Science.gov

Sample records for distress syndrome ards

  1. ARDS (Acute Respiratory Distress Syndrome)

    MedlinePlus

    ... Twitter. What Is ARDS? ARDS, or acute respiratory distress syndrome, is a lung condition that leads to low oxygen levels in the blood. ARDS can be life threatening because your body's organs need oxygen-rich ...

  2. Prescribing Patterns of Drugs in Acute Respiratory Distress Syndrome (ARDS): An Observational Study

    PubMed Central

    Rao, Shobitha; Chogtu, Bharti

    2015-01-01

    Introduction: Acute respiratory distress syndrome (ARDS) is characterized by acute respiratory failure and is associated with wide range of clinical disorders. Controversy prevails over the pharmacological intervention in this disease. The aim of the study was to observe the prescribing pattern of drugs in patients with ARDS managed at a tertiary care hospital. Materials and Methods: This observational study was conducted at tertiary care hospital in India. Data of patients admitted from January 2010 to December 2012 was collected. Patients aged more than 18 years admitted in ICU, who were diagnosed to have ARDS during the study period, were included. A total of 150 patients of ARDS were selected. Data was collected as per the pre designed proforma and it included patients’ age, gender, clinical disorders precipitating ARDS, prescribing pattern of drugs and outcome. The data of the subjects was collected till discharge from hospital or death. Results: Infection was the cause of ARDS in 81.3% (n=122) of subjects. Antibiotics were prescribed in all the subjects and beta-lactams were prescribed in 97.3% (n=146). 41.3% (n=62) were prescribed corticosteroids, 39.3% (n=59) diuretics and 89.3% (n=134) intravenous fluids. Conclusion: The outcome of patients on different pharmacological treatment did not show any statistically significant difference. PMID:25859465

  3. Ventilator-Induced Lung Injury (VILI) in Acute Respiratory Distress Syndrome (ARDS): Volutrauma and Molecular Effects

    PubMed Central

    Carrasco Loza, R; Villamizar Rodríguez, G; Medel Fernández, N

    2015-01-01

    Acute Respiratory Distress Syndrome (ARDS) is a clinical condition secondary to a variety of insults leading to a severe acute respiratory failure and high mortality in critically ill patients. Patients with ARDS generally require mechanical ventilation, which is another important factor that may increase the ALI (acute lung injury) by a series of pathophysiological mechanisms, whose common element is the initial volutrauma in the alveolar units, and forming part of an entity known clinically as ventilator-induced lung injury (VILI). Injured lungs can be partially protected by optimal settings and ventilation modes, using low tidal volume (VT) values and high positive-end expiratory pressure (PEEP). The benefits in ARDS outcomes caused by these interventions have been confirmed by several prospective randomized controlled trials (RCTs) and are attributed to reduction in volutrauma. The purpose of this article is to present an approach to VILI pathophysiology focused on the effects of volutrauma that lead to lung injury and the ‘mechanotransduction’ mechanism. A more complete understanding about the molecular effects that physical forces could have, is essential for a better assessment of existing strategies as well as the development of new therapeutic strategies to reduce the damage resulting from VILI, and thereby contribute to reducing mortality in ARDS. PMID:26312103

  4. Recovery and outcomes after the acute respiratory distress syndrome (ARDS) in patients and their family caregivers.

    PubMed

    Herridge, Margaret S; Moss, Marc; Hough, Catherine L; Hopkins, Ramona O; Rice, Todd W; Bienvenu, O Joseph; Azoulay, Elie

    2016-05-01

    Outcomes after acute respiratory distress syndrome (ARDS) are similar to those of other survivors of critical illness and largely affect the nerve, muscle, and central nervous system but also include a constellation of varied physical devastations ranging from contractures and frozen joints to tooth loss and cosmesis. Compromised quality of life is related to a spectrum of impairment of physical, social, emotional, and neurocognitive function and to a much lesser extent discrete pulmonary disability. Intensive care unit-acquired weakness (ICUAW) is ubiquitous and includes contributions from both critical illness polyneuropathy and myopathy, and recovery from these lesions may be incomplete at 5 years after ICU discharge. Cognitive impairment in ARDS survivors ranges from 70 to 100 % at hospital discharge, 46 to 80 % at 1 year, and 20 % at 5 years, and mood disorders including depression and post-traumatic stress disorder (PTSD) are also sustained and prevalent. Robust multidisciplinary and longitudinal interventions that improve these outcomes are still uncertain and data in our literature are conflicting. Studies are needed in family members of ARDS survivors to better understand long-term outcomes of the post-ICU family syndrome and to evaluate how it affects patient recovery. PMID:27025938

  5. [Pathophysiologic and therapeutic aspects of the adult respiratory distress syndrome (ARDS)].

    PubMed

    Thiel, M; Forst, H; Peter, K

    1991-02-01

    Since the first characterization of the adult respiratory distress syndrome (ARDS), knowledge of its aetiology and pathogenesis has grown considerably. In spite of this, mortality remains up to 50 to 90%, particularly if multiple organ failure is present. Because no causative clinical therapy is available up to now, significant attention is given to preventive measures like early operative stabilisation of long bone fractures, or prophylaxis of nosocomial infections. After clinical manifestation of ARDS, treatment focuses on functional disturbances of the cardiopulmonary system and on the underlying disease. The aim of this symptomatic therapy is to ensure oxygen supply according to the organisms demand. It is still unknown, however, whether the mortality of patients with ARDS can be reduced by optimising the oxygen supply. In general, oxygen supply can be enhanced by improving pulmonary gas exchange, cardiac output and blood oxygen transport capacity. For practical use the therapy often ends up with a therapeutical dilemma: On one hand, the improvement of the pulmonary gas exchange by application of PEEP can be associated with a critical decline in cardiac output, particularly if the afterload of the right ventricle is elevated. On the other hand, to increase cardiac output, both volume replacement and vasodilators can severely affect pulmonary gas exchange if the alveolo-capillary permeability is increased and pulmonary hypoxic vasoconstriction is disturbed. Thus, oxygen supply can be optimised only via invasive monitoring of the cardiorespiratory system. Although still experimental, the most promising approaches seem to be pharmacological interventions directed at suppressing the formation and effects of various humoral and cellular mediators. An improved understanding of the inflammatory processes might provide new insights in the pathophysiology of ARDS and the related therapeutic interventions. PMID:1863681

  6. New therapies for acute respiratory distress syndrome (ARDS):--a review.

    PubMed

    Reddy, V G

    1999-03-01

    Acute respiratory distress syndrome (ARDS) has been associated with high mortality. Improved understanding of the pathophysiology, recognition of precipitating events and improved management has decreased the mortality over the years. Mechanical ventilation is still the corner stone of the management of the disease. It is well recognised that high tidal volumes and airway pressures increase the morbidity, hence the need to use alternative modes of ventilation like pressure control with or without inverse ratio ventilation. Extracorporeal membrane oxygenation is still experimental and not easily available, whereas prone position to improve oxygenation is simple and inexpensive. The concept of pathological oxygen dependency and therapy aimed at supranormal values has failed to improve survival. Restricting the fluids to prevent further oedema formation in an already wet lung has improved the survival rate. Nitric oxide and surfactant have failed to produce desirable effect in large studies. Pharmacological support to inhibit inflammation with non steroidal anti-inflammatory drugs, antifungal agents, prostaglandin and corticosteroids have all failed. Interestingly corticosteroid rescue treatment in the late phase of ARDS has shown promise. Antiendotoxin and anticytokine studies which began with much enthusiasm is yet to produce desirable results. PMID:10972019

  7. Scrub Typhus with Acute Respiratory Distress Syndrome (ARDS) and its Management in Intensive Care Unit: A Case Report.

    PubMed

    Sankuratri, Srinivas; Kalagara, Pavani; Samala, Kartika Balaji; Veledandi, Prabhakar Krishna; Atiketi, Srinadh Babu

    2015-05-01

    Scrub typhus is zoonotic disease caused by Orientia tsutsugamushi (O tsutsugamushi). It is transmitted to humans by the bite of trombiculid mite larvae (chiggers). It is a re-emerging infectious disease in India. Clinical manifestations include fever, headache, anorexia, myalgia, eschar, adenopathy and maculopapular rash. Complications of Scrub typhus develop after first week of illness. Complications include meningoencephalitis, jaundice, myocarditis, ARDS and renal failure. Eschar and rash may be unnoticed or absent. Thorough physical examination, identification of eschar/rash throws light in thinking about scrub typhus, treating and preventing further complications. Here, we report a case of scrub typhus with Acute Respiratory Distress Syndrome (ARDS) and its management with non invasive ventilation in the intensive care unit. PMID:26155511

  8. Plasma Neutrophil Elastase and Elafin Imbalance Is Associated with Acute Respiratory Distress Syndrome (ARDS) Development

    PubMed Central

    Wang, Zhaoxi; Chen, Feng; Zhai, Rihong; Zhang, Lingsong; Su, Li; Lin, Xihong; Thompson, Taylor; Christiani, David C.

    2009-01-01

    Background We conducted an exploratory study of genome-wide gene expression in whole blood and found that the expression of neutrophil elastase inhibitor (PI3, elafin) was down-regulated during the early phase of ARDS. Further analyses of plasma PI3 levels revealed a rapid decrease during early ARDS development. PI3 and secretory leukocyte proteinase inhibitor (SLPI) are important low-molecular-weight proteinase inhibitors produced locally at neutrophil infiltration site in the lung. In this study, we tested the hypothesis that an imbalance between neutrophil elastase (HNE) and its inhibitors in blood is related to the development of ARDS. Methodology/Principal Findings PI3, SLPI, and HNE were measured in plasma samples collected from 148 ARDS patients and 63 critical ill patients at risk for ARDS (controls). Compared with the controls, the ARDS patients had higher HNE, but lower PI3, at the onset of ARDS, resulting in increased HNE/PI3 ratio (mean = 14.5; 95% CI, 10.9–19.4, P<0.0001), whereas plasma SLPI was not associated with the risk of ARDS development. Although the controls had elevated plasma PI3 and HNE, their HNE/PI3 ratio (mean = 6.5; 95% CI, 4.9–8.8) was not significantly different from the healthy individuals (mean = 3.9; 95% CI, 2.7–5.9). Before the onset (7-days period prior to ARDS diagnosis), we only observed significantly elevated HNE, but the HNE-PI3 balance remained normal. With the progress from prior to the onset of ARDS, the plasma level of PI3 declined, whereas HNE was maintained at a higher level, tilting the balance toward more HNE in the circulation as characterized by an increased HNE/PI3 ratio. In contrast, three days after ICU admission, there was a significant drop of HNE/PI3 ratio in the at-risk controls. Conclusions/Significance Plasma profiles of PI3, HNE, and HNE/PI3 may be useful clinical biomarkers in monitoring the development of ARDS. PMID:19197381

  9. Analysis of bronchoalveolar lavage fluid (Balf) from patients with adult respiratory distress syndrome (ARDS)

    SciTech Connect

    Henderson, R.F.; Baughman, R.P.; Waide, J.J.

    1995-12-01

    The pathogenesis of ARDS is largely unknown, but many factors are known to predispose one to ARDS: sepsis, aspiration of gastric contents, pneumonia, fracture, multiple transfusions, cardiopulmonary bypass, burn, dissemination intravascular coagulation, pulmonary contusion, near drowning, and pancreatitis. ARDS is characterized by severe hypoxemia, diffuse pulmonary infiltrates, and decreased pulmonary compliance. Current treatment methods still result in 50% mortality. Studies are underway at the University of Cincinnati to determine if treatment with a synthetic pulmonary surfactant, Exosurf{sup {reg_sign}} (contains dipalmitoyl phosphatidyl choline, Burroughs-Wellcome), improves the prognosis of these patients. BALF from these patients, before and after treatment, was analyzed to determine if the treatment resulted in an increase in disaturated phospholipids (surfactant phospholipids) in the epithelial lining fluid and if the treatments reduced the concentration of markers of inflammation and toxicity in the BALF. This study indicates that the method of administering Exosurf{sup {reg_sign}} did not lead to an increase in surfactant lipid or protein in the bronchoalveolar region of the respiratory tract.

  10. Acute respiratory distress syndrome (ARDS) complicating influenza A/H1N1v infection--a clinical approach.

    PubMed

    Witczak, Agnieszka; Prystupa, Andrzej; Kurys-Denis, Ewa; Borys, Michał; Czuczwar, Mirosław; Niemcewicz, Marcin; Kocik, Janusz; Michalak, Anna; Pietrzak, Aldona; Chodorowska, Grażyna; Krupski, Witold; Mosiewicz, Jerzy; Tomasiewicz, Krzysztof

    2013-01-01

    ARDS is defined as an acute inflammatory syndrome characterized with bilateral parenchymal lung infiltrates on chest radiograph and PaO2/FiO2 ratio<200 resulting from causes other than acute left ventricular dysfunction. Inflammatory lung lesions may be induced by different disorders, with sepsis being the leading cause of ARDS. Other causes include infectious pneumonia, aspiration of gastric contents, drugs, severe trauma, fat embolism, surface burn, massive blood transfusion. Influenza A/H1N1 infection seems to be responsible for the development of extremely severe type of ARDS with poor response to routine treatment. Despite great progress in the management of ARDS with novel agents and sophisticated techniques, including antimicrobial drugs, extracorporeal membrane oxygenation, prostaglandins, nitric oxide, prostacyclin, exogenous surfactant administration and activated protein C, supportive treatment based mostly on advanced mechanical ventilation in the intensive care units seems to be the most important for the prognosis. PMID:24364461

  11. The acute respiratory distress syndrome

    PubMed Central

    Gupta, Pooja

    2015-01-01

    The acute respiratory distress syndrome (ARDS) is a major cause of acute respiratory failure. Its development leads to high rates of mortality, as well as short- and long-term complications, such as physical and cognitive impairment. Therefore, early recognition of this syndrome and application of demonstrated therapeutic interventions are essential to change the natural course of this devastating entity. In this review article, we describe updated concepts in ARDS. Specifically, we discuss the new definition of ARDS, its risk factors and pathophysiology, and current evidence regarding ventilation management, adjunctive therapies, and intervention required in refractory hypoxemia. PMID:25829644

  12. Measles-induced respiratory distress, air-leak and ARDS.

    PubMed

    Piastra, M; Onesimo, R; De Luca, D; Lancella, L; Marzano, L; De Rosa, G; Pietrini, D; Valentini, P; Conti, G

    2010-02-01

    Young infants with measles requiring respiratory support have a significant risk for death and long-term complications. Even in developed countries, the occurrence of spontaneous air-leaks and acute respiratory distress syndrome (ARDS) still represent the most severe clinical presentation in early childhood, with a high fatality rate. A clinical series review from a tertiary university paediatric intensive care unit (PICU) was undertaken. During the 2006-2007 outbreak in Rome, Italy, a young infant presented with ARDS/spontaneous air-leak and needed aggressive ventilatory management and haemodynamic support. Both nebulised iloprost and intravenous pentoxifylline were administered during the acute hypoxaemic phase; the role of this pharmacologic approach in critically ill patients is still under debate. We observed four further cases of respiratory impairment requiring a non-invasive approach. Clinical-radiological findings ranged from interstitial pneumonia to bronchiolitis-like pictures. All patients were imported cases, representing an important epidemiological factor and future medical issue, though they were not malnourished nor affected by chronic diseases. We conclude that early respiratory assessment and timely PICU referral is of mainstem importance in the youngest infants with measles-induced respiratory failure. The protean nature of clinical presentation and the possibility of rapid respiratory deterioration should be highlighted, and infants from immigrant families may represent a susceptible high-risk group. PMID:20012881

  13. Acute Respiratory Distress Syndrome in Lemierre's Syndrome

    PubMed Central

    Hein, Paul N.; Soghikian, Maida V.; Bhangoo, Munveer S.

    2014-01-01

    Lemierre's syndrome is an infectious disease defined by the presence of septic thrombophlebitis with associated embolic phenomenon, most commonly to the lungs. Here we present two cases from a single institution of acute respiratory distress syndrome (ARDS) developing as a result of Lemierre's syndrome in previously healthy young adult men. ARDS can occur as a consequence of pulmonary septic emboli and sepsis, both of which are well-described consequences of Lemierre's syndrome. We describe important diagnostic and management considerations in the care of patients with hypoxemic respiratory failure and Lemierre's syndrome. Essential components of management include prompt antibiotic therapy, lung-protective ventilation strategies, and supportive care. PMID:25143837

  14. Acute Respiratory Distress Syndrome in Lemierre's Syndrome.

    PubMed

    Hein, Paul N; Soghikian, Maida V; Bhangoo, Munveer S

    2014-01-01

    Lemierre's syndrome is an infectious disease defined by the presence of septic thrombophlebitis with associated embolic phenomenon, most commonly to the lungs. Here we present two cases from a single institution of acute respiratory distress syndrome (ARDS) developing as a result of Lemierre's syndrome in previously healthy young adult men. ARDS can occur as a consequence of pulmonary septic emboli and sepsis, both of which are well-described consequences of Lemierre's syndrome. We describe important diagnostic and management considerations in the care of patients with hypoxemic respiratory failure and Lemierre's syndrome. Essential components of management include prompt antibiotic therapy, lung-protective ventilation strategies, and supportive care. PMID:25143837

  15. Acute Respiratory Distress Syndrome (ARDS)

    MedlinePlus

    ABOUT US OUR INITIATIVES LUNG HEALTH & DISEASES SUPPORT & COMMUNITY STOP SMOKING GET INVOLVED DONATE - ABOUT US Mission, Impact & History Local Associations Our Leadership Scientific Advisors Financial Statements Media ...

  16. Acute Respiratory Distress Syndrome.

    PubMed

    Yadam, Suman; Bihler, Eric; Balaan, Marvin

    2016-01-01

    Acute respiratory distress syndrome (ARDS) is a serious inflammatory disorder with high mortality. Its main pathologic mechanism seems to result from increased alveolar permeability. Its definition has also changed since first being described according to the Berlin definition, which now classifies ARDS on a severity scale based on PaO2 (partial pressure of oxygen, arterial)/FIO2 (fraction of inspired oxygen) ratio. The cornerstone of therapy was found to be a low tidal volume strategy featuring volumes of 6 to 8 mL per kg of ideal body weight that has been shown to have decreased mortality as proven by the ARDSnet trials. There are other areas of treatment right now that include extracorporeal membrane oxygenation, as well for severe refractory hypoxemia. Other methods that include prone positioning for ventilation have also shown improvements in oxygenation. Positive end-expiratory pressure with lung recruitment maneuvers has also been found to be helpful. Other therapies that include vasodilators and neuromuscular agents are still being explored and need further studies to define their role in ARDS. PMID:26919679

  17. Acute respiratory distress syndrome: Pulmonary and extrapulmonary not so similar

    PubMed Central

    Sehgal, Inderpaul Singh; Dhooria, Sahajal; Behera, Digambar; Agarwal, Ritesh

    2016-01-01

    Acute respiratory distress syndrome (ARDS) is characterized by acute onset respiratory failure with bilateral pulmonary infiltrates and hypoxemia. Current evidence suggests different respiratory mechanics in pulmonary ARDS (ARDSp) and extrapulmonary ARDS (ARDSexp) with disproportionate decrease in lung compliance in the former and chest wall compliance in the latter. Herein, we report two patients of ARDS, one each with ARDSp and ARDSexp that were managed using real-time esophageal pressure monitoring using the AVEA ventilator to tailor the ventilatory strategy. PMID:27076736

  18. [Acute respiratory distress syndrome].

    PubMed

    Estenssoro, Elisa; Dubin, Arnaldo

    2016-01-01

    Acute respiratory distress syndrome (ARDS) is an acute respiratory failure produced by an inflammatory edema secondary to increased lung capillary permeability. This causes alveolar flooding and subsequently deep hypoxemia, with intrapulmonary shunt as its most important underlying mechanism. Characteristically, this alteration is unresponsive to high FIO2 and only reverses with end-expiratory positive pressure (PEEP). Pulmonary infiltrates on CXR and CT are the hallmark, together with decreased lung compliance. ARDS always occurs within a week of exposition to a precipitating factor; most frequently pneumonia, shock, aspiration of gastric contents, sepsis, and trauma. In CT scan, the disease is frequently inhomogeneous, with gravitational infiltrates coexisting with normal-density areas and also with hyperaerated parenchyma. Mortality is high (30-60%) especially in ARDS associated with septic shock and neurocritical diseases. The cornerstone of therapy lies in the treatment of the underlying cause and in the use mechanical ventilation which, if inappropriately administered, can lead to ventilator-induced lung injury. Tidal volume = 6 ml/kg of ideal body weight to maintain an end-inspiratory (plateau) pressure = 30 cm H2O ("protective ventilation") is the only variable consistently associated with decreased mortality. Moderate-to-high PEEP levels are frequently required to treat hypoxemia, yet no specific level or titration strategy has improved outcomes. Recently, the use of early prone positioning in patients with PaO2/FIO2 = 150 was associated with increased survival. In severely hypoxemic patients, it may be necessary to use adjuvants of mechanical ventilation as recruitment maneuvers, pressure-controlled modes, neuromuscular blocking agents, and extracorporeal-membrane oxygenation. Fluid restriction appears beneficial. PMID:27576283

  19. Neonatal respiratory distress syndrome

    MedlinePlus

    Hyaline membrane disease (HMD); Infant respiratory distress syndrome; Respiratory distress syndrome in infants; RDS - infants ... Neonatal RDS occurs in infants whose lungs have not yet fully ... disease is mainly caused by a lack of a slippery substance in ...

  20. Neonatal respiratory distress syndrome

    MedlinePlus

    Hyaline membrane disease (HMD); Infant respiratory distress syndrome; Respiratory distress syndrome in infants; RDS - infants ... include: Bluish color of the skin and mucus membranes (cyanosis) Brief stop in breathing (apnea) Decreased urine ...

  1. Human herpesviruses respiratory infections in patients with acute respiratory distress (ARDS).

    PubMed

    Bonizzoli, Manuela; Arvia, Rosaria; di Valvasone, Simona; Liotta, Francesco; Zakrzewska, Krystyna; Azzi, Alberta; Peris, Adriano

    2016-08-01

    Acute respiratory distress syndrome (ARDS) is today a leading cause of hospitalization in intensive care unit (ICU). ARDS and pneumonia are closely related to critically ill patients; however, the etiologic agent is not always identified. The presence of human herpes simplex virus 1, human cytomegalovirus and Epstein-Barr virus in respiratory samples of critically ill patients is increasingly reported even without canonical immunosuppression. The main aim of this study was to better understand the significance of herpesviruses finding in lower respiratory tract of ARDS patients hospitalized in ICU. The presence of this group of herpesviruses, in addition to the research of influenza viruses and other common respiratory viruses, was investigated in respiratory samples from 54 patients hospitalized in ICU, without a known microbiological causative agent. Moreover, the immunophenotype of each patient was analyzed. Herpesviruses DNA presence in the lower respiratory tract seemed not attributable to an impaired immunophenotype, whereas a significant correlation was observed between herpesviruses positivity and influenza virus infection. A higher ICU mortality was significantly related to the presence of herpesvirus infection in the lower respiratory tract as well as to impaired immunophenotype, as patients with poor outcome showed severe lymphopenia, affecting in particular T (CD3+) cells, since the first days of ICU hospitalization. In conclusion, these results indicate that herpesviruses lower respiratory tract infection, which occurs more frequently following influenza virus infection, can be a negative prognostic marker. An independent risk factor for ICU patients with ARDS is an impaired immunophenotype. PMID:27138606

  2. A randomised controlled trial and cost-effectiveness analysis of high-frequency oscillatory ventilation against conventional artificial ventilation for adults with acute respiratory distress syndrome. The OSCAR (OSCillation in ARDS) study.

