Quantum analysis applied to thermo field dynamics on dissipative systems
Hashizume, Yoichiro; Okamura, Soichiro; Suzuki, Masuo
2015-03-10
Thermo field dynamics is one of formulations useful to treat statistical mechanics in the scheme of field theory. In the present study, we discuss dissipative thermo field dynamics of quantum damped harmonic oscillators. To treat the effective renormalization of quantum dissipation, we use the Suzuki-Takano approximation. Finally, we derive a dissipative von Neumann equation in the Lindbrad form. In the present treatment, we can easily obtain the initial damping shown previously by Kubo.
Isotropy and control of dissipative quantum dynamics
NASA Astrophysics Data System (ADS)
Dive, Benjamin; Burgarth, Daniel; Mintert, Florian
2016-07-01
We investigate the problem of what evolutions an open quantum system described by a time-local master equation can undergo with universal coherent controls. A series of conditions is given which exclude channels from being reachable by any unitary controls, assuming that the coupling to the environment is not being modified. These conditions primarily arise by defining decay rates for the generator of the dynamics of the open system, and then showing that controlling the system can only make these rates more isotropic. This forms a series of constraints on the shape and nonunitality of allowed evolutions, as well as an expression for the time required to reach a given goal. We give numerical examples of the usefulness of these criteria and explore some similarities they have with quantum thermodynamics.
Dynamical response theory for driven-dissipative quantum systems
NASA Astrophysics Data System (ADS)
Campos Venuti, Lorenzo; Zanardi, Paolo
2016-03-01
We discuss dynamical response theory of driven-dissipative quantum systems described by Markovian master equations generating semigroups of maps. In this setting thermal equilibrium states are replaced by nonequilibrium steady states, and dissipative perturbations are considered in addition to the Hamiltonian ones. We derive explicit expressions for the linear dynamical response functions for generalized dephasing channels and for Davies thermalizing generators. We introduce the notion of maximal harmonic response and compute it exactly for a single-qubit channel. Finally, we analyze linear response near dynamical phase transitions in quasifree open quantum systems. It is found that the effect of the dynamical phase transition shows up in a peak at the edge of the spectrum in the imaginary part of the dynamical response function.
Non-markovian mesoscopic dissipative dynamics of open quantum spin chains
NASA Astrophysics Data System (ADS)
Benatti, F.; Carollo, F.; Floreanini, R.; Narnhofer, H.
2016-01-01
We study the dissipative dynamics of N quantum spins with Lindblad generator consisting of operators scaling as fluctuations, namely with the inverse square-root of N. In the large N limit, the microscopic dissipative time-evolution converges to a non-Markovian unitary dynamics on strictly local operators, while at the mesoscopic level of fluctuations it gives rise to a dissipative non-Markovian dynamics. The mesoscopic time-evolution is Gaussian and exhibits either a stable or an unstable asymptotic character; furthermore, the mesoscopic dynamics builds correlations among fluctuations that survive in time even when the original microscopic dynamics is unable to correlate local observables.
Zhang, Yu Chen, GuanHua; Yam, ChiYung
2015-04-28
A time-dependent inelastic electron transport theory for strong electron-phonon interaction is established via the equations of motion method combined with the small polaron transformation. In this work, the dissipation via electron-phonon coupling is taken into account in the strong coupling regime, which validates the small polaron transformation. The corresponding equations of motion are developed, which are used to study the quantum interference effect and phonon-induced decoherence dynamics in molecular junctions. Numerical studies show clearly quantum interference effect of the transport electrons through two quasi-degenerate states with different couplings to the leads. We also found that the quantum interference can be suppressed by the electron-phonon interaction where the phase coherence is destroyed by phonon scattering. This indicates the importance of electron-phonon interaction in systems with prominent quantum interference effect.
NASA Astrophysics Data System (ADS)
Gong, Z. R.; Yao, Wang
2012-02-01
Various dissipative processes have recently be exploited for preparing quantum state with multipartite entanglement between many qubits. Most such schemes are applicable only to an ensemble of identical qubits, and inhomogeneous broadening will reduce the state preparation fidelity. Here we show that by interlacing the dynamical decoupling pulse sequence with the dissipative state preparation control, the errors resulting from the inhomogeneous broadening can be suppressed up to certain order of the pulse interval and the desired entangled states can be prepared with high fidelity. We give two examples where sequence of pi pulses interlaced with dissipative control realize high fidelity preparation of cluster states and many-body singlets of atomic qubits.
Hermitian non-Markovian stochastic master equations for quantum dissipative dynamics
NASA Astrophysics Data System (ADS)
Yan, Yun-An; Zhou, Yun
2015-08-01
It remains a challenge for theory to simulate nonperturbative and non-Markovian quantum dissipative dynamics at low temperatures. In this study we suggest a Hermitian non-Markovian stochastic master equation suitable for dissipative dynamics at arbitrary temperatures. The memory effect of the bath is embedded within two real correlated Gaussian noises. This scheme is numerically verified by the hierarchical equation of motion and symmetry preserving for a symmetric two-level system. An exemplary application is carried out for the dynamics over a broad range of temperatures to investigate the temperature dependence of the Rabi frequency shift and the non-Markovianity.
Controlling the Dynamics of an Open Many-Body Quantum System with Localized Dissipation
NASA Astrophysics Data System (ADS)
Barontini, G.; Labouvie, R.; Stubenrauch, F.; Vogler, A.; Guarrera, V.; Ott, H.
2013-01-01
We experimentally investigate the action of a localized dissipative potential on a macroscopic matter wave, which we implement by shining an electron beam on an atomic Bose-Einstein condensate (BEC). We measure the losses induced by the dissipative potential as a function of the dissipation strength observing a paradoxical behavior when the strength of the dissipation exceeds a critical limit: for an increase of the dissipation rate the number of atoms lost from the BEC becomes lower. We repeat the experiment for different parameters of the electron beam and we compare our results with a simple theoretical model, finding excellent agreement. By monitoring the dynamics induced by the dissipative defect we identify the mechanisms which are responsible for the observed paradoxical behavior. We finally demonstrate the link between our dissipative dynamics and the measurement of the density distribution of the BEC allowing for a generalized definition of the Zeno effect. Because of the high degree of control on every parameter, our system is a promising candidate for the engineering of fully governable open quantum systems.
Quantum dissipative dynamics of two-level atoms in hyperbolic metamaterials
NASA Astrophysics Data System (ADS)
Cortes, Cristian; Jacob, Zubin
2015-04-01
Hyperbolic metamaterials (HMMs) represent a class of artificial nanostructured media that have garnered a lot of attention over the past few years due their broadband singularity in the photonic density of states. This unique property has led to many research directions ranging from subwavelength light manipulation to the control of radiative decay rates of quantum emitters in HMMs. Here, we apply a second quantization approach, first developed by Dekker (1975), to study the quantum dissipative dynamics of a two-level atom coupled to a hyperbolic medium. The Dekker quantization approach provides a framework that allows for non-Hermitian Hamiltonians whose imaginary part represents the dissipation of the quantum system. We calculate the resonance fluorescence spectrum and steady-state dynamics of a two-level atom in an HMM. Our results take into account non-idealities of the medium such as loss and finite unit-cell size and should be experimentally observable using current nanofabrication technology.
Quantum dissipative dynamics of two-level atoms in hyperbolic metamaterials
NASA Astrophysics Data System (ADS)
Cortes, Cristian; Jacob, Zubin
2015-05-01
Hyperbolic metamaterials (HMMs) represent a class of artificial nanostructured media that have garnered a lot of attention over the past few years due their broadband singularity in the photonic density of states. This unique property has led to many research directions ranging from subwavelength light manipulation to the control of radiative decay rates of quantum emitters in HMMs. Here, we apply a second quantization approach first developed by H. Dekker (1975), to study the quantum dissipative dynamics of a two-level atom coupled to a hyperbolic medium. The Dekker quantization approach provides a framework that allows for non-Hermitian Hamiltonians whose imaginary part represents the dissipation of the quantum system. We calculate the resonance fluorescence spectrum and steady-state dynamics of a two-level atom in an HMM. Our results take into account non-idealities of the medium such as loss and finite unit-cell size and should be experimentally observable using current nanofabrication technology.
Noether’s theorem for dissipative quantum dynamical semi-groups
Gough, John E.; Ratiu, Tudor S.; Smolyanov, Oleg G.
2015-02-15
Noether’s theorem on constants of the motion of dynamical systems has recently been extended to classical dissipative systems (Markovian semi-groups) by Baez and Fong [J. Math. Phys. 54, 013301 (2013)]. We show how to extend these results to the fully quantum setting of quantum Markov dynamics. For finite-dimensional Hilbert spaces, we construct a mapping from observables to completely positive maps that leads to the natural analogue of their criterion of commutativity with the infinitesimal generator of the Markov dynamics. Using standard results on the relaxation of states to equilibrium under quantum dynamical semi-groups, we are able to characterise the constants of the motion under quantum Markov evolutions in the infinite-dimensional setting under the usual assumption of existence of a stationary strictly positive density matrix. In particular, the Noether constants are identified with the fixed point of the Heisenberg picture semi-group.
Optimizing quantum correlation dynamics by weak measurement in dissipative environment
NASA Astrophysics Data System (ADS)
Du, Shao-Jiang; Xia, Yun-Jie; Duan, De-Yang; Zhang, Lu; Gao, Qiang
2015-04-01
We investigate the protection of quantum correlations of two qubits in independent vacuum reservoirs by means of weak measurements. It is found that the weak measurement can reduce the amount of quantum correlation for one type of initial state at the beginning in a non-Markovian environment and meanwhile it can reduce the occurrence time of entanglement sudden death (ESD) in the process of time evolution. In a Markovian environment, the quantum entanglements of the two kinds of initial states decay rapidly and the weak measurement can further weaken the quantum entanglement, therefore in this case the entanglement cannot be optimized in the evolution process. Project supported by the National Natural Science Foundation of China (Grant Nos. 61178012 and No.11147019).
Quantum dissipative Higgs model
Amooghorban, Ehsan Mahdifar, Ali
2015-09-15
By using a continuum of oscillators as a reservoir, we present a classical and a quantum-mechanical treatment for the Higgs model in the presence of dissipation. In this base, a fully canonical approach is used to quantize the damped particle on a spherical surface under the action of a conservative central force, the conjugate momentum is defined and the Hamiltonian is derived. The equations of motion for the canonical variables and in turn the Langevin equation are obtained. It is shown that the dynamics of the dissipative Higgs model is not only determined by a projected susceptibility tensor that obeys the Kramers–Kronig relations and a noise operator but also the curvature of the spherical space. Due to the gnomonic projection from the spherical space to the tangent plane, the projected susceptibility displays anisotropic character in the tangent plane. To illuminate the effect of dissipation on the Higgs model, the transition rate between energy levels of the particle on the sphere is calculated. It is seen that appreciable probabilities for transition are possible only if the transition and reservoir’s oscillators frequencies to be nearly on resonance.
Thermal Dissipation in Quantum Turbulence
Kobayashi, Michikazu; Tsubota, Makoto
2006-10-06
The microscopic mechanism of thermal dissipation in quantum turbulence is numerically studied by solving the coupled system involving the Gross-Pitaevskii equation and the Bogoliubov-de Gennes equation. At low temperatures, the obtained dissipation does not work at scales greater than the vortex core size. However, as the temperature increases, dissipation works at large scales and it affects the vortex dynamics. We successfully obtain the mutual friction coefficients of the vortex in dilute Bose-Einstein condensates dynamics as functions of temperature.
Quantum Dynamics in Noisy Backgrounds: from Sampling to Dissipation and Fluctuations
NASA Astrophysics Data System (ADS)
Oliveira, O.; Paula, W. de; Frederico, T.; Hussein, M. S.
2016-08-01
We investigate the dynamics of a quantum system coupled linearly to Gaussian white noise using functional methods. By performing the integration over the noisy field in the evolution operator, we get an equivalent non-Hermitian Hamiltonian, which evolves the quantum state with a dissipative dynamics. We also show that if the integration over the noisy field is done for the time evolution of the density matrix, a gain contribution from the fluctuations can be accessed in addition to the loss one from the non-hermitian Hamiltonian dynamics. We illustrate our study by computing analytically the effective non-Hermitian Hamiltonian, which we found to be the complex frequency harmonic oscillator, with a known evolution operator. It leads to space and time localisation, a common feature of noisy quantum systems in general applications.
Quantum dissonance induced by a thermal field and its dynamics in dissipative systems
NASA Astrophysics Data System (ADS)
Man, Z. X.; Xia, Y. J.; An, N. B.
2011-10-01
In this paper, we study quantum correlation in separable systems termed quantum dissonance [K. Modi, T. Paterek, W. Son, V. Vedral, M. Williamson, Phys. Rev. Lett. 104, 080501 (2010)]. Firstly, we study the emergence of quantum dissonance between two atoms prepared in uncorrelated states and coupled to a single-mode thermal field. We show that even for situations when the thermal field cannot entangle the two atoms, it can nevertheless induce quantum dissonance between them. Then, we investigate the dynamics including the transfer in both Markovian and non-Markovian regimes of quantum dissonance due to dissipation modeled by two independent subsystems each of which consists of a leaky cavity containing a two-level atom and surrounded by a reservoir. The two subsystems possess some amount of atomic quantum dissonance at the beginning but do not interact with each other by any means later on. We show that the quantum dissonance can be transferred among the composite subsystems, but the way it evolves and is transferred may be very different compared to that of entanglement. Finally, we present an efficient method to refrain the unwanted transfer of quantum dissonance from interested systems to reservoirs.
NASA Astrophysics Data System (ADS)
Sklarz, Shlomo E.; Tannor, David J.; Khaneja, Navin
2004-05-01
We study the problem of optimal control of dissipative quantum dynamics. Although under most circumstances dissipation leads to an increase in entropy (or a decrease in purity) of the system, there is an important class of problems for which dissipation with external control can decrease the entropy (or increase the purity) of the system. An important example is laser cooling. In such systems, there is an interplay of the Hamiltonian part of the dynamics, which is controllable, and the dissipative part of the dynamics, which is uncontrollable. The strategy is to control the Hamiltonian portion of the evolution in such a way that the dissipation causes the purity of the system to increase rather than decrease. The goal of this paper is to find the strategy that leads to maximal purity at the final time. Under the assumption that Hamiltonian control is complete and arbitrarily fast, we provide a general framework by which to calculate optimal cooling strategies. These assumptions lead to a great simplification, in which the control problem can be reformulated in terms of the spectrum of eigenvalues of ρ , rather than ρ itself. By combining this formulation with the Hamilton-Jacobi-Bellman theorem we are able to obtain an equation for the globally optimal cooling strategy in terms of the spectrum of the density matrix. For the three-level Λ system, we provide a complete analytic solution for the optimal cooling strategy. For this system it is found that the optimal strategy does not exploit system coherences and is a “greedy” strategy, in which the purity is increased maximally at each instant.
Sklarz, Shlomo E.; Tannor, David J.; Khaneja, Navin
2004-05-01
We study the problem of optimal control of dissipative quantum dynamics. Although under most circumstances dissipation leads to an increase in entropy (or a decrease in purity) of the system, there is an important class of problems for which dissipation with external control can decrease the entropy (or increase the purity) of the system. An important example is laser cooling. In such systems, there is an interplay of the Hamiltonian part of the dynamics, which is controllable, and the dissipative part of the dynamics, which is uncontrollable. The strategy is to control the Hamiltonian portion of the evolution in such a way that the dissipation causes the purity of the system to increase rather than decrease. The goal of this paper is to find the strategy that leads to maximal purity at the final time. Under the assumption that Hamiltonian control is complete and arbitrarily fast, we provide a general framework by which to calculate optimal cooling strategies. These assumptions lead to a great simplification, in which the control problem can be reformulated in terms of the spectrum of eigenvalues of {rho}, rather than {rho} itself. By combining this formulation with the Hamilton-Jacobi-Bellman theorem we are able to obtain an equation for the globally optimal cooling strategy in terms of the spectrum of the density matrix. For the three-level {lambda} system, we provide a complete analytic solution for the optimal cooling strategy. For this system it is found that the optimal strategy does not exploit system coherences and is a 'greedy' strategy, in which the purity is increased maximally at each instant.
Non-linear quantum critical dynamics and fluctuation-dissipation ratios far from equilibrium
NASA Astrophysics Data System (ADS)
Zamani, Farzaneh; Ribeiro, Pedro; Kirchner, Stefan
2016-02-01
Non-thermal correlations of strongly correlated electron systems and the far-from-equilibrium properties of phases of condensed matter have become a topical research area. Here, an overview of the non-linear dynamics found near continuous zero-temperature phase transitions within the context of effective temperatures is presented. In particular, we focus on models of critical Kondo destruction. Such a quantum critical state, where Kondo screening is destroyed in a critical fashion, is realized in a number of rare earth intermetallics. This raises the possibility of experimentally testing for the existence of fluctuation-dissipation relations far from equilibrium in terms of effective temperatures. Finally, we present an analysis of a non-interacting, critical reference system, the pseudogap resonant level model, in terms of effective temperatures and contrast these results with those obtained near interacting quantum critical points.
Dissipative quantum computing with open quantum walks
Sinayskiy, Ilya; Petruccione, Francesco
2014-12-04
An open quantum walk approach to the implementation of a dissipative quantum computing scheme is presented. The formalism is demonstrated for the example of an open quantum walk implementation of a 3 qubit quantum circuit consisting of 10 gates.
Uranga-Piña, L.; Tremblay, J. C.
2014-08-21
We investigate the effect of inter-mode coupling on the vibrational relaxation dynamics of molecules in weak dissipative environments. The simulations are performed within the reduced density matrix formalism in the Markovian regime, assuming a Lindblad form for the system-bath interaction. The prototypical two-dimensional model system representing two CO molecules approaching a Cu(100) surface is adapted from an ab initio potential, while the diatom-diatom vibrational coupling strength is systematically varied. In the weak system-bath coupling limit and at low temperatures, only first order non-adiabatic uni-modal coupling terms contribute to surface-mediated vibrational relaxation. Since dissipative dynamics is non-unitary, the choice of representation will affect the evolution of the reduced density matrix. Two alternative representations for computing the relaxation rates and the associated operators are thus compared: the fully coupled spectral basis, and a factorizable ansatz. The former is well-established and serves as a benchmark for the solution of Liouville-von Neumann equation. In the latter, a contracted grid basis of potential-optimized discrete variable representation is tailored to incorporate most of the inter-mode coupling, while the Lindblad operators are represented as tensor products of one-dimensional operators, for consistency. This procedure results in a marked reduction of the grid size and in a much more advantageous scaling of the computational cost with respect to the increase of the dimensionality of the system. The factorizable method is found to provide an accurate description of the dissipative quantum dynamics of the model system, specifically of the time evolution of the state populations and of the probability density distribution of the molecular wave packet. The influence of intra-molecular vibrational energy redistribution appears to be properly taken into account by the new model on the whole range of coupling strengths. It
Natural approach to quantum dissipation
NASA Astrophysics Data System (ADS)
Taj, David; Öttinger, Hans Christian
2015-12-01
The dissipative dynamics of a quantum system weakly coupled to one or several reservoirs is usually described in terms of a Lindblad generator. The popularity of this approach is certainly due to the linear character of the latter. However, while such linearity finds justification from an underlying Hamiltonian evolution in some scaling limit, it does not rely on solid physical motivations at small but finite values of the coupling constants, where the generator is typically used for applications. The Markovian quantum master equations we propose are instead supported by very natural thermodynamic arguments. They themselves arise from Markovian master equations for the system and the environment which preserve factorized states and mean energy and generate entropy at a non-negative rate. The dissipative structure is driven by an entropic map, called modular, which introduces nonlinearity. The generated modular dynamical semigroup (MDS) guarantees for the positivity of the time evolved state the correct steady state properties, the positivity of the entropy production, and a positive Onsager matrix with symmetry relations arising from Green-Kubo formulas. We show that the celebrated Davies Lindblad generator, obtained through the Born and the secular approximations, generates a MDS. In doing so we also provide a nonlinear MDS which is supported by a weak coupling argument and is free from the limitations of the Davies generator.
Dissipative Forces and Quantum Mechanics
ERIC Educational Resources Information Center
Eck, John S.; Thompson, W. J.
1977-01-01
Shows how to include the dissipative forces of classical mechanics in quantum mechanics by the use of non-Hermetian Hamiltonians. The Ehrenfest theorem for such Hamiltonians is derived, and simple examples which show the classical correspondences are given. (MLH)
Dissipative Landau-Zener quantum dynamics with transversal and longitudinal noise
NASA Astrophysics Data System (ADS)
Javanbakht, S.; Nalbach, P.; Thorwart, M.
2015-05-01
We determine the Landau-Zener transition probability in a dissipative environment including both longitudinal as well as transversal quantum-mechanical noise originating from a single noise source. For this, we use the numerically exact quasiadiabatic path integral, as well as the approximative nonequilibrium Bloch equations. We find that transversal quantum noise in general influences the Landau-Zener probability much more strongly than longitudinal quantum noise does at a given temperature and system-bath coupling strength. In other words, transversal noise contributions become important even when the coupling strength of transversal noise is smaller than that of longitudinal noise. We furthermore reveal that transversal noise renormalizes the tunnel coupling independent of temperature. Finally, we show that the effect of mixed longitudinal and transversal noise originating from a single bath cannot be obtained from an incoherent sum of purely longitudinal and purely transversal noise.
Dissipation Assisted Quantum Memory with Coupled Spin Systems
NASA Astrophysics Data System (ADS)
Jiang, Liang; Verstraete, Frank; Cirac, Ignacio; Lukin, Mikhail
2009-05-01
Dissipative dynamics often destroys quantum coherences. However, one can use dissipation to suppress decoherence. A well-known example is the so-called quantum Zeno effect, in which one can freeze the evolution using dissipative processes (e.g., frequently projecting the system to its initial state). Similarly, the undesired decoherence of quantum bits can also be suppressed using controlled dissipation. We propose and analyze the use of this generalization of quantum Zeno effect for protecting the quantum information encoded in the coupled spin systems. This new approach may potentially enhance the performance of quantum memories, in systems such as nitrogen-vacancy color-centers in diamond.
NASA Astrophysics Data System (ADS)
Wieser, Robert
2015-03-01
The classical Landau-Lifshitz equation has been derived from quantum mechanics. Starting point is the assumption of a non-Hermitian Hamilton operator to take the energy dissipation into account. The corresponding quantum mechanical spin dynamics along with the time dependent Schrödinger, Liouville and Heisenberg equation has been described and the similarities and differences between classical and quantum mechanical spin dynamics have been discussed. Furthermore, a time dependent Schrödinger equation corresponding to the classical Landau-Lifshitz-Gilbert equation and two ways to include temperature into the quantum mechanical spin dynamics have been proposed.
Quantum Dissipation in Nanomechanical Oscillators
NASA Astrophysics Data System (ADS)
Zolfagharkhani, G.; Gaidarzhy, A.; Badzey, R. L.; Mohanty, P.
2004-03-01
Dissipation or energy relaxation of a resonant mode in a nanomechanical device occurs by its coupling to environment degrees of freedom, which also acquire quantum mechanical correlations at millikelvin temperatures. We report measurements of temperature and magnetic field dependence of dissipation in single crystal silicon nanobeams in MHz up to 1 GHz frequency range. We extend our measurements down to temperatures of 20 millikelvin and up to fields of 16 tesla. The fabrication of our Nano-Electro-Mechanical Systems (NEMS) involves e-beam lithography, as well as various deposition and plasma etching processes. This work is supported by NSF and the Sloan Foundation.
Dissipative effects on quantum sticking.
Zhang, Yanting; Clougherty, Dennis P
2012-04-27
Using variational mean-field theory, many-body dissipative effects on the threshold law for quantum sticking and reflection of neutral and charged particles are examined. For the case of an Ohmic bosonic bath, we study the effects of the infrared divergence on the probability of sticking and obtain a nonperturbative expression for the sticking rate. We find that for weak dissipative coupling α, the low-energy threshold laws for quantum sticking are modified by an infrared singularity in the bath. The sticking probability for a neutral particle with incident energy E→0 behaves asymptotically as s~E((1+α)/2(1-α)); for a charged particle, we obtain s~E(α/2(1-α)). Thus, "quantum mirrors"-surfaces that become perfectly reflective to particles with incident energies asymptotically approaching zero-can also exist for charged particles. We provide a numerical example of the effects for electrons sticking to porous silicon via the emission of a Rayleigh phonon. PMID:22680861
Dissipative Effects on Quantum Sticking
NASA Astrophysics Data System (ADS)
Zhang, Yanting; Clougherty, Dennis P.
2012-04-01
Using variational mean-field theory, many-body dissipative effects on the threshold law for quantum sticking and reflection of neutral and charged particles are examined. For the case of an Ohmic bosonic bath, we study the effects of the infrared divergence on the probability of sticking and obtain a nonperturbative expression for the sticking rate. We find that for weak dissipative coupling α, the low-energy threshold laws for quantum sticking are modified by an infrared singularity in the bath. The sticking probability for a neutral particle with incident energy E→0 behaves asymptotically as s˜E(1+α)/2(1-α); for a charged particle, we obtain s˜Eα/2(1-α). Thus, “quantum mirrors”—surfaces that become perfectly reflective to particles with incident energies asymptotically approaching zero—can also exist for charged particles. We provide a numerical example of the effects for electrons sticking to porous silicon via the emission of a Rayleigh phonon.
NASA Astrophysics Data System (ADS)
Giorgi, Gian Luca; Galve, Fernando; Zambrini, Roberta
2015-08-01
Quantum Darwinism explains the emergence of a classical description of objects in terms of the creation of many redundant registers in an environment containing their classical information. This amplification phenomenon, where only classical information reaches the macroscopic observer and through which different observers can agree on the objective existence of such object, has been revived lately for several types of situations, successfully explaining classicality. We explore quantum Darwinism in the setting of an environment made of two level systems which are initially prepared in the ground state of the XX model, which exhibits different phases; we find that the different phases have different abilities to redundantly acquire classical information about the system, the "ferromagnetic phase" being the only one able to complete quantum Darwinism. At the same time we relate this ability to how non-Markovian the system dynamics is, based on the interpretation that non-Markovian dynamics is associated with backflow of information from environment to system, thus spoiling the information transfer needed for Darwinism. Finally, we explore mixing of bath registers by allowing a small interaction among them, finding that this spoils the stored information as previously found in the literature.
A quantum photonic dissipative transport theory
NASA Astrophysics Data System (ADS)
Lei, Chan U.; Zhang, Wei-Min
2012-05-01
In this paper, a quantum transport theory for describing photonic dissipative transport dynamics in nanophotonics is developed. The nanophotonic devices concerned in this paper consist of on-chip all-optical integrated circuits incorporating photonic bandgap waveguides and driven resonators embedded in nanostructured photonic crystals. The photonic transport through waveguides is entirely determined from the exact master equation of the driven resonators, which is obtained by explicitly eliminating all the degrees of freedom of the waveguides (treated as reservoirs). Back-reactions from the reservoirs are fully taken into account. The relation between the driven photonic dynamics and photocurrents is obtained explicitly. The non-Markovian memory structure and quantum decoherence dynamics in photonic transport can then be fully addressed. As an illustration, the theory is utilized to study the transport dynamics of a photonic transistor consisting of a nanocavity coupled to two waveguides in photonic crystals. The controllability of photonic transport through the external driven field is demonstrated.
Exploring quantum phases by driven dissipation
NASA Astrophysics Data System (ADS)
Lang, Nicolai; Büchler, Hans Peter
2015-07-01
Dephasing and decay are the intrinsic dissipative processes prevalent in any open quantum system and the dominant mechanisms for the loss of coherence and entanglement. This inadvertent effect not only can be overcome but can even be capitalized on in a dissipative quantum simulation by means of tailored couplings between the quantum system and the environment. In this context it has been demonstrated that universal quantum computation can be performed using purely dissipative elements, and furthermore, the efficient preparation of highly entangled states is possible. In this article, we are interested in nonequilibrium phase transitions appearing in purely dissipative systems and the exploration of quantum phases in terms of a dissipative quantum simulation. To elucidate these concepts, we scrutinize exemplarily two paradigmatic models: the transverse-field Ising model and the considerably more complex Z2 lattice gauge theory. We show that the nonequilibrium phase diagrams parallel the quantum phase diagrams of the Hamiltonian "blueprint" theories.
Dissipative Effects on Quantum Sticking
NASA Astrophysics Data System (ADS)
Zhang, Yanting; Clougherty, Dennis
2011-03-01
Using variational mean-field theory, many-body dissipative effects on the threshold law for quantum sticking and reflection of neutral particles are examined. For the case of an ohmic bosonic bath, we study the effects of the infrared divergence on the probability of sticking and obtain an analytic expression for the rate of sticking as an asymptotic expansion in the incident energy E . The low-energy threshold law for quantum sticking is found to be robust with respect to many-body effects and remains a universal scaling law to leading order in E . Non-universal many-body effects alter the coefficient of the rate law and the exponent of a subdominant term. We gratefully acknowledge support from NSF under DMR-0814377.
Entanglement and dephasing of quantum dissipative systems
Stauber, T.; Guinea, F.
2006-04-15
The von Neumann entropy of various quantum dissipative models is calculated in order to discuss the entanglement properties of these systems. First, integrable quantum dissipative models are discussed, i.e., the quantum Brownian motion and the quantum harmonic oscillator. In the case of the free particle, the related entanglement of formation shows no nonanalyticity. In the case of the dissipative harmonic oscillator, there is a nonanalyticity at the transition of underdamped to overdamped oscillations. We argue that this might be a general property of dissipative systems. We show that similar features arise in the dissipative two-level system and study different regimes using sub-Ohmic, Ohmic, and super-Ohmic baths, within a scaling approach.
On the accuracy of the Padé-resummed master equation approach to dissipative quantum dynamics
NASA Astrophysics Data System (ADS)
Chen, Hsing-Ta; Berkelbach, Timothy C.; Reichman, David R.
