödinger equation with arbitrary nonlinearity. It is shown that random phase fluctuations of an incoherent plane wave lead to a Landau-like damping effect, which can stabilize the modulational instability. In the limit of the geometrical optics approximation, incoherent, localized, and stationary wave fields are shown to exist for a wide class of nonlinear media. PMID:11909156
Microscopic models for electromagnetic wave propagation in highly dispersive media
NASA Astrophysics Data System (ADS)
Defacio, Brian
1990-06-01
The purpose of this project was to advance the understanding of the propagation of ultrafast picosecond electromagnetic pulses in biological solutions and ultimately, in human tissue. Present day standards of the allowed electromagnetic doses do not include dispersion, modulation or envelope effects, memory or nonlinearity. It is well-known experimentally that biological solutions are highly dispersive. It is plausible, but not established, that modulation, memory, and nonlinearity may be important in biological solutions. Hence, this project represents a first step toward better standards.
Gaussian beam diffraction in inhomogeneous and logarithmically saturable nonlinear media
NASA Astrophysics Data System (ADS)
Berczynski, Pawel
2012-08-01
The method of paraxial complex geometrical optics (PCGO) is presented, which describes Gaussian beam (GB) diffraction and self-focusing in smoothly inhomogeneous and nonlinear saturable media of cylindrical symmetry. PCGO reduces the problem of Gaussian beam diffraction in nonlinear and inhomogeneous media to the system of the first order ordinary differential equations for the complex curvature of the wave front and for GB amplitude, which can be readily solved both analytically and numerically. As a result, PCGO radically simplifies the description of Gaussian beam diffraction in inhomogeneous and nonlinear media as compared to the numerical and analytical methods of nonlinear optics. The power of PCGO method is presented on the example of Gaussian beam evolution in logarithmically saturable medium with either focusing and defocusing refractive profile. Besides, the influence of initial curvature of the wave front on GB evolution in nonlinear saturable medium is discussed in this paper.
Nonlinearity correction and dispersion analysis in FMCW laser radar
NASA Astrophysics Data System (ADS)
Zhao, Hao; Liu, Bingguo; Liu, Guodong; Chen, Fengdong; Zhuang, Zhitao; Yu, Yahui; Gan, Yu
2014-12-01
Frequency Modulated Continuous Wave laser radar is one of the most important ways to measure the large-size targets , combining the advantages of laser with conventional FMCW radar. Dispersion compensation and non-linear calibration are two key aspects in FMCW laser radar measurement. The paper studies the method of frequency-sampling to correct the Nonlinearity and analyzes the importance of dispersion compensation. We set up experimental verification platform, choose 1550nm band continuously tunable external cavity infrared laser as the light source, use all-fiber optical device structures, choose balanced detectors as photoelectric conversion, and finally acquire data with high speed PCI-E data acquisition card, write a measurement software with Labview. We measured the gage block 1 meter away. The experiment results show that the frequency sampling method correct the Nonlinearity well and there is a significant impact on the accuracy because of the fiber dispersion, dispersion must be compensated to obtain high accuracy. The experiment lays the foundation for further research on FMCW Laser radar.
Highly concentrated active nonlinear media based on oxides
Bakin, D.V.; Dorozhkin, L.M.; Krasilov, Yu.I.; Kuznetsov, N.T.; Potemkin, A.V.; Tadzhi-Aglaev, K.S.; Shestakov, A.V.
1987-07-01
Important characteristics of highly concentrated active nonlinear media were studied which were based on oxide compounds of phosphates, niobates, tantalates, and titanates of neodymium with alkaline earth metals. Compounds of the indicated classes were synthesized and their spectral luminescent and nonlinear optical properties were studied. Single crystals were grown from the selected compounds (5-8mm) and preliminary measurements of the laser and nonlinear optical parameters were taken. Formulas are given for materials that demonstrated high nonlinear and luminescent properties simultaneously. Spectroscopic and nonlinear optical properties of some oxygen compounds of rare earth elements are shown.
Modulational instability and solitons in nonlocal media with competing nonlinearities
Esbensen, B. K.; Bache, M.; Bang, O.; Wlotzka, A.; Krolikowski, W.
2011-11-15
We investigate analytically and numerically propagation and spatial localization of light in nonlocal media with competing nonlinearities. In particular, we discuss conditions for the modulational instability of plane waves and formation of spatial solitons. We show that the competing focusing and defocusing nonlinearities enable coexistence of dark or bright spatial solitons in the same medium by varying the intensity of the beam.
NASA Astrophysics Data System (ADS)
Ganapathy, R.; Kuriakose, V. C.
2002-04-01
We obtain conditions for the occurrence of cross-phase modulational instability in the normal dispersion regime for the coupled higher order nonlinear Schrödinger equation with higher order dispersion and nonlinear terms.
NASA Astrophysics Data System (ADS)
Ranjbar, Monireh; Bahari, Ali
2016-09-01
Four-wave mixing in propagation of cylindrical waves in a homogeneous nonlinear optical media has been investigated theoretically. An explicit analytical expression which contains all the main nonlinear optical effects, including third harmonic generation, sum and difference frequency generation has been obtained. A comparison between sum frequency efficiency for exact and approximation expression in a homogeneous nonlinear medium has been done. The effect of increasing the nonlinear optical coefficient (χeff(3)) and increasing the frequency difference between two adjacent waves (Δ ω) , on the efficiency of sum frequency generation in homogeneous media has been investigated.
Permeability of mono- and bi-dispersed porous media
NASA Astrophysics Data System (ADS)
Byon, C.; Kim, S. J.
2013-04-01
In this study, the permeability of mono- and bi-dispersed porous media is considered. The effects of the particle size distribution and the packing structure of particles on the permeability are investigated experimentally and analytically. Both experimental and analytic results suggest that the particlesize distribution is close to the log-normal distribution, and the permeability of the mono-dispersed porous media quasi-linearly decreases as the range of the particle size distribution increases. On the other hand, the effect of packing structure of particles on the permeability is shown to be negligible.The permeability of the bidispersed porous media quasi-linearly decreases as the range of cluster size increases, and nearly independent of the particle size distribution. The present model is valid over the range of parameters typically found in heat transfer applications.
Dispersion of solute in spatially-periodic chromatography media
NASA Astrophysics Data System (ADS)
Kirchner, J. J.; Griffiths, S. K.; Hasselbrink, E. F.; Kanouff, M. P.
2002-11-01
The purpose of this study is to investigate the effects of spatially periodic chromatography media on the dispersion of solute in microfluidic systems. Two numerical methods are used to model this process. The first is a a method for calculating dispersion in porous media developed by Brenner (1980) and based on an analysis of asymptotic long-time moments. The second is a direct numerical solution of convection and diffusion based on Monte Carlo methods. Validity of both methods was tested on the well-known case of two-dimensional pressure-driven (Poiseuille) flow (Aris (1956), Wooding (1960)). Modelled geometries include square, triangle, and semi-circle constrictions. Raw numerical results are reduced to obtain a correlation between the periodic geometries modelled and dispersivity coefficients. This presentation will include background for the research, a description of the methods used, and a summary of current results.
Necklace beam generation in nonlinear colloidal engineered media.
Silahli, Salih Z; Walasik, Wiktor; Litchinitser, Natalia M
2015-12-15
Modulational instability is a phenomenon that reveals itself as the exponential growth of weak perturbations in the presence of an intense pump beam propagating in a nonlinear medium. It plays a key role in such nonlinear optical processes as supercontinuum generation, light filamentation, rogue waves, and ring (or necklace) beam formation. To date, a majority of studies of these phenomena have focused on light-matter interactions in self-focusing Kerr media existing in nature. However, a large and tunable nonlinear response of a colloidal suspension can be tailored at will by judiciously engineering the optical polarizability. Here, we analytically and numerically show the possibility of necklace beam generation originating from spatial modulational instability of vortex beams in engineered soft-matter nonlinear media with different types of exponential nonlinearity. PMID:26670494
Electrokinetic induced solute dispersion in porous media; pore network modeling
NASA Astrophysics Data System (ADS)
Li, Shuai; Schotting, Ruud; Raoof, Amir
2013-04-01
Electrokinetic flow plays an important role in remediation process, separation technique, and chromatography. The solute dispersion is a key parameter to determine transport efficiency. In this study, we present the electrokinetic effects on solute dispersion in porous media at the pore scale, using a pore network model. The analytical solution of the electrokinetic coupling coefficient was obtained to quantity the fluid flow velocity in a cylinder capillary. The effect of electrical double layer on the electrokinetic coupling coefficient was investigated by applying different ionic concentration. By averaging the velocity over cross section within a single pore, the average flux was obtained. Applying such single pore relationships, in the thin electrical double layer limit, to each and every pore within the pore network, potential distribution and the induced fluid flow was calculated for the whole domain. The resulting pore velocities were used to simulate solute transport within the pore network. By averaging the results, we obtained the breakthrough curve (BTC) of the average concentration at the outlet of the pore network. Optimizing the solution of continuum scale advection-dispersion equation to such a BTC, solute dispersion coefficient was estimated. We have compared the dispersion caused by electrokinetic flow and pure pressure driven flow under different Peclet number values. In addition, the effect of microstructure and topological properties of porous media on fluid flow and solute dispersion is presented, mainly based on different pore coordination numbers.
Fidelity and fidelity susceptibility of pulses in dispersive media
Wang Ligang; Gu Shijian
2009-07-15
Motivated by the growing importance of the fidelity and fidelity susceptibility (FS) in quantum critical phenomena, we use these concepts to describe the pulse propagation inside the dispersive media. It is found that there is a dramatic change in the fidelity and the FS of the pulse at a critical propagation distance inside a dispersive medium, and whether such a dramatic change for a light pulse occurs or not strongly depends on both the dispersive strength of the media and the pulse property. We study in detail about the changes in the fidelity and the FS for both a smooth and a truncated Gaussian pulse through the abnormal and normal dispersive media, where the group velocities are well defined. Our results show that both the fidelity and the FS could be very useful to determine whether the pulse is completely distorted or not at the critical distance; therefore it would be very helpful to find the maximal effective propagation region of the pulse's group velocity, in terms of the changes in the pulse's fidelity and FS.
Dark spatial solitons splitting in logarithmically saturable nonlinear media
NASA Astrophysics Data System (ADS)
Zhang, Yuhong; Liu, Baoyuan; Lu, Keqing; Liu, Wangyun; Han, Jun
2014-12-01
We numerically simulate the evolution of the dark-notch-bearing optical beam in the logarithmically saturable nonlinear media based on beam propagation method (BPM). The simulation results indicate that the multiple dark spatial solitons are deep, possible in this type of nonlinear media. The number of multiple dark spatial solitons depends on the width of the dark notch, the initial conditions and the peak intensity of the initial input beam. Under the odd and even initial conditions, the odd and even number sequence of multiple dark spatial solitons can be obtained, respectively. For an input beam with fixed optical intensity, the number of dark solitons increases with the width of the initial input dark notch. The behavior of the multiple dark solitons in this type of media is similar to that in a photorefractive nonlinear crystal.
Combined optical solitons with parabolic law nonlinearity and spatio-temporal dispersion
NASA Astrophysics Data System (ADS)
Zhou, Qin; Zhu, Qiuping
2015-03-01
In this work, combined optical solitons are constructed in a weakly nonlocal nonlinear medium. The spatio-temporal dispersion (STD), parabolic law nonlinearity, detuning, nonlinear dispersion as well as inter-modal dispersion are taken into account. The integration tool that is applied is the complex envelope function ansatz. The influences of different parameters on dynamical behavior of combined optical solitons are discussed. The results are useful in describing the propagation of combined optical solitons with STD and parabolic law nonlinearity.
Complex geometrical optics of inhomogeneous and nonlinear saturable media
NASA Astrophysics Data System (ADS)
Berczynski, Pawel
2013-05-01
The method of complex geometrical optics (CGO) is presented, which describes Gaussian beam (GB) diffraction and self-focusing along curvilinear trajectory in smoothly inhomogeneous and nonlinear saturable media. CGO method reduces the problem of Gaussian beam propagation in inhomogeneous and nonlinear media to the system of the first order ordinary differential equations for the complex curvature of the wave front and for GB amplitude, which can be readily solved both analytically and numerically. As a result, CGO radically simplifies the description of Gaussian beam diffraction and self-focusing effects as compared to the other methods of nonlinear optics such as: variational method approach, method of moments and beam propagation method. The power of CGO method is presented on the example of the evolution of beam intensity and wave front cross-section along curvilinear central ray with torsion in weakly absorptive and nonlinear saturable graded-index fiber, where the effect of initial beam ellipticity is included into our description.
Stabilization of vortex solitons in nonlocal nonlinear media
Minzoni, Antonmaria A.; Smyth, Noel F.; Worthy, Annette L.; Kivshar, Yuri S.
2007-12-15
We study the evolution of vortex solitons in optical media with a nonlocal nonlinear response. We employ a modulation theory for the vortex parameters based on an averaged Lagrangian, and analyze the azimuthal evolution of both the vortex width and diffractive radiation. We describe analytically the physical mechanism for vortex stabilization due to the long-range nonlocal nonlinear response, the effect observed earlier in numerical simulations only.
Nonlinear dispersion of a pollutant ejected into a channel flow
NASA Astrophysics Data System (ADS)
Van Gorder, Robert A.; Vajravelu, Kuppalapalle
2011-10-01
In this paper, we study the nonlinear coupled boundary value problem arising from the nonlinear dispersion of a pollutant ejected by an external source into a channel flow. We obtain exact solutions for the steady flow for some special cases and an implicit exact solution for the unsteady flow. Additionally, we obtain analytical solutions for the transient flow. From the obtained solutions, we are able to deduce the qualitative influence of the model parameters on the solutions. Furthermore, we are able to give both exact and analytical expressions for the skin friction and wall mass transfer rate as functions of the model parameters. The model considered can be useful for understanding the polluting situations of an improper discharge incident and evaluating the effects of decontaminating measures for the water bodies.
NASA Astrophysics Data System (ADS)
Berczynski, Pawel
2013-12-01
In this paper complex geometrical optics (CGO) is applied to spatiotemporal evolution of 2D Gaussian wavepackets in nonlinear media of Kerr type. Instead of solving the commonly accepted nonlinear Schrödinger equation (NLS), we propose equations of geometrical optics: a complex eikonal equation and a complex transport equation. The eikonal equation lets us derive immediately the ordinary differential equations for spatial and temporal widths, omitting in this way the complicated variational process used in nonlinear optics. Moreover, the obtained CGO equations for actual spatial and temporal widths happen to be identical to those obtained by the variational method approach. From the transport equation we obtain the first order ordinary differential equation for complex amplitude evolution and the conservation principle for energy flux in the packet cross-section. For the combined effect of diffraction, anomalous dispersion and nonlinear refraction, we observe three types of solution for temporal and spatial widths of the packet propagating in a nonlinear medium of Kerr type: the diffraction/dispersion widening, the stationary solution and the solution under the effect of the spatiotemporal collapse. Moreover, we discuss the evolution of the 2D Gaussian wavepacket in a nonlinear inhomogeneous waveguide and we present conditions for stable propagation without the collapse effect. Under these conditions the wavepacket asymptotically approaches stationary solutions when the parameters of the waveguide change over the propagation distance. The paper also discusses the influence of initial spatial and temporal chirps on Gaussian wavepacket evolution in nonlinear media of Kerr type and in nonlinear inhomogeneous waveguides. Moreover, we notice that the equations for temporal and spatial widths of the 2D wavepacket have the same structure as the equations for the evolution of the elliptical Gaussian beam. Thus, the description of the 2D spatiotemporal wavepacket can be
On a class of nonlinear dispersive-dissipative interactions
Rosenau, P.
1997-07-29
The authors study the prototypical, genuinely nonlinear, equation; u{sub t} + a(u{sup m}){sub x} + (u{sup n}){sub xxx} = {mu}(u{sup k}){sub xx}, a, {mu} = consts., which encompasses a wide variety of dissipative-dispersive interactions. The parametric surface k = (m + n)/2 separates diffusion dominated from dissipation dominated phenomena. On this surface dissipative and dispersive effects are in detailed balance for all amplitudes. In particular, the m = n + 2 = k + 1 subclass can be transformed into a form free of convection and dissipation making it accessible to theoretical studies. Both bounded and unbounded oscillations are found and certain exact solutions are presented. When a = (2{mu}3/){sup 2} the map yields a linear equation; rational, periodic and aperiodic solutions are constructed.
Nonlinear interaction between pulse and noise signals in nondispersive media
NASA Astrophysics Data System (ADS)
Gurbatov, S. N.; Demin, I. Iu.; Pronchatov-Rubtsov, N. V.
1986-10-01
The evolution of a perturbation which initially represents the sum of a regular pulsed signal and stationary noise is investigated by using the nonlinear Burgers equation. The effect of a decrease in the pulse front velocity and its broadening due to turbulent viscosity is identified. An abrupt increase in noise dispersion in the discontinuity region and a decrease in noise dispersion at the trailing edge of a pulse are also noted. Results of a numerical simulation are presented.
Upscaling and dispersion for transport in heterogeneous media
NASA Astrophysics Data System (ADS)
Eberhard, Jens
2004-10-01
This paper focuses on upscaling of the transport equation for heterogeneous porous media with random flow. We consider the local flow field being a stationary random field and develop an upscaling by the recently developed coarse graining method which is based on filtering procedures in Fourier space. The coarse graining method is used to obtain an upscaled dispersion tensor which depends on the given length scale of the upscaling. We give explicit results for the scale-dependent dispersion coefficient in lowest-order perturbation theory. For finite length scales the upscaled dispersion models the effect of the unresolved subscale flow fluctuations, and for a global upscaling the upscaled value agrees with the well-known macrodispersion coefficient, which is, however, nearly approached for length scales larger than tenfold of the correlation length.
Modulation instability of optical nonlinear media: a route to chaos
NASA Astrophysics Data System (ADS)
Sharif, Morteza A.
2011-12-01
Modulation Instability is known as intrinsic property of a nonlinear medium like Kerr medium or photorefractive medium; through the such media, the system behavior is possible to transit form stationary regime to chaotic regime; this paper deals with Modulation Instability (MI) in a nonlinear medium and investigates the analogy of MI of optical nonlinear medium and the consequent chaotic regime based on extracting Lyapunov exponent through the power spectrum and equivalently intensity-time diagram of MI; the experimental observation truly confirms the results of MI as the route to the chaotic regime.
Self-induced mode transformation in nonlocal nonlinear media.
Izdebskaya, Yana V; Desyatnikov, Anton S; Kivshar, Yuri S
2013-09-20
We report on the first experimental observation of self-induced optical mode transformations in nonlocal nonlinear media. We show that the quadrupole Hermite-Gaussian mode experiences complex nonlinear dynamics in a nematic liquid crystal, including power-dependent conversion into a radially symmetric Laguerre-Gaussian mode. The physical mechanism responsible for self-induced transformation is the excitation of internal modes of a metastable quadrupole nonlocal soliton and its subsequent transmutation into a robust soliton with a bright peak surrounded by a bright ring. We also observe the onset of transformations of higher-order modes, proving the generic character of this nonlinear phenomenon. PMID:24093262
Kummer solitons in strongly nonlocal nonlinear media
NASA Astrophysics Data System (ADS)
Zhong, Wei-Ping; Belić, Milivoj
2009-01-01
We solve the three-dimensional (3D) time-dependent strongly nonlocal nonlinear Schrödinger equation (NNSE) in spherical coordinates, with the help of Kummer's functions. We obtain analytical solitary solutions, which we term the Kummer solitons. We compare analytical solutions with the numerical solutions of NNSE. We discuss higher-order Kummer spatial solitons, which can exist in various forms, such as the 3D vortex solitons and the multipole solitons.
NASA Astrophysics Data System (ADS)
Kanka, Jiri
2009-05-01
For most telecom nonlinear applications a high effective nonlinearity, low group velocity dispersion with a low dispersion slope and a short fibre length are the key parameters. Combining photonic crystal fibre (PCF) technology with highly nonlinear glasses could meet these requirements very well. We have performed dispersion optimization of PCFs made from selected nonlinear glasses with a solid core and small number of hexagonally arrayed air holes. The optimization procedure employs the Nelder-Mead downhill simplex algorithm. For the modal analysis of the photonic crystal fibre structure a fully-vectorial mode solver based on the finite element method is used. We have obtained two types of dispersion optimized nonlinear PCF designs: PCFs of the first type are single-mode and highly nonlinear with a small and flattened dispersion in the 1500-1600 nm range. These PCF structures have air holes hexagonally arrayed in from 3 to 5 rings, however, their dispersion characteristics are very sensitive to variations in structural parameters. PCFs of the second type are two-ring PCFs with larger multi-mode cores. They have fundamental mode's zero dispersion wavelength around 1550 nm with non-zero moderate dispersion slopes which are less sensitive to structural variation. It is supposed that this alternative PCF design will be easier to fabricate. The effects of fabrication imprecision on the dispersion characteristics for both PCF designs are demonstrated numerically and discussed in the context of nonlinear telecom applications.
Two-dimensional multipole solitons in nonlocal nonlinear media.
Rotschild, Carmel; Segev, Mordechai; Xu, Zhiyong; Kartashov, Yaroslav V; Torner, Lluis; Cohen, Oren
2006-11-15
We present the experimental observation of scalar multipole solitons in highly nonlocal nonlinear media, including dipole, tripole, quadrupole, and necklace-type solitons, organized as arrays of out-of-phase bright spots. These complex solitons are metastable, but with a large parameters range where the instability is weak, permitting their experimental observation. PMID:17072407
Bright vector solitons in cross-defocusing nonlinear media
Yakimenko, A. I.; Prikhodko, O. O.; Vilchynskyi, S. I.
2010-07-15
We study two-dimensional soliton-soliton vector pairs in media with self-focusing nonlinearities and defocusing cross interactions. The general properties of the stationary states and their stability are investigated. The different scenarios of instability are observed using numerical simulations. The quasistable propagation regime of the high-power vector solitons is revealed.
Diffusion, Dispersion, and Uncertainty in Anisotropic Fractal Porous Media
NASA Astrophysics Data System (ADS)
Monnig, N. D.; Benson, D. A.
2007-12-01
Motivated by field measurements of aquifer hydraulic conductivity (K), recent techniques were developed to construct anisotropic fractal random fields, in which the scaling, or self-similarity parameter, varies with direction and is defined by a matrix. Ensemble numerical results are analyzed for solute transport through these 2-D "operator-scaling" fractional Brownian motion (fBm) ln(K) fields. Contrary to some analytic stochastic theories for monofractal K fields, the plume growth rates never exceed Mercado's (1967) purely stratified aquifer growth rate of plume apparent dispersivity proportional to mean distance. Apparent super-stratified growth must be the result of other demonstrable factors, such as initial plume size. The addition of large local dispersion and diffusion does not significantly change the effective longitudinal dispersivity of the plumes. In the presence of significant local dispersion or diffusion, the concentration coefficient of variation CV={σc}/{\\langle c \\rangle} remains large at the leading edge of the plumes. This indicates that even with considerable mixing due to dispersion or diffusion, there is still substantial uncertainty in the leading edge of a plume moving in fractal porous media.
Superfluid light in bulk nonlinear media.
Carusotto, Iacopo
2014-09-01
We review how the paraxial approximation naturally leads to a hydrodynamic description of light propagation in a bulk Kerr nonlinear medium in terms of a wave equation analogous to the Gross-Pitaevskii equation for the order parameter of a superfluid. The main features of the many-body collective dynamics of the fluid of light in this propagating geometry are discussed: generation and observation of Bogoliubov sound waves in the fluid of light is first described. Experimentally accessible manifestations of superfluidity are then highlighted. Perspectives in view of realizing analogue models of gravity are finally given. PMID:25197252
Superfluid light in bulk nonlinear media
Carusotto, Iacopo
2014-01-01
We review how the paraxial approximation naturally leads to a hydrodynamic description of light propagation in a bulk Kerr nonlinear medium in terms of a wave equation analogous to the Gross–Pitaevskii equation for the order parameter of a superfluid. The main features of the many-body collective dynamics of the fluid of light in this propagating geometry are discussed: generation and observation of Bogoliubov sound waves in the fluid of light is first described. Experimentally accessible manifestations of superfluidity are then highlighted. Perspectives in view of realizing analogue models of gravity are finally given. PMID:25197252
Spectroscopy of one-dimensionally inhomogeneous media with quadratic nonlinearity
Golubkov, A A; Makarov, Vladimir A
2011-11-30
We present a brief review of the results of fifty years of development efforts in spectroscopy of one-dimensionally inhomogeneous media with quadratic nonlinearity. The recent original results obtained by the authors show the fundamental possibility of determining, from experimental data, the coordinate dependences of complex quadratic susceptibility tensor components of a onedimensionally inhomogeneous (along the z axis) medium with an arbitrary frequency dispersion, if the linear dielectric properties of the medium also vary along the z axis and are described by a diagonal tensor of the linear dielectric constant. It is assumed that the medium in question has the form of a plane-parallel plate, whose surfaces are perpendicular to the direction of the inhomogeneity. Using the example of several components of the tensors X{sup (2)}(z, {omega}{sub 1} {+-} {omega}{sub 2}; {omega}{sub 1}, {+-} {omega}{sub 2}), we describe two methods for finding their spatial profiles, which differ in the interaction geometry of plane monochromatic fundamental waves with frequencies {omega}{sub 1} and {omega}{sub 2}. The both methods are based on assessing the intensity of the waves propagating from the plate at the sum or difference frequency and require measurements over a range of angles of incidence of the fundamental waves. Such measurements include two series of additional estimates of the intensities of the waves generated under special conditions by using the test and additional reference plates, which eliminates the need for complicated phase measurements of the complex amplitudes of the waves at the sum (difference) frequency.
