Sample records for distinct structural domains

  1. The structure of a conserved piezo channel domain reveals a topologically distinct β sandwich fold.

    PubMed

    Kamajaya, Aron; Kaiser, Jens T; Lee, Jonas; Reid, Michelle; Rees, Douglas C

    2014-10-07

    Piezo has recently been identified as a family of eukaryotic mechanosensitive channels composed of subunits containing over 2,000 amino acids, without recognizable sequence similarity to other channels. Here, we present the crystal structure of a large, conserved extramembrane domain located just before the last predicted transmembrane helix of C. elegans PIEZO, which adopts a topologically distinct β sandwich fold. The structure was also determined of a point mutation located on a conserved surface at the position equivalent to the human PIEZO1 mutation found in dehydrated hereditary stomatocytosis patients (M2225R). While the point mutation does not change the overall domain structure, it does alter the surface electrostatic potential that may perturb interactions with a yet-to-be-identified ligand or protein. The lack of structural similarity between this domain and any previously characterized fold, including those of eukaryotic and bacterial channels, highlights the distinctive nature of the Piezo family of eukaryotic mechanosensitive channels. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Hydrophobic mismatch sorts SNARE proteins into distinct membrane domains

    PubMed Central

    Milovanovic, Dragomir; Honigmann, Alf; Koike, Seiichi; Göttfert, Fabian; Pähler, Gesa; Junius, Meike; Müllar, Stefan; Diederichsen, Ulf; Janshoff, Andreas; Grubmüller, Helmut; Risselada, Herre J.; Eggeling, Christian; Hell, Stefan W.; van den Bogaart, Geert; Jahn, Reinhard

    2015-01-01

    The clustering of proteins and lipids in distinct microdomains is emerging as an important principle for the spatial patterning of biological membranes. Such domain formation can be the result of hydrophobic and ionic interactions with membrane lipids as well as of specific protein–protein interactions. Here using plasma membrane-resident SNARE proteins as model, we show that hydrophobic mismatch between the length of transmembrane domains (TMDs) and the thickness of the lipid membrane suffices to induce clustering of proteins. Even when the TMDs differ in length by only a single residue, hydrophobic mismatch can segregate structurally closely homologous membrane proteins in distinct membrane domains. Domain formation is further fine-tuned by interactions with polyanionic phosphoinositides and homo and heterotypic protein interactions. Our findings demonstrate that hydrophobic mismatch contributes to the structural organization of membranes. PMID:25635869

  3. Recognition of β-calcineurin by the domains of calmodulin: thermodynamic and structural evidence for distinct roles.

    PubMed

    O'Donnell, Susan E; Yu, Liping; Fowler, C Andrew; Shea, Madeline A

    2011-03-01

    Calcineurin (CaN, PP2B, PPP3), a heterodimeric Ca(2+)-calmodulin-dependent Ser/Thr phosphatase, regulates swimming in Paramecia, stress responses in yeast, and T-cell activation and cardiac hypertrophy in humans. Calcium binding to CaN(B) (the regulatory subunit) triggers conformational change in CaN(A) (the catalytic subunit). Two isoforms of CaN(A) (α, β) are both abundant in brain and heart and activated by calcium-saturated calmodulin (CaM). The individual contribution of each domain of CaM to regulation of calcineurin is not known. Hydrodynamic analyses of (Ca(2+))₄-CaM(1-148) bound to βCaNp, a peptide representing its CaM-binding domain, indicated a 1:1 stoichiometry. βCaNp binding to CaM increased the affinity of calcium for the N- and C-domains equally, thus preserving intrinsic domain differences, and the preference of calcium for sites III and IV. The equilibrium constants for individual calcium-saturated CaM domains dissociating from βCaNp were ∼1 μM. A limiting K(d) ≤ 1 nM was measured directly for full-length CaM, while thermodynamic linkage analysis indicated that it was approximately 1 pM. βCaNp binding to ¹⁵N-(Ca(2+))₄-CaM(1-148) monitored by ¹⁵N/¹HN HSQC NMR showed that association perturbed the N-domain of CaM more than its C-domain. NMR resonance assignments of CaM and βCaNp, and interpretation of intermolecular NOEs observed in the ¹³C-edited and ¹²C-¹⁴N-filtered 3D NOESY spectrum indicated anti-parallel binding. The sole aromatic residue (Phe) located near the βCaNp C-terminus was in close contact with several residues of the N-domain of CaM outside the hydrophobic cleft. These structural and thermodynamic properties would permit the domains of CaM to have distinct physiological roles in regulating activation of βCaN. Copyright © 2010 Wiley-Liss, Inc.

  4. An ambiguity principle for assigning protein structural domains.

    PubMed

    Postic, Guillaume; Ghouzam, Yassine; Chebrek, Romain; Gelly, Jean-Christophe

    2017-01-01

    Ambiguity is the quality of being open to several interpretations. For an image, it arises when the contained elements can be delimited in two or more distinct ways, which may cause confusion. We postulate that it also applies to the analysis of protein three-dimensional structure, which consists in dividing the molecule into subunits called domains. Because different definitions of what constitutes a domain can be used to partition a given structure, the same protein may have different but equally valid domain annotations. However, knowledge and experience generally displace our ability to accept more than one way to decompose the structure of an object-in this case, a protein. This human bias in structure analysis is particularly harmful because it leads to ignoring potential avenues of research. We present an automated method capable of producing multiple alternative decompositions of protein structure (web server and source code available at www.dsimb.inserm.fr/sword/). Our innovative algorithm assigns structural domains through the hierarchical merging of protein units, which are evolutionarily preserved substructures that describe protein architecture at an intermediate level, between domain and secondary structure. To validate the use of these protein units for decomposing protein structures into domains, we set up an extensive benchmark made of expert annotations of structural domains and including state-of-the-art domain parsing algorithms. The relevance of our "multipartitioning" approach is shown through numerous examples of applications covering protein function, evolution, folding, and structure prediction. Finally, we introduce a measure for the structural ambiguity of protein molecules.

  5. An ambiguity principle for assigning protein structural domains

    PubMed Central

    Postic, Guillaume; Ghouzam, Yassine; Chebrek, Romain; Gelly, Jean-Christophe

    2017-01-01

    Ambiguity is the quality of being open to several interpretations. For an image, it arises when the contained elements can be delimited in two or more distinct ways, which may cause confusion. We postulate that it also applies to the analysis of protein three-dimensional structure, which consists in dividing the molecule into subunits called domains. Because different definitions of what constitutes a domain can be used to partition a given structure, the same protein may have different but equally valid domain annotations. However, knowledge and experience generally displace our ability to accept more than one way to decompose the structure of an object—in this case, a protein. This human bias in structure analysis is particularly harmful because it leads to ignoring potential avenues of research. We present an automated method capable of producing multiple alternative decompositions of protein structure (web server and source code available at www.dsimb.inserm.fr/sword/). Our innovative algorithm assigns structural domains through the hierarchical merging of protein units, which are evolutionarily preserved substructures that describe protein architecture at an intermediate level, between domain and secondary structure. To validate the use of these protein units for decomposing protein structures into domains, we set up an extensive benchmark made of expert annotations of structural domains and including state-of-the-art domain parsing algorithms. The relevance of our “multipartitioning” approach is shown through numerous examples of applications covering protein function, evolution, folding, and structure prediction. Finally, we introduce a measure for the structural ambiguity of protein molecules. PMID:28097215

  6. Structure of the Mtb CarD/RNAP β-lobes complex reveals the molecular basis of interaction and presents a distinct DNA-binding domain for Mtb CarD.

    PubMed

    Gulten, Gulcin; Sacchettini, James C

    2013-10-08

    CarD from Mycobacterium tuberculosis (Mtb) is an essential protein shown to be involved in stringent response through downregulation of rRNA and ribosomal protein genes. CarD interacts with the β-subunit of RNAP and this interaction is vital for Mtb's survival during the persistent infection state. We have determined the crystal structure of CarD in complex with the RNAP β-subunit β1 and β2 domains at 2.1 Å resolution. The structure reveals the molecular basis of CarD/RNAP interaction, providing a basis to further our understanding of RNAP regulation by CarD. The structural fold of the CarD N-terminal domain is conserved in RNAP interacting proteins such as TRCF-RID and CdnL, and displays similar interactions to the predicted homology model based on the TRCF/RNAP β1 structure. Interestingly, the structure of the C-terminal domain, which is required for complete CarD function in vivo, represents a distinct DNA-binding fold. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Crystal structure of a multi-domain human smoothened receptor in complex with a super stabilizing ligand

    NASA Astrophysics Data System (ADS)

    Zhang, Xianjun; Zhao, Fei; Wu, Yiran; Yang, Jun; Han, Gye Won; Zhao, Suwen; Ishchenko, Andrii; Ye, Lintao; Lin, Xi; Ding, Kang; Dharmarajan, Venkatasubramanian; Griffin, Patrick R.; Gati, Cornelius; Nelson, Garrett; Hunter, Mark S.; Hanson, Michael A.; Cherezov, Vadim; Stevens, Raymond C.; Tan, Wenfu; Tao, Houchao; Xu, Fei

    2017-05-01

    The Smoothened receptor (SMO) belongs to the Class Frizzled of the G protein-coupled receptor (GPCR) superfamily, constituting a key component of the Hedgehog signalling pathway. Here we report the crystal structure of the multi-domain human SMO, bound and stabilized by a designed tool ligand TC114, using an X-ray free-electron laser source at 2.9 Å. The structure reveals a precise arrangement of three distinct domains: a seven-transmembrane helices domain (TMD), a hinge domain (HD) and an intact extracellular cysteine-rich domain (CRD). This architecture enables allosteric interactions between the domains that are important for ligand recognition and receptor activation. By combining the structural data, molecular dynamics simulation, and hydrogen-deuterium-exchange analysis, we demonstrate that transmembrane helix VI, extracellular loop 3 and the HD play a central role in transmitting the signal employing a unique GPCR activation mechanism, distinct from other multi-domain GPCRs.

  8. Structural genomics reveals EVE as a new ASCH/PUA-related domain

    PubMed Central

    Bertonati, Claudia; Punta, Marco; Fischer, Markus; Yachdav, Guy; Forouhar, Farhad; Zhou, Weihong; Kuzin, Alexander P.; Seetharaman, Jayaraman; Abashidze, Mariam; Ramelot, Theresa A.; Kennedy, Michael A.; Cort, John R.; Belachew, Adam; Hunt, John F.; Tong, Liang; Montelione, Gaetano T.; Rost, Burkhard

    2014-01-01

    Summary We report on several proteins recently solved by structural genomics consortia, in particular by the Northeast Structural Genomics consortium (NESG). The proteins considered in this study differ substantially in their sequences but they share a similar structural core, characterized by a pseudobarrel five-stranded beta sheet. This core corresponds to the PUA domain-like architecture in the SCOP database. By connecting sequence information with structural knowledge, we characterize a new subgroup of these proteins that we propose to be distinctly different from previously described PUA domain-like domains such as PUA proper or ASCH. We refer to these newly defined domains as EVE. Although EVE may have retained the ability of PUA domains to bind RNA, the available experimental and computational data suggests that both the details of its molecular function and its cellular function differ from those of other PUA domain-like domains. This study of EVE and its relatives illustrates how the combination of structure and genomics creates new insights by connecting a cornucopia of structures that map to the same evolutionary potential. Primary sequence information alone would have not been sufficient to reveal these evolutionary links. PMID:19191354

  9. Structural Genomics Reveals EVE as a New ASCH/PUA-Related Domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertonati, C.; Punta, M; Fischer, M

    2008-01-01

    We report on several proteins recently solved by structural genomics consortia, in particular by the Northeast Structural Genomics consortium (NESG). The proteins considered in this study differ substantially in their sequences but they share a similar structural core, characterized by a pseudobarrel five-stranded beta sheet. This core corresponds to the PUA domain-like architecture in the SCOP database. By connecting sequence information with structural knowledge, we characterize a new subgroup of these proteins that we propose to be distinctly different from previously described PUA domain-like domains such as PUA proper or ASCH. We refer to these newly defined domains as EVE.more » Although EVE may have retained the ability of PUA domains to bind RNA, the available experimental and computational data suggests that both the details of its molecular function and its cellular function differ from those of other PUA domain-like domains. This study of EVE and its relatives illustrates how the combination of structure and genomics creates new insights by connecting a cornucopia of structures that map to the same evolutionary potential. Primary sequence information alone would have not been sufficient to reveal these evolutionary links.« less

  10. Crystal structure of a multi-domain human smoothened receptor in complex with a super stabilizing ligand

    DOE PAGES

    Zhang, Xianjun; Zhao, Fei; Wu, Yiran; ...

    2017-05-17

    Here, the Smoothened receptor (SMO) belongs to the Class Frizzled of the G protein-coupled receptor (GPCR) superfamily, constituting a key component of the Hedgehog signalling pathway. Here we report the crystal structure of the multi-domain human SMO, bound and stabilized by a designed tool ligand TC114, using an X-ray free-electron laser source at 2.9 Å. The structure reveals a precise arrangement of three distinct domains: a seven-transmembrane helices domain (TMD), a hinge domain (HD) and an intact extracellular cysteine-rich domain (CRD). This architecture enables allosteric interactions between the domains that are important for ligand recognition and receptor activation. By combiningmore » the structural data, molecular dynamics simulation, and hydrogen-deuterium-exchange analysis, we demonstrate that transmembrane helix VI, extracellular loop 3 and the HD play a central role in transmitting the signal employing a unique GPCR activation mechanism, distinct from other multi-domain GPCRs.« less

  11. Embryonic domains of the aorta derived from diverse origins exhibit distinct properties that converge into a common phenotype in the adult

    PubMed Central

    Pfaltzgraff, Elise R.; Shelton, Elaine L.; Galindo, Cristi L.; Nelms, Brian L.; Hooper, Christopher W.; Poole, Stanley D.; Labosky, Patricia A.; Bader, David M.; Reese, Jeff

    2014-01-01

    Vascular smooth muscle cells (VSMCs) are derived from distinct embryonic origins. Vessels originating from differing smooth muscle cell populations have distinct vascular and pathological properties involving calcification, atherosclerosis, and structural defects such as aneurysm and coarctation. We hypothesized that domains within a single vessel, such as the aorta, vary in phenotype based on embryonic origin. Gene profiling and myographic analyses demonstrated that embryonic ascending and descending aortic domains exhibited distinct phenotypes. In vitro analyses demonstrated that VSMCs from each region were dissimilar in terms of cytoskeletal and migratory properties, and retention of different gene expression patterns. Using the same analysis, we found that these same two domains are indistinguishable in the adult vessel. Our data demonstrate that VSMCs from different embryonic origins are functionally distinct in the embryonic mouse, but converge to assume a common phenotype in the aorta of healthy adults. These findings have fundamental implications for aortic development, function and disease progression. PMID:24508561

  12. Structure of the human transcobalamin beta domain in four distinct states

    PubMed Central

    Bloch, Joël S.; Ruetz, Markus; Kräutler, Bernhard

    2017-01-01

    Vitamin B12 (cyanocobalamin, CNCbl) is an essential cofactor-precursor for two biochemical reactions in humans. When ingested, cobalamins (Cbl) are transported via a multistep transport system into the bloodstream, where the soluble protein transcobalamin (TC) binds Cbl and the complex is taken up into the cells via receptor mediated endocytosis. Crystal structures of TC in complex with CNCbl have been solved previously. However, the initial steps of holo-TC assembly have remained elusive. Here, we present four crystal structures of the beta domain of human TC (TC-beta) in different substrate-bound states. These include the apo and CNCbl-bound states, providing insight into the early steps of holo-TC assembly. We found that in vitro assembly of TC-alpha and TC-beta to a complex was Cbl-dependent. We also determined the structure of TC-beta in complex with cobinamide (Cbi), an alternative substrate, shedding light on the specificity of TC. We finally determined the structure of TC-beta in complex with an inhibitory antivitamin B12 (anti-B12). We used this structure to model the binding of anti-B12 into full-length holo-TC and could rule out that the inhibitory function of anti-B12 was based on an inability to form a functional complex with TC. PMID:28910388

  13. The MDM2 RING Domain and Central Acidic Domain Play Distinct Roles in MDM2 Protein Homodimerization and MDM2-MDMX Protein Heterodimerization*

    PubMed Central

    Leslie, Patrick L.; Ke, Hengming; Zhang, Yanping

    2015-01-01

    The oncoprotein murine double minute 2 (MDM2) is an E3 ligase that plays a prominent role in p53 suppression by promoting its polyubiquitination and proteasomal degradation. In its active form, MDM2 forms homodimers as well as heterodimers with the homologous protein murine double minute 4 (MDMX), both of which are thought to occur through their respective C-terminal RING (really interesting new gene) domains. In this study, using multiple MDM2 mutants, we show evidence suggesting that MDM2 homo- and heterodimerization occur through distinct mechanisms because MDM2 RING domain mutations that inhibit MDM2 interaction with MDMX do not affect MDM2 interaction with WT MDM2. Intriguingly, deletion of a portion of the MDM2 central acidic domain selectively inhibits interaction with MDM2 while leaving intact the ability of MDM2 to interact with MDMX and to ubiquitinate p53. Further analysis of an MDM2 C-terminal deletion mutant reveals that the C-terminal residues of MDM2 are required for both MDM2 and MDMX interaction. Collectively, our results suggest a model in which MDM2-MDMX heterodimerization requires the extreme C terminus and proper RING domain structure of MDM2, whereas MDM2 homodimerization requires the extreme C terminus and the central acidic domain of MDM2, suggesting that MDM2 homo- and heterodimers utilize distinct MDM2 domains. Our study is the first to report mutations capable of separating MDM2 homo- and heterodimerization. PMID:25809483

  14. The MDM2 RING domain and central acidic domain play distinct roles in MDM2 protein homodimerization and MDM2-MDMX protein heterodimerization.

    PubMed

    Leslie, Patrick L; Ke, Hengming; Zhang, Yanping

    2015-05-15

    The oncoprotein murine double minute 2 (MDM2) is an E3 ligase that plays a prominent role in p53 suppression by promoting its polyubiquitination and proteasomal degradation. In its active form, MDM2 forms homodimers as well as heterodimers with the homologous protein murine double minute 4 (MDMX), both of which are thought to occur through their respective C-terminal RING (really interesting new gene) domains. In this study, using multiple MDM2 mutants, we show evidence suggesting that MDM2 homo- and heterodimerization occur through distinct mechanisms because MDM2 RING domain mutations that inhibit MDM2 interaction with MDMX do not affect MDM2 interaction with WT MDM2. Intriguingly, deletion of a portion of the MDM2 central acidic domain selectively inhibits interaction with MDM2 while leaving intact the ability of MDM2 to interact with MDMX and to ubiquitinate p53. Further analysis of an MDM2 C-terminal deletion mutant reveals that the C-terminal residues of MDM2 are required for both MDM2 and MDMX interaction. Collectively, our results suggest a model in which MDM2-MDMX heterodimerization requires the extreme C terminus and proper RING domain structure of MDM2, whereas MDM2 homodimerization requires the extreme C terminus and the central acidic domain of MDM2, suggesting that MDM2 homo- and heterodimers utilize distinct MDM2 domains. Our study is the first to report mutations capable of separating MDM2 homo- and heterodimerization. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Crystal Structure of the Marburg Virus VP35 Oligomerization Domain.

    PubMed

    Bruhn, Jessica F; Kirchdoerfer, Robert N; Urata, Sarah M; Li, Sheng; Tickle, Ian J; Bricogne, Gérard; Saphire, Erica Ollmann

    2017-01-15

    Marburg virus (MARV) is a highly pathogenic filovirus that is classified in a genus distinct from that of Ebola virus (EBOV) (genera Marburgvirus and Ebolavirus, respectively). Both viruses produce a multifunctional protein termed VP35, which acts as a polymerase cofactor, a viral protein chaperone, and an antagonist of the innate immune response. VP35 contains a central oligomerization domain with a predicted coiled-coil motif. This domain has been shown to be essential for RNA polymerase function. Here we present crystal structures of the MARV VP35 oligomerization domain. These structures and accompanying biophysical characterization suggest that MARV VP35 is a trimer. In contrast, EBOV VP35 is likely a tetramer in solution. Differences in the oligomeric state of this protein may explain mechanistic differences in replication and immune evasion observed for MARV and EBOV. Marburg virus can cause severe disease, with up to 90% human lethality. Its genome is concise, only producing seven proteins. One of the proteins, VP35, is essential for replication of the viral genome and for evasion of host immune responses. VP35 oligomerizes (self-assembles) in order to function, yet the structure by which it assembles has not been visualized. Here we present two crystal structures of this oligomerization domain. In both structures, three copies of VP35 twist about each other to form a coiled coil. This trimeric assembly is in contrast to tetrameric predictions for VP35 of Ebola virus and to known structures of homologous proteins in the measles, mumps, and Nipah viruses. Distinct oligomeric states of the Marburg and Ebola virus VP35 proteins may explain differences between them in polymerase function and immune evasion. These findings may provide a more accurate understanding of the mechanisms governing VP35's functions and inform the design of therapeutics. Copyright © 2017 American Society for Microbiology.

  16. Crystal Structure of the Marburg Virus VP35 Oligomerization Domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruhn, Jessica F.; Kirchdoerfer, Robert N.; Urata, Sarah M.

    ABSTRACT Marburg virus (MARV) is a highly pathogenic filovirus that is classified in a genus distinct from that of Ebola virus (EBOV) (generaMarburgvirusandEbolavirus, respectively). Both viruses produce a multifunctional protein termed VP35, which acts as a polymerase cofactor, a viral protein chaperone, and an antagonist of the innate immune response. VP35 contains a central oligomerization domain with a predicted coiled-coil motif. This domain has been shown to be essential for RNA polymerase function. Here we present crystal structures of the MARV VP35 oligomerization domain. These structures and accompanying biophysical characterization suggest that MARV VP35 is a trimer. In contrast, EBOVmore » VP35 is likely a tetramer in solution. Differences in the oligomeric state of this protein may explain mechanistic differences in replication and immune evasion observed for MARV and EBOV. IMPORTANCEMarburg virus can cause severe disease, with up to 90% human lethality. Its genome is concise, only producing seven proteins. One of the proteins, VP35, is essential for replication of the viral genome and for evasion of host immune responses. VP35 oligomerizes (self-assembles) in order to function, yet the structure by which it assembles has not been visualized. Here we present two crystal structures of this oligomerization domain. In both structures, three copies of VP35 twist about each other to form a coiled coil. This trimeric assembly is in contrast to tetrameric predictions for VP35 of Ebola virus and to known structures of homologous proteins in the measles, mumps, and Nipah viruses. Distinct oligomeric states of the Marburg and Ebola virus VP35 proteins may explain differences between them in polymerase function and immune evasion. These findings may provide a more accurate understanding of the mechanisms governing VP35's functions and inform the design of therapeutics.« less

  17. Crystal structure of the EnvZ periplasmic domain with CHAPS.

    PubMed

    Hwang, Eunha; Cheong, Hae-Kap; Kim, Sang-Yoon; Kwon, Ohsuk; Blain, Katherine Y; Choe, Senyon; Yeo, Kwon Joo; Jung, Yong Woo; Jeon, Young Ho; Cheong, Chaejoon

    2017-05-01

    Bacteria sense and respond to osmolarity through the EnvZ-OmpR two-component system. The structure of the periplasmic sensor domain of EnvZ (EnvZ-PD) is not available yet. Here, we present the crystal structure of EnvZ-PD in the presence of CHAPS detergent. The structure of EnvZ-PD shows similar folding topology to the PDC domains of PhoQ, DcuS, and CitA, but distinct orientations of helices and β-hairpin structures. The CD and NMR spectra of EnvZ-PD in the presence of cholate, a major component of bile salts, are similar to those with CHAPS. Chemical cross-linking shows that the dimerization of EnvZ-PD is significantly inhibited by the CHAPS and cholate. Together with β-galactosidase assay, these results suggest that bile salts may affect the EnvZ structure and function in Escherichia coli. © 2017 Federation of European Biochemical Societies.

  18. Structural insights into FRS2α PTB domain recognition by neurotrophin receptor TrkB.

    PubMed

    Zeng, Lei; Kuti, Miklos; Mujtaba, Shiraz; Zhou, Ming-Ming

    2014-07-01

    The fibroblast growth factor receptor (FGFR) substrate 2 (FRS2) family proteins function as scaffolding adapters for receptor tyrosine kinases (RTKs). The FRS2α proteins interact with RTKs through the phosphotyrosine-binding (PTB) domain and transfer signals from the activated receptors to downstream effector proteins. Here, we report the nuclear magnetic resonance structure of the FRS2α PTB domain bound to phosphorylated TrkB. The structure reveals that the FRS2α-PTB domain is comprised of two distinct but adjacent pockets for its mutually exclusive interaction with either nonphosphorylated juxtamembrane region of the FGFR, or tyrosine phosphorylated peptides TrkA and TrkB. The new structural insights suggest rational design of selective small molecules through targeting of the two conjunct pockets in the FRS2α PTB domain. © 2014 Wiley Periodicals, Inc.

  19. Domain organization and crystal structure of the catalytic domain of E.coli RluF, a pseudouridine synthase that acts on 23S rRNA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sunita,S.; Zhenxing, H.; Swaathi, J.

    2006-01-01

    Pseudouridine synthases catalyze the isomerization of uridine to pseudouridine ({psi}) in rRNA and tRNA. The pseudouridine synthase RluF from Escherichia coli (E.C. 4.2.1.70) modifies U2604 in 23S rRNA, and belongs to a large family of pseudouridine synthases present in all kingdoms of life. Here we report the domain architecture and crystal structure of the catalytic domain of E. coli RluF at 2.6 Angstroms resolution. Limited proteolysis, mass spectrometry and N-terminal sequencing indicate that RluF has a distinct domain architecture, with the catalytic domain flanked at the N and C termini by additional domains connected to it by flexible linkers. Themore » structure of the catalytic domain of RluF is similar to those of RsuA and TruB. RluF is a member of the RsuA sequence family of {psi}-synthases, along with RluB and RluE. Structural comparison of RluF with its closest structural homologues, RsuA and TruB, suggests possible functional roles for the N-terminal and C-terminal domains of RluF.« less

  20. Coexistence of domains with distinct order and polarity in fluid bacterial membranes.

    PubMed

    Vanounou, Sharon; Pines, Dina; Pines, Ehud; Parola, Abraham H; Fishov, Itzhak

    2002-07-01

    In this study we sought the detection and characterization of bacterial membrane domains. Fluorescence generalized polarization (GP) spectra of laurdan-labeled Escherichia coli and temperature dependencies of both laurdan's GP and fluorescence anisotropy of 1,3-diphenyl-1,3,5-hexatriene (DPH) (rDPH) affirmed that at physiological temperatures, the E. coli membrane is in a liquid-crystalline phase. However, the strong excitation wavelength dependence of rlaurdan at 37 degrees C reflects membrane heterogeneity. Time-resolved fluorescence emission spectra, which display distinct biphasic redshift kinetics, verified the coexistence of two subpopulations of laurdan. In the initial phase, <50 ps, the redshift in the spectral mass center is much faster for laurdan excited at the blue edge (350 nm), whereas at longer time intervals, similar kinetics is observed upon excitation at either blue or red edge (400 nm). Excitation in the blue region selects laurdan molecules presumably located in a lipid domain in which fast intramolecular relaxation and low anisotropy characterize laurdan's emission. In the proteo-lipid domain, laurdan motion and conformation are restricted as exhibited by a slower relaxation rate, higher anisotropy and a lower GP value. Triple-Gaussian decomposition of laurdan emission spectra showed a sharp phase transition in the temperature dependence of individual components when excited in the blue but not in the red region. At least two kinds of domains of distinct polarity and order are suggested to coexist in the liquid-crystalline bacterial membrane: a lipid-enriched and a proteolipid domain. In bacteria with chloramphenicol (Cam)-inhibited protein synthesis, laurdan showed reduced polarity and restoration of an isoemissive point in the temperature-dependent spectra. These results suggest a decrease in membrane heterogeneity caused by Cam-induced domain dissipation.

  1. Distinct peptide binding specificities of Src homology 3 (SH3) protein domains can be determined by modulation of local energetics across the binding interface.

    PubMed

    Gorelik, Maryna; Davidson, Alan R

    2012-03-16

    The yeast Nbp2p SH3 and Bem1p SH3b domains bind certain target peptides with similar high affinities, yet display vastly different affinities for other targets. To investigate this unusual behavior, we have solved the structure of the Nbp2p SH3-Ste20 peptide complex and compared it with the previously determined structure of the Bem1p SH3b bound to the same peptide. Although the Ste20 peptide interacts with both domains in a structurally similar manner, extensive in vitro studies with domain and peptide mutants revealed large variations in interaction strength across the binding interface of the two complexes. Whereas the Nbp2p SH3 made stronger contacts with the peptide core RXXPXXP motif, the Bem1p SH3b domain made stronger contacts with residues flanking the core motif. Remarkably, this modulation of local binding energetics can explain the distinct and highly nuanced binding specificities of these two domains.

  2. Electronic structure and switching behavior of the metastable silicene domain boundary

    NASA Astrophysics Data System (ADS)

    Oh, Youngtek; Cho, Yeonchoo; Kwon, Hyeokshin; Lee, Junsu; Jeon, Insu; Ko, Wonhee; Kim, Hyo Won; Ku, JiYeon; Kim, Gunn; Suh, Hwansoo; Hwang, Sung Woo

    2017-06-01

    Silicene, a silicon allotrope with a buckled honeycomb lattice, has been extensively studied in the search for materials with graphene-like properties. Here, we study the domain boundaries of a silicene 4 × 4 superstructure on an Ag(111) surface at the atomic resolution using scanning tunneling microscopy (STM) and spectroscopy (STS) along with density functional theory calculations. The silicene domain boundaries (β-phases) are formed at the interface between misaligned domains (α-phases) and show a bias dependence, forming protrusions or depressions as the sample bias changes. In particular, the STM topographs of the silicene-substrate system at a bias of ˜2.0 V show brightly protruding domain boundaries, which can be explained by an energy state originating from the Si 3s and 3pz orbitals. In addition, the topographs depicting the vicinity of the domain boundaries show that the structure does not follow the buckled geometry of the atomic ball-and-stick model. Inside the domain, STS data showed a step-up at ˜0.4 V, which originated from the Si 3p orbitals. We found this step-up to have shifted, which may be attributed to the strain effect at the interface regions between silver and silicene and between the domain and its boundary upon performing spatially resolved STS measurements. The metastable characteristic of the domain boundary (β-phase) causes changes, such as creation or annihilation, in the buckling structures (switching behavior). The observed low activation energy for the buckling change between distinct states may find applications in the electronic control of properties related to domain boundary structures in silicene.

  3. Distinct Functional Domains of Ubc9 Dictate Cell Survival and Resistance to Genotoxic Stress

    PubMed Central

    van Waardenburg, Robert C. A. M.; Duda, David M.; Lancaster, Cynthia S.; Schulman, Brenda A.; Bjornsti, Mary-Ann

    2006-01-01

    Covalent modification with SUMO alters protein function, intracellular localization, or protein-protein interactions. Target recognition is determined, in part, by the SUMO E2 enzyme, Ubc9, while Siz/Pias E3 ligases may facilitate select interactions by acting as substrate adaptors. A yeast conditional Ubc9P123L mutant was viable at 36°C yet exhibited enhanced sensitivity to DNA damage. To define functional domains in Ubc9 that dictate cellular responses to genotoxic stress versus those necessary for cell viability, a 1.75-Å structure of yeast Ubc9 that demonstrated considerable conservation of backbone architecture with human Ubc9 was solved. Nevertheless, differences in side chain geometry/charge guided the design of human/yeast chimeras, where swapping domains implicated in (i) binding residues within substrates that flank canonical SUMOylation sites, (ii) interactions with the RanBP2 E3 ligase, and (iii) binding of the heterodimeric E1 and SUMO had distinct effects on cell growth and resistance to DNA-damaging agents. Our findings establish a functional interaction between N-terminal and substrate-binding domains of Ubc9 and distinguish the activities of E3 ligases Siz1 and Siz2 in regulating cellular responses to genotoxic stress. PMID:16782883

  4. Three-dimensional structure of the NLRP7 pyrin domain: insight into pyrin-pyrin-mediated effector domain signaling in innate immunity.

    PubMed

    Pinheiro, Anderson S; Proell, Martina; Eibl, Clarissa; Page, Rebecca; Schwarzenbacher, Robert; Peti, Wolfgang

    2010-08-27

    The innate immune system provides an initial line of defense against infection. Nucleotide-binding domain- and leucine-rich repeat-containing protein (NLR or (NOD-like)) receptors play a critical role in the innate immune response by surveying the cytoplasm for traces of intracellular invaders and endogenous stress signals. NLRs themselves are multi-domain proteins. Their N-terminal effector domains (typically a pyrin or caspase activation and recruitment domain) are responsible for driving downstream signaling and initiating the formation of inflammasomes, multi-component complexes necessary for cytokine activation. However, the currently available structures of NLR effector domains have not yet revealed the mechanism of their differential modes of interaction. Here, we report the structure and dynamics of the N-terminal pyrin domain of NLRP7 (NLRP7 PYD) obtained by NMR spectroscopy. The NLRP7 PYD adopts a six-alpha-helix bundle death domain fold. A comparison of conformational and dynamics features of the NLRP7 PYD with other PYDs showed distinct differences for helix alpha3 and loop alpha2-alpha3, which, in NLRP7, is stabilized by a strong hydrophobic cluster. Moreover, the NLRP7 and NLRP1 PYDs have different electrostatic surfaces. This is significant, because death domain signaling is driven by electrostatic contacts and stabilized by hydrophobic interactions. Thus, these results provide new insights into NLRP signaling and provide a first molecular understanding of inflammasome formation.

  5. A new twist in the coil: functions of the coiled-coil domain of structural maintenance of chromosome (SMC) proteins.

    PubMed

    Matityahu, Avi; Onn, Itay

    2018-02-01

    The higher-order organization of chromosomes ensures their stability and functionality. However, the molecular mechanism by which higher order structure is established is poorly understood. Dissecting the activity of the relevant proteins provides information essential for achieving a comprehensive understanding of chromosome structure. Proteins of the structural maintenance of chromosome (SMC) family of ATPases are the core of evolutionary conserved complexes. SMC complexes are involved in regulating genome dynamics and in maintaining genome stability. The structure of all SMC proteins resembles an elongated rod that contains a central coiled-coil domain, a common protein structural motif in which two α-helices twist together. In recent years, the imperative role of the coiled-coil domain to SMC protein activity and regulation has become evident. Here, we discuss recent advances in the function of the SMC coiled coils. We describe the structure of the coiled-coil domain of SMC proteins, modifications and interactions that are mediated by it. Furthermore, we assess the role of the coiled-coil domain in conformational switches of SMC proteins, and in determining the architecture of the SMC dimer. Finally, we review the interplay between mutations in the coiled-coil domain and human disorders. We suggest that distinctive properties of coiled coils of different SMC proteins contribute to their distinct functions. The discussion clarifies the mechanisms underlying the activity of SMC proteins, and advocates future studies to elucidate the function of the SMC coiled coil domain.

  6. Structural Basis and Function of XRN2-Binding by XTB Domains

    PubMed Central

    Richter, Hannes; Katic, Iskra; Gut, Heinz; Großhans, Helge

    2016-01-01

    The ribonuclease XRN2 is an essential player in RNA metabolism. In Caenorhabditis elegans, XRN2 functions with PAXT-1, which shares a putative XRN2-binding domain (XTBD) with otherwise unrelated mammalian proteins. Here, we characterize structure and function of an XTBD – XRN2 complex. Although XTBD stably interconnects two XRN2 domains through numerous interacting residues, mutation of a single critical residue suffices to disrupt XTBD – XRN2 complexes in vitro, and recapitulates paxt-1 null mutant phenotypes in vivo. Demonstrating conservation of function, vertebrate XTBD-containing proteins bind XRN2 in vitro, and human CDKN2AIPNL (C2AIL) can substitute for PAXT-1 in vivo. In vertebrates, where three distinct XTBD-containing proteins exist, XRN2 may partition to distinct stable heterodimeric complexes, likely differing in subcellular localization or function. In C. elegans, complex formation with the unique PAXT-1 serves to preserve the stability of XRN2 in the absence of substrate. PMID:26779609

  7. ABCA1, ABCG1, and ABCG4 are distributed to distinct membrane meso-domains and disturb detergent-resistant domains on the plasma membrane.

    PubMed

    Sano, Osamu; Ito, Shiho; Kato, Reiko; Shimizu, Yuji; Kobayashi, Aya; Kimura, Yasuhisa; Kioka, Noriyuki; Hanada, Kentaro; Ueda, Kazumitsu; Matsuo, Michinori

    2014-01-01

    ATP-binding cassette A1 (ABCA1), ABCG1, and ABCG4 are lipid transporters that mediate the efflux of cholesterol from cells. To analyze the characteristics of these lipid transporters, we examined and compared their distributions and lipid efflux activity on the plasma membrane. The efflux of cholesterol mediated by ABCA1 and ABCG1, but not ABCG4, was affected by a reduction of cellular sphingomyelin levels. Detergent solubility and gradient density ultracentrifugation assays indicated that ABCA1, ABCG1, and ABCG4 were distributed to domains that were solubilized by Triton X-100 and Brij 96, resistant to Triton X-100 and Brij 96, and solubilized by Triton X-100 but resistant to Brij 96, respectively. Furthermore, ABCG1, but not ABCG4, was colocalized with flotillin-1 on the plasma membrane. The amounts of cholesterol extracted by methyl-β-cyclodextrin were increased by ABCA1, ABCG1, or ABCG4, suggesting that cholesterol in non-raft domains was increased. Furthermore, ABCG1 and ABCG4 disturbed the localization of caveolin-1 to the detergent-resistant domains and the binding of cholera toxin subunit B to the plasma membrane. These results suggest that ABCA1, ABCG1, and ABCG4 are localized to distinct membrane meso-domains and disturb the meso-domain structures by reorganizing lipids on the plasma membrane; collectively, these observations may explain the different substrate profiles and lipid efflux roles of these transporters.

  8. ABCA1, ABCG1, and ABCG4 Are Distributed to Distinct Membrane Meso-Domains and Disturb Detergent-Resistant Domains on the Plasma Membrane

    PubMed Central

    Sano, Osamu; Ito, Shiho; Kato, Reiko; Shimizu, Yuji; Kobayashi, Aya; Kimura, Yasuhisa; Kioka, Noriyuki; Hanada, Kentaro; Ueda, Kazumitsu; Matsuo, Michinori

    2014-01-01

    ATP-binding cassette A1 (ABCA1), ABCG1, and ABCG4 are lipid transporters that mediate the efflux of cholesterol from cells. To analyze the characteristics of these lipid transporters, we examined and compared their distributions and lipid efflux activity on the plasma membrane. The efflux of cholesterol mediated by ABCA1 and ABCG1, but not ABCG4, was affected by a reduction of cellular sphingomyelin levels. Detergent solubility and gradient density ultracentrifugation assays indicated that ABCA1, ABCG1, and ABCG4 were distributed to domains that were solubilized by Triton X-100 and Brij 96, resistant to Triton X-100 and Brij 96, and solubilized by Triton X-100 but resistant to Brij 96, respectively. Furthermore, ABCG1, but not ABCG4, was colocalized with flotillin-1 on the plasma membrane. The amounts of cholesterol extracted by methyl-β-cyclodextrin were increased by ABCA1, ABCG1, or ABCG4, suggesting that cholesterol in non-raft domains was increased. Furthermore, ABCG1 and ABCG4 disturbed the localization of caveolin-1 to the detergent-resistant domains and the binding of cholera toxin subunit B to the plasma membrane. These results suggest that ABCA1, ABCG1, and ABCG4 are localized to distinct membrane meso-domains and disturb the meso-domain structures by reorganizing lipids on the plasma membrane; collectively, these observations may explain the different substrate profiles and lipid efflux roles of these transporters. PMID:25302608

  9. Distinct mechanisms of a phosphotyrosyl peptide binding to two SH2 domains.

    PubMed

    Pang, Xiaodong; Zhou, Huan-Xiang

    2014-05-01

    Protein phosphorylation is very common post-translational modification, catalyzed by kinases, for signaling and regulation. Phosphotyrosines frequently target SH2 domains. The spleen tyrosine kinase (Syk) is critical for tyrosine phosphorylation of multiple proteins and for regulation of important pathways. Phosphorylation of both Y342 and Y346 in Syk linker B is required for optimal signaling. The SH2 domains of Vav1 and PLC-γ both bind this doubly phosphorylated motif. Here we used a recently developed method to calculate the effects of Y342 and Y346 phosphorylation on the rate constants of a peptide from Syk linker B binding to the SH2 domains of Vav1 and PLC-γ. The predicted effects agree well with experimental observations. Moreover, we found that the same doubly phosphorylated peptide binds the two SH2 domains via distinct mechanisms, with apparent rigid docking for Vav1 SH2 and dock-and-coalesce for PLC-γ SH2.

  10. Structure of the effector-binding domain of the arabinose repressor AraR from Bacillus subtilis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Procházková, Kateřina; Čermáková, Kateřina; Pachl, Petr

    2012-02-01

    The crystal structure of the effector-binding domain of the transcriptional repressor AraR from B. subtilis in complex with the effector molecule (l-arabinose) was determined at 2.2 Å resolution. A detailed analysis of the crystal identified a dimer organization that is distinctive from that of other members of the GalR/LacI family. In Bacillus subtilis, the arabinose repressor AraR negatively controls the expression of genes in the metabolic pathway of arabinose-containing polysaccharides. The protein is composed of two domains of different phylogenetic origin and function: an N-terminal DNA-binding domain belonging to the GntR family and a C-terminal effector-binding domain that shows similaritymore » to members of the GalR/LacI family. The crystal structure of the C-terminal effector-binding domain of AraR in complex with the effector l-arabinose has been determined at 2.2 Å resolution. The l-arabinose binding affinity was characterized by isothermal titration calorimetry and differential scanning fluorimetry; the K{sub d} value was 8.4 ± 0.4 µM. The effect of l-arabinose on the protein oligomeric state was investigated in solution and detailed analysis of the crystal identified a dimer organization which is distinctive from that of other members of the GalR/LacI family.« less

  11. The structure of a conserved Piezo channel domain reveals a novel beta sandwich fold

    PubMed Central

    Kamajaya, Aron; Kaiser, Jens; Lee, Jonas; Reid, Michelle; Rees, Douglas C.

    2014-01-01

    Summary Piezo has recently been identified as a family of eukaryotic mechanosensitive channels composed of subunits containing over 2000 amino acids, without recognizable sequence similarity to other channels. Here, we present the crystal structure of a large, conserved extramembrane domain located just before the last predicted transmembrane helix of C. elegans PIEZO, which adopts a novel beta sandwich fold. The structure was also determined of a point mutation located on a conserved surface at the position equivalent to the human PIEZO1 mutation found in Dehydrated Hereditary Stomatocytosis (DHS) patients (M2225R). While the point mutation does not change the overall domain structure, it does alter the surface electrostatic potential that may perturb interactions with a yet-to-be identified ligand or protein. The lack of structural similarity between this domain and any previously characterized fold, including those of eukaryotic and bacterial channels, highlights the distinctive nature of the Piezo family of eukaryotic mechanosensitive channels. PMID:25242456

  12. Structures of the Gasdermin D C-Terminal Domains Reveal Mechanisms of Autoinhibition.

    PubMed

    Liu, Zhonghua; Wang, Chuanping; Rathkey, Joseph K; Yang, Jie; Dubyak, George R; Abbott, Derek W; Xiao, Tsan Sam

    2018-05-01

    Pyroptosis is an inflammatory form of programmed cell death that plays important roles in immune protection against infections and in inflammatory disorders. Gasdermin D (GSDMD) is an executor of pyroptosis upon cleavage by caspases-1/4/5/11 following canonical and noncanonical inflammasome activation. GSDMD N-terminal domain assembles membrane pores to induce cytolysis, whereas its C-terminal domain inhibits cell death through intramolecular association with the N domain. The molecular mechanisms of autoinhibition for GSDMD are poorly characterized. Here we report the crystal structures of the human and murine GSDMD C-terminal domains, which differ from those of the full-length murine GSDMA3 and the human GSDMB C-terminal domain. Mutations of GSDMD C-domain residues predicted to locate at its interface with the N-domain enhanced pyroptosis. Our results suggest that GSDMDs may employ a distinct mode of intramolecular domain interaction and autoinhibition, which may be relevant to its unique role in pyroptosis downstream of inflammasome activation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. The catalytic region and PEST domain of PTPN18 distinctly regulate the HER2 phosphorylation and ubiquitination barcodes.

    PubMed

    Wang, Hong-Mei; Xu, Yun-Fei; Ning, Shang-Lei; Yang, Du-Xiao; Li, Yi; Du, Yu-Jie; Yang, Fan; Zhang, Ya; Liang, Nan; Yao, Wei; Zhang, Ling-Li; Gu, Li-Chuan; Gao, Cheng-Jiang; Pang, Qi; Chen, Yu-Xin; Xiao, Kun-Hong; Ma, Rong; Yu, Xiao; Sun, Jin-Peng

    2014-09-01

    The tyrosine phosphorylation barcode encoded in C-terminus of HER2 and its ubiquitination regulate diverse HER2 functions. PTPN18 was reported as a HER2 phosphatase; however, the exact mechanism by which it defines HER2 signaling is not fully understood. Here, we demonstrate that PTPN18 regulates HER2-mediated cellular functions through defining both its phosphorylation and ubiquitination barcodes. Enzymologic characterization and three crystal structures of PTPN18 in complex with HER2 phospho-peptides revealed the molecular basis for the recognition between PTPN18 and specific HER2 phosphorylation sites, which assumes two distinct conformations. Unique structural properties of PTPN18 contribute to the regulation of sub-cellular phosphorylation networks downstream of HER2, which are required for inhibition of HER2-mediated cell growth and migration. Whereas the catalytic domain of PTPN18 blocks lysosomal routing and delays the degradation of HER2 by dephosphorylation of HER2 on pY(1112), the PEST domain of PTPN18 promotes K48-linked HER2 ubiquitination and its rapid destruction via the proteasome pathway and an HER2 negative feedback loop. In agreement with the negative regulatory role of PTPN18 in HER2 signaling, the HER2/PTPN18 ratio was correlated with breast cancer stage. Taken together, our study presents a structural basis for selective HER2 dephosphorylation, a previously uncharacterized mechanism for HER2 degradation and a novel function for the PTPN18 PEST domain. The new regulatory role of the PEST domain in the ubiquitination pathway will broaden our understanding of the functions of other important PEST domain-containing phosphatases, such as LYP and PTPN12.

  14. Carboxyl-terminal Domain of Transient Receptor Potential Vanilloid 1 Contains Distinct Segments Differentially Involved in Capsaicin- and Heat-induced Desensitization*

    PubMed Central

    Joseph, John; Wang, Sen; Lee, Jongseok; Ro, Jin Y.; Chung, Man-Kyo

    2013-01-01

    Multiple Ca2+-dependent processes are involved in capsaicin-induced desensitization of transient receptor potential vanilloid 1 (TRPV1), but desensitization of TRPV1 by heat occurs even in the absence of extracellular Ca2+, although the mechanisms are unknown. In this study, we tested the hypothesis that capsaicin and heat desensitize TRPV1 through distinct mechanisms involving distinct structural segments of TRPV1. In HEK293 cells that heterologously express TRPV1, we found that heat-induced desensitization was not affected by the inclusion of intracellular ATP or alanine mutation of Lys155, both of which attenuate capsaicin-induced desensitization, suggesting that heat-induced desensitization occurs through mechanisms distinct from capsaicin-induced desensitization. To determine protein domains involved in heat-induced desensitization, we generated chimeric proteins between TRPV1 and TRPV3, a heat-gated channel lacking heat-induced desensitization. We found that TRPV1 with the carboxyl-terminal domain (CTD) of TRPV3 retained heat activation but was impaired in heat-induced desensitization. Further experiments using chimeric or deletion mutants within TRPV1 CTD indicated that the distal half of CTD regulates the activation and desensitization of TRPV1 in modality-specific manners. Within the distal CTD, we identified two segments that distinctly regulated capsaicin- and heat-induced desensitization. The results suggest that the activation and desensitization of TRPV1 by capsaicin and heat can be modulated differentially and disproportionally through different regions of TRPV1 CTD. Identifying the domains involved in thermal regulation of TRPV1 may facilitate the development of novel anti-hyperalgesic approaches aimed at attenuating activation and enhancing desensitization of TRPV1 by thermal stimuli. PMID:24174527

  15. Structural plasticity of the TDRD3 Tudor domain probed by a fragment screening hit.

    PubMed

    Liu, Jiuyang; Zhang, Shuya; Liu, Mingqing; Liu, Yaqian; Nshogoza, Gilbert; Gao, Jia; Ma, Rongsheng; Yang, Yang; Wu, Jihui; Zhang, Jiahai; Li, Fudong; Ruan, Ke

    2018-04-12

    As a reader of di-methylated arginine on various proteins, such as histone, RNA polymerase II, PIWI and Fragile X mental retardation protein, the Tudor domain of Tudor domain-containing protein 3 (TDRD3) mediates transcriptional activation in nucleus and formation of stress granules in the cytoplasm. Despite the TDRD3 implication in cancer cell proliferation and invasion, warheads to block the di-methylated arginine recognition pocket of the TDRD3 Tudor domain have not yet been uncovered. Here we identified 14 small molecule hits against the TDRD3 Tudor domain through NMR fragment-based screening. These hits were further cross-validated by using competitive fluorescence polarization and isothermal titration calorimetry experiments. The crystal structure of the TDRD3 Tudor domain in complex with hit 1 reveals a distinct binding mode from the nature substrate. Hit 1 protrudes into the aromatic cage of the TDRD3 Tudor domain, where the aromatic residues are tilted to accommodate a sandwich-like π-π interaction. The side chain of the conserved residue N596 swings away 3.1 Å to form a direct hydrogen bond with hit 1. Moreover, this compound shows a decreased affinity against the single Tudor domain of survival motor neuron protein, but no detectable binding to neither the tandem Tudor domain of TP53-binding protein 1 nor the extended Tudor domain of staphylococcal nuclease domain-containing protein 1. Our work depicts the structural plasticity of the TDRD3 Tudor domain and paves the way for the subsequent structure-guided discovery of selective inhibitors targeting Tudor domains. Structural data are available in the PDB under the accession number 5YJ8. © 2018 Federation of European Biochemical Societies.

  16. Crystal Structure of the Human, FIC-Domain Containing Protein HYPE and Implications for Its Functions

    PubMed Central

    Bunney, Tom D.; Cole, Ambrose R.; Broncel, Malgorzata; Esposito, Diego; Tate, Edward W.; Katan, Matilda

    2014-01-01

    Summary Protein AMPylation, the transfer of AMP from ATP to protein targets, has been recognized as a new mechanism of host-cell disruption by some bacterial effectors that typically contain a FIC-domain. Eukaryotic genomes also encode one FIC-domain protein, HYPE, which has remained poorly characterized. Here we describe the structure of human HYPE, solved by X-ray crystallography, representing the first structure of a eukaryotic FIC-domain protein. We demonstrate that HYPE forms stable dimers with structurally and functionally integrated FIC-domains and with TPR-motifs exposed for protein-protein interactions. As HYPE also uniquely possesses a transmembrane helix, dimerization is likely to affect its positioning and function in the membrane vicinity. The low rate of autoAMPylation of the wild-type HYPE could be due to autoinhibition, consistent with the mechanism proposed for a number of putative FIC AMPylators. Our findings also provide a basis to further consider possible alternative cofactors of HYPE and distinct modes of target-recognition. PMID:25435325

  17. Crystal structure of the human, FIC-domain containing protein HYPE and implications for its functions.

    PubMed

    Bunney, Tom D; Cole, Ambrose R; Broncel, Malgorzata; Esposito, Diego; Tate, Edward W; Katan, Matilda

    2014-12-02

    Protein AMPylation, the transfer of AMP from ATP to protein targets, has been recognized as a new mechanism of host-cell disruption by some bacterial effectors that typically contain a FIC-domain. Eukaryotic genomes also encode one FIC-domain protein,HYPE, which has remained poorly characterized.Here we describe the structure of human HYPE, solved by X-ray crystallography, representing the first structure of a eukaryotic FIC-domain protein. We demonstrate that HYPE forms stable dimers with structurally and functionally integrated FIC-domains and with TPR-motifs exposed for protein-protein interactions. As HYPE also uniquely possesses a transmembrane helix, dimerization is likely to affect its positioning and function in the membrane vicinity. The low rate of auto AMPylation of the wild-type HYPE could be due to autoinhibition, consistent with the mechanism proposed for a number of putative FIC AMPylators. Our findings also provide a basis to further consider possible alternative cofactors of HYPE and distinct modes of target-recognition.

  18. Structure of the Zinc-Bound Amino-Terminal Domain of the NMDA Receptor NR2B Subunit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karakas, E.; Simorowski, N; Furukawa, H

    2009-01-01

    N-methyl-D-aspartate (NMDA) receptors belong to the family of ionotropic glutamate receptors (iGluRs) that mediate the majority of fast excitatory synaptic transmission in the mammalian brain. One of the hallmarks for the function of NMDA receptors is that their ion channel activity is allosterically regulated by binding of modulator compounds to the extracellular amino-terminal domain (ATD) distinct from the L-glutamate-binding domain. The molecular basis for the ATD-mediated allosteric regulation has been enigmatic because of a complete lack of structural information on NMDA receptor ATDs. Here, we report the crystal structures of ATD from the NR2B NMDA receptor subunit in the zinc-freemore » and zinc-bound states. The structures reveal the overall clamshell-like architecture distinct from the non-NMDA receptor ATDs and molecular determinants for the zinc-binding site, ion-binding sites, and the architecture of the putative phenylethanolamine-binding site.« less

  19. Binding Rate Constants Reveal Distinct Features of Disordered Protein Domains.

    PubMed

    Dogan, Jakob; Jonasson, Josefin; Andersson, Eva; Jemth, Per

    2015-08-04

    Intrinsically disordered proteins (IDPs) are abundant in the proteome and involved in key cellular functions. However, experimental data about the binding kinetics of IDPs as a function of different environmental conditions are scarce. We have performed an extensive characterization of the ionic strength dependence of the interaction between the molten globular nuclear co-activator binding domain (NCBD) of CREB binding protein and five different protein ligands, including the intrinsically disordered activation domain of p160 transcriptional co-activators (SRC1, TIF2, ACTR), the p53 transactivation domain, and the folded pointed domain (PNT) of transcription factor ETS-2. Direct comparisons of the binding rate constants under identical conditions show that the association rate constant, kon, for interactions between NCBD and disordered protein domains is high at low salt concentrations (90-350 × 10(6) M(-1) s(-1) at 4 °C) but is reduced significantly (10-30-fold) with an increasing ionic strength and reaches a plateau around physiological ionic strength. In contrast, the kon for the interaction between NCBD and the folded PNT domain is only 7 × 10(6) M(-1) s(-1) (4 °C and low salt) and displays weak ionic strength dependence, which could reflect a distinctly different association that relies less on electrostatic interactions. Furthermore, the basal rate constant (in the absence of electrostatic interactions) is high for the NCBD interactions, exceeding those typically observed for folded proteins. One likely interpretation is that disordered proteins have a large number of possible collisions leading to a productive on-pathway encounter complex, while folded proteins are more restricted in terms of orientation. Our results highlight the importance of electrostatic interactions in binding involving IDPs and emphasize the significance of including ionic strength as a factor in studies that compare the binding properties of IDPs to those of ordered proteins.

  20. Crystal Structure of the Ubiquitin-associated (UBA) Domain of p62 and Its Interaction with Ubiquitin*

    PubMed Central

    Isogai, Shin; Morimoto, Daichi; Arita, Kyohei; Unzai, Satoru; Tenno, Takeshi; Hasegawa, Jun; Sou, Yu-shin; Komatsu, Masaaki; Tanaka, Keiji; Shirakawa, Masahiro; Tochio, Hidehito

    2011-01-01

    p62/SQSTM1/A170 is a multimodular protein that is found in ubiquitin-positive inclusions associated with neurodegenerative diseases. Recent findings indicate that p62 mediates the interaction between ubiquitinated proteins and autophagosomes, leading these proteins to be degraded via the autophagy-lysosomal pathway. This ubiquitin-mediated selective autophagy is thought to begin with recognition of the ubiquitinated proteins by the C-terminal ubiquitin-associated (UBA) domain of p62. We present here the crystal structure of the UBA domain of mouse p62 and the solution structure of its ubiquitin-bound form. The p62 UBA domain adopts a novel dimeric structure in crystals, which is distinctive from those of other UBA domains. NMR analyses reveal that in solution the domain exists in equilibrium between the dimer and monomer forms, and binding ubiquitin shifts the equilibrium toward the monomer to form a 1:1 complex between the UBA domain and ubiquitin. The dimer-to-monomer transition is associated with a structural change of the very C-terminal end of the p62 UBA domain, although the UBA fold itself is essentially maintained. Our data illustrate that dimerization and ubiquitin binding of the p62 UBA domain are incompatible with each other. These observations reveal an autoinhibitory mechanism in the p62 UBA domain and suggest that autoinhibition plays a role in the function of p62. PMID:21715324

  1. AIDA: ab initio domain assembly for automated multi-domain protein structure prediction and domain–domain interaction prediction

    PubMed Central

    Xu, Dong; Jaroszewski, Lukasz; Li, Zhanwen; Godzik, Adam

    2015-01-01

    Motivation: Most proteins consist of multiple domains, independent structural and evolutionary units that are often reshuffled in genomic rearrangements to form new protein architectures. Template-based modeling methods can often detect homologous templates for individual domains, but templates that could be used to model the entire query protein are often not available. Results: We have developed a fast docking algorithm ab initio domain assembly (AIDA) for assembling multi-domain protein structures, guided by the ab initio folding potential. This approach can be extended to discontinuous domains (i.e. domains with ‘inserted’ domains). When tested on experimentally solved structures of multi-domain proteins, the relative domain positions were accurately found among top 5000 models in 86% of cases. AIDA server can use domain assignments provided by the user or predict them from the provided sequence. The latter approach is particularly useful for automated protein structure prediction servers. The blind test consisting of 95 CASP10 targets shows that domain boundaries could be successfully determined for 97% of targets. Availability and implementation: The AIDA package as well as the benchmark sets used here are available for download at http://ffas.burnham.org/AIDA/. Contact: adam@sanfordburnham.org Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25701568

  2. Predicting PDZ domain mediated protein interactions from structure

    PubMed Central

    2013-01-01

    Background PDZ domains are structural protein domains that recognize simple linear amino acid motifs, often at protein C-termini, and mediate protein-protein interactions (PPIs) in important biological processes, such as ion channel regulation, cell polarity and neural development. PDZ domain-peptide interaction predictors have been developed based on domain and peptide sequence information. Since domain structure is known to influence binding specificity, we hypothesized that structural information could be used to predict new interactions compared to sequence-based predictors. Results We developed a novel computational predictor of PDZ domain and C-terminal peptide interactions using a support vector machine trained with PDZ domain structure and peptide sequence information. Performance was estimated using extensive cross validation testing. We used the structure-based predictor to scan the human proteome for ligands of 218 PDZ domains and show that the predictions correspond to known PDZ domain-peptide interactions and PPIs in curated databases. The structure-based predictor is complementary to the sequence-based predictor, finding unique known and novel PPIs, and is less dependent on training–testing domain sequence similarity. We used a functional enrichment analysis of our hits to create a predicted map of PDZ domain biology. This map highlights PDZ domain involvement in diverse biological processes, some only found by the structure-based predictor. Based on this analysis, we predict novel PDZ domain involvement in xenobiotic metabolism and suggest new interactions for other processes including wound healing and Wnt signalling. Conclusions We built a structure-based predictor of PDZ domain-peptide interactions, which can be used to scan C-terminal proteomes for PDZ interactions. We also show that the structure-based predictor finds many known PDZ mediated PPIs in human that were not found by our previous sequence-based predictor and is less dependent on

  3. Complex structure of the fission yeast SREBP-SCAP binding domains reveals an oligomeric organization.

    PubMed

    Gong, Xin; Qian, Hongwu; Shao, Wei; Li, Jingxian; Wu, Jianping; Liu, Jun-Jie; Li, Wenqi; Wang, Hong-Wei; Espenshade, Peter; Yan, Nieng

    2016-11-01

    Sterol regulatory element-binding protein (SREBP) transcription factors are master regulators of cellular lipid homeostasis in mammals and oxygen-responsive regulators of hypoxic adaptation in fungi. SREBP C-terminus binds to the WD40 domain of SREBP cleavage-activating protein (SCAP), which confers sterol regulation by controlling the ER-to-Golgi transport of the SREBP-SCAP complex and access to the activating proteases in the Golgi. Here, we biochemically and structurally show that the carboxyl terminal domains (CTD) of Sre1 and Scp1, the fission yeast SREBP and SCAP, form a functional 4:4 oligomer and Sre1-CTD forms a dimer of dimers. The crystal structure of Sre1-CTD at 3.5 Å and cryo-EM structure of the complex at 5.4 Å together with in vitro biochemical evidence elucidate three distinct regions in Sre1-CTD required for Scp1 binding, Sre1-CTD dimerization and tetrameric formation. Finally, these structurally identified domains are validated in a cellular context, demonstrating that the proper 4:4 oligomeric complex formation is required for Sre1 activation.

  4. Structure and Dynamics of the tRNA-like Structure Domain of Brome Mosaic Virus

    NASA Astrophysics Data System (ADS)

    Vieweger, Mario; Nesbitt, David

    2014-03-01

    Conformational switching is widely accepted as regulatory mechanism in gene expression in bacterial systems. More recently, similar regulation mechanisms are emerging for viral systems. One of the most abundant and best studied systems is the tRNA-like structure domain that is found in a number of plant viruses across eight genera. In this work, the folding dynamics of the tRNA-like structure domain of Brome Mosaic Virus are investigated using single-molecule Fluorescence Resonance Energy Transfer techniques. In particular, Burst fluorescence is applied to observe metal-ion induced folding in freely diffusing RNA constructs resembling the 3'-terminal 169nt of BMV RNA3. Histograms of EFRET probabilities reveal a complex equilibrium of three distinct populations. A step-wise kinetic model for TLS folding is developed in accord with the evolution of conformational populations and structural information in the literature. In this mechanism, formation of functional TLS domains from unfolded RNAs requires two consecutive steps; 1) hybridization of a long-range stem interaction followed by 2) formation of a 3' pseudoknot. This three-state equilibrium is well described by step-wise dissociation constants K1(328(30) μM) and K2(1092(183) μM) for [Mg2+] and K1(74(6) mM) and K2(243(52) mM) for [Na+]-induced folding. The kinetic model is validated by oligo competition with the STEM interaction. Implications of this conformational folding mechanism are discussed in regards to regulation of virus replication.

  5. Crystal Structures and Thermodynamic Analysis Reveal Distinct Mechanisms of CD28 Phosphopeptide Binding to the Src Homology 2 (SH2) Domains of Three Adaptor Proteins*

    PubMed Central

    Inaba, Satomi; Numoto, Nobutaka; Ogawa, Shuhei; Morii, Hisayuki; Ikura, Teikichi; Abe, Ryo; Ito, Nobutoshi; Oda, Masayuki

    2017-01-01

    Full activation of T cells and differentiation into effector T cells are essential for many immune responses and require co-stimulatory signaling via the CD28 receptor. Extracellular ligand binding to CD28 recruits protein-tyrosine kinases to its cytoplasmic tail, which contains a YMNM motif. Following phosphorylation of the tyrosine, the proteins growth factor receptor-bound protein 2 (Grb2), Grb2-related adaptor downstream of Shc (Gads), and p85 subunit of phosphoinositide 3-kinase may bind to pYMNM (where pY is phosphotyrosine) via their Src homology 2 (SH2) domains, leading to downstream signaling to distinct immune pathways. These three adaptor proteins bind to the same site on CD28 with variable affinity, and all are important for CD28-mediated co-stimulatory function. However, the mechanism of how these proteins recognize and compete for CD28 is unclear. To visualize their interactions with CD28, we have determined the crystal structures of Gads SH2 and two p85 SH2 domains in complex with a CD28-derived phosphopeptide. The high resolution structures obtained revealed that, whereas the CD28 phosphopeptide bound to Gads SH2 is in a bent conformation similar to that when bound to Grb2 SH2, it adopts a more extended conformation when bound to the N- and C-terminal SH2 domains of p85. These differences observed in the peptide-protein interactions correlated well with the affinity and other thermodynamic parameters for each interaction determined by isothermal titration calorimetry. The detailed insight into these interactions reported here may inform the development of compounds that specifically inhibit the association of CD28 with these adaptor proteins to suppress excessive T cell responses, such as in allergies and autoimmune diseases. PMID:27927989

  6. Crystal Structures and Thermodynamic Analysis Reveal Distinct Mechanisms of CD28 Phosphopeptide Binding to the Src Homology 2 (SH2) Domains of Three Adaptor Proteins.

    PubMed

    Inaba, Satomi; Numoto, Nobutaka; Ogawa, Shuhei; Morii, Hisayuki; Ikura, Teikichi; Abe, Ryo; Ito, Nobutoshi; Oda, Masayuki

    2017-01-20

    Full activation of T cells and differentiation into effector T cells are essential for many immune responses and require co-stimulatory signaling via the CD28 receptor. Extracellular ligand binding to CD28 recruits protein-tyrosine kinases to its cytoplasmic tail, which contains a YMNM motif. Following phosphorylation of the tyrosine, the proteins growth factor receptor-bound protein 2 (Grb2), Grb2-related adaptor downstream of Shc (Gads), and p85 subunit of phosphoinositide 3-kinase may bind to pYMNM (where pY is phosphotyrosine) via their Src homology 2 (SH2) domains, leading to downstream signaling to distinct immune pathways. These three adaptor proteins bind to the same site on CD28 with variable affinity, and all are important for CD28-mediated co-stimulatory function. However, the mechanism of how these proteins recognize and compete for CD28 is unclear. To visualize their interactions with CD28, we have determined the crystal structures of Gads SH2 and two p85 SH2 domains in complex with a CD28-derived phosphopeptide. The high resolution structures obtained revealed that, whereas the CD28 phosphopeptide bound to Gads SH2 is in a bent conformation similar to that when bound to Grb2 SH2, it adopts a more extended conformation when bound to the N- and C-terminal SH2 domains of p85. These differences observed in the peptide-protein interactions correlated well with the affinity and other thermodynamic parameters for each interaction determined by isothermal titration calorimetry. The detailed insight into these interactions reported here may inform the development of compounds that specifically inhibit the association of CD28 with these adaptor proteins to suppress excessive T cell responses, such as in allergies and autoimmune diseases. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Changes in Quaternary Structure in the Signaling Mechanisms of PAS Domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayers, Rebecca A.; Moffat, Keith

    2008-12-15

    FixL from Bradyrhizobium japonicum is a PAS sensor protein in which two PAS domains covalently linked to a histidine kinase domain are responsible for regulating nitrogen fixation in an oxygen-dependent manner. The more C-terminal PAS domain, denoted bjFixLH, contains a heme cofactor that binds diatomic molecules such as carbon monoxide and oxygen and regulates the activity of the FixL histidine kinase as part of a two-component signaling system. We present the structures of ferric, deoxy, and carbon monoxide-bound bjFixLH in a new space group (P1) and at resolutions (1.5--1.8 {angstrom}) higher than the resolutions of those previously obtained. Interestingly, bjFixLHmore » can form two different dimers (in P1 and R32 crystal forms) in the same crystallization solution, where the monomers in one dimer are rotated {approx}175 deg. relative to the second. This suggests that PAS monomers are plastic and that two quite distinct quaternary structures are closely similar in free energy. We use screw rotation analysis to carry out a quantitative pairwise comparison of PAS quaternary structures, which identifies five different relative orientations adopted by isolated PAS monomers. We conclude that PAS monomer arrangement is context-dependent and could differ depending on whether the PAS domains are isolated or are part of a full-length protein. Structurally homologous residues comprise a conserved dimer interface. Using network analysis, we find that the architecture of the PAS dimer interface is continuous rather than modular; the network of residues comprising the interface is strongly connected. A continuous dimer interface is consistent with the low dimer-monomer dissociation equilibrium constant. Finally, we quantitate quaternary structural changes induced by carbon monoxide binding to a bjFixLH dimer, in which monomers rotate by up to 2 deg. relative to each other. We relate these changes to those in other dimeric PAS domains and discuss the role of quaternary

  8. Domain alternation and active site remodeling are conserved structural features of ubiquitin E1.

    PubMed

    Lv, Zongyang; Yuan, Lingmin; Atkison, James H; Aldana-Masangkay, Grace; Chen, Yuan; Olsen, Shaun K

    2017-07-21

    E1 enzymes for ubiquitin (Ub) and Ub-like modifiers (Ubls) harbor two catalytic activities that are required for Ub/Ubl activation: adenylation and thioester bond formation. Structural studies of the E1 for the Ubl s mall u biquitin-like mo difier (SUMO) revealed a single active site that is transformed by a conformational switch that toggles its competency for catalysis of these two distinct chemical reactions. Although the mechanisms of adenylation and thioester bond formation revealed by SUMO E1 structures are thought to be conserved in Ub E1, there is currently a lack of structural data supporting this hypothesis. Here, we present a structure of Schizosaccharomyces pombe Uba1 in which the second catalytic cysteine half-domain (SCCH domain) harboring the catalytic cysteine has undergone a 106° rotation that results in a completely different network of intramolecular interactions between the SCCH and adenylation domains and translocation of the catalytic cysteine 12 Å closer to the Ub C terminus compared with previous Uba1 structures. SCCH domain alternation is accompanied by conformational changes within the Uba1 adenylation domains that effectively disassemble the adenylation active site. Importantly, the structural and biochemical data suggest that domain alternation and remodeling of the adenylation active site are interconnected and are intrinsic structural features of Uba1 and that the overall structural basis for adenylation and thioester bond formation exhibited by SUMO E1 is indeed conserved in Ub E1. Finally, the mechanistic insights provided by the novel conformational snapshot of Uba1 presented in this study may guide efforts to develop small molecule inhibitors of this critically important enzyme that is an active target for anticancer therapeutics. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Structural Studies on Cytosolic Domain of Magnesium Transporter MgtE from Enterococcus faecalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ragumani, S.; Sauder, J; Burley, S

    2009-01-01

    Magnesium (Mg{sup 2+}) is an essential element for growth and maintenance of living cells. It acts as a cofactor for many enzymes and is also essential for stability of the plasma membrane. There are two distinct classes of magnesium transporters identified in bacteria that convey Mg{sup 2+} from periplasm to cytoplasm [ATPase-dependent (MgtA and MgtB) and constitutively active (CorA and MgtE)]. Previously published work on Mg{sup 2+} transporters yielded structures of full length MgtE from Thermus thermophilus, determined at 3.5 {angstrom} resolution, and its cytoplasmic domain with and without bond Mg{sup 2+} determined at 2.3 and 3.9 {angstrom} resolution, respectively.more » Here, they report the crystal structure of the Mg{sup 2+} bound form of the cytosolic portion of MgtE (residues 6-262) from Enterococcus faecalis at 2.2 {angstrom} resolution. The present structure and magnesium bound cytosolic domain structure from T. thermophilus (PDB ID: 2YVY) are structurally similar. Three magnesium binding sites are common to both MgtE full length and the present structure. Their work revealed an additional Mg{sup 2+} binding site in the E. faecalis structure. In this report, they discuss the functional significance of Mg{sup 2+} binding sites in the cytosolic domains of MgtE transporters.« less

  10. Structural coupling of SH2-kinase domains links Fes and Abl substrate recognition and kinase activation.

    PubMed

    Filippakopoulos, Panagis; Kofler, Michael; Hantschel, Oliver; Gish, Gerald D; Grebien, Florian; Salah, Eidarus; Neudecker, Philipp; Kay, Lewis E; Turk, Benjamin E; Superti-Furga, Giulio; Pawson, Tony; Knapp, Stefan

    2008-09-05

    The SH2 domain of cytoplasmic tyrosine kinases can enhance catalytic activity and substrate recognition, but the molecular mechanisms by which this is achieved are poorly understood. We have solved the structure of the prototypic SH2-kinase unit of the human Fes tyrosine kinase, which appears specialized for positive signaling. In its active conformation, the SH2 domain tightly interacts with the kinase N-terminal lobe and positions the kinase alphaC helix in an active configuration through essential packing and electrostatic interactions. This interaction is stabilized by ligand binding to the SH2 domain. Our data indicate that Fes kinase activation is closely coupled to substrate recognition through cooperative SH2-kinase-substrate interactions. Similarly, we find that the SH2 domain of the active Abl kinase stimulates catalytic activity and substrate phosphorylation through a distinct SH2-kinase interface. Thus, the SH2 and catalytic domains of active Fes and Abl pro-oncogenic kinases form integrated structures essential for effective tyrosine kinase signaling.

  11. Isolation and characterization of distinct domains of sarcolemma and T-tubules from rat skeletal muscle.

    PubMed

    Muñoz, P; Rosemblatt, M; Testar, X; Palacín, M; Zorzano, A

    1995-04-01

    1. Several cell-surface domains of sarcolemma and T-tubule from skeletal-muscle fibre were isolated and characterized. 2. A protocol of subcellular fractionation was set up that involved the sequential low- and high-speed homogenization of rat skeletal muscle followed by KCl washing, Ca2+ loading and sucrose-density-gradient centrifugation. This protocol led to the separation of cell-surface membranes from membranes enriched in sarcoplasmic reticulum and intracellular GLUT4-containing vesicles. 3. Agglutination of cell-surface membranes using wheat-germ agglutinin allowed the isolation of three distinct cell-surface membrane domains: sarcolemmal fraction 1 (SM1), sarcolemmal fraction 2 (SM2) and a T-tubule fraction enriched in protein tt28 and the alpha 2-component of dihydropyridine receptor. 4. Fractions SM1 and SM2 represented distinct sarcolemmal subcompartments based on different compositions of biochemical markers: SM2 was characterized by high levels of beta 1-integrin and dystrophin, and SM1 was enriched in beta 1-integrin but lacked dystrophin. 5. The caveolae-associated molecule caveolin was very abundant in SM1, SM2 and T-tubules, suggesting the presence of caveolae or caveolin-rich domains in these cell-surface membrane domains. In contrast, clathrin heavy chain was abundant in SM1 and T-tubules, but only trace levels were detected in SM2. 6. Immunoadsorption of T-tubule vesicles with antibodies against protein tt28 and against GLUT4 revealed the presence of GLUT4 in T-tubules under basal conditions and it also allowed the identification of two distinct pools of T-tubules showing different contents of tt28 and dihydropyridine receptors. 7. Our data on distribution of clathrin and dystrophin reveal the existence of subcompartments in sarcolemma from muscle fibre, featuring selective mutually exclusive components. T-tubules contain caveolin and clathrin suggesting that they contain caveolin- and clathrin-rich domains. Furthermore, evidence for the

  12. The Crystal Structure of the Drosophila Germline Inducer Oskar Identifies Two Domains with Distinct Vasa Helicase- and RNA-Binding Activities.

    PubMed

    Jeske, Mandy; Bordi, Matteo; Glatt, Sebastian; Müller, Sandra; Rybin, Vladimir; Müller, Christoph W; Ephrussi, Anne

    2015-07-28

    In many animals, the germ plasm segregates germline from soma during early development. Oskar protein is known for its ability to induce germ plasm formation and germ cells in Drosophila. However, the molecular basis of germ plasm formation remains unclear. Here, we show that Oskar is an RNA-binding protein in vivo, crosslinking to nanos, polar granule component, and germ cell-less mRNAs, each of which has a role in germline formation. Furthermore, we present high-resolution crystal structures of the two Oskar domains. RNA-binding maps in vitro to the C-terminal domain, which shows structural similarity to SGNH hydrolases. The highly conserved N-terminal LOTUS domain forms dimers and mediates Oskar interaction with the germline-specific RNA helicase Vasa in vitro. Our findings suggest a dual function of Oskar in RNA and Vasa binding, providing molecular clues to its germ plasm function. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. How do physicians become medical experts? A test of three competing theories: distinct domains, independent influence and encapsulation models.

    PubMed

    Violato, Claudio; Gao, Hong; O'Brien, Mary Claire; Grier, David; Shen, E

    2018-05-01

    The distinction between basic sciences and clinical knowledge which has led to a theoretical debate on how medical expertise is developed has implications for medical school and lifelong medical education. This longitudinal, population based observational study was conducted to test the fit of three theories-knowledge encapsulation, independent influence, distinct domains-of the development of medical expertise employing structural equation modelling. Data were collected from 548 physicians (292 men-53.3%; 256 women-46.7%; mean age = 24.2 years on admission) who had graduated from medical school 2009-2014. They included (1) Admissions data of undergraduate grade point average and Medical College Admission Test sub-test scores, (2) Course performance data from years 1, 2, and 3 of medical school, and (3) Performance on the NBME exams (i.e., Step 1, Step 2 CK, and Step 3). Statistical fit indices (Goodness of Fit Index-GFI; standardized root mean squared residual-SRMR; root mean squared error of approximation-RSMEA) and comparative fit [Formula: see text] of three theories of cognitive development of medical expertise were used to assess model fit. There is support for the knowledge encapsulation three factor model of clinical competency (GFI = 0.973, SRMR = 0.043, RSMEA = 0.063) which had superior fit indices to both the independent influence and distinct domains theories ([Formula: see text] vs [Formula: see text] [[Formula: see text

  14. Solution structure and backbone dynamics of the N-terminal region of the calcium regulatory domain from soybean calcium-dependent protein kinase alpha.

    PubMed

    Weljie, Aalim M; Gagné, Stéphane M; Vogel, Hans J

    2004-12-07

    Ca(2+)-dependent protein kinases (CDPKs) are vital Ca(2+)-signaling proteins in plants and protists which have both a kinase domain and a self-contained calcium regulatory calmodulin-like domain (CLD). Despite being very similar to CaM (>40% identity) and sharing the same fold, recent biochemical and structural evidence suggests that the behavior of CLD is distinct from its namesake, calmodulin. In this study, NMR spectroscopy is employed to examine the structure and backbone dynamics of a 168 amino acid Ca(2+)-saturated construct of the CLD (NtH-CLD) in which almost the entire C-terminal domain is exchange broadened and not visible in the NMR spectra. Structural characterization of the N-terminal domain indicates that the first Ca(2+)-binding loop is significantly more open than in a recently reported structure of the CLD complexed with a putative intramolecular binding region (JD) in the CDPK. Backbone dynamics suggest that parts of the third helix exhibit unusually high mobility, and significant exchange, consistent with previous findings that this helix interacts with the C-terminal domain. Dynamics data also show that the "tether" region, consisting of the first 11 amino acids of CLD, is highly mobile and these residues exhibit distinctive beta-type secondary structure, which may help to position the JD and CLD. Finally, the unusual global dynamic behavior of the protein is rationalized on the basis of possible interdomain rearrangements and the highly variable environments of the C- and N-terminal domains.

  15. Structure of the adenylation domain of NAD[superscript +]-dependent DNA ligase from Staphylococcus aureus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Seungil; Chang, Jeanne S.; Griffor, Matt

    DNA ligase catalyzes phosphodiester-bond formation between immediately adjacent 5'-phosphate and 3''-hydroxyl groups in double-stranded DNA and plays a central role in many cellular and biochemical processes, including DNA replication, repair and recombination. Bacterial NAD{sup +}-dependent DNA ligases have been extensively characterized as potential antibacterial targets because of their essentiality and their structural distinction from human ATP-dependent DNA ligases. The high-resolution structure of the adenylation domain of Staphylococcus aureus NAD{sup +}-dependent DNA ligase establishes the conserved domain architecture with other bacterial adenylation domains. Two apo crystal structures revealed that the active site possesses the preformed NAD{sup +}-binding pocket and the 'C2more » tunnel' lined with hydrophobic residues: Leu80, Phe224, Leu287, Phe295 and Trp302. The C2 tunnel is unique to bacterial DNA ligases and the Leu80 side chain at the mouth of the tunnel points inside the tunnel and forms a narrow funnel in the S. aureus DNA ligase structure. Taken together with other DNA ligase structures, the S. aureus DNA ligase structure provides a basis for a more integrated understanding of substrate recognition and catalysis and will be also be of help in the development of small-molecule inhibitors.« less

  16. The Carboxy-Terminal Domain of Hsc70 Provides Binding Sites for a Distinct Set of Chaperone Cofactors

    PubMed Central

    Demand, Jens; Lüders, Jens; Höhfeld, Jörg

    1998-01-01

    The modulation of the chaperone activity of the heat shock cognate Hsc70 protein in mammalian cells involves cooperation with chaperone cofactors, such as Hsp40; BAG-1; the Hsc70-interacting protein, Hip; and the Hsc70-Hsp90-organizing protein, Hop. By employing the yeast two-hybrid system and in vitro interaction assays, we have provided insight into the structural basis that underlies Hsc70’s cooperation with different cofactors. The carboxy-terminal domain of Hsc70, previously shown to form a lid over the peptide binding pocket of the chaperone protein, mediates the interaction of Hsc70 with Hsp40 and Hop. Remarkably, the two cofactors bind to the carboxy terminus of Hsc70 in a noncompetitive manner, revealing the existence of distinct binding sites for Hsp40 and Hop within this domain. In contrast, Hip interacts exclusively with the amino-terminal ATPase domain of Hsc70. Hence, Hsc70 possesses separate nonoverlapping binding sites for Hsp40, Hip, and Hop. This appears to enable the chaperone protein to cooperate simultaneously with multiple cofactors. On the other hand, BAG-1 and Hip have recently been shown to compete in binding to the ATPase domain. Our data thus establish the existence of a network of cooperating and competing cofactors regulating the chaperone activity of Hsc70 in the mammalian cell. PMID:9528774

  17. Effective Moment Feature Vectors for Protein Domain Structures

    PubMed Central

    Shi, Jian-Yu; Yiu, Siu-Ming; Zhang, Yan-Ning; Chin, Francis Yuk-Lun

    2013-01-01

    Imaging processing techniques have been shown to be useful in studying protein domain structures. The idea is to represent the pairwise distances of any two residues of the structure in a 2D distance matrix (DM). Features and/or submatrices are extracted from this DM to represent a domain. Existing approaches, however, may involve a large number of features (100–400) or complicated mathematical operations. Finding fewer but more effective features is always desirable. In this paper, based on some key observations on DMs, we are able to decompose a DM image into four basic binary images, each representing the structural characteristics of a fundamental secondary structure element (SSE) or a motif in the domain. Using the concept of moments in image processing, we further derive 45 structural features based on the four binary images. Together with 4 features extracted from the basic images, we represent the structure of a domain using 49 features. We show that our feature vectors can represent domain structures effectively in terms of the following. (1) We show a higher accuracy for domain classification. (2) We show a clear and consistent distribution of domains using our proposed structural vector space. (3) We are able to cluster the domains according to our moment features and demonstrate a relationship between structural variation and functional diversity. PMID:24391828

  18. The retinal specific CD147 Ig0 domain: from molecular structure to biological activity

    PubMed Central

    Redzic, Jasmina S.; Armstrong, Geoffrey S.; Isern, Nancy. G.; Jones, David N.M.; Kieft, Jeffrey S.; Eisenmesser, Elan Zohar

    2011-01-01

    CD147 is a type I transmembrane protein that is involved in inflammatory diseases, cancer progression, and multiple human pathogens utilize CD147 for efficient infection. In several cancers, CD147 expression is so high that it is now used as a prognostic marker. The two primary isoforms of CD147 that are related to cancer progression have been identified, differing in their number of immunoglobulin (Ig)-like domains. These include CD147 Ig1-Ig2 that is ubiquitously expressed in most tissues and CD147 Ig0-Ig1-Ig2 that is retinal specific and implicated in retinoblastoma. However, little is known in regard to the retinal specific CD147 Ig0 domain despite its potential role in retinoblastoma. We present the first crystal structure of the human CD147 Ig0 domain and show that the CD147 Ig0 domain is a crystallographic dimer with an I-type domain structure, which is maintained in solution. Furthermore, we have utilized our structural data together with mutagenesis to probe the biological activity of CD147-containing proteins both with and without the CD147 Ig0 domain within several model cell lines. Our findings reveal that the CD147 Ig0 domain is a potent stimulator of interleukin-6 and suggest that the CD147 Ig0 domain has its own receptor distinct from that of the other CD147 Ig-like domains, CD147 Ig1-Ig2. Finally, we show that the CD147 Ig0 dimer is the functional unit required for activity and can be disrupted by a single point mutation. PMID:21620857

  19. Comparative structure-function characterization of the saposin-like domains from potato, barley, cardoon and Arabidopsis aspartic proteases.

    PubMed

    Bryksa, Brian C; Grahame, Douglas A; Yada, Rickey Y

    2017-05-01

    The present study characterized the aspartic protease saposin-like domains of four plant species, Solanum tuberosum (potato), Hordeum vulgare L. (barley), Cynara cardunculus L. (cardoon; artichoke thistle) and Arabidopsis thaliana, in terms of bilayer disruption and fusion, and structure pH-dependence. Comparison of the recombinant saposin-like domains revealed that each induced leakage of bilayer vesicles composed of a simple phospholipid mixture with relative rates Arabidopsis>barley>cardoon>potato. When compared for leakage of bilayer composed of a vacuole-like phospholipid mixture, leakage was approximately five times higher for potato saposin-like domain compared to the others. In terms of fusogenic activity, distinctions between particle size profiles were noted among the four proteins, particularly for potato saposin-like domain. Bilayer fusion assays in reducing conditions resulted in altered fusion profiles except in the case of cardoon saposin-like domain which was virtually unchanged. Secondary structure profiles were similar across all four proteins under different pH conditions, although cardoon saposin-like domain appeared to have higher overall helix structure. Furthermore, increases in Trp emission upon protein-bilayer interactions suggested that protein structure rearrangements equilibrated with half-times ranging from 52 to 120s, with cardoon saposin-like domain significantly slower than the other three species. Overall, the present findings serve as a foundation for future studies seeking to delineate protein structural features and motifs in protein-bilayer interactions based upon variability in plant aspartic protease saposin-like domain structures. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. A structural portrait of the PDZ domain family.