    PubMed Central

    Lall, Ranjit; Hamilton, Patrick; Young, Duncan; Hulme, Claire; Hall, Peter; Shah, Sanjoy; MacKenzie, Iain; Tunnicliffe, William; Rowan, Kathy; Cuthbertson, Brian; McCabe, Chris; Lamb, Sallie

    2015-01-01

    BACKGROUND Patients with the acute respiratory distress syndrome (ARDS) require artificial ventilation but this treatment may produce secondary lung damage. High-frequency oscillatory ventilation (HFOV) may reduce this damage. OBJECTIVES To determine the clinical benefit and cost-effectiveness of HFOV in patients with ARDS compared with standard mechanical ventilation. DESIGN A parallel, randomised, unblinded clinical trial. SETTING UK intensive care units. PARTICIPANTS Mechanically ventilated patients with a partial pressure of oxygen in arterial blood/fractional concentration of inspired oxygen (P : F) ratio of 26.7 kPa (200 mmHg) or less and an expected duration of ventilation of at least 2 days at recruitment. INTERVENTIONS Treatment arm HFOV using a Novalung R100(®) ventilator (Metran Co. Ltd, Saitama, Japan) ventilator until the start of weaning. Control arm Conventional mechanical ventilation using the devices available in the participating centres. MAIN OUTCOME MEASURES The primary clinical outcome was all-cause mortality at 30 days after randomisation. The primary health economic outcome was the cost per quality-adjusted life-year (QALY) gained. RESULTS One hundred and sixty-six of 398 patients (41.7%) randomised to the HFOV group and 163 of 397 patients (41.1%) randomised to the conventional mechanical ventilation group died within 30 days of randomisation (p = 0.85), for an absolute difference of 0.6% [95% confidence interval (CI) -6.1% to 7.5%]. After adjustment for study centre, sex, Acute Physiology and Chronic Health Evaluation II score, and the initial P : F ratio, the odds ratio for survival in the conventional ventilation group was 1.03 (95% CI 0.75 to 1.40; p = 0.87 logistic regression). Survival analysis showed no difference in the probability of survival up to 12 months after randomisation. The average QALY at 1 year in the HFOV group was 0.302 compared to 0.246. This gives an incremental cost-effectiveness ratio (ICER) for the cost to

  3. Dose-response comparisons of five lung surfactant factor (LSF) preparations in an animal model of adult respiratory distress syndrome (ARDS).

    PubMed Central

    Häfner, D.; Beume, R.; Kilian, U.; Krasznai, G.; Lachmann, B.

    1995-01-01

    1. We have examined the effects of five different lung surfactant factor (LSF) preparations in the rat lung lavage model. In this model repetitive lung lavage leads to lung injury with some similarities to adult respiratory distress syndrome with poor gas exchange and protein leakage into the alveolar spaces. These pathological sequelae can be reversed by LSF instillation soon after lavage. 2. The tested LSF preparations were: two bovine: Survanta and Alveofact: two synthetic: Exosurf and a protein-free phospholipid based LSF (PL-LSF) and one Recombinant LSF at doses of 25, 50 and 100 mg kg-1 body weight and an untreated control group. 3. Tracheotomized rats (10-12 per dose) were pressure-controlled ventilated (Siemens Servo Ventilator 900C) with 100% oxygen at a respiratory rate of 30 breaths min-1, inspiration expiration ratio of 1:2, peak inspiratory pressure (PIP) of 28 cmH2O at positive end-expiratory pressure (PEEP) of 8 cmH2O. Two hours after LSF administration, PEEP and in parallel PIP was reduced from 8 to 6 (1st reduction), from 6 to 3 (2nd reduction) and from 3 to 0 cmH2O (3rd reduction). 4. Partial arterial oxygen pressure (PaO2, mmHg) at 5 min and 120 min after LSF administration and during the 2nd PEEP reduction (PaO2(PEEP23/3)) were used for statistical comparison. All LSF preparations caused a dose-dependent increase for the PaO2(120'), whereas during the 2nd PEEP reduction only bovine and recombinant LSF exhibited dose-dependency. Exosurf did not increase PaO2 after administration of the highest dose. At the highest dose Exosurf exerted no further improvement but rather a tendency to relapse.(ABSTRACT TRUNCATED AT 250 WORDS) Images Figure 2 Figure 3 Figure 4 PMID:7582456

  4. [Ventilatory strategy for ARDS].

    PubMed

    Yoshida, Takeshi; Takegawa, Ryousuke; Ogura, Hiroshi

    2016-02-01

    Fifteen years have passed since lung protective strategy to the patients with acute respiratory distress syndrome (ARDS) established. Recently, the new Berlin Definition of ARDS has been developed and this classified ARDS into three stages (mild, moderate, and severe ARDS), depending on the PaO2/FiO2. After this new definition of ARDS, each treatment to the patients with ARDS should be considered, depending on the severity of lung injury, such as prone position to the patients with severe ARDS, muscle paralysis to the patients with severe ARDS. In this review article, we review the history of lung protective strategy and ARDS definition, discuss the novel physiological approaches to minimizing ventilator-induced lung injury, and highlight a numbers of experimental/clinical studies to support these concepts. PMID:26915253

  5. Early Treatment of Severe Acute Respiratory Distress Syndrome.

    PubMed

    Przybysz, Thomas M; Heffner, Alan C

    2016-02-01

    Acute respiratory distress syndrome (ARDS) is defined by acute diffuse inflammatory lung injury invoked by a variety of systemic or pulmonary insults. Despite medical progress in management, mortality remains 27% to 45%. Patients with ARDS should be managed with low tidal volume ventilation. Permissive hypercapnea is well tolerated. Conservative fluid strategy can reduce ventilator and hospital days in patients without shock. Prone positioning and neuromuscular blockers reduce mortality in some patients. Early management of ARDS is relevant to emergency medicine. Identifying ARDS patients who should be transferred to an extracorporeal membrane oxygenation center is an important task for emergency providers. PMID:26614238

  6. Determinants of diagnostic accuracy in pulmonary scintigraphy for pulmonary capillary protein leak associated with adult respiratory distress syndrome (ARDS): a technical note.

    PubMed

    Tatum, J; Sugerman, H; Perdikaris, N; Rehr, R; Burke, T; Fratkin, M

    1989-01-01

    Radionuclide assessment of pulmonary capillary protein leak using [99mTc] human serum albumin (99mTc-HSA) was first reported from our laboratory. In this study we investigated the impact of 1) sampling time post tracer injection, and 2) lung region assignment, on diagnostic accuracy between 2 groups (control n = 20 and ARDS n = 20). Each patient received 370 MBq 99mTc-HSA i.v. and was imaged for 45 min. The slope index (SI) [change in lung: heart activity ratio/min] was calculated from 11 computer assigned lung regions for intervals of 5-15 (early [E]) and 15-45 (late [L]) min. The diagnostic accuracy of E vs L SI calculations for the 11 regions was evaluated by stepwise logistic regression. E SI data and L SI data from the lower 1/3 of the lung did not achieve significance for inclusion in the discriminant model (P less than 0.05). In the nine remaining regions L SI was significant. Optimal discrimination was achieved from L SI data obtained from a region confined to the lateral half of the mid 3rd of the lung field (sensitivity 81%, specificity 85%, accuracy 83%). The results confirm that: 1) a late (15-45 min) sampling period and 2) proper region assignment are necessary to maximize accuracy of this technique. PMID:2920740

  7. Acute Respiratory Distress Syndrome and Posterior Reversible Encephalopathy Syndrome following Rituximab Therapy.

    PubMed

    Wardrope, Katrina E; Manson, Lynn; Metcalfe, Wendy; Sullivan, Eoin D O

    2016-01-01

    The anti-CD20 monoclonal antibody rituximab is associated with rare but significant adverse events, notably posterior reversible encephalopathy syndrome (PRES) and acute respiratory distress syndrome (ARDS). We report a case of concomitant ARDS and PRES developing after rituximab therapy for treatment of cryoglobulinaemic vasculitis. There are 7 reported cases of PRES complicating rituximab use. PRES onset varied from immediate to 21 days after administration. All patients recovered completely, and rituximab was reintroduced in half of the cases. The occurrence of ARDS in association with rituximab is rarer. Only 3 confirmed cases exist, and ARDS may occur as a delayed reaction. PMID:27275457

  8. Acute Respiratory Distress Syndrome and Posterior Reversible Encephalopathy Syndrome following Rituximab Therapy

    PubMed Central

    Wardrope, Katrina E.; Manson, Lynn; Metcalfe, Wendy; Sullivan, Eoin D. O

    2016-01-01

    The anti-CD20 monoclonal antibody rituximab is associated with rare but significant adverse events, notably posterior reversible encephalopathy syndrome (PRES) and acute respiratory distress syndrome (ARDS). We report a case of concomitant ARDS and PRES developing after rituximab therapy for treatment of cryoglobulinaemic vasculitis. There are 7 reported cases of PRES complicating rituximab use. PRES onset varied from immediate to 21 days after administration. All patients recovered completely, and rituximab was reintroduced in half of the cases. The occurrence of ARDS in association with rituximab is rarer. Only 3 confirmed cases exist, and ARDS may occur as a delayed reaction.

  9. [Acute respiratory distress syndrome caused by tropical eosinophilic lung disease: a case in Gabon].

    PubMed

    Chani, M; Iken, M; Eljahiri, Y; Nzenze, J R; Mion, G

    2011-04-01

    The purpose of this report is to describe the case of a 28-year-old woman in whom acute respiratory distress syndrome (ARDS) following cholecystectomy led to the discovery of eosinophilic lung disease. Outcome was favorable after oxygenotherapy and medical treatment using ivermectin and corticosteroids. The case shows that hypereosinophilic syndrome can be the underlying cause of ARDS. PMID:21695880

  10. Acute respiratory distress syndrome: new definition, current and future therapeutic options

    PubMed Central

    Vlachou, Aikaterini; Ghannadian, Shirin; Simonetti, Umberto; Slutsky, Arthur S.; Zhang, Haibo

    2013-01-01

    Since acute respiratory distress syndrome (ARDS) was first described in 1967 there has been large number of studies addressing its pathogenesis and therapies. Despite this intense research activity, there are very few effective therapies for ARDS other than the use of lung protection strategies. This lack of therapeutic modalities is not only related to the complex pathogenesis of this syndrome but also the insensitive and nonspecific diagnostic criteria to diagnose ARDS. This review article will summarize the key features of the new definition of ARDS, and provide a brief overview of innovative therapeutic options that are being assessed in the management of ARDS. PMID:23825769

  11. Sepsis and Acute Respiratory Distress Syndrome: Recent Update

    PubMed Central

    Kim, Won-Young

    2016-01-01

    Severe sepsis or septic shock is characterized by an excessive inflammatory response to infectious pathogens. Acute respiratory distress syndrome (ARDS) is a devastating complication of severe sepsis, from which patients have high mortality. Advances in treatment modalities including lung protective ventilation, prone positioning, use of neuromuscular blockade, and extracorporeal membrane oxygenation, have improved the outcome over recent decades, nevertheless, the mortality rate still remains high. Timely treatment of underlying sepsis and early identification of patients at risk of ARDS can help to decrease its development. In addition, further studies are needed regarding pathogenesis and novel therapies in order to show promising future treatments of sepsis-induced ARDS. PMID:27066082

  12. Acute respiratory distress syndrome due to systemic lupus erythematosus with hemophagocytic syndrome: an autopsy report.

    PubMed

    Kaneko, Kazuma; Matsuda, Masayuki; Sekijima, Yoshiki; Hosoda, Waki; Gono, Takahisa; Hoshi, Kenichi; Shimojo, Hisashi; Ikeda, Shu-ichi

    2005-04-01

    This report concerns a patient with systemic lupus erythematosus (SLE) who died of acute respiratory distress syndrome (ARDS) 1 day after the onset of pulmonary symptoms. Autopsy demonstrated severe hemophagocytosis in the bone marrow and histopathology indicating a marked increase in vascular permeability in both lungs and kidneys. In this patient, active SLE and associated hemophagocytic syndrome may have induced an increase in the production of inflammatory cytokines, which immediately induced ARDS. Since fatal ARDS can occur as a life-threatening complication of SLE, careful observation is necessary, particularly when there are clinical findings suggestive of associated hemophagocytic syndrome. PMID:15338452

  13. ARDS in pregnancy.

    PubMed

    Duarte, Alexander G

    2014-12-01

    Acute respiratory distress syndrome (ARDS) is an uncommon condition in pregnant patients. The causes of ARDS are associated with obstetric causes such as amniotic fluid embolism, preeclampsia, septic abortion, and retained products of conception or nonobstetric causes that include sepsis, aspiration pneumonitis, influenza pneumonia, blood transfusions, and trauma. An essential component in management of ARDS involves good communication between the obstetrics team and critical care specialist and a fundamental understanding of mechanical ventilatory support. Medical therapies such as nitric oxide and corticosteroids play a complimentary role. Extracorporeal life support is beneficial in the management of the parturient with severe ARDS. PMID:25314088

  14. A Pathophysiologic Approach to Biomarkers in Acute Respiratory Distress Syndrome

    PubMed Central

    Blondonnet, Raiko; Constantin, Jean-Michel; Sapin, Vincent; Jabaudon, Matthieu

    2016-01-01

    Acute respiratory distress syndrome (ARDS) is an acute-onset hypoxic condition with radiographic bilateral lung infiltration. It is characterized by an acute exudative phase combining diffuse alveolar damage and lung edema followed by a later fibroproliferative phase. Despite an improved understanding of ARDS pathobiology, our ability to predict the development of ARDS and risk-stratify patients with the disease remains limited. Biomarkers may help to identify patients at the highest risk of developing ARDS, assess response to therapy, predict outcome, and optimize enrollment in clinical trials. After a short description of ARDS pathobiology, here, we review the scientific evidence that supports the value of various ARDS biomarkers with regard to their major biological roles in ARDS-associated lung injury and/or repair. Ongoing research aims at identifying and characterizing novel biomarkers, in order to highlight relevant mechanistic explorations of lung injury and repair, and to ultimately develop innovative therapeutic approaches for ARDS patients. This review will focus on the pathophysiologic, diagnostic, and therapeutic implications of biomarkers in ARDS and on their utility to ultimately improve patient care. PMID:26980924

  15. Acute respiratory distress syndrome caused by Mycoplasma pneumoniae without elevated pulmonary vascular permeability: a case report

    PubMed Central

    Takahashi, Naoki; Oi, Rie; Ota, Muneyuki; Toriumi, Shinichi; Ogushi, Fumitaka

    2016-01-01

    Sporadic patients with acute respiratory distress syndrome (ARDS) caused by Mycoplasma pneumoniae have been reported. However, knowledge about the pathophysiology and pharmacological treatment of this condition is insufficient. Moreover, the pulmonary vascular permeability in ARDS related to M. pneumoniae infection has not been reported. We report a case of ARDS caused by Mycoplasma pneumoniae without elevated pulmonary vascular permeability, which was successfully treated using low-dose short-term hydrocortisone, suggesting that pulmonary infiltration in ARDS caused by Mycoplasma pneumoniae does not match the criteria of permeability edema observed in typical ARDS. PMID:27162691

  16. Acute respiratory distress syndrome caused by Mycoplasma pneumoniae without elevated pulmonary vascular permeability: a case report.

    PubMed

    Takahashi, Naoki; Shinohara, Tsutomu; Oi, Rie; Ota, Muneyuki; Toriumi, Shinichi; Ogushi, Fumitaka

    2016-05-01

    Sporadic patients with acute respiratory distress syndrome (ARDS) caused by Mycoplasma pneumoniae have been reported. However, knowledge about the pathophysiology and pharmacological treatment of this condition is insufficient. Moreover, the pulmonary vascular permeability in ARDS related to M. pneumoniae infection has not been reported. We report a case of ARDS caused by Mycoplasma pneumoniae without elevated pulmonary vascular permeability, which was successfully treated using low-dose short-term hydrocortisone, suggesting that pulmonary infiltration in ARDS caused by Mycoplasma pneumoniae does not match the criteria of permeability edema observed in typical ARDS. PMID:27162691

  17. [Acute respiratory distress syndrome: a review of the Berlin definition].

    PubMed

    de Luis Cabezón, N; Sánchez Castro, I; Bengoetxea Uriarte, U X; Rodrigo Casanova, M P; García Peña, J M; Aguilera Celorrio, L

    2014-01-01

    Acute Respiratory Distress Syndrome (ARDS) is due to many causes. The absence of a universal definition up until now has led to a series of practical problems for a definitive diagnosis. The incidences of ARDS and Acute Lung Injury (ALI) vary widely in the current literature. The American-European Consensus Conference definition has been applied since its publication in 1994 and has helped to improve knowledge about ARDS. However, 18 years later, in 2011, the European Intensive Medicine Society, requested a team of international experts to meet in Berlin to review the ARDS definition. The purpose of the Berlin definition is not to use it as a prognostic tool, but to improve coherence between research and clinical practice. PMID:24780650

  18. Personalizing mechanical ventilation for acute respiratory distress syndrome.

    PubMed

    Berngard, S Clark; Beitler, Jeremy R; Malhotra, Atul

    2016-03-01

    Lung-protective ventilation with low tidal volumes remains the cornerstone for treating patient with acute respiratory distress syndrome (ARDS). Personalizing such an approach to each patient's unique physiology may improve outcomes further. Many factors should be considered when mechanically ventilating a critically ill patient with ARDS. Estimations of transpulmonary pressures as well as individual's hemodynamics and respiratory mechanics should influence PEEP decisions as well as response to therapy (recruitability). This summary will emphasize the potential role of personalized therapy in mechanical ventilation. PMID:27076966

  19. Personalizing mechanical ventilation for acute respiratory distress syndrome

    PubMed Central

    Beitler, Jeremy R.; Malhotra, Atul

    2016-01-01

    Lung-protective ventilation with low tidal volumes remains the cornerstone for treating patient with acute respiratory distress syndrome (ARDS). Personalizing such an approach to each patient’s unique physiology may improve outcomes further. Many factors should be considered when mechanically ventilating a critically ill patient with ARDS. Estimations of transpulmonary pressures as well as individual’s hemodynamics and respiratory mechanics should influence PEEP decisions as well as response to therapy (recruitability). This summary will emphasize the potential role of personalized therapy in mechanical ventilation. PMID:27076966

  20. Acute respiratory distress syndrome

    MedlinePlus

    ... chap 33. Lee WL, Slutsky AS. Acute hypoxemic respiratory failure and ARDS. In: Broaddus VC, Mason RJ, Ernst JD, et al, eds. Murray and Nadel's Textbook of Respiratory Medicine . 6th ed. Philadelphia, PA: Elsevier Saunders; 2016: ...

  1. Is there a need for emerging drugs for the acute respiratory distress syndrome?

    PubMed Central

    McAuley, Daniel F.; Matthay, Michael

    2014-01-01

    The acute respiratory distress syndrome (ARDS) is a common and devastating syndrome of acute respiratory failure for which little effective pharmacotherapy exists. The authors describe some interventions that show promise as potential therapies for this condition, with particular reference to clinically relevant human models of ARDS. Aspirin, mesenchymal stromal (stem) cells, keratinocyte growth factor, IFN-β and oncostatin M inhibition are discussed. PMID:25152048

  2. Definition of ALI/ARDS.

    PubMed

    Raghavendran, Krishnan; Napolitano, Lena M

    2011-07-01

    Although acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are caused by different injuries and conditions, their similar clinical picture makes a compelling case for them to be studied as a single entity. An array of potential specific targets for pharmacologic intervention can be applied to ALI/ARDS as one disease. Although a working definition of ALI/ARDS that includes pulmonary and extrapulmonary causes can have benefit in standardizing supportive care, it can also complicate assessments of the efficacy of therapeutic interventions. In this article, definitions that have been recently used for ALI/ARDS in various clinical studies are discussed individually. PMID:21742209

  3. Isolation and phenotypic characteristics of microparticles in acute respiratory distress syndrome

    PubMed Central

    Li, Hongxia; Meng, Xiangyu; Gao, Yue; Cai, Shaohua

    2015-01-01

    Objective: To investigate the alterations of microparticles in acute respiratory distress syndrome (ARDS) in rats. Methods: 18 Wistar male rats were randomly divided into three groups: no intervention, sham (saline control) group and ARDS group (LPS induced). Blood was collected from abdominal aorta and microparticles were extracted through multiple rounds of centrifugation. Particles were analyzed by flow cytometry and transmission electron microscope. Results: The circulating concentration of total microparticles of rats with ARDS induced by lipopolysaccharide (LPS) did not change compared with other two groups. However, ARDS rats expressed higher concentration of leukocyte- and endothelium- derived microparticles in the three groups. Conclusion: Our results indicate that leukocyte and endothelial cell-derived particles may play an important role in ARDS. Thus it is important not only to monitor total microparticle levels but also the phenotypes, which may contribute to the prevention and early treatment of ARDS. PMID:25973049

  4. Pulmonary sarcoidosis presenting with acute respiratory distress syndrome

    PubMed Central

    Arondi, Sabrina; Valsecchi, Alberto; Borghesi, Andrea; Monti, Stefano

    2016-01-01

    Sarcoidosis is a common disease that involve almost constantly the lung. Usually the onset is insidious, and symptoms are slowly ingravescent. Very rarely, as in the case here reported, sarcoidosis can cause an acute respiratory failure with acute respiratory distress syndrome (ARDS). A 20-year-old girl from Pakistan presented for acute fatigue, fever, and cough with a chest X-ray displayed the micronodular interstitial disease. Despite of anti-tuberculosis therapy, ARDS developed in a few days requiring continuous positive airway pressure treatment. Examinations on transbronchial specimens obtained by bronchoscopy permitted to reach the diagnosis of sarcoidosis and steroid therapy improved rapidly clinical conditions. This is the first case report reported in Europe that confirms the rare onset of sarcoidosis as ARDS. Steroid therapy allows to cure rapidly this severe complication. PMID:26933462

  5. Acute respiratory distress syndrome

    MedlinePlus

    ... nails caused by lack of oxygen to the tissues) is often seen. Tests used to diagnose ARDS include: Arterial blood gas Blood tests, including CBC and blood chemistries Blood and urine cultures Bronchoscopy in some people Chest x-ray Sputum ...