Numerical simulations for parabolic pulse shaping in non-linear media
NASA Astrophysics Data System (ADS)
Nora, R. C.; Durfee, C. G.; Carr, L. D.
2007-03-01
Pulses with parabolic temporal profiles have the property that they can propagate through non-linear media in a self similar manner. Parabolic pulses have been generated experimentally in fiber amplifiers. Input pulses develop into parabolic pulses by the combined action of group velocity dispersion, non-linear refractive index, and gain. In this work, we are exploring the feasibility of generating ultrafast parabolic pulses in laser resonators. We have successfully numerically simulated the generation of parabolic pulses in fiber amplifiers using two different algorithms, the Cayley method, and fourth order Runge-Kutta, to solve the Nonlinear Schrodinger equation with gain and periodic boundary conditions. In contrast to fiber amplifiers, pulses in laser resonators must maintain a stable pulse shape on each round trip through the optical cavity. We are exploring the prediction that a time dependent saturable gain will stabilize the pulse in the oscillator and yield parabolic pulses.
Microwaves in dispersive magnetic composite media (Review Article)
NASA Astrophysics Data System (ADS)
Tarapov, S. I.; Belozorov, D. P.
2012-07-01
Review discusses some special questions of physics of composite media (metamaterials), which are formed by elements made from natural materials of two kinds. The first ones are "carriers of permittivity" and are presented by plasma-like media and semiconductors. The second ones are "carriers of permeability"—they are presented by ferromagnets. Among such ferromagnets are ferrodielectrics (ferrites) and manganite-perovskite compounds. In the first chapter of the review some principal aspects of the electrodynamics of periodical structures—magnetophotonic crystals are considered. The questions of zone structure and possible violations of periodicity (Tamm states, defect mode) as well as the influence of external magnetic field on the spectral characteristics of magnetophotonic crystals are considered. The second chapter of the review is devoted to the electrodynamics of left-handed media (left-handed metamaterials). Different versions of composite left-handed media are considered. Particular attention is paid to features of electrodynamics of artificially synthesized left-handed media, the doped lanthanum manganites-perovskites, which in a certain concentrations of doping element and temperature range can serve as an example of natural left-handed media. The Appendix describes the details of experimental techniques radiophysical research. Note that the research and design of the metamaterials listed above in a range of low temperatures are particularly important. This is due to the fact that at low temperatures a main disadvantage of artificial materials mentioned above (quite large losses) becomes less noticeable. At the same time the main their advantage (namely the possibility to control their frequency dispersion) remains. Thus it seems that the most prospective areas of application and further study of the magnetic metamaterials lie at low temperatures.
Ultrasonic wave velocity in the restructuring of disperse media
NASA Astrophysics Data System (ADS)
Koltsova, I. S.; Khomutova, A. S.; Deinega, M. A.
2016-03-01
The ultrasonic wave velocities in the restructuring of disperse media were measured using interference and pulsed techniques and the coefficient of reflection in suspensions of starch, Al2O3, and SiO2 particles, glass bulbs, their porous sediments, and composites of Fe3O4 particles in 10% gelatin aqueous solution at a frequency of 3 MHz. The experiments showed alternating variation in the concentration velocity coefficient during the transition of the dispersed phase concentration from the subpercolation to percolation region. The minimum ultrasonic wave velocity in the region of discrete clusters correlates with the ratio between the particle and matrix densities. The results obtained are explained using the Isakovich, Chaban, Rytov, Biot, Hausdorff, and other theories.
Nonlinearities in energy-harvesting media
NASA Astrophysics Data System (ADS)
Andrews, David L.; Jenkins, Robert D.
2001-07-01
Both in natural photosynthetic systems and also their molecularly engineered mimics, energy is generally transferred to the sites of its chemical storage from other sites of primary optical excitation. This migration process generally entails a number of steps, frequently involving intermediary chromophore units, with each step characterised by high efficiency and rapidity. Energy thereby accrues at reaction centres where its chemical storage occurs. At high levels of irradiation, energy harvesting material can exhibit novel forms of optical nonlinearity. Such behaviour is associated with the direct pooling of excitation energy, enabling secondary acceptors to undergo transitions to states whose energy equals that of two or more input photons, subject to decay losses. Observations of this kind have now been made on a variety of materials, ranging from photoactive dyes, through fullerene derivatives, to lanthanide doped crystals. Recently developed theory has established the underlying principles and links between the modes of operation of these systems. Key factors include the chromophore layout and geometry, electronic structure and optical selection rules. Mesoscopic symmetry, especially in photosynthetic pigment arrays and also in their dendrimeric mimics, is here linked to the transient establishment of excitons. The involvement of excitons in energy harvesting is nonetheless substantially compromised by local disorder. The interplay of these factors in photoactive materials design is discussed in the context of new materials for operation with intense laser light.
Self-similarity and optical kinks in resonant nonlinear media
Ponomarenko, Sergey A.; Haghgoo, Soodeh
2010-11-15
We show that self-similar optical waves with a kink structure exist in a wide class of resonant nonlinear media, adequately treated in the two-level approximation. The self-similar structure of the present kinks is reflected in the time evolution of the field profile, atomic dipole moment, and one-atom inversion. We develop an analytical theory of such kinks. We show that the discovered kinks are accelerating nonlinear waves, asymptotically attaining their shape and the speed of light. We also numerically explore the formation and eventual disintegration of our kinks due to energy relaxation processes. Thus, the present kinks can be viewed as intermediate asymptotics of the system.
Slow and fast light propagation in nonlinear Kerr media.
NASA Astrophysics Data System (ADS)
Yang, Qiguang; Ma, Seongmin; Wang, Huitian; Jung, S. S.
2005-04-01
Sub- and superluminal propagation of light pulse in Kerr materials has been investigated. Group velocities as slow as much less than 1 millimeter per second to as fast as negative several hundreds meters per second can be easily obtained in Kerr medium, which possesses large nonlinear refractive index and long relaxation time, such as Cr doped Alexandrite, Ruby, and GdAlO3. The physical mechanism is the strong highly dispersive coupling between different frequency components of the pulse. The new mechanism of slowing down pulses as well as producing superluminal pulses enlarges the very specific materials to all kinds of nonlinear optical materials.
Probing the permeability of porous media by NMR measurement of stochastic dispersion dynamics
NASA Astrophysics Data System (ADS)
Brosten, Tyler; Maier, Robert; Codd, Sarah; Vogt, Sarah; Seymour, Joseph
2011-11-01
A generalized short-time expansion of hydrodynamic dispersion is derived using non-linear response theory. The result is in accordance with the well-known reduced cases of shear flow in ducts and pipes. In terms of viscous dominated (low Reynolds number) flow in porous media the generalized expansion facilitates the measurement of permeability by PGSE-NMR measurement of time dependent molecular displacement dynamics. To be more precise, for porous media characterized by a homogeneous permeability coefficient along the direction of flow K, and fluid volume fraction ɛ, the effective dispersion coefficient D (t) = < | R-
NASA Astrophysics Data System (ADS)
Ganikhanov, Feruz; Yang, Shan; Adhikari, Sanjay
2013-03-01
Precise information on dispersion of the nonlinear optical susceptibility of Raman active media is essential in order to get an insight into physics and chemistry of intra- and inter-molecular interactions. We propose and experimentally demonstrate a method that is capable of resolving both real and imaginary parts of third-order nonlinearity (χ(3)) in the vicinity of Raman resonances. Dispersion of χ(3) can be obtained from a medium probed within microscopic volumes with a spectral resolution of better than 0.1 cm-1 thus making our approach an essential tool in quantitative microscopic characterization of complex biological media. Time-domain CARS transients traced with femtosecond pulses within orders of magnitude in the signal decay can lead to resolution of fine spectral features in χ(3) dispersion that can not be reliably detected by frequency-domain Raman based spectroscopy/microscopy techniques, including coherent methods. We will present results of the method's application in biological cells and tissue. Namely, we accessed a protein line at 1245 cm-1 in E-coli cell, major DNA and protein lines in red blood cells and triglyceride Raman active peaks in fat tissue.
Colloidal Dispersions in Polymeric Media: Interparticle Forces, Microstructure and Rheology
NASA Astrophysics Data System (ADS)
Ndong, Rose Seynabou
the range and origin of the rheology possible with particles dispersed in polymeric media.
Particle dispersion and deposition in porous media: a computational perspective
NASA Astrophysics Data System (ADS)
Boccardo, Gianluca; Crevacore, Eleonora; Sethi, Rajandrea; Marchisio, Daniele
2015-11-01
This work investigates particle dispersion in porous media, which is of central relevance in a number of applications ranging from groundwater remediation tochemical engineering. The challenge lies in studying the complex fluid dynamics behavior arising at the microscale (very difficult to observe experimentally) and obtaining transport models to be employed at the macroscopic scale of interest. While a wealth of studies have approached this problem, the case of particle transport with a concurrent heterogeneous chemical reaction (e.g.: particle deposition) still lacks a satisfactory description, especially when considering a polydisperse population of solid particles. Moreover, the oft-used simplified descriptions of the porous medium (via array of spheres or similar strategies) fail to fully take into account the effect of the packing structure. Our novel approach relies on an ``in-silico'' procedure where many 3-D realistic porous media models are constructed via rigid-body simulations and fluid flowand particle transport are then investigated through computational fluid dynamics. The results evidence the need for a deeper look, afforded by these methodology, into the influence of the features of realistic porous media on particle transport and deposition.
Marhic, M E; Kagi, N; Chiang, T K; Kazovsky, L G
1995-04-15
We show that in principle it is possible to cancel third-order nonlinear effects in optical fiber links. The necessary conditions exist in two-segment links, with dispersion compensation, phase conjugation, and amplification between the two, as well as opposite chromatic dispersion coefficients in the segments. The cancellation is independent of loss, modulation format, and modulation frequency. PMID:19859355
Modulational instability in nonlinearity-managed optical media
Centurion, Martin; Porter, Mason A.; Pu Ye; Psaltis, Demetri; Kevrekidis, P. G.; Frantzeskakis, D. J.
2007-06-15
We investigate analytically, numerically, and experimentally the modulational instability in a layered, cubically nonlinear (Kerr) optical medium that consists of alternating layers of glass and air. We model this setting using a nonlinear Schroedinger (NLS) equation with a piecewise constant nonlinearity coefficient and conduct a theoretical analysis of its linear stability, obtaining a Kronig-Penney equation whose forbidden bands correspond to the modulationally unstable regimes. We find very good quantitative agreement between the theoretical analysis of the Kronig-Penney equation, numerical simulations of the NLS equation, and the experimental results for the modulational instability. Because of the periodicity in the evolution variable arising from the layered medium, we find multiple instability regions rather than just the one that would occur in uniform media.
Complex geometrical optics of Kerr type nonlinear media
NASA Astrophysics Data System (ADS)
Berczynski, P.; Kravtsov, Yu. A.; Sukhorukov, A. P.
2010-03-01
The paper generalizes paraxial complex geometrical optics (PCGO) for Gaussian beam (GB) propagation in nonlinear media of Kerr type. Ordinary differential equations for the beam amplitude and for complex curvature of the wave front are derived, which describe the evolution of axially symmetric GB in a Kerr type nonlinear medium. It is shown that PCGO readily provides the solutions of NLS equation obtained earlier from diffraction theory on the basis of the aberration-free approach. Besides reproducing classical results of self-focusing PCGO readily describes an influence of the initial curvature of the wave front on the beam evolution in a medium of Kerr type including a nonlinear graded-index fiber. The range of applicability of the PCGO theory is discussed as well which is helpful for avoiding nonphysical solutions.
Modulational instability in nonlinearity-managed optical media
NASA Astrophysics Data System (ADS)
Centurion, Martin; Porter, Mason A.; Pu, Ye; Kevrekidis, P. G.; Frantzeskakis, D. J.; Psaltis, Demetri
2007-06-01
We investigate analytically, numerically, and experimentally the modulational instability in a layered, cubically nonlinear (Kerr) optical medium that consists of alternating layers of glass and air. We model this setting using a nonlinear Schrödinger (NLS) equation with a piecewise constant nonlinearity coefficient and conduct a theoretical analysis of its linear stability, obtaining a Kronig-Penney equation whose forbidden bands correspond to the modulationally unstable regimes. We find very good quantitative agreement between the theoretical analysis of the Kronig-Penney equation, numerical simulations of the NLS equation, and the experimental results for the modulational instability. Because of the periodicity in the evolution variable arising from the layered medium, we find multiple instability regions rather than just the one that would occur in uniform media.
Compensating for dispersion and the nonlinear Kerr effect without phase conjugation.
Paré, C; Villeneuve, A; Bélanger, P A; Doran, N J
1996-04-01
We propose the use of a dispersive medium with a negative nonlinear refractive-index coefficient as a way to compensate for the dispersion and the nonlinear effects resulting from pulse propagation in an optical fiber. The undoing of pulse interaction might allow for increased bit rates. PMID:19865438
Impact of saturation on dispersion and mixing in porous media
NASA Astrophysics Data System (ADS)
Jimenez-Martinez, J.; De Anna, P.; Turuban, R.; Tabuteau, H.; Le Borgne, T.; Meheust, Y.
2014-12-01
In partially saturated porous media, the spatial distribution of wetting (e.g., water) and non-wetting (e.g., air) phases causes the liquid flow to be focused onto narrow and complex flow paths, leaving large volumes of wetting fluid trapped in between non-wetting phase clusters. The impact of the resulting highly heterogeneous wetting fluid velocity distributions on the dispersion and mixing of a solute in this wetting phase is critical for predicting reactive transport processes that take place in partially saturated porous media. We study the dependence of dispersion and mixing on the saturation degree using a 2D experimental setup consisting of cylindrical grains built using soft lithography. The joint injection of the two phases (wetting and non-wetting) provides a controlled homogeneous saturation in the medium. The simultaneous measurement of the flow velocity field, the spatial distribution of the wetting and non-wetting phases, and the tracer concentration field are used to investigate the relationship between the flow field complexity induced by desaturation and dispersion/mixing properties. We analyze the temporal behavior of the mean concentration gradient and the scalar dissipation rate, which quantify the temporal variation of the concentration variability and the potential for mixing-controlled chemical reactivity. The formation of preferential flowpaths in unsaturated flows is found to have an important impact on the mixing behavior. While the mean concentration gradient decays in time for saturated flow following the classical diffusive smoothing of concentration gradients, the creation of highly channelized finger structures in unsaturated flows induces persistently large concentration gradients which decay slowly in time. The highly resolved concentration field images show that this effect is due to i) a drastic increase of the surface available for creating concentration gradients across the finger boundaries, ii) the existence of dead-ends with
Surface lattice solitons in diffusive nonlinear media with spatially modulated nonlinearity.
Zhan, Kaiyun; Jiao, Zhiyong; Li, Xi; Jia, Yulei; Zhang, Hui
2015-09-01
Two families of gap and twisted surface lattice solitons in diffusive nonlinear periodic media with spatially modulated nonlinearity are reported. It is shown that the existence and stability of such solitons are extremely spatially modulated nonlinearity sensitive. For self-focusing nonlinearity, gap surface solitons belonging to the semi-infinite gap are stable in whole existence domain, twisted surface solitons are also linearly stable in low modulated strength region and a very narrow unstable region near the upper cutoff appears in high modulated strength region. In the self-defocusing case, surface gap solitons belonging to the first gap can propagate stably in whole existence domain except for an extremely narrow region close to the Bloch band, twisted solitons belonging to this gap are unstable in the entire existence domain. PMID:26368497
All-fiber nonlinearity- and dispersion-managed dissipative soliton nanotube mode-locked laser
Zhang, Z.; Popa, D. Wittwer, V. J.; Milana, S.; Hasan, T.; Jiang, Z.; Ferrari, A. C.; Ilday, F. Ö.
2015-12-14
We report dissipative soliton generation from an Yb-doped all-fiber nonlinearity- and dispersion-managed nanotube mode-locked laser. A simple all-fiber ring cavity exploits a photonic crystal fiber for both nonlinearity enhancement and dispersion compensation. The laser generates stable dissipative solitons with large linear chirp in the net normal dispersion regime. Pulses that are 8.7 ps long are externally compressed to 118 fs, outperforming current nanotube-based Yb-doped fiber laser designs.
Wei, Haiqing; Plant, David V
2005-09-15
A method of packaging dispersion-compensating fibers (DCFs) is discussed that achieves optimal nonlinearity compensation and a good signal-to-noise ratio simultaneously. An optimally packaged dispersion-compensating module (DCM) may consist of portions of DCFs with higher and lower loss coefficients. Such optimized DCMs may be paired with transmission fibers to form scaled translation-symmetric lines that could effectively compensate for signal distortions due to dispersion and nonlinearity, with or without optical phase conjugation. PMID:16196322
Nonlinear light-matter interactions in engineered optical media
NASA Astrophysics Data System (ADS)
Litchinitser, Natalia
In this talk, we consider fundamental optical phenomena at the interface of nonlinear and singular optics in artificial media, including theoretical and experimental studies of linear and nonlinear light-matter interactions of vector and singular optical beams in metamaterials. We show that unique optical properties of metamaterials open unlimited prospects to ``engineer'' light itself. Thanks to their ability to manipulate both electric and magnetic field components, metamaterials open new degrees of freedom for tailoring complex polarization states and orbital angular momentum (OAM) of light. We will discuss several approaches to structured light manipulation on the nanoscale using metal-dielectric, all-dielectric and hyperbolic metamaterials. These new functionalities, including polarization and OAM conversion, beam magnification and de-magnification, and sub-wavelength imaging using novel non-resonant hyperlens are likely to enable a new generation of on-chip or all-fiber structured light applications. The emergence of metamaterials also has a strong potential to enable a plethora of novel nonlinear light-matter interactions and even new nonlinear materials. In particular, nonlinear focusing and defocusing effects are of paramount importance for manipulation of the minimum focusing spot size of structured light beams necessary for nanoscale trapping, manipulation, and fundamental spectroscopic studies. Colloidal suspensions offer as a promising platform for engineering polarizibilities and realization of large and tunable nonlinearities. We will present our recent studies of the phenomenon of spatial modulational instability leading to laser beam filamentation in an engineered soft-matter nonlinear medium. Finally, we introduce so-called virtual hyperbolic metamaterials formed by an array of plasma channels in air as a result of self-focusing of an intense laser pulse, and show that such structure can be used to manipulate microwave beams in a free space. This
Controlling Spatiotemporal Chaos in Active Dissipative-Dispersive Nonlinear Systems
NASA Astrophysics Data System (ADS)
Gomes, Susana; Pradas, Marc; Kalliadasis, Serafim; Papageorgiou, Demetrios; Pavliotis, Grigorios
2015-11-01
We present a novel generic methodology for the stabilization and control of infinite-dimensional dynamical systems exhibiting low-dimensional spatiotemporal chaos. The methodology is exemplified with the generalized Kuramoto-Sivashinsky equation, the simplest possible prototype that retains that fundamental elements of any nonlinear process involving wave evolution. The equation is applicable on a wide variety of systems including falling liquid films and plasma waves with dispersion due to finite banana width. We show that applying the appropriate choice of time-dependent feedback controls via blowing and suction, we are able to stabilize and/or control all stable or unstable solutions, including steady solutions, travelling waves and spatiotemporal chaos, but also use the controls obtained to stabilize the solutions to more general long wave models. We acknowledge financial support from Imperial College through a Roth PhD studentship, Engineering and Physical Sciences Research Council of the UK through Grants No. EP/H034587, EP/J009636, EP/K041134, EP/L020564 and EP/L024926 and European Research Council via Advanced Grant No. 247031.
NONLINEAR SIMULATION OF TURBULENT FIELD LINES: DISPERSAL STATISTICS
Ragot, B. R.
2010-11-10
A new method for the full nonlinear computation of sets of turbulent field lines is introduced that extends the sums of random numbers distribution method previously applied to the computation of individual field lines. With a multiscale variation of the phases consistent with in situ observations of intermittent solar wind (SW) turbulence, the new method allows inclusion of the equivalent of more than four decades of turbulent scales with a fully three-dimensional distribution of wavevectors. As a first application, pairs of magnetic field lines are computed in independent realizations of the turbulence, for spectra typical of the quiet slow SW near 1 AU. The statistics of field-line dispersal are then studied from the simulated pairs of magnetic field lines and compared to earlier theoretical predictions. It appears that while the earlier theoretical picture remains relatively accurate as long as the mean variation of separation logarithm {Lambda} is less than one, the qualitative picture is quickly altered as {Lambda} grows past one.
Wave velocity dispersion and attenuation in media exhibiting internal oscillations
NASA Astrophysics Data System (ADS)
Frehner, Marcel; Steeb, Holger; Schmalholz, Stefan M.
2010-05-01
Understanding the dynamical and acoustical behavior of porous and heterogeneous rocks is of great importance in geophysics, e.g. earthquakes, and for various seismic engineering applications, e.g. hydrocarbon exploration. Within a heterogeneous medium oscillations with a characteristic resonance frequency, depending on the mass and internal length of the heterogeneity, can occur. When excited, heterogeneities can self-oscillate with their natural frequency. Another example of internal oscillations is the dynamical behavior of non-wetting fluid blobs or fluid patches in residually saturated pore spaces. Surface tension forces or capillary forces act as the restoring force that drives the oscillation. Whatever mechanism is involved, an oscillatory phenomena within a heterogeneous medium will have an effect on acoustic or seismic waves propagating through such a medium, i.e. wave velocity dispersion and frequency-dependent attenuation. We present two models for media exhibiting internal oscillations and discuss the frequency-dependent wave propagation mechanism. Both models give similar results: (1) The low-frequency (i.e. quasi-static) limit for the phase velocity is identical with the Gassmann-Wood limit and the high-frequency limit is larger than this value and (2) Around the resonance frequency a very strong phase velocity change and the largest attenuation occurs. (1) Model for a homogeneous medium exhibiting internal oscillations We present a continuum model for an acoustic medium exhibiting internal damped oscillations. The obvious application of this model is water containing oscillating gas bubbles, providing the material and model parameters for this study. Two physically based momentum interaction terms between the two inherent constituents are used: (1) A purely elastic term of oscillatory nature that scales with the volume of the bubbles and (2) A viscous term that scales with the specific surface of the bubble. The model is capable of taking into account
Critique of Burnett-Frind dispersion tensor for axisymmetric porous media
Lichtner, Peter C; Kelkar, Sharad; Robinson, Bruce A
2008-01-01
This technical note provides a critique of the Burnett and Frind (1987) dispersion tensor for porous media with axial symmetry based on a previous publication by the authors (Lichtner et aI., 2002). In this work a new approach is used based on unit eigenvectors which simplifies the analysis. It is demonstrated that the Burnett-Frind dispersion tensor, although acceptable for small values of the vertical velocity, produces the incorrect behavior for both longitudinal and transverse dispersivity as the flow velocity varies from parallel to perpendicular to the axis of symmetry. A new form of the dispersion tensor is derived for axially symmetric porous media involving four dispersivity coefficients corresponding to longitudinal and transverse dispersion in horizontal and vertical directions, defined as perpendicular and parallel to the axis of symmetry, respectively. This new dispersion tensor corrects two fundamental problems with the dispersion tensor proposed by Burnett and Frind (1987) for axial symmetric media.