    PubMed

    Ernst, Andreas; Appleton, Brent A; Ivarsson, Ylva; Zhang, Yingnan; Gfeller, David; Wiesmann, Christian; Sidhu, Sachdev S

    2014-10-23

    PDZ (PSD-95/Discs-large/ZO1) domains are interaction modules that typically bind to specific C-terminal sequences of partner proteins and assemble signaling complexes in multicellular organisms. We have analyzed the existing database of PDZ domain structures in the context of a specificity tree based on binding specificities defined by peptide-phage binding selections. We have identified 16 structures of PDZ domains in complex with high-affinity ligands and have elucidated four additional structures to assemble a structural database that covers most of the branches of the PDZ specificity tree. A detailed comparison of the structures reveals features that are responsible for the diverse specificities across the PDZ domain family. Specificity differences can be explained by differences in PDZ residues that are in contact with the peptide ligands, but these contacts involve both side-chain and main-chain interactions. Most PDZ domains bind peptides in a canonical conformation in which the ligand main chain adopts an extended β-strand conformation by interacting in an antiparallel fashion with a PDZ β-strand. However, a subset of PDZ domains bind peptides with a bent main-chain conformation and the specificities of these non-canonical domains could not be explained based on canonical structures. Our analysis provides a structural portrait of the PDZ domain family, which serves as a guide in understanding the structural basis for the diverse specificities across the family. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. The macromolecular aromatic domain in suberized tissue: a changing paradigm

    NASA Technical Reports Server (NTRS)

    Bernards, M. A.; Lewis, N. G.

    1998-01-01

    As a structural feature of specialized cell walls, suberization remains an enigma, despite its obvious importance both during normal growth and development and as a stress response in plants. While it is clear that suberized tissues contain both polyaromatic and polyaliphatic domains, and that each of these has its own unique characteristics, whether there is a contiguous macromolecule that can be called suberin is an open question. From a structural perspective, the aromatic domain is unique and distinct from lignin, and is apparently comprised primarily of (poly)hydroxycinnamates, such as amides (e.g., feruloyltyramine). The aliphatic domain is also unique, being quite distinct from cutin in terms of both its chemical composition and cellular location. In the present paper, histochemical, structural and biochemical data, particularly, regarding the polyaromatic domain of suberized tissues, are critically reviewed. A revised description of the polyaromatic domain of suberized tissues, based on the consensus that is emerging from the current data, is presented and especially includes a spatially distinct (poly)hydroxycinnamoyl-containing macromolecule.

  2. Crystal structure of the N domain of human somatic angiotensin I-converting enzyme provides a structural basis for domain-specific inhibitor design.

    PubMed

    Corradi, Hazel R; Schwager, Sylva L U; Nchinda, Aloysius T; Sturrock, Edward D; Acharya, K Ravi

    2006-03-31

    Human somatic angiotensin I-converting enzyme (sACE) is a key regulator of blood pressure and an important drug target for combating cardiovascular and renal disease. sACE comprises two homologous metallopeptidase domains, N and C, joined by an inter-domain linker. Both domains are capable of cleaving the two hemoregulatory peptides angiotensin I and bradykinin, but differ in their affinities for a range of other substrates and inhibitors. Previously we determined the structure of testis ACE (C domain); here we present the crystal structure of the N domain of sACE (both in the presence and absence of the antihypertensive drug lisinopril) in order to aid the understanding of how these two domains differ in specificity and function. In addition, the structure of most of the inter-domain linker allows us to propose relative domain positions for sACE that may contribute to the domain cooperativity. The structure now provides a platform for the design of "domain-specific" second-generation ACE inhibitors.

  3. Crystal structure of caspase recruiting domain (CARD) of apoptosis repressor with CARD (ARC) and its implication in inhibition of apoptosis

    PubMed Central

    Jang, Tae-ho; Kim, Seong Hyun; Jeong, Jae-Hee; Kim, Sunghwan; Kim, Yeun Gil; Park, Hyun Ho

    2015-01-01

    Apoptosis repressor with caspase recruiting domain (ARC) is a multifunctional inhibitor of apoptosis that is unusually over-expressed or activated in various cancers and in the state of the pulmonary hypertension. Therefore, ARC might be an optimal target for therapeutic intervention. Human ARC is composed of two distinct domains, N-terminal caspase recruiting domain (CARD) and C-terminal P/E (proline and glutamic acid) rich domain. ARC inhibits the extrinsic apoptosis pathway by interfering with DISC formation. ARC CARD directly interacts with the death domains (DDs) of Fas and FADD, as well as with the death effector domains (DEDs) of procaspase-8. Here, we report the first crystal structure of the CARD domain of ARC at a resolution of 2.4 Å. Our structure was a dimer with novel homo-dimerization interfaces that might be critical to its inhibitory function. Interestingly, ARC did not exhibit a typical death domain fold. The sixth helix (H6), which was detected at the typical death domain fold, was not detected in the structure of ARC, indicating that H6 may be dispensable for the function of the death domain superfamily. PMID:26038885

  4. Structural control of caspase-generated glutamyl-tRNA synthetase by appended noncatalytic WHEP domains.

    PubMed

    Halawani, Dalia; Gogonea, Valentin; DiDonato, Joseph A; Pipich, Vitaliy; Yao, Peng; China, Arnab; Topbas, Celalettin; Vasu, Kommireddy; Arif, Abul; Hazen, Stanley L; Fox, Paul L

    2018-06-08

    Aminoacyl-tRNA synthetases are ubiquitous, evolutionarily conserved enzymes catalyzing the conjugation of amino acids onto cognate tRNAs. During eukaryotic evolution, tRNA synthetases have been the targets of persistent structural modifications. These modifications can be additive, as in the evolutionary acquisition of noncatalytic domains, or subtractive, as in the generation of truncated variants through regulated mechanisms such as proteolytic processing, alternative splicing, or coding region polyadenylation. A unique variant is the human glutamyl-prolyl-tRNA synthetase (EPRS) consisting of two fused synthetases joined by a linker containing three copies of the WHEP domain (termed by its presence in tryptophanyl-, histidyl-, and glutamyl-prolyl-tRNA synthetases). Here, we identify site-selective proteolysis as a mechanism that severs the linkage between the EPRS synthetases in vitro and in vivo Caspase action targeted Asp-929 in the third WHEP domain, thereby separating the two synthetases. Using a neoepitope antibody directed against the newly exposed C terminus, we demonstrate EPRS cleavage at Asp-929 in vitro and in vivo Biochemical and biophysical characterizations of the N-terminally generated EPRS proteoform containing the glutamyl-tRNA synthetase and most of the linker, including two WHEP domains, combined with structural analysis by small-angle neutron scattering, revealed a role for the WHEP domains in modulating conformations of the catalytic core and GSH- S -transferase-C-terminal-like (GST-C) domain. WHEP-driven conformational rearrangement altered GST-C domain interactions and conferred distinct oligomeric states in solution. Collectively, our results reveal long-range conformational changes imposed by the WHEP domains and illustrate how noncatalytic domains can modulate the global structure of tRNA synthetases in complex eukaryotic systems. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Structural classification of small, disulfide-rich protein domains.

    PubMed

    Cheek, Sara; Krishna, S Sri; Grishin, Nick V

    2006-05-26

    Disulfide-rich domains are small protein domains whose global folds are stabilized primarily by the formation of disulfide bonds and, to a much lesser extent, by secondary structure and hydrophobic interactions. Disulfide-rich domains perform a wide variety of roles functioning as growth factors, toxins, enzyme inhibitors, hormones, pheromones, allergens, etc. These domains are commonly found both as independent (single-domain) proteins and as domains within larger polypeptides. Here, we present a comprehensive structural classification of approximately 3000 small, disulfide-rich protein domains. We find that these domains can be arranged into 41 fold groups on the basis of structural similarity. Our fold groups, which describe broader structural relationships than existing groupings of these domains, bring together representatives with previously unacknowledged similarities; 18 of the 41 fold groups include domains from several SCOP folds. Within the fold groups, the domains are assembled into families of homologs. We define 98 families of disulfide-rich domains, some of which include newly detected homologs, particularly among knottin-like domains. On the basis of this classification, we have examined cases of convergent and divergent evolution of functions performed by disulfide-rich proteins. Disulfide bonding patterns in these domains are also evaluated. Reducible disulfide bonding patterns are much less frequent, while symmetric disulfide bonding patterns are more common than expected from random considerations. Examples of variations in disulfide bonding patterns found within families and fold groups are discussed.

  6. Solution structure of leptospiral LigA4 Big domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mei, Song; Zhang, Jiahai; Zhang, Xuecheng

    Pathogenic Leptospiraspecies express immunoglobulin-like proteins which serve as adhesins to bind to the extracellular matrices of host cells. Leptospiral immunoglobulin-like protein A (LigA), a surface exposed protein containing tandem repeats of bacterial immunoglobulin-like (Big) domains, has been proved to be involved in the interaction of pathogenic Leptospira with mammalian host. In this study, the solution structure of the fourth Big domain of LigA (LigA4 Big domain) from Leptospira interrogans was solved by nuclear magnetic resonance (NMR). The structure of LigA4 Big domain displays a similar bacterial immunoglobulin-like fold compared with other Big domains, implying some common structural aspects of Bigmore » domain family. On the other hand, it displays some structural characteristics significantly different from classic Ig-like domain. Furthermore, Stains-all assay and NMR chemical shift perturbation revealed the Ca{sup 2+} binding property of LigA4 Big domain. - Highlights: • Determining the solution structure of a bacterial immunoglobulin-like domain from a surface protein of Leptospira. • The solution structure shows some structural characteristics significantly different from the classic Ig-like domains. • A potential Ca{sup 2+}-binding site was identified by strains-all and NMR chemical shift perturbation.« less

  7. Protein domain assignment from the recurrence of locally similar structures

    PubMed Central

    Tai, Chin-Hsien; Sam, Vichetra; Gibrat, Jean-Francois; Garnier, Jean; Munson, Peter J.

    2010-01-01

    Domains are basic units of protein structure and essential for exploring protein fold space and structure evolution. With the structural genomics initiative, the number of protein structures in the Protein Databank (PDB) is increasing dramatically and domain assignments need to be done automatically. Most existing structural domain assignment programs define domains using the compactness of the domains and/or the number and strength of intra-domain versus inter-domain contacts. Here we present a different approach based on the recurrence of locally similar structural pieces (LSSPs) found by one-against-all structure comparisons with a dataset of 6,373 protein chains from the PDB. Residues of the query protein are clustered using LSSPs via three different procedures to define domains. This approach gives results that are comparable to several existing programs that use geometrical and other structural information explicitly. Remarkably, most of the proteins that contribute the LSSPs defining a domain do not themselves contain the domain of interest. This study shows that domains can be defined by a collection of relatively small locally similar structural pieces containing, on average, four secondary structure elements. In addition, it indicates that domains are indeed made of recurrent small structural pieces that are used to build protein structures of many different folds as suggested by recent studies. PMID:21287617

  8. Interaction of the amyloid precursor protein-like protein 1 (APLP1) E2 domain with heparan sulfate involves two distinct binding modes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahms, Sven O., E-mail: sdahms@fli-leibniz.de; Mayer, Magnus C.; Miltenyi Biotec GmbH, Robert-Koch-Strasse 1, 17166 Teterow

    2015-03-01

    Two X-ray structures of APLP1 E2 with and without a heparin dodecasaccharide are presented, revealing two distinct binding modes of the protein to heparan sulfate. The data provide a mechanistic explanation of how APP-like proteins bind to heparan sulfates and how they specifically recognize nonreducing structures of heparan sulfates. Beyond the pathology of Alzheimer’s disease, the members of the amyloid precursor protein (APP) family are essential for neuronal development and cell homeostasis in mammals. APP and its paralogues APP-like protein 1 (APLP1) and APP-like protein 2 (APLP2) contain the highly conserved heparan sulfate (HS) binding domain E2, which effects variousmore » (patho)physiological functions. Here, two crystal structures of the E2 domain of APLP1 are presented in the apo form and in complex with a heparin dodecasaccharide at 2.5 Å resolution. The apo structure of APLP1 E2 revealed an unfolded and hence flexible N-terminal helix αA. The (APLP1 E2){sub 2}–(heparin){sub 2} complex structure revealed two distinct binding modes, with APLP1 E2 explicitly recognizing the heparin terminus but also interacting with a continuous heparin chain. The latter only requires a certain register of the sugar moieties that fits to a positively charged surface patch and contributes to the general heparin-binding capability of APP-family proteins. Terminal binding of APLP1 E2 to heparin specifically involves a structure of the nonreducing end that is very similar to heparanase-processed HS chains. These data reveal a conserved mechanism for the binding of APP-family proteins to HS and imply a specific regulatory role of HS modifications in the biology of APP and APP-like proteins.« less

  9. Structural Effects of Two Camelid Nanobodies Directed to Distinct C-Terminal Epitopes on α-Synuclein.

    PubMed

    El-Turk, Farah; Newby, Francisco N; De Genst, Erwin; Guilliams, Tim; Sprules, Tara; Mittermaier, Anthony; Dobson, Christopher M; Vendruscolo, Michele

    2016-06-07

    α-Synuclein is an intrinsically disordered protein whose aggregation is associated with Parkinson's disease and other related neurodegenerative disorders. Recently, two single-domain camelid antibodies (nanobodies) were shown to bind α-synuclein with high affinity. Herein, we investigated how these two nanobodies (NbSyn2 and NbSyn87), which are directed to two distinct epitopes within the C-terminal domain of α-synuclein, affect the conformational properties of this protein. Our results suggest that nanobody NbSyn2, which binds to the five C-terminal residues of α-synuclein (residues 136-140), does not disrupt the transient long-range interactions that generate a degree of compaction within the native structural ensemble of α-synuclein. In contrast, the data that we report indicate that NbSyn87, which targets a central region within the C-terminal domain (residues 118-128), has more substantial effects on the fluctuating secondary and tertiary structure of the protein. These results are consistent with the different effects that the two nanobodies have on the aggregation behavior of α-synuclein in vitro. Our findings thus provide new insights into the type of effects that nanobodies can have on the conformational ensemble of α-synuclein.

  10. Structure and DNA-Binding Sites of the SWI1 AT-rich Interaction Domain (ARID) Suggest Determinants for Sequence-Specific DNA Recognition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Suhkmann; Zhang, Ziming; Upchurch, Sean

    2004-04-16

    2 ARID is a homologous family of DNA-binding domains that occur in DNA binding proteins from a wide variety of species, ranging from yeast to nematodes, insects, mammals and plants. SWI1, a member of the SWI/SNF protein complex that is involved in chromatin remodeling during transcription, contains the ARID motif. The ARID domain of human SWI1 (also known as p270) does not select for a specific DNA sequence from a random sequence pool. The lack of sequence specificity shown by the SWI1 ARID domain stands in contrast to the other characterized ARID domains, which recognize specific AT-rich sequences. We havemore » solved the three-dimensional structure of human SWI1 ARID using solution NMR methods. In addition, we have characterized non-specific DNA-binding by the SWI1 ARID domain. Results from this study indicate that a flexible long internal loop in ARID motif is likely to be important for sequence specific DNA-recognition. The structure of human SWI1 ARID domain also represents a distinct structural subfamily. Studies of ARID indicate that boundary of the DNA binding structural and functional domains can extend beyond the sequence homologous region in a homologous family of proteins. Structural studies of homologous domains such as ARID family of DNA-binding domains should provide information to better predict the boundary of structural and functional domains in structural genomic studies. Key Words: ARID, SWI1, NMR, structural genomics, protein-DNA interaction.« less

  11. Distinct TERB1 Domains Regulate Different Protein Interactions in Meiotic Telomere Movement.

    PubMed

    Zhang, Jingjing; Tu, Zhaowei; Watanabe, Yoshinori; Shibuya, Hiroki

    2017-11-14

    Meiotic telomeres attach to the nuclear envelope (NE) and drive the chromosome movement required for the pairing of homologous chromosomes. The meiosis-specific telomere proteins TERB1, TERB2, and MAJIN are required to regulate these events, but their assembly processes are largely unknown. Here, we developed a germ-cell-specific knockout mouse of the canonical telomere-binding protein TRF1 and revealed an essential role for TRF1 in directing the assembly of TERB1-TERB2-MAJIN. Further, we identified a TERB2 binding (T2B) domain in TERB1 that is dispensable for the TRF1-TERB1 interaction but is essential for the subsequent TERB1-TERB2 interaction and therefore for telomere attachment to the NE. Meanwhile, cohesin recruitment at telomeres, which is required for efficient telomere movement, is mediated by the MYB-like domain of TERB1, but not by TERB2-MAJIN. Our results reveal distinct protein interactions through various domains of TERB1, which enable the sequential assembly of the meiotic telomere complex for their movements. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Structural Characterization of the Boca/Mesd Maturation Factors for LDL-Receptor-Type beta Propeller Domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M Collins; W Hendrickson

    2011-12-31

    Folding and trafficking of low-density lipoprotein receptor (LDLR) family members, which play essential roles in development and homeostasis, are mediated by specific chaperones. The Boca/Mesd chaperone family specifically promotes folding and trafficking of the YWTD {beta} propeller-EGF domain pair found in the ectodomain of all LDLR members. Limited proteolysis, NMR spectroscopy, analytical ultracentrifugation, and X-ray crystallography were used to define a conserved core composed of a structured domain that is preceded by a disordered N-terminal region. High-resolution structures of the ordered domain were determined for homologous proteins from three metazoans. Seven independent protomers reveal a novel ferrodoxin-like superfamily fold withmore » two distinct {beta} sheet topologies. A conserved hydrophobic surface forms a dimer interface in each crystal, but these differ substantially at the atomic level, indicative of nonspecific hydrophobic interactions that may play a role in the chaperone activity of the Boca/Mesd family.« less

  13. Domain structure of the ribozyme from eubacterial ribonuclease P.

    PubMed Central

    Loria, A; Pan, T

    1996-01-01

    Large RNAs can be composed of discrete domains that fold independently. One such "folding domain" has been identified previously in the ribozyme from Bacillus subtilis ribonuclease P (denoted P RNA). This domain contains roughly one-third of all residues. Folding of an RNA construct consisting of the remaining two-thirds of B. subtilis P RNA was examined by Fe(II)-EDTA hydroxyl radical protection. This molecule folds into the proper higher-order structure under identical conditions as the full-length P RNA, suggesting the presence of a second folding domain in B. subtilis P RNA. Folding analysis of the Escherichia coli P RNA by hydroxyl radical protection shows that this P RNA is completely folded at 5-6 mM Mg2+. In order to analyze the structural organization of folding domains in E. coli P RNA, constructs were designed based on the domain structure of B. subtilis P RNA. Fe(II)-EDTA protection indicates that E. coli P RNA also contains two folding domains. Despite the significant differences at the secondary structure level, both P RNAs appear to converge structurally at the folding domain level. The pre-tRNA substrate, localized in previous studies, may bind across the folding domains with the acceptor stem/3'CCA contacting the domain including the active site and the T stem-loop contacting the other. Because all eubacterial P RNAs share considerable homology in secondary structure to either B. subtilis or E. coli P RNA, these results suggest that this domain structure may be applicable for most, if not all, eubacterial P RNAs. Identification of folding domains should be valuable in dissecting structure-function relationship of large RNAs. PMID:8718684

  14. The impact of domain knowledge on structured data collection and templated note design.

    PubMed

    Windle, T; McClay, J C; Windle, J R

    2013-01-01

    The objective of this case report is to evaluate the importance of specialized domain knowledge when designing and using structured templated notes in a clinical environment. To analyze the impact of specialization on structured note generation we compared notes generated for three scenarios: 1) We compared the templated history of present illness (HPI) for patients presenting with a dermatology concern to the dermatologist versus the emergency department. 2) We compared the evaluation of chest pain by ED physicians versus cardiologists. 3) Finally, we compared the data elements asked for in the evaluation of the gastrointestinal system between cardiologists and the liver transplant service (LTS). We used the SNOMED CT representation via BioPortal to evaluate specificity and grouping between data elements and specialized physician groups. We found few similarities in structured data elements designed by and for the specific physician groups. The distinctness represented both differences in granularity as well as fundamental differences in data elements requested. When compared to ED physicians, dermatologists had different and more granular elements while cardiologists requested much more granular data. Comparing cardiologists and LTS, there were differences in the data elements requested. This case study supports the importance of domain knowledge in EHR design and implementation. That different specialities should want and use different information is well supported by cognitive science literature. Despite this, it is rare for domain knowledge to be considered in EHR implementation. Physicians with correct domain knowledge should be involved in the design process of templated notes.

  15. Crystal Structure and Oligomeric State of the RetS Signaling Kinase Sensory Domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jing, X.; Jaw, J; Robinson, H

    2010-01-01

    The opportunistic pathogen Pseudomonas aeruginosa may cause both acute and chronic-persistent infections in predisposed individuals. Acute infections require the presence of a functional type III secretion system (T3SS), whereas chronic P. aeruginosa infections are characterized by the formation of drug-resistant biofilms. The T3SS and biofilm formation are reciprocally regulated by the signaling kinases LadS, RetS, and GacS. RetS downregulates biofilm formation and upregulates expression of the T3SS through a unique mechanism. RetS forms a heterodimeric complex with GacS and thus prevents GacS autophosphorylation and downstream signaling. The signals that regulate RetS are not known but RetS possesses a distinctive periplasmicmore » sensor domain that is believed to serve as receptor for the regulatory ligand. We have determined the crystal structure of the RetS sensory domain at 2.0 {angstrom} resolution. The structure closely resembles those of carbohydrate binding modules of other proteins, suggesting that the elusive ligands are likely carbohydrate moieties. In addition to the conserved beta-sandwich structure, the sensory domain features two alpha helices which create a unique surface topology. Protein-protein crosslinking and fluorescence energy transfer experiments also revealed that the sensory domain dimerizes with a dissociation constant of K{sub d} = 580 {+-} 50 nM, a result with interesting implications for our understanding of the underlying signaling mechanism.« less

  16. Switching Cyclic Nucleotide-Selective Activation of Cyclic Adenosine Monophosphate-Dependent Protein Kinase Holoenzyme Reveals Distinct Roles of Tandem Cyclic Nucleotide-Binding Domains.

    PubMed

    He, Daniel; Lorenz, Robin; Kim, Choel; Herberg, Friedrich W; Lim, Chinten James

    2017-12-15

    The cyclic adenosine monophosphate (cAMP)- and cyclic guanosine monophosphate (cGMP)-dependent protein kinases (PKA and PKG) are key effectors of cyclic nucleotide signaling. Both share structural features that include tandem cyclic nucleotide-binding (CNB) domains, CNB-A and CNB-B, yet their functions are separated through preferential activation by either cAMP or cGMP. Based on structural studies and modeling, key CNB contact residues have been identified for both kinases. In this study, we explored the requirements for conversion of PKA activation from cAMP-dependent to cGMP-dependent. The consequences of the residue substitutions T192R/A212T within CNB-A or G316R/A336T within CNB-B of PKA-RIα on cyclic nucleotide binding and holoenzyme activation were assessed in vitro using purified recombinant proteins, and ex vivo using RIα-deficient mouse embryonic fibroblasts genetically reconstituted with wild-type or mutant PKA-RIα. In vitro, a loss of binding and activation selectivity was observed when residues in either one of the CNB domains were mutated, while mutations in both CNB domains resulted in a complete switch of selectivity from cAMP to cGMP. The switch in selectivity was also recapitulated ex vivo, confirming their functional roles in cells. Our results highlight the importance of key cyclic nucleotide contacts within each CNB domain and suggest that these domains may have evolved from an ancestral gene product to yield two distinct cyclic nucleotide-dependent protein kinases.

  17. Distinct Ubiquitin Binding Modes Exhibited by SH3 Domains: Molecular Determinants and Functional Implications

    PubMed Central

    Ortega Roldan, Jose L.; Casares, Salvador; Ringkjøbing Jensen, Malene; Cárdenes, Nayra; Bravo, Jerónimo; Blackledge, Martin; Azuaga, Ana I.; van Nuland, Nico A. J.

    2013-01-01

    SH3 domains constitute a new type of ubiquitin-binding domains. We previously showed that the third SH3 domain (SH3-C) of CD2AP binds ubiquitin in an alternative orientation. We have determined the structure of the complex between first CD2AP SH3 domain and ubiquitin and performed a structural and mutational analysis to decipher the determinants of the SH3-C binding mode to ubiquitin. We found that the Phe-to-Tyr mutation in CD2AP and in the homologous CIN85 SH3-C domain does not abrogate ubiquitin binding, in contrast to previous hypothesis and our findings for the first two CD2AP SH3 domains. The similar alternative binding mode of the SH3-C domains of these related adaptor proteins is characterised by a higher affinity to C-terminal extended ubiquitin molecules. We conclude that CD2AP/CIN85 SH3-C domain interaction with ubiquitin constitutes a new ubiquitin-binding mode involved in a different cellular function and thus changes the previously established mechanism of EGF-dependent CD2AP/CIN85 mono-ubiquitination. PMID:24039852

  18. Crystal structure of human IPS-1/MAVS/VISA/Cardif caspase activation recruitment domain.

    PubMed

    Potter, Jane A; Randall, Richard E; Taylor, Garry L

    2008-02-28

    IPS-1/MAVS/VISA/Cardif is an adaptor protein that plays a crucial role in the induction of interferons in response to viral infection. In the initial stage of the intracellular antiviral response two RNA helicases, retinoic acid inducible gene-I (RIG-I) and melanoma differentiation-association gene 5 (MDA5), are independently able to bind viral RNA in the cytoplasm. The 62 kDa protein IPS-1/MAVS/VISA/Cardif contains an N-terminal caspase activation and recruitment (CARD) domain that associates with the CARD regions of RIG-I and MDA5, ultimately leading to the induction of type I interferons. As a first step towards understanding the molecular basis of this important adaptor protein we have undertaken structural studies of the IPS-1 MAVS/VISA/Cardif CARD region. The crystal structure of human IPS-1/MAVS/VISA/Cardif CARD has been determined to 2.1A resolution. The protein was expressed and crystallized as a maltose-binding protein (MBP) fusion protein. The MBP and IPS-1 components each form a distinct domain within the structure. IPS-1/MAVS/VISA/Cardif CARD adopts a characteristic six-helix bundle with a Greek-key topology and, in common with a number of other known CARD structures, contains two major polar surfaces on opposite sides of the molecule. One face has a surface-exposed, disordered tryptophan residue that may explain the poor solubility of untagged expression constructs. The IPS-1/MAVS/VISA/Cardif CARD domain adopts the classic CARD fold with an asymmetric surface charge distribution that is typical of CARD domains involved in homotypic protein-protein interactions. The location of the two polar areas on IPS-1/MAVS/VISA/Cardif CARD suggest possible types of associations that this domain makes with the two CARD domains of MDA5 or RIG-I. The N-terminal CARD domains of RIG-I and MDA5 share greatest sequence similarity with IPS-1/MAVS/VISA/Cardif CARD and this has allowed modelling of their structures. These models show a very different charge profile for the

  19. Structural consequences of metallothionein dimerization: solution structure of the isolated Cd4-alpha-domain and comparison with the holoprotein dimer.

    PubMed

    Ejnik, John W; Muñoz, Amalia; DeRose, Eugene; Shaw, C Frank; Petering, David H

    2003-07-22

    The NMR determination of the structure of Cd(7)-metallothionein was done previously using a relatively large protein concentration that favors dimer formation. The reactivity of the protein is also affected under this condition. To examine the influence of protein concentration on metallothionein conformation, the isolated Cd(4)-alpha-domain was prepared from rabbit metallothionein-2 (MT 2), and its three-dimensional structure was determined by heteronuclear, (1)H-(111)Cd, and homonuclear, (1)H-(1)H NMR, correlation experiments. The three-dimensional structure was refined using distance and angle constraints derived from these two-dimensional NMR data sets and a distance geometry/simulated annealing protocol. The backbone superposition of the alpha-domain from rabbit holoprotein Cd(7)-MT 2 and the isolated rabbit Cd(4)-alpha was measured at a RMSD of 2.0 A. Nevertheless, the conformations of the two Cd-thiolate clusters were distinctly different at two of the cadmium centers. In addition, solvent access to the sulfhydryl ligands of the isolated Cd(4)-alpha cluster was 130% larger due to this small change in cluster geometry. To probe whether these differences were an artifact of the structure calculation, the Cd(4)-alpha-domain structure in rabbit Cd(7)-MT 2 was redetermined, using the previously defined set of NOEs and the present calculation protocol. All calculations employed the same ionic radius for Cd(2+) and same cadmium-thiolate bond distance. The newly calculated structure matched the original with an RMSD of 1.24 A. It is hypothesized that differences in the two alpha-domain structures result from a perturbation of the holoprotein structure because of head-to-tail dimerization under the conditions of the NMR experiments.

  20. Domain Hierarchy and closed Loops (DHcL): a server for exploring hierarchy of protein domain structure

    PubMed Central

    Koczyk, Grzegorz; Berezovsky, Igor N.

    2008-01-01

    Domain hierarchy and closed loops (DHcL) (http://sitron.bccs.uib.no/dhcl/) is a web server that delineates energy hierarchy of protein domain structure and detects domains at different levels of this hierarchy. The server also identifies closed loops and van der Waals locks, which constitute a structural basis for the protein domain hierarchy. The DHcL can be a useful tool for an express analysis of protein structures and their alternative domain decompositions. The user submits a PDB identifier(s) or uploads a 3D protein structure in a PDB format. The results of the analysis are the location of domains at different levels of hierarchy, closed loops, van der Waals locks and their interactive visualization. The server maintains a regularly updated database of domains, closed loop and van der Waals locks for all X-ray structures in PDB. DHcL server is available at: http://sitron.bccs.uib.no/dhcl. PMID:18502776

  1. A Method to Examine Content Domain Structures

    ERIC Educational Resources Information Center

    D'Agostino, Jerome; Karpinski, Aryn; Welsh, Megan

    2011-01-01

    After a test is developed, most content validation analyses shift from ascertaining domain definition to studying domain representation and relevance because the domain is assumed to be set once a test exists. We present an approach that allows for the examination of alternative domain structures based on extant test items. In our example based on…

  2. Two distinct domains contribute to the substrate acyl chain length selectivity of plant acyl-ACP thioesterase.

    PubMed

    Jing, Fuyuan; Zhao, Le; Yandeau-Nelson, Marna D; Nikolau, Basil J

    2018-02-28

    The substrate specificity of acyl-ACP thioesterase (TE) plays an essential role in controlling the fatty acid profile produced by type II fatty acid synthases. Here we identify two groups of residues that synergistically determine different substrate specificities of two acyl-ACP TEs from Cuphea viscosissima (CvFatB1 and CvFatB2). One group (V194, V217, N223, R226, R227, and I268 in CvFatB2) is critical in determining the structure and depth of a hydrophobic cavity in the N-terminal hotdog domain that binds the substrate's acyl moiety. The other group (255-RKLSKI-260 and 285-RKLPKL-289 in CvFatB2) defines positively charged surface patches that may facilitate binding of the ACP moiety. Mutagenesis of residues within these two groups results in distinct synthetic acyl-ACP TEs that efficiently hydrolyze substrates with even shorter chains (C4- to C8-ACPs). These insights into structural determinants of acyl-ACP TE substrate specificity are useful in modifying this enzyme for tailored fatty acid production in engineered organisms.

  3. Structure of an Antibody in Complex with Its Mucin Domain Linear Epitope That Is Protective against Ebola Virus

    PubMed Central

    Olal, Daniel; Kuehne, Ana I.; Bale, Shridhar; Halfmann, Peter; Hashiguchi, Takao; Fusco, Marnie L.; Lee, Jeffrey E.; King, Liam B.; Kawaoka, Yoshihiro; Dye, John M.

    2012-01-01

    Antibody 14G7 is protective against lethal Ebola virus challenge and recognizes a distinct linear epitope in the prominent mucin-like domain of the Ebola virus glycoprotein GP. The structure of 14G7 in complex with its linear peptide epitope has now been determined to 2.8 Å. The structure shows that this GP sequence forms a tandem β-hairpin structure that binds deeply into a cleft in the antibody-combining site. A key threonine at the apex of one turn is critical for antibody interaction and is conserved among all Ebola viruses. This work provides further insight into the mechanism of protection by antibodies that target the protruding, highly accessible mucin-like domain of Ebola virus and the structural framework for understanding and characterizing candidate immunotherapeutics. PMID:22171276

  4. Structure of an antibody in complex with its mucin domain linear epitope that is protective against Ebola virus.

    PubMed

    Olal, Daniel; Kuehne, Ana I; Bale, Shridhar; Halfmann, Peter; Hashiguchi, Takao; Fusco, Marnie L; Lee, Jeffrey E; King, Liam B; Kawaoka, Yoshihiro; Dye, John M; Saphire, Erica Ollmann

    2012-03-01

    Antibody 14G7 is protective against lethal Ebola virus challenge and recognizes a distinct linear epitope in the prominent mucin-like domain of the Ebola virus glycoprotein GP. The structure of 14G7 in complex with its linear peptide epitope has now been determined to 2.8 Å. The structure shows that this GP sequence forms a tandem β-hairpin structure that binds deeply into a cleft in the antibody-combining site. A key threonine at the apex of one turn is critical for antibody interaction and is conserved among all Ebola viruses. This work provides further insight into the mechanism of protection by antibodies that target the protruding, highly accessible mucin-like domain of Ebola virus and the structural framework for understanding and characterizing candidate immunotherapeutics.

  5. Structure of a double-domain phosphagen kinase reveals an asymmetric arrangement of the tandem domains.

    PubMed

    Wang, Zhiming; Qiao, Zhu; Ye, Sheng; Zhang, Rongguang

    2015-04-01

    Tandem duplications and fusions of single genes have led to magnificent expansions in the divergence of protein structures and functions over evolutionary timescales. One of the possible results is polydomain enzymes with interdomain cooperativities, few examples of which have been structurally characterized at the full-length level to explore their innate synergistic mechanisms. This work reports the crystal structures of a double-domain phosphagen kinase in both apo and ligand-bound states, revealing a novel asymmetric L-shaped arrangement of the two domains. Unexpectedly, the interdomain connections are not based on a flexible hinge linker but on a rigid secondary-structure element: a long α-helix that tethers the tandem domains in relatively fixed positions. Besides the connective helix, the two domains also contact each other directly and form an interdomain interface in which hydrogen bonds and hydrophobic interactions further stabilize the L-shaped domain arrangement. Molecular-dynamics simulations show that the interface is generally stable, suggesting that the asymmetric domain arrangement crystallographically observed in the present study is not a conformational state simply restrained by crystal-packing forces. It is possible that the asymmetrically arranged tandem domains could provide a structural basis for further studies of the interdomain synergy.

  6. Structural Insights into the HWE Histidine Kinase Family: The Brucella Blue Light-Activated Histidine Kinase Domain.

    PubMed

    Rinaldi, Jimena; Arrar, Mehrnoosh; Sycz, Gabriela; Cerutti, María Laura; Berguer, Paula M; Paris, Gastón; Estrín, Darío Ariel; Martí, Marcelo Adrián; Klinke, Sebastián; Goldbaum, Fernando Alberto

    2016-03-27

    In response to light, as part of a two-component system, the Brucella blue light-activated histidine kinase (LOV-HK) increases its autophosphorylation, modulating the virulence of this microorganism. The Brucella histidine kinase (HK) domain belongs to the HWE family, for which there is no structural information. The HWE family is exclusively present in proteobacteria and usually coupled to a wide diversity of light sensor domains. This work reports the crystal structure of the Brucella HK domain, which presents two different dimeric assemblies in the asymmetric unit: one similar to the already described canonical parallel homodimers (C) and the other, an antiparallel non-canonical (NC) dimer, each with distinct relative subdomain orientations and dimerization interfaces. Contrary to these crystallographic structures and unlike other HKs, in solution, the Brucella HK domain is monomeric and still active, showing an astonishing instability of the dimeric interface. Despite this instability, using cross-linking experiments, we show that the C dimer is the functionally relevant species. Mutational analysis demonstrates that the autophosphorylation activity occurs in cis. The different relative subdomain orientations observed for the NC and C states highlight the large conformational flexibility of the HK domain. Through the analysis of these alternative conformations by means of molecular dynamics simulations, we also propose a catalytic mechanism for Brucella LOV-HK. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Distinct structural transitions of chromatin topological domains correlate with coordinated hormone-induced gene regulation

    PubMed Central

    Le Dily, François; Baù, Davide; Pohl, Andy; Vicent, Guillermo P.; Serra, François; Soronellas, Daniel; Castellano, Giancarlo; Wright, Roni H.G.; Ballare, Cecilia; Filion, Guillaume; Marti-Renom, Marc A.

    2014-01-01

    The human genome is segmented into topologically associating domains (TADs), but the role of this conserved organization during transient changes in gene expression is not known. Here we describe the distribution of progestin-induced chromatin modifications and changes in transcriptional activity over TADs in T47D breast cancer cells. Using ChIP-seq (chromatin immunoprecipitation combined with high-throughput sequencing), Hi-C (chromosome capture followed by high-throughput sequencing), and three-dimensional (3D) modeling techniques, we found that the borders of the ∼2000 TADs in these cells are largely maintained after hormone treatment and that up to 20% of the TADs could be considered as discrete regulatory units where the majority of the genes are either transcriptionally activated or repressed in a coordinated fashion. The epigenetic signatures of the TADs are homogeneously modified by hormones in correlation with the transcriptional changes. Hormone-induced changes in gene activity and chromatin remodeling are accompanied by differential structural changes for activated and repressed TADs, as reflected by specific and opposite changes in the strength of intra-TAD interactions within responsive TADs. Indeed, 3D modeling of the Hi-C data suggested that the structure of TADs was modified upon treatment. The differential responses of TADs to progestins and estrogens suggest that TADs could function as “regulons” to enable spatially proximal genes to be coordinately transcribed in response to hormones. PMID:25274727

  8. Structural Studies of Geosmin Synthase, a Bifunctional Sesquiterpene Synthase with Alpha-Alpha Domain Architecture that Catalyzes a Unique Cyclization-Fragmentation Reaction Sequence

    PubMed Central

    Harris, Golda G.; Lombardi, Patrick M.; Pemberton, Travis A.; Matsui, Tsutomu; Weiss, Thomas M.; Cole, Kathryn E.; Köksal, Mustafa; Murphy, Frank V.; Vedula, L. Sangeetha; Chou, Wayne K.W.; Cane, David E.; Christianson, David W.

    2015-01-01

    Geosmin synthase from Streptomyces coelicolor (ScGS) catalyzes an unusual, metal-dependent terpenoid cyclization and fragmentation reaction sequence. Two distinct active sites are required for catalysis: the N-terminal domain catalyzes the ionization and cyclization of farnesyl diphosphate to form germacradienol and inorganic pyrophosphate (PPi), and the C-terminal domain catalyzes the protonation, cyclization, and fragmentation of germacradienol to form geosmin and acetone through a retro-Prins reaction. A unique αα domain architecture is predicted for ScGS based on amino acid sequence: each domain contains the metal-binding motifs typical of a class I terpenoid cyclase, and each domain requires Mg2+ for catalysis. Here, we report the X-ray crystal structure of the unliganded N-terminal domain of ScGS and the structure of its complex with 3 Mg2+ ions and alendronate. These structures highlight conformational changes required for active site closure and catalysis. Although neither full-length ScGS nor constructs of the C-terminal domain could be crystallized, homology models of the C-terminal domain were constructed based on ~36% sequence identity with the N-terminal domain. Small-angle X-ray scattering experiments yield low resolution molecular envelopes into which the N-terminal domain crystal structure and the C-terminal domain homology model were fit, suggesting possible αα domain architectures as frameworks for bifunctional catalysis. PMID:26598179

  9. Structural diversity of domain superfamilies in the CATH database.

    PubMed

    Reeves, Gabrielle A; Dallman, Timothy J; Redfern, Oliver C; Akpor, Adrian; Orengo, Christine A

    2006-07-14

    The CATH database of domain structures has been used to explore the structural variation of homologous domains in 294 well populated domain structure superfamilies, each containing at least three sequence diverse relatives. Our analyses confirm some previously detected trends relating sequence divergence to structural variation but for a much larger dataset and in some superfamilies the new data reveal exceptional structural variation. Use of a new algorithm (2DSEC) to analyse variability in secondary structure compositions across a superfamily sheds new light on how structures evolve. 2DSEC detects inserted secondary structures that embellish the core of conserved secondary structures found throughout the superfamily. Analysis showed that for 56% of highly populated superfamilies (>9 sequence diverse relatives), there are twofold or more increases in the numbers of secondary structures in some relatives. In some families fivefold increases occur, sometimes modifying the fold of the domain. Manual inspection of secondary structure insertions or embellishments in 48 particularly variable superfamilies revealed that although these insertions were usually discontiguous in the sequence they were often co-located in 3D resulting in a larger structural motif that often modified the geometry of the active site or the surface conformation promoting diverse domain partnerships and protein interactions. These observations, supported by automatic analysis of all well populated CATH families, suggest that accretion of small secondary structure insertions may provide a simple mechanism for evolving new functions in diverse relatives. Some layered domain architectures (e.g. mainly-beta and alpha-beta sandwiches) that recur highly in the genomes more frequently exploit these types of embellishments to modify function. In these architectures, aggregation occurs most often at the edges, top or bottom of the beta-sheets. Information on structural variability across domain

  10. ECOD: An Evolutionary Classification of Protein Domains

    PubMed Central

    Kinch, Lisa N.; Pei, Jimin; Shi, Shuoyong; Kim, Bong-Hyun; Grishin, Nick V.

    2014-01-01

    Understanding the evolution of a protein, including both close and distant relationships, often reveals insight into its structure and function. Fast and easy access to such up-to-date information facilitates research. We have developed a hierarchical evolutionary classification of all proteins with experimentally determined spatial structures, and presented it as an interactive and updatable online database. ECOD (Evolutionary Classification of protein Domains) is distinct from other structural classifications in that it groups domains primarily by evolutionary relationships (homology), rather than topology (or “fold”). This distinction highlights cases of homology between domains of differing topology to aid in understanding of protein structure evolution. ECOD uniquely emphasizes distantly related homologs that are difficult to detect, and thus catalogs the largest number of evolutionary links among structural domain classifications. Placing distant homologs together underscores the ancestral similarities of these proteins and draws attention to the most important regions of sequence and structure, as well as conserved functional sites. ECOD also recognizes closer sequence-based relationships between protein domains. Currently, approximately 100,000 protein structures are classified in ECOD into 9,000 sequence families clustered into close to 2,000 evolutionary groups. The classification is assisted by an automated pipeline that quickly and consistently classifies weekly releases of PDB structures and allows for continual updates. This synchronization with PDB uniquely distinguishes ECOD among all protein classifications. Finally, we present several case studies of homologous proteins not recorded in other classifications, illustrating the potential of how ECOD can be used to further biological and evolutionary studies. PMID:25474468

  11. ECOD: an evolutionary classification of protein domains.

    PubMed

    Cheng, Hua; Schaeffer, R Dustin; Liao, Yuxing; Kinch, Lisa N; Pei, Jimin; Shi, Shuoyong; Kim, Bong-Hyun; Grishin, Nick V

    2014-12-01

    Understanding the evolution of a protein, including both close and distant relationships, often reveals insight into its structure and function. Fast and easy access to such up-to-date information facilitates research. We have developed a hierarchical evolutionary classification of all proteins with experimentally determined spatial structures, and presented it as an interactive and updatable online database. ECOD (Evolutionary Classification of protein Domains) is distinct from other structural classifications in that it groups domains primarily by evolutionary relationships (homology), rather than topology (or "fold"). This distinction highlights cases of homology between domains of differing topology to aid in understanding of protein structure evolution. ECOD uniquely emphasizes distantly related homologs that are difficult to detect, and thus catalogs the largest number of evolutionary links among structural domain classifications. Placing distant homologs together underscores the ancestral similarities of these proteins and draws attention to the most important regions of sequence and structure, as well as conserved functional sites. ECOD also recognizes closer sequence-based relationships between protein domains. Currently, approximately 100,000 protein structures are classified in ECOD into 9,000 sequence families clustered into close to 2,000 evolutionary groups. The classification is assisted by an automated pipeline that quickly and consistently classifies weekly releases of PDB structures and allows for continual updates. This synchronization with PDB uniquely distinguishes ECOD among all protein classifications. Finally, we present several case studies of homologous proteins not recorded in other classifications, illustrating the potential of how ECOD can be used to further biological and evolutionary studies.

  12. Structure-guided Mutational Analysis of the Nucleotidyltransferase Domain of Escherichia coli DNA Ligase (LigA).

    PubMed

    Wang, Li Kai; Zhu, Hui; Shuman, Stewart

    2009-03-27

    NAD(+)-dependent DNA ligases (LigA) are ubiquitous in bacteria, where they are essential for growth and present attractive targets for antimicrobial drug discovery. LigA has a distinctive modular structure in which a nucleotidyltransferase catalytic domain is flanked by an upstream NMN-binding module and by downstream OB-fold, zinc finger, helix-hairpin-helix, and BRCT domains. Here we conducted a structure-function analysis of the nucleotidyltransferase domain of Escherichia coli LigA, guided by the crystal structure of the LigA-DNA-adenylate intermediate. We tested the effects of 29 alanine and conservative mutations at 15 amino acids on ligase activity in vitro and in vivo. We thereby identified essential functional groups that coordinate the reactive phosphates (Arg(136)), contact the AMP adenine (Lys(290)), engage the phosphodiester backbone flanking the nick (Arg(218), Arg(308), Arg(97) plus Arg(101)), or stabilize the active domain fold (Arg(171)). Finer analysis of the mutational effects revealed step-specific functions for Arg(136), which is essential for the reaction of LigA with NAD(+) to form the covalent ligase-AMP intermediate (step 1) and for the transfer of AMP to the nick 5'-PO(4) to form the DNA-adenylate intermediate (step 2) but is dispensable for phosphodiester formation at a preadenylylated nick (step 3).

  13. A distinct sortase SrtB anchors and processes a streptococcal adhesin AbpA with a novel structural property

    PubMed Central

    Liang, Xiaobo; Liu, Bing; Zhu, Fan; Scannapieco, Frank A.; Haase, Elaine M.; Matthews, Steve; Wu, Hui

    2016-01-01

    Surface display of proteins by sortases in Gram-positive bacteria is crucial for bacterial fitness and virulence. We found a unique gene locus encoding an amylase-binding adhesin AbpA and a sortase B in oral streptococci. AbpA possesses a new distinct C-terminal cell wall sorting signal. We demonstrated that this C-terminal motif is required for anchoring AbpA to cell wall. In vitro and in vivo studies revealed that SrtB has dual functions, anchoring AbpA to the cell wall and processing AbpA into a ladder profile. Solution structure of AbpA determined by NMR reveals a novel structure comprising a small globular α/β domain and an extended coiled-coil heliacal domain. Structural and biochemical studies identified key residues that are crucial for amylase binding. Taken together, our studies document a unique sortase/adhesion substrate system in streptococci adapted to the oral environment rich in salivary amylase. PMID:27492581

  14. Correlation between spin structure oscillations and domain wall velocities

    PubMed Central

    Bisig, André; Stärk, Martin; Mawass, Mohamad-Assaad; Moutafis, Christoforos; Rhensius, Jan; Heidler, Jakoba; Büttner, Felix; Noske, Matthias; Weigand, Markus; Eisebitt, Stefan; Tyliszczak, Tolek; Van Waeyenberge, Bartel; Stoll, Hermann; Schütz, Gisela; Kläui, Mathias

    2013-01-01

    Magnetic sensing and logic devices based on the motion of magnetic domain walls rely on the precise and deterministic control of the position and the velocity of individual magnetic domain walls in curved nanowires. Varying domain wall velocities have been predicted to result from intrinsic effects such as oscillating domain wall spin structure transformations and extrinsic pinning due to imperfections. Here we use direct dynamic imaging of the nanoscale spin structure that allows us for the first time to directly check these predictions. We find a new regime of oscillating domain wall motion even below the Walker breakdown correlated with periodic spin structure changes. We show that the extrinsic pinning from imperfections in the nanowire only affects slow domain walls and we identify the magnetostatic energy, which scales with the domain wall velocity, as the energy reservoir for the domain wall to overcome the local pinning potential landscape. PMID:23978905

  15. Crystal Structure of the Chromodomain Helicase DNA-binding Protein 1 (Chd1) DNA-binding Domain in Complex with DNA*

    PubMed Central

    Sharma, Amit; Jenkins, Katherine R.; Héroux, Annie; Bowman, Gregory D.

    2011-01-01

    Chromatin remodelers are ATP-dependent machines that dynamically alter the chromatin packaging of eukaryotic genomes by assembling, sliding, and displacing nucleosomes. The Chd1 chromatin remodeler possesses a C-terminal DNA-binding domain that is required for efficient nucleosome sliding and believed to be essential for sensing the length of DNA flanking the nucleosome core. The structure of the Chd1 DNA-binding domain was recently shown to consist of a SANT and SLIDE domain, analogous to the DNA-binding domain of the ISWI family, yet the details of how Chd1 recognized DNA were not known. Here we present the crystal structure of the Saccharomyces cerevisiae Chd1 DNA-binding domain in complex with a DNA duplex. The bound DNA duplex is straight, consistent with the preference exhibited by the Chd1 DNA-binding domain for extranucleosomal DNA. Comparison of this structure with the recently solved ISW1a DNA-binding domain bound to DNA reveals that DNA lays across each protein at a distinct angle, yet contacts similar surfaces on the SANT and SLIDE domains. In contrast to the minor groove binding seen for Isw1 and predicted for Chd1, the SLIDE domain of the Chd1 DNA-binding domain contacts the DNA major groove. The majority of direct contacts with the phosphate backbone occur only on one DNA strand, suggesting that Chd1 may not strongly discriminate between major and minor grooves. PMID:22033927

  16. Cache domains that are homologous to, but different from PAS domains comprise the largest superfamily of extracellular sensors in prokaryotes

    DOE PAGES

    Upadhyay, Amit A.; Fleetwood, Aaron D.; Adebali, Ogun; ...

    2016-04-06

    Cellular receptors usually contain a designated sensory domain that recognizes the signal. Per/Arnt/Sim (PAS) domains are ubiquitous sensors in thousands of species ranging from bacteria to humans. Although PAS domains were described as intracellular sensors, recent structural studies revealed PAS-like domains in extracytoplasmic regions in several transmembrane receptors. However, these structurally defined extracellular PAS-like domains do not match sequence-derived PAS domain models, and thus their distribution across the genomic landscape remains largely unknown. Here we show that structurally defined extracellular PAS-like domains belong to the Cache superfamily, which is homologous to, but distinct from the PAS superfamily. Our newly builtmore » computational models enabled identification of Cache domains in tens of thousands of signal transduction proteins including those from important pathogens and model organisms.Moreover, we show that Cache domains comprise the dominant mode of extracellular sensing in prokaryotes.« less

  17. Cache domains that are homologous to, but different from PAS domains comprise the largest superfamily of extracellular sensors in prokaryotes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, Amit A.; Fleetwood, Aaron D.; Adebali, Ogun

    Cellular receptors usually contain a designated sensory domain that recognizes the signal. Per/Arnt/Sim (PAS) domains are ubiquitous sensors in thousands of species ranging from bacteria to humans. Although PAS domains were described as intracellular sensors, recent structural studies revealed PAS-like domains in extracytoplasmic regions in several transmembrane receptors. However, these structurally defined extracellular PAS-like domains do not match sequence-derived PAS domain models, and thus their distribution across the genomic landscape remains largely unknown. Here we show that structurally defined extracellular PAS-like domains belong to the Cache superfamily, which is homologous to, but distinct from the PAS superfamily. Our newly builtmore » computational models enabled identification of Cache domains in tens of thousands of signal transduction proteins including those from important pathogens and model organisms.Moreover, we show that Cache domains comprise the dominant mode of extracellular sensing in prokaryotes.« less

  18. Heart rate variability is associated with psychosocial stress in distinct social domains.

    PubMed

    Lischke, Alexander; Jacksteit, Robert; Mau-Moeller, Anett; Pahnke, Rike; Hamm, Alfons O; Weippert, Matthias

    2018-03-01

    Psychosocial stress is associated with substantial morbidity and mortality. Accordingly, there is a growing interest in biomarkers that indicate whether individuals show adaptive (i.e., stress-buffering and health-promoting) or maladaptive (i.e., stress-escalating and health-impairing) stress reactions in social contexts. As heart rate variability (HRV) has been suggested to be a biomarker of adaptive behavior during social encounters, it may be possible that inter-individual differences in HRV are associated with inter-individual differences regarding stress in distinct social domains. To test this hypothesis, resting state HRV and psychosocial stress was assessed in 83 healthy community-dwelling individuals (age: 18-35years). HRV was derived from heart rate recordings during spontaneous and instructed breathing to assess the robustness of possible associations between inter-individual differences in HRV and inter-individual differences in psychosocial stress. Psychosocial stress was determined with a self-report questionnaire assessing stress in distinct social domains. A series of categorical and dimensional analyses revealed an association between inter-individual differences in HRV and inter-individual differences in psychosocial stress: Individuals with high HRV reported less stress in social life, but not in family life, work life or everyday life, than individuals with low HRV. On basis of these findings, it may be assumed that individuals with high HRV experience less psychosocial stress than individuals with low HRV. Although such an assumption needs to be corroborated by further findings, it seems to be consistent with previous findings showing that individuals with high HRV suffer less from stress and stress-related disorders than individuals with low HRV. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Structural and functional analysis of the human HDAC4 catalytic domain reveals a regulatory structural zinc-binding domain.

    PubMed

    Bottomley, Matthew J; Lo Surdo, Paola; Di Giovine, Paolo; Cirillo, Agostino; Scarpelli, Rita; Ferrigno, Federica; Jones, Philip; Neddermann, Petra; De Francesco, Raffaele; Steinkühler, Christian; Gallinari, Paola; Carfí, Andrea

    2008-09-26

    Histone deacetylases (HDACs) regulate chromatin status and gene expression, and their inhibition is of significant therapeutic interest. To date, no biological substrate for class IIa HDACs has been identified, and only low activity on acetylated lysines has been demonstrated. Here, we describe inhibitor-bound and inhibitor-free structures of the histone deacetylase-4 catalytic domain (HDAC4cd) and of an HDAC4cd active site mutant with enhanced enzymatic activity toward acetylated lysines. The structures presented, coupled with activity data, provide the molecular basis for the intrinsically low enzymatic activity of class IIa HDACs toward acetylated lysines and reveal active site features that may guide the design of class-specific inhibitors. In addition, these structures reveal a conformationally flexible structural zinc-binding domain conserved in all class IIa enzymes. Importantly, either the mutation of residues coordinating the structural zinc ion or the binding of a class IIa selective inhibitor prevented the association of HDAC4 with the N-CoR.HDAC3 repressor complex. Together, these data suggest a key role of the structural zinc-binding domain in the regulation of class IIa HDAC functions.

  20. Ferroelectric domain structure of anisotropically strained NaNbO3 epitaxial thin films

    NASA Astrophysics Data System (ADS)

    Schwarzkopf, J.; Braun, D.; Schmidbauer, M.; Duk, A.; Wördenweber, R.

    2014-05-01

    NaNbO3 thin films have been grown under anisotropic biaxial strain on several oxide substrates by liquid-delivery spin metalorganic chemical vapor deposition. Compressive lattice strain of different magnitude, induced by the deposition of NaNbO3 films with varying film thickness on NdGaO3 single crystalline substrates, leads to modifications of film orientation and phase symmetry, which are similar to the phase transitions in Pb-containing oxides near the morphotropic phase boundary. Piezoresponse force microscopy measurements exhibit large out-of-plane polarization components, but no distinctive domain structure, while C-V measurements indicate relaxor properties in these films. When tensile strain is provoked by the epitaxial growth on DyScO3, TbScO3, and GdScO3 single crystalline substrates, NaNbO3 films behave rather like a normal ferroelectric. The application of these rare-earth scandate substrates yields well-ordered ferroelectric stripe domains of the type a1/a2 with coherent domain walls aligned along the [001] substrate direction as long as the films are fully strained. With increasing plastic lattice relaxation, initially, a 2D domain pattern with still exclusively in-plane electric polarization, and finally, domains with in-plane and out-of-plane polar components evolve.

  1. Cross-Species Analyses Identify the BNIP-2 and Cdc42GAP Homology (BCH) Domain as a Distinct Functional Subclass of the CRAL_TRIO/Sec14 Superfamily

    PubMed Central

    Gupta, Anjali Bansal; Wee, Liang En; Zhou, Yi Ting; Hortsch, Michael; Low, Boon Chuan

    2012-01-01

    The CRAL_TRIO protein domain, which is unique to the Sec14 protein superfamily, binds to a diverse set of small lipophilic ligands. Similar domains are found in a range of different proteins including neurofibromatosis type-1, a Ras GTPase-activating Protein (RasGAP) and Rho guanine nucleotide exchange factors (RhoGEFs). Proteins containing this structural protein domain exhibit a low sequence similarity and ligand specificity while maintaining an overall characteristic three-dimensional structure. We have previously demonstrated that the BNIP-2 and Cdc42GAP Homology (BCH) protein domain, which shares a low sequence homology with the CRAL_TRIO domain, can serve as a regulatory scaffold that binds to Rho, RhoGEFs and RhoGAPs to control various cell signalling processes. In this work, we investigate 175 BCH domain-containing proteins from a wide range of different organisms. A phylogenetic analysis with ∼100 CRAL_TRIO and similar domains from eight representative species indicates a clear distinction of BCH-containing proteins as a novel subclass within the CRAL_TRIO/Sec14 superfamily. BCH-containing proteins contain a hallmark sequence motif R(R/K)h(R/K)(R/K)NL(R/K)xhhhhHPs (‘h’ is large and hydrophobic residue and ‘s’ is small and weekly polar residue) and can be further subdivided into three unique subtypes associated with BNIP-2-N, macro- and RhoGAP-type protein domains. A previously unknown group of genes encoding ‘BCH-only’ domains is also identified in plants and arthropod species. Based on an analysis of their gene-structure and their protein domain context we hypothesize that BCH domain-containing genes evolved through gene duplication, intron insertions and domain swapping events. Furthermore, we explore the point of divergence between BCH and CRAL-TRIO proteins in relation to their ability to bind small GTPases, GAPs and GEFs and lipid ligands. Our study suggests a need for a more extensive analysis of previously uncharacterized BCH,

  2. Same but not alike: Structure, flexibility and energetics of domains in multi-domain proteins are influenced by the presence of other domains

    PubMed Central

    Vishwanath, Sneha

    2018-01-01

    The majority of the proteins encoded in the genomes of eukaryotes contain more than one domain. Reasons for high prevalence of multi-domain proteins in various organisms have been attributed to higher stability and functional and folding advantages over single-domain proteins. Despite these advantages, many proteins are composed of only one domain while their homologous domains are part of multi-domain proteins. In the study presented here, differences in the properties of protein domains in single-domain and multi-domain systems and their influence on functions are discussed. We studied 20 pairs of identical protein domains, which were crystallized in two forms (a) tethered to other proteins domains and (b) tethered to fewer protein domains than (a) or not tethered to any protein domain. Results suggest that tethering of domains in multi-domain proteins influences the structural, dynamic and energetic properties of the constituent protein domains. 50% of the protein domain pairs show significant structural deviations while 90% of the protein domain pairs show differences in dynamics and 12% of the residues show differences in the energetics. To gain further insights on the influence of tethering on the function of the domains, 4 pairs of homologous protein domains, where one of them is a full-length single-domain protein and the other protein domain is a part of a multi-domain protein, were studied. Analyses showed that identical and structurally equivalent functional residues show differential dynamics in homologous protein domains; though comparable dynamics between in-silico generated chimera protein and multi-domain proteins were observed. From these observations, the differences observed in the functions of homologous proteins could be attributed to the presence of tethered domain. Overall, we conclude that tethered domains in multi-domain proteins not only provide stability or folding advantages but also influence pathways resulting in differences in

  3. Same but not alike: Structure, flexibility and energetics of domains in multi-domain proteins are influenced by the presence of other domains.

    PubMed

    Vishwanath, Sneha; de Brevern, Alexandre G; Srinivasan, Narayanaswamy

    2018-02-01

    The majority of the proteins encoded in the genomes of eukaryotes contain more than one domain. Reasons for high prevalence of multi-domain proteins in various organisms have been attributed to higher stability and functional and folding advantages over single-domain proteins. Despite these advantages, many proteins are composed of only one domain while their homologous domains are part of multi-domain proteins. In the study presented here, differences in the properties of protein domains in single-domain and multi-domain systems and their influence on functions are discussed. We studied 20 pairs of identical protein domains, which were crystallized in two forms (a) tethered to other proteins domains and (b) tethered to fewer protein domains than (a) or not tethered to any protein domain. Results suggest that tethering of domains in multi-domain proteins influences the structural, dynamic and energetic properties of the constituent protein domains. 50% of the protein domain pairs show significant structural deviations while 90% of the protein domain pairs show differences in dynamics and 12% of the residues show differences in the energetics. To gain further insights on the influence of tethering on the function of the domains, 4 pairs of homologous protein domains, where one of them is a full-length single-domain protein and the other protein domain is a part of a multi-domain protein, were studied. Analyses showed that identical and structurally equivalent functional residues show differential dynamics in homologous protein domains; though comparable dynamics between in-silico generated chimera protein and multi-domain proteins were observed. From these observations, the differences observed in the functions of homologous proteins could be attributed to the presence of tethered domain. Overall, we conclude that tethered domains in multi-domain proteins not only provide stability or folding advantages but also influence pathways resulting in differences in

  4. Distinct domains within the NITROGEN LIMITATION ADAPTATION protein mediate its subcellular localization and function in the nitrate-dependent phosphate homeostasis pathway

    USDA-ARS?s Scientific Manuscript database

    The NITROGEN LIMITATION ADAPTATION (NLA) protein is a RING-type E3 ubiquitin ligase that plays an essential role in the regulation of nitrogen and phosphate homeostasis. NLA is localized to two distinct subcellular sites, the plasma membrane and nucleus, and contains four distinct domains: i) a RING...

  5. Extensions of PDZ domains as important structural and functional elements.

    PubMed

    Wang, Conan K; Pan, Lifeng; Chen, Jia; Zhang, Mingjie

    2010-08-01

    'Divide and conquer' has been the guiding strategy for the study of protein structure and function. Proteins are divided into domains with each domain having a canonical structural definition depending on its type. In this review, we push forward with the interesting observation that many domains have regions outside of their canonical definition that affect their structure and function; we call these regions 'extensions'. We focus on the highly abundant PDZ (PSD-95, DLG1 and ZO-1) domain. Using bioinformatics, we find that many PDZ domains have potential extensions and we developed an openly-accessible website to display our results ( http://bcz102.ust.hk/pdzex/ ). We propose, using well-studied PDZ domains as illustrative examples, that the roles of PDZ extensions can be classified into at least four categories: 1) protein dynamics-based modulation of target binding affinity, 2) provision of binding sites for macro-molecular assembly, 3) structural integration of multi-domain modules, and 4) expansion of the target ligand-binding pocket. Our review highlights the potential structural and functional importance of domain extensions, highlighting the significance of looking beyond the canonical boundaries of protein domains in general.

  6. MAGDM linear-programming models with distinct uncertain preference structures.

    PubMed

    Xu, Zeshui S; Chen, Jian

    2008-10-01

    Group decision making with preference information on alternatives is an interesting and important research topic which has been receiving more and more attention in recent years. The purpose of this paper is to investigate multiple-attribute group decision-making (MAGDM) problems with distinct uncertain preference structures. We develop some linear-programming models for dealing with the MAGDM problems, where the information about attribute weights is incomplete, and the decision makers have their preferences on alternatives. The provided preference information can be represented in the following three distinct uncertain preference structures: 1) interval utility values; 2) interval fuzzy preference relations; and 3) interval multiplicative preference relations. We first establish some linear-programming models based on decision matrix and each of the distinct uncertain preference structures and, then, develop some linear-programming models to integrate all three structures of subjective uncertain preference information provided by the decision makers and the objective information depicted in the decision matrix. Furthermore, we propose a simple and straightforward approach in ranking and selecting the given alternatives. It is worth pointing out that the developed models can also be used to deal with the situations where the three distinct uncertain preference structures are reduced to the traditional ones, i.e., utility values, fuzzy preference relations, and multiplicative preference relations. Finally, we use a practical example to illustrate in detail the calculation process of the developed approach.

  7. Structural insights of ZIP4 extracellular domain critical for optimal zinc transport

    NASA Astrophysics Data System (ADS)

    Zhang, Tuo; Sui, Dexin; Hu, Jian

    2016-06-01

    The ZIP zinc transporter family is responsible for zinc uptake from the extracellular milieu or intracellular vesicles. The LIV-1 subfamily, containing nine out of the 14 human ZIP proteins, is featured with a large extracellular domain (ECD). The critical role of the ECD is manifested by disease-causing mutations on ZIP4, a representative LIV-1 protein. Here we report the first crystal structure of a mammalian ZIP4-ECD, which reveals two structurally independent subdomains and an unprecedented dimer centred at the signature PAL motif. Structure-guided mutagenesis, cell-based zinc uptake assays and mapping of the disease-causing mutations indicate that the two subdomains play pivotal but distinct roles and that the bridging region connecting them is particularly important for ZIP4 function. These findings lead to working hypotheses on how ZIP4-ECD exerts critical functions in zinc transport. The conserved dimeric architecture in ZIP4-ECD is also demonstrated to be a common structural feature among the LIV-1 proteins.

  8. Pwp2 mediates UTP-B assembly via two structurally independent domains.

    PubMed

    Boissier, Fanny; Schmidt, Christina Maria; Linnemann, Jan; Fribourg, Sébastien; Perez-Fernandez, Jorge

    2017-06-09

    The SSU processome constitutes a large ribonucleoprotein complex involved in the early steps of ribosome biogenesis. UTP-B is one of the first multi-subunit protein complexes that associates with the pre-ribosomal RNA to form the SSU processome. To understand the molecular basis of the hierarchical assembly of the SSU-processome, we have undergone a structural and functional analysis of the UTP-B subunit Pwp2p. We show that Pwp2p is required for the proper assembly of UTP-B and for a productive association of UTP-B with pre-rRNA. These two functions are mediated by two distinct structural domains. The N-terminal domain of Pwp2p folds into a tandem WD-repeat (tWD) that associates with Utp21p, Utp18p, and Utp6p to form a core complex. The CTDs of Pwp2p and Utp21p mediate the assembly of the heterodimer Utp12p:Utp13p that is required for the stable incorporation of the UTP-B complex in the SSU processome. Finally, we provide evidence suggesting a role of UTP-B as a platform for the binding of assembly factors during the maturation of 20S rRNA precursors.

  9. Bulk magnetic domain structures visualized by neutron dark-field imaging

    NASA Astrophysics Data System (ADS)

    Grünzweig, C.; David, C.; Bunk, O.; Dierolf, M.; Frei, G.; Kühne, G.; Schäfer, R.; Pofahl, S.; Rønnow, H. M. R.; Pfeiffer, F.

    2008-09-01

    We report on how a neutron grating interferometer can yield projection images of the internal domain structure in bulk ferromagnetic samples. The image contrast relies on the ultrasmall angle scattering of unpolarized neutrons at domain wall structures in the specimen. The results show the basic domains of (110)-oriented sheets in an FeSi test sample. The obtained domain structures could be correlated with surface sensitive magneto-optical Kerr effect micrographs.

  10. Influence of HLA-DR and -DQ alleles on autoantibody recognition of distinct epitopes within the juxtamembrane domain of the IA-2 autoantigen in type 1 diabetes.

    PubMed

    Richardson, Carolyn C; McLaughlin, Kerry A; Morgan, Diana; Feltbower, Richard G; Christie, Michael R

    2016-02-01

    Insulinoma-associated protein 2 (IA-2) is a major target of autoimmunity in type 1 diabetes. When first detected, IA-2-autoantibodies commonly bind epitopes in the juxtamembrane (JM) domain of IA-2 and antibody responses subsequently spread to the tyrosine phosphatase domain. Definition of structures of epitopes in the JM domain, and genetic requirements for autoimmunity to these epitopes, is important for our understanding of initiation and progression of autoimmunity. The aims of this study were to investigate the contribution of individual amino acids in the IA-2 JM domain to antibody binding to these epitopes and the role of HLA genotypes in determining epitope specificity. Regions of the JM domain recognised by autoantibodies were identified by peptide competition and inhibitory effects of alanine substitutions of residues within the JM region. Antibody binding was determined by radioligand binding assays using sera from patients genotyped for HLA-DRB1 and -DQB1 alleles. Patients were categorised into two distinct groups of JM antibody reactivity according to peptide inhibition. Inhibition by substitutions of individual amino acids within the JM domain differed between patients, indicating heterogeneity in epitope recognition. Cluster analysis defined six groups of residues having similar inhibitory effects on antibody binding, with three clusters showing differences in patients affected or unaffected by peptide. One cluster demonstrated significant differences in antibody binding between HLA-DRB1*04 and HLA-DRB1*07 patients and within DRB1*04 individuals; antibody recognition of a second cluster depended on expression of HLA-DQB1*0302. The results identify amino acids contributing to distinct epitopes on IA-2, with both HLA-DR and HLA-DQ alleles influencing epitope specificity.

  11. The Structural Basis for Activation and Inhibition of ZAP-70 Kinase Domain.

    PubMed

    Huber, Roland G; Fan, Hao; Bond, Peter J

    2015-10-01

    ZAP-70 (Zeta-chain-associated protein kinase 70) is a tyrosine kinase that interacts directly with the activated T-cell receptor to transduce downstream signals, and is hence a major player in the regulation of the adaptive immune response. Dysfunction of ZAP-70 causes selective T cell deficiency that in turn results in persistent infections. ZAP-70 is activated by a variety of signals including phosphorylation of the kinase domain (KD), and binding of its regulatory tandem Src homology 2 (SH2) domains to the T cell receptor. The present study investigates molecular mechanisms of activation and inhibition of ZAP-70 via atomically detailed molecular dynamics simulation approaches. We report microsecond timescale simulations of five distinct states of the ZAP-70 KD, comprising apo, inhibited and three phosphorylated variants. Extensive analysis of local flexibility and correlated motions reveal crucial transitions between the states, thus elucidating crucial steps in the activation mechanism of the ZAP-70 KD. Furthermore, we rationalize previously observed staurosporine-bound crystal structures, suggesting that whilst the KD superficially resembles an "active-like" conformation, the inhibitor modulates the underlying protein dynamics and restricts it in a compact, rigid state inaccessible to ligands or cofactors. Finally, our analysis reveals a novel, potentially druggable pocket in close proximity to the activation loop of the kinase, and we subsequently use its structure in fragment-based virtual screening to develop a pharmacophore model. The pocket is distinct from classical type I or type II kinase pockets, and its discovery offers promise in future design of specific kinase inhibitors, whilst mutations in residues associated with this pocket are implicated in immunodeficiency in humans.

  12. The Structural Basis for Activation and Inhibition of ZAP-70 Kinase Domain

    PubMed Central

    Huber, Roland G.; Fan, Hao; Bond, Peter J.

    2015-01-01

    ZAP–70 (Zeta-chain-associated protein kinase 70) is a tyrosine kinase that interacts directly with the activated T-cell receptor to transduce downstream signals, and is hence a major player in the regulation of the adaptive immune response. Dysfunction of ZAP–70 causes selective T cell deficiency that in turn results in persistent infections. ZAP–70 is activated by a variety of signals including phosphorylation of the kinase domain (KD), and binding of its regulatory tandem Src homology 2 (SH2) domains to the T cell receptor. The present study investigates molecular mechanisms of activation and inhibition of ZAP–70 via atomically detailed molecular dynamics simulation approaches. We report microsecond timescale simulations of five distinct states of the ZAP–70 KD, comprising apo, inhibited and three phosphorylated variants. Extensive analysis of local flexibility and correlated motions reveal crucial transitions between the states, thus elucidating crucial steps in the activation mechanism of the ZAP–70 KD. Furthermore, we rationalize previously observed staurosporine-bound crystal structures, suggesting that whilst the KD superficially resembles an “active-like” conformation, the inhibitor modulates the underlying protein dynamics and restricts it in a compact, rigid state inaccessible to ligands or cofactors. Finally, our analysis reveals a novel, potentially druggable pocket in close proximity to the activation loop of the kinase, and we subsequently use its structure in fragment-based virtual screening to develop a pharmacophore model. The pocket is distinct from classical type I or type II kinase pockets, and its discovery offers promise in future design of specific kinase inhibitors, whilst mutations in residues associated with this pocket are implicated in immunodeficiency in humans. PMID:26473606

  13. Crystal structure of the Candida albicans Kar3 kinesin motor domain fused to maltose-binding protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Delorme, Caroline; Joshi, Monika; Allingham, John S., E-mail: allinghj@queensu.ca

    2012-11-30

    Highlights: Black-Right-Pointing-Pointer The Candida albicans Kar3 motor domain structure was solved as a maltose-binding protein fusion. Black-Right-Pointing-Pointer The electrostatic surface and part of the ATPase pocket of the motor domain differs markedly from other kinesins. Black-Right-Pointing-Pointer The MBP-Kar3 interface highlights a new site for intramolecular or intermolecular interactions. -- Abstract: In the human fungal pathogen Candida albicans, the Kinesin-14 motor protein Kar3 (CaKar3) is critical for normal mitotic division, nuclear fusion during mating, and morphogenic transition from the commensal yeast form to the virulent hyphal form. As a first step towards detailed characterization of this motor of potential medical significance,more » we have crystallized and determined the X-ray structure of the motor domain of CaKar3 as a maltose-binding protein (MBP) fusion. The structure shows strong conservation of overall motor domain topology to other Kar3 kinesins, but with some prominent differences in one of the motifs that compose the nucleotide-binding pocket and the surface charge distribution. The MBP and Kar3 modules are arranged such that MBP interacts with the Kar3 motor domain core at the same site where the neck linker of conventional kinesins docks during the 'ATP state' of the mechanochemical cycle. This site differs from the Kar3 neck-core interface in the recent structure of the ScKar3Vik1 heterodimer. The position of MBP is also completely distinct from the Vik1 subunit in this complex. This may suggest that the site of MBP interaction on the CaKar3 motor domain provides an interface for the neck, or perhaps a partner subunit, at an intermediate state of its motile cycle that has not yet been observed for Kinesin-14 motors.« less

  14. Structural and functional dissection reveals distinct roles of Ca2+-binding sites in the giant adhesin SiiE of Salmonella enterica

    PubMed Central

    Klingl, Stefan; Sandmann, Achim; Taccardi, Nicola; Sticht, Heinrich; Muller, Yves A.; Hensel, Michael

    2017-01-01

    The giant non-fimbrial adhesin SiiE of Salmonella enterica mediates the first contact to the apical site of epithelial cells and enables subsequent invasion. SiiE is a 595 kDa protein composed of 53 repetitive bacterial immunoglobulin (BIg) domains and the only known substrate of the SPI4-encoded type 1 secretion system (T1SS). The crystal structure of BIg50-52 of SiiE revealed two distinct Ca2+-binding sites per BIg domain formed by conserved aspartate or glutamate residues. In a mutational analysis Ca2+-binding sites were disrupted by aspartate to serine exchange at various positions in the BIg domains of SiiE. Amounts of secreted SiiE diminish with a decreasing number of intact Ca2+-binding sites. BIg domains of SiiE contain distinct Ca2+-binding sites, with type I sites being similar to other T1SS-secreted proteins and type II sites newly identified in SiiE. We functionally and structurally dissected the roles of type I and type II Ca2+-binding sites in SiiE, as well as the importance of Ca2+-binding sites in various positions of SiiE. Type I Ca2+-binding sites were critical for efficient secretion of SiiE and a decreasing number of type I sites correlated with reduced secretion. Type II sites were less important for secretion, stability and surface expression of SiiE, however integrity of type II sites in the C-terminal portion was required for the function of SiiE in mediating adhesion and invasion. PMID:28558023

  15. Evolutionary plasticity of the NHL domain underlies distinct solutions to RNA recognition.

    PubMed

    Kumari, Pooja; Aeschimann, Florian; Gaidatzis, Dimos; Keusch, Jeremy J; Ghosh, Pritha; Neagu, Anca; Pachulska-Wieczorek, Katarzyna; Bujnicki, Janusz M; Gut, Heinz; Großhans, Helge; Ciosk, Rafal

    2018-04-19

    RNA-binding proteins regulate all aspects of RNA metabolism. Their association with RNA is mediated by RNA-binding domains, of which many remain uncharacterized. A recently reported example is the NHL domain, found in prominent regulators of cellular plasticity like the C. elegans LIN-41. Here we employ an integrative approach to dissect the RNA specificity of LIN-41. Using computational analysis, structural biology, and in vivo studies in worms and human cells, we find that a positively charged pocket, specific to the NHL domain of LIN-41 and its homologs (collectively LIN41), recognizes a stem-loop RNA element, whose shape determines the binding specificity. Surprisingly, the mechanism of RNA recognition by LIN41 is drastically different from that of its more distant relative, the fly Brat. Our phylogenetic analysis suggests that this reflects a rapid evolution of the domain, presenting an interesting example of a conserved protein fold that acquired completely different solutions to RNA recognition.

  16. Trapping a 96° domain rotation in two distinct conformations by engineered disulfide bridges

    PubMed Central

    Schultz-Heienbrok, Robert; Maier, Timm; Sträter, Norbert

    2004-01-01

    Engineering disulfide bridges is a common technique to lock a protein movement in a defined conformational state. We have designed two double mutants of Escherichia coli 5′-nucleotidase to trap the enzyme in both an open (S228C, P513C) and a closed (P90C, L424C) conformation by the formation of disulfide bridges. The mutant proteins have been expressed, purified, and crystallized, to structurally characterize the designed variants. The S228C, P513C is a double mutant crystallized in two different crystal forms with three independent conformers, which differ from each other by a rotation of up to 12° of the C-terminal domain with respect to the N-terminal domain. This finding, as well as an analysis of the domain motion in the crystal, indicates that the enzyme still exhibits considerable residual domain flexibility. In the double mutant that was designed to trap the enzyme in the closed conformation, the structure analysis reveals an unexpected intermediate conformation along the 96° rotation trajectory between the open and closed enzyme forms. A comparison of the five independent conformers analyzed in this study shows that the domain movement of the variant enzymes is characterized by a sliding movement of the residues of the domain interface along the interface, which is in contrast to a classical closure motion where the residues of the domain interface move perpendicular to the interface. PMID:15215524

  17. Structural and Functional Analysis of the Human HDAC4 Catalytic Domain Reveals a Regulatory Structural Zinc-binding Domain*S⃞

    PubMed Central

    Bottomley, Matthew J.; Lo Surdo, Paola; Di Giovine, Paolo; Cirillo, Agostino; Scarpelli, Rita; Ferrigno, Federica; Jones, Philip; Neddermann, Petra; De Francesco, Raffaele; Steinkühler, Christian; Gallinari, Paola; Carfí, Andrea

    2008-01-01

    Histone deacetylases (HDACs) regulate chromatin status and gene expression, and their inhibition is of significant therapeutic interest. To date, no biological substrate for class IIa HDACs has been identified, and only low activity on acetylated lysines has been demonstrated. Here, we describe inhibitor-bound and inhibitor-free structures of the histone deacetylase-4 catalytic domain (HDAC4cd) and of an HDAC4cd active site mutant with enhanced enzymatic activity toward acetylated lysines. The structures presented, coupled with activity data, provide the molecular basis for the intrinsically low enzymatic activity of class IIa HDACs toward acetylated lysines and reveal active site features that may guide the design of class-specific inhibitors. In addition, these structures reveal a conformationally flexible structural zinc-binding domain conserved in all class IIa enzymes. Importantly, either the mutation of residues coordinating the structural zinc ion or the binding of a class IIa selective inhibitor prevented the association of HDAC4 with the N-CoR·HDAC3 repressor complex. Together, these data suggest a key role of the structural zinc-binding domain in the regulation of class IIa HDAC functions. PMID:18614528

  18. Structural And Functional Studies of ALIX Interactions With YPXnL Late Domains of HIV-1 And EIAV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhai, Q.; Fisher, R.D.; Chung, H.-Y.

    2009-05-28

    Retrovirus budding requires short peptide motifs (late domains) located within the viral Gag protein that function by recruiting cellular factors. The YPX{sub n}L late domains of HIV and other lentiviruses recruit the protein ALIX (also known as AIP1), which also functions in vesicle formation at the multivesicular body and in the abscission stage of cytokinesis. Here, we report the crystal structures of ALIX in complex with the YPX{sub n}L late domains from HIV-1 and EIAV. The two distinct late domains bind at the same site on the ALIX V domain but adopt different conformations that allow them to make equivalentmore » contacts. Binding studies and functional assays verified the importance of key interface residues and revealed that binding affinities are tuned by context-dependent effects. These results reveal how YPX{sub n}L late domains recruit ALIX to facilitate virus budding and how ALIX can bind YPX{sub n}L sequences with both n = 1 and n = 3.« less

  19. Crystal Structure of the C-terminal Region of Streptococcus mutans Antigen I/II and Characterization of Salivary Agglutinin Adherence Domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, Matthew R.; Rajashankar, Kanagalaghatta R.; Crowley, Paula J.

    2012-05-29

    The Streptococcus mutans antigen I/II (AgI/II) is a cell surface-localized protein that adheres to salivary components and extracellular matrix molecules. Here we report the 2.5 {angstrom} resolution crystal structure of the complete C-terminal region of AgI/II. The C-terminal region is comprised of three major domains: C{sub 1}, C{sub 2}, and C{sub 3}. Each domain adopts a DE-variant IgG fold, with two {beta}-sheets whose A and F strands are linked through an intramolecular isopeptide bond. The adherence of the C-terminal AgI/II fragments to the putative tooth surface receptor salivary agglutinin (SAG), as monitored by surface plasmon resonance, indicated that the minimalmore » region of binding was contained within the first and second DE-variant-IgG domains (C{sub 1} and C{sub 2}) of the C terminus. The minimal C-terminal region that could inhibit S. mutans adherence to SAG was also confirmed to be within the C{sub 1} and C{sub 2} domains. Competition experiments demonstrated that the C- and N-terminal regions of AgI/II adhere to distinct sites on SAG. A cleft formed at the intersection between these C{sub 1} and C{sub 2} domains bound glucose molecules from the cryo-protectant solution, revealing a putative binding site for its highly glycosylated receptor SAG. Finally, electron microscopy images confirmed the elongated structure of AgI/II and enabled building a composite tertiary model that encompasses its two distinct binding regions.« less

  20. Structure of synaptophysin: a hexameric MARVEL-domain channel protein.

    PubMed

    Arthur, Christopher P; Stowell, Michael H B

    2007-06-01

    Synaptophysin I (SypI) is an archetypal member of the MARVEL-domain family of integral membrane proteins and one of the first synaptic vesicle proteins to be identified and cloned. Most all MARVEL-domain proteins are involved in membrane apposition and vesicle-trafficking events, but their precise role in these processes is unclear. We have purified mammalian SypI and determined its three-dimensional (3D) structure by using electron microscopy and single-particle 3D reconstruction. The hexameric structure resembles an open basket with a large pore and tenuous interactions within the cytosolic domain. The structure suggests a model for Synaptophysin's role in fusion and recycling that is regulated by known interactions with the SNARE machinery. This 3D structure of a MARVEL-domain protein provides a structural foundation for understanding the role of these important proteins in a variety of biological processes.

  1. HiTAD: detecting the structural and functional hierarchies of topologically associating domains from chromatin interactions

    PubMed Central

    Wang, Xiao-Tao; Cui, Wang

    2017-01-01

    Abstract A current question in the high-order organization of chromatin is whether topologically associating domains (TADs) are distinct from other hierarchical chromatin domains. However, due to the unclear TAD definition in tradition, the structural and functional uniqueness of TAD is not well studied. In this work, we refined TAD definition by further constraining TADs to the optimal separation on global intra-chromosomal interactions. Inspired by this constraint, we developed a novel method, called HiTAD, to detect hierarchical TADs from Hi-C chromatin interactions. HiTAD performs well in domain sensitivity, replicate reproducibility and inter cell-type conservation. With a novel domain-based alignment proposed by us, we defined several types of hierarchical TAD changes which were not systematically studied previously, and subsequently used them to reveal that TADs and sub-TADs differed statistically in correlating chromosomal compartment, replication timing and gene transcription. Finally, our work also has the implication that the refinement of TAD definition could be achieved by only utilizing chromatin interactions, at least in part. HiTAD is freely available online. PMID:28977529

  2. A proteome view of structural, functional, and taxonomic characteristics of major protein domain clusters.

    PubMed

    Sun, Chia-Tsen; Chiang, Austin W T; Hwang, Ming-Jing

    2017-10-27

    Proteome-scale bioinformatics research is increasingly conducted as the number of completely sequenced genomes increases, but analysis of protein domains (PDs) usually relies on similarity in their amino acid sequences and/or three-dimensional structures. Here, we present results from a bi-clustering analysis on presence/absence data for 6,580 unique PDs in 2,134 species with a sequenced genome, thus covering a complete set of proteins, for the three superkingdoms of life, Bacteria, Archaea, and Eukarya. Our analysis revealed eight distinctive PD clusters, which, following an analysis of enrichment of Gene Ontology functions and CATH classification of protein structures, were shown to exhibit structural and functional properties that are taxa-characteristic. For examples, the largest cluster is ubiquitous in all three superkingdoms, constituting a set of 1,472 persistent domains created early in evolution and retained in living organisms and characterized by basic cellular functions and ancient structural architectures, while an Archaea and Eukarya bi-superkingdom cluster suggests its PDs may have existed in the ancestor of the two superkingdoms, and others are single superkingdom- or taxa (e.g. Fungi)-specific. These results contribute to increase our appreciation of PD diversity and our knowledge of how PDs are used in species, yielding implications on species evolution.

