Mukhopadhyay, Parag; Wipf, Peter; Beratan, David N
2009-06-16
quadrupole and magnetic dipole perturbations by the electromagnetic field. Moreover, OR arises from a combination of nearly canceling contributions to the electronic response. Indeed, the challenge posed by the chiroptical properties delayed the advent of even qualitatively accurate descriptions for some chiroptical signatures until the past decade when, for example, prediction of the observed sign of experimental OR became accessible to theory. The computation of chiroptical signatures, in close coordination with synthesis and spectroscopy, provides a powerful framework to diagnose and interpret the dissymmetry of chemical structures and molecular assemblies. Chiroptical theory now produces new schemes to elucidate structure, to describe the specific molecular sources of chiroptical signatures, and to assist in our understanding of how dissymmetry is templated and propagated in the condensed phase. PMID:19378940
Combining Theory With Practice
ERIC Educational Resources Information Center
Houa, Souen
1975-01-01
Using specific examples, the author discusses how the Chinese educators link theory with practice in order to associate education with the three great revolutionary motive forces--the class struggle, the drive towards productivity, and scientific experimentation. (Author/RM)
Chiral quantum supercrystals with total dissymmetry of optical response
Baimuratov, Anvar S.; Gun’ko, Yurii K.; Baranov, Alexander V.; Fedorov, Anatoly V.; Rukhlenko, Ivan D.
2016-01-01
Since chiral nanoparticles are much smaller than the optical wavelength, their enantiomers show little difference in the interaction with circularly polarized light. This scale mismatch makes the enhancement of enantioselectivity in optical excitation of nanoobjects a fundamental challenge in modern nanophotonics. Here we demonstrate that a strong dissymmetry of optical response from achiral nanoobjects can be achieved through their arrangement into chiral superstructures with the length scale comparable to the optical wavelength. This concept is illustrated by the example of the simple helix supercrystal made of semiconductor quantum dots. We show that this supercrystal almost fully absorbs light with one circular polarization and does not absorb the other. The giant circular dichroism of the supercrystal comes from the formation of chiral bright excitons, which are the optically active collective excitations of the entire supercrystal. Owing to the recent advances in assembly and self-organization of nanocrystals in large superparticle structures, the proposed principle of enantioselectivity enhancement has great potential of benefiting various chiral and analytical methods, which are used in biophysics, chemistry, and pharmaceutical science. PMID:26991549
Chiral quantum supercrystals with total dissymmetry of optical response
NASA Astrophysics Data System (ADS)
Baimuratov, Anvar S.; Gun’Ko, Yurii K.; Baranov, Alexander V.; Fedorov, Anatoly V.; Rukhlenko, Ivan D.
2016-03-01
Since chiral nanoparticles are much smaller than the optical wavelength, their enantiomers show little difference in the interaction with circularly polarized light. This scale mismatch makes the enhancement of enantioselectivity in optical excitation of nanoobjects a fundamental challenge in modern nanophotonics. Here we demonstrate that a strong dissymmetry of optical response from achiral nanoobjects can be achieved through their arrangement into chiral superstructures with the length scale comparable to the optical wavelength. This concept is illustrated by the example of the simple helix supercrystal made of semiconductor quantum dots. We show that this supercrystal almost fully absorbs light with one circular polarization and does not absorb the other. The giant circular dichroism of the supercrystal comes from the formation of chiral bright excitons, which are the optically active collective excitations of the entire supercrystal. Owing to the recent advances in assembly and self-organization of nanocrystals in large superparticle structures, the proposed principle of enantioselectivity enhancement has great potential of benefiting various chiral and analytical methods, which are used in biophysics, chemistry, and pharmaceutical science.
Brandt, Jochen R; Wang, Xuhua; Yang, Ying; Campbell, Alasdair J; Fuchter, Matthew J
2016-08-10
Circularly polarized (CP) light is of interest in areas such as quantum optical computing, optical spintronics, biomedicine, and high efficiency displays. Direct emission of CP light from organic light-emitting diodes (OLEDs) has been a focus of research as it has the immediate application of increasing efficiency and simplifying device architecture in OLED based displays. High dissymmetry (gEL) factor values have been reported for devices employing fluorescent polymers, but these CP-OLEDs are limited in their ultimate efficiencies by the type of emissive electronic transitions involved. In contrast, phosphorescent OLEDs (PHOLEDs) can emit light from triplet excited states and can therefore achieve very high efficiencies. However, CP-PHOLEDs are significantly understudied, and the two previous reports suffered from very low brightness or gEL values. Here, we use a platinahelicene complex to construct a CP-PHOLED that achieves both a display level brightness and a high gEL factor. The dissymmetry of CP emission reached with this proof-of-concept single-layer helicene-based device is sufficient to provide real-world benefits over nonpolarized emission and paves the way toward chiral metal complex-based CP-PHOLED displays. PMID:27434383
Combining coupled cluster and perturbation theory
NASA Astrophysics Data System (ADS)
Nooijen, Marcel
1999-12-01
Single reference coupled cluster (CC) singles and doubles theory is combined with low-order perturbation theory (PT) to treat ground state electron correlation. Two variants of the general scheme are discussed that differ in the type of amplitudes that are approximated perturbatively and which are treated to infinite order. The combined CC/PT methods to include ground state correlation are merged with equation-of-motion (EOM) and similarity transformed EOM methods to describe excitation spectra of the highly correlated s-tetrazine, MnO4- and Ni(CO)4 systems. It is shown that the computationally efficient CC/PT schemes can reproduce full CCSD results even if perturbation theory by itself is a very poor approximation, as is the case for many transition metal compounds. In a second test CC/PT is applied to determine ground state equilibrium molecular structures and harmonic vibrational frequencies for a set of small molecules. Using either variant of CC/PT, full CCSD geometries are easily recovered, while vibrational frequencies can be more sensitive to details of the approximation.
Zachariah, M R; Chin, D; Semerjian, H G; Katz, J L
1989-02-01
Particle size measurements have been made of silica formation in a counterflow diffusion flame reactor utilizing dynamic light scattering and angular dissymmetry methods. The results suggest that the techniques compare quite favorably in conditions of high signal to noise. However, the dynamic light scattering technique degrades rapidly as the signal strength declines, resulting in erroneously small particle diameters. As a general rule dynamic light scattering does not seem to possess the versatility and robustness of the classical techniques as a possible on-line diagnostic for process control. The drawbacks and limitations of the two techniques are also discussed. PMID:20548515
Combined theory of reflectance and emittance spectroscopy
NASA Technical Reports Server (NTRS)
Hapke, Bruce
1995-01-01
The theory in which either or both reflected sunlight and thermally emitted radiation contribute to the power received by a detector viewing a particulate medium, such as a powder in the laboratory or a planetary regolith, is considered theoretically. This theory is of considerable interest for the interpretation of data from field or spacecraft instruments that are sensitive to the near-infrared region of the spectrum, such as NIMS (near-infrared mapping spectrometer) and VIMS (visual and infrared mapping spectrometer), as well as thermal infrared detectors.
Amyloid growth: combining experiment and kinetic theory
NASA Astrophysics Data System (ADS)
Knowles, Tuomas; Cohen, Samuel; Vendruscolo, Michele; Dobson, Christopher
2012-02-01
The conversion of proteins from their soluble forms into fibrillar amyloid nanostructures is a general type of behaviour encountered for many different proteins in the context of disease as well as for the generation of a select class of functional materials in nature. This talk focuses on the problem of defining the rates of the individual molecular level processes involved in the overall conversion reaction. A master equation approach is discussedootnotetextCohen et al, J Chem Phys 2011, 135, 065106 ootnotetextKnowles et al, Science, 2009, 326, 1533-1537 and used in combination with kinetic measurements to yield mechanistic insights into the amyloid growth phenomenon.
Quantum and concept combination, entangled measurements, and prototype theory.
Aerts, Diederik
2014-01-01
We analyze the meaning of the violation of the marginal probability law for situations of correlation measurements where entanglement is identified. We show that for quantum theory applied to the cognitive realm such a violation does not lead to the type of problems commonly believed to occur in situations of quantum theory applied to the physical realm. We briefly situate our quantum approach for modeling concepts and their combinations with respect to the notions of "extension" and "intension" in theories of meaning, and in existing concept theories. PMID:24482332
Evidence Combination From an Evolutionary Game Theory Perspective.
Deng, Xinyang; Han, Deqiang; Dezert, Jean; Deng, Yong; Shyr, Yu
2016-09-01
Dempster-Shafer evidence theory is a primary methodology for multisource information fusion because it is good at dealing with uncertain information. This theory provides a Dempster's rule of combination to synthesize multiple evidences from various information sources. However, in some cases, counter-intuitive results may be obtained based on that combination rule. Numerous new or improved methods have been proposed to suppress these counter-intuitive results based on perspectives, such as minimizing the information loss or deviation. Inspired by evolutionary game theory, this paper considers a biological and evolutionary perspective to study the combination of evidences. An evolutionary combination rule (ECR) is proposed to help find the most biologically supported proposition in a multievidence system. Within the proposed ECR, we develop a Jaccard matrix game to formalize the interaction between propositions in evidences, and utilize the replicator dynamics to mimick the evolution of propositions. Experimental results show that the proposed ECR can effectively suppress the counter-intuitive behaviors appeared in typical paradoxes of evidence theory, compared with many existing methods. Properties of the ECR, such as solution's stability and convergence, have been mathematically proved as well. PMID:26285231
Tutorial: Defects in semiconductors—Combining experiment and theory
NASA Astrophysics Data System (ADS)
Alkauskas, Audrius; McCluskey, Matthew D.; Van de Walle, Chris G.
2016-05-01
Point defects affect or even completely determine physical and chemical properties of semiconductors. Characterization of point defects based on experimental techniques alone is often inconclusive. In such cases, the combination of experiment and theory is crucial to gain understanding of the system studied. In this tutorial, we explain how and when such comparison provides new understanding of the defect physics. More specifically, we focus on processes that can be analyzed or understood in terms of configuration coordinate diagrams of defects in their different charge states. These processes include light absorption, luminescence, and nonradiative capture of charge carriers. Recent theoretical developments to describe these processes are reviewed.
An improved exceedance theory for combined random stresses
NASA Technical Reports Server (NTRS)
Lester, H. C.
1974-01-01
An extension is presented of Rice's classic solution for the exceedances of a constant level by a single random process to its counterpart for an n-dimensional vector process. An interaction boundary, analogous to the constant level considered by Rice for the one-dimensional case, is assumed in the form of a hypersurface. The theory for the numbers of boundary exceedances is developed by using a joint statistical approach which fully accounts for all cross-correlation effects. An exact expression is derived for the n-dimensional exceedance density function, which is valid for an arbitrary interaction boundary. For application to biaxial states of combined random stress, the general theory is reduced to the two-dimensional case. An elliptical stress interaction boundary is assumed and the exact expression for the density function is presented. The equations are expressed in a format which facilitates calculating the exceedances by numerically evaluating a line integral. The behavior of the density function for the two-dimensional case is briefly discussed.
Covington, Cody L; Polavarapu, Prasad L
2016-05-18
A study utilizing the newly developed electronic dissymmetry factor (EDF) spectral analysis reveals that for [1,1'-binaphthalene]-2,2'-diol (BN) the experimental EDF spectra show differences due to solvent complexation following the trend in solvent polarity, that are not apparent in the electronic circular dichroism (ECD) or corresponding electronic absorption (EA) spectra. Large experimental EDF spectral magnitudes for BN are seen to peak in regions with no corresponding peaks in the EA spectrum and only a shoulder in the ECD spectrum. This observation indicates that EDF analysis is a new complementary method to conventional ECD analysis of chiral molecules. TD-DFT calculations predict similar EDF peaks as in the experimental EDF spectra, however, the experimentally observed solvation dependent behaviour of the EDF peaks was not reproduced in the calculations. Studies on 6,6'-dibromo-[1,1'-binaphthalene]-2,2'-diol also show similar characteristics in the EDF spectra, though not as pronounced and with different solvent effects. This report thus identifies a new means of chiral molecular structural analysis, hitherto unnoticed, and establishes the use of the dissymmetry factor spectrum as yielding new insight, but at no added cost. PMID:27149694
Correlation effects in the theory of combined Doppler and pressure broadening. I - Classical theory
NASA Technical Reports Server (NTRS)
Ward, J.; Cooper, J.; Smith, E. W.
1974-01-01
An investigation is conducted of the combined effects of radiator-perturber collisions and radiator translational motion in the context of foreign gas broadening of optical transitions in neutral radiators. Questions concerning the speed-dependent collision frequency are considered and aspects of general theory are explored, taking into account the correlation function, the ensemble average, and the kinetic equation formalism. An elementary solution is discussed along with a one-perturber approximation, inverse power law model calculations, and a comparison with the Voigt profile.
Combined hit theory-microdosimetric explanation of cellular radiobiological action
Bond, V.P.; Varma, M.N.
1983-01-01
Hit theory is combined with microdosimetry in a stochastic approach that explains the observed responses of cell populations exposed in radiation fields of different qualities. The central thesis is that to expose a population of cells in a low-level radiation field is to subject the cells to the potential for interaction with charged particles in the vicinity of the cells, quantifiable in terms of the charged particle fluence theta. When such an interaction occurs there is a resulting stochastic transfer of energy to a critical volume (CV) of cross section sigma, within the cell(s). The severity of cell injury is dependent on the amount of energy thus imparted, or the hit size. If the severity is above some minimal level, there is a non-zero probability that the injury will result in a quantal effect (e.g., a mutational or carcinogenic initial event, cell transformation). A microdosimetric proportional counter, viewed here as a phantom cell CV that permits measurements not possible in the living cell, is used to determine the incidence of hit cells and the spectrum of hit sizes. Each hit is then weighted on the basis of an empirically-determined function that provides the fraction of cells responding quantally, as a function of hit size. The sum of the hits so weighted provides the incidence of quantally-responding cells, for any amount of exposure theta in a radiation field of any quality or mixture qualities. The hit size weighting function for pink mutations in Tradescantia is discussed, as are its implications in terms of a replacement for RBE and dose equivalent. 14 references, 9 figures.
NASA Technical Reports Server (NTRS)
Brooke, D.; Vondrasek, D. V.
1978-01-01
The aerodynamic influence coefficients calculated using an existing linear theory program were used to modify the pressures calculated using impact theory. Application of the combined approach to several wing-alone configurations shows that the combined approach gives improved predictions of the local pressure and loadings over either linear theory alone or impact theory alone. The approach not only removes most of the short-comings of the individual methods, as applied in the Mach 4 to 8 range, but also provides the basis for an inverse design procedure applicable to high speed configurations.
Heterogeneous Viscoelasticity: A Combined Theory of Dynamic and Elastic Heterogeneity.
Schirmacher, Walter; Ruocco, Giancarlo; Mazzone, Valerio
2015-07-01
We present a heterogeneous version of Maxwell's theory of viscoelasticity based on the assumption of spatially fluctuating local viscoelastic coefficients. The model is solved in coherent-potential approximation. The theory predicts an Arrhenius-type temperature dependence of the viscosity in the vanishing-frequency limit, independent of the distribution of the activation energies. It is shown that this activation energy is generally different from that of a diffusing particle with the same barrier-height distribution, which explains the violation of the Stokes-Einstein relation observed frequently in glasses. At finite but low frequencies, the theory describes low-temperature asymmetric alpha relaxation. As examples, we report the good agreement obtained for selected inorganic, metallic, and organic glasses. At high frequencies, the theory reduces to heterogeneous elasticity theory, which explains the occurrence of the boson peak and related vibrational anomalies. PMID:26182108
Combined coupled-cluster and many-body perturbation theories
NASA Astrophysics Data System (ADS)
Hirata, So; Fan, Peng-Dong; Auer, Alexander A.; Nooijen, Marcel; Piecuch, Piotr
2004-12-01
Various approximations combining coupled-cluster (CC) and many-body perturbation theories have been derived and implemented into the parallel execution programs that take into account the spin, spatial (real Abelian), and permutation symmetries and that are applicable to closed- and open-shell molecules. The implemented models range from the CCSD(T), CCSD[T], CCSD(2)T, CCSD(2)TQ, and CCSDT(2)Q methods to the completely renormalized (CR) CCSD(T) and CCSD[T] approaches, where CCSD (CCSDT) stands for the CC method with connected single and double (single, double, and triple) cluster operators, and subscripted or parenthesized 2, T, and Q indicate the perturbation order or the excitation ranks of the cluster operators included in the corrections. The derivation and computer implementation have been automated by the algebraic and symbolic manipulation program TENSOR CONTRACTION ENGINE (TCE). The TCE-synthesized subroutines generate the tensors with the highest excitation rank in a blockwise manner so that they need not be stored in their entirety, while enabling the efficient reuse of other precalculated intermediate tensors defined by prioritizing the memory optimization as well as operation minimization. Consequently, the overall storage requirements for the corrections due to connected triple and quadruple cluster operators scale as O(n4) and O(n6), respectively (n being a measure of the system size). For systems with modest multireference character of their wave functions, we found that the order of accuracy is CCSD
Theory of high-field combined exciton-cyclotron resonance
NASA Astrophysics Data System (ADS)
Dzyubenko, Alexander
2003-03-01
Optical manifestations of many-body effects in low-dimensional electron and electron-hole (e-h) systems in magnetic fields have been the focus of many experimental and theoretical studies during the past decade. An interesting manifestation of many-body effects are shake-up processes (Finkelstein et al. 1996) in the photoluminescence of a two-dimensional electron gas (2DEG): After the recombination of the e-h pair, one electron is excited to one of the higher Landau levels. A closely related phenomenon, combined exciton-cyclotron resonance (ExCR), has also been identified in low-density 2DEG systems: Here, an incident photon creates an exciton and simultaneously excites one electron to higher Landau levels (Yakovlev et al. 1997). These phenomena and the relation between them remain only partially understood. In this work, I develop a theory of ExCR in a low-density strictly-2D electron gas in high magnetic fields. Electrons are assumed to be spin-polarized and occupy zero Landau level. In the low-density limit, ExCR can be considered to be a three-particle resonance involving a charged system of two electrons and one hole, 2e-h, in the final state. Importantly, there is a coupling of the center-of-mass and internal motions for charged e-h complexes in magnetic fields. In order to describe the high-field ExCR, I obtain the complete spectra of the 2e-h eigenstates in higher Landau levels with a consistent treatment of the Coulomb correlations. I derive exact ExCR selection rules that follow from the existing dynamical symmetries, magnetic translations and rotations about the magnetic field axis. This allows one to establish the characteristic features of the high-field ExCR; in particular, the double-peak structure of the transitions to the first electron Landau level is predicted. I also consider combined hole-ExCR in a low-density 2DEG, a resonance in which the hole is excited to higher hole Lnadau levels. It is shown that the high-field hole-ExCR has different
School Psychology Research: Combining Ecological Theory and Prevention Science
ERIC Educational Resources Information Center
Burns, Matthew K.
2011-01-01
The current article comments on the importance of theoretical implications within school psychological research, and proposes that ecological theory and prevention science could provide the conceptual framework for school psychology research and practice. Articles published in "School Psychology Review" should at least discuss potential…
Combining Optimal Control Theory and Molecular Dynamics for Protein Folding
Arkun, Yaman; Gur, Mert
2012-01-01
A new method to develop low-energy folding routes for proteins is presented. The novel aspect of the proposed approach is the synergistic use of optimal control theory with Molecular Dynamics (MD). In the first step of the method, optimal control theory is employed to compute the force field and the optimal folding trajectory for the atoms of a Coarse-Grained (CG) protein model. The solution of this CG optimization provides an harmonic approximation of the true potential energy surface around the native state. In the next step CG optimization guides the MD simulation by specifying the optimal target positions for the atoms. In turn, MD simulation provides an all-atom conformation whose positions match closely the reference target positions determined by CG optimization. This is accomplished by Targeted Molecular Dynamics (TMD) which uses a bias potential or harmonic restraint in addition to the usual MD potential. Folding is a dynamical process and as such residues make different contacts during the course of folding. Therefore CG optimization has to be reinitialized and repeated over time to accomodate these important changes. At each sampled folding time, the active contacts among the residues are recalculated based on the all-atom conformation obtained from MD. Using the new set of contacts, the CG potential is updated and the CG optimal trajectory for the atoms is recomputed. This is followed by MD. Implementation of this repetitive CG optimization - MD simulation cycle generates the folding trajectory. Simulations on a model protein Villin demonstrate the utility of the method. Since the method is founded on the general tools of optimal control theory and MD without any restrictions, it is widely applicable to other systems. It can be easily implemented with available MD software packages. PMID:22238629
Hegemonic masculinity: combining theory and practice in gender interventions.
Jewkes, Rachel; Morrell, Robert; Hearn, Jeff; Lundqvist, Emma; Blackbeard, David; Lindegger, Graham; Quayle, Michael; Sikweyiya, Yandisa; Gottzén, Lucas
2015-01-01
The concept of hegemonic masculinity has been used in gender studies since the early-1980s to explain men's power over women. Stressing the legitimating power of consent (rather than crude physical or political power to ensure submission), it has been used to explain men's health behaviours and the use of violence. Gender activists and others seeking to change men's relations with women have mobilised the concept of hegemonic masculinity in interventions, but the links between gender theory and activism have often not been explored. The translation of 'hegemonic masculinity' into interventions is little examined. We show how, in South Africa and Sweden, the concept has been used to inform theoretically-based gender interventions and to ensure that men are brought into broader social efforts to build gender equity. We discuss the practical translational challenges of using gender theory broadly, and hegemonic masculinity in particular, in a Swedish case study, of the intervention Machofabriken [The Macho Factory], and illustrate how the concept is brought to life in this activist work with men. The concept has considerable practical application in developing a sustainable praxis of theoretically grounded interventions that are more likely to have enduring effect, but evaluating broader societal change in hegemonic masculinity remains an enduring challenge. PMID:26680535
Hegemonic masculinity: combining theory and practice in gender interventions
Jewkes, Rachel; Morrell, Robert; Hearn, Jeff; Lundqvist, Emma; Blackbeard, David; Lindegger, Graham; Quayle, Michael; Sikweyiya, Yandisa; Gottzén, Lucas
2015-01-01
The concept of hegemonic masculinity has been used in gender studies since the early-1980s to explain men’s power over women. Stressing the legitimating power of consent (rather than crude physical or political power to ensure submission), it has been used to explain men’s health behaviours and the use of violence. Gender activists and others seeking to change men’s relations with women have mobilised the concept of hegemonic masculinity in interventions, but the links between gender theory and activism have often not been explored. The translation of ‘hegemonic masculinity’ into interventions is little examined. We show how, in South Africa and Sweden, the concept has been used to inform theoretically-based gender interventions and to ensure that men are brought into broader social efforts to build gender equity. We discuss the practical translational challenges of using gender theory broadly, and hegemonic masculinity in particular, in a Swedish case study, of the intervention Machofabriken [The Macho Factory], and illustrate how the concept is brought to life in this activist work with men. The concept has considerable practical application in developing a sustainable praxis of theoretically grounded interventions that are more likely to have enduring effect, but evaluating broader societal change in hegemonic masculinity remains an enduring challenge. PMID:26680535
NASA Technical Reports Server (NTRS)
Willis, Jerry; Willis, Dee Anna; Walsh, Clare; Stephens, Elizabeth; Murphy, Timothy; Price, Jerry; Stevens, William; Jackson, Kevin; Villareal, James A.; Way, Bob
1994-01-01
An important part of NASA's mission involves the secondary application of its technologies in the public and private sectors. One current application under development is LiteraCity, a simulation-based instructional package for adults who do not have functional reading skills. Using fuzzy logic routines and other technologies developed by NASA's Information Systems Directorate and hypermedia sound, graphics, and animation technologies the project attempts to overcome the limited impact of adult literacy assessment and instruction by involving the adult in an interactive simulation of real-life literacy activities. The project uses a recursive instructional development model and authentic instruction theory. This paper describes one component of a project to design, develop, and produce a series of computer-based, multimedia instructional packages. The packages are being developed for use in adult literacy programs, particularly in correctional education centers. They use the concepts of authentic instruction and authentic assessment to guide development. All the packages to be developed are instructional simulations. The first is a simulation of 'finding a friend a job.'
Combined experiment and theory approach in surface chemistry: Stairway to heaven?
NASA Astrophysics Data System (ADS)
Exner, Kai S.; Heß, Franziska; Over, Herbert; Seitsonen, Ari Paavo
2015-10-01
In this perspective we discuss how an intimate interaction of experiments with theory is able to deepen our insight into the catalytic reaction system on the molecular level. This strategy is illustrated by discussing various examples from our own research of surface chemistry and model catalysis. The particular examples were carefully chosen to balance the specific strength of both approaches - theory and experiment - and emphasize the benefit of this combined approach. We start with the determination of complex surface structures, where diffraction techniques in combination with theory are clear-cut. The promoter action of alkali metals in heterogeneous catalysis is rationalized with theory and experiment for the case of CO coadsorption. Predictive power of theory is limited as demonstrated with the apparent activity of chlorinated TiO2(110) in the oxidation of HCl: Even if we know all elementary reaction steps of a catalytic reaction mechanism, the overall kinetics may remain elusive and require the application kinetic Monte Carlo simulations. Catalysts are not always stable under reaction conditions and may chemically transform as discussed for the CO oxidation reaction over ruthenium. Under oxidizing reaction conditions ruthenium transforms into RuO2, a process which is hardly understood on the molecular level. Lastly we focus on electrochemical reactions. Here theory is clearly ahead since spectroscopic methods are not available to resolve the processes at the electrode surface.
Atomic Theory and Multiple Combining Proportions: The Search for Whole Number Ratios.
Usselman, Melvyn C; Brown, Todd A
2015-04-01
John Dalton's atomic theory, with its postulate of compound formation through atom-to-atom combination, brought a new perspective to weight relationships in chemical reactions. A presumed one-to-one combination of atoms A and B to form a simple compound AB allowed Dalton to construct his first table of relative atomic weights from literature analyses of appropriate binary compounds. For such simple binary compounds, the atomic theory had little advantages over affinity theory as an explanation of fixed proportions by weight. For ternary compounds of the form AB2, however, atomic theory made quantitative predictions that were not deducible from affinity theory. Atomic theory required that the weight of B in the compound AB2 be exactly twice that in the compound AB. Dalton, Thomas Thomson and William Hyde Wollaston all published within a few years of each other experimental data that claimed to give the predicted results with the required accuracy. There are nonetheless several experimental barriers to obtaining the desired integral multiple proportions. In this paper I will discuss replication experiments which demonstrate that only Wollaston's results are experimentally reliable. It is likely that such replicability explains why Wollaston's experiments were so influential. PMID:26104162
Wang, Xin; Wang, Ying; Sun, Hongbin
2016-01-01
In social media, trust and distrust among users are important factors in helping users make decisions, dissect information, and receive recommendations. However, the sparsity and imbalance of social relations bring great difficulties and challenges in predicting trust and distrust. Meanwhile, there are numerous inducing factors to determine trust and distrust relations. The relationship among inducing factors may be dependency, independence, and conflicting. Dempster-Shafer theory and neural network are effective and efficient strategies to deal with these difficulties and challenges. In this paper, we study trust and distrust prediction based on the combination of Dempster-Shafer theory and neural network. We firstly analyze the inducing factors about trust and distrust, namely, homophily, status theory, and emotion tendency. Then, we quantify inducing factors of trust and distrust, take these features as evidences, and construct evidence prototype as input nodes of multilayer neural network. Finally, we propose a framework of predicting trust and distrust which uses multilayer neural network to model the implementing process of Dempster-Shafer theory in different hidden layers, aiming to overcome the disadvantage of Dempster-Shafer theory without optimization method. Experimental results on a real-world dataset demonstrate the effectiveness of the proposed framework. PMID:27034651
Wang, Xin; Wang, Ying; Sun, Hongbin
2016-01-01
In social media, trust and distrust among users are important factors in helping users make decisions, dissect information, and receive recommendations. However, the sparsity and imbalance of social relations bring great difficulties and challenges in predicting trust and distrust. Meanwhile, there are numerous inducing factors to determine trust and distrust relations. The relationship among inducing factors may be dependency, independence, and conflicting. Dempster-Shafer theory and neural network are effective and efficient strategies to deal with these difficulties and challenges. In this paper, we study trust and distrust prediction based on the combination of Dempster-Shafer theory and neural network. We firstly analyze the inducing factors about trust and distrust, namely, homophily, status theory, and emotion tendency. Then, we quantify inducing factors of trust and distrust, take these features as evidences, and construct evidence prototype as input nodes of multilayer neural network. Finally, we propose a framework of predicting trust and distrust which uses multilayer neural network to model the implementing process of Dempster-Shafer theory in different hidden layers, aiming to overcome the disadvantage of Dempster-Shafer theory without optimization method. Experimental results on a real-world dataset demonstrate the effectiveness of the proposed framework. PMID:27034651
Khosla, Nidhi; Marsteller, Jill Ann; Hsu, Yea Jen; Elliott, David L
2016-02-01
Agencies with different foci (e.g. nutrition, social, medical, housing) serve people living with HIV (PLHIV). Serving needs of PLHIV comprehensively requires a high degree of coordination among agencies which often benefits from more frequent communication. We combined Social Network theory and Relational Coordination theory to study coordination among HIV agencies in Baltimore. Social Network theory implies that actors (e.g., HIV agencies) establish linkages amongst themselves in order to access resources (e.g., information). Relational Coordination theory suggests that high quality coordination among agencies or teams relies on the seven dimensions of frequency, timeliness and accuracy of communication, problem-solving communication, knowledge of agencies' work, mutual respect and shared goals. We collected data on frequency of contact from 57 agencies using a roster method. Response options were ordinal ranging from 'not at all' to 'daily'. We analyzed data using social network measures. Next, we selected agencies with which at least one-third of the sample reported monthly or more frequent interaction. This yielded 11 agencies whom we surveyed on seven relational coordination dimensions with questions scored on a Likert scale of 1-5. Network density, defined as the proportion of existing connections to all possible connections, was 20% when considering monthly or higher interaction. Relational coordination scores from individual agencies to others ranged between 1.17 and 5.00 (maximum possible score 5). The average scores for different dimensions across all agencies ranged between 3.30 and 4.00. Shared goals (4.00) and mutual respect (3.91) scores were highest, while scores such as knowledge of each other's work and problem-solving communication were relatively lower. Combining theoretically driven analyses in this manner offers an innovative way to provide a comprehensive picture of inter-agency coordination and the quality of exchange that underlies
NASA Astrophysics Data System (ADS)
Capone, Massimo
2015-03-01
Multiferroic materials, in which ferroelectricity and long-range magnetic ordering coexist, are natural candidates for applications. In this perspective, the most promising compounds are those in which the two phenomena do not simply coexist, but they influence each other through a magnetoelectric coupling. We present different applications of Density Functional Theory combined with Dynamical Mean-Field Theory in which electron-electron correlation effects are crucial in the stabilization of multiferroic behavior and in the magnetoelectric coupling. Within this wide family we can distinguish different cases. In Sr0.5Ba0.5MnO3 the multiferroic behavior is associated with a Mott insulating state in which the Mn half-filled t2g orbitals are responsible of the magnetic properties and the value of the polarization is strongly affected by the magnetic state. LiOsO3 shares the same electronic configuration with half-filled Os t2g orbitals. Despite this configuration enhances the effect of electron-electron interactions, the material remains metallic and represents a peculiar ferroelectric metal. We propose however how to turn this non-magnetic polar metal into a multiferroic through the design of a superlattice, which increases the degree of correlation, leading to Mott localization of the Os orbitals. In completely different systems, such as organic crystals like (TMTTF)2-X, strong correlations can lead to multiferroicity in organic crystals such as (TMTTF)2-X, where charge ordering promotes a polarization which is favored by an antiferromagnetic ordering. We finally discuss how strong correlations can play a major role away from half-filling when the Hund's coupling is sizable in compounds with a nominal valence of, e.g., two electrons in the three t2g orbitals. Such ``Hund's metals'' are correlated despite being far from Mott localization. This physical regime can be a fertile ground to obtain other ferroelectric metals. This work is supported by ERC/FP7 through the
NASA Technical Reports Server (NTRS)
Willis, Jerry W.
1993-01-01
For a number of years, the Software Technology Branch of the Information Systems Directorate has been involved in the application of cutting edge hardware and software technologies to instructional tasks related to NASA projects. The branch has developed intelligent computer aided training shells, instructional applications of virtual reality and multimedia, and computer-based instructional packages that use fuzzy logic for both instructional and diagnostic decision making. One outcome of the work on space-related technology-supported instruction has been the creation of a significant pool of human talent in the branch with current expertise on the cutting edges of instructional technologies. When the human talent is combined with advanced technologies for graphics, sound, video, CD-ROM, and high speed computing, the result is a powerful research and development group that both contributes to the applied foundations of instructional technology and creates effective instructional packages that take advantage of a range of advanced technologies. Several branch projects are currently underway that combine NASA-developed expertise to significant instructional problems in public education. The branch, for example, has developed intelligent computer aided software to help high school students learn physics and staff are currently working on a project to produce educational software for young children with language deficits. This report deals with another project, the adult literacy tutor. Unfortunately, while there are a number of computer-based instructional packages available for adult literacy instruction, most of them are based on the same instructional models that failed these students when they were in school. The teacher-centered, discrete skill and drill-oriented, instructional strategies, even when they are supported by color computer graphics and animation, that form the foundation for most of the computer-based literacy packages currently on the market may not
Somorjai, Gabor A.; Li, Yimin
2009-11-21
Experimental discoveries followed by theoretical interpretations that pave the way of further advances by experimentalists is a developing pattern in modern surface chemistry and catalysis. The revolution of modern surface science started with the development of surface-sensitive techniques such as LEED, XPS, AES, ISS and SIMS, in which the close collaboration between experimentalists and theorists led to the quantitative determination of surface structure and composition. The experimental discovery of the chemical activity of surface defects and the trends in the reactivity of transitional metals followed by the explanations from the theoretical studies led to the molecular level understanding of active sites in catalysis. The molecular level knowledge, in turn, provided a guide for experiments to search for new generation of catalysts. These and many other examples of successes in experiment-and-theory-combined studies demonstrate the importance of the collaboration between experimentalists and theorists in the development of modern surface science.
Combined FPPE-PTR Calorimetry Involving TWRC Technique. Theory and Mathematical Simulations
NASA Astrophysics Data System (ADS)
Dadarlat, Dorin; Pop, Mircea Nicolae; Streza, Mihaela; Longuemart, Stephane; Depriester, Michael; Hadj Sahraoui, Abdelhak; Simon, Viorica
2010-12-01
Photopyroelectric calorimetry in the front detection configuration (FPPE) was combined with photothermal radiometry (PTR), in order to investigate dynamic thermal parameters of different layers of a detection cell. The layout of the detection cell consists of three layers: directly irradiated pyroelectric sensor, liquid layer, and solid backing material; and the scanning parameter is the thickness of the liquid layer (thermal-wave resonator cavity method). The theory developed for the two techniques indicates that both FPPE and PTR signals can lead, in the thermally thin regime for the sensor and liquid layer, to the direct measurement of the thermal diffusivity or effusivity of the sensor and/or liquid layer, or the thermal effusivity of the backing material. The two methods offer complementary results and/or reciprocally support each other.
Combining morphometric evidence from multiple registration methods using dempster-shafer theory
NASA Astrophysics Data System (ADS)
Rajagopalan, Vidya; Wyatt, Christopher
2010-03-01
In tensor-based morphometry (TBM) group-wise differences in brain structure are measured using high degreeof- freedom registration and some form of statistical test. However, it is known that TBM results are sensitive to both the registration method and statistical test used. Given the lack of an objective model of group variation is it difficult to determine a best registration method for TBM. The use of statistical tests is also problematic given the corrections required for multiple testing and the notorius difficulty selecting and intepreting signigance values. This paper presents an approach to address both of these issues by combining multiple registration methods using Dempster-Shafer Evidence theory to produce belief maps of categorical changes between groups. This approach is applied to the comparison brain morphometry in aging, a typical application of TBM, using the determinant of the Jacobian as a measure of volume change. We show that the Dempster-Shafer combination produces a unique and easy to interpret belief map of regional changes between and within groups without the complications associated with hypothesis testing.
Theory of mind deficits in patients with esophageal cancer combined with depression
Cao, Yin; Zhao, Quan-Di; Hu, Li-Jun; Sun, Zhi-Qin; Sun, Su-Ping; Yun, Wen-Wei; Yuan, Yong-Gui
2013-01-01
AIM: To characterize the two components of theory of mind (ToM) in patients with esophageal cancer combined with depression. METHODS: Sixty-five patients with esophageal cancer combined with depression (depressed group) and 62 normal controls (control group) were assessed using reading the mind in the eyes test, faux pas task, verbal fluency test, digit span test and WAIS IQ test. The depressed group was divided into two subgroups including psychotic depressed (PD) group (32 cases) and nonpsychotic depressed (NPD) group (33 cases). The clinical symptoms of patients were assessed using Beck depression inventory version II and brief psychiatric reacting scale (BPRS). RESULTS: There was a significant difference between the depressed group and the control group on tasks involving ToM social perceptual components (mind reading: t = 7.39, P < 0.01) and tests involving ToM social cognitive components (faux pas questions: t = 13.75, P < 0.01), respectively. A significant difference was also found among the PD group, the NPD group and the control group on mind reading (F = 32.98, P < 0.01) and faux pas questions (χ2 = 78.15, P < 0.01), respectively. The PD group and NPD group performed worse than normal group controls both on mind reading and faux pas questions (P < 0.05). The PD group performed significantly worse than the NPD group on tasks involving ToM (mind reading: F = 18.99, P < 0.01; faux pas questions: F = 36.01, P < 0.01). In the depressed group, there was a negative correlation between ToM performances and BPRS total score (mind reading: r = -0.35, P < 0.01; faux pas questions: r = -0.51, P < 0.01), and between ToM performances and hostile suspiciousness factor score (mind reading: r = -0.75, P < 0.01; faux pas questions: r = -0.73, P < 0.01), respectively. CONCLUSION: The two components of ToM are both impaired in patients with esophageal cancer combined with depression. This indicates that there may be an association between ToM deficits and psychotic
NASA Astrophysics Data System (ADS)
Krawczyk, Jaroslaw; Croce, Salvatore; Chakrabarti, Buddhapriya; Tasche, Jos
The surface segregation in polymer mixtures remains a challenging problem for both academic exploration as well as industrial applications. Despite its ubiquity and several theoretical attempts a good agreement between computed and experimentally observed profiles has not yet been achieved. A simple theoretical model proposed in this context by Schmidt and Binder combines Flory-Huggins free energy of mixing with the square gradient theory of wetting of a wall by fluid. While the theory gives us a qualitative understanding of the surface induced segregation and the surface enrichment it lacks the quantitative comparison with the experiment. The statistical associating fluid theory (SAFT) allows us to calculate accurate free energy for a real polymeric materials. In an earlier work we had shown that increasing the bulk modulus of a polymer matrix through which small molecules migrate to the free surface causes reduction in the surface migrant fraction using Schmidt-Binder and self-consistent field theories. In this work we validate this idea by combining mean field theories and SAFT to identify parameter ranges where such an effect should be observable. Department of Molecular Physics, Łódź University of Technology, Żeromskiego 116, 90-924 Łódź, Poland.
NASA Technical Reports Server (NTRS)
Rubbert, P. E.
1972-01-01
A small-disturbance theory is developed for predicting the aerodynamics of an airplane in sideslip. Second-order terms involving the interaction between sideslip angle and angle of attack, sideslip angle and wing camber, etc., are retained. It is found that the second-order terms can produce the dominant sideslip effects when the dihedral of the lifting surfaces is small. Numerical implementation of the theory requires a solution procedure capable of producing accurate velocity gradients in the first-order solution.
ERIC Educational Resources Information Center
Lal, Shalini; Suto, Melinda; Ungar, Michael
2012-01-01
Increasingly, qualitative researchers are combining methods, processes, and principles from two or more methodologies over the course of a research study. Critics charge that researchers adopting combined approaches place too little attention on the historical, epistemological, and theoretical aspects of the research design. Rather than…
NASA Astrophysics Data System (ADS)
Planková, Barbora; Hrubý, Jan; Vinš, Václav
2013-04-01
In this work, we used the density gradient theory (DGT) combined with the cubic equation of state (EoS) by Peng and Robinson (PR) and the perturbed chain (PC) modification of the SAFT EoS developed by Gross and Sadowski [1]. The PR EoS is based on very simplified physical foundations, it has significant limitations in the accuracy of the predicted thermodynamic properties. On the other hand, the PC-SAFT EoS combines different intermolecular forces, e.g., hydrogen bonding, covalent bonding, Coulombic forces which makes it more accurate in predicting of the physical variables. We continued in our previous works [2,3] by solving the boundary value problem which arose by mathematical solution of the DGT formulation and including the boundary conditions. Achieving the numerical solution was rather tricky; this study describes some of the crucial developments that helped us to overcome the partial problems. The most troublesome were computations for low temperatures where we achieved great improvements compared to [3]. We applied the GT for the n-alkanes: nheptane, n-octane, n-nonane, and n-decane because of the availability of the experimental data. Comparing them with our numerical results, we observed great differences between the theories; the best results gave the combination of the GT and the PC-SAFT. However, a certain temperature drift was observed that is not satisfactorily explained by the present theories.
Field-Theoretical Approach to Many-Body Perturbation Theory: Combining MBPT and QED
Lindgren, Ingvar; Salomonson, Sten; Hedendahl, Daniel
2007-12-26
Many-Body Perturbation Theory (MBPT) is today highly developed. The electron correlation of atomic and molecular systems can be evaluated to essentially all orders of perturbation theory--also relativistically (RMBPT)--by means of techniques of Coupled-Cluster type. When high accuracy is needed, effects beyond RMBPT will enter, i.e., effects of retarded Breit interaction and of radiative effects (Lamb shift), effects normally referred to as QED effects. These effects can be evaluated by means of special techniques, like S-matrix formulation, which cannot simultaneously treat electron correlation. It would for many applications be desirable to have access to a numerical technique, where effects of electron correlation and of QED could be treated on the same footing. Such a technique is presently being developed and gradually implemented at our laboratory. Some numerical results will be given.
Mullin, Jonathan; Valley, Nicholas; Blaber, Martin G; Schatz, George C
2012-09-27
Multiscale models that combine quantum mechanics and classical electrodynamics are presented, which allow for the evaluation of surface-enhanced Raman (SERS) and hyper-Raman scattering spectra (SEHRS) for both chemical (CHEM) and electrodynamic (EM) enhancement mechanisms. In these models, time-dependent density functional theory (TDDFT) for a system consisting of the adsorbed molecule and a metal cluster fragment of the metal particle is coupled to Mie theory for the metal particle, with the surface of the cluster being overlaid with the surface of the metal particle. In model A, the electromagnetic enhancement from plasmon-excitation of the metal particle is combined with the chemical enhancement associated with a static treatment of the molecule-metal structure to determine overall spectra. In model B, the frequency dependence of the Raman spectrum of the isolated molecule is combined with the enhancements determined in model A to refine the enhancement estimate. An equivalent theory at the level of model A is developed for hyper-Raman spectra calculations. Application to pyridine interacting with a 20 nm diameter silver sphere is presented, including comparisons with an earlier model (denoted G), which combines plasmon enhanced fields with gas-phase Raman (or hyper-Raman) spectra. The EM enhancement factor for spherical particles at 357 nm is found to be 10(4) and 10(6) for SERS and SEHRS, respectively. Including both chemical and electromagnetic mechanisms at the level of model A leads to enhancements on the order of 10(4) and 10(9) for SERS and SEHRS. PMID:22946645
NASA Astrophysics Data System (ADS)
Sison Escaño, Mary Clare; Lacdao Arevalo, Ryan; Gyenge, Elod; Kasai, Hideaki
2014-09-01
The electrocatalysis of borohydride oxidation is a complex, up-to-eight-electron transfer process, which is essential for development of efficient direct borohydride fuel cells. Here we review the progress achieved by density functional theory (DFT) calculations in explaining the adsorption of BH4- on various catalyst surfaces, with implications for electrocatalyst screening and selection. Wherever possible, we correlate the theoretical predictions with experimental findings, in order to validate the proposed models and to identify potential directions for further advancements.
Rezende, Carlos A; San Gil, Rosane A S; Borré, Leandro B; Pires, José Ricardo; Vaiss, Viviane S; Resende, Jackson A L C; Leitão, Alexandre A; De Alencastro, Ricardo B; Leal, Katia Z
2016-09-01
The experiments of carvedilol form II, form III, and hydrate by (13)C and (15)N cross-polarization magic-angle spinning (CP MAS) are reported. The GIPAW (gauge-including projector-augmented wave) method from DFT (density functional theory) calculations was used to simulate (13)C and (15)N chemical shifts. A very good agreement was found for the comparison between the global results of experimental and calculated nuclear magnetic resonance (NMR) chemical shifts for carvedilol polymorphs. This work aims a comprehensive understanding of carvedilol crystalline forms employing solution and solid-state NMR as well as DFT calculations. PMID:26372719
He, Yanyan; Hussaini, M Yousuff; Gong, Yutao U T; Xiao, Ying
2016-01-01
Our previous study demonstrated the application of the Dempster-Shafer theory of evidence to dose/volume/outcome data analysis. Specifically, it provided Yager's rule to fuse data from different institutions pertaining to radiotherapy pneumonitis versus mean lung dose. The present work is a follow-on study that employs the optimal unified combination rule, which optimizes data similarity among inde-pendent sources. Specifically, we construct belief and plausibility functions on the lung cancer radiotherapy dose outcome datasets, and then apply the optimal uni-fied combination rule to obtain combined belief and plausibility, which bound the probabilities of pneumonitis incidence. To estimate the incidence of pneumonitis at any value of mean lung dose, we use the Lyman-Kutcher-Burman (LKB) model to fit the combined belief and plausibility curves. The results show that the optimal unified combination rule yields a narrower uncertainty range (as represented by the belief-plausibility range) than Yager's rule, which is also theoretically proven. PMID:26894343
NASA Astrophysics Data System (ADS)
Chong, Song-Ho; Ham, Sihyun
2011-03-01
We report the recent development of a theoretical method to calculate the protein configurational entropy in explicit solvent from statistical properties of the solvent-averaged protein potential energy surface. This method can be implemented by combining molecular simulation and integral-equation theory of liquids. Our method does not assume Gaussian distribution of protein configurations, and can be applied to unfolded or misfolded states of protein in which an average protein structure is not well defined. An illustrative application is made to misfolded state of 42-residue amyloid beta protein in water.
Corsini, Niccolò R. C. Greco, Andrea; Haynes, Peter D.; Hine, Nicholas D. M.; Molteni, Carla
2013-08-28
We present an implementation in a linear-scaling density-functional theory code of an electronic enthalpy method, which has been found to be natural and efficient for the ab initio calculation of finite systems under hydrostatic pressure. Based on a definition of the system volume as that enclosed within an electronic density isosurface [M. Cococcioni, F. Mauri, G. Ceder, and N. Marzari, Phys. Rev. Lett.94, 145501 (2005)], it supports both geometry optimizations and molecular dynamics simulations. We introduce an approach for calibrating the parameters defining the volume in the context of geometry optimizations and discuss their significance. Results in good agreement with simulations using explicit solvents are obtained, validating our approach. Size-dependent pressure-induced structural transformations and variations in the energy gap of hydrogenated silicon nanocrystals are investigated, including one comparable in size to recent experiments. A detailed analysis of the polyamorphic transformations reveals three types of amorphous structures and their persistence on depressurization is assessed.
Near-field analysis of a thick lens and horn combination: Theory and measurements
NASA Astrophysics Data System (ADS)
Tuovinen, J.; Hirvonen, T.; Raeisaenen, A.
1991-04-01
At millimeter waves quasi-optical systems are commonly designed based on the Gaussian beam and thin lens approximation. The accuracy of the Gaussian beam and thin lens approximation was studied in the case of a corrugated horn and lens combination at 87 giga-Hz. A special near field measurement system was constructed. Large disagreement between the measured and theoretical values were obtained with the approximative method. A more accurate theoretical model was developed based on ray tracing and use of Huygens' principle. The theoretical values obtained with the method agree well with the measurements.
Near-field analysis of a thick lens and horn combination - Theory and measurements
NASA Astrophysics Data System (ADS)
Tuovinen, Jussi; Hirvonen, Taavi M.; Raisanen, Antti V.
1992-06-01
At millimeter waves quasi-optical systems are commonly designed based on the Gaussian beam and thin lens approximation. The accuracy of the Gaussian beam and thin lens approximation was studied in the case of a corrugated horn and lens combination at 87 giga-Hz. A special near field measurement system was constructed. Large disagreement between the measured and theoretical values were obtained with the approximative method. A more accurate theoretical model was developed based on ray tracing and use of Huygens' principle. The theoretical values obtained with the method agree well with the measurements.