Vorticity and upscaled dispersion in 3D heterogeneous porous media
NASA Astrophysics Data System (ADS)
Di Dato, Mariaines; Chiogna, Gabriele; de Barros, Felipe; Bellin, Alberto; Fiori, Aldo
2015-04-01
-structure (inclusion's type and shape). The purpose of this work is to study how different micro-structures impact the vorticity. The analysis is carried on for a binary medium, as a function of conductivity contrast κ, and for heterogeneous ensemble of inclusions with a lognomal distribution of κ, as a function of heterogeneity degree σln κ2. Inclusion's type and shape have a great influence on the vorticity field: in media defined by the same volume fraction and anisotropy degree, thinner inclusions yield more vorticity, therefore the smaller is e the greater is the vorticity. This effect is more evident if inclusions are more conductive, due to flow focusing effects. We demonstrate that the statistical anisotropy of the medium plays an important role: the smaller is the statistical anisotropy ratio, the higher is the vorticity produced by the mixture of inclusions. Furthermore, considering heterogeneous mixture of inclusions, it is showed that vorticity growths with increasing the variance of the conductivity contrast distribution. In addition to analyzing the rotational properties of the spatially variable flow field, we illustrate how the global vorticity of the medium affects solute transport. This is achieved by evaluating the upscaled dispersion coefficients.
NASA Astrophysics Data System (ADS)
Hopkins, James; Gaudette, Jamie; Mehta, Priyanth
2013-10-01
With the advent of digital signal processing (DSP) in optical transmitters and receivers, the ability to finely tune the ratio of pre and post dispersion compensation can be exploited to best mitigate the nonlinear penalties caused by the Kerr effect. A portion of the nonlinear penalty in optical communication channels has been explained by an increase in peak to average power ratio (PAPR) inherent in highly dispersed signals. The standard approach for minimizing these impairments applies 50% pre dispersion compensation and 50% post dispersion compensation, thereby decreasing average PAPR along the length of the cable, as compared with either 100% pre or post dispersion compensation. In this paper we demonstrate that simply considering the net accumulated dispersion, and applying 50/50 pre/post dispersion is not necessarily the best way to minimize PAPR and subsequent Kerr nonlinearities. Instead, we consider the cumulative dispersion along the entire length of the cable, and, taking into account this additional information, derive an analytic formula for the minimization of PAPR. Alignment with simulation and experimental measurements is presented using a commercially available 100Gb/s dual-polarization binary phase-shift-keying (DP-BPSK) coherent modem, with transmitter and receiver DSP. Measurements are provided from two different 5000km dispersion managed Submarine test-beds, as well as a 3800km terrestrial test-bed with a mixture of SMF-28 and TWRS optical fiber. This method is shown to deviate significantly from the conventional 50/50 method described above, in dispersion managed communications systems, and more closely aligns with results obtained from simulation and data collected from laboratory test-beds.
Surface-wave solitons between linear media and nonlocal nonlinear media
Shi Zhiwei; Li Huagang; Guo Qi
2011-02-15
We address surface solitons at the interface between linear media and nonlocal nonlinear media in the presence of a discontinuity in refractive index at the surface of these two materials. We investigated the influence of the degree of nonlocality on the stability, energy flow, and full width at half-maximum of the surface wave solitons. It is shown that surface solitons will be stable only if the degree of nonlocality exceeds a critical value. We find that the refractive index difference can affect the power distribution of the surface solitons in the two media. Also, different boundary values at the interface can lead to different relative peak positions of the surface solitons. However, neither the refractive index nor the boundary conditions can affect the stability of the solitons, for a given degree of nonlocality.
Dispersion and nonlinear effects in the 2011 Tohoku-Oki earthquake tsunami
NASA Astrophysics Data System (ADS)
Saito, Tatsuhiko; Inazu, Daisuke; Miyoshi, Takayuki; Hino, Ryota
2014-08-01
This study reveals the roles of the wave dispersion and nonlinear effects for the 2011 Tohoku-Oki earthquake tsunami. We conducted tsunami simulations based on the nonlinear dispersive equations with a high-resolution source model. The simulations successfully reproduced the waveforms recorded in the offshore, deep sea, and focal areas. The calculated inundation area coincided well with the actual inundation for the Sendai Plain, which was the widest inundation area during this event. By conducting sets of simulations with different tsunami equations, we obtained the followings insights into the wave dispersion, nonlinear effects, and energy dissipation for this event. Although the wave dispersion was neglected in most studies, the maximum amplitude was significantly overestimated in the deep sea if the dispersion was not included. The waveform observed at the station with the largest tsunami height (˜2 m) among the deep-ocean stations also verified the necessity of the dispersion. It is well known that the nonlinear effects play an important role for the propagation of a tsunami into bays and harbors. Additionally, nonlinear effects need to be considered to accurately model later waves, even for offshore stations. In particular, including nonlinear terms rather than the inundation was more important when precisely modeling the waves reflected from the coast.
Christodoulides, D N; Joseph, R L
1984-06-01
The propagation of nonlinear optical pulses in fibers is discussed, taking into account physical effects arising from nonlinearity, dispersion, and transverse confinement. The wave equation is solved by treating the radial dependence of the field in an exact way. The conditions supporting bright solitary waves are presented and compared with previous results. PMID:19721553
Dispersion and nonlinear management for femtosecond optical solitons
NASA Astrophysics Data System (ADS)
Porsezian, K.; Hasegawa, A.; Serkin, V. N.; Belyaeva, T. L.; Ganapathy, R.
2007-02-01
We consider the concept of femtosecond propagation for optical solitons in a dispersion management fiber and study the optimal amplification of optical solitons through dispersion wells and barriers and also for the dispersion tailored profile case. For the former, we observed periodic soliton trapping for the in-phase injection case when their respective velocities were equal and opposite with their amplitudes being unequal and no soliton trapping for the off-phase injection case when the two pulses are having a phase difference of π. For the latter, we observed an enormous amplification of the soliton pulses which is one of our main results in this Letter.
Saitoh, Kunimasa; Koshiba, Masanori
2004-05-17
We propose a new structure of highly nonlinear dispersion-flattened (HNDF) photonic crystal fiber (PCF) with nonlinear coefficient as large as 30 W(-1)km(-1) at 1.55 microm designed by varying the diameters of the air-hole rings along the fiber radius. This innovative HNDF-PCF has a unique effective-index profile that can offer not only a large nonlinear coefficient but also flat dispersion slope and low leakage losses. It is shown through numerical results that the novel microstructured optical fiber with small normal group-velocity dispersion and nearly zero dispersion slope offers the possibility of efficient supercontinuum generation in the telecommunication window using a few ps pulses. PMID:19475038
NASA Astrophysics Data System (ADS)
Saitoh, Kunimasa; Koshiba, Masanori
2004-05-01
We propose a new structure of highly nonlinear dispersion-flattened (HNDF) photonic crystal fiber (PCF) with nonlinear coefficient as large as 30 W-1km-1 at 1.55 Âµm designed by varying the diameters of the air-hole rings along the fiber radius. This innovative HNDF-PCF has a unique effective-index profile that can offer not only a large nonlinear coefficient but also flat dispersion slope and low leakage losses. It is shown through numerical results that the novel microstructured optical fiber with small normal group-velocity dispersion and nearly zero dispersion slope offers the possibility of efficient supercontinuum generation in the telecommunication window using a few ps pulses.
Computational aspects of dispersive computational continua for elastic heterogeneous media
NASA Astrophysics Data System (ADS)
Fafalis, Dimitrios; Fish, Jacob
2015-12-01
The present manuscript focusses on computational aspects of dispersive computational continua (C^2) formulation previously introduced by the authors. The dispersive C^2 formulation is a multiscale approach that showed strikingly accurate dispersion curves. However, the seemingly theoretical advantage may be inconsequential due to tremendous computational cost involved. Unlike classical dispersive methods pioneered more than a half a century ago where the unit cell is quasi-static and provides effective mechanical and dispersive properties to the coarse-scale problem, the dispersive C^2 gives rise to transient problems at all scales and for all microphases involved. An efficient block time-integration scheme is proposed that takes advantage of the fact that the transient unit cell problems are not coupled to each other, but rather to a single coarse-scale finite element they are positioned in. We show that the computational cost of the method is comparable to the classical dispersive methods for short load durations.
Local computational strategies for predicting wave propagation in nonlinear media
NASA Astrophysics Data System (ADS)
Leamy, Michael J.; Autrusson, Thibaut B.; Staszewski, Wieslaw J.; Uhl, Tadeusz; Packo, Pawel
2014-03-01
Two local computational strategies for modeling elastic wave propagation, namely the Local Interaction Simulation Approach (LISA) and Cellular Automata for Elastodynamics (CAFE), are compared and contrasted in analyzing bulk waves in two-dimensional nonlinear media. Each strategy formulates the problem from the perspective of a cell and its local interactions with other cells, leading to robust treatments of anisotropy, heterogeneity, and nonlinearity. The local approach also enables straight-forward parallelization on high performance computing clusters. While the two share a common local perspective, they differ in two major respects. The first is that CAFE employs both rectangular and triangular cells, while LISA considers only rectangular. The second is that LISA appeared much earlier than CAFE (early 1990's versus late 2000's), and as such has been developed to a much greater degree with a multitude of material models, cell-to-cell interactions, loading possibilities, and boundary treatments. A hybrid approach which combines the two is of great interest since the non-uniform mesh capability of the CAFE triangular cell can be readily coupled to LISA's rectangular grids, taking advantage of the built-in LISA features on the uniform portion of the domain. For linear material domains, the hybrid implementation appears straight-forward since both methods have been shown to recover the same equations in the rectangular case. For nonlinear material domains, the formulations cannot be put into a one-to-one correspondence, and hybrid implementation may be more problematic. This paper addresses these differences by first presenting the underlying formulations, and then computing results for growth of a second harmonic in an introduced bulk pressure wave. Rectangular cells are used in both LISA and CAFE. Results from both approaches are compared to an approximate, analytical solution based on a two-scale field representation. Differences in the LISA and CAFE computed
Design of highly nonlinear photonic crystal fibers with flattened chromatic dispersion.
Li, Xuyou; Xu, Zhenlong; Ling, Weiwei; Liu, Pan
2014-10-10
A novel (to our knowledge) type of photonic crystal fiber (PCF) with high nonlinearity and flattened dispersion is proposed. The propagation characteristics of chromatic dispersion, effective area, and nonlinearity are studied numerically by using the full-vector finite element method. Several PCF designs with high nonlinearity and nearly zero flattened dispersion or broadband flattened, and even ultraflattened, dispersion over different wavelength bands are obtained by optimizing the structural parameters. One optimized PCF has a nearly zero ultraflattened dispersion of 2.3 ps/(nm·km) with a dispersion variation of 0.2 ps/(nm·km) over the C+L+U wavelength bands. In addition, the dispersion slope and nonlinear coefficient at 1.55 μm can be up to 2.2×10(-3) ps/nm(2)·km and 33.2 W(-1)·km(-1), respectively. The designs proposed in this paper have bright prospects for applications in all-optical format conversion, supercontinuum generation, optical wavelength conversion, and many other fields. PMID:25322369
Abe, H.; Okuda, H.
1994-06-01
We study linear and nonlinear properties of a new computer simulation model developed to study the propagation of electromagnetic waves in a dielectric medium in the linear and nonlinear regimes. The model is constructed by combining a microscopic model used in the semi-classical approximation for the dielectric media and the particle model developed for the plasma simulations. It is shown that the model may be useful for studying linear and nonlinear wave propagation in the dielectric media.
NASA Astrophysics Data System (ADS)
Sharifimehr, Mohammad Reza; Ayoubi, Kazem; Mohajerani, Ezeddin
2015-11-01
Measuring nonlinear optical response of a specific material in a mixture, not only leads to investigate the behavior of a particular component in various circumstances, but also can be a way to select suitable combination and optimum concentration of additives and therefore obtaining the maximum nonlinear optical signals. In this work, by using dual-arm Z-scan technique, the nonlinear refractive index of Disperse Red1 (DR1) organic dye molecules inside the core of prepared polymeric nanocapsules was measured among various materials which prepared nanocapsules were made of them. Then the measured value was compared with nonlinear refractive index of DR1 solved in dichloromethane.
NASA Astrophysics Data System (ADS)
Rajan, M. S. Mani
2016-08-01
In this manuscript, the ultrashort soliton pulse propagation through nonlinear tunneling in cubic quintic media is investigated. The effect of chirping on propagation characteristics of the soliton pulse is analytically investigated using similarity transformation. In particular, we investigate the propagation dynamics of ultrashort soliton pulse through dispersion barrier for both chirp and chirp-free soliton. By investigating the obtained soliton solution, we found that chirping has strong influence on soliton dynamics such as pulse compression with amplification. These two important dynamics of chirped soliton in cubic quintic media open new possibilities to improve the solitonic communication system. Moreover, we surprisingly observe that a dispersion well is formed for the chirped case whereas a barrier is formed for the chirp-free case, which has certain applications in the construction of logic gate devices to achieve ultrafast switching.
Adaptive control of the propagation of ultrafast light through random and nonlinear media
NASA Astrophysics Data System (ADS)
Moores, Mark David
2001-12-01
Ultrafast light sources generate coherent pulses with durations of less than one picosecond, and represent the next generation of illuminators for medical imaging and optical communications applications. Such sources are already widely used experimentally. Correction of temporal widths or pulse envelopes after traversal of optically non-ideal materials is critical for the delivery of optimal ultrashort pulses. It is important to investigate the physical mechanisms that distort pulses and to develop and implement methods for minimizing these effects. In this work, we investigate methods for characterizing and manipulating pulse propagation dynamics in random (scattering) and nonlinear optical media. In particular, we use pulse shaping to manipulate the light field of ultrashort infrared pulses. Application of spectral phase by a liquid crystal spatial light modulator is used to control the temporal pulse shape. The applied phase is controlled by a genetic algorithm that adaptively responds to the feedback from previous phase profiles. Experiments are detailed that address related aspects of the character of ultrafast pulses-the short timescales and necessarily wide frequency bandwidths. Material dispersion is by definition frequency dependent. Passage through an inhomogeneous system of randomly situated boundaries (scatterers) causes additional distortion of ballistic pulses due to multiple reflections. The reflected rays accumulate phase shifts that depend on the separation of the reflecting boundaries and the photon frequency. Ultrafast bandwidths present a wide range of frequencies for dispersion and interaction with macroscopic dielectric structure. The shaper and adaptive learning algorithm are used to reduce these effects, lessening the impact of the scattering medium on propagating pulses. The timescale of ultrashort pulses results in peak intensities that interact with the electronic structure of optical materials to induce polarization that is no longer
Symmetry analysis for a class of nonlinear dispersive equations
NASA Astrophysics Data System (ADS)
Charalambous, K.; Sophocleous, C.
2015-05-01
A class of dispersive equations is studied within the framework of group analysis of differential equations. The enhanced Lie group classification is achieved. The complete list of equivalence transformations is presented. It is shown that certain equations from the class admit nonclassical reductions. Potential and potential nonclassical symmetries are also considered.
NASA Astrophysics Data System (ADS)
Fakhri, P.; Rashidian Vaziri, M. R.; Jaleh, B.; Partovi Shabestari, N.
2016-01-01
In this paper, we report on the preparation of graphene oxide and graphene oxide-Au nanodispersions in various solvents, such as water, DMF (N,N-dimethylformamide) and NMP (N-methyl-2-pyrrolidone). Optical, structural and nonlinear optical properties of all the samples have been studied. The nonlinear optical properties have been measured using the z-scan technique. It is shown that the incorporation of Au nanoparticles can greatly improve the nonlinear optical properties of graphene oxide. More importantly, the fact is recognized that the media that surround the nonlinear sample can influence its nonlinear optical properties by their nonlocal action. The nonlocal z-scan theory has been used to estimate the role of the surrounding medium in changing the samples’ nonlinear responses.
Iterative Time Reversal Simulation for Selective Focusing in Multi-target Nonlinear Media
NASA Astrophysics Data System (ADS)
Su, Chang; Peng, Zhefan; Lin, Weijun
In High Intensity Focused Ultrasound (HIFU), when multiple targets are present in a linear medium, ultrasound can focus on the strongest target by using an iterative time-reversal(TR) method. However, the validation of iterative TR in nonlinear human tissue still needs to be investigated. In the study, the TR and iterative TR processes are numerically simulated with a finite difference method in two dimension, considering the nonlinear effects. Results show that TR is valid in nonlinear human tissues with some difference in focus accuracy and intensity gain comparing to that in linear media. The nonlinearity of the media increases the intensity gain at the focal point, while the absorption decreases the focal gain and changes the position of the focal spot. Iterative TR works well in nonlinear media and the lobe on the weaker target attenuates more rapidly than in linear media.
Flow Intermittency, Dispersion, and Correlated Continuous Time Random Walks in Porous Media
de Anna, Pietro; Le Borgne, Tanguy; Dentz, Marco; Tartakovsky, Alexandre M.; Bolster, Diogo; Davy, Philippe
2013-05-01
We study the intermittency of fluid velocities in porous media and its relation to anomalous dispersion. Lagrangian velocities measured at equidistant points along streamlines are shown to form a spatial Markov process. As a consequence of this remarkable property, the dispersion of fluid particles can be described by a continuous time random walk with correlated temporal increments. This new dynamical picture of intermittency provides a direct link between the microscale flow, its intermittent properties, and non-Fickian dispersion.
Are There Optical Solitary Wave Solutions in Linear Media with Group Velocity Dispersion?
NASA Technical Reports Server (NTRS)
Li, Zhonghao; Zhou, Guosheng
1996-01-01
A generalized exact optical bright solitary wave solution in a three dimensional dispersive linear medium is presented. The most interesting property of the solution is that it can exist in the normal group-velocity-dispersion (GVD) region. In addition, another peculiar feature is that it may achieve a condition of 'zero-dispersion' to the media so that a solitary wave of arbitrarily small amplitude may be propagated with no dependence on is pulse width.
NASA Astrophysics Data System (ADS)
Cao, Wenhua
2016-05-01
Predispersion for reduction of intrachannel nonlinear impairments in quasi-linear strongly dispersion-managed transmission system is analyzed in detail by numerical simulations. We show that for moderate amount of predispersion there is an optimal value at which reduction of the nonlinear impairments can be obtained, which is consistent with previous well-known predictions. However, we found that much better transmission performance than that of the previous predictions can be obtained if predispersion is increased to some extent. For large predispersion, the nonlinear impairments reduce monotonically with increasing predispersion and then they tend to be stabilized when predispersion is further increased. Thus, transmission performance can be efficiently improved by inserting a high-dispersive element, such as a chirped fiber bragg grating (CFBG), at the input end of the transmission link to broaden the signal pulses while, at the output end, using another CFBG with the opposite dispersion to recompress the signal.
Nonlinear coupling of left and right handed circularly polarized dispersive Alfvén wave
Sharma, R. P. Sharma, Swati Gaur, Nidhi
2014-07-15
The nonlinear phenomena are of prominent interests in understanding the particle acceleration and transportation in the interplanetary space. The ponderomotive nonlinearity causing the filamentation of the parallel propagating circularly polarized dispersive Alfvén wave having a finite frequency may be one of the mechanisms that contribute to the heating of the plasmas. The contribution will be different of the left (L) handed mode, the right (R) handed mode, and the mix mode. The contribution also depends upon the finite frequency of the circularly polarized waves. In the present paper, we have investigated the effect of the nonlinear coupling of the L and R circularly polarized dispersive Alfvén wave on the localized structures formation and the respective power spectra. The dynamical equations are derived in the presence of the ponderomotive nonlinearity of the L and R pumps and then studied semi-analytically as well as numerically. The ponderomotive nonlinearity accounts for the nonlinear coupling between both the modes. In the presence of the adiabatic response of the density fluctuations, the nonlinear dynamical equations satisfy the modified nonlinear Schrödinger equation. The equations thus obtained are solved in solar wind regime to study the coupling effect on localization and the power spectra. The effect of coupling is also studied on Faraday rotation and ellipticity of the wave caused due to the difference in the localization of the left and the right modes with the distance of propagation.
Xie, Chen; Liu, Bowen; Niu, Hailiang; Song, Youjian; Li, Yi; Hu, Minglie; Zhang, Yueguang; Shen, Weidong; Liu, Xu; Wang, Chingyue
2011-11-01
We report on a femtosecond nonlinear amplification fiber laser system using a vector-dispersion compressor, which consists of a transmission grating pair and multipass cell based Gires-Tournois interferometer mirrors. The mirror is designed with nearly zero group-delay dispersion and large negative third-order dispersion. As a result, the third-order dispersion of the compressor can be adjusted independently to compensate the nonlinear phase shift of amplified pulses to reduce the pulse pedestal. With this scheme, the system outputs 44 fs laser pulses with little wing at 26.6 W output average power and 531 nJ pulse energy, corresponding to 10.8 MW peak power. PMID:22048347
NASA Astrophysics Data System (ADS)
Ntsime, Basetsana P.; Moitsheki, Raseelo J.
2016-06-01
In this paper we consider a nonlinear convection-dispersion equation arising in contaminant transport. The water flow velocity is considered to be spatially-dependent and dispersion coefficient depends on concentration. A direct group classification resulted in a number of cases for which the governing equation admits Lie point symmetries. In each case the one dimensional optimal system of subalgebras is constructed. Reductions are performed. The reduced ordinary differential equations (ODEs) are nonlinear and difficult to solve exactly. On the other hand we consider the steady state problem and applied the method of canonical coordinates to determine exact solutions.
Controllable broadband nonlinear optical response of graphene dispersions by tuning vacuum pressure.
Cheng, Xin; Dong, Ningning; Li, Bin; Zhang, Xiaoyan; Zhang, Saifeng; Jiao, Jia; Blau, Werner J; Zhang, Long; Wang, Jun
2013-07-15
Nonlinear scattering, originating from laser induced solvent micro-bubbles and/or micro-plasmas, is regarded as the principal mechanism for nonlinear optical (NLO) response of graphene dispersions at ns timescale. In this work, we report the significant enhancement of NLO response of graphene dispersions by decreasing the atmospheric pressure, which has strong influence on the formation and growth of micro-bubbles and/or micro-plasmas. A modified open-aperture Z-scan apparatus in combination with a vacuum system was used to study the effect of vacuum pressure on the NLO property of graphene dispersions prepared by liquid-phase exfoliation technique. We show that the atmospheric pressure can be utilized to control and tune the nonlinear responses of the graphene dispersions for ns laser pulses at both 532 nm and 1064 nm. The lower the vacuum pressure was, the larger the NLO response was. In contrast, the NLO property of fullerene was found to be independent of the pressure change, due to its nature of nonlinear absorption. This work affords a simple method to distinguish the nonlinear scattering and absorption mechanisms for NLO nanomaterials. PMID:23938499
Nonlinear dynamics, granular media and dynamic earthquake triggering.
Johnson, Paul A; Jia, Xiaoping
2005-10-01
The 1992 magnitude 7.3 Landers earthquake triggered an exceptional number of additional earthquakes within California and as far north as Yellowstone and Montana. Since this observation, other large earthquakes have been shown to induce dynamic triggering at remote distances--for example, after the 1999 magnitude 7.1 Hector Mine and the 2002 magnitude 7.9 Denali earthquakes--and in the near-field as aftershocks. The physical origin of dynamic triggering, however, remains one of the least understood aspects of earthquake nucleation. The dynamic strain amplitudes from a large earthquake are exceedingly small once the waves have propagated more than several fault radii. For example, a strain wave amplitude of 10(-6) and wavelength 1 m corresponds to a displacement amplitude of about 10(-7) m. Here we show that the dynamic, elastic-nonlinear behaviour of fault gouge perturbed by a seismic wave may trigger earthquakes, even with such small strains. We base our hypothesis on recent laboratory dynamic experiments conducted in granular media, a fault gouge surrogate. From these we infer that, if the fault is weak, seismic waves cause the fault core modulus to decrease abruptly and weaken further. If the fault is already near failure, this process could therefore induce fault slip. PMID:16208368
Experiments on nonlinear wave propagation in disordered media
NASA Astrophysics Data System (ADS)
McKenna, M. J.; Keat, Justin; Wang, Jun; Maynard, J. D.
1994-02-01
A fundamental question concerning systems which are both disordered and nonlinear is whether or not Anderson localization is weakened by the nonlinearity. Theory predicts that localized eigenstates will survive nonlinearity, whereas nonlinear pulses may or may not experience the effects of localization depending on the relative magnitude of the Anderson localization length and the characteristic width of the pulse. We have used nonlinear surface waves on a superfluid helium film to obtain results in agreement with the theoretical predictions.