  3. Structural basis of the heterodimerization of the MST and RASSF SARAH domains in the Hippo signalling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Eunha; Korea University, Seoul 136-701; Cheong, Hae-Kap

    2014-07-01

    The heterodimeric structure of the MST1 and RASSF5 SARAH domains is presented. A comparison of homodimeric and heterodimeric interactions provides a structural basis for the preferential association of the SARAH heterodimer. Despite recent progress in research on the Hippo signalling pathway, the structural information available in this area is extremely limited. Intriguingly, the homodimeric and heterodimeric interactions of mammalian sterile 20-like (MST) kinases through the so-called ‘SARAH’ (SAV/RASSF/HPO) domains play a critical role in cellular homeostasis, dictating the fate of the cell regarding cell proliferation or apoptosis. To understand the mechanism of the heterodimerization of SARAH domains, the three-dimensional structuresmore » of an MST1–RASSF5 SARAH heterodimer and an MST2 SARAH homodimer were determined by X-ray crystallography and were analysed together with that previously determined for the MST1 SARAH homodimer. While the structure of the MST2 homodimer resembled that of the MST1 homodimer, the MST1–RASSF5 heterodimer showed distinct structural features. Firstly, the six N-terminal residues (Asp432–Lys437), which correspond to the short N-terminal 3{sub 10}-helix h1 kinked from the h2 helix in the MST1 homodimer, were disordered. Furthermore, the MST1 SARAH domain in the MST1–RASSF5 complex showed a longer helical structure (Ser438–Lys480) than that in the MST1 homodimer (Val441–Lys480). Moreover, extensive polar and nonpolar contacts in the MST1–RASSF5 SARAH domain were identified which strengthen the interactions in the heterodimer in comparison to the interactions in the homodimer. Denaturation experiments performed using urea also indicated that the MST–RASSF heterodimers are substantially more stable than the MST homodimers. These findings provide structural insights into the role of the MST1–RASSF5 SARAH domain in apoptosis signalling.« less

  4. Structural and Histone Binding Ability Characterizations of Human PWWP Domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Hong; Zeng, Hong; Lam, Robert

    2013-09-25

    The PWWP domain was first identified as a structural motif of 100-130 amino acids in the WHSC1 protein and predicted to be a protein-protein interaction domain. It belongs to the Tudor domain 'Royal Family', which consists of Tudor, chromodomain, MBT and PWWP domains. While Tudor, chromodomain and MBT domains have long been known to bind methylated histones, PWWP was shown to exhibit histone binding ability only until recently. The PWWP domain has been shown to be a DNA binding domain, but sequence analysis and previous structural studies show that the PWWP domain exhibits significant similarity to other 'Royal Family' members,more » implying that the PWWP domain has the potential to bind histones. In order to further explore the function of the PWWP domain, we used the protein family approach to determine the crystal structures of the PWWP domains from seven different human proteins. Our fluorescence polarization binding studies show that PWWP domains have weak histone binding ability, which is also confirmed by our NMR titration experiments. Furthermore, we determined the crystal structures of the BRPF1 PWWP domain in complex with H3K36me3, and HDGF2 PWWP domain in complex with H3K79me3 and H4K20me3. PWWP proteins constitute a new family of methyl lysine histone binders. The PWWP domain consists of three motifs: a canonical {beta}-barrel core, an insertion motif between the second and third {beta}-strands and a C-terminal {alpha}-helix bundle. Both the canonical {beta}-barrel core and the insertion motif are directly involved in histone binding. The PWWP domain has been previously shown to be a DNA binding domain. Therefore, the PWWP domain exhibits dual functions: binding both DNA and methyllysine histones.« less

  5. Structural Dynamics of the GW182 Silencing Domain Including its RNA Recognition motif (RRM) Revealed by Hydrogen-Deuterium Exchange Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Cieplak-Rotowska, Maja K.; Tarnowski, Krzysztof; Rubin, Marcin; Fabian, Marc R.; Sonenberg, Nahum; Dadlez, Michal; Niedzwiecka, Anna

    2018-01-01

    The human GW182 protein plays an essential role in micro(mi)RNA-dependent gene silencing. miRNA silencing is mediated, in part, by a GW182 C-terminal region called the silencing domain, which interacts with the poly(A) binding protein and the CCR4-NOT deadenylase complex to repress protein synthesis. Structural studies of this GW182 fragment are challenging due to its predicted intrinsically disordered character, except for its RRM domain. However, detailed insights into the properties of proteins containing disordered regions can be provided by hydrogen-deuterium exchange mass spectrometry (HDX/MS). In this work, we applied HDX/MS to define the structural state of the GW182 silencing domain. HDX/MS analysis revealed that this domain is clearly divided into a natively unstructured part, including the CCR4-NOT interacting motif 1, and a distinct RRM domain. The GW182 RRM has a very dynamic structure, since water molecules can penetrate the whole domain in 2 h. The finding of this high structural dynamics sheds new light on the RRM structure. Though this domain is one of the most frequently occurring canonical protein domains in eukaryotes, these results are - to our knowledge - the first HDX/MS characteristics of an RRM. The HDX/MS studies show also that the α2 helix of the RRM can display EX1 behavior after a freezing-thawing cycle. This means that the RRM structure is sensitive to environmental conditions and can change its conformation, which suggests that the state of the RRM containing proteins should be checked by HDX/MS in regard of the conformational uniformity. [Figure not available: see fulltext.

  6. The structure of the regulatory domain of the adenylyl cyclase Rv1264 from Mycobacterium tuberculosis with bound oleic acid.

    PubMed

    Findeisen, Felix; Linder, Jürgen U; Schultz, Anita; Schultz, Joachim E; Brügger, Britta; Wieland, Felix; Sinning, Irmgard; Tews, Ivo

    2007-06-22

    The universal secondary messenger cAMP is produced by adenylyl cyclases (ACs). Most bacterial and all eukaryotic ACs belong to class III of six divergent classes. A class III characteristic is formation of the catalytic pocket at a dimer interface and the presence of additional regulatory domains. Mycobacterium tuberculosis possesses 15 class III ACs, including Rv1264, which is activated at acidic pH due to pH-dependent structural transitions of the Rv1264 dimer. It has been shown by X-ray crystallography that the N-terminal regulatory and C-terminal catalytic domains of Rv1264 interact in completely different ways in the active and inhibited states. Here, we report an in-depth structural and functional analysis of the regulatory domain of Rv1264. The 1.6 A resolution crystal structure shows the protein in a tight, disk-shaped dimer, formed around a helical bundle, and involving a protein chain crossover. To understand pH regulation, we determined structures at acidic and basic pH values and employed structure-based mutagenesis in the holoenzyme to elucidate regulation using an AC activity assay. It has been shown that regulatory and catalytic domains must be linked in a single protein chain. The new studies demonstrate that the length of the linker segment is decisive for regulation. Several amino acids on the surface of the regulatory domain, when exchanged, altered the pH-dependence of AC activity. However, these residues are not conserved amongst a number of related ACs. The closely related mycobacterial Rv2212, but not Rv1264, is strongly activated by the addition of fatty acids. The structure resolved the presence of a deeply embedded fatty acid, characterised as oleic acid by mass spectrometry, which may serve as a hinge. From these data, we conclude that the regulatory domain is a structural scaffold used for distinct regulatory purposes.

  7. Solution structure of the isolated Pelle death domain.

    PubMed

    Moncrieffe, Martin C; Stott, Katherine M; Gay, Nicholas J

    2005-07-18

    The interaction between the death domains (DDs) of Tube and the protein kinase Pelle is an important component of the Toll pathway. Published crystallographic data suggests that the Pelle-Tube DD interface is plastic and implies that in addition to the two predominant Pelle-Tube interfaces, a third interaction is possible. We present the NMR solution structure of the isolated death domain of Pelle and a study of the interaction between the DDs of Pelle and Tube. Our data suggests the solution structure of the isolated Pelle DD is similar to that of Pelle DD in complex with Tube. Additionally, they suggest that the plasticity observed in the crystal structure may not be relevant in the functioning death domain complex.

  8. The hypervariable domain of the mitochondrial control region in Atlantic spiny lobsters and its potential as a marker for investigating phylogeographic structuring.

    PubMed

    Diniz, Fabio M; Maclean, Norman; Ogawa, Masayoshi; Cintra, Israel H A; Bentzen, Paul

    2005-01-01

    Atlantic spiny lobsters support major fisheries in northeastern Brazilian waters and in the Caribbean Sea. To avoid reduction in diversity and elimination of distinct stocks, understanding their population dynamics, including structuring of populations and genetic diversity, is critical. We here explore the potential of using the hypervariable domain in the control region of the mitochondrial DNA as a genetic marker to characterize population subdivision in spiny lobsters, using Panulirus argus as the species model. The primers designed on the neighboring conserved genes have amplified the entire control region (approx. 780 bases) of P. argus and other closely related species. Average nucleotide and haplotype diversity within P. argus were found to be high, and population structuring was hypothesized. The data suggest a division of P. argus into genetically different phylogeographic groups. The hypervariable domain seems to be useful for determining genetic differentiation of geographically distinct stocks of P. argus and other Atlantic spiny lobsters.

  9. The structure of S . lividans acetoacetyl-CoA synthetase shows a novel interaction between the C-terminal extension and the N-terminal domain

    DOE PAGES

    Mitchell, Carter A.; Tucker, Alex C.; Escalante-Semerena, Jorge C.; ...

    2014-12-09

    The adenosine monoposphate-forming acyl-CoA synthetase enzymes catalyze a two-step reaction that involves the initial formation of an acyl adenylate that reacts in a second partial reaction to form a thioester between the acyl substrate and CoA. These enzymes utilize a Domain Alternation catalytic mechanism, whereby a ~110 residue C-terminal domain rotates by 140° to form distinct catalytic conformations for the two partial reactions. In this paper, the structure of an acetoacetyl-CoA synthetase (AacS) is presented that illustrates a novel aspect of this C-terminal domain. Specifically, several acetyl- and acetoacetyl-CoA synthetases contain a 30-residue extension on the C-terminus compared to othermore » members of this family. Finally, whereas residues from this extension are disordered in prior structures, the AacS structure shows that residues from this extension may interact with key catalytic residues from the N-terminal domain.« less

  10. Identification of structural domains in proteins by a graph heuristic.

    PubMed

    Wernisch, L; Hunting, M; Wodak, S J

    1999-05-15

    A novel automatic procedure for identifying domains from protein atomic coordinates is presented. The procedure, termed STRUDL (STRUctural Domain Limits), does not take into account information on secondary structures and handles any number of domains made up of contiguous or non-contiguous chain segments. The core algorithm uses the Kernighan-Lin graph heuristic to partition the protein into residue sets which display minimum interactions between them. These interactions are deduced from the weighted Voronoi diagram. The generated partitions are accepted or rejected on the basis of optimized criteria, representing basic expected physical properties of structural domains. The graph heuristic approach is shown to be very effective, it approximates closely the exact solution provided by a branch and bound algorithm for a number of test proteins. In addition, the overall performance of STRUDL is assessed on a set of 787 representative proteins from the Protein Data Bank by comparison to domain definitions in the CATH protein classification. The domains assigned by STRUDL agree with the CATH assignments in at least 81% of the tested proteins. This result is comparable to that obtained previously using PUU (Holm and Sander, Proteins 1994;9:256-268), the only other available algorithm designed to identify domains with any number of non-contiguous chain segments. A detailed discussion of the structures for which our assignments differ from those in CATH brings to light some clear inconsistencies between the concept of structural domains based on minimizing inter-domain interactions and that of delimiting structural motifs that represent acceptable folding topologies or architectures. Considering both concepts as complementary and combining them in a layered approach might be the way forward.

  11. Atomic structure of the nuclear pore complex targeting domain of a Nup116 homologue from the yeast, Candida glabrata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sampathkumar, Parthasarathy; Kim, Seung Joong; Manglicmot, Danalyn

    2012-10-23

    The nuclear pore complex (NPC), embedded in the nuclear envelope, is a large, dynamic molecular assembly that facilitates exchange of macromolecules between the nucleus and the cytoplasm. The yeast NPC is an eightfold symmetric annular structure composed of {approx}456 polypeptide chains contributed by {approx}30 distinct proteins termed nucleoporins. Nup116, identified only in fungi, plays a central role in both protein import and mRNA export through the NPC. Nup116 is a modular protein with N-terminal 'FG' repeats containing a Gle2p-binding sequence motif and a NPC targeting domain at its C-terminus. We report the crystal structure of the NPC targeting domain ofmore » Candida glabrata Nup116, consisting of residues 882-1034 [CgNup116(882-1034)], at 1.94 {angstrom} resolution. The X-ray structure of CgNup116(882-1034) is consistent with the molecular envelope determined in solution by small-angle X-ray scattering. Structural similarities of CgNup116(882-1034) with homologous domains from Saccharomyces cerevisiae Nup116, S. cerevisiae Nup145N, and human Nup98 are discussed.« less

  12. The intermembrane space domain of Tim23 is intrinsically disordered with a distinct binding region for presequences

    PubMed Central

    de la Cruz, Laura; Bajaj, Rakhi; Becker, Stefan; Zweckstetter, Markus

    2010-01-01

    Proteins targeted to the mitochondrial matrix are translocated through the outer and the inner mitochondrial membranes by two protein complexes, the translocase of the outer membrane (TOM) and one of the translocases of the inner membrane (TIM23). The protein Tim23, the core component of TIM23, consists of an N-terminal, soluble domain in the intermembrane space (IMS) and a C-terminal domain that forms the import pore across the inner membrane. Before translocation proceeds, precursor proteins are recognized by the N-terminal domain of Tim23, Tim23N (residues 1–96). By using NMR spectroscopy, we show that Tim23N is a monomeric protein belonging to the family of intrinsically disordered proteins. Titrations of Tim23N with two presequences revealed a distinct binding region of Tim23N formed by residues 71–84. In a charge-hydropathy plot containing all soluble domains of TOM and TIM23, Tim23N was found to be the only domain with more than 40 residues in the IMS that is predicted to be intrinsically disordered, suggesting that Tim23N might function as hub in the mitochondrial import machinery protein network. PMID:20718036

  13. High resolution crystal structure of the Grb2 SH2 domain with a phosphopeptide derived from CD28.

    PubMed

    Higo, Kunitake; Ikura, Teikichi; Oda, Masayuki; Morii, Hisayuki; Takahashi, Jun; Abe, Ryo; Ito, Nobutoshi

    2013-01-01

    Src homology 2 (SH2) domains play a critical role in cellular signal transduction. They bind to peptides containing phosphotyrosine (pY) with various specificities that depend on the flanking amino-acid residues. The SH2 domain of growth-factor receptor-bound protein 2 (Grb2) specifically recognizes pY-X-N-X, whereas the SH2 domains in phosphatidylinositol 3-kinase (PI3K) recognize pY-X-X-M. Binding of the pY site in CD28 (pY-M-N-M) by PI3K and Grb2 through their SH2 domains is a key step that triggers the CD28 signal transduction for T cell activation and differentiation. In this study, we determined the crystal structure of the Grb2 SH2 domain in complex with a pY-containing peptide derived from CD28 at 1.35 Å resolution. The peptide was found to adopt a twisted U-type conformation, similar to, but distinct from type-I β-turn. In all previously reported crystal structures, the peptide bound to the Grb2 SH2 domains adopts a type-I β-turn conformation, except those with a proline residue at the pY+3 position. Molecular modeling also suggests that the same peptide bound to PI3K might adopt a very different conformation.

  14. Linking structural features from mitochondrial and bacterial F-type ATP synthases to their distinct mechanisms of ATPase inhibition.

    PubMed

    Krah, Alexander

    2015-10-01

    ATP synthases are molecular motors, which synthesize ATP, the ubiquitous energy source in all living cells. They use an electrochemical gradient to drive a rotation in the membrane embedded Fo domain, namely the c-ring, causing a conformational change in the soluble F1 domain which leads to the catalytic event. In the opposite fashion, they can also hydrolyse ATP to maintain the ion gradient across the membrane. To prevent wasteful ATP hydrolysis, bacteria and mammals have developed peculiar mechanistic features in addition to a common one, namely MgADP inhibition. Here I discuss the distinct ATPase inhibition mechanism in mitochondrial (IF1) and bacterial (subunits ε and ζ) F-type ATP synthases, based on available structural, biophysical and biochemical data. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Investigating the structure of the restricted, repetitive behaviours and interests domain of autism.

    PubMed

    Szatmari, Peter; Georgiades, Stelios; Bryson, Susan; Zwaigenbaum, Lonnie; Roberts, Wendy; Mahoney, William; Goldberg, Jeremy; Tuff, Lawrence

    2006-06-01

    The Restricted, Repetitive Behaviours and Interests (RRBIs) are represented in the DSM-IV and measured by the Autism Diagnostic Interview-Revised (ADI-R) as one of the three homogeneous symptom categories of Pervasive Developmental Disorders. Although this conceptualisation is well accepted in the field, the grouping of symptoms is based primarily on clinical judgment rather than on empirical evidence. The objective of this study was to examine the factor structure of the RRBI domain of autism. Eleven items from this domain of the ADI-R were used in a Principal Components Analysis (PCA). Our sample consisted of 339 individuals with a Best Estimate diagnosis of Pervasive Developmental Disorder (PDD). Findings indicate that the RRBI domain is composed of two distinct factors or dimensions: Insistence on Sameness (IS) and Repetitive Sensory and Motor Behaviours (RSMB). RSMB is negatively correlated with adaptive skills; that is, lower functioning individuals tend to have higher levels of repetitive sensory and motor behaviours. On the other hand, IS is positively correlated with autistic symptoms in the communication and language domain. Further analyses suggest moderate familial aggregation among affected sibling pairs within the IS but not the RSMB factor. These results provide evidence for the heterogeneity of the RRBI domain of the ADI-R in terms of both clinical presentation and other correlates. In addition, the IS factor seems to be under familial (presumably genetic) control, while RSMB appears to simply reflect variation in developmental level.

  16. Theoretical Methods of Domain Structures in Ultrathin Ferroelectric Films: A Review

    PubMed Central

    Liu, Jianyi; Chen, Weijin; Wang, Biao; Zheng, Yue

    2014-01-01

    This review covers methods and recent developments of the theoretical study of domain structures in ultrathin ferroelectric films. The review begins with an introduction to some basic concepts and theories (e.g., polarization and its modern theory, ferroelectric phase transition, domain formation, and finite size effects, etc.) that are relevant to the study of domain structures in ultrathin ferroelectric films. Basic techniques and recent progress of a variety of important approaches for domain structure simulation, including first-principles calculation, molecular dynamics, Monte Carlo simulation, effective Hamiltonian approach and phase field modeling, as well as multiscale simulation are then elaborated. For each approach, its important features and relative merits over other approaches for modeling domain structures in ultrathin ferroelectric films are discussed. Finally, we review recent theoretical studies on some important issues of domain structures in ultrathin ferroelectric films, with an emphasis on the effects of interfacial electrostatics, boundary conditions and external loads. PMID:28788198

  17. Molecular dynamics simulations of site point mutations in the TPR domain of cyclophilin 40 identify conformational states with distinct dynamic and enzymatic properties

    NASA Astrophysics Data System (ADS)

    Gur, Mert; Blackburn, Elizabeth A.; Ning, Jia; Narayan, Vikram; Ball, Kathryn L.; Walkinshaw, Malcolm D.; Erman, Burak

    2018-04-01

    Cyclophilin 40 (Cyp40) is a member of the immunophilin family that acts as a peptidyl-prolyl-isomerase enzyme and binds to the heat shock protein 90 (Hsp90). Its structure comprises an N-terminal cyclophilin domain and a C-terminal tetratricopeptide (TPR) domain. Cyp40 is overexpressed in prostate cancer and certain T-cell lymphomas. The groove for Hsp90 binding on the TPR domain includes residues Lys227 and Lys308, referred to as the carboxylate clamp, and is essential for Cyp40-Hsp90 binding. In this study, the effect of two mutations, K227A and K308A, and their combinative mutant was investigated by performing a total of 5.76 μs of all-atom molecular dynamics (MD) simulations in explicit solvent. All simulations, except the K308A mutant, were found to adopt two distinct (extended or compact) conformers defined by different cyclophilin-TPR interdomain distances. The K308A mutant was only observed in the extended form which is observed in the Cyp40 X-ray structure. The wild-type, K227A, and combined mutant also showed bimodal distributions. The experimental melting temperature, Tm, values of the mutants correlate with the degree of compactness with the K308A extended mutant having a marginally lower melting temperature. Another novel measure of compactness determined from the MD data, the "coordination shell volume," also shows a direct correlation with Tm. In addition, the MD simulations show an allosteric effect with the mutations in the remote TPR domain having a pronounced effect on the molecular motions of the enzymatic cyclophilin domain which helps rationalise the experimentally observed increase in enzyme activity measured for all three mutations.

  18. The neural signature of self-concept development in adolescence: The role of domain and valence distinctions.

    PubMed

    van der Cruijsen, R; Peters, S; van der Aar, L P E; Crone, E A

    2017-11-22

    Neuroimaging studies in adults showed that cortical midline regions including medial prefrontal cortex (mPFC) and posterior parietal cortex (PPC) are important in self-evaluations. The goals of this study were to investigate the contribution of these regions to self-evaluations in late childhood, adolescence, and early adulthood, and to examine whether these differed per domain (academic, physical and prosocial) and valence (positive versus negative). Also, we tested whether this activation changes across adolescence. For this purpose, participants between ages 11-21-years (N = 150) evaluated themselves on trait sentences in an fMRI session. Behaviorally, adolescents rated their academic traits less positively than children and young adults. The neural analyses showed that evaluating self-traits versus a control condition was associated with increased activity in mPFC (domain-general effect), and positive traits were associated with increased activity in ventral mPFC (valence effect). Self-related mPFC activation increased linearly with age, but only for evaluating physical traits. Furthermore, an adolescent-specific decrease in striatum activation for positive self traits was found. Finally, we found domain-specific neural activity for evaluating traits in physical (dorsolateral PFC, dorsal mPFC) and academic (PPC) domains. Together, these results highlight the importance of domain distinctions when studying self-concept development in late childhood, adolescence, and early adulthood. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Acetylation within the N- and C-Terminal Domains of Src Regulates Distinct Roles of STAT3-Mediated Tumorigenesis.

    PubMed

    Huang, Chao; Zhang, Zhe; Chen, Lihan; Lee, Hank W; Ayrapetov, Marina K; Zhao, Ting C; Hao, Yimei; Gao, Jinsong; Yang, Chunzhang; Mehta, Gautam U; Zhuang, Zhengping; Zhang, Xiaoren; Hu, Guohong; Chin, Y Eugene

    2018-06-01

    Posttranslational modifications of mammalian c-Src N-terminal and C-terminal domains regulate distinct functions. Myristoylation of G 2 controls its cell membrane association and phosphorylation of Y419/Y527 controls its activation or inactivation, respectively. We provide evidence that Src-cell membrane association-dissociation and catalytic activation-inactivation are both regulated by acetylation. In EGF-treated cells, CREB binding protein (CBP) acetylates an N-terminal lysine cluster (K5, K7, and K9) of c-Src to promote dissociation from the cell membrane. CBP also acetylates the C-terminal K401, K423, and K427 of c-Src to activate intrinsic kinase activity for STAT3 recruitment and activation. N-terminal domain phosphorylation (Y14, Y45, and Y68) of STAT3 by c-Src activates transcriptionally active dimers of STAT3. Moreover, acetyl-Src translocates into nuclei, where it forms the Src-STAT3 enhanceosome for gene regulation and cancer cell proliferation. Thus, c-Src acetylation in the N-terminal and C-terminal domains play distinct roles in Src activity and regulation. Significance: CBP-mediated acetylation of lysine clusters in both the N-terminal and C-terminal regions of c-Src provides additional levels of control over STAT3 transcriptional activity. Cancer Res; 78(11); 2825-38. ©2018 AACR . ©2018 American Association for Cancer Research.

  20. Benefits of Matching Domain Structure for Planning Software: The Right Stuff

    NASA Technical Reports Server (NTRS)

    Billman, Dorrit Owen; Arsintescu, Lucica; Feary, Michael S.; Lee, Jessica Chia-Rong; Smith, Asha Halima; Tiwary, Rachna

    2011-01-01

    We investigated the role of domain structure in software design. We compared 2 planning applications, for a Mission Control group (International Space Station), and measured users speed and accuracy. Based on our needs analysis, we identified domain structure and used this to develop new prototype software that matched domain structure better than the legacy system. We took a high-fidelity analog of the natural task into the laboratory and found (large) periformance differences, favoring the system that matched domain structure. Our task design enabled us to attribute better periormance to better match of domain structure. We ran through the whole development cycle, in miniature, from needs analysis through design, development, and evaluation. Doing so enabled inferences not just about the particular systems compared, but also provided evidence for the viability of the design process (particularly needs analysis) that we are exploring.

  1. Electric field driven evolution of topological domain structure in hexagonal manganites

    NASA Astrophysics Data System (ADS)

    Yang, K. L.; Zhang, Y.; Zheng, S. H.; Lin, L.; Yan, Z. B.; Liu, J.-M.; Cheong, S.-W.

    2017-10-01

    Controlling and manipulating the topological state represents an important topic in condensed matters for both fundamental researches and applications. In this work, we focus on the evolution of a real-space topological domain structure in hexagonal manganites driven by electric field, using the analytical and numerical calculations based on the Ginzburg-Landau theory. It is revealed that the electric field drives a transition of the topological domain structure from the type-I pattern to the type-II one. In particular, it is identified that a high electric field can enforce the two antiphase-plus-ferroelectric (AP +FE ) domain walls with Δ Φ =π /3 to approach each other and to merge into one domain wall with Δ Φ = 2 π /3 eventually if the electric field is sufficiently high, where Δ Φ is the difference in the trimerization phase between two neighboring domains. Our simulations also reveal that the vortex cores of the topological structure can be disabled at a sufficiently high critical electric field by suppressing the structural trimerization therein, beyond which the vortex core region is replaced by a single ferroelectric domain without structural trimerization (Q = 0 ). Our results provide a stimulating reference for understanding the manipulation of real-space topological domain structure in hexagonal manganites.

  2. Knowledge of the human body: a distinct semantic domain.

    PubMed

    Coslett, H Branch; Saffran, Eleanor M; Schwoebel, John

    2002-08-13

    Patients with selective deficits in the naming and comprehension of animals, plants, and artifacts have been reported. These descriptions of specific semantic category deficits have contributed substantially to the understanding of the architecture of semantic representations. This study sought to further understanding of the organization of the semantic system by demonstrating that another semantic category, knowledge of the human body, may be selectively preserved. The performance of a patient with semantic dementia was compared with the performance of healthy controls on a variety of tasks assessing distinct types of body representations, including the body schema, body image, and body structural description. Despite substantial deficits on tasks involving language and knowledge of the world generally, the patient performed normally on all tests of body knowledge except body part naming; even in this naming task, however, her performance with body parts was significantly better than on artifacts. The demonstration that body knowledge may be preserved despite substantial semantic deficits involving other types of semantic information argues that body knowledge is a distinct and dissociable semantic category. These data are interpreted as support for a model of semantics that proposes that knowledge is distributed across different cortical regions reflecting the manner in which the information was acquired.

  3. Binding of the cSH3 domain of Grb2 adaptor to two distinct RXXK motifs within Gab1 docker employs differential mechanisms.

    PubMed

    McDonald, Caleb B; Seldeen, Kenneth L; Deegan, Brian J; Bhat, Vikas; Farooq, Amjad

    2011-01-01

    A ubiquitous component of cellular signaling machinery, Gab1 docker plays a pivotal role in routing extracellular information in the form of growth factors and cytokines to downstream targets such as transcription factors within the nucleus. Here, using isothermal titration calorimetry (ITC) in combination with macromolecular modeling (MM), we show that although Gab1 contains four distinct RXXK motifs, designated G1, G2, G3, and G4, only G1 and G2 motifs bind to the cSH3 domain of Grb2 adaptor and do so with distinct mechanisms. Thus, while the G1 motif strictly requires the PPRPPKP consensus sequence for high-affinity binding to the cSH3 domain, the G2 motif displays preference for the PXVXRXLKPXR consensus. Such sequential differences in the binding of G1 and G2 motifs arise from their ability to adopt distinct polyproline type II (PPII)- and 3(10) -helical conformations upon binding to the cSH3 domain, respectively. Collectively, our study provides detailed biophysical insights into a key protein-protein interaction involved in a diverse array of signaling cascades central to health and disease. Copyright © 2010 John Wiley & Sons, Ltd.

  4. Binding of the cSH3 Domain of Grb2 Adaptor to Two Distinct RXXK Motifs within Gab1 Docker Employs Differential Mechanisms

    PubMed Central

    McDonald, Caleb B.; Seldeen, Kenneth L.; Deegan, Brian J.; Bhat, Vikas; Farooq, Amjad

    2010-01-01

    A ubiquitous component of cellular signaling machinery, Gab1 docker plays a pivotal role in routing extracellular information in the form of growth factors and cytokines to downstream targets such as transcription factors within the nucleus. Here, using isothermal titration calorimetry (ITC) in combination with macromolecular modeling (MM), we show that although Gab1 contains four distinct RXXK motifs, designated G1, G2, G3 and G4, only G1 and G2 motifs bind to the cSH3 domain of Grb2 adaptor and do so with distinct mechanisms. Thus, while the G1 motif strictly requires the PPRPPKP consensus sequence for high-affinity binding to the cSH3 domain, the G2 motif displays preference for the PXVXRXLKPXR consensus. Such sequential differences in the binding of G1 and G2 motifs arise from their ability to adopt distinct polyproline type II (PPII)- and 310-helical conformations upon binding to the cSH3 domain, respectively. Collectively, our study provides detailed biophysical insights into a key protein-protein interaction involved in a diverse array of signaling cascades central to health and disease. PMID:21472810

  5. A Critical Comparison of Classical and Domain Theory: Some Implications for Character Education

    ERIC Educational Resources Information Center

    Keefer, Matthew Wilks

    2006-01-01

    Contemporary approaches to moral education are influenced by the "domain theory" approach to understanding moral development (Turiel, 1983; 1998; Nucci, 2001). Domain theory holds there are distinct conventional, personal and moral domains; each constituting a cognitive "structured-whole" with its own normative source and sphere of influence. One…

  6. A Novel Domain Assembly Routine for Creating Full-Length Models of Membrane Proteins from Known Domain Structures.

    PubMed

    Koehler Leman, Julia; Bonneau, Richard

    2018-04-03

    Membrane proteins composed of soluble and membrane domains are often studied one domain at a time. However, to understand the biological function of entire protein systems and their interactions with each other and drugs, knowledge of full-length structures or models is required. Although few computational methods exist that could potentially be used to model full-length constructs of membrane proteins, none of these methods are perfectly suited for the problem at hand. Existing methods require an interface or knowledge of the relative orientations of the domains or are not designed for domain assembly, and none of them are developed for membrane proteins. Here we describe the first domain assembly protocol specifically designed for membrane proteins that assembles intra- and extracellular soluble domains and the transmembrane domain into models of the full-length membrane protein. Our protocol does not require an interface between the domains and samples possible domain orientations based on backbone dihedrals in the flexible linker regions, created via fragment insertion, while keeping the transmembrane domain fixed in the membrane. For five examples tested, our method mp_domain_assembly, implemented in RosettaMP, samples domain orientations close to the known structure and is best used in conjunction with experimental data to reduce the conformational search space.

  7. 3D-Printed Ultratough Hydrogel Structures with Titin-like Domains.

    PubMed

    Zhu, Fengbo; Cheng, Libo; Wang, Zhi Jian; Hong, Wei; Wu, Zi Liang; Yin, Jun; Qian, Jin; Zheng, Qiang

    2017-04-05

    Titin is composed of repeated modular domains which unfold and dissipate energy upon loading. Here we employed such molecular-level paradigm to fabricate macroscopic ultratough hydrogel structures with titin-like domains, enabled by three-dimensional printing with multiple nozzles. Under stretch, the relatively thin and weak gel fibers in the printed structures break first and the hidden lengths postpone the failure of the main structures, mimicking the toughening principle in titin. These titin-like folded domains have been incorporated into a synthetic spider-web, which shows significantly enhanced extensibility and toughness. This work provides a new avenue of topological design for materials/structures with desired properties.

  8. Structural insights into SAM domain-mediated tankyrase oligomerization.

    PubMed

    DaRosa, Paul A; Ovchinnikov, Sergey; Xu, Wenqing; Klevit, Rachel E

    2016-09-01

    Tankyrase 1 (TNKS1; a.k.a. ARTD5) and tankyrase 2 (TNKS2; a.k.a ARTD6) are highly homologous poly(ADP-ribose) polymerases (PARPs) that function in a wide variety of cellular processes including Wnt signaling, Src signaling, Akt signaling, Glut4 vesicle translocation, telomere length regulation, and centriole and spindle pole maturation. Tankyrase proteins include a sterile alpha motif (SAM) domain that undergoes oligomerization in vitro and in vivo. However, the SAM domains of TNKS1 and TNKS2 have not been structurally characterized and the mode of oligomerization is not yet defined. Here we model the SAM domain-mediated oligomerization of tankyrase. The structural model, supported by mutagenesis and NMR analysis, demonstrates a helical, homotypic head-to-tail polymer that facilitates TNKS self-association. Furthermore, we show that TNKS1 and TNKS2 can form (TNKS1 SAM-TNKS2 SAM) hetero-oligomeric structures mediated by their SAM domains. Though wild-type tankyrase proteins have very low solubility, model-based mutations of the SAM oligomerization interface residues allowed us to obtain soluble TNKS proteins. These structural insights will be invaluable for the functional and biophysical characterization of TNKS1/2, including the role of TNKS oligomerization in protein poly(ADP-ribosyl)ation (PARylation) and PARylation-dependent ubiquitylation. © 2016 The Protein Society.

  9. Crystal Structure of the Nipah Virus Phosphoprotein Tetramerization Domain

    PubMed Central

    Bruhn, Jessica F.; Barnett, Katherine C.; Bibby, Jaclyn; Thomas, Jens M. H.; Keegan, Ronan M.; Rigden, Daniel J.; Bornholdt, Zachary A.

    2014-01-01

    The Nipah virus phosphoprotein (P) is multimeric and tethers the viral polymerase to the nucleocapsid. We present the crystal structure of the multimerization domain of Nipah virus P: a long, parallel, tetrameric, coiled coil with a small, α-helical cap structure. Across the paramyxoviruses, these domains share little sequence identity yet are similar in length and structural organization, suggesting a common requirement for scaffolding or spatial organization of the functions of P in the virus life cycle. PMID:24155387

  10. Structural and Genetic Analyses of the Mycobacterium tuberculosis Protein Kinase B Sensor Domain Identify a Potential Ligand-binding Site.

    PubMed

    Prigozhin, Daniil M; Papavinasasundaram, Kadamba G; Baer, Christina E; Murphy, Kenan C; Moskaleva, Alisa; Chen, Tony Y; Alber, Tom; Sassetti, Christopher M

    2016-10-28

    Monitoring the environment with serine/threonine protein kinases is critical for growth and survival of Mycobacterium tuberculosis, a devastating human pathogen. Protein kinase B (PknB) is a transmembrane serine/threonine protein kinase that acts as an essential regulator of mycobacterial growth and division. The PknB extracellular domain (ECD) consists of four repeats homologous to penicillin-binding protein and serine/threonine kinase associated (PASTA) domains, and binds fragments of peptidoglycan. These properties suggest that PknB activity is modulated by ECD binding to peptidoglycan substructures, however, the molecular mechanisms underpinning PknB regulation remain unclear. In this study, we report structural and genetic characterization of the PknB ECD. We determined the crystal structures of overlapping ECD fragments at near atomic resolution, built a model of the full ECD, and discovered a region on the C-terminal PASTA domain that has the properties of a ligand-binding site. Hydrophobic interaction between this surface and a bound molecule of citrate was observed in a crystal structure. Our genetic analyses in M. tuberculosis showed that nonfunctional alleles were produced either by deletion of any of single PASTA domain or by mutation of individual conserved residues lining the putative ligand-binding surface of the C-terminal PASTA repeat. These results define two distinct structural features necessary for PknB signal transduction, a fully extended ECD and a conserved, membrane-distal putative ligand-binding site. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Domain topology and domain switching kinetics in a hybrid improper ferroelectric

    PubMed Central

    Huang, F. -T.; Xue, F.; Gao, B.; Wang, L. H.; Luo, X.; Cai, W.; Lu, X. -Z.; Rondinelli, J. M.; Chen, L. Q.; Cheong, S. -W.

    2016-01-01

    Charged polar interfaces such as charged ferroelectric walls or heterostructured interfaces of ZnO/(Zn,Mg)O and LaAlO3/SrTiO3, across which the normal component of electric polarization changes suddenly, can host large two-dimensional conduction. Charged ferroelectric walls, which are energetically unfavourable in general, were found to be mysteriously abundant in hybrid improper ferroelectric (Ca,Sr)3Ti2O7 crystals. From the exploration of antiphase boundaries in bilayer-perovskites, here we discover that each of four polarization-direction states is degenerate with two antiphase domains, and these eight structural variants form a Z4 × Z2 domain structure with Z3 vortices and five distinct types of domain walls, whose topology is directly relevant to the presence of abundant charged walls. We also discover a zipper-like nature of antiphase boundaries, which are the reversible creation/annihilation centres of pairs of two types of ferroelectric walls (and also Z3-vortex pairs) in 90° and 180° polarization switching. Our results demonstrate the unexpectedly rich nature of hybrid improper ferroelectricity. PMID:27215944

  12. Crystal Structure of the Ternary Complex of a NaV C-Terminal Domain, a Fibroblast Growth Factor Homologous Factor, and Calmodulin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chaojian; Chung, Ben C.; Yan, Haidun

    2012-11-13

    Voltage-gated Na{sup +} (Na{sub V}) channels initiate neuronal action potentials. Na{sub V} channels are composed of a transmembrane domain responsible for voltage-dependent Na{sup +} conduction and a cytosolic C-terminal domain (CTD) that regulates channel function through interactions with many auxiliary proteins, including fibroblast growth factor homologous factors (FHFs) and calmodulin (CaM). Most ion channel structural studies have focused on mechanisms of permeation and voltage-dependent gating but less is known about how intracellular domains modulate channel function. Here we report the crystal structure of the ternary complex of a human NaV CTD, an FHF, and Ca{sup 2+}-free CaM at 2.2 {angstrom}.more » Combined with functional experiments based on structural insights, we present a platform for understanding the roles of these auxiliary proteins in NaV channel regulation and the molecular basis of mutations that lead to neuronal and cardiac diseases. Furthermore, we identify a critical interaction that contributes to the specificity of individual NaV CTD isoforms for distinctive FHFs.« less

  13. The CW domain, a structural module shared amongst vertebrates, vertebrate-infecting parasites and higher plants.

    PubMed

    Perry, Jason; Zhao, Yunde

    2003-11-01

    A previously undetected domain, named CW for its conserved cysteine and tryptophan residues, appears to be a four-cysteine zinc-finger motif found exclusively in vertebrates, vertebrate-infecting parasites and higher plants. Of the twelve distinct nuclear protein families that comprise the CW domain-containing superfamily, only the microrchida (MORC) family has begun to be characterized. However, several families contain other domains suggesting a relationship between the CW domain and either chromatin methylation status or early embryonic development.

  14. A probabilistic model for detecting rigid domains in protein structures.

    PubMed

    Nguyen, Thach; Habeck, Michael

    2016-09-01

    Large-scale conformational changes in proteins are implicated in many important biological functions. These structural transitions can often be rationalized in terms of relative movements of rigid domains. There is a need for objective and automated methods that identify rigid domains in sets of protein structures showing alternative conformational states. We present a probabilistic model for detecting rigid-body movements in protein structures. Our model aims to approximate alternative conformational states by a few structural parts that are rigidly transformed under the action of a rotation and a translation. By using Bayesian inference and Markov chain Monte Carlo sampling, we estimate all parameters of the model, including a segmentation of the protein into rigid domains, the structures of the domains themselves, and the rigid transformations that generate the observed structures. We find that our Gibbs sampling algorithm can also estimate the optimal number of rigid domains with high efficiency and accuracy. We assess the power of our method on several thousand entries of the DynDom database and discuss applications to various complex biomolecular systems. The Python source code for protein ensemble analysis is available at: https://github.com/thachnguyen/motion_detection : mhabeck@gwdg.de. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Time Domain Diffraction by Composite Structures

    NASA Astrophysics Data System (ADS)

    Riccio, Giovanni; Frongillo, Marcello

    2017-04-01

    Time domain (TD) diffraction problems are receiving great attention because of the widespread use of ultra wide band (UWB) communication and radar systems. It is commonly accepted that, due to the large bandwidth of the UWB signals, the analysis of the wave propagation mechanisms in the TD framework is preferable to the frequency domain (FD) data processing. Furthermore, the analysis of transient scattering phenomena is also of importance for predicting the effects of electromagnetic pulses on civil structures. Diffraction in the TD framework represents a challenging problem and numerical discretization techniques can be used to support research and industry activities. Unfortunately, these methods become rapidly intractable when considering excitation pulses with high frequency content. This contribution deals with the TD diffraction phenomenon related to composite structures containing a dielectric wedge with arbitrary apex angle when illuminated by a plane wave. The approach is the same used in [1]-[3]. The transient diffracted field originated by an arbitrary function plane wave is evaluated via a convolution integral involving the TD diffraction coefficients, which are determined in closed form starting from the knowledge of the corresponding FD counterparts. In particular, the inverse Laplace transform is applied to the FD Uniform Asymptotic Physical Optics (FD-UAPO) diffraction coefficients available for the internal region of the structure and the surrounding space. For each observation domain, the FD-UAPO expressions are obtained by considering electric and magnetic equivalent PO surface currents located on the interfaces. The surface radiation integrals using these sources is assumed as starting point and manipulated for obtaining integrals able to be solved by means of the Steepest Descent Method and the Multiplicative Method. [1] G. Gennarelli and G. Riccio, "Time domain diffraction by a right-angled penetrable wedge," IEEE Trans. Antennas Propag., Vol

  16. Kinesin-1 and mitochondrial motility control by discrimination of structurally equivalent but distinct subdomains in Ran-GTP-binding domains of Ran-binding protein 2.

    PubMed

    Patil, Hemangi; Cho, Kyoung-in; Lee, James; Yang, Yi; Orry, Andrew; Ferreira, Paulo A

    2013-03-27

    The pleckstrin homology (PH) domain is a versatile fold that mediates a variety of protein-protein and protein-phosphatidylinositol lipid interactions. The Ran-binding protein 2 (RanBP2) contains four interspersed Ran GTPase-binding domains (RBD(n = 1-4)) with close structural homology to the PH domain of Bruton's tyrosine kinase. The RBD2, kinesin-binding domain (KBD) and RBD3 comprise a tripartite domain (R2KR3) of RanBP2 that causes the unfolding, microtubule binding and biphasic activation of kinesin-1, a crucial anterograde motor of mitochondrial motility. However, the interplay between Ran GTPase and R2KR3 of RanBP2 in kinesin-1 activation and mitochondrial motility is elusive. We use structure-function, biochemical, kinetic and cell-based assays with time-lapse live-cell microscopy of over 260,000 mitochondrial-motility-related events to find mutually exclusive subdomains in RBD2 and RBD3 towards Ran GTPase binding, kinesin-1 activation and mitochondrial motility regulation. The RBD2 and RBD3 exhibit Ran-GTP-independent, subdomain and stereochemical-dependent discrimination on the biphasic kinetics of kinesin-1 activation or regulation of mitochondrial motility. Further, KBD alone and R2KR3 stimulate and suppress, respectively, multiple biophysical parameters of mitochondrial motility. The regulation of the bidirectional transport of mitochondria by either KBD or R2KR3 is highly coordinated, because their kinetic effects are accompanied always by changes in mitochondrial motile events of either transport polarity. These studies uncover novel roles in Ran GTPase-independent subdomains of RBD2 and RBD3, and KBD of RanBP2, that confer antagonizing and multi-modal mechanisms of kinesin-1 activation and regulation of mitochondrial motility. These findings open new venues towards the pharmacological harnessing of cooperative and competitive mechanisms regulating kinesins, RanBP2 or mitochondrial motility in disparate human disorders.

  17. The retinal specific CD147 Ig0 domain: from molecular structure to biological activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redzic, Jasmina S.; Armstrong, Geoffrey S.; Isern, Nancy G.

    2011-06-18

    CD147 is a type I transmembrane protein that is involved in inflammatory diseases, cancer progression, and multiple human pathogens utilize CD147 for efficient infection. In several cancers, CD147 expression is so high that it is now used as a prognostic marker. The two primary isoforms of CD147 that are related to cancer progression have been identified, differing in their number of immunoglobulin (Ig)-like domains. These include CD147 Ig1-Ig2 that is ubiquitously expressed in most tissues and CD147 Ig0-Ig1-Ig2 that is retinal specific and implicated in retinoblastoma. However, little is known in regard to the retinal specific CD147 Ig0 domain despitemore » its potential role in retinoblastoma. Thus, here we have extensively characterized the CD147 Ig0 domain by elucidating its three-dimensional structure through crystallography and its solution behavior through several biophysical methods that include nuclear magnetic resonance. Furthermore, we have utilized this data together with mutagenesis to probe the biological activity of CD147-containing proteins both with and without the CD147 Ig0 domain within several model cell lines. Our findings reveal that the CD147 Ig0 domain is a potent stimulator of interleukin-6, which is a well-known contributor to retinoblastoma and suggest that the CD147 Ig0 domain has its own receptor distinct from that of the other CD147 Ig-like domains, CD147 Ig1-Ig2. Furthermore, we show that the CD147 Ig0 dimer is the functional unit required for activity and can be disrupted by a single point mutation.« less

  18. Mapping small molecule binding data to structural domains

    PubMed Central

    2012-01-01

    Background Large-scale bioactivity/SAR Open Data has recently become available, and this has allowed new analyses and approaches to be developed to help address the productivity and translational gaps of current drug discovery. One of the current limitations of these data is the relative sparsity of reported interactions per protein target, and complexities in establishing clear relationships between bioactivity and targets using bioinformatics tools. We detail in this paper the indexing of targets by the structural domains that bind (or are likely to bind) the ligand within a full-length protein. Specifically, we present a simple heuristic to map small molecule binding to Pfam domains. This profiling can be applied to all proteins within a genome to give some indications of the potential pharmacological modulation and regulation of all proteins. Results In this implementation of our heuristic, ligand binding to protein targets from the ChEMBL database was mapped to structural domains as defined by profiles contained within the Pfam-A database. Our mapping suggests that the majority of assay targets within the current version of the ChEMBL database bind ligands through a small number of highly prevalent domains, and conversely the majority of Pfam domains sampled by our data play no currently established role in ligand binding. Validation studies, carried out firstly against Uniprot entries with expert binding-site annotation and secondly against entries in the wwPDB repository of crystallographic protein structures, demonstrate that our simple heuristic maps ligand binding to the correct domain in about 90 percent of all assessed cases. Using the mappings obtained with our heuristic, we have assembled ligand sets associated with each Pfam domain. Conclusions Small molecule binding has been mapped to Pfam-A domains of protein targets in the ChEMBL bioactivity database. The result of this mapping is an enriched annotation of small molecule bioactivity data and a

  19. CD80 and CD86 IgC domains are important for quaternary structure, receptor binding and co-signaling function.

    PubMed

    Girard, Tanya; Gaucher, Denis; El-Far, Mohamed; Breton, Gaëlle; Sékaly, Rafick-Pierre

    2014-09-01

    CD86 and CD80, the ligands for the co-stimulatory molecules CD28 and CTLA-4, are members of the Ig superfamily. Their structure includes Ig variable-like (IgV) domains, Ig constant-like (IgC) domains and intracellular domains. Although crystallographic studies have clearly identified the IgV domain to be responsible for receptor interactions, earlier studies suggested that both Ig domains are required for full co-signaling function. Herein, we have used deletion and chimeric human CD80 and CD86 molecules in co-stimulation assays to study the impact of the multimeric state of IgV and IgC domains on receptor binding properties and on co-stimulatory function in a peptide-specific T cell activation model. We report for the first time the presence of CD80 dimers and CD86 monomers in living cells. Moreover, we show that the IgC domain of both molecules inhibits multimer formation and greatly affects binding to the co-receptors CD28 and CTLA-4. Finally, both IgC and intracellular domains are required for full co-signaling function. These findings reveal the distinct but complementary roles of CD80 and CD86 IgV and IgC domains in T cell activation. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Structural analysis of a 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase with an N-terminal chorismate mutase-like regulatory domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Light, Samuel H.; Halavaty, Andrei S.; Minasov, George

    2012-06-27

    3-Deoxy-D-arabino-heptulosonate 7-phosphate synthase (DAHPS) catalyzes the first step in the biosynthesis of a number of aromatic metabolites. Likely because this reaction is situated at a pivotal biosynthetic gateway, several DAHPS classes distinguished by distinct mechanisms of allosteric regulation have independently evolved. One class of DAHPSs contains a regulatory domain with sequence homology to chorismate mutase - an enzyme further downstream of DAHPS that catalyzes the first committed step in tyrosine/phenylalanine biosynthesis - and is inhibited by chorismate mutase substrate (chorismate) and product (prephenate). Described in this work, structures of the Listeria monocytogenes chorismate/prephenate regulated DAHPS in complex with Mn{sup 2+}more » and Mn{sup 2+} + phosphoenolpyruvate reveal an unusual quaternary architecture: DAHPS domains assemble as a tetramer, from either side of which chorismate mutase-like (CML) regulatory domains asymmetrically emerge to form a pair of dimers. This domain organization suggests that chorismate/prephenate binding promotes a stable interaction between the discrete regulatory and catalytic domains and supports a mechanism of allosteric inhibition similar to tyrosine/phenylalanine control of a related DAHPS class. We argue that the structural similarity of chorismate mutase enzyme and CML regulatory domain provides a unique opportunity for the design of a multitarget antibacterial.« less

  1. Domain-specific learning of grammatical structure in musical and phonological sequences.

    PubMed

    Bly, Benjamin Martin; Carrión, Ricardo E; Rasch, Björn

    2009-01-01

    Artificial grammar learning depends on acquisition of abstract structural representations rather than domain-specific representational constraints, or so many studies tell us. Using an artificial grammar task, we compared learning performance in two stimulus domains in which respondents have differing tacit prior knowledge. We found that despite grammatically identical sequence structures, learning was better for harmonically related chord sequences than for letter name sequences or harmonically unrelated chord sequences. We also found transfer effects within the musical and letter name tasks, but not across the domains. We conclude that knowledge acquired in implicit learning depends not only on abstract features of structured stimuli, but that the learning of regularities is in some respects domain-specific and strongly linked to particular features of the stimulus domain.

  2. Formation of self-organized domain structures with charged domain walls in lithium niobate with surface layer modified by proton exchange

    NASA Astrophysics Data System (ADS)

    Shur, V. Ya.; Akhmatkhanov, A. R.; Chuvakova, M. A.; Dolbilov, M. A.; Zelenovskiy, P. S.; Lobov, A. I.

    2017-03-01

    We have studied the self-organized dendrite domain structures appeared as a result of polarization reversal in the uniform field in lithium niobate single crystals with the artificial surface layer created by proton exchange. We have revealed the self-organized sub-micron scale dendrite domain patterns consisting of domain stripes oriented along the X crystallographic directions separated by arrays of dashed residual domains at the surface by scanning probe microscopy. Raman confocal microscopy allowed visualizing the quasi-regular dendrite domain structures with similar geometry in the vicinity of both polar surfaces. The depth of the structure was about 20 μm for Z+ polar surface and 70 μm for Z- one. According to the proposed mechanism, the dendrite structure formation at the surface was related to the ineffective screening of the residual depolarization field. The computer simulation of the structure formation based on the cellular automata model with probabilistic switching rule proved the eligibility of the proposed scheme, the simulated dendrite domain patterns at various depths being similar to the experimental ones.

  3. Structure of the SANT domain from the Xenopus chromatin remodeling factor ISWI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Horton, John R.; Elgar, Stuart J.; Khan, Seema I.

    2008-09-17

    The SANT (Swi3, Ada2, N-Cor, and TFIIIB) module was first described as a putative DNA-binding domain with strong similarity to the helix-turn-helix DNA binding domain of Myb-related proteins. The X-ray structure of the C-terminal one third portion of the ATPase ISWI of Drosophila melangoaster, containing both SANT and SLIDE (SANT-Like ISWI Domain), confirmed the overall helix-turn-helix structural architecture of SANT as well as SLIDE. However, the DNA-contacting residues in Myb are not conserved in SANT and the structurally corresponding residues in the ISWI SANT domain are acidic, and therefore incompatible with DNA interaction. Recent studies suggested that SANT domains mightmore » be a histone-tail-binding module, including the DNA binding SANT domain of c-Myb. Here they present the X-ray structure of Xenopus laevis ISWI SANT domain, derived from limited proteolysis of a C-terminal fragment of ISWI protein.« less

  4. Crystal structure of the motor domain of a class-I myosin

    PubMed Central

    Kollmar, Martin; Dürrwang, Ulrike; Kliche, Werner; Manstein, Dietmar J.; Kull, F.Jon

    2002-01-01

    The crystal structure of the motor domain of Dictyostelium discoideum myosin-IE, a monomeric unconventional myosin, was determined. The crystallographic asymmetric unit contains four independently resolved molecules, highlighting regions that undergo large conformational changes. Differences are particularly pronounced in the actin binding region and the converter domain. The changes in position of the converter domain reflect movements both parallel to and perpendicular to the actin axis. The orientation of the converter domain is ∼30° further up than in other myosin structures, indicating that MyoE can produce a larger power stroke by rotating its lever arm through a larger angle. The role of extended loops near the actin-binding site is discussed in the context of cellular localization. The core regions of the motor domain are similar, and the structure reveals how that core is stabilized in the absence of an N-terminal SH3-like domain. PMID:12032065

  5. Library of electrocatalytic sites in nano-structured domains: electrocatalysis of hydrogen peroxide.

    PubMed

    Pandey, Prem C; Singh, Bhupendra

    2008-12-01

    Electrochemical detection of hydrogen peroxide at eight types of ormosil-modified electrodes, referred as hexacyanoferrate-system; Prussian blue systems (PB-1, PB-2, and PB-3), palladium (Pd-) system, graphite (Gr-) system, gold nanoparticle (AuNPs) system and palladium-gold nanoparticle (Pd-AuNPs) system were studied. The results on electrochemical detection suggested that hydrogen peroxide does not undergo homogeneous electrochemical mediation; however, the presence of redox mediator within nano-structured domains facilitates the electro-analysis of the same via redox electrocatalysis. Four approaches causing manipulation in nano-structured domains are described: (a) increase in the molecular size of the components generating nano-structured domains; (b) modulation via chemical reactivity; (c) modulation by non-reactive moieties and known nanoparticles; and (d) modulation by mixed approaches (a-c), all leading to decrease in a nano-structured domains. The results demonstrated that an increase in the size of nano-structured domains or decrease in micro-porous geometry increases the efficiency of electrocatalysis. The basic reaction protocol adopted in generating nano-structured domains, followed by manipulation protocols, supported the introduction of a library for creating electrocatalytic sites with varying electrocatalytic efficiency within the same basic nano-structured platform.

  6. Structure-guided statistical textural distinctiveness for salient region detection in natural images.

    PubMed

    Scharfenberger, Christian; Wong, Alexander; Clausi, David A

    2015-01-01

    We propose a simple yet effective structure-guided statistical textural distinctiveness approach to salient region detection. Our method uses a multilayer approach to analyze the structural and textural characteristics of natural images as important features for salient region detection from a scale point of view. To represent the structural characteristics, we abstract the image using structured image elements and extract rotational-invariant neighborhood-based textural representations to characterize each element by an individual texture pattern. We then learn a set of representative texture atoms for sparse texture modeling and construct a statistical textural distinctiveness matrix to determine the distinctiveness between all representative texture atom pairs in each layer. Finally, we determine saliency maps for each layer based on the occurrence probability of the texture atoms and their respective statistical textural distinctiveness and fuse them to compute a final saliency map. Experimental results using four public data sets and a variety of performance evaluation metrics show that our approach provides promising results when compared with existing salient region detection approaches.

  7. Structural analysis of the DAP5 MIF4G domain and its interaction with eIF4A

    PubMed Central

    Virgili, Geneviève; Frank, Filipp; Feoktistova, Kateryna; Sawicki, Maxime; Sonenberg, Nahum; Fraser, Christopher S.; Nagar, Bhushan

    2013-01-01

    Summary Death-associated protein 5 (DAP5/p97) is a homolog of the eukaryotic initiation factor 4G (eIF4G) that promotes the IRES-driven translation of multiple cellular mRNAs. Central to its function is the middle domain (MIF4G), which recruits the RNA helicase eIF4A. The middle domain of eIF4G consists of tandem HEAT repeats that coalesce to form a solenoid-type structure. Here, we report the crystal structure of the DAP5 MIF4G domain. Its overall fold is very similar to that of eIF4G, however, significant conformational variations impart distinct surface properties that could explain the observed differences in IRES binding between the two proteins. Interestingly, quantitative analysis of the DAP5-eIF4A interaction using isothermal titration calorimetry reveals a 10-fold lower affinity than with the eIF4G-eIF4A interaction that appears to affect their ability to stimulate eIF4A RNA unwinding activity in vitro. This difference in stability of the complex may have functional implications in selecting the mode of translation initiation. PMID:23478064

  8. Structural Characterization of the Predominant Family of Histidine Kinase Sensor Domains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Z.; Hendrickson, W

    2010-01-01

    Histidine kinase (HK) receptors are used ubiquitously by bacteria to monitor environmental changes, and they are also prevalent in plants, fungi, and other protists. Typical HK receptors have an extracellular sensor portion that detects a signal, usually a chemical ligand, and an intracellular transmitter portion that includes both the kinase domain itself and the site for histidine phosphorylation. While kinase domains are highly conserved, sensor domains are diverse. HK receptors function as dimers, but the molecular mechanism for signal transduction across cell membranes remains obscure. In this study, eight crystal structures were determined from five sensor domains representative of themore » most populated family, family HK1, found in a bioinformatic analysis of predicted sensor domains from transmembrane HKs. Each structure contains an inserted repeat of PhoQ/DcuS/CitA (PDC) domains, and similarity between sequence and structure is correlated across these and other double-PDC sensor proteins. Three of the five sensors crystallize as dimers that appear to be physiologically relevant, and comparisons between ligated structures and apo-state structures provide insights into signal transmission. Some HK1 family proteins prove to be sensors for chemotaxis proteins or diguanylate cyclase receptors, implying a combinatorial molecular evolution.« less

  9. A Probabilistic Graphical Model to Detect Chromosomal Domains

    NASA Astrophysics Data System (ADS)

    Heermann, Dieter; Hofmann, Andreas; Weber, Eva

    To understand the nature of a cell, one needs to understand the structure of its genome. For this purpose, experimental techniques such as Hi-C detecting chromosomal contacts are used to probe the three-dimensional genomic structure. These experiments yield topological information, consistently showing a hierarchical subdivision of the genome into self-interacting domains across many organisms. Current methods for detecting these domains using the Hi-C contact matrix, i.e. a doubly-stochastic matrix, are mostly based on the assumption that the domains are distinct, thus non-overlapping. For overcoming this simplification and for being able to unravel a possible nested domain structure, we developed a probabilistic graphical model that makes no a priori assumptions on the domain structure. Within this approach, the Hi-C contact matrix is analyzed using an Ising like probabilistic graphical model whose coupling constant is proportional to each lattice point (entry in the contact matrix). The results show clear boundaries between identified domains and the background. These domain boundaries are dependent on the coupling constant, so that one matrix yields several clusters of different sizes, which show the self-interaction of the genome on different scales. This work was supported by a Grant from the International Human Frontier Science Program Organization (RGP0014/2014).

  10. Structural and functional characterization of the NHR1 domain of the Drosophila neuralized E3 ligase in the notch signaling pathway.

    PubMed

    He, Fahu; Saito, Kohei; Kobayashi, Naohiro; Harada, Takushi; Watanabe, Satoru; Kigawa, Takanori; Güntert, Peter; Ohara, Osamu; Tanaka, Akiko; Unzai, Satoru; Muto, Yutaka; Yokoyama, Shigeyuki

    2009-10-23

    The Notch signaling pathway is critical for many developmental processes and requires complex trafficking of both Notch receptor and its ligands, Delta and Serrate. In Drosophila melanogaster, the endocytosis of Delta in the signal-sending cell is essential for Notch receptor activation. The Neuralized protein from D. melanogaster (Neur) is a ubiquitin E3 ligase, which binds to Delta through its first neuralized homology repeat 1 (NHR1) domain and mediates the ubiquitination of Delta for endocytosis. Tom, a Bearded protein family member, inhibits the Neur-mediated endocytosis through interactions with the NHR1 domain. We have identified the domain boundaries of the novel NHR1 domain, using a screening system based on our cell-free protein synthesis method, and demonstrated that the identified Neur NHR1 domain had binding activity to the 20-residue peptide corresponding to motif 2 of Tom by isothermal titration calorimetry experiments. We also determined the solution structure of the Neur NHR1 domain by heteronuclear NMR methods, using a (15)N/(13)C-labeled sample. The Neur NHR1 domain adopts a characteristic beta-sandwich fold, consisting of a concave five-stranded antiparallel beta-sheet and a convex seven-stranded antiparallel beta-sheet. The long loop (L6) between the beta6 and beta7 strands covers the hydrophobic patch on the concave beta-sheet surface, and the Neur NHR1 domain forms a compact globular fold. Intriguingly, in spite of the slight, but distinct, differences in the topology of the secondary structure elements, the structure of the Neur NHR1 domain is quite similar to those of the B30.2/SPRY domains, which are known to mediate specific protein-protein interactions. Further NMR titration experiments of the Neur NHR1 domain with the 20-residue Tom peptide revealed that the resonances originating from the bottom area of the beta-sandwich (the L3, L5, and L11 loops, as well as the tip of the L6 loop) were affected. In addition, a structural comparison

  11. Structural Basis for Endosomal Targeting by the Bro1 Domain

    PubMed Central

    Kim, Jaewon; Sitaraman, Sujatha; Hierro, Aitor; Beach, Bridgette M.; Odorizzi, Greg; Hurley, James H.

    2010-01-01

    Summary Proteins delivered to the lysosome or the yeast vacuole via late endosomes are sorted by the ESCRT complexes and by associated proteins, including Alix and its yeast homolog Bro1. Alix, Bro1, and several other late endosomal proteins share a conserved 160 residue Bro1 domain whose boundaries, structure, and function have not been characterized. The crystal structure of the Bro1 domain of Bro1 reveals a folded core of 367 residues. The extended Bro1 domain is necessary and sufficient for binding to the ESCRT-III subunit Snf7 and for the recruitment of Bro1 to late endosomes. The structure resembles a boomerang with its concave face filled in and contains a triple tetratricopeptide repeat domain as a substructure. Snf7 binds to a conserved hydrophobic patch on Bro1 that is required for protein complex formation and for the protein-sorting function of Bro1. These results define a conserved mechanism whereby Bro1 domain-containing proteins are targeted to endosomes by Snf7 and its orthologs. PMID:15935782

  12. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures.

    PubMed

    Marchler-Bauer, Aron; Bo, Yu; Han, Lianyi; He, Jane; Lanczycki, Christopher J; Lu, Shennan; Chitsaz, Farideh; Derbyshire, Myra K; Geer, Renata C; Gonzales, Noreen R; Gwadz, Marc; Hurwitz, David I; Lu, Fu; Marchler, Gabriele H; Song, James S; Thanki, Narmada; Wang, Zhouxi; Yamashita, Roxanne A; Zhang, Dachuan; Zheng, Chanjuan; Geer, Lewis Y; Bryant, Stephen H

    2017-01-04

    NCBI's Conserved Domain Database (CDD) aims at annotating biomolecular sequences with the location of evolutionarily conserved protein domain footprints, and functional sites inferred from such footprints. An archive of pre-computed domain annotation is maintained for proteins tracked by NCBI's Entrez database, and live search services are offered as well. CDD curation staff supplements a comprehensive collection of protein domain and protein family models, which have been imported from external providers, with representations of selected domain families that are curated in-house and organized into hierarchical classifications of functionally distinct families and sub-families. CDD also supports comparative analyses of protein families via conserved domain architectures, and a recent curation effort focuses on providing functional characterizations of distinct subfamily architectures using SPARCLE: Subfamily Protein Architecture Labeling Engine. CDD can be accessed at https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml. Published by Oxford University Press on behalf of Nucleic Acids Research 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  13. A structural analysis of the AAA+ domains in Saccharomyces cerevisiae cytoplasmic dynein

    PubMed Central

    Gleave, Emma S.; Schmidt, Helgo; Carter, Andrew P.

    2014-01-01

    Dyneins are large protein complexes that act as microtubule based molecular motors. The dynein heavy chain contains a motor domain which is a member of the AAA+ protein family (ATPases Associated with diverse cellular Activities). Proteins of the AAA+ family show a diverse range of functionalities, but share a related core AAA+ domain, which often assembles into hexameric rings. Dynein is unusual because it has all six AAA+ domains linked together, in one long polypeptide. The dynein motor domain generates movement by coupling ATP driven conformational changes in the AAA+ ring to the swing of a motile element called the linker. Dynein binds to its microtubule track via a long antiparallel coiled-coil stalk that emanates from the AAA+ ring. Recently the first high resolution structures of the dynein motor domain were published. Here we provide a detailed structural analysis of the six AAA+ domains using our Saccharomycescerevisiae crystal structure. We describe how structural similarities in the dynein AAA+ domains suggest they share a common evolutionary origin. We analyse how the different AAA+ domains have diverged from each other. We discuss how this is related to the function of dynein as a motor protein and how the AAA+ domains of dynein compare to those of other AAA+ proteins. PMID:24680784

  14. The history of the CATH structural classification of protein domains.

    PubMed

    Sillitoe, Ian; Dawson, Natalie; Thornton, Janet; Orengo, Christine

    2015-12-01

    This article presents a historical review of the protein structure classification database CATH. Together with the SCOP database, CATH remains comprehensive and reasonably up-to-date with the now more than 100,000 protein structures in the PDB. We review the expansion of the CATH and SCOP resources to capture predicted domain structures in the genome sequence data and to provide information on the likely functions of proteins mediated by their constituent domains. The establishment of comprehensive function annotation resources has also meant that domain families can be functionally annotated allowing insights into functional divergence and evolution within protein families. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  15. A complex ligase ribozyme evolved in vitro from a group I ribozyme domain

    NASA Technical Reports Server (NTRS)

    Jaeger, L.; Wright, M. C.; Joyce, G. F.; Bada, J. L. (Principal Investigator)

    1999-01-01

    Like most proteins, complex RNA molecules often are modular objects made up of distinct structural and functional domains. The component domains of a protein can associate in alternative combinations to form molecules with different functions. These observations raise the possibility that complex RNAs also can be assembled from preexisting structural and functional domains. To test this hypothesis, an in vitro evolution procedure was used to isolate a previously undescribed class of complex ligase ribozymes, starting from a pool of 10(16) different RNA molecules that contained a constant region derived from a large structural domain that occurs within self-splicing group I ribozymes. Attached to this constant region were three hypervariable regions, totaling 85 nucleotides, that gave rise to the catalytic motif within the evolved catalysts. The ligase ribozymes catalyze formation of a 3',5'-phosphodiester linkage between adjacent template-bound oligonucleotides, one bearing a 3' hydroxyl and the other a 5' triphosphate. Ligation occurs in the context of a Watson-Crick duplex, with a catalytic rate of 0.26 min(-1) under optimal conditions. The constant region is essential for catalytic activity and appears to retain the tertiary structure of the group I ribozyme. This work demonstrates that complex RNA molecules, like their protein counterparts, can share common structural domains while exhibiting distinct catalytic functions.

  16. Structural basis for antibody recognition in the receptor-binding domains of toxins A and B from Clostridium difficile.

    PubMed

    Murase, Tomohiko; Eugenio, Luiz; Schorr, Melissa; Hussack, Greg; Tanha, Jamshid; Kitova, Elena N; Klassen, John S; Ng, Kenneth K S

    2014-01-24

    Clostridium difficile infection is a serious and highly prevalent nosocomial disease in which the two large, Rho-glucosylating toxins TcdA and TcdB are the main virulence factors. We report for the first time crystal structures revealing how neutralizing and non-neutralizing single-domain antibodies (sdAbs) recognize the receptor-binding domains (RBDs) of TcdA and TcdB. Surprisingly, the complexes formed by two neutralizing antibodies recognizing TcdA do not show direct interference with the previously identified carbohydrate-binding sites, suggesting that neutralization of toxin activity may be mediated by mechanisms distinct from steric blockage of receptor binding. A camelid sdAb complex also reveals the molecular structure of the TcdB RBD for the first time, facilitating the crystallization of a strongly negatively charged protein fragment that has resisted previous attempts at crystallization and structure determination. Electrospray ionization mass spectrometry measurements confirm the stoichiometries of sdAbs observed in the crystal structures. These studies indicate how key epitopes in the RBDs from TcdA and TcdB are recognized by sdAbs, providing molecular insights into toxin structure and function and providing for the first time a basis for the design of highly specific toxin-specific therapeutic and diagnostic agents.

  17. Structural Basis for Antibody Recognition in the Receptor-binding Domains of Toxins A and B from Clostridium difficile*

    PubMed Central

    Murase, Tomohiko; Eugenio, Luiz; Schorr, Melissa; Hussack, Greg; Tanha, Jamshid; Kitova, Elena N.; Klassen, John S.; Ng, Kenneth K. S.

    2014-01-01

    Clostridium difficile infection is a serious and highly prevalent nosocomial disease in which the two large, Rho-glucosylating toxins TcdA and TcdB are the main virulence factors. We report for the first time crystal structures revealing how neutralizing and non-neutralizing single-domain antibodies (sdAbs) recognize the receptor-binding domains (RBDs) of TcdA and TcdB. Surprisingly, the complexes formed by two neutralizing antibodies recognizing TcdA do not show direct interference with the previously identified carbohydrate-binding sites, suggesting that neutralization of toxin activity may be mediated by mechanisms distinct from steric blockage of receptor binding. A camelid sdAb complex also reveals the molecular structure of the TcdB RBD for the first time, facilitating the crystallization of a strongly negatively charged protein fragment that has resisted previous attempts at crystallization and structure determination. Electrospray ionization mass spectrometry measurements confirm the stoichiometries of sdAbs observed in the crystal structures. These studies indicate how key epitopes in the RBDs from TcdA and TcdB are recognized by sdAbs, providing molecular insights into toxin structure and function and providing for the first time a basis for the design of highly specific toxin-specific therapeutic and diagnostic agents. PMID:24311789

  18. The Crystal Structure of Cancer Osaka Thyroid Kinase Reveals an Unexpected Kinase Domain Fold*

    PubMed Central

    Gutmann, Sascha; Hinniger, Alexandra; Fendrich, Gabriele; Drückes, Peter; Antz, Sylvie; Mattes, Henri; Möbitz, Henrik; Ofner, Silvio; Schmiedeberg, Niko; Stojanovic, Aleksandar; Rieffel, Sebastien; Strauss, André; Troxler, Thomas; Glatthar, Ralf; Sparrer, Helmut

    2015-01-01

    Macrophages are important cellular effectors in innate immune responses and play a major role in autoimmune diseases such as rheumatoid arthritis. Cancer Osaka thyroid (COT) kinase, also known as mitogen-activated protein kinase kinase kinase 8 (MAP3K8) and tumor progression locus 2 (Tpl-2), is a serine-threonine (ST) kinase and is a key regulator in the production of pro-inflammatory cytokines in macrophages. Due to its pivotal role in immune biology, COT kinase has been identified as an attractive target for pharmaceutical research that is directed at the discovery of orally available, selective, and potent inhibitors for the treatment of autoimmune disorders and cancer. The production of monomeric, recombinant COT kinase has proven to be very difficult, and issues with solubility and stability of the enzyme have hampered the discovery and optimization of potent and selective inhibitors. We developed a protocol for the production of recombinant human COT kinase that yields pure and highly active enzyme in sufficient yields for biochemical and structural studies. The quality of the enzyme allowed us to establish a robust in vitro phosphorylation assay for the efficient biochemical characterization of COT kinase inhibitors and to determine the x-ray co-crystal structures of the COT kinase domain in complex with two ATP-binding site inhibitors. The structures presented in this study reveal two distinct ligand binding modes and a unique kinase domain architecture that has not been observed previously. The structurally versatile active site significantly impacts the design of potent, low molecular weight COT kinase inhibitors. PMID:25918157

  19. The structure of the nucleoprotein binding domain of lyssavirus phosphoprotein reveals a structural relationship between the N-RNA binding domains of Rhabdoviridae and Paramyxoviridae.

    PubMed

    Delmas, Olivier; Assenberg, Rene; Grimes, Jonathan M; Bourhy, Hervé

    2010-01-01

    The phosphoprotein P of non-segmented negative-sense RNA viruses is an essential component of the replication and transcription complex and acts as a co-factor for the viral RNA-dependent RNA polymerase. P recruits the viral polymerase to the nucleoprotein-bound viral RNA (N-RNA) via an interaction between its C-terminal domain and the N-RNA complex. We have obtained the structure of the C-terminal domain of P of Mokola virus (MOKV), a lyssavirus that belongs to the Rhabdoviridae family and mapped at the amino acid level the crucial positions involved in interaction with N and in the formation of the viral replication complex. Comparison of the N-RNA binding domains of P solved to date suggests that the N-RNA binding domains are structurally conserved among paramyxoviruses and rhabdoviruses in spite of low sequence conservation. We also review the numerous other functions of this domain and more generally of the phosphoprotein.

  20. Oligomeric domain structure of human complement factor H by X-ray and neutron solution scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perkins, S.J.; Nealis, A.S.; Sim, R.B.

    1991-03-19

    Factor H is a regulatory component of the complement system. It has a monomer M{sub r} of 150,000. Primary structure analysis shows that the polypeptide is divided into 20 homologous regions, each 60 amino acid residues long. These are independently folding domains and are termed short consensus repeats (SCRs) or complement control protein (CCP) repeats. High-flux synchrotron x-ray and neutron scatteriing studies were performed in order to define its solution structure in conditions close to physiological. The M{sub r} of factor H was determined as 250,000-320,000 to show that factor H is dimeric. The radius of gyration R{sub G} ofmore » native factor H by X-rays or by neutrons in 0% or 100% {sup 2}H{sub 2}O buffers is not measurable but is greater than 12.5 nm. Two cross-sectional radii of gyration R{sub XS-1} and R{sub XS-2} were determined as 3.0-3.1 and 1.8 nm, respectively. Analyses of the cross-sectional intensities show that factor H is composed of two distinct subunits. This model corresponds to an actual R{sub G} fo 21-23 nm. The separation between each SCR/CCP in factor H is close to 4 nm. In the solution structure of factor H, the SCR/CCP domains are in a highly extended conformation.« less

  1. A structural analysis of the AAA+ domains in Saccharomyces cerevisiae cytoplasmic dynein.

    PubMed

    Gleave, Emma S; Schmidt, Helgo; Carter, Andrew P

    2014-06-01

    Dyneins are large protein complexes that act as microtubule based molecular motors. The dynein heavy chain contains a motor domain which is a member of the AAA+ protein family (ATPases Associated with diverse cellular Activities). Proteins of the AAA+ family show a diverse range of functionalities, but share a related core AAA+ domain, which often assembles into hexameric rings. Dynein is unusual because it has all six AAA+ domains linked together, in one long polypeptide. The dynein motor domain generates movement by coupling ATP driven conformational changes in the AAA+ ring to the swing of a motile element called the linker. Dynein binds to its microtubule track via a long antiparallel coiled-coil stalk that emanates from the AAA+ ring. Recently the first high resolution structures of the dynein motor domain were published. Here we provide a detailed structural analysis of the six AAA+ domains using our Saccharomycescerevisiae crystal structure. We describe how structural similarities in the dynein AAA+ domains suggest they share a common evolutionary origin. We analyse how the different AAA+ domains have diverged from each other. We discuss how this is related to the function of dynein as a motor protein and how the AAA+ domains of dynein compare to those of other AAA+ proteins. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  2. Frequency- and Time-Domain Methods in Soil-Structure Interaction Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolisetti, Chandrakanth; Whittaker, Andrew S.; Coleman, Justin L.

    2015-06-01

    Soil-structure interaction (SSI) analysis in the nuclear industry is currently performed using linear codes that function in the frequency domain. There is a consensus that these frequency-domain codes give reasonably accurate results for low-intensity ground motions that result in almost linear response. For higher intensity ground motions, which may result in nonlinear response in the soil, structure or at the vicinity of the foundation, the adequacy of frequency-domain codes is unproven. Nonlinear analysis, which is only possible in the time domain, is theoretically more appropriate in such cases. These methods are available but are rarely used due to the largemore » computational requirements and a lack of experience with analysts and regulators. This paper presents an assessment of the linear frequency-domain code, SASSI, which is widely used in the nuclear industry, and the time-domain commercial finite-element code, LS-DYNA, for SSI analysis. The assessment involves benchmarking the SSI analysis procedure in LS-DYNA against SASSI for linearly elastic models. After affirming that SASSI and LS-DYNA result in almost identical responses for these models, they are used to perform nonlinear SSI analyses of two structures founded on soft soil. An examination of the results shows that, in spite of using identical material properties, the predictions of frequency- and time-domain codes are significantly different in the presence of nonlinear behavior such as gapping and sliding of the foundation.« less

  3. Structures of the Porphyromonas gingivalis OxyR regulatory domain explain differences in expression of the OxyR regulon in Escherichia coli and P. gingivalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Svintradze, David V.; Virginia Commonwealth University, Richmond, VA 23219-1540; Peterson, Darrell L.

    Differences in OxyR regulated expression of oxidative stress genes between Escherichia coli and Porphyromonas gingivalis are explained by very minor differences in structure and amino-acid sequence of the respective oxidized and reduced OxyR regulatory domains. These differences affect OxyR quaternary structures and are predicted from model building of full length OxyR–DNA complexes to confer distinct modes of DNA binding on this transcriptional regulator. OxyR transcriptionally regulates Escherichia coli oxidative stress response genes through a reversibly reducible cysteine disulfide biosensor of cellular redox status. Structural changes induced by redox changes in these cysteines are conformationally transmitted to the dimer subunit interfaces,more » which alters dimer and tetramer interactions with DNA. In contrast to E. coli OxyR regulatory-domain structures, crystal structures of Porphyromonas gingivalis OxyR regulatory domains show minimal differences in dimer configuration on changes in cysteine disulfide redox status. This locked configuration of the P. gingivalis OxyR regulatory-domain dimer closely resembles the oxidized (activating) form of the E. coli OxyR regulatory-domain dimer. It correlates with the observed constitutive activation of some oxidative stress genes in P. gingivalis and is attributable to a single amino-acid insertion in P. gingivalis OxyR relative to E. coli OxyR. Modelling of full-length P. gingivalis, E. coli and Neisseria meningitidis OxyR–DNA complexes predicts different modes of DNA binding for the reduced and oxidized forms of each.« less

  4. Comprehensively Surveying Structure and Function of RING Domains from Drosophila melanogaster

    PubMed Central

    Wu, Yuehao; Wan, Fusheng; Huang, Chunhong; Jie, Kemin

    2011-01-01

    Using a complete set of RING domains from Drosophila melanogaster, all the solved RING domains and cocrystal structures of RING-containing ubiquitin-ligases (RING-E3) and ubiquitin-conjugating enzyme (E2) pairs, we analyzed RING domains structures from their primary to quarternary structures. The results showed that: i) putative orthologs of RING domains between Drosophila melanogaster and the human largely occur (118/139, 84.9%); ii) of the 118 orthologous pairs from Drosophila melanogaster and the human, 117 pairs (117/118, 99.2%) were found to retain entirely uniform domain architectures, only Iap2/Diap2 experienced evolutionary expansion of domain architecture; iii) 4 evolutionary structurally conserved regions (SCRs) are responsible for homologous folding of RING domains at the superfamily level; iv) besides the conserved Cys/His chelating zinc ions, 6 equivalent residues (4 hydrophobic and 2 polar residues) in the SCRs possess good-consensus and conservation- these 4 SCRs function in the structural positioning of 6 equivalent residues as determinants for RING-E3 catalysis; v) members of these RING proteins located nucleus, multiple subcellular compartments, membrane protein and mitochondrion are respectively 42 (42/139, 30.2%), 71 (71/139, 51.1%), 22 (22/139, 15.8%) and 4 (4/139, 2.9%); vi) CG15104 (Topors) and CG1134 (Mul1) in C3HC4, and CG3929 (Deltex) in C3H2C3 seem to display broader E2s binding profiles than other RING-E3s; vii) analyzing intermolecular interfaces of E2/RING-E3 complexes indicate that residues directly interacting with E2s are all from the SCRs in RING domains. Of the 6 residues, 2 hydrophobic ones contribute to constructing the conserved hydrophobic core, while the 2 hydrophobic and 2 polar residues directly participate in E2/RING-E3 interactions. Based on sequence and structural data, SCRs, conserved equivalent residues and features of intermolecular interfaces were extracted, highlighting the presence of a nucleus for RING domain fold

  5. Virulence Regulation with Venus Flytrap Domains: Structure and Function of the Periplasmic Moiety of the Sensor-Kinase BvgS

    PubMed Central

    Lensink, Marc F.; Wintjens, René; Vagin, Alexey; Lebedev, Andrey; Crosson, Sean; Villeret, Vincent; Locht, Camille; Antoine, Rudy; Jacob-Dubuisson, Françoise

    2015-01-01

    Two-component systems (TCS) represent major signal-transduction pathways for adaptation to environmental conditions, and regulate many aspects of bacterial physiology. In the whooping cough agent Bordetella pertussis, the TCS BvgAS controls the virulence regulon, and is therefore critical for pathogenicity. BvgS is a prototypical TCS sensor-kinase with tandem periplasmic Venus flytrap (VFT) domains. VFT are bi-lobed domains that typically close around specific ligands using clamshell motions. We report the X-ray structure of the periplasmic moiety of BvgS, an intricate homodimer with a novel architecture. By combining site-directed mutagenesis, functional analyses and molecular modeling, we show that the conformation of the periplasmic moiety determines the state of BvgS activity. The intertwined structure of the periplasmic portion and the different conformation and dynamics of its mobile, membrane-distal VFT1 domains, and closed, membrane-proximal VFT2 domains, exert a conformational strain onto the transmembrane helices, which sets the cytoplasmic moiety in a kinase-on state by default corresponding to the virulent phase of the bacterium. Signaling the presence of negative signals perceived by the periplasmic domains implies a shift of BvgS to a distinct state of conformation and activity, corresponding to the avirulent phase. The response to negative modulation depends on the integrity of the periplasmic dimer, indicating that the shift to the kinase-off state implies a concerted conformational transition. This work lays the bases to understand virulence regulation in Bordetella. As homologous sensor-kinases control virulence features of diverse bacterial pathogens, the BvgS structure and mechanism may pave the way for new modes of targeted therapeutic interventions. PMID:25738876

  6. Pentameric ligand-gated ion channels exhibit distinct transmembrane domain archetypes for folding/expression and function.

    PubMed

    Therien, J P Daniel; Baenziger, John E

    2017-03-27

    Although transmembrane helix-helix interactions must be strong enough to drive folding, they must still permit the inter-helix movements associated with conformational change. Interactions between the outermost M4 and adjacent M1 and M3 α-helices of pentameric ligand-gated ion channels have been implicated in folding and function. Here, we evaluate the role of different physical interactions at this interface in the function of two prokaryotic homologs, GLIC and ELIC. Strikingly, disruption of most interactions in GLIC lead to either a reduction or a complete loss of expression and/or function, while analogous disruptions in ELIC often lead to gains in function. Structural comparisons suggest that GLIC and ELIC represent distinct transmembrane domain archetypes. One archetype, exemplified by GLIC, the glycine and GABA receptors and the glutamate activated chloride channel, has extensive aromatic contacts that govern M4-M1/M3 interactions and that are essential for expression and function. The other archetype, exemplified by ELIC and both the nicotinic acetylcholine and serotonin receptors, has relatively few aromatic contacts that are detrimental to function. These archetypes likely have evolved different mechanisms to balance the need for strong M4 "binding" to M1/M3 to promote folding/expression, and the need for weaker interactions that allow for greater conformational flexibility.

  7. The domain organization of the bacterial intermediate filament-like protein crescentin is important for assembly and function

    PubMed Central

    Cabeen, Matthew T; Herrmann, Harald; Jacobs-Wagner, Christine

    2011-01-01

    Crescentin is a bacterial filament-forming protein that exhibits domain organization features found in metazoan intermediate filament (IF) proteins. Structure-function studies of eukaryotic IFs have been hindered by a lack of simple genetic systems and easily quantifiable phenotypes. Here we exploit the characteristic localization of the crescentin structure along the inner curvature of Caulobacter crescentus cells and the loss of cell curvature associated with impaired crescentin function to analyze the importance of the domain organization of crescentin. By combining biochemistry and ultrastructural analysis in vitro with cellular localization and functional studies, we show that crescentin requires its distinctive domain organization, and furthermore that different structural elements have distinct structural and functional contributions. The head domain can be functionally subdivided into two subdomains; the first (amino-terminal) is required for function but not assembly, while the second is necessary for structure assembly. The rod domain is similarly required for structure assembly, and the linker L1 appears important to prevent runaway assembly into nonfunctional aggregates. The data also suggest that the stutter and the tail domain have critical functional roles in stabilizing crescentin structures against disassembly by monovalent cations in the cytoplasm. This study suggests that the IF-like behavior of crescentin is a consequence of its domain organization, implying that the IF protein layout is an adaptable cytoskeletal motif, much like the actin and tubulin folds, that is broadly exploited for various functions throughout life from bacteria to humans. © 2011 Wiley-Liss, Inc. PMID:21360832

  8. Visualization of evolving laser-generated structures by frequency domain tomography

    NASA Astrophysics Data System (ADS)

    Chang, Yenyu; Li, Zhengyan; Wang, Xiaoming; Zgadzaj, Rafal; Downer, Michael

    2011-10-01

    We introduce frequency domain tomography (FDT) for single-shot visualization of time-evolving refractive index structures (e.g. laser wakefields, nonlinear index structures) moving at light-speed. Previous researchers demonstrated single-shot frequency domain holography (FDH), in which a probe-reference pulse pair co- propagates with the laser-generated structure, to obtain snapshot-like images. However, in FDH, information about the structure's evolution is averaged. To visualize an evolving structure, we use several frequency domain streak cameras (FDSCs), in each of which a probe-reference pulse pair propagates at an angle to the propagation direction of the laser-generated structure. The combination of several FDSCs constitutes the FDT system. We will present experimental results for a 4-probe FDT system that has imaged the whole-beam self-focusing of a pump pulse propagating through glass in a single laser shot. Combining temporal and angle multiplexing methods, we successfully processed data from four probe pulses in one spectrometer in a single-shot. The output of data processing is a multi-frame movie of the self- focusing pulse. Our results promise the possibility of visualizing evolving laser wakefield structures that underlie laser-plasma accelerators used for multi-GeV electron acceleration.