Varaksin, Anatoly N; Katsnelson, Boris A; Panov, Vladimir G; Privalova, Larisa I; Kireyeva, Ekaterina P; Valamina, Irene E; Beresneva, Olga Yu
2014-02-01
Rats were exposed intraperitoneally (3 times a week up to 20 injections) to either Cadmium and Lead salts in doses equivalent to their 0.05 LD50 separately or combined in the same or halved doses. Toxic effects were assessed by more than 40 functional, biochemical and morphometric indices. We analysed the results obtained aiming at determination of the type of combined toxicity using either common sense considerations based on descriptive statistics or two mathematical models based (a) on ANOVA and (b) on Mathematical Theory of Experimental Design, which correspond, respectively, to the widely recognised paradigms of effect additivity and dose additivity. Nevertheless, these approaches have led us unanimously to the following conclusions: (1) The above paradigms are virtually interchangeable and should be regarded as different methods of modelling the combined toxicity rather than as reflecting fundamentally differing processes. (2) Within both models there exist not merely three traditionally used types of combined toxicity (additivity, subadditivity and superadditivity) but at least 10 variants of it depending on exactly which effect is considered and on its level, as well as on the dose levels and their ratio. PMID:24291454
Galaxy power spectrum in redshift space: Combining perturbation theory with the halo model
Okumura, Teppei; Hand, Nick; Seljak, Uros; Vlah, Zvonimir; Desjacques, Vincent
2015-11-19
Theoretical modeling of the redshift-space power spectrum of galaxies is crucially important to correctly extract cosmological information from galaxy redshift surveys. The task is complicated by the nonlinear biasing and redshift space distortion (RSD) effects, which change with halo mass, and by the wide distribution of halo masses and their occupations by galaxies. One of the main modeling challenges is the existence of satellite galaxies that have both radial distribution inside the halos and large virial velocities inside halos, a phenomenon known as the Finger-of-God (FoG) effect. We present a model for the redshift-space power spectrum of galaxies in which we decompose a given galaxy sample into central and satellite galaxies and relate different contributions to the power spectrum to 1-halo and 2-halo terms in a halo model. Our primary goal is to ensure that any parameters that we introduce have physically meaningful values, and are not just fitting parameters. For the lowest order 2-halo terms we use the previously developed RSD modeling of halos in the context of distribution function and perturbation theory approach. This term needs to be multiplied by the effect of radial distances and velocities of satellites inside the halo. To this one needs to add the 1-halo terms, which are nonperturbative. We show that the real space 1-halo terms can be modeled as almost constant, with the finite extent of the satellites inside the halo inducing a small k^{2}R^{2} term over the range of scales of interest, where R is related to the size of the halo given by its halo mass. Furthermore, we adopt a similar model for FoG in redshift space, ensuring that FoG velocity dispersion is related to the halo mass. For FoG k^{2} type expansions do not work over the range of scales of interest and FoG resummation must be used instead. We test several simple damping functions to model the velocity dispersion FoG effect. Applying the formalism to mock
Galaxy power spectrum in redshift space: Combining perturbation theory with the halo model
NASA Astrophysics Data System (ADS)
Okumura, Teppei; Hand, Nick; Seljak, Uroš; Vlah, Zvonimir; Desjacques, Vincent
2015-11-01
Theoretical modeling of the redshift-space power spectrum of galaxies is crucially important to correctly extract cosmological information from galaxy redshift surveys. The task is complicated by the nonlinear biasing and redshift space distortion (RSD) effects, which change with halo mass, and by the wide distribution of halo masses and their occupations by galaxies. One of the main modeling challenges is the existence of satellite galaxies that have both radial distribution inside the halos and large virial velocities inside halos, a phenomenon known as the Finger-of-God (FoG) effect. We present a model for the redshift-space power spectrum of galaxies in which we decompose a given galaxy sample into central and satellite galaxies and relate different contributions to the power spectrum to 1-halo and 2-halo terms in a halo model. Our primary goal is to ensure that any parameters that we introduce have physically meaningful values, and are not just fitting parameters. For the lowest order 2-halo terms we use the previously developed RSD modeling of halos in the context of distribution function and perturbation theory approach. This term needs to be multiplied by the effect of radial distances and velocities of satellites inside the halo. To this one needs to add the 1-halo terms, which are nonperturbative. We show that the real space 1-halo terms can be modeled as almost constant, with the finite extent of the satellites inside the halo inducing a small k2R2 term over the range of scales of interest, where R is related to the size of the halo given by its halo mass. We adopt a similar model for FoG in redshift space, ensuring that FoG velocity dispersion is related to the halo mass. For FoG k2 type expansions do not work over the range of scales of interest and FoG resummation must be used instead. We test several simple damping functions to model the velocity dispersion FoG effect. Applying the formalism to mock galaxies modeled after the "CMASS" sample of the
Galaxy power spectrum in redshift space: Combining perturbation theory with the halo model
Okumura, Teppei; Hand, Nick; Seljak, Uros; Vlah, Zvonimir; Desjacques, Vincent
2015-11-19
Theoretical modeling of the redshift-space power spectrum of galaxies is crucially important to correctly extract cosmological information from galaxy redshift surveys. The task is complicated by the nonlinear biasing and redshift space distortion (RSD) effects, which change with halo mass, and by the wide distribution of halo masses and their occupations by galaxies. One of the main modeling challenges is the existence of satellite galaxies that have both radial distribution inside the halos and large virial velocities inside halos, a phenomenon known as the Finger-of-God (FoG) effect. We present a model for the redshift-space power spectrum of galaxies in whichmore » we decompose a given galaxy sample into central and satellite galaxies and relate different contributions to the power spectrum to 1-halo and 2-halo terms in a halo model. Our primary goal is to ensure that any parameters that we introduce have physically meaningful values, and are not just fitting parameters. For the lowest order 2-halo terms we use the previously developed RSD modeling of halos in the context of distribution function and perturbation theory approach. This term needs to be multiplied by the effect of radial distances and velocities of satellites inside the halo. To this one needs to add the 1-halo terms, which are nonperturbative. We show that the real space 1-halo terms can be modeled as almost constant, with the finite extent of the satellites inside the halo inducing a small k2R2 term over the range of scales of interest, where R is related to the size of the halo given by its halo mass. Furthermore, we adopt a similar model for FoG in redshift space, ensuring that FoG velocity dispersion is related to the halo mass. For FoG k2 type expansions do not work over the range of scales of interest and FoG resummation must be used instead. We test several simple damping functions to model the velocity dispersion FoG effect. Applying the formalism to mock galaxies modeled after the
NASA Astrophysics Data System (ADS)
Corsini, Niccolò R. C.; Greco, Andrea; Hine, Nicholas D. M.; Molteni, Carla; Haynes, Peter D.
2013-08-01
We present an implementation in a linear-scaling density-functional theory code of an electronic enthalpy method, which has been found to be natural and efficient for the ab initio calculation of finite systems under hydrostatic pressure. Based on a definition of the system volume as that enclosed within an electronic density isosurface [M. Cococcioni, F. Mauri, G. Ceder, and N. Marzari, Phys. Rev. Lett. 94, 145501 (2005)], 10.1103/PhysRevLett.94.145501, it supports both geometry optimizations and molecular dynamics simulations. We introduce an approach for calibrating the parameters defining the volume in the context of geometry optimizations and discuss their significance. Results in good agreement with simulations using explicit solvents are obtained, validating our approach. Size-dependent pressure-induced structural transformations and variations in the energy gap of hydrogenated silicon nanocrystals are investigated, including one comparable in size to recent experiments. A detailed analysis of the polyamorphic transformations reveals three types of amorphous structures and their persistence on depressurization is assessed.
Corsini, Niccolò R C; Greco, Andrea; Hine, Nicholas D M; Molteni, Carla; Haynes, Peter D
2013-08-28
We present an implementation in a linear-scaling density-functional theory code of an electronic enthalpy method, which has been found to be natural and efficient for the ab initio calculation of finite systems under hydrostatic pressure. Based on a definition of the system volume as that enclosed within an electronic density isosurface [M. Cococcioni, F. Mauri, G. Ceder, and N. Marzari, Phys. Rev. Lett. 94, 145501 (2005)], it supports both geometry optimizations and molecular dynamics simulations. We introduce an approach for calibrating the parameters defining the volume in the context of geometry optimizations and discuss their significance. Results in good agreement with simulations using explicit solvents are obtained, validating our approach. Size-dependent pressure-induced structural transformations and variations in the energy gap of hydrogenated silicon nanocrystals are investigated, including one comparable in size to recent experiments. A detailed analysis of the polyamorphic transformations reveals three types of amorphous structures and their persistence on depressurization is assessed. PMID:24006984
NASA Astrophysics Data System (ADS)
Paluchowski, Lukasz A.; Bjorgan, Asgeir; Nordgaard, Hâvard B.; Randeberg, Lise L.
2016-02-01
Hyperspectral imagery opens a new perspective for biomedical diagnostics and tissue characterization. High spectral resolution can give insight into optical properties of the skin tissue. However, at the same time the amount of collected data represents a challenge when it comes to decomposition into clusters and extraction of useful diagnostic information. In this study spectral-spatial classification and inverse diffusion modeling were employed to hyperspectral images obtained from a porcine burn model using a hyperspectral push-broom camera. The implemented method takes advantage of spatial and spectral information simultaneously, and provides information about the average optical properties within each cluster. The implemented algorithm allows mapping spectral and spatial heterogeneity of the burn injury as well as dynamic changes of spectral properties within the burn area. The combination of statistical and physics informed tools allowed for initial separation of different burn wounds and further detailed characterization of the injuries in short post-injury time.
Theory of combined photoassociation and Feshbach resonances in a Bose-Einstein condensate
Mackie, Matt; DeBrosse, Catherine
2010-04-15
We model combined photoassociation and Feshbach resonances in a Bose-Einstein condensate, where the shared dissociation continuum allows for quantum interference in losses from the condensate, as well as a dispersive-like shift of resonance. A seemingly oversimplified model is revisited, explaining it as based on the limit of weakly bound molecules, reinforcing it with a comparison to numerical experiments that explicitly include dissociation to noncondensate modes, comparing it against the unitarity limit on condensate losses, and lastly, checking its universal implications. In particular, for a resonant laser and an off-resonant magnetic field, these numerical experiments reveal a rate limit on condensate losses that is larger for smaller condensate densities, approaches the rate limit for magnetoassociation alone near the Feshbach resonance, and agrees best with the analytical model for low density. Comparing the analytical rate limit against the unitary limit, which is set by the size of the condensate, agreement is found only for a limited range of near-resonant magnetic fields. Finally, for a resonant magnetic field and an off-resonant laser, the analytical shift of the Feshbach resonance is found to depend on the size of the Feshbach molecule, signifying nonuniversal physics in a strongly interacting system.
NASA Technical Reports Server (NTRS)
Jones, William H.
1985-01-01
The Combined Aerodynamic and Structural Dynamic Problem Emulating Routines (CASPER) is a collection of data-base modification computer routines that can be used to simulate Navier-Stokes flow through realistic, time-varying internal flow fields. The Navier-Stokes equation used involves calculations in all three dimensions and retains all viscous terms. The only term neglected in the current implementation is gravitation. The solution approach is of an interative, time-marching nature. Calculations are based on Lagrangian aerodynamic elements (aeroelements). It is assumed that the relationships between a particular aeroelement and its five nearest neighbor aeroelements are sufficient to make a valid simulation of Navier-Stokes flow on a small scale and that the collection of all small-scale simulations makes a valid simulation of a large-scale flow. In keeping with these assumptions, it must be noted that CASPER produces an imitation or simulation of Navier-Stokes flow rather than a strict numerical solution of the Navier-Stokes equation. CASPER is written to operate under the Parallel, Asynchronous Executive (PAX), which is described in a separate report.
NASA Technical Reports Server (NTRS)
Daryabeigi, Kamran; Cunnington, George R.; Miller, Steve D.; Knutson, Jeffry R.
2010-01-01
Combined radiation and conduction heat transfer through various high-temperature, high-porosity, unbonded (loose) fibrous insulations was modeled based on first principles. The diffusion approximation was used for modeling the radiation component of heat transfer in the optically thick insulations. The relevant parameters needed for the heat transfer model were derived from experimental data. Semi-empirical formulations were used to model the solid conduction contribution of heat transfer in fibrous insulations with the relevant parameters inferred from thermal conductivity measurements at cryogenic temperatures in a vacuum. The specific extinction coefficient for radiation heat transfer was obtained from high-temperature steady-state thermal measurements with large temperature gradients maintained across the sample thickness in a vacuum. Standard gas conduction modeling was used in the heat transfer formulation. This heat transfer modeling methodology was applied to silica, two types of alumina, and a zirconia-based fibrous insulation, and to a variation of opacified fibrous insulation (OFI). OFI is a class of insulations manufactured by embedding efficient ceramic opacifiers in various unbonded fibrous insulations to significantly attenuate the radiation component of heat transfer. The heat transfer modeling methodology was validated by comparison with more rigorous analytical solutions and with standard thermal conductivity measurements. The validated heat transfer model is applicable to various densities of these high-porosity insulations as long as the fiber properties are the same (index of refraction, size distribution, orientation, and length). Furthermore, the heat transfer data for these insulations can be obtained at any static pressure in any working gas environment without the need to perform tests in various gases at various pressures.
NASA Astrophysics Data System (ADS)
Seki, K.; Yunoki, S.
2016-06-01
By combining the tetrahedron method with the cluster perturbation theory (CPT), we present an accurate method to numerically calculate the density of states of interacting fermions without introducing the Lorentzian broadening parameter η or the numerical extrapolation of η →0 . The method is conceptually based on the notion of the effective single-particle Hamiltonian which can be subtracted in the Lehmann representation of the single-particle Green's function within the CPT. Indeed, we show the general correspondence between the self-energy and the effective single-particle Hamiltonian which describes exactly the single-particle excitation energies of interacting fermions. The detailed formalism is provided for two-dimensional multiorbital systems and a benchmark calculation is performed for the two-dimensional single-band Hubbard model. The method can be adapted straightforwardly to symmetry-broken states, three-dimensional systems, and finite-temperature calculations.
Garza, Alejandro J.; Jiménez-Hoyos, Carlos A.; Scuseria, Gustavo E.
2014-06-28
Several schemes to avoid the double counting of correlations in methods that merge multireference wavefunctions with density functional theory (DFT) are studied and here adapted to a combination of spin-projected Hartree-Fock (SUHF) and DFT. The advantages and limitations of the new method, denoted SUHF+f{sub c}DFT, are explored through calculations on benchmark sets in which the accounting of correlations is challenging for pure SUHF or DFT. It is shown that SUHF+f{sub c}DFT can greatly improve the description of certain molecular properties (e.g., singlet-triplet energy gaps) which are not improved by simple addition of DFT dynamical correlation to SUHF. However, SUHF+f{sub c}DFT is also shown to have difficulties dissociating certain types of bonds and describing highly charged ions with static correlation. Possible improvements to the current SUHF+f{sub c}DFT scheme are discussed in light of these results.
Garza, Alejandro J; Jiménez-Hoyos, Carlos A; Scuseria, Gustavo E
2014-06-28
Several schemes to avoid the double counting of correlations in methods that merge multireference wavefunctions with density functional theory (DFT) are studied and here adapted to a combination of spin-projected Hartree-Fock (SUHF) and DFT. The advantages and limitations of the new method, denoted SUHF+fcDFT, are explored through calculations on benchmark sets in which the accounting of correlations is challenging for pure SUHF or DFT. It is shown that SUHF+fcDFT can greatly improve the description of certain molecular properties (e.g., singlet-triplet energy gaps) which are not improved by simple addition of DFT dynamical correlation to SUHF. However, SUHF+fcDFT is also shown to have difficulties dissociating certain types of bonds and describing highly charged ions with static correlation. Possible improvements to the current SUHF+fcDFT scheme are discussed in light of these results. PMID:24985613
NASA Astrophysics Data System (ADS)
Reilly, Michael; Ginzburg, Valeriy; Smith, Mark D.
2013-03-01
In this presentation, we describe multi-scale modeling method combining PROLITH lithography simulation with Self-Consistent Field Theory (SCFT) computation of the block copolymer Directed Self-Assembly (DSA). Within this method, we utilize PROLITH to predict the shape of a lithographic feature as function of process conditions. The results of that calculation are then used as input into SCFT simulation to predict the distribution of the matrix and etchable blocks of the DSA polymers (such as PS-b-PDMS or PS-b- PMMA) inside that feature. This method is applied to simple cases (e.g., rectangular trench and cylindrical contact hole), and the self-assembly of various polymers is investigated as a function of their compositions. The new tool could therefore be applied to rapidly design and screen lithographic process conditions together with polymers used to shrink or rectify the features within the DSA technology.
Sheppard, Daniel; Kress, Joel D; Crockett, Scott; Collins, Lee A; Desjarlais, Michael P
2014-12-01
The shock Hugoniot for lithium 6 deuteride ((6)LiD) was calculated via first principles using Kohn-Sham density-functional theory molecular dynamics (KSMD) for temperatures of 0.5-25 eV. The upper limit of 25 eV represents a practical limit where KSMD is no longer computationally feasible due to the number of electronic bands which are required to be populated. To push the Hugoniot calculations to higher temperatures we make use of orbital-free density-functional theory molecular dynamics (OFMD). Thomas-Fermi-Dirac-based OFMD gives a poor description of the electronic structure at low temperatures so the initial state is not well defined. We propose a method of bootstrapping the Hugoniot from OFMD to the Hugoniot from KSMD between 10 and 20 eV, where the two methods are in agreement. The combination of KSMD and OFMD allows construction of a first-principles Hugoniot from the initial state to 1000 eV. Theoretical shock-compression results are in good agreement with available experimental data and exhibit the appropriate high-temperature limits. We show that a unified KSMD-OFMD Hugoniot can be used to assess the quality of the existing equation-of-state (EOS) models and inform better EOS models based on justifiable physics. PMID:25615229
Characterization of water dissociation on α-Al2O3(11[combining macron]02): theory and experiment.
Wirth, Jonas; Kirsch, Harald; Wlosczyk, Sebastian; Tong, Yujin; Saalfrank, Peter; Campen, R Kramer
2016-06-01
The interaction of water with α-alumina (i.e. α-Al2O3) surfaces is important in a variety of applications and a useful model for the interaction of water with environmentally abundant aluminosilicate phases. Despite its significance, studies of water interaction with α-Al2O3 surfaces other than the (0001) are extremely limited. Here we characterize the interaction of water (D2O) with a well defined α-Al2O3(11[combining macron]02) surface in UHV both experimentally, using temperature programmed desorption and surface-specific vibrational spectroscopy, and theoretically, using periodic-slab density functional theory calculations. This combined approach makes it possible to demonstrate that water adsorption occurs only at a single well defined surface site (the so-called 1-4 configuration) and that at this site the barrier between the molecularly and dissociatively adsorbed forms is very low: 0.06 eV. A subset of OD stretch vibrations are parallel to this dissociation coordinate, and thus would be expected to be shifted to low frequencies relative to an uncoupled harmonic oscillator. To quantify this effect we solve the vibrational Schrödinger equation along the dissociation coordinate and find fundamental frequencies red-shifted by more than 1500 cm(-1). Within the context of this model, at moderate temperatures, we further find that some fraction of surface deuterons are likely delocalized: dissociatively and molecularly absorbed states are no longer distinguishable. PMID:27109875
Asplund, Erik; Kluener, Thorsten
2012-03-28
In this paper, control of open quantum systems with emphasis on the control of surface photochemical reactions is presented. A quantum system in a condensed phase undergoes strong dissipative processes. From a theoretical viewpoint, it is important to model such processes in a rigorous way. In this work, the description of open quantum systems is realized within the surrogate Hamiltonian approach [R. Baer and R. Kosloff, J. Chem. Phys. 106, 8862 (1997)]. An efficient and accurate method to find control fields is optimal control theory (OCT) [W. Zhu, J. Botina, and H. Rabitz, J. Chem. Phys. 108, 1953 (1998); Y. Ohtsuki, G. Turinici, and H. Rabitz, J. Chem. Phys. 120, 5509 (2004)]. To gain control of open quantum systems, the surrogate Hamiltonian approach and OCT, with time-dependent targets, are combined. Three open quantum systems are investigated by the combined method, a harmonic oscillator immersed in an ohmic bath, CO adsorbed on a platinum surface, and NO adsorbed on a nickel oxide surface. Throughout this paper, atomic units, i.e., ({Dirac_h}/2{pi})=m{sub e}=e=a{sub 0}= 1, have been used unless otherwise stated.
Perea, J Darío; Langner, Stefan; Salvador, Michael; Kontos, Janos; Jarvas, Gabor; Winkler, Florian; Machui, Florian; Görling, Andreas; Dallos, Andras; Ameri, Tayebeh; Brabec, Christoph J
2016-05-19
The solubility of organic semiconductors in environmentally benign solvents is an important prerequisite for the widespread adoption of organic electronic appliances. Solubility can be determined by considering the cohesive forces in a liquid via Hansen solubility parameters (HSP). We report a numerical approach to determine the HSP of fullerenes using a mathematical tool based on artificial neural networks (ANN). ANN transforms the molecular surface charge density distribution (σ-profile) as determined by density functional theory (DFT) calculations within the framework of a continuum solvation model into solubility parameters. We validate our model with experimentally determined HSP of the fullerenes C60, PC61BM, bisPC61BM, ICMA, ICBA, and PC71BM and through comparison with previously reported molecular dynamics calculations. Most excitingly, the ANN is able to correctly predict the dispersive contributions to the solubility parameters of the fullerenes although no explicit information on the van der Waals forces is present in the σ-profile. The presented theoretical DFT calculation in combination with the ANN mathematical tool can be easily extended to other π-conjugated, electronic material classes and offers a fast and reliable toolbox for future pathways that may include the design of green ink formulations for solution-processed optoelectronic devices. PMID:27070101
McMahan, A K
2005-03-30
This paper reports calculations for compressed Ce (4f{sup 1}), Pr (4f{sup 2}), and Nd (4f{sup 3}) using a combination of the local-density approximation (LDA) and dynamical mean field theory (DMFT), or LDA+DMFT. The 4f moment, spectra, and the total energy among other properties are examined as functions of volume and atomic number for an assumed face-centered cubic (fcc) structure. These materials are seen to be strongly localized at ambient pressure and for compressions up through the experimentally observed fcc phases ({gamma} phase for Ce), in the sense of having fully formed Hund's rules moments and little 4f spectral weight at the Fermi level. Subsequent compression for all three lanthanides brings about significant deviation of the moments from their Hund's rules values, a growing Kondo resonance at the fermi level, an associated softening in the total energy, and quenching of the spin orbit since the Kondo resonance is of mixed spin-orbit character while the lower Hubbard band is predominantly j = 5/2. while the most dramatic changes for Ce occur within the two-phase region of the {gamma}-{alpha} volume collapse transition, as found in earlier work, those for Pr and Nd occur within the volume range of the experimentally observed distorted fcc (dfcc) phase, which is therefore seen here as transitional and not part of the localized trivalent lanthanide sequence. The experimentally observed collapse to the {alpha}-U structure in Pr occurs only on further compression, and no such collapse is found in Nd. These lanthanides start closer to the localized limit for increasing atomic number, and so the theoretical signatures noted above are also offset to smaller volume as well, which is possibly related to the measured systematics of the size of the volume collapse being 15%, 9%, and none for Ce, Pr, and Nd, respectively.
Johnston, James H; Linden, David E J; van den Bree, Marianne B M
2016-01-01
The literature on the two main models of addiction (dopamine-based positive reinforcement and stress-based negative reinforcement models) have made many important contributions to understanding this brain disorder. However, rarely has there been a comprehensive critique of the limitations of both models. This article seeks to resolve theoretical issues inherent to each model, as well as propose a more comprehensive psycho-neuro-endocrinological theory of addiction which reconciles important elements of both. We suggest that there is not only direct interaction of dopaminergic and stress systems throughout the addiction cycle, from initial use, via the abusing stage, to the endpoint of addiction, but that this interaction is present prior to initial use. A combination of genetic factors and/or experiences of adversity may result in a stress-triggered sensitisation of dopaminergic networks which is present before the onset of substance use, which cannot be explained solely in terms of dopaminergic (positive) reinforcement. Rather these processes are best explained by an allostatic model which reconciles aspects of both models of addiction and shows how dopamine/stress interactions become increasingly pathological in the addiction cycle. Our model suggests that chronic stress eventually creates baseline hypodopaminergic activity, but also prompts dopaminergic hyperactivity in cue reactivity. This is the neural marker of allostatic mechanisms observed at endpoint addiction. We propose a multi-circuit explanation of how this cumulative effect of stress increasingly impacts on dopaminergic networks of reward, affect, attention, memory and behavioural control. This revised model provides a useful frame of reference for further research and ultimately clinical practice. PMID:26647785
Xu, Zhuo Gu, Bo; Mori, Michiyasu; Maekawa, Sadamichi; Ziman, Timothy
2015-05-07
We analyze the spin Hall effect in CuIr alloys in theory by the combined approach of the density functional theory (DFT) and Hartree-Fock (HF) approximation. The spin Hall angle (SHA) is obtained to be negative without the local correlation effects. After including the local correlation effects of the 5d orbitals of Ir impurities, the SHA becomes positive with realistic correlation parameters and consistent with experiment [Niimi et al., Phys. Rev. Lett. 106, 126601 (2011)]. Moreover, our analysis shows that the DFT + HF approach is a convenient and general method to study the influence of local correlation effects on the spin Hall effect.
Powell, Rachael; Pattison, Helen M; Francis, Jill J
2016-01-01
Chlamydia is a common sexually transmitted infection that has potentially serious consequences unless detected and treated early. The health service in the UK offers clinic-based testing for chlamydia but uptake is low. Identifying the predictors of testing behaviours may inform interventions to increase uptake. Self-tests for chlamydia may facilitate testing and treatment in people who avoid clinic-based testing. Self-testing and being tested by a health care professional (HCP) involve two contrasting contexts that may influence testing behaviour. However, little is known about how predictors of behaviour differ as a function of context. In this study, theoretical models of behaviour were used to assess factors that may predict intention to test in two different contexts: self-testing and being tested by a HCP. Individuals searching for or reading about chlamydia testing online were recruited using Google Adwords. Participants completed an online questionnaire that addressed previous testing behaviour and measured constructs of the Theory of Planned Behaviour and Protection Motivation Theory, which propose a total of eight possible predictors of intention. The questionnaire was completed by 310 participants. Sufficient data for multiple regression were provided by 102 and 118 respondents for self-testing and testing by a HCP respectively. Intention to self-test was predicted by vulnerability and self-efficacy, with a trend-level effect for response efficacy. Intention to be tested by a HCP was predicted by vulnerability, attitude and subjective norm. Thus, intentions to carry out two testing behaviours with very similar goals can have different predictors depending on test context. We conclude that interventions to increase self-testing should be based on evidence specifically related to test context. PMID:25929700
NASA Astrophysics Data System (ADS)
Chu, H. T.; Ge, L.
2012-07-01
The integration of different kinds of remotely sensed data, in particular Synthetic Aperture Radar (SAR) and optical satellite imagery, is considered a promising approach for land cover classification because of the complimentary properties of each data source. However, the challenges are: how to fully exploit the capabilities of these multiple data sources, which combined datasets should be used and which data processing and classification techniques are most appropriate in order to achieve the best results. In this paper an approach, in which synergistic use of a feature selection (FS) methods with Genetic Algorithm (GA) and multiple classifiers combination based on Dempster-Shafer Theory of Evidence, is proposed and evaluated for classifying land cover features in New South Wales, Australia. Multi-date SAR data, including ALOS/PALSAR, ENVISAT/ASAR and optical (Landsat 5 TM+) images, were used for this study. Textural information were also derived and integrated with the original images. Various combined datasets were generated for classification. Three classifiers, namely Artificial Neural Network (ANN), Support Vector Machines (SVMs) and Self-Organizing Map (SOM) were employed. Firstly, feature selection using GA was applied for each classifier and dataset to determine the optimal input features and parameters. Then the results of three classifiers on particular datasets were combined using the Dempster-Shafer theory of Evidence. Results of this study demonstrate the advantages of the proposed method for land cover mapping using complex datasets. It is revealed that the use of GA in conjunction with the Dempster-Shafer Theory of Evidence can significantly improve the classification accuracy. Furthermore, integration of SAR and optical data often outperform single-type datasets.
NASA Astrophysics Data System (ADS)
Malet, Jean-Pierre Garnier
2010-09-01
Developed in previous papers [1, 2, 3, 4, 5], the ``doubling'' (of space and time) theory uses finite horizons of several virtual space-times which are embedded within the observable space-time. A specific fundamental movement creates imperceptible time instants (called ``temporal openings'') in the time flow. Considering different scale levels, it modifies the perception of the time flow and gives to each horizon instantaneous potential futures. This theory explains the cyclical planetary movement in the solar system, the entanglement between particles, the dissymmetry of matter/antimatter and the existence of the dark matter and dark energy. It can also calculate ``for the first time'' universal constants: the speed of light and the fine structure constant.
NASA Astrophysics Data System (ADS)
Hong, Xuhai; Wang, Feng; Wu, Yong; Gou, Bingcong; Wang, Jianguo
2016-06-01
H+-H2O collisions are investigated using the time-dependent density-functional theory combined with the molecular dynamics method, in which the electrons are described quantum mechanically within the framework of time-dependent density-functional theory and the ionic cores are described classically by Newton's equations. The feedback between quantum electrons and classical ions is self-consistently coupled by Ehrenfest's method. The electron capture, electron loss, and ionization cross sections are obtained in the energy range of 1-1000 keV and excellent agreements are achieved with available experimental and theoretical data. The orientation effects of the H2O target are found to be significant in the collision processes, especially in low-energy collisions.
NASA Astrophysics Data System (ADS)
Chen, Chuan; Ju, Shin-Pon; Huang, Wei-Chun; Lin, Jenn-Sen; Chen, Chien-Chia
2014-07-01
The strength variation of polyglycolic acid (PGA) during the hydrolysis process was predicted by the Flory-Fox model with all required parameters obtained by the theoretical approach. The density functional theory (DFT) calculation with the simple transition theory was used to derive the degradation rate constants of PGA intermediate at different temperatures and external load. The ultimate strength of PGA with infinite chain length, can be obtained by linearly extrapolating the ultimate strengths of three PGA materials with shorter chains. Although this Flory-Fox model formula combined with DFT calculation and MD simulation can only provide a qualitative comparison to those by experimental approaches, the current theoretical approach can provide an economical and quick way to assess the variation of PGA ultimate strength during hydrolysis.
Zimmerman, Marc A; Stewart, Sarah E; Morrel-Samuels, Susan; Franzen, Susan; Reischl, Thomas M
2011-05-01
This article describes the development and evaluation of an after-school curriculum designed to prepare adolescents to prevent violence through community change. This curriculum, part of the Youth Empowerment Solutions for Peaceful Communities (YES) program, is guided by empowerment and ecological theories within a positive youth development context. YES is designed to enhance the capacity of adolescents and adults to work together to plan and implement community change projects. The youth curriculum is organized around six themed units: (a) Youth as Leaders, (b) Learning about Our Community, (c) Improving Our Community, (d) Building Intergenerational Partnerships, (e) Planning for Change, and (f) Action and Reflection. The curriculum was developed through an iterative process. Initially, program staff members documented their activities with youth. These outlines were formalized as curriculum sessions. Each session was reviewed by the program and research staff and revised based on underlying theory and practical application. The curriculum process evaluation includes staff and youth feedback. This theoretically based, field-tested curriculum is designed to be easily adapted and implemented in a diverse range of communities. PMID:21059871
NASA Astrophysics Data System (ADS)
Takemura, Kazuhiro; Burri, Raghunadha Reddy; Ishikawa, Takeshi; Ishikura, Takakazu; Sakuraba, Shun; Matubayasi, Nobuyuki; Kuwata, Kazuo; Kitao, Akio
2013-02-01
We propose a method for calculating the binding free energy of protein-ligand complexes using all-atom molecular dynamics simulation combined with the solution theory in the energy representation. Four distinct modes for the binding of tri-N-acetyl-D-glucosamine (triNAG) to hen egg-white lysozyme were investigated, one from the crystal structure and three generated by docking predictions. The proposed method was demonstrated to be used to distinguish the most plausible binding mode (crystal model) as the lowest binding energy mode.
Shojaedini, Seyed Vahab; Heydari, Masoud
2014-01-01
Shape and movement features of sperms are important parameters for infertility study and treatment. In this article, a new method is introduced for characterization sperms in microscopic videos. In this method, first a hypothesis framework is defined to distinguish sperms from other particles in captured video. Then decision about each hypothesis is done in following steps: Selecting some primary regions as candidates for sperms by watershed-based segmentation, pruning of some false candidates during successive frames using graph theory concept and finally confirming correct sperms by using their movement trajectories. Performance of the proposed method is evaluated on real captured images belongs to semen with high density of sperms. The obtained results show the proposed method may detect 97% of sperms in presence of 5% false detections and track 91% of moving sperms. Furthermore, it can be shown that better characterization of sperms in proposed algorithm doesn’t lead to extracting more false sperms compared to some present approaches. PMID:25426431
NASA Astrophysics Data System (ADS)
Godwal, B. K.; Stackhouse, S.; Yan, J.; Speziale, S.; Militzer, Burkhard; Jeanloz, R.
2013-03-01
A combination of x-ray diffraction at high pressures and first-principles calculations reveals the sequence of crystal-structural phase transitions in AuGa2 from cubic (Fm3¯m) to orthorhombic (Pnma) at 10 (±4) GPa and then to monoclinic (P21/n) at 33 (±6) GPa. Neither theory nor experiment would have been adequate, on their own, in documenting this sequence of phases, but together they confirm a sequence differing from the Fm3¯m→Pnma→P63/mmc transitions predicted for CaF2 and Pnma → P1121/a transition reported for PbCl2 and SnCl2. The combined results from theory and experiment also allow us to constrain the equations of state of the three phases of AuGa2. Calculations on the analog PbCl2 predict a transition to the P21/n phase seen in AuGa2 that could, therefore, be a common high-pressure phase for PbCl2-structured compounds.
Ukezono, Masatoshi; Nakashima, Satoshi F.; Sudo, Ryunosuke; Yamazaki, Akira; Takano, Yuji
2015-01-01
Zajonc’s drive theory postulates that arousal enhanced through the perception of the presence of other individuals plays a crucial role in social facilitation (Zajonc, 1965). Here, we conducted two experiments to examine whether the elevation of arousal through a stepping exercise performed in front of others as an exogenous factor causes social facilitation of a cognitive task in a condition where the presence of others does not elevate the arousal level. In the main experiment, as an “aftereffect of social stimulus,” we manipulated the presence or absence of others and arousal enhancement before participants conducted the primary cognitive task. The results showed that the strongest social facilitation was induced by the combination of the perception of others and arousal enhancement. In a supplementary experiment, we manipulated these factors by adding the presence of another person during the task. The results showed that the effect of the presence of the other during the primary task is enough on its own to produce facilitation of task performance regardless of the arousal enhancement as an aftereffect of social stimulus. Our study therefore extends the framework of Zajonc’s drive theory in that the combination of the perception of others and enhanced arousal as an “aftereffect” was found to induce social facilitation especially when participants did not experience the presence of others while conducting the primary task. PMID:25999906
Ukezono, Masatoshi; Nakashima, Satoshi F; Sudo, Ryunosuke; Yamazaki, Akira; Takano, Yuji
2015-01-01
Zajonc's drive theory postulates that arousal enhanced through the perception of the presence of other individuals plays a crucial role in social facilitation (Zajonc, 1965). Here, we conducted two experiments to examine whether the elevation of arousal through a stepping exercise performed in front of others as an exogenous factor causes social facilitation of a cognitive task in a condition where the presence of others does not elevate the arousal level. In the main experiment, as an "aftereffect of social stimulus," we manipulated the presence or absence of others and arousal enhancement before participants conducted the primary cognitive task. The results showed that the strongest social facilitation was induced by the combination of the perception of others and arousal enhancement. In a supplementary experiment, we manipulated these factors by adding the presence of another person during the task. The results showed that the effect of the presence of the other during the primary task is enough on its own to produce facilitation of task performance regardless of the arousal enhancement as an aftereffect of social stimulus. Our study therefore extends the framework of Zajonc's drive theory in that the combination of the perception of others and enhanced arousal as an "aftereffect" was found to induce social facilitation especially when participants did not experience the presence of others while conducting the primary task. PMID:25999906
Shealy, Craig N
2004-10-01
Although the Consensus Conference on Combined and Integrated Doctoral Training in Psychology (e.g., Bailey, 2003) generated much content of relevance to the structure and commitments of Combined-Integrated (C-I) programs, faculty, and students-and Competencies 2002: Future Directions in Education and Credentialing in Professional Psychology (www.appic.org) developed language and guidelines regarding the knowledge areas, skills, and values that students in professional psychology programs should acquire and demonstrate-specific models and methods are necessary to translate these professional guidelines and aspirations into reality. This article offers one such model, Equilintegration (EI) Theory, and method, the Beliefs, Events, and Values Inventory (BEVI), that can be used by faculty, training staff, supervisors, and students in C-I programs to operationalize, assess, and cultivate basic values of education and training from a C-I perspective (e.g., self-awareness, self-assessment, and self-reflection). In addition to this model and method, relevant background information, theory, and research are presented along with attendant implications, hypotheses, and principles. PMID:15372462
NASA Technical Reports Server (NTRS)
Mack, Robert J.
1988-01-01
A wind-tunnel study was conducted to determine the capability of a method combining linear theory and shock-expansion theory to design optimum camber surfaces for wings that will fly at high-supersonic/low-hypersonic speeds. Three force models (a flat-plate reference wing and two cambered and twisted wings) were used to obtain aerodynamic lift, drag, and pitching-moment data. A fourth pressure-orifice model was used to obtain surface-pressure data. All four wing models had the same planform, airfoil section, and centerbody area distribution. The design Mach number was 4.5, but data were also obtained at Mach numbers of 3.5 and 4.0. Results of these tests indicated that the use of airfoil thickness as a theoretical optimum, camber-surface design constraint did not improve the aerodynamic efficiency or performance of a wing as compared with a wing that was designed with a zero-thickness airfoil (linear-theory) constraint.
NASA Astrophysics Data System (ADS)
Levshov, Dmitry I.; Avramenko, Marina V.; Than, Xuan-Tinh; Michel, Thierry; Arenal, Raul; Paillet, Matthieu; Rybkovskiy, Dmitry V.; Osadchy, Alexander V.; Rochal, Sergei B.; Yuzyuk, Yuri I.; Sauvajol, Jean-Louis
2016-01-01
Radial breathing modes (RBMs) are widely used for the atomic structure characterization and index assignment of single-walled carbon nanotubes (SWNTs) from resonant Raman spectroscopy. However, for double-walled carbon nanotubes (DWNTs), the use of conventional ωRBM(d) formulas is complicated due to the van der Waals interaction between the layers, which strongly affects the frequencies of radial modes and leads to new collective vibrations. This paper presents an alternative way to theoretically study the collective radial breathing-like modes (RBLMs) of DWNTs and to account for interlayer interaction, namely the continuous two-dimensional membrane theory. We obtain an analytical ωRBLM(do,di) relation, being the equivalent of the conventional ωRBM(d) expressions, established for SWNTs. We compare our theoretical predictions with Raman data, measured on individual index-identified suspended DWNTs, and find a good agreement between experiment and theory. Moreover, we show that the interlayer coupling in individual DWNTs strongly depends on the interlayer distance, which is manifested in the frequency shifts of the RBLMs with respect to the RBMs of the individual inner and outer tubes. In terms of characterization, this means that the combination of Raman spectroscopy data and predictions of continuous membrane theory may give additional criteria for the index identification of DWNTs, namely the interlayer distance.
Severino, Joyce Ferreira; Goodman, Bernard A; Kay, Christopher W M; Stolze, Klaus; Tunega, Daniel; Reichenauer, Thomas G; Pirker, Katharina F
2009-04-15
Electron paramagnetic resonance spectroscopy and density functional theory calculations have been used to investigate the redox properties of the green tea polyphenols (GTPs) (-)-epigallocatechin gallate (EGCG), (-)-epigallocatechin (EGC), and (-)-epicatechin gallate (ECG). Aqueous extracts of green tea and these individual phenols were autoxidized at alkaline pH and oxidized by superoxide anion (O(2)(-)) radicals in dimethyl sulfoxide. Several new aspects of the free radical chemistry of GTPs were revealed. EGCG can be oxidized on both the B and the D ring. The B ring was the main oxidation site during autoxidation, but the D ring was the preferred site for O(2)(-) oxidation. Oxidation of the D ring was followed by structural degradation, leading to generation of a radical identical to that of oxidized gallic acid. Alkaline autoxidation of green tea extracts produced four radicals that were related to products of the oxidation of EGCG, EGC, ECG, and gallic acid, whereas the spectra from O(2)(-) oxidation could be explained solely by radicals generated from EGCG. Assignments of hyperfine coupling constants were made by DFT calculations, allowing the identities of the radicals observed to be confirmed. PMID:19439236
NASA Astrophysics Data System (ADS)
Juanes, Ruben
2011-11-01
The large-scale injection and storage of carbon dioxide (CO2) into deep saline aquifers is a promising tool for reducing atmospheric CO2 emissions to mitigate climate change. Success of geologic sequestration relies on trapping the buoyant CO2, to minimize the risk of leakage into shallower formations through pre- existing wells, fractures or faults. However, traditional reservoir-simulation tools are currently unable to resolve the impact of small-scale trapping processes on fluid flow at the scale of a geologic basin. Here, we formulate a sharp-interface mathematical model for the post-injection migration of a CO2 plume driven by groundwater flow in a sloping aquifer, subject to both capillary trapping and CO2 dissolution by convective mixing. We develop semi-analytical solutions that elucidate the nontrivial interplay between the two trapping mechanisms, and how their synergetic action controls plume migration. We validate the theory by means of laboratory experiments with analogue fluids to study how convective mixing arrests the buoyant current. We use our findings to estimate the dimensionless rate of solubility trapping for several large saline aquifers in the United States, and assess the importance of solubility trapping in practice.
Bellasio, Chandra; Beerling, David J; Griffiths, Howard
2016-06-01
The higher photosynthetic potential of C4 plants has led to extensive research over the past 50 years, including C4 -dominated natural biomes, crops such as maize, or for evaluating the transfer of C4 traits into C3 lineages. Photosynthetic gas exchange can be measured in air or in a 2% Oxygen mixture using readily available commercial gas exchange and modulated PSII fluorescence systems. Interpretation of these data, however, requires an understanding (or the development) of various modelling approaches, which limit the use by non-specialists. In this paper we present an accessible summary of the theory behind the analysis and derivation of C4 photosynthetic parameters, and provide a freely available Excel Fitting Tool (EFT), making rigorous C4 data analysis accessible to a broader audience. Outputs include those defining C4 photochemical and biochemical efficiency, the rate of photorespiration, bundle sheath conductance to CO2 diffusion and the in vivo biochemical constants for PEP carboxylase. The EFT compares several methodological variants proposed by different investigators, allowing users to choose the level of complexity required to interpret data. We provide a complete analysis of gas exchange data on maize (as a model C4 organism and key global crop) to illustrate the approaches, their analysis and interpretation. © 2015 John Wiley & Sons Ltd. PMID:26286697
Ensling, David; Thissen, Andreas; Laubach, Stefan; Schmidt, Peter C.; Jaegermann, Wolfram
2010-11-15
The electronic properties of LiCoO{sub 2} have been studied by theoretical band-structure calculations (using density functional theory) and experimental methods (photoemission). Synchrotron-induced photoelectron spectroscopy, resonant photoemission spectroscopy (ResPES), and soft x-ray absorption (XAS) have been applied to investigate the electronic structure of both occupied and unoccupied states. High-quality PES spectra were obtained from stoichiometric and highly crystalline LiCoO{sub 2} thin films deposited ''in situ'' by rf magnetron sputtering. An experimental approach of separating oxygen- and cobalt-derived (final) states by ResPES in the valence-band region is presented. The procedure takes advantage of an antiresonant behavior of cobalt-derived states at the 3p-3d excitation threshold. Information about the unoccupied density of states has been obtained by O K XAS. The structure of the Co L absorption edge is compared to semiempirical charge-transfer multiplet calculations. The experimental results are furthermore compared with band-structure calculations considering three different exchange potentials [generalized gradient approximation (GGA), using a nonlocal Hubbard U (GGA+U) and using a hybrid functional (Becke, three-parameter, Lee-Yang-Parr [B3LYP])]. For these different approaches total density of states and partial valence-band density of states have been investigated. The best qualitative agreement with experimental results has been obtained by using a GGA+U functional with U=2.9 eV.
Vahdat, Vahid; Ryan, Kathleen E; Keating, Pamela L; Jiang, Yijie; Adiga, Shashishekar P; Schall, J David; Turner, Kevin T; Harrison, Judith A; Carpick, Robert W
2014-07-22
In this study, we explore the wear behavior of amplitude modulation atomic force microscopy (AM-AFM, an intermittent-contact AFM mode) tips coated with a common type of diamond-like carbon, amorphous hydrogenated carbon (a-C:H), when scanned against an ultra-nanocrystalline diamond (UNCD) sample both experimentally and through molecular dynamics (MD) simulations. Finite element analysis is utilized in a unique way to create a representative geometry of the tip to be simulated in MD. To conduct consistent and quantitative experiments, we apply a protocol that involves determining the tip-sample interaction geometry, calculating the tip-sample force and normal contact stress over the course of the wear test, and precisely quantifying the wear volume using high-resolution transmission electron microscopy imaging. The results reveal gradual wear of a-C:H with no sign of fracture or plastic deformation. The wear rate of a-C:H is consistent with a reaction-rate-based wear theory, which predicts an exponential dependence of the rate of atom removal on the average normal contact stress. From this, kinetic parameters governing the wear process are estimated. MD simulations of an a-C:H tip, whose radius is comparable to the tip radii used in experiments, making contact with a UNCD sample multiple times exhibit an atomic-level removal process. The atomistic wear events observed in the simulations are correlated with under-coordinated atomic species at the contacting surfaces. PMID:24922087
Biermann, Silke
2014-04-30
We give a summary of recent progress in the field of electronic structure calculations for materials with strong electronic Coulomb correlations. The discussion focuses on developments beyond the by now well established combination of density functional and dynamical mean field theory dubbed 'LDA + DMFT'. It is organized around the description of dynamical screening effects in the solid. Indeed, screening in the solid gives rise to dynamical local Coulomb interactions U(ω) (Aryasetiawan et al 2004 Phys. Rev. B 70 195104), and this frequency dependence leads to effects that cannot be neglected in a truly first principles description. We review the recently introduced extension of LDA + DMFT to dynamical local Coulomb interactions 'LDA + U(ω) + DMFT' (Casula et al 2012 Phys. Rev. B 85 035115, Werner et al 2012 Nature Phys. 1745-2481). A reliable description of dynamical screening effects is also a central ingredient of the 'GW + DMFT' scheme (Biermann et al 2003 Phys. Rev. Lett. 90 086402), a combination of many-body perturbation theory in Hedin's GW approximation and dynamical mean field theory. Recently, the first GW + DMFT calculations including dynamical screening effects for real materials have been achieved, with applications to SrV O3 (Tomczak et al 2012 Europhys. Lett. 100 67001, Tomczak et al Phys. Rev. B submitted (available electronically as arXiv:1312.7546)) and adatom systems on surfaces (Hansmann et al 2013 Phys. Rev. Lett. 110 166401). We review these and comment on further perspectives in the field. This review is an attempt to put elements of the original works into the broad perspective of the development of truly first principles techniques for correlated electron materials. PMID:24722486
NASA Astrophysics Data System (ADS)
Ayral, Thomas; Biermann, Silke; Werner, Philipp
2013-03-01
We describe a recent implementation of the combined GW and dynamical mean field method (GW+DMFT) for the two-dimensional Hubbard model with onsite and nearest-neighbor repulsion. We clarify the relation of the GW+DMFT scheme to alternative approaches in the literature, and discuss the corresponding approximations to the free-energy functional of the model. Furthermore, we describe a numerically exact technique for the solution of the GW+DMFT equations, namely, the hybridization expansion continuous-time algorithm for impurity models with retarded interactions. We compute the low-temperature phase diagram of the half-filled extended Hubbard model, addressing the metal-insulator transition at small intersite interactions and the transition to a charge-ordered state for stronger intersite repulsions. GW+DMFT introduces a nontrivial momentum dependence into the many-body self-energy and polarization. We find that the charge fluctuations included in the present approach have a larger impact on the latter than on the former. Finally, within the GW+DMFT framework, as in extended DMFT, the intersite repulsion translates into a frequency dependence of the local effective interaction. We analyze this dependence and show how it affects the local spectral function.
Bellasio, Chandra; Beerling, David J; Griffiths, Howard
2016-06-01
Combined photosynthetic gas exchange and modulated fluorometres are widely used to evaluate physiological characteristics associated with phenotypic and genotypic variation, whether in response to genetic manipulation or resource limitation in natural vegetation or crops. After describing relatively simple experimental procedures, we present the theoretical background to the derivation of photosynthetic parameters, and provide a freely available Excel-based fitting tool (EFT) that will be of use to specialists and non-specialists alike. We use data acquired in concurrent variable fluorescence-gas exchange experiments, where A/Ci and light-response curves have been measured under ambient and low oxygen. From these data, the EFT derives light respiration, initial PSII (photosystem II) photochemical yield, initial quantum yield for CO2 fixation, fraction of incident light harvested by PSII, initial quantum yield for electron transport, electron transport rate, rate of photorespiration, stomatal limitation, Rubisco (ribulose 1·5-bisphosphate carboxylase/oxygenase) rate of carboxylation and oxygenation, Rubisco specificity factor, mesophyll conductance to CO2 diffusion, light and CO2 compensation point, Rubisco apparent Michaelis-Menten constant, and Rubisco CO2 -saturated carboxylation rate. As an example, a complete analysis of gas exchange data on tobacco plants is provided. We also discuss potential measurement problems and pitfalls, and suggest how such empirical data could subsequently be used to parameterize predictive photosynthetic models. PMID:25923517
Alsubiheen, Abdulrahman; Petrofsky, Jerrold; Daher, Noha; Lohman, Everett; Balbas, Edward
2015-01-01
Background One of the effects of diabetes mellitus (DM), peripheral neuropathy, affects the sensation in the feet and can increase the chance of falling. The purpose of the study was to investigate the effect of 8 weeks of Tai Chi (TC) training combined with mental imagery (MI) on improving balance in people with diabetes and an age matched control group. Material/Methods Seventeen healthy subjects and 12 diabetic sedentary subjects ranging from 40–80 years of age were recruited. All subjects in both groups attended a Yang style of TC class using MI strategies, 2 sessions a week for 8 weeks. Each session was one hour long. Measures were taken using a balance platform test, an Activities-specific Balance Confidence (ABC) Scale, a one leg standing test (OLS), functional reach test (FRT) and hemoglobin A1C. These measures were taken twice, pre and post-study, for both groups. Results Both groups experienced significant improvements in ABC, OLS, FRT (P<0.01) after completing 8 weeks of TC exercise with no significant improvement between groups. Subjects using the balance platform test demonstrated improvement in balance in all different tasks with no significant change between groups. There was no significant change in HbA1C for the diabetic group. Conclusions All results showed an improvement in balance in the diabetic and the control groups; however, no significant difference between the groups was observed. Since the DM group had more problems with balance impairment at baseline than the control, the diabetic group showed the most benefit from the TC exercise. PMID:26454826
Qian, Zekan; Li, Rui; Hou, Shimin; Xue, Zengquan; Sanvito, Stefano
2007-11-21
An efficient self-consistent approach combining the nonequilibrium Green's function formalism with density functional theory is developed to calculate electron transport properties of molecular devices with quasi-one-dimensional (1D) electrodes. Two problems associated with the low dimensionality of the 1D electrodes, i.e., the nonequilibrium state and the uncertain boundary conditions for the electrostatic potential, are circumvented by introducing the reflectionless boundary conditions at the electrode-contact interfaces and the zero electric field boundary conditions at the electrode-molecule interfaces. Three prototypical systems, respectively, an ideal ballistic conductor, a high resistance tunnel junction, and a molecular device, are investigated to illustrate the accuracy and efficiency of our approach. PMID:18035901
NASA Technical Reports Server (NTRS)
Reddy, C. J.; Deshpande, M. D.; Cockrell, C. R.; Beck, F. B.
1995-01-01
A combined finite element method (FEM) and method of moments (MoM) technique is presented to analyze the radiation characteristics of a cavity-fed aperture in three dimensions. Generalized feed modeling has been done using the modal expansion of fields in the feed structure. Numerical results for some feeding structures such as a rectangular waveguide, circular waveguide, and coaxial line are presented. The method also uses the geometrical theory of diffraction (GTD) to predict the effect of a finite ground plane on radiation characteristics. Input admittance calculations for open radiating structures such as a rectangular waveguide, a circular waveguide, and a coaxial line are shown. Numerical data for a coaxial-fed cavity with finite ground plane are verified with experimental data.