  6. Acute Respiratory Distress Syndrome as the Initial Clinical Manifestation of an Antisynthetase Syndrome

    PubMed Central

    Kim, Seo-Hyun

    2016-01-01

    Antisynthetase syndrome has been recognized as an important cause of autoimmune inflammatory myopathy in a subset of patients with polymyositis and dermatomyositis. It is associated with serum antibody to aminoacyl-transfer RNA synthetases and is characterized by a constellation of manifestations, including fever, myositis, interstitial lung disease, mechanic's hand-like cutaneous involvement, Raynaud phenomenon, and polyarthritis. Lung disease is the presenting feature in 50% of the cases. We report a case of a 60-year-old female with acute respiratory distress syndrome (ARDS), which later proved to be an unexpected and initial manifestation of anti-Jo-1 antibody–positive antisynthetase syndrome. The present case showed resolution of ARDS after treatment with high-dose corticosteroids. Given that steroids are not greatly beneficial in the treatment of ARDS, it is likely that the improvement of the respiratory symptoms in this patient also resulted from the prompt suppression of the inflammatory systemic response by corticosteroids. PMID:27433180

  7. Acute Respiratory Distress Syndrome as the Initial Clinical Manifestation of an Antisynthetase Syndrome.

    PubMed

    Kim, Seo-Hyun; Park, I-Nae

    2016-07-01

    Antisynthetase syndrome has been recognized as an important cause of autoimmune inflammatory myopathy in a subset of patients with polymyositis and dermatomyositis. It is associated with serum antibody to aminoacyl-transfer RNA synthetases and is characterized by a constellation of manifestations, including fever, myositis, interstitial lung disease, mechanic's hand-like cutaneous involvement, Raynaud phenomenon, and polyarthritis. Lung disease is the presenting feature in 50% of the cases. We report a case of a 60-year-old female with acute respiratory distress syndrome (ARDS), which later proved to be an unexpected and initial manifestation of anti-Jo-1 antibody-positive antisynthetase syndrome. The present case showed resolution of ARDS after treatment with high-dose corticosteroids. Given that steroids are not greatly beneficial in the treatment of ARDS, it is likely that the improvement of the respiratory symptoms in this patient also resulted from the prompt suppression of the inflammatory systemic response by corticosteroids. PMID:27433180

  8. Acute respiratory distress syndrome: A clinical review

    PubMed Central

    Donahoe, Michael

    2011-01-01

    The acute respiratory distress syndrome (ARDS) is a complex disorder of heterogeneous etiologies characterized by a consistent, recognizable pattern of lung injury. Extensive epidemiologic studies and clinical intervention trials have been conducted to address the high mortality of this disorder and have provided significant insight into the complexity of studying new therapies for this condition. The existing clinical investigations in ARDS will be highlighted in this review. The limitations to current definitions, patient selection, and outcome assessment will be considered. While significant attention has been focused on the parenchymal injury that characterizes this disorder and the clinical support of gas exchange function, relatively limited focus has been directed to hemodynamic and pulmonary vascular dysfunction equally prominent in the disease. The limited available clinical information in this area will also be reviewed. The current standards for cardiopulmonary management of the condition will be outlined. Current gaps in our understanding of the clinical condition will be highlighted with the expectation that continued progress will contribute to a decline in disease mortality. PMID:22034606

  9. Should Immune-Enhancing Formulations Be Used for Patients With Acute Respiratory Distress Syndrome?

    PubMed

    Roosevelt, Hannah

    2016-08-01

    The potential for regulating immune function in acute respiratory distress syndrome (ARDS) through enteral-administered anti-inflammatory lipids has generated much interest over the past 20 years. Yet recommendations remain inconclusive regarding the utilization of ω-3 fatty acids in patients with ARDS and acute lung injury (ALI). Studies are limited in number, with differing methods, small sample sizes, and conflicting results, making recommendations difficult to interpret. PMID:27339156

  10. Acute respiratory distress syndrome: use of specialized nutrients in pediatric patients and infants.

    PubMed

    Hamilton, Leslie A; Trobaugh, Kimberly A

    2011-02-01

    With a high rate of mortality, acute respiratory distress syndrome (ARDS) has limited treatments options. Immune-enhanced formulas, containing eicosapentaenoic acid, borage oil, and antioxidants, have shown to be beneficial in adults patients with ARDS, decreasing mortality, length of mechanical ventilation, and new organ dysfunction. There is promising research in pediatric patients with improvement in oxygenation status found, but further trials are needed to realize these benefits in pediatric and infant populations. PMID:21266694

  11. Protein Kinase C and Acute Respiratory Distress Syndrome

    PubMed Central

    Mondrinos, Mark J.; Kennedy, Paul A.; Lyons, Melanie; Deutschman, Clifford S.; Kilpatrick, Laurie E.

    2013-01-01

    The Acute Respiratory Distress Syndrome (ARDS) is a major public health problem and a leading source of morbidity in Intensive Care Units (ICUs). Lung tissue in patients with ARDS is characterized by inflammation, with exuberant neutrophil infiltration, activation and degranulation that is thought to initiate tissue injury through the release of proteases and oxygen radicals. Treatment of ARDS is supportive primarily because the underlying pathophysiology is poorly understood. This gap in knowledge must be addressed in order to identify urgently needed therapies. Recent research efforts in anti-inflammatory drug development have focused on identifying common control points in multiple signaling pathways. The protein kinase C (PKC) serine-threonine kinases are master regulators of proinflammatory signaling hubs, making them attractive therapeutic targets. Pharmacological inhibition of broad spectrum PKC activity and, more importantly, of specific PKC isoforms (as well as deletion of PKCs in mice) exerts protective effects in various experimental models of lung injury. Furthermore, PKC isoforms have been implicated in inflammatory processes that may be involved in the pathophysiologic changes that result in ARDS, including activation of innate immune and endothelial cells, neutrophil trafficking to the lung, regulation of alveolar epithelial barrier functions and control of neutrophil pro-inflammatory and pro-survival signaling. This review focuses on the mechanistic involvement of PKC isoforms in the pathogenesis of ARDS and highlights the potential of developing new therapeutic paradigms based on the selective inhibition (or activation) of specific PKC isoforms. PMID:23572089

  12. Acute Respiratory Distress Syndrome: Role of Oleic Acid-Triggered Lung Injury and Inflammation

    PubMed Central

    Gonçalves-de-Albuquerque, Cassiano Felippe; Silva, Adriana Ribeiro; Burth, Patrícia; Castro-Faria, Mauro Velho; Castro-Faria-Neto, Hugo Caire

    2015-01-01

    Lung injury especially acute respiratory distress syndrome (ARDS) can be triggered by diverse stimuli, including fatty acids and microbes. ARDS affects thousands of people worldwide each year, presenting high mortality rate and having an economic impact. One of the hallmarks of lung injury is edema formation with alveoli flooding. Animal models are used to study lung injury. Oleic acid-induced lung injury is a widely used model resembling the human disease. The oleic acid has been linked to metabolic and inflammatory diseases; here we focus on lung injury. Firstly, we briefly discuss ARDS and secondly we address the mechanisms by which oleic acid triggers lung injury and inflammation. PMID:26640323

  13. IGF1 and IGFBP3 in the Acute Respiratory Distress Syndrome

    PubMed Central

    Ahasic, Amy M.; Zhai, Rihong; Su, Li; Zhao, Yang; Aronis, Konstantinos N.; Thompson, B.Taylor; Mantzoros, Christos S.; Christiani, David C.

    2013-01-01

    Objective Insulin-like growth factor-1 (IGF1) and its most abundant binding protein, insulin-like growth factor binding protein-3 (IGFBP3), have been implicated in fibrotic lung diseases and persistent acute respiratory distress syndrome (ARDS) because of profibrogenic and antiapoptotic activity. Whether levels of circulating IGF1 and IGFBP3 are altered in ARDS, and whether they predict progression of and survival from ARDS remains unknown. This study aims to characterize circulating levels of IGF1 and IGFBP3 in patients at risk for ARDS in relation to (1) development of ARDS, and (2) mortality among ARDS cases. Design In this case-cohort study, consecutive patients with risk factors for ARDS admitted to the intensive care unit (ICU) were enrolled and followed prospectively for development of ARDS. Cases were followed for all-cause mortality through Day 60. Of 2397 patients enrolled in the parent study, plasma samples were available in 531 (22%) patients (356 controls, 175 cases) from early in presentation. Total plasma IGF1 and IGFBP3 were measured. Results After adjusting for relevant clinical covariates including severity of illness, IGF1 and IGFBP3 levels were significantly lower in ARDS cases than controls (odds ratio [OR], 0.58; P =0.006; OR, 0.57; P=0.0015, respectively). Among ARDS cases, IGF1 and IGFBP3 levels were significantly lower in the 78 (45%) non-survivors (hazard ratio [HR], 0.70; P =0.024; HR, 0.69; P=0.021, respectively). Conclusions Lower levels of circulating IGF1 and IGFBP3 were independently associated with ARDS case status. Furthermore, lower levels were associated with mortality among ARDS cases. This data supports a role of the IGF pathway in ARDS. PMID:22004906

  14. Secretory leukocyte proteinase inhibitor is preferentially increased in patients with acute respiratory distress syndrome.

    PubMed

    Sallenave, J M; Donnelly, S C; Grant, I S; Robertson, C; Gauldie, J; Haslett, C

    1999-05-01

    Inappropriate release of proteases from inflammatory and stromal cells can lead to destruction of the lung parenchyma. Antiproteinases such as alpha-1-proteinase inhibitor (alpha1-Pi), secretory leukocyte proteinase inhibitor (SLPI) and elastase-specific inhibitor (elafin) control excess production of human neutrophil elastase. In the present study, the concentrations of alpha1-Pi, SLPI and elafin found in bronchoalveolar lavage (BAL) fluid from control subjects, patients at risk of developing acute respiratory distress syndrome (ARDS) and patients with established ARDS were determined. Levels of all three inhibitors were raised in patients compared with normal subjects. SLPI was increased in the group of patients who were at risk of ARDS and went on to develop the condition, compared with the "at-risk" group who did not progress to ARDS (p=0.0083). Alpha1-Pi and elafin levels were similar in these two populations. In patients with established ARDS, both alpha1-Pi and SLPI levels were significantly increased, compared to patients at risk of ARDS who did (p=0.0089) or did not (p=0.0003) progress to ARDS. The finding of increased antiproteinases shortly before the development of acute respiratory distress syndrome provide further evidence for enhanced inflammation prior to clinical disease. PMID:10414400

  15. Acute Respiratory Distress Syndrome: A Rare Complication in Pediatric Diabetic Ketoacidosis.

    PubMed

    Sudhanshu, Siddhnath; Jevalikar, Ganesh; Das, Pravin K; Singh, Pramod K; Bhatia, Eesh; Bhatia, Vijayalakshmi

    2016-05-01

    Cerebral edema (CE) and non cardiogenic pulmonary edema (acute respiratory distress syndrome, ARDS) are life-threatening complications of diabetic ketoacidosis (DKA). In contrast to CE complicating DKA, which is primarily reported in pediatric patients, ARDS is rarely described in this age group. Here, the authors present a child with DKA who developed both cerebral edema and ARDS during the course of her management. It is feasible that severe acidosis, hypotension, azotemia, hypoalbuminemia and the superimposed aggressive intravenous fluid administration were important risk factors for the development of cerebral edema and ARDS in the index patient. The report highlights the importance of early diagnosis and aggressive therapy in the management of ARDS, and summarizes the published literature on this rarely reported complication of pediatric DKA. PMID:26666907

  16. Local abnormalities in coagulation and fibrinolytic pathways predispose to alveolar fibrin deposition in the adult respiratory distress syndrome.

    PubMed Central

    Idell, S; James, K K; Levin, E G; Schwartz, B S; Manchanda, N; Maunder, R J; Martin, T R; McLarty, J; Fair, D S

    1989-01-01

    To determine the possible mechanism(s) promoting alveolar fibrin deposition in the adult respiratory distress syndrome (ARDS), we investigated the initiation and regulation of both fibrinolysis and coagulation from patients with ARDS (n = 14), at risk for ARDS (n = 5), and with interstitial lung diseases (ILD) (n = 8), and normal healthy individuals (n = 13). Bronchoalveolar lavage (BAL) extrinsic pathway inhibitor activity was increased in ARDS BAL compared with patients at risk for ARDS (P = 0.0146) or normal controls (P = 0.0013) but tissue factor-factor VII procoagulant activity was significantly increased in ARDS BAL compared with all other groups (P less than 0.001). Fibrinolytic activity was not detectable in BAL of 10 of the 14 patients with ARDS and low levels of activity were found in BAL of the other four ARDS patients. Depressed fibrinolysis in ARDS BAL was not due to local insufficiency of plasminogen; rather, there was inhibition of both plasmin and plasminogen activator. Plasminogen activator inhibitor 1 was variably detected and low levels of plasminogen activator inhibitor 2 were found in two ARDS BAL samples, but plasminogen activator inhibitor 2 was otherwise undetectable. ARDS BAL antiplasmin activity was, in part, due to alpha 2-antiplasmin. We conclude that abnormalities that result in enhanced coagulation and depressed fibrinolysis, thereby predisposing to alveolar fibrin deposition, occur in the alveolar lining fluids from patients with ARDS. Images PMID:2788176

  17. Relevant Outcomes in Pediatric Acute Respiratory Distress Syndrome Studies

    PubMed Central

    Yehya, Nadir; Thomas, Neal J.

    2016-01-01

    Despite distinct epidemiology and outcomes, pediatric acute respiratory distress syndrome (PARDS) is often managed based on evidence extrapolated from treatment of adults. The impact of non-pulmonary processes on mortality as well as the lower mortality rate compared to adults with acute respiratory distress syndrome (ARDS) renders the utilization of short-term mortality as a primary outcome measure for interventional studies problematic. However, data regarding alternatives to mortality are profoundly understudied, and proposed alternatives, such as ventilator-free days, may be themselves subject to hidden biases. Given the neuropsychiatric and functional impairment in adult survivors of ARDS, characterization of these morbidities in children with PARDS is of paramount importance. The purpose of this review is to frame these challenges in the context of the existing pediatric literature, and using adult ARDS as a guide, suggest potential clinically relevant outcomes that deserve further investigation. The goal is to identify important areas of study in order to better define clinical practice and facilitate future interventional trials in PARDS. PMID:27242980

  18. Prevalence and Impact of Active and Passive Cigarette Smoking in Acute Respiratory Distress Syndrome

    PubMed Central

    Hsieh, S. Jean; Zhuo, Hanjing; Benowitz, Neal L.; Thompson, B. Taylor; Liu, Kathleen D.; Matthay, Michael A.; Calfee, Carolyn S.

    2014-01-01

    Objective Cigarette smoke exposure has recently been found to be associated with increased susceptibility to trauma- and transfusion-associated acute respiratory distress syndrome (ARDS). We sought to determine 1) the prevalence of cigarette smoke exposure in a diverse multi-center sample of ARDS patients, and 2) whether cigarette smoke exposure is associated with severity of lung injury and mortality in ARDS. Design Analysis of the Albuterol for the Treatment of ALI (ALTA) and Omega ARDS Network studies. Setting Acute Respiratory Distress Syndrome Network hospitals. Patients Three hundred eighty one patients with ARDS. Interventions None. Measurements NNAL (4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol), a validated tobacco-specific marker, was measured in urine samples from subjects enrolled in two NHLBI ARDS Network randomized controlled trials. Main Results Urine NNAL levels were consistent with active smoking in 36% of ARDS patients and with passive smoking in 41% of nonsmokers (vs 20% and 40% in general population, respectively). Patients with NNAL levels in the active smoking range were younger and had a higher prevalence of alcohol misuse, fewer comorbidities, lower severity of illness, and less septic shock at enrollment compared to patients with undetectable NNAL levels. Despite this lower severity of illness, the severity of lung injury did not significantly differ based on biomarker-determined smoking status. Cigarette smoke exposure was not significantly associated with death after adjusting for differences in age, alcohol use, comorbidities, and severity of illness. Conclusions In this first multicenter study of biomarker-determined cigarette smoke exposure in ARDS patients, we found that active cigarette smoke exposure was significantly more prevalent among ARDS patients compared to population averages. Despite their younger age, better overall health, and lower severity of illness, smokers by NNAL had similar severity of lung injury as patients with

  19. Recurrent Postpartum Eosinophilic Pneumonia Presenting as Acute Respiratory Distress Syndrome

    PubMed Central

    Ucar, Elif Yilmazel; Araz, Omer; Yilmaz, Nafiye; Akgun, Metin

    2011-01-01

    Eosinophilic pneumonia (EP) is a rare disease of the lung. We aimed to present atypical course of two EP cases. They were admitted to our hospital because of acute respiratory distress syndrome (ARDS) in postpartum period. Eosinophilia was detected in bronchoscopic bronchoalveolar lavage and laboratory examination. In these cases, no spesific cause for eosinophilic pneumonia was determined and steroid treatment was started. After the treatment, the patients were in full recovery which were confirmed by clinical and radiological investigations, readmitted to our clinic with relapses of ARDS. The patients have received regular treatment for 1 year. Our cases were neither fitting the classic definitions of acute eosinophilic pneumonia nor chronic eosinophilic pneumonia. Therefore, we wanted to contribute additional data in the literature by sharing these interesting cases. PMID:25610194

  20. An approach to ventilation in acute respiratory distress syndrome

    PubMed Central

    Houston, Patricia

    2000-01-01

    Appropriate management of patients with acute respiratory distress syndrome (ARDS) represents a challenge for physicians working in the critical care environment. Significant advances have been made in understanding the pathophysiology of ARDS. There is also an increasing appreciation of the role of ventilator-induced lung injury (VILI). VILI is most likely related to several different aspects of ventilator management: barotrauma due to high peak airway pressures, lung overdistension or volutrauma due to high transpulmonary pressures, alveolar membrane damage due to insufficient positive end-expiratory pressure levels and oxygen-related cell toxicity. Various lung protective strategies have been suggested to minimize the damage caused by conventional modes of ventilation. These include the use of pressure- and volume-limited ventilation, the use of the prone position in the management of ARDS, and extracorporeal methods of oxygen delivery and carbon dioxide removal. Although the death rate resulting from ARDS has been declining over the past 10 years, there is no evidence that any specific treatment or change in approach to ventilation is the cause of this improved survival. PMID:10948686

  1. On the complexity of scoring acute respiratory distress syndrome: do not forget hemodynamics!

    PubMed Central

    Repessé, Xavier; Aubry, Alix

    2016-01-01

    Acute respiratory distress syndrome (ARDS) remains associated with a poor outcome despite recent major therapeutic advances. Forecasting the outcome of patients suffering from such a syndrome is of a crucial interest and many scores have been proposed, all suffering from limits responsible for important discrepancies. Authors try to elaborate simple, routine and reliable scores but most of them do not consider hemodynamics yet acknowledged as a major determinant of outcome. This article aims at reminding the approach of scoring in ARDS and at deeply describing the most recently published one in order to highlight their main pitfall, which is to forget the hemodynamics. PMID:27618840

  2. [Genetic predisposition and Pediatric Acute Respiratory Distress Syndrome: New tools for genetic study].

    PubMed

    Erranz, M Benjamín; Wilhelm, B Jan; Riquelme, V Raquel; Cruces, R Pablo

    2015-01-01

    Acute respiratory distress syndrome (ARDS) is the most severe form of respiratory failure. Theoretically, any acute lung condition can lead to ARDS, but only a small percentage of individuals actually develop the disease. On this basis, genetic factors have been implicated in the risk of developing ARDS. Based on the pathophysiology of this disease, many candidate genes have been evaluated as potential modifiers in patient, as well as in animal models, of ARDS. Recent experimental data and clinical studies suggest that variations of genes involved in key processes of tissue, cellular and molecular lung damage may influence susceptibility and prognosis of ARDS. However, the pathogenesis of pediatric ARDS is complex, and therefore, it can be expected that many genes might contribute. Genetic variations such as single nucleotide polymorphisms and copy-number variations are likely associated with susceptibility to ARDS in children with primary lung injury. Genome-wide association (GWA) studies can objectively examine these variations, and help identify important new genes and pathogenetic pathways for future analysis. This approach might also have diagnostic and therapeutic implications, such as predicting patient risk or developing a personalized therapeutic approach to this serious syndrome. PMID:26235685

  3. Identification of Novel Single Nucleotide Polymorphisms Associated with Acute Respiratory Distress Syndrome by Exome-Seq

    PubMed Central

    Shortt, Katherine; Chaudhary, Suman; Grigoryev, Dmitry; Heruth, Daniel P.; Venkitachalam, Lakshmi; Zhang, Li Q.; Ye, Shui Q.

    2014-01-01

    Acute respiratory distress syndrome (ARDS) is a lung condition characterized by impaired gas exchange with systemic release of inflammatory mediators, causing pulmonary inflammation, vascular leak and hypoxemia. Existing biomarkers have limited effectiveness as diagnostic and therapeutic targets. To identify disease-associating variants in ARDS patients, whole-exome sequencing was performed on 96 ARDS patients, detecting 1,382,399 SNPs. By comparing these exome data to those of the 1000 Genomes Project, we identified a number of single nucleotide polymorphisms (SNP) which are potentially associated with ARDS. 50,190SNPs were found in all case subgroups and controls, of which89 SNPs were associated with susceptibility. We validated three SNPs (rs78142040, rs9605146 and rs3848719) in additional ARDS patients to substantiate their associations with susceptibility, severity and outcome of ARDS. rs78142040 (C>T) occurs within a histone mark (intron 6) of the Arylsulfatase D gene. rs9605146 (G>A) causes a deleterious coding change (proline to leucine) in the XK, Kell blood group complex subunit-related family, member 3 gene. rs3848719 (G>A) is a synonymous SNP in the Zinc-Finger/Leucine-Zipper Co-Transducer NIF1 gene. rs78142040, rs9605146, and rs3848719 are associated significantly with susceptibility to ARDS. rs3848719 is associated with APACHE II score quartile. rs78142040 is associated with 60-day mortality in the overall ARDS patient population. Exome-seq is a powerful tool to identify potential new biomarkers for ARDS. We selectively validated three SNPs which have not been previously associated with ARDS and represent potential new genetic biomarkers for ARDS. Additional validation in larger patient populations and further exploration of underlying molecular mechanisms are warranted. PMID:25372662

  4. Argument against the Routine Use of Steroids for Pediatric Acute Respiratory Distress Syndrome

    PubMed Central

    Hartmann, Silvia M.; Hough, Catherine L.

    2016-01-01

    Steroids have a plausible mechanism of action of reducing severity of lung disease in acute respiratory distress syndrome (ARDS) but have failed to show consistent benefits in patient-centered outcomes. Many studies have confounding from the likely presence of ventilator-induced lung injury and steroids may have shown benefit because administration minimized ongoing inflammation incited by injurious ventilator settings. If steroids have benefit, it is likely for specific populations that fall within the heterogeneous diagnosis of ARDS. Those pediatric patients with concurrent active asthma or reactive airway disease of prematurity, in addition to ARDS, are the most common group likely to derive benefit from steroids, but are poorly studied. With the information currently available, it does not appear that the typical adult or pediatric patient with ARDS derives benefit from steroids and steroids should not be given on a routine basis. PMID:27517035

  5. Pulmonary accumulation of polymorphonuclear leukocytes in the adult respiratory distress syndrome

    SciTech Connect

    Powe, J.E.; Short, A.; Sibbald, W.J.; Driedger, A.A.

    1982-11-01

    The polymorphonuclear leukocyte (PMN) plays an integral role in the development of permeability pulmonary edema associated with the adult respiratory distress syndrome (ARDS). This report describes 3 patients with ARDS secondary to systemic sepsis who demonstrated an abnormal diffuse accumulation of Indium (/sup 111/In)-labeled PMNs in their lungs, without concomitant clinical or laboratory evidence of a primary chest infection. In one patient, the accumulation of the pulmonary activity during an initial pass suggested that this observation was related to diffuse leukoaggregation within the pulmonary microvasculature. A 4th patient with ARDS was on high-dose corticosteroids at the time of a similar study, and showed no pulmonary accumulation of PMNs, suggesting a possible reason for the reported beneficial effect of corticosteroids in human ARDS.