  9. Magnetic and magneto-optical properties and domain structure of Co/Pd multilayers

    NASA Technical Reports Server (NTRS)

    Gadetsky, S.; Wu, Teho; Suzuki, T.; Mansuripur, M.

    1993-01-01

    The domain structure of Co/Pd(1.6/6.3 A)xN multilayers and its relation to the bulk magnetic properties of the samples were studied. The Co/Pd multilayers were deposited by rf and dc magnetron sputtering onto different substrates. It was found that magnetic and magnetooptical properties and domain structure of the multilayers were affected by total film thickness and substrate condition. Magnetization, coercivity, and anisotropy of the films decreased significantly as the film thickness dropped below 100 A. However, Kerr rotation angle had a maximum at the same thickness. The width of the domain structure increased with the decrease of the film thickness attaining the single domain state at N = 10. The initial curves in Co/Pd multilayers were found to depend on demagnetization process. The samples demagnetized by inplane field showed the largest difference between initial curves and the corresponding parts of the loops. Different domain structures were observed in the samples demagnetized by perpendicular and in-plane magnetic fields.

  10. Structure and Regulatory Interactions of the Cytoplasmic Terminal Domains of Serotonin Transporter

    PubMed Central

    2014-01-01

    Uptake of neurotransmitters by sodium-coupled monoamine transporters of the NSS family is required for termination of synaptic transmission. Transport is tightly regulated by protein–protein interactions involving the small cytoplasmic segments at the amino- and carboxy-terminal ends of the transporter. Although structures of homologues provide information about the transmembrane regions of these transporters, the structural arrangement of the terminal domains remains largely unknown. Here, we combined molecular modeling, biochemical, and biophysical approaches in an iterative manner to investigate the structure of the 82-residue N-terminal and 30-residue C-terminal domains of human serotonin transporter (SERT). Several secondary structures were predicted in these domains, and structural models were built using the Rosetta fragment-based methodology. One-dimensional 1H nuclear magnetic resonance and circular dichroism spectroscopy supported the presence of helical elements in the isolated SERT N-terminal domain. Moreover, introducing helix-breaking residues within those elements altered the fluorescence resonance energy transfer signal between terminal cyan fluorescent protein and yellow fluorescent protein tags attached to full-length SERT, consistent with the notion that the fold of the terminal domains is relatively well-defined. Full-length models of SERT that are consistent with these and published experimental data were generated. The resultant models predict confined loci for the terminal domains and predict that they move apart during the transport-related conformational cycle, as predicted by structures of homologues and by the “rocking bundle” hypothesis, which is consistent with spectroscopic measurements. The models also suggest the nature of binding to regulatory interaction partners. This study provides a structural context for functional and regulatory mechanisms involving SERT terminal domains. PMID:25093911

  11. Structural properties of the promiscuous VP16 activation domain.

    PubMed

    Jonker, Hendrik R A; Wechselberger, Rainer W; Boelens, Rolf; Folkers, Gert E; Kaptein, Rob

    2005-01-25

    Herpes simplex virion protein 16 (VP16) contains two strong activation regions that can independently and cooperatively activate transcription in vivo. We have identified the regions and residues involved in the interaction with the human transcriptional coactivator positive cofactor 4 (PC4) and the general transcription factor TFIIB. NMR and biochemical experiments revealed that both VP16 activation regions are required for the interaction and undergo a conformational transition from random coil to alpha-helix upon binding to its target PC4. The interaction is strongly electrostatically driven and the binding to PC4 is enhanced by the presence of its amino-terminal domain. We propose models for binding of VP16 to the core domains of PC4 and TFIIB that are based on two independent docking approaches using NMR chemical shift changes observed in titration experiments. The models are consistent with results from site-directed mutagenesis and provide an explanation for the contribution of both acidic and hydrophobic residues for transcriptional activation by VP16. Both intrinsically unstructured activation domains are attracted to their interaction partner by electrostatic interactions, and adopt an alpha-helical conformation around the important hydrophobic residues. The models showed multiple distinct binding surfaces upon interaction with various partners, providing an explanation for the promiscuous properties, cooperativity, and the high activity of this activation domain.

  12. The structure function of the death domain of human IRAK-M.

    PubMed

    Du, Jiangfeng; Nicolaes, Gerry Af; Kruijswijk, Danielle; Versloot, Miranda; van der Poll, Tom; van 't Veer, Cornelis

    2014-12-07

    IRAK-M is an inhibitor of Toll-like receptor signaling that acts by re-directing IRAK-4 activity to TAK1 independent NF-κB activation and by inhibition of IRAK-1/IRAK-2 activity. IRAK-M is expressed in monocytes/macrophages and lung epithelial cells. Lack of IRAK-M in mice greatly improves the resistance to nosocomial pneumonia and lung tumors, which entices IRAK-M as a potential therapeutic target. IRAK-M consists of an N-terminal death domain (DD), a dysfunctional kinase domain and unstructured C-terminal domain. Little is known however on IRAK-M's structure-function relationships. Since death domains provide the important interactions of IRAK-1, IRAK-2 and IRAK-4 molecules, we generated a 3D structure model of the human IRAK-M-DD (residues C5-G119) to guide mutagenesis studies and predict protein-protein interaction points. First we identified the DD residues involved in the endogenous capacity of IRAK-M to activate NF-κB that is displayed upon overexpression in 293T cells. W74 and R97, at distinct interfaces of the IRAK-M-DD, were crucial for this endogenous NF-κB activating capacity, as well as the C-terminal domain (S445-E596) of IRAK-M. Resulting anti-inflammatory A20 and pro-inflammatory IL-8 transcription in 293T cells was W74 dependent, while IL-8 protein expression was dependent on R97 and the TRAF6 binding motif at P478. The IRAK-M-DD W74 and R97 binding interfaces are predicted to interact with opposite sides of IRAK-4-DD's. Secondly we identified DD residues important for the inhibitory action of IRAK-M by stable overexpression of mutants in THP-1 macrophages and H292 lung epithelial cells. IRAK-M inhibited TLR2/4-mediated cytokine production in macrophages in a manner that is largely dependent on W74. R97 was not involved in inhibition of TNF production but was engaged in IL-6 down-regulation by IRAK-M. Protein-interactive residues D19-A23, located in between W74 and R97, were also observed to be crucial for inhibition of TLR2/4 mediated cytokine

  13. C-terminal domains of bacterial proteases: structure, function and the biotechnological applications.

    PubMed

    Huang, J; Wu, C; Liu, D; Yang, X; Wu, R; Zhang, J; Ma, C; He, H

    2017-01-01

    C-terminal domains widely exist in the C-terminal region of multidomain proteases. As a β-sandwich domain in multidomain protease, the C-terminal domain plays an important role in proteolysis including regulation of the secretory process, anchoring and swelling the substrate molecule, presenting as an inhibitor for the preprotease and adapting the protein structural flexibility and stability. In this review, the diversity, structural characteristics and biological function of C-terminal protease domains are described. Furthermore, the application prospects of C-terminal domains, including polycystic kidney disease, prepeptidase C-terminal and collagen-binding domain, in the area of medicine and biological artificial materials are also discussed. © 2016 The Society for Applied Microbiology.

  14. Structure and Misfolding of the Flexible Tripartite Coiled-Coil Domain of Glaucoma-Associated Myocilin.

    PubMed

    Hill, Shannon E; Nguyen, Elaine; Donegan, Rebecca K; Patterson-Orazem, Athéna C; Hazel, Anthony; Gumbart, James C; Lieberman, Raquel L

    2017-11-07

    Glaucoma-associated myocilin is a member of the olfactomedins, a protein family involved in neuronal development and human diseases. Molecular studies of the myocilin N-terminal coiled coil demonstrate a unique tripartite architecture: a Y-shaped parallel dimer-of-dimers with distinct tetramer and dimer regions. The structure of the dimeric C-terminal 7-heptad repeats elucidates an unexpected repeat pattern involving inter-strand stabilization by oppositely charged residues. Molecular dynamics simulations reveal an alternate accessible conformation in which the terminal inter-strand disulfide limits the extent of unfolding and results in a kinked configuration. By inference, full-length myocilin is also branched, with two pairs of C-terminal olfactomedin domains. Selected variants within the N-terminal region alter the apparent quaternary structure of myocilin but do so without compromising stability or causing aggregation. In addition to increasing our structural knowledge of naturally occurring extracellular coiled coils and biomedically important olfactomedins, this work broadens the scope of protein misfolding in the pathogenesis of myocilin-associated glaucoma. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Structure and Misfolding of the Flexible Tripartite Coiled-Coil Domain of Glaucoma-Associated Myocilin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, Shannon E.; Nguyen, Elaine; Donegan, Rebecca K.

    2017-11-01

    Glaucoma-associated myocilin is a member of the olfactomedins, a protein family involved in neuronal development and human diseases. Molecular studies of the myocilin N-terminal coiled coil demonstrate a unique tripartite architecture: a Y-shaped parallel dimer-of-dimers with distinct tetramer and dimer regions. The structure of the dimeric C-terminal 7-heptad repeats elucidates an unexpected repeat pattern involving inter-strand stabilization by oppositely charged residues. Molecular dynamics simulations reveal an alternate accessible conformation in which the terminal inter-strand disulfide limits the extent of unfolding and results in a kinked configuration. By inference, full-length myocilin is also branched, with two pairs of C-terminal olfactomedin domains.more » Selected variants within the N-terminal region alter the apparent quaternary structure of myocilin but do so without compromising stability or causing aggregation. In addition to increasing our structural knowledge of naturally occurring extracellular coiled coils and biomedically important olfactomedins, this work broadens the scope of protein misfolding in the pathogenesis of myocilin-associated glaucoma.« less

  16. Structure of PA1221, a nonribosomal peptide synthetase containing adenylation and peptidyl carrier protein domains.

    PubMed

    Mitchell, Carter A; Shi, Ce; Aldrich, Courtney C; Gulick, Andrew M

    2012-04-17

    Many bacteria use large modular enzymes for the synthesis of polyketide and peptide natural products. These multidomain enzymes contain integrated carrier domains that deliver bound substrates to multiple catalytic domains, requiring coordination of these chemical steps. Nonribosomal peptide synthetases (NRPSs) load amino acids onto carrier domains through the activity of an upstream adenylation domain. Our lab recently determined the structure of an engineered two-domain NRPS containing fused adenylation and carrier domains. This structure adopted a domain-swapped dimer that illustrated the interface between these two domains. To continue our investigation, we now examine PA1221, a natural two-domain protein from Pseudomonas aeruginosa. We have determined the amino acid specificity of this new enzyme and used domain specific mutations to demonstrate that loading the downstream carrier domain within a single protein molecule occurs more quickly than loading of a nonfused carrier domain intermolecularly. Finally, we have determined crystal structures of both apo- and holo-PA1221 proteins, the latter using a valine-adenosine vinylsulfonamide inhibitor that traps the adenylation domain-carrier domain interaction. The protein adopts an interface similar to that seen with the prior adenylation domain-carrier protein construct. A comparison of these structures with previous structures of multidomain NRPSs suggests that a large conformational change within the NRPS adenylation domains guides the carrier domain into the active site for thioester formation.

  17. Molecular modeling study of CodX reveals importance of N-terminal and C-terminal domain in the CodWX complex structure of Bacillus subtilis.

    PubMed

    Krishnamoorthy, Navaneethakrishnan; Gajendrarao, Poornima; Eom, Soo Hyun; Kwon, Yong Jung; Cheong, Gang-Won; Lee, Keun Woo

    2008-08-01

    In Bacillus subtilis, CodW peptidase and CodX ATPase function together as a distinctive ATP-dependent protease called CodWX, which participates in protein degradation and regulates cell division. The molecular structure of CodX and the assembly structure of CodW-CodX have not yet been resolved. Here we present the first three-dimensional structure of CodX N-terminal (N) and C-terminal (C) domain including possible structure of intermediate (I) domain based on the crystal structure of homologous Escherichia coli HslU ATPase. Moreover, the biologically relevant CodWX (W(6)W(6)X(6)) octadecamer complex structure was constructed using the recently identified CodW-HslU hybrid crystal structure. Molecular dynamics (MD) simulation shows a reasonably stable structure of modeled CodWX and explicit behavior of key segments in CodX N and C domain: nucleotide binding residues, GYVG pore motif and CodW-CodX interface. Predicted structure of the possible I domain is flexible in nature with highly coiled hydrophobic region (M153-M206) that could favor substrate binding and entry. Electrostatic surface potential observation unveiled charge complementarity based CodW-CodX interaction pattern could be a possible native interaction pattern in the interface of CodWX. CodX GYVG pore motif structural features, flexible nature of glycine (G92 and G95) residues and aromatic ring conformation preserved Y93 indicated that it may follow the similar mode during the proteolysis mechanism as in the HslU closed state. This molecular modeling study uncovers the significance of CodX N and C domain in CodWX complex and provides possible explanations which would be helpful to understand the CodWX-dependent proteolysis mechanism of B. subtilis.

  18. Structure of the kinase domain of Gilgamesh from Drosophila melanogaster

    PubMed Central

    Han, Ni; Chen, CuiCui; Shi, Zhubing; Cheng, Dianlin

    2014-01-01

    The CK1 family kinases regulate multiple cellular aspects and play important roles in Wnt/Wingless and Hedgehog signalling. The kinase domain of Drosophila Gilgamesh isoform I (Gilgamesh-I), a homologue of human CK1-γ, was purified and crystallized. Crystals of methylated Gilgamesh-I kinase domain with a D210A mutation diffracted to 2.85 Å resolution and belonged to space group P43212, with unit-cell parameters a = b = 52.025, c = 291.727 Å. The structure of Gilgamesh-I kinase domain, which was determined by molecular replacement, has conserved catalytic elements and an active conformation. Structural comparison indicates that an extended loop between the α1 helix and the β4 strand exists in the Gilgamesh-I kinase domain. This extended loop may regulate the activity and function of Gilgamesh-I. PMID:24699734

  19. Domains within RbpA Serve Specific Functional Roles That Regulate the Expression of Distinct Mycobacterial Gene Subsets.

    PubMed

    Prusa, Jerome; Jensen, Drake; Santiago-Collazo, Gustavo; Pope, Steven S; Garner, Ashley L; Miller, Justin J; Ruiz Manzano, Ana; Galburt, Eric A; Stallings, Christina L

    2018-07-01

    The RNA polymerase (RNAP) binding protein A (RbpA) contributes to the formation of stable RNAP-promoter open complexes (RP o ) and is essential for viability in mycobacteria. Four domains have been identified in the RbpA protein, i.e., an N-terminal tail (NTT) that interacts with RNAP β' and σ subunits, a core domain (CD) that contacts the RNAP β' subunit, a basic linker (BL) that binds DNA, and a σ-interaction domain (SID) that binds group I and group II σ factors. Limited in vivo studies have been performed in mycobacteria, however, and how individual structural domains of RbpA contribute to RbpA function and mycobacterial gene expression remains mostly unknown. We investigated the roles of the RbpA structural domains in mycobacteria using a panel of rbpA mutants that target individual RbpA domains. The function of each RbpA domain was required for Mycobacterium tuberculosis viability and optimal growth in Mycobacterium smegmatis We determined that the RbpA SID is both necessary and sufficient for RbpA interaction with the RNAP, indicating that the primary functions of the NTT and CD are not solely association with the RNAP. We show that the RbpA BL and SID are required for RP o stabilization in vitro , while the NTT and CD antagonize this activity. Finally, RNA-sequencing analyses suggest that the NTT and CD broadly activate gene expression, whereas the BL and SID activate or repress gene expression in a gene-dependent manner for a subset of mycobacterial genes. Our findings highlight specific outcomes for the activities of the individual functional domains in RbpA. IMPORTANCE Mycobacterium tuberculosis is the causative agent of tuberculosis and continues to be the most lethal infectious disease worldwide. Improved molecular understanding of the essential proteins involved in M. tuberculosis transcription, such as RbpA, could provide targets for much needed future therapeutic agents aimed at combatting this pathogen. In this study, we expand our

  20. Is there a domain-general cognitive structuring system? Evidence from structural priming across music, math, action descriptions, and language.

    PubMed

    Van de Cavey, Joris; Hartsuiker, Robert J

    2016-01-01

    Cognitive processing in many domains (e.g., sentence comprehension, music listening, and math solving) requires sequential information to be organized into an integrational structure. There appears to be some overlap in integrational processing across domains, as shown by cross-domain interference effects when for example linguistic and musical stimuli are jointly presented (Koelsch, Gunter, Wittfoth, & Sammler, 2005; Slevc, Rosenberg, & Patel, 2009). These findings support theories of overlapping resources for integrational processing across domains (cfr. SSIRH Patel, 2003; SWM, Kljajevic, 2010). However, there are some limitations to the studies mentioned above, such as the frequent use of unnaturalistic integrational difficulties. In recent years, the idea has risen that evidence for domain-generality in structural processing might also be yielded though priming paradigms (cfr. Scheepers, 2003). The rationale behind this is that integrational processing across domains regularly requires the processing of dependencies across short or long distances in the sequence, involving respectively less or more syntactic working memory resources (cfr. SWM, Kljajevic, 2010), and such processing decisions might persist over time. However, whereas recent studies have shown suggestive priming of integrational structure between language and arithmetics (though often dependent on arithmetic performance, cfr. Scheepers et al., 2011; Scheepers & Sturt, 2014), it remains to be investigated to what extent we can also find evidence for priming in other domains, such as music and action (cfr. SWM, Kljajevic, 2010). Experiment 1a showed structural priming from the processing of musical sequences onto the position in the sentence structure (early or late) to which a relative clause was attached in subsequent sentence completion. Importantly, Experiment 1b showed that a similar structural manipulation based on non-hierarchically ordered color sequences did not yield any priming effect

  1. Structure of the USP15 N-terminal domains: a β-hairpin mediates close association between the DUSP and UBL domains.

    PubMed

    Harper, Stephen; Besong, Tabot M D; Emsley, Jonas; Scott, David J; Dreveny, Ingrid

    2011-09-20

    Ubiquitin specific protease 15 (USP15) functions in COP9 signalosome mediated regulation of protein degradation and cellular signaling through catalyzing the ubiquitin deconjugation reaction of a discrete number of substrates. It influences the stability of adenomatous polyposis coli, IκBα, caspase-3, and the human papillomavirus type 16 E6. USP15 forms a subfamily with USP4 and USP11 related through a shared presence of N-terminal "domain present in ubiquitin specific proteases" (DUSP) and "ubiquitin-like" (UBL) domains (DU subfamily). Here we report the 1.5 Å resolution crystal structure of the human USP15 N-terminal domains revealing a 80 Å elongated arrangement with the DU domains aligned in tandem. This architecture is generated through formation of a defined interface that is dominated by an intervening β-hairpin structure (DU finger) that engages in an intricate hydrogen-bonding network between the domains. The UBL domain is closely related to ubiquitin among β-grasp folds but is characterized by the presence of longer loop regions and different surface characteristics, indicating that this domain is unlikely to act as ubiquitin mimic. Comparison with the related murine USP4 DUSP-UBL crystal structure reveals that the main DU interdomain contacts are conserved. Analytical ultracentrifugation, small-angle X-ray scattering, and gel filtration experiments revealed that USP15 DU is monomeric in solution. Our data provide a framework to advance study of the structure and function of the DU subfamily. © 2011 American Chemical Society

  2. Crystal structure of the thioesterification conformation of Bacillus subtilis o-succinylbenzoyl-CoA synthetase reveals a distinct substrate-binding mode.

    PubMed

    Chen, Yaozong; Li, Tin Lok; Lin, Xingbang; Li, Xin; Li, Xiang David; Guo, Zhihong

    2017-07-21

    o -Succinylbenzoyl-CoA (OSB-CoA) synthetase (MenE) is an essential enzyme in bacterial vitamin K biosynthesis and an important target in the development of new antibiotics. It is a member of the adenylating enzymes (ANL) family, which reconfigure their active site in two different active conformations, one for the adenylation half-reaction and the other for a thioesterification half-reaction, in a domain-alternation catalytic mechanism. Although several aspects of the adenylating mechanism in MenE have recently been uncovered, its thioesterification conformation remains elusive. Here, using a catalytically competent Bacillus subtilis mutant protein complexed with an OSB-CoA analogue, we determined MenE high-resolution structures to 1.76 and 1.90 Å resolution in a thioester-forming conformation. By comparison with the adenylation conformation, we found that MenE's C-domain rotates around the Ser-384 hinge by 139.5° during domain-alternation catalysis. The structures also revealed a thioesterification active site specifically conserved among MenE orthologues and a substrate-binding mode distinct from those of many other acyl/aryl-CoA synthetases. Of note, using site-directed mutagenesis, we identified several residues that specifically contribute to the thioesterification half-reaction without affecting the adenylation half-reaction. Moreover, we observed a substantial movement of the activated succinyl group in the thioesterification half-reaction. These findings provide new insights into the domain-alternation catalysis of a bacterial enzyme essential for vitamin K biosynthesis and of its adenylating homologues in the ANL enzyme family. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Structures of BIR domains from human NAIP and cIAP2.

    PubMed

    Herman, Maria Dolores; Moche, Martin; Flodin, Susanne; Welin, Martin; Trésaugues, Lionel; Johansson, Ida; Nilsson, Martina; Nordlund, Pär; Nyman, Tomas

    2009-11-01

    The inhibitor of apoptosis (IAP) family of proteins contains key modulators of apoptosis and inflammation that interact with caspases through baculovirus IAP-repeat (BIR) domains. Overexpression of IAP proteins frequently occurs in cancer cells, thus counteracting the activated apoptotic program. The IAP proteins have therefore emerged as promising targets for cancer therapy. In this work, X-ray crystallography was used to determine the first structures of BIR domains from human NAIP and cIAP2. Both structures harbour an N-terminal tetrapeptide in the conserved peptide-binding groove. The structures reveal that these two proteins bind the tetrapeptides in a similar mode as do other BIR domains. Detailed interactions are described for the P1'-P4' side chains of the peptide, providing a structural basis for peptide-specific recognition. An arginine side chain in the P3' position reveals favourable interactions with its hydrophobic moiety in the binding pocket, while hydrophobic residues in the P2' and P4' pockets make similar interactions to those seen in other BIR domain-peptide complexes. The structures also reveal how a serine in the P1' position is accommodated in the binding pockets of NAIP and cIAP2. In addition to shedding light on the specificity determinants of these two proteins, the structures should now also provide a framework for future structure-based work targeting these proteins.

  4. Structure of the membrane domain of respiratory complex I.

    PubMed

    Efremov, Rouslan G; Sazanov, Leonid A

    2011-08-07

    Complex I is the first and largest enzyme of the respiratory chain, coupling electron transfer between NADH and ubiquinone to the translocation of four protons across the membrane. It has a central role in cellular energy production and has been implicated in many human neurodegenerative diseases. The L-shaped enzyme consists of hydrophilic and membrane domains. Previously, we determined the structure of the hydrophilic domain. Here we report the crystal structure of the Esherichia coli complex I membrane domain at 3.0 Å resolution. It includes six subunits, NuoL, NuoM, NuoN, NuoA, NuoJ and NuoK, with 55 transmembrane helices. The fold of the homologous antiporter-like subunits L, M and N is novel, with two inverted structural repeats of five transmembrane helices arranged, unusually, face-to-back. Each repeat includes a discontinuous transmembrane helix and forms half of a channel across the membrane. A network of conserved polar residues connects the two half-channels, completing the proton translocation pathway. Unexpectedly, lysines rather than carboxylate residues act as the main elements of the proton pump in these subunits. The fourth probable proton-translocation channel is at the interface of subunits N, K, J and A. The structure indicates that proton translocation in complex I, uniquely, involves coordinated conformational changes in six symmetrical structural elements.

  5. Classification of protein quaternary structure by functional domain composition

    PubMed Central

    Yu, Xiaojing; Wang, Chuan; Li, Yixue

    2006-01-01

    Background The number and the arrangement of subunits that form a protein are referred to as quaternary structure. Quaternary structure is an important protein attribute that is closely related to its function. Proteins with quaternary structure are called oligomeric proteins. Oligomeric proteins are involved in various biological processes, such as metabolism, signal transduction, and chromosome replication. Thus, it is highly desirable to develop some computational methods to automatically classify the quaternary structure of proteins from their sequences. Results To explore this problem, we adopted an approach based on the functional domain composition of proteins. Every protein was represented by a vector calculated from the domains in the PFAM database. The nearest neighbor algorithm (NNA) was used for classifying the quaternary structure of proteins from this information. The jackknife cross-validation test was performed on the non-redundant protein dataset in which the sequence identity was less than 25%. The overall success rate obtained is 75.17%. Additionally, to demonstrate the effectiveness of this method, we predicted the proteins in an independent dataset and achieved an overall success rate of 84.11% Conclusion Compared with the amino acid composition method and Blast, the results indicate that the domain composition approach may be a more effective and promising high-throughput method in dealing with this complicated problem in bioinformatics. PMID:16584572

  6. Phase-field model of domain structures in ferroelectric thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y. L.; Hu, S. Y.; Liu, Z. K.

    A phase-field model for predicting the coherent microstructure evolution in constrained thin films is developed. It employs an analytical elastic solution derived for a constrained film with arbitrary eigenstrain distributions. The domain structure evolution during a cubic{r_arrow}tetragonal proper ferroelectric phase transition is studied. It is shown that the model is able to simultaneously predict the effects of substrate constraint and temperature on the volume fractions of domain variants, domain-wall orientations, domain shapes, and their temporal evolution. {copyright} 2001 American Institute of Physics.

  7. Atomic resolution structure of the E. coli YajR transporter YAM domain.

    PubMed

    Jiang, Daohua; Zhao, Yan; Fan, Junping; Liu, Xuehui; Wu, Yan; Feng, Wei; Zhang, Xuejun C

    2014-07-25

    YajR is an Escherichia coli transporter that belongs to the major facilitator superfamily. Unlike most MFS transporters, YajR contains a carboxyl terminal, cytosolic domain of 67 amino acid residues termed YAM domain. Although it is speculated that the function of this small soluble domain is to regulate the conformational change of the 12-helix transmembrane domain, its precise regulatory role remains unclear. Here, we report the crystal structure of the YAM domain at 1.07-Å resolution, along with its structure determined using nuclear magnetic resonance. Detailed analysis of the high resolution structure revealed a symmetrical dimer in which a belt of well-ordered poly-pentagonal water molecules is embedded. A mutagenesis experiment and a thermal stability assay were used to analyze the putative role of this dimerization in response to changes in halogen concentration. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Close encounters of the third kind: disordered domains and the interactions of proteins.

    PubMed

    Tompa, Peter; Fuxreiter, Monika; Oldfield, Christopher J; Simon, Istvan; Dunker, A Keith; Uversky, Vladimir N

    2009-03-01

    Protein-protein interactions are thought to be mediated by domains, which are autonomous folding units of proteins. Recently, a second type of interaction has been suggested, mediated by short segments termed linear motifs, which are related to recognition elements of intrinsically disordered regions. Here, we propose a third kind of protein-protein recognition mechanism, mediated by disordered regions longer than 20-30 residues. Bioinformatics predictions and well-characterized examples, such as the kinase-inhibitory domain of Cdk inhibitors and the Wiskott-Aldrich syndrome protein (WASP)-homology domain 2 of actin-binding proteins, show that these disordered regions conform to the definition of domains rather than motifs, i.e., they represent functional, evolutionary, and structural units. Their functions are distinct from those of short motifs and ordered domains, and establish a third kind of interaction principle. With these points, we argue that these long disordered regions should be recognized as a distinct class of biologically functional protein domains.

  9. Structures of minute virus of mice replication initiator protein N-terminal domain: Insights into DNA nicking and origin binding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tewary, Sunil K.; Liang, Lingfei; Lin, Zihan

    Members of the Parvoviridae family all encode a non-structural protein 1 (NS1) that directs replication of single-stranded viral DNA, packages viral DNA into capsid, and serves as a potent transcriptional activator. Here we report the X-ray structure of the minute virus of mice (MVM) NS1 N-terminal domain at 1.45 Å resolution, showing that sites for dsDNA binding, ssDNA binding and cleavage, nuclear localization, and other functions are integrated on a canonical fold of the histidine-hydrophobic-histidine superfamily of nucleases, including elements specific for this Protoparvovirus but distinct from its Bocaparvovirus or Dependoparvovirus orthologs. High resolution structural analysis reveals a nickase activemore » site with an architecture that allows highly versatile metal ligand binding. The structures support a unified mechanism of replication origin recognition for homotelomeric and heterotelomeric parvoviruses, mediated by a basic-residue-rich hairpin and an adjacent helix in the initiator proteins and by tandem tetranucleotide motifs in the replication origins. - Highlights: • The structure of a parvovirus replication initiator protein has been determined; • The structure sheds light on mechanisms of ssDNA binding and cleavage; • The nickase active site is preconfigured for versatile metal ligand binding; • The binding site for the double-stranded replication origin DNA is identified; • A single domain integrates multiple functions in virus replication.« less

  10. Structures of oncogenic, suppressor and rescued p53 core-domain variants: mechanisms of mutant p53 rescue

    PubMed Central

    Wallentine, Brad D.; Wang, Ying; Tretyachenko-Ladokhina, Vira; Tan, Martha; Senear, Donald F.; Luecke, Hartmut

    2013-01-01

    To gain insights into the mechanisms by which certain second-site suppressor mutations rescue the function of a significant number of cancer mutations of the tumor suppressor protein p53, X-ray crystallographic structures of four p53 core-domain variants were determined. These include an oncogenic mutant, V157F, two single-site suppressor mutants, N235K and N239Y, and the rescued cancer mutant V157F/N235K/N239Y. The V157F mutation substitutes a smaller hydrophobic valine with a larger hydrophobic phenylalanine within strand S4 of the hydrophobic core. The structure of this cancer mutant shows no gross structural changes in the overall fold of the p53 core domain, only minor rearrangements of side chains within the hydrophobic core of the protein. Based on biochemical analysis, these small local perturbations induce instability in the protein, increasing the free energy by 3.6 kcal mol−1 (15.1 kJ mol−1). Further biochemical evidence shows that each suppressor mutation, N235K or N239Y, acts individually to restore thermodynamic stability to V157F and that both together are more effective than either alone. All rescued mutants were found to have wild-type DNA-binding activity when assessed at a permissive temperature, thus pointing to thermodynamic stability as the critical underlying variable. Interestingly, thermodynamic analysis shows that while N239Y demonstrates stabilization of the wild-type p53 core domain, N235K does not. These observations suggest distinct structural mechanisms of rescue. A new salt bridge between Lys235 and Glu198, found in both the N235K and rescued cancer mutant structures, suggests a rescue mechanism that relies on stabilizing the β-sandwich scaffold. On the other hand, the substitution N239Y creates an advantageous hydrophobic contact between the aromatic ring of this tyrosine and the adjacent Leu137. Surprisingly, the rescued cancer mutant shows much larger structural deviations than the cancer mutant alone when compared

  11. Structural domains and main-chain flexibility in prion proteins.

    PubMed

    Blinov, N; Berjanskii, M; Wishart, D S; Stepanova, M

    2009-02-24

    In this study we describe a novel approach to define structural domains and to characterize the local flexibility in both human and chicken prion proteins. The approach we use is based on a comprehensive theory of collective dynamics in proteins that was recently developed. This method determines the essential collective coordinates, which can be found from molecular dynamics trajectories via principal component analysis. Under this particular framework, we are able to identify the domains where atoms move coherently while at the same time to determine the local main-chain flexibility for each residue. We have verified this approach by comparing our results for the predicted dynamic domain systems with the computed main-chain flexibility profiles and the NMR-derived random coil indexes for human and chicken prion proteins. The three sets of data show excellent agreement. Additionally, we demonstrate that the dynamic domains calculated in this fashion provide a highly sensitive measure of protein collective structure and dynamics. Furthermore, such an analysis is capable of revealing structural and dynamic properties of proteins that are inaccessible to the conventional assessment of secondary structure. Using the collective dynamic simulation approach described here along with a high-temperature simulations of unfolding of human prion protein, we have explored whether locations of relatively low stability could be identified where the unfolding process could potentially be facilitated. According to our analysis, the locations of relatively low stability may be associated with the beta-sheet formed by strands S1 and S2 and the adjacent loops, whereas helix HC appears to be a relatively stable part of the protein. We suggest that this kind of structural analysis may provide a useful background for a more quantitative assessment of potential routes of spontaneous misfolding in prion proteins.

  12. Structural basis for methylesterase CheB regulation by a phosphorylation-activated domain

    PubMed Central

    Djordjevic, Snezana; Goudreau, Paul N.; Xu, Qingping; Stock, Ann M.; West, Ann H.

    1998-01-01

    We report the x-ray crystal structure of the methylesterase CheB, a phosphorylation-activated response regulator involved in reversible modification of bacterial chemotaxis receptors. Methylesterase CheB and methyltransferase CheR modulate signaling output of the chemotaxis receptors by controlling the level of receptor methylation. The structure of CheB, which consists of an N-terminal regulatory domain and a C-terminal catalytic domain joined by a linker, was solved by molecular replacement methods using independent search models for the two domains. In unphosphorylated CheB, the N-terminal domain packs against the active site of the C-terminal domain and thus inhibits methylesterase activity by directly restricting access to the active site. We propose that phosphorylation of CheB induces a conformational change in the regulatory domain that disrupts the domain interface, resulting in a repositioning of the domains and allowing access to the active site. Structural similarity between the two companion receptor modification enzymes, CheB and CheR, suggests an evolutionary and/or functional relationship. Specifically, the phosphorylated N-terminal domain of CheB may facilitate interaction with the receptors, similar to the postulated role of the N-terminal domain of CheR. Examination of surfaces in the N-terminal regulatory domain of CheB suggests that despite a common fold throughout the response regulator family, surfaces used for protein–protein interactions differ significantly. Comparison between CheB and other response regulators indicates that analogous surfaces are used for different functions and conversely, similar functions are mediated by different molecular surfaces. PMID:9465023

  13. Crystal Structure of the Passenger Domain of the Escherichia coli Autotransporter EspP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Shekeb; Mian, Hira S.; Sandercock, Linda E.

    2013-03-07

    Autotransporters represent a large superfamily of known and putative virulence factors produced by Gram-negative bacteria. They consist of an N-terminal 'passenger domain' responsible for the specific effector functions of the molecule and a C-terminal '{beta}-domain' responsible for translocation of the passenger across the bacterial outer membrane. Here, we present the 2.5-{angstrom} crystal structure of the passenger domain of the extracellular serine protease EspP, produced by the pathogen Escherichia coli O157:H7 and a member of the serine protease autotransporters of Enterobacteriaceae (SPATEs). Like the previously structurally characterized SPATE passenger domains, the EspP passenger domain contains an extended right-handed parallel {beta}-helix precededmore » by an N-terminal globular domain housing the catalytic function of the protease. Of note, however, is the absence of a second globular domain protruding from this {beta}-helix. We describe the structure of the EspP passenger domain in the context of previous results and provide an alternative hypothesis for the function of the {beta}-helix within SPATEs.« less

  14. Crystal Structure of a Coiled-Coil Domain from Human ROCK I

    PubMed Central

    Tu, Daqi; Li, Yiqun; Song, Hyun Kyu; Toms, Angela V.; Gould, Christopher J.; Ficarro, Scott B.; Marto, Jarrod A.; Goode, Bruce L.; Eck, Michael J.

    2011-01-01

    The small GTPase Rho and one of its targets, Rho-associated kinase (ROCK), participate in a variety of actin-based cellular processes including smooth muscle contraction, cell migration, and stress fiber formation. The ROCK protein consists of an N-terminal kinase domain, a central coiled-coil domain containing a Rho binding site, and a C-terminal pleckstrin homology domain. Here we present the crystal structure of a large section of the central coiled-coil domain of human ROCK I (amino acids 535–700). The structure forms a parallel α-helical coiled-coil dimer that is structurally similar to tropomyosin, an actin filament binding protein. There is an unusual discontinuity in the coiled-coil; three charged residues (E613, R617 and D620) are positioned at what is normally the hydrophobic core of coiled-coil packing. We speculate that this conserved irregularity could function as a hinge that allows ROCK to adopt its autoinhibited conformation. PMID:21445309

  15. Structure of the two-domain hexameric APS kinase from Thiobacillus denitrificans: structural basis for the absence of ATP sulfurylase activity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gay, Sean C.; Segel, Irwin H.; Fisher, Andrew J., E-mail: fisher@chem.ucdavis.edu

    2009-10-01

    APS kinase from Thiobacillus denitrificans contains an inactive N-terminal ATP sulfurylase domain. The structure presented unveils the first hexameric assembly for an APS kinase, and reveals that structural changes in the N-terminal domain disrupt the ATP sulfurylase active site thus prohibiting activity. The Tbd-0210 gene of the chemolithotrophic bacterium Thiobacillus denitrificans is annotated to encode a 60.5 kDa bifunctional enzyme with ATP sulfurylase and APS kinase activity. This putative bifunctional enzyme was cloned, expressed and structurally characterized. The 2.95 Å resolution X-ray crystal structure reported here revealed a hexameric assembly with D{sub 3} symmetry. Each subunit contains a large N-terminalmore » sulfurylase-like domain and a C-terminal APS kinase domain reminiscent of the two-domain fungal ATP sulfurylases of Penicillium chrysogenum and Saccharomyces cerevisiae, which also exhibit a hexameric assembly. However, the T. denitrificans enzyme exhibits numerous structural and sequence differences in the N-terminal domain that render it inactive with respect to ATP sulfurylase activity. Surprisingly, the C-terminal domain does indeed display APS kinase activity, indicating that this gene product is a true APS kinase. Therefore, these results provide the first structural insights into a unique hexameric APS kinase that contains a nonfunctional ATP sulfurylase-like domain of unknown function.« less

  16. Domain structure and reorientation in CoF e2O4

    NASA Astrophysics Data System (ADS)

    Abes, M.; Koops, C. T.; Hrkac, S. B.; McCord, J.; Urs, N. O.; Wolff, N.; Kienle, L.; Ren, W. J.; Bouchenoire, L.; Murphy, B. M.; Magnussen, O. M.

    2016-05-01

    The microscopic processes underlying magnetostriction in ferrites were studied for the case of CoF e2O4 single crystals by high-resolution in situ x-ray diffraction and complementary magnetic microscopy techniques. The data support the reports of Yang and Ren [Phys. Rev. B 77, 014407 (2008), 10.1103/PhysRevB.77.014407] that magnetostriction in these materials originates from the switching of crystallographic domains, similar to ferroelastic or ferroelectric domain switching, and reveals the presence of two coexisting tetragonal spinel structures, corresponding to domains of high and of low strain. The latter alternate in the crystal, separated by 90° domain boundaries, and can be explained by the effect of internal stress emerging during the transition into the ferrimagnetic phase. During magnetization of the sample two structural transitions are observed: a conversion of the transversal into axial domains at 1.95 kOe and a growth of the high-strain domains at the cost of the low-strain axial domains at 2.8 kOe. These microscopic changes are in good agreement with the macroscopic magnetization and magnetostriction behavior of CoF e2O4 .

  17. Domain-wall guided nucleation of superconductivity in hybrid ferromagnet-superconductor-ferromagnet layered structures.

    PubMed

    Gillijns, W; Aladyshkin, A Yu; Lange, M; Van Bael, M J; Moshchalkov, V V

    2005-11-25

    Domain-wall superconductivity is studied in a superconducting Nb film placed between two ferromagnetic Co/Pd multilayers with perpendicular magnetization. The parameters of top and bottom ferromagnetic films are chosen to provide different coercive fields, so that the magnetic domain structure of the ferromagnets can be selectively controlled. From the dependence of the critical temperature Tc on the applied magnetic field H, we have found evidence for domain-wall superconductivity in this three-layered F/S/F structure for different magnetic domain patterns. The phase boundary, calculated numerically for this structure from the linearized Ginzburg-Landau equation, is in good agreement with the experimental data.

  18. Some Lower Valence Vanadium Fluorides: Their Crystal Distortions, Domain Structures, Modulated Structures, Ferrimagnetism, and Composition Dependence.

    ERIC Educational Resources Information Center

    Hong, Y. S.; And Others

    1980-01-01

    Describes some contemporary concepts unique to the structure of advanced solids, i.e., their crystal distortions, domain structures, modulated structures, ferrimagnetism, and composition dependence. (Author/CS)

  19. Structure and function of POTRA domains of Omp85/TPS superfamily.

    PubMed

    Simmerman, Richard F; Dave, Ashita M; Bruce, Barry D

    2014-01-01

    The Omp85/TPS (outer-membrane protein of 85 kDa/two-partner secretion) superfamily is a ubiquitous and major class of β-barrel proteins. This superfamily is restricted to the outer membranes of gram-negative bacteria, mitochondria, and chloroplasts. The common architecture, with an N-terminus consisting of repeats of soluble polypeptide-transport-associated (POTRA) domains and a C-terminal β-barrel pore is highly conserved. The structures of multiple POTRA domains and one full-length TPS protein have been solved, yet discovering roles of individual POTRA domains has been difficult. This review focuses on similarities and differences between POTRA structures, emphasizing POTRA domains in autotrophic organisms including plants and cyanobacteria. Unique roles, specific for certain POTRA domains, are examined in the context of POTRA location with respect to their attachment to the β-barrel pore, and their degree of biological dispensability. Finally, because many POTRA domains may have the ability to interact with thousands of partner proteins, possible modes of these interactions are also explored. © 2014 Elsevier Inc. All rights reserved.

  20. Cantu syndrome-associated SUR2 (ABCC9) mutations in distinct structural domains result in KATP channel gain-of-function by differential mechanisms.

    PubMed

    McClenaghan, Conor; Hanson, Alex; Sala-Rabanal, Monica; Roessler, Helen I; Josifova, Dragana; Grange, Dorothy K; van Haaften, Gijs; Nichols, Colin G

    2018-02-09

    The complex disorder Cantu syndrome (CS) arises from gain-of-function mutations in either KCNJ8 or ABCC9 , the genes encoding the Kir6.1 and SUR2 subunits of ATP-sensitive potassium (K ATP ) channels, respectively. Recent reports indicate that such mutations can increase channel activity by multiple molecular mechanisms. In this study, we determined the mechanism by which K ATP function is altered by several substitutions in distinct structural domains of SUR2: D207E in the intracellular L0-linker and Y985S, G989E, M1060I, and R1154Q/R1154W in TMD2. We engineered substitutions at their equivalent positions in rat SUR2A (D207E, Y981S, G985E, M1056I, and R1150Q/R1150W) and investigated functional consequences using macroscopic rubidium ( 86 Rb + ) efflux assays and patch-clamp electrophysiology. Our results indicate that D207E increases K ATP channel activity by increasing intrinsic stability of the open state, whereas the cluster of Y981S/G985E/M1056I substitutions, as well as R1150Q/R1150W, augmented Mg-nucleotide activation. We also tested the responses of these channel variants to inhibition by the sulfonylurea drug glibenclamide, a potential pharmacotherapy for CS. None of the D207E, Y981S, G985E, or M1056I substitutions had a significant effect on glibenclamide sensitivity. However, Gln and Trp substitution at Arg-1150 significantly decreased glibenclamide potency. In summary, these results provide additional confirmation that mutations in CS-associated SUR2 mutations result in K ATP gain-of-function. They help link CS genotypes to phenotypes and shed light on the underlying molecular mechanisms, including consequences for inhibitory drug sensitivity, insights that may inform the development of therapeutic approaches to manage CS. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Structures of oncogenic, suppressor and rescued p53 core-domain variants: mechanisms of mutant p53 rescue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wallentine, Brad D.; Wang, Ying; Tretyachenko-Ladokhina, Vira

    2013-10-01

    X-ray crystallographic structures of four p53 core-domain variants were determined in order to gain insights into the mechanisms by which certain second-site suppressor mutations rescue the function of a significant number of cancer mutations of the tumor suppressor protein p53. To gain insights into the mechanisms by which certain second-site suppressor mutations rescue the function of a significant number of cancer mutations of the tumor suppressor protein p53, X-ray crystallographic structures of four p53 core-domain variants were determined. These include an oncogenic mutant, V157F, two single-site suppressor mutants, N235K and N239Y, and the rescued cancer mutant V157F/N235K/N239Y. The V157F mutationmore » substitutes a smaller hydrophobic valine with a larger hydrophobic phenylalanine within strand S4 of the hydrophobic core. The structure of this cancer mutant shows no gross structural changes in the overall fold of the p53 core domain, only minor rearrangements of side chains within the hydrophobic core of the protein. Based on biochemical analysis, these small local perturbations induce instability in the protein, increasing the free energy by 3.6 kcal mol{sup −1} (15.1 kJ mol{sup −1}). Further biochemical evidence shows that each suppressor mutation, N235K or N239Y, acts individually to restore thermodynamic stability to V157F and that both together are more effective than either alone. All rescued mutants were found to have wild-type DNA-binding activity when assessed at a permissive temperature, thus pointing to thermodynamic stability as the critical underlying variable. Interestingly, thermodynamic analysis shows that while N239Y demonstrates stabilization of the wild-type p53 core domain, N235K does not. These observations suggest distinct structural mechanisms of rescue. A new salt bridge between Lys235 and Glu198, found in both the N235K and rescued cancer mutant structures, suggests a rescue mechanism that relies on stabilizing the

  2. Structural-Functional Analysis Reveals a Specific Domain Organization in Family GH20 Hexosaminidases.

    PubMed

    Val-Cid, Cristina; Biarnés, Xevi; Faijes, Magda; Planas, Antoni

    2015-01-01

    Hexosaminidases are involved in important biological processes catalyzing the hydrolysis of N-acetyl-hexosaminyl residues in glycosaminoglycans and glycoconjugates. The GH20 enzymes present diverse domain organizations for which we propose two minimal model architectures: Model A containing at least a non-catalytic GH20b domain and the catalytic one (GH20) always accompanied with an extra α-helix (GH20b-GH20-α), and Model B with only the catalytic GH20 domain. The large Bifidobacterium bifidum lacto-N-biosidase was used as a model protein to evaluate the minimal functional unit due to its interest and structural complexity. By expressing different truncated forms of this enzyme, we show that Model A architectures cannot be reduced to Model B. In particular, there are two structural requirements general to GH20 enzymes with Model A architecture. First, the non-catalytic domain GH20b at the N-terminus of the catalytic GH20 domain is required for expression and seems to stabilize it. Second, the substrate-binding cavity at the GH20 domain always involves a remote element provided by a long loop from the catalytic domain itself or, when this loop is short, by an element from another domain of the multidomain structure or from the dimeric partner. Particularly, the lacto-N-biosidase requires GH20b and the lectin-like domain at the N- and C-termini of the catalytic GH20 domain to be fully soluble and functional. The lectin domain provides this remote element to the active site. We demonstrate restoration of activity of the inactive GH20b-GH20-α construct (model A architecture) by a complementation assay with the lectin-like domain. The engineering of minimal functional units of multidomain GH20 enzymes must consider these structural requirements.

  3. Functional Properties at Domain Walls in BiFeO3: Electrical, Magnetic, and Structural investigations

    NASA Astrophysics Data System (ADS)

    He, Qing; Yang, C.-H.; Yu, P.; Gajek, M.; Seidel, J.; Ramesh, R.; Wang, F.; Chu, Y.-H.; Martin, L. W.; Spaldin, N.; Rother, A.

    2009-03-01

    BiFeO3 (BFO) is a widely studied robust ferroelectric, antiferromagnetic multiferroic. Conducting-atomic force microscopy studies reveal the presence of enhanced conductivity at certain types of domain walls in BFO. We have completed detailed TEM studies of the physical structure at these domain walls as well as in-depth DFT calculations of the evolution of electronic structure at these domain walls. These studies reveal two major contributions to the observed conduction: the formation of an electrostatic potential at the domain walls as well as a structurally-driven change in the electronic structure (i.e., a lower band gap locally) at the domain walls. We will discuss the use of optical characterization techniques as a way of probing this change in electronic structure at domain walls as well as detailed IV characterization both in atmospheric and UHV environments. Finally, the evolution of magnetism at these domain walls has been studied through the use of photoemission measurements. Initial findings point to a significant change in the magnetic order at these domain walls in BFO.

  4. Structural Characterization of a Newly Identified Component of α-Carboxysomes: The AAA+ Domain Protein CsoCbbQ

    DOE PAGES

    Sutter, Markus; Roberts, Evan W.; Gonzalez, Raul C.; ...

    2015-11-05

    Carboxysomes are bacterial microcompartments that enhance carbon fixation by concentrating ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and its substrate CO 2 within a proteinaceous shell. They are found in all cyanobacteria, some purple photoautotrophs and many chemoautotrophic bacteria. Carboxysomes consist of a protein shell that encapsulates several hundred molecules of RuBisCO, and contain carbonic anhydrase and other accessory proteins. Genes coding for carboxysome shell components and the encapsulated proteins are typically found together in an operon. The α-carboxysome operon is embedded in a cluster of additional, conserved genes that are presumably related to its function. In many chemoautotrophs, products of the expanded carboxysomemore » locus include CbbO and CbbQ, a member of the AAA+ domain superfamily. We bioinformatically identified subtypes of CbbQ proteins and show that their genes frequently co-occur with both Form IA and Form II RuBisCO. The α-carboxysome-associated ortholog, CsoCbbQ, from Halothiobacillus neapolitanus forms a hexamer in solution and hydrolyzes ATP. The crystal structure shows that CsoCbbQ is a hexamer of the typical AAA+ domain; the additional C-terminal domain, diagnostic of the CbbQ subfamily, structurally fills the inter-monomer gaps, resulting in a distinctly hexagonal shape. Finally, we show that CsoCbbQ interacts with CsoCbbO and is a component of the carboxysome shell, the first example of ATPase activity associated with a bacterial microcompartment.« less

  5. Structure of the SH3 Domain of Rat Endophilin A2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loll,P.; Swain, E.; Chen, Y.

    2008-01-01

    The crystal structure of the SH3 domain of rat endophilin A2 has been determined by the multiwavelength anomalous dispersion method and refined at a resolution of 1.70 Angstroms to R and Rfree values of 0.196 and 0.217, respectively. The structure adheres to the canonical SH3-domain fold and is highly similar to those of the corresponding domains of endophilins A1 and A3. An intermolecular packing interaction between two molecules in the lattice exploits features that are commonly observed in SH3-domain ligand recognition, including the insertion of a proline side chain into the ligand-binding groove of the protein and the recognition ofmore » a basic residue by a cluster of acidic side chains on the RT loop.« less

  6. Insights into eukaryotic DNA priming from the structure and functional interactions of the 4Fe-4S cluster domain of human DNA primase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaithiyalingam, Sivaraja; Warren, Eric M.; Eichman, Brandt F.

    2010-10-19

    DNA replication requires priming of DNA templates by enzymes known as primases. Although DNA primase structures are available from archaea and bacteria, the mechanism of DNA priming in higher eukaryotes remains poorly understood in large part due to the absence of the structure of the unique, highly conserved C-terminal regulatory domain of the large subunit (p58C). Here, we present the structure of this domain determined to 1.7-{angstrom} resolution by X-ray crystallography. The p58C structure reveals a novel arrangement of an evolutionarily conserved 4Fe-4S cluster buried deeply within the protein core and is not similar to any known protein structure. Analysismore » of the binding of DNA to p58C by fluorescence anisotropy measurements revealed a strong preference for ss/dsDNA junction substrates. This approach was combined with site-directed mutagenesis to confirm that the binding of DNA occurs to a distinctively basic surface on p58C. A specific interaction of p58C with the C-terminal domain of the intermediate subunit of replication protein A (RPA32C) was identified and characterized by isothermal titration calorimetry and NMR. Restraints from NMR experiments were used to drive computational docking of the two domains and generate a model of the p58C-RPA32C complex. Together, our results explain functional defects in human DNA primase mutants and provide insights into primosome loading on RPA-coated ssDNA and regulation of primase activity.« less

  7. Structure of the EMMPRIN N-terminal domain 1: Dimerization via [beta]-strand swapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luo, Jinquan; Teplyakov, Alexey; Obmolova, Galina

    2010-09-27

    Extracellular matrix metalloproteinase inducer (EMMPRIN), also known as Hab18G, CD147, Basigin, M6, and neurothelin, is a membrane glycoprotein expressed on the surface of various cell types and many cancer cells. EMMPRIN stimulates adjacent fibroblasts and tumor cells to produce matrix metalloproteinases and plays an important role in tumor invasion and metastasis, angiogenesis, spermatogensis and fertilization, cell-cell adhesion and communication, and other biological processes (reviewed in Ref. 1 and references therein). It was demonstrated that the EMMPRIN extracellular domain (ECD), which structurally belongs to the IgG superfamily, can form homo-oligomers in a cis dependent manner and the N-terminal domain 1 (residuesmore » 22-101) was necessary and sufficient to mediate this interaction. The crystal structure of the ECD of recombinant human EMMPRIN (Hab18G/CD147) expressed in E. coli was reported at 2.8 {angstrom} resolution (Yu et al. 2008). The construct consists of residues 22-205 of the mature protein and has both an N-terminal IgC2 domain (ND1, residues 22-101) and a C-terminal IgC2 domain (ND2, residues 107-205). The two domains are joined by a five amino acid residue linker that constitutes a flexible hinge between the two domains. The crystal form has four copies of the molecule in the asymmetric unit, each of which has a different inter-domain angle that varies from 121{sup o} to 144{sup o}. The two domains each have a conserved disulfide bridge and both are comprised of two {beta}-sheets formed by strands EBA and GFCC, and DEBA and AGFCC for ND1 and ND2, respectively. Based on the crystal packing in this structure, the authors proposed that lateral packing between the two IgG domains of EMMPRIN ECD represents a potential mechanism for cell adhesion. Here we report the 2.0-{angstrom} crystal structure of the N-terminal domain of EMMPRIN ECD (ND1) expressed in mammalian cells. The overall structure of the domain is very similar to that in the full

  8. Structural insights into the functional versatility of WW domain-containing oxidoreductase tumor suppressor

    PubMed Central

    2015-01-01

    Recent work on WW domain-containing oxidoreductase (WWOX) tumor suppressor is beginning to shed new light on both the molecular mechanism of action of its WW domains as well as the contiguous catalytic domain. Herein, the structural basis underlying the ability of WW1 domain to bind to various physiological ligands and how the orphan WW2 tandem partner synergizes its ligand binding in the context of WW1–WW2 tandem module of WWOX is discussed. Notably, the WW domains within the WW1–WW2 tandem module physically associate so as to adopt a fixed spatial orientation relative to each other. In this manner, the association of WW2 domain with WW1 hinders ligand binding to the latter. Consequently, ligand binding to WW1 domain not only results in the displacement of WW2 lid but also disrupts the fixed orientation of WW domains in the liganded conformation. Equally importantly, structure-guided functional approach suggests that the catalytic domain of WWOX likely serves as a retinal oxidoreductase that catalyzes the reversible oxidation and reduction of all-trans-retinal. Collectively, this review provides structural insights into the functional versatility of a key signaling protein with important implications on its biology. PMID:25662954

  9. Structural insights into the functional versatility of WW domain-containing oxidoreductase tumor suppressor.

    PubMed

    Farooq, Amjad

    2015-03-01

    Recent work on WW domain-containing oxidoreductase (WWOX) tumor suppressor is beginning to shed new light on both the molecular mechanism of action of its WW domains as well as the contiguous catalytic domain. Herein, the structural basis underlying the ability of WW1 domain to bind to various physiological ligands and how the orphan WW2 tandem partner synergizes its ligand binding in the context of WW1-WW2 tandem module of WWOX is discussed. Notably, the WW domains within the WW1-WW2 tandem module physically associate so as to adopt a fixed spatial orientation relative to each other. In this manner, the association of WW2 domain with WW1 hinders ligand binding to the latter. Consequently, ligand binding to WW1 domain not only results in the displacement of WW2 lid but also disrupts the fixed orientation of WW domains in the liganded conformation. Equally importantly, structure-guided functional approach suggests that the catalytic domain of WWOX likely serves as a retinal oxidoreductase that catalyzes the reversible oxidation and reduction of all-trans-retinal. Collectively, this review provides structural insights into the functional versatility of a key signaling protein with important implications on its biology. © 2015 by the Society for Experimental Biology and Medicine.

  10. The intrinsically disordered C-terminal domain of the measles virus nucleoprotein interacts with the C-terminal domain of the phosphoprotein via two distinct sites and remains predominantly unfolded

    PubMed Central

    Bourhis, Jean-Marie; Receveur-Bréchot, Véronique; Oglesbee, Michael; Zhang, Xinsheng; Buccellato, Matthew; Darbon, Hervé; Canard, Bruno; Finet, Stéphanie; Longhi, Sonia

    2005-01-01

    Measles virus is a negative-sense, single-stranded RNA virus within theMononegavirales order,which includes several human pathogens, including rabies, Ebola, Nipah, and Hendra viruses. Themeasles virus nucleoprotein consists of a structured N-terminal domain, and of an intrinsically disordered C-terminal domain, NTAIL (aa 401–525), which undergoes induced folding in the presence of the C-terminal domain (XD, aa 459–507) of the viral phosphoprotein. With in NTAIL, an α-helical molecular recognition element (α-MoRE, aa 488–499) involved in binding to P and in induced folding was identified and then observed in the crystal structure of XD. Using small-angle X-ray scattering, we have derived a low-resolution structural model of the complex between XD and NTAIL, which shows that most of NTAIL remains disordered in the complex despite P-induced folding within the α-MoRE. The model consists of an extended shape accommodating the multiple conformations adopted by the disordered N-terminal region of NTAIL, and of a bulky globular region, corresponding to XD and to the C terminus of NTAIL (aa 486–525). Using surface plasmon resonance, circular dichroism, fluorescence spectroscopy, and heteronuclear magnetic resonance, we show that NTAIL has an additional site (aa 517–525) involved in binding to XD but not in the unstructured-to-structured transition. This work provides evidence that intrinsically disordered domains can establish complex interactions with their partners, and can contact them through multiple sites that do not all necessarily gain regular secondary structure. PMID:16046624

  11. Structure, dynamics and folding of an immunoglobulin domain of the gelation factor (ABP-120) from Dictyostelium discoideum.

    PubMed

    Hsu, Shang-Te Danny; Cabrita, Lisa D; Fucini, Paola; Dobson, Christopher M; Christodoulou, John

    2009-05-15

    We have carried out a detailed structural and dynamical characterisation of the isolated fifth repeat of the gelation factor (ABP-120) from Dictyostelium discoideum (ddFLN5) by NMR spectroscopy to provide a basis for studies of co-translational folding on the ribosome of this immunoglobulin-like domain. The isolated ddFLN5 can fold autonomously in solution into a structure that resembles very closely the crystal structure of the domain in a construct in which the adjacent sixth repeat (ddFLN6) is covalently linked to its C-terminus in tandem but deviates locally from a second crystal structure in which ddFLN5 is flanked by ddFLN4 and ddFLN6 at both N- and C-termini. Conformational fluctuations were observed via (15)N relaxation methods and are primarily localised in the interstrand loops that encompass the C-terminal hemisphere. These fluctuations are distinct in location from the region where line broadening is observed in ddFLN5 when attached to the ribosome as part of a nascent chain. This observation supports the conclusion that the broadening is associated with interactions with the ribosome surface [Hsu, S. T. D., Fucini, P., Cabrita, L. D., Launay, H., Dobson, C. M. & Christodoulou, J. (2007). Structure and dynamics of a ribosome-bound nascent chain by NMR spectroscopy. Proc. Natl. Acad. Sci. USA, 104, 16516-16521]. The unfolding of ddFLN5 induced by high concentrations of urea shows a low population of a folding intermediate, as inferred from an intensity-based analysis, a finding that differs from that of ddFLN5 as a ribosome-bound nascent chain. These results suggest that interesting differences in detail may exist between the structure of the domain in isolation and when linked to the ribosome and between protein folding in vitro and the folding of a nascent chain as it emerges from the ribosome.

  12. The Aspartate-Less Receiver (ALR) Domains: Distribution, Structure and Function

    PubMed Central

    Weiner, Joshua J.; Han, Lanlan; Peterson, Francis C.; Volkman, Brian F.; Silvaggi, Nicholas R.; Ulijasz, Andrew T.

    2015-01-01

    Two-component signaling systems are ubiquitous in bacteria, Archaea and plants and play important roles in sensing and responding to environmental stimuli. To propagate a signaling response the typical system employs a sensory histidine kinase that phosphorylates a Receiver (REC) domain on a conserved aspartate (Asp) residue. Although it is known that some REC domains are missing this Asp residue, it remains unclear as to how many of these divergent REC domains exist, what their functional roles are and how they are regulated in the absence of the conserved Asp. Here we have compiled all deposited REC domains missing their phosphorylatable Asp residue, renamed here as the Aspartate-Less Receiver (ALR) domains. Our data show that ALRs are surprisingly common and are enriched for when attached to more rare effector outputs. Analysis of our informatics and the available ALR atomic structures, combined with structural, biochemical and genetic data of the ALR archetype RitR from Streptococcus pneumoniae presented here suggest that ALRs have reorganized their active pockets to instead take on a constitutive regulatory role or accommodate input signals other than Asp phosphorylation, while largely retaining the canonical post-phosphorylation mechanisms and dimeric interface. This work defines ALRs as an atypical REC subclass and provides insights into shared mechanisms of activation between ALR and REC domains. PMID:25875291

  13. Light-Activated Gigahertz Ferroelectric Domain Dynamics

    NASA Astrophysics Data System (ADS)

    Akamatsu, Hirofumi; Yuan, Yakun; Stoica, Vladimir A.; Stone, Greg; Yang, Tiannan; Hong, Zijian; Lei, Shiming; Zhu, Yi; Haislmaier, Ryan C.; Freeland, John W.; Chen, Long-Qing; Wen, Haidan; Gopalan, Venkatraman

    2018-03-01

    Using time- and spatially resolved hard x-ray diffraction microscopy, the striking structural and electrical dynamics upon optical excitation of a single crystal of BaTiO3 are simultaneously captured on subnanoseconds and nanoscale within individual ferroelectric domains and across walls. A large emergent photoinduced electric field of up to 20 ×106 V /m is discovered in a surface layer of the crystal, which then drives polarization and lattice dynamics that are dramatically distinct in a surface layer versus bulk regions. A dynamical phase-field modeling method is developed that reveals the microscopic origin of these dynamics, leading to gigahertz polarization and elastic waves traveling in the crystal with sonic speeds and spatially varying frequencies. The advances in spatiotemporal imaging and dynamical modeling tools open up opportunities for disentangling ultrafast processes in complex mesoscale structures such as ferroelectric domains.

  14. Structure of a two-CAP-domain protein from the human hookworm parasite Necator americanus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asojo, Oluwatoyin A., E-mail: oasojo@unmc.edu

    2011-05-01

    The first structure of a two-CAP-domain protein, Na-ASP-1, from the major human hookworm parasite N. americanus refined to a resolution limit of 2.2 Å is presented. Major proteins secreted by the infective larval stage hookworms upon host entry include Ancylostoma secreted proteins (ASPs), which are characterized by one or two CAP (cysteine-rich secretory protein/antigen 5/pathogenesis related-1) domains. The CAP domain has been reported in diverse phylogenetically unrelated proteins, but has no confirmed function. The first structure of a two-CAP-domain protein, Na-ASP-1, from the major human hookworm parasite Necator americanus was refined to a resolution limit of 2.2 Å. The structuremore » was solved by molecular replacement (MR) using Na-ASP-2, a one-CAP-domain ASP, as the search model. The correct MR solution could only be obtained by truncating the polyalanine model of Na-ASP-2 and removing several loops. The structure reveals two CAP domains linked by an extended loop. Overall, the carboxyl-terminal CAP domain is more similar to Na-ASP-2 than to the amino-terminal CAP domain. A large central cavity extends from the amino-terminal CAP domain to the carboxyl-terminal CAP domain, encompassing the putative CAP-binding cavity. The putative CAP-binding cavity is a characteristic cavity in the carboxyl-terminal CAP domain that contains a His and Glu pair. These residues are conserved in all single-CAP-domain proteins, but are absent in the amino-terminal CAP domain. The conserved His residues are oriented such that they appear to be capable of directly coordinating a zinc ion as observed for CAP proteins from reptile venoms. This first structure of a two-CAP-domain ASP can serve as a template for homology modeling of other two-CAP-domain proteins.« less

  15. Eukaryotic ribonucleases P/MRP: the crystal structure of the P3 domain.

    PubMed

    Perederina, Anna; Esakova, Olga; Quan, Chao; Khanova, Elena; Krasilnikov, Andrey S

    2010-02-17

    Ribonuclease (RNase) P is a site-specific endoribonuclease found in all kingdoms of life. Typical RNase P consists of a catalytic RNA component and a protein moiety. In the eukaryotes, the RNase P lineage has split into two, giving rise to a closely related enzyme, RNase MRP, which has similar components but has evolved to have different specificities. The eukaryotic RNases P/MRP have acquired an essential helix-loop-helix protein-binding RNA domain P3 that has an important function in eukaryotic enzymes and distinguishes them from bacterial and archaeal RNases P. Here, we present a crystal structure of the P3 RNA domain from Saccharomyces cerevisiae RNase MRP in a complex with RNase P/MRP proteins Pop6 and Pop7 solved to 2.7 A. The structure suggests similar structural organization of the P3 RNA domains in RNases P/MRP and possible functions of the P3 domains and proteins bound to them in the stabilization of the holoenzymes' structures as well as in interactions with substrates. It provides the first insight into the structural organization of the eukaryotic enzymes of the RNase P/MRP family.

  16. The TDP-43 N-terminal domain structure at high resolution.

    PubMed

    Mompeán, Miguel; Romano, Valentina; Pantoja-Uceda, David; Stuani, Cristiana; Baralle, Francisco E; Buratti, Emanuele; Laurents, Douglas V

    2016-04-01

    Transactive response DNA-binding protein 43 kDa (TDP-43) is an RNA transporting and processing protein whose aberrant aggregates are implicated in neurodegenerative diseases. The C-terminal domain of this protein plays a key role in mediating this process. However, the N-terminal domain (residues 1-77) is needed to effectively recruit TDP-43 monomers into this aggregate. In the present study, we report, for the first time, the essentially complete (1) H, (15) N and (13) C NMR assignments and the structure of the N-terminal domain determined on the basis of 26 hydrogen-bond, 60 torsion angle and 1058 unambiguous NOE structural restraints. The structure consists of an α-helix and six β-strands. Two β-strands form a β-hairpin not seen in the ubiquitin fold. All Pro residues are in the trans conformer and the two Cys are reduced and distantly separated on the surface of the protein. The domain has a well defined hydrophobic core composed of F35, Y43, W68, Y73 and 17 aliphatic side chains. The fold is topologically similar to the reported structure of axin 1. The protein is stable and no denatured species are observed at pH 4 and 25 °C. At 4 kcal·mol(-1) , the conformational stability of the domain, as measured by hydrogen/deuterium exchange, is comparable to ubiquitin (6 kcal·mol(-1) ). The β-strands, α-helix, and three of four turns are generally rigid, although the loop formed by residues 47-53 is mobile, as determined by model-free analysis of the (15) N{(1) H}NOE, as well as the translational and transversal relaxation rates. Structural data have been deposited in the Protein Data Bank under accession code: 2n4p. The NMR assignments have been deposited in the BMRB database under access code: 25675. © 2016 Federation of European Biochemical Societies.

  17. The crystal structures of EAP domains from Staphylococcus aureus reveal an unexpected homology to bacterial superantigens.

    PubMed

    Geisbrecht, Brian V; Hamaoka, Brent Y; Perman, Benjamin; Zemla, Adam; Leahy, Daniel J

    2005-04-29

    The Eap (extracellular adherence protein) of Staphylococcus aureus functions as a secreted virulence factor by mediating interactions between the bacterial cell surface and several extracellular host proteins. Eap proteins from different Staphylococcal strains consist of four to six tandem repeats of a structurally uncharacterized domain (EAP domain). We have determined the three-dimensional structures of three different EAP domains to 1.8, 2.2, and 1.35 A resolution, respectively. These structures reveal a core fold that is comprised of an alpha-helix lying diagonally across a five-stranded, mixed beta-sheet. Comparison of EAP domains with known structures reveals an unexpected homology with the C-terminal domain of bacterial superantigens. Examination of the structure of the superantigen SEC2 bound to the beta-chain of a T-cell receptor suggests a possible ligand-binding site within the EAP domain (Fields, B. A., Malchiodi, E. L., Li, H., Ysern, X., Stauffacher, C. V., Schlievert, P. M., Karjalainen, K., and Mariuzza, R. (1996) Nature 384, 188-192). These results provide the first structural characterization of EAP domains, relate EAP domains to a large class of bacterial toxins, and will guide the design of future experiments to analyze EAP domain structure/function relationships.

  18. Structural interactions between lipids, water and S1-S4 voltage-sensing domains.

    PubMed

    Krepkiy, Dmitriy; Gawrisch, Klaus; Swartz, Kenton J

    2012-11-02

    Membrane proteins serve crucial signaling and transport functions, yet relatively little is known about their structures in membrane environments or how lipids interact with these proteins. For voltage-activated ion channels, X-ray structures suggest that the mobile voltage-sensing S4 helix would be exposed to the membrane, and functional studies reveal that lipid modification can profoundly alter channel activity. Here, we use solid-state NMR to investigate structural interactions of lipids and water with S1-S4 voltage-sensing domains and to explore whether lipids influence the structure of the protein. Our results demonstrate that S1-S4 domains exhibit extensive interactions with lipids and that these domains are heavily hydrated when embedded in a membrane. We also find evidence for preferential interactions of anionic lipids with S1-S4 domains and that these interactions have lifetimes on the timescale of ≤ 10(-3)s. Arg residues within S1-S4 domains are well hydrated and are positioned in close proximity to lipids, exhibiting local interactions with both lipid headgroups and acyl chains. Comparative studies with a positively charged lipid lacking a phosphodiester group reveal that this lipid modification has only modest effects on the structure and hydration of S1-S4 domains. Taken together, our results demonstrate that Arg residues in S1-S4 voltage-sensing domains reside in close proximity to the hydrophobic interior of the membrane yet are well hydrated, a requirement for carrying charge and driving protein motions in response to changes in membrane voltage. Published by Elsevier Ltd.

  19. Structural interactions between lipids, water and S1-S4 voltage-sensing domains

    PubMed Central

    Krepkiy, Dmitriy; Gawrisch, Klaus; Swartz, Kenton J.

    2012-01-01

    Membrane proteins serve crucial signaling and transport functions, yet relatively little is known about their structures in membrane environments or how lipids interact with these proteins. For voltage-activated ion channels, X-ray structures suggest that the mobile voltage-sensing S4 helix would be exposed to the membrane, and functional studies reveal that lipid modification can profoundly alter channel activity. Here we use solid-state NMR to investigate structural interactions of lipids and water with S1-S4 voltage-sensing domains, and to explore whether lipids influence the structure of the protein. Our results demonstrate that S1-S4 domains exhibit extensive interactions with lipids, and that these domains are heavily hydrated when embedded in a membrane. We also find evidence for preferential interactions of anionic lipids with S1-S4 domains, and that these interactions have lifetimes on the timescale of 10−3s. Arg residues within S1-S4 domains are well-hydrated and are positioned in close proximity to lipids, exhibiting local interactions with both lipid head groups and acyl chains. Comparative studies with a positively charged lipid lacking a phosphodiester group reveal that this lipid modification has only modest effects on the structure and hydration of S1-S4 domains. Taken together, our results demonstrate that Arg residues in S1-S4 voltage-sensing domains reside in close proximity to the hydrophobic interior of the membrane, yet are well-hydrated, a requirement for carrying charge and driving protein motions in response to changes in membrane voltage. PMID:22858867

  20. Structural mapping of the coiled-coil domain of a bacterial condensin and comparative analyses across all domains of life suggest conserved features of SMC proteins.

    PubMed

    Waldman, Vincent M; Stanage, Tyler H; Mims, Alexandra; Norden, Ian S; Oakley, Martha G

    2015-06-01

    The structural maintenance of chromosomes (SMC) proteins form the cores of multisubunit complexes that are required for the segregation and global organization of chromosomes in all domains of life. These proteins share a common domain structure in which N- and C- terminal regions pack against one another to form a globular ATPase domain. This "head" domain is connected to a central, globular, "hinge" or dimerization domain by a long, antiparallel coiled coil. To date, most efforts for structural characterization of SMC proteins have focused on the globular domains. Recently, however, we developed a method to map interstrand interactions in the 50-nm coiled-coil domain of MukB, the divergent SMC protein found in γ-proteobacteria. Here, we apply that technique to map the structure of the Bacillus subtilis SMC (BsSMC) coiled-coil domain. We find that, in contrast to the relatively complicated coiled-coil domain of MukB, the BsSMC domain is nearly continuous, with only two detectable coiled-coil interruptions. Near the middle of the domain is a break in coiled-coil structure in which there are three more residues on the C-terminal strand than on the N-terminal strand. Close to the head domain, there is a second break with a significantly longer insertion on the same strand. These results provide an experience base that allows an informed interpretation of the output of coiled-coil prediction algorithms for this family of proteins. A comparison of such predictions suggests that these coiled-coil deviations are highly conserved across SMC types in a wide variety of organisms, including humans. © 2015 Wiley Periodicals, Inc.

  1. Structural and functional properties of the N transcriptional activation domain of thyroid transcription factor-1: similarities with the acidic activation domains.

    PubMed Central

    Tell, G; Perrone, L; Fabbro, D; Pellizzari, L; Pucillo, C; De Felice, M; Acquaviva, R; Formisano, S; Damante, G

    1998-01-01

    The thyroid transcription factor 1 (TTF-1) is a tissue-specific transcription factor involved in the development of thyroid and lung. TTF-1 contains two transcriptional activation domains (N and C domain). The primary amino acid sequence of the N domain does not show any typical characteristic of known transcriptional activation domains. In aqueous solution the N domain exists in a random-coil conformation. The increase of the milieu hydrophobicity, by the addition of trifluoroethanol, induces a considerable gain of alpha-helical structure. Acidic transcriptional activation domains are largely unstructured in solution, but, under hydrophobic conditions, folding into alpha-helices or beta-strands can be induced. Therefore our data indicate that the inducibility of alpha-helix by hydrophobic conditions is a property not restricted to acidic domains. Co-transfections experiments indicate that the acidic domain of herpes simplex virus protein VP16 (VP16) and the TTF-1 N domain are interchangeable and that a chimaeric protein, which combines VP16 linked to the DNA-binding domain of TTF-1, undergoes the same regulatory constraints that operate for the wild-type TTF-1. In addition, we demonstrate that the TTF-1 N domain possesses two typical properties of acidic activation domains: TBP (TATA-binding protein) binding and ability to activate transcription in yeast. Accordingly, the TTF-1 N domain is able to squelch the activity of the p65 acidic domain. Altogether, these structural and functional data suggest that a non-acidic transcriptional activation domain (TTF-1 N domain) activates transcription by using molecular mechanisms similar to those used by acidic domains. TTF-1 N domain and acidic domains define a family of proteins whose common property is to activate transcription through the use of mechanisms largely conserved during evolutionary development. PMID:9425125

  2. Evolutionarily conserved structural and functional roles of the FYVE domain.

    PubMed

    Hayakawa, Akira; Hayes, Susan; Leonard, Deborah; Lambright, David; Corvera, Silvia

    2007-01-01

    The FYVE domain is an approx. 80 amino acid motif that binds to the phosphoinositide PtdIns3P with high specificity and affinity. It is present in 38 predicted gene products within the human genome, but only in 12-13 in Caenorhabditis elegans and Drosophila melanogaster. Eight of these are highly conserved in all three organisms, and they include proteins that have not been characterized in any species. One of these, WDFY2, appears to play an important role in early endocytosis and was revealed in a RNAi (RNA interference) screen in C. elegans. Interestingly, some proteins contain FYVE-like domains in C. elegans and D. melanogaster, but have lost this domain during evolution. One of these is the homologue of Rabatin-5, a protein that, in mammalian cells, binds both Rab5 and Rabex-5, a guanine-nucleotide exchange factor for Rab5. Thus the Rabatin-5 homologue suggests that mechanisms to link PtdIns3P and Rab5 activation developed in evolution. In mammalian cells, these mechanisms are apparent in the existence of proteins that bind PtdIns3P and Rab GTPases, such as EEA1, Rabenosyn-5 and Rabip4'. Despite the comparable ability to bind to PtdIns3P in vitro, FYVE domains display widely variable abilities to interact with endosomes in intact cells. This variation is due to three distinct properties of FYVE domains conferred by residues that are not involved in PtdIns3P head group recognition: These properties are: (i) the propensity to oligomerize, (ii) the ability to insert into the membrane bilayer, and (iii) differing electrostatic interactions with the bilayer surface. The different binding properties are likely to regulate the extent and duration of the interaction of specific FYVE domain-containing proteins with early endosomes, and thereby their biological function.

  3. Structure of the Nucleoprotein Binding Domain of Mokola Virus Phosphoprotein▿

    PubMed Central

    Assenberg, René; Delmas, Olivier; Ren, Jingshan; Vidalain, Pierre-Olivier; Verma, Anil; Larrous, Florence; Graham, Stephen C.; Tangy, Frédéric; Grimes, Jonathan M.; Bourhy, Hervé

    2010-01-01

    Mokola virus (MOKV) is a nonsegmented, negative-sense RNA virus that belongs to the Lyssavirus genus and Rhabdoviridae family. MOKV phosphoprotein P is an essential component of the replication and transcription complex and acts as a cofactor for the viral RNA-dependent RNA polymerase. P recruits the viral polymerase to the nucleoprotein-bound viral RNA (N-RNA) via an interaction between its C-terminal domain and the N-RNA complex. Here we present a structure for this domain of MOKV P, obtained by expression of full-length P in Escherichia coli, which was subsequently truncated during crystallization. The structure has a high degree of homology with P of rabies virus, another member of Lyssavirus genus, and to a lesser degree with P of vesicular stomatitis virus (VSV), a member of the related Vesiculovirus genus. In addition, analysis of the crystal packing of this domain reveals a potential binding site for the nucleoprotein N. Using both site-directed mutagenesis and yeast two-hybrid experiments to measure P-N interaction, we have determined the relative roles of key amino acids involved in this interaction to map the region of P that binds N. This analysis also reveals a structural relationship between the N-RNA binding domain of the P proteins of the Rhabdoviridae and the Paramyxoviridae. PMID:19906936

  4. A structural role for the PHP domain in E. coli DNA polymerase III

    PubMed Central

    2013-01-01

    Background In addition to the core catalytic machinery, bacterial replicative DNA polymerases contain a Polymerase and Histidinol Phosphatase (PHP) domain whose function is not entirely understood. The PHP domains of some bacterial replicases are active metal-dependent nucleases that may play a role in proofreading. In E. coli DNA polymerase III, however, the PHP domain has lost several metal-coordinating residues and is likely to be catalytically inactive. Results Genomic searches show that the loss of metal-coordinating residues in polymerase PHP domains is likely to have coevolved with the presence of a separate proofreading exonuclease that works with the polymerase. Although the E. coli Pol III PHP domain has lost metal-coordinating residues, the structure of the domain has been conserved to a remarkable degree when compared to that of metal-binding PHP domains. This is demonstrated by our ability to restore metal binding with only three point mutations, as confirmed by the metal-bound crystal structure of this mutant determined at 2.9 Å resolution. We also show that Pol III, a large multi-domain protein, unfolds cooperatively and that mutations in the degenerate metal-binding site of the PHP domain decrease the overall stability of Pol III and reduce its activity. Conclusions While the presence of a PHP domain in replicative bacterial polymerases is strictly conserved, its ability to coordinate metals and to perform proofreading exonuclease activity is not, suggesting additional non-enzymatic roles for the domain. Our results show that the PHP domain is a major structural element in Pol III and its integrity modulates both the stability and activity of the polymerase. PMID:23672456

  5. A structural role for the PHP domain in E. coli DNA polymerase III.

    PubMed

    Barros, Tiago; Guenther, Joel; Kelch, Brian; Anaya, Jordan; Prabhakar, Arjun; O'Donnell, Mike; Kuriyan, John; Lamers, Meindert H

    2013-05-14

    In addition to the core catalytic machinery, bacterial replicative DNA polymerases contain a Polymerase and Histidinol Phosphatase (PHP) domain whose function is not entirely understood. The PHP domains of some bacterial replicases are active metal-dependent nucleases that may play a role in proofreading. In E. coli DNA polymerase III, however, the PHP domain has lost several metal-coordinating residues and is likely to be catalytically inactive. Genomic searches show that the loss of metal-coordinating residues in polymerase PHP domains is likely to have coevolved with the presence of a separate proofreading exonuclease that works with the polymerase. Although the E. coli Pol III PHP domain has lost metal-coordinating residues, the structure of the domain has been conserved to a remarkable degree when compared to that of metal-binding PHP domains. This is demonstrated by our ability to restore metal binding with only three point mutations, as confirmed by the metal-bound crystal structure of this mutant determined at 2.9 Å resolution. We also show that Pol III, a large multi-domain protein, unfolds cooperatively and that mutations in the degenerate metal-binding site of the PHP domain decrease the overall stability of Pol III and reduce its activity. While the presence of a PHP domain in replicative bacterial polymerases is strictly conserved, its ability to coordinate metals and to perform proofreading exonuclease activity is not, suggesting additional non-enzymatic roles for the domain. Our results show that the PHP domain is a major structural element in Pol III and its integrity modulates both the stability and activity of the polymerase.

  6. The Axl kinase domain in complex with a macrocyclic inhibitor offers first structural insights into an active TAM receptor kinase.

    PubMed

    Gajiwala, Ketan S; Grodsky, Neil; Bolaños, Ben; Feng, Junli; Ferre, RoseAnn; Timofeevski, Sergei; Xu, Meirong; Murray, Brion W; Johnson, Ted W; Stewart, Al

    2017-09-22

    The receptor tyrosine kinase family consisting of Tyro3, Axl, and Mer (TAM) is one of the most recently identified receptor tyrosine kinase families. TAM receptors are up-regulated postnatally and maintained at high levels in adults. They all play an important role in immunity, but Axl has also been implicated in cancer and therefore is a target in the discovery and development of novel therapeutics. However, of the three members of the TAM family, the Axl kinase domain is the only one that has so far eluded structure determination. To this end, using differential scanning fluorimetry and hydrogen-deuterium exchange mass spectrometry, we show here that a lower stability and greater dynamic nature of the Axl kinase domain may account for its poor crystallizability. We present the first structural characterization of the Axl kinase domain in complex with a small-molecule macrocyclic inhibitor. The Axl crystal structure revealed two distinct conformational states of the enzyme, providing a first glimpse of what an active TAM receptor kinase may look like and suggesting a potential role for the juxtamembrane region in enzyme activity. We noted that the ATP/inhibitor-binding sites of the TAM members closely resemble each other, posing a challenge for the design of a selective inhibitor. We propose that the differences in the conformational dynamics among the TAM family members could potentially be exploited to achieve inhibitor selectivity for targeted receptors. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. The role of internal duplication in the evolution of multi-domain proteins.

    PubMed

    Nacher, J C; Hayashida, M; Akutsu, T

    2010-08-01

    Many proteins consist of several structural domains. These multi-domain proteins have likely been generated by selective genome growth dynamics during evolution to perform new functions as well as to create structures that fold on a biologically feasible time scale. Domain units frequently evolved through a variety of genetic shuffling mechanisms. Here we examine the protein domain statistics of more than 1000 organisms including eukaryotic, archaeal and bacterial species. The analysis extends earlier findings on asymmetric statistical laws for proteome to a wider variety of species. While proteins are composed of a wide range of domains, displaying a power-law decay, the computation of domain families for each protein reveals an exponential distribution, characterizing a protein universe composed of a thin number of unique families. Structural studies in proteomics have shown that domain repeats, or internal duplicated domains, represent a small but significant fraction of genome. In spite of its importance, this observation has been largely overlooked until recently. We model the evolutionary dynamics of proteome and demonstrate that these distinct distributions are in fact rooted in an internal duplication mechanism. This process generates the contemporary protein structural domain universe, determines its reduced thickness, and tames its growth. These findings have important implications, ranging from protein interaction network modeling to evolutionary studies based on fundamental mechanisms governing genome expansion.

  8. Structure of the catalytic domain of Plasmodium falciparum ARF GTPase-activating protein (ARFGAP)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, William J.; Senkovich, Olga; Chattopadhyay, Debasish

    2012-03-26

    The crystal structure of the catalytic domain of the ADP ribosylation factor GTPase-activating protein (ARFGAP) from Plasmodium falciparum has been determined and refined to 2.4 {angstrom} resolution. Multiwavelength anomalous diffraction (MAD) data were collected utilizing the Zn{sup 2+} ion bound at the zinc-finger domain and were used to solve the structure. The overall structure of the domain is similar to those of mammalian ARFGAPs. However, several amino-acid residues in the area where GAP interacts with ARF1 differ in P. falciparum ARFGAP. Moreover, a number of residues that form the dimer interface in the crystal structure are unique in P. falciparummore » ARFGAP.« less

  9. Giant viruses coexisted with the cellular ancestors and represent a distinct supergroup along with superkingdoms Archaea, Bacteria and Eukarya

    PubMed Central

    2012-01-01

    Background The discovery of giant viruses with genome and physical size comparable to cellular organisms, remnants of protein translation machinery and virus-specific parasites (virophages) have raised intriguing questions about their origin. Evidence advocates for their inclusion into global phylogenomic studies and their consideration as a distinct and ancient form of life. Results Here we reconstruct phylogenies describing the evolution of proteomes and protein domain structures of cellular organisms and double-stranded DNA viruses with medium-to-very-large proteomes (giant viruses). Trees of proteomes define viruses as a ‘fourth supergroup’ along with superkingdoms Archaea, Bacteria, and Eukarya. Trees of domains indicate they have evolved via massive and primordial reductive evolutionary processes. The distribution of domain structures suggests giant viruses harbor a significant number of protein domains including those with no cellular representation. The genomic and structural diversity embedded in the viral proteomes is comparable to the cellular proteomes of organisms with parasitic lifestyles. Since viral domains are widespread among cellular species, we propose that viruses mediate gene transfer between cells and crucially enhance biodiversity. Conclusions Results call for a change in the way viruses are perceived. They likely represent a distinct form of life that either predated or coexisted with the last universal common ancestor (LUCA) and constitute a very crucial part of our planet’s biosphere. PMID:22920653

  10. Domain atrophy creates rare cases of functional partial protein domains.

    PubMed

    Prakash, Ananth; Bateman, Alex

    2015-04-30

    Protein domains display a range of structural diversity, with numerous additions and deletions of secondary structural elements between related domains. We have observed a small number of cases of surprising large-scale deletions of core elements of structural domains. We propose a new concept called domain atrophy, where protein domains lose a significant number of core structural elements. Here, we implement a new pipeline to systematically identify new cases of domain atrophy across all known protein sequences. The output of this pipeline was carefully checked by hand, which filtered out partial domain instances that were unlikely to represent true domain atrophy due to misannotations or un-annotated sequence fragments. We identify 75 cases of domain atrophy, of which eight cases are found in a three-dimensional protein structure and 67 cases have been inferred based on mapping to a known homologous structure. Domains with structural variations include ancient folds such as the TIM-barrel and Rossmann folds. Most of these domains are observed to show structural loss that does not affect their functional sites. Our analysis has significantly increased the known cases of domain atrophy. We discuss specific instances of domain atrophy and see that there has often been a compensatory mechanism that helps to maintain the stability of the partial domain. Our study indicates that although domain atrophy is an extremely rare phenomenon, protein domains under certain circumstances can tolerate extreme mutations giving rise to partial, but functional, domains.