Dispersive and dissipative nonlinear structures in degenerate Fermi-Dirac Pauli quantum plasma
NASA Astrophysics Data System (ADS)
Sahu, Biswajit; Sinha, Anjana; Roychoudhury, Rajkumar
2016-09-01
We study the interplay between dispersion due to the electron degeneracy parameter and dissipation caused by plasma resistivity, in degenerate Fermi-Dirac Pauli quantum plasma. Considering relativistic degeneracy pressure for electrons, we investigate both arbitrary and small amplitude nonlinear structures. The corresponding trajectories are also plotted in the phase plane. The linear analysis for the dispersion relation yields interesting features. The present work is anticipated to be of physical relevance in the study of compact magnetized astrophysical objects like white dwarfs.
Abe, H.; Okuda, H.
1993-08-01
In this Letter, we first present a new computer simulation model developed to study the propagation of electromagnetic waves in a dielectric medium in the linear and nonlinear regimes. The model is constructed by combining a microscopic model used in the semi-classical approximation for the dielectric media and the particle model developed for the plasma simulations. The model was then used for studying linear and nonlinear wave propagation in the dielectric medium such as an optical fiber. It is shown that the model may be useful for studying nonlinear wave propagation and harmonics generation in the nonlinear dielectric media.
The dispersion and aggregation of graphene oxide in aqueous media
NASA Astrophysics Data System (ADS)
Wang, Meng; Niu, Yang; Zhou, Jihan; Wen, Hao; Zhang, Zhenyu; Luo, Da; Gao, Dongliang; Yang, Juan; Liang, Dehai; Li, Yan
2016-07-01
Graphene oxide (GO), as a typical two-dimensional material, possesses a range of oxygen-containing groups and shows surfactant and/or polyelectrolyte-like characteristics. Herein, GO sheets with narrow size distribution were prepared by an ultracentrifugation-based process and the aggregation behaviour of GO in pure water and an electrolyte aqueous solution were studied using laser light scattering (LLS). When adding common electrolytes, such as NaCl and MgCl2, into the GO dispersions, aggregation occurs and irreversible coagulation eventually occurs too. However, the GO dispersion can still remain stable when adding excess AlCl3. The zeta potential of the GO dispersion changes from negative to positive after the addition of access AlCl3, indicating that electrostatic repulsion is still responsible for the dispersion of GO, which is in good agreement with the LLS results. This finding on the dispersion of GO may be applied in the solution processing of GO. It also expands the scope of the design and preparation of new GO-based hybrid materials with different functions.Graphene oxide (GO), as a typical two-dimensional material, possesses a range of oxygen-containing groups and shows surfactant and/or polyelectrolyte-like characteristics. Herein, GO sheets with narrow size distribution were prepared by an ultracentrifugation-based process and the aggregation behaviour of GO in pure water and an electrolyte aqueous solution were studied using laser light scattering (LLS). When adding common electrolytes, such as NaCl and MgCl2, into the GO dispersions, aggregation occurs and irreversible coagulation eventually occurs too. However, the GO dispersion can still remain stable when adding excess AlCl3. The zeta potential of the GO dispersion changes from negative to positive after the addition of access AlCl3, indicating that electrostatic repulsion is still responsible for the dispersion of GO, which is in good agreement with the LLS results. This finding on the
The dispersion and aggregation of graphene oxide in aqueous media.
Wang, Meng; Niu, Yang; Zhou, Jihan; Wen, Hao; Zhang, Zhenyu; Luo, Da; Gao, Dongliang; Yang, Juan; Liang, Dehai; Li, Yan
2016-08-14
Graphene oxide (GO), as a typical two-dimensional material, possesses a range of oxygen-containing groups and shows surfactant and/or polyelectrolyte-like characteristics. Herein, GO sheets with narrow size distribution were prepared by an ultracentrifugation-based process and the aggregation behaviour of GO in pure water and an electrolyte aqueous solution were studied using laser light scattering (LLS). When adding common electrolytes, such as NaCl and MgCl2, into the GO dispersions, aggregation occurs and irreversible coagulation eventually occurs too. However, the GO dispersion can still remain stable when adding excess AlCl3. The zeta potential of the GO dispersion changes from negative to positive after the addition of access AlCl3, indicating that electrostatic repulsion is still responsible for the dispersion of GO, which is in good agreement with the LLS results. This finding on the dispersion of GO may be applied in the solution processing of GO. It also expands the scope of the design and preparation of new GO-based hybrid materials with different functions. PMID:27432559
NASA Astrophysics Data System (ADS)
Yan, Zhenya; Bluman, George
2002-11-01
The special exact solutions of nonlinearly dispersive Boussinesq equations (called B( m, n) equations), utt- uxx- a( un) xx+ b( um) xxxx=0, is investigated by using four direct ansatze. As a result, abundant new compactons: solitons with the absence of infinite wings, solitary patterns solutions having infinite slopes or cups, solitary waves and singular periodic wave solutions of these two equations are obtained. The variant is extended to include linear dispersion to support compactons and solitary patterns in the linearly dispersive Boussinesq equations with m=1. Moreover, another new compacton solution of the special case, B(2,2) equation, is also found.
Correlated few-photon transport in one-dimensional waveguides: Linear and nonlinear dispersions
Roy, Dibyendu
2011-04-15
We address correlated few-photon transport in one-dimensional waveguides coupled to a two-level system (TLS), such as an atom or a quantum dot. We derive exactly the single-photon and two-photon current (transmission) for linear and nonlinear (tight-binding sinusoidal) energy-momentum dispersion relations of photons in the waveguides and compare the results for the different dispersions. A large enhancement of the two-photon current for the sinusoidal dispersion has been seen at a certain transition energy of the TLS away from the single-photon resonances.
Accurate FDTD modelling for dispersive media using rational function and particle swarm optimisation
NASA Astrophysics Data System (ADS)
Chung, Haejun; Ha, Sang-Gyu; Choi, Jaehoon; Jung, Kyung-Young
2015-07-01
This article presents an accurate finite-difference time domain (FDTD) dispersive modelling suitable for complex dispersive media. A quadratic complex rational function (QCRF) is used to characterise their dispersive relations. To obtain accurate coefficients of QCRF, in this work, we use an analytical approach and a particle swarm optimisation (PSO) simultaneously. In specific, an analytical approach is used to obtain the QCRF matrix-solving equation and PSO is applied to adjust a weighting function of this equation. Numerical examples are used to illustrate the validity of the proposed FDTD dispersion model.
NASA Astrophysics Data System (ADS)
Matsuno, Yoshimasa
2014-03-01
We develop a direct method for solving a modified Camassa-Holm equation with cubic nonlinearity and linear dispersion under the rapidly decreasing boundary condition. We obtain a compact parametric representation for the multisoliton solutions and investigate their properties. We show that the introduction of a linear dispersive term exhibits various new features in the structure of solutions. In particular, we find the smooth solitons whose characteristics are different from those of the Camassa-Holm equation, as well as the novel types of singular solitons. A remarkable feature of the soliton solutions is that the underlying structure of the associated tau-functions is the same as that of a model equation for shallow-water waves introduced by Ablowitz et al (1974 Stud. Appl. Math. 53 249-315). Finally, we demonstrate that the short-wave limit of the soliton solutions recovers the soliton solutions of the short pulse equation which describes the propagation of ultra-short optical pulses in nonlinear media.
NASA Astrophysics Data System (ADS)
Charalampidis, E. G.; Kevrekidis, P. G.; Frantzeskakis, D. J.; Malomed, B. A.
2016-08-01
We consider a two-component, two-dimensional nonlinear Schrödinger system with unequal dispersion coefficients and self-defocusing nonlinearities, chiefly with equal strengths of the self- and cross-interactions. In this setting, a natural waveform with a nonvanishing background in one component is a vortex, which induces an effective potential well in the second component, via the nonlinear coupling of the two components. We show that the potential well may support not only the fundamental bound state, but also multiring excited radial state complexes for suitable ranges of values of the dispersion coefficient of the second component. We systematically explore the existence, stability, and nonlinear dynamics of these states. The complexes involving the excited radial states are weakly unstable, with a growth rate depending on the dispersion of the second component. Their evolution leads to transformation of the multiring complexes into stable vortex-bright solitons ones with the fundamental state in the second component. The excited states may be stabilized by a harmonic-oscillator trapping potential, as well as by unequal strengths of the self- and cross-repulsive nonlinearities.
The zero dispersion limits of nonlinear wave equations
Tso, T.
1992-01-01
In chapter 2 the author uses functional analytic methods and conservation laws to solve the initial-value problem for the Korteweg-de Vries equation, the Benjamin-Bona-Mahony equation, and the nonlinear Schroedinger equation for initial data that satisfy some suitable conditions. In chapter 3 the energy estimates are used to show that the strong convergence of the family of the solutions of the KdV equation obtained in chapter 2 in H[sup 3](R) as [epsilon] [yields] 0; also, it is shown that the strong L[sup 2](R)-limit of the solutions of the BBM equation as [epsilon] [yields] 0 before a critical time. In chapter 4 the author uses the Whitham modulation theory and averaging method to find the 2[pi]-periodic solutions and the modulation equations of the KdV equation, the BBM equation, the Klein-Gordon equation, the NLS equation, the mKdV equation, and the P-system. It is shown that the modulation equations of the KdV equation, the K-G equation, the NLS equation, and the mKdV equation are hyperbolic but those of the BBM equation and the P-system are not hyperbolic. Also, the relations are studied of the KdV equation and the mKdV equation. Finally, the author studies the complex mKdV equation to compare with the NLS equation, and then study the complex gKdV equation.
2015-01-01
In vitro toxicity assessment of engineered nanomaterials (ENM), the most common testing platform for ENM, requires prior ENM dispersion, stabilization, and characterization in cell culture media. Dispersion inefficiencies and active aggregation of particles often result in polydisperse and multimodal particle size distributions. Accurate characterization of important properties of such polydisperse distributions (size distribution, effective density, charge, mobility, aggregation kinetics, etc.) is critical for understanding differences in the effective dose delivered to cells as a function of time and dispersion conditions, as well as for nano–bio interactions. Here we have investigated the utility of tunable nanopore resistive pulse sensing (TRPS) technology for characterization of four industry relevant ENMs (oxidized single-walled carbon nanohorns, carbon black, cerium oxide and nickel nanoparticles) in cell culture media containing serum. Harvard dispersion and dosimetry platform was used for preparing ENM dispersions and estimating delivered dose to cells based on dispersion characterization input from dynamic light scattering (DLS) and TRPS. The slopes of cell death vs administered and delivered ENM dose were then derived and compared. We investigated the impact of serum protein content, ENM concentration, and cell medium on the size distributions. The TRPS technology offers higher resolution and sensitivity compared to DLS and unique insights into ENM size distribution and concentration, as well as particle behavior and morphology in complex media. The in vitro dose–response slopes changed significantly for certain nanomaterials when delivered dose to cells was taken into consideration, highlighting the importance of accurate dispersion and dosimetry in in vitro nanotoxicology. PMID:25093451
On shallow water waves in a medium with time-dependent dispersion and nonlinearity coefficients
Abdel-Gawad, Hamdy I.; Osman, Mohamed
2014-01-01
In this paper, we studied the progression of shallow water waves relevant to the variable coefficient Korteweg–de Vries (vcKdV) equation. We investigated two kinds of cases: when the dispersion and nonlinearity coefficients are proportional, and when they are not linearly dependent. In the first case, it was shown that the progressive waves have some geometric structures as in the case of KdV equation with constant coefficients but the waves travel with time dependent speed. In the second case, the wave structure is maintained when the nonlinearity balances the dispersion. Otherwise, water waves collapse. The objectives of the study are to find a wide class of exact solutions by using the extended unified method and to present a new algorithm for treating the coupled nonlinear PDE’s. PMID:26199750
On shallow water waves in a medium with time-dependent dispersion and nonlinearity coefficients.
Abdel-Gawad, Hamdy I; Osman, Mohamed
2015-07-01
In this paper, we studied the progression of shallow water waves relevant to the variable coefficient Korteweg-de Vries (vcKdV) equation. We investigated two kinds of cases: when the dispersion and nonlinearity coefficients are proportional, and when they are not linearly dependent. In the first case, it was shown that the progressive waves have some geometric structures as in the case of KdV equation with constant coefficients but the waves travel with time dependent speed. In the second case, the wave structure is maintained when the nonlinearity balances the dispersion. Otherwise, water waves collapse. The objectives of the study are to find a wide class of exact solutions by using the extended unified method and to present a new algorithm for treating the coupled nonlinear PDE's. PMID:26199750
Nanoparticle dispersion in disordered porous media with and without polymer additives.
Babayekhorasani, Firoozeh; Dunstan, Dave E; Krishnamoorti, Ramanan; Conrad, Jacinta C
2016-06-29
In purely viscous Newtonian fluids, mechanical mixing of the fluid stream as it moves through an unstructured porous medium controls the long-time dispersion of molecular tracers. In applications ranging from environmental remediation to materials processing, however, particles are transported through porous media in polymer solutions and melts, for which the fluid properties depend on the shear rate and extent of deformation. How the flow characteristics of polymer solutions affect the spreading of finite-sized particles remains poorly understood - both on the microscopic scale as local velocity profiles, and on the macroscale as dispersion. Here, we show across a range of flow rates and disordered porous media configurations that the long-time transport coefficients of particles flowed in water, in a viscous Newtonian fluid, and in a non-Newtonian shear-thinning polymer solution collapse onto scaling curves, independent of the fluid rheology. Thus the addition of polymer does not impact nanoparticle dispersion through disordered porous media. PMID:27328208
Fluid dispersion effects on density-driven thermohaline flow and transport in porous media
NASA Astrophysics Data System (ADS)
Jamshidzadeh, Zahra; Tsai, Frank T.-C.; Mirbagheri, Seyed Ahmad; Ghasemzadeh, Hasan
2013-11-01
This study introduces the dispersive fluid flux of total fluid mass to the density-driven flow equation to improve thermohaline modeling of salt and heat transports in porous media. The dispersive fluid flux in the flow equation is derived to account for an additional fluid flux driven by the density gradient and mechanical dispersion. The coupled flow, salt transport and heat transport governing equations are numerically solved by a fully implicit finite difference method to investigate solution changes due to the dispersive fluid flux. The numerical solutions are verified by the Henry problem and the thermal Elder problem under a moderate density effect and by the brine Elder problem under a strong density effect. It is found that increment of the maximum ratio of the dispersive fluid flux to the advective fluid flux results in increasing dispersivity for the Henry problem and the brine Elder problem. The effects of the dispersive fluid flux on salt and heat transports under high density differences and high dispersivities are more noticeable than under low density differences and low dispersivities. Values of quantitative indicators such as the Nusselt number, mass flux, salt mass stored and maximum penetration depth in the brine Elder problem show noticeable changes by the dispersive fluid flux. In the thermohaline Elder problem, the dispersive fluid flux shows a considerable effect on the shape and the number of developed fingers and makes either an upwelling or a downwelling flow in the center of the domain. In conclusion, for the general case that involves strong density-driven flow and transport modeling in porous media, the dispersive fluid flux should be considered in the flow equation.
Derivation of Hawking radiation in dispersive dielectric media
NASA Astrophysics Data System (ADS)
Linder, Malte F.; Schützhold, Ralf; Unruh, William G.
2016-05-01
Motivated by recent experimental efforts, we study a black hole analog induced by the propagation of a strong laser pulse in a nonlinear dielectric medium. Based on the Hopfield model (one pair of Sellmeier coefficients), we perform an analytic and fully relativistic microscopic derivation of the analog of Hawking radiation in this setup. The Hawking temperature is determined by the analog of the surface gravity (as expected), but we also find a frequency-dependent gray-body factor (i.e., a nonthermal spectrum at infinity) due to the breaking of conformal invariance in this setup.
NASA Astrophysics Data System (ADS)
Nguyen, Ba Phi; Kim, Kihong
2014-06-01
We study theoretically the influence of nonlinear gain effects on the transmission and the Anderson localization of waves in both uniform and random one-dimensional amplifying media by using the discrete nonlinear Schrödinger equation. In uniform amplifying media with nonlinear gain, we find that the strong oscillatory behavior of the transmittance and the reflectance for odd and even values of the sample length disappears for large nonlinearities. The exponential decay rate of the transmittance in the asymptotic limit is found to be independent of nonlinear gain. In random amplifying media, we find that the maximum values of the disorder-averaged logarithmic transmittance and reflectance depend nonmonotonically on the strength of nonlinear gain. We also find that the localization length is independent of nonlinear gain. In other words, the Anderson localization is neither enhanced nor weakened due to nonlinear gain. In both the uniform and the random cases, the crossover length, which is the critical length for the amplification to be efficient, is strongly reduced by the nonlinear nature of the gain.
Focused optical and acoustic beams in media with nonlinear absorption
NASA Astrophysics Data System (ADS)
Rudenko, O. V.; Sukhorukov, A. A.
1996-11-01
Optical and acoustic beams are known to be useful for medical and biological applications, such as diagnostics, surgery, etc. At high intensities both nonlinear lens effects and nonlinear absorption can be significant for the beams. The nonlinear absorption arises due to two-photon optical processes or acoustic shock wave formation. The present work is devoted to the theoretical description of nonlinear beam propagation and focal spot formation taking into account the competition between focusing, diffraction and absorption. We derived a new nonlinear integro- differential equation describing the spatial evolution of the beam width. The general analytical solution of this equation is obtained for arbitrary boundary conditions. The simple formulas are derived for the angle divergence in the far field, as well as for beam width at nonlinear waist. The results of the analysis of these key parameters in different situations are presented.
Reciprocity breaking during nonlinear propagation of adapted beams through random media
NASA Astrophysics Data System (ADS)
Palastro, J. P.; Peñano, J.; Nelson, W.; DiComo, G.; Helle, M.; Johnson, L. A.; Hafizi, B.
2016-08-01
Adaptive optics (AO) systems rely on the principle of reciprocity, or symmetry with respect to the interchange of point sources and receivers. These systems use the light received from a low power emitter on or near a target to compensate profile aberrations acquired by a laser beam during linear propagation through random media. If, however, the laser beam propagates nonlinearly, reciprocity is broken, potentially undermining AO correction. Here we examine the consequences of this breakdown. While discussed for general random and nonlinear media, we consider specific examples of Kerr-nonlinear, turbulent atmosphere.
Reciprocity breaking during nonlinear propagation of adapted beams through random media.
Palastro, J P; Peñano, J; Nelson, W; DiComo, G; Helle, M; Johnson, L A; Hafizi, B
2016-08-22
Adaptive optics (AO) systems rely on the principle of reciprocity, or symmetry with respect to the interchange of point sources and receivers. These systems use the light received from a low power emitter on or near a target to compensate phase aberrations acquired by a laser beam during linear propagation through random media. If, however, the laser beam propagates nonlinearly, reciprocity is broken, potentially undermining AO correction. Here we examine the consequences of this breakdown, providing the first analysis of AO applied to high peak power laser beams. While discussed for general random and nonlinear media, we consider specific examples of Kerr-nonlinear, turbulent atmosphere. PMID:27557166
Sharp nonlinear stability for centrifugal filtration convection in magnetizable media.
Saravanan, S; Brindha, D
2011-11-01
A nonlinear stability theory is adopted to study centrifugal thermal convection in a magnetic-fluid-saturated and differentially heated porous layer placed in a zero-gravity environment. The axis of rotation of the layer is placed within its boundaries that leads to an alternating direction of the centrifugal body force. An analysis through the variational principles is made to find the unconditional and sharp nonlinear limits. The compound matrix method is employed to solve the eigenvalue problems of the nonlinear and corresponding linear theories. The importance of nonlinear theory is established by demonstrating the failure of the linear theory in capturing the physics of the onset of convection. PMID:22181509
Construction of the wave operator for non-linear dispersive equations
NASA Astrophysics Data System (ADS)
Tsuruta, Kai Erik
In this thesis, we will study non-linear dispersive equations. The primary focus will be on the construction of the positive-time wave operator for such equations. The positive-time wave operator problem arises in the study of the asymptotics of a partial differential equation. It is a map from a space of initial data X into itself, and is loosely defined as follows: Suppose that for a solution ψlin to the dispersive equation with no non-linearity and initial data ψ +, there exists a unique solution ψ to the non-linear equation with initial data ψ0 such that ψ behaves as ψ lin as t → infinity. Then the wave operator is the map W+ that takes ψ + to ψ0. By its definition, W+ is injective. An important additional question is whether or not the map is also surjective. If so, then every non-linear solution emanating from X behaves, in some sense, linearly as it evolves (this is known as asymptotic completeness). Thus, there is some justification for treating these solutions as their much simpler linear counterparts. The main results presented in this thesis revolve around the construction of the wave operator(s) at critical non-linearities. We will study the "semi-relativistic" Schrodinger equation as well as the Klein-Gordon-Schrodinger system on R2 . In both cases, we will impose fairly general quadratic non-linearities for which conservation laws cannot be relied upon. These non-linearities fall below the scaling required to employ such tools as the Strichartz estimates. We instead adapt the "first iteration method" of Jang, Li, and Zhang to our setting which depends crucially on the critical decay of the non-linear interaction of the linear evolution. To see the critical decay in our problem, careful analysis is needed to treat the regime where one has spatial and/or time resonance.
Compensation of nonlinear phase shifts with third-order dispersion in short-pulse fiber amplifiers.
Zhou, Shian; Kuznetsova, Lyuba; Chong, Andy; Wise, Frank
2005-06-27
We show that nonlinear phase shifts and third-order dispersion can compensate each other in short-pulse fiber amplifiers. This compen-sation can be exploited in any implementation of chirped-pulse amplification, with stretching and compression accomplished with diffraction gratings, single-mode fiber, microstructure fiber, fiber Bragg gratings, etc. In particular, we consider chirped-pulse fiber amplifiers at wavelengths for which the fiber dispersion is normal. The nonlinear phase shift accumulated in the amplifier can be compensated by the third-order dispersion of the combination of a fiber stretcher and grating compressor. A numerical model is used to predict the compensation, and experimental results that exhibit the main features of the calculations are presented. In the presence of third-order dispersion, an optimal nonlinear phase shift reduces the pulse duration, and enhances the peak power and pulse contrast compared to the pulse produced in linear propagation. Contrary to common belief, fiber stretchers can perform as well or better than grating stretchers in fiber amplifiers, while offering the major practical advantages of a waveguide medium. PMID:19498473
Quantification and prediction of extreme events in a one-dimensional nonlinear dispersive wave model
NASA Astrophysics Data System (ADS)
Cousins, Will; Sapsis, Themistoklis P.
2014-07-01
The aim of this work is the quantification and prediction of rare events characterized by extreme intensity in nonlinear waves with broad spectra. We consider a one-dimensional nonlinear model with deep-water waves dispersion relation, the Majda-McLaughlin-Tabak (MMT) model, in a dynamical regime that is characterized by a broadband spectrum and strong nonlinear energy transfers during the development of intermittent events with finite-lifetime. To understand the energy transfers that occur during the development of an extreme event we perform a spatially localized analysis of the energy distribution along different wavenumbers by means of the Gabor transform. A statistical analysis of the Gabor coefficients reveals (i) the low-dimensionality of the intermittent structures, (ii) the interplay between non-Gaussian statistical properties and nonlinear energy transfers between modes, as well as (iii) the critical scales (or critical Gabor coefficients) where a critical amount of energy can trigger the formation of an extreme event. We analyze the unstable character of these special localized modes directly through the system equation and show that these intermittent events are due to the interplay of the system nonlinearity, the wave dispersion, and the wave dissipation which mimics wave breaking. These localized instabilities are triggered by random localizations of energy in space, created by the dispersive propagation of low-amplitude waves with random phase. Based on these properties, we design low-dimensional functionals of these Gabor coefficients that allow for the prediction of the extreme event well before the nonlinear interactions begin to occur.
NASA Astrophysics Data System (ADS)
Purvinis, Georgeanne M.
Organic crystals and certain polymer films, such as ionically self-assembled monolayer (ISAM) films, are lossy and anisotropic. These materials may have a large chi(2) nonlinear response, and thus are conceivably capable of efficient second order processes. Anomalous dispersion phase-matched second harmonic generation (ADPM-SHG) in organic media is a second order wavelength conversion process that phase matches like-order modes in a waveguide (ex: TM0o → TM02o ), thus maximizing the overlap integral. Demonstration of ADPM-SHG in economical and easily fabricated polymer ISAM film is the ultimate experimental goal of this research. In order to achieve demonstration of ADPM-SHG in an ISAM film, both theoretical and material research contributions are accomplished. The predominant analysis approaches in literature are based on the finite element method, which is approximate and computationally intensive, thus prohibiting arbitrary crystallographic media orientations in devices. This restricted treatment in the literature may be insufficient with ISAM films, as SHG occurs in a spectral region of residual absorption, the film is uniaxial, and the optic axis may not be aligned the waveguide coordinate system. Thus, the theory objectives of the dissertation research are: (1) develop an exact solution for finding the polarization states in lossy anisotropic media using a new complex orthogonal similarity transformation with the complex symmetric impermeability tensor, (2) develop a rigorous transverse resonance analysis to find the eigenmodes of general lossy anisotropic planar waveguides with arbitrary principal axes orientations, and (3) integrate the results of steps 1--2 to determine the conversion efficiency of an ISAM planar waveguide using ADPM-SHG, thus illustrating the importance of the dissertation research by highlighting the errors resulting in algorithms published in other works. Experimentally, the dissertation focuses on designing anionic and cationic
Methods of obtaining meaningful information from disperse media holograms
NASA Astrophysics Data System (ADS)
Dyomin, Victor V.