2016-04-01
Well-defined criteria are proposed for assessing the accuracy of quantum master equations whose memory functions are approximated by Padé resummation of the first two moments in the electronic coupling. These criteria partition the parameter space into distinct levels of expected accuracy, ranging from quantitatively accurate regimes to regions of parameter space where the approach is not expected to be applicable. Extensive comparison of Padé-resummed master equations with numerically exact results in the context of the spin-boson model demonstrates that the proposed criteria correctly demarcate the regions of parameter space where the Padé approximation is reliable. The applicability analysis we present is not confined to the specifics of the Hamiltonian under consideration and should provide guidelines for other classes of resummation techniques.
On the accuracy of the Padé-resummed master equation approach to dissipative quantum dynamics.
Chen, Hsing-Ta; Berkelbach, Timothy C; Reichman, David R
2016-04-21
Well-defined criteria are proposed for assessing the accuracy of quantum master equations whose memory functions are approximated by Padé resummation of the first two moments in the electronic coupling. These criteria partition the parameter space into distinct levels of expected accuracy, ranging from quantitatively accurate regimes to regions of parameter space where the approach is not expected to be applicable. Extensive comparison of Padé-resummed master equations with numerically exact results in the context of the spin-boson model demonstrates that the proposed criteria correctly demarcate the regions of parameter space where the Padé approximation is reliable. The applicability analysis we present is not confined to the specifics of the Hamiltonian under consideration and should provide guidelines for other classes of resummation techniques. PMID:27389208
Thermodynamical properties of Strunz’s quantum dissipative models
Zen, Freddy P.; Sulaiman, A.
2015-09-30
The existence of the negative of specific heat from quantum dissipative theory is investigated. Strunz’s quantum dissipative model will be used in this studies. The thermodynamical properties will be studied starts out from the thermo-dynamic partition function of the dissipative system. The path integral technique is used to calculate the partition function under consideration. The results shows that the specific heat can be negative if the damping parameter more than a half the oscillator frequency and also occur at low temperatures. For damping factor greater than the frequency of harmonic oscillator then specific heat will oscillate at low temperatures and approaching normal conditions at a high temperature.
Quantal Cumulant Dynamics for Dissipative Systems
Shigeta, Yasuteru
2007-12-26
We develop a quantal cumulant dynamics method for the quantum tunneling in dissipative environment. Reduced equations of motion of classical and quantal cumulant variables without bath degrees of freedom are derived. We observed suppression of the tunneling that depends on the sign of a friction constant for an Ohmic approximation and on the magnitude of a bath frequency for a single bath mode approximation. A possible mechanism of the suppression is explored by analyzing an effective quantal potential of the tunneling path.
Quantum speed meter based on dissipative coupling
NASA Astrophysics Data System (ADS)
Vyatchanin, Sergey P.; Matsko, Andrey B.
2016-06-01
We show that generalized dissipative optomechanical coupling enables a direct quantum measurement of speed of a free test mass. An optical detection of a weak classical mechanical force based on this interaction is proposed. The sensitivity of the force measurement can be better than the standard quantum limit.
Dissipative superfluid dynamics from gravity
NASA Astrophysics Data System (ADS)
Bhattacharya, Jyotirmoy; Bhattacharyya, Sayantani; Minwalla, Shiraz
2011-04-01
Charged asymptotically AdS 5 black branes are sometimes unstable to the condensation of charged scalar fields. For fields of infinite charge and squared mass -4 Herzog was able to analytically determine the phase transition temperature and compute the endpoint of this instability in the neighborhood of the phase transition. We generalize Herzog's construction by perturbing away from infinite charge in an expansion in inverse charge and use the solutions so obtained as input for the fluid gravity map. Our tube wise construction of patched up locally hairy black brane solutions yields a one to one map from the space of solutions of superfluid dynamics to the long wavelength solutions of the Einstein Maxwell system. We obtain explicit expressions for the metric, gauge field and scalar field dual to an arbitrary superfluid flow at first order in the derivative expansion. Our construction allows us to read off the the leading dissipative corrections to the perfect superfluid stress tensor, current and Josephson equations. A general framework for dissipative superfluid dynamics was worked out by Landau and Lifshitz for zero superfluid velocity and generalized to nonzero fluid velocity by Clark and Putterman. Our gravitational results do not fit into the 13 parameter Clark-Putterman framework. Purely within fluid dynamics we present a consistent new generalization of Clark and Putterman's equations to a set of superfluid equations parameterized by 14 dissipative parameters. The results of our gravitational calculation fit perfectly into this enlarged framework. In particular we compute all the dissipative constants for the gravitational superfluid.
Quantum simulation of dissipative processes without reservoir engineering
Di Candia, R.; Pedernales, J. S.; del Campo, A.; Solano, E.; Casanova, J.
2015-05-29
We present a quantum algorithm to simulate general finite dimensional Lindblad master equations without the requirement of engineering the system-environment interactions. The proposed method is able to simulate both Markovian and non-Markovian quantum dynamics. It consists in the quantum computation of the dissipative corrections to the unitary evolution of the system of interest, via the reconstruction of the response functions associated with the Lindblad operators. Our approach is equally applicable to dynamics generated by effectively non-Hermitian Hamiltonians. We confirm the quality of our method providing specific error bounds that quantify its accuracy.
Quantum Simulation of Dissipative Processes without Reservoir Engineering
Di Candia, R.; Pedernales, J. S.; del Campo, A.; Solano, E.; Casanova, J.
2015-01-01
We present a quantum algorithm to simulate general finite dimensional Lindblad master equations without the requirement of engineering the system-environment interactions. The proposed method is able to simulate both Markovian and non-Markovian quantum dynamics. It consists in the quantum computation of the dissipative corrections to the unitary evolution of the system of interest, via the reconstruction of the response functions associated with the Lindblad operators. Our approach is equally applicable to dynamics generated by effectively non-Hermitian Hamiltonians. We confirm the quality of our method providing specific error bounds that quantify its accuracy. PMID:26024437
Dynamics of dissipative gravitational collapse
Herrera, L.; Santos, N.O.
2004-10-15
The Misner and Sharp approach to the study of gravitational collapse is extended to the dissipative case in, both, the streaming out and the diffusion approximations. The role of different terms in the dynamical equation are analyzed in detail. The dynamical equation is then coupled to a causal transport equation in the context of Israel-Stewart theory. The decreasing of the inertial mass density of the fluid, by a factor which depends on its internal thermodynamics state, is reobtained, at any time scale. In accordance with the equivalence principle, the same decreasing factor is obtained for the gravitational force term. Prospective applications of this result to some astrophysical scenarios are discussed.
Dynamics of Dissipative Temporal Solitons
NASA Astrophysics Data System (ADS)
Peschel, U.; Michaelis, D.; Bakonyi, Z.; Onishchukov, G.; Lederer, F.
The properties and the dynamics of localized structures, frequently termed solitary waves or solitons, define, to a large extent, the behavior of the relevant nonlinear system [1]. Thus, it is a crucial and fundamental issue of nonlinear dynamics to fully characterize these objects in various conservative and dissipative nonlinear environments. Apart from this fundamental point of view, solitons (henceforth we adopt this term, even for localized solutions of non-integrable systems) exhibit a remarkable potential for applications, particularly if optical systems are considered. Regarding the type of localization, one can distinguish between temporal and spatial solitons. Spatial solitons are self-confined beams, which are shape-invariant upon propagation. (For an overview, see [2, 3]). It can be anticipated that they could play a vital role in all-optical processing and logic, since we can use their complex collision behavior [4]. Temporal solitons, on the other hand, represent shapeinvariant (or breathing) pulses. It is now common belief that robust temporal solitons will play a major role as elementary units (bits) of information in future all-optical networks [5, 6]. Until now, the main emphasis has been on temporal and spatial soliton families in conservative systems, where energy is conserved. Recently, another class of solitons, which are characterized by a permanent energy exchange with their environment, has attracted much attention. These solitons are termed dissipative solitons or auto-solitons. They emerge as a result of a balance between linear (delocalization and losses) and nonlinear (self-phase modulation and gain/loss saturation) effects. Except for very few cases [7], they form zero-parameter families and their features are entirely fixed by the underlying optical system. Cavity solitons form a prominent type. They appear as spatially-localized transverse peaks in transmission or reflection, e.g. from a Fabry-Perot cavity. They rely strongly on the
Chebyshev Expansion Applied to Dissipative Quantum Systems.
Popescu, Bogdan; Rahman, Hasan; Kleinekathöfer, Ulrich
2016-05-19
To determine the dynamics of a molecular aggregate under the influence of a strongly time-dependent perturbation within a dissipative environment is still, in general, a challenge. The time-dependent perturbation might be, for example, due to external fields or explicitly treated fluctuations within the environment. Methods to calculate the dynamics in these cases do exist though some of these approaches assume that the corresponding correlation functions can be written as a weighted sum of exponentials. One such theory is the hierarchical equations of motion approach. If the environment, however, is described by a complex spectral density or if its temperature is low, these approaches become very inefficient. Therefore, we propose a scheme based on a Chebyshev decomposition of the bath correlation functions and detail the respective quantum master equations within second-order perturbation theory in the environmental coupling. Similar approaches have recently been proposed for systems coupled to Fermionic reservoirs. The proposed scheme is tested for a simple two-level system and compared to existing results. Furthermore, the advantages and disadvantages of the present Chebyshev approach are discussed. PMID:26845380
Effects of dissipation on a quantum critical point with disorder.
Hoyos, José A; Kotabage, Chetan; Vojta, Thomas
2007-12-01
We study the effects of dissipation on a disordered quantum phase transition with O(N) order-parameter symmetry by applying a strong-disorder renormalization group to the Landau-Ginzburg-Wilson field theory of the problem. We find that Ohmic dissipation results in a nonperturbative infinite-randomness critical point with unconventional activated dynamical scaling while super-Ohmic damping leads to conventional behavior. We discuss applications to the superconductor-metal transition in nanowires and to the Hertz theory of the itinerant antiferromagnetic transition. PMID:18233349
Observation of a Dissipation-Induced Classical to Quantum Transition
NASA Astrophysics Data System (ADS)
Raftery, James; Sadri, Darius; Schmidt, Sebastian; Türeci, Hakan; Houck, Andrew
2014-03-01
The emergence of non-trivial structure in many-body physics has been a central topic of research bearing on many branches of science. Important recent work has explored the nonequilibrium quantum dynamics of closed many-body systems. With the rapid technological advances in solid state quantum optics, it is now possible to experimentally study strongly correlated photons, and to build model systems whose open nature gives rise to rich emergent behavior. We report the experimental observation of a novel dissipation driven dynamical localization transition of strongly correlated photons in an extended superconducting circuit. Interaction with an environment has been argued to provide a mechanism for the emergence of classical behavior from a quantum system. Surprisingly, homodyne measurements reveal the observed localization transition to be from a regime of classical oscillations into a macroscopically self-trapped state manifesting revivals, a fundamentally quantum phenomenon. This experiment also demonstrates a new class of scalable quantum simulators with well controlled coherent and dissipative dynamics suited to the study of quantum many-body phenomena out of equilibrium. Supported by The Eric and Wendy Schmidt Transformative Technology Fund, the US National Science Foundation, the David and Lucile Packard Foundation, and the US Army Research Office.
Emergence of glasslike dynamics for dissipative and strongly interacting bosons.
Poletti, Dario; Barmettler, Peter; Georges, Antoine; Kollath, Corinna
2013-11-01
We study the dynamics of a strongly interacting bosonic quantum gas in an optical lattice potential under the effect of a dissipative environment. We show that the interplay between the dissipative process and the Hamiltonian evolution leads to an unconventional dynamical behavior of local number fluctuations. In particular, we show, both analytically and numerically, the emergence of an anomalous diffusive evolution in configuration space at short times and, at long times, an unconventional dynamics dominated by rare events. Such rare events, common in disordered and frustrated systems, are due here to strong interactions. This complex two-stage dynamics reveals information on the level structure of the strongly interacting gas. PMID:24266477
Dissipative Quantum Control of a Spin Chain
NASA Astrophysics Data System (ADS)
Morigi, Giovanna; Eschner, Jürgen; Cormick, Cecilia; Lin, Yiheng; Leibfried, Dietrich; Wineland, David J.
2015-11-01
A protocol is discussed for preparing a spin chain in a generic many-body state in the asymptotic limit of tailored nonunitary dynamics. The dynamics require the spectral resolution of the target state, optimized coherent pulses, engineered dissipation, and feedback. As an example, we discuss the preparation of an entangled antiferromagnetic state, and argue that the procedure can be applied to chains of trapped ions or Rydberg atoms.
Quantum information-geometry of dissipative quantum phase transitions.
Banchi, Leonardo; Giorda, Paolo; Zanardi, Paolo
2014-02-01
A general framework for analyzing the recently discovered phase transitions in the steady state of dissipation-driven open quantum systems is still lacking. To fill this gap, we extend the so-called fidelity approach to quantum phase transitions to open systems whose steady state is a Gaussian fermionic state. We endow the manifold of correlation matrices of steady states with a metric tensor g measuring the distinguishability distance between solutions corresponding to a different set of control parameters. The phase diagram can then be mapped out in terms of the scaling behavior of g and connections with the Liouvillean gap and the model correlation functions unveiled. We argue that the fidelity approach, thanks to its differential-geometric and information-theoretic nature, provides insights into dissipative quantum critical phenomena as well as a general and powerful strategy to explore them. PMID:25353417
Environment-dependent dissipation in quantum Brownian motion
Paavola, J.; Piilo, J.; Suominen, K.-A.; Maniscalco, S.
2009-05-15
The dissipative dynamics of a quantum Brownian particle is studied for different types of environment. We derive analytic results for the time evolution of the mean energy of the system for Ohmic, sub-Ohmic, and super-Ohmic environments, without performing the Markovian approximation. Our results allow one to establish a direct link between the form of the environmental spectrum and the thermalization dynamics. This in turn leads to a natural explanation of the microscopic physical processes ruling the system time evolution both in the short-time non-Markovian region and in the long-time Markovian one. Our comparative study of thermalization for different environments sheds light on the physical contexts in which non-Markovian dissipation effects are dominant.
Dissipative nonlinear dynamics in holography
NASA Astrophysics Data System (ADS)
Basu, Pallab; Ghosh, Archisman
2014-02-01
We look at the response of a nonlinearly coupled scalar field in an asymptotically AdS black brane geometry and find a behavior very similar to that of known dissipative nonlinear systems like the chaotic pendulum. Transition to chaos proceeds through a series of period-doubling bifurcations. The presence of dissipation, crucial to this behavior, arises naturally in a black hole background from the ingoing conditions imposed at the horizon. AdS/CFT translates our solution to a chaotic response of O, the operator dual to the scalar field. Our setup can also be used to study quenchlike behavior in strongly coupled nonlinear systems.
Quantum dissipative effect of one dimension coupled anharmonic oscillator
Sulaiman, A.; Zen, Freddy P.
2015-04-16
Quantum dissipative effect of one dimension coupled anharmonic oscillator is investigated. The systems are two coupled harmonic oscillator with the different masses. The dissipative effect is studied based on the quantum state diffusion formalism. The result show that the anharmonic effect increase the amplitude but the lifetime of the oscillation depend on the damping coefficient and do not depend on the temperature.
Quantum sweeps, synchronization, and Kibble-Zurek physics in dissipative quantum spin systems
NASA Astrophysics Data System (ADS)
Henriet, Loïc; Le Hur, Karyn
2016-02-01
We address dissipation effects on the nonequilibrium quantum dynamics of an ensemble of spins-1/2 coupled via an Ising interaction. Dissipation is modeled by a (Ohmic) bath of harmonic oscillators at zero temperature and correspond either to the sound modes of a one-dimensional Bose-Einstein (quasi-)condensate or to the zero-point fluctuations of a long transmission line. We consider the dimer comprising two spins and the quantum Ising chain with long-range interactions and develop an (mathematically and numerically) exact stochastic approach to address nonequilibrium protocols in the presence of an environment. For the two-spin case, we first investigate the dissipative quantum phase transition induced by the environment through quantum quenches and study the effect of the environment on the synchronization properties. Then we address Landau-Zener-Stueckelberg-Majorana protocols for two spins and for the spin array. In this latter case, we adopt a stochastic mean-field point of view and present a Kibble-Zurek-type argument to account for interaction effects in the lattice. Such dissipative quantum spin arrays can be realized in ultracold atoms, trapped ions, and mesoscopic systems and are related to Kondo lattice models.
NASA Astrophysics Data System (ADS)
Cui, Ping
The thesis comprises two major themes of quantum statistical dynamics. One is the development of quantum dissipation theory (QDT). It covers the establishment of some basic relations of quantum statistical dynamics, the construction of several nonequivalent complete second-order formulations, and the development of exact QDT. Another is related to the applications of quantum statistical dynamics to a variety of research fields. In particular, unconventional but novel theories of the electron transfer in Debye solvents, quantum transport, and quantum measurement are developed on the basis of QDT formulations. The thesis is organized as follows. In Chapter 1, we present some background knowledge in relation to the aforementioned two themes of this thesis. The key quantity in QDT is the reduced density operator rho(t) ≡ trBrho T(t); i.e., the partial trace of the total system and bath composite rhoT(t) over the bath degrees of freedom. QDT governs the evolution of reduced density operator, where the effects of bath are treated in a quantum statistical manner. In principle, the reduced density operator contains all dynamics information of interest. However, the conventional quantum transport theory is formulated in terms of nonequilibrium Green's function. The newly emerging field of quantum measurement in relation to quantum information and quantum computing does exploit a sort of QDT formalism. Besides the background of the relevant theoretical development, some representative experiments on molecular nanojunctions are also briefly discussed. In chapter 2, we outline some basic (including new) relations that highlight several important issues on QDT. The content includes the background of nonequilibrium quantum statistical mechanics, the general description of the total composite Hamiltonian with stochastic system-bath interaction, a novel parameterization scheme for bath correlation functions, a newly developed exact theory of driven Brownian oscillator (DBO
Dissipative production of a maximally entangled steady state of two quantum bits
NASA Astrophysics Data System (ADS)
Lin, Y.; Gaebler, J. P.; Reiter, F.; Tan, T. R.; Bowler, R.; Sørensen, A. S.; Leibfried, D.; Wineland, D. J.
2013-12-01
Entangled states are a key resource in fundamental quantum physics, quantum cryptography and quantum computation. Introduction of controlled unitary processes--quantum gates--to a quantum system has so far been the most widely used method to create entanglement deterministically. These processes require high-fidelity state preparation and minimization of the decoherence that inevitably arises from coupling between the system and the environment, and imperfect control of the system parameters. Here we combine unitary processes with engineered dissipation to deterministically produce and stabilize an approximate Bell state of two trapped-ion quantum bits (qubits), independent of their initial states. Compared with previous studies that involved dissipative entanglement of atomic ensembles or the application of sequences of multiple time-dependent gates to trapped ions, we implement our combined process using trapped-ion qubits in a continuous time-independent fashion (analogous to optical pumping of atomic states). By continuously driving the system towards the steady state, entanglement is stabilized even in the presence of experimental noise and decoherence. Our demonstration of an entangled steady state of two qubits represents a step towards dissipative state engineering, dissipative quantum computation and dissipative phase transitions. Following this approach, engineered coupling to the environment may be applied to a broad range of experimental systems to achieve desired quantum dynamics or steady states. Indeed, concurrently with this work, an entangled steady state of two superconducting qubits was demonstrated using dissipation.
Kinetic foundations of relativistic dissipative fluid dynamics
NASA Astrophysics Data System (ADS)
Denicol, G. S.
2014-12-01
In this contribution we discuss in detail the most widespread formalisms employed to derive relativistic dissipative fluid dynamics from the Boltzmann equation: Chapman-Enskog expansion and Israel-Stewart theory. We further point out the drawbacks of each theory and explain possible ways to circumvent them. Recent developments in the derivation of fluid dynamics from the Boltzmann equation are also discussed.
Quantum damped oscillator I: Dissipation and resonances
Chruscinski, Dariusz
2006-04-15
Quantization of a damped harmonic oscillator leads to so called Bateman's dual system. The corresponding Bateman's Hamiltonian, being a self-adjoint operator, displays the discrete family of complex eigenvalues. We show that they correspond to the poles of energy eigenvectors and the corresponding resolvent operator when continued to the complex energy plane. Therefore, the corresponding generalized eigenvectors may be interpreted as resonant states which are responsible for the irreversible quantum dynamics of a damped harmonic oscillator.
Jahn-Teller instability in dissipative quantum systems
Meaney, Charles P.; Duty, Tim; McKenzie, Ross H.; Milburn, G. J.
2010-04-15
We consider the steady states of a harmonic oscillator coupled so strongly to a two-level system (a qubit) that the rotating wave approximation cannot be made. The Hamiltonian version of this model is known as the E x {beta} Jahn-Teller model. The semiclassical version of this system exhibits a fixed-point bifurcation, which in the quantum model leads to a ground state with substantial entanglement between the oscillator and the qubit. We show that the dynamical bifurcation survives in a dissipative quantum description of the system, amidst an even richer bifurcation structure. We propose an experimental implementation of this model based on a superconducting cavity: a superconducting junction in the central conductor of a coplanar waveguide.
Role of quantum fluctuations in the dissipative dynamics of a 1D Bose gas in an optical lattice
NASA Astrophysics Data System (ADS)
Rey, Ana Maria; Gea-Banacloche, Julio; Pupillo, Guido; Williams, Carl J.; Clark, Charles W.
2005-03-01
We will present a theoretical treatment[1] of the surprisingly large damping observed recently in a experiment done at NIST [2] where the transport properties of a harmonically trapped 1D Bose gas in a periodic (optical lattice) potential were studied by observing small amplitude dipole oscillations. In the absence of the lattice these oscillations are expected to be undamped (generalized Kohn's theorem), however, large damping of the dipole mode was observed in the experiment for very weak optical lattices and very small cloud displacements. We will show that the observed damping can be derived from a model whose main ingredients are (a) a large noncondensate fraction that arises as a direct consequence of the enhanced effective on-site interaction due to the tight transverse confinement, (b) the fact that a non-negligible part of it occupies high-momentum states and is therefore affected by dynamical instabilities, and (c) the interaction of the condensate atoms with the random field created by these noncondensate atoms when their equilibrium state is perturbed. We find good agreement between the model and the experimental results. [1] Julio Gea-Banacloche et al. cond-mat/0410677. [2] C. D. Fertig, K. et al.cond-mat/0410491.
Dissipation equation of motion approach to open quantum systems
NASA Astrophysics Data System (ADS)
Yan, YiJing; Jin, Jinshuang; Xu, Rui-Xue; Zheng, Xiao
2016-08-01
This paper presents a comprehensive account of the dissipaton-equation-of-motion (DEOM) theory for open quantum systems. This newly developed theory treats not only the quantum dissipative systems of primary interest, but also the hybrid environment dynamics that are also experimentally measurable. Despite the fact that DEOM recovers the celebrated hierarchical-equations-of-motion (HEOM) formalism, these two approaches have some fundamental differences. To show these differences, we also scrutinize the HEOM construction via its root at the influence functional path integral formalism. We conclude that many unique features of DEOM are beyond the reach of the HEOM framework. The new DEOM approach renders a statistical quasi-particle picture to account for the environment, which can be either bosonic or fermionic. The review covers the DEOM construction, the physical meanings of dynamical variables, the underlying theorems and dissipaton algebra, and recent numerical advancements for efficient DEOM evaluations of various problems. We also address the issue of high-order many-dissipaton truncations with respect to the invariance principle of quantum mechanics of Schrödinger versus Heisenberg prescriptions. DEOM serves as a universal tool for characterizing of stationary and dynamic properties of system-and-bath interferences, as highlighted with its real-time evaluation of both linear and nonlinear current noise spectra of nonequilibrium electronic transport.
Dynamical approach to weakly dissipative granular collisions
NASA Astrophysics Data System (ADS)
Pinto, Italo'Ivo Lima Dias; Rosas, Alexandre; Lindenberg, Katja
2015-07-01
Granular systems present surprisingly complicated dynamics. In particular, nonlinear interactions and energy dissipation play important roles in these dynamics. Usually (but admittedly not always), constant coefficients of restitution are introduced phenomenologically to account for energy dissipation when grains collide. The collisions are assumed to be instantaneous and to conserve momentum. Here, we introduce the dissipation through a viscous (velocity-dependent) term in the equations of motion for two colliding grains. Using a first-order approximation, we solve the equations of motion in the low viscosity regime. This approach allows us to calculate the collision time, the final velocity of each grain, and a coefficient of restitution that depends on the relative velocity of the grains. We compare our analytic results with those obtained by numerical integration of the equations of motion and with exact ones obtained by other methods for some geometries.
Quantum and classical dissipation of charged particles
Ibarra-Sierra, V.G.; Anzaldo-Meneses, A.; Cardoso, J.L.; Hernández-Saldaña, H.; Kunold, A.; Roa-Neri, J.A.E.
2013-08-15
A Hamiltonian approach is presented to study the two dimensional motion of damped electric charges in time dependent electromagnetic fields. The classical and the corresponding quantum mechanical problems are solved for particular cases using canonical transformations applied to Hamiltonians for a particle with variable mass. Green’s function is constructed and, from it, the motion of a Gaussian wave packet is studied in detail. -- Highlights: •Hamiltonian of a damped charged particle in time dependent electromagnetic fields. •Exact Green’s function of a charged particle in time dependent electromagnetic fields. •Time evolution of a Gaussian wave packet of a damped charged particle. •Classical and quantum dynamics of a damped electric charge.
Quantum phase transitions in the presence of disorder and dissipation
NASA Astrophysics Data System (ADS)
Kotabage, Chetan
A quantum phase transition is a phase transition at absolute zero occurring under variations in an external non-thermal parameter such as magnetic field or pressure. Quantum phase transitions are one among the important topics currently investigated in condensed matter physics. They are observed in various systems, e.g., in the ferromagnetic-paramagnetic phase transition in LiHoF 4 or in the superconductor-metal phase transition in nanowires. A particular class of quantum phase transitions, which is phase transitions in the presence of disorder and dissipation, is investigated here. An example of this class is the ferromagnetic-paramagnetic phase transition in Ni 1-xVx or CePd 1-xRhx caused by variations in chemical composition. In these system, disorder is due to random positions of doping element and the dynamics of order-parameter fluctuations is dissipative due to conduction electrons. These quantum phase transitions are explained using the following approach: The Landau-Ginzberg-Wilson functional, which is derived from a microscopic Hamiltonian, is treated by the strong-disorder renormalization group method. For ohmic damping, phase transitions are strongly influenced by disorder and the critical point is an infinite-randomness fixed point, which is in the universality class same as that of the random transverse-field Ising model. The scaling form of observable quantities is activated type rather than conventional power-law type. For superohmic damping, the strong-disorder renormalization group method yields one of the recursion relationships different from ohmic damping. This difference indicates a more conventional transition for superohmic damping.
Influence of super-ohmic dissipation on a disordered quantum critical point.
Vojta, Thomas; Hoyos, José A; Mohan, Priyanka; Narayanan, Rajesh
2011-03-01
We investigate the combined influence of quenched randomness and dissipation on a quantum critical point with O(N) order-parameter symmetry. Utilizing a strong-disorder renormalization group, we determine the critical behavior in one space dimension exactly. For super-ohmic dissipation, we find a Kosterlitz-Thouless type transition with conventional (power-law) dynamical scaling. The dynamical critical exponent depends on the spectral density of the dissipative baths. We also discuss the Griffiths singularities, and we determine observables. PMID:21339559
Dynamic fission instability of dissipative protoplanets
NASA Technical Reports Server (NTRS)
Boss, A. P.; Mizuno, H.
1985-01-01
Analytical and numerical approaches are taken to consider if a rapidly rotating, viscous protoearth would have lost mass by a fission process and thereby given birth to the moon. The fast rotation is assumed as the source of the instability in the dissipative liquid protoearth. Governing hydrodynamic equations are defined for the evolution of the protoearth. Account is taken of viscous dissipation, the pressure equation of state for the atmospheric material sent on a ballistic trajectory, and the effective viscosity. The results indicate that dynamic fission was probably not the process by which the protomoon came into existence.
Viscosity measurement techniques in Dissipative Particle Dynamics
NASA Astrophysics Data System (ADS)
Boromand, Arman; Jamali, Safa; Maia, Joao M.
2015-11-01
In this study two main groups of viscosity measurement techniques are used to measure the viscosity of a simple fluid using Dissipative Particle Dynamics, DPD. In the first method, a microscopic definition of the pressure tensor is used in equilibrium and out of equilibrium to measure the zero-shear viscosity and shear viscosity, respectively. In the second method, a periodic Poiseuille flow and start-up transient shear flow is used and the shear viscosity is obtained from the velocity profiles by a numerical fitting procedure. Using the standard Lees-Edward boundary condition for DPD will result in incorrect velocity profiles at high values of the dissipative parameter. Although this issue was partially addressed in Chatterjee (2007), in this work we present further modifications (Lagrangian approach) to the original LE boundary condition (Eulerian approach) that will fix the deviation from the desired shear rate at high values of the dissipative parameter and decrease the noise to signal ratios in stress measurement while increases the accessible low shear rate window. Also, the thermostat effect of the dissipative and random forces is coupled to the dynamic response of the system and affects the transport properties like the viscosity and diffusion coefficient. We investigated thoroughly the dependency of viscosity measured by both Eulerian and Lagrangian methodologies, as well as numerical fitting procedures and found that all the methods are in quantitative agreement.
Symmetry boundary condition in dissipative particle dynamics
NASA Astrophysics Data System (ADS)
Pal, Souvik; Lan, Chuanjin; Li, Zhen; Hirleman, E. Daniel; Ma, Yanbao
2015-07-01
Dissipative particle dynamics (DPD) is a coarse-grained particle method for modeling mesoscopic hydrodynamics. Most of the DPD simulations are carried out in 3D requiring remarkable computation time. For symmetric systems, this time can be reduced significantly by simulating only one half or one quarter of the systems. However, such simulations are not yet possible due to a lack of schemes to treat symmetric boundaries in DPD. In this study, we propose a numerical scheme for the implementation of the symmetric boundary condition (SBC) in both dissipative particle dynamics (DPD) and multibody dissipative particle dynamics (MDPD) using a combined ghost particles and specular reflection (CGPSR) method. We validate our scheme in four different configurations. The results demonstrate that our scheme can accurately reproduce the system properties, such as velocity, density and meniscus shapes of a full system with numerical simulations of a subsystem. Using a symmetric boundary condition for one half of the system, we demonstrate about 50% computation time saving in both DPD and MDPD. This approach for symmetric boundary treatment can be also applied to other coarse-grained particle methods such as Brownian and Langevin Dynamics to significantly reduce computation time.