  11. Crystal Structure of a Two-domain Fragment of Hepatocyte Growth Factor Activator Inhibitor-1: FUNCTIONAL INTERACTIONS BETWEEN THE KUNITZ-TYPE INHIBITOR DOMAIN-1 AND THE NEIGHBORING POLYCYSTIC KIDNEY DISEASE-LIKE DOMAIN.

    PubMed

    Hong, Zebin; De Meulemeester, Laura; Jacobi, Annemarie; Pedersen, Jan Skov; Morth, J Preben; Andreasen, Peter A; Jensen, Jan K

    2016-07-01

    Hepatocyte growth factor activator inhibitor-1 (HAI-1) is a type I transmembrane protein and inhibitor of several serine proteases, including hepatocyte growth factor activator and matriptase. The protein is essential for development as knock-out mice die in utero due to placental defects caused by misregulated extracellular proteolysis. HAI-1 contains two Kunitz-type inhibitor domains (Kunitz), which are generally thought of as a functionally self-contained protease inhibitor unit. This is not the case for HAI-1, where our results reveal how interdomain interactions have evolved to stimulate the inhibitory activity of an integrated Kunitz. Here we present an x-ray crystal structure of an HAI-1 fragment covering the internal domain and Kunitz-1. The structure reveals not only that the previously uncharacterized internal domain is a member of the polycystic kidney disease domain family but also how the two domains engage in interdomain interactions. Supported by solution small angle x-ray scattering and a combination of site-directed mutagenesis and functional assays, we show that interdomain interactions not only stabilize the fold of the internal domain but also stimulate the inhibitory activity of Kunitz-1. By completing our structural characterization of the previously unknown N-terminal region of HAI-1, we provide new insight into the interplay between tertiary structure and the inhibitory activity of a multidomain protease inhibitor. We propose a previously unseen mechanism by which the association of an auxiliary domain stimulates the inhibitory activity of a Kunitz-type inhibitor (i.e. the first structure of an intramolecular interaction between a Kunitz and another domain). © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Structure and evolution of N-domains in AAA metalloproteases.

    PubMed

    Scharfenberg, Franka; Serek-Heuberger, Justyna; Coles, Murray; Hartmann, Marcus D; Habeck, Michael; Martin, Jörg; Lupas, Andrei N; Alva, Vikram

    2015-02-27

    Metalloproteases of the AAA (ATPases associated with various cellular activities) family play a crucial role in protein quality control within the cytoplasmic membrane of bacteria and the inner membrane of eukaryotic organelles. These membrane-anchored hexameric enzymes are composed of an N-terminal domain with one or two transmembrane helices, a central AAA ATPase module, and a C-terminal Zn(2+)-dependent protease. While the latter two domains have been well studied, so far, little is known about the N-terminal regions. Here, in an extensive bioinformatic and structural analysis, we identified three major, non-homologous groups of N-domains in AAA metalloproteases. By far, the largest one is the FtsH-like group of bacteria and eukaryotic organelles. The other two groups are specific to Yme1: one found in plants, fungi, and basal metazoans and the other one found exclusively in animals. Using NMR and crystallography, we determined the subunit structure and hexameric assembly of Escherichia coli FtsH-N, exhibiting an unusual α+β fold, and the conserved part of fungal Yme1-N from Saccharomyces cerevisiae, revealing a tetratricopeptide repeat fold. Our bioinformatic analysis showed that, uniquely among these proteins, the N-domain of Yme1 from the cnidarian Hydra vulgaris contains both the tetratricopeptide repeat region seen in basal metazoans and a region of homology to the N-domains of animals. Thus, it is a modern-day representative of an intermediate in the evolution of animal Yme1 from basal eukaryotic precursors. Copyright © 2015. Published by Elsevier Ltd.

  13. Radiation-damage-assisted ferroelectric domain structuring in magnesium-doped lithium niobate

    NASA Astrophysics Data System (ADS)

    Jentjens, L.; Peithmann, K.; Maier, K.; Steigerwald, H.; Jungk, T.

    2009-06-01

    Irradiation of 5% magnesium-doped lithium niobate crystals (LiNbO3:Mg) with high-energy, low-mass 3He ions, which are transmitted through the crystal, changes the domain reversal properties of the material. This enables easier domain engineering compared to non-irradiated material and assists the formation of small-sized periodically poled domains in LiNbO3:Mg. Periodic domain structures exhibiting a width of ≈520 nm are obtained in radiation-damaged sections of the crystals. The ferroelectric poling behavior between irradiated and non-treated material is compared.

  14. Crystal structure and functional interpretation of the erythrocyte spectrin tetramerization domain complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ipsaro, Jonathan J.; Harper, Sandra L.; Messick, Troy E.

    2010-09-07

    As the principal component of the membrane skeleton, spectrin confers integrity and flexibility to red cell membranes. Although this network involves many interactions, the most common hemolytic anemia mutations that disrupt erythrocyte morphology affect the spectrin tetramerization domains. Although much is known clinically about the resulting conditions (hereditary elliptocytosis and pyropoikilocytosis), the detailed structural basis for spectrin tetramerization and its disruption by hereditary anemia mutations remains elusive. Thus, to provide further insights into spectrin assembly and tetramer site mutations, a crystal structure of the spectrin tetramerization domain complex has been determined. Architecturally, this complex shows striking resemblance to multirepeat spectrinmore » fragments, with the interacting tetramer site region forming a central, composite repeat. This structure identifies conformational changes in {alpha}-spectrin that occur upon binding to {beta}-spectrin, and it reports the first structure of the {beta}-spectrin tetramerization domain. Analysis of the interaction surfaces indicates an extensive interface dominated by hydrophobic contacts and supplemented by electrostatic complementarity. Analysis of evolutionarily conserved residues suggests additional surfaces that may form important interactions. Finally, mapping of hereditary anemia-related mutations onto the structure demonstrate that most, but not all, local hereditary anemia mutations map to the interacting domains. The potential molecular effects of these mutations are described.« less

  15. Crystal Structure and Functional Interpretation of the Erythrocyte spectrin Tetramerization Domain Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J Ipsaro; S Harper; T Messick

    2011-12-31

    As the principal component of the membrane skeleton, spectrin confers integrity and flexibility to red cell membranes. Although this network involves many interactions, the most common hemolytic anemia mutations that disrupt erythrocyte morphology affect the spectrin tetramerization domains. Although much is known clinically about the resulting conditions (hereditary elliptocytosis and pyropoikilocytosis), the detailed structural basis for spectrin tetramerization and its disruption by hereditary anemia mutations remains elusive. Thus, to provide further insights into spectrin assembly and tetramer site mutations, a crystal structure of the spectrin tetramerization domain complex has been determined. Architecturally, this complex shows striking resemblance to multirepeat spectrinmore » fragments, with the interacting tetramer site region forming a central, composite repeat. This structure identifies conformational changes in {alpha}-spectrin that occur upon binding to {beta}-spectrin, and it reports the first structure of the {beta}-spectrin tetramerization domain. Analysis of the interaction surfaces indicates an extensive interface dominated by hydrophobic contacts and supplemented by electrostatic complementarity. Analysis of evolutionarily conserved residues suggests additional surfaces that may form important interactions. Finally, mapping of hereditary anemia-related mutations onto the structure demonstrate that most, but not all, local hereditary anemia mutations map to the interacting domains. The potential molecular effects of these mutations are described.« less

  16. Structure of Pseudoknot PK26 Shows 3D Domain Swapping in an RNA

    NASA Technical Reports Server (NTRS)

    Lietzke, Susan E; Barnes, Cindy L.

    1998-01-01

    3D domain swapping provides a facile pathway for the evolution of oligomeric proteins and allosteric mechanisms and a means for using monomer-oligomer equilibria to regulate biological activity. The term "3D domain swapping" describes the exchange of identical domains between two protein monomers to create an oligomer. 3D domain swapping has, so far, only been recognized in proteins. In this study, the structure of the pseudoknot PK26 is reported and it is a clear example of 3D domain swapping in RNA. PK26 was chosen for study because RNA pseudoknots are required structures in several biological processes and they arise frequently in in vitro selection experiments directed against protein targets. PK26 specifically inhibits HIV-1 reverse transcriptase with nanomolar affinity. We have now determined the 3.1 A resolution crystal structure of PK26 and find that it forms a 3D domain swapped dimer. PK26 shows extensive base pairing between and within strands. Formation of the dimer requires the linker region between the pseudoknot folds to adopt a unique conformation that allows a base within a helical stem to skip one base in the stacking register. Rearrangement of the linker would permit a monomeric pseudoknot to form. This structure shows how RNA can use 3D domain swapping to build large scale oligomers like the putative hexamer in the packaging RNA of bacteriophage Phi29.

  17. Differential Transmembrane Domain GXXXG Motif Pairing Impacts Major Histocompatibility Complex (MHC) Class II Structure*

    PubMed Central

    Dixon, Ann M.; Drake, Lisa; Hughes, Kelly T.; Sargent, Elizabeth; Hunt, Danielle; Harton, Jonathan A.; Drake, James R.

    2014-01-01

    Major histocompatibility complex (MHC) class II molecules exhibit conformational heterogeneity, which influences their ability to stimulate CD4 T cells and drive immune responses. Previous studies suggest a role for the transmembrane domain of the class II αβ heterodimer in determining molecular structure and function. Our previous studies identified an MHC class II conformer that is marked by the Ia.2 epitope. These Ia.2+ class II conformers are lipid raft-associated and able to drive both tyrosine kinase signaling and efficient antigen presentation to CD4 T cells. Here, we establish that the Ia.2+ I-Ak conformer is formed early in the class II biosynthetic pathway and that differential pairing of highly conserved transmembrane domain GXXXG dimerization motifs is responsible for formation of Ia.2+ versus Ia.2− I-Ak class II conformers and controlling lipid raft partitioning. These findings provide a molecular explanation for the formation of two distinct MHC class II conformers that differ in their inherent ability to signal and drive robust T cell activation, providing new insight into the role of MHC class II in regulating antigen-presenting cell-T cell interactions critical to the initiation and control of multiple aspects of the immune response. PMID:24619409

  18. Structure and hydration of membranes embedded with voltage-sensing domains.

    PubMed

    Krepkiy, Dmitriy; Mihailescu, Mihaela; Freites, J Alfredo; Schow, Eric V; Worcester, David L; Gawrisch, Klaus; Tobias, Douglas J; White, Stephen H; Swartz, Kenton J

    2009-11-26

    Despite the growing number of atomic-resolution membrane protein structures, direct structural information about proteins in their native membrane environment is scarce. This problem is particularly relevant in the case of the highly charged S1-S4 voltage-sensing domains responsible for nerve impulses, where interactions with the lipid bilayer are critical for the function of voltage-activated ion channels. Here we use neutron diffraction, solid-state nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics simulations to investigate the structure and hydration of bilayer membranes containing S1-S4 voltage-sensing domains. Our results show that voltage sensors adopt transmembrane orientations and cause a modest reshaping of the surrounding lipid bilayer, and that water molecules intimately interact with the protein within the membrane. These structural findings indicate that voltage sensors have evolved to interact with the lipid membrane while keeping energetic and structural perturbations to a minimum, and that water penetrates the membrane, to hydrate charged residues and shape the transmembrane electric field.

  19. Lysosome-associated membrane proteins-1 and -2 (LAMP-1 and LAMP-2) assemble via distinct modes.

    PubMed

    Terasawa, Kazue; Tomabechi, Yuri; Ikeda, Mariko; Ehara, Haruhiko; Kukimoto-Niino, Mutsuko; Wakiyama, Motoaki; Podyma-Inoue, Katarzyna A; Rajapakshe, Anupama R; Watabe, Tetsuro; Shirouzu, Mikako; Hara-Yokoyama, Miki

    2016-10-21

    Lysosome-associated membrane proteins 1 and 2 (LAMP-1 and LAMP-2) have a large, heavily glycosylated luminal domain composed of two subdomains, and are the most abundant protein components in lysosome membranes. LAMP-1 and LAMP-2 have distinct functions, and the presence of both proteins together is required for the essential regulation of autophagy to avoid embryonic lethality. However, the structural aspects of LAMP-1 and LAMP-2 have not been elucidated. In the present study, we demonstrated that the subdomains of LAMP-1 and LAMP-2 adopt the unique β-prism fold, similar to the domain structure of the dendritic cell-specific-LAMP (DC-LAMP, LAMP-3), confirming the conserved aspect of this family of lysosome-associated membrane proteins. Furthermore, we evaluated the effects of the N-domain truncation of LAMP-1 or LAMP-2 on the assembly of LAMPs, based on immunoprecipitation experiments. We found that the N-domain of LAMP-1 is necessary, whereas that of LAMP-2 is repressive, for the organization of a multimeric assembly of LAMPs. Accordingly, the present study suggests for the first time that the assembly modes of LAMP-1 and LAMP-2 are different, which may underlie their distinct functions. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Structure and stability of the ankyrin domain of the Drosophila Notch receptor.

    PubMed

    Zweifel, Mark E; Leahy, Daniel J; Hughson, Frederick M; Barrick, Doug

    2003-11-01

    The Notch receptor contains a conserved ankyrin repeat domain that is required for Notch-mediated signal transduction. The ankyrin domain of Drosophila Notch contains six ankyrin sequence repeats previously identified as closely matching the ankyrin repeat consensus sequence, and a putative seventh C-terminal sequence repeat that exhibits lower similarity to the consensus sequence. To better understand the role of the Notch ankyrin domain in Notch-mediated signaling and to examine how structure is distributed among the seven ankyrin sequence repeats, we have determined the crystal structure of this domain to 2.0 angstroms resolution. The seventh, C-terminal, ankyrin sequence repeat adopts a regular ankyrin fold, but the first, N-terminal ankyrin repeat, which contains a 15-residue insertion, appears to be largely disordered. The structure reveals a substantial interface between ankyrin polypeptides, showing a high degree of shape and charge complementarity, which may be related to homotypic interactions suggested from indirect studies. However, the Notch ankyrin domain remains largely monomeric in solution, demonstrating that this interface alone is not sufficient to promote tight association. Using the structure, we have classified reported mutations within the Notch ankyrin domain that are known to disrupt signaling into those that affect buried residues and those restricted to surface residues. We show that the buried substitutions greatly decrease protein stability, whereas the surface substitutions have only a marginal affect on stability. The surface substitutions are thus likely to interfere with Notch signaling by disrupting specific Notch-effector interactions and map the sites of these interactions.

  1. β-Hairpin-Mediated Formation of Structurally Distinct Multimers of Neurotoxic Prion Peptides

    PubMed Central

    Gill, Andrew C.

    2014-01-01

    Protein misfolding disorders are associated with conformational changes in specific proteins, leading to the formation of potentially neurotoxic amyloid fibrils. During pathogenesis of prion disease, the prion protein misfolds into β-sheet rich, protease-resistant isoforms. A key, hydrophobic domain within the prion protein, comprising residues 109–122, recapitulates many properties of the full protein, such as helix-to-sheet structural transition, formation of fibrils and cytotoxicity of the misfolded isoform. Using all-atom, molecular simulations, it is demonstrated that the monomeric 109–122 peptide has a preference for α-helical conformations, but that this peptide can also form β-hairpin structures resulting from turns around specific glycine residues of the peptide. Altering a single amino acid within the 109–122 peptide (A117V, associated with familial prion disease) increases the prevalence of β-hairpin formation and these observations are replicated in a longer peptide, comprising residues 106–126. Multi-molecule simulations of aggregation yield different assemblies of peptide molecules composed of conformationally-distinct monomer units. Small molecular assemblies, consistent with oligomers, comprise peptide monomers in a β-hairpin-like conformation and in many simulations appear to exist only transiently. Conversely, larger assemblies are comprised of extended peptides in predominately antiparallel β-sheets and are stable relative to the length of the simulations. These larger assemblies are consistent with amyloid fibrils, show cross-β structure and can form through elongation of monomer units within pre-existing oligomers. In some simulations, assemblies containing both β-hairpin and linear peptides are evident. Thus, in this work oligomers are on pathway to fibril formation and a preference for β-hairpin structure should enhance oligomer formation whilst inhibiting maturation into fibrils. These simulations provide an important new

  2. Topologically Diverse Human Membrane Proteins Partition to Liquid-Disordered Domains in Phase-Separated Lipid Vesicles.

    PubMed

    Schlebach, Jonathan P; Barrett, Paul J; Day, Charles A; Kim, Ji Hun; Kenworthy, Anne K; Sanders, Charles R

    2016-02-23

    The integration of membrane proteins into "lipid raft" membrane domains influences many biochemical processes. The intrinsic structural properties of membrane proteins are thought to mediate their partitioning between membrane domains. However, whether membrane topology influences the targeting of proteins to rafts remains unclear. To address this question, we examined the domain preference of three putative raft-associated membrane proteins with widely different topologies: human caveolin-3, C99 (the 99 residue C-terminal domain of the amyloid precursor protein), and peripheral myelin protein 22. We find that each of these proteins are excluded from the ordered domains of giant unilamellar vesicles containing coexisting liquid-ordered and liquid-disordered phases. Thus, the intrinsic structural properties of these three topologically distinct disease-linked proteins are insufficient to confer affinity for synthetic raft-like domains.

  3. Tagging methyl-CpG-binding domain proteins reveals different spatiotemporal expression and supports distinct functions.

    PubMed

    Wood, Kathleen H; Johnson, Brian S; Welsh, Sarah A; Lee, Jun Y; Cui, Yue; Krizman, Elizabeth; Brodkin, Edward S; Blendy, Julie A; Robinson, Michael B; Bartolomei, Marisa S; Zhou, Zhaolan

    2016-04-01

    DNA methylation is recognized by methyl-CpG-binding domain (MBD) proteins. Multiple MBDs are linked to neurodevelopmental disorders in humans and mice. However, the functions of MBD2 are poorly understood. We characterized Mbd2 knockout mice and determined spatiotemporal expression of MBDs and MBD2-NuRD (nucleosome remodeling deacetylase) interactions. We analyzed behavioral phenotypes, generated biotin-tagged MBD1 and MBD2 knockin mice, and performed biochemical studies of MBD2-NuRD. Most behavioral measures are minimally affected in Mbd2 knockout mice. In contrast to other MBDs, MBD2 shows distinct expression patterns. Unlike most MBDs, MBD2 is ubiquitously expressed in all tissues examined and appears dispensable for brain functions measured in this study. We provide novel genetic tools and reveal new directions to investigate MBD2 functions in vivo.

  4. Supra-domains: evolutionary units larger than single protein domains.

    PubMed

    Vogel, Christine; Berzuini, Carlo; Bashton, Matthew; Gough, Julian; Teichmann, Sarah A

    2004-02-20

    Domains are the evolutionary units that comprise proteins, and most proteins are built from more than one domain. Domains can be shuffled by recombination to create proteins with new arrangements of domains. Using structural domain assignments, we examined the combinations of domains in the proteins of 131 completely sequenced organisms. We found two-domain and three-domain combinations that recur in different protein contexts with different partner domains. The domains within these combinations have a particular functional and spatial relationship. These units are larger than individual domains and we term them "supra-domains". Amongst the supra-domains, we identified some 1400 (1203 two-domain and 166 three-domain) combinations that are statistically significantly over-represented relative to the occurrence and versatility of the individual component domains. Over one-third of all structurally assigned multi-domain proteins contain these over-represented supra-domains. This means that investigation of the structural and functional relationships of the domains forming these popular combinations would be particularly useful for an understanding of multi-domain protein function and evolution as well as for genome annotation. These and other supra-domains were analysed for their versatility, duplication, their distribution across the three kingdoms of life and their functional classes. By examining the three-dimensional structures of several examples of supra-domains in different biological processes, we identify two basic types of spatial relationships between the component domains: the combined function of the two domains is such that either the geometry of the two domains is crucial and there is a tight constraint on the interface, or the precise orientation of the domains is less important and they are spatially separate. Frequently, the role of the supra-domain becomes clear only once the three-dimensional structure is known. Since this is the case for only a

  5. Crystal Structure of a Two-domain Fragment of Hepatocyte Growth Factor Activator Inhibitor-1

    PubMed Central

    Hong, Zebin; De Meulemeester, Laura; Jacobi, Annemarie; Pedersen, Jan Skov; Morth, J. Preben; Andreasen, Peter A.; Jensen, Jan K.

    2016-01-01

    Hepatocyte growth factor activator inhibitor-1 (HAI-1) is a type I transmembrane protein and inhibitor of several serine proteases, including hepatocyte growth factor activator and matriptase. The protein is essential for development as knock-out mice die in utero due to placental defects caused by misregulated extracellular proteolysis. HAI-1 contains two Kunitz-type inhibitor domains (Kunitz), which are generally thought of as a functionally self-contained protease inhibitor unit. This is not the case for HAI-1, where our results reveal how interdomain interactions have evolved to stimulate the inhibitory activity of an integrated Kunitz. Here we present an x-ray crystal structure of an HAI-1 fragment covering the internal domain and Kunitz-1. The structure reveals not only that the previously uncharacterized internal domain is a member of the polycystic kidney disease domain family but also how the two domains engage in interdomain interactions. Supported by solution small angle x-ray scattering and a combination of site-directed mutagenesis and functional assays, we show that interdomain interactions not only stabilize the fold of the internal domain but also stimulate the inhibitory activity of Kunitz-1. By completing our structural characterization of the previously unknown N-terminal region of HAI-1, we provide new insight into the interplay between tertiary structure and the inhibitory activity of a multidomain protease inhibitor. We propose a previously unseen mechanism by which the association of an auxiliary domain stimulates the inhibitory activity of a Kunitz-type inhibitor (i.e. the first structure of an intramolecular interaction between a Kunitz and another domain). PMID:27189939

  6. Structure-function analysis of the auxilin J-domain reveals an extended Hsc70 interaction interface.

    PubMed

    Jiang, Jianwen; Taylor, Alexander B; Prasad, Kondury; Ishikawa-Brush, Yumiko; Hart, P John; Lafer, Eileen M; Sousa, Rui

    2003-05-20

    J-domains are widespread protein interaction modules involved in recruiting and stimulating the activity of Hsp70 family chaperones. We have determined the crystal structure of the J-domain of auxilin, a protein which is involved in uncoating clathrin-coated vesicles. Comparison to the known structures of J-domains from four other proteins reveals that the auxilin J-domain is the most divergent of all J-domain structures described to date. In addition to the canonical J-domain features described previously, the auxilin J-domain contains an extra N-terminal helix and a long loop inserted between helices I and II. The latter loop extends the positively charged surface which forms the Hsc70 binding site, and is shown by directed mutagenesis and surface plasmon resonance to contain side chains important for binding to Hsc70.

  7. Light-activated Gigahertz Ferroelectric Domain Dynamics

    DOE PAGES

    Akamatsu, Hirofumii; Yuan, Yakun; Stoica, Vladimir A.; ...

    2018-02-26

    Using time- and spatially-resolved hard X-ray diffraction microscopy, the striking structural and electrical dynamics upon optical excitation of a single crystal of BaTiO 3 are simultaneously captured on sub-nanoseconds and nanoscale within individual ferroelectric domains and across walls. A large emergent photo-induced electric field of up to 20 million volts per meter is discovered in a surface layer of the crystal, which then drives polarization and lattice dynamics that are dramatically distinct in a surface layer versus bulk regions. A dynamical phase-field modeling (DPFM) method is developed that reveals the microscopic origin of these dynamics, leading to GHz polarization andmore » elastic waves travelling in the crystal with sonic speeds and spatially varying frequencies. The advance of spatiotemporal imaging and dynamical modeling tools open opportunities of disentangling ultrafast processes in complex mesoscale structures such as ferroelectric domains« less

  8. Structure of the Response Regulator PhoP from Mycobacterium tuberculosis Reveals a Dimer Through the Receiver Domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S Menon; S Wang

    The PhoP protein from Mycobacterium tuberculosis is a response regulator of the OmpR/PhoB subfamily, whose structure consists of an N-terminal receiver domain and a C-terminal DNA-binding domain. How the DNA-binding activities are regulated by phosphorylation of the receiver domain remains unclear due to a lack of structural information on the full-length proteins. Here we report the crystal structure of the full-length PhoP of M. tuberculosis. Unlike other known structures of full-length proteins of the same subfamily, PhoP forms a dimer through its receiver domain with the dimer interface involving {alpha}4-{beta}5-{alpha}5, a common interface for activated receiver domain dimers. However, themore » switch residues, Thr99 and Tyr118, are in a conformation resembling those of nonactivated receiver domains. The Tyr118 side chain is involved in the dimer interface interactions. The receiver domain is tethered to the DNA-binding domain through a flexible linker and does not impose structural constraints on the DNA-binding domain. This structure suggests that phosphorylation likely facilitates/stabilizes receiver domain dimerization, bringing the DNA-binding domains to close proximity, thereby increasing their binding affinity for direct repeat DNA sequences.« less

  9. Distinct self-interaction domains promote Multi Sex Combs accumulation in and formation of the Drosophila histone locus body

    PubMed Central

    Terzo, Esteban A.; Lyons, Shawn M.; Poulton, John S.; Temple, Brenda R. S.; Marzluff, William F.; Duronio, Robert J.

    2015-01-01

    Nuclear bodies (NBs) are structures that concentrate proteins, RNAs, and ribonucleoproteins that perform functions essential to gene expression. How NBs assemble is not well understood. We studied the Drosophila histone locus body (HLB), a NB that concentrates factors required for histone mRNA biosynthesis at the replication-dependent histone gene locus. We coupled biochemical analysis with confocal imaging of both fixed and live tissues to demonstrate that the Drosophila Multi Sex Combs (Mxc) protein contains multiple domains necessary for HLB assembly. An important feature of this assembly process is the self-interaction of Mxc via two conserved N-terminal domains: a LisH domain and a novel self-interaction facilitator (SIF) domain immediately downstream of the LisH domain. Molecular modeling suggests that the LisH and SIF domains directly interact, and mutation of either the LisH or the SIF domain severely impairs Mxc function in vivo, resulting in reduced histone mRNA accumulation. A region of Mxc between amino acids 721 and 1481 is also necessary for HLB assembly independent of the LisH and SIF domains. Finally, the C-terminal 195 amino acids of Mxc are required for recruiting FLASH, an essential histone mRNA-processing factor, to the HLB. We conclude that multiple domains of the Mxc protein promote HLB assembly in order to concentrate factors required for histone mRNA biosynthesis. PMID:25694448

  10. The Structure of the Plakin Domain of Plectin Reveals an Extended Rod-like Shape*

    PubMed Central

    Carballido, Ana M.

    2016-01-01

    Plakins are large multi-domain proteins that interconnect cytoskeletal structures. Plectin is a prototypical plakin that tethers intermediate filaments to membrane-associated complexes. Most plakins contain a plakin domain formed by up to nine spectrin repeats (SR1–SR9) and an SH3 domain. The plakin domains of plectin and other plakins harbor binding sites for junctional proteins. We have combined x-ray crystallography with small angle x-ray scattering (SAXS) to elucidate the structure of the plakin domain of plectin, extending our previous analysis of the SR1 to SR5 region. Two crystal structures of the SR5-SR6 region allowed us to characterize its uniquely wide inter-repeat conformational variability. We also report the crystal structures of the SR7-SR8 region, refined to 1.8 Å, and the SR7–SR9 at lower resolution. The SR7–SR9 region, which is conserved in all other plakin domains, forms a rigid segment stabilized by uniquely extensive inter-repeat contacts mediated by unusually long helices in SR8 and SR9. Using SAXS we show that in solution the SR3–SR6 and SR7–SR9 regions are rod-like segments and that SR3–SR9 of plectin has an extended shape with a small central kink. Other plakins, such as bullous pemphigoid antigen 1 and microtubule and actin cross-linking factor 1, are likely to have similar extended plakin domains. In contrast, desmoplakin has a two-segment structure with a central flexible hinge. The continuous versus segmented structures of the plakin domains of plectin and desmoplakin give insight into how different plakins might respond to tension and transmit mechanical signals. PMID:27413182

  11. Crystal Structure of the HEAT Domain from the Pre-mRNA Processing Factor Symplekin

    PubMed Central

    Kennedy, Sarah A.; Frazier, Monica L.; Steiniger, Mindy; Mast, Ann M.; Marzluff, William F.; Redinbo, Matthew R.

    2009-01-01

    The majority of eukaryotic pre-mRNAs are processed by 3′-end cleavage and polyadenylation, although in metazoa the replication-dependant histone mRNAs are processed by 3′-end cleavage but not polyadenylation. The macromolecular complex responsible for processing both canonical and histone pre-mRNAs contains the ~1,160-residue protein Symplekin. Secondary structural prediction algorithms identified putative HEAT domains in the 300 N-terminal residues of all Symplekins of known sequence. The structure and dynamics of this domain were investigated to begin elucidating the role Symplekin plays in mRNA maturation. The crystal structure of the Drosophila melanogaster Symplekin HEAT domain was determined to 2.4 Å resolution using SAD phasing methods. The structure exhibits 5 canonical HEAT repeats along with an extended 31 amino acid loop (loop 8) between the fourth and fifth repeat that is conserved within closely related Symplekin sequences. Molecular dynamics simulations of this domain show that the presence of loop 8 dampens correlated and anticorrelated motion in the HEAT domain, therefore providing a neutral surface for potential protein-protein interactions. HEAT domains are often employed for such macromolecular contacts. The Symplekin HEAT region not only structurally aligns with several established scaffolding proteins, but also has been reported to contact proteins essential for regulating 3′-end processing. Taken together, these data support the conclusion that the Symplekin HEAT domain serves as a scaffold for protein-protein interactions essential to the mRNA maturation process. PMID:19576221

  12. Biosensor-based approach identifies four distinct calmodulin-binding domains in the G protein-coupled estrogen receptor 1.

    PubMed

    Tran, Quang-Kim; Vermeer, Mark

    2014-01-01

    The G protein-coupled estrogen receptor 1 (GPER) has been demonstrated to participate in many cellular functions, but its regulatory inputs are not clearly understood. Here we describe a new approach that identifies GPER as a calmodulin-binding protein, locates interaction sites, and characterizes their binding properties. GPER coimmunoprecipitates with calmodulin in primary vascular smooth muscle cells under resting conditions, which is enhanced upon acute treatment with either specific ligands or a Ca(2+)-elevating agent. To confirm direct interaction and locate the calmodulin-binding domain(s), we designed a series of FRET biosensors that consist of enhanced cyan and yellow fluorescent proteins flanking each of GPER's submembrane domains (SMDs). Responses of these biosensors showed that all four submembrane domains directly bind calmodulin. Modifications of biosensor linker identified domains that display the strongest calmodulin-binding affinities and largest biosensor dynamics, including a.a. 83-93, 150-175, 242-259, 330-351, corresponding respectively to SMDs 1, 2, 3, and the juxta-membranous section of SMD4. These biosensors bind calmodulin in a strictly Ca(2+)-dependent fashion and with disparate affinities in the order SMD2>SMD4>SMD3>SMD1, apparent K d values being 0.44 ± 0.03, 1.40 ± 0.16, 8.01 ± 0.29, and 136.62 ± 6.56 µM, respectively. Interestingly, simultaneous determinations of biosensor responses and suitable Ca(2+) indicators identified separate Ca(2+) sensitivities for their interactions with calmodulin. SMD1-CaM complexes display a biphasic Ca(2+) response, representing two distinct species (SMD1 sp1 and SMD1 sp2) with drastically different Ca(2+) sensitivities. The Ca(2+) sensitivities of CaM-SMDs interactions follow the order SMD1sp1>SMD4>SMD2>SMD1sp2>SMD3, EC50(Ca(2+)) values being 0.13 ± 0.02, 0.75 ± 0.05, 2.38 ± 0.13, 3.71 ± 0.13, and 5.15 ± 0.25 µM, respectively. These data indicate that calmodulin may regulate GPER

  13. Distinct protein domains and expression patterns confer divergent axon guidance functions for Drosophila Robo receptors.

    PubMed

    Spitzweck, Bettina; Brankatschk, Marko; Dickson, Barry J

    2010-02-05

    The orthogonal array of axon pathways in the Drosophila CNS is constructed in part under the control of three Robo family axon guidance receptors: Robo1, Robo2 and Robo3. Each of these receptors is responsible for a distinct set of guidance decisions. To determine the molecular basis for these functional specializations, we used homologous recombination to create a series of 9 "robo swap" alleles: expressing each of the three Robo receptors from each of the three robo loci. We demonstrate that the lateral positioning of longitudinal axon pathways relies primarily on differences in gene regulation, not distinct combinations of Robo proteins as previously thought. In contrast, specific features of the Robo1 and Robo2 proteins contribute to their distinct functions in commissure formation. These specializations allow Robo1 to prevent crossing and Robo2 to promote crossing. These data demonstrate how diversification of expression and structure within a single family of guidance receptors can shape complex patterns of neuronal wiring. 2010 Elsevier Inc. All rights reserved.

  14. Resilience of biochemical activity in protein domains in the face of structural divergence.

    PubMed

    Zhang, Dapeng; Iyer, Lakshminarayan M; Burroughs, A Maxwell; Aravind, L

    2014-06-01

    Recent studies point to the prevalence of the evolutionary phenomenon of drastic structural transformation of protein domains while continuing to preserve their basic biochemical function. These transformations span a wide spectrum, including simple domains incorporated into larger structural scaffolds, changes in the structural core, major active site shifts, topological rewiring and extensive structural transmogrifications. Proteins from biological conflict systems, such as toxin-antitoxin, restriction-modification, CRISPR/Cas, polymorphic toxin and secondary metabolism systems commonly display such transformations. These include endoDNases, metal-independent RNases, deaminases, ADP ribosyltransferases, immunity proteins, kinases and E1-like enzymes. In eukaryotes such transformations are seen in domains involved in chromatin-related peptide recognition and protein/DNA-modification. Intense selective pressures from 'arms-race'-like situations in conflict and macromolecular modification systems could favor drastic structural divergence while preserving function. Published by Elsevier Ltd.

  15. Crystal structure studies of NADP{sup +} dependent isocitrate dehydrogenase from Thermus thermophilus exhibiting a novel terminal domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, S.M.; Pampa, K.J.; Manjula, M.

    2014-06-20

    Highlights: • We determined the structure of isocitrate dehydrogenase with citrate and cofactor. • The structure reveals a unique novel terminal domain involved in dimerization. • Clasp domain shows significant difference, and catalytic residues are conserved. • Oligomerization of the enzyme is quantized with subunit-subunit interactions. • Novel domain of this enzyme is classified as subfamily of the type IV. - Abstract: NADP{sup +} dependent isocitrate dehydrogenase (IDH) is an enzyme catalyzing oxidative decarboxylation of isocitrate into oxalosuccinate (intermediate) and finally the product α-ketoglutarate. The crystal structure of Thermus thermophilus isocitrate dehydrogenase (TtIDH) ternary complex with citrate and cofactor NADP{supmore » +} was determined using X-ray diffraction method to a resolution of 1.80 Å. The overall fold of this protein was resolved into large domain, small domain and a clasp domain. The monomeric structure reveals a novel terminal domain involved in dimerization, very unique and novel domain when compared to other IDH’s. And, small domain and clasp domain showing significant differences when compared to other IDH’s of the same sub-family. The structure of TtIDH reveals the absence of helix at the clasp domain, which is mainly involved in oligomerization in other IDH’s. Also, helices/beta sheets are absent in the small domain, when compared to other IDH’s of the same sub family. The overall TtIDH structure exhibits closed conformation with catalytic triad residues, Tyr144-Asp248-Lys191 are conserved. Oligomerization of the protein is quantized using interface area and subunit–subunit interactions between protomers. Overall, the TtIDH structure with novel terminal domain may be categorized as a first structure of subfamily of type IV.« less

  16. Solution structure of the catalytic domain of RICH protein from goldfish.

    PubMed

    Kozlov, Guennadi; Denisov, Alexey Y; Pomerantseva, Ekaterina; Gravel, Michel; Braun, Peter E; Gehring, Kalle

    2007-03-01

    Regeneration-induced CNPase homolog (RICH) is an axonal growth-associated protein, which is induced in teleost fish upon optical nerve injury. RICH consists of a highly acidic N-terminal domain, a catalytic domain with 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase) activity and a C-terminal isoprenylation site. In vitro RICH and mammalian brain CNPase specifically catalyze the hydrolysis of 2',3'-cyclic nucleotides to produce 2'-nucleotides, but the physiologically relevant in vivo substrate remains unknown. Here, we report the NMR structure of the catalytic domain of goldfish RICH and describe its binding to CNPase inhibitors. The structure consists of a twisted nine-stranded antiparallel beta-sheet surrounded by alpha-helices on both sides. Despite significant local differences mostly arising from a seven-residue insert in the RICH sequence, the active site region is highly similar to that of human CNPase. Likewise, refinement of the catalytic domain of rat CNPase using residual dipolar couplings gave improved agreement with the published crystal structure. NMR titrations of RICH with inhibitors point to a similar catalytic mechanism for RICH and CNPase. The results suggest a functional importance for the evolutionarily conserved phosphodiesterase activity and hint of a link with pre-tRNA splicing.

  17. Structure of the GH1 domain of guanylate kinase-associated protein from Rattus norvegicus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, Junsen; Yang, Huiseon; Eom, Soo Hyun

    2014-09-12

    Graphical abstract: - Highlights: • The crystal structure of GKAP homology domain 1 (GH1) was determined. • GKAP GH1 is a three-helix bundle connected by short flexible loops. • The predicted helix α4 associates weakly with the helix α3, suggesting dynamic nature of the GH1 domain. - Abstract: Guanylate-kinase-associated protein (GKAP) is a scaffolding protein that links NMDA receptor-PSD-95 to Shank–Homer complexes by protein–protein interactions at the synaptic junction. GKAP family proteins are characterized by the presence of a C-terminal conserved GKAP homology domain 1 (GH1) of unknown structure and function. In this study, crystal structure of the GH1 domainmore » of GKAP from Rattus norvegicus was determined in fusion with an N-terminal maltose-binding protein at 2.0 Å resolution. The structure of GKAP GH1 displays a three-helix bundle connected by short flexible loops. The predicted helix α4 which was not visible in the crystal structure associates weakly with the helix α3 suggesting dynamic nature of the GH1 domain. The strict conservation of GH1 domain across GKAP family members and the lack of a catalytic active site required for enzyme activity imply that the GH1 domain might serve as a protein–protein interaction module for the synaptic protein clustering.« less

  18. An update on the LIM and SH3 domain protein 1 (LASP1): a versatile structural, signaling, and biomarker protein

    PubMed Central

    Orth, Martin F.; Cazes, Alex; Butt, Elke; Grunewald, Thomas G. P.

    2015-01-01

    The gene encoding the LIM and SH3 domain protein (LASP1) was cloned two decades ago from a cDNA library of breast cancer metastases. As the first protein of a class comprising one N-terminal LIM and one C-terminal SH3 domain, LASP1 founded a new LIM-protein subfamily of the nebulin group. Since its discovery LASP1 proved to be an extremely versatile protein because of its exceptional structure allowing interaction with various binding partners, its ubiquitous expression in normal tissues, albeit with distinct expression patterns, and its ability to transmit signals from the cytoplasm into the nucleus. As a result, LASP1 plays key roles in cell structure, physiological processes, and cell signaling. Furthermore, LASP1 overexpression contributes to cancer aggressiveness hinting to a potential value of LASP1 as a cancer biomarker. In this review we summarize published data on structure, regulation, function, and expression pattern of LASP1, with a focus on its role in human cancer and as a biomarker protein. In addition, we provide a comprehensive transcriptome analysis of published microarrays (n=2,780) that illustrates the expression profile of LASP1 in normal tissues and its overexpression in a broad range of human cancer entities. PMID:25622104

  19. The structure and dynamics of tandem WW domains in a negative regulator of notch signaling, Suppressor of deltex.

    PubMed

    Fedoroff, Oleg Y; Townson, Sharon A; Golovanov, Alexander P; Baron, Martin; Avis, Johanna M

    2004-08-13

    WW domains mediate protein recognition, usually though binding to proline-rich sequences. In many proteins, WW domains occur in tandem arrays. Whether or how individual domains within such arrays cooperate to recognize biological partners is, as yet, poorly characterized. An important question is whether functional diversity of different WW domain proteins is reflected in the structural organization and ligand interaction mechanisms of their multiple domains. We have determined the solution structure and dynamics of a pair of WW domains (WW3-4) from a Drosophila Nedd4 family protein called Suppressor of deltex (Su(dx)), a regulator of Notch receptor signaling. We find that the binding of a type 1 PPPY ligand to WW3 stabilizes the structure with effects propagating to the WW4 domain, a domain that is not active for ligand binding. Both WW domains adopt the characteristic triple-stranded beta-sheet structure, and significantly, this is the first example of a WW domain structure to include a domain (WW4) lacking the second conserved Trp (replaced by Phe). The domains are connected by a flexible linker, which allows a hinge-like motion of domains that may be important for the recognition of functionally relevant targets. Our results contrast markedly with those of the only previously determined three-dimensional structure of tandem WW domains, that of the rigidly oriented WW domain pair from the RNA-splicing factor Prp40. Our data illustrate that arrays of WW domains can exhibit a variety of higher order structures and ligand interaction mechanisms.

  20. Structure-Based Sequence Alignment of the Transmembrane Domains of All Human GPCRs: Phylogenetic, Structural and Functional Implications

    PubMed Central

    Cvicek, Vaclav; Goddard, William A.; Abrol, Ravinder

    2016-01-01

    The understanding of G-protein coupled receptors (GPCRs) is undergoing a revolution due to increased information about their signaling and the experimental determination of structures for more than 25 receptors. The availability of at least one receptor structure for each of the GPCR classes, well separated in sequence space, enables an integrated superfamily-wide analysis to identify signatures involving the role of conserved residues, conserved contacts, and downstream signaling in the context of receptor structures. In this study, we align the transmembrane (TM) domains of all experimental GPCR structures to maximize the conserved inter-helical contacts. The resulting superfamily-wide GpcR Sequence-Structure (GRoSS) alignment of the TM domains for all human GPCR sequences is sufficient to generate a phylogenetic tree that correctly distinguishes all different GPCR classes, suggesting that the class-level differences in the GPCR superfamily are encoded at least partly in the TM domains. The inter-helical contacts conserved across all GPCR classes describe the evolutionarily conserved GPCR structural fold. The corresponding structural alignment of the inactive and active conformations, available for a few GPCRs, identifies activation hot-spot residues in the TM domains that get rewired upon activation. Many GPCR mutations, known to alter receptor signaling and cause disease, are located at these conserved contact and activation hot-spot residue positions. The GRoSS alignment places the chemosensory receptor subfamilies for bitter taste (TAS2R) and pheromones (Vomeronasal, VN1R) in the rhodopsin family, known to contain the chemosensory olfactory receptor subfamily. The GRoSS alignment also enables the quantification of the structural variability in the TM regions of experimental structures, useful for homology modeling and structure prediction of receptors. Furthermore, this alignment identifies structurally and functionally important residues in all human GPCRs

  1. Structure of MyTH4-FERM domains in myosin VIIa tail bound to cargo.

    PubMed

    Wu, Lin; Pan, Lifeng; Wei, Zhiyi; Zhang, Mingjie

    2011-02-11

    The unconventional myosin VIIa (MYO7A) is one of the five proteins that form a network of complexes involved in formation of stereocilia. Defects in these proteins cause syndromic deaf-blindness in humans [Usher syndrome I (USH1)]. Many disease-causing mutations occur in myosin tail homology 4-protein 4.1, ezrin, radixin, moesin (MyTH4-FERM) domains in the myosin tail that binds to another USH1 protein, Sans. We report the crystal structure of MYO7A MyTH4-FERM domains in complex with the central domain (CEN) of Sans at 2.8 angstrom resolution. The MyTH4 and FERM domains form an integral structural and functional supramodule binding to two highly conserved segments (CEN1 and 2) of Sans. The MyTH4-FERM/CEN complex structure provides mechanistic explanations for known deafness-causing mutations in MYO7A MyTH4-FERM. The structure will also facilitate mechanistic and functional studies of MyTH4-FERM domains in other myosins.

  2. Free-decay time-domain modal identification for large space structures

    NASA Technical Reports Server (NTRS)

    Kim, Hyoung M.; Vanhorn, David A.; Doiron, Harold H.

    1992-01-01

    Concept definition studies for the Modal Identification Experiment (MIE), a proposed space flight experiment for the Space Station Freedom (SSF), have demonstrated advantages and compatibility of free-decay time-domain modal identification techniques with the on-orbit operational constraints of large space structures. Since practical experience with modal identification using actual free-decay responses of large space structures is very limited, several numerical and test data reduction studies were conducted. Major issues and solutions were addressed, including closely-spaced modes, wide frequency range of interest, data acquisition errors, sampling delay, excitation limitations, nonlinearities, and unknown disturbances during free-decay data acquisition. The data processing strategies developed in these studies were applied to numerical simulations of the MIE, test data from a deployable truss, and launch vehicle flight data. Results of these studies indicate free-decay time-domain modal identification methods can provide accurate modal parameters necessary to characterize the structural dynamics of large space structures.

  3. Structures of BIR domains from human NAIP and cIAP2

    PubMed Central

    Herman, Maria Dolores; Moche, Martin; Flodin, Susanne; Welin, Martin; Trésaugues, Lionel; Johansson, Ida; Nilsson, Martina; Nordlund, Pär; Nyman, Tomas

    2009-01-01

    The inhibitor of apoptosis (IAP) family of proteins contains key modulators of apoptosis and inflammation that interact with caspases through baculovirus IAP-repeat (BIR) domains. Overexpression of IAP proteins frequently occurs in cancer cells, thus counteracting the activated apoptotic program. The IAP proteins have therefore emerged as promising targets for cancer therapy. In this work, X-ray crystallography was used to determine the first structures of BIR domains from human NAIP and cIAP2. Both structures harbour an N-terminal tetrapeptide in the conserved peptide-binding groove. The structures reveal that these two proteins bind the tetrapeptides in a similar mode as do other BIR domains. Detailed interactions are described for the P1′–P4′ side chains of the peptide, providing a structural basis for peptide-specific recognition. An arginine side chain in the P3′ position reveals favourable interactions with its hydrophobic moiety in the binding pocket, while hydrophobic residues in the P2′ and P4′ pockets make similar interactions to those seen in other BIR domain–peptide complexes. The structures also reveal how a serine in the P1′ position is accommodated in the binding pockets of NAIP and cIAP2. In addition to shedding light on the specificity determinants of these two proteins, the structures should now also provide a framework for future structure-based work targeting these proteins. PMID:19923725

  4. Replication-coupled chromatin assembly of newly synthesized histones: distinct functions for the histone tail domains.

    PubMed

    Ejlassi-Lassallette, Aïda; Thiriet, Christophe

    2012-02-01

    The maintenance of the genome during replication requires the assembly of nucleosomes with newly synthesized histones. Achieving the deposition of newly synthesized histones in chromatin implies their transport from the cytoplasm to the nucleus at the replication sites. Several lines of evidence have revealed critical functions of the histone tail domains in these conserved cellular processes. In this review, we discuss the role of the amino termini of the nucleosome building blocks, H2A/H2B and H3/H4, in different model systems. The experimental data showed that H2A/H2B tails and H3/H4 tails display distinct functions in nuclear import and chromatin assembly. Furthermore, we describe recent studies exploiting the unique properties of the slime mold, Physarum polycephalum , that have advanced understanding of the function of the highly conserved replication-dependent diacetylation of H4.

  5. Structural and Functional Characterization of the Kindlin-1 Pleckstrin Homology Domain*

    PubMed Central

    Yates, Luke A.; Lumb, Craig N.; Brahme, Nina N.; Zalyte, Ruta; Bird, Louise E.; De Colibus, Luigi; Owens, Raymond J.; Calderwood, David A.; Sansom, Mark S. P.; Gilbert, Robert J. C.

    2012-01-01

    Inside-out activation of integrins is mediated via the binding of talin and kindlin to integrin β-subunit cytoplasmic tails. The kindlin FERM domain is interrupted by a pleckstrin homology (PH) domain within its F2 subdomain. Here, we present data confirming the importance of the kindlin-1 PH domain for integrin activation and its x-ray crystal structure at a resolution of 2.1 Å revealing a C-terminal second α-helix integral to the domain but found only in the kindlin protein family. An isoform-specific salt bridge occludes the canonical phosphoinositide binding site, but molecular dynamics simulations display transient switching to an alternative open conformer. Molecular docking reveals that the opening of the pocket would enable potential ligands to bind within it. Although lipid overlay assays suggested the PH domain binds inositol monophosphates, surface plasmon resonance demonstrated weak affinities for inositol 3,4,5-triphosphate (Ins(3,4,5)P3; KD ∼100 μm) and no monophosphate binding. Removing the salt bridge by site-directed mutagenesis increases the PH domain affinity for Ins(3,4,5)P3 as measured by surface plasmon resonance and enables it to bind PtdIns(3,5)P2 on a dot-blot. Structural comparison with other PH domains suggests that the phosphate binding pocket in the kindlin-1 PH domain is more occluded than in kindlins-2 and -3 due to its salt bridge. In addition, the apparent affinity for Ins(3,4,5)P3 is affected by the presence of PO4 ions in the buffer. We suggest the physiological ligand of the kindlin-1 PH domain is most likely not an inositol phosphate but another phosphorylated species. PMID:23132860

  6. Vortex Domain Structure in Ferroelectric Nanoplatelets and Control of its Transformation by Mechanical Load

    PubMed Central

    Chen, W. J.; Zheng, Yue; Wang, Biao

    2012-01-01

    Vortex domain patterns in low-dimensional ferroelectrics and multiferroics have been extensively studied with the aim of developing nanoscale functional devices. However, control of the vortex domain structure has not been investigated systematically. Taking into account effects of inhomogeneous electromechanical fields, ambient temperature, surface and size, we demonstrate significant influence of mechanical load on the vortex domain structure in ferroelectric nanoplatelets. Our analysis shows that the size and number of dipole vortices can be controlled by mechanical load, and yields rich temperature-stress (T-S) phase diagrams. Simulations also reveal that transformations between “vortex states” induced by the mechanical load are possible, which is totally different from the conventional way controlled on the vortex domain by the electric field. These results are relevant to application of vortex domain structures in ferroelectric nanodevices, and suggest a novel route to applications including memories, mechanical sensors and transducers. PMID:23150769

  7. Direct nanoscale imaging of evolving electric field domains in quantum structures.

    PubMed

    Dhar, Rudra Sankar; Razavipour, Seyed Ghasem; Dupont, Emmanuel; Xu, Chao; Laframboise, Sylvain; Wasilewski, Zbig; Hu, Qing; Ban, Dayan

    2014-11-28

    The external performance of quantum optoelectronic devices is governed by the spatial profiles of electrons and potentials within the active regions of these devices. For example, in quantum cascade lasers (QCLs), the electric field domain (EFD) hypothesis posits that the potential distribution might be simultaneously spatially nonuniform and temporally unstable. Unfortunately, there exists no prior means of probing the inner potential profile directly. Here we report the nanoscale measured electric potential distribution inside operating QCLs by using scanning voltage microscopy at a cryogenic temperature. We prove that, per the EFD hypothesis, the multi-quantum-well active region is indeed divided into multiple sections having distinctly different electric fields. The electric field across these serially-stacked quantum cascade modules does not continuously increase in proportion to gradual increases in the applied device bias, but rather hops between discrete values that are related to tunneling resonances. We also report the evolution of EFDs, finding that an incremental change in device bias leads to a hopping-style shift in the EFD boundary--the higher electric field domain expands at least one module each step at the expense of the lower field domain within the active region.

  8. Direct Nanoscale Imaging of Evolving Electric Field Domains in Quantum Structures

    PubMed Central

    Dhar, Rudra Sankar; Razavipour, Seyed Ghasem; Dupont, Emmanuel; Xu, Chao; Laframboise, Sylvain; Wasilewski, Zbig; Hu, Qing; Ban, Dayan

    2014-01-01

    The external performance of quantum optoelectronic devices is governed by the spatial profiles of electrons and potentials within the active regions of these devices. For example, in quantum cascade lasers (QCLs), the electric field domain (EFD) hypothesis posits that the potential distribution might be simultaneously spatially nonuniform and temporally unstable. Unfortunately, there exists no prior means of probing the inner potential profile directly. Here we report the nanoscale measured electric potential distribution inside operating QCLs by using scanning voltage microscopy at a cryogenic temperature. We prove that, per the EFD hypothesis, the multi-quantum-well active region is indeed divided into multiple sections having distinctly different electric fields. The electric field across these serially-stacked quantum cascade modules does not continuously increase in proportion to gradual increases in the applied device bias, but rather hops between discrete values that are related to tunneling resonances. We also report the evolution of EFDs, finding that an incremental change in device bias leads to a hopping-style shift in the EFD boundary – the higher electric field domain expands at least one module each step at the expense of the lower field domain within the active region. PMID:25431158

  9. Direct Nanoscale Imaging of Evolving Electric Field Domains in Quantum Structures

    NASA Astrophysics Data System (ADS)

    Dhar, Rudra Sankar; Razavipour, Seyed Ghasem; Dupont, Emmanuel; Xu, Chao; Laframboise, Sylvain; Wasilewski, Zbig; Hu, Qing; Ban, Dayan

    2014-11-01

    The external performance of quantum optoelectronic devices is governed by the spatial profiles of electrons and potentials within the active regions of these devices. For example, in quantum cascade lasers (QCLs), the electric field domain (EFD) hypothesis posits that the potential distribution might be simultaneously spatially nonuniform and temporally unstable. Unfortunately, there exists no prior means of probing the inner potential profile directly. Here we report the nanoscale measured electric potential distribution inside operating QCLs by using scanning voltage microscopy at a cryogenic temperature. We prove that, per the EFD hypothesis, the multi-quantum-well active region is indeed divided into multiple sections having distinctly different electric fields. The electric field across these serially-stacked quantum cascade modules does not continuously increase in proportion to gradual increases in the applied device bias, but rather hops between discrete values that are related to tunneling resonances. We also report the evolution of EFDs, finding that an incremental change in device bias leads to a hopping-style shift in the EFD boundary - the higher electric field domain expands at least one module each step at the expense of the lower field domain within the active region.

  10. The Yin and Yang of SagS: Distinct Residues in the HmsP Domain of SagS Independently Regulate Biofilm Formation and Biofilm Drug Tolerance

    PubMed Central

    Dingemans, Jozef; Poudyal, Bandita

    2018-01-01

    ABSTRACT The formation of inherently drug-tolerant biofilms by the opportunistic pathogen Pseudomonas aeruginosa requires the sensor-regulator hybrid SagS, with ΔsagS biofilms being unstructured and exhibiting increased antimicrobial susceptibility. Recent findings indicated SagS to function as a switch to control biofilm formation and drug tolerance independently. Moreover, findings suggested the periplasmic sensory HmsP domain of SagS is likely to be the control point in the regulation of biofilm formation and biofilm cells transitioning to a drug-tolerant state. We thus asked whether specific amino acid residues present in the HmsP domain contribute to the switch function of SagS. HmsP domain residues were therefore subjected to alanine replacement mutagenesis to identify substitutions that block the sensory function(s) of SagS, which is apparent by attached cells being unable to develop mature biofilms and/or prevent transition to an antimicrobial-resistant state. Mutant analyses revealed 32 residues that only contribute to blocking one sensory function. Moreover, amino acid residues affecting attachment and subsequent biofilm formation but not biofilm tolerance also impaired histidine kinase signaling via BfiS. In contrast, residues affecting biofilm drug tolerance but not attachment and subsequent biofilm formation negatively impacted BrlR transcription factor levels. Structure prediction suggested the two sets of residues affecting sensory functions are located in distinct areas that were previously described as being involved in ligand binding interactions. Taken together, these studies identify the molecular basis for the dual regulatory function of SagS. IMPORTANCE The membrane-bound sensory protein SagS plays a pivotal role in P. aeruginosa biofilm formation and biofilm cells gaining their heightened resistance to antimicrobial agents, with SagS being the control point at which both pathways diverge. Here, we demonstrate for the first time that the two

  11. Crystal structure of EML1 reveals the basis for Hsp90 dependence of oncogenic EML4-ALK by disruption of an atypical β-propeller domain

    PubMed Central

    Richards, Mark W.; Law, Edward W. P.; Rennalls, La’Verne P.; Busacca, Sara; O’Regan, Laura; Fry, Andrew M.; Fennell, Dean A.; Bayliss, Richard

    2014-01-01

    Proteins of the echinoderm microtubule-associated protein (EMAP)-like (EML) family contribute to formation of the mitotic spindle and interphase microtubule network. They contain a unique hydrophobic EML protein (HELP) motif and a variable number of WD40 repeats. Recurrent gene rearrangements in nonsmall cell lung cancer fuse EML4 to anaplastic lymphoma kinase (ALK), causing expression of several fusion oncoprotein variants. We have determined a 2.6-Å crystal structure of the representative ∼70-kDa core of EML1, revealing an intimately associated pair of β-propellers, which we term a TAPE (tandem atypical propeller in EMLs) domain. One propeller is highly atypical, having a discontinuous subdomain unrelated to a WD40 motif in place of one of its blades. This unexpected feature shows how a propeller structure can be assembled from subdomains with distinct folds. The HELP motif is not an independent domain but forms part of the hydrophobic core that joins the two β-propellers. The TAPE domain binds α/β-tubulin via its conserved, concave surface, including part of the atypical blade. Mapping the characteristic breakpoints of each EML4-ALK variant onto our structure indicates that the EML4 TAPE domain is truncated in many variants in a manner likely to make the fusion protein structurally unstable. We found that the heat shock protein 90 (Hsp90) inhibitor ganetespib induced degradation of these variants whereas others lacking a partial TAPE domain were resistant in both overexpression models and patient-derived cell lines. The Hsp90-sensitive EML4-ALK variants are exceptions to the rule that oncogenic fusion proteins involve breakpoints in disordered regions of both partners. PMID:24706829

  12. Crystal structure of EML1 reveals the basis for Hsp90 dependence of oncogenic EML4-ALK by disruption of an atypical β-propeller domain.

    PubMed

    Richards, Mark W; Law, Edward W P; Rennalls, La'Verne P; Busacca, Sara; O'Regan, Laura; Fry, Andrew M; Fennell, Dean A; Bayliss, Richard

    2014-04-08

    Proteins of the echinoderm microtubule-associated protein (EMAP)-like (EML) family contribute to formation of the mitotic spindle and interphase microtubule network. They contain a unique hydrophobic EML protein (HELP) motif and a variable number of WD40 repeats. Recurrent gene rearrangements in nonsmall cell lung cancer fuse EML4 to anaplastic lymphoma kinase (ALK), causing expression of several fusion oncoprotein variants. We have determined a 2.6-Å crystal structure of the representative ∼70-kDa core of EML1, revealing an intimately associated pair of β-propellers, which we term a TAPE (tandem atypical propeller in EMLs) domain. One propeller is highly atypical, having a discontinuous subdomain unrelated to a WD40 motif in place of one of its blades. This unexpected feature shows how a propeller structure can be assembled from subdomains with distinct folds. The HELP motif is not an independent domain but forms part of the hydrophobic core that joins the two β-propellers. The TAPE domain binds α/β-tubulin via its conserved, concave surface, including part of the atypical blade. Mapping the characteristic breakpoints of each EML4-ALK variant onto our structure indicates that the EML4 TAPE domain is truncated in many variants in a manner likely to make the fusion protein structurally unstable. We found that the heat shock protein 90 (Hsp90) inhibitor ganetespib induced degradation of these variants whereas others lacking a partial TAPE domain were resistant in both overexpression models and patient-derived cell lines. The Hsp90-sensitive EML4-ALK variants are exceptions to the rule that oncogenic fusion proteins involve breakpoints in disordered regions of both partners.

  13. Structure and hydration of membranes embedded with voltage-sensing domains

    PubMed Central

    Krepkiy, Dmitriy; Mihailescu, Mihaela; Freites, J. Alfredo; Schow, Eric V.; Worcester, David L.; Gawrisch, Klaus; Tobias, Douglas; White, Stephen H.; Swartz, Kenton J.

    2009-01-01

    Despite the growing number of atomic-resolution membrane protein structures, direct structural information about proteins in their native membrane environment is scarce. This problem is particularly relevant in the case of the highly-charged S1–S4 voltage-sensing domains responsible for nerve impulses, where interactions with the lipid bilayer are critical for the function of voltage-activated potassium channels. Here we use neutron diffraction, solid-state nuclear magnetic resonance spectroscopy, and molecular dynamics simulations to investigate the structure and hydration of bilayer membranes containing S1–S4 voltage-sensing domains. Our results show that voltage sensors adopt transmembrane orientations, cause a modest reshaping of the surrounding lipid bilayer, and that water molecules intimately interact with the protein within the membrane. These structural findings reveal that voltage sensors have evolved to interact with the lipid membrane while keeping the energetic and structural perturbations to a minimum, and that water penetrates into the membrane to hydrate charged residues and shape the transmembrane electric field. PMID:19940918

  14. Structure, function, and tethering of DNA-binding domains in σ 54 transcriptional activators

    DOE PAGES

    Vidangos, Natasha; Maris, Ann E.; Young, Anisa; ...

    2013-07-02

    In this paper, we compare the structure, activity, and linkage of DNA-binding domains (DBDs) from σ 54 transcriptional activators and discuss how the properties of the DBDs and the linker to the neighboring domain are affected by the overall properties and requirements of the full proteins. These transcriptional activators bind upstream of specific promoters that utilize σ 54-polymerase. Upon receiving a signal the activators assemble into hexamers, which then, through adenosine triphosphate (ATP) hydrolysis, drive a conformational change in polymerase that enables transcription initiation. We present structures of the DBDs of activators nitrogen regulatory protein C 1 (NtrC1) and Nif-likemore » homolog 2 (Nlh2) from the thermophile Aquifex aeolicus. The structures of these domains and their relationship to other parts of the activators are discussed. These structures are compared with previously determined structures of the DBDs of NtrC4, NtrC, ZraR, and factor for inversion stimulation. The N-terminal linkers that connect the DBDs to the central domains in NtrC1 and Nlh2 were studied and found to be unstructured. Additionally, a crystal structure of full-length NtrC1 was solved, but density of the DBDs was extremely weak, further indicating that the linker between ATPase and DBDs functions as a flexible tether. Flexible linking of ATPase and DBDs is likely necessary to allow assembly of the active hexameric ATPase ring. Finally, the comparison of this set of activators also shows clearly that strong dimerization of the DBD only occurs when other domains do not dimerize strongly.« less

  15. An Extended Structure of the APOBEC3G Catalytic Domain Suggests a Unique Holoenzyme Model

    PubMed Central

    Harjes, Elena; Gross, Phillip J.; Chen, Kuan-Ming; Lu, Yongjian; Shindo, Keisuke; Nowarski, Roni; Gross, John D.; Kotler, Moshe; Harris, Reuben S.; Matsuo, Hiroshi

    2009-01-01

    Summary Human APOBEC3G (A3G) belongs to a family of polynucleotide cytidine deaminases. This family includes APOBEC1 and AID, which edit APOB mRNA and antibody gene DNA, respectively. A3G deaminates cytidines to uridines in single-strand DNA and inhibits the replication of HIV-1, other retroviruses and retrotransposons. Although the mechanism of A3G-catalyzed DNA deamination has been investigated genetically and biochemically, atomic details are just starting to emerge. Here, we compare the DNA cytidine deaminase activities and NMR structures of two A3G catalytic domain constructs. The longer A3G191-384 protein is considerably more active than the shorter A3G198-384 variant. The longer structure has an α1 helix (residues 201–206) that was not apparent in the shorter protein and it contributes to catalytic activity through interactions with hydrophobic core structures (β1, β3, α5 and α6). Both A3G catalytic domain solution structures have a discontinuous β2 region that is clearly different than the continuous β2 strand of another family member APOBEC2. In addition, the longer A3G191-384 structure revealed part of the N-terminal pseudo-catalytic domain including the inter-domain linker and some of the last α-helix. These structured residues (191–196) enabled a novel full-length A3G model by providing physical overlap between the N-terminal pseudo-catalytic domain and the new C-terminal catalytic domain structure. Contrary to predictions, this structurally constrained model suggested that the two domains are tethered by structured residues and that the N- and C-terminal β2 regions are too distant from one another to participate in this interaction. PMID:19389408

  16. Fast and reliable prediction of domain-peptide binding affinity using coarse-grained structure models.

    PubMed

    Tian, Feifei; Tan, Rui; Guo, Tailin; Zhou, Peng; Yang, Li

    2013-07-01

    Domain-peptide recognition and interaction are fundamentally important for eukaryotic signaling and regulatory networks. It is thus essential to quantitatively infer the binding stability and specificity of such interaction based upon large-scale but low-accurate complex structure models which could be readily obtained from sophisticated molecular modeling procedure. In the present study, a new method is described for the fast and reliable prediction of domain-peptide binding affinity with coarse-grained structure models. This method is designed to tolerate strong random noises involved in domain-peptide complex structures and uses statistical modeling approach to eliminate systematic bias associated with a group of investigated samples. As a paradigm, this method was employed to model and predict the binding behavior of various peptides to four evolutionarily unrelated peptide-recognition domains (PRDs), i.e. human amph SH3, human nherf PDZ, yeast syh GYF and yeast bmh 14-3-3, and moreover, we explored the molecular mechanism and biological implication underlying the binding of cognate and noncognate peptide ligands to their domain receptors. It is expected that the newly proposed method could be further used to perform genome-wide inference of domain-peptide binding at three-dimensional structure level. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Replication domains are self-interacting structural chromatin units of human chromosomes

    NASA Astrophysics Data System (ADS)

    Arneodo, Alain

    2011-03-01

    In higher eukaryotes, the absence of specific sequence motifs marking the origins of replication has been a serious hindrance to the understanding of the mechanisms that regulate the initiation and the maintenance of the replication program in different cell types. In silico analysis of nucleotide compositional skew has predicted the existence, in the germline, of replication N-domains bordered by putative replication origins and where the skew decreases rather linearly as the signature of a progressive inversion of the average fork polarity. Here, from the demonstration that the average fork polarity can be directly extracted from the derivative of replication timing profiles, we develop a wavelet-based pattern recognition methodology to delineate replication U-domains where the replication timing profile is shaped as a U and its derivative as a N. Replication U-domains are robustly found in seven cell lines as covering a significant portion (40-50%) of the human genome where the replication timing data actually displays some plasticity between cell lines. The early replication initiation zones at U-domains borders are found to be hypersensitive to DNase I cleavage, to be associated with transcriptional activity and to present a significant enrichment in insular-binding proteins CTCF, the hallmark of an open chromatin structure. A comparative analysis of genome-wide chromatin interaction (HiC) data shows that replication-U domains correspond to self-interacting structural high order chromatin units of megabase characteristic size. Taken together, these findings provide evidence that the epigenetic compartmentalization of the human genome into autonomous replication U-domains comes along with an extensive remodelling of the threedimensional chromosome architecture during development or in specific diseases. The observed cell specific conservation of the replication timing between the human and mouse genomes strongly suggests that this chromosome organization into

  18. Time-domain damping models in structural acoustics using digital filtering

    NASA Astrophysics Data System (ADS)

    Parret-Fréaud, Augustin; Cotté, Benjamin; Chaigne, Antoine

    2016-02-01

    This paper describes a new approach in order to formulate well-posed time-domain damping models able to represent various frequency domain profiles of damping properties. The novelty of this approach is to represent the behavior law of a given material directly in a discrete-time framework as a digital filter, which is synthesized for each material from a discrete set of frequency-domain data such as complex modulus through an optimization process. A key point is the addition of specific constraints to this process in order to guarantee stability, causality and verification of thermodynamics second law when transposing the resulting discrete-time behavior law into the time domain. Thus, this method offers a framework which is particularly suitable for time-domain simulations in structural dynamics and acoustics for a wide range of materials (polymers, wood, foam, etc.), allowing to control and even reduce the distortion effects induced by time-discretization schemes on the frequency response of continuous-time behavior laws.

  19. NMR solution structure of the activation domain of human procarboxypeptidase A2

    PubMed Central

    Jiménez, M. Angeles; Villegas, Virtudes; Santoro, Jorge; Serrano, Luis; Vendrell, Josep; Avilés, Francesc X.; Rico, Manuel

    2003-01-01

    The activation domain of human procarboxypeptidase A2, ADA2h, is an 81-residue globular domain released during the proteolytic activation of the proenzyme. The role of this and other similar domains as assistants of the correct folding of the enzyme is not fully understood. The folding pathway of ADA2h was characterized previously, and it was also observed that under certain conditions it may convert into amyloid fibrils in vitro. To gain insight into these processes, a detailed description of its three-dimensional structure in aqueous solution is required so that eventual changes could be properly monitored. A complete assignment of the 1H and 15N resonances of ADA2h was performed, and the solution structure, as derived from a set of 1688 nonredundant constraints, is very well defined (pairwise backbone RMSD = 0.67 ± 0.17 Å for residues 10–80). The structure is composed of two antiparallel α-helices comprising residues 19–32 and 58–69 packed on the same side of a three-stranded β-sheet spanning residues 10–15, 50–55, and 73–75. The global fold for the isolated human A2 activation domain is very similar to that of porcine carboxypeptidase B, as well as to the structure of the domain in the crystal of the intact human proenzyme. The observed structural differences relative to the intact human proenzyme are located at the interface between the activation domain and the enzyme and can be related with the activation mechanism. The backbone amide proton exchange behavior of ADA2h was also examined. The global free energy of unfolding obtained from exchange data of the most protected amide protons at pH 7.0 and 298K is 4.9 ± 0.3 kcal.mole−1, in good agreement with the values determined by thermal or denaturant unfolding studies. PMID:12538893

  20. Structure and electrostatic property of cytoplasmic domain of ZntB transporter

    PubMed Central

    Tan, Kemin; Sather, Alicia; Robertson, Janice L; Moy, Shiu; Roux, Benoît; Joachimiak, Andrzej

    2009-01-01

    ZntB is the distant homolog of CorA Mg2+ transporter within the metal ion transporter superfamily. It was early reported that the ZntB from Salmonella typhimurium facilitated efflux of Zn2+ and Cd2+, but not Mg2+. Here, we report the 1.90 Å crystal structure of the intracellular domain of ZntB from Vibrio parahemolyticus. The domain forms a funnel-shaped homopentamer that is similar to the full-length CorA from Thermatoga maritima, but differs from two previously reported dimeric structures of truncated CorA intracellular domains. However, no Zn2+ or Cd2+ binding sites were identified in the high-resolution structure. Instead, 25 well-defined Cl− ions were observed and some of these binding sites are highly conserved within the ZntB family. Continuum electrostatics calculations suggest that the central pore of the funnel is highly attractive for cations, especially divalents. The presence of the bound Cl− ions increases the stability of cations along the pore suggesting they could be important in enhancing cation transport. PMID:19653298

  1. High-resolution NMR structures of the domains of Saccharomyces cerevisiae Tho1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobsen, Julian O. B.; Allen, Mark D.; Freund, Stefan M. V.

    2016-05-23

    In this study, high-resolution structures of both the N-terminal DNA-binding SAP domain and the C-terminal RNA-binding domain of S. cerevisiae Tho1 have been determined. THO is a multi-protein complex involved in the formation of messenger ribonuclear particles (mRNPs) by coupling transcription with mRNA processing and export. THO is thought to be formed from five subunits, Tho2p, Hpr1p, Tex1p, Mft1p and Thp2p, and recent work has determined a low-resolution structure of the complex [Poulsen et al. (2014 ▸), PLoS One, 9, e103470]. A number of additional proteins are thought to be involved in the formation of mRNP in yeast, including Tho1,more » which has been shown to bind RNA in vitro and is recruited to actively transcribed chromatin in vivo in a THO-complex and RNA-dependent manner. Tho1 is known to contain a SAP domain at the N-terminus, but the ability to suppress the expression defects of the hpr1Δ mutant of THO was shown to reside in the RNA-binding C-terminal region. In this study, high-resolution structures of both the N-terminal DNA-binding SAP domain and C-terminal RNA-binding domain have been determined.« less

  2. Structure of phosphorylated UBL domain and insights into PINK1-orchestrated parkin activation.

    PubMed

    Aguirre, Jacob D; Dunkerley, Karen M; Mercier, Pascal; Shaw, Gary S

    2017-01-10

    Mutations in PARK2 and PARK6 genes are responsible for the majority of hereditary Parkinson's disease cases. These genes encode the E3 ubiquitin ligase parkin and the protein kinase PTEN-induced kinase 1 (PINK1), respectively. Together, parkin and PINK1 regulate the mitophagy pathway, which recycles damaged mitochondria following oxidative stress. Native parkin is inactive and exists in an autoinhibited state mediated by its ubiquitin-like (UBL) domain. PINK1 phosphorylation of serine 65 in parkin's UBL and serine 65 of ubiquitin fully activate ubiquitin ligase activity; however, a structural rationale for these observations is not clear. Here, we report the structure of the phosphorylated UBL domain from parkin. We find that destabilization of the UBL results from rearrangements to hydrophobic core packing that modify its structure. Altered surface electrostatics from the phosphoserine group disrupt its intramolecular association, resulting in poorer autoinhibition in phosphorylated parkin. Further, we show that phosphorylation of both the UBL domain and ubiquitin are required to activate parkin by releasing the UBL domain, forming an extended structure needed to facilitate E2-ubiquitin binding. Together, the results underscore the importance of parkin activation by the PINK1 phosphorylation signal and provide a structural picture of the unraveling of parkin's ubiquitin ligase potential.

  3. Solution Structure of Homology Region (HR) Domain of Type II Secretion System*

    PubMed Central

    Gu, Shuang; Kelly, Geoff; Wang, Xiaohui; Frenkiel, Tom; Shevchik, Vladimir E.; Pickersgill, Richard W.

    2012-01-01

    The type II secretion system of Gram-negative bacteria is important for bacterial pathogenesis and survival; it is composed of 12 mostly multimeric core proteins, which build a sophisticated secretion machine spanning both bacterial membranes. OutC is the core component of the inner membrane subcomplex thought to be involved in both recognition of substrate and interaction with the outer membrane secretin OutD. Here, we report the solution structure of the HR domain of OutC and explore its interaction with the secretin. The HR domain adopts a β-sandwich-like fold consisting of two β-sheets each composed of three anti-parallel β-strands. This structure is strikingly similar to the periplasmic region of PilP, an inner membrane lipoprotein from the type IV pilus system highlighting the common evolutionary origin of these two systems and showing that all the core components of the type II secretion system have a structural or sequence ortholog within the type IV pili system. The HR domain is shown to interact with the N0 domain of the secretin. The importance of this interaction is explored in the context of the functional secretion system. PMID:22253442

  4. Combined NMR and EPR Spectroscopy to Determine Structures of Viral Fusion Domains in Membranes

    PubMed Central

    Tamm, Lukas K.; Lai, Alex L.; Li, Yinling

    2008-01-01

    Methods are described to determine the structures of viral membrane fusion domains in detergent micelles by NMR and in lipid bilayers by site-directed spin labeling and EPR spectroscopy. Since in favorable cases, the lower-resolution spin label data obtained in lipid bilayers fully support the higher-resolution structures obtained by solution NMR, it is possible to graft the NMR structural coordinates into membranes using the EPR-derived distance restraints to the lipid bilayer. Electron paramagnetic dynamics and distance measurements in bilayers support conclusions drawn from NMR in detergent micelles. When these methods are applied to a structure determination of the influenza virus fusion domain and four point mutations with different functional phenotypes, it is evident that a fixed-angle boomerang structure with a glycine edge on the outside of the N-terminal arm is both necessary and sufficient to support membrane fusion. The human immunodeficiency virus fusion domain forms a straight helix with a flexible C-terminus. While EPR data for this fusion domain are not yet available, it is tentatively speculated that, because of its higher hydrophobicity, a critically tilted insertion may occur even in the absence of a kinked boomerang structure in this case. PMID:17963720

  5. Structure of the extracellular domains of the human interleukin-6 receptor α-chain

    PubMed Central

    Varghese, J. N.; Moritz, R. L.; Lou, M.-Z.; van Donkelaar, A.; Ji, H.; Ivancic, N.; Branson, K. M.; Hall, N. E.; Simpson, R. J.

    2002-01-01

    Dysregulated production of IL-6 and its receptor (IL-6R) are implicated in the pathogenesis of multiple myeloma, autoimmune diseases and prostate cancer. The IL-6R complex comprises two molecules each of IL-6, IL-6R, and the signaling molecule, gp130. Here, we report the x-ray structure (2.4 Å) of the IL-6R ectodomains. The N-terminal strand of the Ig-like domain (D1) is disulfide-bonded to domain D2, and domains D2 and D3, the cytokine-binding domain, are structurally similar to known cytokine-binding domains. The head-to-tail packing of two closely associated IL-6R molecules observed in the crystal may be representative of the configuration of the physiological dimer of IL-6R and provides new insight into the architecture of the IL-6R complex. PMID:12461182

  6. Unconventional Magnetic Domain Structure in the Ferromagnetic Phase of MnP Single Crystals

    NASA Astrophysics Data System (ADS)

    Koyama, Tsukasa; Yano, Shin-ichiro; Togawa, Yoshihiko; Kousaka, Yusuke; Mori, Shigeo; Inoue, Katsuya; Kishine, Jun-ichiro; Akimitsu, Jun

    2012-04-01

    We have studied ferromagnetic (FM) structures in the FM phase of MnP single crystals by low-temperature Lorentz transmission electron microscopy and small-angle electron diffraction analysis. In Lorentz Fresnel micrographs, striped FM domain structures were observed at an external magnetic field less than 10 Oe in specimens with the ab-plane in their plane. From real- and reciprocal-space analyses, it was clearly identified that striped FM domains oriented to the c-axis appear with Bloch-type domain walls in the b-direction and order regularly along the a-axis with a constant separation less than 100 nm. Moreover, the magnetic chirality reverses in alternate FM domain walls. These specific spin configuration of striped FM domains will affect the magnetic phase transition from the FM phase to the proper screw spiral phase at low temperature or to the FAN phase in magnetic fields in MnP.

  7. Structure of p73 DNA-binding domain tetramer modulates p73 transactivation

    PubMed Central

    Ethayathulla, Abdul S.; Tse, Pui-Wah; Monti, Paola; Nguyen, Sonha; Inga, Alberto; Fronza, Gilberto; Viadiu, Hector

    2012-01-01

    The transcription factor p73 triggers developmental pathways and overlaps stress-induced p53 transcriptional pathways. How p53-family response elements determine and regulate transcriptional specificity remains an unsolved problem. In this work, we have determined the first crystal structures of p73 DNA-binding domain tetramer bound to response elements with spacers of different length. The structure and function of the adaptable tetramer are determined by the distance between two half-sites. The structures with zero and one base-pair spacers show compact p73 DNA-binding domain tetramers with large tetramerization interfaces; a two base-pair spacer results in DNA unwinding and a smaller tetramerization interface, whereas a four base-pair spacer hinders tetramerization. Functionally, p73 is more sensitive to spacer length than p53, with one base-pair spacer reducing 90% of transactivation activity and longer spacers reducing transactivation to basal levels. Our results establish the quaternary structure of the p73 DNA-binding domain required as a scaffold to promote transactivation. PMID:22474346

  8. Crystal Structure of the Catalytic Domain of a Serine Threonine Protein Phosphatase

    NASA Technical Reports Server (NTRS)

    Swinglel, Mark; Honkanel, Richard; Ciszak, Ewa

    2003-01-01

    Reversible phosphorylation of serine and threonine residues is a well-recognized mechanism in eukaryotic cells for the regulation of cell-cycle progression, cell growth and metabolism. Human serine/threonine phosphatases can be placed into two major families, PPP and PPM. To date the structure on one PPP family member (PPl) has been determined. Here we present the structure of a 323-residue catalytic domain of a second phosphatase belonging to the PPP family of enzyme. catalytic domain of the enzyme has been determined to 1.60Angstrom resolution and refined to R=17.5 and Rfree = 20.8%. The catalytic domain possesses a unique fold consisting of a largely monolithic structure, divisible into closely-associated helical and sheet regions. The catalytic site contains two manganese ions that are involved in substrate binding and catalysis. The enzyme crystallizes as a dimer that completely buries catalytic surfaces of both monomers, Also, the structure shows evidence of some flexibility around the active site cleft that may be related to substrate specificity of this enzyme.

  9. Crystal Structure of Marburg Virus VP40 Reveals a Broad, Basic Patch for Matrix Assembly and a Requirement of the N-Terminal Domain for Immunosuppression.

    PubMed

    Oda, Shun-Ichiro; Noda, Takeshi; Wijesinghe, Kaveesha J; Halfmann, Peter; Bornholdt, Zachary A; Abelson, Dafna M; Armbrust, Tammy; Stahelin, Robert V; Kawaoka, Yoshihiro; Saphire, Erica Ollmann

    2016-02-15

    Marburg virus (MARV), a member of the filovirus family, causes severe hemorrhagic fever with up to 90% lethality. MARV matrix protein VP40 is essential for assembly and release of newly copied viruses and also suppresses immune signaling in the infected cell. Here we report the crystal structure of MARV VP40. We found that MARV VP40 forms a dimer in solution, mediated by N-terminal domains, and that formation of this dimer is essential for budding of virus-like particles. We also found the N-terminal domain to be necessary and sufficient for immune antagonism. The C-terminal domains of MARV VP40 are dispensable for immunosuppression but are required for virus assembly. The C-terminal domains are only 16% identical to those of Ebola virus, differ in structure from those of Ebola virus, and form a distinct broad and flat cationic surface that likely interacts with the cell membrane during virus assembly. Marburg virus, a cousin of Ebola virus, causes severe hemorrhagic fever, with up to 90% lethality seen in recent outbreaks. Molecular structures and visual images of the proteins of Marburg virus are essential for the development of antiviral drugs. One key protein in the Marburg virus life cycle is VP40, which both assembles the virus and suppresses the immune system. Here we provide the molecular structure of Marburg virus VP40, illustrate differences from VP40 of Ebola virus, and reveal surfaces by which Marburg VP40 assembles progeny and suppresses immune function. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  10. Development and validation of a self-report measure of emotional intelligence as a multidimensional trait domain.

    PubMed

    Tett, Robert P; Fox, Kevin E; Wang, Alvin

    2005-07-01

    Psychometric review of 33 peer-reviewed studies of six self-report emotional intelligence (EI) measures supports a multidimensional conceptualization of EI. The nature and number of EI facets, however, and their distinctiveness from more established trait domains is unclear. Building on earlier efforts, three studies were undertaken (Ns = 138, 163, 152) to develop self-report measures of 10 facets of EI proposed by Salovey and Mayer (1990). Results support the reliability (internal consistency, test-retest) and validity (content, criterion, construct, structural) of the proposed scales and their distinctiveness among themselves and with respect to more established trait domains (e.g., personality). Specifically, three satisfaction and four cross-cultural adaptability facets were predicted uniquely by 9 of the 10 proposed subscales, controlling for social desirability, the Big Five, positive and negative affect, and self-monitoring. All told, results confirm that trait-EI can be measured using self-report and conceptualized as a distinct multidimensional domain.

  11. Selecting soluble/foldable protein domains through single-gene or genomic ORF filtering: structure of the head domain of Burkholderia pseudomallei antigen BPSL2063.

    PubMed

    Gourlay, Louise J; Peano, Clelia; Deantonio, Cecilia; Perletti, Lucia; Pietrelli, Alessandro; Villa, Riccardo; Matterazzo, Elena; Lassaux, Patricia; Santoro, Claudio; Puccio, Simone; Sblattero, Daniele; Bolognesi, Martino

    2015-11-01

    The 1.8 Å resolution crystal structure of a conserved domain of the potential Burkholderia pseudomallei antigen and trimeric autotransporter BPSL2063 is presented as a structural vaccinology target for melioidosis vaccine development. Since BPSL2063 (1090 amino acids) hosts only one conserved domain, and the expression/purification of the full-length protein proved to be problematic, a domain-filtering library was generated using β-lactamase as a reporter gene to select further BPSL2063 domains. As a result, two domains (D1 and D2) were identified and produced in soluble form in Escherichia coli. Furthermore, as a general tool, a genomic open reading frame-filtering library from the B. pseudomallei genome was also constructed to facilitate the selection of domain boundaries from the entire ORFeome. Such an approach allowed the selection of three potential protein antigens that were also produced in soluble form. The results imply the further development of ORF-filtering methods as a tool in protein-based research to improve the selection and production of soluble proteins or domains for downstream applications such as X-ray crystallography.