  6. The Acute Respiratory Distress Syndrome: Mechanisms and Perspective Therapeutic Approaches

    PubMed Central

    Gonzales, JN; Lucas, R; Verin, AD

    2015-01-01

    Acute Respiratory Distress Syndrome (ARDS) is a severe lung inflammatory disorder with a 30–50% mortality. Sepsis and pneumonia are the leading causes of ARDS. On the cellular level there is pulmonary capillary endothelial cell permeability and fluid leakage into the pulmonary parenchyma, followed by neutrophils, cytokines and an acute inflammatory response. When fluid increases in the interstitium then the outward movement continues and protein rich fluid floods the alveolar spaces through the tight junctions of the epithelial cells. Neutrophils play an important role in the development of pulmonary edema associated with acute lung injury or ARDS. Animal studies have shown that endothelial injury appears within minutes to hours after Acute Lung Injury (ALI) initiation with resulting intercellular gaps of the endothelial cells. The Endothelial Cell (EC) gaps allow for permeability of fluid, neutrophils and cytokines into the pulmonary parenchymal space. The neutrophils that infiltrate the lungs and migrate into the airways express pro-inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and contribute to both the endothelial and epithelial integrity disruption of the barriers. Pharmacological treatments have been ineffective. The ARDS Network trial identified low tidal volume mechanical ventilation, positive end expiratory pressure and fluid management guidelines that have improved outcomes for patients with ARDS. Extracorporeal membrane oxygenation is used in specialized centers for severe cases. Prone positioning has recently proven to have significantly decreased ventilator days and days in the intensive care unit. Current investigation includes administration of mesenchymal stem cell therapy, partial fluid ventilation, TIP peptide nebulized administration and the continued examination of pharmacologic drugs. PMID:26973981

  7. Acute Respiratory Distress Syndrome and Outcomes after Near-hanging

    PubMed Central

    Mansoor, Sahar; Afshar, Majid; Barrett, Matthew; Smith, Gordon S.; Barr, Erik A.; Lissauer, Matthew E.; McCurdy, Michael T.; Murthi, Sarah B.; Netzer, Giora

    2015-01-01

    Purpose Assess the case rate of Acute Respiratory Distress Syndrome (ARDS) after near-hanging, and the secondary outcomes of traumatic and/or anoxic brain injury, and death. Risk factors for the outcomes were assessed. Method Single-center, state-wide retrospective cohort study of consecutive patients admitted between August, 2002, and September, 2011, with a primary diagnosis of non-judicial "hanging injury". Results Of 56 patients, 73% were male. The median age was 31 (IQR: 16–56). Upon arrival, 9% (5/56) did not have a pulse, and 23% (13/56) patients were intubated. The median Glasgow Coma Scale (GCS) was 13 (IQR: 3–15); 14% (8/56) had a GCS=3. ARDS developed in 9% (5/56) of patients. Traumatic anoxic brain injury resulted in 9% (5/56) of patients. The in-hospital case fatality was 5% (3/56). Lower median GCS [3 (IQR: 3–7) vs. 14 (IQR: 3–15), p=0.0003] and intubation in field or in trauma resuscitation unit [100% (5/5) vs. 16% (8/51), p=0.0003] were associated with ARDS development. Risk factors of death were GCS=3 [100% (3/3) vs. 9% (5/53), p=0.002]; pulselessness upon arrival of emergency medical services [100% (3/3) vs. 4% (2/53), p<0.001]; and abnormal neurologic imaging [50% (1/2) vs. zero, p=0.04]. Conclusions The ARDS case rate after near-hanging is similar to the general trauma population. Low GCS and intubation are associated with increased risk of ARDS development. The rate of traumatic and/or anoxic brain injury in this population is low. PMID:25596627

  8. Systemic combined melatonin-mitochondria treatment improves acute respiratory distress syndrome in the rat.

    PubMed

    Sun, Cheuk-Kwan; Lee, Fan-Yen; Kao, Ying-Hsien; Chiang, Hsin-Ju; Sung, Pei-Hsun; Tsai, Tzu-Hsien; Lin, Yu-Chun; Leu, Steve; Wu, Ying-Chung; Lu, Hung-I; Chen, Yung-Lung; Chung, Sheng-Ying; Su, Hong-Lin; Yip, Hon-Kan

    2015-03-01

    Despite high in-hospital mortality associated with acute respiratory distress syndrome (ARDS), there is no effective therapeutic strategy. We tested the hypothesis that combined melatonin-mitochondria treatment ameliorates 100% oxygen-induced ARDS in rats. Adult male Sprague-Dawley rats (n = 40) were equally categorized into normal controls, ARDS, ARDS-melatonin, ARDS with intravenous liver-derived mitochondria (1500 μg per rat 6 hr after ARDS induction), and ARDS receiving combined melatonin-mitochondria. The results showed that 22 hr after ARDS induction, oxygen saturation (saO2 ) was lowest in the ARDS group and highest in normal controls, significantly lower in ARDS-melatonin and ARDS-mitochondria than in combined melatonin-mitochondria group, and significantly lower in ARDS-mitochondria than in ARDS-melatonin group. Conversely, right ventricular systolic blood pressure and lung weight showed an opposite pattern compared with saO2 among all groups (all P < 0.001). Histological integrity of alveolar sacs showed a pattern identical to saO2 , whereas lung crowding score exhibited an opposite pattern (all P < 0.001). Albumin level and inflammatory cells (MPO+, CD40+, CD11b/c+) from bronchoalveolar lavage fluid showed a pattern opposite to saO2 (all P < 0.001). Protein expression of indices of inflammation (MMP-9, TNF-α, NF-κB), oxidative stress (oxidized protein, NO-1, NOX-2, NOX-4), apoptosis (mitochondrial Bax, cleaved caspase-3, and PARP), fibrosis (Smad3, TGF-β), mitochondrial damage (cytochrome C), and DNA damage (γ-H2AX+) exhibited an opposite pattern compared to saO2 in all groups, whereas protein (HO-1, NQO-1, GR, GPx) and cellular (HO-1+) expressions of antioxidants exhibited a progressively increased pattern from normal controls to ARDS combined melatonin-mitochondria group (all P < 0.001). In conclusion, combined melatonin-mitochondrial was superior to either treatment alone in attenuating ARDS in this rat model. PMID:25491480

  9. Postoperative acute respiratory distress syndrome in patients with previous exposure to bleomycin

    PubMed Central

    Aakre, Benjamin M.; Efem, Richard I.; Wilson, Greg A.; Kor, Daryl J.; Eisenach, John H.

    2014-01-01

    Objective To determine the incidence and risk factors for postoperative acute respiratory distress syndrome (PO-ARDS) in a large cohort of bleomycin-exposed patients undergoing surgery with general endotracheal anesthesia. Patients and Methods From a Mayo Clinic cancer registry, we identified patients who had received systemic bleomycin (n=1120) and then underwent a major surgical procedure requiring >1 hour of general anesthesia between January 1, 2000 and August 30, 2012. Heart/lung/liver transplants were excluded. PO-ARDS (within seven days after surgery) was defined according to Berlin criteria. Results We identified 316 patients who underwent 541 major surgical procedures. Only 7 patients met criteria for PO-ARDS; all were Caucasian males, and 6 were current or former smokers. On univariate analysis, we observed an increased risk for PO-ARDS in patients who were current or former smokers. Furthermore, there was significantly greater crystalloid and colloid administration in patients with PO-ARDS. We also observed a trend toward longer surgical duration and red blood cell transfusion in patients with PO-ARDS, though this was not significant. Intraoperative FiO2 was not associated with PO-ARDS. In bleomycin-exposed patients, the incidence of PO-ARDS following major surgery under general anesthesia is approximately 1.3% (C.I. 0.6–2.6%). For first major procedures after bleomycin, the incidence is 1.9% (C.I. 0.9–4.1%). Conclusions The risk for PO-ARDS in patients exposed to systemic bleomycin appears to be lower than expected. Smoking status may be an important factor modifying risk for PO-ARDS in these patients. PMID:24485131

  10. Distinct Proteasome Subpopulations in the Alveolar Space of Patients with the Acute Respiratory Distress Syndrome

    PubMed Central

    Sixt, S. U.; Alami, R.; Hakenbeck, J.; Adamzik, M.; Kloß, A.; Costabel, U.; Jungblut, P. R.; Dahlmann, B.; Peters, J.

    2012-01-01

    There is increasing evidence that proteasomes have a biological role in the extracellular alveolar space, but inflammation could change their composition. We tested whether immunoproteasome protein-containing subpopulations are present in the alveolar space of patients with lung inflammation evoking the acute respiratory distress syndrome (ARDS). Bronchoalveolar lavage (BAL) supernatants and cell pellet lysate from ARDS patients (n = 28) and healthy subjects (n = 10) were analyzed for the presence of immunoproteasome proteins (LMP2 and LMP7) and proteasome subtypes by western blot, chromatographic purification, and 2D-dimensional gelelectrophoresis. In all ARDS patients but not in healthy subjects LMP7 and LMP2 were observed in BAL supernatants. Proteasomes purified from pooled ARDS BAL supernatant showed an altered enzyme activity ratio. Chromatography revealed a distinct pattern with 7 proteasome subtype peaks in BAL supernatant of ARDS patients that differed from healthy subjects. Total proteasome concentration in BAL supernatant was increased in ARDS (971 ng/mL ± 1116 versus 59 ± 25; P < 0.001), and all fluorogenic substrates were hydrolyzed, albeit to a lesser extent, with inhibition by epoxomicin (P = 0.0001). Thus, we identified for the first time immunoproteasome proteins and a distinct proteasomal subtype pattern in the alveolar space of ARDS patients, presumably in response to inflammation. PMID:22363101

  11. MicroRNA Regulation of Acute Lung Injury and Acute Respiratory Distress Syndrome.

    PubMed

    Rajasekaran, Subbiah; Pattarayan, Dhamotharan; Rajaguru, P; Sudhakar Gandhi, P S; Thimmulappa, Rajesh K

    2016-10-01

    The acute respiratory distress syndrome (ARDS), a severe form of acute lung injury (ALI), is a very common condition associated with critically ill patients, which causes substantial morbidity and mortality worldwide. Despite decades of research, effective therapeutic strategies for clinical ALI/ARDS are not available. In recent years, microRNAs (miRNAs), small non-coding molecules have emerged as a major area of biomedical research as they post-transcriptionally regulate gene expression in diverse biological and pathological processes, including ALI/ARDS. In this context, this present review summarizes a large body of evidence implicating miRNAs and their target molecules in ALI/ARDS originating largely from studies using animal and cell culture model systems of ALI/ARDS. We have also focused on the involvement of miRNAs in macrophage polarization, which play a critical role in regulating the pathogenesis of ALI/ARDS. Finally, the possible future directions that might lead to novel therapeutic strategies for the treatment of ALI/ARDS are also reviewed. J. Cell. Physiol. 231: 2097-2106, 2016. © 2016 Wiley Periodicals, Inc. PMID:26790856

  12. Aspirin as a potential treatment in sepsis or acute respiratory distress syndrome.

    PubMed

    Toner, Philip; McAuley, Danny Francis; Shyamsundar, Murali

    2015-01-01

    Sepsis is a common condition that is associated with significant morbidity, mortality and health-care cost. Pulmonary and non-pulmonary sepsis are common causes of the acute respiratory distress syndrome (ARDS). The mortality from ARDS remains high despite protective lung ventilation, and currently there are no specific pharmacotherapies to treat sepsis or ARDS. Sepsis and ARDS are characterised by activation of the inflammatory cascade. Although there is much focus on the study of the dysregulated inflammation and its suppression, the associated activation of the haemostatic system has been largely ignored until recently. There has been extensive interest in the role that platelet activation can have in the inflammatory response through induction, aggregation and activation of leucocytes and other platelets. Aspirin can modulate multiple pathogenic mechanisms implicated in the development of multiple organ dysfunction in sepsis and ARDS. This review will discuss the role of the platelet, the mechanisms of action of aspirin in sepsis and ARDS, and aspirin as a potential therapy in treating sepsis and ARDS. PMID:26494395

  13. Incidence and Outcomes of Acute Respiratory Distress Syndrome

    PubMed Central

    Chen, Wei; Chen, Yih-Yuan; Tsai, Ching-Fang; Chen, Solomon Chih-Cheng; Lin, Ming-Shian; Ware, Lorraine B.; Chen, Chuan-Mu

    2015-01-01

    Abstract Most epidemiological studies of acute respiratory distress syndrome (ARDS) have been conducted in western countries, and studies in Asia are limited. The aim of our study was to evaluate the incidence, in-hospital mortality, and 1-year mortality of ARDS in Taiwan. We conducted a nationwide inpatient cohort study based on the Taiwan National Health Insurance Research Database between 1997 and 2011. A total of 40,876 ARDS patients (68% male; mean age 66 years) were identified by International Classification of Diseases, 9th edition coding and further analyzed for clinical characteristics, medical costs, and mortality. The overall crude incidence of ARDS was 15.74 per 100,000 person-years, and increased from 2.53 to 19.26 per 100,000 person-years during the study period. The age-adjusted incidence of ARDS was 15.19 per 100,000 person-years. The overall in-hospital mortality was 57.8%. In-hospital mortality decreased from 59.7% in 1997 to 47.5% in 2011 (P < 0.001). The in-hospital mortality rate was lowest (33.5%) in the youngest patients (age 18–29 years) and highest (68.2%) in the oldest patients (>80 years, P < 0.001). The overall 1-year mortality rate was 72.1%, and decreased from 75.8% to 54.7% during the study period. Patients who died during hospitalization were older (69 ± 17 versus 62 ± 19, P < 0.001) and predominantly male (69.8% versus 65.3%, P < 0.001). In addition, patients who died during hospitalization had significantly higher medical costs (6421 versus 5825 US Dollars, P < 0.001) and shorter lengths of stay (13 versus 19 days, P < 0.001) than patients who survived. We provide the first large-scale epidemiological analysis of ARDS incidence and outcomes in Asia. Although the overall incidence was lower than has been reported in a prospective US study, this may reflect underdiagnosis by International Classification of Diseases, 9th edition code and identification of only patients with more severe ARDS in this

  14. Pediatric Acute Respiratory Distress Syndrome: Fluid Management in the PICU.

    PubMed

    Ingelse, Sarah A; Wösten-van Asperen, Roelie M; Lemson, Joris; Daams, Joost G; Bem, Reinout A; van Woensel, Job B

    2016-01-01

    The administration of an appropriate volume of intravenous fluids, while avoiding fluid overload, is a major challenge in the pediatric intensive care unit. Despite our efforts, fluid overload is a very common clinical observation in critically ill children, in particular in those with pediatric acute respiratory distress syndrome (PARDS). Patients with ARDS have widespread damage of the alveolar-capillary barrier, potentially making them vulnerable to fluid overload with the development of pulmonary edema leading to prolonged course of disease. Indeed, studies in adults with ARDS have shown that an increased cumulative fluid balance is associated with adverse outcome. However, age-related differences in the development and consequences of fluid overload in ARDS may exist due to disparities in immunologic response and body water distribution. This systematic review summarizes the current literature on fluid imbalance and management in PARDS, with special emphasis on potential differences with adult patients. It discusses the adverse effects associated with fluid overload and the corresponding possible pathophysiological mechanisms of its development. Our intent is to provide an incentive to develop age-specific fluid management protocols to improve PARDS outcomes. PMID:27047904

  15. Pediatric Acute Respiratory Distress Syndrome: Fluid Management in the PICU

    PubMed Central

    Ingelse, Sarah A.; Wösten-van Asperen, Roelie M.; Lemson, Joris; Daams, Joost G.; Bem, Reinout A.; van Woensel, Job B.

    2016-01-01

    The administration of an appropriate volume of intravenous fluids, while avoiding fluid overload, is a major challenge in the pediatric intensive care unit. Despite our efforts, fluid overload is a very common clinical observation in critically ill children, in particular in those with pediatric acute respiratory distress syndrome (PARDS). Patients with ARDS have widespread damage of the alveolar–capillary barrier, potentially making them vulnerable to fluid overload with the development of pulmonary edema leading to prolonged course of disease. Indeed, studies in adults with ARDS have shown that an increased cumulative fluid balance is associated with adverse outcome. However, age-related differences in the development and consequences of fluid overload in ARDS may exist due to disparities in immunologic response and body water distribution. This systematic review summarizes the current literature on fluid imbalance and management in PARDS, with special emphasis on potential differences with adult patients. It discusses the adverse effects associated with fluid overload and the corresponding possible pathophysiological mechanisms of its development. Our intent is to provide an incentive to develop age-specific fluid management protocols to improve PARDS outcomes. PMID:27047904

  16. Efficacy of prone position in acute respiratory distress syndrome patients: A pathophysiology-based review.

    PubMed

    Koulouras, Vasilios; Papathanakos, Georgios; Papathanasiou, Athanasios; Nakos, Georgios

    2016-05-01

    Acute respiratory distress syndrome (ARDS) is a syndrome with heterogeneous underlying pathological processes. It represents a common clinical problem in intensive care unit patients and it is characterized by high mortality. The mainstay of treatment for ARDS is lung protective ventilation with low tidal volumes and positive end-expiratory pressure sufficient for alveolar recruitment. Prone positioning is a supplementary strategy available in managing patients with ARDS. It was first described 40 years ago and it proves to be in alignment with two major ARDS pathophysiological lung models; the "sponge lung" - and the "shape matching" -model. Current evidence strongly supports that prone positioning has beneficial effects on gas exchange, respiratory mechanics, lung protection and hemodynamics as it redistributes transpulmonary pressure, stress and strain throughout the lung and unloads the right ventricle. The factors that individually influence the time course of alveolar recruitment and the improvement in oxygenation during prone positioning have not been well characterized. Although patients' response to prone positioning is quite variable and hard to predict, large randomized trials and recent meta-analyses show that prone position in conjunction with a lung-protective strategy, when performed early and in sufficient duration, may improve survival in patients with ARDS. This pathophysiology-based review and recent clinical evidence strongly support the use of prone positioning in the early management of severe ARDS systematically and not as a rescue maneuver or a last-ditch effort. PMID:27152255

  17. Efficacy of prone position in acute respiratory distress syndrome patients: A pathophysiology-based review

    PubMed Central

    Koulouras, Vasilios; Papathanakos, Georgios; Papathanasiou, Athanasios; Nakos, Georgios

    2016-01-01

    Acute respiratory distress syndrome (ARDS) is a syndrome with heterogeneous underlying pathological processes. It represents a common clinical problem in intensive care unit patients and it is characterized by high mortality. The mainstay of treatment for ARDS is lung protective ventilation with low tidal volumes and positive end-expiratory pressure sufficient for alveolar recruitment. Prone positioning is a supplementary strategy available in managing patients with ARDS. It was first described 40 years ago and it proves to be in alignment with two major ARDS pathophysiological lung models; the “sponge lung” - and the “shape matching” -model. Current evidence strongly supports that prone positioning has beneficial effects on gas exchange, respiratory mechanics, lung protection and hemodynamics as it redistributes transpulmonary pressure, stress and strain throughout the lung and unloads the right ventricle. The factors that individually influence the time course of alveolar recruitment and the improvement in oxygenation during prone positioning have not been well characterized. Although patients’ response to prone positioning is quite variable and hard to predict, large randomized trials and recent meta-analyses show that prone position in conjunction with a lung-protective strategy, when performed early and in sufficient duration, may improve survival in patients with ARDS. This pathophysiology-based review and recent clinical evidence strongly support the use of prone positioning in the early management of severe ARDS systematically and not as a rescue maneuver or a last-ditch effort. PMID:27152255

  18. Complement-mediated neutrophil activation in sepsis- and trauma-related adult respiratory distress syndrome. Clarification with radioaerosol lung scans

    SciTech Connect

    Tennenberg, S.D.; Jacobs, M.P.; Solomkin, J.S.

    1987-01-01

    Complement-mediated neutrophil activation (CMNA) has been proposed as an important pathogenic mechanism causing acute microvascular lung injury in the adult respiratory distress syndrome (ARDS). To clarify the relationship between CMNA and evolving lung injury, we studied 26 patients with multiple trauma and sepsis within 24 hours of risk establishment for ARDS. Pulmonary alveolar-capillary permeability (PACP) was quantified as the clearance rate of a particulate radioaerosol. Seventeen patients (65%) had increased PACP (six developed ARDS) while nine (35%) had normal PACP (none developed ARDS; clearance rates of 3.4%/min and 1.5%/min, respectively). These patients, regardless of evidence of early lung injury, had elevated plasma C3adesArg levels and neutrophil chemotactic desensitization to C5a/C5adesArg. Plasma C3adesArg levels correlated weakly, but significantly, with PACP. Thus, CMNA may be a necessary, but not a sufficient, pathogenic mechanism in the evolution of ARDS.

  19. Diagnostic workup for ARDS patients.

    PubMed

    Papazian, Laurent; Calfee, Carolyn S; Chiumello, Davide; Luyt, Charles-Edouard; Meyer, Nuala J; Sekiguchi, Hiroshi; Matthay, Michael A; Meduri, Gianfranco Umberto

    2016-05-01

    Acute respiratory distress syndrome (ARDS) is defined by the association of bilateral infiltrates and hypoxaemia following an initial insult. Although a new definition has been recently proposed (Berlin definition), there are various forms of ARDS with potential differences regarding their management (ventilator settings, prone positioning use, corticosteroids). ARDS can be caused by various aetiologies, and the adequate treatment of the responsible cause is crucial to improve the outcome. It is of paramount importance to characterize the mechanisms causing lung injury to optimize both the aetiological treatment and the symptomatic treatment. If there is no obvious cause of ARDS or if a direct lung injury is suspected, bronchoalveolar lavage (BAL) should be strongly considered to identify microorganisms responsible for pneumonia. Blood samples can also help to identify microorganisms and to evaluate biomarkers of infection. If there is no infectious cause of ARDS or no other apparent aetiology is found, second-line examinations should include markers of immunologic diseases. In selected cases, open lung biopsy remains useful to identify the cause of ARDS when all other examinations remain inconclusive. CT scan is fundamental when there is a suspicion of intra-abdominal sepsis and in some cases of pneumonia. Ultrasonography is important not only in evaluating biventricular function but also in identifying pleural effusions and pneumothorax. The definition of ARDS remains clinical and the main objective of the diagnostic workup should be to be focused on identification of its aetiology, especially a treatable infection. PMID:27007111

  20. How ARDS should be treated.

    PubMed

    Gattinoni, Luciano; Quintel, Michael

    2016-01-01

    The Berlin definition criteria applied at positive end-expiratory pressure (PEEP) 5 cm H2O reasonably predict lung edema and recruitabilty. To maintain viable gas exchange, the mechanical ventilation becomes progressively more risky going from mild to severe acute respiratory distress syndrome (ARDS). Tidal volume, driving pressure, flow, and respiratory rate have been identified as causes of ventilation-induced lung injury. Taken together, they represent the mechanical power applied to the lung parenchyma. In an inhomogeneous lung, stress risers locally increase the applied mechanical power. Increasing lung homogeneity by PEEP and prone position decreases the harm of mechanical ventilation, particularly in severe ARDS. PMID:27048605

  1. Pediatric Acute Respiratory Distress Syndrome: Fibrosis versus Repair

    PubMed Central

    Im, Daniel; Shi, Wei; Driscoll, Barbara

    2016-01-01

    Clinical and basic experimental approaches to pediatric acute lung injury (ALI), including acute respiratory distress syndrome (ARDS), have historically focused on acute care and management of the patient. Additional efforts have focused on the etiology of pediatric ALI and ARDS, clinically defined as diffuse, bilateral diseases of the lung that compromise function leading to severe hypoxemia within 7 days of defined insult. Insults can include ancillary events related to prematurity, can follow trauma and/or transfusion, or can present as sequelae of pulmonary infections and cardiovascular disease and/or injury. Pediatric ALI/ARDS remains one of the leading causes of infant and childhood morbidity and mortality, particularly in the developing world. Though incidence is relatively low, ranging from 2.9 to 9.5 cases/100,000 patients/year, mortality remains high, approaching 35% in some studies. However, this is a significant decrease from the historical mortality rate of over 50%. Several decades of advances in acute management and treatment, as well as better understanding of approaches to ventilation, oxygenation, and surfactant regulation have contributed to improvements in patient recovery. As such, there is a burgeoning interest in the long-term impact of pediatric ALI/ARDS. Chronic pulmonary deficiencies in survivors appear to be caused by inappropriate injury repair, with fibrosis and predisposition to emphysema arising as irreversible secondary events that can severely compromise pulmonary development and function, as well as the overall health of the patient. In this chapter, the long-term effectiveness of current treatments will be examined, as will the potential efficacy of novel, acute, and long-term therapies that support repair and delay or even impede the onset of secondary events, including fibrosis. PMID:27066462

  2. Surviving Critical Illness: The Acute Respiratory Distress Syndrome as Experienced by Patients and Their Caregivers

    PubMed Central

    Cox, Christopher E.; Docherty, Sharron L.; Brandon, Debra H.; Whaley, Christie; Attix, Deborah K.; Clay, Alison S.; Dore, Daniel V.; Hough, Catherine L.; White, Douglas B.; Tulsky, James A.