Ding, Li-Ping; Shao, Peng; Lu, Cheng; Zhang, Fang-Hui; Ding, Lei; Yuan, Tao Li
2016-08-17
The structure and bonding nature of neutral and negatively charged BxAlyH2 (x + y = 7, 8, 9) clusters are investigated with the aid of previously published experimental photoelectron spectra combined with the present density functional theory calculations. The comparison between the experimental photoelectron spectra and theoretical simulated spectra helps to identify the ground state structures. The accuracy of the obtained ground state structures is further verified by calculating their adiabatic electron affinities and vertical detachment energies and comparing them against available experimental data. The results show that the structures of BxAlyH2 transform from three-dimensional to planar structures as the number of boron atoms increases. Moreover, boron atoms tend to bind together forming Bn units. The hydrogen atoms prefer to bind with boron atoms rather than aluminum atoms. The analyses of the molecular orbital on the ground state structures further support the abovementioned results. PMID:27499430
NASA Astrophysics Data System (ADS)
Vinš, Václav; Planková, Barbora; Hrubý, Jan
2013-05-01
In this study, the Cahn-Hilliard density gradient theory (GT) is used for predicting the surface tension of various binary mixtures at relatively wide temperature ranges and for testing the application of the GT for predictions of homogeneous nucleation. The GT was combined with two physically based equations of state (EoS), namely the perturbed-chain (PC) statistical associating fluid theory (SAFT) and its modification for polar substances the perturbed-chain polar (PCP) SAFT. The GT applied to the planar phase interface was employed to predict the interfacial tension for various quadrupolar (CO2 and benzene) and dipolar (difluoromethane, i.e., R32; pentafluoroethane, i.e., R125; and 1,1,1,2-tetrafluoroethane, i.e., R134a) substances and for five binary mixtures including polar components ( n-decane + CO2, benzene + CO2, R32 + R125, R32 + R134a, R134a + R125). The PCP-SAFT EoS combined with the GT provides more accurate results for both the quadrupolar and dipolar substances than the original PC-SAFT EoS. Besides the planar phase interface, the GT was also applied to the spherical phase interface simulating a critical cluster occurring in homogeneous nucleation of droplets. Carbon dioxide was considered, because it has a relatively high quadrupole moment and because of its relevance to natural gas processing. Application of the PCP-SAFT EoS provides a significant improvement compared to the PC-SAFT EoS, and it is clearly superior to the classical cubic Peng-Robinson EoS, which is still used for modeling droplet nucleation.
Gobrecht, Alexia; Bendoula, Ryad; Roger, Jean-Michel; Bellon-Maurel, Véronique
2015-01-01
Visible and Near Infrared (Vis-NIR) Spectroscopy is a powerful non destructive analytical method used to analyze major compounds in bulk materials and products and requiring no sample preparation. It is widely used in routine analysis and also in-line in industries, in-vivo with biomedical applications or in-field for agricultural and environmental applications. However, highly scattering samples subvert Beer-Lambert law's linear relationship between spectral absorbance and the concentrations. Instead of spectral pre-processing, which is commonly used by Vis-NIR spectroscopists to mitigate the scattering effect, we put forward an optical method, based on Polarized Light Spectroscopy to improve the absorbance signal measurement on highly scattering samples. This method selects part of the signal which is less impacted by scattering. The resulted signal is combined in the Absorption/Remission function defined in Dahm's Representative Layer Theory to compute an absorbance signal fulfilling Beer-Lambert's law, i.e. being linearly related to concentration of the chemicals composing the sample. The underpinning theories have been experimentally evaluated on scattering samples in liquid form and in powdered form. The method produced more accurate spectra and the Pearson's coefficient assessing the linearity between the absorbance spectra and the concentration of the added dye improved from 0.94 to 0.99 for liquid samples and 0.84-0.97 for powdered samples. PMID:25467494
Hendrie, Gilly A; Freyne, Jill
2016-01-01
Background The prevalence of health-focused mobile phone apps available for download increases daily, with weight management apps being among the most proliferative. However, most lack theoretic grounding or evidence of efficacy. There is a significant body of literature which provides evidence for behaviors which are associated with successful weight loss maintenance. Behavioral theory also provides further insight regarding successful behavior change and maintenance. Objective We aimed to apply this knowledge to the development of the functionality of an app targeting weight loss maintenance. Methods We have subsequently undertaken the development of a persuasive and behavior targeting mobile app (MotiMate) to assist in maintenance of weight loss. MotiMate combines persuasive and behavior change theories in a practical targeted tool through its motivational messages, personalized feedback, and intelligent supportive tools to manage weight, food, exercise, mood and stress. Results The development and trial of MotiMate received funding support in May 2014. All 88 volunteers started the trial by December 2014 and were in the process of completing their final visits when this paper was submitted (May 2015). Data analysis is currently underway. Conclusions The paper has presented a scientifically informed mobile phone app to support weight loss maintenance. Further evaluation of its efficacy is in progress. Trial Registration ANZCTR 12614000474651; https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=366120 (Archived by WebCite at http://www.webcitation.org/6eJeQiKxi). PMID:26747725
Bao, Junwei Lucas; Zhang, Xin; Truhlar, Donald G
2016-06-22
Understanding the falloff in rate constants of gas-phase unimolecular reaction rate constants as the pressure is lowered is a fundamental problem in chemical kinetics, with practical importance for combustion, atmospheric chemistry, and essentially all gas-phase reaction mechanisms. In the present work, we use our recently developed system-specific quantum RRK theory, calibrated by canonical variational transition state theory with small-curvature tunneling, combined with the Lindemann-Hinshelwood mechanism, to model the dissociation reaction of fluoroform (CHF3), which provides a definitive test for falloff modeling. Our predicted pressure-dependent thermal rate constants are in excellent agreement with experimental values over a wide range of pressures and temperatures. The present validation of our methodology, which is able to include variational transition state effects, multidimensional tunneling based on the directly calculated potential energy surface along the tunneling path, and torsional and other vibrational anharmonicity, together with state-of-the-art reaction-path-based direct dynamics calculations, is important because the method is less empirical than models routinely used for generating full mechanisms, while also being simpler in key respects than full master equation treatments and the full reduced falloff curve and modified strong collision methods of Troe. PMID:27273734
NASA Astrophysics Data System (ADS)
Yeo, Sang Chul; Lo, Yu Chieh; Li, Ju; Lee, Hyuck Mo
2014-10-01
Ammonia (NH3) nitridation on an Fe surface was studied by combining density functional theory (DFT) and kinetic Monte Carlo (kMC) calculations. A DFT calculation was performed to obtain the energy barriers (Eb) of the relevant elementary processes. The full mechanism of the exact reaction path was divided into five steps (adsorption, dissociation, surface migration, penetration, and diffusion) on an Fe (100) surface pre-covered with nitrogen. The energy barrier (Eb) depended on the N surface coverage. The DFT results were subsequently employed as a database for the kMC simulations. We then evaluated the NH3 nitridation rate on the N pre-covered Fe surface. To determine the conditions necessary for a rapid NH3 nitridation rate, the eight reaction events were considered in the kMC simulations: adsorption, desorption, dissociation, reverse dissociation, surface migration, penetration, reverse penetration, and diffusion. This study provides a real-time-scale simulation of NH3 nitridation influenced by nitrogen surface coverage that allowed us to theoretically determine a nitrogen coverage (0.56 ML) suitable for rapid NH3 nitridation. In this way, we were able to reveal the coverage dependence of the nitridation reaction using the combined DFT and kMC simulations.
NASA Astrophysics Data System (ADS)
Xiao, Ruijuan; Li, Hong; Chen, Liquan
2015-09-01
Looking for solid state electrolytes with fast lithium ion conduction is an important prerequisite for developing all-solid-state lithium secondary batteries. By combining the simulation techniques in different levels of accuracy, e.g. the bond-valence (BV) method and the density functional theory (DFT), a high-throughput design and optimization scheme is proposed for searching fast lithium ion conductors as candidate solid state electrolytes for lithium rechargeable batteries. The screening from more than 1000 compounds is performed through BV-based method, and the ability to predict reliable tendency of the Li+ migration energy barriers is confirmed by comparing with the results from DFT calculations. β-Li3PS4 is taken as a model system to demonstrate the application of this combination method in optimizing properties of solid electrolytes. By employing the high-throughput DFT simulations to more than 200 structures of the doping derivatives of β-Li3PS4, the effects of doping on the ionic conductivities in this material are predicted by the BV calculations. The O-doping scheme is proposed as a promising way to improve the kinetic properties of this materials, and the validity of the optimization is proved by the first-principles molecular dynamics (FPMD) simulations.
Xiao, Ruijuan; Li, Hong; Chen, Liquan
2015-01-01
Looking for solid state electrolytes with fast lithium ion conduction is an important prerequisite for developing all-solid-state lithium secondary batteries. By combining the simulation techniques in different levels of accuracy, e.g. the bond-valence (BV) method and the density functional theory (DFT), a high-throughput design and optimization scheme is proposed for searching fast lithium ion conductors as candidate solid state electrolytes for lithium rechargeable batteries. The screening from more than 1000 compounds is performed through BV-based method, and the ability to predict reliable tendency of the Li+ migration energy barriers is confirmed by comparing with the results from DFT calculations. β-Li3PS4 is taken as a model system to demonstrate the application of this combination method in optimizing properties of solid electrolytes. By employing the high-throughput DFT simulations to more than 200 structures of the doping derivatives of β-Li3PS4, the effects of doping on the ionic conductivities in this material are predicted by the BV calculations. The O-doping scheme is proposed as a promising way to improve the kinetic properties of this materials, and the validity of the optimization is proved by the first-principles molecular dynamics (FPMD) simulations. PMID:26387639
Yeo, Sang Chul; Lee, Hyuck Mo; Lo, Yu Chieh; Li, Ju
2014-10-07
Ammonia (NH{sub 3}) nitridation on an Fe surface was studied by combining density functional theory (DFT) and kinetic Monte Carlo (kMC) calculations. A DFT calculation was performed to obtain the energy barriers (E{sub b}) of the relevant elementary processes. The full mechanism of the exact reaction path was divided into five steps (adsorption, dissociation, surface migration, penetration, and diffusion) on an Fe (100) surface pre-covered with nitrogen. The energy barrier (E{sub b}) depended on the N surface coverage. The DFT results were subsequently employed as a database for the kMC simulations. We then evaluated the NH{sub 3} nitridation rate on the N pre-covered Fe surface. To determine the conditions necessary for a rapid NH{sub 3} nitridation rate, the eight reaction events were considered in the kMC simulations: adsorption, desorption, dissociation, reverse dissociation, surface migration, penetration, reverse penetration, and diffusion. This study provides a real-time-scale simulation of NH{sub 3} nitridation influenced by nitrogen surface coverage that allowed us to theoretically determine a nitrogen coverage (0.56 ML) suitable for rapid NH{sub 3} nitridation. In this way, we were able to reveal the coverage dependence of the nitridation reaction using the combined DFT and kMC simulations.
Lara-Castells, María Pilar de Bartolomei, Massimiliano; Mitrushchenkov, Alexander O.; Stoll, Hermann
2015-11-21
The accuracy and transferability of the electronic structure approach combining dispersionless density functional theory (DFT) [K. Pernal et al., Phys. Rev. Lett. 103, 263201 (2009)] with the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)], are validated for the interaction between the noble-gas Ne, Ar, Kr, and Xe atoms and coronene/graphene/graphite surfaces. This approach uses the method of increments for surface cluster models to extract intermonomer dispersion-like (2- and 3-body) correlation terms at coupled cluster singles and doubles and perturbative triples level, while periodic dispersionless density functionals calculations are performed to estimate the sum of Hartree-Fock and intramonomer correlation contributions. Dispersion energy contributions are also obtained using DFT-based symmetry-adapted perturbation theory [SAPT(DFT)]. An analysis of the structure of the X/surface (X = Ne, Ar, Kr, and Xe) interaction energies shows the excellent transferability properties of the leading intermonomer correlation contributions across the sequence of noble-gas atoms, which are also discussed using the Drude oscillator model. We further compare these results with van der Waals-(vdW)-corrected DFT-based approaches. As a test of accuracy, the energies of the low-lying nuclear bound states supported by the laterally averaged X/graphite potentials (X = {sup 3}He, {sup 4}He, Ne, Ar, Kr, and Xe) are calculated and compared with the best estimations from experimental measurements and an atom-bond potential model using the ab initio-assisted fine-tuning of semiempirical parameters. The bound-state energies determined differ by less than 6–7 meV (6%) from the atom-bond potential model. The crucial importance of including incremental 3-body dispersion-type terms is clearly demonstrated, showing that the SAPT(DFT) approach effectively account for these terms. With the deviations from the best experimental-based estimations smaller than 2.3 meV (1.9%), the
de Lara-Castells, María Pilar; Bartolomei, Massimiliano; Mitrushchenkov, Alexander O; Stoll, Hermann
2015-11-21
The accuracy and transferability of the electronic structure approach combining dispersionless density functional theory (DFT) [K. Pernal et al., Phys. Rev. Lett. 103, 263201 (2009)] with the method of increments [H. Stoll, J. Chem. Phys. 97, 8449 (1992)], are validated for the interaction between the noble-gas Ne, Ar, Kr, and Xe atoms and coronene/graphene/graphite surfaces. This approach uses the method of increments for surface cluster models to extract intermonomer dispersion-like (2- and 3-body) correlation terms at coupled cluster singles and doubles and perturbative triples level, while periodic dispersionless density functionals calculations are performed to estimate the sum of Hartree-Fock and intramonomer correlation contributions. Dispersion energy contributions are also obtained using DFT-based symmetry-adapted perturbation theory [SAPT(DFT)]. An analysis of the structure of the X/surface (X = Ne, Ar, Kr, and Xe) interaction energies shows the excellent transferability properties of the leading intermonomer correlation contributions across the sequence of noble-gas atoms, which are also discussed using the Drude oscillator model. We further compare these results with van der Waals-(vdW)-corrected DFT-based approaches. As a test of accuracy, the energies of the low-lying nuclear bound states supported by the laterally averaged X/graphite potentials (X = (3)He, (4)He, Ne, Ar, Kr, and Xe) are calculated and compared with the best estimations from experimental measurements and an atom-bond potential model using the ab initio-assisted fine-tuning of semiempirical parameters. The bound-state energies determined differ by less than 6-7 meV (6%) from the atom-bond potential model. The crucial importance of including incremental 3-body dispersion-type terms is clearly demonstrated, showing that the SAPT(DFT) approach effectively account for these terms. With the deviations from the best experimental-based estimations smaller than 2.3 meV (1.9%), the accuracy of
Gunnerson, Kim N; Pereverzev, Yuriy V; Prezhdo, Oleg V
2009-02-19
Steered molecular dynamics simulations are combined with analytic theory in order to gain insights into the properties of the P-selectin/PSGL-1 catch-slip bond at the atomistic level of detail. The simulations allow us to monitor the conformational changes in the P-selectin/PSGL-1 complex in response to an external force, while the theory provides a unified framework bridging the simulation data with experiment over 9 orders of magnitude. The theory predicts that the probability of bond dissociation by the catch mechanism is extremely low in the simulations; however, a few or even a single trajectory can be sufficient for characterization of the slip mechanism. Theoretical analysis of the simulation data shows that the bond responds to the force in a highly nonlinear way, with the bond stiffness changing considerably as a function of the force ramp rate. The Langevin description of the simulation provides spring constants of the proteins and the binding interaction and gives the friction coefficient associated with the receptor-ligand motion in water. The estimated relaxation time shows that the simple probabilistic description is accurate for the experimental regime and remains approximately valid for the high ramp rates used in simulations. The simulations establish that bond deformation occurs primarily within the P-selectin receptor region. The two interaction sites within the binding pocket dissociate sequentially, raising the possibility of observing these independent rupture events in experiment. The stronger interaction that determines the overall properties of the bond dissociates first, indicating that the experimental data indeed capture the main rupture event and not the secondary weaker site rupture. The main rupture event involves the interaction between the calcium ion of the receptor and the ligand residue FUC-623. It is followed by new interactions, supporting the sliding-rebinding behavior observed in the earlier simulation [ Lou, J. Zhu, C
Liu, Ping; An, Wei; Stacchiola, Dario; Xu, Fang
2015-10-16
Potassium (K) plays an essential role in promoting catalytic reaction in many established industrial catalytic processes. Here, we report a combined study using scanning tunneling microscopy (STM) and density functional theory (DFT) in understanding the effect of depositing K on the atomic and electronic structures as well as chemical activities of CuxO/Cu(111) (x≤2). The DFT calculations observe a pseudomorphic growth of K on CuxO/Cu(111) up to 0.19 monolayer (ML) of coverage, where K binds the surface via strong ionic interaction with chemisorbed oxygen and the relatively weak electrostatic interactions with copper ions, lower and upper oxygen on the CuxO rings.more » The simulated STM pattern based on the DFT results agrees well with the experimental observations. The deposited K displays great impact on the surface electronic structure of CuxO/Cu(111), which induces significant reduction in work function and leads to a strong electron polarization on the surface. The promotion of K on the surface binding properties is selective. It varies depending on the nature of adsorbates. According to our results, K has little effect on surface acidity, while it enhances the surface basicity significantly. As a consequence, the presence of K does not help for CO adsorption on CuxO/Cu(111), but being able to accelerate the activation of CO2. Thus, such promotion strongly depends on the combinations from both geometric and electronic effects. Our results highlight the origin of promoting effect of alkalis in the design of catalysts for the complex reactions.« less
NASA Astrophysics Data System (ADS)
Chernenkaya, A.; Morherr, A.; Backes, S.; Popp, W.; Witt, S.; Kozina, X.; Nepijko, S. A.; Bolte, M.; Medjanik, K.; Öhrwall, G.; Krellner, C.; Baumgarten, M.; Elmers, H. J.; Schönhense, G.; Jeschke, H. O.; Valentí, R.
2016-07-01
We have investigated the charge transfer mechanism in single crystals of DTBDT-TCNQ and DTBDT-F4TCNQ (where DTBDT is dithieno[2,3-d;2',3'-d'] benzo[1,2-b;4,5-b']dithiophene) using a combination of near-edge X-ray absorption spectroscopy (NEXAFS) and density functional theory calculations (DFT) including final state effects beyond the sudden state approximation. In particular, we find that a description that considers the partial screening of the electron-hole Coulomb correlation on a static level as well as the rearrangement of electronic density shows excellent agreement with experiment and allows to uncover the details of the charge transfer mechanism in DTBDT-TCNQ and DTBDT-F4 TCNQ, as well as a reinterpretation of previous NEXAFS data on pure TCNQ. Finally, we further show that almost the same quality of agreement between theoretical results and experiment is obtained by the much faster Z+1/2 approximation, where the core hole effects are simulated by replacing N or F with atomic number Z with the neighboring atom with atomic number Z+1/2.
Xue, H. T.; Tang, F. L.; Lu, W. J.; Li, X. K.; Zhang, Y.; Feng, Y. D.
2014-08-07
The phase diagram of the CuInSe{sub 2}-CuGaSe{sub 2} pseudobinary system was determined using a combination of special quasirandom structure approach, ab initio density functional theory calculations, and thermodynamic modelling. It is shown that the CuIn{sub 1−x}Ga{sub x}Se{sub 2} solution phase has a tendency to phase separation at low temperature. The calculated consolute temperature is 485 K. It is found that both the binodal and spinodal curves are significantly asymmetric and on both curves there are a local maximum and a local minimum, which have not been reported in the previous studies. Our phase diagram can well explain the finding that the inhomogeneity of CuIn{sub 0.25}Ga{sub 0.75}Se{sub 2} is higher than that of CuIn{sub 0.75}Ga{sub 0.25}Se{sub 2} at the same temperature, while the previous phase diagrams cannot. Hence, our phase diagram should be more reliable and applicable.
Shyu, Guey-Shin; Cheng, Bai-You; Chiang, Chi-Ting; Yao, Pei-Hsuan; Chang, Tsun-Kuo
2011-01-01
In Taiwan many factors, whether geological parent materials, human activities, and climate change, can affect the groundwater quality and its stability. This work combines factor analysis and kriging with information entropy theory to interpret the stability of groundwater quality variation in Taiwan between 2005 and 2007. Groundwater quality demonstrated apparent differences between the northern and southern areas of Taiwan when divided by the Wu River. Approximately 52% of the monitoring wells in southern Taiwan suffered from progressing seawater intrusion, causing unstable groundwater quality. Industrial and livestock wastewaters also polluted 59.6% of the monitoring wells, resulting in elevated EC and TOC concentrations in the groundwater. In northern Taiwan, domestic wastewaters polluted city groundwater, resulting in higher NH3-N concentration and groundwater quality instability was apparent among 10.3% of the monitoring wells. The method proposed in this study for analyzing groundwater quality inspects common stability factors, identifies potential areas influenced by common factors, and assists in elevating and reinforcing information in support of an overall groundwater management strategy. PMID:21695030
Lüftner, Daniel; Milko, Matus; Huppmann, Sophia; Scholz, Markus; Ngyuen, Nam; Wießner, Michael; Schöll, Achim; Reinert, Friedrich; Puschnig, Peter
2014-08-01
Here we report on a combined experimental and theoretical study on the structural and electronic properties of a monolayer of Copper-Phthalocyanine (CuPc) on the Au(1 1 0) surface. Low-energy electron diffraction reveals a commensurate overlayer unit cell containing one adsorbate species. The azimuthal alignment of the CuPc molecule is revealed by comparing experimental constant binding energy (k x k y )-maps using angle-resolved photoelectron spectroscopy with theoretical momentum maps of the free molecule's highest occupied molecular orbital (HOMO). This structural information is confirmed by total energy calculations within the framework of van-der-Waals corrected density functional theory. The electronic structure is further analyzed by computing the molecule-projected density of states, using both a semi-local and a hybrid exchange-correlation functional. In agreement with experiment, the HOMO is located about 1.2 eV below the Fermi-level, while there is no significant charge transfer into the molecule and the CuPc LUMO remains unoccupied on the Au(1 1 0) surface. PMID:25284953
NASA Astrophysics Data System (ADS)
Emül, Y.; Erbahar, D.; Açıkgöz, M.
2015-08-01
Analyses of the local crystal and electronic structure in the vicinity of Fe3+ centers in perovskite KMgF3 crystal have been carried out in a comprehensive manner. A combination of density functional theory (DFT) and a semi-empirical superposition model (SPM) is used for a complete analysis of all Fe3+ centers in this study for the first time. Some quantitative information has been derived from the DFT calculations on both the electronic structure and the local geometry around Fe3+ centers. All of the trigonal (K-vacancy case, K-Li substitution case, and normal trigonal Fe3+ center case), FeF5O cluster, and tetragonal (Mg-vacancy and Mg-Li substitution cases) centers have been taken into account based on the previously suggested experimental and theoretical inferences. The collaboration between the experimental data and the results of both DFT and SPM calculations provides us to understand most probable structural model for Fe3+ centers in KMgF3.
Xiao, Zewen; Meng, Weiwei; Saparov, Bayrammurad; Duan, Hsin-Sheng; Wang, Changlei; Feng, Chunbao; Liao, Weiqiang; Ke, Weijun; Zhao, Dewei; Wang, Jianbo; Mitzi, David B; Yan, Yanfa
2016-04-01
We explore the photovoltaic-relevant properties of the 2D MA2Pb(SCN)2I2 (where MA = CH3NH3(+)) perovskite using a combination of materials synthesis, characterization and density functional theory calculation, and determine electronic properties of MA2Pb(SCN)2I2 that are significantly different from those previously reported in literature. The layered perovskite with mixed-anions exhibits an indirect bandgap of ∼2.04 eV, with a slightly larger direct bandgap of ∼2.11 eV. The carriers (both electrons and holes) are also found to be confined within the 2D layers. Our results suggest that the 2D MA2Pb(SCN)2I2 perovskite may not be among the most promising absorbers for efficient single-junction solar cell applications; however, use as an absorber for the top cell of a tandem solar cell may still be a possibility if films are grown with the 2D layers aligned perpendicular to the substrates. PMID:26975723
Duan, Yuhua; Sorescu, Dan C
2010-08-21
By combining density functional theory and lattice phonon dynamics, the thermodynamic properties of CO(2) absorption/desorption reactions with alkaline earth metal oxides MO and hydroxides M(OH)(2) (where M=Be,Mg,Ca,Sr,Ba) are analyzed. The heats of reaction and the chemical potential changes of these solids upon CO(2) capture reactions have been calculated and used to evaluate the energy costs. Relative to CaO, a widely used system in practical applications, MgO and Mg(OH)(2) systems were found to be better candidates for CO(2) sorbent applications due to their lower operating temperatures (600-700 K). In the presence of H(2)O, MgCO(3) can be regenerated into Mg(OH)(2) at low temperatures or into MgO at high temperatures. This transition temperature depends not only on the CO(2) pressure but also on the H(2)O pressure. Based on our calculated results and by comparing with available experimental data, we propose a general computational search methodology which can be used as a general scheme for screening a large number of solids for use as CO(2) sorbents. PMID:20726653
Boschmans, Jasper; Jacobs, Sam; Williams, Jonathan P; Palmer, Martin; Richardson, Keith; Giles, Kevin; Lapthorn, Cris; Herrebout, Wouter A; Lemière, Filip; Sobott, Frank
2016-06-20
Electrospray ion mobility-mass spectrometry (IM-MS) data show that for some small molecules, two (or even more) ions with identical sum formula and mass, but distinct drift times are observed. In spite of showing their own unique and characteristic fragmentation spectra in MS/MS, no configurational or constitutional isomers are found to be present in solution. Instead the observation and separation of such ions appears to be inherent to their gas-phase behaviour during ion mobility experiments. The origin of multiple drift times is thought to be the result of protonation site isomers ('protomers'). Although some important properties of protomers have been highlighted by other studies, correlating the experimental collision cross-sections (CCSs) with calculated values has proven to be a major difficulty. As a model, this study uses the pharmaceutical compound melphalan and a number of related molecules with alternative (gas-phase) protonation sites. Our study combines density functional theory (DFT) calculations with modified MobCal methods (e.g. nitrogen-based Trajectory Method algorithm) for the calculation of theoretical CCS values. Calculated structures can be linked to experimentally observed signals, and a strong correlation is found between the difference of the calculated dipole moments of the protomer pairs and their experimental CCS separation. PMID:27264846
Lüftner, Daniel; Milko, Matus; Huppmann, Sophia; Scholz, Markus; Ngyuen, Nam; Wießner, Michael; Schöll, Achim; Reinert, Friedrich; Puschnig, Peter
2014-01-01
Here we report on a combined experimental and theoretical study on the structural and electronic properties of a monolayer of Copper-Phthalocyanine (CuPc) on the Au(1 1 0) surface. Low-energy electron diffraction reveals a commensurate overlayer unit cell containing one adsorbate species. The azimuthal alignment of the CuPc molecule is revealed by comparing experimental constant binding energy (kxky)-maps using angle-resolved photoelectron spectroscopy with theoretical momentum maps of the free molecule's highest occupied molecular orbital (HOMO). This structural information is confirmed by total energy calculations within the framework of van-der-Waals corrected density functional theory. The electronic structure is further analyzed by computing the molecule-projected density of states, using both a semi-local and a hybrid exchange-correlation functional. In agreement with experiment, the HOMO is located about 1.2 eV below the Fermi-level, while there is no significant charge transfer into the molecule and the CuPc LUMO remains unoccupied on the Au(1 1 0) surface. PMID:25284953
NASA Astrophysics Data System (ADS)
Lee, Timothy J.; Huang, Xinchuan; Fortenberry, Ryan C.; Schwenke, David W.
2013-06-01
Theoretical chemists have been computing vibrational and rovibrational spectra of small molecules for more than 40 years, but over the last decade the interest in this application has grown significantly. The increased interest in computing accurate rotational and rovibrational spectra for small molecules could not come at a better time, as NASA and ESA have begun to acquire a mountain of high-resolution spectra from the Herschel mission, and soon will from the SOFIA and JWST missions. In addition, the ground-based telescope, ALMA, has begun to acquire high-resolution spectra in the same time frame. Hence the need for highly accurate line lists for many small molecules, including their minor isotopologues, will only continue to increase. I will present the latest developments from our group on using the "Best Theory + High-Resolution Experimental Data" strategy to compute highly accurate rotational and rovibrational spectra for small molecules, including NH3, CO2, and SO2. I will also present the latest work from our group in producing purely ab initio line lists and spectroscopic constants for small molecules thought to exist in various astrophysical environments, but for which there is either limited or no high-resolution experimental data available. These more limited line lists include purely rotational transitions as well as rovibrational transitions for bands up through a few combination/overtones.
Zheng, Weihua; Gallicchio, Emilio; Deng, Nanjie; Andrec, Michael; Levy, Ronald M.
2011-01-01
We present a new approach to study a multitude of folding pathways and different folding mechanisms for the 20-residue mini-protein Trp-Cage using the combined power of replica exchange molecular dynamics (REMD) simulations for conformational sampling, Transition Path Theory (TPT) for constructing folding pathways and stochastic simulations for sampling the pathways in a high dimensional structure space. REMD simulations of Trp-Cage with 16 replicas at temperatures between 270K and 566K are carried out with an all-atom force field (OPLSAA) and an implicit solvent model (AGBNP). The conformations sampled from all temperatures are collected. They form a discretized state space that can be used to model the folding process. The equilibrium population for each state at a target temperature can be calculated using the Weighted-Histogram-Analysis Method (WHAM). By connecting states with similar structures and creating edges satisfying detailed balance conditions, we construct a kinetic network that preserves the equilibrium population distribution of the state space. After defining the folded and unfolded macrostates, committor probabilities (Pfold) are calculated by solving a set of linear equations for each node in the network and pathways are extracted together with their fluxes using the TPT algorithm. By clustering the pathways into folding “tubes”, a more physically meaningful picture of the diversity of folding routes emerges. Stochastic simulations are carried out on the network and a procedure is developed to project sampled trajectories onto the folding tubes. The fluxes through the folding tubes calculated from the stochastic trajectories are in good agreement with the corresponding values obtained from the TPT analysis. The temperature dependence of the ensemble of Trp-Cage folding pathways is investigated. Above the folding temperature, a large number of diverse folding pathways with comparable fluxes flood the energy landscape. At low temperature
2014-01-01
Atomistic level understanding of interaction of α,β-unsaturated carbonyls with late transition metals is a key prerequisite for rational design of new catalytic materials with the desired selectivity toward C=C or C=O bond hydrogenation. The interaction of this class of compounds with transition metals was investigated on α,β-unsaturated ketone isophorone on Pd(111) as a prototypical system. In this study, infrared reflection–absorption spectroscopy (IRAS), near-edge X-ray absorption fine structure (NEXAFS) experiments, and density functional theory calculations including van der Waals interactions (DFT+vdW) were combined to obtain detailed information on the binding of isophorone to palladium at different coverages and on the effect of preadsorbed hydrogen on the binding and adsorption geometry. According to these experimental observations and the results of theoretical calculations, isophorone adsorbs on Pd(111) in a flat-lying geometry at low coverages. With increasing coverage, both C=C and C=O bonds of isophorone tilt with respect to the surface plane. The tilting is considerably more pronounced for the C=C bond on the pristine Pd(111) surface, indicating a prominent perturbation and structural distortion of the conjugated π system upon interaction with Pd. Preadsorbed hydrogen leads to higher tilting angles of both π bonds, which points to much weaker interaction of isophorone with hydrogen-precovered Pd and suggests the conservation of the in-plane geometry of the conjugated π system. The results of the DFT+vdW calculations provide further insights into the perturbation of the molecular structure of isophorone on Pd(111). PMID:26089998
NASA Astrophysics Data System (ADS)
Zhao, Li-Juan; Tian, Wen-Juan; Ou, Ting; Xu, Hong-Guang; Feng, Gang; Xu, Xi-Ling; Zhai, Hua-Jin; Li, Si-Dian; Zheng, Wei-Jun
2016-03-01
We present a combined photoelectron spectroscopy and first-principles theory study on the structural and electronic properties and chemical bonding of B3O3-/0 and B3O3H-/0 clusters. The concerted experimental and theoretical data show that the global-minimum structures of B3O3 and B3O3H neutrals are very different from those of their anionic counterparts. The B3O3- anion is characterized to possess a V-shaped OB-B-BO chain with overall C2v symmetry (1A), in which the central B atom interacts with two equivalent boronyl (B≡O) terminals via B-B single bonds as well as with one O atom via a B=O double bond. The B3O3H- anion has a Cs (2A) structure, containing an asymmetric OB-B-OBO zig-zag chain and a terminal H atom interacting with the central B atom. In contrast, the C2v (1a) global minimum of B3O3 neutral contains a rhombic B2O2 ring with one B atom bonded to a BO terminal and that of neutral B3O3H (2a) is also of C2v symmetry, which is readily constructed from C2v (1a) by attaching a H atom to the opposite side of the BO group. The H atom in B3O3H-/0 (2A and 2a) prefers to interact terminally with a B atom, rather than with O. Chemical bonding analyses reveal a three-center four-electron (3c-4e) π hyperbond in the B3O3H- (2A) cluster and a four-center four-electron (4c-4e) π bond (that is, the so-called o-bond) in B3O3 (1a) and B3O3H (2a) neutral clusters.
Zhao, Li-Juan; Tian, Wen-Juan; Ou, Ting; Xu, Hong-Guang; Feng, Gang; Xu, Xi-Ling; Zhai, Hua-Jin; Li, Si-Dian; Zheng, Wei-Jun
2016-03-28
We present a combined photoelectron spectroscopy and first-principles theory study on the structural and electronic properties and chemical bonding of B3O3 (-/0) and B3O3H(-/0) clusters. The concerted experimental and theoretical data show that the global-minimum structures of B3O3 and B3O3H neutrals are very different from those of their anionic counterparts. The B3O3 (-) anion is characterized to possess a V-shaped OB-B-BO chain with overall C2 v symmetry (1A), in which the central B atom interacts with two equivalent boronyl (B≡O) terminals via B-B single bonds as well as with one O atom via a B=O double bond. The B3O3H(-) anion has a Cs (2A) structure, containing an asymmetric OB-B-OBO zig-zag chain and a terminal H atom interacting with the central B atom. In contrast, the C2 v (1a) global minimum of B3O3 neutral contains a rhombic B2O2 ring with one B atom bonded to a BO terminal and that of neutral B3O3H (2a) is also of C2 v symmetry, which is readily constructed from C2 v (1a) by attaching a H atom to the opposite side of the BO group. The H atom in B3O3H(-/0) (2A and 2a) prefers to interact terminally with a B atom, rather than with O. Chemical bonding analyses reveal a three-center four-electron (3c-4e) π hyperbond in the B3O3H(-) (2A) cluster and a four-center four-electron (4c-4e) π bond (that is, the so-called o-bond) in B3O3 (1a) and B3O3H (2a) neutral clusters. PMID:27036442
NASA Astrophysics Data System (ADS)
Miyata, Tatsuhiko; Ikuta, Yasuhiro; Hirata, Fumio
2010-07-01
This article proposes a free energy calculation method based on the molecular dynamics simulation combined with the three dimensional reference interaction site model theory. This study employs the free energy perturbation (FEP) and the thermodynamic integration (TDI) along the coupling parameters to control the interaction potential. To illustrate the method, we applied it to a complex formation process in aqueous solutions between a crown ether molecule 18-Crown-6 (18C6) and a potassium ion as one of the simplest model systems. Two coupling parameters were introduced to switch the Lennard-Jones potential and the Coulomb potential separately. We tested two coupling procedures: one is a "sequential-coupling" to couple the Lennard-Jones interaction followed by the Coulomb coupling, and the other is a "mixed-coupling" to couple both the Lennard-Jones and the Coulomb interactions together as much as possible. The sequential-coupling both for FEP and TDI turned out to be accurate and easily handled since it was numerically well-behaved. Furthermore, it was found that the sequential-coupling had relatively small statistical errors. TDI along the mixed-coupling integral path was to be carried out carefully, paying attention to a numerical behavior of the integrand. The present model system exhibited a nonmonotonic behavior in the integrands for TDI along the mixed-coupling integral path and also showed a relatively large statistical error. A coincidence within a statistical error was obtained among the results of the free energy differences evaluated by FEP, TDI with the sequential-coupling, and TDI with the mixed-coupling. The last one is most attractive in terms of the computer power and is accurate enough if one uses a proper set of windows, taking the numerical behavior of the integrands into account. TDI along the sequential-coupling integral path would be the most convenient among the methods we tested, since it seemed to be well-balanced between the computational
NASA Astrophysics Data System (ADS)
Pisarenko, V. F.; Sornette, A.; Sornette, D.; Rodkin, M. V.
2014-08-01
The present work is a continuation and improvement of the method suggested in P isarenko et al. (Pure Appl Geophys 165:1-42, 2008) for the statistical estimation of the tail of the distribution of earthquake sizes. The chief innovation is to combine the two main limit theorems of Extreme Value Theory (EVT) that allow us to derive the distribution of T-maxima (maximum magnitude occurring in sequential time intervals of duration T) for arbitrary T. This distribution enables one to derive any desired statistical characteristic of the future T-maximum. We propose a method for the estimation of the unknown parameters involved in the two limit theorems corresponding to the Generalized Extreme Value distribution (GEV) and to the Generalized Pareto Distribution (GPD). We establish the direct relations between the parameters of these distributions, which permit to evaluate the distribution of the T-maxima for arbitrary T. The duality between the GEV and GPD provides a new way to check the consistency of the estimation of the tail characteristics of the distribution of earthquake magnitudes for earthquake occurring over an arbitrary time interval. We develop several procedures and check points to decrease the scatter of the estimates and to verify their consistency. We test our full procedure on the global Harvard catalog (1977-2006) and on the Fennoscandia catalog (1900-2005). For the global catalog, we obtain the following estimates: = 9.53 ± 0.52 and = 9.21 ± 0.20. For Fennoscandia, we obtain = 5.76 ± 0.165 and = 5.44 ± 0.073. The estimates of all related parameters for the GEV and GPD, including the most important form parameter, are also provided. We demonstrate again the absence of robustness of the generally accepted parameter characterizing the tail of the magnitude-frequency law, the maximum possible magnitude M max, and study the more stable parameter Q T ( q), defined as the q-quantile of the distribution of T-maxima on a future interval of duration T.
NASA Astrophysics Data System (ADS)
Dostert, Karl-Heinz; O'Brien, Casey P.; Liu, Wei; Riedel, Wiebke; Savara, Aditya; Tkatchenko, Alexandre; Schauermann, Swetlana; Freund, Hans-Joachim
2016-08-01
Understanding the interaction of α,β-unsaturated carbonyl compounds with late transition metals is a key prerequisite for rational design of new catalysts with desired selectivity towards C = C or C = O bond hydrogenation. The interaction of the α,β-unsaturated ketone isophorone and the saturated ketone TMCH (3,3,5-trimethylcyclohexanone) with Pd(111) was investigated in this study as a prototypical system. Infrared reflection-absorption spectroscopy (IRAS) and density functional theory calculations including van der Waals interactions (DFT + vdWsurf) were combined to form detailed assignments of IR vibrational modes in the range from 3000 cm- 1 to 1000 cm- 1 in order to obtain information on the binding of isophorone and TMCH to Pd(111) as well as to study the effect of co-adsorbed hydrogen. IRAS measurements were performed with deuterium-labeled (d5-) isophorone, in addition to unlabeled isophorone and unlabeled TMCH. Experimentally observed IR absorption features and calculated vibrational frequencies indicate that isophorone and TMCH molecules in multilayers have a mostly unperturbed structure with random orientation. At sub-monolayer coverages, strong perturbation and preferred orientations of the adsorbates were found. At low coverage, isophorone interacts strongly with Pd(111) and adsorbs in a flat-lying geometry with the C = C and C = O bonds parallel, and a CH3 group perpendicular, to the surface. At intermediate sub-monolayer coverage, the C = C bond is strongly tilted, while the C = O bond remains flat-lying, which indicates a prominent perturbation of the conjugated π system. Pre-adsorbed hydrogen leads to significant changes in the adsorption geometry of isophorone, which suggests a weakening of its binding to Pd(111). At low coverage, the structure of the CH3 groups seems to be mostly unperturbed on the hydrogen pre-covered surface. With increasing coverage, a conservation of the in-plane geometry of the conjugated π system was observed in the
ERIC Educational Resources Information Center
Yu, Tai-Kuei; Yu, Tai-Yi
2010-01-01
Understanding learners' behaviour, perceptions and influence in terms of learner performance is crucial to predict the use of electronic learning systems. By integrating the task-technology fit (TTF) model and the theory of planned behaviour (TPB), this paper investigates the online learning utilisation of Taiwanese students. This paper provides a…
NASA Astrophysics Data System (ADS)
Shang, Jin; Li, Gang; Singh, Ranjeet; Xiao, Penny; Danaci, David; Liu, Jefferson Z.; Webley, Paul A.
2014-02-01
The crucial role of dispersion force in correctly describing the adsorption of some typical small-size gas molecules (e.g., CO2, N2, and CH4) in ion-exchanged chabazites has been investigated at different levels of theory, including the standard density functional theory calculation using the Perdew, Burke, and Ernzerhof (PBE) exchange-correlation functional and van der Waals density functional theory (vdWDFT) calculations using different exchange-correlation models - vdW_DF2, optB86b, optB88, and optPBE. Our results show that the usage of different vdWDFT functionals does not significantly change the adsorption configuration or the profile of static charge rearrangement of the gas-chabazite complexes, in comparison with the results obtained using the PBE. The calculated values of adsorption enthalpy using different functionals are compared with our experimental results. We conclude that the incorporation of dispersion interaction is imperative to correctly predict the trend of adsorption enthalpy values, in terms of different gas molecules and Cs+ cation densities in the adsorbents, even though the absolute values of adsorption enthalpy are overestimated by approximate 10 kJ/mol compared with experiments.
Claudino, D; Gargano, R; Carvalho-Silva, Valter H; E Silva, Geraldo M; da Cunha, W F
2016-07-21
The present paper concludes our series of kinetics studies on the reactions involved in the complex mechanism of nitrogen trifluoride decomposition. Two other related reactions that, along with this mechanism, take part in an efficient boron nitride growth process are also investigated. We report results concerning two abstraction reactions, namely NF2 + N ⇄ 2NF and NF3 + NF ⇄ 2NF2, and two dissociations, N2F4 ⇄ 2NF2 and N2F3 ⇄ NF2 + NF. State-of-the-art electronic structure calculations at the CCSD(T)/cc-pVTZ level of theory were considered to determine geometries and frequencies of reactants, products, and transition states. Extrapolation of the energies to the complete basis set limit was used to obtain energies of all the species. We applied transition state theory to compute thermal rate constants including Wigner, Eckart, Bell, and deformed theory corrections in order to take tunneling effects into account. The obtained results are in good agreement with the experimental data available in the literature and are expected to provide a better phenomenological understanding of the NF3 decomposition role in the boron nitride growth for a wide range of temperature values. PMID:27355487
Katsnelson, Boris A; Panov, Vladimir G; Minigaliyeva, Ilzira A; Varaksin, Anatoly N; Privalova, Larisa I; Slyshkina, Tatyana V; Grebenkina, Svetlana V
2015-08-01
For characterizing the three-factorial toxicity, we proposed a new health risk-oriented approach, the gist of which is a classification of effects depending on whether a binary combined toxicity's type remains virtually the same or appears to be either more or less adverse when modeled against the background of a third toxic. To explore possibilities of this approach, we used results of an experiment in which rats had been injected ip 3 times a week (up to 20 injections) with a water solution of either one of the toxics (Mn, Ni or Cr-VI salts) in a dose equivalent to 0.05 LD50, or any two of them, or all the three in the same doses, the controls receiving injections of the same volume of distilled water (4mL per rat). Judging by more than 30 indices for the organism's status, all exposures caused subchronic intoxication of mild to moderate strength. For each two-factorial exposure, we found by mathematical modeling based on the isobolograms that the binary combined subchronic toxicity either was of additive type or departed from it (predominantly toward subadditivity) depending on the effect assessed, dose, and effect level. For the three-factorial combination, different classes of effects were observed rather consistently: class A - those regarding which the third toxic's addition made the binary toxicity type more unfavorable for the organism, class B - those regarding which the result was opposite, and class C - those regarding which the type of binary combined toxicity on the background of a third toxic virtually remained the same as in its absence. We found a complicated reciprocal influence of combined metals on their retention in kidneys, liver, spleen and brain which might presumably be one of the possible mechanisms of combined toxicity, but the lack of an explicit correspondence between the above influence and the influence on toxicity effects suggests that this mechanism is not always the most important one. The relevance of the proposed classification
NASA Astrophysics Data System (ADS)
Wang, K.; Rothacher, M.
2012-12-01
The most recent GPS Block IIF satellites SVN62 and SVN63 and the GALILEO satellites GIOVE-A, GIOVE-B, PFM and FM2 already provide tracking data on more than two frequencies, and in the near future, all GNSS will transmit at least on three frequencies (GPS III, GLONASS KM, Galileo, COMPASS). The development of ambiguity resolution algorithms considering three (or more) frequencies is thus of crucial importance in the future. We will present a simplified general method for ambiguity resolution using triple-frequency geometry-free (GF) and ionosphere-free (IF) linear combinations with minimized noise level. Different scaling factors for the code noise on the three frequencies were introduced. Three linearly independent linear combinations are required to resolve the ambiguities on all three frequencies. Typically, ambiguity resolution on two linear combinations can easily be performed. For the third linear combination, which is the core problem of the triple-frequency ambiguity resolution, a general method using the ambiguity-corrected phase observations without any constraints was developed to search for the optimal GF and IF linear combination. We analytically demonstrated that the noise level of this third linear combination is only a function of the three frequencies and does not depend on the coefficients of the linear combination. This frequency-dependent noise factor was investigated for GPS, Galileo and COMPASS frequency triplets. The theoretical derivations were verified using real triple-frequency GPS (L1, L2, L5 from SVN62 and SVN63) and Galileo (E1, E5b, E5a from GIOVE-A, GIOVE-B, PFM and FM2) data from the Multi-GNSS Experiment (M-GEX) campaign of the International GNSS Service (IGS). The formal errors of the estimated ambiguities of the third linear combination using Galileo E1, E5b and E5a, which is expected to show the worst performance among all the GNSS frequency triplets, decrease in most cases to below 0.2 cycles after 400 observation epochs. A
NASA Technical Reports Server (NTRS)
Beard, Daniel A.; Liang, Shou-Dan; Qian, Hong; Biegel, Bryan (Technical Monitor)
2001-01-01
Predicting behavior of large-scale biochemical metabolic networks represents one of the greatest challenges of bioinformatics and computational biology. Approaches, such as flux balance analysis (FBA), that account for the known stoichiometry of the reaction network while avoiding implementation of detailed reaction kinetics are perhaps the most promising tools for the analysis of large complex networks. As a step towards building a complete theory of biochemical circuit analysis, we introduce energy balance analysis (EBA), which compliments the FBA approach by introducing fundamental constraints based on the first and second laws of thermodynamics. Fluxes obtained with EBA are thermodynamically feasible and provide valuable insight into the activation and suppression of biochemical pathways.
Ghassemi Tabrizi, Shadan; Arbuznikov, Alexei V; Kaupp, Martin
2016-09-01
We apply broken-symmetry density functional theory to determine isotropic exchange-coupling constants and local zero-field splitting (ZFS) tensors for the tetragonal Mn12(t)BuAc single-molecule magnet. The obtained parametrization of the many-spin Hamiltonian (MSH), taking into account all 12 spin centers, is assessed by comparing theoretical predictions for thermodynamic and spectroscopic properties with available experimental data. The magnetic susceptibility (calculated by the finite-temperature Lanczos method) is well approximated, and the intermultiplet excitation spectrum from inelastic neutron scattering (INS) experiments is correctly reproduced. In these respects, the present parametrization of the 12-spin model represents a significant improvement over previous theoretical estimates of exchange-coupling constants in Mn12, and additionally offers a refined interpretation of INS spectra. Treating anisotropic interactions at the third order of perturbation theory, the MSH is mapped onto the giant-spin Hamiltonian describing the S = 10 ground multiplet. Although the agreement with high-field EPR experiments is not perfect, the results clearly point in the right direction and for the first time rationalize the angular dependence of the transverse-field spectra from a fully microscopic viewpoint. Importantly, transverse anisotropy of the effective S = 10 manifold is explicitly shown to arise largely from the ZFS-induced mixing of exchange multiplets. This effect is given a thorough analysis in the approximate D2d spin-permutational symmetry group of the exchange Hamiltonian. PMID:27482933
NASA Astrophysics Data System (ADS)
Takemura, Kazuhiro; Guo, Hao; Sakuraba, Shun; Matubayasi, Nobuyuki; Kitao, Akio
2012-12-01
We propose a method to evaluate binding free energy differences among distinct protein-protein complex model structures through all-atom molecular dynamics simulations in explicit water using the solution theory in the energy representation. Complex model structures are generated from a pair of monomeric structures using the rigid-body docking program ZDOCK. After structure refinement by side chain optimization and all-atom molecular dynamics simulations in explicit water, complex models are evaluated based on the sum of their conformational and solvation free energies, the latter calculated from the energy distribution functions obtained from relatively short molecular dynamics simulations of the complex in water and of pure water based on the solution theory in the energy representation. We examined protein-protein complex model structures of two protein-protein complex systems, bovine trypsin/CMTI-1 squash inhibitor (PDB ID: 1PPE) and RNase SA/barstar (PDB ID: 1AY7), for which both complex and monomer structures were determined experimentally. For each system, we calculated the energies for the crystal complex structure and twelve generated model structures including the model most similar to the crystal structure and very different from it. In both systems, the sum of the conformational and solvation free energies tended to be lower for the structure similar to the crystal. We concluded that our energy calculation method is useful for selecting low energy complex models similar to the crystal structure from among a set of generated models.
Capponi, S; Arbe, A; Alvarez, F; Colmenero, J; Frick, B; Embs, J P
2009-11-28
Quasielastic neutron scattering experiments (time-of-flight, neutron spin echo, and backscattering) on protonated poly(vinyl methyl ether) (PVME) have revealed the hydrogen dynamics above the glass-transition temperature. Fully atomistic molecular dynamics simulations properly validated with the neutron scattering results have allowed further characterization of the atomic motions accessing the correlation functions directly in real space. Deviations from Gaussian behavior are found in the high-momentum transfer range, which are compatible with the predictions of mode coupling theory (MCT). We have applied the MCT phenomenological version to the self-correlation functions of PVME atoms calculated from our simulation data, obtaining consistent results. The unusually large value found for the lambda-exponent parameter is close to that recently reported for polybutadiene and simple polymer models with intramolecular barriers. PMID:19947703
Russell, Amina; Van Woensel, William; Abidi, Samina Raza
2015-01-01
The objective of this study is to determine if shared decisions for managing non-critical chronic illness, made through an online biomedical technology intervention, us feasible and usable. The technology intervention incorporates behavioural and decision theories to increase patient engagement, and ultimately long term adherence to health behaviour change. We devised the iheart web intervention as a "proof of concept" in five phases. The implementation incorporates the Vaadin web application framework, Drools, EclipseLink and a MySQL database. Two-thirds of the study participants favoured the technology intervention, based on Likert-scale questions from a post-study questionnaire. Qualitative analysis of think aloud feedback, video screen captures and open-ended questions from the post-study questionnaire uncovered six main areas or themes for improvement. We conclude that online shared decisions for managing a non-critical chronic illness are feasible and usable through the iheart web intervention. PMID:26262028
NASA Astrophysics Data System (ADS)
Bhandary, Sumanta; Schüler, Malte; Thunström, Patrik; di Marco, Igor; Brena, Barbara; Eriksson, Olle; Wehling, Tim; Sanyal, Biplab
2016-04-01
A proper theoretical description of the electronic structure of the 3 d orbitals in the metal centers of functional metalorganics is a challenging problem. We apply density functional theory and an exact diagonalization method in a many-body approach to study the ground-state electronic configuration of an iron porphyrin (FeP) molecule. Our study reveals that the consideration of multiple Slater determinants is important, and FeP is a potential candidate for realizing a spin crossover due to a subtle balance of crystal-field effects, on-site Coulomb repulsion, and hybridization between the Fe-d orbitals and ligand N-p states. The mechanism of switching between two close-lying electronic configurations of Fe-d orbitals is shown. We discuss the generality of the suggested approach and the possibility to properly describe the electronic structure and related low-energy physics of the whole class of correlated metal-centered organometallic molecules.