  12. Magnetic domain wall engineering in a nanoscale permalloy junction

    NASA Astrophysics Data System (ADS)

    Wang, Junlin; Zhang, Xichao; Lu, Xianyang; Zhang, Jason; Yan, Yu; Ling, Hua; Wu, Jing; Zhou, Yan; Xu, Yongbing

    2017-08-01

    Nanoscale magnetic junctions provide a useful approach to act as building blocks for magnetoresistive random access memories (MRAM), where one of the key issues is to control the magnetic domain configuration. Here, we study the domain structure and the magnetic switching in the Permalloy (Fe20Ni80) nanoscale magnetic junctions with different thicknesses by using micromagnetic simulations. It is found that both the 90-° and 45-° domain walls can be formed between the junctions and the wire arms depending on the thickness of the device. The magnetic switching fields show distinct thickness dependencies with a broad peak varying from 7 nm to 22 nm depending on the junction sizes, and the large magnetic switching fields favor the stability of the MRAM operation.

  13. Structural basis of Bloom syndrome (BS) causing mutations in the BLM helicase domain.

    PubMed Central

    Rong, S. B.; Väliaho, J.; Vihinen, M.

    2000-01-01

    BACKGROUND: Bloom syndrome (BS) is characterized by mutations within the BLM gene. The Bloom syndrome protein (BLM) has similarity to the RecQ subfamily of DNA helicases, which contain seven conserved helicase domains and share significant sequence and structural similarity with the Rep and PcrA DNA helicases. We modeled the three-dimensional structure of the BLM helicase domain to analyze the structural basis of BS-causing mutations. MATERIALS AND METHODS: The sequence alignment was performed for RecQ DNA helicases and Rep and PcrA helicases. The crystal structure of PcrA helicase (PDB entry 3PJR) was used as the template for modeling the BLM helicase domain. The model was used to infer the function of BLM and to analyze the effect of the mutations. RESULTS: The structural model with good stereochemistry of the BLM helicase domain contains two subdomains, 1A and 2A. The electrostatic potential of the model is highly negative over most of the surface, except for the cleft between subdomains 1A and 2A which is similar to the template protein. The ATP-binding site is located inside the model between subdomains 1A and 2A; whereas, the DNA-binding region is situated at the surface cleft, with positive potential between 1A and 2A. CONCLUSIONS: The three-dimensional structure of the BLM helicase domain was modeled and applied to interpret BS-causing mutations. The mutation I841T is likely to weaken DNA binding, while the mutations C891R, C901Y, and Q672R presumably disturb the ATP binding. In addition, other critical positions are discussed. PMID:10965492

  14. Effects of proline cis-trans isomerization on TB domain secondary structure.

    PubMed Central

    Yuan, X.; Werner, J. M.; Knott, V.; Handford, P. A.; Campbell, I. D.; Downing, K.

    1998-01-01

    The transforming growth factor beta (TGF-beta) binding protein-like (TB) domain is found principally in proteins localized to extracellular matrix fibrils, including human fibrillin-1, the defective protein in the Marfan syndrome. Analysis of the nuclear magnetic resonance (NMR) data for the sixth TB module from human fibrillin-1 has revealed the existence of two stable conformers that differ in the isomerization states of two proline residues. Unusually, the two isoforms do not readily interconvert and are stable on the time scale of milliseconds. We have computed independent structures of the major and minor conformers of TB6 to assess how the domain fold adjusts to incorporate alternatively cis- or trans-prolines. Based on previous observations, it has been suggested that multiple conformers can only be accommodated in flexible regions of protein structure. In contrast, P22, which exists in trans in the major form and cis in the minor form of TB6, is in a rigid region of the domain, which is confirmed by backbone dynamics measurements. Overall, the structures of the major and minor conformers are similar. However, the secondary structure topologies of the two forms differ as a direct consequence of the changes in proline conformation. PMID:9792099

  15. Functional and structural characterization of domain truncated violaxanthin de-epoxidase.

    PubMed

    Hallin, Erik Ingmar; Guo, Kuo; Åkerlund, Hans-Erik

    2016-08-01

    Photosynthetic organisms need protection against excessive light. By using non-photochemical quenching, where the excess light is converted into heat, the organism can survive at higher light intensities. This process is partly initiated by the formation of zeaxanthin, which is achieved by the de-epoxidation of violaxanthin and antheraxanthin to zeaxanthin. This reaction is catalyzed by violaxanthin de-epoxidase (VDE). VDE consists of three domains of which the central lipocalin-like domain has been the most characterized. By truncating the domains surrounding the lipocalin-like domain, we show that VDE activity is possible without the C-terminal domain but not without the N-terminal domain. The N-terminal domain shows no VDE activity by itself but when separately expressed domains are mixed, VDE activity is possible. This shows that these domains can be folded separately and could therefore be studied separately. An increase of the hydrodynamic radius of wild-type VDE was observed when pH was lowered toward the pH required for activity, consistent with a pH-dependent oligomerization. The C-terminally truncated VDE did not show such an oligomerization, was relatively more active at higher pH but did not alter the KM for ascorbate. Circular dichroism measurements revealed the presence of α-helical structure in both the N- and C-terminal domains. By measuring the initial formation of the product, VDE was found to convert a large number of violaxanthin molecules to antheraxanthin before producing any zeaxanthin, favoring a model where violaxanthin is bound non-symmetrically in VDE. © 2016 Scandinavian Plant Physiology Society.

  16. Structure-Function Analysis of Rgs1 in Magnaporthe oryzae: Role of DEP Domains in Subcellular Targeting

    PubMed Central

    Ramanujam, Ravikrishna; Yishi, Xu; Liu, Hao; Naqvi, Naweed I.

    2012-01-01

    Background Rgs1, a prototypical Regulator of G protein Signaling, negatively modulates the cyclic AMP pathway thereby influencing various aspects of asexual development and pathogenesis in the rice-blast fungus Magnaporthe oryzae. Rgs1 possesses tandem DEP motifs (termed DEP-A and DEP-B; for Dishevelled, Egl-10, Pleckstrin) at the N-terminus, and a Gα-GTP interacting RGS catalytic core domain at the C-terminus. In this study, we focused on gaining further insights into the mechanisms of Rgs1 regulation and subcellular localization by characterizing the role(s) of the individual domains and the full-length protein during asexual development and pathogenesis in Magnaporthe. Methodology/Principal Findings Utilizing western blot analysis and specific antisera against the N- and C-terminal halves of Rgs1, we identify and report the in vivo endoproteolytic processing/cleavage of full-length Rgs1 that yields an N-terminal DEP and a RGS core domain. Independent expression of the resultant DEP-DEP half (N-Rgs1) or RGS core (C-Rgs1) fragments, failed to complement the rgs1Δ defects in colony morphology, aerial hyphal growth, surface hydrophobicity, conidiation, appressorium formation and infection. Interestingly, the full-length Rgs1-mCherry, as well as the tagged N-terminal DEP domains (individually or in conjunction) localized to distinct punctate vesicular structures in the cytosol, while the catalytic RGS core motif was predominantly vacuolar. Conclusions/Significance Based on our data from sequence alignments, immuno-blot and microscopic analysis, we propose that the post-translational proteolytic processing of Rgs1 and the vacuolar sequestration of the catalytic RGS domain represents an important means of down regulating Rgs1 function and thus forming an additional and alternative means of regulating G protein signaling in Magnaporthe. We further hypothesize the prevalence of analogous mechanisms functioning in other filamentous fungi. Furthermore, we conclusively

  17. Structure determination and analysis of a haemolytic gingipain adhesin domain from Porphyromonas gingivalis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, N.; Yun, P.; Nadkarni, M.A.

    Porphyromonas gingivalis is an obligately anaerobic bacterium recognized as an aetiological agent of adult periodontitis. P. gingivalis produces cysteine proteinases, the gingipains. The crystal structure of a domain within the haemagglutinin region of the lysine gingipain (Kgp) is reported here. The domain was named K2 as it is the second of three homologous structural modules in Kgp. The K2 domain structure is a 'jelly-roll' fold with two anti-parallel {beta}-sheets. This fold topology is shared with adhesive domains from functionally diverse receptors such as MAM domains, ephrin receptor ligand binding domains and a number of carbohydrate binding modules. Possible functions ofmore » K2 were investigated. K2 induced haemolysis of erythrocytes in a dose-dependent manner that was augmented by the blocking of anion transport. Further, cysteine-activated arginine gingipain RgpB, which degrades glycophorin A, sensitized erythrocytes to the haemolytic effect of K2. Cleaved K2, similar to that found in extracted Kgp, lacks the haemolytic activity indicating that autolysis of Kgp may be a staged process which is artificially enhanced by extraction of the protein. The data indicate a functional role for K2 in the integrated capacity conferred by Kgp to enable the porphyrin auxotroph P. gingivalis to capture essential haem from erythrocytes.« less

  18. Solution structure of the Big domain from Streptococcus pneumoniae reveals a novel Ca2+-binding module

    PubMed Central

    Wang, Tao; Zhang, Jiahai; Zhang, Xuecheng; Xu, Chao; Tu, Xiaoming

    2013-01-01

    Streptococcus pneumoniae is a pathogen causing acute respiratory infection, otitis media and some other severe diseases in human. In this study, the solution structure of a bacterial immunoglobulin-like (Big) domain from a putative S. pneumoniae surface protein SP0498 was determined by NMR spectroscopy. SP0498 Big domain adopts an eight-β-strand barrel-like fold, which is different in some aspects from the two-sheet sandwich-like fold of the canonical Ig-like domains. Intriguingly, we identified that the SP0498 Big domain was a Ca2+ binding domain. The structure of the Big domain is different from those of the well known Ca2+ binding domains, therefore revealing a novel Ca2+-binding module. Furthermore, we identified the critical residues responsible for the binding to Ca2+. We are the first to report the interactions between the Big domain and Ca2+ in terms of structure, suggesting an important role of the Big domain in many essential calcium-dependent cellular processes such as pathogenesis. PMID:23326635

  19. Biochemical and Structural Characterization of a Five-domain GH115 α-Glucuronidase from the Marine Bacterium Saccharophagus degradans 2-40T*

    PubMed Central

    Wang, Weijun; Yan, Ruoyu; Nocek, Boguslaw P.; Vuong, Thu V.; Di Leo, Rosa; Xu, Xiaohui; Cui, Hong; Gatenholm, Paul; Toriz, Guillermo; Tenkanen, Maija; Savchenko, Alexei; Master, Emma R.

    2016-01-01

    Glucuronic acid (GlcAp) and/or methylglucuronic acid (MeGlcAp) decorate the major forms of xylan in hardwood and coniferous softwoods as well as many cereal grains. Accordingly, the complete utilization of glucuronoxylans or conversion to sugar precursors requires the action of main chain xylanases as well as α-glucuronidases that release the α- (1→2)-linked (Me)GlcAp side groups. Herein, a family GH115 enzymefrom the marine bacterium Saccharophagus degradans 2-40T, SdeAgu115A, demonstrated activity toward glucuronoxylan and oligomers thereof with preference toward MeGlcAp linked to internal xylopyranosyl residues. Unique biochemical characteristics of NaCl activation were also observed. The crystal structure of SdeAgu115A revealed a five-domain architecture, with an additional insertion C+ domain that had significant impact on the domain arrangement of SdeAgu115A monomer and its dimerization. The participation of domain C+ in substrate binding was supported by reduced substrate inhibition upon introducing W773A, W689A, and F696A substitutions within this domain. In addition to Asp-335, the catalytic essentiality of Glu-216 was revealed by site-specific mutagenesis. A primary sequence analysis suggested that the SdeAgu115A architecture is shared by more than half of GH115 members, thus defining a distinct archetype for GH115 enzymes. PMID:27129264

  20. Non-3D domain swapped crystal structure of truncated zebrafish alphaA crystallin

    PubMed Central

    Laganowsky, A; Eisenberg, D

    2010-01-01

    In previous work on truncated alpha crystallins (Laganowsky et al., Protein Sci 2010; 19:1031–1043), we determined crystal structures of the alpha crystallin core, a seven beta-stranded immunoglobulin-like domain, with its conserved C-terminal extension. These extensions swap into neighboring cores forming oligomeric assemblies. The extension is palindromic in sequence, binding in either of two directions. Here, we report the crystal structure of a truncated alphaA crystallin (AAC) from zebrafish (Danio rerio) revealing C-terminal extensions in a non three-dimensional (3D) domain swapped, “closed” state. The extension is quasi-palindromic, bound within its own zebrafish core domain, lying in the opposite direction to that of bovine AAC, which is bound within an adjacent core domain (Laganowsky et al., Protein Sci 2010; 19:1031–1043). Our findings establish that the C-terminal extension of alpha crystallin proteins can be either 3D domain swapped or non-3D domain swapped. This duality provides another molecular mechanism for alpha crystallin proteins to maintain the polydispersity that is crucial for eye lens transparency. PMID:20669149

  1. Solution Structure of Calmodulin Bound to the Binding Domain of the HIV-1 Matrix Protein*

    PubMed Central

    Vlach, Jiri; Samal, Alexandra B.; Saad, Jamil S.

    2014-01-01

    Subcellular distribution of calmodulin (CaM) in human immunodeficiency virus type-1 (HIV-1)-infected cells is distinct from that observed in uninfected cells. CaM co-localizes and interacts with the HIV-1 Gag protein in the cytosol of infected cells. Although it has been shown that binding of Gag to CaM is mediated by the matrix (MA) domain, the structural details of this interaction are not known. We have recently shown that binding of CaM to MA induces a conformational change that triggers myristate exposure, and that the CaM-binding domain of MA is confined to a region spanning residues 8–43 (MA-(8–43)). Here, we present the NMR structure of CaM bound to MA-(8–43). Our data revealed that MA-(8–43), which contains a novel CaM-binding motif, binds to CaM in an antiparallel mode with the N-terminal helix (α1) anchored to the CaM C-terminal lobe, and the C-terminal helix (α2) of MA-(8–43) bound to the N-terminal lobe of CaM. The CaM protein preserves a semiextended conformation. Binding of MA-(8–43) to CaM is mediated by numerous hydrophobic interactions and stabilized by favorable electrostatic contacts. Our structural data are consistent with the findings that CaM induces unfolding of the MA protein to have access to helices α1 and α2. It is noteworthy that several MA residues involved in CaM binding have been previously implicated in membrane binding, envelope incorporation, and particle production. The present findings may ultimately help in identification of the functional role of CaM in HIV-1 replication. PMID:24500712

  2. Confirming the Revised C-Terminal Domain of the MscL Crystal Structure

    PubMed Central

    Maurer, Joshua A.; Elmore, Donald E.; Clayton, Daniel; Xiong, Li; Lester, Henry A.; Dougherty, Dennis A.

    2008-01-01

    The structure of the C-terminal domain of the mechanosensitive channel of large conductance (MscL) has generated significant controversy. As a result, several structures have been proposed for this region: the original crystal structure (1MSL) of the Mycobacterium tuberculosis homolog (Tb), a model of the Escherichia coli homolog, and, most recently, a revised crystal structure of Tb-MscL (2OAR). To understand which of these structures represents a physiological conformation, we measured the impact of mutations to the C-terminal domain on the thermal stability of Tb-MscL using circular dichroism and performed molecular dynamics simulations of the original and the revised crystal structures of Tb-MscL. Our results imply that this region is helical and adopts an α-helical bundle conformation similar to that observed in the E. coli MscL model and the revised Tb-MscL crystal structure. PMID:18326638

  3. Motion of a Spherical Domain Wall and the Large-Scale Structure Formation

    NASA Astrophysics Data System (ADS)

    Yamamoto, K.; Tomita, K.

    1991-11-01

    The evolution of a wall-like structure in the universe is investigated by assuming a simplified model of a domain wall. The domain wall is approximated as a thin spherical shell with domain wall-like matter, which is assumed to interact with dust-like dark matter in an entirely inelastic manner, and its motion in an expanding universe is numerically studied in the general-relativistic treatment. We evaluate the lifetime of the wall, which is defined as the characteristic time for the wall to shrink due to its own tension. It is necessary that this time is not smaller than the cosmic age, in order that the walls avoid the collapse to the present time and play an important role in the structure formation of the universe. It is shown that, in spite of the above interaction, the strong restriction is imposed on the surface density of the domain walls and the allowed values are too small to have any influences on the background model.

  4. Control systems using modal domain optical fiber sensors for smart structure applications

    NASA Technical Reports Server (NTRS)

    Lindner, Douglas K.; Reichard, Karl M.

    1991-01-01

    Recently, a new class of sensors has emerged for structural control which respond to environmental changes over a significant gauge length; these sensors are called distributed-effect sensors. These sensors can be fabricated with spatially varying sensitivity to the distributed measurand, and can be configured to measure a variety of structural parameters which can not be measured directly using point sensors. Examples of distributed-effect sensors include piezoelectric film, holographic sensors, and modal domain optical fiber sensors. Optical fiber sensors are particularly attractive for smart structure applications because they are flexible, have low mass, and can easily be embedded directly into materials. In this paper we describe the implementation of weighted modal domain optical fiber sensors. The mathematical model of the modal domain optical fiber sensor model is described and used to derive an expression for the sensor sensitivity. The effects of parameter variations on the sensor sensitivity are demonstrated to illustrate methods of spatially varying the sensor sensitivity.

  5. Comparison of structure, function and regulation of plant cold shock domain proteins to bacterial and animal cold shock domain proteins.

    PubMed

    Chaikam, Vijay; Karlson, Dale T

    2010-01-01

    The cold shock domain (CSD) is among the most ancient and well conserved nucleic acid binding domains from bacteria to higher animals and plants. The CSD facilitates binding to RNA, ssDNA and dsDNA and most functions attributed to cold shock domain proteins are mediated by this nucleic acid binding activity. In prokaryotes, cold shock domain proteins only contain a single CSD and are termed cold shock proteins (Csps). In animal model systems, various auxiliary domains are present in addition to the CSD and are commonly named Y-box proteins. Similar to animal CSPs, plant CSPs contain auxiliary C-terminal domains in addition to their N-terminal CSD. Cold shock domain proteins have been shown to play important roles in development and stress adaptation in wide variety of organisms. In this review, the structure, function and regulation of plant CSPs are compared and contrasted to the characteristics of bacterial and animal CSPs. [BMB reports 2010; 43(1): 1-8].

  6. A comparative analysis of the foamy and ortho virus capsid structures reveals an ancient domain duplication.

    PubMed

    Taylor, William R; Stoye, Jonathan P; Taylor, Ian A

    2017-04-04

    The Spumaretrovirinae (foamy viruses) and the Orthoretrovirinae (e.g. HIV) share many similarities both in genome structure and the sequences of the core viral encoded proteins, such as the aspartyl protease and reverse transcriptase. Similarity in the gag region of the genome is less obvious at the sequence level but has been illuminated by the recent solution of the foamy virus capsid (CA) structure. This revealed a clear structural similarity to the orthoretrovirus capsids but with marked differences that left uncertainty in the relationship between the two domains that comprise the structure. We have applied protein structure comparison methods in order to try and resolve this ambiguous relationship. These included both the DALI method and the SAP method, with rigorous statistical tests applied to the results of both methods. For this, we employed collections of artificial fold 'decoys' (generated from the pair of native structures being compared) to provide a customised background distribution for each comparison, thus allowing significance levels to be estimated. We have shown that the relationship of the two domains conforms to a simple linear correspondence rather than a domain transposition. These similarities suggest that the origin of both viral capsids was a common ancestor with a double domain structure. In addition, we show that there is also a significant structural similarity between the amino and carboxy domains in both the foamy and ortho viruses. These results indicate that, as well as the duplication of the double domain capsid, there may have been an even more ancient gene-duplication that preceded the double domain structure. In addition, our structure comparison methodology demonstrates a general approach to problems where the components have a high intrinsic level of similarity.

  7. The BAR Domain Proteins: Molding Membranes in Fission, Fusion, and Phagy

    PubMed Central

    Ren, Gang; Vajjhala, Parimala; Lee, Janet S.; Winsor, Barbara; Munn, Alan L.

    2006-01-01

    The Bin1/amphiphysin/Rvs167 (BAR) domain proteins are a ubiquitous protein family. Genes encoding members of this family have not yet been found in the genomes of prokaryotes, but within eukaryotes, BAR domain proteins are found universally from unicellular eukaryotes such as yeast through to plants, insects, and vertebrates. BAR domain proteins share an N-terminal BAR domain with a high propensity to adopt α-helical structure and engage in coiled-coil interactions with other proteins. BAR domain proteins are implicated in processes as fundamental and diverse as fission of synaptic vesicles, cell polarity, endocytosis, regulation of the actin cytoskeleton, transcriptional repression, cell-cell fusion, signal transduction, apoptosis, secretory vesicle fusion, excitation-contraction coupling, learning and memory, tissue differentiation, ion flux across membranes, and tumor suppression. What has been lacking is a molecular understanding of the role of the BAR domain protein in each process. The three-dimensional structure of the BAR domain has now been determined and valuable insight has been gained in understanding the interactions of BAR domains with membranes. The cellular roles of BAR domain proteins, characterized over the past decade in cells as distinct as yeasts, neurons, and myocytes, can now be understood in terms of a fundamental molecular function of all BAR domain proteins: to sense membrane curvature, to bind GTPases, and to mold a diversity of cellular membranes. PMID:16524918

  8. Structure of the dimerization domain of DiGeorge Critical Region 8

    PubMed Central

    Senturia, Rachel; Faller, Michael; Yin, Sheng; Loo, Joseph A; Cascio, Duilio; Sawaya, Michael R; Hwang, Daniel; Clubb, Robert T; Guo, Feng

    2010-01-01

    Maturation of microRNAs (miRNAs, ∼22nt) from long primary transcripts [primary miRNAs (pri-miRNAs)] is regulated during development and is altered in diseases such as cancer. The first processing step is a cleavage mediated by the Microprocessor complex containing the Drosha nuclease and the RNA-binding protein DiGeorge critical region 8 (DGCR8). We previously reported that dimeric DGCR8 binds heme and that the heme-bound DGCR8 is more active than the heme-free form. Here, we identified a conserved dimerization domain in DGCR8. Our crystal structure of this domain (residues 298–352) at 1.7 Å resolution demonstrates a previously unknown use of a WW motif as a platform for extensive dimerization interactions. The dimerization domain of DGCR8 is embedded in an independently folded heme-binding domain and directly contributes to association with heme. Heme-binding-deficient DGCR8 mutants have reduced pri-miRNA processing activity in vitro. Our study provides structural and biochemical bases for understanding how dimerization and heme binding of DGCR8 may contribute to regulation of miRNA biogenesis. PMID:20506313

  9. The role of ferroelectric domain structure in second harmonic generation in random quadratic media.

    PubMed

    Roppo, Vito; Wang, W; Kalinowski, K; Kong, Y; Cojocaru, C; Trull, J; Vilaseca, R; Scalora, M; Krolikowski, W; Kivshar, Yu

    2010-03-01

    We study theoretically and numerically the second harmonic generation in a nonlinear crystal with random distribution of ferroelectric domains. We show that the specific features of disordered domain structure greatly affect the emission pattern of the generated harmonics. This phenomena can be used to characterize the degree of disorder in nonlinear photonic structures.

  10. Structural Analysis of the GGDEF-EAL Domain-Containing c-di-GMP Receptor FimX

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Navarro, M.; De, N; Bae, N

    2009-01-01

    Bacterial pathogenesis involves social behavior including biofilm formation and swarming, processes that are regulated by the bacterially unique second messenger cyclic di-GMP (c-di-GMP). Diguanylate cyclases containing GGDEF and phosphodiesterases containing EAL domains have been identified as the enzymes controlling cellular c-di-GMP levels, yet less is known regarding signal transmission and the targets of c-di-GMP. FimX, a protein from Pseudomonas aeruginosa that governs twitching motility, belongs to a large subfamily containing both GGDEF and EAL domains. Biochemical and structural analyses reveals its function as a high-affinity receptor for c-di-GMP. A model for full-length FimX was generated combining solution scattering data andmore » crystal structures of the degenerate GGDEF and EAL domains. Although FimX forms a dimer in solution via the N-terminal domains, a crystallographic EAL domain dimer suggests modes for the regulation of FimX by c-di-GMP binding. The results provide the structural basis for c-di-GMP sensing via degenerate phosphodiesterases.« less

  11. Structure and function of echinoderm telomerase RNA

    PubMed Central

    Podlevsky, Joshua D.; Li, Yang; Chen, Julian J.-L.

    2016-01-01

    Telomerase is a ribonucleoprotein (RNP) enzyme that requires an integral telomerase RNA (TR) subunit, in addition to the catalytic telomerase reverse transcriptase (TERT), for enzymatic function. The secondary structures of TRs from the three major groups of species, ciliates, fungi, and vertebrates, have been studied extensively and demonstrate dramatic diversity. Herein, we report the first comprehensive secondary structure of TR from echinoderms—marine invertebrates closely related to vertebrates—determined by phylogenetic comparative analysis of 16 TR sequences from three separate echinoderm classes. Similar to vertebrate TR, echinoderm TR contains the highly conserved template/pseudoknot and H/ACA domains. However, echinoderm TR lacks the ancestral CR4/5 structural domain found throughout vertebrate and fungal TRs. Instead, echinoderm TR contains a distinct simple helical region, termed eCR4/5, that is functionally equivalent to the CR4/5 domain. The urchin and brittle star eCR4/5 domains bind specifically to their respective TERT proteins and stimulate telomerase activity. Distinct from vertebrate telomerase, the echinoderm TR template/pseudoknot domain with the TERT protein is sufficient to reconstitute significant telomerase activity. This gain-of-function of the echinoderm template/pseudoknot domain for conferring telomerase activity presumably facilitated the rapid structural evolution of the eCR4/5 domain throughout the echinoderm lineage. Additionally, echinoderm TR utilizes the template-adjacent P1.1 helix as a physical template boundary element to prevent nontelomeric DNA synthesis, a mechanism used by ciliate and fungal TRs. Thus, the chimeric and eccentric structural features of echinoderm TR provide unparalleled insights into the rapid evolution of telomerase RNP structure and function. PMID:26598712

  12. Inhibitor-induced structural change in the HCV IRES domain IIa RNA

    PubMed Central

    Paulsen, Ryan B.; Seth, Punit P.; Swayze, Eric E.; Griffey, Richard H.; Skalicky, Jack J.; Cheatham, Thomas E.; Davis, Darrell R.

    2010-01-01

    Translation of the hepatitis C virus (HCV) RNA is initiated from a highly structured internal ribosomal entry site (IRES) in the 5′ untranslated region (5′ UTR) of the RNA genome. An important structural feature of the native RNA is an approximately 90° helical bend localized to domain IIa that positions the apical loop of domain IIb of the IRES near the 40S ribosomal E-site to promote eIF2-GDP release, facilitating 80S ribosome assembly. We report here the NMR structure of a domain IIa construct in complex with a potent small-molecule inhibitor of HCV replication. Molecular dynamics refinement in explicit solvent and subsequent energetic analysis indicated that each inhibitor stereoisomer bound with comparable affinity and in an equivalent binding mode. The in silico analysis was substantiated by fluorescence-based assays showing that the relative binding free energies differed by only 0.7 kcal/mol. Binding of the inhibitor displaces key nucleotide residues within the bulge region, effecting a major conformational change that eliminates the bent RNA helical trajectory, providing a mechanism for the antiviral activity of this inhibitor class. PMID:20360559

  13. Hybrid films with phase-separated domains: A new class of functional materials

    NASA Astrophysics Data System (ADS)

    Kang, Minjee; Leal, Cecilia

    The cell membrane is highly compartmentalized over micro-and nano scale. The compartmentalized domains play an important role in regulating the diffusion and distribution of species within and across the membrane. In this work, we introduced nanoscale heterogeneities into lipid films for the purpose of developing nature-mimicking phase-separated materials. The mixtures of phospholipids and amphiphilic block copolymers self-assemble into supported 1D multi-bilayers. We observed that in each lamella, mixtures of lipid and polymer phase-separate into domains that differ in their composition akin to sub-phases in cholesterol-containing lipid bilayers. Interestingly, we found evidence that like-domains are in registry across multilayers, making phase separation three-dimensional. To exploit such distinctive domain structure for surface-mediated drug delivery, we incorporated pharmaceutical molecules into the films. The drug release study revealed that the presence of domains in hybrid films modifies the diffusion pathways of drugs that become confined within phase-separated domains. A comprehensive domain structure coupled with drug diffusion pathways in films will be presented, offering new perspectives in designing a thin-film matrix system for controlled drug delivery. This work was supported by the National Science Foundation under Grant No. DMR-1554435.

  14. Domain organization of p130, PLC-related catalytically inactive protein, and structural basis for the lack of enzyme activity.

    PubMed

    Kanematsu, T; Yoshimura, K; Hidaka, K; Takeuchi, H; Katan, M; Hirata, M

    2000-05-01

    The 130-kDa protein (p130) was isolated as a novel inositol 1,4, 5-trisphosphate [Ins(1,4,5)P3]-binding protein similar to phospholipase C-delta1 (PLC-delta1), but lacking catalytic activity [Kanematsu, T., Takeya, H., Watanabe, Y., Ozaki, S., Yoshida, M., Koga, T., Iwanaga, S. & Hirata, M. (1992) J. Biol. Chem. 267, 6518-6525; Kanematsu, T., Misumi, Y., Watanabe, Y., Ozaki, S., Koga, T., Iwanaga, S., Ikehara, Y. & Hirata, M. (1996) Biochem. J. 313, 319-325]. To test experimentally the domain organization of p130 and structural basis for lack of PLC activity, we subjected p130 to limited proteolysis and also constructed a number of chimeras with PLC-delta1. Trypsin treatment of p130 produced four major polypeptides with molecular masses of 86 kDa, 55 kDa, 33 kDa and 25 kDa. Two polypeptides of 86 kDa and 55 kDa started at Lys93 and were calculated to end at Arg851 and Arg568, respectively. Using the same approach, it has been found that the polypeptides of 33 kDa and 25 kDa are likely to correspond to regions between Val569 and Arg851 and Lys869 and Leu1096, respectively. All the proteolytic sites were in interconnecting regions between the predicted domains, therefore supporting domain organization based on sequence similarity to PLC-delta1 and demonstrating that all domains of p130, including the unique region at the C-terminus, are stable, tightly folded structures. p130 truncated at either or both the N-terminus (94 amino acids) and C-terminus (851-1096 amino acids) expressed in COS-1 cells showed no catalytic activity, indicating that p130 has intrinsically no PLC activity. A number of chimeric molecules between p130 and PLC-delta1 were constructed and assayed for PLC activity. It was shown that structural differences in interdomain interactions exist between the two proteins, as only some domains of p130 could replace the corresponding structures in PLC-delta1 to form a functional enzyme. These results suggest that p130 and the related proteins could

  15. Novel functions of CCM1 delimit the relationship of PTB/PH domains.

    PubMed

    Zhang, Jun; Dubey, Pallavi; Padarti, Akhil; Zhang, Aileen; Patel, Rinkal; Patel, Vipulkumar; Cistola, David; Badr, Ahmed

    2017-10-01

    Three NPXY motifs and one FERM domain in CCM1 makes it a versatile scaffold protein for tethering the signaling components together within the CCM signaling complex (CSC). The cellular role of CCM1 protein remains inadequately expounded. Both phosphotyrosine binding (PTB) and pleckstrin homology (PH) domains were recognized as structurally related but functionally distinct domains. By utilizing molecular cloning, protein binding assays and RT-qPCR to identify novel cellular partners of CCM1 and its cellular expression patterns; by screening candidate PTB/PH proteins and subsequently structurally simulation in combining with current X-ray crystallography and NMR data to defined the essential structure of PTB/PH domain for NPXY-binding and the relationship among PTB, PH and FERM domain(s). We identified a group of 28 novel cellular partners of CCM1, all of which contain either PTB or PH domain(s), and developed a novel classification system for these PTB/PH proteins based on their relationship with different NPXY motifs of CCM1. Our results demonstrated that CCM1 has a wide spectrum of binding to different PTB/PH proteins and perpetuates their specificity to interact with certain PTB/PH domains through selective combination of three NPXY motifs. We also demonstrated that CCM1 can be assembled into oligomers through intermolecular interaction between its F3 lobe in FERM domain and one of the three NPXY motifs. Despite being embedded in FERM domain as F3 lobe, F3 module acts as a fully functional PH domain to interact with NPXY motif. The most salient feature of the study was that both PTB and PH domains are structurally and functionally comparable, suggesting that PTB domain is likely evolved from PH domain with polymorphic structural additions at its N-terminus. A new β1A-strand of the PTB domain was discovered and new minimum structural requirement of PTB/PH domain for NPXY motif-binding was determined. Based on our data, a novel theory of structure, function and

  16. Structural characterization of human galectin-4 C-terminal domain: elucidating the molecular basis for recognition of glycosphingolipids, sulfated saccharides and blood group antigens.

    PubMed

    Bum-Erdene, Khuchtumur; Leffler, Hakon; Nilsson, Ulf J; Blanchard, Helen

    2015-09-01

    Human galectin-4 is a lectin that is expressed mainly in the gastrointestinal tract and exhibits metastasis-promoting roles in some cancers. Its tandem-repeat nature exhibits two distinct carbohydrate recognition domains allowing crosslinking by simultaneous binding to sulfated and non-sulfated (but not sialylated) glycosphingolipids and glycoproteins, facilitating stabilization of lipid rafts. Critically, galectin-4 exerts favourable or unfavourable effects depending upon the cancer. Here we report the first X-ray crystallographic structural information on human galectin-4, specifically the C-terminal carbohydrate recognition domain of human (galectin-4C) in complex with lactose, lactose-3'-sulfate, 2'-fucosyllactose, lacto-N-tetraose and lacto-N-neotetraose. These structures enable elucidation of galectin-4C binding fine-specificity towards sulfated and non-sulfated lacto- and neolacto-series sphingolipids as well as to human blood group antigens. Analysis of the lactose-3'-sulfate complex structure shows that galectin-4C does not recognize the sulfate group using any specific amino acid, but binds the ligand nonetheless. Complex structures with lacto-N-tetraose and lacto-N-neotetraose displayed differences in binding interactions exhibited by the non-reducing-end galactose. That of lacto-N-tetraose points outward from the protein surface whereas that of lacto-N-neotetraose interacts directly with the protein. Recognition patterns of human galectin-4C towards lacto- and neolacto-series glycosphingolipids are similar to those of human galectin-3; however, detailed scrutiny revealed differences stemming from the extended binding site that offer distinction in ligand profiles of these two galectins. Structural characterization of the complex with 2'-fucosyllactose, a carbohydrate with similarity to the H antigen, and molecular dynamics studies highlight structural features that allow specific recognition of A and B antigens, whilst a lack of interaction with the 2

  17. A New Method for Determining Structure Ensemble: Application to a RNA Binding Di-Domain Protein.

    PubMed

    Liu, Wei; Zhang, Jingfeng; Fan, Jing-Song; Tria, Giancarlo; Grüber, Gerhard; Yang, Daiwen

    2016-05-10

    Structure ensemble determination is the basis of understanding the structure-function relationship of a multidomain protein with weak domain-domain interactions. Paramagnetic relaxation enhancement has been proven a powerful tool in the study of structure ensembles, but there exist a number of challenges such as spin-label flexibility, domain dynamics, and overfitting. Here we propose a new (to our knowledge) method to describe structure ensembles using a minimal number of conformers. In this method, individual domains are considered rigid; the position of each spin-label conformer and the structure of each protein conformer are defined by three and six orthogonal parameters, respectively. First, the spin-label ensemble is determined by optimizing the positions and populations of spin-label conformers against intradomain paramagnetic relaxation enhancements with a genetic algorithm. Subsequently, the protein structure ensemble is optimized using a more efficient genetic algorithm-based approach and an overfitting indicator, both of which were established in this work. The method was validated using a reference ensemble with a set of conformers whose populations and structures are known. This method was also applied to study the structure ensemble of the tandem di-domain of a poly (U) binding protein. The determined ensemble was supported by small-angle x-ray scattering and nuclear magnetic resonance relaxation data. The ensemble obtained suggests an induced fit mechanism for recognition of target RNA by the protein. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Structural Similarities and Differences between Two Functionally Distinct SecA Proteins, Mycobacterium tuberculosis SecA1 and SecA2

    PubMed Central

    Swanson, Stephanie; Ioerger, Thomas R.; Rigel, Nathan W.; Miller, Brittany K.; Braunstein, Miriam

    2015-01-01

    ABSTRACT While SecA is the ATPase component of the major bacterial secretory (Sec) system, mycobacteria and some Gram-positive pathogens have a second paralog, SecA2. In bacteria with two SecA paralogs, each SecA is functionally distinct, and they cannot compensate for one another. Compared to SecA1, SecA2 exports a distinct and smaller set of substrates, some of which have roles in virulence. In the mycobacterial system, some SecA2-dependent substrates lack a signal peptide, while others contain a signal peptide but possess features in the mature protein that necessitate a role for SecA2 in their export. It is unclear how SecA2 functions in protein export, and one open question is whether SecA2 works with the canonical SecYEG channel to export proteins. In this study, we report the structure of Mycobacterium tuberculosis SecA2 (MtbSecA2), which is the first structure of any SecA2 protein. A high level of structural similarity is observed between SecA2 and SecA1. The major structural difference is the absence of the helical wing domain, which is likely to play a role in how MtbSecA2 recognizes its unique substrates. Importantly, structural features critical to the interaction between SecA1 and SecYEG are preserved in SecA2. Furthermore, suppressor mutations of a dominant-negative secA2 mutant map to the surface of SecA2 and help identify functional regions of SecA2 that may promote interactions with SecYEG or the translocating polypeptide substrate. These results support a model in which the mycobacterial SecA2 works with SecYEG. IMPORTANCE SecA2 is a paralog of SecA1, which is the ATPase of the canonical bacterial Sec secretion system. SecA2 has a nonredundant function with SecA1, and SecA2 exports a distinct and smaller set of substrates than SecA1. This work reports the crystal structure of SecA2 of Mycobacterium tuberculosis (the first SecA2 structure reported for any organism). Many of the structural features of SecA1 are conserved in the SecA2 structure

  19. Crystal Structure of the Neuropilin-1 MAM Domain: Completing the Neuropilin-1 Ectodomain Picture.

    PubMed

    Yelland, Tamas; Djordjevic, Snezana

    2016-11-01

    Neuropilins (NRPs) are single-pass transmembrane receptors involved in several signaling pathways that regulate key physiological processes such as vascular morphogenesis and axon guidance. The MAM domain of NRP, which has previously been implicated in receptor multimerization, was the only portion of the ectopic domain of the NRPs for which the structure, until now, has been elusive. Using site-directed mutagenesis in the linker region preceding the MAM domain we generated a protein construct amenable to crystallization. Here we present the crystal structure of the MAM domain of human NRP1 at 2.24 Å resolution. The protein exhibits a jellyroll topology, with Ca 2+ ions bound at the inter-strand space enhancing the thermostability of the domain. We show that the MAM domain of NRP1 is monomeric in solution and insufficient to drive receptor dimerization, which leads us to propose a different role for this domain in the context of NRP membrane assembly and signaling. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Transcription forms and remodels supercoiling domains unfolding large-scale chromatin structures

    PubMed Central

    Naughton, Catherine; Avlonitis, Nicolaos; Corless, Samuel; Prendergast, James G.; Mati, Ioulia K.; Eijk, Paul P.; Cockroft, Scott L.; Bradley, Mark; Ylstra, Bauke; Gilbert, Nick

    2013-01-01

    DNA supercoiling is an inherent consequence of twisting DNA and is critical for regulating gene expression and DNA replication. However, DNA supercoiling at a genomic scale in human cells is uncharacterized. To map supercoiling we used biotinylated-trimethylpsoralen as a DNA structure probe to show the genome is organized into supercoiling domains. Domains are formed and remodeled by RNA polymerase and topoisomerase activities and are flanked by GC-AT boundaries and CTCF binding sites. Under-wound domains are transcriptionally active, enriched in topoisomerase I, “open” chromatin fibers and DNaseI sites, but are depleted of topoisomerase II. Furthermore DNA supercoiling impacts on additional levels of chromatin compaction as under-wound domains are cytologically decondensed, topologically constrained, and decompacted by transcription of short RNAs. We suggest that supercoiling domains create a topological environment that facilitates gene activation providing an evolutionary purpose for clustering genes along chromosomes. PMID:23416946

  1. Independent Structural Domains in Paramyxovirus Polymerase Protein*

    PubMed Central

    Dochow, Melanie; Krumm, Stefanie A.; Crowe, James E.; Moore, Martin L.; Plemper, Richard K.

    2012-01-01

    All enzymatic activities required for genomic replication and transcription of nonsegmented negative strand RNA viruses (or Mononegavirales) are believed to be concentrated in the viral polymerase (L) protein. However, our insight into the organization of these different enzymatic activities into a bioactive tertiary structure remains rudimentary. Fragments of Mononegavirales polymerases analyzed to date cannot restore bioactivity through trans-complementation, unlike the related L proteins of segmented NSVs. We investigated the domain organization of phylogenetically diverse Paramyxovirus L proteins derived from measles virus (MeV), Nipah virus (NiV), and respiratory syncytial virus (RSV). Through a comprehensive in silico and experimental analysis of domain intersections, we defined MeV L position 615 as an interdomain candidate in addition to the previously reported residue 1708. Only position 1708 of MeV and the homologous positions in NiV and RSV L also tolerated the insertion of epitope tags. Splitting of MeV L at residue 1708 created fragments that were unable to physically interact and trans-complement, but strikingly, these activities were reconstituted by the addition of dimerization tags to the fragments. Equivalently split fragments of NiV, RSV, and MeV L oligomerized with comparable efficiency in all homo- and heterotypic combinations, but only the homotypic pairs were able to trans-complement. These results demonstrate that synthesis as a single polypeptide is not required for the Mononegavirales polymerases to adopt a proper tertiary conformation. Paramyxovirus polymerases are composed of at least two truly independent folding domains that lack a traditional interface but require molecular compatibility for bioactivity. The functional probing of the L domain architecture through trans-complementation is anticipated to be applicable to all Mononegavirales polymerases. PMID:22215662

  2. The structure of the catalytic domain of a plant cellulose synthase and its assembly into dimers

    DOE PAGES

    Olek, Anna T.; Rayon, Catherine; Makowski, Lee; ...

    2014-07-10

    Cellulose microfibrils are para-crystalline arrays of several dozen linear (1→4)-β-d-glucan chains synthesized at the surface of the cell membrane by large, multimeric complexes of synthase proteins. Recombinant catalytic domains of rice ( Oryza sativa) CesA8 cellulose synthase form dimers reversibly as the fundamental scaffold units of architecture in the synthase complex. Specificity of binding to UDP and UDP-Glc indicates a properly folded protein, and binding kinetics indicate that each monomer independently synthesizes single glucan chains of cellulose, i.e., two chains per dimer pair. In contrast to structure modeling predictions, solution x-ray scattering studies demonstrate that the monomer is a two-domain,more » elongated structure, with the smaller domain coupling two monomers into a dimer. The catalytic core of the monomer is accommodated only near its center, with the plant-specific sequences occupying the small domain and an extension distal to the catalytic domain. This configuration is in stark contrast to the domain organization obtained in predicted structures of plant CesA. As a result, the arrangement of the catalytic domain within the CesA monomer and dimer provides a foundation for constructing structural models of the synthase complex and defining the relationship between the rosette structure and the cellulose microfibrils they synthesize.« less

  3. The structure of the catalytic domain of a plant cellulose synthase and its assembly into dimers.

    PubMed

    Olek, Anna T; Rayon, Catherine; Makowski, Lee; Kim, Hyung Rae; Ciesielski, Peter; Badger, John; Paul, Lake N; Ghosh, Subhangi; Kihara, Daisuke; Crowley, Michael; Himmel, Michael E; Bolin, Jeffrey T; Carpita, Nicholas C

    2014-07-01

    Cellulose microfibrils are para-crystalline arrays of several dozen linear (1→4)-β-d-glucan chains synthesized at the surface of the cell membrane by large, multimeric complexes of synthase proteins. Recombinant catalytic domains of rice (Oryza sativa) CesA8 cellulose synthase form dimers reversibly as the fundamental scaffold units of architecture in the synthase complex. Specificity of binding to UDP and UDP-Glc indicates a properly folded protein, and binding kinetics indicate that each monomer independently synthesizes single glucan chains of cellulose, i.e., two chains per dimer pair. In contrast to structure modeling predictions, solution x-ray scattering studies demonstrate that the monomer is a two-domain, elongated structure, with the smaller domain coupling two monomers into a dimer. The catalytic core of the monomer is accommodated only near its center, with the plant-specific sequences occupying the small domain and an extension distal to the catalytic domain. This configuration is in stark contrast to the domain organization obtained in predicted structures of plant CesA. The arrangement of the catalytic domain within the CesA monomer and dimer provides a foundation for constructing structural models of the synthase complex and defining the relationship between the rosette structure and the cellulose microfibrils they synthesize. © 2014 American Society of Plant Biologists. All rights reserved.

  4. Insights into Strand Exchange in BTB Domain Dimers from the Crystal Structures of FAZF and Miz1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stogios, Peter J.; Cuesta-Seijo, Jose Antonio; Chen, Lu

    2010-09-22

    The BTB domain is a widely distributed protein-protein interaction motif that is often found at the N-terminus of zinc finger transcription factors. Previous crystal structures of BTB domains have revealed tightly interwound homodimers, with the N-terminus from one chain forming a two-stranded anti-parallel {beta}-sheet with a strand from the other chain. We have solved the crystal structures of the BTB domains from Fanconi anemia zinc finger (FAZF) and Miz1 (Myc-interacting zinc finger 1) to resolutions of 2.0 {angstrom} and 2.6 {angstrom}, respectively. Unlike previous examples of BTB domain structures, the FAZF BTB domain is a nonswapped dimer, with each N-terminalmore » {beta}-strand associated with its own chain. As a result, the dimerization interface in the FAZF BTB domain is about half as large as in the domain-swapped dimers. The Miz1 BTB domain resembles a typical swapped BTB dimer, although it has a shorter N-terminus that is not able to form the interchain sheet. Using cysteine cross-linking, we confirmed that the promyelocytic leukemia zinc finger (PLZF) BTB dimer is strand exchanged in solution, while the FAZF BTB dimer is not. A phylogenic tree of the BTB fold based on both sequence and structural features shows that the common ancestor of the BTB domain in BTB-ZF (bric a brac, tramtrack, broad-complex zinc finger) proteins was a domain-swapped dimer. The differences in the N-termini seen in the FAZF and Miz1 BTB domains appear to be more recent developments in the structural evolution of the domain.« less

  5. Cooperative unfolding of distinctive mechanoreceptor domains transduces force into signals

    PubMed Central

    Ju, Lining; Chen, Yunfeng; Xue, Lingzhou; Du, Xiaoping; Zhu, Cheng

    2016-01-01

    How cells sense their mechanical environment and transduce forces into biochemical signals is a crucial yet unresolved question in mechanobiology. Platelets use receptor glycoprotein Ib (GPIb), specifically its α subunit (GPIbα), to signal as they tether and translocate on von Willebrand factor (VWF) of injured arterial surfaces against blood flow. Force elicits catch bonds to slow VWF–GPIbα dissociation and unfolds the GPIbα leucine-rich repeat domain (LRRD) and juxtamembrane mechanosensitive domain (MSD). How these mechanical processes trigger biochemical signals remains unknown. Here we analyze these extracellular events and the resulting intracellular Ca2+ on a single platelet in real time, revealing that LRRD unfolding intensifies Ca2+ signal whereas MSD unfolding affects the type of Ca2+ signal. Therefore, LRRD and MSD are analog and digital force transducers, respectively. The >30 nm macroglycopeptide separating the two domains transmits force on the VWF–GPIbα bond (whose lifetime is prolonged by LRRD unfolding) to the MSD to enhance its unfolding, resulting in unfolding cooperativity at an optimal force. These elements may provide design principles for a generic mechanosensory protein machine. DOI: http://dx.doi.org/10.7554/eLife.15447.001 PMID:27434669

  6. Reconstituting protein interaction networks using parameter-dependent domain-domain interactions

    PubMed Central

    2013-01-01

    Background We can describe protein-protein interactions (PPIs) as sets of distinct domain-domain interactions (DDIs) that mediate the physical interactions between proteins. Experimental data confirm that DDIs are more consistent than their corresponding PPIs, lending support to the notion that analyses of DDIs may improve our understanding of PPIs and lead to further insights into cellular function, disease, and evolution. However, currently available experimental DDI data cover only a small fraction of all existing PPIs and, in the absence of structural data, determining which particular DDI mediates any given PPI is a challenge. Results We present two contributions to the field of domain interaction analysis. First, we introduce a novel computational strategy to merge domain annotation data from multiple databases. We show that when we merged yeast domain annotations from six annotation databases we increased the average number of domains per protein from 1.05 to 2.44, bringing it closer to the estimated average value of 3. Second, we introduce a novel computational method, parameter-dependent DDI selection (PADDS), which, given a set of PPIs, extracts a small set of domain pairs that can reconstruct the original set of protein interactions, while attempting to minimize false positives. Based on a set of PPIs from multiple organisms, our method extracted 27% more experimentally detected DDIs than existing computational approaches. Conclusions We have provided a method to merge domain annotation data from multiple sources, ensuring large and consistent domain annotation for any given organism. Moreover, we provided a method to extract a small set of DDIs from the underlying set of PPIs and we showed that, in contrast to existing approaches, our method was not biased towards DDIs with low or high occurrence counts. Finally, we used these two methods to highlight the influence of the underlying annotation density on the characteristics of extracted DDIs. Although

  7. Distinct self-interaction domains promote Multi Sex Combs accumulation in and formation of the Drosophila histone locus body.

    PubMed

    Terzo, Esteban A; Lyons, Shawn M; Poulton, John S; Temple, Brenda R S; Marzluff, William F; Duronio, Robert J

    2015-04-15

    Nuclear bodies (NBs) are structures that concentrate proteins, RNAs, and ribonucleoproteins that perform functions essential to gene expression. How NBs assemble is not well understood. We studied the Drosophila histone locus body (HLB), a NB that concentrates factors required for histone mRNA biosynthesis at the replication-dependent histone gene locus. We coupled biochemical analysis with confocal imaging of both fixed and live tissues to demonstrate that the Drosophila Multi Sex Combs (Mxc) protein contains multiple domains necessary for HLB assembly. An important feature of this assembly process is the self-interaction of Mxc via two conserved N-terminal domains: a LisH domain and a novel self-interaction facilitator (SIF) domain immediately downstream of the LisH domain. Molecular modeling suggests that the LisH and SIF domains directly interact, and mutation of either the LisH or the SIF domain severely impairs Mxc function in vivo, resulting in reduced histone mRNA accumulation. A region of Mxc between amino acids 721 and 1481 is also necessary for HLB assembly independent of the LisH and SIF domains. Finally, the C-terminal 195 amino acids of Mxc are required for recruiting FLASH, an essential histone mRNA-processing factor, to the HLB. We conclude that multiple domains of the Mxc protein promote HLB assembly in order to concentrate factors required for histone mRNA biosynthesis. © 2015 Terzo et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  8. Distinct Conformations of Ly49 Natural Killer Cell Receptors Mediate MHC Class I Recognition in Trans and Cis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Back, J.; Malchiodi, E; Cho, S

    2009-01-01

    Certain cell-surface receptors engage ligands expressed on juxtaposed cells and ligands on the same cell. The structural basis for trans versus cis binding is not known. Here, we showed that Ly49 natural killer (NK) cell receptors bound two MHC class I (MHC-I) molecules in trans when the two ligand-binding domains were backfolded onto the long stalk region. In contrast, dissociation of the ligand-binding domains from the stalk and their reorientation relative to the NK cell membrane allowed monovalent binding of MHC-I in cis. The distinct conformations (backfolded and extended) define the structural basis for cis-trans binding by Ly49 receptors andmore » explain the divergent functional consequences of cis versus trans interactions. Further analyses identified specific stalk segments that were not required for MHC-I binding in trans but were essential for inhibitory receptor function. These data identify multiple distinct roles of stalk regions for receptor function.« less

  9. Enhanced strain effect of aged acceptor-doped BaTiO3 ceramics with clamping domain structures

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Zhou, Zhiyong; Zhao, Xiaobo; Liu, Zhen; Liang, Ruihong; Dong, Xianlin

    2017-03-01

    A clamping domain structure is proposed to improve the amount of non-180° domain switching in BaTiO3 based piezoelectric ceramics. Experimental results show a large unipolar strain of 0.23% at 5 kV/mm in aged 0.5 mol. % Mn doped BaTiO3 ceramics with clamping domain structures, and the normalized strain (d33*= Smax/Emax) reaches 600 pm/V at low electric fields of 2 or 3 kV/mm. In contrast, pure BaTiO3 ceramics with clamping domain structures exhibit no clear polarization constriction or strain enhancement at 3 kV/mm. Electron paramagnetic resonance spectra verify the existence of titanium vacancies, Mn2+ and Mn4+, in 0.5 mol. % Mn doped BaTiO3 ceramics. These results indicate that the enhanced strain effect can be attributed to the combined effect of the clamping domain structure and stabilization of defect dipoles. This method provides a general way to obtain large strain in ferroelectrics.

  10. Structure and function of the interacting domains of Spire and Fmn-family formins.

    PubMed

    Vizcarra, Christina L; Kreutz, Barry; Rodal, Avital A; Toms, Angela V; Lu, Jun; Zheng, Wei; Quinlan, Margot E; Eck, Michael J

    2011-07-19

    Evidence for cooperation between actin nucleators is growing. The WH2-containing nucleator Spire and the formin Cappuccino interact directly, and both are essential for assembly of an actin mesh during Drosophila oogenesis. Their interaction requires the kinase noncatalytic C-lobe domain (KIND) domain of Spire and the C-terminal tail of the formin. Here we describe the crystal structure of the KIND domain of human Spir1 alone and in complex with the tail of Fmn2, a mammalian ortholog of Cappuccino. The KIND domain is structurally similar to the C-lobe of protein kinases. The Fmn2 tail is coordinated in an acidic cleft at the base of the domain that appears to have evolved via deletion of a helix from the canonical kinase fold. Our functional analysis of Cappuccino reveals an unexpected requirement for its tail in actin assembly. In addition, we find that the KIND/tail interaction blocks nucleation by Cappuccino and promotes its displacement from filament barbed ends providing insight into possible modes of cooperation between Spire and Cappuccino.

  11. ExDom: an integrated database for comparative analysis of the exon–intron structures of protein domains in eukaryotes

    PubMed Central

    Bhasi, Ashwini; Philip, Philge; Manikandan, Vinu; Senapathy, Periannan

    2009-01-01

    We have developed ExDom, a unique database for the comparative analysis of the exon–intron structures of 96 680 protein domains from seven eukaryotic organisms (Homo sapiens, Mus musculus, Bos taurus, Rattus norvegicus, Danio rerio, Gallus gallus and Arabidopsis thaliana). ExDom provides integrated access to exon-domain data through a sophisticated web interface which has the following analytical capabilities: (i) intergenomic and intragenomic comparative analysis of exon–intron structure of domains; (ii) color-coded graphical display of the domain architecture of proteins correlated with their corresponding exon-intron structures; (iii) graphical analysis of multiple sequence alignments of amino acid and coding nucleotide sequences of homologous protein domains from seven organisms; (iv) comparative graphical display of exon distributions within the tertiary structures of protein domains; and (v) visualization of exon–intron structures of alternative transcripts of a gene correlated to variations in the domain architecture of corresponding protein isoforms. These novel analytical features are highly suited for detailed investigations on the exon–intron structure of domains and make ExDom a powerful tool for exploring several key questions concerning the function, origin and evolution of genes and proteins. ExDom database is freely accessible at: http://66.170.16.154/ExDom/. PMID:18984624

  12. The crystal structure of the regulatory domain of the human sodium-driven chloride/bicarbonate exchanger.

    PubMed

    Alvadia, Carolina M; Sommer, Theis; Bjerregaard-Andersen, Kaare; Damkier, Helle Hasager; Montrasio, Michele; Aalkjaer, Christian; Morth, J Preben

    2017-09-21

    The sodium-driven chloride/bicarbonate exchanger (NDCBE) is essential for maintaining homeostatic pH in neurons. The crystal structure at 2.8 Å resolution of the regulatory N-terminal domain of human NDCBE represents the first crystal structure of an electroneutral sodium-bicarbonate cotransporter. The crystal structure forms an equivalent dimeric interface as observed for the cytoplasmic domain of Band 3, and thus establishes that the consensus motif VTVLP is the key minimal dimerization motif. The VTVLP motif is highly conserved and likely to be the physiologically relevant interface for all other members of the SLC4 family. A novel conserved Zn 2+ -binding motif present in the N-terminal domain of NDCBE is identified and characterized in vitro. Cellular studies confirm the Zn 2+ dependent transport of two electroneutral bicarbonate transporters, NCBE and NBCn1. The Zn 2+ site is mapped to a cluster of histidines close to the conserved ETARWLKFEE motif and likely plays a role in the regulation of this important motif. The combined structural and bioinformatics analysis provides a model that predicts with additional confidence the physiologically relevant interface between the cytoplasmic domain and the transmembrane domain.

  13. 3DIANA: 3D Domain Interaction Analysis: A Toolbox for Quaternary Structure Modeling

    PubMed Central

    Segura, Joan; Sanchez-Garcia, Ruben; Tabas-Madrid, Daniel; Cuenca-Alba, Jesus; Sorzano, Carlos Oscar S.; Carazo, Jose Maria

    2016-01-01

    Electron microscopy (EM) is experiencing a revolution with the advent of a new generation of Direct Electron Detectors, enabling a broad range of large and flexible structures to be resolved well below 1 nm resolution. Although EM techniques are evolving to the point of directly obtaining structural data at near-atomic resolution, for many molecules the attainable resolution might not be enough to propose high-resolution structural models. However, accessing information on atomic coordinates is a necessary step toward a deeper understanding of the molecular mechanisms that allow proteins to perform specific tasks. For that reason, methods for the integration of EM three-dimensional maps with x-ray and NMR structural data are being developed, a modeling task that is normally referred to as fitting, resulting in the so called hybrid models. In this work, we present a novel application—3DIANA—specially targeted to those cases in which the EM map resolution is medium or low and additional experimental structural information is scarce or even lacking. In this way, 3DIANA statistically evaluates proposed/potential contacts between protein domains, presents a complete catalog of both structurally resolved and predicted interacting regions involving these domains and, finally, suggests structural templates to model the interaction between them. The evaluation of the proposed interactions is computed with DIMERO, a new method that scores physical binding sites based on the topology of protein interaction networks, which has recently shown the capability to increase by 200% the number of domain-domain interactions predicted in interactomes as compared to previous approaches. The new application displays the information at a sequence and structural level and is accessible through a web browser or as a Chimera plugin at http://3diana.cnb.csic.es. PMID:26772592

  14. Structural and functional aspects of the nonribosomal peptide synthetase condensation domain superfamily: discovery, dissection and diversity.

    PubMed

    Bloudoff, Kristjan; Schmeing, T Martin

    2017-11-01

    Nonribosomal peptide synthetases (NRPSs) are incredible macromolecular machines that produce a wide range of biologically- and therapeutically-relevant molecules. During synthesis, peptide elongation is performed by the condensation (C) domain, as it catalyzes amide bond formation between the nascent peptide and the amino acid it adds to the chain. Since their discovery more than two decades ago, C domains have been subject to extensive biochemical, bioinformatic, mutagenic, and structural analyses. They are composed of two lobes, each with homology to chloramphenicol acetyltransferase, have two binding sites for their two peptidyl carrier protein-bound ligands, and have an active site with conserved motif HHxxxDG located between the two lobes. This review discusses some of the important insights into the structure, catalytic mechanism, specificity, and gatekeeping functions of C domains revealed since their discovery. In addition, C domains are the archetypal members of the C domain superfamily, which includes several other members that also function as NRPS domains. The other family members can replace the C domain in NRP synthesis, can work in concert with a C domain, or can fulfill diverse and novel functions. These domains include the epimerization (E) domain, the heterocyclization (Cy) domain, the ester-bond forming C domain, the fungal NRPS terminal C domain (C T ), the β-lactam ring forming C domain, and the X domain. We also discuss structural and function insight into C, E, Cy, C T and X domains, to present a holistic overview of historical and current knowledge of the C domain superfamily. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  15. Crystal structure of the Alpha subunit PAS domain from soluble guanylyl cyclase

    PubMed Central

    Purohit, Rahul; Weichsel, Andrzej; Montfort, William R

    2013-01-01

    Soluble guanylate cyclase (sGC) is a heterodimeric heme protein of ∼150 kDa and the primary nitric oxide receptor. Binding of NO stimulates cyclase activity, leading to regulation of cardiovascular physiology and providing attractive opportunities for drug discovery. How sGC is stimulated and where candidate drugs bind remains unknown. The α and β sGC chains are each composed of Heme-Nitric Oxide Oxygen (H-NOX), Per-ARNT-Sim (PAS), coiled-coil and cyclase domains. Here, we present the crystal structure of the α1 PAS domain to 1.8 Å resolution. The structure reveals the binding surfaces of importance to heterodimer function, particularly with respect to regulating NO binding to heme in the β1 H-NOX domain. It also reveals a small internal cavity that may serve to bind ligands or participate in signal transduction. PMID:23934793

  16. Structural analysis of the intracellular domain of (pro)renin receptor fused to maltose-binding protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yanfeng; Gao, Xiaoli; Michael Garavito, R., E-mail: garavito@msu.edu

    2011-04-22

    Highlights: {yields} Crystal structure of the intracellular domain of (pro)renin receptor (PRR-IC) as MBP fusion protein at 2.0 A (maltose-free) and 2.15 A (maltose-bound). {yields} MBP fusion protein is a dimer in crystals in the presence and absence of maltose. {yields} PRR-IC domain is responsible for the dimerization of the fusion protein. {yields} Residues in the PRR-IC domain, particularly two tyrosines, dominate the intermolecular interactions, suggesting a role for the PRR-IC domain in PRR dimerization. -- Abstract: The (pro)renin receptor (PRR) is an important component of the renin-angiotensin system (RAS), which regulates blood pressure and cardiovascular function. The integral membranemore » protein PRR contains a large extracellular domain ({approx}310 amino acids), a single transmembrane domain ({approx}20 amino acids) and an intracellular domain ({approx}19 amino acids). Although short, the intracellular (IC) domain of the PRR has functionally important roles in a number of signal transduction pathways activated by (pro)renin binding. Meanwhile, together with the transmembrane domain and a small portion of the extracellular domain ({approx}30 amino acids), the IC domain is also involved in assembly of V{sub 0} portion of the vacuolar proton-translocating ATPase (V-ATPase). To better understand structural and multifunctional roles of the PRR-IC, we report the crystal structure of the PRR-IC domain as maltose-binding protein (MBP) fusion proteins at 2.0 A (maltose-free) and 2.15 A (maltose-bound). In the two separate crystal forms having significantly different unit-cell dimensions and molecular packing, MBP-PRR-IC fusion protein was found to be a dimer, which is different with the natural monomer of native MBP. The PRR-IC domain appears as a relatively flexible loop and is responsible for the dimerization of MBP fusion protein. Residues in the PRR-IC domain, particularly two tyrosines, dominate the intermonomer interactions, suggesting a role for

  17. Low-energy Structural Dynamics of Multiferroic Domain Walls in Hexagonal Rare-earth Manganites

    NASA Astrophysics Data System (ADS)

    Wu, Xiaoyu; Petralanda, Urko; Zheng, Lu; Ren, Yuan; Hu, Rongwei; Cheong, Sang-Wook; Artyukhin, Sergey; Lai, Keji

    Multiferroic domain walls (DWs), the natural interfaces between domains with different order parameters, usually exhibit unconventional functionalities. For instance, recent discovery of the ferroelectric DW conduction highlights its extraordinary electronic structure that is absent in bulk domains. The structural dynamics of individual DWs in the microwave regime, however, have not been fully explored due to the lack of spatially resolved studies. Here, we report the broadband (106-1010 Hz) scanning impedance microscopy results on the interlocked anti-phase boundaries and ferroelectric DWs in hexagonal rare-earth manganites. Surprisingly, the effective conductivity of the (001) DWs displays a 106-fold increase from dc to GHz frequencies, while the effect is absent on surfaces with in-plane polarized domains. First-principles and model calculations indicate that the frequency range and selection rules are consistent with the periodic sliding of the DW around its equilibrium position. This DW acoustic-wave-like mode, which is associated with the synchronized oscillation of local polarization and apical oxygen atoms, is localized perpendicular to the DW but free to propagate along the DW plane. Our results break the ground to understand structural DW dynamics and exploit new interfacial phenomena for novel devices.

  18. Structural basis for ligand-dependent dimerization of phenylalanine hydroxylase regulatory domain

    PubMed Central

    Patel, Dipali; Kopec, Jolanta; Fitzpatrick, Fiona; McCorvie, Thomas J.; Yue, Wyatt W.

    2016-01-01

    The multi-domain enzyme phenylalanine hydroxylase (PAH) catalyzes the hydroxylation of dietary I-phenylalanine (Phe) to I-tyrosine. Inherited mutations that result in PAH enzyme deficiency are the genetic cause of the autosomal recessive disorder phenylketonuria. Phe is the substrate for the PAH active site, but also an allosteric ligand that increases enzyme activity. Phe has been proposed to bind, in addition to the catalytic domain, a site at the PAH N-terminal regulatory domain (PAH-RD), to activate the enzyme via an unclear mechanism. Here we report the crystal structure of human PAH-RD bound with Phe at 1.8 Å resolution, revealing a homodimer of ACT folds with Phe bound at the dimer interface. This work delivers the structural evidence to support previous solution studies that a binding site exists in the RD for Phe, and that Phe binding results in dimerization of PAH-RD. Consistent with our structural observation, a disease-associated PAH mutant impaired in Phe binding disrupts the monomer:dimer equilibrium of PAH-RD. Our data therefore support an emerging model of PAH allosteric regulation, whereby Phe binds to PAH-RD and mediates the dimerization of regulatory modules that would bring about conformational changes to activate the enzyme. PMID:27049649

  19. A β-solenoid model of the Pmel17 repeat domain: insights to the formation of functional amyloid fibrils

    NASA Astrophysics Data System (ADS)

    Louros, Nikolaos N.; Baltoumas, Fotis A.; Hamodrakas, Stavros J.; Iconomidou, Vassiliki A.

    2016-02-01

    Pmel17 is a multidomain protein involved in biosynthesis of melanin. This process is facilitated by the formation of Pmel17 amyloid fibrils that serve as a scaffold, important for pigment deposition in melanosomes. A specific luminal domain of human Pmel17, containing 10 tandem imperfect repeats, designated as repeat domain (RPT), forms amyloid fibrils in a pH-controlled mechanism in vitro and has been proposed to be essential for the formation of the fibrillar matrix. Currently, no three-dimensional structure has been resolved for the RPT domain of Pmel17. Here, we examine the structure of the RPT domain by performing sequence threading. The resulting model was subjected to energy minimization and validated through extensive molecular dynamics simulations. Structural analysis indicated that the RPT model exhibits several distinct properties of β-solenoid structures, which have been proposed to be polymerizing components of amyloid fibrils. The derived model is stabilized by an extensive network of hydrogen bonds generated by stacking of highly conserved polar residues of the RPT domain. Furthermore, the key role of invariant glutamate residues is proposed, supporting a pH-dependent mechanism for RPT domain assembly. Conclusively, our work attempts to provide structural insights into the RPT domain structure and to elucidate its contribution to Pmel17 amyloid fibril formation.

  20. Structure-based multiscale approach for identification of interaction partners of PDZ domains.

    PubMed

    Tiwari, Garima; Mohanty, Debasisa

    2014-04-28

    PDZ domains are peptide recognition modules which mediate specific protein-protein interactions and are known to have a complex specificity landscape. We have developed a novel structure-based multiscale approach which identifies crucial specificity determining residues (SDRs) of PDZ domains from explicit solvent molecular dynamics (MD) simulations on PDZ-peptide complexes and uses these SDRs in combination with knowledge-based scoring functions for proteomewide identification of their interaction partners. Multiple explicit solvent simulations ranging from 5 to 50 ns duration have been carried out on 28 PDZ-peptide complexes with known binding affinities. MM/PBSA binding energy values calculated from these simulations show a correlation coefficient of 0.755 with the experimental binding affinities. On the basis of the SDRs of PDZ domains identified by MD simulations, we have developed a simple scoring scheme for evaluating binding energies for PDZ-peptide complexes using residue based statistical pair potentials. This multiscale approach has been benchmarked on a mouse PDZ proteome array data set by calculating the binding energies for 217 different substrate peptides in binding pockets of 64 different mouse PDZ domains. Receiver operating characteristic (ROC) curve analysis indicates that, the area under curve (AUC) values for binder vs nonbinder classification by our structure based method is 0.780. Our structure based method does not require experimental PDZ-peptide binding data for training.

  1. Re-refinement of the spliceosomal U4 snRNP core-domain structure

    PubMed Central

    Li, Jade; Leung, Adelaine K.; Kondo, Yasushi; Oubridge, Chris; Nagai, Kiyoshi

    2016-01-01

    The core domain of small nuclear ribonucleoprotein (snRNP), comprised of a ring of seven paralogous proteins bound around a single-stranded RNA sequence, functions as the assembly nucleus in the maturation of U1, U2, U4 and U5 spliceosomal snRNPs. The structure of the human U4 snRNP core domain was initially solved at 3.6 Å resolution by experimental phasing using data with tetartohedral twinning. Molecular replacement from this model followed by density modification using untwinned data recently led to a structure of the minimal U1 snRNP at 3.3 Å resolution. With the latter structure providing a search model for molecular replacement, the U4 core-domain structure has now been re-refined. The U4 Sm site-sequence AAUUUUU has been shown to bind to the seven Sm proteins SmF–SmE–SmG–SmD3–SmB–SmD1–SmD2 in an identical manner as the U1 Sm-site sequence AAUUUGU, except in SmD1 where the bound U replaces G. The progression from the initial to the re-refined structure exemplifies a tortuous route to accuracy: where well diffracting crystals of complex assemblies are initially unavailable, the early model errors are rectified by exploiting preliminary interpretations in further experiments involving homologous structures. New insights are obtained from the more accurate model. PMID:26894541

  2. Comparison of S. cerevisiae F-BAR domain structures reveals a conserved inositol phosphate binding site

    PubMed Central

    Moravcevic, Katarina; Alvarado, Diego; Schmitz, Karl R.; Kenniston, Jon A.; Mendrola, Jeannine M.; Ferguson, Kathryn M.; Lemmon, Mark A.

    2015-01-01

    SUMMARY F-BAR domains control membrane interactions in endocytosis, cytokinesis, and cell signaling. Although generally thought to bind curved membranes containing negatively charged phospholipids, numerous functional studies argue that differences in lipid-binding selectivities of F-BAR domains are functionally important. Here, we compare membrane-binding properties of the S. cerevisiae F-BAR domains in vitro and in vivo. Whereas some F-BAR domains (such as Bzz1p and Hof1p F-BARs) bind equally well to all phospholipids, the F-BAR domain from the RhoGAP Rgd1p preferentially binds phosphoinositides. We determined X-ray crystal structures of F-BAR domains from Hof1p and Rgd1p, the latter bound to an inositol phosphate. The structures explain phospholipid-binding selectivity differences, and reveal an F-BAR phosphoinositide binding site that is fully conserved in a mammalian RhoGAP called Gmip, and is partly retained in certain other F-BAR domains. Our findings reveal previously unappreciated determinants of F-BAR domain lipid-binding specificity, and provide a basis for its prediction from sequence. PMID:25620000

  3. alpha-helical structural elements within the voltage-sensing domains of a K(+) channel.

    PubMed

    Li-Smerin, Y; Hackos, D H; Swartz, K J

    2000-01-01

    Voltage-gated K(+) channels are tetramers with each subunit containing six (S1-S6) putative membrane spanning segments. The fifth through sixth transmembrane segments (S5-S6) from each of four subunits assemble to form a central pore domain. A growing body of evidence suggests that the first four segments (S1-S4) comprise a domain-like voltage-sensing structure. While the topology of this region is reasonably well defined, the secondary and tertiary structures of these transmembrane segments are not. To explore the secondary structure of the voltage-sensing domains, we used alanine-scanning mutagenesis through the region encompassing the first four transmembrane segments in the drk1 voltage-gated K(+) channel. We examined the mutation-induced perturbation in gating free energy for periodicity characteristic of alpha-helices. Our results are consistent with at least portions of S1, S2, S3, and S4 adopting alpha-helical secondary structure. In addition, both the S1-S2 and S3-S4 linkers exhibited substantial helical character. The distribution of gating perturbations for S1 and S2 suggest that these two helices interact primarily with two environments. In contrast, the distribution of perturbations for S3 and S4 were more complex, suggesting that the latter two helices make more extensive protein contacts, possibly interfacing directly with the shell of the pore domain.

  4. Crystal structure of a complex between the phosphorelay protein YPD1 and the response regulator domain of SLN1 bound to a phosphoryl analog

    PubMed Central

    Zhao, Xiaodong; Copeland, Daniel M.; Soares, Alexei S.; West, Ann H.

    2008-01-01

    Summary The crystal structure of the yeast SLN1 response regulator domain bound to both a phosphoryl analog (BeF3−) and Mg2+ ion in complex with its downstream phosphorelay signaling partner YPD1 has been determined at a resolution of 1.70 Å. Comparisons between the beryllium fluoride-activated complex and the unliganded (or apo) complex determined previously reveal modest but important differences. The SLN1-R1•Mg2+•BeF3− structure from the complex provides evidence for the first time that the mechanism of phosphorylation-induced activation is highly conserved between bacterial response regulator domains and this example from a eukaryotic organism. Residues in and around the active site undergo slight rearrangements in order to form bonds to the essential divalent cation and fluorine atoms of BeF3−. Two conserved switch-like residues (Thr 1173 and Phe 1192) occupy distinctly different positions in the apo- versus BeF3−-bound structures consistent with the “Y-T” coupling mechanism proposed for activation of CheY and other bacterial response regulators. Several loop regions and the α4-β5-α5 surface of the SLN1-R1 domain undergo subtle conformational changes (∼1-3 Å displacements relative to the apo-structure) that lead to significant changes in terms of contacts that are formed with YPD1. Detailed structural comparisons of protein-protein interactions in the apo- and BeF3−-bound complexes suggest at least a two-state equilibrium model for formation of a transient encounter complex, in which phosphorylation of the response regulator promotes the formation of a phosphotransfer-competent complex. In the BeF3−-activated complex, the position of His 64 from YPD1 is within ideal distance and near linear geometry with Asp 1144 from the SLN1-R1 domain for phosphotransfer to occur. The ground state structure presented here suggests that phosphoryl transfer will likely proceed through an associative mechanism involving formation of a

  5. Atomic Structure of GRK5 Reveals Distinct Structural Features Novel for G Protein-coupled Receptor Kinases.

    PubMed

    Komolov, Konstantin E; Bhardwaj, Anshul; Benovic, Jeffrey L

    2015-08-21

    G protein-coupled receptor kinases (GRKs) are members of the protein kinase A, G, and C families (AGC) and play a central role in mediating G protein-coupled receptor phosphorylation and desensitization. One member of the family, GRK5, has been implicated in several human pathologies, including heart failure, hypertension, cancer, diabetes, and Alzheimer disease. To gain mechanistic insight into GRK5 function, we determined a crystal structure of full-length human GRK5 at 1.8 Å resolution. GRK5 in complex with the ATP analog 5'-adenylyl β,γ-imidodiphosphate or the nucleoside sangivamycin crystallized as a monomer. The C-terminal tail (C-tail) of AGC kinase domains is a highly conserved feature that is divided into three segments as follows: the C-lobe tether, the active-site tether (AST), and the N-lobe tether (NLT). This domain is fully resolved in GRK5 and reveals novel interactions with the nucleotide and N-lobe. Similar to other AGC kinases, the GRK5 AST is an integral part of the nucleotide-binding pocket, a feature not observed in other GRKs. The AST also mediates contact between the kinase N- and C-lobes facilitating closure of the kinase domain. The GRK5 NLT is largely displaced from its previously observed position in other GRKs. Moreover, although the autophosphorylation sites in the NLT are >20 Å away from the catalytic cleft, they are capable of rapid cis-autophosphorylation suggesting high mobility of this region. In summary, we provide a snapshot of GRK5 in a partially closed state, where structural elements of the kinase domain C-tail are aligned to form novel interactions to the nucleotide and N-lobe not previously observed in other GRKs. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Distinct intracellular sAC-cAMP domains regulate ER Ca2+ signaling and OXPHOS function.

    PubMed

    Valsecchi, Federica; Konrad, Csaba; D'Aurelio, Marilena; Ramos-Espiritu, Lavoisier S; Stepanova, Anna; Burstein, Suzanne R; Galkin, Alexander; Magranè, Jordi; Starkov, Anatoly; Buck, Jochen; Levin, Lonny R; Manfredi, Giovanni

    2017-11-01

    cAMP regulates a wide variety of physiological functions in mammals. This single second messenger can regulate multiple, seemingly disparate functions within independently regulated cell compartments. We have previously identified one such compartment inside the matrix of the mitochondria, where soluble adenylyl cyclase (sAC) regulates oxidative phosphorylation (OXPHOS). We now show that sAC knockout fibroblasts have a defect in OXPHOS activity and attempt to compensate for this defect by increasing OXPHOS proteins. Importantly, sAC knockout cells also exhibit decreased probability of endoplasmic reticulum (ER) Ca 2+ release associated with diminished phosphorylation of the inositol 3-phosphate receptor. Restoring sAC expression exclusively in the mitochondrial matrix rescues OXPHOS activity and reduces mitochondrial biogenesis, indicating that these phenotypes are regulated by intramitochondrial sAC. In contrast, Ca 2+ release from the ER is only rescued when sAC expression is restored throughout the cell. Thus, we show that functionally distinct, sAC-defined, intracellular cAMP signaling domains regulate metabolism and Ca 2+ signaling. © 2017. Published by The Company of Biologists Ltd.

  7. Crystal Structure of the MACPF Domain of Human Complement Protein C8[alpha] in Complex with the C8[gamma] Subunit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slade, Daniel J.; Lovelace, Leslie L.; Chruszcz, Maksymilian

    2010-03-04

    Human C8 is one of five complement components (C5b, C6, C7, C8, and C9) that assemble on bacterial membranes to form a porelike structure referred to as the 'membrane attack complex' (MAC). C8 contains three genetically distinct subunits (C8{alpha}, C8{beta}, C8{gamma}) arranged as a disulfide-linked C8{alpha}-{gamma} dimer that is noncovalently associated with C8{beta}. C6, C7 C8{alpha}, C8{beta}, and C9 are homologous. All contain N- and C-terminal modules and an intervening 40-kDa segment referred to as the membrane attack complex/perforin (MACPF) domain. The C8{gamma} subunit is unrelated and belongs to the lipocalin family of proteins that display a {beta}-barrel fold andmore » generally bind small, hydrophobic ligands. Several hundred proteins with MACPF domains have been identified based on sequence similarity; however, the structure and function of most are unknown. Crystal structures of the secreted bacterial protein Plu-MACPF and the human C8{alpha} MACPF domain were recently reported and both display a fold similar to those of the bacterial pore-forming cholesterol-dependent cytolysins (CDCs). In the present study, we determined the crystal structure of the human C8{alpha} MACPF domain disulfide-linked to C8{gamma} ({alpha}MACPF-{gamma}) at 2.15 {angstrom} resolution. The {alpha}MACPF portion has the predicted CDC-like fold and shows two regions of interaction with C8{gamma}. One is in a previously characterized 19-residue insertion (indel) in C8{alpha} and fills the entrance to the putative C8{gamma} ligand-binding site. The second is a hydrophobic pocket that makes contact with residues on the side of the C8{gamma} {beta}-barrel. The latter interaction induces conformational changes in {alpha}MACPF that are likely important for C8 function. Also observed is structural conservation of the MACPF signature motif Y/W-G-T/S-H-F/Y-X{sub 6}-G-G in {alpha}MACPF and Plu-MACPF, and conservation of several key glycine residues known to be important for

  8. Low resolution solution structure of HAMLET and the importance of its alpha-domains in tumoricidal activity.

    PubMed

    Ho, C S James; Rydstrom, Anna; Manimekalai, Malathy Sony Subramanian; Svanborg, Catharina; Grüber, Gerhard

    2012-01-01

    HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) is the first member in a new family of protein-lipid complexes with broad tumoricidal activity. Elucidating the molecular structure and the domains crucial for HAMLET formation is fundamental for understanding its tumoricidal function. Here we present the low-resolution solution structure of the complex of oleic acid bound HAMLET, derived from small angle X-ray scattering data. HAMLET shows a two-domain conformation with a large globular domain and an extended part of about 2.22 nm in length and 1.29 nm width. The structure has been superimposed into the related crystallographic structure of human α-lactalbumin, revealing that the major part of α-lactalbumin accommodates well in the shape of HAMLET. However, the C-terminal residues from L105 to L123 of the crystal structure of the human α-lactalbumin do not fit well into the HAMLET structure, resulting in an extended conformation in HAMLET, proposed to be required to form the tumoricidal active HAMLET complex with oleic acid. Consistent with this low resolution structure, we identified biologically active peptide epitopes in the globular as well as the extended domains of HAMLET. Peptides covering the alpha1 and alpha2 domains of the protein triggered rapid ion fluxes in the presence of sodium oleate and were internalized by tumor cells, causing rapid and sustained changes in cell morphology. The alpha peptide-oleate bound forms also triggered tumor cell death with comparable efficiency as HAMLET. In addition, shorter peptides corresponding to those domains are biologically active. These findings provide novel insights into the structural prerequisites for the dramatic effects of HAMLET on tumor cells.

  9. Low Resolution Solution Structure of HAMLET and the Importance of Its Alpha-Domains in Tumoricidal Activity

    PubMed Central

    Ho CS, James; Rydstrom, Anna; Manimekalai, Malathy Sony Subramanian; Svanborg, Catharina; Grüber, Gerhard

    2012-01-01

    HAMLET (Human Alpha-lactalbumin Made LEthal to Tumor cells) is the first member in a new family of protein-lipid complexes with broad tumoricidal activity. Elucidating the molecular structure and the domains crucial for HAMLET formation is fundamental for understanding its tumoricidal function. Here we present the low-resolution solution structure of the complex of oleic acid bound HAMLET, derived from small angle X-ray scattering data. HAMLET shows a two-domain conformation with a large globular domain and an extended part of about 2.22 nm in length and 1.29 nm width. The structure has been superimposed into the related crystallographic structure of human α-lactalbumin, revealing that the major part of α-lactalbumin accommodates well in the shape of HAMLET. However, the C-terminal residues from L105 to L123 of the crystal structure of the human α-lactalbumin do not fit well into the HAMLET structure, resulting in an extended conformation in HAMLET, proposed to be required to form the tumoricidal active HAMLET complex with oleic acid. Consistent with this low resolution structure, we identified biologically active peptide epitopes in the globular as well as the extended domains of HAMLET. Peptides covering the alpha1 and alpha2 domains of the protein triggered rapid ion fluxes in the presence of sodium oleate and were internalized by tumor cells, causing rapid and sustained changes in cell morphology. The alpha peptide-oleate bound forms also triggered tumor cell death with comparable efficiency as HAMLET. In addition, shorter peptides corresponding to those domains are biologically active. These findings provide novel insights into the structural prerequisites for the dramatic effects of HAMLET on tumor cells. PMID:23300861

  10. Unique structural features of the AIPL1–FKBP domain that support prenyl lipid binding and underlie protein malfunction in blindness

    PubMed Central

    Yadav, Ravi P.; Gakhar, Lokesh; Yu, Liping

    2017-01-01

    FKBP-domain proteins (FKBPs) are pivotal modulators of cellular signaling, protein folding, and gene transcription. Aryl hydrocarbon receptor-interacting protein-like 1 (AIPL1) is a distinctive member of the FKBP superfamily in terms of its biochemical properties, and it plays an important biological role as a chaperone of phosphodiesterase 6 (PDE6), an effector enzyme of the visual transduction cascade. Malfunction of mutant AIPL1 proteins triggers a severe form of Leber congenital amaurosis and leads to blindness. The mechanism underlying the chaperone activity of AIPL1 is largely unknown, but involves the binding of isoprenyl groups on PDE6 to the FKBP domain of AIPL1. We solved the crystal structures of the AIPL1–FKBP domain and its pathogenic mutant V71F, both in the apo form and in complex with isoprenyl moieties. These structures reveal a module for lipid binding that is unparalleled within the FKBP superfamily. The prenyl binding is enabled by a unique “loop-out” conformation of the β4-α1 loop and a conformational “flip-out” switch of the key W72 residue. A second major conformation of apo AIPL1–FKBP was identified by NMR studies. This conformation, wherein W72 flips into the ligand-binding pocket and renders the protein incapable of prenyl binding, is supported by molecular dynamics simulations and appears to underlie the pathogenicity of the V71F mutant. Our findings offer critical insights into the mechanisms that underlie AIPL1 function in health and disease, and highlight the structural and functional diversity of the FKBPs. PMID:28739921

  11. Crystal structure of dimeric cardiac L-type calcium channel regulatory domains bridged by Ca[superscript 2+]·calmodulins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fallon, Jennifer L.; Baker, Mariah R.; Xiong, Liangwen

    2009-11-10

    Voltage-dependent calcium channels (Ca(V)) open in response to changes in membrane potential, but their activity is modulated by Ca(2+) binding to calmodulin (CaM). Structural studies of this family of channels have focused on CaM bound to the IQ motif; however, the minimal differences between structures cannot adequately describe CaM's role in the regulation of these channels. We report a unique crystal structure of a 77-residue fragment of the Ca(V)1.2 alpha(1) subunit carboxyl terminus, which includes a tandem of the pre-IQ and IQ domains, in complex with Ca(2+).CaM in 2 distinct binding modes. The structure of the Ca(V)1.2 fragment is anmore » unusual dimer of 2 coiled-coiled pre-IQ regions bridged by 2 Ca(2+).CaMs interacting with the pre-IQ regions and a canonical Ca(V)1-IQ-Ca(2+).CaM complex. Native Ca(V)1.2 channels are shown to be a mixture of monomers/dimers and a point mutation in the pre-IQ region predicted to abolish the coiled-coil structure significantly reduces Ca(2+)-dependent inactivation of heterologously expressed Ca(V)1.2 channels.« less

  12. Distinct mechanisms of recognizing endosomal sorting complex required for transport III (ESCRT-III) protein IST1 by different microtubule interacting and trafficking (MIT) domains.