Dissipation in a Quantum Wire: Fact and Fantasy
NASA Astrophysics Data System (ADS)
Das, Mukunda P.; Green, Frederick
2008-10-01
Where, and how, does energy dissipation of electrical energy take place in a ballistic wire? Fully two decades after the advent of the transmissive phenomenology of electrical conductance, this deceptively simple query remains unanswered. We revisit the quantum kinetic basis of dissipation and show its power to give a definitive answer to our query. Dissipation leaves a clear, quantitative trace in the non-equilibrium current noise of a quantum point contact; this signature has already been observed in the laboratory. We then highlight the current state of accepted understandings in the light of well-known yet seemingly contradictory measurements. The physics of mesoscopic transport rests not in coherent carrier transmission through a perfect and dissipationless metallic channel, but explicitly in their dissipative inelastic scattering at the wire's interfaces and adjacent macroscopic leads.
Smeared quantum phase transition in the dissipative random quantum Ising model
NASA Astrophysics Data System (ADS)
Vojta, Thomas; Hoyos, José A.
2010-01-01
We investigate the quantum phase transition in the random transverse-field Ising model under the influence of Ohmic dissipation. To this end, we numerically implement a strong-disorder renormalization-group scheme. We find that Ohmic dissipation destroys the quantum critical point and the associated quantum Griffiths phase by smearing. Our results quantitatively confirm a recent theory [J.A. Hoyos, T. Vojta, Phys. Rev. Lett. 100 (2008) 240601] of smeared quantum phase transitions.
Detectability of Dissipative Motion in Quantum Vacuum via Superradiance
Kim, Woo-Joong; Brownell, James Hayden; Onofrio, Roberto
2006-05-26
We propose an experiment for generating and detecting vacuum-induced dissipative motion. A high frequency mechanical resonator driven in resonance is expected to dissipate mechanical energy in quantum vacuum via photon emission. The photons are stored in a high quality electromagnetic cavity and detected through their interaction with ultracold alkali-metal atoms prepared in an inverted population of hyperfine states. Superradiant amplification of the generated photons results in a detectable radio-frequency signal temporally distinguishable from the expected background.
Blast Dynamics in a Dissipative Gas
NASA Astrophysics Data System (ADS)
Barbier, M.; Villamaina, D.; Trizac, E.
2015-11-01
The blast caused by an intense explosion has been extensively studied in conservative fluids, where the Taylor-von Neumann-Sedov hydrodynamic solution is a prototypical example of self-similarity driven by conservation laws. In dissipative media, however, energy conservation is violated, yet a distinctive self-similar solution appears. It hinges on the decoupling of random and coherent motion permitted by a broad class of dissipative mechanisms. This enforces a peculiar layered structure in the shock, for which we derive the full hydrodynamic solution, validated by a microscopic approach based on molecular dynamics simulations. We predict and evidence a succession of temporal regimes, as well as a long-time corrugation instability, also self-similar, which disrupts the blast boundary. These generic results may apply from astrophysical systems to granular gases, and invite further cross-fertilization between microscopic and hydrodynamic approaches of shock waves.
Blast Dynamics in a Dissipative Gas.
Barbier, M; Villamaina, D; Trizac, E
2015-11-20
The blast caused by an intense explosion has been extensively studied in conservative fluids, where the Taylor-von Neumann-Sedov hydrodynamic solution is a prototypical example of self-similarity driven by conservation laws. In dissipative media, however, energy conservation is violated, yet a distinctive self-similar solution appears. It hinges on the decoupling of random and coherent motion permitted by a broad class of dissipative mechanisms. This enforces a peculiar layered structure in the shock, for which we derive the full hydrodynamic solution, validated by a microscopic approach based on molecular dynamics simulations. We predict and evidence a succession of temporal regimes, as well as a long-time corrugation instability, also self-similar, which disrupts the blast boundary. These generic results may apply from astrophysical systems to granular gases, and invite further cross-fertilization between microscopic and hydrodynamic approaches of shock waves. PMID:26636851
Heat flux and quantum correlations in dissipative cascaded systems
NASA Astrophysics Data System (ADS)
Lorenzo, Salvatore; Farace, Alessandro; Ciccarello, Francesco; Palma, G. Massimo; Giovannetti, Vittorio
2015-02-01
We study the dynamics of heat flux in the thermalization process of a pair of identical quantum systems that interact dissipatively with a reservoir in a cascaded fashion. Despite that the open dynamics of the bipartite system S is globally Lindbladian, one of the subsystems "sees" the reservoir in a state modified by the interaction with the other subsystem and hence it undergoes a non-Markovian dynamics. As a consequence, the heat flow exhibits a nonexponential time behavior which can greatly deviate from the case where each party is independently coupled to the reservoir. We investigate both thermal and correlated initial states of S and show that the presence of correlations at the beginning can considerably affect the heat-flux rate. We carry out our study in two paradigmatic cases—a pair of harmonic oscillators with a reservoir of bosonic modes and two qubits with a reservoir of fermionic modes—and compare the corresponding behaviors. In the case of qubits and for initial thermal states, we find that the trace distance discord is at any time interpretable as the correlated contribution to the total heat flux.
Quantum metrology with spin cat states under dissipation
Huang, Jiahao; Qin, Xizhou; Zhong, Honghua; Ke, Yongguan; Lee, Chaohong
2015-01-01
Quantum metrology aims to yield higher measurement precisions via quantum techniques such as entanglement. It is of great importance for both fundamental sciences and practical technologies, from testing equivalence principle to designing high-precision atomic clocks. However, due to environment effects, highly entangled states become fragile and the achieved precisions may even be worse than the standard quantum limit (SQL). Here we present a high-precision measurement scheme via spin cat states (a kind of non-Gaussian entangled states in superposition of two quasi-orthogonal spin coherent states) under dissipation. In comparison to maximally entangled states, spin cat states with modest entanglement are more robust against losses and their achievable precisions may still beat the SQL. Even if the detector is imperfect, the achieved precisions of the parity measurement are higher than the ones of the population measurement. Our scheme provides a realizable way to achieve high-precision measurements via dissipative quantum systems of Bose atoms. PMID:26647821
Quantum metrology with spin cat states under dissipation.
Huang, Jiahao; Qin, Xizhou; Zhong, Honghua; Ke, Yongguan; Lee, Chaohong
2015-01-01
Quantum metrology aims to yield higher measurement precisions via quantum techniques such as entanglement. It is of great importance for both fundamental sciences and practical technologies, from testing equivalence principle to designing high-precision atomic clocks. However, due to environment effects, highly entangled states become fragile and the achieved precisions may even be worse than the standard quantum limit (SQL). Here we present a high-precision measurement scheme via spin cat states (a kind of non-Gaussian entangled states in superposition of two quasi-orthogonal spin coherent states) under dissipation. In comparison to maximally entangled states, spin cat states with modest entanglement are more robust against losses and their achievable precisions may still beat the SQL. Even if the detector is imperfect, the achieved precisions of the parity measurement are higher than the ones of the population measurement. Our scheme provides a realizable way to achieve high-precision measurements via dissipative quantum systems of Bose atoms. PMID:26647821
Quantum metrology with spin cat states under dissipation
NASA Astrophysics Data System (ADS)
Huang, Jiahao; Qin, Xizhou; Zhong, Honghua; Ke, Yongguan; Lee, Chaohong
2015-12-01
Quantum metrology aims to yield higher measurement precisions via quantum techniques such as entanglement. It is of great importance for both fundamental sciences and practical technologies, from testing equivalence principle to designing high-precision atomic clocks. However, due to environment effects, highly entangled states become fragile and the achieved precisions may even be worse than the standard quantum limit (SQL). Here we present a high-precision measurement scheme via spin cat states (a kind of non-Gaussian entangled states in superposition of two quasi-orthogonal spin coherent states) under dissipation. In comparison to maximally entangled states, spin cat states with modest entanglement are more robust against losses and their achievable precisions may still beat the SQL. Even if the detector is imperfect, the achieved precisions of the parity measurement are higher than the ones of the population measurement. Our scheme provides a realizable way to achieve high-precision measurements via dissipative quantum systems of Bose atoms.
Polarizable water model for Dissipative Particle Dynamics
NASA Astrophysics Data System (ADS)
Pivkin, Igor; Peter, Emanuel
2015-11-01
Dissipative Particle Dynamics (DPD) is an efficient particle-based method for modeling mesoscopic behavior of fluid systems. DPD forces conserve the momentum resulting in a correct description of hydrodynamic interactions. Polarizability has been introduced into some coarse-grained particle-based simulation methods; however it has not been done with DPD before. We developed a new polarizable coarse-grained water model for DPD, which employs long-range electrostatics and Drude oscillators. In this talk, we will present the model and its applications in simulations of membrane systems, where polarization effects play an essential role.
New developments in relativistic dissipative fluid dynamics
NASA Astrophysics Data System (ADS)
Muronga, Azwinndini
2010-09-01
The recent notion of the perfect fluid created at the relativistic heavy ion collider (RHIC) has been embraced by many experimentalists and theorists alike. However, much of the evidence to this notion has been based on the success of describing some experimental observables by non-viscous hydrodynamics or by small shear viscosity to entropy density ratio. Developments on viscous hydrodynamics evolved from (0+1) dimensions (Bjorken scaling solution) over (1+1) dimensions (Bjorken + transverse flow) to (2+1) dimensions (elliptic flow) and currently (3+1) dimensions. There still exist some formal issues concerning the allowed form of the relativistic viscous hydrodynamic equations and what effects the new additional or higher order terms will have on the spacetime evolution and the experimental observables. Starting with a brief introduction of the basics of relativsitic fluid dynamics, I will discuss our current knowledge of relativistic theory of fluid dynamics in the presence of dissipative fluxes.
Nonequilibrium quantum dissipation in spin-fermion systems
NASA Astrophysics Data System (ADS)
Segal, Dvira; Reichman, David R.; Millis, Andrew J.
2007-11-01
Dissipative processes in nonequilibrium many-body systems are fundamentally different than their equilibrium counterparts. Such processes are of great importance for the understanding of relaxation in single-molecule devices. As a detailed case study, we investigate here a generic spin-fermion model, where a two-level system couples to two metallic leads with different chemical potentials. We present results for the spin relaxation rate in the nonadiabatic limit for an arbitrary coupling to the leads using both analytical and exact numerical methods. The nonequilibrium dynamics is reflected by an exponential relaxation at long times and via complex phase shifts, leading in some cases to an “antiorthogonality” effect. In the limit of strong system-lead coupling at zero temperature we demonstrate the onset of a Marcus-like Gaussian decay with voltage difference activation. This is analogous to the equilibrium spin-boson model, where at strong coupling and high temperatures, the spin excitation rate manifests temperature activated Gaussian behavior. We find that there is no simple linear relationship between the role of the temperature in the bosonic system and a voltage drop in a nonequilibrium electronic case. The two models also differ by the orthogonality-catastrophe factor existing in a fermionic system, which modifies the resulting line shapes. Implications for current characteristics are discussed. We demonstrate the violation of pairwise Coulomb gas behavior for strong coupling to the leads. The results presented in this paper form the basis of an exact, nonperturbative description of steady-state quantum dissipative systems.
Quantum-limited Amplification via Dissipation in Superconducting Circuits
NASA Astrophysics Data System (ADS)
Metelmann, A.; Clerk, A. A.
2015-03-01
The development of parametric amplifiers based on superconducting circuits has led to an impressive improvement in the precision and sensitivity of measurements in the quantum regime. However, standard cavity-based parametric amplifiers suffer from a fixed gain-bandwidth product. Moreover they are reciprocal devices, i.e., they amplify in both directions, leading to the requirement of additional noisy elements as circulators in the measurement chain. In our recent work we discussed a phase-insensitive quantum amplifier which utilizes dissipative interactions in a parametrically-coupled three-mode bosonic system. The use of dissipative interactions provides a fundamental advantage over standard cavity-based parametric amplifiers: large photon number gains are possible with quantum-limited added noise, with no limitation on the gain-bandwidth product. In this talk we present how this can be extended to phase-sensitive amplifiers and discuss the possibilities of making the amplifier directional.
NASA Astrophysics Data System (ADS)
Nourmandipour, A.; Tavassoly, M. K.; Bolorizadeh, M. A.
2016-08-01
We investigate the quantum Zeno and anti-Zeno effects on pairwise entanglement dynamics of a collective of non-interacting qubits which have been initially prepared in a Werner state and are off-resonantly coupled to a common and non-Markovian environment. We obtain the analytical expression of the concurrence in the absence and presence of the non-selective measurements. In particular, we express our results in the strong and weak coupling regimes and examine the role of the system size, and the effect of the detuning from the cavity field frequency on the temporal behaviour of the pairwise entanglement. We show that, the detuning parameter has a positive role in the protection of entanglement in the absence of the measurement for weak coupling regime. We find that for the values of detuning parameter less than the cavity damping rate, the quantum Zeno effect is always dominant, while for the values greater than the cavity damping rate, both Zeno and anti-Zeno effects can occur, depending on the measurement intervals. We also find that the anti-Zeno effect can occur in the pairwise entanglement dynamics in the absence and presence of the detuning in the strong coupling regime.
Dissipative macroscopic quantum tunneling in type-I superconductors
Zarzuela, R.; Tejada, J.; Chudnovsky, E. M.
2011-11-01
We study macroscopic quantum tunneling of interfaces separating normal and superconducting regions in type-I superconductors. A mathematical model is developed that describes dissipative quantum escape of a two-dimensional manifold from a planar potential well. It corresponds to, e.g., a current-driven quantum depinning of the interface from a grain boundary or from an artificially manufactured pinning layer. Effective action is derived and instantons of the equations of motion are investigated. The crossover between thermal activation and quantum tunneling is studied and the crossover temperature is computed. Our results, together with recent observation of nonthermal low-temperature magnetic relaxation in lead, suggest the possibility of a controlled measurement of quantum depinning of the interface in a type-I superconductor.
Polarizable protein model for Dissipative Particle Dynamics
NASA Astrophysics Data System (ADS)
Peter, Emanuel; Lykov, Kirill; Pivkin, Igor
2015-11-01
In this talk, we present a novel polarizable protein model for the Dissipative Particle Dynamics (DPD) simulation technique, a coarse-grained particle-based method widely used in modeling of fluid systems at the mesoscale. We employ long-range electrostatics and Drude oscillators in combination with a newly developed polarizable water model. The protein in our model is resembled by a polarizable backbone and a simplified representation of the sidechains. We define the model parameters using the experimental structures of 2 proteins: TrpZip2 and TrpCage. We validate the model on folding of five other proteins and demonstrate that it successfully predicts folding of these proteins into their native conformations. As a perspective of this model, we will give a short outlook on simulations of protein aggregation in the bulk and near a model membrane, a relevant process in several Amyloid diseases, e.g. Alzheimer's and Diabetes II.
Flow around spheres by dissipative particle dynamics
NASA Astrophysics Data System (ADS)
Chen, Shuo; Phan-Thien, Nhan; Khoo, Boo Cheong; Fan, Xi Jun
2006-10-01
The dissipative particle dynamics (DPD) method is used to study the flow behavior past a sphere. The sphere is represented by frozen DPD particles while the surrounding fluids are modeled by simple DPD particles (representing a Newtonian fluid). For the surface of the sphere, the conventional model without special treatment and the model with specular reflection boundary condition proposed by Revenga et al. [Comput. Phys. Commun. 121-122, 309 (1999)] are compared. Various computational domains, in which the sphere is held stationary at the center, are investigated to gage the effects of periodic conditions and walls for Reynolds number (Re)=0.5 and 50. Two types of flow conditions, uniform flow and shear flow are considered, respectively, to study the drag force and torque acting on the stationary sphere. It is found that the calculated drag force imposed on the sphere based on the model with specular reflection is slightly lower than the conventional model without special treatment. With the conventional model the drag force acting on the sphere is in better agreement with experimental correlation obtained by Brown and Lawler [J. Environ. Eng. 129, 222 (2003)] for the case of larger radius up to Re of about 5. The computed torque also approaches the analytical Stokes value when Re <1. For a force-free and torque-free sphere, its motion in the flow is captured by solving the translational and rotational equations of motion. The effects of different DPD parameters (a, γ, and σ) on the drag force and torque are studied. It shows that the dissipative coefficient (γ) mainly affects the drag force and torque, while random and conservative coefficient have little influence on them. Furthermore the settling of a single sphere in square tube is investigated, in which the wall effect is considered. Good agreement is found with the experiments of Miyamura et al. [Int. J. Multiphase Flow 7, 31 (1981)] and lattice-Boltzmann simulation results of Aidun et al. [J. Fluid Mech
Multiscale modeling with smoothed dissipative particle dynamics.
Kulkarni, Pandurang M; Fu, Chia-Chun; Shell, M Scott; Leal, L Gary
2013-06-21
In this work, we consider two issues related to the use of Smoothed Dissipative Particle Dynamics (SDPD) as an intermediate mesoscale model in a multiscale scheme for solution of flow problems when there are local parts of a macroscopic domain that require molecular resolution. The first is to demonstrate that SDPD with different levels of resolution can accurately represent the fluid properties from the continuum scale all the way to the molecular scale. Specifically, while the thermodynamic quantities such as temperature, pressure, and average density remain scale-invariant, we demonstrate that the dynamic properties are quantitatively consistent with an all-atom Lennard-Jones reference system when the SDPD resolution approaches the atomistic scale. This supports the idea that SDPD can serve as a natural bridge between molecular and continuum descriptions. In the second part, a simple multiscale methodology is proposed within the SDPD framework that allows several levels of resolution within a single domain. Each particle is characterized by a unique physical length scale called the smoothing length, which is inversely related to the local number density and can change on-the-fly. This multiscale methodology is shown to accurately reproduce fluid properties for the simple problem of steady and transient shear flow. PMID:23802949
Dynamics and universality in noise-driven dissipative systems
NASA Astrophysics Data System (ADS)
Dalla Torre, Emanuele G.; Demler, Eugene; Giamarchi, Thierry; Altman, Ehud
2012-05-01
We investigate the dynamical properties of low-dimensional systems, driven by external noise sources. Specifically we consider a resistively shunted Josephson junction and a one-dimensional quantum liquid in a commensurate lattice potential, subject to 1/f noise. In absence of nonlinear coupling, we have shown previously that these systems establish a nonequilibrium critical steady state [Dalla Torre, Demler, Giamarchi, and Altman, Nat. Phys.1745-247310.1038/nphys1754 6, 806 (2010)]. Here, we use this state as the basis for a controlled renormalization group analysis using the Keldysh path integral formulation to treat the nonlinearities: the Josephson coupling and the commensurate lattice. The analysis to first order in the coupling constant indicates transitions between superconducting and localized regimes that are smoothly connected to the respective equilibrium transitions. However, at second order, the back action of the mode coupling on the critical state leads to renormalization of dissipation and emergence of an effective temperature. In the Josephson junction, the temperature is parametrically small allowing to observe a universal crossover between the superconducting and insulating regimes. The I-V characteristics of the junction displays algebraic behavior controlled by the underlying critical state over a wide range. In the noisy one-dimensional liquid, the generated dissipation and effective temperature are not small as in the junction. We find a crossover between a quasilocalized regime dominated by dissipation and another dominated by temperature. However, since in the thermal regime the thermalization rate is parametrically small, signatures of the nonequilibrium critical state may be seen in transient dynamics.
Numerical renormalization group study of a dissipative quantum dot
NASA Astrophysics Data System (ADS)
Glossop, M. T.; Ingersent, K.
2007-03-01
We study the quantum phase transition (QPT) induced by dissipation in a quantum dot device at the degeneracy point. We employ a Bose-Fermi numerical renormalization group approach [1] to study the simplest case of a spinless resonant-level model that couples the charge density on the dot to a dissipative bosonic bath with density of states B(φ)ŝ. In anticipation of future experiments [2] and to assess further the validity of theoretical techniques in this rapidly developing area, we take the conduction-electron leads to have a pseudogap density of states: ρ(φ) |φ|^r, as considered in a very recent perturbative renormalization group study [3]. We establish the conditions on r and s such that a QPT arises with increasing dissipation strength --- from a delocalized phase, where resonant tunneling leads to large charge fluctuations on the dot, to a localized phase where such fluctuations are frozen. We present results for the single-particle spectrum and the response of the system to a local electric field, extracting critical exponents that depend in general on r and s and obey hyperscaling relations. We make full comparison with results of [3] where appropriate. Supported by NSF Grant DMR-0312939. [1] M. T. Glossop and K. Ingersent, PRL 95, 067202 (2005); PRB (2006). [2] L. G. G. V. Dias da Silva, N. P. Sandler, K. Ingersent, and S. E. Ulloa, PRL 97, 096603 (2006). [3] C.-H. Chung, M. Kir'can, L. Fritz, and M. Vojta (2006).
Lindblad dynamics of a quantum spherical spin
NASA Astrophysics Data System (ADS)
Wald, Sascha; Henkel, Malte
2016-03-01
The coherent quantum dynamics of a single bosonic spin variable, subject to a constraint derived from the quantum spherical model of a ferromagnet, and coupled to an external heat bath, is studied through the Lindblad equation for the reduced density matrix. Closed systems of equations of motion for several quantum observables are derived and solved exactly. The relationship to the single-mode Dicke model from quantum optics is discussed. The analysis of the interplay of the quantum fluctuation and the dissipation and their influence on the relaxation of the time-dependent magnetisation leads to the distinction of qualitatively different regimes of weak and strong quantum couplings. Considering the model’s behaviour in an external field as a simple mean-field approximation of the dynamics of a quantum spherical ferromagnet, the magnetic phase diagram appears to be re-entrant and presents a quantum analogue of well-established classical examples of fluctuation-induced order.
Minimising the heat dissipation of quantum information erasure
NASA Astrophysics Data System (ADS)
Hamed Mohammady, M.; Mohseni, Masoud; Omar, Yasser
2016-01-01
Quantum state engineering and quantum computation rely on information erasure procedures that, up to some fidelity, prepare a quantum object in a pure state. Such processes occur within Landauer's framework if they rely on an interaction between the object and a thermal reservoir. Landauer's principle dictates that this must dissipate a minimum quantity of heat, proportional to the entropy reduction that is incurred by the object, to the thermal reservoir. However, this lower bound is only reachable for some specific physical situations, and it is not necessarily achievable for any given reservoir. The main task of our work can be stated as the minimisation of heat dissipation given probabilistic information erasure, i.e., minimising the amount of energy transferred to the thermal reservoir as heat if we require that the probability of preparing the object in a specific pure state ≤ft|{\\varphi }1\\right.> be no smaller than {p}{\\varphi 1}{max}-δ . Here {p}{\\varphi 1}{max} is the maximum probability of information erasure that is permissible by the physical context, and δ ≥slant 0 the error. To determine the achievable minimal heat dissipation of quantum information erasure within a given physical context, we explicitly optimise over all possible unitary operators that act on the composite system of object and reservoir. Specifically, we characterise the equivalence class of such optimal unitary operators, using tools from majorisation theory, when we are restricted to finite-dimensional Hilbert spaces. Furthermore, we discuss how pure state preparation processes could be achieved with a smaller heat cost than Landauer's limit, by operating outside of Landauer's framework.
Dissipative Optomechanical Preparation of Macroscopic Quantum Superposition States.
Abdi, M; Degenfeld-Schonburg, P; Sameti, M; Navarrete-Benlloch, C; Hartmann, M J
2016-06-10
The transition from quantum to classical physics remains an intensely debated question even though it has been investigated for more than a century. Further clarifications could be obtained by preparing macroscopic objects in spatial quantum superpositions and proposals for generating such states for nanomechanical devices either in a transient or a probabilistic fashion have been put forward. Here, we introduce a method to deterministically obtain spatial superpositions of arbitrary lifetime via dissipative state preparation. In our approach, we engineer a double-well potential for the motion of the mechanical element and drive it towards the ground state, which shows the desired spatial superposition, via optomechanical sideband cooling. We propose a specific implementation based on a superconducting circuit coupled to the mechanical motion of a lithium-decorated monolayer graphene sheet, introduce a method to verify the mechanical state by coupling it to a superconducting qubit, and discuss its prospects for testing collapse models for the quantum to classical transition. PMID:27341233
Dissipative Optomechanical Preparation of Macroscopic Quantum Superposition States
NASA Astrophysics Data System (ADS)
Abdi, M.; Degenfeld-Schonburg, P.; Sameti, M.; Navarrete-Benlloch, C.; Hartmann, M. J.
2016-06-01
The transition from quantum to classical physics remains an intensely debated question even though it has been investigated for more than a century. Further clarifications could be obtained by preparing macroscopic objects in spatial quantum superpositions and proposals for generating such states for nanomechanical devices either in a transient or a probabilistic fashion have been put forward. Here, we introduce a method to deterministically obtain spatial superpositions of arbitrary lifetime via dissipative state preparation. In our approach, we engineer a double-well potential for the motion of the mechanical element and drive it towards the ground state, which shows the desired spatial superposition, via optomechanical sideband cooling. We propose a specific implementation based on a superconducting circuit coupled to the mechanical motion of a lithium-decorated monolayer graphene sheet, introduce a method to verify the mechanical state by coupling it to a superconducting qubit, and discuss its prospects for testing collapse models for the quantum to classical transition.
Fidelity optimization for holonomic quantum gates in dissipative environments
Parodi, Daniele; Solinas, Paolo; Zanghi, Nino; Sassetti, Maura; Zanardi, Paolo
2006-05-15
We analyze the performance of holonomic quantum gates in semiconductor quantum dots, driven by ultrafast lasers, under the effect of a dissipative environment. The environment is modeled as a thermal bath of oscillators linearly coupled with the electron states of the quantum dot. Standard techniques make the problem amenable to a numerical treatment and allow one to determine the fidelity as a function of all the relevant physical parameters. As a consequence of our analysis, we show that the disturbance of the environment can be (approximately) suppressed and the performance of the gate optimized--provided that the thermal bath is purely super-Ohmic. We conclude by showing that such an optimization is impossible for Ohmic environments.
Diffusion of Dissipative Correlation in the Dynamic Failure of Solids
NASA Astrophysics Data System (ADS)
Grady, Dennis
A property identified as the dissipative action has found application as a unifying attribute underlying the dynamic failure of solid materials. Failure modes include tensile spall, impact-induced dynamic shear, shock compaction and steady shock-wave compression. The present work explores the possible application of Langevin dynamics and related statistical mechanical implications as underlying the extreme dynamic failure of solids.
Nonequilibrium transport at a dissipative quantum phase transition.
Chung, Chung-Hou; Le Hur, Karyn; Vojta, Matthias; Wölfle, Peter
2009-05-29
We investigate the nonequilibrium transport near a quantum phase transition in a generic and relatively simple model, the dissipative resonant level model, that has many applications for nanosystems. We formulate a rigorous mapping and apply a controlled frequency-dependent renormalization group approach to compute the nonequilibrium current in the presence of a finite bias voltage V and a finite temperature T. For V-->0, we find that the conductance has its well-known equilibrium form, while it displays a distinct nonequilibrium profile at finite voltage. PMID:19519125
Ding, Jin-Jin; Xu, Rui-Xue; Yan, YiJing
2012-06-14
We present an optimized hierarchical equations of motion theory for quantum dissipation in multiple Brownian oscillators bath environment, followed by a mechanistic study on a model donor-bridge-acceptor system. We show that the optimal hierarchy construction, via the memory-frequency decomposition for any specified Brownian oscillators bath, is generally achievable through a universal pre-screening search. The algorithm goes by identifying the candidates for the best be just some selected Padé spectrum decomposition based schemes, together with a priori accuracy control criterions on the sole approximation, the white-noise residue ansatz, involved in the hierarchical construction. Beside the universal screening search, we also analytically identify the best for the case of Drude dissipation and that for the Brownian oscillators environment without strongly underdamped bath vibrations. For the mechanistic study, we quantify the quantum nature of bath influence and further address the issue of localization versus delocalization. Proposed are a reduced system entropy measure and a state-resolved constructive versus destructive interference measure. Their performances on quantifying the correlated system-environment coherence are exemplified in conjunction with the optimized hierarchical equations of motion evaluation of the model system dynamics, at some representing bath parameters and temperatures. Analysis also reveals the localization to delocalization transition as temperature decreases. PMID:22713032
NASA Astrophysics Data System (ADS)
Ding, Jin-Jin; Xu, Rui-Xue; Yan, YiJing
2012-06-01
We present an optimized hierarchical equations of motion theory for quantum dissipation in multiple Brownian oscillators bath environment, followed by a mechanistic study on a model donor-bridge-acceptor system. We show that the optimal hierarchy construction, via the memory-frequency decomposition for any specified Brownian oscillators bath, is generally achievable through a universal pre-screening search. The algorithm goes by identifying the candidates for the best be just some selected Padé spectrum decomposition based schemes, together with a priori accuracy control criterions on the sole approximation, the white-noise residue ansatz, involved in the hierarchical construction. Beside the universal screening search, we also analytically identify the best for the case of Drude dissipation and that for the Brownian oscillators environment without strongly underdamped bath vibrations. For the mechanistic study, we quantify the quantum nature of bath influence and further address the issue of localization versus delocalization. Proposed are a reduced system entropy measure and a state-resolved constructive versus destructive interference measure. Their performances on quantifying the correlated system-environment coherence are exemplified in conjunction with the optimized hierarchical equations of motion evaluation of the model system dynamics, at some representing bath parameters and temperatures. Analysis also reveals the localization to delocalization transition as temperature decreases.
Friction and particle-hole pairs. [in dissipative quantum phenomena
NASA Technical Reports Server (NTRS)
Guinea, F.