    2009-01-01

    Objective Survivors of the acute respiratory distress syndrome (ARDS), a systemic critical illness, often report poor quality of life based on responses to standardized questionnaires. However, the experiences of ARDS survivors have not been reported. Our objective was to characterize the effects of critical illness in the daily lives and functioning of ARDS survivors. Design, Setting, and Patients We recruited consecutively 31 ARDS survivors and their informal caregivers from medical and surgical intensive care units of an academic medical center and a community hospital. Eight patients died before completing interviews. We conducted semi-structured interviews with 23 ARDS survivors and 24 caregivers three to nine months after ICU admission, stopping enrollment after thematic saturation was reached. Transcripts were analyzed using Colaizzi’s qualitative methodology to identify significant ways in which survivors’ critical illness experience impacted their lives. Measurements and Main Results Participants related five key elements of experience as survivors of ARDS: pervasive memories of critical care, day to day impact of new disability, critical illness defining the sense of self, relationship strain and change, and ability to cope with disability. Survivors described remarkable disability that persisted for months. Caregivers’ interviews revealed substantial strain from caregiving responsibilities, as well as frequent symptom minimization by patients. Conclusions The diverse and unique experiences of ARDS survivors reflect the global impact of severe critical illness. We have identified symptom domains important to ARDS patients that are not well represented in existing health outcomes measures. These insights may aid the development of targeted interventions to enhance recovery and return of function after ARDS. PMID:19865004

  3. Predicting Survival in ARDS.

    PubMed

    Karnik, Niteen D; Gupta, Anish V

    2015-11-01

    Acute respiratory distress syndrome (ARDS) is a fulminant clinical disorder of varied etiology, characterized by diffuse lung injury and severe hypoxemia. It is a leading cause of ICU admission and the associated high mortality has sparked a lot of research on etiology, outcome, scoring systems, mortality predictors, biomarkers including inflammatory cytokines and even genomics in ARDS. The previously used AECC (American European Consensus Conference) definition (1994) of ARDS was replaced by the recent Berlin definition (2012) so as to improve its validity and reliability.1,2 This would not only standardize patient enrollment into clinical trials but also help implement the results of these trials into clinical practice. Although various studies have shown a reduction in mortality due to ARDS, it has been largely attributed to the general improvement in critical care and the use of lung protection ventilation strategies.3-6 Hence focus on the etiology, co-morbidities, risk factors, complications and mortality predictors, is the need of the hour so as to improve survival. ARDS can occur secondary to multiple causes i.e. either due to direct lung involvement (pneumonia, lung contusion etc) or indirect alveolar damage by inflammatory cytokines (sepsis, trauma, burns, pancreatitis etc.). The causes of ARDS in tropical countries are varied with seasonal variation. Acute febrile illnesses (AFI) like malaria, leptospirosis and dengue usually predominate in the monsoons while H1N1 infection and pneumonias typically peak in the colder winter months. However, malaria, dengue and H1N1 have a potential to be perennial. PMID:27608777

  4. Acute respiratory distress syndrome following cardiovascular surgery: current concepts and novel therapeutic approaches

    PubMed Central

    Hoegl, Sandra; Zwissler, Bernhard; Eltzschig, Holger K.; Vohwinkel, Christine

    2015-01-01

    Purpose of review This review gives an update on current treatment options and novel concepts on the prevention and treatment of the acute respiratory distress syndrome (ARDS) in cardiovascular surgery patients. Recent findings The only proven beneficial therapeutic options in ARDS are those that help to prevent further ventilator-induced lung injury, such as prone position, use of lung-protective ventilation strategies, and extracorporeal membrane oxygenation. In the future also new approaches like mesenchymal cell therapy, activation of hypoxia-elicited transcription factors or targeting of purinergic signaling may be successful outside the experimental setting. Owing to the so far limited treatment options, it is of great importance to determine patients at risk for developing ARDS already perioperatively. In this context, serum biomarkers and lung injury prediction scores could be useful. Summary Preventing ARDS as a severe complication in the cardiovascular surgery setting may help to reduce morbidity and mortality. As cardiovascular surgery patients are of greater risk to develop ARDS, preventive interventions should be implemented early on. Especially, use of low tidal volumes, avoiding of fluid overload and restrictive blood transfusion regimes may help to prevent ARDS. PMID:26598954

  5. What is the clinical significance of pulmonary hypertension in acute respiratory distress syndrome? A review

    PubMed Central

    Lai, Peggy S.; Mita, Carol; Thompson, B. Taylor

    2014-01-01

    Elevated pulmonary arterial pressures appear to be a prominent feature of the acute respiratory distress syndrome (ARDS). Current clinical guidelines for the management of ARDS do not specifically address treatment of pulmonary hypertension or associated right ventricular dysfunction because the clinical significance of this entity remains unclear. Interpretation of elevated pulmonary arterial pressures, pulmonary vascular resistance, and transpulmonary gradient as well as signs of right ventricular dysfunction is confounded by the effects of positive pressure ventilation. There does not appear to be a consistent relationship between the diagnosis of pulmonary hypertension or right ventricular failure and mortality in patients with ARDS, but it is unclear if right ventricular failure contributes to the mortality risk per se or if the underlying cause of pulmonary hypertension, including intravascular micro and macro thrombosis, are simply markers for systemic dysregulation of coagulation and fibrinolysis that may lead to multiorgan failure in ARDS. While studies of pulmonary vasodilator therapies have not shown a mortality benefit in ARDS, such trials have targeted improved oxygenation rather than improved pulmonary hemodynamics so that the possible contribution of improved right ventricular function to better outcomes has not been directly tested in large trials. Future studies are needed to determine if treatment of pulmonary hypertension and associated right ventricular dysfunction will affect mortality in patients with ARDS. PMID:24193181

  6. Biomarkers in Pediatric ARDS: Future Directions

    PubMed Central

    Orwoll, Benjamin E.; Sapru, Anil

    2016-01-01

    Acute respiratory distress syndrome (ARDS) is common among mechanically ventilated children and accompanies up to 30% of all pediatric intensive care unit deaths. Though ARDS diagnosis is based on clinical criteria, biological markers of acute lung damage have been extensively studied in adults and children. Biomarkers of inflammation, alveolar epithelial and capillary endothelial disruption, disordered coagulation, and associated derangements measured in the circulation and other body fluids, such as bronchoalveolar lavage, have improved our understanding of pathobiology of ARDS. The biochemical signature of ARDS has been increasingly well described in adult populations, and this has led to the identification of molecular phenotypes to augment clinical classifications. However, there is a paucity of data from pediatric ARDS (pARDS) patients. Biomarkers and molecular phenotypes have the potential to identify patients at high risk of poor outcomes, and perhaps inform the development of targeted therapies for specific groups of patients. Additionally, because of the lower incidence of and mortality from ARDS in pediatric patients relative to adults and lack of robust clinical predictors of outcome, there is an ongoing interest in biological markers as surrogate outcome measures. The recent definition of pARDS provides additional impetus for the measurement of established and novel biomarkers in future pediatric studies in order to further characterize this disease process. This chapter will review the currently available literature and discuss potential future directions for investigation into biomarkers in ARDS among children. PMID:27313995

  7. Increased pulmonary alveolar-capillary permeability in patients at risk for adult respiratory distress syndrome

    SciTech Connect

    Tennenberg, S.D.; Jacobs, M.P.; Solomkin, J.S.; Ehlers, N.A.; Hurst, J.M.

    1987-04-01

    Two methods for predicting adult respiratory distress syndrome (ARDS) were evaluated prospectively in a group of 81 multitrauma and sepsis patients considered at clinical high risk. A popular ARDS risk-scoring method, employing discriminant analysis equations (weighted risk criteria and oxygenation characteristics), yielded a predictive accuracy of 59% and a false-negative rate of 22%. Pulmonary alveolar-capillary permeability (PACP) was determined with a radioaerosol lung-scan technique in 23 of these 81 patients, representing a statistically similar subgroup. Lung scanning achieved a predictive accuracy of 71% (after excluding patients with unilateral pulmonary contusion) and gave no false-negatives. We propose a combination of clinical risk identification and functional determination of PACP to assess a patient's risk of developing ARDS.

  8. MicroRNAs: Novel regulatory molecules in acute lung injury/acute respiratory distress syndrome

    PubMed Central

    CAO, YONGMEI; LYU, YI; TANG, JIAHUA; LI, YINGCHUAN

    2016-01-01

    Acute lung injury (ALI) and the more severe acute respiratory distress syndrome (ARDS) are common and complex inflammatory lung diseases. MicroRNAs (miRNAs), a type of non-coding RNA molecule that regulate gene expression at the post-transcriptional level, have emerged as a novel class of gene regulators, which have critical roles in a wide range of human disorders and diseases, including ALI. Certain types of miRNAs are abnormally expressed in response to lung injury. miRNAs can regulate inflammation pathways by targeting specific molecules and modulate immune response in the process of lung injury and repair. The regulation of miRNA can relieve injury response and promote the recovery of ALI/ARDS. Therefore, miRNAs may serve as novel therapeutic targets in ALI/ARDS. PMID:27123242

  9. Adult onset Still's disease accompanied by acute respiratory distress syndrome: A case report

    PubMed Central

    Xi, Xiao-Tu; Wang, Mao-Jie; Huang, Run-Yue; Ding, Bang-Han

    2016-01-01

    Adult onset Still's disease (AOSD) is a systemic inflammatory disorder characterized by rash, leukocytosis, fever and arthralgia/arthritis. The most common pulmonary manifestations associated with AOSD are pulmonary infiltrates and pleural effusion. The present study describes a 40-year-old male with AOSD who developed fever, sore throat and shortness of breath. Difficulty breathing promptly developed, and the patient was diagnosed with acute respiratory distress syndrome (ARDS). The patient did not respond to antibiotics, including imipenem, vancomycin, fluconazole, moxifloxacin, penicillin, doxycycline and meropenem, but was sensitive to glucocorticoid treatment, including methylprednisolone sodium succinate. ARDS accompanied by AOSD has been rarely reported in the literature. In conclusion, in a patient with ARDS who does not respond to antibiotic treatment, the involvement of AOSD should be considered. PMID:27588099

  10. Recent advances in mechanical ventilation in patients with acute respiratory distress syndrome.

    PubMed

    Rittayamai, Nuttapol; Brochard, Laurent

    2015-03-01

    Acute respiratory distress syndrome (ARDS) is characterised by different degrees of severity and different stages. Understanding these differences can help to better adapt the ventilatory settings to protect the lung from ventilator-induced lung injury by reducing hyperinflation or keeping the lung open when it is possible. The same therapies may be useful and beneficial in certain forms of ARDS, and risky or harmful at other stages: this includes high positive end-expiratory pressure, allowance of spontaneous breathing activity or use of noninvasive ventilation. The severity of the disease is the primary indicator to individualise treatment. Monitoring tools such as oesophageal pressure or lung volume measurements may also help to set the ventilator. At an earlier stage, an adequate lung protective strategy may also help to prevent the development of ARDS. PMID:25726563

  11. Increased Risk of Post-Trauma Stroke after Traumatic Brain Injury-Induced Acute Respiratory Distress Syndrome.

    PubMed

    Chen, Gunng-Shinng; Liao, Kuo-Hsing; Bien, Mauo-Ying; Peng, Giia-Sheun; Wang, Jia-Yi

    2016-07-01

    This study determines whether acute respiratory distress syndrome (ARDS) is an independent risk factor for an increased risk of post-traumatic brain injury (TBI) stroke during 3-month, 1-year, and 5-year follow-ups, respectively, after adjusting for other covariates. Clinical data for the analysis were from the National Health Insurance Database 2000, which covered a total of 2121 TBI patients and 101 patients with a diagnosis of TBI complicated with ARDS (TBI-ARDS) hospitalized between January 1, 2001 and December 31, 2005. Each patient was tracked for 5 years to record stroke occurrences after discharge from the hospital. The prognostic value of TBI-ARDS was evaluated using a multivariate Cox proportional hazard model. The main outcome found that stroke occurred in nearly 40% of patients with TBI-ARDS, and the hazard ratio for post-TBI stroke increased fourfold during the 5-year follow-up period after adjusting for other covariates. The increased risk of hemorrhagic stroke in the ARDS group was considerably higher than in the TBI-only cohort. This is the first study to report that post-traumatic ARDS yielded an approximate fourfold increased risk of stroke in TBI-only patients. We suggest intensive and appropriate medical management and intensive follow-up of TBI-ARDS patients during the beginning of the hospital discharge. PMID:26426583

  12. Predictors of Acute Respiratory Distress Syndrome in Patients with Paraquat Intoxication

    PubMed Central

    Weng, Cheng-Hao; Hu, Ching-Chih; Lin, Ja-Liang; Lin-Tan, Dan-Tzu; Hsu, Ching-Wei; Yen, Tzung-Hai

    2013-01-01

    Introduction Paraquat poisoning is characterized by acute lung injury, pulmonary fibrosis, respiratory failure, and multi-organ failure, resulting in a high rate of mortality and morbidity. The objectives of this study were to identify predictors of acute respiratory distress syndrome (ARDS) in cases of paraquat poisoning and determine the association between these parameters. Materials and Methods In total, 187 patients were referred for management of intentional paraquat ingestion between 2000 and 2010. Demographic, clinical, and laboratory data were recorded. Sequential organ failure assessment (SOFA) and Acute Kidney Injury Network (AKIN) scores were collected, and predictors of ARDS were analyzed. Results The overall mortality rate for the entire population was 54% (101/187). Furthermore, the mortality rate was higher in the ARDS patients than in the non-ARDS patients (80% vs. 43.80%, P<0.001). Additionally, the ARDS patients not only had higher AKIN48-h scores (P<0.009), SOFA48-h scores (P<0.001), and time to ARDS/nadir PaO2 (P=0.008) but also suffered from lower nadir PaO2 (P<0.001), nadir AaDO2 (P<0.001), and nadir eGFR (P=0.001) compared to those in the non-ARDS patients. Moreover, pneumomediastinum episodes were more frequent in the ARDS patients than in the non-ARDS patients (P<0.001). A multivariate Cox regression model revealed that blood paraquat concentrations (P<0.001), SOFA48-h scores (P=0.001), and steroid and cyclophosphamide pulse therapies (P=0.024) were significant predictors of ARDS. The cumulative survival rates differed significantly (P<0.001) between patients with SOFA48-h scores <3 and SOFA48-h scores ≥3, with a sensitivity of 95.8%, specificity of 58.4%, and overall correctness of 67.6%. Finally, the area under the receiver operating characteristic (AUROC) analysis showed that SOFA48-h scores (P<0.001) had a better discriminatory power than blood paraquat concentrations (P=0.01) for predicting ARDS. Conclusions The analytical results

  13. The potential role and limitations of echocardiography in acute respiratory distress syndrome.

    PubMed

    Lazzeri, Chiara; Cianchi, Giovanni; Bonizzoli, Manuela; Batacchi, Stefano; Peris, Adriano; Gensini, Gian Franco

    2016-04-01

    Bedside use of Doppler echocardiography is being featured as a promising, clinically useful tool in assessing the pulmonary circulation in patients with acute respiratory distress syndrome (ARDS). The present review is aimed at summarizing the available evidence obtained with echocardiography on right ventricle (RV) function and pulmonary circulation in ARDS and to highlight the potential of this technique in clinical practice (only articles in English language were considered). According to the available evidence on echocardiographic findings, the following conclusions can be drawn: (a) echocardiography (transthoracic and transesophageal) has a growing role in the management ARDS patients mainly because of the strict interactions between the lung (and ventilation) and the RV and pulmonary circulation; (b) there may be a continuum of alterations in RV size and function and pulmonary circulation which may end in the development of acute cor pulmonale, probably paralleling ARDS disease severity; and (c) the detection of acute cor pulmonale should prompt intensivists to tailor their ventilatory strategy to the individual patient depending on the echocardiography findings. Bearing in mind the clinical role and growing importance of echocardiography in ARDS and the available evidence on this topic, we present a flow chart including the parameters to be measured and the timing of echo exams in ARDS patients. Despite the important progress that echocardiography has gained in the evaluation of patients with ARDS, several open questions remain and echocardiography still appears to be underused in these patients. A more systematic use of echocardiography (mainly through shared protocols) in ARDS could help intensivists to tailor the optimal treatment in individual patients as well as highlighting the limits and potential of this methodology in patients with ALI. PMID:26660667

  14. Unexpected Role for Adaptive αβTH17 Cells in Acute Respiratory Distress Syndrome1

    PubMed Central

    Li, John T.; Melton, Andrew C.; Su, George; Hamm, David E.; LaFemina, Michael; Howard, James; Fang, Xiaohui; Bhat, Sudarshan; Huynh, Kieu-My; O’Kane, Cecilia M.; Ingram, Rebecca J.; Muir, Roshell R.; McAuley, Daniel F.; Matthay, Michael A.; Sheppard, Dean

    2015-01-01

    Acute respiratory distress syndrome (ARDS) is a devastating disorder characterized by increased alveolar permeability with no effective treatment beyond supportive care. Current mechanisms underlying ARDS focus on alveolar endothelial and epithelial injury caused by products of innate immune cells and platelets. However, the role of adaptive immune cells in ARDS remains largely unknown. Here we report that expansion of antigen-specific αβT helper 17 (αβTH17) cells contribute to ARDS by local secretion of IL-17A, which in turn directly increases alveolar epithelial permeability. Mice with a highly restrictive defect in antigen-specific αβTH17 cells were protected from experimental ARDS induced by a single dose of endotracheal lipopolysaccharide (LPS). Loss of IL-17 receptor C or antibody blockade of IL-17A was similarly protective, further suggesting that IL-17A released by these cells was responsible for this effect. LPS induced a rapid and specific clonal expansion of αβTH17 cells in the lung, as determined by deep sequencing of the hypervariable CD3RβVJ region of the T cell receptor. Our findings could be relevant to ARDS in humans, since we found significant elevation of IL-17A in bronchoalveolar lavage (BAL) fluid from patients with ARDS and recombinant IL-17A directly increased permeability across cultured human alveolar epithelial monolayers. These results reveal a previously unexpected role for adaptive immune responses that increase alveolar permeability in ARDS and suggest that αβTH17 cells and IL-17A could be novel therapeutic targets for this currently untreatable disease. PMID:26002979

  15. Unexpected Role for Adaptive αβTh17 Cells in Acute Respiratory Distress Syndrome.

    PubMed

    Li, John T; Melton, Andrew C; Su, George; Hamm, David E; LaFemina, Michael; Howard, James; Fang, Xiaohui; Bhat, Sudarshan; Huynh, Kieu-My; O'Kane, Cecilia M; Ingram, Rebecca J; Muir, Roshell R; McAuley, Daniel F; Matthay, Michael A; Sheppard, Dean

    2015-07-01

    Acute respiratory distress syndrome (ARDS) is a devastating disorder characterized by increased alveolar permeability with no effective treatment beyond supportive care. Current mechanisms underlying ARDS focus on alveolar endothelial and epithelial injury caused by products of innate immune cells and platelets. However, the role of adaptive immune cells in ARDS remains largely unknown. In this study, we report that expansion of Ag-specific αβTh17 cells contributes to ARDS by local secretion of IL-17A, which in turn directly increases alveolar epithelial permeability. Mice with a highly restrictive defect in Ag-specific αβTh17 cells were protected from experimental ARDS induced by a single dose of endotracheal LPS. Loss of IL-17 receptor C or Ab blockade of IL-17A was similarly protective, further suggesting that IL-17A released by these cells was responsible for this effect. LPS induced a rapid and specific clonal expansion of αβTh17 cells in the lung, as determined by deep sequencing of the hypervariable CD3RβVJ region of the TCR. Our findings could be relevant to ARDS in humans, because we found significant elevation of IL-17A in bronchoalveolar lavage fluid from patients with ARDS, and rIL-17A directly increased permeability across cultured human alveolar epithelial monolayers. These results reveal a previously unexpected role for adaptive immune responses that increase alveolar permeability in ARDS and suggest that αβTh17 cells and IL-17A could be novel therapeutic targets for this currently untreatable disease. PMID:26002979

  16. The role of inhaled prostacyclin in treating acute respiratory distress syndrome.

    PubMed

    Searcy, Randi J; Morales, James R; Ferreira, Jason A; Johnson, Donald W

    2015-12-01

    Acute respiratory distress syndrome (ARDS) is a syndrome of acute lung injury that is characterized by noncardiogenic pulmonary edema and severe hypoxemia second to a pathogenic impairment of gas exchange. Despite significant advances in the area, mortality remains high among ARDS patients. High mortality and a limited spectrum of therapeutic options have left clinicians searching for alternatives, spiking interest in selective pulmonary vasodilators (SPVs). Despite the lack of robust evidence, SPVs are commonly employed for their therapeutic role in improving oxygenation in patients who have developed refractory hypoxemia in ARDS. While inhaled epoprostenol (iEPO) also impacts arterial oxygenation by decreasing ventilation-perfusion (V/Q) mismatching and pulmonary shunt flow, this effect is not different from inhaled nitric oxide (iNO). The most effective and safest dose for yielding a clinically significant increase in PaO2 and reduction in pulmonary artery pressure (PAP) appears to be 20-30 ng/kg/min in adults and 30 ng/kg/min in pediatric patients. iEPO appears to have a ceiling effect above these doses in which no additional benefit may be derived. iNO and iEPO have shown similar efficacy profiles; however, they differ with respect to cost and ease of therapeutic administration. The most beneficial effects of iEPO have been seen in adult patients with secondary ARDS as compared with primary ARDS, most likely due to the difference in etiology of the two disease states, and in patients suffering from baseline right ventricular heart failure. Although iEPO has demonstrated improvements in hemodynamic parameters and oxygenation in ARDS patients, due to the limited number of randomized clinical trials and the lack of studies investigating mortality, the use of iEPO cannot be recommended as standard of care in ARDS. iEPO should be reserved for those refractory to traditional therapies. PMID:26294418

  17. Noninvasive ventilation on mortality of acute respiratory distress syndrome

    PubMed Central

    Ye, Ling; Wang, Jian; Xu, Xiaobo; Song, Yuanlin; Jiang, Jinjun

    2016-01-01

    [Purpose] The aim of this study was to assess the efficacy of noninvasive ventilation (NIV) in acute respiratory distress syndrome (ARDS). [Subjects and Methods] The clinical data of 58 patients with ARDS that required mechanical ventilation in two intensive care units (ICU) was reviewed. [Results] Endotracheal intubation was performed in 55.17% of the total patients and in 39.53% of the patients who received NIV treatment. The APACHE II score for patients who only received IV was significantly higher than those who only underwent NIV (25.67 ± 5.30 vs. 18.12 ± 7.20). However, there were no significant differences in 28-day/90-day survival rates, duration of mechanical ventilation, and length of ICU stay between these two groups. For patients from a NIV-to-IV group, the APACHE II scores before endotracheal intubation were higher than the scores from IV patients (26.12 ± 4.08 vs. 21.94 ± 6.10). The 90-day survival rate in the NIV-to-IV group was significantly lower than that of the IV-only group (23.5% vs. 73.3%), although there was no difference in the 28-day survival rate between the two groups. [Conclusion] The application of NIV reduces the percentage of patients requiring endotracheal intubation.