1997-05-01
The problem of nondestructive testing of microstructure parameters, both aerosols and water suspension, is actual for biology, medicine, and environmental control. Among the methods of optical investigations and diagnostics of light scattering media the holographic method plays a special role. A hologram of scattering volume allows us to reproduce the optical wave field to obtain information on the parameters of microparticles: size, shape, and spatial position. Usually this is done by analysis of the particle images reconstructed from the hologram. On the basis of calculated and experimental results, characteristics of holographic methods are analyzed in this paper. These estimations demonstrate a possibility to use the above methods for investigation of media in biomedical science and clinical practice. A lot of micro-organisms and other living particles are transparent or semitransparent ones. In this case the reconstructed image of the particle will show a spot formed due to light focusing by the particle in addition to its cross section. This circumstance allowed us to propose a method of determining of refractive index of transparent and semitransparent microparticles, that, in turn, can provide identification of the particles type. The development of this method is presented. To make measurement of the size-distribution of particles one can do this simultaneously with the reconstruction of scattering optical field from the hologram. In this case a small angle optical meter (for example, focusing lens) can be placed just behind the illuminated hologram. The reconstructed field is composed of the initial one and its conjugate. Each of these components as well as interference between them can bear an additional information on the medium. The possibility of extraction of this information is also discussed.
On a hierarchy of nonlinearly dispersive generalized Korteweg - de Vries evolution equations
Christov, Ivan C.
2015-08-20
We propose a hierarchy of nonlinearly dispersive generalized Korteweg–de Vries (KdV) evolution equations based on a modification of the Lagrangian density whose induced action functional the KdV equation extremizes. Two recent nonlinear evolution equations describing wave propagation in certain generalized continua with an inherent material length scale are members of the proposed hierarchy. Like KdV, the equations from the proposed hierarchy possess Hamiltonian structure. Unlike KdV, the solutions to these equations can be compact (i.e., they vanish outside of some open interval) and, in addition, peaked. Implicit solutions for these peaked, compact traveling waves (“peakompactons”) are presented.
NASA Astrophysics Data System (ADS)
Glückstad, J.; Saffman, M.
1995-03-01
We have observed the spontaneous formation of transverse spatial patterns in a thin film of bacteriorhodopsin with a feedback mirror. Bacteriorhodopsin has a mixed absorptive-dispersive nonlinearity at the wavelength used in the experiments (633 nm). Threshold values of the incident intensity for observation of pattern formation are found from a linear stability analysis of a model that describes bacteriorhodopsin as a sluggish saturable nonlinear medium with a complex Kerr coefficient. The calculated threshold intensity is in good agreement with the experimental observations, and the patterns are predicted to be frequency offset from the pump radiation.
Fractional Advective-Dispersive Equation as a Model of Solute Transport in Porous Media
Technology Transfer Automated Retrieval System (TEKTRAN)
Understanding and modeling transport of solutes in porous media is a critical issue in the environmental protection. The common model is the advective-dispersive equation (ADE) describing the superposition of the advective transport and the Brownian motion in water-filled pore space. Deviations from...
Analytical solution for the advection-dispersion transport equation in layered media
Technology Transfer Automated Retrieval System (TEKTRAN)
The advection-dispersion transport equation with first-order decay was solved analytically for multi-layered media using the classic integral transform technique (CITT). The solution procedure used an associated non-self-adjoint advection-diffusion eigenvalue problem that had the same form and coef...
NASA Astrophysics Data System (ADS)
Jiménez, Noé; Camarena, Francisco; Redondo, Javier; Sánchez-Morcillo, Víctor; Konofagou, Elisa E.
2015-10-01
We report a numerical method for solving the constitutive relations of nonlinear acoustics, where multiple relaxation processes are included in a generalized formulation that allows the time-domain numerical solution by an explicit finite differences scheme. Thus, the proposed physical model overcomes the limitations of the one-way Khokhlov-Zabolotskaya-Kuznetsov (KZK) type models and, due to the Lagrangian density is implicitly included in the calculation, the proposed method also overcomes the limitations of Westervelt equation in complex configurations for medical ultrasound. In order to model frequency power law attenuation and dispersion, such as observed in biological media, the relaxation parameters are fitted to both exact frequency power law attenuation/dispersion media and also empirically measured attenuation of a variety of tissues that does not fit an exact power law. Finally, a computational technique based on artificial relaxation is included to correct the non-negligible numerical dispersion of the finite difference scheme, and, on the other hand, improve stability trough artificial attenuation when shock waves are present. This technique avoids the use of high-order finite-differences schemes leading to fast calculations. The present algorithm is especially suited for practical configuration where spatial discontinuities are present in the domain (e.g. axisymmetric domains or zero normal velocity boundary conditions in general). The accuracy of the method is discussed by comparing the proposed simulation solutions to one dimensional analytical and k-space numerical solutions.
A Stochastic Non-Gaussian Velocity Model for Tracer Dispersion in Heterogeneous Porous Media
NASA Astrophysics Data System (ADS)
Meyer, D. W.; Tchelepi, H. A.
2009-12-01
To model tracer transport in porous media, computationally expensive Monte Carlo (MC) techniques or low-order approximation methods (LOAM) are applicable [1]. The latter are inexpensive but limited to relatively homogeneous media with low conductivity or transmissivity variations, and approximately Gaussian one-point velocity statistics. MC studies have shown that heterogeneous media lead to distinctly skewed non-Gaussian velocity distributions [2]. In addition to MC and LOAM, continuous time random walk (CTRW) or Lévy motion (LM) approaches were proposed for the modeling of dispersion in highly heterogeneous media, e.g, fractured rock [3,4]. Both models involve discontinuous stochastic processes for the displacement of tracer particles. The parameters that determine these processes, however, are not always easy to identify. In this work, a new particle-based model for the simulation of tracer dispersion in homogeneous and heterogeneous porous media is presented. Other than in CTRW or LM models, a continuous stochastic process for the Lagrangian velocity of a tracer particle is formulated. The suggested formulation encompasses Gaussian and skewed velocity statistics, and the model parameters can be related more easily to medium characteristics. Numerical simulations of the tracer plume evolution in the Borden tracer experiment and of breakthrough curves in homogeneous and uniformly heterogeneous sand packs are successfully validated with experimental data [5,6]. Non-Fickian dispersion behavior resulting from the scale effect (plume-size dependent dispersivities) and skewed velocity statistics is demonstrated and analyzed. [1] Zhang, Y. K. and D. Zhang (2004). "Forum: The state of stochastic hydrology." Stochastic Environmental Research and Risk Assessment 18(4): 265-265. [2] Salandin, P. and V. Fiorotto (1998). "Solute transport in highly heterogeneous aquifers." Water Resources Research 34(5): 949-961. [3] Benson, D. A., R. Schumer, et al. (2001). "Fractional
Xia, Cen; Liu, Xiang; Chandrasekhar, S; Fontaine, N K; Zhu, Likai; Li, G
2014-03-10
We demonstrate nonlinearity compensation of 37.5-GHz-spaced 128-Gb/s PDM-QPSK signals using dispersion-folded digital-backward-propagation and a spectrally-sliced receiver that simultaneously receives three WDM signals, showing mitigation of intra-channel and inter-channel nonlinear effects in a 2560-km dispersion-managed TWRS-fiber link. Intra-channel and adjacent inter-channel nonlinear compensation gains when WDM channels are fully populated in the C-band are estimated based on the GN-model. PMID:24663923
Electromagnetic fields in dispersive chiral media generated by modulated nonuniformly moving sources
NASA Astrophysics Data System (ADS)
Kravchenko, V. V.; Oviedo-Galdeano, H.; Rabinovich, V. S.
2013-03-01
A representation for the fields generated by moving sources in chiral media in the form of double time-frequency oscillating integrals is obtained by using quaternionic analysis methods. Some additional assumptions concerning the source allow us to introduce a large dimensionless parameter λ > 0 which characterizes simultaneously the slowness of variations of the amplitude and of the velocity of the source. Application of the two-dimensional stationary phase method to the integral representation of the field leads to asymptotic formulas for the electromagnetic field for large λ > 0, and efficient formulas for the frequency and the time Doppler effects in dispersive chiral media. As an application of the proposed method, we consider the Vavilov-Cherenkov radiation in chiral dispersive media.
Record setting during dispersive transport in porous media
NASA Astrophysics Data System (ADS)
Edery, Yaniv; Kostinski, Alex; Berkowitz, Brian
2011-08-01
How often does a contaminant ‘particle’ migrating in a porous medium set a distance record, i.e., advance farther from the origin than at all previous time steps? This question is of fundamental importance in characterizing the nature of the leading edge of a contaminant plume as it is transported through an aquifer. It was proven theoretically by Majumdar and Ziff (2008) that, in the 1d case for pure diffusion, record setting of a random walker scales with n1/2, where n is the number of steps, regardless of the length and time distribution of steps. Here, we use numerical simulations, benchmarked against the 1d analytical solution, to extend this result also for pure diffusion in 2d and 3d domains. We then consider transport in the presence of a drift (i.e., advective-dispersive transport), and show that the record-setting pace of random walkers changes abruptly from $\\propto$ n1/2 to $\\propto$ n1. We explore the dependence of the prefactor on the distribution of step length and number of spatial dimensions. The key implication is that when, after a brief transitional period, the scaling regime commences, the maximum distance reached by the leading edge of a migrating contaminant plume scales linearly with n, regardless of the drift magnitude.
The modulational instability for the TDNLS equations for weakly nonlinear dispersive MHD waves
NASA Technical Reports Server (NTRS)
Webb, G. M.; Brio, M.; Zank, G. P.
1995-01-01
In this paper we study the modulational instability for the TDNLS equations derived by Hada (1993) and Brio, Hunter, and Johnson to describe the propagation of weakly nonlinear dispersive MHD waves in beta approximately 1 plasmas. We employ Whitham's averaged Lagrangian method to study the modulational instability. This complements studies of the modulational instability by Hada (1993) and Hollweg (1994), who did not use the averaged Lagrangian approach.
Low-Dispersion Scheme for Nonlinear Acoustic Waves in Nonuniform Flow
NASA Technical Reports Server (NTRS)
Baysal, Oktay; Kaushik, Dinesh K.; Idres, Moumen
1997-01-01
The linear dispersion-relation-preserving scheme and its boundary conditions have been extended to the nonlinear Euler equations. This allowed computing, a nonuniform flowfield and a nonlinear acoustic wave propagation in such a medium, by the same scheme. By casting all the equations, boundary conditions, and the solution scheme in generalized curvilinear coordinates, the solutions were made possible for non-Cartesian domains and, for the better deployment of the grid points, nonuniform grid step sizes could be used. It has been tested for a number of simple initial-value and periodic-source problems. A simple demonstration of the difference between a linear and nonlinear propagation was conducted. The wall boundary condition, derived from the momentum equations and implemented through a pressure at a ghost point, and the radiation boundary condition, derived from the asymptotic solution to the Euler equations, have proven to be effective for the nonlinear equations and nonuniform flows. The nonreflective characteristic boundary conditions also have shown success but limited to the nonlinear waves in no mean flow, and failed for nonlinear waves in nonuniform flow.
NASA Astrophysics Data System (ADS)
Zhang, Ya-Ni
2013-01-01
A simple type of photonic crystal fiber (PCF) for supercontinuum generation is proposed for the first time. The proposed PCF is composed of a solid silica core and a cladding with square lattice uniform elliptical air holes, which offers not only a large nonlinear coefficient but also a high birefringence and low leakage losses. The PCF with nonlinear coefficient as large as 46 W-1 · km-1 at the wavelength of 1.55 μm and a total dispersion as low as ±2.5 ps · nm-1 · km-1 over an ultra-broad waveband range of the S—C—L band (wavelength from 1.46 μm to 1.625 μm) is optimized by adjusting its structure parameter, such as the lattice constant Λ, the air-filling fraction f, and the air-hole ellipticity η. The novel PCF with ultra-flattened dispersion, highly nonlinear coefficient, and nearly zero negative dispersion slope will offer a possibility of efficient super-continuum generation in telecommunication windows using a few ps pulses.
Nonlinear optical and optical limiting properties of graphene oxide dispersion in femtosecond regime
NASA Astrophysics Data System (ADS)
Zheng, Zebo; Zhu, Liang; Zhao, Fuli
2014-08-01
The third-order nonlinear optical properties of graphene oxide (GO) dispersion in distilled water were investigated in femtosecond regime, using a single beam z-scan technique. Induced by a focused Gaussian beam (λ~800 nm) with 150 fs pulse duration, the graphene oxide shows strong nonlinear absorption, which was dominated by reverse saturable absorption (RSA), originates from two-photon absorption (TPA) in GO. In addition, the optical limiting performance of GO was experimentally derived, indicating that the occurrence of RSA make GO a candidate for optical limiting. In addition, the further increasing of input intensity would enhance the nonlinear scattering effects in the sample so that the optical limiting threshold was reached.
Exact kink solitons in the presence of diffusion, dispersion, and polynomial nonlinearity
NASA Astrophysics Data System (ADS)
Raposo, E. P.; Bazeia, D.
1999-03-01
We describe exact travelling-wave kink soliton solutions in some classes of nonlinear partial differential equations, such as generalized Korteweg-de Vries-Burgers, Korteweg-de Vries-Huxley, and Korteweg-de Vries-Burgers-Huxley equations, as well as equations in the generic form ut + P( u) ux + vuxx - δuxxx = A( u), with polynomial functions P( u) and A( u) of u = u( x, t), whose generality allows the identification with a number of relevant equations in physics. We focus on the analysis of the role of diffusion, dispersion, nonlinear effects, and parity of the polynomials to the properties of the solutions, particularly their velocity of propagation. In addition, we show that, for some appropriate choices, these equations can be mapped onto equations of motion of relativistic (1 + 1)-dimensional φ4 and φ6 field theories of real scalar fields. Systems of two coupled nonlinear equations are also considered.
Solitons supported by localized nonlinearities in periodic media
Dror, Nir; Malomed, Boris A.
2011-03-15
Nonlinear periodic systems, such as photonic crystals and Bose-Einstein condensates (BEC's) loaded into optical lattices, are often described by the nonlinear Schroedinger or Gross-Pitaevskii equation with a sinusoidal potential. Here, we consider a model based on such a periodic potential, with the nonlinearity (attractive or repulsive) concentrated either at a single point or at a symmetric set of two points, which are represented, respectively, by a single {delta} function or a combination of two {delta} functions. With the attractive or repulsive sign of the nonlinearity, this model gives rise to ordinary solitons or gap solitons (GS's), which reside, respectively, in the semi-infinite or finite gaps of the system's linear spectrum, being pinned to the {delta} functions. Physical realizations of these systems are possible in optics and BEC's, using diverse variants of the nonlinearity management. First, we demonstrate that the single {delta} function multiplying the nonlinear term supports families of stableregular solitons in the self-attractive case, while a family of solitons supported by the attractive {delta} function in the absence of the periodic potential is completely unstable. In addition, we show that the {delta} function can support stable GS's in the first finite band gap in both the self-attractive and repulsive models. The stability analysis for the GS's in the second finite band gap is reported too, for both signs of the nonlinearity. Alongside the numerical analysis, analytical approximations are developed for the solitons in the semi-infinite and first two finite gaps, with the single {delta} function positioned at a minimum or maximum of the periodic potential. In the model with the symmetric set of two {delta} functions, we study the effect of the spontaneous symmetry breaking of the pinned solitons. Two configurations are considered, with the {delta} functions set symmetrically with respect to the minimum or maximum of the underlying
NASA Astrophysics Data System (ADS)
Alejos, Ana Vazques; Dawood, Muhammad
2012-06-01
In this contribution we examine the propagation of an ultrawideband (UWB) random noise signal through dispersive media such as soil, vegetation, and water, using Fourier-based analysis. For such media, the propagated signal undergoes medium-specific impairments which degrade the received signal in a different way than the non-dispersive propagation media. Theoretically, larger penetration depths into a dispersive medium can be achieved by identifying and detecting the precursors, thereby offering significantly better signal-to-noise ratio and enhanced imaging. For a random noise signal, well defined precursors in term of peak-amplitude don't occur. The phenomenon must therefore be studied in terms of energy evolution. Additionally, the distortion undergone by the UWB random noise signal through a dispersive medium can introduce frequency-dependent uncertainty or noise in the received signal. This leads to larger degradation of the cross-correlation function (CCF), mainly in terms of sidelobe levels and main peak deformation, and consequently making the information retrieval difficult. We would further analyze one method to restore the shape and carrier frequency of the input UWB random noise signal, thereby, improving the CCF estimation.
Pseudospectral modeling and dispersion analysis of Rayleigh waves in viscoelastic media
Zhang, K.; Luo, Y.; Xia, J.; Chen, C.
2011-01-01
Multichannel Analysis of Surface Waves (MASW) is one of the most widely used techniques in environmental and engineering geophysics to determine shear-wave velocities and dynamic properties, which is based on the elastic layered system theory. Wave propagation in the Earth, however, has been recognized as viscoelastic and the propagation of Rayleigh waves presents substantial differences in viscoelastic media as compared with elastic media. Therefore, it is necessary to carry out numerical simulation and dispersion analysis of Rayleigh waves in viscoelastic media to better understand Rayleigh-wave behaviors in the real world. We apply a pseudospectral method to the calculation of the spatial derivatives using a Chebyshev difference operator in the vertical direction and a Fourier difference operator in the horizontal direction based on the velocity-stress elastodynamic equations and relations of linear viscoelastic solids. This approach stretches the spatial discrete grid to have a minimum grid size near the free surface so that high accuracy and resolution are achieved at the free surface, which allows an effective incorporation of the free surface boundary conditions since the Chebyshev method is nonperiodic. We first use an elastic homogeneous half-space model to demonstrate the accuracy of the pseudospectral method comparing with the analytical solution, and verify the correctness of the numerical modeling results for a viscoelastic half-space comparing the phase velocities of Rayleigh wave between the theoretical values and the dispersive image generated by high-resolution linear Radon transform. We then simulate three types of two-layer models to analyze dispersive-energy characteristics for near-surface applications. Results demonstrate that the phase velocity of Rayleigh waves in viscoelastic media is relatively higher than in elastic media and the fundamental mode increases by 10-16% when the frequency is above 10. Hz due to the velocity dispersion of P
Self-focusing suppression in a system of two nonlinear media and a spatial filter
Garanin, S G; L'vov, L V; Sukharev, S A; Epatko, I V; Serov, R V
2007-12-31
It is shown that the rate of development of spatial instability caused by small-scale self-focusing strongly depends on the mutual arrangement of nonlinear media and spatial filters in a setup. The expressions are obtained for the arrangement of elements providing the minimal growth rate of intensity fluctuations. The results of two-dimensional calculations confirm the efficiency of this method of suppressing small-scale self-focusing. (nonlinear optical phenomena)
Gorkovenko, A. I.; Plekhanov, A. I.; Simanchuk, A. E.; Yakimanskiy, A. V.; Nosova, G. I.; Solovskaya, N. A.; Smirnov, N. N.
2014-12-14
Detailed investigations of the quadratic nonlinear response of a series of new polyimides with covalently attached chromophore DR13 are performed by the Maker fringes method in the range of fundamental wavelength from 850 to 1450 nm. Polymer films with thickness of 100–400 nm were spin-coated on glass substrates and corona poled. For these materials, the maximum values of the second harmonic generation coefficients d{sub 33} are 80–120 pm/V. A red shift of the nonlinear response dispersion with respect to the linear absorption spectrum was observed for the DR13 chromophore. The temperature dependences of linear absorption and nonlinear coefficients d{sub 33} for studied structures are observed. It was found that the temperature changes of the absorption spectra lead to appreciable contribution to the value of the nonlinear coefficient d{sub 33}. The demonstrated high temperature stability (up to 120 °C) of chromophore-containing polyimide thin films makes it possible to eliminate the degradation of their nonlinear optical properties in the future applications of such structures.
Drop Impingement Induced Dispersal of Microorganisms and Contaminants Within Porous Media
NASA Astrophysics Data System (ADS)
Joung, Young Soo; Ge, Zhifei; Buie, Cullen
2014-11-01
We investigate migration of chemicals and microbes with aerosol generated by drop impingement on porous media. In our previous work we found that aerosol generation from droplets hitting porous media within a specific range of the Weber number (We) and a modified Pelect number (Pe). We and Pe reflect the impact condition of droplets and the wetting properties of porous media, respectively. The relationship between We and Pe can be expressed by a third dimensionless group, the Washburn Reynolds number (ReW = We/Pe). In a specific range of ReW, hundreds of aerosol particles can be generated within milliseconds of drop impingement. In this work we investigate if microbes such as Corynebacterium glutamicum, a soil bacterium, and chemicals such as Rhodamine B can be dispersed by aerosols generated from droplet impact. Experimentally, C. glutamicum and Rhodamine B are permeated into porous media. Then drop impingements are conducted on the porous media with different We and Pe in an airflow tunnel. We quantitatively investigate the volume and speed of aerosol migration as a function of ReW of the drop impingement and Re of the airflow. Results of this study will shed light upon the dispersal of elemental compounds and microbes within soils due to aerosol generated by rainfall.
Modulational instability in nonlocal media with competing non-Kerr nonlinearities
NASA Astrophysics Data System (ADS)
Tiofack, C. G. Latchio; Tagwo, H.; Dafounansou, O.; Mohamadou, A.; Kofane, T. C.
2015-12-01
We investigate analytically and numerically the modulational instability (MI) and propagation properties of light in nonlocal media with competing cubic-quintic nonlinearities where the response functions are assumed to be equal. By using the linear stability analysis, the generic properties of the MI gain spectra are demonstrated for the exponential and rectangular response functions. Special attention is paid to investigate the competition between the spatial scale of the cubic and quintic nonlinearities. For media with exponential response function, we have obtained the range of the wave numbers where instability occurs. It is found that the increase in the absolute value of the quintic nonlinearity suppresses the instability in the regime where the cubic nonlinearity prevails over the quintic one and promotes its development in the opposite case. For media with negative response function, additional MI bands are excited at higher wave numbers when the width of the nonlocal response function exceeds a certain threshold. In the regime where the quintic nonlinearity is dominant, the increase in the absolute value of the quintic coefficient leads to the enhancement of the gain value and the movement of the maximum gain to higher wave numbers. On the other hand, in the case of the predominance of the cubic nonlinearity, the position of the maximum gain bands move to lower wave numbers and MI domain becomes increasingly narrows when the quintic term increases. The numerical simulations fully confirm our analytical results.
Z-scan for thin media with more than one nonlocal nonlinear response.
Irivas, B A Martinez; Carrasco, M L Arroyo; Otero, M M Mendez; García, R Ramos; Castillo, M D Iturbe
2016-06-13
A model to characterize the response of a thin media that can exhibit more than one nonlocal nonlinear response when it is illuminated with a Gaussian beam in a z-scan experiment is proposed. The model considers that these nonlocal contributions can be treated as independent contributions in the refractive or absorptive nonlinear response. Numerical results for two nonlocal nonlinear contributions with different magnitudes between them are presented. Experimental results obtained from a hydrogenated amorphous silicon sample are used to corroborate this model. PMID:27410356
Integration of nonlinearity-management and dispersion-management for pulses in fiber-optic links
NASA Astrophysics Data System (ADS)
Driben, Rodislav; Malomed, Boris A.; Mahlab, Uri
2004-03-01
We introduce a model of a long-haul fiber-optic link that uses a combination of the nonlinearity- and dispersion-compensation (management) to stabilize nonsoliton pulses. The compensation of the accumulated fiber nonlinearity, and simultaneously pulse reshaping, which helps to suppress the inter-symbol interference (ISI, i.e., blurring of blank spaces between adjacent pulses), are performed by second-harmonic-generating modules, which are periodically inserted together with amplifiers. We demonstrate that the dispersion-management (DM), which was not included in an earlier considered model, drastically improves stability of the pulses. The stable-transmission length for an isolated pulse, which was less than 10 fiber spans with the use of the nonlinearity-management only, becomes indefinitely long. It is demonstrated too that the pulse is quite robust against fluctuations of its initial parameters, and the scheme operates efficiently in a very broad parameter range. The interaction between pulses can be safely suppressed for the transmission distance exceeding 16 spans (≃1000 km). The smallest temporal separation between adjacent pulses, which is necessary to prevent the ISI, attains a minimum in the case of moderate DM, similar to known results for the DM solitons. The mutually-induced distortion of co-propagating pulses being accounted for by the emission of radiation, a plausible way to further increase the stable-transmission limit is to introduce bandpass filters.