1984-01-01
The effect induced by dissipation on quantum phenomena has recently been considered, taking into account as a starting point a phenomenological Hamiltonian in which the environment is simulated by an appropriately chosen set of harmonic oscillators. It is found that this approach should be adequate to describe the low-energy behavior of a wide class of environments. The present investigation is concerned with an analysis of the case in which the environment is a gas (or liquid) of fermions, and the relevant low-energy excitations are particle-hole pairs. A study is conducted regarding the extent to which the quantum results obtained for harmonic oscillators are also valid in the considered situation. Linear-response theory is used to derive an effective action which describes the motion of an external particle coupled to a normal Fermi fluid.
Floquet control of quantum dissipation in spin chains
NASA Astrophysics Data System (ADS)
Chen, Chong; An, Jun-Hong; Luo, Hong-Gang; Sun, C. P.; Oh, C. H.
2015-05-01
Controlling the decoherence induced by the interaction of quantum system with its environment is a fundamental challenge in quantum technology. Utilizing Floquet theory, we explore the constructive role of temporal periodic driving in suppressing decoherence of a spin-1/2 particle coupled to a spin bath. It is revealed that, accompanying the formation of a Floquet bound state in the quasienergy spectrum of the whole system including the system and its environment, the dissipation of the spin system can be inhibited and the system tends to coherently synchronize with the driving. It can be seen as an analog to the decoherence suppression induced by the structured environment in spatially periodic photonic crystal setting. Comparing with other decoherence control schemes, our protocol is robust against the fluctuation of control parameters and easy to realize in practice. It suggests a promising perspective of periodic driving in decoherence control.
Internal dissipation and heat leaks in quantum thermodynamic cycles.
Correa, Luis A; Palao, José P; Alonso, Daniel
2015-09-01
The direction of the steady-state heat currents across a generic quantum system connected to multiple baths may be engineered to realize virtually any thermodynamic cycle. In spite of their versatility, such continuous energy-conversion systems are generally unable to operate at maximum efficiency due to non-negligible sources of irreversible entropy production. In this paper we introduce a minimal model of irreversible absorption chiller. We identify and characterize the different mechanisms responsible for its irreversibility, namely heat leaks and internal dissipation, and gauge their relative impact in the overall cooling performance. We also propose reservoir engineering techniques to minimize these detrimental effects. Finally, by looking into a known three-qubit embodiment of the absorption cooling cycle, we illustrate how our simple model may help to pinpoint the different sources of irreversibility naturally arising in more complex practical heat devices. PMID:26465455
Investigating dissipation in the quantum anomalous Hall effect
NASA Astrophysics Data System (ADS)
Fox, Eli; Bestwick, Andrew; Goldhaber-Gordon, David; Feng, Yang; Ou, Yunbo; He, Ke; Wang, Yayu; Xue, Qi-Kun; Kou, Xufeng; Pan, Lei; Wang, Kang
In the quantum anomalous Hall effect, a magnetic exchange gap in a 3D topological insulator gives rise to dissipationless chiral edge states. Though the effect has recently been realized in a family of ferromagnetically-doped (Bi,Sb)2Te3 topological insulator thin films, experiments to date have found non-vanishing longitudinal resistance, contrary to initial theoretical expectations. Proposed sources of this dissipation include extra gapless or activated quasi-helical edge states, thermally activated 2D conduction, and variable-range hopping. Here, we discuss transport measurements of Corbino disk and non-local geometries to identify the mechanism of non-ideal behavior. This work supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under Award No. 19-7503.
Internal dissipation and heat leaks in quantum thermodynamic cycles
NASA Astrophysics Data System (ADS)
Correa, Luis A.; Palao, José P.; Alonso, Daniel
2015-09-01
The direction of the steady-state heat currents across a generic quantum system connected to multiple baths may be engineered to realize virtually any thermodynamic cycle. In spite of their versatility, such continuous energy-conversion systems are generally unable to operate at maximum efficiency due to non-negligible sources of irreversible entropy production. In this paper we introduce a minimal model of irreversible absorption chiller. We identify and characterize the different mechanisms responsible for its irreversibility, namely heat leaks and internal dissipation, and gauge their relative impact in the overall cooling performance. We also propose reservoir engineering techniques to minimize these detrimental effects. Finally, by looking into a known three-qubit embodiment of the absorption cooling cycle, we illustrate how our simple model may help to pinpoint the different sources of irreversibility naturally arising in more complex practical heat devices.
Fluctuation-dissipation dynamics of cosmological scalar fields
NASA Astrophysics Data System (ADS)
Bartrum, Sam; Berera, Arjun; Rosa, João G.
2015-04-01
We show that dissipative effects have a significant impact on the evolution of cosmological scalar fields, leading to friction, entropy production and field fluctuations. We explicitly compute the dissipation coefficient for different scalar fields within the standard model and some of its most widely considered extensions, in different parametric regimes. We describe the generic consequences of fluctuation-dissipation dynamics in the postinflationary universe, focusing in particular on friction and particle production, and analyze in detail two important effects. First, we show that dissipative friction delays the process of spontaneous symmetry breaking and may even damp the motion of a Higgs field sufficiently to induce a late period of warm inflation. Along with dissipative entropy production, this may parametrically dilute the abundance of dangerous thermal relics. Second, we show that dissipation can generate the observed baryon asymmetry without symmetry restoration, and we develop in detail a model of dissipative leptogenesis. We further show that this generically leads to characteristic baryon isocurvature perturbations that can be tested with cosmic microwave background observations. This work provides a fundamental framework to go beyond the leading thermal equilibrium semiclassical approximation in addressing fundamental problems in modern cosmology.
Entanglement Dynamics and its Application for Two Qubits in Dissipative Environment
NASA Astrophysics Data System (ADS)
Chen, Z. Q.; Yu, X. G.; Fu, Guolan; Xu, Hualan; Yu, Yanxia
2015-02-01
An entanglement dynamics of two dissipative qubits under different situation of initial conditions is studied. We find that the periodic disentanglement and entanglement results from the interaction between two qubits, while the disentanglement is primarily caused by environmental perturbations. In the two cases of a pure dephasing environment and a normal environment, the sudden death of entanglement (ESD) is happened. For a simple dissipative environment, the sudden death of entanglement disappears for non-interacting qubits. The concurrence decreases gradually with the involving time, where the stronger the strength interacting with the environment is, the faster the attenuation of the amplitude of concurrence should be. Without the interaction with the environment, ESD would disappear. Furthermore, the applications of quantum entanglement are discussed in the rotating operator dynamics and the populations of quantum states.
Microscopic description of dissipative dynamics of a level-crossing transition
Scala, M.; Militello, B.; Messina, A.; Vitanov, N. V.
2011-08-15
We analyze the effect of a dissipative bosonic environment on the Landau-Zener-Stueckelberg-Majorana (LZSM) level crossing model by using a microscopic approach to derive the relevant master equation. For an environment at zero temperature and weak dissipation, our microscopic approach confirms the independence of the survival probability on the decay rate that has been predicted earlier by the simple phenomenological LZSM model. For strong decay the microscopic approach predicts a notable increase of the survival probability, which signals dynamical decoupling of the initial state. Unlike the phenomenological model, our approach makes it possible to study the dependence of the system dynamics on the temperature of the environment. In the limit of very high temperature we find that the dynamics is characterized by a very strong dynamical decoupling of the initial state--the temperature-induced quantum Zeno effect.
Rheology of Deformable Particle Suspensions by Dissipative Particle Dynamics
NASA Astrophysics Data System (ADS)
Chaudhri, Anuj; Lukes, Jennifer R.
2007-03-01
Understanding the behavior of colloidal suspensions, emulsions, and other complex fluids under shear flow is important in liquid crystal switching, lab-on-chip processing of biological fluids, self-assembly of polymer structures, and other areas of soft matter physics. Various analytical and computational approaches, including Brownian dynamics, dissipative particle dynamics, and Stokesian dynamics, have been applied to study the rheology of rigid particle suspensions. Still lacking are methods capable of treating suspensions containing deformable particles such as blood cells or macromolecules. Here we present a new, dissipative particle dynamics-based computational method with this capability. This method is used to calculate the shear rate dependence of viscosity for suspensions of deformable particles with varying stiffnesses.
Dissipation and entropy production in open quantum systems
NASA Astrophysics Data System (ADS)
Majima, H.; Suzuki, A.
2010-11-01
A microscopic description of an open system is generally expressed by the Hamiltonian of the form: Htot = Hsys + Henviron + Hsys-environ. We developed a microscopic theory of entropy and derived a general formula, so-called "entropy-Hamiltonian relation" (EHR), that connects the entropy of the system to the interaction Hamiltonian represented by Hsys-environ for a nonequilibrium open quantum system. To derive the EHR formula, we mapped the open quantum system to the representation space of the Liouville-space formulation or thermo field dynamics (TFD), and thus worked on the representation space Script L := Script H otimes , where Script H denotes the ordinary Hilbert space while the tilde Hilbert space conjugates to Script H. We show that the natural transformation (mapping) of nonequilibrium open quantum systems is accomplished within the theoretical structure of TFD. By using the obtained EHR formula, we also derived the equation of motion for the distribution function of the system. We demonstrated that by knowing the microscopic description of the interaction, namely, the specific form of Hsys-environ on the representation space Script L, the EHR formulas enable us to evaluate the entropy of the system and to gain some information about entropy for nonequilibrium open quantum systems.
A particle-dynamics study of dissipation in colliding clouds of ultracold fermions.
Succi, Sauro; Toschi, Federico; Capuzzi, Pablo; Vignolo, Patrizia; Tosi, Mario P
2004-08-15
We present a numerical study of the micro-dynamical roots of dissipation in two colliding mesoscopic clouds of point-like fermions as a function of the scattering length and of temperature approaching full quantum degeneracy. This study, which is motivated by current experiments on ultracold gaseous mixtures of fermionic atoms inside magnetic traps, combines the solution of the coupled Vlasov-Landau equations for the Wigner distribution functions with a locally adaptive importance-sampling technique for handling collisional interactions. The results illustrate the consequences of genuinely quantum collisional phenomena, and in particular the role of Pauli blocking in the transition to hydrodynamic behaviour. We also compare the computed quantum collision rate as a function of temperature in the weak-coupling case with theoretical results assuming that equilibrium distributions determine the quantum collision integral. PMID:15306433
Dissipation-enabled efficient excitation transfer from a single photon to a single quantum emitter
NASA Astrophysics Data System (ADS)
Trautmann, N.; Alber, G.
2016-05-01
We propose a scheme for triggering a dissipation-dominated highly efficient excitation transfer from a single-photon wave packet to a single quantum emitter. This single-photon-induced optical pumping turns dominant dissipative processes, such as spontaneous photon emission by the emitter or cavity decay, into valuable tools for quantum information processing and quantum communication. It works for an arbitrarily shaped single-photon wave packet with sufficiently small bandwidth provided a matching condition is satisfied which balances the dissipative rates involved. Our scheme does not require additional laser pulses or quantum feedback and does not rely on high finesse optical resonators. In particular, it can be used to enhance significantly the coupling of a single photon to a single quantum emitter implanted in a one-dimensional waveguide or even in a free space scenario. We demonstrate the usefulness of our scheme for building a deterministic quantum memory and a deterministic frequency converter between photonic qubits of different wavelengths.
A variational approach for dissipative quantum transport in a wide parameter space
Zhang, Yu Kwok, YanHo; Chen, GuanHua; Yam, ChiYung
2015-09-14
Recent development of theoretical method for dissipative quantum transport has achieved notable progresses in the weak or strong electron-phonon coupling regime. However, a generalized theory for dissipative quantum transport in a wide parameter space had not been established. In this work, a variational polaron theory for dissipative quantum transport in a wide range of electron-phonon coupling is developed. The optimal polaron transformation is determined by the optimization of the Feynman-Bogoliubov upper bound of free energy. The free energy minimization ends up with an optimal mean-field Hamiltonian and a minimal interaction Hamiltonian. Hence, second-order perturbation can be applied to the transformed system, resulting in an accurate and efficient method for the treatment of dissipative quantum transport with different electron-phonon coupling strength. Numerical benchmark calculation on a single site model coupled to one phonon mode is presented.
A variational approach for dissipative quantum transport in a wide parameter space
NASA Astrophysics Data System (ADS)
Zhang, Yu; Yam, ChiYung; Kwok, YanHo; Chen, GuanHua
2015-09-01
Recent development of theoretical method for dissipative quantum transport has achieved notable progresses in the weak or strong electron-phonon coupling regime. However, a generalized theory for dissipative quantum transport in a wide parameter space had not been established. In this work, a variational polaron theory for dissipative quantum transport in a wide range of electron-phonon coupling is developed. The optimal polaron transformation is determined by the optimization of the Feynman-Bogoliubov upper bound of free energy. The free energy minimization ends up with an optimal mean-field Hamiltonian and a minimal interaction Hamiltonian. Hence, second-order perturbation can be applied to the transformed system, resulting in an accurate and efficient method for the treatment of dissipative quantum transport with different electron-phonon coupling strength. Numerical benchmark calculation on a single site model coupled to one phonon mode is presented.
Dynamic performance of dissipative dielectric elastomers under alternating mechanical load
NASA Astrophysics Data System (ADS)
Zhang, Junshi; Chen, Hualing; Sheng, Junjie; Liu, Lei; Wang, Yongquan; Jia, Shuhai
2014-07-01
This paper presents a theoretical study about the effect of dissipation on the dynamic performance of a dielectric elastomer membrane subject to a combination of mechanical load and voltage. The thermodynamic dissipative model is given and the equation of motion is deduced by a free energy method. It is found that when the applied mechanical load and voltage are static, the membrane may reach a state of equilibrium after the viscoelastic relaxation. When the voltage is static but the mechanical load is sinusoidal, the membrane will resonate at multiple frequencies. The study result indicates that the viscoelasticity can reduce the natural frequency and increase the mean stretch of the dielectric elastomer. After the power source is cut off, the effect of current leakage on dynamic performance under alternating mechanical load is that the natural frequency increases and the mean stretch reduces.
Efficient Schmidt number scaling in dissipative particle dynamics.
Krafnick, Ryan C; García, Angel E
2015-12-28
Dissipative particle dynamics is a widely used mesoscale technique for the simulation of hydrodynamics (as well as immersed particles) utilizing coarse-grained molecular dynamics. While the method is capable of describing any fluid, the typical choice of the friction coefficient γ and dissipative force cutoff rc yields an unacceptably low Schmidt number Sc for the simulation of liquid water at standard temperature and pressure. There are a variety of ways to raise Sc, such as increasing γ and rc, but the relative cost of modifying each parameter (and the concomitant impact on numerical accuracy) has heretofore remained undetermined. We perform a detailed search over the parameter space, identifying the optimal strategy for the efficient and accuracy-preserving scaling of Sc, using both numerical simulations and theoretical predictions. The composite results recommend a parameter choice that leads to a speed improvement of a factor of three versus previously utilized strategies. PMID:26723591
Efficient Schmidt number scaling in dissipative particle dynamics
NASA Astrophysics Data System (ADS)
Krafnick, Ryan C.; García, Angel E.
2015-12-01
Dissipative particle dynamics is a widely used mesoscale technique for the simulation of hydrodynamics (as well as immersed particles) utilizing coarse-grained molecular dynamics. While the method is capable of describing any fluid, the typical choice of the friction coefficient γ and dissipative force cutoff rc yields an unacceptably low Schmidt number Sc for the simulation of liquid water at standard temperature and pressure. There are a variety of ways to raise Sc, such as increasing γ and rc, but the relative cost of modifying each parameter (and the concomitant impact on numerical accuracy) has heretofore remained undetermined. We perform a detailed search over the parameter space, identifying the optimal strategy for the efficient and accuracy-preserving scaling of Sc, using both numerical simulations and theoretical predictions. The composite results recommend a parameter choice that leads to a speed improvement of a factor of three versus previously utilized strategies.
Obtaining pure steady states in nonequilibrium quantum systems with strong dissipative couplings
NASA Astrophysics Data System (ADS)
Popkov, Vladislav; Presilla, Carlo
2016-02-01
Dissipative preparation of a pure steady state usually involves a commutative action of a coherent and a dissipative dynamics on the target state. Namely, the target pure state is an eigenstate of both the coherent and dissipative parts of the dynamics. We show that working in the Zeno regime, i.e., for infinitely large dissipative coupling, one can generate a pure state by a noncommutative action, in the above sense, of the coherent and dissipative dynamics. A corresponding Zeno regime pureness criterion is derived. We illustrate the approach, looking at both its theoretical and applicative aspects, in the example case of an open X X Z spin-1 /2 chain, driven out of equilibrium by boundary reservoirs targeting different spin orientations. Using our criterion, we find two families of pure nonequilibrium steady states, in the Zeno regime, and calculate the dissipative strengths effectively needed to generate steady states which are almost indistinguishable from the target pure states.
Decoherence and dissipation of a quantum harmonic oscillator coupled to two-level systems
Schlosshauer, Maximilian; Hines, A. P.; Milburn, G. J.
2008-02-15
We derive and analyze the Born-Markov master equation for a quantum harmonic oscillator interacting with a bath of independent two-level systems. This hitherto virtually unexplored model plays a fundamental role as one of the four 'canonical' system-environment models for decoherence and dissipation. To investigate the influence of further couplings of the environmental spins to a dissipative bath, we also derive the master equation for a harmonic oscillator interacting with a single spin coupled to a bosonic bath. Our models are experimentally motivated by quantum-electromechanical systems and micron-scale ion traps. Decoherence and dissipation rates are found to exhibit temperature dependencies significantly different from those in quantum Brownian motion. In particular, the systematic dissipation rate for the central oscillator decreases with increasing temperature and goes to zero at zero temperature, but there also exists a temperature-independent momentum-diffusion (heating) rate.
Stochastic description of quantum Brownian dynamics
NASA Astrophysics Data System (ADS)
Yan, Yun-An; Shao, Jiushu
2016-08-01
Classical Brownian motion has well been investigated since the pioneering work of Einstein, which inspired mathematicians to lay the theoretical foundation of stochastic processes. A stochastic formulation for quantum dynamics of dissipative systems described by the system-plus-bath model has been developed and found many applications in chemical dynamics, spectroscopy, quantum transport, and other fields. This article provides a tutorial review of the stochastic formulation for quantum dissipative dynamics. The key idea is to decouple the interaction between the system and the bath by virtue of the Hubbard-Stratonovich transformation or Itô calculus so that the system and the bath are not directly entangled during evolution, rather they are correlated due to the complex white noises introduced. The influence of the bath on the system is thereby defined by an induced stochastic field, which leads to the stochastic Liouville equation for the system. The exact reduced density matrix can be calculated as the stochastic average in the presence of bath-induced fields. In general, the plain implementation of the stochastic formulation is only useful for short-time dynamics, but not efficient for long-time dynamics as the statistical errors go very fast. For linear and other specific systems, the stochastic Liouville equation is a good starting point to derive the master equation. For general systems with decomposable bath-induced processes, the hierarchical approach in the form of a set of deterministic equations of motion is derived based on the stochastic formulation and provides an effective means for simulating the dissipative dynamics. A combination of the stochastic simulation and the hierarchical approach is suggested to solve the zero-temperature dynamics of the spin-boson model. This scheme correctly describes the coherent-incoherent transition (Toulouse limit) at moderate dissipation and predicts a rate dynamics in the overdamped regime. Challenging problems
Phases, collective modes, and nonequilibrium dynamics of dissipative Rydberg atoms
NASA Astrophysics Data System (ADS)
Ray, S.; Sinha, S.; Sengupta, K.
2016-03-01
We use a density matrix formalism to study the equilibrium phases and nonequilibrium dynamics of a system of dissipative Rydberg atoms in an optical lattice within mean-field theory. We provide equations for the fixed points of the density matrix evolution for atoms with infinite on-site repulsion and analyze these equations to obtain their Mott-insulator-superfluid (MI-SF) phase boundary. A stability analysis around these fixed points provides us with the excitation spectrum of the atoms both in the MI and SF phases. We study the nature of the MI-SF critical point in the presence of finite dissipation of Rydberg excitations, discuss the fate of the superfluid order parameter of the atoms in the presence of such dissipation in the weak-coupling limit using a coherent state representation of the density matrix, and extend our analysis to Rydberg atoms with finite on-site interaction via numerical solution of the density matrix equations. Finally, we vary the boson (atom) hopping parameter J and the dissipation parameter Γ according to a linear ramp protocol. We study the evolution of entropy of the system following such a ramp and show that the deviation of the entropy from its steady-state value for the latter protocol exhibits power-law behavior as a function of the ramp time. We discuss experiments that can test our theory.
Quantum driven dissipative parametric oscillator in a blackbody radiation field
Pachón, Leonardo A.; Department of Chemistry and Center for Quantum Information and Quantum Control, Chemical Physics Theory Group, University of Toronto, Toronto, Ontario M5S 3H6 ; Brumer, Paul
2014-01-15
We consider the general open system problem of a charged quantum oscillator confined in a harmonic trap, whose frequency can be arbitrarily modulated in time, that interacts with both an incoherent quantized (blackbody) radiation field and with an arbitrary coherent laser field. We assume that the oscillator is initially in thermodynamic equilibrium with its environment, a non-factorized initial density matrix of the system and the environment, and that at t = 0 the modulation of the frequency, the coupling to the incoherent and the coherent radiation are switched on. The subsequent dynamics, induced by the presence of the blackbody radiation, the laser field, and the frequency modulation, is studied in the framework of the influence functional approach. This approach allows incorporating, in analytic closed formulae, the non-Markovian character of the oscillator-environment interaction at any temperature as well the non-Markovian character of the blackbody radiation and its zero-point fluctuations. Expressions for the time evolution of the covariance matrix elements of the quantum fluctuations and the reduced density-operator are obtained.
Quantum dynamics in strong fluctuating fields
NASA Astrophysics Data System (ADS)
Goychuk, Igor; Hänggi, Peter
A large number of multifaceted quantum transport processes in molecular systems and physical nanosystems, such as e.g. nonadiabatic electron transfer in proteins, can be treated in terms of quantum relaxation processes which couple to one or several fluctuating environments. A thermal equilibrium environment can conveniently be modelled by a thermal bath of harmonic oscillators. An archetype situation provides a two-state dissipative quantum dynamics, commonly known under the label of a spin-boson dynamics. An interesting and nontrivial physical situation emerges, however, when the quantum dynamics evolves far away from thermal equilibrium. This occurs, for example, when a charge transferring medium possesses nonequilibrium degrees of freedom, or when a strong time-dependent control field is applied externally. Accordingly, certain parameters of underlying quantum subsystem acquire stochastic character. This may occur, for example, for the tunnelling coupling between the donor and acceptor states of the transferring electron, or for the corresponding energy difference between electronic states which assume via the coupling to the fluctuating environment an explicit stochastic or deterministic time-dependence. Here, we review the general theoretical framework which is based on the method of projector operators, yielding the quantum master equations for systems that are exposed to strong external fields. This allows one to investigate on a common basis, the influence of nonequilibrium fluctuations and periodic electrical fields on those already mentioned dynamics and related quantum transport processes. Most importantly, such strong fluctuating fields induce a whole variety of nonlinear and nonequilibrium phenomena. A characteristic feature of such dynamics is the absence of thermal (quantum) detailed balance.ContentsPAGE1. Introduction5262. Quantum dynamics in stochastic fields531 2.1. Stochastic Liouville equation531 2.2. Non-Markovian vs. Markovian discrete
Quantum Spin Dimers from Chiral Dissipation in Cold-Atom Chains
NASA Astrophysics Data System (ADS)
Ramos, Tomás; Pichler, Hannes; Daley, Andrew J.; Zoller, Peter
2014-12-01
We consider the nonequilibrium dynamics of a driven dissipative spin chain with chiral coupling to a one-dimensional (1D) bosonic bath, and its atomic implementation with a two-species mixture of cold quantum gases. The reservoir is represented by a spin-orbit coupled 1D quasicondensate of atoms in a magnetized phase, while the spins are identified with motional states of a separate species of atoms in an optical lattice. The chirality of reservoir excitations allows the spins to couple differently to left- and right-moving modes, which in our atomic setup can be tuned from bidirectional to purely unidirectional. Remarkably, this leads to a pure steady state in which pairs of neighboring spins form dimers that decouple from the remainder of the chain. Our results also apply to current experiments with two-level emitters coupled to photonic waveguides.
Sanz, A.S.; Martínez-Casado, R.; Peñate-Rodríguez, H.C.; Rojas-Lorenzo, G.; Miret-Artés, S.
2014-08-15
Classical viscid media are quite common in our everyday life. However, we are not used to find such media in quantum mechanics, and much less to analyze their effects on the dynamics of quantum systems. In this regard, the Caldirola–Kanai time-dependent Hamiltonian constitutes an appealing model, accounting for friction without including environmental fluctuations (as it happens, for example, with quantum Brownian motion). Here, a Bohmian analysis of the associated friction dynamics is provided in order to understand how a hypothetical, purely quantum viscid medium would act on a wave packet from a (quantum) hydrodynamic viewpoint. To this purpose, a series of paradigmatic contexts have been chosen, such as the free particle, the motion under the action of a linear potential, the harmonic oscillator, or the superposition of two coherent wave packets. Apart from their analyticity, these examples illustrate interesting emerging behaviors, such as localization by “quantum freezing” or a particular type of quantum–classical correspondence. The reliability of the results analytically determined has been checked by means of numerical simulations, which has served to investigate other problems lacking of such analyticity (e.g., the coherent superpositions). - Highlights: • A dissipative Bohmian approach is developed within the Caldirola–Kanai model. • Some simple yet physically insightful systems are then studied analytically. • Dissipation leads to spatial localization in free-force regimes. • Under the action of linear forces, dissipation leads to uniform motion. • In harmonic potentials, the system decays unavoidable to the well minimum.
Dissipative particle dynamics model for colloid transport in porous media
Pan, W.; Tartakovsky, A. M.
2013-08-01
We present that the transport of colloidal particles in porous media can be effectively modeled with a new formulation of dissipative particle dynamics, which augments standard DPD with non-central dissipative shear forces between particles while preserving angular momentum. Our previous studies have demonstrated that the new formulation is able to capture accurately the drag forces as well as the drag torques on colloidal particles that result from the hydrodynamic retardation effect. In the present work, we use the new formulation to study the contact efficiency in colloid filtration in saturated porous media. Note that the present model include all transport mechanisms simultaneously, including gravitational sedimentation, interception and Brownian diffusion. Our results of contact efficiency show a good agreement with the predictions of the correlation equation proposed by Tufenkji and EliMelech, which also incorporate all transport mechanisms simultaneously without the additivity assumption.
Transport dynamics and dissipation in polariton ring condensates and cold atoms
NASA Astrophysics Data System (ADS)
Daley, Andrew
Recent progress in experiments has opened new contexts in which to observe and explore out-of-equilibrium quantum transport dynamics. On the side of cold atoms, significant advances are made possibile by the ability to control and measure atomic dynamics time-dependently, as well as to explore the effects of strong interactions. This is especially true in recent experiments with quantum gas microscopes, which now provide single-site and single atom measurement and control. At the same time, new methods for control and longer coherence times have been realised in condensates of exciton polaritons. This has enabled the development of ring geometries for these systems, and corresponding quantised circulation. I will discuss our recent theoretical work looking at the interplay between coherent dynamics and dissipation in these systems. For polaritons in a ring trap, half-quantum vortices are allowed in which there is a phase rotation of π and a corresponding polarisation vector rotation of π around the ring. The observed half-quantum state in current experiments is novel, in that the handedness of the spin flips from one side of the ring to the other side in addition to the rotation of the linear polarization component. This type of state is not possible for vortices in a simply connected geometry, and we investigate how the interplay between the polariton production and dissipation can give rise to this state in a ring trap. I will also discuss the transport dynamics of cold atoms in tilted optical lattices, in the presence of decoherence from sources including spontaneous emissions.
Derivation of anisotropic dissipative fluid dynamics from the Boltzmann equation
NASA Astrophysics Data System (ADS)
Molnár, Etele; Niemi, Harri; Rischke, Dirk H.
2016-06-01
Fluid-dynamical equations of motion can be derived from the Boltzmann equation in terms of an expansion around a single-particle distribution function which is in local thermodynamical equilibrium, i.e., isotropic in momentum space in the rest frame of a fluid element. However, in situations where the single-particle distribution function is highly anisotropic in momentum space, such as the initial stage of heavy-ion collisions at relativistic energies, such an expansion is bound to break down. Nevertheless, one can still derive a fluid-dynamical theory, called anisotropic dissipative fluid dynamics, in terms of an expansion around a single-particle distribution function, f^0 k, which incorporates (at least parts of) the momentum anisotropy via a suitable parametrization. We construct such an expansion in terms of polynomials in energy and momentum in the direction of the anisotropy and of irreducible tensors in the two-dimensional momentum subspace orthogonal to both the fluid velocity and the direction of the anisotropy. From the Boltzmann equation we then derive the set of equations of motion for the irreducible moments of the deviation of the single-particle distribution function from f^0 k. Truncating this set via the 14-moment approximation, we obtain the equations of motion of anisotropic dissipative fluid dynamics.
Smoothed dissipative particle dynamics with angular momentum conservation
NASA Astrophysics Data System (ADS)
Müller, Kathrin; Fedosov, Dmitry A.; Gompper, Gerhard
2015-01-01
Smoothed dissipative particle dynamics (SDPD) combines two popular mesoscopic techniques, the smoothed particle hydrodynamics and dissipative particle dynamics (DPD) methods, and can be considered as an improved dissipative particle dynamics approach. Despite several advantages of the SDPD method over the conventional DPD model, the original formulation of SDPD by Español and Revenga (2003) [9], lacks angular momentum conservation, leading to unphysical results for problems where the conservation of angular momentum is essential. To overcome this limitation, we extend the SDPD method by introducing a particle spin variable such that local and global angular momentum conservation is restored. The new SDPD formulation (SDPD+a) is directly derived from the Navier-Stokes equation for fluids with spin, while thermal fluctuations are incorporated similarly to the DPD method. We test the new SDPD method and demonstrate that it properly reproduces fluid transport coefficients. Also, SDPD with angular momentum conservation is validated using two problems: (i) the Taylor-Couette flow with two immiscible fluids and (ii) a tank-treading vesicle in shear flow with a viscosity contrast between inner and outer fluids. For both problems, the new SDPD method leads to simulation predictions in agreement with the corresponding analytical theories, while the original SDPD method fails to capture properly physical characteristics of the systems due to violation of angular momentum conservation. In conclusion, the extended SDPD method with angular momentum conservation provides a new approach to tackle fluid problems such as multiphase flows and vesicle/cell suspensions, where the conservation of angular momentum is essential.