  18. Successful management of H1N1 related severe acute respiratory distress syndrome with noninvasive positive pressure ventilation

    PubMed Central

    Mohamed, Abdulla Ismaeel; Chaari, Anis; Abulfateh, Fatima N.; Alshaikh, Khalid A.; Casey, William Francis

    2016-01-01

    Acute respiratory distress syndrome (ARDS) is a life threatening complication of H1N1 pneumonia. According to the Berlin conference guidelines, severe ARDS requires management with early invasive mechanical ventilation. Whether noninvasive positive pressure ventilation (NIPPV) should be attempted in patients with H1N1 pneumonia is still a matter of debate. We report the case of one patient with severe ARDS without other organ failure. The patient was managed successfully using NIPPV. Endotracheal intubation was avoided and the patient was discharged from the intensive care unit (ICU) after 10 days with a successful outcome. NIPPV can be useful in patients with isolated severe H1N1 ARDS provided early improvement of the oxygenation parameters is achieved. Patients with multiple organ failure or with persistent severe hypoxemia under noninvasive ventilation should be electively intubated and started on invasive mechanical ventilation. PMID:27275488

  19. Uneven distribution of ventilation in acute respiratory distress syndrome

    PubMed Central

    Rylander, Christian; Tylén, Ulf; Rossi-Norrlund, Rauni; Herrmann, Peter; Quintel, Michael; Bake, Björn

    2005-01-01

    Introduction The aim of this study was to assess the volume of gas being poorly ventilated or non-ventilated within the lungs of patients treated with mechanical ventilation and suffering from acute respiratory distress syndrome (ARDS). Methods A prospective, descriptive study was performed of 25 sedated and paralysed ARDS patients, mechanically ventilated with a positive end-expiratory pressure (PEEP) of 5 cmH2O in a multidisciplinary intensive care unit of a tertiary university hospital. The volume of poorly ventilated or non-ventilated gas was assumed to correspond to a difference between the ventilated gas volume, determined as the end-expiratory lung volume by rebreathing of sulphur hexafluoride (EELVSF6), and the total gas volume, calculated from computed tomography images in the end-expiratory position (EELVCT). The methods used were validated by similar measurements in 20 healthy subjects in whom no poorly ventilated or non-ventilated gas is expected to be found. Results EELVSF6 was 66% of EELVCT, corresponding to a mean difference of 0.71 litre. EELVSF6 and EELVCT were significantly correlated (r2 = 0.72; P < 0.001). In the healthy subjects, the two methods yielded almost identical results. Conclusion About one-third of the total pulmonary gas volume seems poorly ventilated or non-ventilated in sedated and paralysed ARDS patients when mechanically ventilated with a PEEP of 5 cmH2O. Uneven distribution of ventilation due to airway closure and/or obstruction is likely to be involved. PMID:15774050

  20. Pathobiology of acute respiratory distress syndrome.

    PubMed

    Sapru, Anil; Flori, Heidi; Quasney, Michael W; Dahmer, Mary K

    2015-06-01

    The unique characteristics of pulmonary circulation and alveolar-epithelial capillary-endothelial barrier allow for maintenance of the air-filled, fluid-free status of the alveoli essential for facilitating gas exchange, maintaining alveolar stability, and defending the lung against inhaled pathogens. The hallmark of pathophysiology in acute respiratory distress syndrome is the loss of the alveolar capillary permeability barrier and the presence of protein-rich edema fluid in the alveoli. This alteration in permeability and accumulation of fluid in the alveoli accompanies damage to the lung epithelium and vascular endothelium along with dysregulated inflammation and inappropriate activity of leukocytes and platelets. In addition, there is uncontrolled activation of coagulation along with suppression of fibrinolysis and loss of surfactant. These pathophysiological changes result in the clinical manifestations of acute respiratory distress syndrome, which include hypoxemia, radiographic opacities, decreased functional residual capacity, increased physiologic deadspace, and decreased lung compliance. Resolution of acute respiratory distress syndrome involves the migration of cells to the site of injury and re-establishment of the epithelium and endothelium with or without the development of fibrosis. Most of the data related to acute respiratory distress syndrome, however, originate from studies in adults or in mature animals with very few studies performed in children or juvenile animals. The lack of studies in children is particularly problematic because the lungs and immune system are still developing during childhood and consequently the pathophysiology of pediatric acute respiratory distress syndrome may differ in significant ways from that seen in acute respiratory distress syndrome in adults. This article describes what is known of the pathophysiologic processes of pediatric acute respiratory distress syndrome as we know it today while also presenting the much

  1. Gamma scintigraphic analysis of albumin flux in patients with acute respiratory distress syndrome

    SciTech Connect

    Sugerman, H.J.; Tatum, J.L.; Burke, T.S.; Strash, A.M.; Glauser, F.L.

    1984-06-01

    Computerized gamma-scintigraphy provides a new method for the analysis of albumin flux in patients with pulmonary permeability edema. In this technique, 10 mCi of /sup 99/mTc -tagged human serum albumin is administered and lung:heart radioactivity ratios are determined. This ratio remains constant unless there is a leak of albumin, when a rising ratio with time, called the ''slope index'' (SI), is seen. Thirty-five scintigraphic studies were obtained in 28 patients by means of a portable computerized gamma-camera. Thirteen of these patients had clinical evidence of the acute respiratory distress syndrome (ARDS) and six had or were recovering from left ventricular induced congestive heart failure (CHF). Five of the patients with CHF and pulmonary capillary wedge pressure (PCWP) below 30 mm Hg had normal scintigraphic studies. The patients with ARDS were found to have significantly higher SIs than patients who did not have, or had recovered from, ARDS. Positive SIs were present from 1 to 8 days following the apparent onset of ARDS in seven studies in five patients. Recovery of gas exchange was associated with a return to a normal SI in four patients. In conclusion, computerized gamma-scintigraphy was a sensitive, noninvasive tool for the detection of a pathologic increase in pulmonary protein flux. Positive scintigraphic findings were associated with significantly impaired gas exchange. The method documented that the leak of albumin in patients with ARDS may last for days but resolves with recovery.

  2. The acute respiratory distress syndrome: role of nutritional modulation of inflammation through dietary lipids.

    PubMed

    Mizock, Barry A; DeMichele, Stephen J

    2004-12-01

    The acute respiratory distress syndrome (ARDS) is the most serious form of acute hypoxic respiratory failure. ARDS represents the expression of an acute, diffuse, inflammatory process in the lungs consequent to a variety of infectious and noninfectious conditions. It is characterized pathologically by damage to pulmonary epithelial and endothelial cells, with subsequent alveolar-capillary leak and exudative pulmonary edema. The main clinical features of ARDS include rapid onset of dyspnea, severe defects in gas exchange, and imaging studies demonstrating diffuse pulmonary infiltrates. The role of nutrition in the management of ARDS has traditionally been supportive. Recent research has demonstrated the potential of certain dietary oils (eg, fish oil, borage oil) to modulate pulmonary inflammation, thereby improving lung compliance and oxygenation, and reducing time on mechanical ventilation. This article reviews the alterations in the immune response that underlie ARDS, discusses the physiology of dietary oils as immunonutrients, summarizes animal and human studies that explore the therapeutic effects of dietary oils, and provides clinical recommendations for their use. PMID:16215155

  3. Recent insights: mesenchymal stromal/stem cell therapy for acute respiratory distress syndrome

    PubMed Central

    Horie, Shahd; Laffey, John G.

    2016-01-01

    Acute respiratory distress syndrome (ARDS) causes respiratory failure, which is associated with severe inflammation and lung damage and has a high mortality and for which there is no therapy. Mesenchymal stromal/stem cells (MSCs) are adult multi-progenitor cells that can modulate the immune response and enhance repair of damaged tissue and thus may provide a therapeutic option for ARDS. MSCs demonstrate efficacy in diverse in vivo models of ARDS, decreasing bacterial pneumonia and ischemia-reperfusion-induced injury while enhancing repair following ventilator-induced lung injury. MSCs reduce the pro-inflammatory response to injury while augmenting the host response to bacterial infection. MSCs appear to exert their effects via multiple mechanisms—some are cell interaction dependent whereas others are paracrine dependent resulting from both soluble secreted products and microvesicles/exosomes derived from the cells. Strategies to further enhance the efficacy of MSCs, such as by overexpressing anti-inflammatory or pro-repair molecules, are also being investigated. Encouragingly, early phase clinical trials of MSCs in patients with ARDS are under way, and experience with these cells in trials for other diseases suggests that the cells are well tolerated. Although considerable translational challenges, such as concerns regarding cell manufacture scale-up and issues regarding cell potency and batch variability, must be overcome, MSCs constitute a highly promising potential therapy for ARDS. PMID:27408702

  4. Preservation of normal lung regions in the adult respiratory distress syndrome

    SciTech Connect

    Maunder, R.J.; Shuman, W.P.; McHugh, J.W.; Marglin, S.I.; Butler, J.

    1986-05-09

    In this report, the authors challenge the commonly held assumption that the adult respiratory distress syndrome (ARDS) is a homogeneous process associated with generalized and relatively uniform damage to the alveolar capillary membrane. They studied 13 patients with ARDS, comparing the pulmonary parenchymal changes seen by standard bedside chest roentgenograms with those seen by computed tomography of the chest. Three patients demonstrated generalized lung involvement by both radiologic techniques. In another eight patients, despite the appearance of generalized involvement on the standard chest x-ray film, the computed tomographic scans showed patchy infiltrates interspersed with areas of normal-appearing lung. Two patients showed patchy involvement by both techniques. The fact that ARDS spares some regions of lung parenchyma is useful knowledge in understanding the gas-exchange abnormalities of ARDS, the variable responsiveness to positive end-expiratory pressure, and the occurrence of oxygen toxicity. The problem of regional inhomogeneity should also be kept in mind when interpreting lung biopsy specimens or bronchoalveolar lavage fluid in patients with ARDS.

  5. High or conventional positive end-expiratory pressure in adult respiratory distress syndrome.

    PubMed

    Díaz-Alersi, R; Navarro-Ramírez, C

    2014-01-01

    Patients with acute respiratory distress syndrome may require high positive end-expiratory pressure (PEEP) levels, though the optimum level remains to be established. Several clinical trials have compared high PEEP levels versus conventional PEEP. Overall, although high PEEP levels improve oxygenation and are safe, they do not result in a significant reduction of the mortality rates. Nevertheless, some metaanalyses have revealed 2 situations in which high PEEP may decrease mortality: When used in severe distress and when PEEP is set following the characteristics of lung mechanics. Five studies have explored this latter scenario. Unfortunately, all of them have small sample sizes and have used different means to determine optimum PEEP. It is therefore necessary to conduct studies of sufficient sample size to compare the treatment of patients with severe acute respiratory distress syndrome, using a protective ventilation strategy with high PEEP guided by the characteristics of lung mechanics and ventilation with the protocol proposed by the ARDS Network. PMID:24290732

  6. Mouse Models of Acute Respiratory Distress Syndrome: A Review of Analytical Approaches, Pathologic Features, and Common Measurements.

    PubMed

    Aeffner, Famke; Bolon, Brad; Davis, Ian C

    2015-12-01

    Acute respiratory distress syndrome (ARDS) is a severe pulmonary reaction requiring hospitalization, which is incited by many causes, including bacterial and viral pneumonia as well as near drowning, aspiration of gastric contents, pancreatitis, intravenous drug use, and abdominal trauma. In humans, ARDS is very well defined by a list of clinical parameters. However, until recently no consensus was available regarding the criteria of ARDS that should be evident in an experimental animal model. This lack was rectified by a 2011 workshop report by the American Thoracic Society, which defined the main features proposed to delineate the presence of ARDS in laboratory animals. These should include histological changes in parenchymal tissue, altered integrity of the alveolar capillary barrier, inflammation, and abnormal pulmonary function. Murine ARDS models typically are defined by such features as pulmonary edema and leukocyte infiltration in cytological preparations of bronchoalveolar lavage fluid and/or lung sections. Common pathophysiological indicators of ARDS in mice include impaired pulmonary gas exchange and histological evidence of inflammatory infiltrates into the lung. Thus, morphological endpoints remain a vital component of data sets assembled from animal ARDS models. PMID:26296628

  7. A Case of Scrub Typhus Complicated by Adult Respiratory Distress Syndrome and Successful Management with Extracorporeal Membrane Oxygenation.

    PubMed

    Choi, Woo Young; Lee, Seung Yun; Kwon, Hea Yoon; Im, Jae Hyoung; Durey, Areum; Baek, Ji Hyeon; Kim, Young Sam; Kang, Jae-Seung; Lee, Jin-Soo

    2016-09-01

    A 67-year-old woman was diagnosed as having scrub typhus with pneumonitis. On admission, she was started on a combination therapy with levofloxacin and doxycycline. However, the patient developed severe acute respiratory distress syndrome (ARDS) on the 2nd day, and as a result, she underwent extracorporeal membrane oxygenation (ECMO). She was weaned from ECMO on the 10th day, as her respiratory status gradually improved. She was discharged without sequelae on the 23rd day. The outcome suggests that the use of ECMO should be considered for patients with ARDS induced from scrub typhus. PMID:27458040

  8. [Inhaled nitric oxide: one modality in the treatment of ARDS].

    PubMed

    Carrillo-Esper, R; Ramírez-Hernández, J M; Gargallo-Hernández, J J; Hernández-Vásquez, R; Domínguez-Rodríguez, M I; Alemán-Alarcón, C E; Gallegos-Rodríguez, G

    1999-01-01

    We describe a patient with acute respiratory distress syndrome (ARDS), refractory to treatment with conventional mechanical ventilation. The hemodynamic parameters showed severe pulmonary hypertension with increased intrapulmonary shunt. Inhaled nitric oxide was administered and we observed a diminishing in pulmonary hypertension and intrapulmonary shunt with an important increase of oxygen exchange. We reviewed the literature and make a suggestion concerning use of inhaled nitric oxide in patients with ARDS. PMID:10491897

  9. Surfactant Therapy of ALI and ARDS

    PubMed Central

    Raghavendran, K; Willson, D; Notter, RH

    2011-01-01

    This article examines exogenous lung surfactant replacement therapy and its utility in mitigating clinical acute lung injury (ALI) and the acute respiratory distress syndrome (ARDS). Biophysical research has documented that lung surfactant dysfunction can be reversed or mitigated by increasing surfactant concentration, and multiple studies in animals with ALI/ARDS have shown that respiratory function and pulmonary mechanics in vivo can be improved by exogenous surfactant administration. Exogenous surfactant therapy is a routine intervention in neonatal intensive care, and is life-saving in preventing or treating the neonatal respiratory distress syndrome (NRDS) in premature infants. In applications relevant for lung injury-related respiratory failure and ALI/ARDS, surfactant therapy has been shown to be beneficial in term infants with pneumonia and meconium aspiration lung injury, and in children up to age 21 with direct pulmonary forms of ALI/ARDS. However, extension of exogenous surfactant therapy to adults with respiratory failure and clinical ALI/ARDS remains a challenge. Coverage here reviews clinical studies of surfactant therapy in pediatric and adult patients with ALI/ARDS, particularly focusing on its potential advantages in patients with direct pulmonary forms of these syndromes. Also discussed is the rationale for mechanism-based therapies utilizing exogenous surfactant in combination with agents targeting other aspects of the multifaceted pathophysiology of inflammatory lung injury. Additional factors affecting the efficacy of exogenous surfactant therapy in ALI/ARDS are also described, including the difficulty of effectively delivering surfactants to injured lungs and the existence of activity differences between clinical surfactant drugs. PMID:21742216

  10. Anti-inflammatory mechanisms of apolipoprotein A-I mimetic peptide in acute respiratory distress syndrome secondary to sepsis.

    PubMed

    Sharifov, Oleg F; Xu, Xin; Gaggar, Amit; Grizzle, William E; Mishra, Vinod K; Honavar, Jaideep; Litovsky, Silvio H; Palgunachari, Mayakonda N; White, C Roger; Anantharamaiah, G M; Gupta, Himanshu

    2013-01-01

    Acute respiratory distress syndrome (ARDS) due to sepsis has a high mortality rate with limited treatment options. High density lipoprotein (HDL) exerts innate protective effects in systemic inflammation. However, its role in ARDS has not been well studied. Peptides such as L-4F mimic the secondary structural features and functions of apolipoprotein (apo)A-I, the major protein component of HDL. We set out to measure changes in HDL in sepsis-mediated ARDS patients, and to study the potential of L-4F to prevent sepsis-mediated ARDS in a rodent model of lipopolysaccharide (LPS)-mediated acute lung injury, and a combination of primary human leukocytes and human ARDS serum. We also analyzed serum from non-lung disease intubated patients (controls) and sepsis-mediated ARDS patients. Compared to controls, ARDS demonstrates increased serum endotoxin and IL-6 levels, and decreased HDL, apoA-I and activity of anti-oxidant HDL-associated paraoxanase-1. L-4F inhibits the activation of isolated human leukocytes and neutrophils by ARDS serum and LPS in vitro. Further, L-4F decreased endotoxin activity and preserved anti-oxidant properties of HDL both in vitro and in vivo. In a rat model of severe endotoxemia, L-4F significantly decreased mortality and reduces lung and liver injury, even when administered 1 hour post LPS. Our study suggests the protective role of the apoA-I mimetic peptide L-4F in ARDS and gram-negative endotoxemia and warrant further clinical evaluation. The main protective mechanisms of L-4F are due to direct inhibition of endotoxin activity and preservation of HDL anti-oxidant activity. PMID:23691230

  11. Management and Outcomes of Acute Respiratory Distress Syndrome Caused by Blastomycosis

    PubMed Central

    Schwartz, Ilan S.; Embil, John M.; Sharma, Atul; Goulet, Stephen; Light, R. Bruce

    2016-01-01

    Abstract Acute respiratory distress syndrome (ARDS) is an uncommon, highly fatal, and poorly understood manifestation of blastomycosis. Optimal management remains unknown, including the roles of adjunctive corticosteroids and extracorporeal membrane oxygenation (ECMO). We conducted a retrospective chart review of patients with ARDS caused by blastomycosis, managed in intensive care units in Manitoba, Canada, from 1992 to 2014. ARDS was defined using the Berlin definition. Corticosteroid therapy was defined as ≥150 mg cortisol equivalent in 24 hours. Logistic regression was used to identify determinants of a fatal outcome, and bootstrap resampling was used to assess sample size requirements. Forty-three patients with ARDS caused by blastomycosis were identified. ARDS was mild, moderate, and severe in 2 (5%), 12 (28%), and 29 (67%) patients, respectively. Management included amphotericin B (n = 42, 98%), vasopressors (n = 36, 84%), corticosteroids (n = 22, 51%), renal replacement (n = 13, 30%), and ECMO (n = 4, 11%). Seventeen patients (40%) died. All patients treated with ECMO survived (P = 0.14). Corticosteroids were not associated with survival benefit in univariate (P = 0.43) or multivariate analyses (odds ratio 0.52, 95% confidence interval 0.11–2.34). Bootstrap studies indicated that almost 500 patients would be needed to confirm a significant reduction in mortality from corticosteroids (type I error = 0.05, power = 80%). Blastomycosis is an uncommon, albeit important, cause of ARDS in this geographic area. Given the rarity of disease and the large cohort needed to demonstrate mortality benefit, the role of adjunctive therapies, including corticosteroids and ECMO, may remain unconfirmed, and clinical judgment should guide management decisions. PMID:27149459

  12. Management and Outcomes of Acute Respiratory Distress Syndrome Caused by Blastomycosis: A Retrospective Case Series.

    PubMed

    Schwartz, Ilan S; Embil, John M; Sharma, Atul; Goulet, Stephen; Light, R Bruce

    2016-05-01

    Acute respiratory distress syndrome (ARDS) is an uncommon, highly fatal, and poorly understood manifestation of blastomycosis. Optimal management remains unknown, including the roles of adjunctive corticosteroids and extracorporeal membrane oxygenation (ECMO).We conducted a retrospective chart review of patients with ARDS caused by blastomycosis, managed in intensive care units in Manitoba, Canada, from 1992 to 2014. ARDS was defined using the Berlin definition. Corticosteroid therapy was defined as ≥150 mg cortisol equivalent in 24 hours. Logistic regression was used to identify determinants of a fatal outcome, and bootstrap resampling was used to assess sample size requirements.Forty-three patients with ARDS caused by blastomycosis were identified. ARDS was mild, moderate, and severe in 2 (5%), 12 (28%), and 29 (67%) patients, respectively. Management included amphotericin B (n = 42, 98%), vasopressors (n = 36, 84%), corticosteroids (n = 22, 51%), renal replacement (n = 13, 30%), and ECMO (n = 4, 11%). Seventeen patients (40%) died. All patients treated with ECMO survived (P = 0.14). Corticosteroids were not associated with survival benefit in univariate (P = 0.43) or multivariate analyses (odds ratio 0.52, 95% confidence interval 0.11-2.34). Bootstrap studies indicated that almost 500 patients would be needed to confirm a significant reduction in mortality from corticosteroids (type I error = 0.05, power = 80%).Blastomycosis is an uncommon, albeit important, cause of ARDS in this geographic area. Given the rarity of disease and the large cohort needed to demonstrate mortality benefit, the role of adjunctive therapies, including corticosteroids and ECMO, may remain unconfirmed, and clinical judgment should guide management decisions. PMID:27149459

  13. Interdisciplinary Peripartum Management of Acute Respiratory Distress Syndrome with Extracorporeal Membrane Oxygenation – a Case Report and Literature Review

    PubMed Central

    Weyrich, J.; Bogdanski, R.; Ortiz, J. U.; Kuschel, B.; Schneider, K. T. M.; Lobmaier, S. M.