NASA Technical Reports Server (NTRS)
Arbocz, Johann; deVries, J.; Hol, J. M. A. M.
1998-01-01
A rigorous solution is presented for the case of stiffened anisotropic cylindrical shells with general imperfections under combined loading, where the edge supports are provided by symmetrical or unsymmetrical elastic rings. The circumferential dependence is eliminated by a truncated Fourier series. The resulting nonlinear 2-point boundary value problem is solved numerically via the "Parallel Shooting Method". The changing deformation patterns resulting from the different degrees of interaction between the given initial imperfections and the specified end rings are displayed. Recommendations are made as to the minimum ring stiffnesses required for optimal load carrying configurations.
Shen, Lin; Yang, Weitao
2016-04-12
We developed a new multiresolution method that spans three levels of resolution with quantum mechanical, atomistic molecular mechanical, and coarse-grained models. The resolution-adapted all-atom and coarse-grained water model, in which an all-atom structural description of the entire system is maintained during the simulations, is combined with the ab initio quantum mechanics and molecular mechanics method. We apply this model to calculate the redox potentials of the aqueous ruthenium and iron complexes by using the fractional number of electrons approach and thermodynamic integration simulations. The redox potentials are recovered in excellent accordance with the experimental data. The speed-up of the hybrid all-atom and coarse-grained water model renders it computationally more attractive. The accuracy depends on the hybrid all-atom and coarse-grained water model used in the combined quantum mechanical and molecular mechanical method. We have used another multiresolution model, in which an atomic-level layer of water molecules around redox center is solvated in supramolecular coarse-grained waters for the redox potential calculations. Compared with the experimental data, this alternative multilayer model leads to less accurate results when used with the coarse-grained polarizable MARTINI water or big multipole water model for the coarse-grained layer. PMID:26930454
Embodied Conceptual Combination
Lynott, Dermot; Connell, Louise
2010-01-01
Conceptual combination research investigates the processes involved in creating new meaning from old referents. It is therefore essential that embodied theories of cognition are able to explain this constructive ability and predict the resultant behavior. However, by failing to take an embodied or grounded view of the conceptual system, existing theories of conceptual combination cannot account for the role of perceptual, motor, and affective information in conceptual combination. In the present paper, we propose the embodied conceptual combination (ECCo) model to address this oversight. In ECCo, conceptual combination is the result of the interaction of the linguistic and simulation systems, such that linguistic distributional information guides or facilitates the combination process, but the new concept is fundamentally a situated, simulated entity. So, for example, a cactus beetle is represented as a multimodal simulation that includes visual (e.g., the shiny appearance of a beetle) and haptic (e.g., the prickliness of the cactus) information, all situated in the broader location of a desert environment under a hot sun, and with (at least for some people) an element of creepy-crawly revulsion. The ECCo theory differentiates interpretations according to whether the constituent concepts are destructively, or non-destructively, combined in the situated simulation. We compare ECCo to other theories of conceptual combination, and discuss how it accounts for classic effects in the literature. PMID:21833267
Li, Chenzhe; Thampy, Sampreetha; Zheng, Yongping; Kweun, Joshua M; Ren, Yixin; Chan, Julia Y; Kim, Hanchul; Cho, Maenghyo; Kim, Yoon Young; Hsu, Julia W P; Cho, Kyeongjae
2016-03-31
Understanding and effectively predicting the thermal stability of ternary transition metal oxides with heavy elements using first principle simulations are vital for understanding performance of advanced materials. In this work, we have investigated the thermal stability of mullite RMn2O5 (R = Bi, Pr, Sm, or Gd) structures by constructing temperature phase diagrams using an efficient mixed generalized gradient approximation (GGA) and the GGA + U method. Simulation predicted stability regions without corrections on heavy elements show a 4-200 K underestimation compared to our experimental results. We have found the number of d/f electrons in the heavy elements shows a linear relationship with the prediction deviation. Further correction on the strongly correlated electrons in heavy elements could significantly reduce the prediction deviations. Our corrected simulation results demonstrate that further correction of R-site elements in RMn2O5 could effectively reduce the underestimation of the density functional theory-predicted decomposition temperature to within 30 K. Therefore, it could produce an accurate thermal stability prediction for complex ternary transition metal oxide compounds with heavy elements. PMID:26932942
Parkes, Marie V.; Sava Gallis, Dorina F.; Greathouse, Jeffery A.; Nenoff, Tina M.
2015-03-02
Computational screening of metal-organic framework (MOF) materials for selective oxygen adsorption from air could lead to new sorbents for the oxyfuel combustion process feedstock streams. A comprehensive study on the effect of MOF metal chemistry on gas binding energies in two common but structurally disparate metal-organic frameworks has been undertaken. Dispersion-corrected density functional theory methods were used to calculate the oxygen and nitrogen binding energies with each of fourteen metals, respectively, substituted into two MOF series, M2(dobdc) and M3(btc)2. The accuracy of DFT methods was validated by comparing trends in binding energy with experimental gas sorption measurements. A periodic trendmore » in oxygen binding energies was found, with greater oxygen binding energies for early transition-metal-substituted MOFs compared to late transition metal MOFs; this was independent of MOF structural type. The larger binding energies were associated with oxygen binding in a side-on configuration to the metal, with concomitant lengthening of the O-O bond. In contrast, nitrogen binding energies were similar across the transition metal series, regardless of both MOF structural type and metal identity. Altogether, these findings suggest that early transition metal MOFs are best suited to separating oxygen from nitrogen, and that the MOF structural type is less important than the metal identity.« less
NASA Astrophysics Data System (ADS)
Li, Chenzhe; Thampy, Sampreetha; Zheng, Yongping; Kweun, Joshua M.; Ren, Yixin; Chan, Julia Y.; Kim, Hanchul; Cho, Maenghyo; Kim, Yoon Young; Hsu, Julia W. P.; Cho, Kyeongjae
2016-03-01
Understanding and effectively predicting the thermal stability of ternary transition metal oxides with heavy elements using first principle simulations are vital for understanding performance of advanced materials. In this work, we have investigated the thermal stability of mullite RMn2O5 (R = Bi, Pr, Sm, or Gd) structures by constructing temperature phase diagrams using an efficient mixed generalized gradient approximation (GGA) and the GGA + U method. Simulation predicted stability regions without corrections on heavy elements show a 4-200 K underestimation compared to our experimental results. We have found the number of d/f electrons in the heavy elements shows a linear relationship with the prediction deviation. Further correction on the strongly correlated electrons in heavy elements could significantly reduce the prediction deviations. Our corrected simulation results demonstrate that further correction of R-site elements in RMn2O5 could effectively reduce the underestimation of the density functional theory-predicted decomposition temperature to within 30 K. Therefore, it could produce an accurate thermal stability prediction for complex ternary transition metal oxide compounds with heavy elements.
Chao, Ying-Yu; Scherer, Yvonne K; Wu, Yow-Wu; Lucke, Kathleen T; Montgomery, Carolyn A
2013-01-01
The purpose of this study was to examine the feasibility of a self-efficacy based intervention using Wii exergames in assisted living residents. The study was a single-group pre- and post-test design. Seven older adults (aged 80-94 years) were instructed to engage in exergames twice a week for 8 weeks. Physical function (balance, mobility, and walking distance), fear of falling, self-efficacy for exercise, and outcome expectations for exercise were evaluated. All participants had enjoyable experiences and no serious adverse events were reported. Participants had significant improvement on balance. Although not significant, there were trends indicating that participants improved mobility, walking endurance, and decreased fear of falling. The use of Wii exergames was an acceptable, safe, and potentially effective approach to promote physical activity in older adults. Findings provide support for the applications of integrating self-efficacy theory into exergames as a mechanism to encourage older adults to engage in exercise. PMID:23764366
Ishizuka, Ryosuke; Matubayasi, Nobuyuki
2016-02-01
A self-consistent scheme is developed to determine the atomic partial charges of ionic liquid. Molecular dynamics (MD) simulation was conducted to sample a set of ion configurations, and these configurations were subject to density functional theory (DFT) calculations to determine the partial charges. The charges were then averaged and used as inputs for the subsequent MD simulation, and MD and DFT calculations were repeated until the MD results are not altered any more. We applied this scheme to 1,3-dimethylimidazolium bis(trifluoromethylsulfonyl) imide ([C1mim][NTf2]) and investigated its structure and dynamics as a function of temperature. At convergence, the average ionic charges were ±0.84 e at 350 K due to charge transfer among ions, where e is the elementary charge, while the reduced ionic charges do not affect strongly the density of [C1mim][NTf2] and radial distribution function. Instead, major effects are found on the energetics and dynamics, with improvements of the overestimated heat of vaporization and the too slow motions of ions observed in MD simulations using commonly used force fields. PMID:26735302
NASA Astrophysics Data System (ADS)
Okabayashi, Norio; Gustafsson, Alexander; Peronio, Angelo; Paulsson, Magnus; Arai, Toyoko; Giessibl, Franz J.
2016-04-01
Achieving a high intensity in inelastic scanning tunneling spectroscopy (IETS) is important for precise measurements. The intensity of the IETS signal can vary by up to a factor of 3 for various tips without an apparent reason accessible by scanning tunneling microscopy (STM) alone. Here, we show that combining STM and IETS with atomic force microscopy enables carbon monoxide front-atom identification, revealing that high IETS intensities for CO/Cu(111) are obtained for single-atom tips, while the intensity drops sharply for multiatom tips. Adsorption of the CO molecule on a Cu adatom [CO/Cu/Cu(111)] such that the molecule is elevated over the substrate strongly diminishes the tip dependence of IETS intensity, showing that an elevated position channels most of the tunneling current through the CO molecule even for multiatom tips, while a large fraction of the tunneling current bypasses the CO molecule in the case of CO/Cu(111).
Karabacak, Mehmet; Calisir, Zuhre; Kurt, Mustafa; Kose, Etem; Atac, Ahmet
2016-01-15
In this study, ethyl-6-chloronicotinate (E-6-ClN) molecule is recorded in the region 4000-400 cm(-1) and 3500-100 cm(-1) (FT-IR, FT-Raman and dispersive Raman, respectively) in the solid phase. ((1))H and ((13))C nuclear magnetic resonance (NMR) spectra are recorded in DMSO solution. The structural and spectroscopic data of the molecule are obtained for two possible isomers (S1 and S2) from DFT (B3LYP) with 6-311++G(d,p) basis set calculations. The geometry of the molecule is fully optimized, vibrational spectra are calculated and fundamental vibrations are assigned on the basis of the potential energy distribution (PED) of the vibrational modes. ((1))H and ((13))C NMR chemical shifts are calculated by using the gauge-invariant atomic orbital (GIAO) method. The electronic properties, such as excitation energies, oscillator strengths, wavelengths, HOMO and LUMO energies, are performed by time-dependent density functional theory (TD-DFT). Total and partial density of state and overlap population density of state diagrams analysis are presented for E-6-ClN molecule. Furthermore, frontier molecular orbitals (FMO), molecular electrostatic potential, and thermodynamic features are performed. In addition to these, reduced density gradient of the molecule is performed and discussed. As a conclusion, the calculated results are compared with the experimental spectra of the title compound. The results of the calculations are applied to simulate the vibrational spectra of the molecule, which show excellent agreement with the observed ones. The theoretical and tentative results will give us a detailed description of the structural and physicochemical properties of the molecule. Natural bond orbital analysis is done to have more information stability of the molecule arising from charge delocalization, and to reveal the information regarding charge transfer within the molecules. PMID:26483317
NASA Astrophysics Data System (ADS)
Karabacak, Mehmet; Calisir, Zuhre; Kurt, Mustafa; Kose, Etem; Atac, Ahmet
2016-01-01
In this study, ethyl-6-chloronicotinate (E-6-ClN) molecule is recorded in the region 4000-400 cm- 1 and 3500-100 cm- 1 (FT-IR, FT-Raman and dispersive Raman, respectively) in the solid phase. 1H and 13C nuclear magnetic resonance (NMR) spectra are recorded in DMSO solution. The structural and spectroscopic data of the molecule are obtained for two possible isomers (S1 and S2) from DFT (B3LYP) with 6-311++G(d,p) basis set calculations. The geometry of the molecule is fully optimized, vibrational spectra are calculated and fundamental vibrations are assigned on the basis of the potential energy distribution (PED) of the vibrational modes. 1H and 13C NMR chemical shifts are calculated by using the gauge-invariant atomic orbital (GIAO) method. The electronic properties, such as excitation energies, oscillator strengths, wavelengths, HOMO and LUMO energies, are performed by time-dependent density functional theory (TD-DFT). Total and partial density of state and overlap population density of state diagrams analysis are presented for E-6-ClN molecule. Furthermore, frontier molecular orbitals (FMO), molecular electrostatic potential, and thermodynamic features are performed. In addition to these, reduced density gradient of the molecule is performed and discussed. As a conclusion, the calculated results are compared with the experimental spectra of the title compound. The results of the calculations are applied to simulate the vibrational spectra of the molecule, which show excellent agreement with the observed ones. The theoretical and tentative results will give us a detailed description of the structural and physicochemical properties of the molecule. Natural bond orbital analysis is done to have more information stability of the molecule arising from charge delocalization, and to reveal the information regarding charge transfer within the molecules.
NASA Astrophysics Data System (ADS)
Choubey, Sanjay K.; Mariadasse, Richard; Rajendran, Santhosh; Jeyaraman, Jeyakanthan
2016-12-01
Overexpression of HDAC1, a member of Class I histone deacetylase is reported to be implicated in breast cancer. Epigenetic alteration in carcinogenesis has been the thrust of research for few decades. Increased deacetylation leads to accelerated cell proliferation, cell migration, angiogenesis and invasion. HDAC1 is pronounced as the potential drug target towards the treatment of breast cancer. In this study, the biochemical potential of 6-aminonicotinamide derivatives was rationalized. Five point pharmacophore model with one hydrogen-bond acceptor (A3), two hydrogen-bond donors (D5, D6), one ring (R12) and one hydrophobic group (H8) was developed using 6-aminonicotinamide derivatives. The pharmacophore hypothesis yielded a 3D-QSAR model with correlation-coefficient (r2 = 0.977, q2 = 0.801) and it was externally validated with (r2pred = 0.929, r2cv = 0.850 and r2m = 0.856) which reveals the statistical significance of the model having high predictive power. The model was then employed as 3D search query for virtual screening against compound libraries (Zinc, Maybridge, Enamine, Asinex, Toslab, LifeChem and Specs) in order to identify novel scaffolds which can be experimentally validated to design future drug molecule. Density Functional Theory (DFT) at B3LYP/6-31G* level was employed to explore the electronic features of the ligands involved in charge transfer reaction during receptor ligand interaction. Binding free energy (ΔGbind) calculation was done using MM/GBSA which defines the affinity of ligands towards the receptor.
de Icaza-Herrera, Miguel; Fernández, Francisco; Loske, Achim M
2015-04-01
Extracorporeal shock wave lithotripsy is a common non-invasive treatment for urinary stones whose fragmentation is achieved mainly by acoustic cavitation and mechanical stress. A few years ago, in vitro and in vivo experimentation demonstrated that such fragmentation can be improved, without increasing tissue damage, by sending a second shock wave hundreds of microseconds after the previous wave. Later, numerical simulations revealed that if the second pulse had a longer full width at half maximum than a standard shock wave, cavitation could be enhanced significantly. On the other side, a theoretical study showed that stress inside the stone can be increased if two lithotripter shock waves hit the stone with a delay of only 20 μs. We used the Gilmore-Akulichev formulation to show that, in principle, both effects can be combined, that is, stress and cavitation could be increased using a pressure pulse with long full width at half maximum, which reaches the stone within hundreds of microseconds after two 20 μs-delayed initial shock waves. Implementing the suggested pressure profile into clinical devices could be feasible, especially with piezoelectric shock wave sources. PMID:25553714
NASA Astrophysics Data System (ADS)
Kawakami, Tomonori; Shigemoto, Isamu; Matubayasi, Nobuyuki
2012-12-01
Affinity of small molecule to polymer is an essential property for designing polymer materials with tuned permeability. In the present work, we develop a computational approach to the free energy ΔG of binding a small solute molecule into polymer using the atomistic molecular dynamics (MD) simulation combined with the method of energy representation. The binding free energy ΔG is obtained by viewing a single polymer as a collection of fragments and employing an approximate functional constructed from distribution functions of the interaction energy between solute and the fragment obtained from MD simulation. The binding of water is then examined against 9 typical polymers. The relationship is addressed between the fragment size and the calculated ΔG, and a useful fragment size is identified to compromise the performance of the free-energy functional and the sampling efficiency. It is found with the appropriate fragment size that the ΔG convergence at a statistical error of ˜0.2 kcal/mol is reached at ˜4 ns of replica-exchange MD of the water-polymer system and that the mean absolute deviation of the computational ΔG from the experimental is 0.5 kcal/mol. The connection is further discussed between the polymer structure and the thermodynamic ΔG.
Ly, Hong Giang T; Mihaylov, Tzvetan; Absillis, Gregory; Pierloot, Kristine; Parac-Vogt, Tatjana N
2015-12-01
Detailed kinetic studies on the hydrolysis of glycylglycine (Gly-Gly) in the presence of the dimeric tetrazirconium(IV)-substituted Wells-Dawson-type polyoxometalate Na14[Zr4(P2W16O59)2(μ3-O)2(OH)2(H2O)4] · 57H2O (1) were performed by a combination of (1)H, (13)C, and (31)P NMR spectroscopies. The catalyst was shown to be stable under a broad range of reaction conditions. The effect of pD on the hydrolysis of Gly-Gly showed a bell-shaped profile with the fastest hydrolysis observed at pD 7.4. The observed rate constant for the hydrolysis of Gly-Gly at pD 7.4 and 60 °C was 4.67 × 10(-7) s(-1), representing a significant acceleration as compared to the uncatalyzed reaction. (13)C NMR data were indicative for coordination of Gly-Gly to 1 via its amide oxygen and amine nitrogen atoms, resulting in a hydrolytically active complex. Importantly, the effective hydrolysis of a series of Gly-X dipeptides with different X side chain amino acids in the presence of 1 was achieved, and the observed rate constant was shown to be dependent on the volume, chemical nature, and charge of the X amino acid side chain. To give a mechanistic explanation of the observed catalytic hydrolysis of Gly-Gly, a detailed quantum-chemical study was performed. The theoretical results confirmed the nature of the experimentally suggested binding mode in the hydrolytically active complex formed between Gly-Gly and 1. To elucidate the role of 1 in the hydrolytic process, both the uncatalyzed and the polyoxometalate-catalyzed reactions were examined. In the rate-determining step of the uncatalyzed Gly-Gly hydrolysis, a carboxylic oxygen atom abstracts a proton from a solvent water molecule and the nascent OH nucleophile attacks the peptide carbon atom. Analogous general-base activity of the free carboxylic group was found to take place also in the case of polyoxometalate-catalyzed hydrolysis as the main catalytic effect originates from the -C═O···Zr(IV) binding. PMID:26599585
You, Ting-ting; Yin, Peng-gang; Jiang, Li; Lang, Xiu-feng; Guo, Lin; Yang, Shi-he
2012-05-21
We investigated the configuration characteristic and adsorption behavior of 4,4'-thiobisbenzenethiol (TBBT) on the surface of silver nanoparticles (NPs). Under different conditions and preparation processes, several possible surface species were produced including single-end adsorption on a silicon wafer, double-end adsorption and bridge-like adsorption. Although consisting of the same molecule and nano material, different adsorption systems exhibited different spectral characteristics in the surface-enhanced Raman spectroscopy (SERS). A density functional theory (DFT) study further verified the corresponding adsorption states. The combined SERS-DFT study provided a framework towards investigating and designing adsorption systems at a molecular level, indicating the potential use in applications such as nano-sensors. PMID:22495257
Fillman, Kathlyn L.; Przyojski, Jacob A.; Al-Afyouni, Malik H.; Tonzetich, Zachary J.
2014-01-01
The combination of iron salts and N-heterocyclic carbene (NHC) ligands is a highly effective combination in catalysis, with observed catalytic activities being highly dependent on the nature of the NHC ligand. Detailed spectroscopic and electronic structure studies have been performed on both three- and four-coordinate iron(II)-NHC complexes using a combined magnetic circular dichroism (MCD) and density functional theory (DFT) approach that provide detailed insight into the relative ligation properties of NHCs compared to traditional phosphine and amine ligands as well as the effects of NHC backbone structural variations on iron(II)-NHC bonding. Near-infrared MCD studies indicate that 10Dq(Td) for (NHC)2FeCl2 complexes is intermediate between those for comparable amine and phosphine complexes, demonstrating that such iron(II)-NHC and iron(II)-phosphine complexes are not simply analogues of one another. Theoretical studies including charge decomposition analysis indicate that the NHC ligands are slightly stronger donor ligands than phosphines but also result in significant weakening of the Fe-Cl bonds compared to phosphine and amine ligands. The net result is significant differences in the d orbital energies in four-coordinate (NHC)2FeCl2 complexes relative to the comparable phosphine complexes, where such electronic structure differences are likely a significant contributing factor to the differing catalytic performances observed with these ligands. Furthermore, Mössbauer, MCD and DFT studies of the effects of NHC backbone structure variations (i.e. saturated, unsaturated, chlorinated) on iron-NHC bonding and electronic structure in both three- and four-coordinate iron(II)-NHC complexes indicate only small differences as a function of backbone structure, that are likely amplified at lower oxidation states of iron due to the resulting decrease in the energy separation between the occupied iron d orbitals and the unoccupied NHC π* orbitals. PMID:25621143
Zhou, Huan-Xiang
2012-01-01
Some of the rate theories that are most useful for modeling biological processes are reviewed. By delving into some of the details and subtleties in the development of the theories, the review will hopefully help the reader gain a more than superficial perspective. Examples are presented to illustrate how rate theories can be used to generate insight at the microscopic level into biomolecular behaviors. Attempt is made to clear up a number of misconceptions in the literature regarding popular rate theories, including the appearance of Planck’s constant in the transition-state theory and the Smoluchowski result as an upper limit for protein-protein and protein-DNA association rate constants. Future work in combining the implementation of rate theories through computer simulations with experimental probes of rate processes, and in modeling effects of intracellular environments so theories can be used for generating rate constants for systems biology studies is particularly exciting. PMID:20691138
String Theory and Gauge Theories
Maldacena, Juan
2009-02-20
We will see how gauge theories, in the limit that the number of colors is large, give string theories. We will discuss some examples of particular gauge theories where the corresponding string theory is known precisely, starting with the case of the maximally supersymmetric theory in four dimensions which corresponds to ten dimensional string theory. We will discuss recent developments in this area.
NASA Astrophysics Data System (ADS)
Suzuoka, Daiki; Takahashi, Hideaki; Morita, Akihiro
2014-04-01
We developed a perturbation approach to compute solvation free energy Δμ within the framework of QM (quantum mechanical)/MM (molecular mechanical) method combined with a theory of energy representation (QM/MM-ER). The energy shift η of the whole system due to the electronic polarization of the solute is evaluated using the second-order perturbation theory (PT2), where the electric field formed by surrounding solvent molecules is treated as the perturbation to the electronic Hamiltonian of the isolated solute. The point of our approach is that the energy shift η, thus obtained, is to be adopted for a novel energy coordinate of the distribution functions which serve as fundamental variables in the free energy functional developed in our previous work. The most time-consuming part in the QM/MM-ER simulation can be, thus, avoided without serious loss of accuracy. For our benchmark set of molecules, it is demonstrated that the PT2 approach coupled with QM/MM-ER gives hydration free energies in excellent agreements with those given by the conventional method utilizing the Kohn-Sham SCF procedure except for a few molecules in the benchmark set. A variant of the approach is also proposed to deal with such difficulties associated with the problematic systems. The present approach is also advantageous to parallel implementations. We examined the parallel efficiency of our PT2 code on multi-core processors and found that the speedup increases almost linearly with respect to the number of cores. Thus, it was demonstrated that QM/MM-ER coupled with PT2 deserves practical applications to systems of interest.
Liu, Ping; An, Wei; Stacchiola, Dario; Xu, Fang
2015-10-16
Potassium (K) plays an essential role in promoting catalytic reaction in many established industrial catalytic processes. Here, we report a combined study using scanning tunneling microscopy (STM) and density functional theory (DFT) in understanding the effect of depositing K on the atomic and electronic structures as well as chemical activities of Cu_{x}O/Cu(111) (x≤2). The DFT calculations observe a pseudomorphic growth of K on Cu_{x}O/Cu(111) up to 0.19 monolayer (ML) of coverage, where K binds the surface via strong ionic interaction with chemisorbed oxygen and the relatively weak electrostatic interactions with copper ions, lower and upper oxygen on the Cu_{x}O rings. The simulated STM pattern based on the DFT results agrees well with the experimental observations. The deposited K displays great impact on the surface electronic structure of Cu_{x}O/Cu(111), which induces significant reduction in work function and leads to a strong electron polarization on the surface. The promotion of K on the surface binding properties is selective. It varies depending on the nature of adsorbates. According to our results, K has little effect on surface acidity, while it enhances the surface basicity significantly. As a consequence, the presence of K does not help for CO adsorption on Cu_{x}O/Cu(111), but being able to accelerate the activation of CO_{2}. Thus, such promotion strongly depends on the combinations from both geometric and electronic effects. Our results highlight the origin of promoting effect of alkalis in the design of catalysts for the complex reactions.
Emül, Y.; Erbahar, D.; Açıkgöz, M.
2015-08-14
Analyses of the local crystal and electronic structure in the vicinity of Fe{sup 3+} centers in perovskite KMgF{sub 3} crystal have been carried out in a comprehensive manner. A combination of density functional theory (DFT) and a semi-empirical superposition model (SPM) is used for a complete analysis of all Fe{sup 3+} centers in this study for the first time. Some quantitative information has been derived from the DFT calculations on both the electronic structure and the local geometry around Fe{sup 3+} centers. All of the trigonal (K-vacancy case, K-Li substitution case, and normal trigonal Fe{sup 3+} center case), FeF{sub 5}O cluster, and tetragonal (Mg-vacancy and Mg-Li substitution cases) centers have been taken into account based on the previously suggested experimental and theoretical inferences. The collaboration between the experimental data and the results of both DFT and SPM calculations provides us to understand most probable structural model for Fe{sup 3+} centers in KMgF{sub 3}.
Boccia, A.; Lanzilotto, V.; Marrani, A. G.; Zanoni, R.; Stranges, S.; Alagia, M.; Fronzoni, G.; Decleva, P.
2012-04-07
We present the results of an experimental and theoretical investigation of monosubstituted ethyl-, vinyl-, and ethynyl-ferrocene (EtFC, VFC, and EFC) free molecules, obtained by means of synchrotron-radiation based C 1s photoabsorption (NEXAFS) and photoemission (C 1s XPS) spectroscopies, and density functional theory (DFT) calculations. Such a combined study is aimed at elucidating the role played by the C-C bond unsaturation degree of the substituent on the electronic structure of the ferrocene derivatives. Such substituents are required for molecular chemical anchoring onto relevant surfaces when ferrocenes are used for molecular electronics hybrid devices. The high resolution C 1s NEXAFS spectra exhibit distinctive features that depend on the degree of unsaturation of the hydrocarbon substituent. The theoretical approach to consider the NEXAFS spectrum made of three parts allowed to disentangle the specific contribution of the substituent group to the experimental spectrum as a function of its unsaturation degree. C 1s IEs were derived from the experimental data analysis based on the DFT calculated IE values for the different carbon atoms of the substituent and cyclopentadienyl (Cp) rings. Distinctive trends of chemical shifts were observed for the substituent carbon atoms and the substituted atom of the Cp ring along the series of ferrocenes. The calculated IE pattern was rationalized in terms of initial and final state effects influencing the IE value, with special regard to the different mechanism of electron conjugation between the Cp ring and the substituent, namely the {sigma}/{pi} hyperconjugation in EtFC and the {pi}-conjugation in VFC and EFC.
NASA Astrophysics Data System (ADS)
Boccia, A.; Lanzilotto, V.; Marrani, A. G.; Stranges, S.; Zanoni, R.; Alagia, M.; Fronzoni, G.; Decleva, P.
2012-04-01
We present the results of an experimental and theoretical investigation of monosubstituted ethyl-, vinyl-, and ethynyl-ferrocene (EtFC, VFC, and EFC) free molecules, obtained by means of synchrotron-radiation based C 1s photoabsorption (NEXAFS) and photoemission (C 1s XPS) spectroscopies, and density functional theory (DFT) calculations. Such a combined study is aimed at elucidating the role played by the C-C bond unsaturation degree of the substituent on the electronic structure of the ferrocene derivatives. Such substituents are required for molecular chemical anchoring onto relevant surfaces when ferrocenes are used for molecular electronics hybrid devices. The high resolution C 1s NEXAFS spectra exhibit distinctive features that depend on the degree of unsaturation of the hydrocarbon substituent. The theoretical approach to consider the NEXAFS spectrum made of three parts allowed to disentangle the specific contribution of the substituent group to the experimental spectrum as a function of its unsaturation degree. C 1s IEs were derived from the experimental data analysis based on the DFT calculated IE values for the different carbon atoms of the substituent and cyclopentadienyl (Cp) rings. Distinctive trends of chemical shifts were observed for the substituent carbon atoms and the substituted atom of the Cp ring along the series of ferrocenes. The calculated IE pattern was rationalized in terms of initial and final state effects influencing the IE value, with special regard to the different mechanism of electron conjugation between the Cp ring and the substituent, namely the σ/π hyperconjugation in EtFC and the π-conjugation in VFC and EFC.
Arnold, Mobius; Ives, Robert Lawrence
2006-09-05
A power combiner for the combining of symmetric and asymmetric traveling wave energy comprises a feed waveguide having an input port and a launching port, a reflector for reflecting launched wave energy, and a final waveguide for the collection and transport of launched wave energy. The power combiner has a launching port for symmetrical waves which comprises a cylindrical section coaxial to the feed waveguide, and a launching port for asymmetric waves which comprises a sawtooth rotated about a central axis.
NASA Astrophysics Data System (ADS)
Bergshoeff, Eric A.; Hohm, Olaf; Penas, Victor A.; Riccioni, Fabio
2016-06-01
We present the dual formulation of double field theory at the linearized level. This is a classically equivalent theory describing the duals of the dilaton, the Kalb-Ramond field and the graviton in a T-duality or O( D, D) covariant way. In agreement with previous proposals, the resulting theory encodes fields in mixed Young-tableau representations, combining them into an antisymmetric 4-tensor under O( D, D). In contrast to previous proposals, the theory also requires an antisymmetric 2-tensor and a singlet, which are not all pure gauge. The need for these additional fields is analogous to a similar phenomenon for "exotic" dualizations, and we clarify this by comparing with the dualizations of the component fields. We close with some speculative remarks on the significance of these observations for the full non-linear theory yet to be constructed.
NASA Technical Reports Server (NTRS)
Zhang, Zhimin; Tomlinson, John; Martin, Clyde
1994-01-01
In this work, the relationship between splines and the control theory has been analyzed. We show that spline functions can be constructed naturally from the control theory. By establishing a framework based on control theory, we provide a simple and systematic way to construct splines. We have constructed the traditional spline functions including the polynomial splines and the classical exponential spline. We have also discovered some new spline functions such as trigonometric splines and the combination of polynomial, exponential and trigonometric splines. The method proposed in this paper is easy to implement. Some numerical experiments are performed to investigate properties of different spline approximations.
ERIC Educational Resources Information Center
Williams, Jeffrey
1994-01-01
Considers the recent flood of anthologies of literary criticism and theory as exemplifications of the confluence of pedagogical concerns, economics of publishing, and other historical factors. Looks specifically at how these anthologies present theory. Cites problems with their formatting theory and proposes alternative ways of organizing theory…
String Theory: Big Problem for Small Size
ERIC Educational Resources Information Center
Sahoo, S.
2009-01-01
String theory is the most promising candidate theory for a unified description of all the fundamental forces that exist in nature. It provides a mathematical framework that combines quantum theory with Einstein's general theory of relativity. The typical size of a string is of the order of 10[superscript -33] cm, called the Planck length. But due…
Spanning the Gap between Theory and Practice.
ERIC Educational Resources Information Center
Clark, Richard E.
1982-01-01
Suggests that new developments in prescriptive theory offer an opportunity for instructional designers to combine research and practice in developing instruction. Ways in which instructional theories can facilitate practical applications are suggested. (MER)
Reinmuth, Niels; Reck, Martin
2015-01-01
Immunotherapy of cancer encompasses different strategies that elicit or enhance the immune response against tumors. The first results from clinical studies have provided promising data for the treatment of lung cancer patients with immunomodulating monotherapies. To improve the potential benefit of cancer immunotherapy, synergistic combinations of the various immunotherapy approaches or of different elements within each of the immunotherapy approaches are being explored. The rationale typically involves different but complementary mechanisms of action, eventually impinging on more than one immune system mechanism. As a prominent example, the simultaneous blockade of PD-1 and CTLA-4 is giving rise to therapeutic synergy, while still offering room for efficacy improvement. Moreover, combinations of immunomodulating agents with chemotherapy or targeted molecules are being tested. Animal models suggest that immunotherapies in combination with these various options offer evidence for synergistic effects and are likely to radically change cancer treatment paradigms. However, data obtained so far indicate that toxic side effects are also potentiated, which may even restrict the selection of patients that are suitable for these combinational approaches. Advancing the field of combinatorial immunotherapy will require changes in the way investigational agents are clinically developed as well as novel experimental end-points for efficacy evaluation. However, this combined therapeutic manipulation of both tumor and stromal cells may lead to a dramatic change in the therapeutic options of lung cancer patients in any disease stage that can only grossly be appreciated by the current studies. PMID:26384009
Sanfilippo, Antonio P.
2005-12-27
Graph theory is a branch of discrete combinatorial mathematics that studies the properties of graphs. The theory was pioneered by the Swiss mathematician Leonhard Euler in the 18th century, commenced its formal development during the second half of the 19th century, and has witnessed substantial growth during the last seventy years, with applications in areas as diverse as engineering, computer science, physics, sociology, chemistry and biology. Graph theory has also had a strong impact in computational linguistics by providing the foundations for the theory of features structures that has emerged as one of the most widely used frameworks for the representation of grammar formalisms.
NASA Astrophysics Data System (ADS)
Solari, Soren; Smith, Andrew; Minnett, Rupert; Hecht-Nielsen, Robert
2008-06-01
Confabulation Theory [Hecht-Nielsen R. Confabulation theory. Springer-Verlag; 2007] is the first comprehensive theory of human and animal cognition. Here, we briefly describe Confabulation Theory and discuss experimental results that suggest the theory is correct. Simply put, Confabulation Theory proposes that thinking is like moving. In humans, the theory postulates that there are roughly 4000 thalamocortical modules, the “muscles of thought”. Each module performs an internal competition ( confabulation) between its symbols, influenced by inputs delivered via learned axonal associations with symbols in other modules. In each module, this competition is controlled, as in an individual muscle, by a single graded (i.e., analog) thought control signal. The final result of this confabulation process is a single active symbol, the expression of which also results in launching of action commands that trigger and control subsequent movements and/or thought processes. Modules are manipulated in groups under coordinated, event-contingent control, in a similar manner to our 700 muscles. Confabulation Theory hypothesizes that the control of thinking is a direct evolutionary outgrowth of the control of movement. Establishing a complete understanding of Confabulation Theory will require launching and sustaining a massive new phalanx of confabulation neuroscience research.
NASA Technical Reports Server (NTRS)
1990-01-01
The Rayovac TANDEM is an advanced technology combination work light and general purpose flashlight that incorporates several NASA technologies. The TANDEM functions as two lights in one. It features a long range spotlight and wide angle floodlight; simple one-hand electrical switching changes the beam from spot to flood. TANDEM developers made particular use of NASA's extensive research in ergonomics in the TANDEM's angled handle, convenient shape and different orientations. The shatterproof, water resistant plastic casing also draws on NASA technology, as does the shape and beam distance of the square diffused flood. TANDEM's heavy duty magnet that permits the light to be affixed to any metal object borrows from NASA research on rare earth magnets that combine strong magnetic capability with low cost. Developers used a NASA-developed ultrasonic welding technique in the light's interior.
Perspective: Nonadiabatic dynamics theory
NASA Astrophysics Data System (ADS)
Tully, John C.
2012-12-01
Nonadiabatic dynamics—nuclear motion evolving on multiple potential energy surfaces—has captivated the interest of chemists for decades. Exciting advances in experimentation and theory have combined to greatly enhance our understanding of the rates and pathways of nonadiabatic chemical transformations. Nevertheless, there is a growing urgency for further development of theories that are practical and yet capable of reliable predictions, driven by fields such as solar energy, interstellar and atmospheric chemistry, photochemistry, vision, single molecule electronics, radiation damage, and many more. This Perspective examines the most significant theoretical and computational obstacles to achieving this goal, and suggests some possible strategies that may prove fruitful.
NASA Astrophysics Data System (ADS)
Susskind, Leonard
2013-01-01
After reviewing the original motivation for the formulation of string theory and what we learned from it, I discuss some of the implications of the holographic principle and of string dualities for the question of the building blocks of nature.
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
A theory based on the premise that, on the microscopic scale, physical quantities have discrete, rather than a continuous range of, values. The theory was devised in the early part of the twentieth century to account for certain phenomena that could not be explained by classical physics. In 1900, the German physicist, Max Planck (1858-1947), was able precisely to describe the previously unexplaine...
Effective theories of universal theories
NASA Astrophysics Data System (ADS)
Wells, James D.; Zhang, Zhengkang
2016-01-01
It is well-known but sometimes overlooked that constraints on the oblique parameters (most notably S and T parameters) are generally speaking only applicable to a special class of new physics scenarios known as universal theories. In the effective field theory (EFT) framework, the oblique parameters should not be associated with Wilson coefficients in a particular operator basis, unless restrictions have been imposed on the EFT so that it describes universal theories. We work out these restrictions, and present a detailed EFT analysis of universal theories. We find that at the dimension-6 level, universal theories are completely characterized by 16 parameters. They are conveniently chosen to be: 5 oblique parameters that agree with the commonly-adopted ones, 4 anomalous triple-gauge couplings, 3 rescaling factors for the h 3, hf f , hV V vertices, 3 parameters for hV V vertices absent in the Standard Model, and 1 four-fermion coupling of order y f 2 . All these parameters are defined in an unambiguous and basis-independent way, allowing for consistent constraints on the universal theories parameter space from precision electroweak and Higgs data.
NASA Astrophysics Data System (ADS)
Moraru, Gheorghe; Mursa, Condrat
2006-12-01
In this book we present the basic concepts of the theory of elasticity: stress and deformation states (plane and three-dimensional) and generalized Hooke's law. We present a number of problems which have applications in strength analysis. The book includes a synthesis of the theory of elasticity and modern methods of applied mathematics. This book is designed for students, post graduate students and specialists in strength analysis. the book contains a number of appendixes which includes: elements of matrix-calculation, concepts of tensorial calculation, the Fourier transform, the notion of improper integrals,singular and hypersingular integrals, generalized functions, the Dirac Delta function
NASA Astrophysics Data System (ADS)
Mamedov, B. A.; Çopuroğlu, E.
2016-06-01
In this work, we study the effects of self-friction field on the states of a single configuration of closed and open shells by using the Combined Hartree-Fock-Roothaan equations for atomic-molecular and nuclear systems. Here, we present a program that implements the evaluation of the various properties of atoms and molecular systems with respect to the various values of self-friction quantum numbers. An especially fast and accurate algorithm for the calculation of the self-friction multicenter molecular integrals is obtained by using one-range addition theorems. To demonstrate the action of self-friction field on the atomic and molecular systems we have performed the calculations of H2O, CH3, CH2 and NH3 molecules. For the derivations of the orbital, kinetic and total energies and linear combination coefficients, the results are given for various values of self-friction quantum numbers. For various values of self-friction quantum numbers the obtained results of the orbital, kinetic and total energies and linear combination coefficients have been analyzed.
Tretiak, Sergei
2009-01-01
The aim of the present work is to demonstrate that combined spectral tuning of fluorescence and two-photon absorption (TPA) properties of multipolar chromophores can be achieved by introduction of slight electronic chemical dissymmetry. In that perspective, two novel series of structurally related chromophores have been designed and studied: a first series based on rod-like quadrupolar chromophores bearing different electron-donating (D) end groups and a second series based on three-branched octupolar chromophores built from a trigonal donating moiety and bearing various acceptor (A) peripheral groups. The influence of the electronic dissymmetry is investigated by combined experimental and theoretical studies of the linear and nonlinear optical properties of dissymmetric chromophores compared to their symmetrical counterparts. In both types of systems (i.e. quadrupoles and octupoles) experiments and theory reveal that excitation is essentially delocalized and that excitation involves synchronized charge redistribution between the different D and A moieties within the multipolar structure (i.e. concerted intramolecular charge transfer). In contrast, the emission stems only from a particular dipolar subunit bearing the strongest D or A moieties due to fast excitation localization after excitation prior to emission. Hence control of emission characteristics (polarization and emission spectrum) in addition to localization can be achieved by controlled introduction of electronic dissymmetry (i.e. replacement of one of the D or A end-groups by a slightly stronger D{prime} or A{prime} units). Interestingly dissymmetrical functionalization of both quadrupolar and octupolar compounds does not lead to significant loss in TPA responses and can even be beneficial due to the spectral broadening and peak position tuning that it allows. This study thus reveals an original molecular engineering route strategy allowing major TPA enhancement in multipolar structures due to concerted
ERIC Educational Resources Information Center
Moorman, Thomas
1992-01-01
Students experience the distinction between observable fact and scientific theory by taking a critical look at how spaghetti can be sucked up into the mouth. A demonstration shows that air is needed to suck up the spaghetti but that the scientific explanation is not as simple. (MDH)
ERIC Educational Resources Information Center
Toso, Robert B.
2000-01-01
Inspired by William Glasser's Reality Therapy ideas, Control Theory (CT) is a disciplinary approach that stresses people's ability to control only their own behavior, based on internal motivations to satisfy five basic needs. At one North Dakota high school, CT-trained teachers are the program's best recruiters. (MLH)
NASA Astrophysics Data System (ADS)
Paschos, E. A.
2005-01-01
The electroweak theory unifies two basic forces of nature: the weak force and electromagnetism. This book is a concise introduction to the structure of the electroweak theory and its applications. It describes the structure and properties of field theories with global and local symmetries, leading to the construction of the standard model. It describes the new particles and processes predicted by the theory, and compares them with experimental results. It also covers neutral currents, the properties of W and Z bosons, the properties of quarks and mesons containing heavy quarks, neutrino oscillations, CP-asymmetries in K, D, and B meson decays, and the search for Higgs particles. Each chapter contains problems, stemming from the long teaching experience of the author, to supplement the text. This will be of great interest to graduate students and researchers in elementary particle physics. Password protected solutions are available to lecturers at www.cambridge.org/9780521860987. Each chapter has an introduction highlighting its contents and giving a historical perspective. Chapters are cross-referenced, interrelating concepts and sections of the book. Contains 49 exercises
NASA Astrophysics Data System (ADS)
Solanki, Ravindra Singh; Mishra, S. K.; Kuroiwa, Yoshihiro; Moriyoshi, Chikako; Pandey, Dhananjai
2013-11-01
We present here results of high-resolution synchrotron x-ray diffraction (SXRD) and dielectric studies in conjunction with Landau theory considerations on (Pb0.94Sr0.06)(ZrxTi1-x)O3 compositions in the vicinity of the morphotropic phase boundary (MPB) to find evidence for the flattening of the free-energy surface at the MPB proposed in recent ab initio studies on strongly piezoelectric ceramics. SXRD results reveal that the tetragonal and pseudorhombohedral monoclinic compositions with x = 0.515 and 0.550 transform directly into the cubic paraelectric phase, whereas for 0.520 ≤ x ≤ 0.545, the pseudotetragonal and pseudorhombohedral monoclinic compositions transform first to the tetragonal phase and then to the cubic phase. Our results reveal the existence of a triple point at x ≃ 0.550. It is shown that the tetragonal-to-cubic transition, irrespective of the composition, up to x ≃ 0.545 is accompanied with a discontinuous change in the unit cell volume and thermal hysteresis, confirming the first-order nature of this transition. However, the pseudorhombohedral monoclinic composition for x = 0.550 transforms directly into the cubic phase in a second-order manner. Our experimental results thus reveal a crossover from a first-order to a second-order phase transition through a tricritical point around x = 0.550. Landau theory calculations also confirm gradual flattening of the free-energy surface on approaching the tricritical composition x = 0.550. We conclude that the triple point in the Pb(ZrxTi1-x)O3 phase diagram is a tricritical point.
Birth control pills - combination
The pill - combination; Oral contraceptives - combination; OCP - combination; Contraception - combination ... Birth control pills help keep you from getting pregnant. When taken daily, they are one of the most ...
Wang, Qi; Li, Rong; Xu, Yuanlan; Zhang, Jianbing; Miao, Xiangshui; Zhang, Daoli
2014-06-21
In this present work, the geometric structures and electronic transport properties of (InAs){sub n} (n = 2, 3, 4) molecule cluster junctions are comparatively investigated using NEGF combined with DFT. Results indicate that all (InAs){sub n} molecule cluster junctions present metallic behavior at the low applied biases ([−2V, 2V]), while NDR appears at a certain high bias range. Our calculation shows that the current of (InAs){sub 4} molecule cluster–based junction is almost the largest at any bias. The mechanisms of the current–voltage characteristics of all the three molecule cluster junctions are proposed.
Theory Survey or Survey Theory?
ERIC Educational Resources Information Center
Dean, Jodi
2010-01-01
Matthew Moore's survey of political theorists in U.S. American colleges and universities is an impressive contribution to political science (Moore 2010). It is the first such survey of political theory as a subfield, the response rate is very high, and the answers to the survey questions provide new information about how political theorists look…
M theory on deformed superspace
NASA Astrophysics Data System (ADS)
Faizal, Mir
2011-11-01
In this paper we will analyze a noncommutative deformation of the Aharony-Bergman-Jafferis-Maldacena (ABJM) theory in N=1 superspace formalism. We will then analyze the Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetries for this deformed ABJM theory, and its linear as well as nonlinear gauges. We will show that the sum of the gauge fixing term and the ghost term for this deformed ABJM theory can be expressed as a combination of the total BRST and the total anti-BRST variation, in Landau and nonlinear gauges. We will show that in Landau and Curci-Ferrari gauges deformed ABJM theory is invariant under an additional set of symmetry transformations. We will also discuss the effect that the addition of a bare mass term has on this theory.
NASA Technical Reports Server (NTRS)
Johnson, W.
1980-01-01
A comprehensive presentation is made of the engineering analysis methods used in the design, development and evaluation of helicopters. After an introduction covering the fundamentals of helicopter rotors, configuration and operation, rotary wing history, and the analytical notation used in the text, the following topics are discussed: (1) vertical flight, including momentum, blade element and vortex theories, induced power, vertical drag and ground effect; (2) forward flight, including in addition to momentum and vortex theory for this mode such phenomena as rotor flapping and its higher harmonics, tip loss and root cutout, compressibility and pitch-flap coupling; (3) hover and forward flight performance assessment; (4) helicopter rotor design; (5) rotary wing aerodynamics; (6) rotary wing structural dynamics, including flutter, flap-lag dynamics ground resonance and vibration and loads; (7) helicopter aeroelasticity; (8) stability and control (flying qualities); (9) stall; and (10) noise.
Combined study of the gluon and ghost condensates and <{epsilon}{sup abc}c{sup b}c{sup c}> in Euclidean SU(2) Yang-Mills theory in the Landau gauge
Capri, M.A.L.; Lemes, V.E.R.; Sobreiro, R.F.; Sorella, S.P.; Dudal, D.; Verschelde, H.; Gracey, J.A.
2006-01-01
The ghost condensate <{epsilon}{sup abc}c{sup b}c{sup c}> is considered together with the gluon condensate in SU(2) Euclidean Yang-Mills theories quantized in the Landau gauge. The vacuum polarization ceases to be transverse due to the nonvanishing condensate <{epsilon}{sup abc}c{sup b}c{sup c}>. The gluon propagator itself remains transverse. By polarization effects, this ghost condensate induces then a splitting in the gluon mass parameter, which is dynamically generated through . The obtained effective masses are real when is included in the analysis. In the absence of , the already known result that the ghost condensate induces effective tachyonic masses is recovered. At the one-loop level, we find that the effective diagonal mass becomes smaller than the off-diagonal one. This might serve as an indication for some kind of Abelian dominance in the Landau gauge, similar to what happens in the maximal Abelian gauge.
Demystifying theory and its use in improvement
Davidoff, Frank; Dixon-Woods, Mary; Leviton, Laura; Michie, Susan
2015-01-01
The role and value of theory in improvement work in healthcare has been seriously underrecognised. We join others in proposing that more informed use of theory can strengthen improvement programmes and facilitate the evaluation of their effectiveness. Many professionals, including improvement practitioners, are unfortunately mystified—and alienated—by theory, which discourages them from using it in their work. In an effort to demystify theory we make the point in this paper that, far from being discretionary or superfluous, theory (‘reason-giving’), both informal and formal, is intimately woven into virtually all human endeavour. We explore the special characteristics of grand, mid-range and programme theory; consider the consequences of misusing theory or failing to use it; review the process of developing and applying programme theory; examine some emerging criteria of ‘good’ theory; and emphasise the value, as well as the challenge, of combining informal experience-based theory with formal, publicly developed theory. We conclude that although informal theory is always at work in improvement, practitioners are often not aware of it or do not make it explicit. The germane issue for improvement practitioners, therefore, is not whether they use theory but whether they make explicit the particular theory or theories, informal and formal, they actually use. PMID:25616279
Theories of Burning: A Case Study Using a Historical Perspective.
ERIC Educational Resources Information Center
Irwin, Allan
1997-01-01
Uses the overthrow of the phlogiston theory to provide students with insight into the nature of science and changes in theory. Presents a case study of lessons on theories of burning using a historical theme. Argues that an appreciation of how science makes progress can be combined with an understanding of modern day theory to encourage…
Unifying Theories of Confidentiality
NASA Astrophysics Data System (ADS)
Banks, Michael J.; Jacob, Jeremy L.
This paper presents a framework for reasoning about the security of confidential data within software systems. A novelty is that we use Hoare and He's Unifying Theories of Programming (UTP) to do so and derive advantage from this choice. We identify how information flow between users can be modelled in the UTP and devise conditions for verifying that system designs may not leak secret information to untrusted users. We also investigate how these conditions can be combined with existing notions of refinement to produce refinement relations suitable for deriving secure implementations of systems.
Theory of ultracold superstrings
Snoek, Michiel; Vandoren, S.; Stoof, H. T. C.