Smoothed dissipative particle dynamics with angular momentum conservation
Müller, Kathrin Fedosov, Dmitry A. Gompper, Gerhard
2015-01-15
Smoothed dissipative particle dynamics (SDPD) combines two popular mesoscopic techniques, the smoothed particle hydrodynamics and dissipative particle dynamics (DPD) methods, and can be considered as an improved dissipative particle dynamics approach. Despite several advantages of the SDPD method over the conventional DPD model, the original formulation of SDPD by Español and Revenga (2003) [9], lacks angular momentum conservation, leading to unphysical results for problems where the conservation of angular momentum is essential. To overcome this limitation, we extend the SDPD method by introducing a particle spin variable such that local and global angular momentum conservation is restored. The new SDPD formulation (SDPD+a) is directly derived from the Navier–Stokes equation for fluids with spin, while thermal fluctuations are incorporated similarly to the DPD method. We test the new SDPD method and demonstrate that it properly reproduces fluid transport coefficients. Also, SDPD with angular momentum conservation is validated using two problems: (i) the Taylor–Couette flow with two immiscible fluids and (ii) a tank-treading vesicle in shear flow with a viscosity contrast between inner and outer fluids. For both problems, the new SDPD method leads to simulation predictions in agreement with the corresponding analytical theories, while the original SDPD method fails to capture properly physical characteristics of the systems due to violation of angular momentum conservation. In conclusion, the extended SDPD method with angular momentum conservation provides a new approach to tackle fluid problems such as multiphase flows and vesicle/cell suspensions, where the conservation of angular momentum is essential.
Dissipative-particle-dynamics model of biofilm growth
Xu, Zhijie; Meakin, Paul; Tartakovsky, Alexandre M.; Scheibe, Timothy D.
2011-06-13
A dissipative particle dynamics (DPD) model for the quantitative simulation of biofilm growth controlled by substrate (nutrient) consumption, advective and diffusive substrate transport, and hydrodynamic interactions with fluid flow (including fragmentation and reattachment) is described. The model was used to simulate biomass growth, decay, and spreading. It predicts how the biofilm morphology depends on flow conditions, biofilm growth kinetics, the rheomechanical properties of the biofilm and adhesion to solid surfaces. The morphology of the model biofilm depends strongly on its rigidity and the magnitude of the body force that drives the fluid over the biofilm.
Dissipative Particle Dynamics interaction parameters from ab initio calculations
NASA Astrophysics Data System (ADS)
Sepehr, Fatemeh; Paddison, Stephen J.
2016-02-01
Dissipative Particle Dynamics (DPD) is a commonly employed coarse-grained method to model complex systems. Presented here is a pragmatic approach to connect atomic-scale information to the meso-scale interactions defined between the DPD particles or beads. Specifically, electronic structure calculations were utilized for the calculation of the DPD pair-wise interaction parameters. An implicit treatment of the electrostatic interactions for charged beads is introduced. The method is successfully applied to derive the parameters for a hydrated perfluorosulfonic acid ionomer with absorbed vanadium cations.
Polymer chain simulations in microchannels with Dissipative Particle Dynamics
NASA Astrophysics Data System (ADS)
Symeonidis, Vasileios; Karniadakis, George; Caswell, Bruce
2006-03-01
In this work we employ Dissipative Particle Dynamics (dpd) for simulations of dilute polymer solutions using bead-spring representations. We present comparison of two time-marching schemes: the popular velocity-Verlet and Lowe's scheme. Schmidt number effects are investigated for a series of cases, including λ-dna molecules under shear (using the Marko-Siggia wormlike chain spring law) and Poiseuille flow in microchannels. Effects on the polymer depletion layer, power-law profiles and apparent viscosities are presented as a function of the number of beads per polymer chain.
Dissipative many-electron dynamics of ionizing systems.
Tremblay, Jean Christophe; Klinkusch, Stefan; Klamroth, Tillmann; Saalfrank, Peter
2011-01-28
In this paper, we perform many-electron dynamics using the time-dependent configuration-interaction method in its reduced density matrix formulation (ρ-TDCI). Dissipation is treated implicitly using the Lindblad formalism. To include the effect of ionization on the state-resolved dynamics, we extend a recently introduced heuristic model for ionizing states to the ρ-TDCI method, which leads to a reduced density matrix evolution that is not norm-preserving. We apply the new method to the laser-driven excitation of H(2) in a strongly dissipative environment, for which the state-resolve lifetimes are tuned to a few femtoseconds, typical for dynamics of adsorbate at metallic surfaces. Further testing is made on the laser-induced intramolecular charge transfer in a quinone derivative as a model for a molecular switch. A modified scheme to treat ionizing states is proposed to reduce the computational burden associated with the density matrix propagation, and it is thoroughly tested and compared to the results obtained with the former model. The new approach scales favorably (∼N(2)) with the number of configurations N used to represent the reduced density matrix in the ρ-TDCI method, as compared to a N(3) scaling for the model in its original form. PMID:21280729
Real-time nonequilibrium dynamics of quantum glassy systems
NASA Astrophysics Data System (ADS)
Cugliandolo, Leticia F.; Lozano, Gustavo
1999-01-01
We develop a systematic analytic approach to aging effects in quantum disordered systems in contact with an environment. Within the closed-time path-integral formalism we include dissipation by coupling the system to a set of independent harmonic oscillators that mimic a quantum thermal bath. After integrating over the bath variables and averaging over disorder we obtain an effective action that determines the real-time dynamics of the system. The classical limit yields the Martin-Siggia-Rose generating functional associated to a colored noise. We apply this general formalism to a prototype model related to the p spin glass. We show that the model has a dynamic phase transition separating the paramagnetic from the spin-glass phase and that quantum fluctuations depress the transition temperature until a quantum critical point is reached. We show that the dynamics in the paramagnetic phase is stationary but presents an interesting crossover from a region controlled by the classical critical point to another one controlled by the quantum critical point. The most characteristic property of the dynamics in a glassy phase, namely, aging, survives the quantum fluctuations. In the subcritical region the quantum fluctuation-dissipation theorem is modified in a way that is consistent with the notion of effective temperatures introduced for the classical case. We discuss these results in connection with recent experiments in dipolar quantum spin glasses and the relevance of the effective temperatures with respect to the understanding of the low-temperature dynamics.
Nonconventional fluctuation dissipation process in non-Hamiltonian dynamical systems
NASA Astrophysics Data System (ADS)
Bianucci, Marco
2016-08-01
Here, we introduce a statistical approach derived from dynamics, for the study of the geophysical fluid dynamics phenomena characterized by a weak interaction among the variables of interest and the rest of the system. The approach is reminiscent of the one developed some years ago [M. Bianucci, R. Mannella, P. Grigolini and B. J. West, Phys. Rev. E 51, 3002 (1995)] to derive statistical mechanics of macroscopic variables on interest starting from Hamiltonian microscopic dynamics. However, in the present work, we are interested to generalize this approach beyond the context of the foundation of thermodynamics, in fact, we take into account the cases where the system of interest could be non-Hamiltonian (dissipative) and also the interaction with the irrelevant part can be of a more general type than Hamiltonian. As such example, we will refer to a typical case from geophysical fluid dynamics: the complex ocean-atmosphere interaction that gives rise to the El Niño Southern Oscillation (ENSO). Here, changing all the scales, the role of the “microscopic” system is played by the atmosphere, while the ocean (or some ocean variables) plays the role of the intrinsically dissipative macroscopic system of interest. Thus, the chaotic and divergent features of the fast atmosphere dynamics remains in the decaying properties of the correlation functions and of the response function of the atmosphere variables, while the exponential separation of the perturbed (or close) single trajectories does not play a direct role. In the present paper, we face this problem in the frame of a not formal Langevin approach, limiting our discussion to physically based rather than mathematics arguments. Elsewhere, we obtain these results via a much more formal procedure, using the Zwanzing projection method and some elements from the Lie Algebra field.
Dissipative effects in nonlinear Klein-Gordon dynamics
NASA Astrophysics Data System (ADS)
Plastino, A. R.; Tsallis, C.
2016-03-01
We consider dissipation in a recently proposed nonlinear Klein-Gordon dynamics that admits exact time-dependent solutions of the power-law form e_qi(kx-wt) , involving the q-exponential function naturally arising within the nonextensive thermostatistics (e_qz \\equiv [1+(1-q)z]1/(1-q) , with e_1^z=ez ). These basic solutions behave like free particles, complying, for all values of q, with the de Broglie-Einstein relations p=\\hbar k , E=\\hbar ω and satisfying a dispersion law corresponding to the relativistic energy-momentum relation E2 = c^2p2 + m^2c4 . The dissipative effects explored here are described by an evolution equation that can be regarded as a nonlinear generalization of the celebrated telegraph equation, unifying within one single theoretical framework the nonlinear Klein-Gordon equation, a nonlinear Schrödinger equation, and the power-law diffusion (porous-media) equation. The associated dynamics exhibits physically appealing traveling solutions of the q-plane wave form with a complex frequency ω and a q-Gaussian square modulus profile.
Transport signatures of Majorana quantum criticality realized by dissipative resonant tunneling
NASA Astrophysics Data System (ADS)
Zheng, Huaixiu; Florens, Serge; Baranger, Harold U.
2014-06-01
We consider theoretically the transport properties of a spinless resonant electronic level coupled to strongly dissipative leads, in the regime of circuit impedance near the resistance quantum. Using the Luttinger liquid analogy, one obtains an effective Hamiltonian expressed in terms of interacting Majorana fermions, in which all environmental degrees of freedom (leads and electromagnetic modes) are encapsulated in a single fermionic bath. General transport equations for this system are then derived in terms of the Majorana T-matrix. A perturbative treatment of the Majorana interaction term yields the appearance of a marginal, linear dependence of the conductance on temperature when the system is tuned to its quantum critical point, in agreement with recent experimental observations. We investigate in detail the different crossovers involved in the problem, and analyze the role of the interaction terms in the transport scaling functions. In particular, we show that single barrier scaling applies when the system is slightly tuned away from its Majorana critical point, strengthening the general picture of dynamical Coulomb blockade.
Multiscale simulation of ideal mixtures using smoothed dissipative particle dynamics.
Petsev, Nikolai D; Leal, L Gary; Shell, M Scott
2016-02-28
Smoothed dissipative particle dynamics (SDPD) [P. Español and M. Revenga, Phys. Rev. E 67, 026705 (2003)] is a thermodynamically consistent particle-based continuum hydrodynamics solver that features scale-dependent thermal fluctuations. We obtain a new formulation of this stochastic method for ideal two-component mixtures through a discretization of the advection-diffusion equation with thermal noise in the concentration field. The resulting multicomponent approach is consistent with the interpretation of the SDPD particles as moving volumes of fluid and reproduces the correct fluctuations and diffusion dynamics. Subsequently, we provide a general multiscale multicomponent SDPD framework for simulations of molecularly miscible systems spanning length scales from nanometers to the non-fluctuating continuum limit. This approach reproduces appropriate equilibrium properties and is validated with simulation of simple one-dimensional diffusion across multiple length scales. PMID:26931689
Multiscale simulation of ideal mixtures using smoothed dissipative particle dynamics
NASA Astrophysics Data System (ADS)
Petsev, Nikolai D.; Leal, L. Gary; Shell, M. Scott
2016-02-01
Smoothed dissipative particle dynamics (SDPD) [P. Español and M. Revenga, Phys. Rev. E 67, 026705 (2003)] is a thermodynamically consistent particle-based continuum hydrodynamics solver that features scale-dependent thermal fluctuations. We obtain a new formulation of this stochastic method for ideal two-component mixtures through a discretization of the advection-diffusion equation with thermal noise in the concentration field. The resulting multicomponent approach is consistent with the interpretation of the SDPD particles as moving volumes of fluid and reproduces the correct fluctuations and diffusion dynamics. Subsequently, we provide a general multiscale multicomponent SDPD framework for simulations of molecularly miscible systems spanning length scales from nanometers to the non-fluctuating continuum limit. This approach reproduces appropriate equilibrium properties and is validated with simulation of simple one-dimensional diffusion across multiple length scales.
Unravelling coherent dynamics and energy dissipation in photosynthetic complexes by 2D spectroscopy.
Abramavicius, Darius; Voronine, Dmitri V; Mukamel, Shaul
2008-05-01
Spectroscopic studies of light harvesting and the subsequent energy conversion in photosynthesis can track quantum dynamics happening on the microscopic level. The Fenna-Matthews-Olson complex of the photosynthetic green sulfur bacteria Chlorobium tepidum is a prototype efficient light-harvesting antenna: it stores the captured photon energy in the form of excitons (collective excitations), which are subsequently converted to chemical energy with almost 100% efficiency. These excitons show an elaborate relaxation pattern involving coherent and incoherent pathways. We make use of the complex chirality and fundamental symmetries of multidimensional optical signals to design new sequences of ultrashort laser pulses that can distinguish between coherent quantum oscillations and incoherent energy dissipation during the exciton relaxation. The cooperative dynamical features, which reflect the coherent nature of excitations, are amplified. The extent of quantum oscillations and their timescales in photosynthesis can be readily extracted from the designed signals, showing that cooperativity is maintained during energy transport in the Fenna-Matthews-Olson complex. The proposed pulse sequences may also be applied to reveal information on the robustness of quantum states in the presence of fluctuating environments in other nanoscopic complexes and devices. PMID:18192357
NASA Astrophysics Data System (ADS)
Shnirman, A.; Saha, A.; Burmistrov, I. S.; Kiselev, M. N.; Altland, A.; Gefen, Y.
2016-03-01
There are two paradigmatic frameworks for treating quantum systems coupled to a dissipative environment: the Caldeira-Leggett and Ambegaokar-Eckern-Schön approaches. Here, we recall the differences between them and explain the consequences of applying each to a zero-dimensional spin (having an SU(2) symmetry) in a dissipative environment (a dissipative quantum dot near or beyond the Stoner instability point).
Decoherence and dissipation for a quantum system coupled to a local environment
NASA Technical Reports Server (NTRS)
Gallis, Michael R.
1994-01-01
Decoherence and dissipation in quantum systems has been studied extensively in the context of Quantum Brownian Motion. Effective decoherence in coarse grained quantum systems has been a central issue in recent efforts by Zurek and by Hartle and Gell-Mann to address the Quantum Measurement Problem. Although these models can yield very general classical phenomenology, they are incapable of reproducing relevant characteristics expected of a local environment on a quantum system, such as the characteristic dependence of decoherence on environment spatial correlations. I discuss the characteristics of Quantum Brownian Motion in a local environment by examining aspects of first principle calculations and by the construction of phenomenological models. Effective quantum Langevin equations and master equations are presented in a variety of representations. Comparisons are made with standard results such as the Caldeira-Leggett master equation.
NASA Astrophysics Data System (ADS)
Fujikura, Kyota; Shimizu, Akira
2016-07-01
For macroscopic quantum systems, we study what is measured when equilibrium fluctuations of macrovariables are measured in an ideal way that mimics classical ideal measurements as closely as possible. We find that the symmetrized time correlation is always obtained for such measurements. As an important consequence, we show that the fluctuation-dissipation theorem is partially violated as a relation between observed quantities in macroscopic quantum systems even if measurements are made in such an ideal way.
Fujikura, Kyota; Shimizu, Akira
2016-07-01
For macroscopic quantum systems, we study what is measured when equilibrium fluctuations of macrovariables are measured in an ideal way that mimics classical ideal measurements as closely as possible. We find that the symmetrized time correlation is always obtained for such measurements. As an important consequence, we show that the fluctuation-dissipation theorem is partially violated as a relation between observed quantities in macroscopic quantum systems even if measurements are made in such an ideal way. PMID:27419546
Quantum-beat based dissipation for spin squeezing and light entanglement.
Huang, Chen; Hu, Xiangming; Zhang, Yang; Li, Lingchao; Rao, Shi
2016-08-22
We show an engineered dissipation for the spin squeezing and the light entanglement in a quantum beat system, in which two bright fields interact with an ensemble of three-level atoms in V configuration. The dissipation is based on the atom-field nonlinear interaction that is controlled by the atomic coherence between the excited states off two-photon resonance. Physical analysis and numerical verification are presented for the symmetrical parameters by using the dressed atomic states. It is shown that for particular parameters, the engineered dissipation induces almost perfect two-mode squeezing and entanglement both for the bright fields and for the dressed spins. The excited-state spin has squeezing of near 40% below the standard quantum limit although there remains the spontaneous emission from the involved excited states. PMID:27557189
The Dynamical Dipole Radiation in Dissipative Collisions with Exotic Beams
NASA Astrophysics Data System (ADS)
di Toro, M.; Colonna, M.; Rizzo, C.; Baran, V.
Heavy Ion Collisions (HIC) represent a unique tool to probe the in-medium nuclear interaction in regions away from saturation. In this work we present a selection of reaction observables in dissipative collisions particularly sensitive to the isovector part of the interaction, i.e. to the symmetry term of the nuclear Equation of State (EoS). At low energies the behavior of the symmetry energy around saturation influences dissipation and fragment production mechanisms. We will first discuss the recently observed Dynamical Dipole Radiation, due to a collective neutron-proton oscillation during the charge equilibration in fusion and deep-inelastic collisions. We will review in detail all the main properties, yield, spectrum, damping and angular distributions, revealing important isospin effects. Reactions induced by unstable 132Sn beams appear to be very promising tools to test the sub-saturation Isovector EoS. Predictions are also presented for deep-inelastic and fragmentation collisions induced by neutron rich projectiles. The importance of studying violent collisions with radioactive beams at low and Fermi energies is finally stressed.
Dynamical structure of magnetized dissipative accretion flow around black holes
NASA Astrophysics Data System (ADS)
Sarkar, Biplob; Das, Santabrata
2016-09-01
We study the global structure of optically thin, advection dominated, magnetized accretion flow around black holes. We consider the magnetic field to be turbulent in nature and dominated by the toroidal component. With this, we obtain the complete set of accretion solutions for dissipative flows where bremsstrahlung process is regarded as the dominant cooling mechanism. We show that rotating magnetized accretion flow experiences virtual barrier around black hole due to centrifugal repulsion that can trigger the discontinuous transition of the flow variables in the form of shock waves. We examine the properties of the shock waves and find that the dynamics of the post-shock corona (PSC) is controlled by the flow parameters, namely viscosity, cooling rate and strength of the magnetic field, respectively. We separate the effective region of the parameter space for standing shock and observe that shock can form for wide range of flow parameters. We obtain the critical viscosity parameter that allows global accretion solutions including shocks. We estimate the energy dissipation at the PSC from where a part of the accreting matter can deflect as outflows and jets. We compare the maximum energy that could be extracted from the PSC and the observed radio luminosity values for several supermassive black hole sources and the observational implications of our present analysis are discussed.
Dynamical structure of magnetized dissipative accretion flow around black holes
NASA Astrophysics Data System (ADS)
Sarkar, Biplob; Das, Santabrata
2016-06-01
We study the global structure of optically thin, advection dominated, magnetized accretion flow around black holes. We consider the magnetic field to be turbulent in nature and dominated by the toroidal component. With this, we obtain the complete set of accretion solutions for dissipative flows where bremsstrahlung process is regarded as the dominant cooling mechanism. We show that rotating magnetized accretion flow experiences virtual barrier around black hole due to centrifugal repulsion that can trigger the discontinuous transition of the flow variables in the form of shock waves. We examine the properties of the shock waves and find that the dynamics of the post-shock corona (PSC) is controlled by the flow parameters, namely viscosity, cooling rate and strength of the magnetic field, respectively. We separate the effective region of the parameter space for standing shock and observe that shock can form for wide range of flow parameters. We obtain the critical viscosity parameter that allows global accretion solutions including shocks. We estimate the energy dissipation at the PSC from where a part of the accreting matter can deflect as outflows and jets. We compare the maximum energy that could be extracted from the PSC and the observed radio luminosity values for several super-massive black hole sources and the observational implications of our present analysis are discussed.
Area law for fixed points of rapidly mixing dissipative quantum systems
Brandão, Fernando G. S. L.; Cubitt, Toby S.; Lucia, Angelo; Michalakis, Spyridon; Perez-Garcia, David
2015-10-15
We prove an area law with a logarithmic correction for the mutual information for fixed points of local dissipative quantum system satisfying a rapid mixing condition, under either of the following assumptions: the fixed point is pure or the system is frustration free.
Dissipation-induced continuous quantum error correction for superconducting circuits
NASA Astrophysics Data System (ADS)
Cohen, Joachim; Mirrahimi, Mazyar
2014-12-01
Quantum error correction (QEC) is a crucial step towards long coherence times required for efficient quantum information processing. One major challenge in this direction concerns the fast real-time analysis of error syndrome measurements and the associated feedback control. Recent proposals on autonomous QEC (AQEC) have opened new perspectives to overcome this difficulty. Here, we design an AQEC scheme based on quantum reservoir engineering adapted to superconducting qubits. We focus on a three-qubit bit-flip code, where three transmon qubits are dispersively coupled to a few low-Q resonator modes. By applying only continuous-wave drives of fixed but well-chosen frequencies and amplitudes, we engineer an effective interaction Hamiltonian to evacuate the entropy created by eventual bit-flip errors. We provide a full analytical and numerical study of the protocol while introducing the main limitations on the achievable error correction rates.
Modeling nanoscale hydrodynamics by smoothed dissipative particle dynamics
Lei, Huan; Mundy, Christopher J.; Schenter, Gregory K.; Voulgarakis, Nikolaos
2015-05-21
Thermal fluctuation and hydrophobicity are two hallmarks of fluid hydrodynamics on the nano-scale. It is a challenge to consistently couple the small length and time scale phenomena associated with molecular interaction with larger scale phenomena. The development of this consistency is the essence of mesoscale science. In this study, we develop a nanoscale fluid model based on smoothed dissipative particle dynamics that accounts for the phenomena of associated with density fluctuations and hydrophobicity. We show consistency in the fluctuation spectrum across scales. In doing so, it is necessary to account for finite fluid particle size. Furthermore, we demonstrate that the present model can capture of the void probability and solvation free energy of apolar particles of different sizes. The present fluid model is well suited for a understanding emergent phenomena in nano-scale fluid systems.
History-dependent dissipative vortex dynamics in superconducting arrays
NASA Astrophysics Data System (ADS)
Durkin, Malcolm; Mondragon-Shem, Ian; Eley, Serena; Hughes, Taylor L.; Mason, Nadya
2016-07-01
We perform current (I )-voltage (V ) measurements on low resistance superconductor-normal-superconductor arrays in finite magnetic fields, focusing on the dilute vortex population regime. We observe significant deviations from predicted behavior, notably the absence of a differential resistance peak near the vortex depinning current, and a broad linear I -V region with an extrapolated I intercept equal to the depinning current. Comparing these results to an overdamped molecular vortex model, we find that this behavior can be explained by the presence of a history-dependent dissipative force. This approach has not been considered previously, to our knowledge, yet it is crucial for obtaining a correct description of the vortex dynamics in superconducting arrays.
Modeling nanoscale hydrodynamics by smoothed dissipative particle dynamics
NASA Astrophysics Data System (ADS)
Lei, Huan; Mundy, Christopher J.; Schenter, Gregory K.; Voulgarakis, Nikolaos K.
2015-05-01
Thermal fluctuation and hydrophobicity are two hallmarks of fluid hydrodynamics on the nano-scale. It is a challenge to consistently couple the small length and time scale phenomena associated with molecular interaction with larger scale phenomena. The development of this consistency is the essence of mesoscale science. In this study, we use a nanoscale fluid model based on smoothed dissipative particle dynamics that accounts for the phenomena associated with density fluctuations and hydrophobicity. We show consistency in the fluctuation spectrum across scales. In doing so, it is necessary to account for finite fluid particle size. Furthermore, we demonstrate that the present model can capture the void probability and solvation free energy of nonpolar hard particles of different sizes. The present fluid model is well suited for an understanding of emergent phenomena in nano-scale fluid systems.
NASA Astrophysics Data System (ADS)
Xue, Liyuan; Yu, Yanxia; Cai, Xiaoya; Pan, Hui; Wang, Zisheng
2016-01-01
We investigate time-dependent Pancharatnam phases and the relations between such geometric phases and quantum correlations, i.e., quantum discord and concurrence, of superconducting two-qubit coupling system in dissipative environment with the mixture effects of four different eigenstates of density matrix. We find that the time-dependent Pancharatnam phases not only keep the motion memory of such a two-qubit system, but also include the information of quantum correlations. We show that the sudden died and alive phenomena of quantum entanglement are intrinsic in the transition of Pancharatnam phase in the X-state and the complex oscillations of Pancharatnam phase in the Y-state. The faster the Pancharatnam phases change, the slower the quantum correlations decay. In particular, we find that a subspace of quantum entanglement can exist in the Y-state by choosing suitable coupling parameters between two-qubit system and its environment, or initial conditions.
Ion-acoustic vortices in inhomogeneous and dissipative electron-positron-ion quantum magnetoplasmas
NASA Astrophysics Data System (ADS)
Masood, W.; Mirza, Arshad M.; Nargis, Shahida; Ayub, M.
2009-04-01
Linear and nonlinear properties of quantum ion-acoustic waves are studied in a nonuniform, dissipative quantum plasma (composed of electrons, positrons, and ions) with sheared ion flow parallel to the ambient magnetic field, using the quantum hydrodynamic model. It is shown that the shear ion flow parallel to the external magnetic field can drive the quantum ion-acoustic wave unstable provided ∣S∣ky>kz. Stationary solutions of the nonlinear equations that govern the quantum ion-acoustic waves are also obtained. It is found that electrostatic monopolar, dipolar, and vortex street-type solutions can appear in such a plasma. It is observed that the inclusion of positron, quantum statistical, and Bohm potential terms significantly modifies the scale lengths of these nonlinear structures. The relevance of the present investigation with regard to the dense astrophysical environments is also pointed out.
Aging dynamics of quantum spin glasses of rotors
NASA Astrophysics Data System (ADS)
Kennett, Malcolm P.; Chamon, Claudio; Ye, Jinwu
2001-12-01
We study the long time dynamics of quantum spin glasses of rotors using the nonequilibrium Schwinger-Keldysh formalism. These models are known to have a quantum phase transition from a paramagnetic to a spin-glass phase, which we approach by looking at the divergence of the spin-relaxation rate at the transition point. In the aging regime, we determine the dynamical equations governing the time evolution of the spin response and correlation functions, and show that all terms in the equations that arise solely from quantum effects are irrelevant at long times under time reparametrization group (RPG) transformations. At long times, quantum effects enter only through the renormalization of the parameters in the dynamical equations for the classical counterpart of the rotor model. Consequently, quantum effects only modify the out-of-equilibrium fluctuation-dissipation relation (OEFDR), i.e. the ratio X between the temperature and the effective temperature, but not the form of the classical OEFDR.
Dissipative dynamics of composite domain walls in magnetic nanostrips
NASA Astrophysics Data System (ADS)
Tretiakov, O.; Bazaliy, Ya. B.; Tchernyshyov, O.
2007-03-01
We describe the dynamics of domain walls in thin magnetic nanostrips of submicron width under the action of magnetic field. Once the fast precession of magnetization is averaged out, the dynamics reduces to purely dissipative motion where the system follows the direction of the local energy gradient (Glauber's model A) [1]. We then apply the method of collective coordinates [2] to our variational model of the domain wall [3] reducing the dynamics to the evolution of two collective coordinates (the location of the vortex core). In weak magnetic fields the wall moves steadily. The calculated velocity is in good agreement with the results of numerical simulations (no adjustable parameters were used). In higher fields the steady motion breaks down and acquires an oscillatory character caused by periodic creation and annihilation of topological defects comprising the domain wall [3]. Numerical simulations uncover at least two different modes of oscillation. [1] C. J. Garc'ia-Cervera and W. E, J. Appl. Phys. 90, 370 (2001). [2] A. S'anchez and A. R. Bishop, SIAM Rev. 40, 579 (1998). [3] Preceding talk by O. Tchernyshyov.
Unbounded dynamics in dissipative flows: Rössler model
Barrio, Roberto Serrano, Sergio; Blesa, Fernando
2014-06-15
Transient chaos and unbounded dynamics are two outstanding phenomena that dominate in chaotic systems with large regions of positive and negative divergences. Here, we investigate the mechanism that leads the unbounded dynamics to be the dominant behavior in a dissipative flow. We describe in detail the particular case of boundary crisis related to the generation of unbounded dynamics. The mechanism of the creation of this crisis in flows is related to the existence of an unstable focus-node (or a saddle-focus) equilibrium point and the crossing of a chaotic invariant set of the system with the weak-(un)stable manifold of the equilibrium point. This behavior is illustrated in the well-known Rössler model. The numerical analysis of the system combines different techniques as chaos indicators, the numerical computation of the bounded regions, and bifurcation analysis. For large values of the parameters, the system is studied by means of Fenichel's theory, providing formulas for computing the slow manifold which influences the evolution of the first stages of the orbit.
Distortion and flow of nematics simulated by dissipative particle dynamics.