    2016-01-01

    Extracorporeal membrane oxygenation (ECMO) is increasingly used for the management of acute severe cardiac and respiratory failure. One of the indications is acute respiratory distress syndrome (ARDS) for which, in some severe cases, ECMO represents the only possibility to save lives. We report on the successful long-term use of ECMO in a postpartum patient with recurrent pulmonary decompensation after peripartum uterine rupture with extensive blood loss. PMID:27065489

  14. Acute Respiratory Distress Syndrome after the Use of Gadolinium Contrast Media

    PubMed Central

    Park, Jihye; Byun, Il Hwan; Park, Kyung Hee; Lee, Jae-Hyun; Nam, Eun Ji

    2015-01-01

    Acute respiratory distress syndrome (ARDS) is a medical emergency that threatens life. To this day, ARDS is very rarely reported by iodine contrast media, and there is no reported case of ARDS induced by gadolinium contrast media. Here, we present a case with ARDS after the use of gadobutrol (Gadovist) as a magnetic resonance imaging (MRI) contrast medium. A 26 years old female without any medical history, including allergic diseases and without current use of drugs, visited the emergency room for abdominal pain. Her abdominopelvic computed tomography with iodine contrast media showed a right ovarian cyst and possible infective colitis. Eighty-three hours later, she underwent pelvis MRI after injection of 7.5 mL (0.1 mL/kg body weight) of gadobutrol (Gadovist) to evaluate the ovarian cyst. She soon presented respiratory difficulty, edema of the lips, nausea, and vomiting, and we could hear wheezing upon auscultation. She was treated with dexamethasone, epinephrine, and norepinephrine. Her chest X-ray showed bilateral central bat-wing consolidative appearance. Managed with mechanical ventilation, she was extubated 3 days later and discharged without complications. PMID:26069143

  15. Increased extravascular lung water reduces the efficacy of alveolar recruitment maneuver in acute respiratory distress syndrome.

    PubMed

    Smetkin, Alexey A; Kuzkov, Vsevolod V; Suborov, Eugeny V; Bjertnaes, Lars J; Kirov, Mikhail Y

    2012-01-01

    Introduction. In acute respiratory distress syndrome (ARDS) the recruitment maneuver (RM) is used to reexpand atelectatic areas of the lungs aiming to improve arterial oxygenation. The goal of our paper was to evaluate the response to RM, as assessed by measurements of extravascular lung water index (EVLWI) in ARDS patients. Materials and Methods. Seventeen adult ARDS patients were enrolled into a prospective study. Patients received protective ventilation. The RM was performed by applying a continuous positive airway pressure of 40 cm H(2)O for 40 sec. The efficacy of the RM was assessed 5 min later. Patients were identified as responders if PaO(2)/FiO(2) increased by >20% above the baseline. EVLWI was assessed by transpulmonary thermodilution before the RM, and patients were divided into groups of low EVLWI (<10 mL/kg) and high EVLWI (≥10 mL/kg). Results. EVLWI was increased in 12 patients. Following RM, PaO(2)/FiO(2) increased by 33 (4-65) % in the patients with low EVLWI, whereas those in the high EVLWI group experienced a change by only -1((-13)-(+5)) % (P = 0.035). Conclusion. In ARDS, the response to a recruitment maneuver might be related to the severity of pulmonary edema. In patients with incresed EVLWI, the recruitment maneuver is less effective. PMID:22649717

  16. Acute respiratory distress caused by Neosartorya udagawae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We describe the first reported case of acute respiratory distress syndrome (ARDS) attributed to Neosartorya infection. The mold grew rapidly in culture of both sputum and bronchoalveolar lavage (BAL) fluid from a previously healthy 43-year-old woman with ARDS, which developed as the culmination of a...

  17. [Comprehensive observation of a canine model of respiratory distress syndrome induced with bone marrow].

    PubMed

    Chen, Z T

    1990-02-01

    An animal model of respiratory distress syndrome (RDS) was made with homologous bone marrow extraction in dogs, which had a similar alter to clinic ARDS patients in blood gases, chest X-ray films and pulmonary pathologic findings. Its pathogenetic key point was extensive pulmonary fat emboli, while active oxygen and neutrophil elastase also play an important role in it. Our results indicate that this model is a rather better one, and anisodamine has some therapeutic effects on the experimental RDS model. PMID:2379250

  18. Angiogenic and inflammatory markers in acute respiratory distress syndrome and renal injury associated to A/H1N1 virus infection.

    PubMed

    Bautista, Edgar; Arcos, Magali; Jimenez-Alvarez, Luís; García-Sancho, Ma Cecilia; Vázquez, María E; Peña, Erika; Higuera, Anjarath; Ramírez, Gustavo; Fernández-Plata, Rosario; Cruz-Lagunas, Alfredo; García-Moreno, Sara A; Urrea, Francisco; Ramírez, Remedios; Correa-Rotter, Ricardo; Pérez-Padilla, José Rogelio; Zúñiga, Joaquín

    2013-06-01

    Acute kidney injury (AKI) is often associated to acute respiratory distress syndrome (ARDS) due to influenza A/H1N1 virus infection. The profile of angiogenic and inflammatory factors in ARDS patients may be relevant for AKI. We analyzed the serum levels of several angiogenic factors, cytokines, and chemokines in 32 patients with A/H1N1 virus infection (17 with ARDS/AKI and 15 ARDS patients who did not developed AKI) and in 18 healthy controls. Significantly higher levels of VEGF, MCP-1, IL-6, IL-8 and IP-10 in ARDS/AKI patients were detected. Adjusting by confusing variables, levels of MCP-1 ≥150 pg/mL (OR=12.0, p=0.04) and VEGF ≥225 pg/mL (OR=6.4, p=0.03) were associated with the development of AKI in ARDS patients. Higher levels of MCP-1 and IP-10 were significantly associated with a higher risk of death in patients with ARDS (hazard ratio (HR)=10.0, p=0.02; HR=25.5, p=0.03, respectively) even taking into account AKI. Patients with influenza A/H1N1 infection and ARDS/AKI have an over-production of MCP-1, VEGF and IP-10 possibly contributing to kidney injury and are associated to a higher risk of death. PMID:23542734

  19. The Role of Omega-3 Polyunsaturated Fatty Acids in the Treatment of Patients with Acute Respiratory Distress Syndrome: A Clinical Review

    PubMed Central

    García de Acilu, M.; Leal, S.; Caralt, B.; Roca, O.; Sabater, J.; Masclans, J. R.

    2015-01-01

    Acute respiratory distress syndrome (ARDS) is defined as the acute onset of noncardiogenic edema and subsequent gas-exchange impairment due to a severe inflammatory process. Recent report on the prognostic value of eicosanoids in patients with ARDS suggests that modulating the inflammatory response through the use of polyunsaturated fatty acids may be a useful strategy for ARDS treatment. The use of enteral diets enriched with eicosapentaenoic acid (EPA) and gamma-linolenic acid (GLA) has reported promising results, showing an improvement in respiratory variables and haemodynamics. However, the interpretation of the studies is limited by their heterogeneity and methodology and the effect of ω-3 fatty acid-enriched lipid emulsion or enteral diets on patients with ARDS remains unclear. Therefore, the routine use of ω-3 fatty acid-enriched nutrition cannot be recommended and further large, homogeneous, and high-quality clinical trials need to be conducted to clarify the effectiveness of ω-3 polyunsaturated fatty acids. PMID:26339627

  20. Aspiration-Related Acute Respiratory Distress Syndrome in Acute Stroke Patient

    PubMed Central

    Zhao, Jiang-nan; Liu, Yao; Li, Huai-chen

    2015-01-01

    Background Aspiration of oral or gastric contents into the larynx and lower respiratory tract is a common problem in acute stroke patients, which significantly increases the incidence of acute respiratory distress syndrome (ARDS). However, little is known about the clinical characteristics of aspiration-related ARDS in acute stroke patients. Methods Over 17-month period a retrospective cohort study was done on 1495 consecutive patients with acute stroke. The data including demographic characteristics, clinical manifestations, laboratory examinations, chest imaging, and hospital discharge status were collected to analysis. Results Aspiration-related ARDS was diagnosed in 54 patients (3.6%). The most common presenting symptom was tachypnea (respiratory rate ≥25 breaths/min) in 50 cases. Computed tomography (CT) images usually demonstrated diffuse ground-glass opacities (GGOs) and inhomogeneous patchy consolidations involving the low lobes. Age, NIHSS score, GCS score, dysphagia, dysarthria, hemoglobin concentration, serum aspertate aminotransferase (AST), serum albumin, serum sodium, and admission glucose level were independently associated with aspiration-related ARDS (odds ratio (OR) 1.05, 95% confidence interval (CI) (1.04–1.07); OR 2.87, (2.68–3.63); OR 4.21, (3.57–5.09); OR 2.18, (1.23–3.86); OR 1.67, (1.31–2.14); OR 2.31, (1.11–4.84); OR 1.68, (1.01–2.80); OR 2.15, (1.19–3.90); OR 1.92, (1.10–3.36) and OR 1.14, (1.06–1.21) respectively). Conclusions Aspiration-related ARDS frequently occurs in acute stroke patient with impairment consciousness. It is advisable that performing chest CT timely may identify disease early and prompt treatment to rescue patients. PMID:25790377

  1. Echocardiographic parameters of right ventricular function predict mortality in acute respiratory distress syndrome: a pilot study.

    PubMed

    Shah, Trushil G; Wadia, Subeer K; Kovach, Julie; Fogg, Louis; Tandon, Rajive

    2016-06-01

    Right ventricular (RV) dysfunction in acute respiratory distress syndrome (ARDS) contributes to increased mortality. Our aim is to identify reproducible transthoracic echocardiography (TTE) parameters of RV dysfunction that can be used to predict outcomes in ARDS. We performed a retrospective single-center cohort pilot study measuring tricuspid annular plane systolic excursion (TAPSE), Tei index, RV-fractional area change (RV-FAC), pulmonary artery systolic pressure (PASP), and septal shift, reevaluated by an independent blinded cardiologist (JK). Thirty-eight patients were included. Patients were divided on the basis of 30-day survival. Thirty-day mortality was 47%. Survivors were younger than nonsurvivors. Survivors had a higher pH, PaO2∶FiO2 ratio, and TAPSE. Acute Physiology and Chronic Health Evaluation II (APACHE II), Simplified Acute Physiology Score II (SAPS II), and Sequential Organ Failure Assessment (SOFA) scores were lower in survivors. TAPSE has the strongest association with increased 30-day mortality from date of TTE. Accordingly, TAPSE has a strong positive correlation with PaO2∶FiO2 ratios, and Tei index has a strong negative correlation with PaO2∶FiO2 ratios. Septal shift was associated with lower PaO2∶FiO2 ratios. Decrease in TAPSE, increase in Tei index, and septal shift were seen in the severe ARDS group. In multivariate logistic regression models, TAPSE maintained a significant association with mortality independent of age, pH, PaO2∶FiO2 ratios, positive end expiratory pressure, PCO2, serum bicarbonate, plateau pressures, driving pressures, APACHE II, SAPS II, and SOFA scores. In conclusion, TAPSE and other TTE parameters should be used as novel predictive indicators for RV dysfunction in ARDS. These parameters can be used as surrogate noninvasive RV hemodynamic measurements to be manipulated to improve mortality in patients with ARDS and contributory RV dysfunction. PMID:27252840

  2. Echocardiographic parameters of right ventricular function predict mortality in acute respiratory distress syndrome: a pilot study

    PubMed Central

    Wadia, Subeer K.; Kovach, Julie; Fogg, Louis; Tandon, Rajive

    2016-01-01

    Abstract Right ventricular (RV) dysfunction in acute respiratory distress syndrome (ARDS) contributes to increased mortality. Our aim is to identify reproducible transthoracic echocardiography (TTE) parameters of RV dysfunction that can be used to predict outcomes in ARDS. We performed a retrospective single-center cohort pilot study measuring tricuspid annular plane systolic excursion (TAPSE), Tei index, RV-fractional area change (RV-FAC), pulmonary artery systolic pressure (PASP), and septal shift, reevaluated by an independent blinded cardiologist (JK). Thirty-eight patients were included. Patients were divided on the basis of 30-day survival. Thirty-day mortality was 47%. Survivors were younger than nonsurvivors. Survivors had a higher pH, PaO2∶FiO2 ratio, and TAPSE. Acute Physiology and Chronic Health Evaluation II (APACHE II), Simplified Acute Physiology Score II (SAPS II), and Sequential Organ Failure Assessment (SOFA) scores were lower in survivors. TAPSE has the strongest association with increased 30-day mortality from date of TTE. Accordingly, TAPSE has a strong positive correlation with PaO2∶FiO2 ratios, and Tei index has a strong negative correlation with PaO2∶FiO2 ratios. Septal shift was associated with lower PaO2∶FiO2 ratios. Decrease in TAPSE, increase in Tei index, and septal shift were seen in the severe ARDS group. In multivariate logistic regression models, TAPSE maintained a significant association with mortality independent of age, pH, PaO2∶FiO2 ratios, positive end expiratory pressure, PCO2, serum bicarbonate, plateau pressures, driving pressures, APACHE II, SAPS II, and SOFA scores. In conclusion, TAPSE and other TTE parameters should be used as novel predictive indicators for RV dysfunction in ARDS. These parameters can be used as surrogate noninvasive RV hemodynamic measurements to be manipulated to improve mortality in patients with ARDS and contributory RV dysfunction. PMID:27252840

  3. Proteomic profiles in acute respiratory distress syndrome differentiates survivors from non-survivors.

    PubMed

    Bhargava, Maneesh; Becker, Trisha L; Viken, Kevin J; Jagtap, Pratik D; Dey, Sanjoy; Steinbach, Michael S; Wu, Baolin; Kumar, Vipin; Bitterman, Peter B; Ingbar, David H; Wendt, Christine H

    2014-01-01

    Acute Respiratory Distress Syndrome (ARDS) continues to have a high mortality. Currently, there are no biomarkers that provide reliable prognostic information to guide clinical management or stratify risk among clinical trial participants. The objective of this study was to probe the bronchoalveolar lavage fluid (BALF) proteome to identify proteins that differentiate survivors from non-survivors of ARDS. Patients were divided into early-phase (1 to 7 days) and late-phase (8 to 35 days) groups based on time after initiation of mechanical ventilation for ARDS (Day 1). Isobaric tags for absolute and relative quantitation (iTRAQ) with LC MS/MS was performed on pooled BALF enriched for medium and low abundance proteins from early-phase survivors (n = 7), early-phase non-survivors (n = 8), and late-phase survivors (n = 7). Of the 724 proteins identified at a global false discovery rate of 1%, quantitative information was available for 499. In early-phase ARDS, proteins more abundant in survivors mapped to ontologies indicating a coordinated compensatory response to injury and stress. These included coagulation and fibrinolysis; immune system activation; and cation and iron homeostasis. Proteins more abundant in early-phase non-survivors participate in carbohydrate catabolism and collagen synthesis, with no activation of compensatory responses. The compensatory immune activation and ion homeostatic response seen in early-phase survivors transitioned to cell migration and actin filament based processes in late-phase survivors, revealing dynamic changes in the BALF proteome as the lung heals. Early phase proteins differentiating survivors from non-survivors are candidate biomarkers for predicting survival in ARDS. PMID:25290099

  4. Receptor Interacting Protein 3-Mediated Necroptosis Promotes Lipopolysaccharide-Induced Inflammation and Acute Respiratory Distress Syndrome in Mice

    PubMed Central

    Li, Haobo; Liu, Qing; Zhang, Zhongjun; Xie, Wanli; Feng, Yinglu; Socorburam, Tumenjavkhlan; Wu, Gui; Xia, Zhengyuan; Wu, Qingping

    2016-01-01

    Necrosis amplifies inflammation and plays important roles in acute respiratory distress syndrome (ARDS). Necroptosis is a newly identified programmed necrosis that is mediated by receptor interacting protein 3 (RIP3). However, the potential involvement and impact of necroptosis in lipopolysaccharide (LPS)-induced ARDS remains unknown. We therefore explored the role and mechanism of RIP3-mediated necroptosis in LPS-induced ARDS. Mice were instilled with increasing doses of LPS intratracheally to induce different degrees of ARDS. Lung tissues were harvested for histological and TUNEL staining and western blot for RIP3, p-RIP3, X-linked inhibitor of apoptosis protein (XIAP), mixed lineage kinase domain-like protein (MLKL), total and cleaved caspases-3/8. Then, wild-type and RIP3 knock-out mice were induced ARDS with 30 mg/kg LPS. Pulmonary cellular necrosis was labeled by the propidium Iodide (PI) staining. Levels of TNF-a, Interleukin (IL)-1β, IL-6, IL-1α, IL-10 and HMGB1, tissue myeloperoxidase (MPO) activity, neutrophil counts and total protein concentration were measured. Results showed that in high dose LPS (30mg/kg and 40mg/kg) -induced severe ARDS, RIP3 protein was increased significantly, accompanied by increases of p-RIP3 and MLKL, while in low dose LPS (10mg/kg and 20mg/kg) -induced mild ARDS, apoptosis was remarkably increased. In LPS-induced severe ARDS, RIP3 knock-out alleviated the hypothermia symptom, increased survival rate and ameliorated the lung tissue injury RIP3 depletion also attenuated LPS-induced increase in IL-1α/β, IL-6 and HMGB1 release, decreased tissue MPO activity, and reduced neutrophil influx and total protein concentration in BALF in severe ARDS. Further, RIP3 depletion reduced the necrotic cells in the lung and decreased the expression of MLKL, but had no impact on cleaved caspase-3 in LPS-induced ARDS. It is concluded that RIP3-mediated necroptosis is a major mechanism of enhanced inflammation and lung tissue injury in high dose

  5. OBESITY AND NUTRITION IN ARDS

    PubMed Central

    Stapleton, Renee D.; Suratt, Benjamin T.

    2014-01-01

    This chapter collectively discusses two important topics related to patients with ARDS: 1) obesity and its potential contribution to clinical outcomes through proposed biologic mechanisms and 2) current literature on provision of nutrition and micronutrients. The prevalence of obesity is rapidly increasing around the world, and more than one third of Americans are now obese. While obesity is associated with increased morbidity and mortality in the general population, recent literature suggests that among critically ill patients including those with ARDS, the relationship between obesity and outcomes is quite complex. Observational data demonstrate that obese patients may be at greater risk of developing ARDS and of having longer ICU and hospital lengths of stay compared to normal weight patients. However, obesity is also associated with improved survival. Therefore, in contrast to what might be assumed by clinicians, although obesity may confer greater ICU morbidity, it appears to simultaneously decrease mortality. The mechanisms for these findings are not yet clear, but recent biologic data may begin to provide an explanation. Critical illness, and more specifically the acute respiratory distress syndrome (ARDS), is a catabolic state where patients demonstrate a profound inflammatory response, multiple organ dysfunction, and hypermetabolism. This is often accompanied by malnutrition, which can lead to further impairment of immune function and increased morbidity and mortality in critically ill patients. Over the past decade or more, as we have come to better understand immunologic effects of nutrition in critical illness, nutrition has begun to be thought of as therapeutic, rather than purely supportive. Additionally, the concept of pharmaconutrition has emerged. Fortunately, several recent large studies about nutrition in critical care, with some investigations specifically in patients with ARDS, have provided valuable new evidence. PMID:25453416

  6. Clinical and biological role of secretory phospholipase A2 in acute respiratory distress syndrome infants

    PubMed Central

    2013-01-01

    Introduction Secretory phospholipase A2 is supposed to play a role in acute lung injury but no data are available for pediatric acute respiratory distress syndrome (ARDS). It is not clear which enzyme subtypes are secreted and what the relationships are between enzyme activity, biophysical and biochemical parameters, and clinical outcomes. We aimed to measure the enzyme and identify its subtypes and to study its biochemical and biophysical effect. The secondary aim was to correlate enzyme activity with clinical outcome. Methods Bronchoalveolar lavage was performed in 24 infants with ARDS and 14 controls with no lung disease. Samples were assayed for secretory phospholipase A2 and molecules related to its activity and expression. Western blotting and captive bubble surfactometry were also performed. Clinical data were real time downloaded. Results Tumor necrosis factor-α (814 (506-2,499) vs. 287 (111-1,315) pg/mL; P = 0.04), enzyme activity (430 (253-600) vs. 149 (61-387) IU/mL; P = 0.01), free fatty acids (4.3 (2.8-8.6) vs. 2 (0.8-4.6) mM; P = 0.026), and minimum surface tension (25.6 ± 6.1 vs. 18 ± 1.8 mN/m; P = 0.006) were higher in ARDS than in controls. Phospholipids are lower in ARDS than in controls (76.5 (54-100) vs. 1,094 (536-2,907) μg/mL; P = 0.0001). Three enzyme subtypes were identified (-IIA, -V, -X), although in lower quantities in controls; another subtype (-IB) was mainly detected in ARDS. Significant correlations exist between enzyme activity, free fatty acids (ρ = 0.823; P < 0.001), and surface tension (ρ = 0.55; P < 0.028). Correlations also exist with intensive care stay (ρ = 0.54; P = 0.001), PRISM-III24 (ρ = 0.79; P< 0.001), duration of ventilation (ρ = 0.53; P = 0.002), and oxygen therapy (ρ = 0.54; P = 0.001). Conclusions Secretory phospholipase A2 activity is raised in pediatric ARDS and constituted of four subtypes. Enzyme correlates with some inflammatory mediators, surface tension, and major clinical outcomes. Secretory

  7. Pathophysiological Approaches of Acute Respiratory Distress syndrome: Novel Bases for Study of Lung Injury

    PubMed Central

    Castillo, R.L; Carrasco Loza, R; Romero-Dapueto, C

    2015-01-01

    Experimental approaches have been implemented to research the lung damage related-mechanism. These models show in animals pathophysiological events for acute respiratory distress syndrome (ARDS), such as neutrophil activation, reactive oxygen species burst, pulmonary vascular hypertension, exudative edema, and other events associated with organ dysfunction. Moreover, these approaches have not reproduced the clinical features of lung damage. Lung inflammation is a relevant event in the develop of ARDS as component of the host immune response to various stimuli, such as cytokines, antigens and endotoxins. In patients surviving at the local inflammatory states, transition from injury to resolution is an active mechanism regulated by the immuno-inflammatory signaling pathways. Indeed, inflammatory process is regulated by the dynamics of cell populations that migrate to the lung, such as neutrophils and on the other hand, the role of the modulation of transcription factors and reactive oxygen species (ROS) sources, such as nuclear factor kappaB and NADPH oxidase. These experimental animal models reproduce key components of the injury and resolution phases of human ALI/ARDS and provide a methodology to explore mechanisms and potential new therapies. PMID:26312099