    PubMed

    Guo, Emily Z; Xu, Zhaohui

    2015-03-27

    The endosomal sorting complex required for transport (ESCRT) machinery is responsible for membrane remodeling in a number of biological processes including multivesicular body biogenesis, cytokinesis, and enveloped virus budding. In mammalian cells, efficient abscission during cytokinesis requires proper function of the ESCRT-III protein IST1, which binds to the microtubule interacting and trafficking (MIT) domains of VPS4, LIP5, and Spartin via its C-terminal MIT-interacting motif (MIM). Here, we studied the molecular interactions between IST1 and the three MIT domain-containing proteins to understand the structural basis that governs pairwise MIT-MIM interaction. Crystal structures of the three molecular complexes revealed that IST1 binds to the MIT domains of VPS4, LIP5, and Spartin using two different mechanisms (MIM1 mode versus MIM3 mode). Structural comparison revealed that structural features in both MIT and MIM contribute to determine the specific binding mechanism. Within the IST1 MIM sequence, two phenylalanine residues were shown to be important in discriminating MIM1 versus MIM3 binding. These observations enabled us to deduce a preliminary binding code, which we applied to provide CHMP2A, a protein that normally only binds the MIT domain in the MIM1 mode, the additional ability to bind the MIT domain of Spartin in the MIM3 mode. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Distinct Mechanisms of Recognizing Endosomal Sorting Complex Required for Transport III (ESCRT-III) Protein IST1 by Different Microtubule Interacting and Trafficking (MIT) Domains

    DOE PAGES

    Guo, Emily Z.; Xu, Zhaohui

    2015-02-05

    The endosomal sorting complex required for transport (ESCRT) machinery is responsible for membrane remodeling in a number of biological processes including multivesicular body biogenesis, cytokinesis, and enveloped virus budding. In mammalian cells, efficient abscission during cytokinesis requires proper function of the ESCRT-III protein IST1, which binds to the microtubule interacting and trafficking (MIT) domains of VPS4, LIP5, and Spartin via its C-terminal MIT-interacting motif (MIM). In this paper, we studied the molecular interactions between IST1 and the three MIT domain-containing proteins to understand the structural basis that governs pairwise MIT-MIM interaction. Crystal structures of the three molecular complexes revealed thatmore » IST1 binds to the MIT domains of VPS4, LIP5, and Spartin using two different mechanisms (MIM1 mode versus MIM3 mode). Structural comparison revealed that structural features in both MIT and MIM contribute to determine the specific binding mechanism. Within the IST1 MIM sequence, two phenylalanine residues were shown to be important in discriminating MIM1 versus MIM3 binding. Finally, these observations enabled us to deduce a preliminary binding code, which we applied to provide CHMP2A, a protein that normally only binds the MIT domain in the MIM1 mode, the additional ability to bind the MIT domain of Spartin in the MIM3 mode.« less

  14. Distinct Mechanisms of Recognizing Endosomal Sorting Complex Required for Transport III (ESCRT-III) Protein IST1 by Different Microtubule Interacting and Trafficking (MIT) Domains*

    PubMed Central

    Guo, Emily Z.; Xu, Zhaohui

    2015-01-01

    The endosomal sorting complex required for transport (ESCRT) machinery is responsible for membrane remodeling in a number of biological processes including multivesicular body biogenesis, cytokinesis, and enveloped virus budding. In mammalian cells, efficient abscission during cytokinesis requires proper function of the ESCRT-III protein IST1, which binds to the microtubule interacting and trafficking (MIT) domains of VPS4, LIP5, and Spartin via its C-terminal MIT-interacting motif (MIM). Here, we studied the molecular interactions between IST1 and the three MIT domain-containing proteins to understand the structural basis that governs pairwise MIT-MIM interaction. Crystal structures of the three molecular complexes revealed that IST1 binds to the MIT domains of VPS4, LIP5, and Spartin using two different mechanisms (MIM1 mode versus MIM3 mode). Structural comparison revealed that structural features in both MIT and MIM contribute to determine the specific binding mechanism. Within the IST1 MIM sequence, two phenylalanine residues were shown to be important in discriminating MIM1 versus MIM3 binding. These observations enabled us to deduce a preliminary binding code, which we applied to provide CHMP2A, a protein that normally only binds the MIT domain in the MIM1 mode, the additional ability to bind the MIT domain of Spartin in the MIM3 mode. PMID:25657007

  15. Nanoscopic studies of domain structure dynamics in ferroelectric La:HfO2 capacitors

    NASA Astrophysics Data System (ADS)

    Buragohain, P.; Richter, C.; Schenk, T.; Lu, H.; Mikolajick, T.; Schroeder, U.; Gruverman, A.

    2018-05-01

    Visualization of domain structure evolution under an electrical bias has been carried out in ferroelectric La:HfO2 capacitors by a combination of Piezoresponse Force Microscopy (PFM) and pulse switching techniques to study the nanoscopic mechanism of polarization reversal and the wake-up process. It has been directly shown that the main mechanism behind the transformation of the polarization hysteretic behavior and an increase in the remanent polarization value upon the alternating current cycling is electrically induced domain de-pinning. PFM imaging and local spectroscopy revealed asymmetric switching in the La:HfO2 capacitors due to a significant imprint likely caused by the different boundary conditions at the top and bottom interfaces. Domain switching kinetics can be well-described by the nucleation limited switching model characterized by a broad distribution of the local switching times. It has been found that the domain velocity varies significantly throughout the switching process indicating strong interaction with structural defects.

  16. Structural Landscape of the Proline-Rich Domain of Sos1 Nucleotide Exchange Factor

    PubMed Central

    McDonald, Caleb B.; Bhat, Vikas; Kurouski, Dmitry; Mikles, David C.; Deegan, Brian J.; Seldeen, Kenneth L.; Lednev, Igor K.; Farooq, Amjad

    2013-01-01

    Despite its key role in mediating a plethora of cellular signaling cascades pertinent to health and disease, little is known about the structural landscape of the proline-rich (PR) domain of Sos1 guanine nucleotide exchange factor. Herein, using a battery of biophysical tools, we provide evidence that the PR domain of Sos1 is structurally disordered and adopts an extended random coil-like conformation in solution. Of particular interest is the observation that while chemical denaturation of PR domain results in the formation of a significant amount of polyproline II (PPII) helices, it has little or negligible effect on its overall size as measured by its hydrodynamic radius. Our data also show that the PR domain displays a highly dynamic conformational basin in agreement with the knowledge that the intrinsically unstructured proteins rapidly interconvert between an ensemble of conformations. Collectively, our study provides new insights into the conformational equilibrium of a key signaling molecule with important consequences on its physiological function. PMID:23528987

  17. Crystal Structure of the Central Coiled-Coil Domain from Human Liprin-[beta]2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stafford, Ryan L.; Tang, Ming-Yun; Sawaya, Michael R.

    2012-02-07

    Liprins are a conserved family of scaffolding proteins important for the proper regulation and development of neuronal synapses. Humans have four liprin-{alpha}s and two liprin-{beta}s which all contain long coiled-coil domains followed by three tandem SAM domains. Complex interactions between the coiled-coil and SAM domains are thought to create liprin scaffolds, but the structural and biochemical properties of these domains remain largely uncharacterized. In this study we find that the human liprin-{beta}2 coiled-coil forms an extended dimer. Several protease-resistant subdomains within the liprin-{beta}1 and liprin-{beta}2 coiled-coils were also identified. A 2.0 {angstrom} crystal structure of the central, protease-resistant core ofmore » the liprin-{beta}2 coiled-coil reveals a parallel helix orientation. These studies represent an initial step toward determining the overall architecture of liprin scaffolds and understanding the molecular basis for their synaptic functions.« less

  18. Biochemical and Structural Characterization of a Five-domain GH115 α-Glucuronidase from the Marine Bacterium Saccharophagus degradans 2-40 T

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Weijun; Yan, Ruoyu; Nocek, Boguslaw P.

    Glucuronic acid (GlcAp) and/or methylglucuronic acid (MeGlcAp) decorate the major forms of xylan in hardwood and coniferous softwoods as well as many cereal grains. Accordingly, the complete utilization of glucuronoxylans or conversion to sugar precursors requires the action of main chain xylanases as well as -glucuronidases that release the - (132)-linked (Me)GlcAp side groups. Herein, a family GH115 enzyme from the marine bacterium Saccharophagus degradans 2-40T, SdeAgu115A, demonstrated activity toward glucuronoxylan and oligomers thereof with preference toward MeGlcAp linked to internal xylopyranosyl residues. Unique biochemical characteristics of NaCl activation were also observed. The crystal structure of SdeAgu115A revealed a five-domainmore » architecture, with an additional insertion C domain that had significant impact on the domain arrangement of SdeAgu115A monomer and its dimerization. The participation of domain C in substrate binding was supported by reduced substrate inhibition upon introducing W773A, W689A, and F696A substitutions within this domain. In addition to Asp-335, the catalytic essentiality of Glu-216 was revealed by site-specific mutagenesis. A primary sequence analysis suggested that the SdeAgu115A architecture is shared by more than half of GH115 members, thus defining a distinct archetype for GH115 enzymes.« less

  19. Domain Organization in Clostridium botulinum Neurotoxin Type E is Unique: Its Implication in Faster Translocation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumaran, D.; Eswaramoorthy, S; Furey, W

    2009-01-01

    Clostridium botulinum produces seven antigenically distinct neurotoxins [C. botulinum neurotoxins (BoNTs) A-G] sharing a significant sequence homology. Based on sequence and functional similarity, it was believed that their three-dimensional structures will also be similar. Indeed, the crystal structures of BoNTs A and B exhibit similar fold and domain association where the translocation domain is flanked on either side by binding and catalytic domains. Here, we report the crystal structure of BoNT E holotoxin and show that the domain association is different and unique, although the individual domains are similar to those of BoNTs A and B. In BoNT E, bothmore » the binding domain and the catalytic domain are on the same side of the translocation domain, and all three have mutual interfaces. This unique association may have an effect on the rate of translocation, with the molecule strategically positioned in the vesicle for quick entry into cytosol. Botulism, the disease caused by BoNT E, sets in faster than any other serotype because of its speedy internalization and translocation, and the present structure offers a credible explanation. We propose that the translocation domain in other BoNTs follows a two-step process to attain translocation-competent conformation as in BoNT E. We also suggest that this translocation-competent conformation in BoNT E is a probable reason for its faster toxic rate compared to BoNT A. However, this needs further experimental elucidation.« less

  20. Structural and biochemical characterization of the protease domain of the mosaic botulinum neurotoxin type HA.

    PubMed

    Lam, Kwok-Ho; Sikorra, Stefan; Weisemann, Jasmin; Maatsch, Hannah; Perry, Kay; Rummel, Andreas; Binz, Thomas; Jin, Rongsheng

    2018-04-23

    The extreme toxicity of botulinum neurotoxins (BoNTs) relies on their specific cleavage of SNARE proteins, which eventually leads to muscle paralysis. One newly identified mosaic toxin, BoNT/HA (aka H or FA), cleaves VAMP-2 at a unique position between residues L54 and E55, but the molecular basis underlying VAMP-2-recognition of BoNT/HA remains poorly characterized. Here, we report a ∼2.09 Å resolution crystal structure of the light chain protease domain of BoNT/HA (LC/HA). Structural comparison between LC/HA and LC of BoNT/F1 (LC/F1) reveals distinctive hydrophobic and electrostatic features near the active sites, which may explain their different VAMP-2 cleavage sites. When compared to BoNT/F5 that cleaves VAMP-2 at the same site as BoNT/HA, LC/HA displays higher affinity for VAMP-2, which could be caused by their different surface charge properties surrounding a VAMP-2 exosite-binding cleft. Furthermore, systematic mutagenesis studies on VAMP-2 and structural modeling demonstrate that residues R47 to K59 spanning the cleavage site in VAMP-2 may adopt a novel extended conformation when interacting with LC/HA and LC/F5. Taken together, our structure provides new insights into substrate-recognition of BoNT/HA and paves the way for rational design of small molecule or peptide inhibitors against LC/HA.

  1. Structural complementarity of Toll/interleukin-1 receptor domains in Toll-like receptors and the adaptors Mal and MyD88.

    PubMed

    Dunne, Aisling; Ejdeback, Mikael; Ludidi, Phumzile L; O'Neill, Luke A J; Gay, Nicholas J

    2003-10-17

    The Toll/interleukin 1 receptor (TIR) domain is a region found in the cytoplasmic tails of members of the Toll-like receptor/interleukin-1 receptor superfamily. The domain is essential for signaling and is also found in the adaptor proteins Mal (MyD88 adaptor-like) and MyD88, which function to couple activation of the receptor to downstream signaling components. Experimental structures of two Toll/interleukin 1 receptor domains reveal a alpha-beta-fold similar to that of the bacterial chemotaxis protein CheY, and other evidence suggests that the adaptors can make heterotypic interactions with both the receptors and themselves. Here we show that the purified TIR domains of Mal and MyD88 can form stable heterodimers and also that Mal homodimers and oligomers are dissociated in the presence of ATP. To identify structural features that may contribute to the formation of signaling complexes, we produced models of the TIR domains from human Toll-like receptor 4 (TLR4), Mal, and MyD88. We found that although the overall fold is conserved the electrostatic surface potentials are quite distinct. Docking studies of the models suggest that Mal and MyD88 bind to different regions in TLRs 2 and 4, a finding consistent with a cooperative role of the two adaptors in signaling. Mal and MyD88 are predicted to interact at a third non-overlapping site, suggesting that the receptor and adaptors may form heterotetrameric complexes. The theoretical model of the interactions is supported by experimental data from glutathione S-transferase pull-downs and co-immunoprecipitations. Neither theoretical nor experimental data suggest a direct role for the conserved proline in the BB-loop in the association of TLR4, Mal, and MyD88. Finally we show a sequence relationship between the Drosophila protein Tube and Mal that may indicate a functional equivalence of these two adaptors in the Drosophila and vertebrate Toll pathways.

  2. A structural comparison of 'real' and 'model' calmodulin clarified allosteric interactions regulating domain motion.

    PubMed

    Shimoyama, Hiromitsu

    2018-05-07

    Calmodulin (CaM) is a multifunctional calcium-binding protein, which regulates various biochemical processes. CaM acts via structural changes and complex forming with its target enzymes. CaM has two globular domains (N-lobe and C-lobe) connected by a long linker region. Upon calcium binding, the N-lobe and C-lobe undergo local conformational changes, after that, entire CaM wraps the target enzyme through a large conformational change. However, the regulation mechanism, such as allosteric interactions regulating the conformational changes, is still unclear. In order to clarify the allosteric interactions, in this study, experimentally obtained 'real' structures are compared to 'model' structures lacking the allosteric interactions. As the allosteric interactions would be absent in calcium-free CaM (apo-CaM), allostery-eliminated calcium-bound CaM (holo-CaM) models were constructed by combining the apo-CaM's linker and the holo-CaM's N- and C-lobe. Before the comparison, the 'real' and 'model' structures were clustered and cluster-cluster relationship was determined by a principal component analysis. The structures were compared based on the relationship, then, a distance map and a contact probability analysis clarified that the inter-domain motion is regulated by several groups of inter-domain contacting residue pairs. The analyses suggested that these residues cause inter-domain translation and rotation, and as a consequence, the motion encourage structural diversity. The resultant diversity would contribute to the functional versatility of CaM.

  3. Visualizing domain wall and reverse domain superconductivity.

    PubMed

    Iavarone, M; Moore, S A; Fedor, J; Ciocys, S T; Karapetrov, G; Pearson, J; Novosad, V; Bader, S D

    2014-08-28

    In magnetically coupled, planar ferromagnet-superconductor (F/S) hybrid structures, magnetic domain walls can be used to spatially confine the superconductivity. In contrast to a superconductor in a uniform applied magnetic field, the nucleation of the superconducting order parameter in F/S structures is governed by the inhomogeneous magnetic field distribution. The interplay between the superconductivity localized at the domain walls and far from the walls leads to effects such as re-entrant superconductivity and reverse domain superconductivity with the critical temperature depending upon the location. Here we use scanning tunnelling spectroscopy to directly image the nucleation of superconductivity at the domain wall in F/S structures realized with Co-Pd multilayers and Pb thin films. Our results demonstrate that such F/S structures are attractive model systems that offer the possibility to control the strength and the location of the superconducting nucleus by applying an external magnetic field, potentially useful to guide vortices for computing application.

  4. Visualizing domain wall and reverse domain superconductivity

    PubMed Central

    Iavarone, M.; Moore, S. A.; Fedor, J.; Ciocys, S. T.; Karapetrov, G.; Pearson, J.; Novosad, V.; Bader, S. D.

    2014-01-01

    In magnetically coupled, planar ferromagnet-superconductor (F/S) hybrid structures, magnetic domain walls can be used to spatially confine the superconductivity. In contrast to a superconductor in a uniform applied magnetic field, the nucleation of the superconducting order parameter in F/S structures is governed by the inhomogeneous magnetic field distribution. The interplay between the superconductivity localized at the domain walls and far from the walls leads to effects such as re-entrant superconductivity and reverse domain superconductivity with the critical temperature depending upon the location. Here we use scanning tunnelling spectroscopy to directly image the nucleation of superconductivity at the domain wall in F/S structures realized with Co-Pd multilayers and Pb thin films. Our results demonstrate that such F/S structures are attractive model systems that offer the possibility to control the strength and the location of the superconducting nucleus by applying an external magnetic field, potentially useful to guide vortices for computing application. PMID:25164004

  5. Structural Mechanism behind Distinct Efficiency of Oct4/Sox2 Proteins in Differentially Spaced DNA Complexes

    PubMed Central

    Yesudhas, Dhanusha; Anwar, Muhammad Ayaz; Panneerselvam, Suresh; Durai, Prasannavenkatesh; Shah, Masaud; Choi, Sangdun

    2016-01-01

    The octamer-binding transcription factor 4 (Oct4) and sex-determining region Y (SRY)-box 2 (Sox2) proteins induce various transcriptional regulators to maintain cellular pluripotency. Most Oct4/Sox2 complexes have either 0 base pairs (Oct4/Sox20bp) or 3 base pairs (Oct4/Sox23bp) separation between their DNA-binding sites. Results from previous biochemical studies have shown that the complexes separated by 0 base pairs are associated with a higher pluripotency rate than those separated by 3 base pairs. Here, we performed molecular dynamics (MD) simulations and calculations to determine the binding free energy and per-residue free energy for the Oct4/Sox20bp and Oct4/Sox23bp complexes to identify structural differences that contribute to differences in induction rate. Our MD simulation results showed substantial differences in Oct4/Sox2 domain movements, as well as secondary-structure changes in the Oct4 linker region, suggesting a potential reason underlying the distinct efficiencies of these complexes during reprogramming. Moreover, we identified key residues and hydrogen bonds that potentially facilitate protein-protein and protein-DNA interactions, in agreement with previous experimental findings. Consequently, our results confess that differential spacing of the Oct4/Sox2 DNA binding sites can determine the magnitude of transcription of the targeted genes during reprogramming. PMID:26790000

  6. Crystal structure of the extracellular cholinesterase-like domain from neuroligin-2

    PubMed Central

    Koehnke, Jesko; Jin, Xiangshu; Budreck, Elaine C.; Posy, Shoshana; Scheiffele, Peter; Honig, Barry; Shapiro, Lawrence

    2008-01-01

    Neuroligins (NLs) are catalytically inactive members of a family of cholinesterase-like transmembrane proteins that mediate cell adhesion at neuronal synapses. Postsynaptic neuroligins engage in Ca2+-dependent transsynaptic interactions via their extracellular cholinesterase domain with presynaptic neurexins (NRXs). These interactions may be regulated by two short splice insertions (termed A and B) in the NL cholinesterase domain. Here, we present the 3.3-Å crystal structure of the ectodomain from NL2 containing splice insertion A (NL2A). The overall structure of NL2A resembles that of cholinesterases, but several structural features are unique to the NL proteins. First, structural elements surrounding the esterase active-site region differ significantly between active esterases and NL2A. On the opposite surface of the NL2A molecule, the positions of the A and B splice insertions identify a candidate NRX interaction site of the NL protein. Finally, sequence comparisons of NL isoforms allow for mapping the location of residues of previously identified mutations in NL3 and NL4 found in patients with autism spectrum disorders. Overall, the NL2 structure promises to provide a valuable model for dissecting NL isoform- and synapse-specific functions. PMID:18250328

  7. Structures and kinetics for plant nucleoside triphosphate diphosphohydrolases support a domain motion catalytic mechanism.

    PubMed

    Summers, Emma L; Cumming, Mathew H; Oulavallickal, Tifany; Roberts, Nicholas J; Arcus, Vickery L

    2017-08-01

    Extracellular nucleoside triphosphate diphosphohydrolases (NTPDases) are enzymes that hydrolyze extracellular nucleotides to the respective monophosphate nucleotides. In the past 20 years, NTPDases belonging to mammalian, parasitic and prokaryotic domains of life have been discovered, cloned and characterized. We reveal the first structures of NTPDases from the legume plant species Trifolium repens (7WC) and Vigna unguiculata subsp. cylindrica (DbLNP). Four crystal structures of 7WC and DbLNP were determined at resolutions between 1.9 and 2.6 Å. For 7WC, structures were determined for an -apo form (1.89 Å) and with the product AMP (2.15 Å) and adenine and phosphate (1.76 Å) bound. For DbLNP, a structure was solved with phosphate and manganese bound (2.60 Å). Thorough kinetic data and analysis is presented. The structure of 7WC and DbLNP reveals that these NTPDases can adopt two conformations depending on the molecule and co-factor bound in the active site. A central hinge region creates a "butterfly-like" motion of the domains that reduces the width of the inter-domain active site cleft upon molecule binding. This phenomenon has been previously described in Rattus norvegicus and Legionella pneumophila NTPDaseI and Toxoplasma gondii NTPDaseIII suggesting a common catalytic mechanism across the domains of life. © 2017 The Protein Society.

  8. Diverse Supramolecular Nanofiber Networks Assembled by Functional Low-Complexity Domains.

    PubMed

    An, Bolin; Wang, Xinyu; Cui, Mengkui; Gui, Xinrui; Mao, Xiuhai; Liu, Yan; Li, Ke; Chu, Cenfeng; Pu, Jiahua; Ren, Susu; Wang, Yanyi; Zhong, Guisheng; Lu, Timothy K; Liu, Cong; Zhong, Chao

    2017-07-25

    Self-assembling supramolecular nanofibers, common in the natural world, are of fundamental interest and technical importance to both nanotechnology and materials science. Despite important advances, synthetic nanofibers still lack the structural and functional diversity of biological molecules, and the controlled assembly of one type of molecule into a variety of fibrous structures with wide-ranging functional attributes remains challenging. Here, we harness the low-complexity (LC) sequence domain of fused in sarcoma (FUS) protein, an essential cellular nuclear protein with slow kinetics of amyloid fiber assembly, to construct random copolymer-like, multiblock, and self-sorted supramolecular fibrous networks with distinct structural features and fluorescent functionalities. We demonstrate the utilities of these networks in the templated, spatially controlled assembly of ligand-decorated gold nanoparticles, quantum dots, nanorods, DNA origami, and hybrid structures. Owing to the distinguishable nanoarchitectures of these nanofibers, this assembly is structure-dependent. By coupling a modular genetic strategy with kinetically controlled complex supramolecular self-assembly, we demonstrate that a single type of protein molecule can be used to engineer diverse one-dimensional supramolecular nanostructures with distinct functionalities.

  9. Structure of metabotropic glutamate receptor C-terminal domains in contact with interacting proteins.

    PubMed

    Enz, Ralf

    2012-01-01

    Metabotropic glutamate receptors (mGluRs) regulate intracellular signal pathways that control several physiological tasks, including neuronal excitability, learning, and memory. This is achieved by the formation of synaptic signal complexes, in which mGluRs assemble with functionally related proteins such as enzymes, scaffolds, and cytoskeletal anchor proteins. Thus, mGluR associated proteins actively participate in the regulation of glutamatergic neurotransmission. Importantly, dysfunction of mGluRs and interacting proteins may lead to impaired signal transduction and finally result in neurological disorders, e.g., night blindness, addiction, epilepsy, schizophrenia, autism spectrum disorders and Parkinson's disease. In contrast to solved crystal structures of extracellular N-terminal domains of some mGluR types, only a few studies analyzed the conformation of intracellular receptor domains. Intracellular C-termini of most mGluR types are subject to alternative splicing and can be further modified by phosphorylation and SUMOylation. In this way, diverse interaction sites for intracellular proteins that bind to and regulate the glutamate receptors are generated. Indeed, most of the known mGluR binding partners interact with the receptors' C-terminal domains. Within the last years, different laboratories analyzed the structure of these domains and described the geometry of the contact surface between mGluR C-termini and interacting proteins. Here, I will review recent progress in the structure characterization of mGluR C-termini and provide an up-to-date summary of the geometry of these domains in contact with binding partners.

  10. Structure of the Full-length VEGFR-1 Extracellular Domain in Complex with VEGF-A.

    PubMed

    Markovic-Mueller, Sandra; Stuttfeld, Edward; Asthana, Mayanka; Weinert, Tobias; Bliven, Spencer; Goldie, Kenneth N; Kisko, Kaisa; Capitani, Guido; Ballmer-Hofer, Kurt

    2017-02-07

    Vascular endothelial growth factors (VEGFs) regulate blood and lymph vessel development upon activation of three receptor tyrosine kinases: VEGFR-1, -2, and -3. Partial structures of VEGFR/VEGF complexes based on single-particle electron microscopy, small-angle X-ray scattering, and X-ray crystallography revealed the location of VEGF binding and domain arrangement of individual receptor subdomains. Here, we describe the structure of the full-length VEGFR-1 extracellular domain in complex with VEGF-A at 4 Å resolution. We combined X-ray crystallography, single-particle electron microscopy, and molecular modeling for structure determination and validation. The structure reveals the molecular details of ligand-induced receptor dimerization, in particular of homotypic receptor interactions in immunoglobulin homology domains 4, 5, and 7. Functional analyses of ligand binding and receptor activation confirm the relevance of these homotypic contacts and identify them as potential therapeutic sites to allosterically inhibit VEGFR-1 activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Mutations in actin used for structural studies partially disrupt β-thymosin/WH2 domains interaction.

    PubMed

    Deville, Célia; Girard-Blanc, Christine; Assrir, Nadine; Nhiri, Naïma; Jacquet, Eric; Bontems, François; Renault, Louis; Petres, Stéphane; van Heijenoort, Carine

    2016-10-01

    Understanding the structural basis of actin cytoskeleton remodeling requires stabilization of actin monomers, oligomers, and filaments in complex with partner proteins, using various biochemical strategies. Here, we report a dramatic destabilization of the dynamic interaction with a model β-thymosin/WH2 domain induced by mutations in actin. This result underlines that mutant actins should be used with prudence to characterize interactions with intrinsically disordered partners as destabilization of dynamic interactions, although identifiable by NMR, may be invisible to other structural techniques. It also highlights how both β-thymosin/WH2 domains and actin tune local structure and dynamics in regulatory processes involving intrinsically disordered domains. © 2016 Federation of European Biochemical Societies.

  12. Comparison of Saccharomyces cerevisiae F-BAR domain structures reveals a conserved inositol phosphate binding site.

    PubMed

    Moravcevic, Katarina; Alvarado, Diego; Schmitz, Karl R; Kenniston, Jon A; Mendrola, Jeannine M; Ferguson, Kathryn M; Lemmon, Mark A

    2015-02-03

    F-BAR domains control membrane interactions in endocytosis, cytokinesis, and cell signaling. Although they are generally thought to bind curved membranes containing negatively charged phospholipids, numerous functional studies argue that differences in lipid-binding selectivities of F-BAR domains are functionally important. Here, we compare membrane-binding properties of the Saccharomyces cerevisiae F-BAR domains in vitro and in vivo. Whereas some F-BAR domains (such as Bzz1p and Hof1p F-BARs) bind equally well to all phospholipids, the F-BAR domain from the RhoGAP Rgd1p preferentially binds phosphoinositides. We determined X-ray crystal structures of F-BAR domains from Hof1p and Rgd1p, the latter bound to an inositol phosphate. The structures explain phospholipid-binding selectivity differences and reveal an F-BAR phosphoinositide binding site that is fully conserved in a mammalian RhoGAP called Gmip and is partly retained in certain other F-BAR domains. Our findings reveal previously unappreciated determinants of F-BAR domain lipid-binding specificity and provide a basis for its prediction from sequence. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Comparison of Saccharomyces cerevisiae F-BAR Domain Structures Reveals a Conserved Inositol Phosphate Binding Site

    DOE PAGES

    Moravcevic, Katarina; Alvarado, Diego; Schmitz, Karl R.; ...

    2015-01-22

    F-BAR domains control membrane interactions in endocytosis, cytokinesis, and cell signaling. Although they are generally thought to bind curved membranes containing negatively charged phospholipids, numerous functional studies argue that differences in lipid-binding selectivities of F-BAR domains are functionally important. Here in this paper, we compare membrane-binding properties of the Saccharomyces cerevisiae F-BAR domains in vitro and in vivo. Whereas some F-BAR domains (such as Bzz1p and Hof1p F-BARs) bind equally well to all phospholipids, the F-BAR domain from the RhoGAP Rgd1p preferentially binds phosphoinositides. We determined X-ray crystal structures of F-BAR domains from Hof1p and Rgd1p, the latter bound tomore » an inositol phosphate. The structures explain phospholipid-binding selectivity differences and reveal an F-BAR phosphoinositide binding site that is fully conserved in a mammalian RhoGAP called Gmip and is partly retained in certain other F-BAR domains. In conclusion, our findings reveal previously unappreciated determinants of F-BAR domain lipid-binding specificity and provide a basis for its prediction from sequence.« less

  14. Analysis of periplasmic sensor domains from Anaeromyxobacter dehalogenans 2CP-C: Structure of one sensor domain from a histidine kinase and another from a chemotaxis protein

    PubMed Central

    Pokkuluri, P Raj; Dwulit-Smith, Jeff; Duke, Norma E; Wilton, Rosemarie; Mack, Jamey C; Bearden, Jessica; Rakowski, Ella; Babnigg, Gyorgy; Szurmant, Hendrik; Joachimiak, Andrzej; Schiffer, Marianne

    2013-01-01

    Anaeromyxobacter dehalogenans is a δ-proteobacterium found in diverse soils and sediments. It is of interest in bioremediation efforts due to its dechlorination and metal-reducing capabilities. To gain an understanding on A. dehalogenans' abilities to adapt to diverse environments we analyzed its signal transduction proteins. The A. dehalogenans genome codes for a large number of sensor histidine kinases (HK) and methyl-accepting chemotaxis proteins (MCP); among these 23 HK and 11 MCP proteins have a sensor domain in the periplasm. These proteins most likely contribute to adaptation to the organism's surroundings. We predicted their three-dimensional folds and determined the structures of two of the periplasmic sensor domains by X-ray diffraction. Most of the domains are predicted to have either PAS-like or helical bundle structures, with two predicted to have solute-binding protein fold, and another predicted to have a 6-phosphogluconolactonase like fold. Atomic structures of two sensor domains confirmed the respective fold predictions. The Adeh_2942 sensor (HK) was found to have a helical bundle structure, and the Adeh_3718 sensor (MCP) has a PAS-like structure. Interestingly, the Adeh_3718 sensor has an acetate moiety bound in a binding site typical for PAS-like domains. Future work is needed to determine whether Adeh_3718 is involved in acetate sensing by A. dehalogenans. PMID:23897711

  15. Structure of the C-terminal domain of nsp4 from feline coronavirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Manolaridis, Ioannis; Wojdyla, Justyna A.; Panjikar, Santosh

    2009-08-01

    The structure of the cytosolic C-terminal domain of nonstructural protein 4 from feline coronavirus has been determined and analyzed. Coronaviruses are a family of positive-stranded RNA viruses that includes important pathogens of humans and other animals. The large coronavirus genome (26–31 kb) encodes 15–16 nonstructural proteins (nsps) that are derived from two replicase polyproteins by autoproteolytic processing. The nsps assemble into the viral replication–transcription complex and nsp3, nsp4 and nsp6 are believed to anchor this enzyme complex to modified intracellular membranes. The largest part of the coronavirus nsp4 subunit is hydrophobic and is predicted to be embedded in the membranes.more » In this report, a conserved C-terminal domain (∼100 amino-acid residues) has been delineated that is predicted to face the cytoplasm and has been isolated as a soluble domain using library-based construct screening. A prototypical crystal structure at 2.8 Å resolution was obtained using nsp4 from feline coronavirus. Unmodified and SeMet-substituted proteins were crystallized under similar conditions, resulting in tetragonal crystals that belonged to space group P4{sub 3}. The phase problem was initially solved by single isomorphous replacement with anomalous scattering (SIRAS), followed by molecular replacement using a SIRAS-derived composite model. The structure consists of a single domain with a predominantly α-helical content displaying a unique fold that could be engaged in protein–protein interactions.« less

  16. Solution structure of a DNA mimicking motif of an RNA aptamer against transcription factor AML1 Runt domain.

    PubMed

    Nomura, Yusuke; Tanaka, Yoichiro; Fukunaga, Jun-ichi; Fujiwara, Kazuya; Chiba, Manabu; Iibuchi, Hiroaki; Tanaka, Taku; Nakamura, Yoshikazu; Kawai, Gota; Kozu, Tomoko; Sakamoto, Taiichi

    2013-12-01

    AML1/RUNX1 is an essential transcription factor involved in the differentiation of hematopoietic cells. AML1 binds to the Runt-binding double-stranded DNA element (RDE) of target genes through its N-terminal Runt domain. In a previous study, we obtained RNA aptamers against the AML1 Runt domain by systematic evolution of ligands by exponential enrichment and revealed that RNA aptamers exhibit higher affinity for the Runt domain than that for RDE and possess the 5'-GCGMGNN-3' and 5'-N'N'CCAC-3' conserved motif (M: A or C; N and N' form Watson-Crick base pairs) that is important for Runt domain binding. In this study, to understand the structural basis of recognition of the Runt domain by the aptamer motif, the solution structure of a 22-mer RNA was determined using nuclear magnetic resonance. The motif contains the AH(+)-C mismatch and base triple and adopts an unusual backbone structure. Structural analysis of the aptamer motif indicated that the aptamer binds to the Runt domain by mimicking the RDE sequence and structure. Our data should enhance the understanding of the structural basis of DNA mimicry by RNA molecules.

  17. Novel Chiral Magnetic Domain Wall Structure in Fe/Ni/Cu(001) Films

    NASA Astrophysics Data System (ADS)

    Chen, G.; Zhu, J.; Quesada, A.; Li, J.; N'Diaye, A. T.; Huo, Y.; Ma, T. P.; Chen, Y.; Kwon, H. Y.; Won, C.; Qiu, Z. Q.; Schmid, A. K.; Wu, Y. Z.

    2013-04-01

    Using spin-polarized low energy electron microscopy, we discovered a new type of domain wall structure in perpendicularly magnetized Fe/Ni bilayers grown epitaxially on Cu(100). Specifically, we observed unexpected Néel-type walls with fixed chirality in the magnetic stripe phase. Furthermore, we find that the chirality of the domain walls is determined by the film growth order with the chirality being right handed in Fe/Ni bilayers and left handed in Ni/Fe bilayers, suggesting that the underlying mechanism is the Dzyaloshinskii-Moriya interaction at the film interfaces. Our observations may open a new route to control chiral spin structures using interfacial engineering in transition metal heterostructures.

  18. Experimental verification, and domain definition, of structural alerts for protein binding: epoxides, lactones, nitroso, nitros, aldehydes and ketones.

    PubMed

    Nelms, M D; Cronin, M T D; Schultz, T W; Enoch, S J

    2013-01-01

    This study outlines how a combination of in chemico and Tetrahymena pyriformis data can be used to define the applicability domain of selected structural alerts within the profilers of the OECD QSAR Toolbox. Thirty-three chemicals were profiled using the OECD and OASIS profilers, enabling the applicability domain of six structural alerts to be defined, the alerts being: epoxides, lactones, nitrosos, nitros, aldehydes and ketones. Analysis of the experimental data showed the applicability domains for the epoxide, nitroso, aldehyde and ketone structural alerts to be well defined. In contrast, the data showed the applicability domains for the lactone and nitro structural alerts needed modifying. The accurate definition of the applicability domain for structural alerts within in silico profilers is important due to their use in the chemical category in predictive and regulatory toxicology. This study highlights the importance of utilizing multiple profilers in category formation.

  19. Crystal structure of tandem type III fibronectin domains from Drosophila neuroglian at 2.0 A.

    PubMed

    Huber, A H; Wang, Y M; Bieber, A J; Bjorkman, P J

    1994-04-01

    We report the crystal structure of two adjacent fibronectin type III repeats from the Drosophila neural cell adhesion molecule neuroglian. Each domain consists of two antiparallel beta sheets and is folded topologically identically to single fibronectin type III domains from the extracellular matrix proteins tenascin and fibronectin. beta bulges and left-handed polyproline II helices disrupt the regular beta sheet structure of both neuroglian domains. The hydrophobic interdomain interface includes a metal-binding site, presumably involved in stabilizing the relative orientation between domains and predicted by sequence comparision to be present in the vertebrate homolog molecule L1. The neuroglian domains are related by a near perfect 2-fold screw axis along the longest molecular dimension. Using this relationship, a model for arrays of tandem fibronectin type III repeats in neuroglian and other molecules is proposed.

  20. α-Helical Structural Elements within the Voltage-Sensing Domains of a K+ Channel

    PubMed Central

    Li-Smerin, Yingying; Hackos, David H.; Swartz, Kenton J.

    2000-01-01

    Voltage-gated K+ channels are tetramers with each subunit containing six (S1–S6) putative membrane spanning segments. The fifth through sixth transmembrane segments (S5–S6) from each of four subunits assemble to form a central pore domain. A growing body of evidence suggests that the first four segments (S1–S4) comprise a domain-like voltage-sensing structure. While the topology of this region is reasonably well defined, the secondary and tertiary structures of these transmembrane segments are not. To explore the secondary structure of the voltage-sensing domains, we used alanine-scanning mutagenesis through the region encompassing the first four transmembrane segments in the drk1 voltage-gated K+ channel. We examined the mutation-induced perturbation in gating free energy for periodicity characteristic of α-helices. Our results are consistent with at least portions of S1, S2, S3, and S4 adopting α-helical secondary structure. In addition, both the S1–S2 and S3–S4 linkers exhibited substantial helical character. The distribution of gating perturbations for S1 and S2 suggest that these two helices interact primarily with two environments. In contrast, the distribution of perturbations for S3 and S4 were more complex, suggesting that the latter two helices make more extensive protein contacts, possibly interfacing directly with the shell of the pore domain. PMID:10613917

  1. Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Guiqing; Sun, Dawei; Rajashankar, Kanagalaghatta R.

    2011-09-28

    Coronaviruses have evolved diverse mechanisms to recognize different receptors for their cross-species transmission and host-range expansion. Mouse hepatitis coronavirus (MHV) uses the N-terminal domain (NTD) of its spike protein as its receptor-binding domain. Here we present the crystal structure of MHV NTD complexed with its receptor murine carcinoembryonic antigen-related cell adhesion molecule 1a (mCEACAM1a). Unexpectedly, MHV NTD contains a core structure that has the same {beta}-sandwich fold as human galectins (S-lectins) and additional structural motifs that bind to the N-terminal Ig-like domain of mCEACAM1a. Despite its galectin fold, MHV NTD does not bind sugars, but instead binds mCEACAM1a through exclusivemore » protein-protein interactions. Critical contacts at the interface have been confirmed by mutagenesis, providing a structural basis for viral and host specificities of coronavirus/CEACAM1 interactions. Sugar-binding assays reveal that galectin-like NTDs of some coronaviruses such as human coronavirus OC43 and bovine coronavirus bind sugars. Structural analysis and mutagenesis localize the sugar-binding site in coronavirus NTDs to be above the {beta}-sandwich core. We propose that coronavirus NTDs originated from a host galectin and retained sugar-binding functions in some contemporary coronaviruses, but evolved new structural features in MHV for mCEACAM1a binding.« less

  2. Structure of the N-terminal domain of the protein Expansion: an ‘Expansion’ to the Smad MH2 fold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beich-Frandsen, Mads; Aragón, Eric; Llimargas, Marta

    2015-04-01

    Expansion is a modular protein that is conserved in protostomes. The first structure of the N-terminal domain of Expansion has been determined at 1.6 Å resolution and the new Nα-MH2 domain was found to belong to the Smad/FHA superfamily of structures. Gene-expression changes observed in Drosophila embryos after inducing the transcription factor Tramtrack led to the identification of the protein Expansion. Expansion contains an N-terminal domain similar in sequence to the MH2 domain characteristic of Smad proteins, which are the central mediators of the effects of the TGF-β signalling pathway. Apart from Smads and Expansion, no other type of proteinmore » belonging to the known kingdoms of life contains MH2 domains. To compare the Expansion and Smad MH2 domains, the crystal structure of the Expansion domain was determined at 1.6 Å resolution, the first structure of a non-Smad MH2 domain to be characterized to date. The structure displays the main features of the canonical MH2 fold with two main differences: the addition of an α-helical region and the remodelling of a protein-interaction site that is conserved in the MH2 domain of Smads. Owing to these differences, to the new domain was referred to as Nα-MH2. Despite the presence of the Nα-MH2 domain, Expansion does not participate in TGF-β signalling; instead, it is required for other activities specific to the protostome phyla. Based on the structural similarities to the MH2 fold, it is proposed that the Nα-MH2 domain should be classified as a new member of the Smad/FHA superfamily.« less

  3. Structure of the cytoplasmic domain of Yersinia pestis YscD, an essential component of the type III secretion system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lountos, George T.; Tropea, Joseph E.; Waugh, David S.

    2012-09-17

    The Yersinia pestis YscD protein is an essential component of the type III secretion system. YscD consists of an N-terminal cytoplasmic domain (residues 1-121), a transmembrane linker (122-142) and a large periplasmic domain (143-419). Both the cytoplasmic and the periplasmic domains are required for the assembly of the type III secretion system. Here, the structure of the YscD cytoplasmic domain solved by SAD phasing is presented. Although the three-dimensional structure is similar to those of forkhead-associated (FHA) domains, comparison with the structures of canonical FHA domains revealed that the cytoplasmic domain of YscD lacks the conserved residues that are requiredmore » for binding phosphothreonine and is therefore unlikely to function as a true FHA domain.« less

  4. Structural analysis of poly-SUMO chain recognition by the RNF4-SIMs domain.

    PubMed

    Kung, Camy C-H; Naik, Mandar T; Wang, Szu-Huan; Shih, Hsiu-Ming; Chang, Che-Chang; Lin, Li-Ying; Chen, Chia-Lin; Ma, Che; Chang, Chi-Fon; Huang, Tai-Huang

    2014-08-15

    The E3 ubiquitin ligase RNF4 (RING finger protein 4) contains four tandem SIM [SUMO (small ubiquitin-like modifier)-interaction motif] repeats for selective interaction with poly-SUMO-modified proteins, which it targets for degradation. We employed a multi-faceted approach to characterize the structure of the RNF4-SIMs domain and the tetra-SUMO2 chain to elucidate the interaction between them. In solution, the SIM domain was intrinsically disordered and the linkers of the tetra-SUMO2 were highly flexible. Individual SIMs of the RNF4-SIMs domains bind to SUMO2 in the groove between the β2-strand and the α1-helix parallel to the β2-strand. SIM2 and SIM3 bound to SUMO with a high affinity and together constituted the recognition module necessary for SUMO binding. SIM4 alone bound to SUMO with low affinity; however, its contribution to tetra-SUMO2 binding avidity is comparable with that of SIM3 when in the RNF4-SIMs domain. The SAXS data of the tetra-SUMO2-RNF4-SIMs domain complex indicate that it exists as an ordered structure. The HADDOCK model showed that the tandem RNF4-SIMs domain bound antiparallel to the tetra-SUMO2 chain orientation and wrapped around the SUMO protamers in a superhelical turn without imposing steric hindrance on either molecule.

  5. Structure analysis of FAAP24 reveals single-stranded DNA-binding activity and domain functions in DNA damage response

    PubMed Central

    Wang, Yucai; Han, Xiao; Wu, Fangming; Leung, Justin W; Lowery, Megan G; Do, Huong; Chen, Junjie; Shi, Chaowei; Tian, Changlin; Li, Lei; Gong, Weimin

    2013-01-01

    The FANCM/FAAP24 heterodimer has distinct functions in protecting cells from complex DNA lesions such as interstrand crosslinks. These functions rely on the biochemical activity of FANCM/FAAP24 to recognize and bind to damaged DNA or stalled replication forks. However, the DNA-binding activity of this complex was not clearly defined. We investigated how FAAP24 contributes to the DNA-interacting functions of the FANCM/FAAP24 complex by acquiring the N-terminal and C-terminal solution structures of human FAAP24. Modeling of the FAAP24 structure indicates that FAAP24 may possess a high affinity toward single-stranded DNA (ssDNA). Testing of various FAAP24 mutations in vitro and in vivo validated this prediction derived from structural analyses. We found that the DNA-binding and FANCM-interacting functions of FAAP24, although both require the C-terminal (HhH)2 domain, can be distinguished by segregation-of-function mutations. These results demonstrate dual roles of FAAP24 in DNA damage response against crosslinking lesions, one through the formation of FANCM/FAAP24 heterodimer and the other via its ssDNA-binding activity required in optimized checkpoint activation. PMID:23999858

  6. Natural Microbial Assemblages Reflect Distinct Organismal and Functional Partitioning

    NASA Astrophysics Data System (ADS)

    Wilmes, P.; Andersson, A.; Kalnejais, L. H.; Verberkmoes, N. C.; Lefsrud, M. G.; Wexler, M.; Singer, S. W.; Shah, M.; Bond, P. L.; Thelen, M. P.; Hettich, R. L.; Banfield, J. F.

    2007-12-01

    The ability to link microbial community structure to function has long been a primary focus of environmental microbiology. With the advent of community genomic and proteomic techniques, along with advances in microscopic imaging techniques, it is now possible to gain insights into the organismal and functional makeup of microbial communities. Biofilms growing within highly acidic solutions inside the Richmond Mine (Iron Mountain, Redding, California) exhibit distinct macro- and microscopic morphologies. They are composed of microorganisms belonging to the three domains of life, including archaea, bacteria and eukarya. The proportion of each organismal type depends on sampling location and developmental stage. For example, mature biofilms floating on top of acid mine drainage (AMD) pools exhibit layers consisting of a densely packed bottom layer of the chemoautolithotroph Leptospirillum group II, a less dense top layer composed mainly of archaea, and fungal filaments spanning across the entire biofilm. The expression of cytochrome 579 (the most highly abundant protein in the biofilm, believed to be central to iron oxidation and encoded by Leptospirillum group II) is localized at the interface of the biofilm with the AMD solution, highlighting that biofilm architecture is reflected at the functional gene expression level. Distinct functional partitioning is also apparent in a biological wastewater treatment system that selects for distinct polyphosphate accumulating organisms. Community genomic data from " Candidatus Accumulibacter phosphatis" dominated activated sludge has enabled high mass-accuracy shotgun proteomics for identification of key metabolic pathways. Comprehensive genome-wide alignment of orthologous proteins suggests distinct partitioning of protein variants involved in both core-metabolism and specific metabolic pathways among the dominant population and closely related species. In addition, strain- resolved proteogenomic analysis of the AMD biofilms

  7. Structure of a Spumaretrovirus Gag Central Domain Reveals an Ancient Retroviral Capsid

    PubMed Central

    Dutta, Moumita; Pollard, Dominic J.; Goldstone, David C.; Ramos, Andres; Müllers, Erik; Stirnnagel, Kristin; Stanke, Nicole; Lindemann, Dirk; Taylor, William R.; Rosenthal, Peter B.

    2016-01-01

    The Spumaretrovirinae, or foamy viruses (FVs) are complex retroviruses that infect many species of monkey and ape. Despite little sequence homology, FV and orthoretroviral Gag proteins perform equivalent functions, including genome packaging, virion assembly, trafficking and membrane targeting. However, there is a paucity of structural information for FVs and it is unclear how disparate FV and orthoretroviral Gag molecules share the same function. To probe the functional overlap of FV and orthoretroviral Gag we have determined the structure of a central region of Gag from the Prototype FV (PFV). The structure comprises two all α-helical domains NtDCEN and CtDCEN that although they have no sequence similarity, we show they share the same core fold as the N- (NtDCA) and C-terminal domains (CtDCA) of archetypal orthoretroviral capsid protein (CA). Moreover, structural comparisons with orthoretroviral CA align PFV NtDCEN and CtDCEN with NtDCA and CtDCA respectively. Further in vitro and functional virological assays reveal that residues making inter-domain NtDCEN—CtDCEN interactions are required for PFV capsid assembly and that intact capsid is required for PFV reverse transcription. These data provide the first information that relates the Gag proteins of Spuma and Orthoretrovirinae and suggests a common ancestor for both lineages containing an ancient CA fold. PMID:27829070

  8. Saccharomyces cerevisiae MSH2-MSH3 and MSH2-MSH6 complexes display distinct requirements for DNA binding Domain I in mismatch recognition.

    PubMed Central

    Lee, Susan D.; Surtees, Jennifer A.; Alani, Eric

    2007-01-01

    In eukaryotic mismatch repair (MMR) MSH2-MSH6 initiates the repair of base-base and small insertion/deletion mismatches while MSH2-MSH3 repairs larger insertion/deletion mismatches. In this study we showed that the msh2Δ1 mutation, containing a complete deletion of the conserved mismatch recognition Domain I of MSH2, conferred a separation of function phenotype with respect to MSH2-MSH3 and MSH2-MSH6 functions. Strains bearing the msh2Δ1 mutation were nearly wild-type in MSH2-MSH6-mediated MMR and in suppressing recombination between DNA sequences predicted to form mismatches recognized by MSH2-MSH6. However, these strains were completely defective in MSH2-MSH3-mediated MMR and recombination functions. This information encouraged us to analyze the contributions of Domain I to the mismatch binding specificity of MSH2-MSH3 in genetic and biochemical assays. We found that Domain I in MSH2 contributed a non-specific DNA binding activity while Domain I of MSH3 appeared important for mismatch binding specificity and for suppressing non-specific DNA-binding. These observations reveal distinct requirements for the MSH2 DNA binding Domain I in the repair of DNA mismatches and suggest that the binding of MSH2-MSH3 to mismatch DNA involves protein-DNA contacts that appear very different from those required for MSH2-MSH6 mismatch binding. PMID:17157869

  9. Saccharomyces cerevisiae MSH2-MSH3 and MSH2-MSH6 complexes display distinct requirements for DNA binding domain I in mismatch recognition.

    PubMed

    Lee, Susan D; Surtees, Jennifer A; Alani, Eric

    2007-02-09

    In eukaryotic mismatch repair (MMR) MSH2-MSH6 initiates the repair of base-base and small insertion/deletion mismatches while MSH2-MSH3 repairs larger insertion/deletion mismatches. Here, we show that the msh2Delta1 mutation, containing a complete deletion of the conserved mismatch recognition domain I of MSH2, conferred a separation of function phenotype with respect to MSH2-MSH3 and MSH2-MSH6 functions. Strains bearing the msh2Delta1 mutation were nearly wild-type in MSH2-MSH6-mediated MMR and in suppressing recombination between DNA sequences predicted to form mismatches recognized by MSH2-MSH6. However, these strains were completely defective in MSH2-MSH3-mediated MMR and recombination functions. This information encouraged us to analyze the contributions of domain I to the mismatch binding specificity of MSH2-MSH3 in genetic and biochemical assays. We found that domain I in MSH2 contributed a non-specific DNA binding activity while domain I of MSH3 appeared important for mismatch binding specificity and for suppressing non-specific DNA binding. These observations reveal distinct requirements for the MSH2 DNA binding domain I in the repair of DNA mismatches and suggest that the binding of MSH2-MSH3 to mismatch DNA involves protein-DNA contacts that appear very different from those required for MSH2-MSH6 mismatch binding.

  10. Structure and regulatory role of the C-terminal winged helix domain of the archaeal minichromosome maintenance complex

    PubMed Central

    Wiedemann, Christoph; Szambowska, Anna; Häfner, Sabine; Ohlenschläger, Oliver; Gührs, Karl-Heinz; Görlach, Matthias

    2015-01-01

    The minichromosome maintenance complex (MCM) represents the replicative DNA helicase both in eukaryotes and archaea. Here, we describe the solution structure of the C-terminal domains of the archaeal MCMs of Sulfolobus solfataricus (Sso) and Methanothermobacter thermautotrophicus (Mth). Those domains consist of a structurally conserved truncated winged helix (WH) domain lacking the two typical ‘wings’ of canonical WH domains. A less conserved N-terminal extension links this WH module to the MCM AAA+ domain forming the ATPase center. In the Sso MCM this linker contains a short α-helical element. Using Sso MCM mutants, including chimeric constructs containing Mth C-terminal domain elements, we show that the ATPase and helicase activity of the Sso MCM is significantly modulated by the short α-helical linker element and by N-terminal residues of the first α-helix of the truncated WH module. Finally, based on our structural and functional data, we present a docking-derived model of the Sso MCM, which implies an allosteric control of the ATPase center by the C-terminal domain. PMID:25712103

  11. Shape Transitions and Lattice Structuring of Ceramide-Enriched Domains Generated by Sphingomyelinase in Lipid Monolayers

    PubMed Central

    Härtel, Steffen; Fanani, María Laura; Maggio, Bruno

    2005-01-01

    Sphingomyelinases (SMases) hydrolyze the membrane constituent sphingomyelin (SM) to phosphocholine and ceramide (Cer). Growing evidence supports that SMase-induced SM→Cer conversion leads to the formation of lateral Cer-enriched domains which drive structural reorganization in lipid membranes. We previously provided visual evidence in real-time for the formation of Cer-enriched domains in SM monolayers through the action of the neutral Bacillus cereus SMase. In this work, we disclose a succession of discrete morphologic transitions and lateral organization of Cer-enriched domains that underlay the SMase-generated surface topography. We further reveal how these structural parameters couple to the generation of two-dimensional electrostatic fields, based upon the specific orientation of the lipid dipole moments in the Cer-enriched domains. Advanced image processing routines in combination with time-resolved epifluorescence microscopy on Langmuir monolayers revealed: 1), spontaneous nucleation and circular growth of Cer-enriched domains after injection of SMase into the subphase of the SM monolayer; 2), domain-intrinsic discrete transitions from circular to periodically undulating shapes followed by a second transition toward increasingly branched morphologies; 3), lateral superstructure organization into predominantly hexagonal domain lattices; 4), formation of super-superstructures by the hexagonal lattices; and 5), rotationally and laterally coupled domain movement before domain border contact. All patterns proved to be specific for the SMase-driven system since they could not be observed with Cer-enriched domains generated by defined mixtures of SM/Cer in enzyme-free monolayers at the same surface pressure (Π = 10 mN/m). Following the theories of lateral shape transitions, dipolar electrostatic interactions of lipid domains, and direct determinations of the monolayer dipole potential, our data show that SMase induces a domain-specific packing and orientation of

  12. Rational site-directed mutations of the LLP-1 and LLP-2 lentivirus lytic peptide domains in the intracytoplasmic tail of human immunodeficiency virus type 1 gp41 indicate common functions in cell-cell fusion but distinct roles in virion envelope incorporation.

    PubMed

    Kalia, Vandana; Sarkar, Surojit; Gupta, Phalguni; Montelaro, Ronald C

    2003-03-01

    Two highly conserved cationic amphipathic alpha-helical motifs, designated lentivirus lytic peptides 1 and 2 (LLP-1 and LLP-2), have been characterized in the carboxyl terminus of the transmembrane (TM) envelope glycoprotein (Env) of lentiviruses. Although various properties have been attributed to these domains, their structural and functional significance is not clearly understood. To determine the specific contributions of the Env LLP domains to Env expression, processing, and incorporation and to viral replication and syncytium induction, site-directed LLP mutants of a primary dualtropic infectious human immunodeficiency virus type 1 (HIV-1) isolate (ME46) were examined. Substitutions were made for highly conserved arginine residues in either the LLP-1 or LLP-2 domain (MX1 or MX2, respectively) or in both domains (MX4). The HIV-1 mutants with altered LLP domains demonstrated distinct phenotypes. The LLP-1 mutants (MX1 and MX4) were replication defective and showed an average of 85% decrease in infectivity, which was associated with an evident decrease in gp41 incorporation into virions without a significant decrease in Env expression or processing in transfected 293T cells. In contrast, MX2 virus was replication competent and incorporated a full complement of Env into its virions, indicating a differential role for the LLP-1 domain in Env incorporation. Interestingly, the replication-competent MX2 virus was impaired in its ability to induce syncytia in T-cell lines. This defect in cell-cell fusion did not correlate with apparent defects in the levels of cell surface Env expression, oligomerization, or conformation. The lack of syncytium formation, however, correlated with a decrease of about 90% in MX2 Env fusogenicity compared to that of wild-type Env in quantitative luciferase-based cell-cell fusion assays. The LLP-1 mutant MX1 and MX4 Envs also exhibited an average of 80% decrease in fusogenicity. Altogether, these results demonstrate for the first time that

  13. Solution structure of telomere binding domain of AtTRB2 derived from Arabidopsis thaliana

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yun, Ji-Hye; Lee, Won Kyung; Kim, Heeyoun

    Highlights: • We have determined solution structure of Myb domain of AtTRB2. • The Myb domain of AtTRB2 is located in the N-terminal region. • The Myb domain of AtTRB2 binds to plant telomeric DNA without fourth helix. • Helix 2 and 3 of the Myb domain of AtTRB2 are involved in DNA recognition. • AtTRB2 is a novel protein distinguished from other known plant TBP. - Abstract: Telomere homeostasis is regulated by telomere-associated proteins, and the Myb domain is well conserved for telomere binding. AtTRB2 is a member of the SMH (Single-Myb-Histone)-like family in Arabidopsis thaliana, having an N-terminalmore » Myb domain, which is responsible for DNA binding. The Myb domain of AtTRB2 contains three α-helices and loops for DNA binding, which is unusual given that other plant telomere-binding proteins have an additional fourth helix that is essential for DNA binding. To understand the structural role for telomeric DNA binding of AtTRB2, we determined the solution structure of the Myb domain of AtTRB2 (AtTRB2{sub 1–64}) using nuclear magnetic resonance (NMR) spectroscopy. In addition, the inter-molecular interaction between AtTRB2{sub 1–64} and telomeric DNA has been characterized by the electrophoretic mobility shift assay (EMSA) and NMR titration analyses for both plant (TTTAGGG)n and human (TTAGGG)n telomere sequences. Data revealed that Trp28, Arg29, and Val47 residues located in Helix 2 and Helix 3 are crucial for DNA binding, which are well conserved among other plant telomere binding proteins. We concluded that although AtTRB2 is devoid of the additional fourth helix in the Myb-extension domain, it is able to bind to plant telomeric repeat sequences as well as human telomeric repeat sequences.« less

  14. Crystal structure of the Rasputin NTF2-like domain from Drosophila melanogaster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vognsen, Tina, E-mail: tv@farma.ku.dk; Kristensen, Ole, E-mail: ok@farma.ku.dk

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer The crystal structure of the NTF2-like domain of Rasputin protein is presented. Black-Right-Pointing-Pointer Differences to known ligand binding sites of nuclear transport factor 2 are discussed. Black-Right-Pointing-Pointer A new ligand binding site for the Rasputin and G3BP proteins is proposed. -- Abstract: The crystal structure of the NTF2-like domain of the Drosophila homolog of Ras GTPase SH3 Binding Protein (G3BP), Rasputin, was determined at 2.7 A resolution. The overall structure is highly similar to nuclear transport factor 2: It is a homodimer comprised of a {beta}-sheet and three {alpha}-helices forming a cone-like shape. However, known binding sites formore » RanGDP and FxFG containing peptides show electrostatic and steric differences compared to nuclear transport factor 2. A HEPES molecule bound in the structure suggests a new, and possibly physiologically relevant, ligand binding site.« less

  15. Crystal structure of the second fibronectin type III (FN3) domain from human collagen α1 type XX.

    PubMed

    Zhao, Jingfeng; Ren, Jixia; Wang, Nan; Cheng, Zhong; Yang, Runmei; Lin, Gen; Guo, Yi; Cai, Dayong; Xie, Yong; Zhao, Xiaohong

    2017-12-01

    Collagen α1 type XX, which contains fibronectin type III (FN3) repeats involving six FN3 domains (referred to as the FN#1-FN#6 domains), is an unusual member of the fibril-associated collagens with interrupted triple helices (FACIT) subfamily of collagens. The results of standard protein BLAST suggest that the FN3 repeats might contribute to collagen α1 type XX acting as a cytokine receptor. To date, solution NMR structures of the FN#3, FN#4 and FN#6 domains have been determined. To obtain further structural evidence to understand the relationship between the structure and function of the FN3 repeats from collagen α1 type XX, the crystal structure of the FN#2 domain from human collagen α1 type XX (residues Pro386-Pro466; referred to as FN2-HCXX) was solved at 2.5 Å resolution. The crystal structure of FN2-HCXX shows an immunoglobulin-like fold containing a β-sandwich structure, which is formed by a three-stranded β-sheet (β1, β2 and β5) packed onto a four-stranded β-sheet (β3, β4, β6 and β7). Two consensus domains, tencon and fibcon, are structural analogues of FN2-HCXX. Fn8, an FN3 domain from human oncofoetal fibronectin, is the closest structural analogue of FN2-HCXX derived from a naturally occurring sequence. Based solely on the structural similarity of FN2-HCXX to other FN3 domains, the detailed functions of FN2-HCXX and the FN3 repeats in collagen α1 type XX cannot be identified.

  16. Prioritisation of associations between protein domains and complex diseases using domain-domain interaction networks.

    PubMed

    Wang, W; Zhang, W; Jiang, R; Luan, Y

    2010-05-01

    It is of vital importance to find genetic variants that underlie human complex diseases and locate genes that are responsible for these diseases. Since proteins are typically composed of several structural domains, it is reasonable to assume that harmful genetic variants may alter structures of protein domains, affect functions of proteins and eventually cause disorders. With this understanding, the authors explore the possibility of recovering associations between protein domains and complex diseases. The authors define associations between protein domains and disease families on the basis of associations between non-synonymous single nucleotide polymorphisms (nsSNPs) and complex diseases, similarities between diseases, and relations between proteins and domains. Based on a domain-domain interaction network, the authors propose a 'guilt-by-proximity' principle to rank candidate domains according to their average distance to a set of seed domains in the domain-domain interaction network. The authors validate the method through large-scale cross-validation experiments on simulated linkage intervals, random controls and the whole genome. Results show that areas under receiver operating characteristic curves (AUC scores) can be as high as 77.90%, and the mean rank ratios can be as low as 21.82%. The authors further offer a freely accessible web interface for a genome-wide landscape of associations between domains and disease families.

  17. Supplementary motor area as key structure for domain-general sequence processing: A unified account.

    PubMed

    Cona, Giorgia; Semenza, Carlo

    2017-01-01

    The Supplementary Motor Area (SMA) is considered as an anatomically and functionally heterogeneous region and is implicated in several functions. We propose that SMA plays a crucial role in domain-general sequence processes, contributing to the integration of sequential elements into higher-order representations regardless of the nature of such elements (e.g., motor, temporal, spatial, numerical, linguistic, etc.). This review emphasizes the domain-general involvement of the SMA, as this region has been found to support sequence operations in a variety of cognitive domains that, albeit different, share an inherent sequence processing. These include action, time and spatial processing, numerical cognition, music and language processing, and working memory. In this light, we reviewed and synthesized recent neuroimaging, stimulation and electrophysiological studies in order to compare and reconcile the distinct sources of data by proposing a unifying account for the role of the SMA. We also discussed the differential contribution of the pre-SMA and SMA-proper in sequence operations, and possible neural mechanisms by which such operations are executed. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Structural Insight into the Mechanism of c-di-GMP hydrolysis by EAL domain phosphodiesterases.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tchigvintsev, A.; Xu, X.; Singer, A.

    2010-08-01

    Cyclic diguanylate (or bis-(3'-5') cyclic dimeric guanosine monophosphate; c-di-GMP) is a ubiquitous second messenger that regulates diverse cellular functions, including motility, biofilm formation, cell cycle progression, and virulence in bacteria. In the cell, degradation of c-di-GMP is catalyzed by highly specific EAL domain phosphodiesterases whose catalytic mechanism is still unclear. Here, we purified 13 EAL domain proteins from various organisms and demonstrated that their catalytic activity is associated with the presence of 10 conserved EAL domain residues. The crystal structure of the TBD1265 EAL domain was determined in free state (1.8 {angstrom}) and in complex with c-di-GMP (2.35 {angstrom}), andmore » unveiled the role of conserved residues in substrate binding and catalysis. The structure revealed the presence of two metal ions directly coordinated by six conserved residues, two oxygens of c-di-GMP phosphate, and potential catalytic water molecule. Our results support a two-metal-ion catalytic mechanism of c-di-GMP hydrolysis by EAL domain phosphodiesterases.« less

  19. Role of structural inheritance on present-day deformation in intraplate domains

    NASA Astrophysics Data System (ADS)

    Tarayoun, A.; Mazzotti, S.; Gueydan, F.

    2017-12-01

    Understanding the role of structural inheritance on present day surface deformation is a key element for better characterizing the dynamism of intraplate earthquakes. Current deformation and seismicity are poorly understood phenomenon in intra-continental domains. A commonly used hypothesis, based on observations, suggests that intraplate deformation is related to the reactivation of large tectonic paleo-structures, which can act as locally weakened domains. The objective of our study is to quantify the impact of these weakened areas on present-day strain localizations and rates. We combine GPS observations and numerical modeling to analyze the role of structural inheritance on strain rates, with specific observations along the St. Lawrence Valley of eastern Canada. We processed 143 GPS stations from five different networks, in particular one dense campaign network situated along a recognized major normal faults system of the Iapetus paleo-rift, in order to accurately determine the GPS velocities and strain rates. Results of strain rates show magnitude varying from 1.5x10-10 to 6.8x10-9 yr-1 in the St Lawrence valley. Weakened area strain rates are up to one order of magnitude higher than surrounding areas. We compare strain rates inferred from GPS and the new postglacial rebound model. We found that GPS signal is one order of magnitude higher in the weakened zone, which is likely due to structural inheritance. The numerical modeling investigates the steady-state deformation of the continental lithosphere with presence of a weak area. Our new approach integrates ductile structural inheritance using a weakening coefficient that decreases the lithosphere strength at different depths. This allows studying crustal strain rates mainly as a function of rheological contrast and geometry of the weakened domains. Comparison between model predictions and observed GPS strain rates will allow us to investigate the respective role of crustal and mantle tectonic inheritance.

  20. Interface Engineering of Domain Structures in BiFeO 3 Thin Films

    DOE PAGES

    Chen, Deyang; Chen, Zuhuang; He, Qian; ...

    2016-12-07

    A wealth of fascinating phenomena have been discovered at the BiFeO 3 domain walls, examples such as domain wall conductivity, photovoltaic effects, and magnetoelectric coupling. Thus, the ability to precisely control the domain structures and accurately study their switching behaviors is critical to realize the next generation of novel devices based on domain wall functionalities. In this work, the introduction of a dielectric layer leads to the tunability of the depolarization field both in the multilayers and superlattices, which provides a novel approach to control the domain patterns of BiFeO 3 films. Moreover, we are able to study the switchingmore » behavior of the first time obtained periodic 109° stripe domains with a thick bottom electrode. Besides, the precise controlling of pure 71° and 109° periodic stripe domain walls enable us to make a clear demonstration that the exchange bias in the ferromagnet/BiFeO 3 system originates from 109° domain walls. Lastly, our findings provide future directions to study the room temperature electric field control of exchange bias and open a new pathway to explore the room temperature multiferroic vortices in the BiFeO 3 system.« less

  1. Structural landscape of the proline-rich domain of Sos1 nucleotide exchange factor.

    PubMed

    McDonald, Caleb B; Bhat, Vikas; Kurouski, Dmitry; Mikles, David C; Deegan, Brian J; Seldeen, Kenneth L; Lednev, Igor K; Farooq, Amjad

    2013-01-01

    Despite its key role in mediating a plethora of cellular signaling cascades pertinent to health and disease, little is known about the structural landscape of the proline-rich (PR) domain of Sos1 guanine nucleotide exchange factor. Herein, using a battery of biophysical tools, we provide evidence that the PR domain of Sos1 is structurally disordered and adopts an extended random coil-like conformation in solution. Of particular interest is the observation that while chemical denaturation of PR domain results in the formation of a significant amount of polyproline II (PPII) helices, it has little or negligible effect on its overall size as measured by its hydrodynamic radius. Our data also show that the PR domain displays a highly dynamic conformational basin in agreement with the knowledge that the intrinsically unstructured proteins rapidly interconvert between an ensemble of conformations. Collectively, our study provides new insights into the conformational equilibrium of a key signaling molecule with important consequences on its physiological function. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Accommodation of structural rearrangements in the huntingtin-interacting protein 1 coiled-coil domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilbur, Jeremy D., E-mail: jwilbur@msg.ucsf.edu; Hwang, Peter K.; Brodsky, Frances M.

    2010-03-01

    Variable packing interaction related to the conformational flexibility within the huntingtin-interacting protein 1 coiled coil domain. Huntingtin-interacting protein 1 (HIP1) is an important link between the actin cytoskeleton and clathrin-mediated endocytosis machinery. HIP1 has also been implicated in the pathogenesis of Huntington’s disease. The binding of HIP1 to actin is regulated through an interaction with clathrin light chain. Clathrin light chain binds to a flexible coiled-coil domain in HIP1 and induces a compact state that is refractory to actin binding. To understand the mechanism of this conformational regulation, a high-resolution crystal structure of a stable fragment from the HIP1 coiled-coilmore » domain was determined. The flexibility of the HIP1 coiled-coil region was evident from its variation from a previously determined structure of a similar region. A hydrogen-bond network and changes in coiled-coil monomer interaction suggest that the HIP1 coiled-coil domain is uniquely suited to allow conformational flexibility.« less

  3. Tip-induced domain structures and polarization switching in ferroelectric amino acid glycine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seyedhosseini, E., E-mail: Seyedhosseini@ua.pt; Ivanov, M.; Bdikin, I.

    2015-08-21

    Bioorganic ferroelectrics and piezoelectrics are becoming increasingly important in view of their intrinsic compatibility with biological environment and biofunctionality combined with strong piezoelectric effect and a switchable polarization at room temperature. Here, we study tip-induced domain structures and polarization switching in the smallest amino acid β-glycine, representing a broad class of non-centrosymmetric amino acids. We show that β-glycine is indeed a room-temperature ferroelectric and polarization can be switched by applying a bias to non-polar cuts via a conducting tip of atomic force microscope (AFM). Dynamics of these in-plane domains is studied as a function of an applied voltage and pulsemore » duration. The domain shape is dictated by polarization screening at the domain boundaries and mediated by growth defects. Thermodynamic theory is applied to explain the domain propagation induced by the AFM tip. Our findings suggest that the properties of β-glycine are controlled by the charged domain walls which in turn can be manipulated by an external bias.« less

  4. Structure and Dynamics of Domains in Ferroelectric Nanostructures. In-situ TEM Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pan, Xiaoqing

    2015-06-30

    The goal of this project was to explore the structure and dynamic behaviors of ferroelectric domains in ferroelectric thin films and nanostructures by advanced transmission electron microscopy (TEM) techniques in close collaboration with phase field modeling. The experimental techniques used include aberration-corrected sub-Å resolution TEM and in-situ TEM using a novel scanning tunneling microscopy (STM) - TEM holder that allows the direct observation of nucleation and dynamic evolution of ferroelectric domains under applied electric field. Specifically, this project was aimed to (1) to study the roles of static electrical boundary conditions and electrical charge in controlling the equilibrium domain structuresmore » of BiFeO 3 thin films with controlled substrate constraints, (2) to explore the fundamental mechanisms of ferroelectric domain nucleation, growth, and switching under an applied electric field in both uniform thin films and nanostructures, and to understand the roles of crystal defects such as dislocations and interfaces in these processes, (3) to understand the physics of ferroelectric domain walls and the influence of defects on the electrical switching of ferroelectric domains.« less

  5. How localized is ``local?'' Efficiency vs. accuracy of O(N) domain decomposition in local orbital based all-electron electronic structure theory

    NASA Astrophysics Data System (ADS)

    Havu, Vile; Blum, Volker; Scheffler, Matthias

    2007-03-01

    Numeric atom-centered local orbitals (NAO) are efficient basis sets for all-electron electronic structure theory. The locality of NAO's can be exploited to render (in principle) all operations of the self-consistency cycle O(N). This is straightforward for 3D integrals using domain decomposition into spatially close subsets of integration points, enabling critical computational savings that are effective from ˜tens of atoms (no significant overhead for smaller systems) and make large systems (100s of atoms) computationally feasible. Using a new all-electron NAO-based code,^1 we investigate the quantitative impact of exploiting this locality on two distinct classes of systems: Large light-element molecules [Alanine-based polypeptide chains (Ala)n], and compact transition metal clusters. Strict NAO locality is achieved by imposing a cutoff potential with an onset radius rc, and exploited by appropriately shaped integration domains (subsets of integration points). Conventional tight rc<= 3å have no measurable accuracy impact in (Ala)n, but introduce inaccuracies of 20-30 meV/atom in Cun. The domain shape impacts the computational effort by only 10-20 % for reasonable rc. ^1 V. Blum, R. Gehrke, P. Havu, V. Havu, M. Scheffler, The FHI Ab Initio Molecular Simulations (aims) Project, Fritz-Haber-Institut, Berlin (2006).

  6. Three-dimensional reconstructions of the bacteriophage CUS-3 virion reveal a conserved coat protein I-domain but a distinct tailspike receptor-binding domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parent, Kristin N., E-mail: kparent@msu.edu; Tang, Jinghua; Cardone, Giovanni

    CUS-3 is a short-tailed, dsDNA bacteriophage that infects serotype K1 Escherichia coli. We report icosahedrally averaged and asymmetric, three-dimensional, cryo-electron microscopic reconstructions of the CUS-3 virion. Its coat protein structure adopts the “HK97-fold” shared by other tailed phages and is quite similar to that in phages P22 and Sf6 despite only weak amino acid sequence similarity. In addition, these coat proteins share a unique extra external domain (“I-domain”), suggesting that the group of P22-like phages has evolved over a very long time period without acquiring a new coat protein gene from another phage group. On the other hand, the morphologymore » of the CUS-3 tailspike differs significantly from that of P22 or Sf6, but is similar to the tailspike of phage K1F, a member of the extremely distantly related T7 group of phages. We conclude that CUS-3 obtained its tailspike gene from a distantly related phage quite recently. - Highlights: • Asymmetric and symmetric three-dimensional reconstructions of phage CUS-3 are presented. • CUS-3 major capsid protein has a conserved I-domain, which is found in all three categories of “P22-like phage”. • CUS-3 has very different tailspike receptor binding domain from those of P22 and Sf6. • The CUS-3 tailspike likely was acquired by horizontal gene transfer.« less

  7. The PYRIN domain: A member of the death domain-fold superfamily

    PubMed Central

    Fairbrother, Wayne J.; Gordon, Nathaniel C.; Humke, Eric W.; O'Rourke, Karen M.; Starovasnik, Melissa A.; Yin, Jian-Ping; Dixit, Vishva M.

    2001-01-01

    PYRIN domains were identified recently as putative protein–protein interaction domains at the N-termini of several proteins thought to function in apoptotic and inflammatory signaling pathways. The ∼95 residue PYRIN domains have no statistically significant sequence homology to proteins with known three-dimensional structure. Using secondary structure prediction and potential-based fold recognition methods, however, the PYRIN domain is predicted to be a member of the six-helix bundle death domain-fold superfamily that includes death domains (DDs), death effector domains (DEDs), and caspase recruitment domains (CARDs). Members of the death domain-fold superfamily are well established mediators of protein–protein interactions found in many proteins involved in apoptosis and inflammation, indicating further that the PYRIN domains serve a similar function. An homology model of the PYRIN domain of CARD7/DEFCAP/NAC/NALP1, a member of the Apaf-1/Ced-4 family of proteins, was constructed using the three-dimensional structures of the FADD and p75 neurotrophin receptor DDs, and of the Apaf-1 and caspase-9 CARDs, as templates. Validation of the model using a variety of computational techniques indicates that the fold prediction is consistent with the sequence. Comparison of a circular dichroism spectrum of the PYRIN domain of CARD7/DEFCAP/NAC/NALP1 with spectra of several proteins known to adopt the death domain-fold provides experimental support for the structure prediction. PMID:11514682

  8. Parental Provision of Structure: Implementation and Correlates in Three Domains

    ERIC Educational Resources Information Center

    Grolnick, Wendy S.; Raftery-Helmer, Jacquelyn N.; Marbell, Kristine N; Flamm, Elizabeth S.; Cardemil, Esteban V.

    2014-01-01

    This study examined parents' provision of "structure," defined as the organization of the environment to facilitate competence, and the degree to which it supports versus controls children's autonomy, in the domains of homework and studying, unsupervised time, and responsibilities in a diverse sample of sixth-grade children and their…

  9. Structure of bacteriophage T4 fibritin: a segmented coiled coil and the role of the C-terminal domain.

    PubMed

    Tao, Y; Strelkov, S V; Mesyanzhinov, V V; Rossmann, M G

    1997-06-15

    Oligomeric coiled-coil motifs are found in numerous protein structures; among them is fibritin, a structural protein of bacteriophage T4, which belongs to a class of chaperones that catalyze a specific phage-assembly process. Fibritin promotes the assembly of the long tail fibers and their subsequent attachment to the tail baseplate; it is also a sensing device that controls the retraction of the long tail fibers in adverse environments and, thus, prevents infection. The structure of fibritin had been predicted from sequence and biochemical analyses to be mainly a triple-helical coiled coil. The determination of its structure at atomic resolution was expected to give insights into the assembly process and biological function of fibritin, and the properties of modified coiled-coil structures in general. The three-dimensional structure of fibritin E, a deletion mutant of wild-type fibritin, was determined to 2.2 A resolution by X-ray crystallography. Three identical subunits of 119 amino acid residues form a trimeric parallel coiled-coil domain and a small globular C-terminal domain about a crystallographic threefold axis. The coiled-coil domain is divided into three segments that are separated by insertion loops. The C-terminal domain, which consists of 30 residues from each subunit, contains a beta-propeller-like structure with a hydrophobic interior. The residues within the C-terminal domain make extensive hydrophobic and some polar intersubunit interactions. This is consistent with the C-terminal domain being important for the correct assembly of fibritin, as shown earlier by mutational studies. Tight interactions between the C-terminal residues of adjacent subunits counteract the latent instability that is suggested by the structural properties of the coiled-coil segments. Trimerization is likely to begin with the formation of the C-terminal domain which subsequently initiates the assembly of the coiled coil. The interplay between the stabilizing effect of the C

  10. Structures of a Nonribosomal Peptide Synthetase Module Bound to MbtH-like Proteins Support a Highly Dynamic Domain Architecture*

    PubMed Central

    Miller, Bradley R.; Drake, Eric J.; Shi, Ce; Aldrich, Courtney C.; Gulick, Andrew M.

    2016-01-01

    Nonribosomal peptide synthetases (NRPSs) produce a wide variety of peptide natural products. During synthesis, the multidomain NRPSs act as an assembly line, passing the growing product from one module to the next. Each module generally consists of an integrated peptidyl carrier protein, an amino acid-loading adenylation domain, and a condensation domain that catalyzes peptide bond formation. Some adenylation domains interact with small partner proteins called MbtH-like proteins (MLPs) that enhance solubility or activity. A structure of an MLP bound to an adenylation domain has been previously reported using a truncated adenylation domain, precluding any insight that might be derived from understanding the influence of the MLP on the intact adenylation domain or on the dynamics of the entire NRPS module. Here, we present the structures of the full-length NRPS EntF bound to the MLPs from Escherichia coli and Pseudomonas aeruginosa. These new structures, along with biochemical and bioinformatics support, further elaborate the residues that define the MLP-adenylation domain interface. Additionally, the structures highlight the dynamic behavior of NRPS modules, including the module core formed by the adenylation and condensation domains as well as the orientation of the mobile thioesterase domain. PMID:27597544

  11. Crystal Structure of the Extracellular Cholinesterase-Like Domain from Neuroligin-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koehnke,J.; Jin, X.; Budreck, E.

    Neuroligins (NLs) are catalytically inactive members of a family of cholinesterase-like transmembrane proteins that mediate cell adhesion at neuronal synapses. Postsynaptic neuroligins engage in Ca2+-dependent transsynaptic interactions via their extracellular cholinesterase domain with presynaptic neurexins (NRXs). These interactions may be regulated by two short splice insertions (termed A and B) in the NL cholinesterase domain. Here, we present the 3.3- Angstroms crystal structure of the ectodomain from NL2 containing splice insertion A (NL2A). The overall structure of NL2A resembles that of cholinesterases, but several structural features are unique to the NL proteins. First, structural elements surrounding the esterase active-site regionmore » differ significantly between active esterases and NL2A. On the opposite surface of the NL2A molecule, the positions of the A and B splice insertions identify a candidate NRX interaction site of the NL protein. Finally, sequence comparisons of NL isoforms allow for mapping the location of residues of previously identified mutations in NL3 and NL4 found in patients with autism spectrum disorders. Overall, the NL2 structure promises to provide a valuable model for dissecting NL isoform- and synapse-specific functions.« less

  12. Evolution driven structural changes in CENP-E motor domain.

    PubMed

    Kumar, Ambuj; Kamaraj, Balu; Sethumadhavan, Rao; Purohit, Rituraj

    2013-06-01

    Genetic evolution corresponds to various biochemical changes that are vital development of new functional traits. Phylogenetic analysis has provided an important insight into the genetic closeness among species and their evolutionary relationships. Centromere-associated protein-E (CENP-E) protein is vital for maintaining cell cycle and checkpoint signal mechanisms are vital for recruitment process of other essential kinetochore proteins. In this study we have focussed on the evolution driven structural changes in CENP-E motor domain among primate lineage. Through molecular dynamics simulation and computational chemistry approaches we examined the changes in ATP binding affinity and conformational deviations in human CENP-E motor domain as compared to the other primates. Root mean square deviation (RMSD), Root mean square fluctuation (RMSF), Radius of gyration (Rg) and principle component analysis (PCA) results together suggested a gain in stability level as we move from tarsier towards human. This study provides a significant insight into how the cell cycle proteins and their corresponding biochemical activities are evolving and illustrates the potency of a theoretical approach for assessing, in a single study, the structural, functional, and dynamical aspects of protein evolution.

  13. Fibrinogen-Related Proteins in Tissue Repair: How a Unique Domain with a Common Structure Controls Diverse Aspects of Wound Healing.

    PubMed

    Zuliani-Alvarez, Lorena; Midwood, Kim S

    2015-05-01

    Significance: Fibrinogen-related proteins (FRePs) comprise an intriguing collection of extracellular molecules, each containing a conserved fibrinogen-like globe (FBG). This group includes the eponymous fibrinogen as well as the tenascin, angiopoietin, and ficolin families. Many of these proteins are upregulated during tissue repair and exhibit diverse roles during wound healing. Recent Advances: An increasing body of evidence highlights the specific expression of a number of FRePs following tissue injury and infection. Upon induction, each FReP uses its FBG domain to mediate quite distinct effects that contribute to different stages of tissue repair, such as driving coagulation, pathogen detection, inflammation, angiogenesis, and tissue remodeling. Critical Issues: Despite a high degree of homology among FRePs, each contains unique sequences that enable their diversification of function. Comparative analysis of the structure and function of FRePs and precise mapping of regions that interact with a variety of ligands has started to reveal the underlying molecular mechanisms by which these proteins play very different roles using their common domain. Future Directions: Fibrinogen has long been used in the clinic as a synthetic matrix serving as a scaffold or a delivery system to aid tissue repair. Novel therapeutic strategies are now emerging that harness the use of other FRePs to improve wound healing outcomes. As we learn more about the underlying mechanisms by which each FReP contributes to the repair response, specific blockade, or indeed potentiation, of their function offers real potential to enable regulation of distinct processes during pathological wound healing.

  14. Distinct pathways of neural coupling for different basic emotions.

    PubMed

    Tettamanti, Marco; Rognoni, Elena; Cafiero, Riccardo; Costa, Tommaso; Galati, Dario; Perani, Daniela

    2012-01-16

    Emotions are complex events recruiting distributed cortical and subcortical cerebral structures, where the functional integration dynamics within the involved neural circuits in relation to the nature of the different emotions are still unknown. Using fMRI, we measured the neural responses elicited by films representing basic emotions (fear, disgust, sadness, happiness). The amygdala and the associative cortex were conjointly activated by all basic emotions. Furthermore, distinct arrays of cortical and subcortical brain regions were additionally activated by each emotion, with the exception of sadness. Such findings informed the definition of three effective connectivity models, testing for the functional integration of visual cortex and amygdala, as regions processing all emotions, with domain-specific regions, namely: i) for fear, the frontoparietal system involved in preparing adaptive motor responses; ii) for disgust, the somatosensory system, reflecting protective responses against contaminating stimuli; iii) for happiness: medial prefrontal and temporoparietal cortices involved in understanding joyful interactions. Consistently with these domain-specific models, the results of the effective connectivity analysis indicate that the amygdala is involved in distinct functional integration effects with cortical networks processing sensorimotor, somatosensory, or cognitive aspects of basic emotions. The resulting effective connectivity networks may serve to regulate motor and cognitive behavior based on the quality of the induced emotional experience. Copyright © 2011. Published by Elsevier Inc.