Zhao, Tongyang; Wang, Xiaogong
2014-05-14
In this study, we simulated distortion and flow of nematics by dissipative particle dynamics (DPD). The nematics were modeled by a binary mixture that contained rigid rods composed of DPD particles as mesogenic units and normal DPD particles as solvent. Elastic distortions were investigated by monitoring director orientation in space under influences of boundary anchoring and external fields. Static distortion demonstrated by the simulation is consistent with the prediction of Frank elastic theory. Spatial distortion profile of the director was examined to obtain static elastic constants. Rotational motions of the director under influence of the external field were simulated to understand the dynamic process. The rules revealed by the simulation are in a good agreement with those obtained from dynamical experiments and classical theories for nematics. Three Miesowicz viscosities were obtained by using external fields to hold the orientation of the rods in shear flows. The simulation showed that the Miesowicz viscosities have the order of ηc > ηa > ηb and the rotational viscosity γ1 is about two orders larger than the Miesowicz viscosity ηb. The DPD simulation correctly reproduced the non-monotonic concentration dependence of viscosity, which is a unique property of lyotropic nematic fluids. By comparing simulation results with classical theories for nematics and experiments, the DPD nematic fluids are proved to be a valid model to investigate the distortion and flow of lyotropic nematics. PMID:24832301
Distortion and flow of nematics simulated by dissipative particle dynamics
NASA Astrophysics Data System (ADS)
Zhao, Tongyang; Wang, Xiaogong
2014-05-01
In this study, we simulated distortion and flow of nematics by dissipative particle dynamics (DPD). The nematics were modeled by a binary mixture that contained rigid rods composed of DPD particles as mesogenic units and normal DPD particles as solvent. Elastic distortions were investigated by monitoring director orientation in space under influences of boundary anchoring and external fields. Static distortion demonstrated by the simulation is consistent with the prediction of Frank elastic theory. Spatial distortion profile of the director was examined to obtain static elastic constants. Rotational motions of the director under influence of the external field were simulated to understand the dynamic process. The rules revealed by the simulation are in a good agreement with those obtained from dynamical experiments and classical theories for nematics. Three Miesowicz viscosities were obtained by using external fields to hold the orientation of the rods in shear flows. The simulation showed that the Miesowicz viscosities have the order of ηc > ηa > ηb and the rotational viscosity γ1 is about two orders larger than the Miesowicz viscosity ηb. The DPD simulation correctly reproduced the non-monotonic concentration dependence of viscosity, which is a unique property of lyotropic nematic fluids. By comparing simulation results with classical theories for nematics and experiments, the DPD nematic fluids are proved to be a valid model to investigate the distortion and flow of lyotropic nematics.
Bayesian parametrization of coarse-grain dissipative dynamics models
NASA Astrophysics Data System (ADS)
Dequidt, Alain; Solano Canchaya, Jose G.
2015-08-01
We introduce a new bottom-up method for the optimization of dissipative coarse-grain models. The method is based on Bayesian optimization of the likelihood to reproduce a coarse-grained reference trajectory obtained from analysis of a higher resolution molecular dynamics trajectory. This new method is related to force matching techniques, but using the total force on each grain averaged on a coarse time step instead of instantaneous forces. It has the advantage of not being limited to pairwise short-range interactions in the coarse-grain model and also yields an estimation of the friction parameter controlling the dynamics. The theory supporting the method is exposed in a practical perspective, with an analytical solution for the optimal set of parameters. The method was first validated by using it on a system with a known optimum. The new method was then tested on a simple system: n-pentane. The local molecular structure of the optimized model is in excellent agreement with the reference system. An extension of the method allows to get also an excellent agreement for the equilibrium density. As for the dynamic properties, they are also very satisfactory, but more sensitive to the choice of the coarse-grain representation. The quality of the final force field depends on the definition of the coarse grain degrees of freedom and interactions. We consider this method as a serious alternative to other methods like iterative Boltzmann inversion, force matching, and Green-Kubo formulae.
Quantum effects and the dissipation by quasiparticle tunneling in arrays of Josephson junctions
Kampf, A.; Schoen, G.
1987-09-01
We investigate the influence of dissipative quasiparticle tunneling currents on quantum effects and phase transitions in d-dimensional arrays of Josephson junctions. We show how the dissipative phase transition, which is known from single junctions at zero temperature, is modified due to the multidimensional coupling. The transition depends on the strength of the dissipation but also on the ratio of Josephson coupling energy to the capacitive charging energy e/sup 2//2C. It separates an ordered (superconducting) regime from a disordered (resistive) regime where fluctuations prevent phase coherence. In arrays with small capacitance junctions and weak dissipation, the disordered phase persists down to zero temperature. Finite temperatures modify the phase diagram significantly. A reentrant transition between a resistive and a superconducting state is found for weak dissipation. We also make contact with the familiar phase transitions of d-dimensional XY models and show how the charging energy and dissipation in Josephson-junction arrays influence these transitions. The results are of relevance for granular superconductors.
On the dynamics of approximating schemes for dissipative nonlinear equations
NASA Technical Reports Server (NTRS)
Jones, Donald A.
1993-01-01
Since one can rarely write down the analytical solutions to nonlinear dissipative partial differential equations (PDE's), it is important to understand whether, and in what sense, the behavior of approximating schemes to these equations reflects the true dynamics of the original equations. Further, because standard error estimates between approximations of the true solutions coming from spectral methods - finite difference or finite element schemes, for example - and the exact solutions grow exponentially in time, this analysis provides little value in understanding the infinite time behavior of a given approximating scheme. The notion of the global attractor has been useful in quantifying the infinite time behavior of dissipative PDEs, such as the Navier-Stokes equations. Loosely speaking, the global attractor is all that remains of a sufficiently large bounded set in phase space mapped infinitely forward in time under the evolution of the PDE. Though the attractor has been shown to have some nice properties - it is compact, connected, and finite dimensional, for example - it is in general quite complicated. Nevertheless, the global attractor gives a way to understand how the infinite time behavior of approximating schemes such as the ones coming from a finite difference, finite element, or spectral method relates to that of the original PDE. Indeed, one can often show that such approximations also have a global attractor. We therefore only need to understand how the structure of the attractor for the PDE behaves under approximation. This is by no means a trivial task. Several interesting results have been obtained in this direction. However, we will not go into the details. We mention here that approximations generally lose information about the system no matter how accurate they are. There are examples that show certain parts of the attractor may be lost by arbitrary small perturbations of the original equations.
Dynamical many-body phases of the parametrically driven, dissipative Dicke model
NASA Astrophysics Data System (ADS)
Chitra, R.; Zilberberg, O.
2015-08-01
Control and manipulation of quantum engineered systems allows for the utilization of time-dependent parametric modulations for accessing novel out-of-equilibrium phenomena. In the absence of such driving, the dissipative Dicke model exhibits a fascinating out-of-equilibrium many-body phase transition as a function of a coupling between a driven photonic cavity and numerous two-level atoms. We study the effect of a parametric modulation of this coupling and discover a rich phase diagram as a function of the modulation strength. We find that in addition to the established normal and super-radiant phases, a new phase with pulsed superradiance, which we term dynamical normal phase, appears when the system is parametrically driven. Employing different methods, we characterize the different phases and the transitions between them. Specific heed is paid to the role of dissipation in determining the phase boundaries. Our analysis paves the road for the experimental study of dynamically stabilized phases of interacting light and matter.
Hybrid molecular-continuum simulations using smoothed dissipative particle dynamics
Petsev, Nikolai D.; Leal, L. Gary; Shell, M. Scott
2015-01-28
We present a new multiscale simulation methodology for coupling a region with atomistic detail simulated via molecular dynamics (MD) to a numerical solution of the fluctuating Navier-Stokes equations obtained from smoothed dissipative particle dynamics (SDPD). In this approach, chemical potential gradients emerge due to differences in resolution within the total system and are reduced by introducing a pairwise thermodynamic force inside the buffer region between the two domains where particles change from MD to SDPD types. When combined with a multi-resolution SDPD approach, such as the one proposed by Kulkarni et al. [J. Chem. Phys. 138, 234105 (2013)], this method makes it possible to systematically couple atomistic models to arbitrarily coarse continuum domains modeled as SDPD fluids with varying resolution. We test this technique by showing that it correctly reproduces thermodynamic properties across the entire simulation domain for a simple Lennard-Jones fluid. Furthermore, we demonstrate that this approach is also suitable for non-equilibrium problems by applying it to simulations of the start up of shear flow. The robustness of the method is illustrated with two different flow scenarios in which shear forces act in directions parallel and perpendicular to the interface separating the continuum and atomistic domains. In both cases, we obtain the correct transient velocity profile. We also perform a triple-scale shear flow simulation where we include two SDPD regions with different resolutions in addition to a MD domain, illustrating the feasibility of a three-scale coupling.
Hybrid molecular-continuum simulations using smoothed dissipative particle dynamics
NASA Astrophysics Data System (ADS)
Petsev, Nikolai D.; Leal, L. Gary; Shell, M. Scott
2015-01-01
We present a new multiscale simulation methodology for coupling a region with atomistic detail simulated via molecular dynamics (MD) to a numerical solution of the fluctuating Navier-Stokes equations obtained from smoothed dissipative particle dynamics (SDPD). In this approach, chemical potential gradients emerge due to differences in resolution within the total system and are reduced by introducing a pairwise thermodynamic force inside the buffer region between the two domains where particles change from MD to SDPD types. When combined with a multi-resolution SDPD approach, such as the one proposed by Kulkarni et al. [J. Chem. Phys. 138, 234105 (2013)], this method makes it possible to systematically couple atomistic models to arbitrarily coarse continuum domains modeled as SDPD fluids with varying resolution. We test this technique by showing that it correctly reproduces thermodynamic properties across the entire simulation domain for a simple Lennard-Jones fluid. Furthermore, we demonstrate that this approach is also suitable for non-equilibrium problems by applying it to simulations of the start up of shear flow. The robustness of the method is illustrated with two different flow scenarios in which shear forces act in directions parallel and perpendicular to the interface separating the continuum and atomistic domains. In both cases, we obtain the correct transient velocity profile. We also perform a triple-scale shear flow simulation where we include two SDPD regions with different resolutions in addition to a MD domain, illustrating the feasibility of a three-scale coupling.
Dissipative preparation of multibody entanglement via quantum feedback control
NASA Astrophysics Data System (ADS)
Song, Jie; Xia, Yan; Sun, Xiu-Dong; Song, He-Shan
2012-09-01
We investigate the generation of a multibody Dicke state in a coupled cavity system subject to environmental noise. Based on quantum feedback control, cavity decay may play a constructive role in obtaining the intended state. The required interaction time need not be accurately controlled. In addition, the feedback operations are only applied to a single atom in one cavity during the whole evolution process, and it is not necessary to change the control strategy as the number of atoms increases. Thus, our proposal can exploit the core advantage of coupled cavities to implement a scalable control scheme for preparing multibody entanglement.
Breuer; Huber; Petruccione
2000-05-01
The dynamics of periodically driven quantum systems coupled to a thermal environment is investigated. The interaction of the system with the external coherent driving field is taken into account exactly by making use of the Floquet picture. Treating the coupling to the environment within the Born-Markov approximation one finds a Pauli-type master equation for the diagonal elements of the reduced density matrix in the Floquet representation. The stationary solution of the latter yields a quasistationary, time-periodic density matrix which describes the long-time behavior of the system. Taking the example of a periodically driven particle in a box, the stationary solution is determined numerically for a wide range of driving amplitudes and temperatures. It is found that the quasistationary distribution differs substantially from a Boltzmann-type distribution at the temperature of the environment. For large driving fields it exhibits a plateau region describing a nearly constant population of a certain number of Floquet states. This number of Floquet states turns out to be nearly independent of the temperature. The plateau region is sharply separated from an exponential tail of the stationary distribution which expresses a canonical Boltzmann-type distribution over the mean energies of the Floquet states. These results are explained in terms of the structure of the matrix of transition rates for the dissipative quantum system. Investigating the corresponding classical, nonlinear Hamiltonian system, one finds that in the semiclassical range essential features of the quasistationary distribution can be understood from the structure of the underlying classical phase space. PMID:11031530
Nonlinear dynamics of drift structures in a magnetized dissipative plasma
Aburjania, G. D.; Rogava, D. L.; Kharshiladze, O. A.
2011-06-15
A study is made of the nonlinear dynamics of solitary vortex structures in an inhomogeneous magnetized dissipative plasma. A nonlinear transport equation for long-wavelength drift wave structures is derived with allowance for the nonuniformity of the plasma density and temperature equilibria, as well as the magnetic and collisional viscosity of the medium and its friction. The dynamic equation describes two types of nonlinearity: scalar (due to the temperature inhomogeneity) and vector (due to the convectively polarized motion of the particles of the medium). The equation is fourth order in the spatial derivatives, in contrast to the second-order Hasegawa-Mima equations. An analytic steady solution to the nonlinear equation is obtained that describes a new type of solitary dipole vortex. The nonlinear dynamic equation is integrated numerically. A new algorithm and a new finite difference scheme for solving the equation are proposed, and it is proved that the solution so obtained is unique. The equation is used to investigate how the initially steady dipole vortex constructed here behaves unsteadily under the action of the factors just mentioned. Numerical simulations revealed that the role of the vector nonlinearity is twofold: it helps the dispersion or the scalar nonlinearity (depending on their magnitude) to ensure the mutual equilibrium and, thereby, promote self-organization of the vortical structures. It is shown that dispersion breaks the initial dipole vortex into a set of tightly packed, smaller scale, less intense monopole vortices-alternating cyclones and anticyclones. When the dispersion of the evolving initial dipole vortex is weak, the scalar nonlinearity symmetrically breaks a cyclone-anticyclone pair into a cyclone and an anticyclone, which are independent of one another and have essentially the same intensity, shape, and size. The stronger the dispersion, the more anisotropic the process whereby the structures break: the anticyclone is more intense
NASA Technical Reports Server (NTRS)
Kelkar, Atul G.; Joshi, Suresh M.; Alberts, Thomas E.
1993-01-01
The stability characteristics of dynamic dissipative compensators are investigated for multibody flexible space structures having nonlinear dynamics. The problem addressed is that of proving asymptotic stability of dynamic dissipative compensators. The stability proof uses the Liapunov approach and exploits the inherent passivity of such systems. For such systems these compensators are shown to be robust to parametric uncertainties and unmodeled dynamics. The results are applicable to a large class of structures such as flexible space structures with articulated flexible appendages.
NASA Astrophysics Data System (ADS)
Goldstein, Sheldon; Struyve, Ward
2015-01-01
Non-relativistic de Broglie-Bohm theory describes particles moving under the guidance of the wave function. In de Broglie's original formulation, the particle dynamics is given by a first-order differential equation. In Bohm's reformulation, it is given by Newton's law of motion with an extra potential that depends on the wave function—the quantum potential—together with a constraint on the possible velocities. It was recently argued, mainly by numerical simulations, that relaxing this velocity constraint leads to a physically untenable theory. We provide further evidence for this by showing that for various wave functions the particles tend to escape the wave packet. In particular, we show that for a central classical potential and bound energy eigenstates the particle motion is often unbounded. This work seems particularly relevant for ways of simulating wave function evolution based on Bohm's formulation of the de Broglie-Bohm theory. Namely, the simulations may become unstable due to deviations from the velocity constraint.
Selective protected state preparation of coupled dissipative quantum emitters.
Plankensteiner, D; Ostermann, L; Ritsch, H; Genes, C
2015-01-01
Inherent binary or collective interactions in ensembles of quantum emitters induce a spread in the energy and lifetime of their eigenstates. While this typically causes fast decay and dephasing, in many cases certain special entangled collective states with minimal decay can be found, which possess ideal properties for spectroscopy, precision measurements or information storage. We show that for a specific choice of laser frequency, power and geometry or a suitable configuration of control fields one can efficiently prepare these states. We demonstrate this by studying preparation schemes for strongly subradiant entangled states of a chain of dipole-dipole coupled emitters. The prepared state fidelity and its entanglement depth is further improved via spatial excitation phase engineering or tailored magnetic fields. PMID:26549501
Selective protected state preparation of coupled dissipative quantum emitters
Plankensteiner, D.; Ostermann, L.; Ritsch, H.; Genes, C.
2015-01-01
Inherent binary or collective interactions in ensembles of quantum emitters induce a spread in the energy and lifetime of their eigenstates. While this typically causes fast decay and dephasing, in many cases certain special entangled collective states with minimal decay can be found, which possess ideal properties for spectroscopy, precision measurements or information storage. We show that for a specific choice of laser frequency, power and geometry or a suitable configuration of control fields one can efficiently prepare these states. We demonstrate this by studying preparation schemes for strongly subradiant entangled states of a chain of dipole-dipole coupled emitters. The prepared state fidelity and its entanglement depth is further improved via spatial excitation phase engineering or tailored magnetic fields. PMID:26549501
The unifying role of dissipative action in the dynamic failure of solids
Grady, Dennis
2015-05-19
Dissipative action, the product of dissipation energy and transport time, is fundamental to the dynamic failure of solids. Invariance of the dissipative action underlies the fourth-power nature of structured shock waves observed in selected solid metals and compounds. Dynamic failure through shock compaction, tensile spall and adiabatic shear are also governed by a constancy of the dissipative action. This commonality underlying the various modes of dynamic failure is described and leads to deeper insights into failure of solids in the intense shock wave event. These insights are in turn leading to a better understanding of the shock deformation processes underlying the fourth-power law. Experimental result and material models encompassing the dynamic failure of solids are explored for the purpose of demonstrating commonalities leading to invariance of the dissipation action. As a result, calculations are extended to aluminum and uranium metals with the intent of predicting micro-scale energetics and spatial scales in the structured shock wave.
Entanglement dynamics and decoherence of an atom coupled to a dissipative cavity field
NASA Astrophysics Data System (ADS)
Akhtarshenas, S. J.; Khezrian, M.
2010-04-01
In this paper, we investigate the entanglement dynamics and decoherence in the interacting system of a strongly driven two-level atom and a single mode vacuum field in the presence of dissipation for the cavity field. Starting with an initial product state with the atom in a general pure state and the field in a vacuum state, we show that the final density matrix is supported on {mathbb C}^2⊗{mathbb C}^2 space, and therefore, the concurrence can be used as a measure of entanglement between the atom and the field. The influences of the cavity decay on the quantum entanglement of the system are also discussed. We also examine the Bell-CHSH violation between the atom and the field and show that there are entangled states for which the Bell-BCSH inequality is not violated. Using the above system as a quantum channel, we also investigate the quantum teleportation of a generic qubit state and also a two-qubit entangled state, and show that in both cases the atom-field entangled state can be useful to teleport an unknown state with fidelity better than any classical channel.
Comment on 'Temperature dependence of the energy dissipation in dynamic force microscopy'.
Burke, S A; Grütter, P
2008-10-01
A recent article in this journal by Roll et al (2008 Nanotechnology 19 045703) presents experimental results of the temperature dependence of dissipation in dynamic force microscopy which they use to elucidate the mechanisms of such a dissipation signal in the PTCDA on KBr system. We argue here that dissipation results are often highly dependent upon the tip structure, and urge caution in the interpretation of single sets of experimental data. PMID:21832607
Dispersive and dissipative nonlinear structures in degenerate Fermi-Dirac Pauli quantum plasma
NASA Astrophysics Data System (ADS)
Sahu, Biswajit; Sinha, Anjana; Roychoudhury, Rajkumar
2016-09-01
We study the interplay between dispersion due to the electron degeneracy parameter and dissipation caused by plasma resistivity, in degenerate Fermi-Dirac Pauli quantum plasma. Considering relativistic degeneracy pressure for electrons, we investigate both arbitrary and small amplitude nonlinear structures. The corresponding trajectories are also plotted in the phase plane. The linear analysis for the dispersion relation yields interesting features. The present work is anticipated to be of physical relevance in the study of compact magnetized astrophysical objects like white dwarfs.
Velocity and stress autocorrelation decay in isothermal dissipative particle dynamics
NASA Astrophysics Data System (ADS)
Chaudhri, Anuj; Lukes, Jennifer R.
2010-02-01
The velocity and stress autocorrelation decay in a dissipative particle dynamics ideal fluid model is analyzed in this paper. The autocorrelation functions are calculated at three different friction parameters and three different time steps using the well-known Groot/Warren algorithm and newer algorithms including self-consistent leap-frog, self-consistent velocity Verlet and Shardlow first and second order integrators. At low friction values, the velocity autocorrelation function decays exponentially at short times, shows slower-than exponential decay at intermediate times, and approaches zero at long times for all five integrators. As friction value increases, the deviation from exponential behavior occurs earlier and is more pronounced. At small time steps, all the integrators give identical decay profiles. As time step increases, there are qualitative and quantitative differences between the integrators. The stress correlation behavior is markedly different for the algorithms. The self-consistent velocity Verlet and the Shardlow algorithms show very similar stress autocorrelation decay with change in friction parameter, whereas the Groot/Warren and leap-frog schemes show variations at higher friction factors. Diffusion coefficients and shear viscosities are calculated using Green-Kubo integration of the velocity and stress autocorrelation functions. The diffusion coefficients match well-known theoretical results at low friction limits. Although the stress autocorrelation function is different for each integrator, fluctuates rapidly, and gives poor statistics for most of the cases, the calculated shear viscosities still fall within range of theoretical predictions and nonequilibrium studies.
Linear interfacial polymerization: theory and simulations with dissipative particle dynamics.
Berezkin, Anatoly V; Kudryavtsev, Yaroslav V
2014-11-21
Step-growth alternating interfacial polymerization between two miscible or immiscible monomer melts is investigated theoretically and by dissipative particle dynamics simulations. In both cases the kinetics for an initially bilayer system passes from the reaction to diffusion control. The polymer composed of immiscible monomers precipitates at the interface forming a film of nearly uniform density. It is demonstrated that the reaction proceeds in a narrow zone, which expands much slower than the whole film, so that newly formed polymer is extruded from the reaction zone. This concept of "reactive extrusion" is used to analytically predict the degree of polymerization and distribution of all components (monomers, polymer, and end groups) within the film in close agreement with the simulations. Increasing the comonomer incompatibility leads to thinner and more uniform films with the higher average degree of polymerization. The final product is considerably more polydisperse than expected for the homogeneous step-growth polymerization. The results extend the previous theoretical reports on interfacial polymerization and provide new insights into the internal film structure and polymer characteristics, which are important for membrane preparation, microencapsulation, and 3D printing technologies. A systematic way of mapping the simulation data onto laboratory scales is discussed. PMID:25416911
The interactions between surfactants and vesicles: Dissipative particle dynamics
NASA Astrophysics Data System (ADS)
Huang, Kuei-Chun; Lin, Chun-Min; Tsao, Heng-Kwong; Sheng, Yu-Jane
2009-06-01
The interactions between surfactants and vesicles formed by double-tail amphiphiles are investigated by the dissipative particle dynamics. As the surfactant concentration is increased, vesicle solubilization can be generally described by the three-stage hypothesis including vesicular region, vesicle-micelle coexistence, and mixed micellar region. We study the partition of surfactants between the bilayer phase and the aqueous phase where a higher value of K indicates that more surfactant molecules are incorporated in the bilayer. It is found that ln(K-1) is proportional to the hydrophile-lipophile balance (HLB), which depicts the degree of hydrophilicity associated with a surfactant. As the overall hydrophilicity of surfactants increases, i.e., higher HLB, K declines and vice versa. When the amounts of surfactants reach a critical point, the solubilization begins and the coexistence of vesicles and mixed micelles is observed. Further increase in the surfactant concentration results in total collapse of the vesicle. Consistent with experimental observations, the three stages are identified through the vesicle size-surfactant concentration relation. Our simulations clearly demonstrate the process of the vesicle solubilization and confirm the validity of the three-stage hypothesis.
Modeling of mesoscopic electrokinetic phenomena using charged dissipative particle dynamics
NASA Astrophysics Data System (ADS)
Deng, Mingge; Li, Zhen; Karniadakis, George
2015-11-01
In this work, we propose a charged dissipative particle dynamics (cDPD) model for investigation of mesoscopic electrokinetic phenomena. In particular, this particle-based method was designed to simulate micro- or nano- flows which governing by Poisson-Nernst-Planck (PNP) equation coupled with Navier-Stokes (NS) equation. For cDPD simulations of wall-bounded fluid systems, a methodology for imposing correct Dirichlet and Neumann boundary conditions for both PNP and NS equations is developed. To validate the present cDPD model and the corresponding boundary method, we perform cDPD simulations of electrostatic double layer (EDL) in the vicinity of a charged wall, and the results show good agreement with the mean-field theoretical solutions. The capacity density of a parallel plate capacitor in salt solution is also investigated with different salt concentration. Moreover, we utilize the proposed methodology to study the electroosmotic and electroosmotic/pressure-driven flow in a micro-channel. In the last, we simulate the dilute polyelectrolyte solution both in bulk and micro-channel, which show the flexibility and capability of this method in studying complex fluids. This work was sponsored by the Collaboratory on Mathematics for Mesoscopic Modeling of Materials (CM4) supported by DOE.
Modeling Proton Dissociation and Transfer Using Dissipative Particle Dynamics Simulation.
Lee, Ming-Tsung; Vishnyakov, Aleksey; Neimark, Alexander V
2015-09-01
We suggest a coarse-grained model for dissipative particle dynamics (DPD) simulations of solutions with dissociated protons. The model uses standard short-range soft repulsion and smeared charge electrostatic potentials between the beads, representing solution components. The proton is introduced as a separate charged bead that forms dissociable bonds with proton receptor base beads, such as water or deprotonated acid anions. The proton-base bonds are described by Morse potentials. When the proton establishes the Morse bonds with two bases, they form an intermediate complex, and the proton is able to "hop" between the bases artificially mimicking the Grotthuss diffusion mechanism. By adjusting the Morse potential parameters, one can regulate the potential barrier associated with intermediate complex formation and breakup and control the hopping frequency. This makes the proposed model applicable to simulations of proton mobility and reaction equilibria between protonated and deprotonated acid forms in aqueous solutions. The proposed model provides quantitative agreement with experiments for the proton self-diffusion coefficient and hopping frequency, as well as for the degree of dissociation of benzenesulfonic acid. PMID:26575931
Dissipative particle dynamics incorporating non-Markovian effect
NASA Astrophysics Data System (ADS)
Kinefuchi, Ikuya; Yoshimoto, Yuta; Takagi, Shu
2015-11-01
The coarse-graining methodology of molecular simulations is of great importance to analyze large-scale, complex hydrodynamic phenomena. In the present study, we derive the equation of motion for non-Markovian dissipative particle dynamics (NMDPD) by introducing the history effects on the time evolution of the system. Our formulation is based on the generalized Langevin equation, which describes the motions of the centers of mass of clusters comprising microscopic particles. The mean, friction, and fluctuating forces in the NMDPD model are directly constructed from an underlying MD system without any scaling procedure. For the validation of our formulation, we construct NMDPD models from high-density Lennard-Jones systems, in which the typical time scales of the coarse-grained particle motions and the fluctuating forces are not fully separable. The NMDPD models reproduce the temperatures, diffusion coefficients, and viscosities of the corresponding MD systems more accurately than the conventional DPD models based on a Markovian approximation. Our results suggest that the NMDPD method is a promising alternative for simulating mesoscale flows where a Markovian approximation is not valid.
Comprehensive boundary method for solid walls in dissipative particle dynamics
Visser, D.C. . E-mail: visser@science.uva.nl; Hoefsloot, H.C.J.; Iedema, P.D. . E-mail: piet@science.uva.nl
2005-05-20
Dissipative particle dynamics (DPD) is a particle-based mesoscopic simulation technique, especially useful to study hydrodynamic behaviour in the field of complex fluid flow. Most studies with DPD have focused on bulk behaviour by considering a part of an infinite region using periodic boundaries. To model a finite system instead, boundary conditions of the solid walls confining the system must be addressed. These conditions depend on the time and length scales of phenomena studied, i.e., the level of coarse graining. Here we focus on a mesoscopic level at which small scale atomistic effects near the wall are no longer visible. At this, more macroscopic, level a solid wall should be impenetrable, show no-slip and should not affect the fluid properties. Solid walls used in previous studies were unable to meet all three these conditions or met them with limited success. Here, we describe a method to create solid walls that does satisfy all requirements, producing the correct boundary conditions. The introduction of periodic conditions for curved boundaries makes this new wall method fit for curved geometries as well. And, an improved reflection mechanism makes the walls impenetrable without causing side effects. The method described here could also be implemented in other particle-based models.
Dissipative particle dynamics modeling of blood flow in arterial bifurcations
NASA Astrophysics Data System (ADS)
Li, Xuejin; Lykov, Kirill; Pivkin, Igor V.; Karniadakis, George Em
2013-11-01
The motion of a suspension of red blood cells (RBCs) flowing in bifurcations is investigated using both low-dimensional RBC (LD-RBC) and multiscale RBC (MS-RBC) models based on dissipative particle dynamics (DPD). The blood flow is first simulated in a symmetric geometry between the diverging and converging channels to satisfy the periodic flow assumption along the flow direction. The results show that the flowrate ratio of the daughter channels and the feed hematocrit level has considerable influence on blood-plasma separation. We also propose a new method to model the inflow and outflow boundaries for the blood flow simulations: the inflow at the inlet is duplicated from a fully developed flow generated by DPD fluid with periodic boundary conditions; the outflow in two adjacent regions near the outlet is controlled by adaptive forces to keep the flowrate and velocity gradient equal, while the particles leaving the microfluidic channel at the outlet at each time step are removed from the system. The simulation results of the developing flow match analytical solutions from continuum theory. Plasma skimming and the all-or-nothing phenomenon of RBCs in bifurcation have been investigated in the simulations. The simulation results are consistent with previous experimental results and theoretical predictions. This work is supported by the NIH Grant R01HL094270.
Entropic dynamics: From entropy and information geometry to Hamiltonians and quantum mechanics
Caticha, Ariel; Bartolomeo, Daniel; Reginatto, Marcel
2015-01-13
Entropic Dynamics is a framework in which quantum theory is derived as an application of entropic methods of inference. There is no underlying action principle. Instead, the dynamics is driven by entropy subject to the appropriate constraints. In this paper we show how a Hamiltonian dynamics arises as a type of non-dissipative entropic dynamics. We also show that the particular form of the 'quantum potential' that leads to the Schrödinger equation follows naturally from information geometry.
Entropic dynamics: From entropy and information geometry to Hamiltonians and quantum mechanics
NASA Astrophysics Data System (ADS)
Caticha, Ariel; Bartolomeo, Daniel; Reginatto, Marcel
2015-01-01
Entropic Dynamics is a framework in which quantum theory is derived as an application of entropic methods of inference. There is no underlying action principle. Instead, the dynamics is driven by entropy subject to the appropriate constraints. In this paper we show how a Hamiltonian dynamics arises as a type of non-dissipative entropic dynamics. We also show that the particular form of the "quantum potential" that leads to the Schrödinger equation follows naturally from information geometry.