NASA Astrophysics Data System (ADS)
Namihira, Yoshinori; Hossain, Md. Anwar; Koga, Taito; Islam, Md. Ashraful; Razzak, S. M. Abdur; Kaijage, Shubi F.; Hirako, Yuki; Higa, Hiroki
2012-03-01
In this paper, we propose a highly nonlinear dispersion flattened hexagonal photonic crystal fiber (HNDF-HPCF) with nonlinear coefficients as large as 57.5W-1 km-1 at 1.31 μm wavelength for dental optical coherence tomography (OCT) applications. This HNDF-HPCF offers not only large nonlinear coefficient but also very flat dispersion slope and very low confinement losses. Using these characteristics of our proposed PCF, it is shown through simulations by using finite difference method with an anisotropic perfectly matched boundary layer that this PCF offers the efficient supercontinuum (SC) generation for dental OCT applications at 1.31 μm wavelength using a picosecond pulse easily produced by commercially available less expensive laser sources. Coherent length of light source using SC is found 10 μm and the spatial resolutions in the depth direction for dental applications of OCT are found about 6.1 μm for enamel and 6.5 μm for dentin.
Wave-induced fluid flow in random porous media: attenuation and dispersion of elastic waves.
Müller, Tobias M; Gurevich, Boris
2005-05-01
A detailed analysis of the relationship between elastic waves in inhomogeneous, porous media and the effect of wave-induced fluid flow is presented. Based on the results of the poroelastic first-order statistical smoothing approximation applied to Biot's equations of poroelasticity, a model for elastic wave attenuation and dispersion due to wave-induced fluid flow in 3-D randomly inhomogeneous poroelastic media is developed. Attenuation and dispersion depend on linear combinations of the spatial correlations of the fluctuating poroelastic parameters. The observed frequency dependence is typical for a relaxation phenomenon. Further, the analytic properties of attenuation and dispersion are analyzed. It is shown that the low-frequency asymptote of the attenuation coefficient of a plane compressional wave is proportional to the square of frequency. At high frequencies the attenuation coefficient becomes proportional to the square root of frequency. A comparison with the 1-D theory shows that attenuation is of the same order but slightly larger in 3-D random media. Several modeling choices of the approach including the effect of cross correlations between fluid and solid phase properties are demonstrated. The potential application of the results to real porous materials is discussed. PMID:15957744
Solution for (1+1)-dimensional surface solitons in thermal nonlinear media
NASA Astrophysics Data System (ADS)
Ma, Xuekai; Yang, Zhenjun; Lu, Daquan; Guo, Qi; Hu, Wei
2011-03-01
Analytical solutions for (1+1)-dimensional surface fundamental solitons in thermal nonlinear media are obtained. The stationary position and the critical power of surface solitons are obtained using these analytical solutions. The analytical solutions are verified by numerical simulations. The solutions for surface breathers and their breathing period, along with solutions for surface dipole and tripole solitons, are also given.
Solution for (1+1)-dimensional surface solitons in thermal nonlinear media
Ma Xuekai; Yang Zhenjun; Lu Daquan; Guo Qi; Hu Wei
2011-03-15
Analytical solutions for (1+1)-dimensional surface fundamental solitons in thermal nonlinear media are obtained. The stationary position and the critical power of surface solitons are obtained using these analytical solutions. The analytical solutions are verified by numerical simulations. The solutions for surface breathers and their breathing period, along with solutions for surface dipole and tripole solitons, are also given.
Effects of focusing on third-order nonlinear processes in isotropic media. [laser beam interactions
NASA Technical Reports Server (NTRS)
Bjorklund, G. C.
1975-01-01
Third-order nonlinear processes in isotropic media have been successfully used for tripling the efficiency of high-power laser radiation for the production of tunable and fixed-frequency coherent vacuum UV radiation and for up-conversion of IR radiation. The effects of focusing on two processes of this type are studied theoretically and experimentally.
Three-dimensional optical vortex and necklace solitons in highly nonlocal nonlinear media
NASA Astrophysics Data System (ADS)
Zhong, Wei-Ping; Belić, Milivoj
2009-02-01
We demonstrate the existence of localized optical vortex and necklace solitons in three-dimensional (3D) highly nonlocal nonlinear media, both analytically and numerically. The 3D solitons are constructed with the help of Kummer’s functions in spherical coordinates and their unique properties are discussed. The procedure we follow offers ways for generation, control, and manipulation of spatial solitons.
A Fundamental Approach to the Simulation of Flow and Dispersion in Fractured Media
Miller, J.D.
1983-12-15
Fracture systems may be generalized in terms of number and orientation of sets of parallel fractures and the distribution of length, width, thickness and separation. Borehole measurements may be used to particularize these parameters for a specific site. Global flow and dispersion in an aquifer occur in the interconnected fractures and may be related to specific fracture elements. A fluid dynamics code named SALE has been used to solve the Navier-Stokes equations for laminar flow in these elemental geometries. A marker particle calculation has been added to characterize longitudinal dispersion due to the velocity profile across the fracture and lateral dispersion due to flow disturbances at junctions. Local flow and dispersion in the matrix occur in the finer fracture structure and are evaluated using porous media approaches. These results or models are integrated in a 2D isothermal reservoir simulator named FRACSL. Discrete fractures are superimposed on the edges or diagnoals of rectangular grid elements. Water may flow from node to node through the matrix or through the fracture. The heads are found by iterating for the distribution which conserves the appropriate local mass. Marker particles are used to monitor the tracer dispersion due to motion in the fractures, in the matrix and between the two. Results are given showing flow and dispersion in an orthogonal junction and in a sample fractured reservoir.
NASA Astrophysics Data System (ADS)
Hasan, Md. Rabiul; Anower, Md. Shamim; Hasan, Md. Imran
2016-05-01
A simple hexagonal photonic crystal fiber is proposed to simultaneously achieve ultrahigh birefringence, large nonlinear coefficient, and two zero dispersion wavelengths (ZDWs). The finite element method with circular perfectly matched layer boundary condition is used to simulate the designed structure. Simulation results show that it is possible to achieve two closely lying ZDWs of 1.08 and 1.29 μm for x-polarization with 0.88 and 1.20 μm for y-polarization modes, respectively. In addition, an ultrahigh birefringence of 3.15×10-2 and a high nonlinear coefficient of 58 W-1 km-1 are also obtained at the excitation wavelength of 1.55 μm. The proposed fiber can have important applications in supercontinuum generation, parametric amplification, four-wave mixing, and optical sensors design.
Oskooi, Ardavan; Johnson, Steven G.
2011-04-01
We show that some previous proposals for perfectly matched layer (PML) absorbers in anisotropic media or for waveguides at oblique incidence are not, in fact true PMLs; in previous work we similarly showed a failure of several PML proposals for periodic media (photonic crystals). We therefore argue that a more careful validation scheme is required for PML proposals, in contrast to past authors who have typically checked only that reflections are small for a fixed resolution, and suggest a simple validation scheme that can be readily applied to any PML proposal regardless of derivation or implementation. We demonstrate this test for a corrected, unsplit-field PML valid for anisotropic, dispersive media, implemented in both planewave-expansion and finite-difference time-domain (FDTD) methods.
Finite difference methods for transient signal propagation in stratified dispersive media
NASA Technical Reports Server (NTRS)
Lam, D. H.
1975-01-01
Explicit difference equations are presented for the solution of a signal of arbitrary waveform propagating in an ohmic dielectric, a cold plasma, a Debye model dielectric, and a Lorentz model dielectric. These difference equations are derived from the governing time-dependent integro-differential equations for the electric fields by a finite difference method. A special difference equation is derived for the grid point at the boundary of two different media. Employing this difference equation, transient signal propagation in an inhomogeneous media can be solved provided that the medium is approximated in a step-wise fashion. The solutions are generated simply by marching on in time. It is concluded that while the classical transform methods will remain useful in certain cases, with the development of the finite difference methods described, an extensive class of problems of transient signal propagating in stratified dispersive media can be effectively solved by numerical methods.
Plant Roots Increase Bacterivorous Nematode Dispersion through Nonuniform Glass-bead Media.
Trap, Jean; Bernard, Laetitia; Brauman, Alain; Pablo, Anne-Laure; Plassard, Claude; Ranoarisoa, Mahafaka Patricia; Blanchart, Eric
2015-12-01
Dispersion of bacterivorous nematodes in soil is a crucial ecological process that permits settlement and exploitation of new bacterial-rich patches. Although plant roots, by modifying soil structure, are likely to influence this process, they have so far been neglected. In this study, using an original three-compartment microcosm experimental design and polyvinyl chloride (PVC) bars to mimic plant roots, we tested the ability of roots to improve the dispersion of bacterivorous nematode populations through two wet, nonuniform granular (glass bead) media imitating contrasting soil textures. We showed that artificial roots increased migration time of bacterivorous nematode populations in the small-bead medium, suggesting that plant roots may play an important role in nematode dispersion in fine-textured soils or when soil compaction is high. PMID:26941457
Plant Roots Increase Bacterivorous Nematode Dispersion through Nonuniform Glass-bead Media
Trap, Jean; Bernard, Laetitia; Brauman, Alain; Pablo, Anne-Laure; Plassard, Claude; Ranoarisoa, Mahafaka Patricia; Blanchart, Eric
2015-01-01
Dispersion of bacterivorous nematodes in soil is a crucial ecological process that permits settlement and exploitation of new bacterial-rich patches. Although plant roots, by modifying soil structure, are likely to influence this process, they have so far been neglected. In this study, using an original three-compartment microcosm experimental design and polyvinyl chloride (PVC) bars to mimic plant roots, we tested the ability of roots to improve the dispersion of bacterivorous nematode populations through two wet, nonuniform granular (glass bead) media imitating contrasting soil textures. We showed that artificial roots increased migration time of bacterivorous nematode populations in the small-bead medium, suggesting that plant roots may play an important role in nematode dispersion in fine-textured soils or when soil compaction is high. PMID:26941457
NASA Astrophysics Data System (ADS)
Zhang, Lijun; Chen, Li-Qun; Zhang, Jianming
2013-10-01
Bifurcation and exact solutions of the modified nonlinearly dispersive mK (m,n,k) equation with nonlinear dispersion um-1ut+a(un)x+b(uk)xxx = 0,nk≠0 are investigated in this paper. As a result, under different parameter conditions, abundant compactons, peakons and solitary solutions including not only some known results but also some new ones are obtained. We also point out the original reason of the existence of the non-smooth traveling wave solutions. The approach we used here is also suitable for the study of traveling wave solutions of some other nonlinear equations.
All-fiber smooth supercontinuum generation in highly nonlinear dispersion-shifted fiber
NASA Astrophysics Data System (ADS)
Zhang, Xianming; Gu, Chun; Xu, Lixin; Wang, Anting; Chen, Guoliang; Zheng, Huan; Zheng, Rui; Fu, Huaiduo; Ming, Hai
2009-11-01
Supercontinuum(SC) source has found numerous applications, such as DWDM, frequency metrology, optical coherence tomography, and optical measurement. We demonstrate an all-fiber supercontimuun source generated in highly nonlinear fiber (HNLF). The HNLF is pumped by our mode-locked fiber laser with pulse width and peak power, 21.1ps and kW, respectively. An ultra-broadband supercontinuum extends from 1000 nm to 1750 nm is obtained, and the spectrum is flat with the amplitude variation less than 4dB except around the fiber zero dispersion wavelength. The spectrum of our supercontinuum source can extend beyond 1750 nm, but due to the limitation of the measured range of optical spectrum analyzer (AQ6317B), the spectrum of the supercontinuum source beyond 1750 nm is not yet obtained in our lab now. The spectral broadening mechanism of smoothed supercontinnum is considered by the higher-order soliton fission and their blue-shifted dispersive wave.
Dispersion engineering in nonlinear soft glass photonic crystal fibers infiltrated with liquids.
Pniewski, Jacek; Stefaniuk, Tomasz; Van, Hieu Le; Long, Van Cao; Van, Lanh Chu; Kasztelanic, Rafał; Stępniewski, Grzegorz; Ramaniuk, Aleksandr; Trippenbach, Marek; Buczyński, Ryszard
2016-07-01
We present a numerical study of the dispersion characteristic modification of nonlinear photonic crystal fibers infiltrated with liquids. A photonic crystal fiber based on the soft glass PBG-08, infiltrated with 17 different organic solvents, is proposed. The glass has a light transmission window in the visible-mid-IR range of 0.4-5 μm and has a higher refractive index than fused silica, which provides high contrast between the fiber structure and the liquids. A fiber with air holes is designed and then developed in the stack-and-draw process. Analyzing SEM images of the real fiber, we calculate numerically the refractive index, effective mode area, and dispersion of the fundamental mode for the case when the air holes are filled with liquids. The influence of the liquids on the fiber properties is discussed. Numerical simulations of supercontinuum generation for the fiber with air holes only and infiltrated with toluene are presented. PMID:27409187
NASA Astrophysics Data System (ADS)
Song, Xianhai; Li, Lei; Zhang, Xueqiang; Huang, Jianquan; Shi, Xinchun; Jin, Si; Bai, Yiming
2014-10-01
In recent years, Rayleigh waves are gaining popularity to obtain near-surface shear (S)-wave velocity profiles. However, inversion of Rayleigh wave dispersion curves is challenging for most local-search methods due to its high nonlinearity and to its multimodality. In this study, we proposed and tested a new Rayleigh wave dispersion curve inversion scheme based on differential evolution (DE) algorithm. DE is a novel stochastic search approach that possesses several attractive advantages: (1) Capable of handling non-differentiable, non-linear and multimodal objective functions because of its stochastic search strategy; (2) Parallelizability to cope with computation intensive objective functions without being time consuming by using a vector population where the stochastic perturbation of the population vectors can be done independently; (3) Ease of use, i.e. few control variables to steer the minimization/maximization by DE's self-organizing scheme; and (4) Good convergence properties. The proposed inverse procedure was applied to nonlinear inversion of fundamental-mode Rayleigh wave dispersion curves for near-surface S-wave velocity profiles. To evaluate calculation efficiency and stability of DE, we firstly inverted four noise-free and four noisy synthetic data sets. Secondly, we investigated effects of the number of layers on DE algorithm and made an uncertainty appraisal analysis by DE algorithm. Thirdly, we made a comparative analysis with genetic algorithms (GA) by a synthetic data set to further investigate the performance of the proposed inverse procedure. Finally, we inverted a real-world example from a waste disposal site in NE Italy to examine the applicability of DE on Rayleigh wave dispersion curves. Furthermore, we compared the performance of the proposed approach to that of GA to further evaluate scores of the inverse procedure described here. Results from both synthetic and actual field data demonstrate that differential evolution algorithm applied
Symmetries of the TDNLS equations for weakly nonlinear dispersive MHD waves
NASA Technical Reports Server (NTRS)
Webb, G. M.; Brio, M.; Zank, G. P.
1995-01-01
In this paper we consider the symmetries and conservation laws for the TDNLS equations derived by Hada (1993) and Brio, Hunter and Johnson, to describe the propagation of weakly nonlinear dispersive MHD waves in beta approximately 1 plasmas. The equations describe the interaction of the Alfven and magnetoacoustic modes near the triple umbilic, where the fast magnetosonic, slow magnetosonic and Alfven speeds coincide and a(g)(exp 2) = V(A)(exp 2) where a(g) is the gas sound speed and V(A) is the Alfven speed. We discuss Lagrangian and Hamiltonian formulations, and similarity solutions for the equations.
NASA Astrophysics Data System (ADS)
Qiao, Yaojun; Li, Ming; Yang, Qiuhong; Xu, Yanfei; Ji, Yuefeng
2015-01-01
Closed-form expressions of nonlinear interference of dense wavelength-division-multiplexed (WDM) systems with dispersion managed transmission (DMT) are derived. We carry out a simulative validation by addressing an ample and significant set of the Nyquist-WDM systems based on polarization multiplexed quadrature phase-shift keying (PM-QPSK) subcarriers at a baud rate of 32 Gbaud per channel. Simulation results show the simple closed-form analytical expressions can provide an effective tool for the quick and accurate prediction of system performance in DMT coherent optical systems.
Barothropic relaxing media under pressure perturbations: Nonlinear dynamics
NASA Astrophysics Data System (ADS)
Kuetche, Victor K.
2015-12-01
In this paper, we delve into the dynamics of a barothropic relaxing medium under pressure perturbations originating from blast wave explosions in the milieu. Analyzing the problem within the viewpoint of the Lyakhov formalism of geodynamic systems, we derive a complex-valued nonlinear evolution equation which models the wave propagation of the pressure perturbations within the barothropic medium. As a result, we find that the previous system can be circularly polarized and hence support traveling rotating pressure excitations which profiles strongly depend upon their angular momenta. In the wake of these results, we address some physical implications of the findings alongside their potential applications.
Effects Of Relative Strength Of Dispersion On The Formation Of Nonlinear Waves In Dusty Plasmas
Asgari, H.; Muniandy, S. V.; Wong, C. S.; Yap, S. L.
2009-07-07
In this paper, we studied the effect of strength of dispersion on the formation of solitons and shock waves in un-magnetized dusty plasma using the reductive perturbative technique. Different relational forms of strength parameter epsilon were chosen such a way that it altered the stretching of space, x and time, t variables, thereby leading to different nonlinearities. First, we considered the form zeta = sq root(epsilon(x-v{sub 0}t)) and tau = sq root(epsilont), where v{sub 0} is the phase velocity, with 0
Modelling Gaussian beam propagation through thick nonlinear refractive and absorptive media
NASA Astrophysics Data System (ADS)
Namarathne, D.; Walden, S.; Shortell, M.; Jaatinen, E.
2016-04-01
A novel numerical finite difference beam propagation method developed for quadratic refractive index media is presented and applied to TEM00 Gaussian beams propagating through nonlinear optical media. The beam's diffraction through the medium was calculated by using the nonlinear Schrodinger equation on small slices which proved to be effective for thick samples. The performance of the model was compared to experimental z-scan observations of colloidal ZnO particles at low cw and high pulsed peak powers at a wavelength of 532 nm. Different optical behaviours were observed in these two power regimes. Negligible nonlinear absorption and refraction were observed at low cw powers, with strong defocusing arising through thermal lensing in the colloidal solution. For the pulsed experiments with peak powers up to 43-kW and 7-ns pulses, values for the intensity-dependent absorption were determined to be β = 1.0 × 10^{ - 10} {text{m/W}} and n_{{2{text{R}}}} = 2.0 × 10^{ - 18} {text{m}}2 /{text{W}}. Despite the very different nonlinear and thermal-optical behaviours in two power regimes, there was good agreement between the model and observations. This demonstrates the effectiveness of the approach in extracting the nonlinear properties of a medium even if it is not optically thin and in the case when a sample displays both strong nonlinear refraction and absorption.
Zolotovskii, I O; Korobko, D A; Lapin, V A
2014-01-31
The modulation instability in waveguides with high Kerr nonlinearity, characterised by a delayed nonlinear response, has been investigated with allowance for the self-steepening parameter and third-order dispersion. General expressions for the modulation gain are obtained. The influence of the waveguide parameters on the gain is analysed. It is shown that the joint effect of the delayed nonlinear response and negative nonlinearity dispersion leads to an increase in the modulation gain. The relations obtained are confirmed by numerical simulation. The results of this study can be used to design compact generators of high-frequency pulse trains. (nonlinear optical phenomena)
On the closure of circular holes in nonlinear viscous media.
NASA Astrophysics Data System (ADS)
Cornet, Jan; Dabrowski, Marcin; Schmid, Daniel
2016-04-01
Many rocks exhibit viscous behaviors which have to be taken into account in applications ranging from wellbores creeping during drilling to salt caves or hard rock mine tunnels shrinking with time. We address all these different cases using a unified configuration. We consider a 2D plane strain problem where a circular hole, representing the wellbore, the cave or the mine tunnel depending on the application, is embedded in an infinite incompressible non-linear viscous material. The problem is purely mechanical. Not only the rheological model used here is well suited for real formations but it can also represent many different sorts of rocks like salts, shales, quartzite and even ice. The major difference between the applications concerns the relevant time scales and they must therefore be separated according to that. For short timescale applications like wellbore creep during drilling it is first necessary to determine whether an elastic component must or must not be taken into account. This analysis is carried out using a non-linear viscoelastic Maxwell model. If it is acknowledged that a purely viscous rheology is enough, as can be the case for salts, then we can proceed with our unified configuration. We start by considering the case where the medium is isotropic and where pressure boundary conditions are prescribed both at the hole rim and at infinity. This problem is 1D due to axial symmetry. Analytical solutions to very similar problems have already been provided and we compare the solution we have derived to the existing ones. We show that our solution is consistent and that we recover similar results to the ones derived for comparable rheologies. Using MILAMIN, a fast finite element code, we investigate further two cases which lead to angular dependency and stress concentrations around the hole. In the first case we add a deviatoric stress at infinity and we study the impact of this extra stress on the solution. It is important to understand this parameter
NASA Astrophysics Data System (ADS)
Sharifi Haddad, Amin
Fractured porous media are important structures in petroleum engineering and geohydrology. The accelerating global demand for energy has turned the focus to fractured formations. The fractured porous media are also found in conventional naturally fractured reservoirs and the water supply from karst (carbonate) aquifers. Studying mass transfer processes allows us to explore the complexities and uncertainties encountered with fractured rocks. This dissertation is developing an analytical methodology for the study of mass transfer in fractured reservoirs. The dissertation begins with two cases that demonstrate the importance of the rock matrix block size distribution and dispersivity through a transient mass exchange mechanism between rock matrix blocks and fractures. The first case assumes a medium with no surface adsorption, and the second case includes the surface adsorption variable. One of the main focuses of this work is the characterization of the rock matrix block size distribution in fractured porous media. Seismic surveying, well test analysis, well logging, and geomechanical tools are currently used to characterize this property, based on measurements of different variables. This study explores an innovative method of using solute transport to determine the fracture intensity. This methodology is applied to slab-shaped rock matrix blocks and can easily be extended to other geometries. Another focus of this dissertation is the characterization of dispersivity in field scale studies. Improving our knowledge of dispersivity will enable more accurate mass transfer predictions and advance the study of transport processes. Field tracer tests demonstrated that dispersivity is scale-dependent. Proposed functions for the increasing trend of dispersivity include linear and asymptotic scale-dependence. This study investigated the linear dispersivity trend around the injection wellbore. An analysis of the tracer concentration in a monitoring well was used to
Interaction of highly nonlinear solitary waves with linear elastic media
NASA Astrophysics Data System (ADS)
Yang, Jinkyu; Silvestro, Claudio; Khatri, Devvrath; de Nardo, Luigi; Daraio, Chiara
2011-04-01
We study the interaction of highly nonlinear solitary waves propagating in granular crystals with an adjacent linear elastic medium. We investigate the effects of interface dynamics on the reflection of incident waves and on the formation of primary and secondary reflected waves. Experimental tests are performed to correlate the linear medium geometry, materials, and mass with the formation and propagation of reflected waves. We compare the experimental results with theoretical analysis based on the long-wavelength approximation and with numerical predictions obtained from discrete particle models. Experimental results are found to be in agreement with theoretical analysis and numerical simulations. This preliminary study establishes the foundation for utilizing reflected solitary waves as novel information carriers in nondestructive evaluation of elastic material systems.
Interaction of highly nonlinear solitary waves with linear elastic media.
Yang, Jinkyu; Silvestro, Claudio; Khatri, Devvrath; De Nardo, Luigi; Daraio, Chiara
2011-04-01
We study the interaction of highly nonlinear solitary waves propagating in granular crystals with an adjacent linear elastic medium. We investigate the effects of interface dynamics on the reflection of incident waves and on the formation of primary and secondary reflected waves. Experimental tests are performed to correlate the linear medium geometry, materials, and mass with the formation and propagation of reflected waves. We compare the experimental results with theoretical analysis based on the long-wavelength approximation and with numerical predictions obtained from discrete particle models. Experimental results are found to be in agreement with theoretical analysis and numerical simulations. This preliminary study establishes the foundation for utilizing reflected solitary waves as novel information carriers in nondestructive evaluation of elastic material systems. PMID:21599325
Nonlinear acoustic pulse propagation in dispersive sediments using fractional loss operators.