  15. Predicting domain-domain interaction based on domain profiles with feature selection and support vector machines

    PubMed Central

    2010-01-01

    Background Protein-protein interaction (PPI) plays essential roles in cellular functions. The cost, time and other limitations associated with the current experimental methods have motivated the development of computational methods for predicting PPIs. As protein interactions generally occur via domains instead of the whole molecules, predicting domain-domain interaction (DDI) is an important step toward PPI prediction. Computational methods developed so far have utilized information from various sources at different levels, from primary sequences, to molecular structures, to evolutionary profiles. Results In this paper, we propose a computational method to predict DDI using support vector machines (SVMs), based on domains represented as interaction profile hidden Markov models (ipHMM) where interacting residues in domains are explicitly modeled according to the three dimensional structural information available at the Protein Data Bank (PDB). Features about the domains are extracted first as the Fisher scores derived from the ipHMM and then selected using singular value decomposition (SVD). Domain pairs are represented by concatenating their selected feature vectors, and classified by a support vector machine trained on these feature vectors. The method is tested by leave-one-out cross validation experiments with a set of interacting protein pairs adopted from the 3DID database. The prediction accuracy has shown significant improvement as compared to InterPreTS (Interaction Prediction through Tertiary Structure), an existing method for PPI prediction that also uses the sequences and complexes of known 3D structure. Conclusions We show that domain-domain interaction prediction can be significantly enhanced by exploiting information inherent in the domain profiles via feature selection based on Fisher scores, singular value decomposition and supervised learning based on support vector machines. Datasets and source code are freely available on the web at http

  16. The structural role of the zinc ion can be dispensable in prokaryotic zinc-finger domains

    PubMed Central

    Baglivo, Ilaria; Russo, Luigi; Esposito, Sabrina; Malgieri, Gaetano; Renda, Mario; Salluzzo, Antonio; Di Blasio, Benedetto; Isernia, Carla; Fattorusso, Roberto; Pedone, Paolo V.

    2009-01-01

    The recent characterization of the prokaryotic Cys2His2 zinc-finger domain, identified in Ros protein from Agrobacterium tumefaciens, has demonstrated that, although possessing a similar zinc coordination sphere, this domain is structurally very different from its eukaryotic counterpart. A search in the databases has identified ≈300 homologues with a high sequence identity to the Ros protein, including the amino acids that form the extensive hydrophobic core in Ros. Surprisingly, the Cys2His2 zinc coordination sphere is generally poorly conserved in the Ros homologues, raising the question of whether the zinc ion is always preserved in these proteins. Here, we present a functional and structural study of a point mutant of Ros protein, Ros56–142C82D, in which the second coordinating cysteine is replaced by an aspartate, 5 previously-uncharacterized representative Ros homologues from Mesorhizobium loti, and 2 mutants of the homologues. Our results indicate that the prokaryotic zinc-finger domain, which in Ros protein tetrahedrally coordinates Zn(II) through the typical Cys2His2 coordination, in Ros homologues can either exploit a CysAspHis2 coordination sphere, previously never described in DNA binding zinc finger domains to our knowledge, or lose the metal, while still preserving the DNA-binding activity. We demonstrate that this class of prokaryotic zinc-finger domains is structurally very adaptable, and surprisingly single mutations can transform a zinc-binding domain into a nonzinc-binding domain and vice versa, without affecting the DNA-binding ability. In light of our findings an evolutionary link between the prokaryotic and eukaryotic zinc-finger domains, based on bacteria-to-eukaryota horizontal gene transfer, is discussed. PMID:19369210

  17. The guanine nucleotide exchange factor Ric-8A induces domain separation and Ras domain plasticity in Gαi1

    PubMed Central

    Van Eps, Ned; Thomas, Celestine J.; Hubbell, Wayne L.; Sprang, Stephen R.

    2015-01-01

    Heterotrimeric G proteins are activated by exchange of GDP for GTP at the G protein alpha subunit (Gα), most notably by G protein-coupled transmembrane receptors. Ric-8A is a soluble cytoplasmic protein essential for embryonic development that acts as both a guanine nucleotide exchange factor (GEF) and a chaperone for Gα subunits of the i, q, and 12/13 classes. Previous studies demonstrated that Ric-8A stabilizes a dynamically disordered state of nucleotide-free Gα as the catalytic intermediate for nucleotide exchange, but no information was obtained on the structures involved or the magnitude of the structural fluctuations. In the present study, site-directed spin labeling (SDSL) together with double electron-electron resonance (DEER) spectroscopy is used to provide global distance constraints that identify discrete members of a conformational ensemble in the Gαi1:Ric-8A complex and the magnitude of structural differences between them. In the complex, the helical and Ras-like nucleotide-binding domains of Gαi1 pivot apart to occupy multiple resolved states with displacements as large as 25 Å. The domain displacement appears to be distinct from that observed in Gαs upon binding of Gs to the β2 adrenergic receptor. Moreover, the Ras-like domain exhibits structural plasticity within and around the nucleotide-binding cavity, and the switch I and switch II regions, which are known to adopt different conformations in the GDP- and GTP-bound states of Gα, undergo structural rearrangements. Collectively, the data show that Ric-8A induces a conformationally heterogeneous state of Gαi and provide insight into the mechanism of action of a nonreceptor Gα GEF. PMID:25605908

  18. Low field domain wall dynamics in artificial spin-ice basis structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, J.; School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798; Goolaup, S.

    2015-10-28

    Artificial magnetic spin-ice nanostructures provide an ideal platform for the observation of magnetic monopoles. The formation of a magnetic monopole is governed by the motion of a magnetic charge carrier via the propagation of domain walls (DWs) in a lattice. To date, most experiments have been on the static visualization of DW propagation in the lattice. In this paper, we report on the low field dynamics of DW in a unit spin-ice structure measured by magnetoresistance changes. Our results show that reversible DW propagation can be initiated within the spin-ice basis. The initial magnetization configuration of the unit structure stronglymore » influences the direction of DW motion in the branches. Single or multiple domain wall nucleation can be induced in the respective branches of the unit spin ice by the direction of the applied field.« less

  19. Structural basis for different phosphoinositide specificities of the PX domains of sorting nexins regulating G-protein signaling.

    PubMed

    Mas, Caroline; Norwood, Suzanne J; Bugarcic, Andrea; Kinna, Genevieve; Leneva, Natalya; Kovtun, Oleksiy; Ghai, Rajesh; Ona Yanez, Lorena E; Davis, Jasmine L; Teasdale, Rohan D; Collins, Brett M

    2014-10-10

    Sorting nexins (SNXs) or phox homology (PX) domain containing proteins are central regulators of cell trafficking and signaling. A subfamily of PX domain proteins possesses two unique PX-associated domains, as well as a regulator of G protein-coupled receptor signaling (RGS) domain that attenuates Gαs-coupled G protein-coupled receptor signaling. Here we delineate the structural organization of these RGS-PX proteins, revealing a protein family with a modular architecture that is conserved in all eukaryotes. The one exception to this is mammalian SNX19, which lacks the typical RGS structure but preserves all other domains. The PX domain is a sensor of membrane phosphoinositide lipids and we find that specific sequence alterations in the PX domains of the mammalian RGS-PX proteins, SNX13, SNX14, SNX19, and SNX25, confer differential phosphoinositide binding preferences. Although SNX13 and SNX19 PX domains bind the early endosomal lipid phosphatidylinositol 3-phosphate, SNX14 shows no membrane binding at all. Crystal structures of the SNX19 and SNX14 PX domains reveal key differences, with alterations in SNX14 leading to closure of the binding pocket to prevent phosphoinositide association. Our findings suggest a role for alternative membrane interactions in spatial control of RGS-PX proteins in cell signaling and trafficking. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Crystal Structure of a Complex of the Intracellular Domain of Interferon λ Receptor 1 (IFNLR1) and the FERM/SH2 Domains of Human JAK1.

    PubMed

    Zhang, Di; Wlodawer, Alexander; Lubkowski, Jacek

    2016-11-20

    The crystal structure of a construct consisting of the FERM and SH2-like domains of the human Janus kinase 1 (JAK1) bound to a fragment of the intracellular domain of the interferon-λ receptor 1 (IFNLR1) has been determined at the nominal resolution of 2.1Å. In this structure, the receptor peptide forms an 85-Å-long extended chain, in which both the previously identified box1 and box2 regions bind simultaneously to the FERM and SH2-like domains of JAK1. Both domains of JAK1 are generally well ordered, with regions not seen in the crystal structure limited to loops located away from the receptor-binding regions. The structure provides a much more complete and accurate picture of the interactions between JAK1 and IFNLR1 than those given in earlier reports, illuminating the molecular basis of the JAK-cytokine receptor association. A glutamate residue adjacent to the box2 region in IFNLR1 mimics the mode of binding of a phosphotyrosine in classical SH2 domains. It was shown here that a deletion of residues within the box1 region of the receptor abolishes stable interactions with JAK1, although it was previously shown that box2 alone is sufficient to stabilize a similar complex of the interferon-α receptor and TYK2. Published by Elsevier Ltd.

  1. Different functional modes of BAR domain proteins in formation and plasticity of mammalian postsynapses.

    PubMed

    Kessels, Michael M; Qualmann, Britta

    2015-09-01

    A plethora of cell biological processes involve modulations of cellular membranes. By using extended lipid-binding interfaces, some proteins have the power to shape membranes by attaching to them. Among such membrane shapers, the superfamily of Bin-Amphiphysin-Rvs (BAR) domain proteins has recently taken center stage. Extensive structural work on BAR domains has revealed a common curved fold that can serve as an extended membrane-binding interface to modulate membrane topologies and has allowed the grouping of the BAR domain superfamily into subfamilies with structurally slightly distinct BAR domain subtypes (N-BAR, BAR, F-BAR and I-BAR). Most BAR superfamily members are expressed in the mammalian nervous system. Neurons are elaborately shaped and highly compartmentalized cells. Therefore, analyses of synapse formation and of postsynaptic reorganization processes (synaptic plasticity) - a basis for learning and memory formation - has unveiled important physiological functions of BAR domain superfamily members. These recent advances, furthermore, have revealed that the functions of BAR domain proteins include different aspects. These functions are influenced by the often complex domain organization of BAR domain proteins. In this Commentary, we review these recent insights and propose to classify BAR domain protein functions into (1) membrane shaping, (2) physical integration, (3) action through signaling components, and (4) suppression of other BAR domain functions. © 2015. Published by The Company of Biologists Ltd.

  2. The periplasmic domain of Escherichia coli outer membrane protein A can undergo a localized temperature dependent structural transition.

    PubMed

    Ishida, Hiroaki; Garcia-Herrero, Alicia; Vogel, Hans J

    2014-12-01

    Gram-negative bacteria such as Escherichia coli are surrounded by two membranes with a thin peptidoglycan (PG)-layer located in between them in the periplasmic space. The outer membrane protein A (OmpA) is a 325-residue protein and it is the major protein component of the outer membrane of E. coli. Previous structure determinations have focused on the N-terminal fragment (residues 1-171) of OmpA, which forms an eight stranded transmembrane β-barrel in the outer membrane. Consequently it was suggested that OmpA is composed of two independently folded domains in which the N-terminal β-barrel traverses the outer membrane and the C-terminal domain (residues 180-325) adopts a folded structure in the periplasmic space. However, some reports have proposed that full-length OmpA can instead refold in a temperature dependent manner into a single domain forming a larger transmembrane pore. Here, we have determined the NMR solution structure of the C-terminal periplasmic domain of E. coli OmpA (OmpA(180-325)). Our structure reveals that the C-terminal domain folds independently into a stable globular structure that is homologous to the previously reported PG-associated domain of Neisseria meningitides RmpM. Our results lend credence to the two domain structure model and a PG-binding function for OmpA, and we could indeed localize the PG-binding site on the protein through NMR chemical shift perturbation experiments. On the other hand, we found no evidence for binding of OmpA(180-325) with the TonB protein. In addition, we have also expressed and purified full-length OmpA (OmpA(1-325)) to study the structure of the full-length protein in micelles and nanodiscs by NMR spectroscopy. In both membrane mimetic environments, the recombinant OmpA maintains its two domain structure that is connected through a flexible linker. A series of temperature-dependent HSQC experiments and relaxation dispersion NMR experiments detected structural destabilization in the bulge region of the

  3. Psychiatric Management, Administration, and Leadership: a Continuum or Distinct Concepts?

    PubMed

    Saeed, Sy Atezaz; Silver, Stuart; Buwalda, Victor J A; Khin, Eindra Khin; Petit, Jorge R; Mohyuddin, Farooq; Weinberg, Pamela; Merlino, Joseph P; Lekwauwa, Nena; Levin, Saul

    2018-06-01

    To clarify the relationship between the concepts of management, administration, and leadership in psychiatry. The authors provide a review of the conceptual evolution of administrative psychiatry and develop operational definitions of these three domains. Based upon their experiences, they discuss relevant core competencies and personal attributes. The authors found that the terms psychiatric management, psychiatric administration, and psychiatric leadership are often used interchangeably, yet they each have a different and distinct focus. Additionally, some in the field consider the concepts overlapping, existing on a continuum, while others draw distinct conceptual boundaries between these terms. Psychiatrists in leadership positions function in all three domains. While these are distinct concepts, the authors recommend that administrative psychiatrists integrate all three in their everyday work. The authors suggest the distinctions among these concepts should inform training and identify core competencies related to these distinctions. Mentoring should focus on the practical integration of the concepts of management, administration, and leadership in administrative psychiatry. The authors present a cohesive framework for future development of a curriculum for education and research.

  4. A Synthetic DNA-Binding Domain Guides Distinct Chromatin-Modifying Small Molecules to Activate an Identical Gene Network.

    PubMed

    Han, Le; Pandian, Ganesh N; Chandran, Anandhakumar; Sato, Shinsuke; Taniguchi, Junichi; Kashiwazaki, Gengo; Sawatani, Yoshito; Hashiya, Kaori; Bando, Toshikazu; Xu, Yufang; Qian, Xuhong; Sugiyama, Hiroshi

    2015-07-20

    Synthetic dual-function ligands targeting specific DNA sequences and histone-modifying enzymes were applied to achieve regulatory control over multi-gene networks in living cells. Unlike the broad array of targeting small molecules for histone deacetylases (HDACs), few modulators are known for histone acetyltransferases (HATs), which play a central role in transcriptional control. As a novel chemical approach to induce selective HAT-regulated genes, we conjugated a DNA-binding domain (DBD) "I" to N-(4-chloro-3-trifluoromethyl-phenyl)-2-ethoxy-benzamide (CTB), an artificial HAT activator. In vitro enzyme activity assays and microarray studies were used to demonstrate that distinct functional small molecules could be transformed to have identical bioactivity when conjugated with a targeting DBD. This proof-of-concept synthetic strategy validates the switchable functions of HDACs and HATs in gene regulation and provides a molecular basis for developing versatile bioactive ligands. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Potato leafroll virus structural proteins manipulate overlapping, yet distinct protein interaction networks during infection.

    PubMed

    DeBlasio, Stacy L; Johnson, Richard; Sweeney, Michelle M; Karasev, Alexander; Gray, Stewart M; MacCoss, Michael J; Cilia, Michelle

    2015-06-01

    Potato leafroll virus (PLRV) produces a readthrough protein (RTP) via translational readthrough of the coat protein amber stop codon. The RTP functions as a structural component of the virion and as a nonincorporated protein in concert with numerous insect and plant proteins to regulate virus movement/transmission and tissue tropism. Affinity purification coupled to quantitative MS was used to generate protein interaction networks for a PLRV mutant that is unable to produce the read through domain (RTD) and compared to the known wild-type PLRV protein interaction network. By quantifying differences in the protein interaction networks, we identified four distinct classes of PLRV-plant interactions: those plant and nonstructural viral proteins interacting with assembled coat protein (category I); plant proteins in complex with both coat protein and RTD (category II); plant proteins in complex with the RTD (category III); and plant proteins that had higher affinity for virions lacking the RTD (category IV). Proteins identified as interacting with the RTD are potential candidates for regulating viral processes that are mediated by the RTP such as phloem retention and systemic movement and can potentially be useful targets for the development of strategies to prevent infection and/or viral transmission of Luteoviridae species that infect important crop species. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Automated retinal fovea type distinction in spectral-domain optical coherence tomography of retinal vein occlusion

    NASA Astrophysics Data System (ADS)

    Wu, Jing; Waldstein, Sebastian M.; Gerendas, Bianca S.; Langs, Georg; Simader, Christian; Schmidt-Erfurth, Ursula

    2015-03-01

    Spectral-domain Optical Coherence Tomography (SD-OCT) is a non-invasive modality for acquiring high- resolution, three-dimensional (3D) cross-sectional volumetric images of the retina and the subretinal layers. SD-OCT also allows the detailed imaging of retinal pathology, aiding clinicians in the diagnosis of sight degrading diseases such as age-related macular degeneration (AMD), glaucoma and retinal vein occlusion (RVO). Disease diagnosis, assessment, and treatment will require a patient to undergo multiple OCT scans, possibly using multiple scanners, to accurately and precisely gauge disease activity, progression and treatment success. However, cross-vendor imaging and patient movement may result in poor scan spatial correlation potentially leading to incorrect diagnosis or treatment analysis. The retinal fovea is the location of the highest visual acuity and is present in all patients, thus it is critical to vision and highly suitable for use as a primary landmark for cross-vendor/cross-patient registration for precise comparison of disease states. However, the location of the fovea in diseased eyes is extremely challenging to locate due to varying appearance and the presence of retinal layer destroying pathology. Thus categorising and detecting the fovea type is an important prior stage to automatically computing the fovea position. Presented here is an automated cross-vendor method for fovea distinction in 3D SD-OCT scans of patients suffering from RVO, categorising scans into three distinct types. OCT scans are preprocessed by motion correction and noise filing followed by segmentation using a kernel graph-cut approach. A statistically derived mask is applied to the resulting scan creating an ROI around the probable fovea location from which the uppermost retinal surface is delineated. For a normal appearance retina, minimisation to zero thickness is computed using the top two retinal surfaces. 3D local minima detection and layer thickness analysis are used

  7. Structure of Dimeric and Tetrameric Complexes of the BAR Domain Protein PICK1 Determined by Small-Angle X-Ray Scattering.

    PubMed

    Karlsen, Morten L; Thorsen, Thor S; Johner, Niklaus; Ammendrup-Johnsen, Ina; Erlendsson, Simon; Tian, Xinsheng; Simonsen, Jens B; Høiberg-Nielsen, Rasmus; Christensen, Nikolaj M; Khelashvili, George; Streicher, Werner; Teilum, Kaare; Vestergaard, Bente; Weinstein, Harel; Gether, Ulrik; Arleth, Lise; Madsen, Kenneth L

    2015-07-07

    PICK1 is a neuronal scaffolding protein containing a PDZ domain and an auto-inhibited BAR domain. BAR domains are membrane-sculpting protein modules generating membrane curvature and promoting membrane fission. Previous data suggest that BAR domains are organized in lattice-like arrangements when stabilizing membranes but little is known about structural organization of BAR domains in solution. Through a small-angle X-ray scattering (SAXS) analysis, we determine the structure of dimeric and tetrameric complexes of PICK1 in solution. SAXS and biochemical data reveal a strong propensity of PICK1 to form higher-order structures, and SAXS analysis suggests an offset, parallel mode of BAR-BAR oligomerization. Furthermore, unlike accessory domains in other BAR domain proteins, the positioning of the PDZ domains is flexible, enabling PICK1 to perform long-range, dynamic scaffolding of membrane-associated proteins. Together with functional data, these structural findings are compatible with a model in which oligomerization governs auto-inhibition of BAR domain function. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Structure of the catalytic domain of glucuronoyl esterase Cip2 from Hypocrea jecorina

    USDA-ARS?s Scientific Manuscript database

    The structure of the catalytic domain of glucuronoyl esterase Cip2 from the fungus Hypocrea jecorina was determined at a resolution of 1.9 Angstroms. This is the first structure of the newly established carbohydrate esterase family 15. The structure has revealed the residues Ser278–His411–Glu301 pre...

  9. A new scaling approach for the mesoscale simulation of magnetic domain structures using Monte Carlo simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radhakrishnan, B.; Eisenbach, M.; Burress, Timothy A.

    2017-01-24

    A new scaling approach has been proposed for the spin exchange and the dipole–dipole interaction energy as a function of the system size. The computed scaling laws are used in atomistic Monte Carlo simulations of magnetic moment evolution to predict the transition from single domain to a vortex structure as the system size increases. The width of a 180° – domain wall extracted from the simulated structures is in close agreement with experimentally values for an F–Si alloy. In conclusion, the transition size from a single domain to a vortex structure is also in close agreement with theoretically predicted andmore » experimentally measured values for Fe.« less

  10. Structure of the catalytic domain of the colistin resistance enzyme MCR-1

    DOE PAGES

    Stojanoski, Vlatko; Sankaran, Banumathi; Prasad, B. V. Venkataram; ...

    2016-09-21

    Due to the paucity of novel antibiotics, colistin has become a last resort antibiotic for treating multidrug resistant bacteria. Colistin acts by binding the lipid A component of lipopolysaccharides and subsequently disrupting the bacterial membrane. The recently identified plasmid-encoded MCR-1 enzyme is the first transmissible colistin resistance determinant and is a cause for concern for the spread of this resistance trait. MCR-1 is a phosphoethanolamine transferase that catalyzes the addition of phosphoethanolamine to lipid A to decrease colistin affinity. The structure of the catalytic domain of MCR-1 at 1.32 Å reveals the active site is similar to that of relatedmore » phosphoethanolamine transferases. The putative nucleophile for catalysis, threonine 285, is phosphorylated in cMCR-1 and a zinc is present at a conserved site in addition to three zincs more peripherally located in the active site. As noted for catalytic domains of other phosphoethanolamine transferases, binding sites for the lipid A and phosphatidylethanolamine substrates are not apparent in the cMCR-1 structure, suggesting that they are present in the membrane domain.« less

  11. Accommodation of structural rearrangements in the huntingtin-interacting protein 1 coiled-coil domain.

    PubMed

    Wilbur, Jeremy D; Hwang, Peter K; Brodsky, Frances M; Fletterick, Robert J

    2010-03-01

    Huntingtin-interacting protein 1 (HIP1) is an important link between the actin cytoskeleton and clathrin-mediated endocytosis machinery. HIP1 has also been implicated in the pathogenesis of Huntington's disease. The binding of HIP1 to actin is regulated through an interaction with clathrin light chain. Clathrin light chain binds to a flexible coiled-coil domain in HIP1 and induces a compact state that is refractory to actin binding. To understand the mechanism of this conformational regulation, a high-resolution crystal structure of a stable fragment from the HIP1 coiled-coil domain was determined. The flexibility of the HIP1 coiled-coil region was evident from its variation from a previously determined structure of a similar region. A hydrogen-bond network and changes in coiled-coil monomer interaction suggest that the HIP1 coiled-coil domain is uniquely suited to allow conformational flexibility.

  12. Crystal Structure of the Bovine lactadherin C2 Domain, a Membrane Binding Motif, Shows Similarity of the C2 Domains of Factor V and Factor VIII

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin,L.; Huai, Q.; Huang, M.

    2007-01-01

    Lactadherin, a glycoprotein secreted by a variety of cell types, contains two EGF domains and two C domains with sequence homology to the C domains of blood coagulation proteins factor V and factor VIII. Like these proteins, lactadherin binds to phosphatidylserine (PS)-containing membranes with high affinity. We determined the crystal structure of the bovine lactadherin C2 domain (residues 1 to 158) at 2.4 Angstroms. The lactadherin C2 structure is similar to the C2 domains of factors V and VIII (rmsd of C? atoms of 0.9 Angstroms and 1.2 Angstroms, and sequence identities of 43% and 38%, respectively). The lactadherin C2more » domain has a discoidin-like fold containing two ?-sheets of five and three antiparallel ?-strands packed against one another. The N and C termini are linked by a disulfide bridge between Cys1 and Cys158. One ?-turn and two loops containing solvent-exposed hydrophobic residues extend from the C2 domain ?-sandwich core. In analogy with the C2 domains of factors V and VIII, some or all of these solvent-exposed hydrophobic residues, Trp26, Leu28, Phe31, and Phe81, likely participate in membrane binding. The C2 domain of lactadherin may serve as a marker of cell surface phosphatidylserine exposure and may have potential as a unique anti-thrombotic agent.« less

  13. Structures of a Nonribosomal Peptide Synthetase Module Bound to MbtH-like Proteins Support a Highly Dynamic Domain Architecture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Bradley R.; Drake, Eric J.; Shi, Ce

    Nonribosomal peptide synthetases (NRPSs) produce a wide variety of peptide natural products. During synthesis, the multidomain NRPSs act as an assembly line, passing the growing product from one module to the next. Each module generally consists of an integrated peptidyl carrier protein, an amino acid-loading adenylation domain, and a condensation domain that catalyzes peptide bond formation. Some adenylation domains interact with small partner proteins called MbtH-like proteins (MLPs) that enhance solubility or activity. A structure of an MLP bound to an adenylation domain has been previously reported using a truncated adenylation domain, precluding any insight that might be derived frommore » understanding the influence of the MLP on the intact adenylation domain or on the dynamics of the entire NRPS module. Here, we present the structures of the full-length NRPS EntF bound to the MLPs from Escherichia coli and Pseudomonas aeruginosa. These new structures, along with biochemical and bioinformatics support, further elaborate the residues that define the MLP-adenylation domain interface. Additionally, the structures highlight the dynamic behavior of NRPS modules, including the module core formed by the adenylation and condensation domains as well as the orientation of the mobile thioesterase domain.« less

  14. Structures of a Nonribosomal Peptide Synthetase Module Bound to MbtH-like Proteins Support a Highly Dynamic Domain Architecture.

    PubMed

    Miller, Bradley R; Drake, Eric J; Shi, Ce; Aldrich, Courtney C; Gulick, Andrew M

    2016-10-21

    Nonribosomal peptide synthetases (NRPSs) produce a wide variety of peptide natural products. During synthesis, the multidomain NRPSs act as an assembly line, passing the growing product from one module to the next. Each module generally consists of an integrated peptidyl carrier protein, an amino acid-loading adenylation domain, and a condensation domain that catalyzes peptide bond formation. Some adenylation domains interact with small partner proteins called MbtH-like proteins (MLPs) that enhance solubility or activity. A structure of an MLP bound to an adenylation domain has been previously reported using a truncated adenylation domain, precluding any insight that might be derived from understanding the influence of the MLP on the intact adenylation domain or on the dynamics of the entire NRPS module. Here, we present the structures of the full-length NRPS EntF bound to the MLPs from Escherichia coli and Pseudomonas aeruginosa These new structures, along with biochemical and bioinformatics support, further elaborate the residues that define the MLP-adenylation domain interface. Additionally, the structures highlight the dynamic behavior of NRPS modules, including the module core formed by the adenylation and condensation domains as well as the orientation of the mobile thioesterase domain. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Crystal structure of a shark single-domain antibody V region in complex with lysozyme.

    PubMed

    Stanfield, Robyn L; Dooley, Helen; Flajnik, Martin F; Wilson, Ian A

    2004-09-17

    Cartilaginous fish are the phylogenetically oldest living organisms known to possess components of the vertebrate adaptive immune system. Key to their immune response are heavy-chain, homodimeric immunoglobulins called new antigen receptors (IgNARs), in which the variable (V) domains recognize antigens with only a single immunoglobulin domain, akin to camelid heavy-chain V domains. The 1.45 angstrom resolution crystal structure of the type I IgNAR V domain in complex with hen egg-white lysozyme (HEL) reveals a minimal antigen-binding domain that contains only two of the three conventional complementarity-determining regions but still binds HEL with nanomolar affinity by means of a binding interface comparable in size to conventional antibodies.

  16. G-structures and domain walls in heterotic theories

    NASA Astrophysics Data System (ADS)

    Lukas, Andre; Matti, Cyril

    2011-01-01

    We consider heterotic string solutions based on a warped product of a four-dimensional domain wall and a six-dimensional internal manifold, preserving two supercharges. The constraints on the internal manifolds with SU(3) structure are derived. They are found to be generalized half-flat manifolds with a particular pattern of torsion classes and they include half-flat manifolds and Strominger's complex non-Kahler manifolds as special cases. We also verify that previous heterotic compactifications on half-flat mirror manifolds are based on this class of solutions.

  17. Structure-function analysis of the OB and latch domains of chlorella virus DNA ligase.

    PubMed

    Samai, Poulami; Shuman, Stewart

    2011-06-24

    Chlorella virus DNA ligase (ChVLig) is a minimized eukaryal ATP-dependent DNA sealing enzyme with an intrinsic nick-sensing function. ChVLig consists of three structural domains, nucleotidyltransferase (NTase), OB-fold, and latch, that envelop the nicked DNA as a C-shaped protein clamp. The OB domain engages the DNA minor groove on the face of the duplex behind the nick, and it makes contacts to amino acids in the NTase domain surrounding the ligase active site. The latch module occupies the DNA major groove flanking the nick. Residues at the tip of the latch contact the NTase domain to close the ligase clamp. Here we performed a structure-guided mutational analysis of the OB and latch domains. Alanine scanning defined seven individual amino acids as essential in vivo (Lys-274, Arg-285, Phe-286, and Val-288 in the OB domain; Asn-214, Phe-215, and Tyr-217 in the latch), after which structure-activity relations were clarified by conservative substitutions. Biochemical tests of the composite nick sealing reaction and of each of the three chemical steps of the ligation pathway highlighted the importance of Arg-285 and Phe-286 in the catalysis of the DNA adenylylation and phosphodiester synthesis reactions. Phe-286 interacts with the nick 5'-phosphate nucleotide and the 3'-OH base pair and distorts the DNA helical conformation at the nick. Arg-285 is a key component of the OB-NTase interface, where it forms a salt bridge to the essential Asp-29 side chain, which is imputed to coordinate divalent metal catalysts during the nick sealing steps.

  18. Structure-Function Analysis of the OB and Latch Domains of Chlorella Virus DNA Ligase*

    PubMed Central

    Samai, Poulami; Shuman, Stewart

    2011-01-01

    Chlorella virus DNA ligase (ChVLig) is a minimized eukaryal ATP-dependent DNA sealing enzyme with an intrinsic nick-sensing function. ChVLig consists of three structural domains, nucleotidyltransferase (NTase), OB-fold, and latch, that envelop the nicked DNA as a C-shaped protein clamp. The OB domain engages the DNA minor groove on the face of the duplex behind the nick, and it makes contacts to amino acids in the NTase domain surrounding the ligase active site. The latch module occupies the DNA major groove flanking the nick. Residues at the tip of the latch contact the NTase domain to close the ligase clamp. Here we performed a structure-guided mutational analysis of the OB and latch domains. Alanine scanning defined seven individual amino acids as essential in vivo (Lys-274, Arg-285, Phe-286, and Val-288 in the OB domain; Asn-214, Phe-215, and Tyr-217 in the latch), after which structure-activity relations were clarified by conservative substitutions. Biochemical tests of the composite nick sealing reaction and of each of the three chemical steps of the ligation pathway highlighted the importance of Arg-285 and Phe-286 in the catalysis of the DNA adenylylation and phosphodiester synthesis reactions. Phe-286 interacts with the nick 5′-phosphate nucleotide and the 3′-OH base pair and distorts the DNA helical conformation at the nick. Arg-285 is a key component of the OB-NTase interface, where it forms a salt bridge to the essential Asp-29 side chain, which is imputed to coordinate divalent metal catalysts during the nick sealing steps. PMID:21527793

  19. Stereochemical determinants of C-terminal specificity in PDZ peptide-binding domains: a novel contribution of the carboxylate-binding loop.

    PubMed

    Amacher, Jeanine F; Cushing, Patrick R; Bahl, Christopher D; Beck, Tobias; Madden, Dean R

    2013-02-15

    PDZ (PSD-95/Dlg/ZO-1) binding domains often serve as cellular traffic engineers, controlling the localization and activity of a wide variety of binding partners. As a result, they play important roles in both physiological and pathological processes. However, PDZ binding specificities overlap, allowing multiple PDZ proteins to mediate distinct effects on shared binding partners. For example, several PDZ domains bind the cystic fibrosis (CF) transmembrane conductance regulator (CFTR), an epithelial ion channel mutated in CF. Among these binding partners, the CFTR-associated ligand (CAL) facilitates post-maturational degradation of the channel and is thus a potential therapeutic target. Using iterative optimization, we previously developed a selective CAL inhibitor peptide (iCAL36). Here, we investigate the stereochemical basis of iCAL36 specificity. The crystal structure of iCAL36 in complex with the CAL PDZ domain reveals stereochemical interactions distributed along the peptide-binding cleft, despite the apparent degeneracy of the CAL binding motif. A critical selectivity determinant that distinguishes CAL from other CFTR-binding PDZ domains is the accommodation of an isoleucine residue at the C-terminal position (P(0)), a characteristic shared with the Tax-interacting protein-1. Comparison of the structures of these two PDZ domains in complex with ligands containing P(0) Leu or Ile residues reveals two distinct modes of accommodation for β-branched C-terminal side chains. Access to each mode is controlled by distinct residues in the carboxylate-binding loop. These studies provide new insights into the primary sequence determinants of binding motifs, which in turn control the scope and evolution of PDZ interactomes.

  20. SMP-domain proteins at membrane contact sites: Structure and function.

    PubMed

    Reinisch, Karin M; De Camilli, Pietro

    2016-08-01

    SMP-domains are found in proteins that localize to membrane contact sites. Elucidation of the properties of these proteins gives clues as to the molecular bases underlying processes that occur at such sites. Described here are recent discoveries concerning the structure, function, and regulation of the Extended-Synaptotagmin proteins and ERMES complex subunits, SMP-domain proteins at endoplasmic reticulum (ER)-plasma membrane and ER-mitochondrial contacts, respectively. They act as tethers contributing to the architecture of these sites and as lipid transporters that convey glycerolipids between apposed membranes. This article is part of a Special Issue entitled: The cellular lipid landscape edited by Tim P. Levine and Anant K. Menon. Copyright © 2016. Published by Elsevier B.V.

  1. Specific Features of the Domain Structure of BaTiO3 Crystals during Thermal Heating and Cooling

    NASA Astrophysics Data System (ADS)

    Kiselev, D. A.; Ilina, T. S.; Malinkovich, M. D.; Sergeeva, O. N.; Bolshakova, N. N.; Semenova, E. M.; Kuznetsova, Yu. V.

    2018-04-01

    This paper presents the results of the study of the domain structure of barium titanate crystals in a wide temperature range including the Curie point ( T C) using the polarization-optical method in the reflected light and the force microscopy of the piezoelectric response. It is shown that a new a-c domain structure forms during cyclic heating of the crystal above T C and subsequent cooling to the ferroelectric phase. The role of uncompensated charges appeared on the crystal surface during the phase transition and their influence on the formation of the domain structure during cooling are discussed.

  2. A Structure of a Collagen VI VWA Domain Displays N and C Termini at Opposite Sides of the Protein

    PubMed Central

    Becker, Ann-Kathrin A.; Mikolajek, Halina; Paulsson, Mats; Wagener, Raimund; Werner, Jörn M.

    2014-01-01

    Summary Von Willebrand factor A (VWA) domains are versatile protein interaction domains with N and C termini in close proximity placing spatial constraints on overall protein structure. The 1.2 Å crystal structures of a collagen VI VWA domain and a disease-causing point mutant show C-terminal extensions that place the N and C termini at opposite ends. This allows a “beads-on-a-string” arrangement of multiple VWA domains as observed for ten N-terminal domains of the collagen VI α3 chain. The extension is linked to the core domain by a salt bridge and two hydrophobic patches. Comparison of the wild-type and a muscular dystrophy-associated mutant structure identifies a potential perturbation of a protein interaction interface and indeed, the secretion of mutant collagen VI tetramers is affected. Homology modeling is used to locate a number of disease-associated mutations and analyze their structural impact, which will allow mechanistic analysis of collagen-VI-associated muscular dystrophy phenotypes. PMID:24332716

  3. Temperature inducible β-sheet structure in the transactivation domains of retroviral regulatory proteins of the Rev family

    NASA Astrophysics Data System (ADS)

    Thumb, Werner; Graf, Christine; Parslow, Tristram; Schneider, Rainer; Auer, Manfred

    1999-11-01

    The interaction of the human immunodeficiency virus type 1 (HIV-1) regulatory protein Rev with cellular cofactors is crucial for the viral life cycle. The HIV-1 Rev transactivation domain is functionally interchangeable with analog regions of Rev proteins of other retroviruses suggesting common folding patterns. In order to obtain experimental evidence for similar structural features mediating protein-protein contacts we investigated activation domain peptides from HIV-1, HIV-2, VISNA virus, feline immunodeficiency virus (FIV) and equine infectious anemia virus (EIAV) by CD spectroscopy, secondary structure prediction and sequence analysis. Although different in polarity and hydrophobicity, all peptides showed a similar behavior with respect to solution conformation, concentration dependence and variations in ionic strength and pH. Temperature studies revealed an unusual induction of β-structure with rising temperatures in all activation domain peptides. The high stability of β-structure in this region was demonstrated in three different peptides of the activation domain of HIV-1 Rev in solutions containing 40% hexafluoropropanol, a reagent usually known to induce α-helix into amino acid sequences. Sequence alignments revealed similarities between the polar effector domains from FIV and EIAV and the leucine rich (hydrophobic) effector domains found in HIV-1, HIV-2 and VISNA. Studies on activation domain peptides of two dominant negative HIV-1 Rev mutants, M10 and M32, pointed towards different reasons for the biological behavior. Whereas the peptide containing the M10 mutation (L 78E 79→D 78L 79) showed wild-type structure, the M32 mutant peptide (L 78L 81L 83→A 78A 81A 83) revealed a different protein fold to be the reason for the disturbed binding to cellular cofactors. From our data, we conclude, that the activation domain of Rev proteins from different viral origins adopt a similar fold and that a β-structural element is involved in binding to a

  4. Domain mapping of the Rad51 paralog protein complexes

    PubMed Central

    Miller, Kristi A.; Sawicka, Dorota; Barsky, Daniel; Albala, Joanna S.

    2004-01-01

    The five human Rad51 paralogs are suggested to play an important role in the maintenance of genome stability through their function in DNA double-strand break repair. These proteins have been found to form two distinct complexes in vivo, Rad51B–Rad51C–Rad51D–Xrcc2 (BCDX2) and Rad51C–Xrcc3 (CX3). Based on the recent Pyrococcus furiosus Rad51 structure, we have used homology modeling to design deletion mutants of the Rad51 paralogs. The models of the human Rad51B, Rad51C, Xrcc3 and murine Rad51D (mRad51D) proteins reveal distinct N-terminal and C-terminal domains connected by a linker region. Using yeast two-hybrid and co-immunoprecipitation techniques, we have demonstrated that a fragment of Rad51B containing amino acid residues 1–75 interacts with the C-terminus and linker of Rad51C, residues 79–376, and this region of Rad51C also interacts with mRad51D and Xrcc3. We have also determined that the N-terminal domain of mRad51D, residues 4–77, binds to Xrcc2 while the C-terminal domain of mRad51D, residues 77–328, binds Rad51C. By this, we have identified the binding domains of the BCDX2 and CX3 complexes to further characterize the interaction of these proteins and propose a scheme for the three-dimensional architecture of the BCDX2 and CX3 paralog complexes. PMID:14704354

  5. Exploring the Roles of Proline in Three-Dimensional Domain Swapping from Structure Analysis and Molecular Dynamics Simulations.

    PubMed

    Huang, Yongqi; Gao, Meng; Su, Zhengding

    2018-02-01

    Three-dimensional (3D) domain swapping is a mechanism to form protein oligomers. It has been proposed that several factors, including proline residues in the hinge region, may affect the occurrence of 3D domain swapping. Although introducing prolines into the hinge region has been found to promote domain swapping for some proteins, the opposite effect has also been observed in several studies. So far, how proline affects 3D domain swapping remains elusive. In this work, based on a large set of 3D domain-swapped structures, we performed a systematic analysis to explore the correlation between the presence of proline in the hinge region and the occurrence of 3D domain swapping. We further analyzed the conformations of proline and pre-proline residues to investigate the roles of proline in 3D domain swapping. We found that more than 40% of the domain-swapped structures contained proline residues in the hinge region. Unexpectedly, conformational transitions of proline residues were rarely observed upon domain swapping. Our analyses showed that hinge regions containing proline residues preferred more extended conformations, which may be beneficial for the occurrence of domain swapping by facilitating opening of the exchanged segments.

  6. Purification of SOCS (Suppressor of Cytokine Signaling) SH2 Domains for Structural and Functional Studies.

    PubMed

    Liau, Nicholas P D; Laktyushin, Artem; Babon, Jeffrey J

    2017-01-01

    Src Homology 2 (SH2) domains are protein domains which have a high binding affinity for specific amino acid sequences containing a phosphorylated tyrosine residue. The Suppressors of Cytokine Signaling (SOCS) proteins use an SH2 domain to bind to components of certain cytokine signaling pathways to downregulate the signaling cascade. The recombinantly produced SH2 domains of various SOCS proteins have been used to undertake structural and functional studies elucidating the method of how such targeting occurs. Here, we describe the protocol for the recombinant production and purification of SOCS SH2 domains, with an emphasis on SOCS3.

  7. Electroporation of the photosynthetic membrane: structural changes in protein and lipid-protein domains.

    PubMed Central

    Rosemberg, Y; Rotenberg, M; Korenstein, R

    1994-01-01

    A biological membrane undergoes a reversible permeability increase through structural changes in the lipid domain when exposed to high external electric fields. The present study shows the occurrence of electric field-induced changes in the conductance of the proton channel of the H(+)-ATPase as well as electric field-induced structural changes in the lipid-protein domain of photosystem (PS) II in the photosynthetic membrane. The study was carried out by analyzing the electric field-stimulated delayed luminescence (EPL), which originates from charge recombination in the protein complexes of PS I and II of photosynthetic vesicles. We established that a small fraction of the total electric field-induced conductance change was abolished by N,N'-dicyclohexylcarbodiimide (DCCD), an inhibitor of the H(+)-ATPase. This reversible electric field-induced conductance change has characteristics of a small channel and possesses a lifetime < or = 1 ms. To detect electric field-induced changes in the lipid-protein domains of PS II, we examined the effects of phospholipase A2 (PLA2) on EPL. Higher values of EPL were observed from vesicles that were exposed in the presence of PLA2 to an electroporating electric field than to a nonelectroporating electric field. The effect of the electroporating field was a long-lived one, lasting for a period > or = 2 min. This effect was attributed to long-lived electric field-induced structural changes in the lipid-protein domains of PS II. PMID:7811916

  8. Distinct Domains of CheA Confer Unique Functions in Chemotaxis and Cell Length in Azospirillum brasilense Sp7.

    PubMed

    Gullett, Jessica M; Bible, Amber; Alexandre, Gladys

    2017-07-01

    Chemotaxis is the movement of cells in response to gradients of diverse chemical cues. Motile bacteria utilize a conserved chemotaxis signal transduction system to bias their motility and navigate through a gradient. A central regulator of chemotaxis is the histidine kinase CheA. This cytoplasmic protein interacts with membrane-bound receptors, which assemble into large polar arrays, to propagate the signal. In the alphaproteobacterium Azospirillum brasilense , Che1 controls transient increases in swimming speed during chemotaxis, but it also biases the cell length at division. However, the exact underlying molecular mechanisms for Che1-dependent control of multiple cellular behaviors are not known. Here, we identify specific domains of the CheA1 histidine kinase implicated in modulating each of these functions. We show that CheA1 is produced in two isoforms: a membrane-anchored isoform produced as a fusion with a conserved seven-transmembrane domain of unknown function (TMX) at the N terminus and a soluble isoform similar to prototypical CheA. Site-directed and deletion mutagenesis combined with behavioral assays confirm the role of CheA1 in chemotaxis and implicate the TMX domain in mediating changes in cell length. Fluorescence microscopy further reveals that the membrane-anchored isoform is distributed around the cell surface while the soluble isoform localizes at the cell poles. Together, the data provide a mechanism for the role of Che1 in controlling multiple unrelated cellular behaviors via acquisition of a new domain in CheA1 and production of distinct functional isoforms. IMPORTANCE Chemotaxis provides a significant competitive advantage to bacteria in the environment, and this function has been transferred laterally multiple times, with evidence of functional divergence in different genomic contexts. The molecular principles that underlie functional diversification of chemotaxis in various genomic contexts are unknown. Here, we provide a molecular

  9. Distinct Domains of CheA Confer Unique Functions in Chemotaxis and Cell Length in Azospirillum brasilense Sp7

    PubMed Central

    Gullett, Jessica M.

    2017-01-01

    ABSTRACT Chemotaxis is the movement of cells in response to gradients of diverse chemical cues. Motile bacteria utilize a conserved chemotaxis signal transduction system to bias their motility and navigate through a gradient. A central regulator of chemotaxis is the histidine kinase CheA. This cytoplasmic protein interacts with membrane-bound receptors, which assemble into large polar arrays, to propagate the signal. In the alphaproteobacterium Azospirillum brasilense, Che1 controls transient increases in swimming speed during chemotaxis, but it also biases the cell length at division. However, the exact underlying molecular mechanisms for Che1-dependent control of multiple cellular behaviors are not known. Here, we identify specific domains of the CheA1 histidine kinase implicated in modulating each of these functions. We show that CheA1 is produced in two isoforms: a membrane-anchored isoform produced as a fusion with a conserved seven-transmembrane domain of unknown function (TMX) at the N terminus and a soluble isoform similar to prototypical CheA. Site-directed and deletion mutagenesis combined with behavioral assays confirm the role of CheA1 in chemotaxis and implicate the TMX domain in mediating changes in cell length. Fluorescence microscopy further reveals that the membrane-anchored isoform is distributed around the cell surface while the soluble isoform localizes at the cell poles. Together, the data provide a mechanism for the role of Che1 in controlling multiple unrelated cellular behaviors via acquisition of a new domain in CheA1 and production of distinct functional isoforms. IMPORTANCE Chemotaxis provides a significant competitive advantage to bacteria in the environment, and this function has been transferred laterally multiple times, with evidence of functional divergence in different genomic contexts. The molecular principles that underlie functional diversification of chemotaxis in various genomic contexts are unknown. Here, we provide a

  10. Identity-specific motivation: How distinct identities direct self-regulation across distinct situations.

    PubMed

    Browman, Alexander S; Destin, Mesmin; Molden, Daniel C

    2017-12-01

    Research on self-regulation has traditionally emphasized that people's thoughts and actions are guided by either (a) domain-general motivations that emerge from a cumulative history of life experiences, or (b) situation-specific motivations that emerge in immediate response to the incentives present in a particular context. However, more recent studies have illustrated the importance of understanding the interplay between such domain-general and situation-specific motivations across the types of contexts people regularly encounter. The present research, therefore, expands existing perspectives on self-regulation by investigating how people's identities -the internalized roles, relationships, and social group memberships that define who they are-systemically guide when and how different domain-general motivations are activated within specific types of situations. Using the motivational framework described by regulatory focus theory (Higgins, 1997), Studies 1 and 2 demonstrate that people indeed have distinct, identity-specific motivations that uniquely influence their current self-regulation when such identities are active. Studies 3-5 then begin to explore how identity-specific motivations are situated within people's larger self-concept. Studies 3a and 3b demonstrate that the less compatible people's specific identities, the more distinct are the motivations connected to those identities. Studies 4-5 then provide some initial, suggestive evidence that identity-specific motivations are not a separate, superordinate feature of people's identities that then alter how they pursue any subordinate, identity-relevant traits, but instead that such motivations emerge from the cumulative motivational significance of the subordinate traits to which the identities themselves become attached. Implications for understanding the role of the self-concept in self-regulation are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  11. A domain of the Klenow fragment of Escherichia coli DNA polymerase I has polymerase but no exonuclease activity.

    PubMed

    Freemont, P S; Ollis, D L; Steitz, T A; Joyce, C M

    1986-09-01

    The Klenow fragment of DNA polymerase I from Escherichia coli has two enzymatic activities: DNA polymerase and 3'-5' exonuclease. The crystal structure showed that the fragment is folded into two distinct domains. The smaller domain has a binding site for deoxynucleoside monophosphate and a divalent metal ion that is thought to identify the 3'-5' exonuclease active site. The larger C-terminal domain contains a deep cleft that is believed to bind duplex DNA. Several lines of evidence suggested that the large domain also contains the polymerase active site. To test this hypothesis, we have cloned the DNA coding for the large domain into an expression system and purified the protein product. We find that the C-terminal domain has polymerase activity (albeit at a lower specific activity than the native Klenow fragment) but no measurable 3'-5' exonuclease activity. These data are consistent with the hypothesis that each of the three enzymatic activities of DNA polymerase I from E. coli resides on a separate protein structural domain.

  12. Effect of the SH3-SH2 domain linker sequence on the structure of Hck kinase.

    PubMed

    Meiselbach, Heike; Sticht, Heinrich

    2011-08-01

    The coordination of activity in biological systems requires the existence of different signal transduction pathways that interact with one another and must be precisely regulated. The Src-family tyrosine kinases, which are found in many signaling pathways, differ in their physiological function despite their high overall structural similarity. In this context, the differences in the SH3-SH2 domain linkers might play a role for differential regulation, but the structural consequences of linker sequence remain poorly understood. We have therefore performed comparative molecular dynamics simulations of wildtype Hck and of a mutant Hck in which the SH3-SH2 domain linker is replaced by the corresponding sequence from the homologous kinase Lck. These simulations reveal that linker replacement not only affects the orientation of the SH3 domain itself, but also leads to an alternative conformation of the activation segment in the Hck kinase domain. The sequence of the SH3-SH2 domain linker thus exerts a remote effect on the active site geometry and might therefore play a role in modulating the structure of the inactive kinase or in fine-tuning the activation process itself.

  13. In situ visualization of domain structure evolution during field cooling in 0.67PMN-0.33PT single crystal

    NASA Astrophysics Data System (ADS)

    Ushakov, A. D.; Esin, A. A.; Chezganov, D. S.; Turygin, A. P.; Akhmatkhanov, A. R.; Hu, Q.; Sun, L.; Wei, X.; Shur, V. Ya

    2017-10-01

    The evolution of the domain structure during in-field cooling was in situ studied in [001]-cut single crystals of relaxor ferroelectric (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT) with x = 0.33 with maximum of dielectric permittivity at 150°C. The main stages of domain evolution have been separated. The visualization of the static as-grown and polarized domain structures with high spatial resolution by piezoresponse force microscopy and scanning electron microscopy allowed measuring the characteristic features of maze and needle-like domain structures.

  14. Molecular dynamics simulations of the Bcl-2 protein to predict the structure of its unordered flexible loop domain.

    PubMed

    Raghav, Pawan Kumar; Verma, Yogesh Kumar; Gangenahalli, Gurudutta U

    2012-05-01

    B-cell lymphoma (Bcl-2) protein is an anti-apoptotic member of the Bcl-2 family. It is functionally demarcated into four Bcl-2 homology (BH) domains: BH1, BH2, BH3, BH4, one flexible loop domain (FLD), a transmembrane domain (TM), and an X domain. Bcl-2's BH domains have clearly been elucidated from a structural perspective, whereas the conformation of FLD has not yet been predicted, despite its important role in regulating apoptosis through its interactions with JNK-1, PKC, PP2A phosphatase, caspase 3, MAP kinase, ubiquitin, PS1, and FKBP38. Many important residues that regulate Bcl-2 anti-apoptotic activity are present in this domain, for example Asp34, Thr56, Thr69, Ser70, Thr74, and Ser87. The structural elucidation of the FLD would likely help in attempts to accurately predict the effect of mutating these residues on the overall structure of the protein and the interactions of other proteins in this domain. Therefore, we have generated an increased quality model of the Bcl-2 protein including the FLD through modeling. Further, molecular dynamics (MD) simulations were used for FLD optimization, to predict the flexibility, and to determine the stability of the folded FLD. In addition, essential dynamics (ED) was used to predict the collective motions and the essential subspace relevant to Bcl-2 protein function. The predicted average structure and ensemble of MD-simulated structures were submitted to the Protein Model Database (PMDB), and the Bcl-2 structures obtained exhibited enhanced quality. This study should help to elucidate the structural basis for Bcl-2 anti-apoptotic activity regulation through its binding to other proteins via the FLD.

  15. The Nudix Hydrolase CDP-Chase, a CDP-Choline Pyrophosphatase, Is an Asymmetric Dimer with Two Distinct Enzymatic Activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duong-Ly, Krisna C.; Gabelli, Sandra B.; Xu, WenLian

    2011-09-06

    A Nudix enzyme from Bacillus cereus catalyzes the hydrolysis of CDP-choline to produce CMP and phosphocholine. Here, we show that in addition, the enzyme has a 3{prime} {yields} 5{prime} RNA exonuclease activity. The structure of the free enzyme, determined to a 1.8-{angstrom} resolution, shows that the enzyme is an asymmetric dimer. Each monomer consists of two domains, an N-terminal helical domain and a C-terminal Nudix domain. The N-terminal domain is placed relative to the C-terminal domain such as to result in an overall asymmetric arrangement with two distinct catalytic sites: one with an 'enclosed' Nudix pyrophosphatase site and the othermore » with a more open, less-defined cavity. Residues that may be important for determining the asymmetry are conserved among a group of uncharacterized Nudix enzymes from Gram-positive bacteria. Our data support a model where CDP-choline hydrolysis is catalyzed by the enclosed Nudix site and RNA exonuclease activity is catalyzed by the open site. CDP-Chase is the first identified member of a novel Nudix family in which structural asymmetry has a profound effect on the recognition of substrates.« less

  16. Crystal Structure of the Bovine lactadherin C2 Domain, a Membrane Binding Motif, Shows Similarity to the C2 Domains of Factor V and Factor VIII

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin,L.

    2007-01-01

    Lactadherin, a glycoprotein secreted by a variety of cell types, contains two EGF domains and two C domains with sequence homology to the C domains of blood coagulation proteins factor V and factor VIII. Like these proteins, lactadherin binds to phosphatidylserine (PS)-containing membranes with high affinity. We determined the crystal structure of the bovine lactadherin C2 domain (residues 1 to 158) at 2.4 {angstrom}. The lactadherin C2 structure is similar to the C2 domains of factors V and VIII (rmsd of C{sub {alpha}} atoms of 0.9 {angstrom} and 1.2 {angstrom}, and sequence identities of 43% and 38%, respectively). The lactadherinmore » C2 domain has a discoidin-like fold containing two {beta}-sheets of five and three antiparallel {beta}-strands packed against one another. The N and C termini are linked by a disulfide bridge between Cys1 and Cys158. One {beta}-turn and two loops containing solvent-exposed hydrophobic residues extend from the C2 domain {beta}-sandwich core. In analogy with the C2 domains of factors V and VIII, some or all of these solvent-exposed hydrophobic residues, Trp26, Leu28, Phe31, and Phe81, likely participate in membrane binding. The C2 domain of lactadherin may serve as a marker of cell surface phosphatidylserine exposure and may have potential as a unique anti-thrombotic agent.« less

  17. Two distinct structures of alpha-conotoxin GI in aqueous solution.

    PubMed

    Maslennikov, I V; Sobol, A G; Gladky, K V; Lugovskoy, A A; Ostrovsky, A G; Tsetlin, V I; Ivanov, V T; Arseniev, A S

    1998-06-01

    The detailed analysis of conformational space of alpha-conotoxin GI in aqueous solution has been performed on the basis of two-dimensional NMR spectroscopy data using multiconformational approach. As the result, two topologically distinct interconvertible sets of GI conformations (populations of 78% and 22%) have been found. A common feature of the two sets is the Asn4-Cys7 beta-turn. The Gly8 to Tyrll region has a structure of right-handed helical turn in the major set and two sequential bends in the minor one. N-terminus and C-terminus also have different orientations, anti-parallel in the major conformational set and parallel in the minor one. An average pairwise rmsd for backbone heavy atoms is 0.56 A in the major set, 0.23 A in the minor, and 1.85 A between the structures of the two sets. The X-ray structure of GI [Guddat, L. W., Martin, J. A., Shan, L., Edmundson, A. B. & Gray, W. R. (1996) Biochemistry 35, 11329 - 11335] has the same folding pattern as the major NMR set, the average backbone rmsd between the two structures being 0.77 A.

  18. Structural Insights into the Unusually Strong ATPase Activity of the AAA Domain of the Caenorhabditis elegans Fidgetin-like 1 (FIGL-1) Protein*

    PubMed Central

    Peng, Wentao; Lin, Zhijie; Li, Weirong; Lu, Jing; Shen, Yuequan; Wang, Chunguang

    2013-01-01

    The FIGL-1 (fidgetin like-1) protein is a homolog of fidgetin, a protein whose mutation leads to multiple developmental defects. The FIGL-1 protein contains an AAA (ATPase associated with various activities) domain and belongs to the AAA superfamily. However, the biological functions and developmental implications of this protein remain unknown. Here, we show that the AAA domain of the Caenorhabditis elegans FIGL-1 protein (CeFIGL-1-AAA), in clear contrast to homologous AAA domains, has an unusually high ATPase activity and forms a hexamer in solution. By determining the crystal structure of CeFIGL-1-AAA, we found that the loop linking helices α9 and α10 folds into the short helix α9a, which has an acidic surface and interacts with a positively charged surface of the neighboring subunit. Disruption of this charge interaction by mutagenesis diminishes both the ATPase activity and oligomerization capacity of the protein. Interestingly, the acidic residues in helix α9a of CeFIGL-1-AAA are not conserved in other homologous AAA domains that have relatively low ATPase activities. These results demonstrate that the sequence of CeFIGL-1-AAA has adapted to establish an intersubunit charge interaction, which contributes to its strong oligomerization and ATPase activity. These unique properties of CeFIGL-1-AAA distinguish it from other homologous proteins, suggesting that CeFIGL-1 may have a distinct biological function. PMID:23979136

  19. Structural insights into the unusually strong ATPase activity of the AAA domain of the Caenorhabditis elegans fidgetin-like 1 (FIGL-1) protein.

    PubMed

    Peng, Wentao; Lin, Zhijie; Li, Weirong; Lu, Jing; Shen, Yuequan; Wang, Chunguang

    2013-10-11

    The FIGL-1 (fidgetin like-1) protein is a homolog of fidgetin, a protein whose mutation leads to multiple developmental defects. The FIGL-1 protein contains an AAA (ATPase associated with various activities) domain and belongs to the AAA superfamily. However, the biological functions and developmental implications of this protein remain unknown. Here, we show that the AAA domain of the Caenorhabditis elegans FIGL-1 protein (CeFIGL-1-AAA), in clear contrast to homologous AAA domains, has an unusually high ATPase activity and forms a hexamer in solution. By determining the crystal structure of CeFIGL-1-AAA, we found that the loop linking helices α9 and α10 folds into the short helix α9a, which has an acidic surface and interacts with a positively charged surface of the neighboring subunit. Disruption of this charge interaction by mutagenesis diminishes both the ATPase activity and oligomerization capacity of the protein. Interestingly, the acidic residues in helix α9a of CeFIGL-1-AAA are not conserved in other homologous AAA domains that have relatively low ATPase activities. These results demonstrate that the sequence of CeFIGL-1-AAA has adapted to establish an intersubunit charge interaction, which contributes to its strong oligomerization and ATPase activity. These unique properties of CeFIGL-1-AAA distinguish it from other homologous proteins, suggesting that CeFIGL-1 may have a distinct biological function.

  20. Protein domains of unknown function are essential in bacteria.

    PubMed

    Goodacre, Norman F; Gerloff, Dietlind L; Uetz, Peter

    2013-12-31

    More than 20% of all protein domains are currently annotated as "domains of unknown function" (DUFs). About 2,700 DUFs are found in bacteria compared with just over 1,500 in eukaryotes. Over 800 DUFs are shared between bacteria and eukaryotes, and about 300 of these are also present in archaea. A total of 2,786 bacterial Pfam domains even occur in animals, including 320 DUFs. Evolutionary conservation suggests that many of these DUFs are important. Here we show that 355 essential proteins in 16 model bacterial species contain 238 DUFs, most of which represent single-domain proteins, clearly establishing the biological essentiality of DUFs. We suggest that experimental research should focus on conserved and essential DUFs (eDUFs) for functional analysis given their important function and wide taxonomic distribution, including bacterial pathogens. The functional units of proteins are domains. Typically, each domain has a distinct structure and function. Genomes encode thousands of domains, and many of the domains have no known function (domains of unknown function [DUFs]). They are often ignored as of little relevance, given that many of them are found in only a few genomes. Here we show that many DUFs are essential DUFs (eDUFs) based on their presence in essential proteins. We also show that eDUFs are often essential even if they are found in relatively few genomes. However, in general, more common DUFs are more often essential than rare DUFs.

  1. Schmallenberg virus non-structural protein NSm: Intracellular distribution and role of non-hydrophobic domains.

    PubMed

    Kraatz, Franziska; Wernike, Kerstin; Reiche, Sven; Aebischer, Andrea; Reimann, Ilona; Beer, Martin

    2018-03-01

    Schmallenberg virus (SBV) induces fetal malformation, abortions and stillbirth in ruminants. While the non-structural protein NSs is a major virulence factor, the biological function of NSm, the second non-structural protein which consists of three hydrophobic transmembrane (I, III, V) and two non-hydrophobic regions (II, IV), is still unknown. Here, a series of NSm mutants displaying deletions of nearly the entire NSm or of the non-hydrophobic domains was generated and the intracellular distribution of NSm was assessed. SBV-NSm is dispensable for the generation of infectious virus and mutants lacking domains II - V showed growth properties similar to the wild-type virus. In addition, a comparable intracellular distribution of SBV-NSm was observed in mammalian cells infected with domain II mutants or wild-type virus. In both cases, NSm co-localized with the glycoprotein Gc in the Golgi compartment. However, domain IV-deletion mutants showed an altered distribution pattern and no co-localization of NSm and Gc. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Josephin Domain Structural Conformations Explored by Metadynamics in Essential Coordinates

    PubMed Central

    Tuszynski, Jack A.; Gallo, Diego; Morbiducci, Umberto; Danani, Andrea

    2016-01-01

    The Josephin Domain (JD), i.e. the N-terminal domain of Ataxin 3 (At3) protein, is an interesting example of competition between physiological function and aggregation risk. In fact, the fibrillogenesis of Ataxin 3, responsible for the spinocerebbellar ataxia 3, is strictly related to the JD thermodynamic stability. Whereas recent NMR studies have demonstrated that different JD conformations exist, the likelihood of JD achievable conformational states in solution is still an open issue. Marked differences in the available NMR models are located in the hairpin region, supporting the idea that JD has a flexible hairpin in dynamic equilibrium between open and closed states. In this work we have carried out an investigation on the JD conformational arrangement by means of both classical molecular dynamics (MD) and Metadynamics employing essential coordinates as collective variables. We provide a representation of the free energy landscape characterizing the transition pathway from a JD open-like structure to a closed-like conformation. Findings of our in silico study strongly point to the closed-like conformation as the most likely for a Josephin Domain in water. PMID:26745628

  3. From Structure to Function: A Comprehensive Compendium of Tools to Unveil Protein Domains and Understand Their Role in Cytokinesis.

    PubMed

    Rincon, Sergio A; Paoletti, Anne

    2016-01-01

    Unveiling the function of a novel protein is a challenging task that requires careful experimental design. Yeast cytokinesis is a conserved process that involves modular structural and regulatory proteins. For such proteins, an important step is to identify their domains and structural organization. Here we briefly discuss a collection of methods commonly used for sequence alignment and prediction of protein structure that represent powerful tools for the identification homologous domains and design of structure-function approaches to test experimentally the function of multi-domain proteins such as those implicated in yeast cytokinesis.

  4. Tunable thermal conductivity via domain structure engineering in ferroelectric thin films: A phase-field simulation

    DOE PAGES

    Wang, Jian -Jun; Wang, Yi; Ihlefeld, Jon F.; ...

    2016-04-06

    Effective thermal conductivity as a function of domain structure is studied by solving the heat conduction equation using a spectral iterative perturbation algorithm in materials with inhomogeneous thermal conductivity distribution. Using this proposed algorithm, the experimentally measured effective thermal conductivities of domain-engineered {001} p-BiFeO 3 thin films are quantitatively reproduced. In conjunction with two other testing examples, this proposed algorithm is proven to be an efficient tool for interpreting the relationship between the effective thermal conductivity and micro-/domain-structures. By combining this algorithm with the phase-field model of ferroelectric thin films, the effective thermal conductivity for PbZr 1-xTi xO 3 filmsmore » under different composition, thickness, strain, and working conditions is predicted. It is shown that the chemical composition, misfit strain, film thickness, film orientation, and a Piezoresponse Force Microscopy tip can be used to engineer the domain structures and tune the effective thermal conductivity. Furthermore, we expect our findings will stimulate future theoretical, experimental and engineering efforts on developing devices based on the tunable effective thermal conductivity in ferroelectric nanostructures.« less

  5. Tunable thermal conductivity via domain structure engineering in ferroelectric thin films: A phase-field simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jian -Jun; Wang, Yi; Ihlefeld, Jon F.

    Effective thermal conductivity as a function of domain structure is studied by solving the heat conduction equation using a spectral iterative perturbation algorithm in materials with inhomogeneous thermal conductivity distribution. Using this proposed algorithm, the experimentally measured effective thermal conductivities of domain-engineered {001} p-BiFeO 3 thin films are quantitatively reproduced. In conjunction with two other testing examples, this proposed algorithm is proven to be an efficient tool for interpreting the relationship between the effective thermal conductivity and micro-/domain-structures. By combining this algorithm with the phase-field model of ferroelectric thin films, the effective thermal conductivity for PbZr 1-xTi xO 3 filmsmore » under different composition, thickness, strain, and working conditions is predicted. It is shown that the chemical composition, misfit strain, film thickness, film orientation, and a Piezoresponse Force Microscopy tip can be used to engineer the domain structures and tune the effective thermal conductivity. Furthermore, we expect our findings will stimulate future theoretical, experimental and engineering efforts on developing devices based on the tunable effective thermal conductivity in ferroelectric nanostructures.« less

  6. The crystal structure of Pseudomonas aeruginosa exotoxin domain III with nicotinamide and AMP: conformational differences with the intact exotoxin.

    PubMed Central

    Li, M; Dyda, F; Benhar, I; Pastan, I; Davies, D R

    1995-01-01

    Domain III of Pseudomonas aeruginosa exotoxin A catalyses the transfer of ADP-ribose from NAD to a modified histidine residue of elongation factor 2 in eukaryotic cells, thus inactivating elongation factor 2. This domain III is inactive in the intact toxin but is active in the isolated form. We report here the 2.5-A crystal structure of this isolated domain crystallized in the presence of NAD and compare it with the corresponding structure in the intact Pseudomonas aeruginosa exotoxin A. We observe a significant conformational difference in the active site region from Arg-458 to Asp-463. Contacts with part of domain II in the intact toxin prevent the adoption of the isolated domain conformation and provide a structural explanation for the observed inactivity. Additional electron density in the active site region corresponds to separate AMP and nicotinamide and indicates that the NAD has been hydrolyzed. The structure has been compared with the catalytic domain of the diphtheria toxin, which was crystallized with ApUp. Images Fig. 1 PMID:7568123

  7. Origins and Structural Properties of Novel and De Novo Protein Domains During Insect Evolution.

    PubMed

    Klasberg, Steffen; Bitard-Feildel, Tristan; Callebaut, Isabelle; Bornberg-Bauer, Erich

    2018-05-26

    Over long time scales, protein evolution is characterised by modular rearrangements of protein domains. Such rearrangements are mainly caused by gene duplication, fusion and terminal losses. To better understand domain emergence mechanisms we investigated 32 insect genomes covering a speciation gradient ranging from ~ 2 to ~ 390 my. We use established domain models and foldable domains delineated by Hydrophobic-Cluster-Analysis (HCA), which does not require homologous sequences, to also identify domains which have likely arisen de novo, i.e. from previously non-coding DNA. Our results indicate that most novel domains emerge terminally as they originate from ORF extensions while fewer arise in middle arrangements, resulting from exonisation of intronic or intergenic regions. Many novel domains rapidly migrate between terminal or middle positions and single- and multi-domain arrangements. Young domains, such as most HCA defined domains, are under strong selection pressure as they show signals of purifying selection. De novo domains, linked to ancient domains or defined by HCA, have higher degrees of intrinsic disorder and disorder-to-order transition upon binding than ancient domains. However, the corresponding DNA sequences of the novel domains of denovo origins could only rarely be found in sister genomes. We conclude that novel domains are often recruited by other proteins and undergo important structural modifications shortly after their emergence, but evolve too fast to be characterised by cross-species comparisons alone. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  8. Distinct Functional Modules for Discrete and Rhythmic Forelimb Movements in the Mouse Motor Cortex.

    PubMed

    Hira, Riichiro; Terada, Shin-Ichiro; Kondo, Masashi; Matsuzaki, Masanori

    2015-09-30

    Movements of animals are composed of two fundamental dynamics: discrete and rhythmic movements. Although the movements with distinct dynamics are thought to be differently processed in the CNS, it is unclear how they are represented in the cerebral cortex. Here, we investigated the cortical representation of movement dynamics by developing prolonged transcranial optogenetic stimulation (pTOS) using awake, channelrhodopsin-2 transgenic mice. We found two domains that induced discrete forelimb movements in the forward and backward directions, and these sandwiched a domain that generated rhythmic forelimb movements. The forward discrete movement had an intrinsic velocity profile and the rhythmic movement had an intrinsic oscillation frequency. Each of the forward discrete and rhythmic domains possessed intracortical synaptic connections within its own domain, independently projected to the spinal cord, and weakened the neuronal activity and movement induction of the other domain. pTOS-induced movements were also classified as ethologically relevant movements. Forepaw-to-mouth movement was mapped in a part of the forward discrete domain, while locomotion-like movement was in a part of the rhythmic domain. Interestingly, photostimulation of the rhythmic domain resulted in a nonrhythmic, continuous lever-pull movement when a lever was present. The motor cortex possesses functional modules for distinct movement dynamics, and these can adapt to environmental constraints for purposeful movements. Significance statement: Animal behavior has discrete and rhythmic components, such as reaching and locomotion. It is unclear how these movements with distinct dynamics are represented in the cerebral cortex. We investigated the dynamics of movements induced by long-duration transcranial photostimulation on the dorsal cortex of awake channelrhodopsin-2 transgenic mice. We found two domains causing forward and backward discrete forelimb movements and a domain for rhythmic forelimb

  9. Mapping structural landmarks, ligand binding sites and missense mutations to the collagen IV heterotrimers predicts major functional domains, novel interactions and variation in phenotypes in inherited diseases affecting basement membranes

    PubMed Central

    Des Parkin, J.; San Antonio, James D.; Pedchenko, Vadim; Hudson, Billy; Jensen, Shane T.; Savige, Judy

    2016-01-01

    Collagen IV is the major protein found in basement membranes. It comprises 3 heterotrimers (α1α1α2, α3α4α5, and α5α5α6) that form distinct networks, and are responsible for membrane strength and integrity. We constructed linear maps of the collagen IV heterotrimers (‘interactomes’) that indicated major structural landmarks, known and predicted ligand-binding sites, and missense mutations, in order to identify functional and disease-associated domains, potential interactions between ligands, and genotype-phenotype relationships. The maps documented more than 30 known ligand-binding sites as well as motifs for integrins, heparin, von Willebrand factor (VWF), decorin and bone morphogenetic protein (BMP). They predicted functional domains for angiogenesis and haemostasis, and disease domains for autoimmunity, tumor growth and inhibition, infection and glycation. Cooperative ligand interactions were indicated by binding site proximity, for example, between integrins, matrix metalloproteinases and heparin. The maps indicated that mutations affecting major ligand-binding sites, for example for Von Hippel Lindau (VHL) protein in the α1 chain or integrins in the α5 chain, resulted in distinctive phenotypes (Hereditary Angiopathy, Nephropathy, Aneurysms and muscle Cramps (HANAC) syndrome, and early onset Alport syndrome respectively). These maps further our understanding of basement membrane biology and disease, and suggest novel membrane interactions, functions, and therapeutic targets. PMID:21280145

  10. Structural Heterogeneity and Functional Domains of Murine Immunoglobulin G Fc Receptors

    NASA Astrophysics Data System (ADS)

    Ravetch, Jeffrey V.; Luster, Andrew D.; Weinshank, Richard; Kochan, Jarema; Pavlovec, Amalia; Portnoy, Daniel A.; Hulmes, Jeffrey; Pan, Yu-Ching E.; Unkeless, Jay C.

    1986-11-01

    Binding of antibodies to effector cells by way of receptors to their constant regions (Fc receptors) is central to the pathway that leads to clearance of antigens by the immune system. The structure and function of this important class of receptors on immune cells is addressed through the molecular characterization of Fc receptors (FcR) specific for the murine immunoglobulin G isotype. Structural diversity is encoded by two genes that by alternative splicing result in expression of molecules with highly conserved extracellular domains and different transmembrane and intracytoplasmic domains. The proteins encoded by these genes are members of the immunoglobulin supergene family, most homologous to the major histocompatibility complex molecule Eβ. Functional reconstitution of ligand binding by transfection of individual FcR genes demonstrates that the requirements for ligand binding are encoded in a single gene. These studies demonstrate the molecular basis for the functional heterogeneity of FcR's, accounting for the possible transduction of different signals in response to a single ligand.

  11. Distinct roles of 1α and 1β heavy chains of the inner arm dynein I1 of Chlamydomonas flagella

    PubMed Central

    Toba, Shiori; Fox, Laura A.; Sakakibara, Hitoshi; Porter, Mary E.; Oiwa, Kazuhiro; Sale, Winfield S.

    2011-01-01

    The Chlamydomonas I1 dynein is a two-headed inner dynein arm important for the regulation of flagellar bending. Here we took advantage of mutant strains lacking either the 1α or 1β motor domain to distinguish the functional role of each motor domain. Single- particle electronic microscopic analysis confirmed that both the I1α and I1β complexes are single headed with similar ringlike, motor domain structures. Despite similarity in structure, however, the I1β complex has severalfold higher ATPase activity and microtubule gliding motility compared to the I1α complex. Moreover, in vivo measurement of microtubule sliding in axonemes revealed that the loss of the 1β motor results in a more severe impairment in motility and failure in regulation of microtubule sliding by the I1 dynein phosphoregulatory mechanism. The data indicate that each I1 motor domain is distinct in function: The I1β motor domain is an effective motor required for wild-type microtubule sliding, whereas the I1α motor domain may be responsible for local restraint of microtubule sliding. PMID:21148301

  12. Using Common Spatial Distributions of Atoms to Relate Functionally Divergent Influenza Virus N10 and N11 Protein Structures to Functionally Characterized Neuraminidase Structures, Toxin Cell Entry Domains, and Non-Influenza Virus Cell Entry Domains

    PubMed Central

    Weininger, Arthur; Weininger, Susan

    2015-01-01

    The ability to identify the functional correlates of structural and sequence variation in proteins is a critical capability. We related structures of influenza A N10 and N11 proteins that have no established function to structures of proteins with known function by identifying spatially conserved atoms. We identified atoms with common distributed spatial occupancy in PDB structures of N10 protein, N11 protein, an influenza A neuraminidase, an influenza B neuraminidase, and a bacterial neuraminidase. By superposing these spatially conserved atoms, we aligned the structures and associated molecules. We report spatially and sequence invariant residues in the aligned structures. Spatially invariant residues in the N6 and influenza B neuraminidase active sites were found in previously unidentified spatially equivalent sites in the N10 and N11 proteins. We found the corresponding secondary and tertiary structures of the aligned proteins to be largely identical despite significant sequence divergence. We found structural precedent in known non-neuraminidase structures for residues exhibiting structural and sequence divergence in the aligned structures. In N10 protein, we identified staphylococcal enterotoxin I-like domains. In N11 protein, we identified hepatitis E E2S-like domains, SARS spike protein-like domains, and toxin components shared by alpha-bungarotoxin, staphylococcal enterotoxin I, anthrax lethal factor, clostridium botulinum neurotoxin, and clostridium tetanus toxin. The presence of active site components common to the N6, influenza B, and S. pneumoniae neuraminidases in the N10 and N11 proteins, combined with the absence of apparent neuraminidase function, suggests that the role of neuraminidases in H17N10 and H18N11 emerging influenza A viruses may have changed. The presentation of E2S-like, SARS spike protein-like, or toxin-like domains by the N10 and N11 proteins in these emerging viruses may indicate that H17N10 and H18N11 sialidase-facilitated cell

  13. Alternative splicing originates different domain structure organization of Lutzomyia longipalpis chitinases.

    PubMed

    Ortigão-Farias, João Ramalho; Di-Blasi, Tatiana; Telleria, Erich Loza; Andorinho, Ana Carolina; Lemos-Silva, Thais; Ramalho-Ortigão, Marcelo; Tempone, Antônio Jorge; Traub-Csekö, Yara Maria

    2018-02-01

    BACKGROUND The insect chitinase gene family is composed by more than 10 paralogs, which can codify proteins with different domain structures. In Lutzomyia longipalpis, the main vector of visceral leishmaniasis in Brazil, a chitinase cDNA from adult female insects was previously characterized. The predicted protein contains one catalytic domain and one chitin-binding domain (CBD). The expression of this gene coincided with the end of blood digestion indicating a putative role in peritrophic matrix degradation. OBJECTIVES To determine the occurrence of alternative splicing in chitinases of L. longipalpis. METHODS We sequenced the LlChit1 gene from a genomic clone and the three spliced forms obtained by reverse transcription polymerase chain reaction (RT-PCR) using larvae cDNA. FINDINGS We showed that LlChit1 from L. longipalpis immature forms undergoes alternative splicing. The spliced form corresponding to the adult cDNA was named LlChit1A and the two larvae specific transcripts were named LlChit1B and LlChit1C. The B and C forms possess stop codons interrupting the translation of the CBD. The A form is present in adult females post blood meal, L4 larvae and pre-pupae, while the other two forms are present only in L4 larvae and disappear just before pupation. Two bands of the expected size were identified by Western blot only in L4 larvae. MAIN CONCLUSIONS We show for the first time alternative splicing generating chitinases with different domain structures increasing our understanding on the finely regulated digestion physiology and shedding light on a potential target for controlling L. longipalpis larval development.

  14. Alternative splicing originates different domain structure organization of Lutzomyia longipalpis chitinases

    PubMed Central

    Ortigão-Farias, João Ramalho; Di-Blasi, Tatiana; Telleria, Erich Loza; Andorinho, Ana Carolina; Lemos-Silva, Thais; Ramalho-Ortigão, Marcelo; Tempone, Antônio Jorge; Traub-Csekö, Yara Maria

    2018-01-01

    BACKGROUND The insect chitinase gene family is composed by more than 10 paralogs, which can codify proteins with different domain structures. In Lutzomyia longipalpis, the main vector of visceral leishmaniasis in Brazil, a chitinase cDNA from adult female insects was previously characterized. The predicted protein contains one catalytic domain and one chitin-binding domain (CBD). The expression of this gene coincided with the end of blood digestion indicating a putative role in peritrophic matrix degradation. OBJECTIVES To determine the occurrence of alternative splicing in chitinases of L. longipalpis. METHODS We sequenced the LlChit1 gene from a genomic clone and the three spliced forms obtained by reverse transcription polymerase chain reaction (RT-PCR) using larvae cDNA. FINDINGS We showed that LlChit1 from L. longipalpis immature forms undergoes alternative splicing. The spliced form corresponding to the adult cDNA was named LlChit1A and the two larvae specific transcripts were named LlChit1B and LlChit1C. The B and C forms possess stop codons interrupting the translation of the CBD. The A form is present in adult females post blood meal, L4 larvae and pre-pupae, while the other two forms are present only in L4 larvae and disappear just before pupation. Two bands of the expected size were identified by Western blot only in L4 larvae. MAIN CONCLUSIONS We show for the first time alternative splicing generating chitinases with different domain structures increasing our understanding on the finely regulated digestion physiology and shedding light on a potential target for controlling L. longipalpis larval development. PMID:29236932

  15. Mechanical design of the first proximal Ig domain of human cardiac titin revealed by single molecule force spectroscopy.

    PubMed

    Li, Hongbin; Fernandez, Julio M

    2003-11-14

    The elastic I-band part of muscle protein titin contains two tandem immunoglobulin (Ig) domain regions of distinct mechanical properties. Until recently, the only known structure was that of the I27 module of the distal region, whose mechanical properties have been reported in detail. Recently, the structure of the first proximal domain, I1, has been resolved at 2.1A. In addition to the characteristic beta-sandwich structure of all titin Ig domains, the crystal structure of I1 showed an internal disulfide bridge that was proposed to modulate its mechanical extensibility in vivo. Here, we use single molecule force spectroscopy and protein engineering to examine the mechanical architecture of this domain. In contrast to the predictions made from the X-ray crystal structure, we find that the formation of a disulfide bridge in I1 is a relatively rare event in solution, even under oxidative conditions. Furthermore, our studies of the mechanical stability of I1 modules engineered with point mutations reveal significant differences between the mechanical unfolding of the I1 and I27 modules. Our study illustrates the varying mechanical architectures of the titin Ig modules.

  16. Structural or pigmentary? Origin of the distinctive white stripe on the blue wing of a Morpho butterfly.

    PubMed

    Yoshioka, Shinya; Kinoshita, Shuichi

    2006-01-22

    A few species of Morpho butterflies have a distinctive white stripe pattern on their structurally coloured blue wings. Since the colour pattern of a butterfly wing is formed as a mosaic of differently coloured scales, several questions naturally arise: are the microstructures the same between the blue and white scales? How is the distinctive whiteness produced, structurally or by means of pigmentation? To answer these questions, we have performed structural and optical investigations of the stripe pattern of a butterfly, Morpho cypris. It is found that besides the dorsal and ventral scale layers, the wing substrate also has the corresponding stripe pattern. Quantitative optical measurements and analysis using a simple model for the wing structure reveal the origin of the higher reflectance which makes the white stripe brighter.

  17. Oxyanion Induced Variations in Domain Structure for Amorphous Cobalt Oxide Oxygen Evolving Catalysts, Resolved by X-ray Pair Distribution Function Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwon, Gihan; Kokhan, Oleksandr; Han, Ali

    Amorphous thin film oxygen evolving catalysts, OECs, of first-row transition metals show promise to serve as self-assembling photoanode materials in solar-driven, photoelectrochemical `artificial leaf' devices. This report demonstrates the ability to use high-energy X-ray scattering and atomic pair distribution function analysis, PDF, to resolve structure in amorphous metal oxide catalyst films. The analysis is applied here to resolve domain structure differences induced by oxyanion substitution during the electrochemical assembly of amorphous cobalt oxide catalyst films, Co-OEC. PDF patterns for Co-OEC films formed using phosphate, Pi, methylphosphate, MPi, and borate, Bi, electrolyte buffers show that the resulting domains vary in sizemore » following the sequence Pi < MPi < Bi. The increases in domain size for CoMPi and CoBi were found to be correlated with increases in the contributions from bilayer and trilayer stacked domains having structures intermediate between those of the LiCoOO and CoO(OH) mineral forms. The lattice structures and offset stacking of adjacent layers in the partially stacked CoMPi and CoBi domains were best matched to those in the LiCoOO layered structure. The results demonstrate the ability of PDF analysis to elucidate features of domain size, structure, defect content and mesoscale organization for amorphous metal oxide catalysts that are not readily accessed by other X-ray techniques. Finally, PDF structure analysis is shown to provide a way to characterize domain structures in different forms of amorphous oxide catalysts, and hence provide an opportunity to investigate correlations between domain structure and catalytic activity.« less

  18. Oxyanion Induced Variations in Domain Structure for Amorphous Cobalt Oxide Oxygen Evolving Catalysts, Resolved by X-ray Pair Distribution Function Analysis

    DOE PAGES

    Kwon, Gihan; Kokhan, Oleksandr; Han, Ali; ...

    2015-12-01

    Amorphous thin film oxygen evolving catalysts, OECs, of first-row transition metals show promise to serve as self-assembling photoanode materials in solar-driven, photoelectrochemical `artificial leaf' devices. This report demonstrates the ability to use high-energy X-ray scattering and atomic pair distribution function analysis, PDF, to resolve structure in amorphous metal oxide catalyst films. The analysis is applied here to resolve domain structure differences induced by oxyanion substitution during the electrochemical assembly of amorphous cobalt oxide catalyst films, Co-OEC. PDF patterns for Co-OEC films formed using phosphate, Pi, methylphosphate, MPi, and borate, Bi, electrolyte buffers show that the resulting domains vary in sizemore » following the sequence Pi < MPi < Bi. The increases in domain size for CoMPi and CoBi were found to be correlated with increases in the contributions from bilayer and trilayer stacked domains having structures intermediate between those of the LiCoOO and CoO(OH) mineral forms. The lattice structures and offset stacking of adjacent layers in the partially stacked CoMPi and CoBi domains were best matched to those in the LiCoOO layered structure. The results demonstrate the ability of PDF analysis to elucidate features of domain size, structure, defect content and mesoscale organization for amorphous metal oxide catalysts that are not readily accessed by other X-ray techniques. Finally, PDF structure analysis is shown to provide a way to characterize domain structures in different forms of amorphous oxide catalysts, and hence provide an opportunity to investigate correlations between domain structure and catalytic activity.« less

  19. Telomere Capping Proteins are Structurally Related to RPA with an additional Telomere-Specific Domain

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gelinas, A.; Paschini, M; Reyes, F

    Telomeres must be capped to preserve chromosomal stability. The conserved Stn1 and Ten1 proteins are required for proper capping of the telomere, although the mechanistic details of how they contribute to telomere maintenance are unclear. Here, we report the crystal structures of the C-terminal domain of the Saccharomyces cerevisiae Stn1 and the Schizosaccharomyces pombe Ten1 proteins. These structures reveal striking similarities to corresponding subunits in the replication protein A complex, further supporting an evolutionary link between telomere maintenance proteins and DNA repair complexes. Our structural and in vivo data of Stn1 identify a new domain that has evolved to supportmore » a telomere-specific role in chromosome maintenance. These findings endorse a model of an evolutionarily conserved mechanism of DNA maintenance that has developed as a result of increased chromosomal structural complexity.« less

  20. Nucleon structure from 2+1-flavor domain-wall QCD

    NASA Astrophysics Data System (ADS)

    Ohta, Shigemi

    2018-03-01

    Nucleon-structure calculations of isovector vector-and axialvector-current form factors, transversity and scalar charge, and quark momentum and helicity fractions are reported from two recent 2+1-flavor dynamical domain-wall fermions lattice-QCD ensembles generated jointly by the RIKEN-BNL-Columbia and UKQCD Collaborations with Iwasaki × dislocation-suppressing-determinatn-ratio gauge action at inverse lattice spacing of 1.378(7) GeV and pion mass values of 249.4(3) and 172.3(3) MeV.