Dissipative effects in dipolar, quantum many-body systems
NASA Astrophysics Data System (ADS)
Safavi-Naini, Arghavan; Capogrosso-Sansone, Barbara; Rey, Ana Maria
2015-03-01
We use Quantum Monte Carlo simulations, by the Worm algorithm, to study the ground state phase diagram of two-dimensional, dipolar lattice bosons where each site is coupled, via density operators, to an external reservoir. A recent related study of the XXZ model with ohmic coupling to an external reservoir reported the existence of a bath-induced Bose metal phase in the ground state phase diagram away from half filling, and a Luttinger liquid and a charge density wave at half-filling. Our work extends this methodology to higher dimensional systems with long-range interactions. In the case of hard-core bosons, our method can be applied to experimental systems featuring dipolar fermionic molecules in the presence of losses. This work utilized the Janus supercomputer, which is supported by the NSF (award number CNS-0821794) and the University of Colorado Boulder, and is a joint effort with the University of Colorado Denver and the National Center for Atmospheric Research, as well as OU Supercomputing Center for Education and Research (OSCER) at the University of Oklahoma. NIST, JILA-NSF-PFC-1125844, NSF-PIF-1211914, NSF-PHY11-25915, ARO, ARO-DARPA-OLE, AFOSR, AFOSR-MURI.
Dissipative neutral mass flow and quantum phase slips in one dimension
NASA Astrophysics Data System (ADS)
Del Maestro, Adrian
2015-03-01
Motivated by experimental progress towards confining bosonic quantum fluids inside nanoscale constrictions, we have determined how quantum phase fluctuations of the superfluid order parameter modify neutral mass transport through a one dimensional channel open to vacuum. In the one dimensional limit, dissipation occurs in the guise of phase slips which may be nucleated due to the presence of impurity scattering, disorder, or a periodic potential. By combining equilibrium quantum Monte Carlo simulations with non-equilibrium calculations in the framework of Luttinger liquid theory, we have computed the relationship between the applied pressure and resistive mass flow for a one dimensional quantum fluid of neutral bosons. Understanding the temperature dependence of the resulting nonlinear pressure-flow behavior may be essential for the interpretation of quasi-1D superfluid flow experiments on helium-4.
NASA Astrophysics Data System (ADS)
Rouhani, M. R.; Mohammadi, Z.; Akbarian, A.
2014-01-01
The behavior of quantum dust ion-acoustic (QDIA) shocks in a plasma including inertialess quantum electrons and positrons, classical cold ions and stationary negative dust grains are studied, using a quantum hydrodynamic model (QHD). The effect of dissipation due to the viscosity of ions is taken into account. The propagation of small but finite amplitude QDIA shocks is governed by the Kortoweg-de Vries-Burgers (KdVB) equation. The existence regions of oscillatory and monotonic shocks will depend on the quantum diffraction parameter ( H) and dust density ( d) as well as dissipation parameter ( η 0). The effect of plasma parameters ( d, H, η 0), on these structures is investigated. Results indicate that the thickness and height of monotonic shocks; oscillation amplitude of the oscillatory shock wave and it's wavelength effectively are affected by these parameters. Additionally, the possibility of propagation of both compressive and rarefactive shocks is investigated. It is found that depending on some critical value of dust density ( d c ), which is a function of H, compressive and rarefactive shock waves can't propagate in model plasma. The present theory is applicable to analyze the formation of nonlinear structures at quantum scales in dense astrophysical objects.
Parametrization of Chain Molecules in Dissipative Particle Dynamics.
Lee, Ming-Tsung; Mao, Runfang; Vishnyakov, Aleksey; Neimark, Alexander V
2016-06-01
This paper presents a consistent strategy for parametrization of coarse-grained models of chain molecules in dissipative particle dynamics (DPD), where the soft-core DPD interaction parameters are fitted to the activities in solutions of reference compounds that represent different fragments of target molecules. The intercomponent parameters are matched either to the infinite dilution activity coefficients in binary solutions or to the solvent activity in polymer solutions. The respective calibration relationships between activity and intercomponent interaction parameter are constructed from the results of Monte Carlo simulation of the coarse-grained solutions of reference compounds. The chain conformation is controlled by the near neighbor and second neighbor bond potentials, which are parametrized by fitting the intramolecular radial distribution functions of the coarse-grained chains to the respective atomistic molecular dynamics simulations. The consistency, accuracy, and transferability of the proposed parametrization strategy is demonstrated drawing on the example of nonionic surfactants of the poly(ethylene oxide) alkyl ether (CnEm) family. The lengths of tail and head sequences are varied (n = 8-12 and m = 3-9), so that the critical micelle concentration ranges from 10 to 0.1 mM. The surfactants are modeled at different coarse-graining levels using DPD beads of different diameters. We found consistent agreement with experimental data for the critical micelle concentration and aggregation number, especially for surfactants with relatively long hydrophilic segments. Depending on the system, we observed surfactant aggregation into spheroidal, elongated, or core-shell micelles, as well as into irregular agglomerates. Using the models at different coarse-graining levels for the same molecules, we found that the smaller the bead size the better is agreement with experimental data. PMID:27167160
Dissipative particle dynamics simulation of a colloidal micropump
NASA Astrophysics Data System (ADS)
De Palma, Pietro; Valentini, P.; Napolitano, M.
2006-02-01
Dissipative particle dynamics (DPD) is a recently developed model for computing complex fluid flows at mesoscopic scales. This article provides a novel DPD simulation of complex microfluidic devices involving the momentum exchange between a body moving with a prescribed law of motion and the surrounding fluid. To this purpose, a DPD computational method is developed and equipped with an elastic collision model between the moving body and the DPD fluid particles surrounding it. The method is first validated versus well known theoretical, numerical, and experimental results, providing a sensitivity analysis of the dependence of continuum-flow properties on DPD parameters, as well as verifying its reliability for well known continuum-flow test cases. The method is then applied to its main goal, namely, the simulation of the flow driven by a peristaltic micropump, constructed by assembling several colloidal spheres. The DPD fluid model provides quite accurate results with respect to the experimental data and gives a detailed description of local flow properties. It is found that a careful choice of the DPD parameters is needed to avoid spurious compressibility effects and to match the real fluid characteristics; furthermore, due to the very coarse graining used in the present simulation, the thermal kinetic energy of the DPD particles needs to be reduced, in order to correctly evaluate their displacement, which is determined mainly by the momentum driving the flow. Finally, thanks to such a very coarse graining, the proposed DPD method provides an accurate prediction of local mesoscale flow properties with a dramatic reduction of the computational cost with respect to molecular dynamics simulations.
Dissipative Particle Dynamics modeling of nanorod-polymer composites
NASA Astrophysics Data System (ADS)
Khani, Shaghayegh; Maia, Joao
2014-11-01
Recent years have seen a plethora of experimental methods for fabricating nanorod-polymer composites with enhanced physical and mechanical properties. The macroscopic properties of the composites are directly related to the dispersion and organization of the nanoparticles in the matrix. For instance, a significant improvement in the properties of the nanorod-polymer composites is observed upon formation of a percolating network. Thus, controlling the structure of the nanoparticles in the matrix will advance the technology in the field. One way of doing this is by adjusting the chemical interactions which is done through grafting polymer chains on the surface of the rods. Although the enthalpic interactions play the major role in such systems other entropic variables such as the dimension of the rods, density of grafting and etc. may influence the final morphology of the system. The recent developments in the computational techniques have paved the road for further understanding of the controlled assembly of nanorods in polymer matrices. In this study, Dissipative Particle Dynamics (DPD) is employed in order to investigate the effect of enthalpic and entopic variables on the phase behavior of the nanorod-polymer composites. DPD is a coarse-grained mesoscale method which has been found very promising in simulating multi component systems. The interaction parameter between the components of the systems can be mapped onto the Flory-Huggins χ-parameter via well-known Groot-Warren expression. The main goal of this work is to provide a phase diagram that can be used to guide the experiments in designing new materials.
Quantum dynamics at finite temperature: Time-dependent quantum Monte Carlo study
NASA Astrophysics Data System (ADS)
Christov, Ivan P.
2016-08-01
In this work we investigate the ground state and the dissipative quantum dynamics of interacting charged particles in an external potential at finite temperature. The recently devised time-dependent quantum Monte Carlo (TDQMC) method allows a self-consistent treatment of the system of particles together with bath oscillators first for imaginary-time propagation of Schrödinger type of equations where both the system and the bath converge to their finite temperature ground state, and next for real time calculation where the dissipative dynamics is demonstrated. In that context the application of TDQMC appears as promising alternative to the path-integral related techniques where the real time propagation can be a challenge.
Long-distance quantum transport dynamics in macromolecules
NASA Astrophysics Data System (ADS)
Schneider, E.; Faccioli, P.
2014-04-01
Using renormalization group methods, we develop a rigorous coarse-grained representation of the dissipative dynamics of quantum excitations propagating inside open macromolecular systems. We show that, at very low spatial resolution, this quantum transport theory reduces to a modified Brownian process, in which quantum delocalization effects are accounted for by means of an effective term in the Onsager-Machlup functional. Using this formulation, we derive a simple analytic solution for the time-dependent probability of observing the quantum excitation at a given point in the macromolecule. This formula can be used to predict the migration of natural or charged quantum excitations in a variety of molecular systems, including biological and organic polymers, organic crystalline transistors, or photosynthetic complexes. For illustration purposes, we apply this method to investigate inelastic electronic hole transport in a long homo-DNA chain.
Quantum Kibble-Zurek physics in the presence of spatially correlated dissipation
NASA Astrophysics Data System (ADS)
Nalbach, P.; Vishveshwara, Smitha; Clerk, Aashish A.
2015-07-01
We study how the universal properties of quantum quenches across critical points are modified by a weak coupling to a thermal bath, focusing on the paradigmatic case of the transverse field Ising model. Beyond the standard quench-induced Kibble-Zurek defect production in the absence of the bath, the bath contributes extra thermal defects. We show that spatial correlations in the noise produced by the bath can play a crucial role: one obtains quantitatively different scaling regimes depending on whether the correlation length of the noise is smaller or larger than the Kibble-Zurek length associated with the quench speed, and the thermal length set by the temperature. For the case of spatially correlated bath noise, additional thermal defect generation is restricted to a window that is both quantum critical and excluded from the nonequilibrium regime surrounding the critical point. We map the dissipative quench problem to a set of effectively independent dissipative Landau-Zener problems. Using this mapping along with both analytic and numerical calculations allows us to find the scaling of the excess defect density produced in the quench, and it suggests a generic picture for such dissipative quenches.
Local dissipation effects in two-dimensional quantum Josephson junction arrays with a magnetic field
Polak, T.P.; Kopec, T.K.
2005-07-01
We study the quantum phase transitions in two-dimensional arrays of Josephson-couples junctions with short range Josephson couplings (given by the Josephson energy E{sub J}) and the charging energy E{sub C}. We map the problem onto the solvable quantum generalization of the spherical model that improves over the mean-field theory method. The arrays are placed on the top of a two-dimensional electron gas separated by an insulator. We include effects of the local dissipation in the presence of an external magnetic flux f={phi}/{phi}{sub 0} in square lattice for several rational fluxes f=0,(1/2),(1/3),(1/4), and (1/6). We also have examined the T=0 superconducting-insulator phase boundary as a function of a dissipation {alpha}{sub 0} for two different geometry of the lattice: square and triangular. We have found a critical value of the dissipation parameter independent on geometry of the lattice and presence magnetic field.
Efficiencies of two-level weak dissipation quantum Carnot engines at the maximum power output
NASA Astrophysics Data System (ADS)
Guo, Juncheng; Wang, Junyi; Wang, Yuan; Chen, Jincan
2013-04-01
A weak-dissipation cycle model of two-level quantum Carnot engines is proposed by adopting a generic energy spectrum and the superposition effect of quantum systems. Expressions for the power output and efficiency of the cycle are derived. The optimal relation between the power output and the efficiency is obtained and the optimally operating region of the cycle is determined. Moreover, analytical expression for the efficiency of the cycle at the maximum power output is deduced and the lower and upper bounds of the efficiency at the maximum power output are given. The results obtained are general and can be directly used to discuss the optimal performance characteristics of several types of two-level quantum Carnot engines.
Low-dissipation 7.4-µm single-mode quantum cascade lasers without epitaxial regrowth.
Briggs, Ryan M; Frez, Clifford; Fradet, Mathieu; Forouhar, Siamak; Blanchard, Romain; Diehl, Laurent; Pflügl, Christian
2016-06-27
We report continuous-wave operation of single-mode quantum cascade (QC) lasers emitting near 7.4 µm with threshold power consumption below 1 W at temperatures up to 40 °C. The lasers were fabricated with narrow, plasma-etched waveguides and distributed-feedback sidewall gratings clad with sputtered aluminum nitride. In contrast to conventional buried-heterostructure (BH) devices with epitaxial sidewall cladding and in-plane gratings, the devices described here were fabricated without any epitaxial regrowth processes, yet they exhibit power consumption comparable to the lowest-dissipation BH QC lasers reported to date. These low-dissipation devices are designed primarily as light sources for infrared spectroscopy instruments with limited volume, mass, and power budgets. PMID:27410611
Statistics of energy dissipation in a quantum dot operating in the cotunneling regime
NASA Astrophysics Data System (ADS)
Dinaii, Yehuda; Shnirman, Alexander; Gefen, Yuval
2014-11-01
At Coulomb blockade valleys inelastic cotunneling processes generate particle-hole excitations in quantum dots (QDs), and lead to energy dissipation. We have analyzed the probability distribution function (PDF) of energy dissipated in a QD due to such processes during a given time interval. We obtained analytically the cumulant generating function, and extracted the average, variance, and Fano factor. The latter diverges as T3/(eV ) 2 at bias e V smaller than the temperature T , and reaches the value 3 e V /5 in the opposite limit. The PDF is further studied numerically. As expected, the Crooks fluctuation relation is not fulfilled by the PDF. Our results can be verified experimentally utilizing transport measurements of charge.
NASA Astrophysics Data System (ADS)
Asimakopoulos, Aristotelis
While some of the deepest results in nature are those that give explicit bounds between important physical quantities, some of the most intriguing and celebrated of such bounds come from fields where there is still a great deal of disagreement and confusion regarding even the most fundamental aspects of the theories. For example, in quantum mechanics, there is still no complete consensus as to whether the limitations associated with Heisenberg's Uncertainty Principle derive from an inherent randomness in physics, or rather from limitations in the measurement process itself, resulting from phenomena like back action. Likewise, the second law of thermodynamics makes a statement regarding the increase in entropy of closed systems, yet the theory itself has neither a universally-accepted definition of equilibrium, nor an adequate explanation of how a system with underlying microscopically Hamiltonian dynamics (reversible) settles into a fixed distribution. Motivated by these physical theories, and perhaps their inconsistencies, in this thesis we use dynamical systems theory to investigate how the very simplest of systems, even with no physical constraints, are characterized by bounds that give limits to the ability to make measurements on them. Using an existing interpretation, we start by examining how dissipative systems can be viewed as high-dimensional lossless systems, and how taking this view necessarily implies the existence of a noise process that results from the uncertainty in the initial system state. This fluctuation-dissipation result plays a central role in a measurement model that we examine, in particular describing how noise is inevitably injected into a system during a measurement, noise that can be viewed as originating either from the randomness of the many degrees of freedom of the measurement device, or of the environment. This noise constitutes one component of measurement back action, and ultimately imposes limits on measurement uncertainty
Dynamic optimization methodology based on subgrid-scale dissipation for large eddy simulation
NASA Astrophysics Data System (ADS)
Yu, Changping; Xiao, Zuoli; Li, Xinliang
2016-01-01
A dynamic procedure based on subgrid-scale dissipation is proposed for large eddy simulation of turbulent flows. In the new method, the model coefficients are determined by minimizing the square error of the resolved dissipation rate based on the Germano identity. A dynamic two-term mixed model is tested and evaluated both a priori and a posteriori in simulations of homogeneous and isotropic turbulence. The new dynamic procedure proves to be more effective to optimize the model coefficients as compared with traditional method. The corresponding dynamic mixed model can predict the physical quantities more accurately than traditional dynamic mixed model.
NASA Astrophysics Data System (ADS)
Kapit, Eliot; Chalker, John T.; Simon, Steven H.
2015-06-01
A physical realization of self-correcting quantum code would be profoundly useful for constructing a quantum computer. In this theoretical work, we provide a partial solution to major challenges preventing self-correcting quantum code from being engineered in realistic devices. We consider a variant of Kitaev's toric code coupled to propagating bosons, which induce a ranged interaction between anyonic defects. By coupling the primary quantum system to an engineered dissipation source through resonant energy transfer, we demonstrate a "rate barrier" which leads to a potentially enormous increase in the system's quantum-state lifetime through purely passive quantum error correction, even when coupled to an infinite-temperature bath. While our mechanism is not scalable to infinitely large systems, the maximum effective size can be very large, and it is fully compatible with active error-correction schemes. Our model uses only on-site and nearest-neighbor interactions and could be implemented in superconducting qubits. We sketch one such implementation at the end of this work.
Invariant Measures for Dissipative Dynamical Systems: Abstract Results and Applications
NASA Astrophysics Data System (ADS)
Chekroun, Mickaël D.; Glatt-Holtz, Nathan E.
2012-12-01
In this work we study certain invariant measures that can be associated to the time averaged observation of a broad class of dissipative semigroups via the notion of a generalized Banach limit. Consider an arbitrary complete separable metric space X which is acted on by any continuous semigroup { S( t)} t ≥ 0. Suppose that { S( t)} t ≥ 0 possesses a global attractor {{A}}. We show that, for any generalized Banach limit LIM T → ∞ and any probability distribution of initial conditions {{m}_0}, that there exists an invariant probability measure {{m}}, whose support is contained in {{A}}, such that intX \\varphi(x) d{m}(x) = \\underset{t rightarrow infty}LIM1/T int_0^T int_X \\varphi(S(t) x) d{m}_0(x) dt, for all observables φ living in a suitable function space of continuous mappings on X. This work is based on the framework of Foias et al. (Encyclopedia of mathematics and its applications, vol 83. Cambridge University Press, Cambridge, 2001); it generalizes and simplifies the proofs of more recent works (Wang in Disc Cont Dyn Syst 23(1-2):521-540, 2009; Lukaszewicz et al. in J Dyn Diff Eq 23(2):225-250, 2011). In particular our results rely on the novel use of a general but elementary topological observation, valid in any metric space, which concerns the growth of continuous functions in the neighborhood of compact sets. In the case when { S( t)} t ≥ 0 does not possess a compact absorbing set, this lemma allows us to sidestep the use of weak compactness arguments which require the imposition of cumbersome weak continuity conditions and thus restricts the phase space X to the case of a reflexive Banach space. Two examples of concrete dynamical systems where the semigroup is known to be non-compact are examined in detail. We first consider the Navier-Stokes equations with memory in the diffusion terms. This is the so called Jeffery's model which describes certain classes of viscoelastic fluids. We then consider a family of neutral delay differential
Dissipative controller designs for second-order dynamic systems
NASA Technical Reports Server (NTRS)
Morris, K. A.; Juang, J. N.
1990-01-01
The passivity theorem may be used to design robust controllers for structures with positive transfer functions. This result is extended to more general configurations using dissipative system theory. A stability theorem for robust, model-independent controllers of structures which lack collocated rate sensors and actuators is given. The theory is illustrated for non-square systems and systems with displacement sensors.
Lenarčič, Zala; Prosen, Tomaž
2015-03-01
A boundary-driven quantum master equation for a general inhomogeneous (nonintegrable) anisotropic Heisenberg spin-1/2 chain, or an equivalent nearest neighbor interacting spinless fermion chain, is considered in the presence of a strong external field f. We present an exact closed form expression for large f asymptotics of the current in the presence of a pure incoherent source and sink dissipation at the boundaries. In application, we demonstrate an arbitrary large current rectification in the presence of the interaction. PMID:25871030
The damped Pinney equation and its applications to dissipative quantum mechanics
NASA Astrophysics Data System (ADS)
Haas, F.
2010-02-01
The present work considers the damped Pinney equation, defined as the model arising when a linear in velocity damping term is included in the Pinney equation. In the general case, the resulting equation does not admit Lie point symmetries or reduction to a simpler form by any obvious coordinate transformation. In this context, the method of Kuzmak-Luke is applied to derive a perturbation solution, for weak damping and slow time dependence of the frequency function. The perturbative and numerical solutions are shown to be in good agreement. The results are applied to examine the time evolution of Gaussian-shaped wave functions in the Kostin formulation of dissipative quantum mechanics.
NASA Astrophysics Data System (ADS)
He, Juan; Xu, Shuai; Ye, Liu
2015-11-01
A scheme for inducing multipartite entanglement revival in the dissipative environment is proposed, which is implemented by performing a prior quantum uncollapsing (weak measurements or measurement reversals) procedure on partial qubits of the system simultaneously. This procedure preferentially equips our initial states, and make them hold more powerful ability to actively battle against degradation of entanglement, even postpone entanglement sudden death (ESD). Notably, the effect is more pronounced for the multipartite system with less initial entanglement. In addition, we found that our scheme also works for the N-qubit GHZ-class state.
Energy dissipation in small-scale shape-change dynamics.
Gammaitoni, L
2012-02-01
Shape is an important feature of physical systems, although very seldom is it addressed in the framework of a quantitative description approach. In this paper we propose to interpret the shape of things as a physical manifestation of the content of information associated with each thing and show that a change of shape in a physical system is necessarily connected with a change of its entropy and thus involves energy. We estimate the amount of energy dissipated during a shape change and propose experimental tests to be performed in nanoscale systems to verify this prediction by measuring the expected dissipation in a few simple cases. Relevant implications in the design of future zero-power logic switches are discussed. PMID:22463138
Analytical description of critical dynamics for two-dimensional dissipative nonlinear maps
NASA Astrophysics Data System (ADS)
Méndez-Bermúdez, J. A.; de Oliveira, Juliano A.; Leonel, Edson D.
2016-05-01
The critical dynamics near the transition from unlimited to limited action diffusion for two families of well known dissipative nonlinear maps, namely the dissipative standard and dissipative discontinuous maps, is characterized by the use of an analytical approach. The approach is applied to explicitly obtain the average squared action as a function of the (discrete) time and the parameters controlling nonlinearity and dissipation. This allows to obtain a set of critical exponents so far obtained numerically in the literature. The theoretical predictions are verified by extensive numerical simulations. We conclude that all possible dynamical cases, independently on the map parameter values and initial conditions, collapse into the universal exponential decay of the properly normalized average squared action as a function of a normalized time. The formalism developed here can be extended to many other different types of mappings therefore making the methodology generic and robust.
Effects of f(R) Model on Dynamics of Axial Shear-Free Dissipative Fluids
NASA Astrophysics Data System (ADS)
Sharif, M.; Zunaira, Nasir
2016-04-01
We present a general analysis on non-static axial system with dissipative shear-free anisotropic fluid using polynomial inflationary f(R) model. We study the effects of dissipation on the dynamics of geodesic matter distribution. This leads the system either to rotation-free or expansion-free but not both simultaneously under geodesic condition. It is found that the system preserves its symmetry in both cases. For the rotation-free case, when there is no dissipation and Ricci scalar is constant, the axial system reduces to FRW universe model. This is exactly the same result obtained in general relativity.
NASA Astrophysics Data System (ADS)
de Almeida, N. G.; Moussa, M. H. Y.; Napolitano, R. d. J.
2011-08-01
In a previous paper, we developed a phenomenological-operator technique aiming to simplify the estimate of losses due to dissipation in cavity quantum electrodynamics. In this paper, we apply that technique to estimate losses during an entanglement concentration process in the context of dissipative cavities. In addition, some results, previously used without proof to justify our phenomenological-operator approach, are now formally derived, including an equivalent way to formulate the Wigner-Weisskopf approximation.
Dissipative Dynamics of Superfluid Vortices at Nonzero Temperatures
Berloff, Natalia G.; Youd, Anthony J.
2007-10-05
We consider the evolution and dissipation of vortex rings in a condensate at nonzero temperatures in the context of the classical field approximation, based on the defocusing nonlinear Schroedinger equation. The temperature in such a system is fully determined by the total number density and the number density of the condensate. The collisions with noncondensed particles reduce the radius of a vortex ring until it completely disappears. We obtain a universal decay law for a vortex line length and relate it to mutual friction coefficients in the fundamental equation of vortex motion in superfluids.
Stochastic Quantum Gas Dynamics
NASA Astrophysics Data System (ADS)
Proukakis, Nick P.; Cockburn, Stuart P.
2010-03-01
We study the dynamics of weakly-interacting finite temperature Bose gases via the Stochastic Gross-Pitaevskii equation (SGPE). As a first step, we demonstrate [jointly with A. Negretti (Ulm, Germany) and C. Henkel (Potsdam, Germany)] that the SGPE provides a significantly better method for generating an equilibrium state than the number-conserving Bogoliubov method (except for low temperatures and small atom numbers). We then study [jointly with H. Nistazakis and D.J. Frantzeskakis (University of Athens, Greece), P.G.Kevrekidis (University of Massachusetts) and T.P. Horikis (University of Ioannina, Greece)] the dynamics of dark solitons in elongated finite temperature condensates. We demonstrate numerical shot-to-shot variations in soliton trajectories (S.P. Cockburn et al., arXiv:0909.1660.), finding individual long-lived trajectories as in experiments. In our simulations, these variations arise from fluctuations in the phase and density of the underlying medium. We provide a detailed statistical analysis, proposing regimes for the controlled experimental demonstration of this effect; we also discuss the extent to which simpler models can be used to mimic the features of ensemble-averaged stochastic trajectories.
Quantum vortex dynamics in two-dimensional neutral superfluids
Wang, C.-C. Joseph; Duine, R. A.; MacDonald, A. H.
2010-01-15
We derive an effective action for the vortex-position degree of freedom in a superfluid by integrating out condensate phase- and density-fluctuation environmental modes. When the quantum dynamics of environmental fluctuations is neglected, we confirm the occurrence of the vortex Magnus force and obtain an expression for the vortex mass. We find that this adiabatic approximation is valid only when the superfluid droplet radius R, or the typical distance between vortices, is very much larger than the coherence length xi. We go beyond the adiabatic approximation numerically, accounting for the quantum dynamics of environmental modes and capturing their dissipative coupling to condensate dynamics. For the case of an optical-lattice superfluid, we demonstrate that vortex motion damping can be adjusted by tuning the ratio between the tunneling energy J and the on-site interaction energy U. We comment on the possibility of realizing vortex-Landau-level physics.
The unifying role of dissipative action in the dynamic failure of solids
Grady, Dennis
2015-05-19
Dissipative action, the product of dissipation energy and transport time, is fundamental to the dynamic failure of solids. Invariance of the dissipative action underlies the fourth-power nature of structured shock waves observed in selected solid metals and compounds. Dynamic failure through shock compaction, tensile spall and adiabatic shear are also governed by a constancy of the dissipative action. This commonality underlying the various modes of dynamic failure is described and leads to deeper insights into failure of solids in the intense shock wave event. These insights are in turn leading to a better understanding of the shock deformation processes underlyingmore » the fourth-power law. Experimental result and material models encompassing the dynamic failure of solids are explored for the purpose of demonstrating commonalities leading to invariance of the dissipation action. As a result, calculations are extended to aluminum and uranium metals with the intent of predicting micro-scale energetics and spatial scales in the structured shock wave.« less
Modeling and Bio molecular Self-assembly via Molecular Dynamics and Dissipative Particle Dynamics
NASA Astrophysics Data System (ADS)
Rakesh, L.
2009-09-01
Surfactants like materials can be used to increase the solubility of poorly soluble drugs in water and to increase drug bioavailability. A typical case study will be demonstrated using DPD simulation to model the distribution of anti-inflammatory drug molecules. Computer simulation is a convenient approach to understand drug distribution and solubility concepts without much wastage and costly experiments in the laboratory. Often in molecular dynamics (MD) the atoms are represented explicitly and the equation of motion as described by Newtonian dynamics is integrated explicitly. MD has been used to study spontaneous formation of micelles by hydrophobic molecules with amphiphilic head groups in bulk water, as well as stability of pre-configured micelles and membranes. DPD is a state-of the- art mesoscale simulation, it is a more recent molecular dynamics technique, originally developed for simulating complex fluids but lately also applied to membrane dynamics, hemodynamic in biomedical applications. Such fluids pervade industrial research from paints to pharmaceuticals and from cosmetics to the controlled release of drugs. Dissipative particle dynamics (DPD) can provide structural and dynamic properties of fluids in equilibrium, under shear or confined to narrow cavities, at length- and time-scales beyond the scope of traditional atomistic molecular dynamics simulation methods. Mesoscopic particles are used to represent clusters of molecules. The interaction conserves mass and momentum and as a consequence the dynamics is consistent with Navier-Stokes equations. In addition to the conservative forces, stochastic drive and dissipation is introduced to represent internal degrees of freedom in the mesoscopic particles. In this research, an initial study is being conducted using the aqueous solubilization of the nonsteroidal, anti-inflammatory drug is studied theoretically in micellar solution of nonionic (dodecyl hexa(ethylene oxide), C12E6) surfactants possessing the
Note on entropies for quantum dynamical systems.
Watanabe, Noboru
2016-05-28
Quantum entropy and channel are fundamental concepts for quantum information theory progressed recently in various directions. We will review the fundamental aspects of mean entropy and mean mutual entropy and calculate them for open system dynamics. PMID:27091165
Radiation from quantum weakly dynamical horizons in loop quantum gravity.
Pranzetti, Daniele
2012-07-01
We provide a statistical mechanical analysis of quantum horizons near equilibrium in the grand canonical ensemble. By matching the description of the nonequilibrium phase in terms of weakly dynamical horizons with a local statistical framework, we implement loop quantum gravity dynamics near the boundary. The resulting radiation process provides a quantum gravity description of the horizon evaporation. For large black holes, the spectrum we derive presents a discrete structure which could be potentially observable. PMID:23031096
Quantum dynamics in dual spaces
Sudarshan, E.C.G.