2006-09-15
The combination of a vortex line in a one-dimensional optical lattice with fermions bound to the vortex core makes up an ultracold superstring. We give a detailed derivation of the way to make this supersymmetric string in the laboratory. In particular, we discuss the presence of a fermionic bound state in the vortex core and the tuning of the laser beams needed to achieve supersymmetry. Moreover, we discuss experimental consequences of supersymmetry and identify the precise supersymmetry in the problem. Finally, we make the mathematical connection with string theory.
Generalizing Prototype Theory: A Formal Quantum Framework.
Aerts, Diederik; Broekaert, Jan; Gabora, Liane; Sozzo, Sandro
2016-01-01
Theories of natural language and concepts have been unable to model the flexibility, creativity, context-dependence, and emergence, exhibited by words, concepts and their combinations. The mathematical formalism of quantum theory has instead been successful in capturing these phenomena such as graded membership, situational meaning, composition of categories, and also more complex decision making situations, which cannot be modeled in traditional probabilistic approaches. We show how a formal quantum approach to concepts and their combinations can provide a powerful extension of prototype theory. We explain how prototypes can interfere in conceptual combinations as a consequence of their contextual interactions, and provide an illustration of this using an intuitive wave-like diagram. This quantum-conceptual approach gives new life to original prototype theory, without however making it a privileged concept theory, as we explain at the end of our paper. PMID:27065436
Generalizing Prototype Theory: A Formal Quantum Framework
Aerts, Diederik; Broekaert, Jan; Gabora, Liane; Sozzo, Sandro
2016-01-01
Theories of natural language and concepts have been unable to model the flexibility, creativity, context-dependence, and emergence, exhibited by words, concepts and their combinations. The mathematical formalism of quantum theory has instead been successful in capturing these phenomena such as graded membership, situational meaning, composition of categories, and also more complex decision making situations, which cannot be modeled in traditional probabilistic approaches. We show how a formal quantum approach to concepts and their combinations can provide a powerful extension of prototype theory. We explain how prototypes can interfere in conceptual combinations as a consequence of their contextual interactions, and provide an illustration of this using an intuitive wave-like diagram. This quantum-conceptual approach gives new life to original prototype theory, without however making it a privileged concept theory, as we explain at the end of our paper. PMID:27065436
Graph-based linear scaling electronic structure theory
NASA Astrophysics Data System (ADS)
Niklasson, Anders M. N.; Mniszewski, Susan M.; Negre, Christian F. A.; Cawkwell, Marc J.; Swart, Pieter J.; Mohd-Yusof, Jamal; Germann, Timothy C.; Wall, Michael E.; Bock, Nicolas; Rubensson, Emanuel H.; Djidjev, Hristo
2016-06-01
We show how graph theory can be combined with quantum theory to calculate the electronic structure of large complex systems. The graph formalism is general and applicable to a broad range of electronic structure methods and materials, including challenging systems such as biomolecules. The methodology combines well-controlled accuracy, low computational cost, and natural low-communication parallelism. This combination addresses substantial shortcomings of linear scaling electronic structure theory, in particular with respect to quantum-based molecular dynamics simulations.
Graph-based linear scaling electronic structure theory.
Niklasson, Anders M N; Mniszewski, Susan M; Negre, Christian F A; Cawkwell, Marc J; Swart, Pieter J; Mohd-Yusof, Jamal; Germann, Timothy C; Wall, Michael E; Bock, Nicolas; Rubensson, Emanuel H; Djidjev, Hristo
2016-06-21
We show how graph theory can be combined with quantum theory to calculate the electronic structure of large complex systems. The graph formalism is general and applicable to a broad range of electronic structure methods and materials, including challenging systems such as biomolecules. The methodology combines well-controlled accuracy, low computational cost, and natural low-communication parallelism. This combination addresses substantial shortcomings of linear scaling electronic structure theory, in particular with respect to quantum-based molecular dynamics simulations. PMID:27334148
Scandura's Structural Learning Theory: A Critique.
ERIC Educational Resources Information Center
Ikegulu, Nelson T.
This paper offers a pragmatic critique of the instructional prescriptions based on Structural Learning Theory (SLT) conceived by Joseph M. Scandura in 1973. SLT is rooted in clarifying the roles of expository and discovery modes of problem solving in instruction. It is a cognitively oriented model combining learning theories, instructional…
A Partial Theory of Executive Succession.
ERIC Educational Resources Information Center
Thiemann, Francis C.
This study has two purposes: (1) To construct a partial theory of succession, and (2) to utilize a method of theory construction which combines some of the concepts of Hans Zetterberg with the principles of formal symbolic logic. A bibliography on succession in complex organizations with entries on descriptive and empirical studies from various…
Improved hardening theory for cyclic plasticity.
NASA Technical Reports Server (NTRS)
Vos, R. G.; Armstrong, W. H.
1973-01-01
A temperature-dependent version of a combined hardening theory, including isotropic and kinematic hardening, is presented within the framework of recent plasticity formulations. This theory has been found to be especially useful in finite-element analysis of aerospace vehicle engines under conditions of large plastic strain and low-cycle fatigue.
Situational theory of leadership.
Waller, D J; Smith, S R; Warnock, J T
1989-11-01
The situational theory of leadership and the LEAD instruments for determining leadership style are explained, and the application of the situational leadership theory to the process of planning for and implementing organizational change is described. Early studies of leadership style identified two basic leadership styles: the task-oriented autocratic style and the relationship-oriented democratic style. Subsequent research found that most leaders exhibited one of four combinations of task and relationship behaviors. The situational leadership theory holds that the difference between the effectiveness and ineffectiveness of the four leadership styles is the appropriateness of the leader's behavior to the particular situation in which it is used. The task maturity of the individual or group being led must also be accounted for; follower readiness is defined in terms of the capacity to set high but attainable goals, willingness or ability to accept responsibility, and possession of the necessary education or experience for a specific task. A person's leadership style, range, and adaptability can be determined from the LEADSelf and LEADOther questionnaires. By applying the principles of the situational leadership theory and adapting their managerial styles to specific tasks and levels of follower maturity, the authors were successful in implementing 24-hour pharmacokinetic dosing services provided by staff pharmacists with little previous experience in clinical services. The situational leadership model enables a leader to identify a task, set goals, determine the task maturity of the individual or group, select an appropriate leadership style, and modify the style as change occurs. Pharmacy managers can use this model when implementing clinical pharmacy services. PMID:2589352
Eigenvalue Detonation of Combined Effects Aluminized Explosives
NASA Astrophysics Data System (ADS)
Capellos, Christos; Baker, Ernest; Balas, Wendy; Nicolich, Steven; Stiel, Leonard
2007-06-01
This paper reports on the development of theory and performance for recently developed combined effects aluminized explosives. Traditional high energy explosives used for metal pushing incorporate high loading percentages of HMX or RDX, whereas blast explosives incorporate some percentage of aluminum. However, the high blast explosives produce increased blast energies, with reduced metal pushing capability due to late time aluminum reaction. Metal pushing capability refers to the early volume expansion work produced during the first few volume expansions associated with cylinder wall velocities and Gurney energies. Our Recently developed combined effects aluminized explosives (PAX-29C, PAX-30, PAX-42) are capable of achieving excellent metal pushing and high blast energies. Traditional Chapman-Jouguet detonation theory does not explain the observed detonation states achieved by these combined effects explosives. This work demonstrates, with the use of cylinder expansion data and thermochemical code calculations (JAGUAR and CHEETAH), that eigenvalue detonation theory explains the observed behavior.
Eight myths on motivating social services workers: theory-based perspectives.
Latting, J K
1991-01-01
A combination of factors has made formal motivational and reward systems rare in human service organizations generally and virtually non-existent in social service agencies. The author reviews eight of these myths by reference to eight motivational theories which refute them: need theory, expectancy theory, feedback theory, equity theory, reinforcement theory, cognitive evaluation theory, goal setting theory, and social influence theory. Although most of these theories have been developed and applied in the private sector, relevant research has also been conducted in social service agencies. The author concludes with a summary of guidelines suggested by the eight theories for motivating human service workers. PMID:10114292
Technology, Teachers, and Training: Combining Theory with Macedonia's Experience
ERIC Educational Resources Information Center
Hosman, Laura; Cvetanoska, Maja
2013-01-01
Numerous developing countries are currently planning or executing projects that introduce technology into their educational systems. This article asserts that such projects will have limited long-term success or impact until they are reconceptualized to incorporate three transformative concepts: teachers play the key role in determining the…
Theory of using magnetic deflections to combine charged particle beams.
Doyle, Barney Lee; Steckbeck, Mackenzie K.
2014-09-01
Several radiation effects projects in the Ion Beam Lab (IBL) have recently required two disparate charged particle beams to simultaneously strike a single sample through a single port of the target chamber. Because these beams have vastly different mass- energy products (MEP), the low MEP beam requires a large angle of deflection toward the sample by a bending electromagnet. A second electromagnet located further upstream provides a means to compensate for the small angle deflection experienced by the high MEP beam during its path through the bending magnet. This paper derives the equations used to select the magnetic fields required by these two magnets to achieve uniting both beams at the target sample. A simple result was obtained when the separation of the two magnets was equivalent to the distance from the bending magnet to the sample, and the equations is given by: , 1 2 c s c s r B B r where and are the magnetic fields in the steering and bending magnet and is s B c B c s r r the ratio of the radii of the bending magnet to that of the steering magnet. This result is not dependent upon the parameters of the high MEP beam, i.e. energy, mass, charge state. Therefore, once the field of the bending magnet is set for the low MEP beam, and the field in the steering magnet is set as indicted in the equation, the trajectory path of any high MEP beam will be directed into the sample. (page intentionally left blank)
An integrated theory of ageing in the nematode Caenorhabditis elegans
GEMS, DAVID
2000-01-01
Numerous theories of ageing have been proposed, and many have been tested experimentally, particularly using nematode models such as Caenorhabditis elegans. By combining those theories of ageing that remain plausible with recent findings from studies of C. elegans life span mutants, an integrated theory of ageing has been devised. This is formed from 3 interconnected elements: the evolutionary theory of ageing, the oxidative damage theory of ageing, and a nonadaptive programmed ageing theory. This tripartite theory of ageing gives rise to a number of predictions that may be tested experimentally. PMID:11197524
Theory and Vocational Education.
ERIC Educational Resources Information Center
Swanson, Gordon I.
1988-01-01
The search for an explanation of day-to-day problems is the appropriate framework for describing theory. Theory and research have reciprocal relationships: Theory gives direction to research and research refines theory. Vocational education occurs in the context of many theoretical frames. Understanding this theory relatedness is important to…
Decidability of formal theories and hyperincursivity theory
NASA Astrophysics Data System (ADS)
Grappone, Arturo G.
2000-05-01
This paper shows the limits of the Proof Standard Theory (briefly, PST) and gives some ideas of how to build a proof anticipatory theory (briefly, PAT) that has no such limits. Also, this paper considers that Gödel's proof of the undecidability of Principia Mathematica formal theory is not valid for axiomatic theories that use a PAT to build their proofs because the (hyper)incursive functions are self-representable.
Constrained sensitivity theory
Greenspan, E.; Williams, M.L.
1980-01-01
In sensitivity and uncertainty analysis of to-be-built reactors it is customary to use k-reset sensitivity functions - accounting for the combined effects of the change (or uncertainty) in the input data and of the alteration in some design variable applied to maintain criticality. Critical reactors are usually subjected to several constraints, such as power peaking factor and breeding ratio constraints, in addition to the criticality constraint. Perturbation theory formulations which can account, simultaneously, for several constraints both in critical reactors and in source driven systems (such as radiation shields and blankets of fusion devices) are presented. All the sensitivity and uncertainty analyses of source driven systems carried out so far used unconstrained sensitivity functions despite the fact that such systems can be also subjected to a variety of constraints.
NASA Astrophysics Data System (ADS)
Becker, Katrin; Becker, Melanie; Schwarz, John H.
String theory is one of the most exciting and challenging areas of modern theoretical physics. This book guides the reader from the basics of string theory to recent developments. It introduces the basics of perturbative string theory, world-sheet supersymmetry, space-time supersymmetry, conformal field theory and the heterotic string, before describing modern developments, including D-branes, string dualities and M-theory. It then covers string geometry and flux compactifications, applications to cosmology and particle physics, black holes in string theory and M-theory, and the microscopic origin of black-hole entropy. It concludes with Matrix theory, the AdS/CFT duality and its generalizations. This book is ideal for graduate students and researchers in modern string theory, and will make an excellent textbook for a one-year course on string theory. It contains over 120 exercises with solutions, and over 200 homework problems with solutions available on a password protected website for lecturers at www.cambridge.org/9780521860697. Comprehensive coverage of topics from basics of string theory to recent developments Ideal textbook for a one-year course in string theory Includes over 100 exercises with solutions Contains over 200 homework problems with solutions available to lecturers on-line
NASA Astrophysics Data System (ADS)
Forbes, T. G.; Linker, J. A.; Chen, J.; Cid, C.; Kóta, J.; Lee, M. A.; Mann, G.; Mikić, Z.; Potgieter, M. S.; Schmidt, J. M.; Siscoe, G. L.; Vainio, R.; Antiochos, S. K.; Riley, P.
This chapter provides an overview of current efforts in the theory and modeling of CMEs. Five key areas are discussed: (1) CME initiation; (2) CME evolution and propagation; (3) the structure of interplanetary CMEs derived from flux rope modeling; (4) CME shock formation in the inner corona; and (5) particle acceleration and transport at CME driven shocks. In the section on CME initiation three contemporary models are highlighted. Two of these focus on how energy stored in the coronal magnetic field can be released violently to drive CMEs. The third model assumes that CMEs can be directly driven by currents from below the photosphere. CMEs evolve considerably as they expand from the magnetically dominated lower corona into the advectively dominated solar wind. The section on evolution and propagation presents two approaches to the problem. One is primarily analytical and focuses on the key physical processes involved. The other is primarily numerical and illustrates the complexity of possible interactions between the CME and the ambient medium. The section on flux rope fitting reviews the accuracy and reliability of various methods. The section on shock formation considers the effect of the rapid decrease in the magnetic field and plasma density with height. Finally, in the section on particle acceleration and transport, some recent developments in the theory of diffusive particle acceleration at CME shocks are discussed. These include efforts to combine self-consistently the process of particle acceleration in the vicinity of the shock with the subsequent escape and transport of particles to distant regions.
NASA Astrophysics Data System (ADS)
Forbes, T. G.; Linker, J. A.; Chen, J.; Cid, C.; Kóta, J.; Lee, M. A.; Mann, G.; Mikić, Z.; Potgieter, M. S.; Schmidt, J. M.; Siscoe, G. L.; Vainio, R.; Antiochos, S. K.; Riley, P.
2006-03-01
This chapter provides an overview of current efforts in the theory and modeling of CMEs. Five key areas are discussed: (1) CME initiation; (2) CME evolution and propagation; (3) the structure of interplanetary CMEs derived from flux rope modeling; (4) CME shock formation in the inner corona; and (5) particle acceleration and transport at CME driven shocks. In the section on CME initiation three contemporary models are highlighted. Two of these focus on how energy stored in the coronal magnetic field can be released violently to drive CMEs. The third model assumes that CMEs can be directly driven by currents from below the photosphere. CMEs evolve considerably as they expand from the magnetically dominated lower corona into the advectively dominated solar wind. The section on evolution and propagation presents two approaches to the problem. One is primarily analytical and focuses on the key physical processes involved. The other is primarily numerical and illustrates the complexity of possible interactions between the CME and the ambient medium. The section on flux rope fitting reviews the accuracy and reliability of various methods. The section on shock formation considers the effect of the rapid decrease in the magnetic field and plasma density with height. Finally, in the section on particle acceleration and transport, some recent developments in the theory of diffusive particle acceleration at CME shocks are discussed. These include efforts to combine self-consistently the process of particle acceleration in the vicinity of the shock with the subsequent escape and transport of particles to distant regions.
Foundations for a theory of gravitation theories
NASA Technical Reports Server (NTRS)
Thorne, K. S.; Lee, D. L.; Lightman, A. P.
1972-01-01
A foundation is laid for future analyses of gravitation theories. This foundation is applicable to any theory formulated in terms of geometric objects defined on a 4-dimensional spacetime manifold. The foundation consists of (1) a glossary of fundamental concepts; (2) a theorem that delineates the overlap between Lagrangian-based theories and metric theories; (3) a conjecture (due to Schiff) that the Weak Equivalence Principle implies the Einstein Equivalence Principle; and (4) a plausibility argument supporting this conjecture for the special case of relativistic, Lagrangian-based theories.
Crisis Decision Theory: Decisions in the Face of Negative Events
ERIC Educational Resources Information Center
Sweeney, Kate
2008-01-01
How do people respond to negative life events? Crisis decision theory combines the strengths of coping theories with research on decision making to predict the responses people choose under negative circumstances. The theory integrates literatures on coping, health behavior, and decision making, among others, into 3 stages that describe the…
A Social Extension of a Psychological Interest Theory
ERIC Educational Resources Information Center
Bikner-Ahsbahs, Angelika
2003-01-01
Based on an individual interest theory as a sensitising theory, empirical data are used to gain social interest concepts, as there are situated collective interest and interest-dense situation. These concepts serve as a basis for a social extension of a psychological interest theory. Its construction combines social interactions, the dynamic of…
Theory of nanorod antenna resonances including end-reflection phase
NASA Astrophysics Data System (ADS)
Su, Wei; Li, Xiangyin; Bornemann, Jens; Gordon, Reuven
2015-04-01
We present a fully analytic theory for nanorod resonances including the phase of reflection from the rounded ends using a transmission line approach. It combines the circuit theory response of spherical nanoparticles with standard transmission line theory using the Sommerfeld wave dispersion. The approach agrees well with comprehensive numerical calculations.
Ryle, A
1991-12-01
An account of object relations theory (ORT), represented in terms of the procedural sequence model (PSM), is compared to the ideas of Vygotsky and activity theory (AT). The two models are seen to be compatible and complementary and their combination offers a satisfactory account of human psychology, appropriate for the understanding and integration of psychotherapy. PMID:1786224
Utilizing general information theories for uncertainty quantification
Booker, J. M.
2002-01-01
Uncertainties enter into a complex problem from many sources: variability, errors, and lack of knowledge. A fundamental question arises in how to characterize the various kinds of uncertainty and then combine within a problem such as the verification and validation of a structural dynamics computer model, reliability of a dynamic system, or a complex decision problem. Because uncertainties are of different types (e.g., random noise, numerical error, vagueness of classification), it is difficult to quantify all of them within the constructs of a single mathematical theory, such as probability theory. Because different kinds of uncertainty occur within a complex modeling problem, linkages between these mathematical theories are necessary. A brief overview of some of these theories and their constituents under the label of Generalized lnforrnation Theory (GIT) is presented, and a brief decision example illustrates the importance of linking at least two such theories.
Property attribution in combined concepts.
Spalding, Thomas L; Gagné, Christina L
2015-05-01
Recent research shows that the judged likelihood of properties of modified nouns (baby ducks have webbed feet) is reduced relative to judgments for unmodified nouns (ducks have webbed feet). This modification effect has been taken as evidence both for and against the idea that combined concepts automatically inherit properties from their constituent concepts. Experiments 1 and 2 replicate this effect and demonstrate a reversed modification effect with false properties. That is, false properties are judged more likely with modification (e.g., purple candles have teeth is judged more likely than candles have teeth). These experiments also show that properties that are neither generically true nor false are unaffected by modification. Experiments 3 and 4 manipulate participants' expectation of contrast by showing modified and unmodified nouns that either match or mismatch in terms of a property and show that the judged likelihood of properties depends on the expectations of contrast set up by the manipulation. These results show that the modification effect is primarily driven by participants' understanding of the relation of subcategories to categories, rather than by the features of the concepts being combined, suggesting that the process of property attribution in combined concepts is strongly affected by pragmatic factors and is less strongly dependent on conceptual content than most theories of conceptual combination would suggest. PMID:25419816
Sentence Combining and the Learning Disabled Student.
ERIC Educational Resources Information Center
Nutter, Norma; Safran, Stephen P.
Theory and research indicated that sentence-combining exercises (SCE's) might be effective for improving the writing of learning disabled (LD) pupils. Seven college seniors in special education were trained to implement SCE's naturalistically in tutoring 13 LD pupils in grades 1-6 over a 10 week period, with a control group of 8 seniors tutoring…
Some directions in ecological theory.
Kendall, Bruce E
2015-12-01
The role of theory within ecology has changed dramatically in recent decades. Once primarily a source of qualitative conceptual framing, ecological theories and models are now often used to develop quantitative explanations of empirical patterns and to project future dynamics of specific ecological systems. In this essay, I recount my own experience of this transformation, in which accelerating computing power and the widespread incorporation of stochastic processes into ecological theory combined to create some novel integration of mathematical and statistical models. This stronger integration drives theory towards incorporating more biological realism, and I explore ways in which we can grapple with that realism to generate new general theoretical insights. This enhanced realism, in turn, may lead to frameworks for projecting ecological responses to anthropogenic change, which is, arguably, the central challenge for 21st-century ecology. In an era of big data and synthesis, ecologists are increasingly seeking to infer causality from observational data; but conventional biometry provides few tools for this project. This is a realm where theorists can and should play an important role, and I close by pointing towards some analytical and philosophical approaches developed in our sister discipline of economics that address this very problem. While I make no grand prognostications about the likely discoveries of ecological theory over the coming century, you will find in this essay a scattering of more or less far-fetched ideas that I, at least, think are interesting and (possibly) fruitful directions for our field. PMID:26909419
ERIC Educational Resources Information Center
Apsche, Jack A.
2005-01-01
In his work on the Theory of Modes, Beck (1996) suggested that there were flaws with his cognitive theory. He suggested that though there are shortcomings to his cognitive theory, there were not similar shortcomings to the practice of Cognitive Therapy. The author suggests that if there are shortcomings to cognitive theory the same shortcomings…
ERIC Educational Resources Information Center
MacLure, Maggie
2010-01-01
Theory frequently offends. The paper argues that this is its strength: the value of theory lies in its power to get in the way. Theory is needed to block the reproduction of banality, and thereby, hopefully, open new possibilities for thinking and doing. However, I also note that theory has become somewhat disengaged from its objects, diminishing…
Quantum Theory is an Information Theory
NASA Astrophysics Data System (ADS)
D'Ariano, Giacomo M.; Perinotti, Paolo
2016-03-01
In this paper we review the general framework of operational probabilistic theories (OPT), along with the six axioms from which quantum theory can be derived. We argue that the OPT framework along with a relaxed version of five of the axioms, define a general information theory. We close the paper with considerations about the role of the observer in an OPT, and the interpretation of the von Neumann postulate and the Schrödinger-cat paradox.
Nonrelativistic superstring theories
Kim, Bom Soo
2007-12-15
We construct a supersymmetric version of the critical nonrelativistic bosonic string theory [B. S. Kim, Phys. Rev. D 76, 106007 (2007).] with its manifest global symmetry. We introduce the anticommuting bc conformal field theory (CFT) which is the super partner of the {beta}{gamma} CFT. The conformal weights of the b and c fields are both 1/2. The action of the fermionic sector can be transformed into that of the relativistic superstring theory. We explicitly quantize the theory with manifest SO(8) symmetry and find that the spectrum is similar to that of type IIB superstring theory. There is one notable difference: the fermions are nonchiral. We further consider noncritical generalizations of the supersymmetric theory using the superspace formulation. There is an infinite range of possible string theories similar to the supercritical string theories. We comment on the connection between the critical nonrelativistic string theory and the lightlike linear dilaton theory.
Birth control pills - combination
... this page: //medlineplus.gov/ency/patientinstructions/000655.htm Birth control pills - combination To use the sharing features on ... frequency of your menstrual cycles. Types of Combination Birth Control Pills Birth control pills come in packages. You ...
Teaching Theory X and Theory Y in Organizational Communication
ERIC Educational Resources Information Center
Noland, Carey
2014-01-01
The purpose of the activity described here is to integrate McGregor's Theory X and Theory Y into a group application: design a syllabus that embodies either Theory X or Theory Y tenets. Students should be able to differentiate between Theory X and Theory Y, create a syllabus based on Theory X or Theory Y tenets, evaluate the different syllabi…
Combined environmental stresses
NASA Technical Reports Server (NTRS)
Murray, R. H.; Mccally, M.
1973-01-01
Tolerance levels, physiological effects, and performance degradation during simultaneous or sequential exposures to two environmental stresses, and also three or more simultaneous stresses are described. Environmental stress combinations are characterized by four descriptors: order of occurrence, duration of exposure, severity of exposure, and type of interaction. Combined stress data and facilities for combined stress study are briefly mentioned.
Separation-individuation theory and attachment theory.
Blum, Harold P
2004-01-01
Separation-individuation and attachment theories are compared and assessed in the context of psychoanalytic developmental theory and their application to clinical work. As introduced by Margaret Mahler and John Bowlby, respectively, both theories were initially regarded as diverging from traditional views. Separation-individuation theory, though it has had to be corrected in important respects, and attachment theory, despite certain limitations, have nonetheless enriched psychoanalytic thought. Without attachment an infant would die, and with severely insecure attachment is at greater risk for serious disorders. Development depends on continued attachment to a responsive and responsible caregiver. Continued attachment to the primary object was regarded by Mahler as as intrinsic to the process of separation-individuation. Attachment theory does not account for the essential development of separateness, and separation-individuation is important for the promotion of autonomy, independence, and identity. Salient historical and theoretical issues are addressed, including the renewed interest in attachment theory and the related decline of interest in separation-individuation theory. PMID:15222460
Generalizability Theory and Classical Test Theory
ERIC Educational Resources Information Center
Brennan, Robert L.
2011-01-01
Broadly conceived, reliability involves quantifying the consistencies and inconsistencies in observed scores. Generalizability theory, or G theory, is particularly well suited to addressing such matters in that it enables an investigator to quantify and distinguish the sources of inconsistencies in observed scores that arise, or could arise, over…
NASA Astrophysics Data System (ADS)
Bender, Carl M.
2015-07-01
The average quantum physicist on the street would say that a quantum-mechanical Hamiltonian must be Dirac Hermitian (invariant under combined matrix transposition and complex conjugation) in order to guarantee that the energy eigenvalues are real and that time evolution is unitary. However, the Hamiltonian H = p2 + ix3, which is obviously not Dirac Hermitian, has a positive real discrete spectrum and generates unitary time evolution, and thus it defines a fully consistent and physical quantum theory. Evidently, the axiom of Dirac Hermiticity is too restrictive. While H = p2 + ix3 is not Dirac Hermitian, it is PT symmetric; that is, invariant under combined parity P (space reflection) and time reversal T. The quantum mechanics defined by a PT-symmetric Hamiltonian is a complex generalization of ordinary quantum mechanics. When quantum mechanics is extended into the complex domain, new kinds of theories having strange and remarkable properties emerge. In the past few years, some of these properties have been verified in laboratory experiments. A particularly interesting PT-symmetric Hamiltonian is H = p2 - x4, which contains an upside-down potential. This potential is discussed in detail, and it is explained in intuitive as well as in rigorous terms why the energy levels of this potential are real, positive, and discrete. Applications of PT-symmetry in quantum field theory are also discussed.
Comparisons and connections between mean field dynamo theory and accretion disc theory
NASA Astrophysics Data System (ADS)
Blackman, E. G.
2010-01-01
The origin of large scale magnetic fields in astrophysical rotators, and the conversion of gravitational energy into radiation near stars and compact objects via accretion have been subjects of active research for a half century. Magnetohydrodynamic turbulence makes both problems highly nonlinear, so both subjects have benefitted from numerical simulations.However, understanding the key principles and practical modeling of observations warrants testable semi-analytic mean field theories that distill the essential physics. Mean field dynamo (MFD) theory and alpha-viscosity accretion disc theory exemplify this pursuit. That the latter is a mean field theory is not always made explicit but the combination of turbulence and global symmetry imply such. The more commonly explicit presentation of assumptions in 20th century textbook MFDT has exposed it to arguably more widespread criticism than incurred by 20th century alpha-accretion theory despite complementary weaknesses. In the 21st century however, MFDT has experienced a breakthrough with a dynamical saturation theory that consistently agrees with simulations. Such has not yet occurred in accretion disc theory, though progress is emerging. Ironically however, for accretion engines, MFDT and accretion theory are presently two artificially uncoupled pieces of what should be a single coupled theory. Large scale fields and accretion flows are dynamically intertwined because large scale fields likely play a key role in angular momentum transport. I discuss and synthesize aspects of recent progress in MFDT and accretion disc theory to suggest why the two likely conspire in a unified theory.
On multiscale moving contact line theory
Li, Shaofan; Fan, Houfu
2015-01-01
In this paper, a multiscale moving contact line (MMCL) theory is presented and employed to simulate liquid droplet spreading and capillary motion. The proposed MMCL theory combines a coarse-grained adhesive contact model with a fluid interface membrane theory, so that it can couple molecular scale adhesive interaction and surface tension with hydrodynamics of microscale flow. By doing so, the intermolecular force, the van der Waals or double layer force, separates and levitates the liquid droplet from the supporting solid substrate, which avoids the shear stress singularity caused by the no-slip condition in conventional hydrodynamics theory of moving contact line. Thus, the MMCL allows the difference of the surface energies and surface stresses to drive droplet spreading naturally. To validate the proposed MMCL theory, we have employed it to simulate droplet spreading over various elastic substrates. The numerical simulation results obtained by using MMCL are in good agreement with the molecular dynamics results reported in the literature. PMID:26345090
Recent advances in analytical satellite theory
NASA Technical Reports Server (NTRS)
Gaposchkin, E. M.
1978-01-01
Recent work on analytical satellite perturbation theory has involved the completion of a revision to 4th order for zonal harmonics, the addition of a treatment for ocean tides, an extension of the treatment for the noninertial reference system, and the completion of a theory for direct solar-radiation pressure and earth-albedo pressure. Combined with a theory for tesseral-harmonics, lunisolar, and body-tide perturbations, these formulations provide a comprehensive orbit-computation program. Detailed comparisons with numerical integration and observations are presented to assess the accuracy of each theoretical development.
Theory and performance of plated thermocouples.
NASA Technical Reports Server (NTRS)
Pesko, R. N.; Ash, R. L.; Cupschalk, S. G.; Germain, E. F.
1972-01-01
A theory has been developed to describe the performance of thermocouples which have been formed by electroplating portions of one thermoelectric material with another. The electroplated leg of the thermocouple was modeled as a collection of infinitesimally small homogeneous thermocouples connected in series. Experiments were performed using several combinations of Constantan wire sizes and copper plating thicknesses. A transient method was used to develop the thermoelectric calibrations, and the theory was found to be in quite good agreement with the experiments. In addition, data gathered in a Soviet experiment were also found to be in close agreement with the theory.
2015-01-01
The properties of CO-inhibited Azotobacter vinelandii (Av) Mo-nitrogenase (N2ase) have been examined by the combined application of nuclear resonance vibrational spectroscopy (NRVS), extended X-ray absorption fine structure (EXAFS), and density functional theory (DFT). Dramatic changes in the NRVS are seen under high-CO conditions, especially in a 188 cm–1 mode associated with symmetric breathing of the central cage of the FeMo-cofactor. Similar changes are reproduced with the α-H195Q N2ase variant. In the frequency region above 450 cm–1, additional features are seen that are assigned to Fe-CO bending and stretching modes (confirmed by 13CO isotope shifts). The EXAFS for wild-type N2ase shows evidence for a significant cluster distortion under high-CO conditions, most dramatically in the splitting of the interaction between Mo and the shell of Fe atoms originally at 5.08 Å in the resting enzyme. A DFT model with both a terminal −CO and a partially reduced −CHO ligand bound to adjacent Fe sites is consistent with both earlier FT-IR experiments, and the present EXAFS and NRVS observations for the wild-type enzyme. Another DFT model with two terminal CO ligands on the adjacent Fe atoms yields Fe-CO bands consistent with the α-H195Q variant NRVS. The calculations also shed light on the vibrational “shake” modes of the interstitial atom inside the central cage, and their interaction with the Fe-CO modes. Implications for the CO and N2 reactivity of N2ase are discussed. PMID:25275608
Equivalency Theory and Distance Education.
ERIC Educational Resources Information Center
Simonson, Michael
1999-01-01
Discusses distance education and the need for an accepted theory. Highlights include theories of independent study; theory of industrialization of teaching; theory of interaction and communication; and equivalency theory that is based on local control, personalized instruction, and telecommunications. (LRW)
NASA Astrophysics Data System (ADS)
Skaldin, O. A.; Timirov, Yu. I.
2010-01-01
The dynamics of defects and their mutual transformation and annihilation in drops of a nematic-cholesteric mixture in the presence of quasistatic electric fields has been investigated by the birefringence method. Three basic independent configurations of the director distribution—static and dynamic with the right and left-handed twists of cholesteric layers around the axis parallel to the field—are formed above the threshold field. The possible mechanisms of the observed processes have been discussed. It has been shown that a certain symmetry of the causes (the nematic-cholesteric liquid crystal and field) does not necessarily lead to the corresponding symmetry of the induced structures and mechanical processes. An anisotropic distribution of the orientation of rotating spiral structures with respect to the normal to the nematic-cholesteric liquid crystal layer has been revealed.
NASA Astrophysics Data System (ADS)
Ossakow, S. L.
1981-01-01
Our understanding of equatorial spread F (ESF) phenomena has increased dramatically over the past few years: notwithstanding the fact that it was discovered over four decades ago (BOOKER and WELLS, 1938) as diffuse echoes on ionograms. Much of this advancement in understanding comes from a combined theoretical and experimental approach to the problem. Advances in radar backscatter measurements, satellite and rocket in situ measurements, and theoretical and numerical simulation techniques have provided a clearer picture of the fundamental mechanisms causing ESF. The study of ESF phenomena has been both complicated and enriched by the fact that the attendant magnetic field aligned ionospheric irregularities span some 5-6 orders of magnitude in scale sizes. The present paper will deal with ESF theory and at that only those theories using plasma mechanisms as a basis. Experimental reviews of the subject can be found in other papers in this edition. An examination is made of the basic equatorial nighttime ionospheric F region geometry.
Theory of cascade refrigeration
NASA Astrophysics Data System (ADS)
Quack, Hans H.
2012-06-01
The maximum difference between the warm and cold temperature of a refrigeration cycle is limited by properties of the refrigerant and/or losses associated with the transport of the refrigerant. For larger temperature differences, one has to arrange several refrigeration cycles "above" each other, each cycle spanning a certain temperature difference. This approach is called cascade refrigeration and has played an important role in the history of cryogenics. For a theory of cascade refrigeration it is helpful to define a general one-stage non-reversible refrigeration step and to visualize it within the temperature-entropy diagram. Then one can combine several one-stage cycles to a cascade. There exist two types of cascades: "Full" cascades, where all entropy gains of a lower stage are transferred to the next higher temperature stage, and "partial" cascades, where each single cycle goes up to ambient temperature, where a part of the entropy gain is removed, and only the rest of the entropy gain is transferred to the next higher temperature stage. In cryogenic refrigeration "partial" cascades are generally more efficient than "full" cascades.
[Chronotherapy and relativity theory].
Polishchuk, N A
2008-01-01
The course of time itself in alive organisms is treated from positions of the special theory of the relativity created by A. Einstein in 1905 and added by the Nobel winners H.A.Lorentsem, M. Plankom, M. fon Laue. These achievements of fundamental physics have been put in a basis of special medical technology "Resonant chronophytotherapy" (SMT RCPT) which is applied in practice of treatment of chronic diseases for 27 years. Grass tinctures in various dosages are used in SMT RCPT, which patients take once a day during precisely designated time. Parameters "dosage-time" daily vary. SMT RCPT have been conducted in treatment of epilepsy bronchial asthma, rheumatism, sclerodermia, hypertension, chronic glomerulonephritis, vegeto-vascular dystonia, female sterility, circular alopecia, vitiligo, eczema, psoriasis, onychomycosis. SMT RCPT does have adverse events, has no contra-indications to its use, directed, first of all, on elimination of nonspecific signs of a disease, reduces dependence and complications of the use of chemical synthetic preparations. SMT RCPT can be combined with any kind of specific treatment. Internet-variant of SMT RCPT has been developed. Chronomedicine is priority tendency in industrialized countries of the world--the USA, the Great Britain, Germany, France, Russia, China, Japan and appears on lead positions among alternative methods of treatment, both traditional, and non-traditional. PMID:19145832
[Mathematics and string theory
Jaffe, A.; Yau, Shing-Tung.
1993-01-01
Work on this grant was centered on connections between non- commutative geometry and physics. Topics covered included: cyclic cohomology, non-commutative manifolds, index theory, reflection positivity, space quantization, quantum groups, number theory, etc.
Kheirandish, F.; Amooshahi, M.
2008-11-18
Quantum field theory of a damped vibrating string as the simplest dissipative scalar field theory is investigated by introducing a minimal coupling method. The rate of energy flowing between the system and its environment is obtained.
How rats combine temporal cues.
Guilhardi, Paulo; Keen, Richard; MacInnis, Mika L M; Church, Russell M
2005-05-31
The procedures for classical and operant conditioning, and for many timing procedures, involve the delivery of reinforcers that may be related to the time of previous reinforcers and responses, and to the time of onsets and terminations of stimuli. The behavior resulting from such procedures can be described as bouts of responding that occur in some pattern at some rate. A packet theory of timing and conditioning is described that accounts for such behavior under a wide range of procedures. Applications include the food searching by rats in Skinner boxes under conditions of fixed and random reinforcement, brief and sustained stimuli, and several response-food contingencies. The approach is used to describe how multiple cues from reinforcers and stimuli combine to determine the rate and pattern of response bouts. PMID:15845307
Theories of Career Development. A Comparison of the Theories.
ERIC Educational Resources Information Center
Osipow, Samuel H.
These seven theories of career development are examined in previous chapters: (1) Roe's personality theory, (2) Holland's career typology theory, (3) the Ginzberg, Ginsburg, Axelrod, and Herma Theory, (4) psychoanalytic conceptions, (5) Super's developmental self-concept theory, (6) other personality theories, and (7) social systems theories.…
Issues in Optical Diffraction Theory
Mielenz, Klaus D.
2009-01-01
This paper focuses on unresolved or poorly documented issues pertaining to Fresnel’s scalar diffraction theory and its modifications. In Sec. 2 it is pointed out that all thermal sources used in practice are finite in size and errors can result from insufficient coherence of the optical field. A quarter-wave criterion is applied to show how such errors can be avoided by placing the source at a large distance from the aperture plane, and it is found that in many cases it may be necessary to use collimated light as on the source side of a Fraunhofer experiment. If these precautions are not taken the theory of partial coherence may have to be used for the computations. In Sec. 3 it is recalled that for near-zone computations the Kirchhoff or Rayleigh-Sommerfeld integrals are applicable, but fail to correctly describe the energy flux across the aperture plane because they are not continuously differentiable with respect to the assumed geometrical field on the source side. This is remedied by formulating an improved theory in which the field on either side of a semi-reflecting screen is expressed as the superposition of mutually incoherent components which propagate in the opposite directions of the incident and reflected light. These components are defined as linear combinations of the Rayleigh-Sommerfeld integrals, so that they are rigorous solutions of the wave equation as well as continuously differentiable in the aperture plane. Algorithms for using the new theory for computing the diffraction patterns of circular apertures and slits at arbitrary distances z from either side of the aperture (down to z = ± 0.0003 λ) are presented, and numerical examples of the results are given. These results show that the incident geometrical field is modulated by diffraction before it reaches the aperture plane while the reflected field is spilled into the dark space. At distances from the aperture which are large compared to the wavelength λ these field expressions are
ERIC Educational Resources Information Center
Davis, Philip W.
This volume explores objectively the essential characteristic of nine twentieth-century linguistic theories with the theoretical variant for discussion based on one closely representative of work within a given approach or usually associated with the name of the theory. First, the theory of Ferdinand de Saussure is discussed based on his book,…
Constructor theory of probability
2016-01-01
Unitary quantum theory, having no Born Rule, is non-probabilistic. Hence the notorious problem of reconciling it with the unpredictability and appearance of stochasticity in quantum measurements. Generalizing and improving upon the so-called ‘decision-theoretic approach’, I shall recast that problem in the recently proposed constructor theory of information—where quantum theory is represented as one of a class of superinformation theories, which are local, non-probabilistic theories conforming to certain constructor-theoretic conditions. I prove that the unpredictability of measurement outcomes (to which constructor theory gives an exact meaning) necessarily arises in superinformation theories. Then I explain how the appearance of stochasticity in (finitely many) repeated measurements can arise under superinformation theories. And I establish sufficient conditions for a superinformation theory to inform decisions (made under it) as if it were probabilistic, via a Deutsch–Wallace-type argument—thus defining a class of decision-supporting superinformation theories. This broadens the domain of applicability of that argument to cover constructor-theory compliant theories. In addition, in this version some of the argument's assumptions, previously construed as merely decision-theoretic, follow from physical properties expressed by constructor-theoretic principles. PMID:27616914
Testing Theory through Theatrics.
ERIC Educational Resources Information Center
Sellers, Sandra Courtney
2002-01-01
In a nursing theory course, the final exam consists of a role play in which students assume the identity of a theorist they have studied and answer questions in the context of that role. Questions are designed demonstrate their knowledge of major nursing theories and models and the relevance of theory to practice. (SK)
ERIC Educational Resources Information Center
Pais, Alexandre; Valero, Paola
2014-01-01
What is the place of social theory in mathematics education research, and what is it for? This special issue of "Educational Studies in Mathematics" offers insights on what could be the role of some sociological theories in a field that has historically privileged learning theories coming from psychology and mathematics as the main…
Comparing Measurement Theories.
ERIC Educational Resources Information Center
Schumacker, Randall E.
In comparing measurement theories, it is evident that the awareness of the concept of measurement error during the time of Galileo has lead to the formulation of observed scores comprising a true score and error (classical theory), universe score and various random error components (generalizability theory), or individual latent ability and error…
Reflections on Activity Theory
ERIC Educational Resources Information Center
Bakhurst, David
2009-01-01
It is sometimes suggested that activity theory represents the most important legacy of Soviet philosophy and psychology. But what exactly "is" activity theory? The canonical account in the West is given by Engestrom, who identifies three stages in the theory's development: from Vygotsky's insights, through Leontiev's articulation of the…
ERIC Educational Resources Information Center
Peim, Nick
2009-01-01
This paper seeks to re-examine Yrio Engestrom's activity theory as a technology of knowledge designed to enable positive transformations of specific practices. The paper focuses on a key paper where Engestrom defines the nature and present state of activity theory. Beginning with a brief account of the relations between activity theory and…
ERIC Educational Resources Information Center
Missinne, Leo E.; Wilcox, Victoria
This paper discusses the life, theories, and therapeutic techniques of psychotherapist, Viktor E. Frankl. A brief biography of Frankl is included discussing the relationship of his early experiences as a physician to his theory of personality. Frankl's theory focusing on man's need for meaning and emphasizing the spiritual dimension in each human…
La theorie autrement (Theory in Another Light).
ERIC Educational Resources Information Center
Bertocchini, Paola; Costanzo, Edwige
1985-01-01
Outlines a technique using articles from "Le Francais dans le Monde" to teach reading comprehension and theory simultaneously to teachers of French as a second language. Describes a program in Italy using this approach. (MSE)
Tidal Forces: A Different Theory
NASA Astrophysics Data System (ADS)
Masters, Roy
2010-10-01
We revisit the theories describing the moon raising the tides by virtue of pull gravity combined with the moon's centripetal angular momentum. We show that if gravity is considered as the attractive interaction between individual bodies, then the moon would have fallen to earth eons ago. Isaac Newton's laws of motion cannot work with pull gravity. However, they do with gravity as a property of the universe as Einstein said with a huge energy bonus. In other words, the moon-Earth system becomes the first observable vacuum gravity energy machine, meaning that it not only produces energy, but provides also escape momentum for the moon's centripetal motion at 4cm per year.
Theory of the relativistic gyrotwistron
NASA Astrophysics Data System (ADS)
Nusinovich, G. S.; Li, H.
1992-04-01
A generalized theory of the relativistic gyrotwistron, the device combining the elements of the gyroklystron and the gyro-traveling wave tube, is presented. A modulation of electrons in the input cavity is considered with the account of modulation in an electron axial momentum that is important for relativistic particles passing through a short cavity. A comprehensive study of large-signal operation of the output waveguide section in the cases of gyroresonance at the fundamental and second cyclotron harmonics has demonstrated a wide variety of electron bunching phenomena and the possibility of achieving high electron efficiency in a wide range of gyrotwistron parameters.
Theoretical investigation on single-molecule chiroptical spectroscopy
Wakabayashi, M.; Yokojima, S.; Fukaminato, T.; Ogata, K.; Nakamura, S.
2013-12-10
Some experimental results of chiroptical response of single molecule have already reported. In those experiments, dissymmetry parameter, g was used as an indicator of the relative circular dichroism intensity. The parameter for individual molecules was measured. For the purpose of giving an interpretation or explanation to the experimental result, the dissymmetry parameter is formulated on the basis of Fermi’s golden rule. Subsequently, the value of individual molecules is evaluated as a function of the direction of light propagation to the orientationary fixed molecules. The ground and excited wavefunction of electrons in the molecule and transition moments needed are culculated using the density functional theory.
Hedin, F.; Le Coguiec, A.; Le Floch, C.; Llory, M.; Villemeur, A.
1981-01-01
The method described in this paper is an inductive method for combining failures (called the Failure Combination Method (FCM)). It is based on a preliminary analysis of the systems performed with an FMEA. As a study has been undertaken to test the method, the organization of the study as well as its first results from a methodological point of view are stressed. 8 refs.
Eigenvalue Detonation of Combined Effects Aluminized Explosives
NASA Astrophysics Data System (ADS)
Capellos, C.; Baker, E. L.; Nicolich, S.; Balas, W.; Pincay, J.; Stiel, L. I.
2007-12-01
Theory and performance for recently developed combined—effects aluminized explosives are presented. Our recently developed combined-effects aluminized explosives (PAX-29C, PAX-30, PAX-42) are capable of achieving excellent metal pushing, as well as high blast energies. Metal pushing capability refers to the early volume expansion work produced during the first few volume expansions associated with cylinder and wall velocities and Gurney energies. Eigenvalue detonation explains the observed detonation states achieved by these combined effects explosives. Cylinder expansion data and thermochemical calculations (JAGUAR and CHEETAH) verify the eigenvalue detonation behavior.
NASA Technical Reports Server (NTRS)
Owre, Sam; Shankar, Natarajan; Butler, Ricky W. (Technical Monitor)
2001-01-01
The purpose of this task was to provide a mechanism for theory interpretations in a prototype verification system (PVS) so that it is possible to demonstrate the consistency of a theory by exhibiting an interpretation that validates the axioms. The mechanization makes it possible to show that one collection of theories is correctly interpreted by another collection of theories under a user-specified interpretation for the uninterpreted types and constants. A theory instance is generated and imported, while the axiom instances are generated as proof obligations to ensure that the interpretation is valid. Interpretations can be used to show that an implementation is a correct refinement of a specification, that an axiomatically defined specification is consistent, or that a axiomatically defined specification captures its intended models. In addition, the theory parameter mechanism has been extended with a notion of theory as parameter so that a theory instance can be given as an actual parameter to an imported theory. Theory interpretations can thus be used to refine an abstract specification or to demonstrate the consistency of an axiomatic theory. In this report we describe the mechanism in detail. This extension is a part of PVS version 3.0, which will be publicly released in mid-2001.
Effective Nutritional Supplement Combinations
NASA Astrophysics Data System (ADS)
Cooke, Matt; Cribb, Paul J.
Few supplement combinations that are marketed to athletes are supported by scientific evidence of their effectiveness. Quite often, under the rigor of scientific investigation, the patented combination fails to provide any greater benefit than a group given the active (generic) ingredient. The focus of this chapter is supplement combinations and dosing strategies that are effective at promoting an acute physiological response that may improve/enhance exercise performance or influence chronic adaptations desired from training. In recent years, there has been a particular focus on two nutritional ergogenic aids—creatine monohydrate and protein/amino acids—in combination with specific nutrients in an effort to augment or add to their already established independent ergogenic effects. These combinations and others are discussed in this chapter.
Combination therapy with statins.
Gylling, Helena; Miettinen, Tatu A
2002-09-01
Statins effectively inhibit cholesterol synthesis and are currently the most commonly used drugs for the treatment of hypercholesterolemia. However, patients with familial hypercholesterolemia and those unwilling to take, or who cannot tolerate statins, and patients with combined hyperlipidemia require a combination treatment. Statins combined with cholesterol malabsorption, caused, e.g., by plant stanol esters or ezetimibe (Schering-Plough Corp/Merck & Co Inc), or with bile acid malabsorption, caused by bile acid binding resins or guar gum, inhibit compensatory increases in cholesterol synthesis and effectively lower LDL cholesterol levels. Combination therapy of statins with fibrates should be controlled by lipidology experts. Recent information on indications and advantages of combining statins with n-3 fatty acids, hormone replacement therapy, or niacin, will also be discussed. PMID:12498007
Analysis of fractals with combined partition
NASA Astrophysics Data System (ADS)
Dedovich, T. G.; Tokarev, M. V.
2016-03-01
The space—time properties in the general theory of relativity, as well as the discreteness and non-Archimedean property of space in the quantum theory of gravitation, are discussed. It is emphasized that the properties of bodies in non-Archimedean spaces coincide with the properties of the field of P-adic numbers and fractals. It is suggested that parton showers, used for describing interactions between particles and nuclei at high energies, have a fractal structure. A mechanism of fractal formation with combined partition is considered. The modified SePaC method is offered for the analysis of such fractals. The BC, PaC, and SePaC methods for determining a fractal dimension and other fractal characteristics (numbers of levels and values of a base of forming a fractal) are considered. It is found that the SePaC method has advantages for the analysis of fractals with combined partition.
Automated Item Selection Using Item Response Theory.
ERIC Educational Resources Information Center
Stocking, Martha L.; And Others
This paper presents a new heuristic approach to interactive test assembly that is called the successive item replacement algorithm. This approach builds on the work of W. J. van der Linden (1987) and W. J. van der Linden and E. Boekkooi-Timminga (1989) in which methods of mathematical optimization are combined with item response theory to…
Numerical techniques for lattice gauge theories
Creutz, M.
1981-02-06
The motivation for formulating gauge theories on a lattice is reviewed. Monte Carlo simulation techniques are then discussed for these systems. Finally, the Monte Carlo methods are combined with renormalization group analysis to give strong numerical evidence for confinement of quarks by non-Abelian gauge fields.
Towards a Theory of Organisational Culture.
ERIC Educational Resources Information Center
Owens, Robert G.; Steinhoff, Carl R.
1989-01-01
The development of the paper-and-pencil instrument called the Organizational Culture Assessment Inventory (OCAI) is based on the theory of organizational culture. Recent literature and organizational analysis are combined with Schein's model of organizational culture to provide the background for metaphorical analysis of organizational culture…
Literary Theory in the English Classroom.
ERIC Educational Resources Information Center
Fitch, Raymond E., Ed.