Maestas, Joseph T; Collis, Jon M
2016-03-01
The nonlinear progressive wave equation (NPE) is a time-domain formulation of the Euler fluid equations designed to model low-angle wave propagation using a wave-following computational domain. The wave-following frame of reference permits the simulation of long-range propagation and is useful in modeling blast wave effects in the ocean waveguide. Existing models do not take into account frequency-dependent sediment attenuation, a feature necessary for accurately describing sound propagation over, into, and out of the ocean sediment. Sediment attenuation is addressed in this work by applying lossy operators to the governing equation that are based on a fractional Laplacian. These operators accurately describe frequency-dependent attenuation and dispersion in typical ocean sediments. However, dispersion within the sediment is found to be a secondary process to absorption and effectively negligible for ranges of interest. The resulting fractional NPE is benchmarked against a Fourier-transformed parabolic equation solution for a linear case, and against the analytical Mendousse solution to Burgers' equation for the nonlinear case. The fractional NPE is then used to investigate the effects of attenuation on shock wave propagation. PMID:27036279
Self-Organization of Light in Optical Media with Competing Nonlinearities.
Maucher, F; Pohl, T; Skupin, S; Krolikowski, W
2016-04-22
We study the propagation of light beams through optical media with competing nonlocal nonlinearities. We demonstrate that the nonlocality of competing focusing and defocusing nonlinearities gives rise to self-organization and stationary states with stable hexagonal intensity patterns, akin to transverse crystals of light filaments. Signatures of this long-range ordering are shown to be observable in the propagation of light in optical waveguides and even in free space. We consider a specific form of the nonlinear response that arises in atomic vapor upon proper light coupling. Yet, the general phenomenon of self-organization is a generic consequence of competing nonlocal nonlinearities, and may, hence, also be observed in other settings. PMID:27152806
Musko, Monika; Sznitowska, Malgorzata
2014-12-01
Available tablets or capsules for adults are often used to prepare extemporaneously formulated medicines appropriate for children. The most acceptable drug forms in pediatric population are oral liquids and pharmacists use commercial dispersing media to compound syrups from an active substance or from tablets available on the market. In many countries ready-to-use dispersing media are not available or refunded, but pharmacists can use other compounded media, providing their compatibility and stability are proven. The aim of this study was to formulate and evaluate the stability of syrups with candesartan cilexetil (1 mg mL-1) and valsartan (4 mg mL-1) extemporaneously prepared using commercial tablets (Diovan® and Atacand®). The following three different suspending media, which could be easily made in a pharmacy, were investigated: V1 - with xanthan gum (0.5 %), V2 - the USP/NF vehicle for oral solution and V3 - the medium based on a simple sucrose syrup. The stability of preparations was studied during 35 days of storage in a dark place at controlled temperature of 25 and 4 °C. During the study, microscopic observation was carried out and pH, viscosity, and concentration of candesartan cilexetil and valsartan were analyzed. Syrups with valsartan prepared with V2 and V3 media were stable for 3 or 4 weeks when stored at 25 °C, while syrups with candesartan were stable for as long as 35 days. For syrups prepared using V1 medium, the 14-day expiry date was not achieved because of microbial deterioration. PMID:25531786
Lee, Wonmok; Kim, Seulgi; Kim, Seulki; Kim, Jin-Ho; Lee, Hyunjung
2015-02-15
There are active researches on well ordered opal films due to their possible applications to various photonic devices. A recently developed slide coating method is capable of rapid fabrication of large area opal films from aqueous colloidal dispersion. In the current study, the slide coating of polystyrene colloidal dispersions in water/i-propanol (IPA) binary media is investigated. Under high IPA content in a dispersing medium, resulting opal film showed a deterioration of long range order, as well as a decreased film thickness due to dilution effect. From the binary liquid, the dried opal films exhibited the unprecedented topological groove patterns with varying periodic distances as a function of alcohol contents in the media. The groove patterns were consisted of the hierarchical structures of the terraced opal layers with periodic thickness variations. The origin of the groove patterns was attributed to a shear-induced periodic instability of colloidal concentration within a thin channel during the coating process which was directly converted to a groove patterns in a resulting opal film due to rapid evaporation of liquid. The groove periods of opal films were in the range of 50-500 μm, and the thickness differences between peak and valley of the groove were significantly large enough to be optically distinguishable, such that the coated films can be utilized as the optical grating film to disperse infra-red light. Utilizing a lowered hydrophilicity of water/IPA dispersant, an opal film could be successfully coated on a flexible Mylar film without significant dewetting problem. PMID:25460710
NASA Astrophysics Data System (ADS)
Zhong, Xian-qiong; Xiang, Wen-li; Cheng, Ke
2013-11-01
After taking the higher-order dispersion and three kinds of saturable nonlinearities into account, we investigate the characteristics of modulation instability (MI) in real units in the positive refractive region of metamaterials (MMs). The results show that the gain spectra of MI consist of two spectral regions, one of which is close to and the other is far from the zero point. In particular, the spectral region far from the zero point also has high cut-off frequency but narrow spectral width just as those revealed in the negative refractive region. Moreover, the gain spectra can change with the normalized angular frequency, the normalized optical power and the form of the saturable nonlinearity. Concretely, the spectral width increases with increase of the normalized angular frequency. But both of the spectral width and the peak gain increase and then decrease with increase of the normalized optical power. In other words, the MI characteristics and MI related applications can be controlled by adjusting the structure of the MMs, the form of the saturable nonlinearity and the normalized optical power.
Chromatic dispersion and nonlinear phase noise compensation based on KLMS method
NASA Astrophysics Data System (ADS)
Nouri, Mahdi; Shayesteh, Mahrokh G.; Farhangian, Nooshin
2015-09-01
In this study, kernel least mean square (KLMS) algorithm with fractionally spaced equalizing structure is proposed for electrical compensation of chromatic dispersion (CD) and nonlinear phase noise (NLPN) in a dual polarization optical communications system with coherent detection. We consider single mode fiber channel. At the receiver, the additive optical noise is represented as additive white Gaussian noise. Phase modification is utilized at high signal powers to maintain the validity of Gaussian model of noise. We consider QAM and PSK modulations and evaluate the performance of the proposed method in terms of error rate, phase error, and error vector magnitude (EVM). The results are obtained in both linear and nonlinear regimes. In the linear region, the KLMS algorithm can compensate CD and NLPN effectively and outperforms the existing compensation methods such as LMS, minimum mean square error (MMSE), and time domain FIR filter. In nonlinear regime, where the input power is higher, NLPN is stronger which results in compensation performance degradation. However, KLMS still achieves better results than the above algorithms.
The permeability of poly-disperse porous media and effective particle size
NASA Astrophysics Data System (ADS)
Markicevic, B. I.; Preston, C.; Osterroth, S.; Iliev, O.; Hurwitz, M.
2015-11-01
The interactions between the fluid and solid phases in porous media account for the openness and length of the flow path that the fluid needs to travel within. The same reasoning applies for both mono- and poly-disperse media, and is reflected in the adoption of the same permeability models. The only difference is that an effective particle size diameter has to be used for the poly-disperse samples. A filtration experiment is used to form a particle layer, filter cake, consisting of particles of different sizes. Both inflow and outflow particle size distribution are measured by particle counting method, and from their difference, the particle size distribution in the cake is determined. In a set of experiments, the filtration history is altered by changing (i) filtration medium; (ii) suspension flow rate; and (iii) particle concentration, where in all cases investigated the cake permeability remains constant. In order to predict the permeability of poly-disperse cake from the analytical models, the particle size distribution moments are calculated, and the permeability is found for each moment. Comparing the experimental to the analytical permeability values the effective particle size is found, where the permeability calculated by using the harmonic mean of the particle size distribution reproduces the permeability experimental value best. Finally, in the parametric study, reducing the cake porosity and/or lowering the particle retention shifts effective particle size used in the permeability model toward higher moments of the particle size distribution function.
Twisted toroidal vortex solitons in inhomogeneous media with repulsive nonlinearity.
Kartashov, Yaroslav V; Malomed, Boris A; Shnir, Yasha; Torner, Lluis
2014-12-31
Toroidal modes in the form of so-called Hopfions, with two independent winding numbers, a hidden one (twist s), which characterizes a circular vortex thread embedded into a three-dimensional soliton, and the vorticity around the vertical axis (m), appear in many fields, including field theory, ferromagnetics, and semi- and superconductors. Such topological states are normally generated in multicomponent systems, or as trapped quasilinear modes in toroidal potentials. We uncover that stable solitons with this structure can be created, without any linear potential, in the single-component setting with the strength of repulsive nonlinearity growing fast enough from the center to the periphery, for both steep and smooth modulation profiles. Toroidal modes with s=1 and vorticity m=0, 1, 2 are produced. They are stable for m≤1, and do not exist for s>1. An approximate analytical solution is obtained for the twisted ring with s=1, m=0. Under the application of an external torque, it rotates like a solid ring. The setting can be implemented in a Bose-Einstein condensate (BEC) by means of the Feshbach resonance controlled by inhomogeneous magnetic fields. PMID:25615341
Basch, Angelika; Strnad, Simona
2011-01-01
This work investigated colloidal properties such as the zeta-potential, the electrophoretic mobilities and the wetting behaviour of alumina dispersed in non-aqueous media. Non-aqueous dispersions of alumina were prepared in the solvent N-methyl-2-pyrrolidinone (NMP). The wetting behaviour of alumina in NMP was characterized by the powder contact angle method and the Wilhemy plate method. The behaviour of the dispersion should provide information for the development of a substrate-induced coagulation (SIC) coating process of nano-sized alumina in non-aqeous media. SIC is a dip-coating process that coats pretreated but chemically different surfaces with nano-sized particles. It was found that the anionic surfactant dioctyl sulfosuccinate (AOT) had no stabilizing effect on alumina dispersed in NMP. PMID:21317977
Nonlinear dynamics in flow through unsaturated fractured-porous media: Status and perspectives
Faybishenko, Boris
2002-11-27
The need has long been recognized to improve predictions of flow and transport in partially saturated heterogeneous soils and fractured rock of the vadose zone for many practical applications, such as remediation of contaminated sites, nuclear waste disposal in geological formations, and climate predictions. Until recently, flow and transport processes in heterogeneous subsurface media with oscillating irregularities were assumed to be random and were not analyzed using methods of nonlinear dynamics. The goals of this paper are to review the theoretical concepts, present the results, and provide perspectives on investigations of flow and transport in unsaturated heterogeneous soils and fractured rock, using the methods of nonlinear dynamics and deterministic chaos. The results of laboratory and field investigations indicate that the nonlinear dynamics of flow and transport processes in unsaturated soils and fractured rocks arise from the dynamic feedback and competition between various nonlinear physical processes along with complex geometry of flow paths. Although direct measurements of variables characterizing the individual flow processes are not technically feasible, their cumulative effect can be characterized by analyzing time series data using the models and methods of nonlinear dynamics and chaos. Identifying flow through soil or rock as a nonlinear dynamical system is important for developing appropriate short- and long-time predictive models, evaluating prediction uncertainty, assessing the spatial distribution of flow characteristics from time series data, and improving chemical transport simulations. Inferring the nature of flow processes through the methods of nonlinear dynamics could become widely used in different areas of the earth sciences.
Shen, Ming; Gao, Jinsong; Ge, Lijuan
2015-01-01
We investigate the spatially optical solitons shedding from Airy beams and anomalous interactions of Airy beams in nonlocal nonlinear media by means of direct numerical simulations. Numerical results show that nonlocality has profound effects on the propagation dynamics of the solitons shedding from the Airy beam. It is also shown that the strong nonlocality can support periodic intensity distribution of Airy beams with opposite bending directions. Nonlocality also provides a long-range attractive force between Airy beams, leading to the formation of stable bound states of both in-phase and out-of-phase breathing Airy solitons which always repel in local media. PMID:25900878
Mokhtarpour, Laleh; Ponomarenko, Sergey A
2015-11-16
We numerically investigate partially coherent short pulse propagation in nonlinear media near optical resonance. We examine how the pulse state of coherence at the source affects the evolution of the ensemble averaged intensity, mutual coherence function, and temporal degree of coherence of the pulse ensemble. We report evidence of self-induced transparency random phase soliton formation for the relatively coherent incident pulses with sufficiently large average areas. We also show that random pulses lose their coherence on propagation in resonant media and we explain this phenomenon in qualitative terms. PMID:26698507
NASA Astrophysics Data System (ADS)
Song, Shiyu; Wang, Suxin; Wang, Yongjin
2016-08-01
Motivated by the close connection between the skew Brownian motion and the random particle motion in heterogeneous media, we investigate the reflected skew Brownian motion and try to find out its relationship with the corresponding dispersion problem when there exists a reflecting boundary. Through the use of the knowledge of stochastic analysis, we provide some basic properties of reflected skew Brownian motions, including the transition density, the Laplace transform of the first passage time, and some related results. A simple method to generate the sample path is also proposed. At the end of this paper, we reveal the strong relationship between the reflected skew Brownian motion and the solute dispersion in the presence of a sharp interface and a reflecting boundary.
Kerr nonlinearity and dispersion characterization of core-pumped thulium-doped fiber at 2 μm.
Kharitonov, Svyatoslav; Billat, Adrien; Brès, Camille-Sophie
2016-07-15
A nonlinear coefficient of 3.6-4.1 W^{-1} km^{-1} and group velocity dispersion of -20 ps^{2}/km of a commercial core-pumped thulium-doped fiber have been evaluated using degenerate four-wave mixing at 2 μm. The anomalous dispersion behavior of the fiber has been confirmed by linear measurements with an all-fiber Mach-Zehnder interferometer (MZI). Additionally, no pump-induced dispersion changes due to excitation of Tm^{3+} cations have been detected. These characteristics make these fibers attractive for pulsed fiber laser applications. A nonlinear-polarization rotation mode-locked laser involving nonlinear polarization evolution directly in the doped fiber is demonstrated. PMID:27420488
Disentangling the Complex Pore-Scale Dispersion Process in Natural Porous Media by Means of DNS
NASA Astrophysics Data System (ADS)
Medellin-Azuara, J.; Howitt, R. E.; MacEwan, D.; Lund, J. R.
2014-12-01
Over the recent past, important advances have been made in the area of micro-CT scanning of natural porous media. The acquired pore-space geometries enable detailed investigations of flow and transport via pore-scale direct numerical simulation (DNS). In this work, we utilize pore-scale DNS to investigate single-phase pore-scale dispersion. We focus on data stemming from beadpacks, Bentheimer sandstone, and Ketton and Estaillades carbonates. Our DNS results clearly show the transition from ballistic dispersion to the asymptotic Fickian regime (see figure a) at decimeter or meter scale depending on the medium type. We outline a universal Lagrangian model for tracer dispersion that is based on a low-dimensional parametrization of the complex three-dimensional motion of tracer particles (see figure b). We relate the process parameters to certain pore-geometry characteristics such as the tortuosity. Our model accurately captures the wide range of flow and transport dynamics observed in the samples considered. We establish the accuracy of the model by validating its limiting dispersion behavior, the resulting velocity statistics, and also, most challenging, snapshots of tracer plumes at travel times encompassing both ballistic and Fickian behavior.
Full 3D dispersion curve solutions for guided waves in generally anisotropic media
NASA Astrophysics Data System (ADS)
Hernando Quintanilla, F.; Lowe, M. J. S.; Craster, R. V.
2016-02-01
Dispersion curves of guided waves provide valuable information about the physical and elastic properties of waves propagating within a given waveguide structure. Algorithms to accurately compute these curves are an essential tool for engineers working in non-destructive evaluation and for scientists studying wave phenomena. Dispersion curves are typically computed for low or zero attenuation and presented in two or three dimensional plots. The former do not always provide a clear and complete picture of the dispersion loci and the latter are very difficult to obtain when high values of attenuation are involved and arbitrary anisotropy is considered in single or multi-layered systems. As a consequence, drawing correct and reliable conclusions is a challenging task in the modern applications that often utilize multi-layered anisotropic viscoelastic materials. These challenges are overcome here by using a spectral collocation method (SCM) to robustly find dispersion curves in the most complicated cases of high attenuation and arbitrary anisotropy. Solutions are then plotted in three-dimensional frequency-complex wavenumber space, thus gaining much deeper insight into the nature of these problems. The cases studied range from classical examples, which validate this approach, to new ones involving materials up to the most general triclinic class for both flat and cylindrical geometry in multi-layered systems. The apparent crossing of modes within the same symmetry family in viscoelastic media is also explained and clarified by the results. Finally, the consequences of the centre of symmetry, present in every crystal class, on the solutions are discussed.
Javan, N. Sepehri Homami, S. H. H.
2015-02-15
Self-guided nonlinear propagation of intense circularly-polarized electromagnetic waves in a hot electron-positron-ion magnetoplasma is studied. Using a relativistic fluid model, a nonlinear equation is derived, which describes the interaction of the electromagnetic wave with the plasma in the quasi-neutral approximation. Transverse Eigen modes, the nonlinear dispersion relation and the group velocity are obtained. Results show that the transverse profile in the case of magnetized plasma with cylindrical symmetry has a radially damping oscillatory form. Effect of applying external magnetic fields, existence of the electron-positron pairs, changing the amplitude of the electromagnetic wave, and its polarization on the nonlinear dispersion relation and Eigen modes are studied.
NASA Astrophysics Data System (ADS)
Zhang, Di; Capoglu, Ilker; Li, Yue; Cherkezyan, Lusik; Chandler, John; Spicer, Graham; Subramanian, Hariharan; Taflove, Allen; Backman, Vadim
2016-06-01
Combining finite-difference time-domain (FDTD) methods and modeling of optical microscopy modalities, we previously developed an open-source software package called Angora, which is essentially a "microscope in a computer." However, the samples being simulated were limited to nondispersive media. Since media dispersions are common in biological samples (such as cells with staining and metallic biomarkers), we have further developed a module in Angora to simulate samples having complicated dispersion properties, thereby allowing the synthesis of microscope images of most biological samples. We first describe a method to integrate media dispersion into FDTD, and we validate the corresponding Angora dispersion module by applying Mie theory, as well as by experimentally imaging gold microspheres. Then, we demonstrate how Angora can facilitate the development of optical imaging techniques with a case study.
Beam width evolution of astigmatic hollow Gaussian beams in highly nonlocal nonlinear media
NASA Astrophysics Data System (ADS)
Yang, Zhen-Feng; Jiang, Xue-Song; Yang, Zhen-Jun; Li, Jian-Xing; Zhang, Shu-Min
We investigate the beam width evolution of astigmatic hollow Gaussian beams propagating in highly nonlocal nonlinear media. The input-power-induced different evolutions of the beam width are illustrated: (i) the beam widths in two transverse directions are compressed or broadened at the same time; (ii) the beam width in one transverse direction keeps invariant, and the other is compressed or broadened; (iii) furthermore, the beam width in one transverse direction is compressed, whereas it in the other transverse direction is broadened.
Wang, Gaozhong; Zhang, Saifeng E-mail: jwang@siom.ac.cn; Cheng, Xin; Dong, Ningning; Zhang, Long; Wang, Jun E-mail: jwang@siom.ac.cn; Umran, Fadhil A.; Coghlan, Darragh; Blau, Werner J.; Cheng, Ya
2014-04-07
Spatial self-phase modulation (SSPM) was observed directly when a focused He-Ne laser beam at 633 nm went through liquid-phase-exfoliated graphene dispersions. The diffraction pattern of SSPM was found to be distorted rapidly right after the incident beam horizontally passing through the dispersions, while no distortion for the vertically incident geometry. We show that the distortion is originated mainly from the non-axis-symmetrical thermal convections of the graphene nanosheets induced by laser heating, and the relative change of nonlinear refractive index can be determined by the ratio of the distortion angle to the half-cone angle. Therefore, the effective nonlinear refractive index of graphene dispersions can be tuned by changing the incident intensity and the temperature of the dispersions.
NASA Astrophysics Data System (ADS)
Li, Wan-Tong; Wang, Jia-Bing; Zhang, Li
2016-08-01
This paper is concerned with the new types of entire solutions other than traveling wave solutions of nonlocal dispersal equations with monostable nonlinearity in space periodic habitats. We first establish the existence and properties of spatially periodic solutions connecting two steady states. Then new types of entire solutions are constructed by combining the rightward and leftward pulsating traveling fronts with different speeds and a spatially periodic solution. Finally, for a class of special heterogeneous reaction, we further establish the uniqueness of entire solutions and the continuous dependence of such an entire solution on parameters, such as wave speeds and the shifted variables. In other words, we build a five-dimensional manifold of solutions and the traveling wave solutions are on the boundary of the manifold.
Seifzadeh, A; Wang, J; Oguamanam, D C D; Papini, M
2011-08-01
A nonlinear biphasic fiber-reinforced porohyperviscoelastic (BFPHVE) model of articular cartilage incorporating fiber reorientation effects during applied load was used to predict the response of ovine articular cartilage at relatively high strains (20%). The constitutive material parameters were determined using a coupled finite element-optimization algorithm that utilized stress relaxation indentation tests at relatively high strains. The proposed model incorporates the strain-hardening, tension-compression, permeability, and finite deformation nonlinearities that inherently exist in cartilage, and accounts for effects associated with fiber dispersion and reorientation and intrinsic viscoelasticity at relatively high strains. A new optimization cost function was used to overcome problems associated with large peak-to-peak differences between the predicted finite element and experimental loads that were due to the large strain levels utilized in the experiments. The optimized material parameters were found to be insensitive to the initial guesses. Using experimental data from the literature, the model was also able to predict both the lateral displacement and reaction force in unconfined compression, and the reaction force in an indentation test with a single set of material parameters. Finally, it was demonstrated that neglecting the effects of fiber reorientation and dispersion resulted in poorer agreement with experiments than when they were considered. There was an indication that the proposed BFPHVE model, which includes the intrinsic viscoelasticity of the nonfibrillar matrix (proteoglycan), might be used to model the behavior of cartilage up to relatively high strains (20%). The maximum percentage error between the indentation force predicted by the FE model using the optimized material parameters and that measured experimentally was 3%. PMID:21950897
On incremental non-linearity in granular media: phenomenological and multi-scale views
NASA Astrophysics Data System (ADS)
Darve, Félix; Nicot, François
2005-12-01
On the basis of fundamental constitutive laws such as elasticity, perfect plasticity, and pure viscosity, many elasto-viscoplastic constitutive relations have been developed since the 1970s through phenomenological approaches. In addition, a few more recent micro-mechanical models based on multi-scale approaches are now able to describe the main macroscopic features of the mechanical behaviour of granular media. The purpose of this paper is to compare a phenomenological constitutive relation and a micro-mechanical model with respect to a basic issue regularly raised about granular assemblies: the incrementally non-linear character of their behaviour. It is shown that both phenomenological and micro-mechanical models exhibit an incremental non-linearity. In addition, the multi-scale approach reveals that the macroscopic incremental non-linearity could stem from the change in the regime of local contacts between particles (from plastic regime to elastic regime) in terms of the incremental macroscopic loading direction. Copyright
Nonlinear photoacoustic response of opaque media in gas microphone signal detection
NASA Astrophysics Data System (ADS)
Madvaliev, U.; Salikhov, T. Kh.; Sharifov, D. M.; Khan, N. A.
2006-03-01
We have theoretically studied the effect of thermal nonlinearity, due to the temperature dependence of the thermophysical and optical parameters for thermally thick opaque media, on the characteristics of the fundamental photoacoustic signal when the signal is detected by a gas microphone. We have shown that the dependence of the amplitude of the nonlinear component of the signal on the intensity of the incident radiation I0 is expressed by means of the dependence of the temperature rise for the irradiated sample surface Θ0 on I0, and the thermal nonlinearity does not affect the phase of the photoacoustic signal. We propose a theory for generation of the second harmonic of the photoacoustic signal. We have established that the phase shift of the photoacoustic signal is equal to 3π/4, while its amplitude depends on the frequency (˜ω-3/2) and the intensity (˜ I{0/2}).