1993-12-31
Quantum mechanics gives us information about spectra of dynamical variables and transition rates including scattering cross sections. They can be exhibited as spectral information in analytically continued spaces and their duals. Quantum mechanics formulated in these generalized spaces is used to study scattering and time evolution. It is shown that the usual asymptotic condition is inadequate to deal with scattering of composite or unstable particles. Scattering theory needs amendment when the interacting system is not isospectral with the free Hamiltonian, and the amendment is formulated. Perturbation theory in generalized spaces is developed and used to study the deletion and augmentation of the spectrum of the Hamiltonian. A complete set of algebraically independent constants for an interacting system is obtained. The question of the breaking of time symmetry is discussed.
Non-Markovian dynamics of quantum discord
Fanchini, F. F.; Caldeira, A. O.; Werlang, T.; Brasil, C. A.; Arruda, L. G. E.
2010-05-15
We evaluate the quantum discord dynamics of two qubits in independent and common non-Markovian environments. We compare the dynamics of entanglement with that of quantum discord. For independent reservoirs the quantum discord vanishes only at discrete instants whereas the entanglement can disappear during a finite time interval. For a common reservoir, quantum discord and entanglement can behave very differently with sudden birth of the former but not of the latter. Furthermore, in this case the quantum discord dynamics presents sudden changes in the derivative of its time evolution which is evidenced by the presence of kinks in its behavior at discrete instants of time.
Ergodicity and mixing in quantum dynamics.
Zhang, Dongliang; Quan, H T; Wu, Biao
2016-08-01
After a brief historical review of ergodicity and mixing in dynamics, particularly in quantum dynamics, we introduce definitions of quantum ergodicity and mixing using the structure of the system's energy levels and spacings. Our definitions are consistent with the usual understanding of ergodicity and mixing. Two parameters concerning the degeneracy in energy levels and spacings are introduced. They are computed for right triangular billiards and the results indicate a very close relation between quantum ergodicity (mixing) and quantum chaos. At the end, we argue that, besides ergodicity and mixing, there may exist a third class of quantum dynamics which is characterized by a maximized entropy. PMID:27627289
Causal dissipation and shock profiles in the relativistic fluid dynamics of pure radiation.
Freistühler, Heinrich; Temple, Blake
2014-06-01
CURRENT THEORIES OF DISSIPATION IN THE RELATIVISTIC REGIME SUFFER FROM ONE OF TWO DEFICITS: either their dissipation is not causal or no profiles for strong shock waves exist. This paper proposes a relativistic Navier-Stokes-Fourier-type viscosity and heat conduction tensor such that the resulting second-order system of partial differential equations for the fluid dynamics of pure radiation is symmetric hyperbolic. This system has causal dissipation as well as the property that all shock waves of arbitrary strength have smooth profiles. Entropy production is positive both on gradients near those of solutions to the dissipation-free equations and on gradients of shock profiles. This shows that the new dissipation stress tensor complies to leading order with the principles of thermodynamics. Whether higher order modifications of the ansatz are required to obtain full compatibility with the second law far from the zero-dissipation equilibrium is left to further investigations. The system has exactly three a priori free parameters χ,η,ζ, corresponding physically to heat conductivity, shear viscosity and bulk viscosity. If the bulk viscosity is zero (as is stated in the literature) and the total stress-energy tensor is trace free, the entire viscosity and heat conduction tensor is determined to within a constant factor. PMID:24910526
Causal dissipation and shock profiles in the relativistic fluid dynamics of pure radiation
Freistühler, Heinrich; Temple, Blake
2014-01-01
Current theories of dissipation in the relativistic regime suffer from one of two deficits: either their dissipation is not causal or no profiles for strong shock waves exist. This paper proposes a relativistic Navier–Stokes–Fourier-type viscosity and heat conduction tensor such that the resulting second-order system of partial differential equations for the fluid dynamics of pure radiation is symmetric hyperbolic. This system has causal dissipation as well as the property that all shock waves of arbitrary strength have smooth profiles. Entropy production is positive both on gradients near those of solutions to the dissipation-free equations and on gradients of shock profiles. This shows that the new dissipation stress tensor complies to leading order with the principles of thermodynamics. Whether higher order modifications of the ansatz are required to obtain full compatibility with the second law far from the zero-dissipation equilibrium is left to further investigations. The system has exactly three a priori free parameters χ,η,ζ, corresponding physically to heat conductivity, shear viscosity and bulk viscosity. If the bulk viscosity is zero (as is stated in the literature) and the total stress–energy tensor is trace free, the entire viscosity and heat conduction tensor is determined to within a constant factor. PMID:24910526
Dynamics of entanglement transfer through multipartite dissipative systems
Lopez, C. E.; Retamal, J. C.; Romero, G.
2010-06-15
We study the dynamics of entanglement transfer in a system composed of two initially correlated three-level atoms, each located in a cavity interacting with its own reservoir. Instead of tracing out reservoir modes to describe the dynamics using the master equation approach, we consider explicitly the dynamics of the reservoirs. In this situation, we show that the entanglement is completely transferred from atoms to reservoirs. Although the cavities mediate this entanglement transfer, we show that under certain conditions, no entanglement is found in cavities throughout the dynamics. Considering the entanglement dynamics of interacting and noninteracting bipartite subsystems, we found time windows where the entanglement can only flow through interacting subsystems, depending on the system parameters.
Investigating non-Markovian dynamics of quantum open systems
NASA Astrophysics Data System (ADS)
Chen, Yusui
Quantum open system coupled to a non-Markovian environment has recently attracted widespread interest for its important applications in quantum information processing and quantum dissipative systems. New phenomena induced by the non-Markovian environment have been discovered in variety of research areas ranging from quantum optics, quantum decoherence to condensed matter physics. However, the study of the non-Markovian quantum open system is known a difficult problem due to its technical complexity in deriving the fundamental equation of motion and elusive conceptual issues involving non-equilibrium dynamics for a strong coupled environment. The main purpose of this thesis is to introduce several new techniques of solving the quantum open systems including a systematic approach to dealing with non-Markovian master equations from a generic quantum-state diffusion (QSD) equation. In the first part of this thesis, we briefly introduce the non-Markovian quantum-state diffusion approach, and illustrate some pronounced non-Markovian quantum effects through numerical investigation on a cavity-QED model. Then we extend the non-Markovian QSD theory to an interesting model where the environment has a hierarchical structure, and find out the exact non-Markovian QSD equation of this model system. We observe the generation of quantum entanglement due to the interplay between the non-Markovian environment and the cavity. In the second part, we show an innovative method to obtain the exact non-Markovian master equations for a set of generic quantum open systems based on the corresponding non-Markovian QSD equations. Multiple-qubit systems and multilevel systems are discussed in details as two typical examples. Particularly, we derive the exact master equation for a model consisting of a three-level atom coupled to an optical cavity and controlled by an external laser field. Additionally, we discuss in more general context the mathematical similarity between the multiple
Dynamical and thermodynamical control of Open Quantum Walks
NASA Astrophysics Data System (ADS)
Petruccione, Francesco; Sinayskiy, Ilya
2014-03-01
Over the last few years dynamical properties and limit distributions of Open Quantum Walks (OQWs), quantum walks driven by dissipation, have been intensely studied [S. Attal et. al. J. Stat. Phys. 147, Issue 4, 832 (2012)]. For some particular cases of OQWs central limit theorems have been proven [S. Attal, N. Guillotin, C. Sabot, ``Central Limit Theorems for Open Quantum Random Walks,'' to appear in Annales Henri Poincaré]. However, only recently the connection between the rich dynamical behavior of OQWs and the corresponding microscopic system-environment models has been established. The microscopic derivation of an OQW as a reduced system dynamics on a 2-nodes graph [I. Sinayskiy, F. Petruccione, Open Syst. Inf. Dyn. 20, 1340007 (2013)] and its generalization to arbitrary graphs allow to explain the dependance of the dynamical behavior of the OQW on the temperature and coupling to the environment. For thermal environments we observe Gaussian behaviour, whereas at zero temperature population trapping and ``soliton''-like behaviour are possible. Physical realizations of OQWs in quantum optical setups will be also presented. This work is based on research supported by the South African Research Chair Initiative of the Department of Science and Technology and National Research Foundation.
Quantum dynamical framework for Brownian heat engines.
Agarwal, G S; Chaturvedi, S
2013-07-01
We present a self-contained formalism modeled after the Brownian motion of a quantum harmonic oscillator for describing the performance of microscopic Brownian heat engines such as Carnot, Stirling, and Otto engines. Our theory, besides reproducing the standard thermodynamics results in the steady state, enables us to study the role dissipation plays in determining the efficiency of Brownian heat engines under actual laboratory conditions. In particular, we analyze in detail the dynamics associated with decoupling a system in equilibrium with one bath and recoupling it to another bath and obtain exact analytical results, which are shown to have significant ramifications on the efficiencies of engines involving such a step. We also develop a simple yet powerful technique for computing corrections to the steady state results arising from finite operation time and use it to arrive at the thermodynamic complementarity relations for various operating conditions and also to compute the efficiencies of the three engines cited above at maximum power. Some of the methods and exactly solvable models presented here are interesting in their own right and could find useful applications in other contexts as well. PMID:23944437
Quantum dynamical framework for Brownian heat engines
NASA Astrophysics Data System (ADS)
Agarwal, G. S.; Chaturvedi, S.
2013-07-01
We present a self-contained formalism modeled after the Brownian motion of a quantum harmonic oscillator for describing the performance of microscopic Brownian heat engines such as Carnot, Stirling, and Otto engines. Our theory, besides reproducing the standard thermodynamics results in the steady state, enables us to study the role dissipation plays in determining the efficiency of Brownian heat engines under actual laboratory conditions. In particular, we analyze in detail the dynamics associated with decoupling a system in equilibrium with one bath and recoupling it to another bath and obtain exact analytical results, which are shown to have significant ramifications on the efficiencies of engines involving such a step. We also develop a simple yet powerful technique for computing corrections to the steady state results arising from finite operation time and use it to arrive at the thermodynamic complementarity relations for various operating conditions and also to compute the efficiencies of the three engines cited above at maximum power. Some of the methods and exactly solvable models presented here are interesting in their own right and could find useful applications in other contexts as well.
Coarse-Grained Molecular Dynamics: Dissipation Due to Internal Modes
Rudd, R E
2001-12-21
We describe progress on the issue of pathological elastic wave reflection in atomistic and multiscale simulation. First we briefly review Coarse-Grained Molecular Dynamics (CGMD). Originally CGMD was formulated as a Hamiltonian system in which energy is conserved. This formulation is useful for many applications, but recently CGMD has been extended to include generalized Langevin forces. Here we describe how Langevin dynamics arise naturally in CGMD, and we examine the implication for elastic wave scattering.
Classical dynamics of quantum entanglement.
Casati, Giulio; Guarneri, Italo; Reslen, Jose
2012-03-01
We analyze numerically the dynamical generation of quantum entanglement in a system of two interacting particles, started in a coherent separable state, for decreasing values of ℏ. As ℏ→0 the entanglement entropy, computed at any finite time, converges to a finite nonzero value. The limit law that rules the time dependence of entropy is well reproduced by purely classical computations. Its general features can be explained by simple classical arguments, which expose the different ways entanglement is generated in systems that are classically chaotic or regular. PMID:22587162
Quantum Dynamics of a Harmonic Oscillator in a Defomed Bath in the Presence of Lamb Shift
NASA Astrophysics Data System (ADS)
Daeimohamad, M.; Mohammadi, M.
2012-10-01
In this paper, we investigate the dissipative quantum dynamics of a harmonic oscillator in the presence a deformed bath by considering the Lamb shift term. The deformed bath is modelled by a collection of deformed quantum harmonic oscillators as a generalization of Hopfield model. The Langevin equation for both the photon number and the fluctuation spectrum under the Weisskopf-Winger approximation are obtained and discussed.
Parra-Rivas, P; Gomila, D; Matías, M A; Colet, P; Gelens, L
2016-01-01
We have reported in Phys. Rev. Lett. 110, 064103 (2013)PRLTAO0031-900710.1103/PhysRevLett.110.064103 that in systems which otherwise do not show oscillatory dynamics, the interplay between pinning to a defect and pulling by drift allows the system to exhibit excitability and oscillations. Here we build on this work and present a detailed bifurcation analysis of the various dynamical instabilities that result from the competition between a pulling force generated by the drift and a pinning of the solitons to spatial defects. We show that oscillatory and excitable dynamics of dissipative solitons find their origin in multiple codimension-2 bifurcation points. Moreover, we demonstrate that the mechanisms leading to these dynamical regimes are generic for any system admitting dissipative solitons. PMID:26871077
Dissipative soliton dynamics in a discrete magnetic nano-dot chain
Lee, Kyeong-Dong; You, Chun-Yeol; Song, Hyon-Seok; Shin, Sung-Chul; Park, Byong-Guk
2014-02-03
Soliton dynamics is studied in a discrete magnetic nano-dot chain by means of micromagnetic simulations together with an analytic model equation. A soliton under a dissipative system is driven by an applied field. The field-driven dissipative soliton enhances its mobility nonlinearly, as the characteristic frequency and the intrinsic Gilbert damping decrease. During the propagation, the soliton emits spin waves which act as an extrinsic damping channel. The characteristic frequency, the maximum velocity, and the localization length of the soliton are found to be proportional to the threshold field, the threshold velocity, and the initial mobility, respectively.
NASA Astrophysics Data System (ADS)
Mai-Duy, N.; Phan-Thien, N.; Khoo, B. C.
2015-04-01
In the Dissipative Particle Dynamics (DPD) simulation of suspension, the fluid (solvent) and colloidal particles are replaced by a set of DPD particles and therefore their relative sizes (as measured by their exclusion zones) can affect the maximal packing fraction of the colloidal particles. In this study, we investigate roles of the conservative, dissipative and random forces in this relative size ratio (colloidal/solvent). We propose a mechanism of adjusting the DPD parameters to properly model the solvent phase (the solvent here is supposed to have the same isothermal compressibility to that of water).
Slow and long-ranged dynamical heterogeneities in dissipative fluids.
Avila, Karina E; Castillo, Horacio E; Vollmayr-Lee, Katharina; Zippelius, Annette
2016-06-28
A two-dimensional bidisperse granular fluid is shown to exhibit pronounced long-ranged dynamical heterogeneities as dynamical arrest is approached. Here we focus on the most direct approach to study these heterogeneities: we identify clusters of slow particles and determine their size, Nc, and their radius of gyration, RG. We show that , providing direct evidence that the most immobile particles arrange in fractal objects with a fractal dimension, df, that is observed to increase with packing fraction ϕ. The cluster size distribution obeys scaling, approaching an algebraic decay in the limit of structural arrest, i.e., ϕ→ϕc. Alternatively, dynamical heterogeneities are analyzed via the four-point structure factor S4(q,t) and the dynamical susceptibility χ4(t). S4(q,t) is shown to obey scaling in the full range of packing fractions, 0.6 ≤ϕ≤ 0.805, and to become increasingly long-ranged as ϕ→ϕc. Finite size scaling of χ4(t) provides a consistency check for the previously analyzed divergences of χ4(t) ∝ (ϕ-ϕc)(-γχ) and the correlation length ξ∝ (ϕ-ϕc)(-γξ). We check the robustness of our results with respect to our definition of mobility. The divergences and the scaling for ϕ→ϕc suggest a non-equilibrium glass transition which seems qualitatively independent of the coefficient of restitution. PMID:27230572
Scaling behavior of quantum critical relaxation dynamics of a system in a heat bath
NASA Astrophysics Data System (ADS)
Yin, Shuai; Lo, Chung-Yu; Chen, Pochung
2016-05-01
We study the scaling behavior of the relaxation dynamics to thermal equilibrium when a quantum system is near the quantum critical point. In particular, we investigate systems whose relaxation dynamics is described by a Lindblad master equation. We find that the universal scaling behavior not only appears in the equilibrium stage at the long-time limit but also manifests in the nonequilibrium relaxation process. While the critical behavior is dictated by the low-lying energy levels of the Hamiltonian, the dissipative part in the Lindblad equation also plays important roles in two aspects: First, the dissipative part makes the high-energy levels decay fast, after which the universal behavior controlled by the low-lying modes emerges. Second, the dissipation rate gives rise to a time scale that affects the scaling behavior. We confirm our theory by solving the Lindblad equation for the one-dimensional transverse-field Ising model.
NASA Astrophysics Data System (ADS)
Herrera, Ramón; Olivares, Marco; Videla, Nelson
2014-09-01
In this paper, we study a warm intermediate inflationary model with a general form for the dissipative coefficient Γ(T, ϕ) = CϕTm/ϕm-1 in the context of Loop Quantum Cosmology (LQC). We examine this model in the weak and strong dissipative regimes. In general, we discuss in great detail the characteristics of this model in the slow-roll approximation. Also, we assume that the modifications to perturbation equations result exclusively from Hubble rate. In this approach, we use recent astronomical observations from Planck and BICEP2 experiments to restrict the parameters in our model.
A vorticity dynamics based model for the turbulent dissipation: Model development and validation
NASA Technical Reports Server (NTRS)
Shih, Tsan-Hsing; Liou, William W.; Shabbir, Aamir; Yang, Zhigang; Zhu, Jian
1994-01-01
A new model dissipation rate equation is proposed based on the dynamic equation of the mean-square vorticity fluctuation for large Reynolds number turbulence. The advantage of working with the vorticity fluctuation equation is that the physical meanings of the terms in this equation are more clear than those in the dissipation rate equation. Hence, the model development based on the vorticity fluctuation equation is more straightforward. The resulting form of the model equation is consistent with the spectral energy cascade analysis introduced by Lumley. The proposed model dissipation rate equation is numerically well behaved and can be applied to any level of turbulence modeling. It is applied to a realizable eddy viscosity model. Flows that are examined include: rotating homogeneous shear flows; free shear flows; a channel flow and flat plate boundary layers with and without pressure gradients; and backward facing step separated flows. In most cases, the present model predictions show considerable improvement over the standard kappa-epsilon model.
Dissipative dynamics of matter-wave solitons in a nonlinear optical lattice
Abdullaev, F. Kh.; Tomio, Lauro; Gammal, A.; Luz, H. L. F. da
2007-10-15
Dynamics and stability of solitons in two-dimensional (2D) Bose-Einstein condensates (BEC), with one-dimensional (1D) conservative plus dissipative nonlinear optical lattices, are investigated. In the case of focusing media (with attractive atomic systems), the collapse of the wave packet is arrested by the dissipative periodic nonlinearity. The adiabatic variation of the background scattering length leads to metastable matter-wave solitons. When the atom feeding mechanism is used, a dissipative soliton can exist in focusing 2D media with 1D periodic nonlinearity. In the defocusing media (repulsive BEC case) with harmonic trap in one direction and nonlinear optical lattice in the other direction, the stable soliton can exist. Variational approach simulations are confirmed by full numerical results for the 2D Gross-Pitaevskii equation.
On the Jarzynski relation for dissipative quantumdynamics
Crooks, Gavin E
2008-10-30
In this note, we will discuss how to compactly express the Jarzynski identity for an open quantum system with dissipative dynamics. In quantum dynamics we must avoid explicitly measuring the work directly, which is tantamount to continuously monitoring the state of the system, and instead measure the heat ?ow from the environment. These measurements can be concisely represented with Hermitian map superoperators, which provide a convenient and compact representations of correlation functions and sequential measurements of quantum systems.
Quantum dynamics of hydrogen atoms on graphene. II. Sticking
Bonfanti, Matteo; Jackson, Bret; Hughes, Keith H.; Burghardt, Irene
2015-09-28
Following our recent system-bath modeling of the interaction between a hydrogen atom and a graphene surface [Bonfanti et al., J. Chem. Phys. 143, 124703 (2015)], we present the results of converged quantum scattering calculations on the activated sticking dynamics. The focus of this study is the collinear scattering on a surface at zero temperature, which is treated with high-dimensional wavepacket propagations with the multi-configuration time-dependent Hartree method. At low collision energies, barrier-crossing dominates the sticking and any projectile that overcomes the barrier gets trapped in the chemisorption well. However, at high collision energies, energy transfer to the surface is a limiting factor, and fast H atoms hardly dissipate their excess energy and stick on the surface. As a consequence, the sticking coefficient is maximum (∼0.65) at an energy which is about one and half larger than the barrier height. Comparison of the results with classical and quasi-classical calculations shows that quantum fluctuations of the lattice play a primary role in the dynamics. A simple impulsive model describing the collision of a classical projectile with a quantum surface is developed which reproduces the quantum results remarkably well for all but the lowest energies, thereby capturing the essential physics of the activated sticking dynamics investigated.
Quantum Geometry and Quantum Dynamics at the Planck Scale
Bojowald, Martin
2009-12-15
Canonical quantum gravity provides insights into the quantum dynamics as well as quantum geometry of space-time by its implications for constraints. Loop quantum gravity in particular requires specific corrections due to its quantization procedure, which also results in a discrete picture of space. The corresponding changes compared to the classical behavior can most easily be analyzed in isotropic models, but perturbations around them are more involved. For one type of corrections, consistent equations have been found which shed light on the underlying space-time structure at the Planck scale: not just quantum dynamics but also the concept of space-time manifolds changes in quantum gravity. Effective line elements provide indications for possible relationships to other frameworks, such as non-commutative geometry.
Quantum emitters dynamically coupled to a quantum field
Acevedo, O. L.; Quiroga, L.; Rodríguez, F. J.; Johnson, N. F.
2013-12-04
We study theoretically the dynamical response of a set of solid-state quantum emitters arbitrarily coupled to a single-mode microcavity system. Ramping the matter-field coupling strength in round trips, we quantify the hysteresis or irreversible quantum dynamics. The matter-field system is modeled as a finite-size Dicke model which has previously been used to describe equilibrium (including quantum phase transition) properties of systems such as quantum dots in a microcavity. Here we extend this model to address non-equilibrium situations. Analyzing the system’s quantum fidelity, we find that the near-adiabatic regime exhibits the richest phenomena, with a strong asymmetry in the internal collective dynamics depending on which phase is chosen as the starting point. We also explore signatures of the crossing of the critical points on the radiation subsystem by monitoring its Wigner function; then, the subsystem can exhibit the emergence of non-classicality and complexity.
Nonequilibrium dynamics in lattice ecosystems: Chaotic stability and dissipative structures
NASA Astrophysics Data System (ADS)
Solé, Ricard V.; Bascompte, Jordi; Valls, Joaquim
1992-07-01
A generalized coupled map lattice (CML) model of ecosystem dynamics is presented. We consider the spatiotemporal behavior of a prey-predator map, a model of host-parasitoid interactions, and two-species competition. The latter model can show phase separation of domains (Turing-like structures) even when chaos is present. We also use this CML model to explore the time evolution and structural properties of ecological networks built with a set of N competing species. The May-Wigner criterion is applied as a measure of stability, and some regularities in the stable networks observed are discussed.
NASA Astrophysics Data System (ADS)
Bartolomeo, Daniel; Caticha, Ariel
2016-03-01
Entropic Dynamics (ED) is a framework that allows the formulation of dynamical theories as an application of entropic methods of inference. In the generic application of ED to derive the Schrödinger equation for N particles the dynamics is a non-dissipative diffusion in which the system follows a “Brownian” trajectory with fluctuations superposed on a smooth drift. We show that there is a family of ED models that differ at the “microscopic” or sub-quantum level in that one can enhance or suppress the fluctuations relative to the drift. Nevertheless, members of this family belong to the same universality class in that they all lead to the same emergent Schrödinger behavior at the “macroscopic” or quantum level. The model in which fluctuations are totally suppressed is of particular interest: the system evolves along the smooth lines of probability flow. Thus ED includes the Bohmian or causal form of quantum mechanics as a special limiting case. We briefly explore a different universality class - a nondissipative dynamics with microscopic fluctuations but no quantum potential. The Bohmian limit of these hybrid models is equivalent to classical mechanics. Finally we show that the Heisenberg uncertainty relation is unaffected either by enhancing or suppressing microscopic fluctuations or by switching off the quantum potential.
Relativistic second-order dissipative fluid dynamics at finite chemical potential
NASA Astrophysics Data System (ADS)
Jaiswal, Amaresh; Friman, Bengt; Redlich, Krzysztof
2016-07-01
We employ a Chapman-Enskog like expansion for the distribution function close to equilibrium to solve the Boltzmann equation in the relaxation time approximation and subsequently derive second-order evolution equations for dissipative charge currentand shear stress tensor for a system of massless quarks and gluons. We use quantum statistics for the phase space distribution functions to calculate the transport coefficients. We show that, the second-order evolution equations for the dissipative charge current and the shear stress tensor can be decoupled. We find that, for large chemical potential, the charge conductivity is small compared to the shear viscosity. Moreover, we demonstrate that the limiting behaviour of the ratio of heat conductivity to shear viscosity is identicalto that obtained for a strongly coupled conformal plasma.
Entangling polaritons via dynamical Casimir effect in circuit quantum electrodynamics
NASA Astrophysics Data System (ADS)
Rossatto, D. Z.; Felicetti, S.; Eneriz, H.; Rico, E.; Sanz, M.; Solano, E.
2016-03-01
We investigate theoretically how the dynamical Casimir effect can entangle quantum systems in different coupling regimes of circuit quantum electrodynamics, and show the robustness of such entanglement generation against dissipative effects, considering experimental parameters of current technology. We consider two qubit-resonator systems, which are coupled by a SQUID driven with an external magnetic field, and explore the entire range of coupling regimes between each qubit and its resonator. In this scheme, we derive a semianalytic explanation for the entanglement generation between both superconducting qubits when they are coupled to their resonators in the strong coupling regime. For the ultrastrong and deep strong coupling regimes, we design experimentally feasible theoretical protocols to generate maximally entangled polaritonic states.
Dynamics of dissipative self-assembly of particles interacting through oscillatory forces.
Tagliazucchi, M; Szleifer, I
2016-04-12
Dissipative self-assembly is the formation of ordered structures far from equilibrium, which continuously uptake energy and dissipate it into the environment. Due to its dynamical nature, dissipative self-assembly can lead to new phenomena and possibilities of self-organization that are unavailable to equilibrium systems. Understanding the dynamics of dissipative self-assembly is required in order to direct the assembly to structures of interest. In the present work, Brownian dynamics simulations and analytical theory were used to study the dynamics of self-assembly of a mixture of particles coated with weak acids and bases under continuous oscillations of the pH. The pH of the system modulates the charge of the particles and, therefore, the interparticle forces oscillate in time. This system produces a variety of self-assembled structures, including colloidal molecules, fibers and different types of crystalline lattices. The most important conclusions of our study are: (i) in the limit of fast oscillations, the whole dynamics (and not only those at the non-equilibrium steady state) of a system of particles interacting through time-oscillating interparticle forces can be described by an effective potential that is the time average of the time-dependent potential over one oscillation period; (ii) the oscillation period is critical to determine the order of the system. In some cases the order is favored by very fast oscillations while in others small oscillation frequencies increase the order. In the latter case, it is shown that slow oscillations remove kinetic traps and, thus, allow the system to evolve towards the most stable non-equilibrium steady state. PMID:26762675
Hamiltonian quantum dynamics with separability constraints
NASA Astrophysics Data System (ADS)
Burić, Nikola
2008-01-01
Schroedinger equation on a Hilbert space H, represents a linear Hamiltonian dynamical system on the space of quantum pure states, the projective Hilbert space PH. Separable states of a bipartite quantum system form a special submanifold of PH. We analyze the Hamiltonian dynamics that corresponds to the quantum system constrained on the manifold of separable states, using as an important example the system of two interacting qubits. The constraints introduce nonlinearities which render the dynamics nontrivial. We show that the qualitative properties of the constrained dynamics clearly manifest the symmetry of the qubits system. In particular, if the quantum Hamilton's operator has not enough symmetry, the constrained dynamics is nonintegrable, and displays the typical features of a Hamiltonian dynamical system with mixed phase space. Possible physical realizations of the separability constraints are discussed.
NASA Astrophysics Data System (ADS)
Breuer, Heinz-Peter; Kappler, Bernd; Petruccione, Francesco
2001-07-01
The time-convolutionless projection operator method is used to investigate the non-Markovian dynamics of open quantum systems. On the basis of this method a systematic perturbation expansion for the reduced density matrix equation is obtained involving a time-dependent generator which is local in time. This formalism is generalized to enable the treatment of system-environment correlations in the initial state, which arise in the computation of equilibrium correlation functions or from the preparation of the system by a quantum measurement. The general method is illustrated by means of the damped harmonic oscillator and of the spin-boson model. The perturbation expansion of the equation of motion is applied to a study of relaxation and dephasing processes and to the determination of the stationary state and of equilibrium correlation functions. Special emphasis is laid on the construction of general, computable error estimates which allow the explicit validation of the obtained results. In particular, the parameter regime for which an expansion of the equation of motion to fourth order yields reliable results is determined. The results clearly reveal that a large range of physically relevant parameters, in particular those that might be interesting for experiments on macroscopic quantum coherence phenomena, can already be treated using the expansion to fourth order. It is thus demonstrated that the time-convolutionless projection operator technique provides a transparent and technically feasible method to go beyond the Markovian approximation in the study of open quantum systems.
Classical versus quantum errors in quantum computation of dynamical systems.
Rossini, Davide; Benenti, Giuliano; Casati, Giulio
2004-11-01
We analyze the stability of a quantum algorithm simulating the quantum dynamics of a system with different regimes, ranging from global chaos to integrability. We compare, in these different regimes, the behavior of the fidelity of quantum motion when the system's parameters are perturbed or when there are unitary errors in the quantum gates implementing the quantum algorithm. While the first kind of errors has a classical limit, the second one has no classical analog. It is shown that, whereas in the first case ("classical errors") the decay of fidelity is very sensitive to the dynamical regime, in the second case ("quantum errors") it is almost independent of the dynamical behavior of the simulated system. Therefore, the rich variety of behaviors found in the study of the stability of quantum motion under "classical" perturbations has no correspondence in the fidelity of quantum computation under its natural perturbations. In particular, in this latter case it is not possible to recover the semiclassical regime in which the fidelity decays with a rate given by the classical Lyapunov exponent. PMID:15600737