1981-01-01
Focusing on the notion that the author supplies the words in a text while the reader supplies the meaning, this issue contains essays that combine literary theories with classroom practices. Following an introduction by R. E. Fitch, articles include "Teaching a Western: Jack Schaefer's 'Shane'" (J. R. Ruff); "Pragmatic Criticism in Teaching 'The…
Literacy Theory, Context and Feminist Response.
ERIC Educational Resources Information Center
Hollis, Karyn L.
By adopting the principles of activist education common to women's studies programs--appreciation of the heterogeneous student population and its varied writing needs; simultaneous study of theory combined with active political work; concern for the personal and the political; and a practice of democratic classroom and administrative…
Avionics. Progress Record and Theory Outline.
ERIC Educational Resources Information Center
Connecticut State Dept. of Education, Hartford. Div. of Vocational-Technical Schools.
This combination progress record and course outline is designed for use by individuals teaching a course in avionics that is intended to prepare students for employment in the field of aerospace electronics. Included among the topics addressed in the course are the following: shop practices, aircraft and the theory of flight, electron physics,…
Leadership: Theory and Practice. Sixth Edition
ERIC Educational Resources Information Center
Northouse, Peter G.
2012-01-01
Adopted at more than 1,000 colleges and universities worldwide, the market-leading text owes its success to the unique way in which it combines an academically robust account of the major theories and models of leadership with an accessible style and practical exercises that help students apply what they learn. Each chapter of Peter…
A Grounded Theory of Adult Student Persistence
ERIC Educational Resources Information Center
Capps, Rosemary
2010-01-01
This grounded theory study investigates adult student persistence at a community college. Student persistence in college is a prerequisite for degree achievement, which correlates with higher earnings and overall better quality of life. Persistence rates remain low for adult students, who combine their college endeavors with responsibilities to…
A Grand Unified Theory of Interdisciplinarity
ERIC Educational Resources Information Center
Davis, Lennard J.
2007-01-01
Aside from the appeal to administrators as a tool to reduce costs by combining less robust departments with heftier relations, interdisciplinarity is a powerful idea because it implies that different branches of knowledge can benefit from talking to one another: a grand, unified theory of knowledge in which each discipline contributes building…
Combining Speed Information Across Space
NASA Technical Reports Server (NTRS)
Verghese, Preeti; Stone, Leland S.
1995-01-01
We used speed discrimination tasks to measure the ability of observers to combine speed information from multiple stimuli distributed across space. We compared speed discrimination thresholds in a classical discrimination paradigm to those in an uncertainty/search paradigm. Thresholds were measured using a temporal two-interval forced-choice design. In the discrimination paradigm, the n gratings in each interval all moved at the same speed and observers were asked to choose the interval with the faster gratings. Discrimination thresholds for this paradigm decreased as the number of gratings increased. This decrease was not due to increasing the effective stimulus area as a control experiment that increased the area of a single grating did not show a similar improvement in thresholds. Adding independent speed noise to each of the n gratings caused thresholds to decrease at a rate similar to the original no-noise case, consistent with observers combining an independent sample of speed from each grating in both the added- and no-noise cases. In the search paradigm, observers were asked to choose the interval in which one of the n gratings moved faster. Thresholds in this case increased with the number of gratings, behavior traditionally attributed to an input bottleneck. However, results from the discrimination paradigm showed that the increase was not due to observers' inability to process these gratings. We have also shown that the opposite trends of the data in the two paradigms can be predicted by a decision theory model that combines independent samples of speed information across space. This demonstrates that models typically used in classical detection and discrimination paradigms are also applicable to search paradigms. As our model does not distinguish between samples in space and time, it predicts that discrimination performance should be the same regardless of whether the gratings are presented in two spatial intervals or two temporal intervals. Our last
Optical Communications Channel Combiner
NASA Technical Reports Server (NTRS)
Quirk, Kevin J.; Quirk, Kevin J.; Nguyen, Danh H.; Nguyen, Huy
2012-01-01
NASA has identified deep-space optical communications links as an integral part of a unified space communication network in order to provide data rates in excess of 100 Mb/s. The distances and limited power inherent in a deep-space optical downlink necessitate the use of photon-counting detectors and a power-efficient modulation such as pulse position modulation (PPM). For the output of each photodetector, whether from a separate telescope or a portion of the detection area, a communication receiver estimates a log-likelihood ratio for each PPM slot. To realize the full effective aperture of these receivers, their outputs must be combined prior to information decoding. A channel combiner was developed to synchronize the log-likelihood ratio (LLR) sequences of multiple receivers, and then combines these into a single LLR sequence for information decoding. The channel combiner synchronizes the LLR sequences of up to three receivers and then combines these into a single LLR sequence for output. The channel combiner has three channel inputs, each of which takes as input a sequence of four-bit LLRs for each PPM slot in a codeword via a XAUI 10 Gb/s quad optical fiber interface. The cross-correlation between the channels LLR time series are calculated and used to synchronize the sequences prior to combining. The output of the channel combiner is a sequence of four-bit LLRs for each PPM slot in a codeword via a XAUI 10 Gb/s quad optical fiber interface. The unit is controlled through a 1 Gb/s Ethernet UDP/IP interface. A deep-space optical communication link has not yet been demonstrated. This ground-station channel combiner was developed to demonstrate this capability and is unique in its ability to process such a signal.
[Advantages of fixed combinations].
Lachkar, Y
2008-07-01
Fixed combinations are indicated in the treatment of glaucoma and ocular hypertension when monotherapy does not sufficiently reduce IOP. Fixed combinations show better efficacy than the instillation of each separate component and are at least equivalent to the administration of both components in a separate association. They simplify treatment, increase compliance and quality of life, and decrease exposure to preservatives. Although they are less aggressive for patients when a new drug needs to be added, the use of fixed combinations should not decrease the follow-up. PMID:18957922
Combined ICR heating antenna for ion separation systems
Timofeev, A. V.
2011-01-15
A combination of one- and two-wave antennas (one and two turns of conductors around a plasma cylinder, respectively) is proposed. This combined antenna localizes an RF field within itself. It is shown that spent nuclear fuel processing systems based on ICR heating of nuclear ash by such a combined antenna have high productivity. A theory of the RF field excitation in ICR ion separation systems is presented in a simple and compact form.
Supersymmetry and String Theory
NASA Astrophysics Data System (ADS)
Dine, Michael
2016-01-01
Preface to the first edition; Preface to the second edition; A note on choice of metric; Text website; Part I. Effective Field Theory: The Standard Model, Supersymmetry, Unification: 1. Before the Standard Model; 2. The Standard Model; 3. Phenomenology of the Standard Model; 4. The Standard Model as an effective field theory; 5. Anomalies, instantons and the strong CP problem; 6. Grand unification; 7. Magnetic monopoles and solitons; 8. Technicolor: a first attempt to explain hierarchies; Part II. Supersymmetry: 9. Supersymmetry; 10. A first look at supersymmetry breaking; 11. The Minimal Supersymmetric Standard Model; 12. Supersymmetric grand unification; 13. Supersymmetric dynamics; 14. Dynamical supersymmetry breaking; 15. Theories with more than four conserved supercharges; 16. More supersymmetric dynamics; 17. An introduction to general relativity; 18. Cosmology; 19. Astroparticle physics and inflation; Part III. String Theory: 20. Introduction; 21. The bosonic string; 22. The superstring; 23. The heterotic string; 24. Effective actions in ten dimensions; 25. Compactification of string theory I. Tori and orbifolds; 26. Compactification of string theory II. Calabi–Yau compactifications; 27. Dynamics of string theory at weak coupling; 28. Beyond weak coupling: non-perturbative string theory; 29. Large and warped extra dimensions; 30. The landscape: a challenge to the naturalness principle; 31. Coda: where are we headed?; Part IV. The Appendices: Appendix A. Two-component spinors; Appendix B. Goldstone's theorem and the pi mesons; Appendix C. Some practice with the path integral in field theory; Appendix D. The beta function in supersymmetric Yang–Mills theory; References; Index.
Acoustomechanical constitutive theory for soft materials
NASA Astrophysics Data System (ADS)
Xin, Fengxian; Lu, Tian Jian
2016-07-01
Acoustic wave propagation from surrounding medium into a soft material can generate acoustic radiation stress due to acoustic momentum transfer inside the medium and material, as well as at the interface between the two. To analyze acoustic-induced deformation of soft materials, we establish an acoustomechanical constitutive theory by combining the acoustic radiation stress theory and the nonlinear elasticity theory for soft materials. The acoustic radiation stress tensor is formulated by time averaging the momentum equation of particle motion, which is then introduced into the nonlinear elasticity constitutive relation to construct the acoustomechanical constitutive theory for soft materials. Considering a specified case of soft material sheet subjected to two counter-propagating acoustic waves, we demonstrate the nonlinear large deformation of the soft material and analyze the interaction between acoustic waves and material deformation under the conditions of total reflection, acoustic transparency, and acoustic mismatch.
Differential polarization imaging. I. Theory.
Kim, M; Keller, D; Bustamante, C
1987-12-01
A theory of differential polarization imaging is derived using Mueller calculus. It is shown that, for any arbitrary object, 16 images (in general different) can be obtained by combining different incident polarizations of light and measuring the specific polarization components transmitted or scattered by the object. These are called the Mueller images of the object. Mathematical expressions of these images for an object of arbitrary geometry are derived using classical vector diffraction theory and the paraxial and thin lens approximations. The object is described as a collection of point polarizable groups. The electromagnetic fields are calculated using the first Born-Approximation, but extension of the theory to higher-order approximations is shown to be straightforward. These expressions are obtained for the transmission, or bright-field, geometry, and the scattering, or dark-field, configuration. In both cases, the contributions of scattering, absorption, and background illumination to the Mueller images are characterized. The contributions of linear dichroism, circular dichroism, and linear and circular intensity differential scattering to certain Mueller images are established. It is shown that the Mueller images represent a complete two-dimensional mapping of the molecular anisotropy of the object. PMID:3427199
Hydrocodone Combination Products
... Other hydrocodone combination products are used to relieve cough. Hydrocodone is in a class of medications called ... and nervous system respond to pain. Hydrocodone relieves cough by decreasing activity in the part of the ...
Earth science: Deadly combination
NASA Astrophysics Data System (ADS)
Duncan, Robert
2015-11-01
New evidence suggests that seismic waves from the Chicxulub meteorite impact doubled the eruption rate of lavas on the opposite side of the planet -- a combination that led to the mass extinction at the end of the Cretaceous period.
Optimally combined confidence limits
NASA Astrophysics Data System (ADS)
Janot, P.; Le Diberder, F.
1998-02-01
An analytical and optimal procedure to combine statistically independent sets of confidence levels on a quantity is presented. This procedure does not impose any constraint on the methods followed by each analysis to derive its own limit. It incorporates the a priori statistical power of each of the analyses to be combined, in order to optimize the overall sensitivity. It can, in particular, be used to combine the mass limits obtained by several analyses searching for the Higgs boson in different decay channels, with different selection efficiencies, mass resolution and expected background. It can also be used to combine the mass limits obtained by several experiments (e.g. ALEPH, DELPHI, L3 and OPAL, at LEP 2) independently of the method followed by each of these experiments to derive their own limit. A method to derive the limit set by one analysis is also presented, along with an unbiased prescription to optimize the expected mass limit in the no-signal-hypothesis.
A unified theory of bone healing and nonunion: BHN theory.
Elliott, D S; Newman, K J H; Forward, D P; Hahn, D M; Ollivere, B; Kojima, K; Handley, R; Rossiter, N D; Wixted, J J; Smith, R M; Moran, C G
2016-07-01
This article presents a unified clinical theory that links established facts about the physiology of bone and homeostasis, with those involved in the healing of fractures and the development of nonunion. The key to this theory is the concept that the tissue that forms in and around a fracture should be considered a specific functional entity. This 'bone-healing unit' produces a physiological response to its biological and mechanical environment, which leads to the normal healing of bone. This tissue responds to mechanical forces and functions according to Wolff's law, Perren's strain theory and Frost's concept of the "mechanostat". In response to the local mechanical environment, the bone-healing unit normally changes with time, producing different tissues that can tolerate various levels of strain. The normal result is the formation of bone that bridges the fracture - healing by callus. Nonunion occurs when the bone-healing unit fails either due to mechanical or biological problems or a combination of both. In clinical practice, the majority of nonunions are due to mechanical problems with instability, resulting in too much strain at the fracture site. In most nonunions, there is an intact bone-healing unit. We suggest that this maintains its biological potential to heal, but fails to function due to the mechanical conditions. The theory predicts the healing pattern of multifragmentary fractures and the observed morphological characteristics of different nonunions. It suggests that the majority of nonunions will heal if the correct mechanical environment is produced by surgery, without the need for biological adjuncts such as autologous bone graft. Cite this article: Bone Joint J 2016;98-B:884-91. PMID:27365465
Gelman, Susan A.; Noles, Nicholaus S.
2013-01-01
Human cognition entails domain-specific cognitive processes that influence memory, attention, categorization, problem-solving, reasoning, and knowledge organization. This review examines domain-specific causal theories, which are of particular interest for permitting an examination of how knowledge structures change over time. We first describe the properties of commonsense theories, and how commonsense theories differ from scientific theories, illustrating with children’s classification of biological and non-biological kinds. We next consider the implications of domain-specificity for broader issues regarding cognitive development and conceptual change. We then examine the extent to which domain-specific theories interact, and how people reconcile competing causal frameworks. Future directions for research include examining how different content domains interact, the nature of theory change, the role of context (including culture, language, and social interaction) in inducing different frameworks, and the neural bases for domain-specific reasoning. PMID:24187603
Generalized higher gauge theory
NASA Astrophysics Data System (ADS)
Ritter, Patricia; Sämann, Christian; Schmidt, Lennart
2016-04-01
We study a generalization of higher gauge theory which makes use of generalized geometry and seems to be closely related to double field theory. The local kinematical data of this theory is captured by morphisms of graded manifolds between the canonical exact Courant Lie 2-algebroid T M ⊕ T ∗ M over some manifold M and a semistrict gauge Lie 2-algebra. We discuss generalized curvatures and infinitesimal gauge transformations. Finite gauge transformation as well as global kinematical data are then obtained from principal 2-bundles over 2-spaces. As dynamical principle, we consider first the canonical Chern-Simons action for such a gauge theory. We then show that a previously proposed 3-Lie algebra model for the six-dimensional (2,0) theory is very naturally interpreted as a generalized higher gauge theory.
Naylor, Ron
2007-03-01
The aim of Galileo's tidal theory was to show that the tides were produced entirely by the earth's motion and thereby to demonstrate the physical truth of Copernicanism. However, in the Dialogue Concerning the Two Chief World Systems Galileo did not explain some of the most significant aspects of the theory completely. As a consequence, the way the theory works has long been disputed. Though there exist a number of interpretations in the literature, the most widely accepted are based on ideas that are not explicitly articulated by Galileo in the Dialogue. This essay attempts to understand the way the theory functions in terms of Galilean physics. It is an interpretation of the theory based solely on Galileo's arguments--and one that reveals it to have had some unrecognized consequences. This interpretation indicates that Galileo's theory would not have worked in the manner he described in the Dialogue. PMID:17539198
Extended theories of gravitation
NASA Astrophysics Data System (ADS)
Fatibene, Lorenzo; Garruto, Simon
2016-04-01
In this paper, we shall review the equivalence between Palatini-f(ℛ) theories and Brans-Dicke (BD) theories at the level of action principles. We shall define the Helmholtz Lagrangian associated to Palatini-f(ℛ) theory and we will define some transformations which will be useful to recover Einstein frame and BD frame. We shall see an explicit example of matter field and we will discuss how the conformal factor affects the physical quantities.
Theory Modeling and Simulation
Shlachter, Jack
2012-08-23
Los Alamos has a long history in theory, modeling and simulation. We focus on multidisciplinary teams that tackle complex problems. Theory, modeling and simulation are tools to solve problems just like an NMR spectrometer, a gas chromatograph or an electron microscope. Problems should be used to define the theoretical tools needed and not the other way around. Best results occur when theory and experiments are working together in a team.
Automated Lattice Perturbation Theory
Monahan, Christopher
2014-11-01
I review recent developments in automated lattice perturbation theory. Starting with an overview of lattice perturbation theory, I focus on the three automation packages currently "on the market": HiPPy/HPsrc, Pastor and PhySyCAl. I highlight some recent applications of these methods, particularly in B physics. In the final section I briefly discuss the related, but distinct, approach of numerical stochastic perturbation theory.
NASA Technical Reports Server (NTRS)
Ostwald, Wolfgang
1988-01-01
A brief summary of the fundamentals of the Linear theory of flotation is given. The theory by no means contradicts the previous Laminar theory or even the thermodynamics (Wark-Siedler), rather it is a refinement of the known Hardy-Langmuir-Harkin conceptions for the case when there are not two phases and phase boundaries, but rather three phases and corresponding phase boundary edges. The appearance of such three-phase boundaries (ore, water, air) is characteristic for modern flotation methods.
Rationalizing the bumps on whale flippers using basic aerodynamic theory
NASA Astrophysics Data System (ADS)
van Nierop, Ernst; Alben, Silas; Brenner, Michael
2006-11-01
Recent experiments and numerics demonstrated that bumps on the leading edge of humpback whale flippers can lead to an increase in the lift/drag ratio and an increase in the stall angle, as compared to smooth flippers. Using basic aerodynamic theory (potential flow around a Joukowski profile, combined with lifting-line theory) we attempt to rationalize the experimental and numerical findings. We use this basic theory to find perturbations which could lead to an increase in stall angle.
Teaching English Reading through MI Theory in Primary Schools
ERIC Educational Resources Information Center
Jing, Jinxiu
2013-01-01
The theory of Multiple Intelligences (MI theory), put forward by Gardner in 1983, claims that each person possesses different combinations of nine intelligences. In education, it advocates that teachers should address students' personal uniqueness and provide a wide range of intelligence-oriented activities and experiences to facilitate learning,…
Applications of Social Cognitive Theory to Gifted Education
ERIC Educational Resources Information Center
Burney, Virginia H.
2008-01-01
Social cognitive theory emphasizes a dynamic interactive process to explain human functioning. This theory ascribes a central role to cognitive processes in which the individual can observe others and the environment, reflect on that in combination with his or her own thoughts and behaviors, and alter his or her own self-regulatory functions…
Revision of Achievement Goal Theory: Necessary and Illuminating.
ERIC Educational Resources Information Center
Harackiewicz, Judith M.; Barron, Kenneth E.; Pintrich, Paul R.; Elliot, Andrew J.; Thrash, Todd M.
2002-01-01
Discusses three reasons to revise achievement goal theory: the importance of separating approach from avoidance strivings, the positive potential of performance-approach goals, and identification of the ways performance-approach goals can combine with mastery approach goals to promote optimal motivation. Reviews theory and research to substantiate…
Paradigmatic Differences in Educational Administration: Positivism and Critical Theory.
ERIC Educational Resources Information Center
Peca, Kathy
In the literature on sociobehavioral theory and educational administration, theorists are offering other methodologies as replacements for empiricism or positivism. Other paradigms, such as critical theory, and other methodologies are used. Sometimes these are combined with the empirical method. Research focusing on how people interact in the…
Adolescent Marijuana Use Intentions: Using Theory to Plan an Intervention
ERIC Educational Resources Information Center
Sayeed, Sarah; Fishbein, Martin; Hornik, Robert; Cappella, Joseph; Kirkland Ahern, R.
2005-01-01
This paper uses an integrated model of behavior change to predict intentions to use marijuana occasionally and regularly in a US-based national sample of male and female 12 to 18 year olds (n = 600). The model combines key constructs from the theory of reasoned action and social cognitive theory. The survey was conducted on laptop computers, and…
Making Theory Relevant: The Gender Attitude and Belief Inventory
ERIC Educational Resources Information Center
McCabe, Janice
2013-01-01
This article describes and evaluates the Gender Attitude and Belief Inventory (GABI), a teaching tool designed to aid students in (a) realizing how sociological theory links to their personal beliefs and (b) exploring any combination of 11 frequently used theoretical perspectives on gender, including both conservative theories (physiological,…
Between Theory and Observations
NASA Astrophysics Data System (ADS)
Wepster, Steven
Three great mathematicians dominate the history of lunar theory in the middle of the eighteenth century: Leonhard Euler, Alexis Clairaut, and Jean le Rond d’Alembert. Each of them made a lasting contribution to the theory of celestial mechanics and their results had a broader impact than on lunar theory alone. To name but a few examples, Euler codified the trigonometric functions and pioneered the method of variation of orbital constants; Clairaut solved the arduous problem of the motion of the lunar apogee, thereby dealing a decisive blow to the sceptics of Newton’s law of gravitation; and d’Alembert worked out an accurate theory of precession and nutation.
Lincoln, Don
2014-09-30
The Big Bang is the name of the most respected theory of the creation of the universe. Basically, the theory says that the universe was once smaller and denser and has been expending for eons. One common misconception is that the Big Bang theory says something about the instant that set the expansion into motion, however this isn’t true. In this video, Fermilab’s Dr. Don Lincoln tells about the Big Bang theory and sketches some speculative ideas about what caused the universe to come into existence.
NASA Technical Reports Server (NTRS)
Baird, J. K.
1986-01-01
The Ostwald-ripening theory is deduced and discussed starting from the fundamental principles such as Ising model concept, Mayer cluster expansion, Langer condensation point theory, Ginzburg-Landau free energy, Stillinger cutoff-pair potential, LSW-theory and MLSW-theory. Mathematical intricacies are reduced to an understanding version. Comparison of selected works, from 1949 to 1984, on solution of diffusion equation with and without sink/sources term(s) is presented. Kahlweit's 1980 work and Marqusee-Ross' 1954 work are more emphasized. Odijk and Lekkerkerker's 1985 work on rodlike macromolecules is introduced in order to simulate interested investigators.
ERIC Educational Resources Information Center
Costley, Kevin C.
2006-01-01
University professors teaching pre-service teachers base much of their philosophies on theories. Students often ask "Why do we have theories?" "What is the purpose of theories?" "If we like a theory, do we have to use all of the theory?" The most frequent controversial issue is how to use a particular theory in a practical way. In the quest for…
Combined bending-torsion fatigue reliability. III
NASA Technical Reports Server (NTRS)
Kececioglu, D.; Chester, L. B.; Nolf, C. F., Jr.
1975-01-01
Results generated by three, unique fatigue reliability research machines which can apply reversed bending loads combined with steady torque are presented. AISI 4340 steel, grooved specimens with a stress concentration factor of 1.42 and 2.34, and Rockwell C hardness of 35/40 were subjected to various combinations of these loads and cycled to failure. The generated cycles-to-failure and stress-to-failure data are statistically analyzed to develop distributional S-N and Goodman diagrams. Various failure theories are investigated to determine which one represents the data best. The effects of the groove, and of the various combined bending-torsion loads, on the S-N and Goodman diagrams are determined. Two design applications are presented which illustrate the direct useability and value of the distributional failure governing strength and cycles-to-failure data in designing for specified levels of reliability and in predicting the reliability of given designs.
Nagai, Yoshio
2015-03-01
Many patients with type 2 diabetes mellitus(T2DM) do not achieve satisfactory glycemic control by monotherapy alone, and often require multiple oral hypoglycemic agents (OHAs). Combining OHAs with complementary mechanisms of action is fundamental to the management of T2DM. Fixed-dose combination therapy(FDC) offers a method of simplifying complex regimens. Efficacy and tolerability appear to be similar between FDC and treatment with individual agents. In addition, FDC can enhance adherence and improved adherence may result in improved glycemic control. Four FDC agents are available in Japan: pioglitazone-glimepiride, pioglitazone-metformin, pioglitazone-alogliptin, and voglibose-mitiglinide. In this review, the advantages and disadvantages of these four combinations are identified and discussed. PMID:25812374
ERIC Educational Resources Information Center
Hunt, Hillary R.; Gross, Alan M.
2009-01-01
Obesity is a world-wide health concern approaching epidemic proportions. Successful long-term treatment involves a combination of bariatric surgery, diet, and exercise. Social cognitive models, such as the Theory of Reasoned Action (TRA) and the Theory of Planned Behavior (TPB), are among the most commonly tested theories utilized in the…
ERIC Educational Resources Information Center
Skemp, Richard R.
Provided is an examination of the methodology used to study the problems of learning addition and subtraction skills used by developmental researchers. The report has sections on categories of theory and their methodologies, which review: (1) Behaviorist, Neo-Behaviorist and Piagetian Theories; (2) the Behaviorist and Piagetian Paradigms; (3)…
Universality and string theory
NASA Astrophysics Data System (ADS)
Bachlechner, Thomas Christian
The first run at the Large Hadron Collider has deeply challenged conventional notions of naturalness, and CMB polarization experiments are about to open a new window to early universe cosmology. As a compelling candidate for the ultraviolet completion of the standard model, string theory provides a prime opportunity to study both early universe cosmology and particle physics. However, relating low energy observations to ultraviolet physics requires knowledge of the metastable states of string theory through the study of vacua. While it is difficult to directly obtain infrared data from explicit string theory constructions, string theory imposes constraints on low energy physics. The study of ensembles of low energy theories consistent with ultra-violet constraints provides insight on generic features we might expect to occur in string compactifications. In this thesis we present a statistical treatment of vacuum stability and vacuum properties in the context of random supergravity theories motivated by string theory. Early universe cosmology provides another avenue to high energy physics. From the low energy perspective large field inflation is typically considered highly unnatural: the scale relevant for the diameter of flat regions in moduli space is sub-Planckian in regions of perturbative control. To approach this problem, we consider generic Calabi-Yau compactifications of string theory and find that super-Planckian diameters of axion fundamental domains in fact arise generically. We further demonstrate that such super-Planckian flat regions are plausibly consistent with theWeak Gravity Conjecture.
Organization Theory as Ideology.
ERIC Educational Resources Information Center
Greenfield, Thomas B.
The theory that organizations are ideological inventions of the human mind is discussed. Organizational science is described as an ideology which is based upon social concepts and experiences. The main justification for organizational theory is that it attempts to answer why we behave as we do in social organizations. Ways in which ideas and…
ERIC Educational Resources Information Center
Jaeger, Audrey J.; Dunstan, Stephany; Thornton, Courtney; Rockenbach, Alyssa B.; Gayles, Joy G.; Haley, Karen J.
2013-01-01
When making decisions that impact student learning, college educators often consider previous experiences, precedent, common sense, and advice from colleagues. But how often do they consider theory? At a recent state-level educators' meeting, the authors of this article asked 50 student affairs educators about the use of theory in their practice.…
Sexual Murderers' Implicit Theories
ERIC Educational Resources Information Center
Beech, Anthony; Fisher, Dawn; Ward, Tony
2005-01-01
Interviews with 28 sexual murderers were subjected to grounded theory analysis. Five implicit theories (ITs) were identified: dangerous world, male sex drive is uncontrollable, entitlement, women as sexual objects, and women as unknowable. These ITs were found to be identical to those identified in the literature as being present in rapists. The…
ERIC Educational Resources Information Center
Shor, Mikhael
2003-01-01
States making game theory relevant and accessible to students is challenging. Describes the primary goal of GameTheory.net is to provide interactive teaching tools. Indicates the site strives to unite educators from economics, political and computer science, and ecology by providing a repository of lecture notes and tests for courses using…
NASA Technical Reports Server (NTRS)
Iesan, D.
1980-01-01
The development of the theory of thermoelasticity, which examines the interactions between the deformation of elastic media and the thermal field, is traced and the fundamental problems of the theory are presented. Results of recent studies on the subject are presented. Emphasis is primarily on media with generalized anisotropy, or isotropy media. Thermomechanical problems and mathematical formulations and resolutions are included.
Theory and Motivational Psychology.
ERIC Educational Resources Information Center
Atkinson, John W.
Motivational psychology and test theory are compared in this discussion, which focuses on distinguishing the effects of motivation and of ability on test performance and educational achievement. Recent theory in achievement motivation considers the motivational significance of future goals as they affect present activities that are instrumental in…
Catterall, Simon; Hubisz, Jay; Balachandran, Aiyalam; Schechter, Joe
2013-01-05
This final report describes the activities of the high energy theory group at Syracuse University for the period 1 January 2010 through April 30 2013. The research conducted by the group includes lattice gauge theory, non-commutative geometry, phenomenology and mathematical physics.
ERIC Educational Resources Information Center
Skabelund, Donald E.
1974-01-01
Presents an analysis of scientific theory which is applicable to the full range of historical situations. Indicates that theory can be resolved into three generalization levels, one neutral element, and two modes. Included are examples illustrating the constituency of the three levels in two modes. (CC)
Siegel, Allen M
2009-04-01
In "Theory Is Personal," Allen Siegel MD, a Chicago psychoanalyst and Assistant Professor of Clinical Psychiatry at Rush University Medical Center, shares the very personal story of how he came to his theory. Sometimes we find our theory. Other times, Siegel argues, it is our theory that finds us. In this article Siegel catalogues his early encounters with figures--contemporary and real--from Sigmund Freud to influential department chairs to an analyst who would become legendary for introducing a bold new theory into the psychoanalytic canon. Charting key experiences that shaped his adoption of this new approach--a depression in response to his first patient, a clinical treatment with Heinz Kohut, and exposure to others who dared to challenge Freud--Siegel describes the theory that brought both himself and his patients to life. After outlining the principles that guide the new theory and practice known as self psychology, Siegel tells of the empathic ambiance that can now emerge in the consulting room. Finally, he shows how this new theory of human motivation provides not merely a rationale for psychotherapy but an explanatory apparatus for understanding human action in the world beyond the consulting room. He turns to a brief study of aggression and war, as expressed in a 1932 correspondence between Albert Einstein and Sigmund Freud, to illustrate how the understanding of aggression and war changes significantly when empathy is the field's data collecting instrument. PMID:19379249
ERIC Educational Resources Information Center
Mayer, William V.
In this paper the author examines the question of whether evolution is a theory or a dogma. He refutes the contention that there is a monolithic scientific conspiracy to present evolution as dogma and suggests that his own presentation might be more appropriately entitled "Creationism: Theory or Dogma." (PEB)
ERIC Educational Resources Information Center
Roller, Duane H. D.
1981-01-01
Focusing on history of physics, which began about 600 B.C. with the Ionian Greeks and reaching full development within three centuries, suggests that the creation of the concept of the atom is understandable within the context of Greek physical theory; so is the rejection of the atomic theory by the Greek physicists. (Author/SK)
French Theory's American Adventures
ERIC Educational Resources Information Center
Cusset, Francois
2008-01-01
In this article, the author discusses how it is simply too late to be still speaking about French theory and its role in the intellectual life of the United States today. It seems to many observers that the gap between real-life politics and theory's guerrillas is much too wide already, after 30 years of academic fever, for the two worlds to even…
ERIC Educational Resources Information Center
Rexhepi, Jevdet; Torres, Carlos Alberto
2011-01-01
This paper discusses Critical Theory, a model of theorizing in the field of the political sociology of education. We argue for a "reimagined" Critical Theory to herald an empowering, liberatory education that fosters curiosity and critical thinking, and a means for successful bottom-up, top-down political engagement. We present arguments at a…
ERIC Educational Resources Information Center
Weinberg, Janet H.
1975-01-01
Presented is an explanation of a non-Darwinian theory of evolution based on the premise that functional differences are the result of many small mutations such as the substitution of one amino acid for another in a large protein molecule. A brief overview of Darwinian evolution and other theories are presented. (EB)
Evaluating Conceptual Metaphor Theory
ERIC Educational Resources Information Center
Gibbs, Raymond W., Jr.
2011-01-01
A major revolution in the study of metaphor occurred 30 years ago with the introduction of "conceptual metaphor theory" (CMT). Unlike previous theories of metaphor and metaphorical meaning, CMT proposed that metaphor is not just an aspect of language, but a fundamental part of human thought. Indeed, most metaphorical language arises from…
ERIC Educational Resources Information Center
Minter, Robert L.
2011-01-01
This article addresses the myriad of pedagogical and andragogical issues facing university educators in the student learning process. It briefly explores the proliferation of learning theories in an attempt to develop awareness among faculty who teach at the university/college levels that not all theories of learning apply to the adult learner. In…
NASA Astrophysics Data System (ADS)
Roller, Duane H. D.
1981-03-01
Physics began about 600 B.C. with the Ionian Greeks and reached full development within three centuries. The creation of the concept of the atom is understandable within the context of Greek physical theory; so is the rejection of the atomic theory by the Greek physicists.
Towards Extended Vantage Theory
ERIC Educational Resources Information Center
Glaz, Adam
2010-01-01
The applicability of Vantage Theory (VT), a model of (colour) categorization, to linguistic data largely depends on the modifications and adaptations of the model for the purpose. An attempt to do so proposed here, called Extended Vantage Theory (EVT), slightly reformulates the VT conception of vantage by capitalizing on some of the entailments of…
NASA Astrophysics Data System (ADS)
Dankova, T. S.; Rosensteel, G.
1998-10-01
Mean field theory has an unexpected group theoretic mathematical foundation. Instead of representation theory which applies to most group theoretic quantum models, Hartree-Fock and Hartree-Fock-Bogoliubov have been formulated in terms of coadjoint orbits for the groups U(n) and O(2n). The general theory of mean fields is formulated for an arbitrary Lie algebra L of fermion operators. The moment map provides the correspondence between the Hilbert space of microscopic wave functions and the dual space L^* of densities. The coadjoint orbits of the group in the dual space are phase spaces on which time-dependent mean field theory is equivalent to a classical Hamiltonian dynamical system. Indeed it forms a finite-dimensional Lax system. The mean field theories for the Elliott SU(3) and symplectic Sp(3,R) algebras are constructed explicitly in the coadjoint orbit framework.
NASA Astrophysics Data System (ADS)
Stewart, I.
1982-02-01
A discussion is presented of catastrophe theory, with attention to the developmental feedback between this field of mathematics and its applications in the physical sciences. Prominent concepts of catastrophe theory are co-dimension, determinacy, unfoldings, and organizing centers. The ways in which these concepts may be used are shown in light of specific applications taken from the literature, and the methods are generalized to areas not yet recognized to be within the purview of catastrophe theory. Note is taken of the philosophical background provided for this body of theory by the topological dynamics concept of structural stability. Catastrophe theory is in conclusion characterized as an important contribution to the understanding of nonlinear phenomena.
Dempster-Shafer theory and connections to information theory
NASA Astrophysics Data System (ADS)
Peri, Joseph S. J.
2013-05-01
The Dempster-Shafer theory is founded on probability theory. The entire machinery of probability theory, and that of measure theory, is at one's disposal for the understanding and the extension of the Dempster-Shafer theory. It is well known that information theory is also founded on probability theory. Claude Shannon developed, in the 1940's, the basic concepts of the theory and demonstrated their utility in communications and coding. Shannonian information theory is not, however, the only type of information theory. In the 1960's and 1970's, further developments in this field were made by French and Italian mathematicians. They developed information theory axiomatically, and discovered not only the Wiener- Shannon composition law, but also the hyperbolic law and the Inf-law. The objective of this paper is to demonstrate the mathematical connections between the Dempster Shafer theory and the various types of information theory. A simple engineering example will be used to demonstrate the utility of the concepts.
Imaging radar polarization signatures - Theory and observation
NASA Technical Reports Server (NTRS)
Van Zyl, Jakob J.; Zebker, Howard A.; Elachi, Charles
1987-01-01
Radar polarimetry theory is reviewed, and comparison between theory and experimental results obtained with an imaging radar polarimeter employing two orthogonally polarized antennas is made. Knowledge of the scattering matrix permits calculation of the scattering cross section of a scatterer for any transmit and receive polarization combination, and a new way of displaying the resulting scattering cross section as a function of polarization is introduced. Examples of polarization signatures are presented for several theoretical models of surface scattering, and these signatures are compared with experimentally measured polarization signatures. The coefficient of variation, derived from the polarization signature, may provide information regarding the amount of variation in scattering properties for a given area.
NASA Astrophysics Data System (ADS)
Bastin, Ted
2009-07-01
List of participants; Preface; Part I. Introduction: 1. The function of the colloquium - editorial; 2. The conceptual problem of quantum theory from the experimentalist's point of view O. R. Frisch; Part II. Niels Bohr and Complementarity: The Place of the Classical Language: 3. The Copenhagen interpretation C. F. von Weizsäcker; 4. On Bohr's views concerning the quantum theory D. Bohm; Part III. The Measurement Problem: 5. Quantal observation in statistical interpretation H. J. Groenewold; 6. Macroscopic physics, quantum mechanics and quantum theory of measurement G. M. Prosperi; 7. Comment on the Daneri-Loinger-Prosperi quantum theory of measurement Jeffrey Bub; 8. The phenomenology of observation and explanation in quantum theory J. H. M. Whiteman; 9. Measurement theory and complex systems M. A. Garstens; Part IV. New Directions within Quantum Theory: What does the Quantum Theoretical Formalism Really Tell Us?: 10. On the role of hidden variables in the fundamental structure of physics D. Bohm; 11. Beyond what? Discussion: space-time order within existing quantum theory C. W. Kilmister; 12. Definability and measurability in quantum theory Yakir Aharonov and Aage Petersen; 13. The bootstrap idea and the foundations of quantum theory Geoffrey F. Chew; Part V. A Fresh Start?: 14. Angular momentum: an approach to combinatorial space-time Roger Penrose; 15. A note on discreteness, phase space and cohomology theory B. J. Hiley; 16. Cohomology of observations R. H. Atkin; 17. The origin of half-integral spin in a discrete physical space Ted Bastin; Part VI. Philosophical Papers: 18. The unity of physics C. F. von Weizsäcker; 19. A philosophical obstacle to the rise of new theories in microphysics Mario Bunge; 20. The incompleteness of quantum mechanics or the emperor's missing clothes H. R. Post; 21. How does a particle get from A to B?; Ted Bastin; 22. Informational generalization of entropy in physics Jerome Rothstein; 23. Can life explain quantum mechanics? H. H
Stein, W.E.
1980-04-24
A combination klystron-linear accelerator which utilizes anti-bunch electrons generated in the klystron section as a source of electrons to be accelerated in the accelerator section. Electron beam current is controlled by second harmonic bunching, constrictor aperture size and magnetic focusing. Rf coupling is achieved by internal and external coupling.
Introduction to combined cycles
NASA Astrophysics Data System (ADS)
Moore, M. J.
Ideas and concepts underlying the technology of combined cycles including the scientific principles involved and the reasons these cycles are in fashion at the present time, are presented. A cycle is a steady flow process for conversion of heat energy into work, in which a working medium passes through a range of states, returning to its original state. Cycles for power production are the steam cycle, which is a closed cycle, and the gas turbine, which represents an open cycle. Combined cycle thermodynamic parameters, are discussed. The general arrangement of the plant is outlined and important features of their component parts described. The scope for future development is discussed. It is concluded that for the next few years the natural gas fired combined cycle will be the main type of plant installed for electricity generation and cogeneration. Whilst gas turbines may not increase substantially in unit size, there remains scope for further increase in firing temperature with consequent increase in cycle performance. However the larger global reserves of coal are providing an incentive to the development of plant for clean coal combustion using the inherent advantage of the combined cycle to attain high efficiencies.
Interschool Production Training Combines
ERIC Educational Resources Information Center
Il'ina, L. A.; Fat'ianov, V. V.
1977-01-01
An educational program draws together students from several secondary schools in one region in a labor practicum which combines training shops, classroom work, and laboratory experience. Examples are presented of schools throughout the USSR which are training pupils to be computer and machine operators, construction workers, cooks, automotive…
NASA Technical Reports Server (NTRS)
Dybdal, Robert B. (Inventor); Curry, Samuel J. (Inventor)
2009-01-01
An apparatus includes antenna elements configured to receive a signal including pseudo-random code, and electronics configured to use the pseudo-random code to determine time delays of signals incident upon the antenna elements and to compensate the signals to coherently combine the antenna elements.
ERIC Educational Resources Information Center
Akin, Judy O'Neal
1978-01-01
Sample sentence-combining lessons developed to accompany the first-year A-LM German textbook are presented. The exercises are designed for language manipulation practice; they involve breaking down more complex sentences into simpler sentences and the subsequent recombination into complex sentences. All language skills, and particularly writing,…
Sentence Combining and Reading.
ERIC Educational Resources Information Center
Ney, James W.
Research on the effects of two modes of sentence combining instruction on writing skills was conducted from 22 September through 17 December 1976, at Evans School in Tempe, Arizona. Subjects were 40 students in two fifth grade classes designated the individualized class and the group class. The individualized class followed a sentence combining…
Theory of Multiple Intelligences: Is It a Scientific Theory?
ERIC Educational Resources Information Center
Chen, Jie-Qi
2004-01-01
This essay discusses the status of multiple intelligences (MI) theory as a scientific theory by addressing three issues: the empirical evidence Gardner used to establish MI theory, the methodology he employed to validate MI theory, and the purpose or function of MI theory.
Introduction to string theory and conformal field theory
Belavin, A. A. Tarnopolsky, G. M.
2010-05-15
A concise survey of noncritical string theory and two-dimensional conformal field theory is presented. A detailed derivation of a conformal anomaly and the definition and general properties of conformal field theory are given. Minimal string theory, which is a special version of the theory, is considered. Expressions for the string susceptibility and gravitational dimensions are derived.
Field-theory methods in coagulation theory
Lushnikov, A. A.
2011-08-15
Coagulating systems are systems of chaotically moving particles that collide and coalesce, producing daughter particles of mass equal to the sum of the masses involved in the respective collision event. The present article puts forth basic ideas underlying the application of methods of quantum-field theory to the theory of coagulating systems. Instead of the generally accepted treatment based on the use of a standard kinetic equation that describes the time evolution of concentrations of particles consisting of a preset number of identical objects (monomers in the following), one introduces the probability W(Q, t) to find the system in some state Q at an instant t for a specific rate of transitions between various states. Each state Q is characterized by a set of occupation numbers Q = (n{sub 1}, n{sub 2}, ..., n{sub g}, ...), where n{sub g} is the total number of particles containing precisely g monomers. Thereupon, one introduces the generating functional {Psi} for the probability W(Q, t). The time evolution of {Psi} is described by an equation that is similar to the Schroedinger equation for a one-dimensional Bose field. This equation is solved exactly for transition rates proportional to the product of the masses of colliding particles. It is shown that, within a finite time interval, which is independent of the total mass of the entire system, a giant particle of mass about the mass of the entire system may appear in this system. The particle in question is unobservable in the thermodynamic limit, and this explains the well-known paradox of mass-concentration nonconservation in classical kinetic theory. The theory described in the present article is successfully applied in studying the time evolution of random graphs.
Field-theory methods in coagulation theory
NASA Astrophysics Data System (ADS)
Lushnikov, A. A.
2011-08-01
Coagulating systems are systems of chaotically moving particles that collide and coalesce, producing daughter particles of mass equal to the sum of the masses involved in the respective collision event. The present article puts forth basic ideas underlying the application of methods of quantum-field theory to the theory of coagulating systems. Instead of the generally accepted treatment based on the use of a standard kinetic equation that describes the time evolution of concentrations of particles consisting of a preset number of identical objects (monomers in the following), one introduces the probability W( Q, t) to find the system in some state Q at an instant t for a specific rate of transitions between various states. Each state Q is characterized by a set of occupation numbers Q = { n 1, n 2, ..., n g , ...}, where n g is the total number of particles containing precisely g monomers. Thereupon, one introduces the generating functional Ψ for the probability W( Q, t). The time evolution of Ψ is described by an equation that is similar to the Schrödinger equation for a one-dimensional Bose field. This equation is solved exactly for transition rates proportional to the product of the masses of colliding particles. It is shown that, within a finite time interval, which is independent of the total mass of the entire system, a giant particle of mass about the mass of the entire system may appear in this system. The particle in question is unobservable in the thermodynamic limit, and this explains the well-known paradox of mass-concentration nonconservation in classical kinetic theory. The theory described in the present article is successfully applied in studying the time evolution of random graphs.
NASA Astrophysics Data System (ADS)
Svozil, K.
1995-11-01
Inasmuch as physical theories are formalizable, set theory provides a framework for theoretical physics. Four speculations about the relevance of set theoretical modeling for physics are presented: the role of transcendental set theory (i) in chaos theory, (ii) for paradoxical decompositions of solid three-dimensional objects, (iii) in the theory of effective computability (Church-Turing thesis) related to the possible “solution of supertasks,” and (iv) for weak solutions. Several approaches to set theory and their advantages and disadvatages for physical applications are discussed: Canlorian “naive” (i.e., nonaxiomatic) set theory, contructivism, and operationalism. In the author's opinion, an attitude of “suspended attention” (a term borrowed from psychoanalysis) seems most promising for progress. Physical and set theoretical entities must be operationalized wherever possible. At the same time, physicists should be open to “bizarre” or “mindboggling” new formalisms, which need not be operationalizable or testable at the lime of their creation, but which may successfully lead to novel fields of phenomenology and technology.
Svozil, K.
1995-11-01
Inasmuch as physical theories are formalizable, set theory provides a framework for theoretical physics. Four speculations about the relevance of set theoretical modeling for physics are presented: the role of transcendental set theory (i) in chaos theory, (ii) for paradoxical decompositions of solid three-dimensional objects, (iii) in the theory of effective computability (Church-Turing thesis) related to the possible {open_quotes}solution of supertasks,{close_quotes} and (iv) for weak solutions. Several approaches to set theory and their advantages and disadvantages for physical applications are discussed: Cantorian {open_quotes}naive{close_quotes} (i.e., nonaxiomatic) set theory, contructivism, and operationalism. In the author`s opinion, an attitude, of {open_quotes}suspended attention{close_quotes} (a term borrowed from psychoanalysis) seems most promising for progress. Physical and set theoretical entities must be operationalized wherever possible. At the same time, physicists should be open to {open_quotes}bizarre{close_quotes} or {open_quotes}mindboggling{close_quotes} new formalisms, which need not be operationalizable or testable at the time of their creation, but which may successfully lead to novel fields of phenomenology and technology.
NASA Astrophysics Data System (ADS)
Gaiotto, Davide; Razamat, Shlomo S.
2015-07-01
We construct classes of superconformal theories elements of which are labeled by punctured Riemann surfaces. Degenerations of the surfaces correspond, in some cases, to weak coupling limits. Different classes are labeled by two integers ( N, k). The k = 1 case coincides with A N - 1 theories of class and simple examples of theories with k > 1 are orbifolds of some of the A N - 1 class theories. For the space of theories to be complete in an appropriate sense we find it necessary to conjecture existence of new strongly coupled SCFTs. These SCFTs when coupled to additional matter can be related by dualities to gauge theories. We discuss in detail the A 1 case with k = 2 using the supersymmetric index as our analysis tool. The index of theories in classes with k > 1 can be constructed using eigenfunctions of elliptic quantum mechanical models generalizing the Ruijsenaars-Schneider integrable model. When the elliptic curve of the model degenerates these eigenfunctions become polynomials with coefficients being algebraic expressions in fugacities, generalizing the Macdonald polynomials with rational coefficients appearing when k = 1.
Quaternionic quantum field theory
Adler, S.L.
1985-08-19
We show that a quaternionic quantum field theory can be formulated when the numbers of bosonic and fermionic degrees of freedom are equal and the fermions, as well as the bosons, obey a second-order wave equation. The theory is initially defined in terms of a quaternion-imaginary Lagrangian using the Feynman sum over histories. A Schroedinger equation can be derived from the functional integral, which identifies the quaternion-imaginary quantum Hamiltonian. Conversely, the transformation theory based on this Hamiltonian can be used to rederive the functional-integral formulation.
Diverse array-designed modes of combination therapies in Fangjiomics.
Liu, Jun; Wang, Zhong
2015-06-01
In line with the complexity of disease networks, diverse combination therapies have been demonstrated potential in the treatment of different patients with complex diseases in a personal combination profile. However, the identification of rational, compatible and effective drug combinations remains an ongoing challenge. Based on a holistic theory integrated with reductionism, Fangjiomics systematically develops multiple modes of array-designed combination therapies. We define diverse "magic shotgun" vertical, horizontal, focusing, siege and dynamic arrays according to different spatiotemporal distributions of hits on targets, pathways and networks. Through these multiple adaptive modes for treating complex diseases, Fangjiomics may help to identify rational drug combinations with synergistic or additive efficacy but reduced adverse side effects that reverse complex diseases by reconstructing or rewiring multiple targets, pathways and networks. Such a novel paradigm for combination therapies may allow us to achieve more precise treatments by developing phenotype-driven quantitative multi-scale modeling for rational drug combinations. PMID:25864646
CONSTRUCTION OF EDUCATIONAL THEORY MODELS.
ERIC Educational Resources Information Center
MACCIA, ELIZABETH S.; AND OTHERS
THIS STUDY DELINEATED MODELS WHICH HAVE POTENTIAL USE IN GENERATING EDUCATIONAL THEORY. A THEORY MODELS METHOD WAS FORMULATED. BY SELECTING AND ORDERING CONCEPTS FROM OTHER DISCIPLINES, THE INVESTIGATORS FORMULATED SEVEN THEORY MODELS. THE FINAL STEP OF DEVISING EDUCATIONAL THEORY FROM THE THEORY MODELS WAS PERFORMED ONLY TO THE EXTENT REQUIRED TO…
Combination hand rejuvenation procedures.
Shamban, Ava T
2009-01-01
Although the hands age at the same rate as the face, the aging process differs and requires a combination treatment approach for optimal rejuvenation. Photoaging causes epidermal changes such as lentigines, actinic keratoses, fine wrinkles, and crepe-like textural change. Thinning of the dermis and subcutaneous fat occurs as a result of both ultraviolet light exposure and intrinsic aging. This process can lead to a skeletal appearance of the hands, with prominent veins and bulging tendons. The combination approach addresses all of these issues, employing lasers, intense pulsed light devices, fractional devices, fillers, peels, vein sclerotherapy, and an effective at-home skin care program as indicated for individual needs and concerns. PMID:19825471
Filtration theory using computer simulations
Bergman, W.; Corey, I.
1997-08-01
We have used commercially available fluid dynamics codes based on Navier-Stokes theory and the Langevin particle equation of motion to compute the particle capture efficiency and pressure drop through selected two- and three-dimensional fiber arrays. The approach we used was to first compute the air velocity vector field throughout a defined region containing the fiber matrix. The particle capture in the fiber matrix is then computed by superimposing the Langevin particle equation of motion over the flow velocity field. Using the Langevin equation combines the particle Brownian motion, inertia and interception mechanisms in a single equation. In contrast, most previous investigations treat the different capture mechanisms separately. We have computed the particle capture efficiency and the pressure drop through one, 2-D and two, 3-D fiber matrix elements. 5 refs., 11 figs.
Superconductive ceramic oxide combination
Chatterjee, D.K.; Mehrotra, A.K.; Mir, J.M.
1991-03-05
This patent describes the combination of a superconductive ceramic oxide which degrades in conductivity upon contact of ambient air with its surface and, interposed between the ceramic oxide surface and ambient air in the amount of at least 1 mg per square meter of surface area of the superconductive ceramic oxide, a passivant polymer selected from the group consisting of a polyester ionomer and an alkyl cellulose.
Jones, B.J.T.