Halamoda-Kenzaoui, Blanka; Ceridono, Mara; Colpo, Pascal; Valsesia, Andrea; Urbán, Patricia; Ojea-Jiménez, Isaac; Gioria, Sabrina; Gilliland, Douglas; Rossi, François; Kinsner-Ovaskainen, Agnieszka
2015-01-01
Given the increasing variety of manufactured nanomaterials, suitable, robust, standardized in vitro screening methods are needed to study the mechanisms by which they can interact with biological systems. The in vitro evaluation of interactions of nanoparticles (NPs) with living cells is challenging due to the complex behaviour of NPs, which may involve dissolution, aggregation, sedimentation and formation of a protein corona. These variable parameters have an influence on the surface properties and the stability of NPs in the biological environment and therefore also on the interaction of NPs with cells. We present here a study using 30 nm and 80 nm fluorescently-labelled silicon dioxide NPs (Rubipy-SiO2 NPs) to evaluate the NPs dispersion behaviour up to 48 hours in two different cellular media either supplemented with 10% of serum or in serum-free conditions. Size-dependent differences in dispersion behaviour were observed and the influence of the living cells on NPs stability and deposition was determined. Using flow cytometry and fluorescence microscopy techniques we studied the kinetics of the cellular uptake of Rubipy-SiO2 NPs by A549 and CaCo-2 cells and we found a correlation between the NPs characteristics in cell media and the amount of cellular uptake. Our results emphasize how relevant and important it is to evaluate and to monitor the size and agglomeration state of nanoparticles in the biological medium, in order to interpret correctly the results of the in vitro toxicological assays. PMID:26517371
Halamoda-Kenzaoui, Blanka; Ceridono, Mara; Colpo, Pascal; Valsesia, Andrea; Urbán, Patricia; Ojea-Jiménez, Isaac; Gioria, Sabrina; Gilliland, Douglas; Rossi, François; Kinsner-Ovaskainen, Agnieszka
2015-01-01
Given the increasing variety of manufactured nanomaterials, suitable, robust, standardized in vitro screening methods are needed to study the mechanisms by which they can interact with biological systems. The in vitro evaluation of interactions of nanoparticles (NPs) with living cells is challenging due to the complex behaviour of NPs, which may involve dissolution, aggregation, sedimentation and formation of a protein corona. These variable parameters have an influence on the surface properties and the stability of NPs in the biological environment and therefore also on the interaction of NPs with cells. We present here a study using 30 nm and 80 nm fluorescently-labelled silicon dioxide NPs (Rubipy-SiO2 NPs) to evaluate the NPs dispersion behaviour up to 48 hours in two different cellular media either supplemented with 10% of serum or in serum-free conditions. Size-dependent differences in dispersion behaviour were observed and the influence of the living cells on NPs stability and deposition was determined. Using flow cytometry and fluorescence microscopy techniques we studied the kinetics of the cellular uptake of Rubipy-SiO2 NPs by A549 and CaCo-2 cells and we found a correlation between the NPs characteristics in cell media and the amount of cellular uptake. Our results emphasize how relevant and important it is to evaluate and to monitor the size and agglomeration state of nanoparticles in the biological medium, in order to interpret correctly the results of the in vitro toxicological assays. PMID:26517371
Frequency dispersion of the first hyperpolarizabilities of reference molecules for nonlinear optics
NASA Astrophysics Data System (ADS)
de Wergifosse, Marc; Castet, Frédéric; Champagne, Benoît
2015-05-01
The frequency dispersion of the hyper-Rayleigh scattering first hyperpolarizabilities (βHRS) of five reference molecules for nonlinear optics, namely, carbon tetrachloride, chloroform, dichloromethane, acetonitrile, and trichloroacetonitrile, is described using the coupled-cluster singles and doubles quadratic response function (CCSD-QRF) as well as approximate schemes. Comparisons to approximate schemes in which the frequency dispersion is evaluated as either a multiplicative or an additive correction to the static hyperpolarizability yield the following observations: (i) errors of the order of 10% or less are usually encountered when using the multiplicative scheme for photon energies far from the lowest dipole-allowed excitation energies, (ii) spurious cases cannot be excluded as evidenced by carbon tetrachloride where the multiplicative scheme predicts a decrease of βHRS in contradiction to the increase obtained using the CCSD-QRF method, and (iii) the additive scheme is at best as reliable as the multiplicative approximation. The two-state approximation presents the advantage of correcting the wrong behavior of the additive and multiplicative schemes for carbon tetrachloride, but it is not an improved solution for the other compounds, while the question of selecting the appropriate dominant excited state remains unanswered. Finally, a new βxyz value of 18.9 a.u. is proposed for carbon tetrachloride in gas phase at λ = 1064 nm, to be compared with the measured 16.9 ± 1.4 a.u. value due to Shelton.
Frequency dispersion of the first hyperpolarizabilities of reference molecules for nonlinear optics
Wergifosse, Marc de; Champagne, Benoît; Castet, Frédéric
2015-05-21
The frequency dispersion of the hyper-Rayleigh scattering first hyperpolarizabilities (β{sub HRS}) of five reference molecules for nonlinear optics, namely, carbon tetrachloride, chloroform, dichloromethane, acetonitrile, and trichloroacetonitrile, is described using the coupled-cluster singles and doubles quadratic response function (CCSD-QRF) as well as approximate schemes. Comparisons to approximate schemes in which the frequency dispersion is evaluated as either a multiplicative or an additive correction to the static hyperpolarizability yield the following observations: (i) errors of the order of 10% or less are usually encountered when using the multiplicative scheme for photon energies far from the lowest dipole-allowed excitation energies, (ii) spurious cases cannot be excluded as evidenced by carbon tetrachloride where the multiplicative scheme predicts a decrease of β{sub HRS} in contradiction to the increase obtained using the CCSD-QRF method, and (iii) the additive scheme is at best as reliable as the multiplicative approximation. The two-state approximation presents the advantage of correcting the wrong behavior of the additive and multiplicative schemes for carbon tetrachloride, but it is not an improved solution for the other compounds, while the question of selecting the appropriate dominant excited state remains unanswered. Finally, a new β{sub xyz} value of 18.9 a.u. is proposed for carbon tetrachloride in gas phase at λ = 1064 nm, to be compared with the measured 16.9 ± 1.4 a.u. value due to Shelton.
Synthesis of Silver Nanoparticles Dispersed in Various Aqueous Media Using Laser Ablation
Tajdidzadeh, M.; Azmi, B. Z.; Yunus, W. Mahmood M.; Talib, Z. Abidin; Sadrolhosseini, A. R.; Karimzadeh, K.; Gene, S. A.; Dorraj, M.
2014-01-01
The particle size, morphology, and stability of Ag-NPs were investigated in the present study. A Q-Switched Nd: YAG pulsed laser (λ = 532 nm, 360 mJ/pulse) was used for ablation of a pure Ag plate for 30 min to prepare Ag-NPs in the organic compound such as ethylene glycol (EG) and biopolymer such as chitosan. The media (EG, chitosan) permitted the making of NPs with well dispersed and average size of Ag-NPs in EG is about 22 nm and in chitosan is about 10 nm in spherical form. Particle size, morphology, and stability of NPs were compared with distilled water as a reference. The stability of the samples was studied by measuring UV-visible absorption spectra of samples after one month. The result indicated that the formation efficiency of NPs in chitosan was higher than other media and NPs in chitosan solution were more stable than other media during one month storage. This method for synthesis of silver NPs could be as a green method due to its environmentally friendly nature. PMID:25295298
NASA Astrophysics Data System (ADS)
Grathwohl, P.; Piepenbrink, M.; Eberhardt, C.; Kasper, M.; Gauglitz, G.
2005-12-01
Natural attenuation (mainly biodegradation) of organic pollutants in groundwater often depends on mixing of electron donors and acceptors in the plume fringes, the spatial distribution of these highly reactive zones, compared to the volume of the whole plume, is quite small and characterized by steep concentration gradients. Mixing in the field is the result of transverse dispersion, which is a function of groundwater flow velocity, the typical length scale in the aquifer (e.g. grain size) as well as the aquifer heterogeneities, and the dynamics of the natural flow system. The objectives of this work are to investigate dispersion-limited reactions in well-controlled bench-scale experiments i.e. to elaborate how heterogeneities and transient conditions at the field scale (in time and space) influence the overall natural attenuation rates of organic pollutants in groundwater. Experiments in which (a) the spreading of a conservative tracer cloud or (b) the reaction of two reaction partners at the plume fringe is limited by transverse dispersion are currently investigated in the lab. As the quantification of transverse dispersivities in heterogeneous media under transient flow conditions requires monitoring with high resolution in space and time new optical tools (CCD camera) are employed for the quantitative mapping of the plumes.The first experiments were conducted at bench scale using a continuous injection of a conservative colour tracers (fluorescine), which show absorption only at a specific range of wavelengths in the visible spectrum, a quantification of this tracers is thus possible by its colour depth. Quality control of the quantification obtained by the CCD set-up is done via conventional sampling and analysis at the outlet ports during steady state flow conditions. Currently, well controlled acid-base reactions, are monitored by the colour changes of pH-indicators.This efficient spatially and time-resolved monitoring of concentration gradient changes by
On the self-averaging of dispersion for transport in quasi-periodic random media
NASA Astrophysics Data System (ADS)
Eberhard, J. P.; Suciu, N.; Vamos, C.
2007-01-01
In this study we present a numerical analysis for the self-averaging of the longitudinal dispersion coefficient for transport in heterogeneous media. This is done by investigating the mean-square sample-to-sample fluctuations of the dispersion for finite times and finite numbers of modes for a random field using analytical arguments as well as numerical simulations. We consider transport of point-like injections in a quasi-periodic random field with a Gaussian correlation function. In particular, we focus on the asymptotic and pre-asymptotic behaviour of the fluctuations with the aid of a probability density function for the dispersion, and we verify the logarithmic growth of the sample-to-sample fluctuations as earlier reported in Eberhard (2004 J. Phys. A: Math. Gen. 37 2549-71). We also comment on the choice of the relevant parameters to generate quasi-periodic realizations with respect to the self-averaging of transport in statistically homogeneous Gaussian velocity fields.
Dispersion properties in porous media: application to Redox Flow Battery electrodes
NASA Astrophysics Data System (ADS)
Picano, Francesco; Maggiolo, Dario; Marion, Andrea; Guarnieri, Massimo
2015-11-01
Redox Flow Batteries (RFBs) represent a promising technology as a way to store energy. However, in order to improve RFBs performance, some conceptual and technological issues are still open. In particular, a properly designed geometry of flow channels and porous medium is still under investigation in order to uniformly distribute the reacting species all along the electrode. The ideal configuration aims to minimize the drag maximizing the mixing so to increase the overall performance and efficiency. In the present work a Lattice Boltzmann 3D model (LBM) has been used to better understand the dependence of mass and momentum transports on the porosity and carbon fiber preferential orientation. The LBM has been coupled with a Lagrangian particle tracking algorithm in order to investigate the dispersion mechanisms induced by the porous medium on the species flowing in a typical RFB. Results show that the drag is considerably reduced when the medium fibers are preferentially oriented along the streamwise direction. Surprisingly, this configuration shows also the highest transversal dispersion rate characterized by a super-diffusive behavior. Actually, the dispersion features are found to strongly depend on the porous media microstructure showing either anomalous or regular diffusion.
NASA Technical Reports Server (NTRS)
Lobashov, A. A.; Mostepanenko, V. M.
1993-01-01
The theory of quantum effects in nonlinear dielectric media is developed. The nonlinear dielectric media is influenced by an external pumping field. The diagonalization of the Hamiltonian of a quantized field is obtained by the canonical Bogoliubov transformations. The transformations allow us to obtain the general expressions for the number of created photons and for the degree of squeezing. In the case of a plane pumping wave, for example, the results are calculated by using the zero order of the secular perturbation theory, with small parameters characterizing the medium nonlinearity. The Heisenberg equations of motion are obtained for non-stationary case and a commonly used Hamiltonian is derived from the first principles of quantum electrodynamics.
Self-organization of frozen light in near-zero-index media with cubic nonlinearity.
Marini, A; de Abajo, F J García
2016-01-01
Optical beams are generally unbound in bulk media, and propagate with a velocity approximately amounting to the speed of light in free-space. Guidance and full spatial confinement of light are usually achieved by means of waveguides, mirrors, resonators, and photonic crystals. Here we theoretically demonstrate that nonlinear self-organization can be exploited to freeze optical beams in bulk near-zero-index media, thus enabling three-dimensional self-trapping of still light without the need of optical resonators. Light is stopped to a standstill owing to the divergent wavelength and the vanishing group velocity, effectively rendering, through nonlinearity, a positive-epsilon trapping cavity carved in an otherwise slightly-negative-epsilon medium. By numerically solving Maxwell's equations, we find a soliton-like family of still azimuthal doughnuts, which we further study through an adiabatic perturbative theory that describes soliton evaporation in lossy media or condensation in actively pumped materials. Our results suggest applications in optical data processing and storage, quantum optical memories, and soliton-based lasers without cavities. Additionally, near-zero-index conditions can also be found in the interplanetary medium and in the atmosphere, where we provide a complementary explanation to the rare phenomenon of ball-lightning. PMID:26847877
Self-organization of frozen light in near-zero-index media with cubic nonlinearity
NASA Astrophysics Data System (ADS)
Marini, A.; García de Abajo, F. J.
2016-02-01
Optical beams are generally unbound in bulk media, and propagate with a velocity approximately amounting to the speed of light in free-space. Guidance and full spatial confinement of light are usually achieved by means of waveguides, mirrors, resonators, and photonic crystals. Here we theoretically demonstrate that nonlinear self-organization can be exploited to freeze optical beams in bulk near-zero-index media, thus enabling three-dimensional self-trapping of still light without the need of optical resonators. Light is stopped to a standstill owing to the divergent wavelength and the vanishing group velocity, effectively rendering, through nonlinearity, a positive-epsilon trapping cavity carved in an otherwise slightly-negative-epsilon medium. By numerically solving Maxwell’s equations, we find a soliton-like family of still azimuthal doughnuts, which we further study through an adiabatic perturbative theory that describes soliton evaporation in lossy media or condensation in actively pumped materials. Our results suggest applications in optical data processing and storage, quantum optical memories, and soliton-based lasers without cavities. Additionally, near-zero-index conditions can also be found in the interplanetary medium and in the atmosphere, where we provide a complementary explanation to the rare phenomenon of ball-lightning.
NASA Astrophysics Data System (ADS)
Berczyński, Paweł; Kravtsov, Yury A.; Żeglinski, Grzegorz
2008-09-01
The method of paraxial complex geometrical optics (CGO) is presented, which describes Gaussian beam diffraction in arbitrary smoothly inhomogeneous media, including lens-like waveguides. By way of an example, the known analytical solution for Gaussian beam diffraction in free space is presented. Paraxial CGO reduces the problem of Gaussian beam diffraction in inhomogeneous media to the system of the first order ordinary differential equations, which can be readily solved numerically. As a result, CGO radically simplifies the description of Gaussian beam diffraction in inhomogeneous media as compared to the numerical methods of wave optics. For the paraxial on-axis Gaussian beam propagation in lens-like waveguide, we compare CGO solutions with numerical results for finite differences beam propagation method (FD-BPM). The CGO method is shown to provide 50-times higher rate of calculation then FD-BPM at comparable accuracy. Besides, paraxial eikonal-based complex geometrical optics is generalized for nonlinear Kerr type medium. This paper presents CGO analytical solutions for cylindrically symmetric Gaussian beam in Kerr type nonlinear medium and effective numerical solutions for the self-focusing effect of Gaussian beam with elliptic cross section. Both analytical and numerical solutions are shown to be in a good agreement with previous results, obtained by other methods.
Self-organization of frozen light in near-zero-index media with cubic nonlinearity
Marini, A.; García de Abajo, F. J.
2016-01-01
Optical beams are generally unbound in bulk media, and propagate with a velocity approximately amounting to the speed of light in free-space. Guidance and full spatial confinement of light are usually achieved by means of waveguides, mirrors, resonators, and photonic crystals. Here we theoretically demonstrate that nonlinear self-organization can be exploited to freeze optical beams in bulk near-zero-index media, thus enabling three-dimensional self-trapping of still light without the need of optical resonators. Light is stopped to a standstill owing to the divergent wavelength and the vanishing group velocity, effectively rendering, through nonlinearity, a positive-epsilon trapping cavity carved in an otherwise slightly-negative-epsilon medium. By numerically solving Maxwell’s equations, we find a soliton-like family of still azimuthal doughnuts, which we further study through an adiabatic perturbative theory that describes soliton evaporation in lossy media or condensation in actively pumped materials. Our results suggest applications in optical data processing and storage, quantum optical memories, and soliton-based lasers without cavities. Additionally, near-zero-index conditions can also be found in the interplanetary medium and in the atmosphere, where we provide a complementary explanation to the rare phenomenon of ball-lightning. PMID:26847877
Parallel numerical integration of Maxwell's full-vector equations in nonlinear focusing media
NASA Astrophysics Data System (ADS)
Bennett, Paul Murray
Maxwell's equations governing the evolution of ultrashort intense coherent pulses of light in a nonlinear focusing dielectric are presented. A discretization of this model using Kane Yee's grid is presented. Initial and boundary conditions are derived, and a serial finite difference algorithm using Yee's grid with the initial and boundary conditions is given. A parallelization of the serial algorithm to more aptly handle the large computational size is performed, and speedup and efficiency results of the parallel program are presented. The parallel code is first used to study the effect of the focusing nonlinearity upon dispersionless pulse propagation. Indications are given of the development of shocks on the optical carrier wave and upon the pulse envelope. The parallel code is then used to study the effect of varying the focusing of the light by varying the intensity as a way to compensate linear dispersion. Blow-up of the pulse in finite propagation distance is demonstrated, and the dependence of the blow-up position upon the intensity of the light is presented. Optical saturation is considered to counter blow-up of intense pulses. Finally, the parallel code is used to study the evolution of intense ultrashort optical pulses in a model featuring nonlinear dispersion, focusing, and optical saturation.
NASA Astrophysics Data System (ADS)
Kim, Bong-Sik
Three dimensional (3D) Navier-Stokes-alpha equations are considered for uniformly rotating geophysical fluid flows (large Coriolis parameter f = 2O). The Navier-Stokes-alpha equations are a nonlinear dispersive regularization of usual Navier-Stokes equations obtained by Lagrangian averaging. The focus is on the existence and global regularity of solutions of the 3D rotating Navier-Stokes-alpha equations and the uniform convergence of these solutions to those of the original 3D rotating Navier-Stokes equations for large Coriolis parameters f as alpha → 0. Methods are based on fast singular oscillating limits and results are obtained for periodic boundary conditions for all domain aspect ratios, including the case of three wave resonances which yields nonlinear "2½-dimensional" limit resonant equations for f → 0. The existence and global regularity of solutions of limit resonant equations is established, uniformly in alpha. Bootstrapping from global regularity of the limit equations, the existence of a regular solution of the full 3D rotating Navier-Stokes-alpha equations for large f for an infinite time is established. Then, the uniform convergence of a regular solution of the 3D rotating Navier-Stokes-alpha equations (alpha ≠ 0) to the one of the original 3D rotating NavierStokes equations (alpha = 0) for f large but fixed as alpha → 0 follows; this implies "shadowing" of trajectories of the limit dynamical systems by those of the perturbed alpha-dynamical systems. All the estimates are uniform in alpha, in contrast with previous estimates in the literature which blow up as alpha → 0. Finally, the existence of global attractors as well as exponential attractors is established for large f and the estimates are uniform in alpha.
Zhong, Zhi-Jian; Xu, Yi; Lan, Sheng; Dai, Qiao-Feng; Wu, Li-Jun
2010-01-01
Based on the excitation of surface plasmon polaritons (SPPs), we analytically and numerically investigate the transmission response in metal-dielectric-metal (MDM) plasmonic waveguides with a side coupled nanocavity (SCNC). By filling the nanocavity with a Kerr nonlinear medium, the position of the resonant dip in the transmission spectrum can be tuned by the incident light intensity. The oscillation of a Fabry-Perot nanocavity formed by incorporating a finite length of the same Kerr nonlinear media into the MDM waveguide acts as a background for the transmission response of the system and induces a sharp and asymmetric response line shape. As a result, the wavelength shift required for the plasmonic device to be switched from the maximum to the minimum transmission can be reduced by half in a structure less than 400 nm long. Such an effect may be potentially applied to constructing SPP-based all-optical switching with low power threshold at nanoscale. PMID:20173825
Lagrangian Statistics and Modeling of Pore-Scale Dispersion in Heterogeneous Natural Porous Media
NASA Astrophysics Data System (ADS)
Meyer, D. W.; Bijeljic, B.; Blunt, M. J.
2014-12-01
Recent advances made in the area of micro-CT scanning of natural pore-space geometries enable detailed investigations of flow and transport processes at the pore-scale, e.g., [Bijeljic et al., Phys. Rev. E, 87, 2013]. A study is reported of Lagrangian statistics of fluid-particle velocity and acceleration in natural porous media of different rock type. The underlying 3d pore-space geometries were obtained by means of micro-CT scans of a beadpack, Bentheimer sandstone, and Ketton and Estaillades carbonates. Based on these statistics, we introduce a new Lagrangian model for transport that reproduces the aforementioned statistics. Our model is based on a spatio-temporal Markov process of the Lagrangian velocity of fluid particles, where the model parametrization is related to the medium characteristics. Transport predictions are validated against flow and transport results from pore-scale direct numerical simulation. The new model enables the detailed investigation of the transition between non-Fickian and Fickian dispersion in real porous media. Moreover, the model sheds light on the connection between geometrical pore-space characteristics and transport behavior.
Dispersion and attenuation of acoustic guided waves in layered fluid-filled porous media
Parra, J.O.; Xu, P. )
1994-01-01
The analysis of acoustic wave propagation in fluid-filled porous media based on Biot and homogenization theories has been adapted to calculate dispersion and attenuation of guided waves trapped in low-velocity layered media. Constitutive relations, the balance equation, and the generalized Darcy law of the modified Biot theory yield a coupled system of differential equations which governs the wave motion in each layer. The displacement and stress fields satisfy the boundary conditions of continuity of displacements and tractions across each interface, and the radiation condition at infinity. To avoid precision problems caused by the growing exponential in individual matrices for large wave numbers, the global matrix method was implemented as an alternative to the traditional propagation approach to determine the periodic equations. The complex wave numbers of the guided wave modes were determined using a combination of two-dimensional bracketing and minimization techniques. The results of this work indicate that the acoustic guided wave attenuation is sensitive to the [ital in] [ital situ] permeability. In particular, the attenuation changes significantly as the [ital in] [ital situ] permeability of the low-velocity layer is varied at the frequency corresponding to the minimum group velocity (Airy phase). Alternatively, the attenuation of the wave modes are practically unaffected by those permeability variations in the layer at the frequency corresponding to the maximum group velocity.
Time domain adjoint sensitivity analysis of electromagnetic problems with nonlinear media.
Bakr, Mohamed H; Ahmed, Osman S; El Sherif, Mohamed H; Nomura, Tsuyoshi
2014-05-01
In this paper, we propose a theory for wideband adjoint sensitivity analysis of problems with nonlinear media. We show that the sensitivities of the desired response with respect to all shape and material parameters are obtained through one extra adjoint simulation. Unlike linear problems, the system matrices of this adjoint simulation are time varying. Their values are determined during the original simulation. The proposed theory exploits the time-domain transmission line modeling (TLM) and provides an efficient AVM approach for sensitivity analysis of general time domain objective functions. The theory has been illustrated through a number of examples. PMID:24921783
Multiple-type solutions for multipole interface solitons in thermal nonlinear media
NASA Astrophysics Data System (ADS)
Ma, Xuekai; Yang, Zhenjun; Lu, Daquan; Hu, Wei
2011-09-01
We address the existence of multipole interface solitons in one-dimensional thermal nonlinear media with a step in the linear refractive index at the sample center. It is found that there exist two types of solutions for tripole and quadrupole interface solitons. The two types of interface solitons have different profiles, beam widths, mass centers, and stability regions. For a given propagation constant, only one type of interface soliton is proved to be stable, while the other type can also survive over a long distance. In addition, three types of solutions for fifth-order interface solitons are found.
Multiple-type solutions for multipole interface solitons in thermal nonlinear media
Ma Xuekai; Yang Zhenjun; Lu Daquan; Hu Wei
2011-09-15
We address the existence of multipole interface solitons in one-dimensional thermal nonlinear media with a step in the linear refractive index at the sample center. It is found that there exist two types of solutions for tripole and quadrupole interface solitons. The two types of interface solitons have different profiles, beam widths, mass centers, and stability regions. For a given propagation constant, only one type of interface soliton is proved to be stable, while the other type can also survive over a long distance. In addition, three types of solutions for fifth-order interface solitons are found.