1980-01-01
The current status of some theories of galaxy formation that are consistent with the hot big bang origin of the universe is reviewed. In the cosmic turbulence theory, an attempt is made to explain not only the characteristic masses and angular momenta of galaxies, but to describe in detail the spectrum of galaxy clustering problems with regard to the observed abundances of the light elements, a Kolmogorov spectrum of turbulence and the fireball are discussed. Attention is given to a primordial chaotic magnetic field, the comparison between baryon-symmetric cosmologies, the origin of galactic spin and theories starting from isothermal perturbations. Also considered are the dilemma of the initial conditions with respect to the era after 10 to the -4th s, and the pancake theory, in which the planar structures that arise provide a natural explanation for filamentary structures.
Electromagnetic scattering theory
NASA Technical Reports Server (NTRS)
Bird, J. F.; Farrell, R. A.
1986-01-01
Electromagnetic scattering theory is discussed with emphasis on the general stochastic variational principle (SVP) and its applications. The stochastic version of the Schwinger-type variational principle is presented, and explicit expressions for its integrals are considered. Results are summarized for scalar wave scattering from a classic rough-surface model and for vector wave scattering from a random dielectric-body model. Also considered are the selection of trial functions and the variational improvement of the Kirchhoff short-wave approximation appropriate to large size-parameters. Other applications of vector field theory discussed include a general vision theory and the analysis of hydromagnetism induced by ocean motion across the geomagnetic field. Levitational force-torque in the magnetic suspension of the disturbance compensation system (DISCOS), now deployed in NOVA satellites, is also analyzed using the developed theory.
Lyons, A. ); Hawking, S.W. )
1991-12-15
We discuss the wormhole effective interactions in string theory, thought of as a sum over two-dimensional field theories on different world sheets. The effective interactions are calculated in the dilute wormhole approximation,'' initially by considering the Green's functions on higher-genus Riemann surfaces, and then by calculating the effect of a complete basis of wave functions on scattering amplitudes for a surface with a boundary. The sum over wormholes is equivalent to having a world sheet of trivial topology and summing over different space-time and matter-field backgrounds. To leading order these consist of the massless fluctuations, since the tachyon cancels out when a sum is done over different spin structures going through the wormhole. In this way we recover quantized general relativity as an effective theory, from a sum over field theories on higher-genus Riemann surfaces.
ERIC Educational Resources Information Center
Gunter, Helen M.
2013-01-01
This article reports on a seminar by the Critical Educational Policy and Leadership Research Interest Group in June 2012. The article reports on the papers and our engagement with the need to use theory to develop descriptions and understandings.
NASA Astrophysics Data System (ADS)
Cheng, Hsin-Chia; Thaler, Jesse; Wang, Lian-Tao
2006-09-01
Using the language of theory space, i.e. moose models, we develop a unified framework for studying composite Higgs models at the LHC. This framework — denoted little M-theory — is conveniently described by a theoretically consistent three-site moose diagram which implements minimal flavor and isospin violation. By taking different limits of the couplings, one can interpolate between simple group-like and minimal moose-like models with and without T-parity. In this way, little M-theory reveals a large model space for composite Higgs theories. We argue that this framework is suitable as a starting point for a comprehensive study of composite Higgs scenarios. The rich collider phenomenology of this framework is briefly discussed.
NASA Technical Reports Server (NTRS)
Jones, R. T. (Compiler)
1979-01-01
A collection of papers on modern theoretical aerodynamics is presented. Included are theories of incompressible potential flow and research on the aerodynamic forces on wing and wing sections of aircraft and on airship hulls.
DOE R&D Accomplishments Database
Salam, A.
1956-04-01
Lectures with mathematical analysis are given on Dispersion Theory and Causality and Dispersion Relations for Pion-nucleon Scattering. The appendix includes the S-matrix in terms of Heisenberg Operators. (F. S.)
Motherhood: a discrepancy theory.
Adams, Mary
2015-01-01
Motherhood is a highly anticipated and positive event for most women. Society has constructed many ideal images of motherhood, giving women standards to live up to, and many times setting them up for disappointment. When this disappointment occurs, an emotional reaction follows, which may be fear, guilt, or shame. However, some women are able to experience this mismatch between an ideal and actual self and adapt with minimal emotional reaction. There was not a nursing theory that described this phenomenon. "Self-Discrepancy: A Theory Relating Self and Affect" (Higgins, 1987), from the psychology discipline provided concepts and definitions that could be used to derive a nursing theory. The derivation resulted in a testable mid-range theory that could have a significant impact on nursing interventions for postpartum mood disorders. PMID:26062291
ERIC Educational Resources Information Center
Werner, Suzanne K.
2003-01-01
Describes a series of activities exploring Leonardo da Vinci's tree theory that are designed to strengthen 8th grade students' data collection and problem solving skills in physical science classes. (KHR)
A Weighted Combination Method of Target Identity Identification
NASA Astrophysics Data System (ADS)
Hongbin, Jin; Jiangqiao, Lan; Hongfei, Li
Evidence theory is widely used in the target identity identification. Dempster-Shafer theory (DST)'s result is unreliable when the conflict becomes high, and Dezert-Smarandanche theory (DSmT) reduces the basic belief assignment in the lowly conflicting condition, so this paper presents a weighted target identity identification method that interacts DST and DSmT to overcome their weakness. The method calculates the similarity as a weighted factor to adaptive combine evidence. The examples are tested and veritied the effectiveness and applicability of the method.
Space--Time from Topos Quantum Theory
NASA Astrophysics Data System (ADS)
Flori, Cecilia
One of the main challenges in theoretical physics in the past 50 years has been to define a theory of quantum gravity, i.e. a theory which consistently combines general relativity and quantum theory in order to define a theory of space-time itself seen as a fluctuating field. As such, a definition of space-time is of paramount importance, but it is precisely the attainment of such a definition which is one of the main stumbling blocks in quantum gravity. One of the striking features of quantum gravity is that although both general relativity and quantum theory treat space-time as a four-dimensional (4D) manifold equipped with a metric, quantum gravity would suggest that, at the microscopic scale, space-time is somewhat discrete. Therefore the continuum structure of space-time suggested by the two main ingredients of quantum gravity seems to be thrown into discussion by quantum gravity itself. This seems quite an odd predicament, but it might suggest that perhaps a different mathematical structure other than a smooth manifold should model space-time. These considerations seem to shed doubts on the use of the continuum in general in a possible theory of quantum gravity. An alternative would be to develop a mathematical formalism for quantum gravity in which no fundamental role is played by the continuum and where a new concept of space-time, not modeled on a differentiable manifold, will emerge. This is precisely one of the aims of the topos theory approach to quantum theory and quantum gravity put forward by Isham, Butterfield, and Doering and subsequently developed by other authors. The aim of this article is to precisely elucidate how such an approach gives rise to a new definition of space-time which might be more appropriate for quantum gravity.
Ahlén, Olof
2015-12-17
These proceedings from the second Caesar Lattes meeting in Rio de Janeiro 2015 are a brief introduction to how automorphic forms appear in the low energy effective action of maximally supersymmetric string theory. The explicit example of the R{sup 4}-interaction of type IIB string theory in ten dimensions is discussed. Its Fourier expansion is interpreted in terms of perturbative and non-perturbative contributions to the four graviton amplitude.
NASA Astrophysics Data System (ADS)
Ahlén, Olof
2015-12-01
These proceedings from the second Caesar Lattes meeting in Rio de Janeiro 2015 are a brief introduction to how automorphic forms appear in the low energy effective action of maximally supersymmetric string theory. The explicit example of the R4-interaction of type IIB string theory in ten dimensions is discussed. Its Fourier expansion is interpreted in terms of perturbative and non-perturbative contributions to the four graviton amplitude.
Leadership and attachment theory.
Bresnahan, Christopher G; Mitroff, Ian I
2007-09-01
Comments on the six articles contained in the special issue of the American Psychologist (January 2007) devoted to leadership, written by W. Bennis; S. J. Zaccaro; V. H. Vroom and A. G. Yago; B. J. Avolio; R. J. Sternberg; and R. J. Hackman and R. Wageman. The current authors opine that the inclusion of attachment theory in the study of leadership could strengthen leadership theories as a whole. PMID:17874909
Nodal Diffusion & Transport Theory
Energy Science and Technology Software Center (ESTSC)
1992-02-19
DIF3D solves multigroup diffusion theory eigenvalue, adjoint, fixed source, and criticality (concentration, buckling, and dimension search) problems in 1, 2, and 3-space dimensions for orthogonal (rectangular or cylindrical), triangular, and hexagonal geometries. Anisotropic diffusion theory coefficients are permitted. Flux and power density maps by mesh cell and regionwise balance integrals are provided. Although primarily designed for fast reactor problems, upscattering and internal black boundary conditions are also treated.
Krueger, Joachim I
2016-01-01
The theory of group-selected Big God religions is a master narrative of cultural evolution. The evidence is a positive manifold of correlated assumptions and variables. Although provocative, the theory is overly elastic. Its critical ingredient - belief in Big Gods - is neither necessary nor sufficient to account for in-group prosociality and discipline. Four specific issues illustrate this elasticity. PMID:26948734
Leadership styles and theories.
Giltinane, Charlotte Louise
It is useful for healthcare professionals to be able to identify the leadership styles and theories relevant to their nursing practice. Being adept in recognising these styles enables nurses to develop their skills to become better leaders, as well as improving relationships with colleagues and other leaders, who have previously been challenging to work with. This article explores different leadership styles and theories, and explains how they relate to nursing practice. PMID:23905259
Potential Theory for Directed Networks
Zhang, Qian-Ming; Lü, Linyuan; Wang, Wen-Qiang; Zhou, Tao
2013-01-01
Uncovering factors underlying the network formation is a long-standing challenge for data mining and network analysis. In particular, the microscopic organizing principles of directed networks are less understood than those of undirected networks. This article proposes a hypothesis named potential theory, which assumes that every directed link corresponds to a decrease of a unit potential and subgraphs with definable potential values for all nodes are preferred. Combining the potential theory with the clustering and homophily mechanisms, it is deduced that the Bi-fan structure consisting of 4 nodes and 4 directed links is the most favored local structure in directed networks. Our hypothesis receives strongly positive supports from extensive experiments on 15 directed networks drawn from disparate fields, as indicated by the most accurate and robust performance of Bi-fan predictor within the link prediction framework. In summary, our main contribution is twofold: (i) We propose a new mechanism for the local organization of directed networks; (ii) We design the corresponding link prediction algorithm, which can not only testify our hypothesis, but also find out direct applications in missing link prediction and friendship recommendation. PMID:23408979
Marletto, Chiara
2015-01-01
Neo-Darwinian evolutionary theory explains how the appearance of purposive design in the adaptations of living organisms can have come about without their intentionally being designed. The explanation relies crucially on the possibility of certain physical processes: mainly, gene replication and natural selection. In this paper, I show that for those processes to be possible without the design of biological adaptations being encoded in the laws of physics, those laws must have certain other properties. The theory of what these properties are is not part of evolution theory proper, yet without it the neo-Darwinian theory does not fully achieve its purpose of explaining the appearance of design. To this end, I apply constructor theory's new mode of explanation to express exactly within physics the appearance of design, no-design laws, and the logic of self-reproduction and natural selection. I conclude that self-reproduction, replication and natural selection are possible under no-design laws, the only non-trivial condition being that they allow digital information to be physically instantiated. This has an exact characterization in the constructor theory of information. I also show that under no-design laws an accurate replicator requires the existence of a ‘vehicle’ constituting, together with the replicator, a self-reproducer. PMID:25589566
NASA Astrophysics Data System (ADS)
Detournay, Stéphane; Hartman, Thomas; Hofman, Diego M.
2012-12-01
We study field theories in two spacetime dimensions invariant under a chiral scaling symmetry that acts only on right-movers. The local symmetries include one copy of the Virasoro algebra and a U(1) current algebra. This differs from the two-dimensional conformal group but in some respects is equally powerful in constraining the theory. In particular, the symmetries on a torus lead to modular covariance of the partition function, which is used to derive a universal formula for the asymptotic density of states. For an application we turn to the holographic description of black holes in quantum gravity, motivated by the fact that the symmetries in the near-horizon geometry of any extremal black hole are identical to those of a two-dimensional field theory with chiral scaling. We consider two examples: black holes in warped AdS3 in topologically massive gravity and in string theory. In both cases, the density of states in the two-dimensional field theory reproduces the Bekenstein-Hawking entropy of black holes in the gravity theory.
Theory of hydromagnetic turbulence
NASA Technical Reports Server (NTRS)
Montgomery, D.
1983-01-01
The present state of MHD turbulence theory as a possible solar wind research tool is surveyed. The theory is statistical, and does not make statements about individual events. The ensembles considered typically have individual realizations which differ qualitatively, unlike equilibrium statistical mechanics. Most of the theory deals with highly symmetric situations; most of these symmetries have yet to be tested in the solar wind. The applicability of MHD itself to solar wind parameters is highly questionable; yet it has no competitors, as a potentially comprehensive dynamical description. The purpose of solar wind research require sharper articulation. If they are to understand radial turbulent plasma flows from spheres, laboratory experiments and numerical solution of equations of motion may be cheap alternative to spacecraft. If "real life" information is demanded, multiple spacecraft with variable separation may be necessary to go further. The principal emphasis in the theory so far has been on spectral behavior for spatial covariances in wave number space. There is no respectable theory of these for highly anisotropic situations. A rather slow development of theory acts as a brake on justifiable measurement, at this point.
Manturov, Vassily O
2010-06-29
In this work we study knot theories with a parity property for crossings: every crossing is declared to be even or odd according to a certain preassigned rule. If this rule satisfies a set of simple axioms related to the Reidemeister moves, then certain simple invariants solving the minimality problem can be defined, and invariant maps on the set of knots can be constructed. The most important example of a knot theory with parity is the theory of virtual knots. Using the parity property arising from Gauss diagrams we show that even a gross simplification of the theory of virtual knots, namely, the theory of free knots, admits simple and highly nontrivial invariants. This gives a solution to a problem of Turaev, who conjectured that all free knots are trivial. In this work we show that free knots are generally not invertible, and provide invariants which detect the invertibility of free knots. The passage to ordinary virtual knots allows us to strengthen known invariants (such as the Kauffman bracket) using parity considerations. We also discuss other examples of knot theories with parity. Bibliography: 27 items.
Kline, A David
2006-04-01
The received account of whistleblowing, developed over the last quarter century, is identified with the work of Norman Bowie and Richard DeGeorge. Michael Davis has detailed three anomalies for the received view: the paradoxes of burden, missing harm and failure. In addition, he has proposed an alternative account of whistleblowing, viz., the Complicity Theory. This paper examines the Complicity Theory. The supposed anomalies rest on misunderstandings of the received view or misreadings of model cases of whistleblowing, for example, the Challenger disaster and the Ford Pinto. Nevertheless, the Complicity Theory is important for as in science the contrast with alternative competing accounts often helps us better understand the received view. Several aspects of the received view are reviewed and strengthened through comparison with Complicity Theory, including why whistleblowing needs moral justification. Complicity Theory is also critiqued. The fundamental failure of Complicity Theory is its failure to explain why government and the public encourage and protect whistleblowers despite the possibility of considerable harm to the relevant company in reputation, lost jobs, and lost shareholder value. PMID:16609713
Photonic processes in Born-Infeld theory
NASA Astrophysics Data System (ADS)
Dávila, José Manuel; Schubert, Christian; Trejo, María Anabel
2014-12-01
We study the processes of photon-photon scattering and photon splitting in a magnetic field in Born-Infeld theory. In both cases we combine the terms from the tree-level Born-Infeld Lagrangian with the usual one-loop QED contributions, where those are approximated by the Euler-Heisenberg Lagrangian, including also the interference terms. For photon-photon scattering we obtain the total cross-section in the low-energy approximation. For photon splitting we compute the total absorption coefficient in the hexagon (weak field) approximation, and also show that, due to the non-birefringence property of Born-Infeld theory, the selection rules found by Adler for the QED case continue to hold in this more general setting. We discuss the bounds on the free parameter of Born-Infeld theory that may be obtained from this type of processes.
Whiteheadian Actual Entitities and String Theory
NASA Astrophysics Data System (ADS)
Bracken, Joseph A.
2012-06-01
In the philosophy of Alfred North Whitehead, the ultimate units of reality are actual entities, momentary self-constituting subjects of experience which are too small to be sensibly perceived. Their combination into "societies" with a "common element of form" produces the organisms and inanimate things of ordinary sense experience. According to the proponents of string theory, tiny vibrating strings are the ultimate constituents of physical reality which in harmonious combination yield perceptible entities at the macroscopic level of physical reality. Given that the number of Whiteheadian actual entities and of individual strings within string theory are beyond reckoning at any given moment, could they be two ways to describe the same non-verifiable foundational reality? For example, if one could establish that the "superject" or objective pattern of self- constitution of an actual entity vibrates at a specific frequency, its affinity with the individual strings of string theory would be striking. Likewise, if one were to claim that the size and complexity of Whiteheadian 'societies" require different space-time parameters for the dynamic interrelationship of constituent actual entities, would that at least partially account for the assumption of 10 or even 26 instead of just 3 dimensions within string theory? The overall conclusion of this article is that, if a suitably revised understanding of Whiteheadian metaphysics were seen as compatible with the philosophical implications of string theory, their combination into a single world view would strengthen the plausibility of both schemes taken separately. Key words: actual entities, subject/superjects, vibrating strings, structured fields of activity, multi-dimensional physical reality.
A Morphological Theory of Human Hearing
NASA Astrophysics Data System (ADS)
Pamieri, Paolo
2011-11-01
The interdisciplinary project motivating the work discussed in this paper aims at developing an integrated framework of ideas for human hearing research. The novelty of the project consists in combining the history and philosophy of sound perception in humans with psychoacoustics and mechanics of hearing. In this paper, I present a morphological theory of human hearing, which replaces the concept of tonopic representation in the cochlea which the concept of morphological representation.
Emotionally Intelligent Leadership: An Integrative, Process-Oriented Theory of Student Leadership
ERIC Educational Resources Information Center
Allen, Scott J.; Shankman, Marcy Levy; Miguel, Rosanna F.
2012-01-01
Emotionally intelligent leadership (EIL) theory combines relevant models, theories, and research in the areas of emotional intelligence (EI) and leadership. With an intentional focus on context, self and others, emotionally intelligent leaders facilitate the attainment of desired outcomes. The 21 capacities described by the theory equip…
Performance Assessment Design Principles Gleaned from Constructivist Learning Theory (Part 2)
ERIC Educational Resources Information Center
Zane, Thomas W.
2009-01-01
Just as objectivist theories have provided foundations for traditional tests, constructivist theories can offer foundations for performance assessment design and development methods. The tenets and principles embedded in various learning theories provide a solid foundation that can be combined with psychometric principles to help assessment…
The Evolution of Macroeconomic Theory and Implications for Teaching Intermediate Macroeconomics.
ERIC Educational Resources Information Center
Froyen, Richard T.
1996-01-01
Traces the development of macroeconomic theory from John Maynard Keynes to modern endogenous growth theory. Maintains that a combination of interest in growth theory and related policy questions will play a prominent role in macroeconomics in the future. Recommends narrowing the gap between graduate school and undergraduate economics instruction.…
Convolutional coding combined with continuous phase modulation
NASA Technical Reports Server (NTRS)
Pizzi, S. V.; Wilson, S. G.
1985-01-01
Background theory and specific coding designs for combined coding/modulation schemes utilizing convolutional codes and continuous-phase modulation (CPM) are presented. In this paper the case of r = 1/2 coding onto a 4-ary CPM is emphasized, with short-constraint length codes presented for continuous-phase FSK, double-raised-cosine, and triple-raised-cosine modulation. Coding buys several decibels of coding gain over the Gaussian channel, with an attendant increase of bandwidth. Performance comparisons in the power-bandwidth tradeoff with other approaches are made.
Rhetorical structure theory and text analysis
NASA Astrophysics Data System (ADS)
Mann, William C.; Matthiessen, Christian M. I. M.; Thompson, Sandra A.
1989-11-01
Recent research on text generation has shown that there is a need for stronger linguistic theories that tell in detail how texts communicate. The prevailing theories are very difficult to compare, and it is also very difficult to see how they might be combined into stronger theories. To make comparison and combination a bit more approachable, we have created a book which is designed to encourage comparison. A dozen different authors or teams, all experienced in discourse research, are given exactly the same text to analyze. The text is an appeal for money by a lobbying organization in Washington, DC. It informs, stimulates and manipulates the reader in a fascinating way. The joint analysis is far more insightful than any one team's analysis alone. This paper is our contribution to the book. Rhetorical Structure Theory (RST), the focus of this paper, is a way to account for the functional potential of text, its capacity to achieve the purposes of speakers and produce effects in hearers. It also shows a way to distinguish coherent texts from incoherent ones, and identifies consequences of text structure.
Who Needs Learning Theory Anyway?
ERIC Educational Resources Information Center
Zemke, Ron
2002-01-01
Looks at a variety of learning theories: andragogy, behaviorism, cognitivism, conditions of learning, Gestalt, and social learning. Addresses the difficulty of selecting an appropriate theory for training. (JOW)
Combining modules for movement.
Bizzi, E; Cheung, V C K; d'Avella, A; Saltiel, P; Tresch, M
2008-01-01
We review experiments supporting the hypothesis that the vertebrate motor system produces movements by combining a small number of units of motor output. Using a variety of approaches such as microstimulation of the spinal cord, NMDA iontophoresis, and an examination of natural behaviors in intact and deafferented animals we have provided evidence for a modular organization of the spinal cord. A module is a functional unit in the spinal cord that generates a specific motor output by imposing a specific pattern of muscle activation. Such an organization might help to simplify the production of movements by reducing the degrees of freedom that need to be specified. PMID:18029291
Optical activity of chirally distorted nanocrystals
NASA Astrophysics Data System (ADS)
Tepliakov, Nikita V.; Baimuratov, Anvar S.; Baranov, Alexander V.; Fedorov, Anatoly V.; Rukhlenko, Ivan D.
2016-05-01
We develop a general theory of optical activity of semiconductor nanocrystals whose chirality is induced by a small perturbation of their otherwise achiral electronic subsystems. The optical activity is described using the quantum-mechanical expressions for the rotatory strengths and dissymmetry factors introduced by Rosenfeld. We show that the rotatory strengths of optically active transitions are decomposed on electric dipole and magnetic dipole contributions, which correspond to the electric dipole and magnetic dipole transitions between the unperturbed quantum states. Remarkably, while the two kinds of rotatory strengths are of the same order of magnitude, the corresponding dissymmetry factors can differ by a factor of 105. By maximizing the dissymmetry of magnetic dipole absorption one can significantly enhance the enantioselectivity in the interaction of semiconductor nanocrystals with circularly polarized light. This feature may advance chiral and analytical methods, which will benefit biophysics, chemistry, and pharmaceutical science. The developed theory is illustrated by an example of intraband transitions inside a semiconductor nanocuboid, whose rotatory strengths and dissymmetry factors are calculated analytically.
Relating theories via renormalization
NASA Astrophysics Data System (ADS)
Kadanoff, Leo P.
2013-02-01
The renormalization method is specifically aimed at connecting theories describing physical processes at different length scales and thereby connecting different theories in the physical sciences. The renormalization method used today is the outgrowth of 150 years of scientific study of thermal physics and phase transitions. Different phases of matter show qualitatively different behaviors separated by abrupt phase transitions. These qualitative differences seem to be present in experimentally observed condensed-matter systems. However, the "extended singularity theorem" in statistical mechanics shows that sharp changes can only occur in infinitely large systems. Abrupt changes from one phase to another are signaled by fluctuations that show correlation over infinitely long distances, and are measured by correlation functions that show algebraic decay as well as various kinds of singularities and infinities in thermodynamic derivatives and in measured system parameters. Renormalization methods were first developed in field theory to get around difficulties caused by apparent divergences at both small and large scales. However, no renormalization gives a fully satisfactory formulation of field theory. The renormalization (semi-)group theory of phase transitions was put together by Kenneth G. Wilson in 1971 based upon ideas of scaling and universality developed earlier in the context of phase transitions and of couplings dependent upon spatial scale coming from field theory. Correlations among regions with fluctuations in their order underlie renormalization ideas. Wilson's theory is the first approach to phase transitions to agree with the extended singularity theorem. Some of the history of the study of these correlations and singularities is recounted, along with the history of renormalization and related concepts of scaling and universality. Applications, particularly to condensed-matter physics and particle physics, are summarized. This note is partially a
Efficient Regressions via Optimally Combining Quantile Information*
Zhao, Zhibiao; Xiao, Zhijie
2014-01-01
We develop a generally applicable framework for constructing efficient estimators of regression models via quantile regressions. The proposed method is based on optimally combining information over multiple quantiles and can be applied to a broad range of parametric and nonparametric settings. When combining information over a fixed number of quantiles, we derive an upper bound on the distance between the efficiency of the proposed estimator and the Fisher information. As the number of quantiles increases, this upper bound decreases and the asymptotic variance of the proposed estimator approaches the Cramér-Rao lower bound under appropriate conditions. In the case of non-regular statistical estimation, the proposed estimator leads to super-efficient estimation. We illustrate the proposed method for several widely used regression models. Both asymptotic theory and Monte Carlo experiments show the superior performance over existing methods. PMID:25484481
NASA Astrophysics Data System (ADS)
Akhmeteli, Andrey
2013-03-01
Is it possible to offer a ``no drama'' quantum theory? Something as simple (in principle) as classical electrodynamics - a theory described by a system of partial differential equations (PDE) in 3+1 dimensions, but reproducing unitary evolution of a quantum field theory in the Fock space? The following results suggest an affirmative answer: 1. The scalar field can be algebraically eliminated from scalar electrodynamics; the resulting equations describe independent evolution of the electromagnetic field (EMF). 2. After introduction of a complex 4-potential (producing the same EMF as the standard real 4-potential), the spinor field can be algebraically eliminated from spinor electrodynamics; the resulting equations describe independent evolution of EMF. 3. The resulting theories for EMF can be embedded into quantum field theories. Another fundamental result: in a general case, the Dirac equation is equivalent to a 4th order PDE for just one component, which can be made real by a gauge transform. Issues related to the Bell theorem are discussed. A. Akhmeteli, Int'l Journal of Quantum Information, Vol. 9, Suppl., 17-26 (2011) A. Akhmeteli, Journal of Mathematical Physics, Vol. 52, 082303 (2011) A. Akhmeteli, quant-ph/1111.4630 A. Akhmeteli, J. Phys.: Conf. Ser., Vol. 361, 012037 (2012)
NASA Astrophysics Data System (ADS)
Akhmeteli, Andrey
2012-02-01
Is it possible to offer a ``no drama'' quantum theory? Something as simple (in principle) as classical electrodynamics - a theory described by a system of partial differential equations (PDE) in 3+1 dimensions, but reproducing unitary evolution of a quantum field theory in the configuration space? The following results suggest an affirmative answer: 1. The scalar field can be algebraically eliminated from scalar electrodynamics; the resulting equations describe independent evolution of the electromagnetic field (EMF). 2. After introduction of a complex 4-potential (producing the same EMF as the standard real 4-potential), the spinor field can be algebraically eliminated from spinor electrodynamics; the resulting equations describe independent evolution of EMF. 3. The resulting theories for EMF can be embedded into quantum field theories. Another fundamental result: in a general case, the Dirac equation is equivalent to a 4th order PDE for just one component, which can be made real by a gauge transform. Issues related to the Bell theorem are discussed. A. Akhmeteli, Int'l Journal of Quantum Information, Vol. 9, Suppl., 17-26 (2011) A. Akhmeteli, Journal of Mathematical Physics, Vol. 52, 082303 (2011) A. Akhmeteli, quant-ph/1108.1588
NASA Astrophysics Data System (ADS)
Akhmeteli, Andrey
2012-05-01
Is it possible to offer a "no drama" quantum theory? Something as simple (in principle) as classical electrodynamics - a theory described by a system of partial differential equations in 3+1 dimensions, but reproducing unitary evolution of a quantum field theory in the configuration space? The following results suggest an affirmative answer: 1. The scalar field can be algebraically eliminated from scalar electrodynamics; the resulting equations describe independent evolution of the electromagnetic field. 2. After introduction of a complex 4-potential (producing the same electromagnetic field as the standard real 4-potential), the spinor field can be algebraically eliminated from spinor electrodynamics; the resulting equations describe independent evolution of the electromagnetic field. 3. The resulting theories for the electromagnetic field can be embedded into quantum field theories. Another fundamental result: in a general case, the Dirac equation is equivalent to a 4th order partial differential equations for just one component, which can be made real by a gauge transform. Issues related to the Bell theorem are discussed.
Beyond generalized Proca theories
NASA Astrophysics Data System (ADS)
Heisenberg, Lavinia; Kase, Ryotaro; Tsujikawa, Shinji
2016-09-01
We consider higher-order derivative interactions beyond second-order generalized Proca theories that propagate only the three desired polarizations of a massive vector field besides the two tensor polarizations from gravity. These new interactions follow the similar construction criteria to those arising in the extension of scalar-tensor Horndeski theories to Gleyzes-Langlois-Piazza-Vernizzi (GLPV) theories. On the isotropic cosmological background, we show the existence of a constraint with a vanishing Hamiltonian that removes the would-be Ostrogradski ghost. We study the behavior of linear perturbations on top of the isotropic cosmological background in the presence of a matter perfect fluid and find the same number of propagating degrees of freedom as in generalized Proca theories (two tensor polarizations, two transverse vector modes, and two scalar modes). Moreover, we obtain the conditions for the avoidance of ghosts and Laplacian instabilities of tensor, vector, and scalar perturbations. We observe key differences in the scalar sound speed, which is mixed with the matter sound speed outside the domain of generalized Proca theories.
NASA Astrophysics Data System (ADS)
Tiburzi, Brian C.
The era of high-precision lattice QCD has led to synergy between lattice computations and phenomenological input from chiral perturbation theory. We provide an introduction to chiral perturbation theory with a bent towards understanding properties of the nucleon and other low-lying baryons. Four main topics are the basis for this chapter. We begin with a discussion of broken symmetries and the procedure to construct the chiral Lagrangian. The second topic concerns specialized applications of chiral perturbation theory tailored to lattice QCD, such as partial quenching, lattice discretization, and finite-volume effects. We describe inclusion of the nucleon in chiral perturbation theory using a heavy-fermion Euclidean action. Issues of convergence are taken up as our final topic. We consider expansions in powers of the strange-quark mass, and the appearance of unphysical singularities in the heavy-particle formulation. Our aim is to guide lattice practitioners in understanding the predictions chiral perturbation theory makes for baryons, and show how the lattice will play a role in testing the rigor of the chiral expansion at physical values of the quark masses.
Generalized teleparallel theory
NASA Astrophysics Data System (ADS)
Junior, Ednaldo L. B.; Rodrigues, Manuel E.
2016-07-01
We construct a theory in which the gravitational interaction is described only by torsion, but that generalizes the teleparallel theory still keeping the invariance of local Lorentz transformations in one particular case. We show that our theory falls, in a certain limit of a real parameter, under f(bar{R}) gravity or, in another limit of the same real parameter, under modified f( T) gravity; on interpolating between these two theories it still can fall under several other theories. We explicitly show the equivalence with f(bar{R}) gravity for the cases of a Friedmann-Lemaître-Robertson-Walker flat metric for diagonal tetrads, and a metric with spherical symmetry for diagonal and non-diagonal tetrads. We study four applications, one in the reconstruction of the de Sitter universe cosmological model, for obtaining a static spherically symmetric solution of de Sitter type for a perfect fluid, for evolution of the state parameter ω _{DE}, and for the thermodynamics of the apparent horizon.
NASA Astrophysics Data System (ADS)
Modesto, Leonardo; Piva, Marco; Rachwał, Lesław
2016-07-01
We explicitly compute the one-loop exact beta function for a nonlocal extension of the standard gauge theory, in particular, Yang-Mills and QED. The theory, made of a weakly nonlocal kinetic term and a local potential of the gauge field, is unitary (ghost-free) and perturbatively super-renormalizable. Moreover, in the action we can always choose the potential (consisting of one "killer operator") to make zero the beta function of the running gauge coupling constant. The outcome is a UV finite theory for any gauge interaction. Our calculations are done in D =4 , but the results can be generalized to even or odd spacetime dimensions. We compute the contribution to the beta function from two different killer operators by using two independent techniques, namely, the Feynman diagrams and the Barvinsky-Vilkovisky traces. By making the theories finite, we are able to solve also the Landau pole problems, in particular, in QED. Without any potential, the beta function of the one-loop super-renormalizable theory shows a universal Landau pole in the running coupling constant in the ultraviolet regime (UV), regardless of the specific higher-derivative structure. However, the dressed propagator shows neither the Landau pole in the UV nor the singularities in the infrared regime (IR).
NASA Technical Reports Server (NTRS)
Herakovich, C. T.
1978-01-01
Comparison between theory and experiment for buckling of laminated graphite-epoxy and boron-epoxy cylinders under combined compression and torsion are presented. The experimental results are compared to a theory by Wu. It is shown that there is excellent agreement between theory and experiment for pure torsional loading (positive and negative), experimental buckling loads for pure compression are well below the predicted values, and good correlation is exhibited between theory and experiment for buckling under combined loading when compared in the form of normalized buckling interaction diagrams in axial-torsional load space.
Einstein's Theory Fights off Challengers
NASA Astrophysics Data System (ADS)
2010-04-01
Two new and independent studies have put Einstein's General Theory of Relativity to the test like never before. These results, made using NASA's Chandra X-ray Observatory, show Einstein's theory is still the best game in town. Each team of scientists took advantage of extensive Chandra observations of galaxy clusters, the largest objects in the Universe bound together by gravity. One result undercuts a rival gravity model to General Relativity, while the other shows that Einstein's theory works over a vast range of times and distances across the cosmos. The first finding significantly weakens a competitor to General Relativity known as "f(R) gravity". "If General Relativity were the heavyweight boxing champion, this other theory was hoping to be the upstart contender," said Fabian Schmidt of the California Institute of Technology in Pasadena, who led the study. "Our work shows that the chances of its upsetting the champ are very slim." In recent years, physicists have turned their attention to competing theories to General Relativity as a possible explanation for the accelerated expansion of the universe. Currently, the most popular explanation for the acceleration is the so-called cosmological constant, which can be understood as energy that exists in empty space. This energy is referred to as dark energy to emphasize that it cannot be directly detected. In the f(R) theory, the cosmic acceleration comes not from an exotic form of energy but from a modification of the gravitational force. The modified force also affects the rate at which small enhancements of matter can grow over the eons to become massive clusters of galaxies, opening up the possibility of a sensitive test of the theory. Schmidt and colleagues used mass estimates of 49 galaxy clusters in the local universe from Chandra observations, and compared them with theoretical model predictions and studies of supernovas, the cosmic microwave background, and the large-scale distribution of galaxies. They
Astronomy and political theory
NASA Astrophysics Data System (ADS)
Campion, Nicholas
2011-06-01
This paper will argue that astronomical models have long been applied to political theory, from the use of the Sun as a symbol of the emperor in Rome to the application of Copernican theory to the needs of absolute monarchy. We will begin with consideration of astral divination (the use of astronomy to ascertain divine intentions) in the ancient Near East. Particular attention will be paid to the use of Newton's discovery that the universe operates according to a single set of laws in order to support concepts of political quality and eighteenth century Natural Rights theory. We will conclude with consideration of arguments that the discovery of the expanding, multi-galaxy universe, stimulated political uncertainty in the 1930s, and that photographs of the Earth from Apollo spacecraft encouraged concepts of the `global village'.
NASA Astrophysics Data System (ADS)
Wiesel, William E.; Pohlen, David J.
1994-01-01
Classical Floquet theory is reviewed with careful attention to the case of repeated eigenvalues common in Hamiltonian systems. Floquet theory generates a canonical transformation to modal variables if the periodic matrix can be made symplectic at the initial time. It is shown that this symplectic normalization can always be carried out, again with careful attention to the degenerate case. The periodic modal vectors and canonical modal variables can always be chosen to be purely real. It is possible to introduce real valued action-angle variables for all modes. Physical interpretation of the canonical degenerate normal modal variables are offered. Finally, it is shown that this transformation enables canonical perturbation theory to be carried out using Floquet modal variables.
Supersymmetric Quantum Field Theories
NASA Astrophysics Data System (ADS)
Grigore, D. R.
2005-03-01
We consider some supersymmetric multiplets in a purely quantum framework. A crucial point is to ensure the positivity of the scalar product in the Hilbert space of the quantum system. For the vector multiplet we obtain some discrepancies with respect to the literature in the expression of the super-propagator and we prove that the model is consistent only for positive mass. The gauge structure is constructed purely deductive and leads to the necessity of introducing scalar ghost superfields, in analogy to the usual gauge theories. Then we consider a supersymmetric extension of quantum gauge theory based on a vector multiplet containing supersymmetric partners of spin 3/2 for the vector fields. As an application we consider the supersymmetric electroweak theory. The resulting self-couplings of the gauge bosons agree with the standard model up to a divergence.
NASA Astrophysics Data System (ADS)
Schmaltz, Martin; Tucker-Smith, David
2005-12-01
Recently there has been renewed interest in the possibility that the Higgs particle of the Standard Model is a pseudo-Nambu-Goldstone boson. This development was spurred by the observation that if certain global symmetries are broken only by the interplay between two or more coupling constants, then the Higgs mass-squared is free from quadratic divergences at one loop. This collective symmetry breaking is the essential ingredient in little Higgs theories, which are weakly coupled extensions of the Standard Model with little or no fine tuning, describing physics up to an energy scale 10 TeV. Here we give a pedagogical introduction to little Higgs theories. We review their structure and phenomenology, focusing mainly on the SU(3) theory, the Minimal Moose, and the littlest Higgs as concrete examples.
Palenik, Mark C.; Dunlap, Brett I.
2015-07-28
Despite the fundamental importance of electron density in density functional theory, perturbations are still usually dealt with using Hartree-Fock-like orbital equations known as coupled-perturbed Kohn-Sham (CPKS). As an alternative, we develop a perturbation theory that solves for the perturbed density directly, removing the need for CPKS. This replaces CPKS with a true Hohenberg-Kohn density perturbation theory. In CPKS, the perturbed density is found in the basis of products of occupied and virtual orbitals, which becomes ever more over-complete as the size of the orbital basis set increases. In our method, the perturbation to the density is expanded in terms of a series of density basis functions and found directly. It is possible to solve for the density in such a way that it makes the total energy stationary even if the density basis is incomplete.
Chen, Jun
2011-10-01
The concept of pain has remained a topic of long debate since its emergence in ancient times. The initial ideas of pain were formulated in both the East and the West before 1800. Since 1800, due to the development of experimental sciences, different theories of pain have emerged and become central topics of debate. However, the existing theories of pain may be appropriate for the interpretation of some aspects of pain, but are not yet comprehensive. The history of pain problems is as long as that of human beings; however, the understanding of pain mechanisms is still far from sufficient. Thus, intensive research is required. This historical review mainly focuses on the development of pain theories and the fundamental discoveries in this field. Other historical events associated with pain therapies and remedies are beyond the scope of this review. PMID:21934730
Allmark, Peter
2003-04-01
Science seems to develop by inducing new knowledge from observation. However, it is hard to find a rational justification for induction. Popper offers one attempt to resolve this problem. Nursing theorists have tended to ignore or reject Popper, often on the false belief that he is a logical positivist (and hence hostile to qualitative research). Logical positivism claims that meaningful sentences containing any empirical content should ultimately be reducible to simple, observation statements. Popper refutes positivism by showing that there are no such simple statements. He is not a positivist. For Popper, the scientist begins with problems and puts forward trial solutions. These are subjected to rigorous testing aimed at falsifying them. A new theoretical position is then reached in which the scientist knows either that the trial solutions are false or that they have not yet been falsified. Science is characterized by the fact that it tests its ideas through attempted falsification. Non-science tests its ideas through attempted refutation. Nursing theory is a mixture of science and non-science. Popper's method requires rigorous testing of theory in both realms. As such, some nursing theory should be discarded. Popper's view faces at least two important criticisms. One is that a scientist can always reject an apparent falsification by instead altering some auxiliary hypothesis (e.g. denying the accuracy of the falsifying observation). Popper can deal with this argument by saying that defence of a theory in this way will eventually break down if the theory is false. The second criticism is that Popper's method does ultimately draw upon induction. This criticism is true, but his method can be usefully adapted. An adapted from of Popper's philosophy of science provides a good basis for nursing theory. PMID:14498963
Monotherapy versus combination therapy.
Patel, Shilpa M; Saravolatz, Louis D
2006-11-01
The science of antibiotic therapy for infectious diseases continues to evolve. In many instances where empiric coverage is necessary, treatment with more than one agent is considered prudent. If an etiology is identified, antibiotics are modified based on culture and susceptibility data. Even when the organism is known, more than one antibiotic may be needed. Decisions about antibiotics should be made after assessments of pertinent clinical information, laboratory and microbiology information, ease of administration, patient compliance, potential adverse effects, cost, and available evidence supporting various treatment options. Clinicians also need to consider synergy and local resistance patterns in selecting therapeutic options. In this article, the authors outline monotherapy and combination therapy options for several common infectious diseases. PMID:17116443
Nesje, A.
1980-08-26
Stove-hearth combinations are described that are comprised of a combustion chamber having a pair of side walls supported on a base in opposing relation and joined by a rear wall. A cover or hood defines with the base and front edges of the side walls an opening to the chamber. Two doors are each hingedly associated with upper and lower pivot pins which when the door is in a closed position are disposed adjacent but outside a respective side wall front edge. Along upper and lower side edges of each side wall are formed parallel grooves adapted to be engaged slidably by the upper and lower pivot pins. As the door is opened from a stove to a hearth position the pivot pins are displaced along the grooves causing the door to be led gradually into a position along the outer side of its side wall.
Superconducting combined function magnets
Hahn, H.; Fernow, R.C.
1983-01-01
Superconducting accelerators and storage rings, presently under construction or in the design phase, are based on separate dipole and quadrupole magnets. It is here suggested that a hybrid lattice configuration consisting of dipoles and combined function gradient magnets would: (1) reduce the number of magnet units and their total cost; and (2) increase the filling factor and thus the energy at a given field. Coil cross sections are presented for the example of the Brookhaven Colliding Beam Accelerator. An asymmetric two-layer cable gradient magnet would have transfer functions of 10.42 G/A and 0.628 G cm/sup -1//A versus 15.77 G/A and 2.03 G cm/sup -1//A of the present separate dipoles and quadrupoles.
Newberry Combined Gravity 2016
Kelly Rose
2016-01-22
Newberry combined gravity from Zonge Int'l, processed for the EGS stimulation project at well 55-29. Includes data from both Davenport 2006 collection and for OSU/4D EGS monitoring 2012 collection. Locations are NAD83, UTM Zone 10 North, meters. Elevation is NAVD88. Gravity in milligals. Free air and observed gravity are included, along with simple Bouguer anomaly and terrain corrected Bouguer anomaly. SBA230 means simple Bouguer anomaly computed at 2.30 g/cc. CBA230 means terrain corrected Bouguer anomaly at 2.30 g/cc. This suite of densities are included (g/cc): 2.00, 2.10, 2.20, 2.30, 2.40, 2.50, 2.67.
Kachru, Shamit; McAllister, Liam; Sundrum, Raman
2007-04-04
We study sequestering, a prerequisite for flavor-blind supersymmetry breaking in several high-scale mediation mechanisms, in compactifications of type IIB string theory. We find that although sequestering is typically absent in unwarped backgrounds, strongly warped compactifications do readily sequester. The AdS/CFT dual description in terms of conformal sequestering plays an important role in our analysis, and we establish how sequestering works both on the gravity side and on the gauge theory side. We pay special attention to subtle compactification effects that can disrupt sequestering. Our result is a step toward realizing an appealing pattern of soft terms in a KKLT compactification.
Balatsky, A.V.; Scalapino, D.; Wilkins, J.; Pines, D.; Bedell, K.; Schrieffer, J.R.; Fisk, Z.
1998-12-01
This is the final report of a two-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors have obtained a description of symmetry of the order parameter and pairing state in high-Tc superconductors. They developed a theory of ferromagnetic instability of Fermi-liquid. They have conducted an experimental investigation of the intermetallic compounds and Zintl-type compound. They investigated the properties of Cu-0 ladders. They have developed the theory of liftshitz tails in superconductors. They have conducted a number of summer workshops.
Diagrammatic semiclassical laser theory
Zaitsev, Oleg; Deych, Lev
2010-02-15
We derive semiclassical laser equations valid in all orders of nonlinearity. With the help of a diagrammatic representation, the perturbation series in powers of electric field can be resummed in terms of a certain class of diagrams. The resummation makes it possible to take into account a weak effect of population pulsations in a controlled way while treating the nonlinearity exactly. The proposed laser theory reproduces the all-order nonlinear equations in the approximation of constant population inversion and the third-order equations with population-pulsation terms as special cases. The theory can be applied to arbitrarily open and irregular lasers, such as random lasers.
Delbruck, C; Raffelhuschen, B
1993-09-01
"The present and expected migration flows in Europe require a detailed analysis of determinants and elements of migration decisions. This survey encompasses a view on classical--labor market and demand side oriented--theories, the more recent human capital approach as well as on migration under asymmetric information. Since these theories so far yield an unsatisfactory basis for description and forecasting of multilateral migration flows, a closer look at empirical methods of migration research is taken. Consequently, a description of possible policy oriented applications of the gravity model and the random utility approach, with their descriptive and normative characteristics, is given." (SUMMARY IN ENG) PMID:12319309
NASA Astrophysics Data System (ADS)
Clarke, C. J.; Pringle, J. E.
2004-07-01
We show how the viscous evolution of Keplerian accretion discs can be understood in terms of simple kinetic theory. Although standard physics texts give a simple derivation of momentum transfer in a linear shear flow using kinetic theory, many authors, as detailed by Hayashi & Matsuda, have had difficulties applying the same considerations to a circular shear flow. We show here how this may be done, and note that the essential ingredients are to take proper account of, first, isotropy locally in the frame of the fluid and, secondly, the geometry of the mean flow.
Walsh, Timothy Francis; Reese, Garth M.; Bhardwaj, Manoj Kumar
2004-08-01
This manual describes the theory behind many of the constructs in Salinas. For a more detailed description of how to use Salinas , we refer the reader to Salinas, User's Notes. Many of the constructs in Salinas are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Salinas are specific to our implementation. We try to be far more complete in those areas. The theory manual was developed from several sources including general notes, a programer-notes manual, the user's notes and of course the material in the open literature.
Holographic effective field theories
NASA Astrophysics Data System (ADS)
Martucci, Luca; Zaffaroni, Alberto
2016-06-01
We derive the four-dimensional low-energy effective field theory governing the moduli space of strongly coupled superconformal quiver gauge theories associated with D3-branes at Calabi-Yau conical singularities in the holographic regime of validity. We use the dual supergravity description provided by warped resolved conical geometries with mobile D3-branes. Information on the baryonic directions of the moduli space is also obtained by using wrapped Euclidean D3-branes. We illustrate our general results by discussing in detail their application to the Klebanov-Witten model.
NASA Astrophysics Data System (ADS)
Jejjala, Vishnu; Minic, Djordje; Ng, Y. Jack; Tze, Chia-Hsiung
We propose a string theory of turbulence that explains the Kolmogorov scaling in 3+1 dimensions and the Kraichnan and Kolmogorov scalings in 2+1 dimensions. This string theory of turbulence should be understood in light of the AdS/CFT dictionary. Our argument is crucially based on the use of Migdal's loop variables and the self-consistent solutions of Migdal's loop equations for turbulence. In particular, there is an area law for turbulence in 2+1 dimensions related to the Kraichnan scaling.
Baryon chiral perturbation theory
NASA Astrophysics Data System (ADS)
Scherer, S.
2012-03-01
We provide a short introduction to the one-nucleon sector of chiral perturbation theory and address the issue of power counting and renormalization. We discuss the infrared regularization and the extended on-mass-shell scheme. Both allow for the inclusion of further degrees of freedom beyond pions and nucleons and the application to higher-loop calculations. As applications we consider the chiral expansion of the nucleon mass to order Script O(q6) and the inclusion of vector and axial-vector mesons in the calculation of nucleon form factors. Finally, we address the complex-mass scheme for describing unstable particles in effective field theory.
Chris Quigg
2001-08-10
After a short essay on the current state of particle physics, the author reviews the antecedents of the modern picture of the weak and electromagnetic interactions and then undertakes a brief survey of the SU(2){sub L} {circle_times} U(1){sub Y} electroweak theory. The authors reviews the features of electroweak phenomenology at tree level and beyond, presents an introduction to the Higgs boson and the 1-TeV scale, and examines arguments for enlarging the electroweak theory. The author concludes with a brief look at low-scale gravity.
Turner, H.
1996-12-31
This paper presents mathematical results that can sometimes be used to simplify the task of reasoning about a default theory, by {open_quotes}splitting it into parts.{close_quotes} These so-called Splitting Theorems for default logic are related in spirit to {open_quotes}partial evaluation{close_quotes} in logic programming, in which results obtained from one part of a program are used to simplify the remainder of the program. In this paper we focus primarily on the statement and proof of the Splitting Theorems for default logic. We illustrate the usefulness of the results by applying them to an example default theory for commonsense reasoning about action.
Dempster-Shafer theory and connections to Choquet's theory of capacities and information theory
NASA Astrophysics Data System (ADS)
Peri, Joseph S. J.
2014-06-01
The axiomatic development of information theory, during the 1960's, led to the discovery of various composition laws. The Wiener-Shannon law is well understood, but the Inf law holds particular interest because it creates a connection with the Dempster-Shafer theory. Proceeding along these lines, in a previous paper, I demonstrated the connection between the Dempster-Shafer theory and Information theory. In 1954, Gustave Choquet developed the theory of capacities in connection with potential theory. The basic concepts of capacity theory arise from electrostatics, but a capacity is a generalization of the concept of measure in Analysis. It is well known that Belief and Plausibility in the Dempster-Shafer theory are Choquet capacities. However, it is not well known that the inverse of an information measure is a Choquet capacity. The objective of this paper is to demonstrate the connections among the Dempster- Shafer theory, Information theory and Choquet's theory of capacities.
Combining disparate data for decision making
NASA Astrophysics Data System (ADS)
Gettings, M. E.
2010-12-01
Combining information of disparate types from multiple data or model sources is a fundamental task in decision making theory. Procedures for combining and utilizing quantitative data with uncertainties are well-developed in several approaches, but methods for including qualitative and semi-quantitative data are much less so. Possibility theory offers an approach to treating all three data types in an objective and repeatable way. In decision making, biases are frequently present in several forms, including those arising from data quality, data spatial and temporal distribution, and the analyst's knowledge and beliefs as to which data or models are most important. The latter bias is particularly evident in the case of qualitative data and there are numerous examples of analysts feeling that a qualitative dataset is more relevant than a quantified one. Possibility theory and fuzzy logic now provide fairly general rules for quantifying qualitative and semi-quantitative data in ways that are repeatable and minimally biased. Once a set of quantified data and/or model layers is obtained, there are several methods of combining them to obtain insight useful in decision making. These include: various combinations of layers using formal fuzzy logic (for example, layer A and (layer B or layer C) but not layer D); connecting the layers with varying influence links in a Fuzzy Cognitive Map; and using the set of layers for the universe of discourse for agent based model simulations. One example of logical combinations that have proven useful is the definition of possible habitat for valley fever fungus (Coccidioides sp.) using variables such as soil type, altitude, aspect, moisture and temperature. A second example is the delineation of the lithology and possible mineralization of several areas beneath basin fill in southern Arizona. A Fuzzy Cognitive Map example is the impacts of development and operation of a hypothetical mine in an area adjacent to a city. In this model
Self Psychology as Feminist Theory.
ERIC Educational Resources Information Center
Gardiner, Judith Kegan
1987-01-01
Although the "self psychology" theories of Heinz Kohut tend to neglect gender, they hold promise for feminist theory because they avoid some problems and limitations of the object-relations theory, especially its conflation of femininity with heterosexuality and apparent closure to historical change. Feminist self-psychology theory, in contrast,…
Theory-Based Stakeholder Evaluation
ERIC Educational Resources Information Center
Hansen, Morten Balle; Vedung, Evert
2010-01-01
This article introduces a new approach to program theory evaluation called theory-based stakeholder evaluation or the TSE model for short. Most theory-based approaches are program theory driven and some are stakeholder oriented as well. Practically, all of the latter fuse the program perceptions of the various stakeholder groups into one unitary…
NASA Technical Reports Server (NTRS)
Ni, W.
1972-01-01
A new relativistic theory of gravity is presented. This theory agrees with all experiments to date. It is a metric theory, it is Lagrangian-based, and it possesses a preferred frame with conformally-flat space slices. With an appropriate choice of certain adjustable functions and parameters, this theory possesses precisely the same post-Newtonian limit as general relativity.
Combining Critical Reflection and Design Thinking to Develop Integrative Learners
ERIC Educational Resources Information Center
Welsh, M. Ann; Dehler, Gordon E.
2013-01-01
In this article, we argue for advancing grounded curricula, which explicitly link theory and pedagogy, and executing them in authentic and multidisciplinary settings as a means to facilitate student growth into integrative learners. We describe the development of a student-centered learning experience that combines elements of critical management…
Vector field theories in cosmology
Tartaglia, A.; Radicella, N.
2007-10-15
Recently proposed theories based on the cosmic presence of a vectorial field are compared and contrasted. In particular the so-called Einstein aether theory is discussed in parallel with a recent proposal of a strained space-time theory (cosmic defect theory). We show that the latter fits reasonably well the cosmic observed data with only one, or at most two, adjustable parameters, while other vector theories use much more. The Newtonian limits are also compared. Finally we show that the cosmic defect theory may be considered as a special case of the aether theories, corresponding to a more compact and consistent paradigm.
AdS/CFT and Light-Front Holography: A Theory of Strong Interactions
Brodsky, Stanley J.; Teramond, Guy F.de; /Costa Rica U.
2009-02-23
Recent developments in the theory of strong interactions are discussed in the framework of the AdS/CFT duality between string theories of gravity in a higher dimension Anti-de Sitter space and conformal quantum field theories in physical space-time. This novel theoretical approach, combined with 'light-front holography', leads to new insights into the quark and gluon structure of hadrons and a viable first approximation to quantum chromodynamics, the fundamental theory of the strong and nuclear interactions.
Intelligence: Theories and Testing.
ERIC Educational Resources Information Center
Papanastasiou, Elena C.
This paper reviews what is known about intelligence and the use of intelligence tests. Environmental and hereditary factors that affect performance on intelligence tests are reviewed, along with various theories that have been proposed about the basis of intelligence. Intelligence tests do not test intelligence per se but make inferences about a…
ERIC Educational Resources Information Center
Kaplan, Sandra N.
2012-01-01
The importance of putting theory into practice can be addressed and advocated to educators and gifted students through the presentation of a Continuum of Practice. Articulating the sequence and phases of practice can underscore how practice can take place; it also can change the perspective and meaning of practice.
Colloquium: Topological band theory
NASA Astrophysics Data System (ADS)
Bansil, A.; Lin, Hsin; Das, Tanmoy
2016-04-01
The first-principles band theory paradigm has been a key player not only in the process of discovering new classes of topologically interesting materials, but also for identifying salient characteristics of topological states, enabling direct and sharpened confrontation between theory and experiment. This review begins by discussing underpinnings of the topological band theory, which involve a layer of analysis and interpretation for assessing topological properties of band structures beyond the standard band theory construct. Methods for evaluating topological invariants are delineated, including crystals without inversion symmetry and interacting systems. The extent to which theoretically predicted properties and protections of topological states have been verified experimentally is discussed, including work on topological crystalline insulators, disorder and interaction driven topological insulators (TIs), topological superconductors, Weyl semimetal phases, and topological phase transitions. Successful strategies for new materials discovery process are outlined. A comprehensive survey of currently predicted 2D and 3D topological materials is provided. This includes binary, ternary, and quaternary compounds, transition metal and f -electron materials, Weyl and 3D Dirac semimetals, complex oxides, organometallics, skutterudites, and antiperovskites. Also included is the emerging area of 2D atomically thin films beyond graphene of various elements and their alloys, functional thin films, multilayer systems, and ultrathin films of 3D TIs, all of which hold exciting promise of wide-ranging applications. This Colloquium concludes by giving a perspective on research directions where further work will broadly benefit the topological materials field.
Children's Theories of Motivation
ERIC Educational Resources Information Center
Gurland, Suzanne T.; Glowacky, Victoria C.
2011-01-01
To investigate children's theories of motivation, we asked 166 children (8-12 years of age) to rate the effect of various motivational strategies on task interest, over the short and long terms, in activities described as appealing or unappealing. Children viewed the rewards strategy as resulting in greatest interest except when implemented over…
Attachment Theory and Mindfulness
ERIC Educational Resources Information Center
Snyder, Rose; Shapiro, Shauna; Treleaven, David
2012-01-01
We initiate a dialog between two central areas in the field of psychology today: attachment theory/research and mindfulness studies. The impact of the early mother-infant relationship on child development has been well established in the literature, with attachment theorists having focused on the correlation between a mother's capacity for…
Shikano, Yutaka
2011-03-28
I show that the weak value theory is useful from the viewpoints of the experimentally verifiability, consistency, capacity for explanation as to many quantum paradoxes, and practical advantages. As an example, the initial state in the Hardy paradox can be experimentally verified using the weak value via the weak measurement.
Barnett, Stephen M.; Cresser, James D.
2005-08-15
We present a Markovian quantum theory of friction. Our approach is based on the idea that collisions between a Brownian particle and single molecules of the surrounding medium constitute, as far as the particle is concerned, instantaneous simultaneous measurements of its position and momentum.
ERIC Educational Resources Information Center
Thornberg, Robert
2012-01-01
There is a widespread idea that in grounded theory (GT) research, the researcher has to delay the literature review until the end of the analysis to avoid contamination--a dictum that might turn educational researchers away from GT. Nevertheless, in this article the author (a) problematizes the dictum of delaying a literature review in classic…
ERIC Educational Resources Information Center
Stewart, Jim; Harte, Victoria; Sambrook, Sally
2011-01-01
Purpose: The aim of the paper is to examine the meaning and value of the notion of theory as a basis for other papers in the special issue which examine facets of theorising HRD. Design/methodology/approach: A small scale and targeted literature review was conducted which focused on writings in the philosophy and sociology of science in order to…
Theories of Modern Management.
ERIC Educational Resources Information Center
Knight, W. Hal
This chapter of "Principles of School Business Management" identifies management theories that provide a fundamental conceptual knowledge base that school business officials can use to understand the school organizational setting and its influences on the day-to-day operation of the educational process. Particular attention is paid to aspects of…
MFIX documentation theory guide
Syamlal, M.; Rogers, W.; O`Brien, T.J.
1993-12-01
This report describes the MFIX (Multiphase Flow with Interphase exchanges) computer model. MFIX is a general-purpose hydrodynamic model that describes chemical reactions and heat transfer in dense or dilute fluid-solids flows, flows typically occurring in energy conversion and chemical processing reactors. MFIX calculations give detailed information on pressure, temperature, composition, and velocity distributions in the reactors. With such information, the engineer can visualize the conditions in the reactor, conduct parametric studies and what-if experiments, and, thereby, assist in the design process. The MFIX model, developed at the Morgantown Energy Technology Center (METC), has the following capabilities: mass and momentum balance equations for gas and multiple solids phases; a gas phase and two solids phase energy equations; an arbitrary number of species balance equations for each of the phases; granular stress equations based on kinetic theory and frictional flow theory; a user-defined chemistry subroutine; three-dimensional Cartesian or cylindrical coordinate systems; nonuniform mesh size; impermeable and semi-permeable internal surfaces; user-friendly input data file; multiple, single-precision, binary, direct-access, output files that minimize disk storage and accelerate data retrieval; and extensive error reporting. This report, which is Volume 1 of the code documentation, describes the hydrodynamic theory used in the model: the conservation equations, constitutive relations, and the initial and boundary conditions. The literature on the hydrodynamic theory is briefly surveyed, and the bases for the different parts of the model are highlighted.
NASA Astrophysics Data System (ADS)
Hoffman, Johan; Jansson, Johan; Johnson, Claes
2016-06-01
We present a new mathematical theory explaining the fluid mechanics of subsonic flight, which is fundamentally different from the existing boundary layer-circulation theory by Prandtl-Kutta-Zhukovsky formed 100 year ago. The new theory is based on our new resolution of d'Alembert's paradox showing that slightly viscous bluff body flow can be viewed as zero-drag/lift potential flow modified by 3d rotational slip separation arising from a specific separation instability of potential flow, into turbulent flow with nonzero drag/lift. For a wing this separation mechanism maintains the large lift of potential flow generated at the leading edge at the price of small drag, resulting in a lift to drag quotient of size 15-20 for a small propeller plane at cruising speed with Reynolds number {Re≈ 107} and a jumbojet at take-off and landing with {Re≈ 108} , which allows flight at affordable power. The new mathematical theory is supported by computed turbulent solutions of the Navier-Stokes equations with a slip boundary condition as a model of observed small skin friction of a turbulent boundary layer always arising for {Re > 106} , in close accordance with experimental observations over the entire range of angle of attacks including stall using a few millions of mesh points for a full wing-body configuration.
ERIC Educational Resources Information Center
Langberg, Arnold
1984-01-01
Describes the individualized program of Mountain Open High School which at first coincidentally resembed Maurice Gibbons'"Walkabout" concept and was subsequently more consciously shaped by theory. Students move through three phases culminating in challenging independent projects of practical use. (MJL)
Variational transition state theory
Truhlar, D.G.
1993-12-01
This research program involves the development of variational transition state theory (VTST) and semiclassical tunneling methods for the calculation of gas-phase reaction rates and selected applications. The applications are selected for their fundamental interest and/or their relevance to combustion.
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
The theory which asserts that the universe originated a finite time ago by expanding from an infinitely compressed state. According to this model, space, time and matter originated together, and the universe has been expanding ever since. Key stages in the history of the Big Bang universe are summarized below....
NASA Technical Reports Server (NTRS)
Chiu, Huei-Huang
1989-01-01
A theoretical method is being developed by which the structure of a radiation field can be predicted by a radiation potential theory, similar to a classical potential theory. The introduction of a scalar potential is justified on the grounds that the spectral intensity vector is irrotational. The vector is also solenoidal in the limits of a radiation field in complete radiative equilibrium or in a vacuum. This method provides an exact, elliptic type equation that will upgrade the accuracy and the efficiency of the current CFD programs required for the prediction of radiation and flow fields. A number of interesting results emerge from the present study. First, a steady state radiation field exhibits an optically modulated inverse square law distribution character. Secondly, the unsteady radiation field is structured with two conjugate scalar potentials. Each is governed by a Klein-Gordon equation with a frictional force and a restoring force. This steady potential field structure and the propagation of radiation potentials are consistent with the well known results of classical electromagnetic theory. The extension of the radiation potential theory for spray combustion and hypersonic flow is also recommended.
Extended conformal field theories
NASA Astrophysics Data System (ADS)
Taormina, Anne
1990-08-01
Some extended conformal field theories are briefly reviewed. They illustrate how non minimal models of the Virasoro algebra (c≥1) can become minimal with respect to a larger algebra. The accent is put on N-extended superconformal algebras, which are relevant in superstring compactification.
Stupakov, G.; /SLAC
2009-06-05
We review recent progress in the following areas of the impedance theory: calculation of impedance of tapers and small angle collimators; optical approximation and parabolic equation for the high-frequency impedance; impedance due to resistive inserts in a perfectly conducting pipe.
NASA Astrophysics Data System (ADS)
Shandera, Sarah
2015-04-01
I will discuss the importance of measurements or improved constraints of primordial tensor modes for theories of the primordial universe. In particular, I will review the implications of the amplitude of the tensor fluctuations for inflation and discuss what an era of B-mode cosmology could teach us about particle physics near the Planck scale.
NASA Technical Reports Server (NTRS)
Pepe, S.; Pepe, W. D.; Strauss, A. M.
1976-01-01
A general theory of orthodontic motion is developed that can be applied to determine the forces necessary to induce a given tooth to move to the predetermined desirable position. It is assumed that the natural (nonorthodontic) forces may be represented by a periodic function and the orthodontic forces may be superimposed upon the natural forces. A simple expression is derived for the applied stress.
ERIC Educational Resources Information Center
Cooper, Wesley
2003-01-01
James's moral theory, primarily as set out in "The Moral Philosopher and the Moral Life" (in his "The Will To Believe" (1897)), is presented here as having a two-level structure, an empirical or historical level where progress toward greater moral inclusiveness is central, and a metaphysical or end-of-history level--James's "kingdom of…
Apprentice Machine Theory Outline.
ERIC Educational Resources Information Center
Connecticut State Dept. of Education, Hartford. Div. of Vocational-Technical Schools.
This volume contains outlines for 16 courses in machine theory that are designed for machine tool apprentices. Addressed in the individual course outlines are the following topics: basic concepts; lathes; milling machines; drills, saws, and shapers; heat treatment and metallurgy; grinders; quality control; hydraulics and pneumatics;…
Handicapping Social Exchange Theory.
ERIC Educational Resources Information Center
Mishler, Barbara
The economic theory of social exchange has some serious shortcomings when applied to minorities--especially the disabled. First, it assumes dyads comprise the basic unit where exchange occurs and that rewards and costs must occur at that level. Second, the model standardizes the experience of white, Western European and American males. The model…
ERIC Educational Resources Information Center
Braun, Henry I.; Mislevy, Robert
2005-01-01
Many of us have an intuitive understanding of physics that works surprisingly well to guide everyday action, but we would not attempt to send a rocket to the moon with it. Unfortunately, the authors argue, our policy makers are not as cautious when it comes to basing our school accountability system on intuitive test theory. Intuitive physics…
Nonlinear Theory and Breakdown
NASA Technical Reports Server (NTRS)
Smith, Frank
2007-01-01
The main points of recent theoretical and computational studies on boundary-layer transition and turbulence are to be highlighted. The work is based on high Reynolds numbers and attention is drawn to nonlinear interactions, breakdowns and scales. The research focuses in particular on truly nonlinear theories, i.e. those for which the mean-flow profile is completely altered from its original state. There appear to be three such theories dealing with unsteady nonlinear pressure-displacement interactions (I), with vortex/wave interactions (II), and with Euler-scale flows (III). Specific recent findings noted for these three, and in quantitative agreement with experiments, are the following. Nonlinear finite-time break-ups occur in I, leading to sublayer eruption and vortex formation; here the theory agrees with experiments (Nishioka) regarding the first spike. II gives rise to finite-distance blowup of displacement thickness, then interaction and break-up as above; this theory agrees with experiments (Klebanoff, Nishioka) on the formation of three-dimensional streets. III leads to the prediction of turbulent boundary-layer micro-scale, displacement-and stress-sublayer-thicknesses.
ERIC Educational Resources Information Center
Patrick, Amy M.
2010-01-01
This article examines ways in which the fundamentals of both writing studies and sustainability studies overlap and complement each other, ultimately moving toward a theory of writing that not only is sustainable, but that also sustains writing practice across a variety of areas. For example, in order to be sustainable, both writing and…
Evolutionary Theory under Fire.
ERIC Educational Resources Information Center
Lewin, Roger
1980-01-01
Summarizes events of a conference on evolutionary biology in Chicago entitled: "Macroevolution." Reviews the theory of modern synthesis, a term used to explain Darwinism in terms of population biology and genetics. Issues presented at the conference are discussed in detail. (CS)
ERIC Educational Resources Information Center
Marks, Stephen R.
1974-01-01
Durkheim's theory of anomie is traced and argued to be a major development that followed the publication of "Suicide." Recognition of anomie as a macrosociological problem rendered it insoluble by Durkeheim's practical-humanistic orientation. In this connection his remedial proposals -- occupational, political, education, and "creation and…
NASA Astrophysics Data System (ADS)
You, Setthivoine
2015-11-01
A new canonical field theory has been developed to help interpret the interaction between plasma flows and magnetic fields. The theory augments the Lagrangian of general dynamical systems to rigourously demonstrate that canonical helicity transport is valid across single particle, kinetic and fluid regimes, on scales ranging from classical to general relativistic. The Lagrangian is augmented with two extra terms that represent the interaction between the motion of matter and electromagnetic fields. The dynamical equations can then be re-formulated as a canonical form of Maxwell's equations or a canonical form of Ohm's law valid across all non-quantum regimes. The field theory rigourously shows that helicity can be preserved in kinetic regimes and not only fluid regimes, that helicity transfer between species governs the formation of flows or magnetic fields, and that helicity changes little compared to total energy only if density gradients are shallow. The theory suggests a possible interpretation of particle energization partitioning during magnetic reconnection as canonical wave interactions. This work is supported by US DOE Grant DE-SC0010340.
Refiguring Composition through Theory
ERIC Educational Resources Information Center
Lynch-Biniek, Amy
2009-01-01
In this dissertation, I argue that curricular choices in Composition are overdetermined by the academic labor system and its negative effect on the status of composition theory. Despite the growth of disciplinary knowledge, composition programs are still staffed largely with underpaid and under supported faculty and graduate students, many of whom…
(Mathematics and string theory)
Not Available
1992-01-01
Over the past year our research activities concentrated around: (1) non-commutative differential geometry and its connections with quantum physics and (2) 2-dimensional(super) conformal quantum field theories and related non-linear {sigma}-models. This paper discusses these topics.
ERIC Educational Resources Information Center
Parker, Janice
1997-01-01
Presents an easy and inexpensive method to demonstrate VSEPR theory that involves the use of only a ring stand, clamp, cow magnets, and a ball bearing. Has the advantage of producing a series of models using invisible magnetic repulsion forces to show the orientations occurring in molecules where similarly invisible electron repulsion forces are…
Personality Theory and Psychotherapy
ERIC Educational Resources Information Center
Fagan, Joen; And Others
1974-01-01
This group of articles discusses various aspects of Gestalt Therapy including its major contributions, role in psychotherapy, and contributions of Gestalt psychology in general. There is some discussion of the philosophical background of Gestalt therapy along with Gestalt theory of emotion. A case study and an annotated bibliography are included…
ERIC Educational Resources Information Center
Christensen, Paula, Ed.
This document contains the following papers on theory from the SITE (Society for Information Technology & Teacher Education) 2002 conference: (1) "The Emerging Ecological Contribution of Online Resources and Tools to K-12 Classrooms" (Therese Laferriere, Robert Bracewell, Alain Breuleux); (2) "Pedagogical Ethnotechnography: A Bifocal Lens To…
ERIC Educational Resources Information Center
Christensen, Paula, Ed.
This document contains the following papers on theory from the SITE (Society for Information Technology & Teacher Education) 2001 Conference: (1) "IT with Integrity" (Savilla Banister); (2) "Applications of Knowledge Based Evaluation in Educational Technology" (Michael Connell); (3) "A Tutor's Advice Trains a Student's Self-Regulation Skill"…
ERIC Educational Resources Information Center
Al Shalabi, M. Fadi; Nodoushan, Mohammad Ali Salmani
2009-01-01
In this paper, it is argued, based on evidence from psychological literature, that there are three major approaches to the study of personality, namely (a) situationism, (b) interactionism, and (c) constructivism. It is also noticed that these approached have resulted in the emergence of three major types of personality theories: (1) type…
ERIC Educational Resources Information Center
Al Shalabi, M. Fadi; Salmani Nodoushan, Mohammad Ali
2009-01-01
In this paper, it is argued, based on evidence from psychological literature, that there are three major approaches to the study of personality, namely (1) situationism, (2) interactionism, and (3) constructivism. It is also noticed that these approaches have resulted in the emergence of three major types of personality theories: (i) type…
Benchmarking nuclear fission theory
Bertsch, G. F.; Loveland, W.; Nazarewicz, W.; Talou, P.
2015-05-14
We suggest a small set of fission observables to be used as test cases for validation of theoretical calculations. Thus, the purpose is to provide common data to facilitate the comparison of different fission theories and models. The proposed observables are chosen from fission barriers, spontaneous fission lifetimes, fission yield characteristics, and fission isomer excitation energies.
Combined approach for gynecomastia
El-Sabbagh, Ahmed Hassan
2016-01-01
Background: Gynecomastia is a deformity of male chest. Treatment of gynecomastia varied from direct surgical excision to other techniques (mainly liposuction) to a combination of both. Skin excision is done according to the grade. In this study, experience of using liposuction adjuvant to surgical excision was described. Patients and methods: Between September 2012 and April 2015, a total of 14 patients were treated with liposuction and surgical excision through a periareolar incision. Preoperative evaluation was done in all cases to exclude any underlying cause of gynecomastia. Results: All fourteen patients were treated bilaterally (28 breast tissues). Their ages ranged between 13 and 33 years. Two patients were classified as grade I, and four as grade IIa, IIb or III, respectively. The first 3 patients showed seroma. Partial superficial epidermolysis of areola occurred in 2 cases. Superficial infection of incision occurred in one case and was treated conservatively. Conclusion: All grades of gynecomastia were managed by the same approach. Skin excision was added to a patient that had severe skin excess with limited activity and bad skin complexion. No cases required another setting or asked for 2nd opinion. PMID:26955509
Consecutive combined response spectrum
NASA Astrophysics Data System (ADS)
Xu, Longjun; Zhao, Guochen; Liu, Qingyang; Xie, Yujian; Xie, Lili
2014-12-01
Appropriate estimates of earthquake response spectrum are essential for design of new structures, or seismic safety evaluation of existing structures. This paper presents an alternative procedure to construct design spectrum from a combined normalized response spectrum (NRSC) which is obtained from pseudo-velocity spectrum with the ordinate scaled by different peak ground amplitudes (PGA, PGV, PGD) in different period regions. And a consecutive function f( T) used to normalize the ordinates is defined. Based on a comprehensive study of 220 strong ground motions recorded during recent eleven large worldwide earthquakes, the features of the NRSC are discussed and compared with the traditional normalized acceleration, velocity and displacement response spectra (NRSA, NRSV, NRSD). And the relationships between ground amplitudes are evaluated by using a weighted mean method instead of the arithmetic mean. Then the NRSC is used to define the design spectrum with given peak ground amplitudes. At last, the smooth spectrum is compared with those derived by the former approaches, and the accuracy of the proposed spectrum is tested through an analysis of the dispersion of ground motion response spectra.
Silverman, M.J. Sr.
1987-03-17
A combination recreational vehicle assembly is described comprising: two vehicles of a different type, the vehicles comprising a first, leading vehicle having a steering mechanism for maneuvering the assembly and a drivable axle mechanism for propelling the assembly; an independently drivable second vehicle trailing the first vehicle comprising a standard road vehicle having a motor, and an axle mechanism for connecting the motor to the wheels of the second vehicle for providing power to the wheels of the vehicle. A gear means for selectively disconnecting the motor from the axle mechanism to place the vehicle in neutral, and a steering means for maneuvering the second vehicle when driven independently of the first vehicle are included; and a releasable mechanical drive connection between the second vehicle motor and the first vehicle axle mechanism to provide power for driving the assembly. The drive connection comprises a drive pinion projecting from the second vehicle motor to the front of the second vehicle, and a drive shaft projecting from the first vehicle axle mechanism to the rear of the first vehicle.
Electrode/workpiece combinations
NASA Astrophysics Data System (ADS)
Benedict, J. J.
1989-10-01
Of the many machine tool operations available in the shop today, plunge cut Electrical Discharge Machining (EDM) has become an increasingly useful method of materials fabrication. It is a necessary tool for the research and development type of work performed at the Lawrence Livermore National Laboratory (LLNL). With advancing technology, plunge cut EDMs are more efficient, faster, have greater accuracy and are able to produce better surface finishes. They have been in the past and will continue to be an important part of the production of quality parts in both the Precision and NC Shop. It should be kept in mind that as a non-traditional machining process, EDMing is a time consuming process that can be a very expensive method of producing parts. For this reason, it must be used in the most efficient manner in order to make it a cost-effective means of fabrication, although technology has advanced to the point of state-of-the-art equipment, there is currently a void in available technical information needed for use with this process. The type of information sought after concerns the area of electrode/workpiece combinations. This is in reference to the task of choosing the correct electrode material for the specific workpiece material encountered. A brief description of the EDM process will help in understanding the electrode/workpiece relationship.
Biomass Gasification Combined Cycle
Judith A. Kieffer
2000-07-01
Gasification combined cycle continues to represent an important defining technology area for the forest products industry. The ''Forest Products Gasification Initiative'', organized under the Industry's Agenda 2020 technology vision and supported by the DOE ''Industries of the Future'' program, is well positioned to guide these technologies to commercial success within a five-to ten-year timeframe given supportive federal budgets and public policy. Commercial success will result in significant environmental and renewable energy goals that are shared by the Industry and the Nation. The Battelle/FERCO LIVG technology, which is the technology of choice for the application reported here, remains of high interest due to characteristics that make it well suited for integration with the infrastructure of a pulp production facility. The capital cost, operating economics and long-term demonstration of this technology area key input to future economically sustainable projects and must be verified by the 200 BDT/day demonstration facility currently operating in Burlington, Vermont. The New Bern application that was the initial objective of this project is not currently economically viable and will not be implemented at this time due to several changes at and around the mill which have occurred since the inception of the project in 1995. The analysis shows that for this technology, and likely other gasification technologies as well, the first few installations will require unique circumstances, or supportive public policies, or both to attract host sites and investors.
Extending Bell's Theorem: Ruling out Paramater Independent Hidden Variable Theories
NASA Astrophysics Data System (ADS)
Leegwater, G. J.
2016-03-01
Bell's Theorem may well be the best known result in the foundations of quantum mechanics. Here, it is presented as stating that for any hidden variable theory the combination of the conditions Parameter Independence, Outcome Independence, Source Independence and Compatibility with Quantum Theory leads to a contradiction. Based on work by Roger Colbeck and Renato Renner, an extension of Bell's Theorem is considered. In this extension the theorem is strengthened by replacing Outcome Independence by a strictly weaker condition.
Contributions to the theory of incomplete tension bay
NASA Technical Reports Server (NTRS)
Schapitz, E
1937-01-01
The present report offers an approximate theory for the stress and deformation condition after buckling of the skin in reinforced panels and shells loaded in simple shear and compression and under combined stresses. The theory presents a unified scheme for stresses of these types. It is based upon the concept of a nonuniform stress distribution in the metal panel and its marked power of resistance against compressive stresses ("incomplete" tension bay).
U-duality between NCOS theory and matrix theory
NASA Astrophysics Data System (ADS)
Hyun, Seungjoon
2001-03-01
We show that the NCOS (noncommutative open string) theories on torus T p ( p⩽5) are U-dual to matrix theory on torus with electric flux background. Under U-duality, the number of D-branes and the number of units of electric flux get interchanged. Furthermore, under the same U-duality the decoupling limit taken in the NCOS theory maps to the decoupling limit taken in the matrix theory, thus ensure the U-duality between those two class of theories. We consider the energy needed for Higgsing process and some bound states with finite energy and find agreements in both theories.
Non-Relativistic Superstring Theories
Kim, Bom Soo
2007-12-14
We construct a supersymmetric version of the 'critical' non-relativistic bosonic string theory [1] with its manifest global symmetry. We introduce the anticommuting bc CFT which is the super partner of the {beta}{gamma} CFT. The conformal weights of the b and c fields are both 1/2. The action of the fermionic sector can be transformed into that of the relativistic superstring theory. We explicitly quantize the theory with manifest SO(8) symmetry and find that the spectrum is similar to that of Type IIB superstring theory. There is one notable difference: the fermions are non-chiral. We further consider 'noncritical' generalizations of the supersymmetric theory using the superspace formulation. There is an infinite range of possible string theories similar to the supercritical string theories. We comment on the connection between the critical non-relativistic string theory and the lightlike Linear Dilaton theory.
Combined dyslipidemia in childhood.
Kavey, Rae-Ellen W
2015-01-01
Combined dyslipidemia (CD) is now the predominant dyslipidemic pattern in childhood, characterized by moderate-to-severe elevation in triglycerides and non-high-density lipoprotein cholesterol (non-HDL-C), minimal elevation in low-density lipoprotein cholesterol (LDL-C), and reduced HDL-C. Nuclear magnetic resonance spectroscopy shows that the CD pattern is represented at the lipid subpopulation level as an increase in small, dense LDL and in overall LDL particle number plus a reduction in total HDL-C and large HDL particles, a highly atherogenic pattern. In youth, CD occurs almost exclusively with obesity and is highly prevalent, seen in more than 40% of obese adolescents. CD in childhood predicts pathologic evidence of atherosclerosis and vascular dysfunction in adolescence and young adulthood, and early clinical cardiovascular events in adult life. There is a tight connection between CD, visceral adiposity, insulin resistance, nonalcoholic fatty liver disease, and the metabolic syndrome, suggesting an integrated pathophysiological response to excessive weight gain. Weight loss, changes in dietary composition, and increases in physical activity have all been shown to improve CD significantly in children and adolescents in short-term studies. Most importantly, even small amounts of weight loss are associated with significant decreases in triglyceride levels and increases in HDL-C levels with improvement in lipid subpopulations. Diet change focused on limitation of simple carbohydrate intake with specific elimination of all sugar-sweetened beverages is very effective. Evidence-based recommendations for initiating diet and activity change are provided. Rarely, drug therapy is needed, and the evidence for drug treatment of CD in childhood is reviewed. PMID:26343211
Combining multiple altimeter missions
NASA Astrophysics Data System (ADS)
Jacobs, G. A.; Mitchell, J. L.
1997-10-01
Viewing altimeter data only at the points where separate altimeter missions' ground tracks cross provides a method to observe long time period sea surface height (SSH) variations and avoids many of the problems inherent in combining separate altimeter data sets through an independently determined geoid. TOPEX/POSEIDON (T/P) data over the time period from January 1, 1993, to December 31, 1995, form a mean SSH that is used as a reference by other altimeter data sets. A least squares analysis of the mean T/P SSH determines the portion of the Geographically Correlated Orbit Error (GCOE) that may be observed through crossover differences and removes this portion of the GCOE. The analysis removes errors of 0.86 cm RMS at 1 cycle per orbit revolution (cpr) and indicates negligible errors at higher frequencies. After the GCOE removal, the accuracy of the T/P reference mean is better than 1 cm RMS as measured by crossover differences. The GCOE contained in the Geosat-Exact Repeat Mission (ERM) and ERS 1 data with orbit solutions using the Joint Gravity Model (JGM) 3 is evaluated through an adjustment to the T/P reference mean surface. The Geosat-ERM data indicate a bias of about 28 cm averaged over the globe, and the ERS 1 bias is 44 cm. The T/P data used here is not corrected for the oscillator drift correction error so that the actual bias is less by about 13 cm. Both the Geosat-ERM and ERS 1 GCOE are mainly 1 cpr. GCOE estimates at frequencies above 1 cpr indicate little actual orbit error but are more correlated to instrument correction errors (particularly water vapor). Simultaneous T/P and ERS 1 SSH anomalies to the T/P mean indicate good correlation.
Combining Cooperative Education and Placement.
ERIC Educational Resources Information Center
Lentz, Glenda F.
1984-01-01
Suggests that placement, like cooperative education, can function better in academic affairs rather than student affairs. Describes the combination of the two departments at the University of South Florida and discusses advantages and disadvantages of a combined program. (JAC)
Belladonna Alkaloid Combinations and Phenobarbital
Belladonna alkaloid combinations and phenobarbital are used to relieve cramping pains in conditions such as irritable bowel syndrome and ... Belladonna alkaloid combinations and phenobarbital come as a regular tablet, a slow-acting tablet, capsule, and liquid to take ...
Baker, W.M.
1980-01-01
We examine the scale-invariant Lagrangian densities in Riemannian and non-Riemannian spacetimes. We find that the most general scale-invariant Lagrangian density of a Riemann-Cartan spacetime can also be reduced in a manner similar to that demonstrated earlier by Lanczos for the Riemannian case. However, this type of reduction process is not possible in a non-metric spacetime. Duality transformations of the type defined in electromagnetic theory are discussed and classified in terms of those transformations having a direct relationship to an internal symmetry structure of a given gauge theory and those that do not. We show that to build a satisfactory generalized electromagnetic type theory with local duality invariance into a gauge theory, as at least a part of its internal symmetry structure, requires a group no smaller than SO/sub 3/ or (SU/sub 2/). By considering a special metric geometry with torsion (U/sub 4/) we can describe the duality vector field of a duality invariant Maxwell theory in terms of a special form of torsion. This result indicates that the special U/sub 4/ geometry could play a role in the already unified field theory of Rainich, Misner, and Wheeler (RMW). We show how one could express the RMW conditions, together with their immediate generalizations in terms of geometric objects of the special U/sub 4/ theory. Conformal and projective transformations on the U/sub 4/ connection are examined. It is shown that an appropriate combination of these transformations have the effect of producing a special type of projective transformation on a metric connection with torsion. In the context of a gauge theory based on a U/sub 4/ spacetime, this special type of projective invariance has been interpreted as the underlying invariance principle for baryon number conservation in the same way that gauge changes on the Maxwell vector potential relate to charge conservation.
On the interpretation of combined torsion and tension tests of thin-wall tubes
NASA Technical Reports Server (NTRS)
Prager, W
1948-01-01
General ways of testing thin-wall tubes under combined tension and torsion as a means of checking the various theories of plasticity are discussed. Suggestions also are given for the interpretation of the tests.
Non-perturbative String Theory from Water Waves
Iyer, Ramakrishnan; Johnson, Clifford V.; Pennington, Jeffrey S.; /SLAC
2012-06-14
We use a combination of a 't Hooft limit and numerical methods to find non-perturbative solutions of exactly solvable string theories, showing that perturbative solutions in different asymptotic regimes are connected by smooth interpolating functions. Our earlier perturbative work showed that a large class of minimal string theories arise as special limits of a Painleve IV hierarchy of string equations that can be derived by a similarity reduction of the dispersive water wave hierarchy of differential equations. The hierarchy of string equations contains new perturbative solutions, some of which were conjectured to be the type IIA and IIB string theories coupled to (4, 4k ? 2) superconformal minimal models of type (A, D). Our present paper shows that these new theories have smooth non-perturbative extensions. We also find evidence for putative new string theories that were not apparent in the perturbative analysis.
Perspective of Postpartum Depression Theories: A Narrative Literature Review.
Abdollahi, Fatemeh; Lye, Munn-Sann; Zarghami, Mehran
2016-06-01
Postpartum depression is the most prevalent emotional problem during a women's lifespan. Untreated postpartum depression may lead to several consequences such as child, infant, fetal, and maternal effects. The main purpose of this article is to briefly describe different theoretical perspectives of postpartum depression. A literature search was conducted in Psych Info, PubMed, and Science Direct between 1950 and 2015. Additional articles and book chapters were referenced from these sources. Different theories were suggested for developing postpartum depression. Three theories, namely, biological, psychosocial, and evolutionary were discussed. One theory or combinations of psychosocial, biological, and evolutionary theories were considered for postpartum depression. The most important factor that makes clinicians' choice of intervention is their theoretical perspectives. Healthcare providers and physicians should help women to make informed choices regarding their treatment based on related theories. PMID:27500126
Perspective of Postpartum Depression Theories: A Narrative Literature Review
Abdollahi, Fatemeh; Lye, Munn-Sann; Zarghami, Mehran
2016-01-01
Postpartum depression is the most prevalent emotional problem during a women's lifespan. Untreated postpartum depression may lead to several consequences such as child, infant, fetal, and maternal effects. The main purpose of this article is to briefly describe different theoretical perspectives of postpartum depression. A literature search was conducted in Psych Info, PubMed, and Science Direct between 1950 and 2015. Additional articles and book chapters were referenced from these sources. Different theories were suggested for developing postpartum depression. Three theories, namely, biological, psychosocial, and evolutionary were discussed. One theory or combinations of psychosocial, biological, and evolutionary theories were considered for postpartum depression. The most important factor that makes clinicians’ choice of intervention is their theoretical perspectives. Healthcare providers and physicians should help women to make informed choices regarding their treatment based on related theories. PMID:27500126
Trait-mediated trophic interactions: is foraging theory keeping up?
Railsback, Steven F; Harvey, Bret C
2013-02-01
Many ecologists believe that there is a lack of foraging theory that works in community contexts, for populations of unique individuals each making trade-offs between food and risk that are subject to feedbacks from behavior of others. Such theory is necessary to reproduce the trait-mediated trophic interactions now recognized as widespread and strong. Game theory can address feedbacks but does not provide foraging theory for unique individuals in variable environments. 'State- and prediction-based theory' (SPT) is a new approach that combines existing trade-off methods with routine updating: individuals regularly predict future food availability and risk from current conditions to optimize a fitness measure. SPT can reproduce a variety of realistic foraging behaviors and trait-mediated trophic interactions with feedbacks, even when the environment is unpredictable. PMID:22995894
Second-order subsonic airfoil theory including edge effects
NASA Technical Reports Server (NTRS)
Van Dyke, Milton D
1956-01-01
Several recent advances in plane subsonic flow theory are combined into a unified second-order theory for airfoil sections of arbitrary shape. The solution is reached in three steps: the incompressible result is found by integration, it is converted into the corresponding subsonic compressible result by means of the second-order compressibility rule, and it is rendered uniformly valid near stagnation points by further rules. Solutions for a number of airfoils are given and are compared with the results of other theories and of experiment. A straight-forward computing scheme is outlined for calculating the surface velocities and pressures on any airfoil at any angle of attack
Fleeson, William; Jayawickreme, Eranda
2014-01-01
Personality researchers should modify models of traits to include mechanisms of differential reaction to situations. Whole Trait Theory does so via five main points. First, the descriptive side of traits should be conceptualized as density distributions of states. Second, it is important to provide an explanatory account of the Big 5 traits. Third, adding an explanatory account to the Big 5 creates two parts to traits, an explanatory part and a descriptive part, and these two parts should be recognized as separate entities that are joined into whole traits. Fourth, Whole Trait Theory proposes that the explanatory side of traits consists of social-cognitive mechanisms. Fifth, social-cognitive mechanisms that produce Big-5 states should be identified. PMID:26097268
Jones, Dean P.
2015-01-01
Metazoan genomes encode exposure memory systems to enhance survival and reproductive potential by providing mechanisms for an individual to adjust during lifespan to environmental resources and challenges. These systems are inherently redox networks, arising during evolution of complex systems with O2 as a major determinant of bioenergetics, metabolic and structural organization, defense, and reproduction. The network structure decreases flexibility from conception onward due to differentiation and cumulative responses to environment (exposome). The redox theory of aging is that aging is a decline in plasticity of genome–exposome interaction that occurs as a consequence of execution of differentiation and exposure memory systems. This includes compromised mitochondrial and bioenergetic flexibility, impaired food utilization and metabolic homeostasis, decreased barrier and defense capabilities and loss of reproductive fidelity and fecundity. This theory accounts for hallmarks of aging, including failure to maintain oxidative or xenobiotic defenses, mitochondrial integrity, proteostasis, barrier structures, DNA repair, telomeres, immune function, metabolic regulation and regenerative capacity. PMID:25863726
Esposito-Farese, Gilles; Pitrou, Cyril; Uzan, Jean-Philippe
2010-03-15
This article provides a general study of the Hamiltonian stability and the hyperbolicity of vector field models involving both a general function of the Faraday tensor and its dual, f(F{sup 2},FF-tilde), as well as a Proca potential for the vector field, V(A{sup 2}). In particular it is demonstrated that theories involving only f(F{sup 2}) do not satisfy the hyperbolicity conditions. It is then shown that in this class of models, the cosmological dynamics always dilutes the vector field. In the case of a nonminimal coupling to gravity, it is established that theories involving Rf(A{sup 2}) or Rf(F{sup 2}) are generically pathologic. To finish, we exhibit a model where the vector field is not diluted during the cosmological evolution, because of a nonminimal vector field-curvature coupling which maintains second-order field equations. The relevance of such models for cosmology is discussed.
Topology and perturbation theory
NASA Astrophysics Data System (ADS)
Manjavidze, J.
2000-08-01
This paper contains description of the fields nonlinear modes successive quantization scheme. It is shown that the path integrals for absorption part of amplitudes are defined on the Dirac (δ-like) functional measure. This permits arbitrary transformation of the functional integral variables. New form of the perturbation theory achieved by mapping the quantum dynamics in the space WG of the (action, angle)-type collective variables. It is shown that the transformed perturbation theory contributions are accumulated exactly on the boundary ∂WG. Abilities of the developed formalism are illustrated by the Coulomb problem. This model is solved in the WC=(angle, angular momentum, Runge-Lentz vector) space and the reason of its exact integrability is emptiness of ∂WC.
NASA Astrophysics Data System (ADS)
Correa, Diego H.; Silva, Guillermo A.
2008-07-01
We discuss how geometrical and topological aspects of certain 1/2-BPS type IIB geometries are captured by their dual operators in N = 4 Super Yang-Mills theory. The type IIB solutions are characterized by arbitrary droplet pictures in a plane and we consider, in particular, axially symmetric droplets. The 1-loop anomalous dimension of the dual gauge theory operators probed with single traces is described by some bosonic lattice Hamiltonians. These Hamiltonians are shown to encode the topology of the droplets. In appropriate BMN limits, the Hamiltonians spectrum reproduces the spectrum of near-BPS string excitations propagating along each of the individual edges of the droplet. We also study semiclassical regimes for the Hamiltonians. For droplets having disconnected constituents, the Hamiltonian admits different complimentary semiclassical descriptions, each one replicating the semiclassical description for closed strings extending in each of the constituents.
Correa, Diego H.; Silva, Guillermo A.
2008-07-28
We discuss how geometrical and topological aspects of certain (1/2)-BPS type IIB geometries are captured by their dual operators in N = 4 Super Yang-Mills theory. The type IIB solutions are characterized by arbitrary droplet pictures in a plane and we consider, in particular, axially symmetric droplets. The 1-loop anomalous dimension of the dual gauge theory operators probed with single traces is described by some bosonic lattice Hamiltonians. These Hamiltonians are shown to encode the topology of the droplets. In appropriate BMN limits, the Hamiltonians spectrum reproduces the spectrum of near-BPS string excitations propagating along each of the individual edges of the droplet. We also study semiclassical regimes for the Hamiltonians. For droplets having disconnected constituents, the Hamiltonian admits different complimentary semiclassical descriptions, each one replicating the semiclassical description for closed strings extending in each of the constituents.
Panarchy: theory and application
Allen, Craig R.; Angeler, David G.; Garmestani, Ahjond S.; Gunderson, Lance H.; Holling, Crawford S.
2014-01-01
The concept of panarchy provides a framework that characterizes complex systems of people and nature as dynamically organized and structured within and across scales of space and time. It has been more than a decade since the introduction of panarchy. Over this period, its invocation in peer-reviewed literature has been steadily increasing, but its use remains primarily descriptive and abstract. Here, we discuss the use of the concept in the literature to date, highlight where the concept may be useful, and discuss limitations to the broader applicability of panarchy theory for research in the ecological and social sciences. Finally, we forward a set of testable hypotheses to evaluate key propositions that follow from panarchy theory.
Walsh, Timothy Francis; Reese, Garth M.; Bhardwaj, Manoj Kumar
2011-11-01
Salinas provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of structural systems. This manual describes the theory behind many of the constructs in Salinas. For a more detailed description of how to use Salinas, we refer the reader to Salinas, User's Notes. Many of the constructs in Salinas are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Salinas are specific to our implementation. We try to be far more complete in those areas. The theory manual was developed from several sources including general notes, a programmer notes manual, the user's notes and of course the material in the open literature.
Gelman, Susan A.; Legare, Cristine H.
2013-01-01
Human cognition is characterized by enormous variability and structured by universal psychological constraints. The focus of this chapter is on the development of knowledge acquisition because it provides important insight into how the mind interprets new information and constructs new ways of understanding. We propose that mental content can be productively approached by examining the intuitive causal explanatory “theories” that people construct to explain, interpret, and intervene on the world around them, including theories of mind, of biology, or of physics. A substantial amount of research in cognitive developmental psychology supports the integral role of intuitive theories in human learning and provides evidence that they structure, constrain, and guide the development of human cognition. PMID:23436950
NASA Technical Reports Server (NTRS)
Wright, S. E.
1978-01-01
A theory is described for the radiation emission emission from acoustic multipole sources. The sources can be stationary or moving at speeds including supersonic and experience stationary or moving disturbances. The effect of finite source distributions and disturbances is investigated as well as the manner in which they interact. Distinction is made between source distributions that responsed as a function of time and those that respond as a function of space.
NASA Technical Reports Server (NTRS)
Callier, Frank M.; Desoer, Charles A.
1991-01-01
The aim of this book is to provide a systematic and rigorous access to the main topics of linear state-space system theory in both the continuous-time case and the discrete-time case; and the I/O description of linear systems. The main thrusts of the work are the analysis of system descriptions and derivations of their properties, LQ-optimal control, state feedback and state estimation, and MIMO unity-feedback systems.
Astrophysical materials science: Theory
NASA Technical Reports Server (NTRS)
Ashcroft, N. W.
1984-01-01
A method of structural expansions for use in determining the equation of state of metallic hydrogen (and indeed other metals) up to the 4th order in the perturbation theory was developed. The electrical and thermal transport properties of the planetary interior of Jupiter were calculated. The nature of the interaction between molecules at short range and the importance of multicenter terms in arriving at an adequate description of the thermodynamic functions of condensed molecular hydrogen were also investigated.
Paleo, Bruno Woltzenlogel
2012-01-01
Axiomatization of Physics (and science in general) has many drawbacks that are correctly criticized by opposing philosophical views of science. This paper shows that, by giving formal proofs a more prominent role in the formalization, many of the drawbacks can be solved and many of the opposing views are naturally conciliated. Moreover, this approach allows, by means of proof theory, to open new conceptual bridges between the disciplines of Physics and Computer Science. PMID:24976655
Dielectronic recombination theory
LaGattuta, K.J.
1991-12-31
A theory now in wide use for the calculation of dielectronic recombination cross sections ({sigma}{sup DR}) and rate coefficients ({alpha}{sup DR}) was one introduced originally by Feshbach for nuclear physics applications, and then later adapted for atomic scattering problems by Hahn. In the following, we briefly review this theory in a very general form, which allows one to account for the effects of overlapping and interacting resonances, as well as continuum-continuum coupling. An extension of our notation will then also allow for the inclusion of the effects of direct radiative recombination, along with a treatment of the interference between radiative and dielectronic recombination. Other approaches to the calculation of {sigma}{sup DR} have been described by Fano and by Seaton. We will not consider those theories here. Calculations of {alpha}{sup DR} have progressed considerably over the last 25 years, since the early work of Burgess. Advances in the reliability of theoretical predictions have also been promoted recently b a variety of direct laboratory measurements of {sigma}{sup DR}. While the measurements of {sigma}{sup DR} for {delta}n {ne} 0 excitations have tended to agree very well with calculations, the case of {delta}n = 0 has been much problematic. However, by invoking a mechanism originally proposed by Jacobs, which takes into account the effect of stray electric fields on high Rydberg states (HRS) participating in the DR process, new calculations have improved the agreement between theory and experiment for these cases. Nevertheless, certain discrepancies still remain.
NASA Technical Reports Server (NTRS)
Wolpert, David H.
2005-01-01
Probability theory governs the outcome of a game; there is a distribution over mixed strat.'s, not a single "equilibrium". To predict a single mixed strategy must use our loss function (external to the game's players. Provides a quantification of any strategy's rationality. Prove rationality falls as cost of computation rises (for players who have not previously interacted). All extends to games with varying numbers of players.
NASA Astrophysics Data System (ADS)
Hartsock, Robert
2011-10-01
The Least Particle Theory states that the universe was cast as a great sea of energy. MaX Planck declared a quantum of energy to be the least value in the universe. We declare the quantum of energy to be the least particle in the universe. Stephen Hawking declared quantum mechanics to be of no value in todays gross mechanics. That's like saying the number 1 has no place in mathematics.
Chowdhry, M
2000-01-01
SUMMARY This paper discusses the role of the personal experience in the writing process. Using a personal/journal writing style the author charts the journey of a recent play Skin into Rainbows from first draft to production. The author plays with the constructs of writing and juxtapositions these against a form of Knot Theory to measure their value, playing with math and language techniques in a search for truth. PMID:24802683
Relativistic theory of gravitation
Logunov, A.A.; Mestvirishvili, M.A.
1986-01-01
In the present paper a relativistic theory of gravitation (RTG) is unambiguously constructed on the basis of the special relativity and geometrization principle. In this a gravitational field is treated as the Faraday--Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG the conservation laws are strictly fulfilled for the energy-moment and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravity. By virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTG leads to an exceptionally strong prediction: The universe is not closed but just ''flat.'' This suggests that in the universe a ''missing mass'' should exist in a form of matter.
Probabilistic theories with purification
Chiribella, Giulio; D'Ariano, Giacomo Mauro; Perinotti, Paolo
2010-06-15
We investigate general probabilistic theories in which every mixed state has a purification, unique up to reversible channels on the purifying system. We show that the purification principle is equivalent to the existence of a reversible realization of every physical process, that is, to the fact that every physical process can be regarded as arising from a reversible interaction of the system with an environment, which is eventually discarded. From the purification principle we also construct an isomorphism between transformations and bipartite states that possesses all structural properties of the Choi-Jamiolkowski isomorphism in quantum theory. Such an isomorphism allows one to prove most of the basic features of quantum theory, like, e.g., existence of pure bipartite states giving perfect correlations in independent experiments, no information without disturbance, no joint discrimination of all pure states, no cloning, teleportation, no programming, no bit commitment, complementarity between correctable channels and deletion channels, characterization of entanglement-breaking channels as measure-and-prepare channels, and others, without resorting to the mathematical framework of Hilbert spaces.
NASA Technical Reports Server (NTRS)
Bass, J; Agostini, L
1955-01-01
The theory of turbulence reached its full growth at the end of the 19th century as a result of the work by Boussinesq and Reynolds. It then underwent a long period of stagnation which ended under the impulse given to it by the development of wind tunnels caused by the needs of aviation. Numerous researchers, attempted to put Reynolds' elementary statistical theory into a more precise form. During the war, some isolated scientists - von Weizsacker and Heisenberg in Germany, Kolmogoroff in Russia, Onsager in the U.S.A. - started a program of research. By a system of assumptions which make it possible to approach the structure of turbulence in well-defined limiting conditions quantitatively, they obtained a certain number of laws on the correlations and the spectrum. Since the late reports have improved the mathematical language of turbulence, it was deemed advisable to start with a detailed account of the mathematical methods applicable to turbulence, inspired at first by the work of the French school, above all for the basic principles, then the work of the foreigners, above all for the theory of the spectrum.