  8. Enterobacter cloacae Sacroiliitis with Acute Respiratory Distress Syndrome in an Adolescent

    PubMed Central

    Kim, Jin Soo; Ko, Jeong Hee; Lee, Seunghun; Jeon, Seok Chol

    2015-01-01

    Enterobacter cloacae has emerged as an important nosocomial pathogen, but is rarely a cause of sacroiliitis. Herein, we present the first reported case of Enterobacter cloacae sacroiliitis associated with sepsis and acute respiratory distress syndrome (ARDS). A previously healthy 14-year-old boy presented with low-grade fever and pain in the left side of the hip that was aggravated by walking. Pelvic computed tomography (CT) showed normal findings, and the patient received supportive care for transient synovitis with no antibiotics. However, there was no clinical improvement. On the third day of hospitalization, magnetic resonance imaging of the hip revealed findings compatible with sacroiliitis, for which vancomycin and ceftriaxone were administered. The patient suddenly developed high fever with dyspnea. Chest radiography and CT findings and a PaO2/FiO2 ratio <200 mmHg were suggestive of ARDS; the patient subsequently received ventilatory support and low-dose methylprednisolone infusions. Within one week, defervescence occurred, and the patient was able to breathe on his own. Following the timely recognition of, and therapeutic challenge to, ARDS, and after 6 weeks of parenteral antimicrobial therapy, the patient was discharged in good health with no complications. PMID:26157593

  9. Venovenous Extracorporeal Life Support in Single-Ventricle Patients with Acute Respiratory Distress Syndrome

    PubMed Central

    Nair, Alison B.; Oishi, Peter

    2016-01-01

    There is new and growing experience with venovenous extracorporeal life support (VV ECLS) for neonatal and pediatric patients with single-ventricle physiology and acute respiratory distress syndrome (ARDS). Outcomes in this population have been defined but could be improved; survival rates in single-ventricle patients on VV ECLS for respiratory failure are slightly higher than those in single-ventricle patients on venoarterial ECLS for cardiac failure (48 vs. 32–43%), but are lower than in patients with biventricular anatomy (58–74%). To that end, special consideration is necessary for patients with single-ventricle physiology who require VV ECLS for ARDS. Specifically, ARDS disrupts the balance between pulmonary and systemic blood flow through dynamic alterations in cardiopulmonary mechanics. This complexity impacts how to run the VV ECLS circuit and the transition back to conventional support. Furthermore, these patients have a complicated coagulation profile. Both venous and arterial thrombi carry marked risk in single-ventricle patients due to the vulnerability of the pulmonary, coronary, and cerebral circulations. Finally, single-ventricle palliation requires the preservation of low resistance across the pulmonary circulation, unobstructed venous return, and optimal cardiac performance including valve function. As such, the proper timing as well as the particular conduct of ECLS might differ between this population and patients without single-ventricle physiology. The goal of this review is to summarize the current state of knowledge of VV ECLS in the single-ventricle population in the context of these special considerations. PMID:27446889

  10. Recruitment maneuvers in acute respiratory distress syndrome and during general anesthesia.

    PubMed

    Chiumello, Davide; Algieri, Ilaria; Grasso, Salvatore; Terragni, Pierpaolo; Pelosi, Paolo

    2016-02-01

    The use of low tidal volume ventilation and low to moderate positive end-expiratory pressure (PEEP) levels is a widespread strategy to ventilate patients with non-injured lungs during general anesthesia and in intensive care as well with mild to moderate acute respiratory distress syndrome (ARDS). Higher PEEP levels have been recommended in severe ARDS. Due to the presence of alveolar collapse, recruitment maneuvers (RMs) by causing a transient elevation in airway pressure (i.e. transpulmonary pressure) have been suggested to improve lung inflation in non-inflated and poorly-inflated lung regions. Various types of RMs such as sustained inflation at high pressure, intermittent sighs and stepwise increases of PEEP and/or airway plateau inspiratory pressure have been proposed. The use of RMs has been associated with mixed results in terms of physiological and clinical outcomes. The optimal method for RMs has not yet been identified. The use of RMs is not standardized and left to the individual physician based on his/her experience. Based on the same grounds, RMs have been proposed to improve lung aeration during general anesthesia. The aim of this review was to present the clinical evidence supporting the use of RMs in patients with ARDS and during general anesthesia and as well their potential biological effects in experimental models of acute lung injury. PMID:25881732

  11. Extremes of Interferon-Stimulated Gene Expression Associate with Worse Outcomes in the Acute Respiratory Distress Syndrome.

    PubMed

    Nick, Jerry A; Caceres, Silvia M; Kret, Jennifer E; Poch, Katie R; Strand, Matthew; Faino, Anna V; Nichols, David P; Saavedra, Milene T; Taylor-Cousar, Jennifer L; Geraci, Mark W; Burnham, Ellen L; Fessler, Michael B; Suratt, Benjamin T; Abraham, Edward; Moss, Marc; Malcolm, Kenneth C

    2016-01-01

    Acute Respiratory Distress Syndrome (ARDS) severity may be influenced by heterogeneity of neutrophil activation. Interferon-stimulated genes (ISG) are a broad gene family induced by Type I interferons, often as a response to viral infections, which evokes extensive immunomodulation. We tested the hypothesis that over- or under-expression of immunomodulatory ISG by neutrophils is associated with worse clinical outcomes in patients with ARDS. Genome-wide transcriptional profiles of circulating neutrophils isolated from patients with sepsis-induced ARDS (n = 31) and healthy controls (n = 19) were used to characterize ISG expression. Hierarchical clustering of expression identified 3 distinct subject groups with Low, Mid and High ISG expression. ISG accounting for the greatest variability in expression were identified (MX1, IFIT1, and ISG15) and used to analyze a prospective cohort at the Colorado ARDS Network site. One hundred twenty ARDS patients from four urban hospitals were enrolled within 72 hours of initiation of mechanical ventilation. Circulating neutrophils were isolated from patients and expression of ISG determined by PCR. Samples were stratified by standard deviation from the mean into High (n = 21), Mid, (n = 82) or Low (n = 17) ISG expression. Clinical outcomes were compared between patients with High or Low ISG expression to those with Mid-range expression. At enrollment, there were no differences in age, gender, co-existing medical conditions, or type of physiologic injury between cohorts. After adjusting for age, race, gender and BMI, patients with either High or Low ISG expression had significantly worse clinical outcomes than those in the Mid for number of 28-day ventilator- and ICU-free days (P = 0.0006 and 0.0004), as well as 90-day mortality and 90-day home with unassisted breathing (P = 0.02 and 0.004). These findings suggest extremes of ISG expression by circulating neutrophils from ARDS patients recovered early in the syndrome are associated

  12. Titration of tidal volume and induced hypercapnia in acute respiratory distress syndrome.

    PubMed

    Roupie, E; Dambrosio, M; Servillo, G; Mentec, H; el Atrous, S; Beydon, L; Brun-Buisson, C; Lemaire, F; Brochard, L

    1995-07-01

    Mechanical ventilation may promote overdistension-induced pulmonary lesions in patients with acute respiratory distress syndrome (ARDS). The static pressure-volume (P-V) curve of the respiratory system can be used to determine the lung volume and corresponding static airway pressure at which lung compliance begins to diminish (the upper inflection point, or UIP). This fall in compliance may indicate overdistension of lung units. We prospectively studied 42 patients receiving mechanical ventilation with an FIO2 of 0.5 or more for at least 24 h. According to the Lung Injury Score (LIS), 25 patients were classified as having ARDS (LIS > 2.5), while 17 patients constituted a non-ARDS control group. The P-V curve was obtained every 2 d. Mechanical ventilation initially used standard settings (volume-control mode, a positive end-expiratory pressure [PEEP] adjusted to the lower inflection point on the P-V curve, and a tidal volume [VT] of 10 ml/kg). The end-inspiratory plateau pressure (Pplat) was compared to the UIP, and VT was lowered when the Pplat was above the UIP. In the range of lung volume studied on the P-V curves (up to 1600 ml), a UIP could be shown in only one control patient (at 23 cm H2O). By contrast, a UIP was present on the P-V curve obtained from all patients with ARDS, corresponding to a mean airway pressure of 26 +/- 6 cm H2O, a lung volume of 850 +/- 200 ml above functional residual capacity and 610 +/- 235 ml above PEEP.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7599810

  13. Elevated CXCL-8 expression in bronchoalveolar lavage correlates with disease severity in patients with acute respiratory distress syndrome resulting from tuberculosis

    PubMed Central

    2014-01-01

    Background Tuberculosis (TB) is a rare but known cause of acute respiratory distress syndrome (ARDS). The role of inflammatory cytokines in the progression of ARDS in TB patients is unknown. Objectives In this study we investigated the possible link between the levels of inflammatory cytokines in bronchoalveolar lavage (BAL) in patients with TB or ARDS alone or in patients with TB-induced ARDS (ARDS + TB). Methods 90 patients were studied: 30 with TB alone, 30 with ARDS alone and 30 with ARDS + TB. BAL was collected by fiberoptic bronchoscopy and the concentrations of interleukin(IL)-6, CXCL8, TNF-α and IL-1β and the amounts of total protein were measured by ELISA and bicinchoninic acid assay (BCA) methods respectively. The correlation between disease severity measured by Murray scores, SOFA and APACHE II analysis and BAL mediators and cells was also determined. Results CXCL8 levels in BAL were significantly higher in the ARDS + TB group compared to TB and ARDS alone groups. Disease severity in the ARDS + TB group as determined by Murray score correlated with BAL CXCL8 and neutrophils but not with IL-6, IL-1β and TNF-α concentrations. In addition, CXCL8 levels and neutrophils were increased in non-miliary TB versus miliary TB. This difference in CXCL8 was lost in the presence of ARDS. Conclusions BAL CXCL8 levels were significantly higher in patients with ARDS induced by TB and could suggest an important role of CXCL8 in the pathogenesis of this form of ARDS. This further suggests that CXCL8 inhibitors or blockers may be useful to control the onset and/or development of these combined diseases. PMID:25110464

  14. Predictive Criteria to Study the Pathogenesis of Malaria-Associated ALI/ARDS in Mice

    PubMed Central

    Ortolan, Luana S.; Sercundes, Michelle K.; Debone, Daniela; Hagen, Stefano C. F.; D' Império Lima, Maria Regina; Alvarez, José M.; Marinho, Claudio R. F.; Epiphanio, Sabrina

    2014-01-01

    Malaria-associated acute lung injury/acute respiratory distress syndrome (ALI/ARDS) often results in morbidity and mortality. Murine models to study malaria-associated ALI/ARDS have been described; we still lack a method of distinguishing which mice will develop ALI/ARDS before death. This work aimed to characterize malaria-associated ALI/ARDS in a murine model and to demonstrate the first method to predict whether mice are suffering from ALI/ARDS before death. DBA/2 mice infected with Plasmodium berghei ANKA developing ALI/ARDS or hyperparasitemia (HP) were compared using histopathology, PaO2 measurement, pulmonary X-ray, breathing capacity, lung permeability, and serum vascular endothelial growth factor (VEGF) levels according to either the day of death or the suggested predictive criteria. We proposed a model to predict malaria-associated ALI/ARDS using breathing patterns (enhanced pause and frequency respiration) and parasitemia as predictive criteria from mice whose cause of death was known to retrospectively diagnose the sacrificed mice as likely to die of ALI/ARDS as early as 7 days after infection. Using this method, we showed increased VEGF levels and increased lung permeability in mice predicted to die of ALI/ARDS. This proposed method for accurately identifying mice suffering from ALI/ARDS before death will enable the use of this model to study the pathogenesis of this disease. PMID:25276057

  15. Prognostic and diagnostic value of plasma soluble ST2 concentrations in Acute Respiratory Distress Syndrome

    PubMed Central

    Bajwa, Ednan K.; Volk, Jessica A.; Christiani, David C.; Harris, R. Scott; Matthay, Michael A.; Thompson, B. Taylor; Januzzi, James L.

    2013-01-01

    Objective Soluble ST2 (sST2) is a biomarker of myocardial strain and inflammation. The characteristics of acute respiratory distress syndrome (ARDS) include inflammation and cardiovascular dysfunction. We sought to determine whether plasma sST2 concentration is associated with outcome and response to conservative fluid management, and whether sST2 concentration discriminates ARDS from decompensated heart failure (HF). Design, Setting, and Patients We assayed plasma sST2 concentrations in 826 patients in the Fluid and Catheter Treatment Trial (FACTT), a multi-center randomized controlled trial of conservative fluid management in ARDS, as well as a cohort of patients with decompensated HF. We tested whether sST2 was associated with outcome, response to therapy, and diagnostic utility for ARDS vs. HF. Measurements and Main Results Non-survivors had higher day 0 (P<.0001) and day 3 (P<.0001) sST2 concentrations. After adjustment for severity of illness, higher sST2 concentration was associated with mortality, with odds ratio (ORadj) 1.47 (95% confidence interval [CI] 0.99 – 2.20, P=.06) at day 0, 2.94 (95% CI 2.00 – 4.33, P<.0001) at day 3, and 3.63 (95% CI 2.38 – 5.53, P<.0001) if sST2 increased between days. Cumulative fluid balance was more positive among patients with higher day 0 (median 5212 mL, interquartile range [IQR] 200 – 12284 vs. 2020 mL, −2034 – 7091; P<0.0001), and day 3 sST2 (median 7678 mL, IQR 2217 – 14278 vs. 1492 mL, −2384 – 6239; P<0.0001). sST2 showed excellent discriminative ability between the FACTT and HF populations (Area under ROC curve=0.98, P<0.0001). Conclusions Higher sST2 concentrations are associated with worse outcome in ARDS and may have value for discriminating ARDS from heart failure. PMID:23939353

  16. Short communication: Camel milk ameliorates inflammatory responses and oxidative stress and downregulates mitogen-activated protein kinase signaling pathways in lipopolysaccharide-induced acute respiratory distress syndrome in rats.

    PubMed

    Zhu, Wei-Wei; Kong, Gui-Qing; Ma, Ming-Ming; Li, Yan; Huang, Xiao; Wang, Li-Peng; Peng, Zhen-Yi; Zhang, Xiao-Hua; Liu, Xiang-Yong; Wang, Xiao-Zhi

    2016-01-01

    Acute respiratory distress syndrome (ARDS) is a complex syndrome disorder with high mortality rate. Camel milk (CM) contains antiinflammatory and antioxidant properties and protects against numerous diseases. This study aimed to demonstrate the function of CM in lipopolysaccharide (LPS)-induced ARDS in rats. Camel milk reduced the lung wet:dry weight ratio and significantly reduced LPS-induced increases in neutrophil infiltration, interstitial and intra-alveolar edema, thickness of the alveolar wall, and lung injury scores of lung tissues. It also had antiinflammatory and antioxidant effects on LPS-induced ARDS. After LPS stimulation, the levels of proinflammatory cytokines (tumor necrosis factor-α, IL-10, and IL-1β) in serum and oxidative stress markers (malondialdehyde, myeloperoxidase, and total antioxidant capacity) in lung tissue were notably attenuated by CM. Camel milk also downregulated mitogen-activated protein kinase signaling pathways. Given these results, CM is a potential complementary food for ARDS treatment. PMID:26601576

  17. Low-Dose Heparin Anticoagulation During Extracorporeal Life Support for Acute Respiratory Distress Syndrome in Conscious Sheep

    PubMed Central

    Prat, Nicolas J.; Meyer, Andrew D.; Langer, Thomas; Montgomery, Robbie K.; Parida, Bijaya K.; Batchinsky, Andriy I.; Cap, Andrew P.

    2015-01-01

    ABSTRACT Background: Over 32% of burned battlefield causalities develop trauma-induced hypoxic respiratory failure, also known as acute respiratory distress syndrome (ARDS). Recently, 9 out of 10 US combat soldiers’ survived life-threatening trauma-induced ARDS supported with extracorporeal membrane oxygenation (ECMO), a portable form of cardiopulmonary bypass. Unfortunately, the size, incidence of coagulation complications, and the need for systematic anticoagulation for traditional ECMO devices have prevented widespread use of this lifesaving technology. Therefore, a compact, mobile, ECMO system using minimal anticoagulation may be the solution to reduce ARDS in critically ill military and civilian patients. Methods: We conducted a prospective cohort laboratory investigation to evaluate the coagulation function in an ovine model of oleic acid induced ARDS supported with veno-venous ECMO. The experimental design approximated the time needed to transport from a battlefield setting to an advanced facility and compared bolus versus standard heparin anticoagulation therapy. Results: Comprehensive coagulation and hemostasis assays did not show any difference because of ECMO support over 10 h between the two groups but did show changes because of injury. Platelet count and function did decrease with support on ECMO, but there was no significant bleeding or clot formation during the entire experiment. Conclusions: A bolus heparin injection is sufficient to maintain ECMO support for up to 10 h in an ovine model of ARDS. With a reduced need for systematic anticoagulation, ECMO use for battlefield trauma could reduce significant morbidity and mortality from ventilator-induced lung injury and ARDS. Future studies will investigate the mechanisms and therapies to support patients for longer periods on ECMO without coagulation complications. Level of Evidence: V—therapeutic animal experiment. PMID:26263439

  18. A conceptual framework: the early and late phases of skeletal muscle dysfunction in the acute respiratory distress syndrome.

    PubMed

    Files, D Clark; Sanchez, Michael A; Morris, Peter E

    2015-01-01

    Patients with acute respiratory distress syndrome (ARDS) often develop severe diaphragmatic and limb skeletal muscle dysfunction. Impaired muscle function in ARDS is associated with increased mortality, increased duration of mechanical ventilation, and functional disability in survivors. In this review, we propose that muscle dysfunction in ARDS can be categorized into an early and a late phase. These early and late phases are based on the timing in relationship to lung injury and the underlying mechanisms. The early phase occurs temporally with the onset of lung injury, is driven by inflammation and disuse, and is marked predominantly by muscle atrophy from increased protein degradation. The ubiquitin-proteasome, autophagy, and calpain-caspase pathways have all been implicated in early-phase muscle dysfunction. Late-phase muscle weakness persists in many patients despite resolution of lung injury and cessation of ongoing acute inflammation-driven muscle atrophy. The clinical characteristics and mechanisms underlying late-phase muscle dysfunction do not involve the massive protein degradation and atrophy of the early phase and may reflect a failure of the musculoskeletal system to regain homeostatic balance. Owing to these underlying mechanistic differences, therapeutic interventions for treating muscle dysfunction in ARDS may differ during the early and late phases. Here, we review clinical and translational investigations of muscle dysfunction in ARDS, placing them in the conceptual framework of the early and late phases. We hypothesize that this conceptual model will aid in the design of future mechanistic and clinical investigations of the skeletal muscle system in ARDS and other critical illnesses. PMID:26134116

  19. [Effects on the pulmonary function after single dose of exogenous pulmonary surfactant in children with acute respiratory distress syndrome].

    PubMed

    de Carvalho, W B; Mângia, C M

    1997-01-01

    The Acute Respiratory Distress Syndrome (ARDS) is a pulmonary lesion of multifactorial cause in which the surfactant system is altered owing to inactivation and impairment of composition and metabolism. The use of exogenous pulmonary surfactant is a therapeutic option with the objective to maintain alveolar stability thus improving the pulmonary compliance (increasing the residual functional capacity), oxygenation and ventilatory mechanics. A study carried out on two pediatric patients with ARDS submitted to mechanic pulmonary ventilation, applying a single dose of exogenous pulmonary surfactant is described. The patients were evaluated using arterial and venous gasometry before and after the use of surfactant, observing increment in oxygenation, reduction of shunt fraction, improvement in ventilation immediately after exogenous pulmonary surfactant instillation and return to the previous situation after 240 minutes in case 1 and 120 minutes in case 2. More prospective clinical and randomized studies are needed to effectively evaluate this therapeutic modality. PMID:9336050

  20. Customization of an open-lung ventilation strategy to treat a case of life-threatening acute respiratory distress syndrome.

    PubMed

    Grooms, David A; Sibole, Stephen H; Tomlinson, James R; Marik, Paul E; Chatburn, Robert L

    2011-04-01

    The ARDS Network low-tidal-volume protocol is considered the standard of care for patients with acute lung injury (ALI) or acute respiratory distress syndrome (ARDS). The protocol is built on the foundation of low-tidal-volume ventilation, use of a combined PEEP and F(IO(2)) table, and managing alveolar end-inspiratory pressure by limiting the plateau airway pressure to ≤ 30 cm H(2)O. Although this strategy, to date, is the only method that significantly improves ALI/ARDS survival, alternative methods of improving hypoxemia and minimizing ventilator-induced lung injury, in conjunction with low-tidal-volume ventilation, can be used for life-threatening ARDS. We present a case in which we customized the use of alveolar recruitment maneuvers by analyzing the hysteresis of the pressure-volume curve to assess lung recruitability, decremental PEEP to sustain lung recruitment, and careful use of plateau pressure ≥ 30 cm H(2)O, which improved our patient's life-threatening hypoxemia within the first 36 min of arrival to our ICU. PMID:21255504

  1. Setting ventilation parameters guided by electrical impedance tomography in an animal trial of acute respiratory distress syndrome

    NASA Astrophysics Data System (ADS)

    Czaplik, Michael; Biener, Ingeborg; Leonhardt, Steffen; Rossaint, Rolf

    2014-03-01

    Since mechanical ventilation can cause harm to lung tissue it should be as protective as possible. Whereas numerous options exist to set ventilator parameters, an adequate monitoring is lacking up to date. The Electrical Impedance Tomography (EIT) provides a non-invasive visualization of ventilation which is relatively easy to apply and commercially available. Although there are a number of published measures and parameters derived from EIT, it is not clear how to use EIT to improve clinical outcome of e.g. patients suffering from acute respiratory distress syndrome (ARDS), a severe disease with a high mortality rate. On the one hand, parameters should be easy to obtain, on the other hand clinical algorithms should consider them to optimize ventilator settings. The so called Global inhomogeneity (GI) index bases on the fact that ARDS is characterized by an inhomogeneous injury pattern. By applying positive endexpiratory pressures (PEEP), homogeneity should be attained. In this study, ARDS was induced by a double hit procedure in six pigs. They were randomly assigned to either the EIT or the control group. Whereas in the control group the ARDS network table was used to set the PEEP according to the current inspiratory oxygen fraction, in the EIT group the GI index was calculated during a decremental PEEP trial. PEEP was kept when GI index was lowest. Interestingly, PEEP was significantly higher in the EIT group. Additionally, two of these animals died ahead of the schedule. Obviously, not only homogeneity of ventilation distribution matters but also limitation of over-distension.

  2. Small airway remodeling in acute respiratory distress syndrome: a study in autopsy lung tissue

    PubMed Central

    2011-01-01

    Introduction Airway dysfunction in patients with the Acute Respiratory Distress Syndrome (ARDS) is evidenced by expiratory flow limitation and dynamic hyperinflation. These functional alterations have been attributed to closure/obstruction of small airways. Airway morphological changes have been reported in experimental models of acute lung injury, characterized by epithelial necrosis and denudation in distal airways. To date, however, no study has focused on the morphological airway changes in lungs from human subjects with ARDS. The aim of this study is to evaluate structural and inflammatory changes in distal airways in ARDS patients. Methods We retrospectively studied autopsy lung tissue from subjects who died with ARDS and from control subjects who died of non pulmonary causes. Using image analysis, we quantified the extension of epithelial changes (normal, abnormal and denudated epithelium expressed as percentages of the total epithelium length), bronchiolar inflammation, airway wall thickness, and extracellular matrix (ECM) protein content in distal airways. The Student's t-test or the Mann-Whitney test was used to compare data between the ARDS and control groups. Bonferroni adjustments were used for multiple tests. The association between morphological and clinical data was analyzed by Pearson rank test. Results Thirty-one ARDS patients (A: PaO2/FiO2 ≤200, 45 ± 14 years, 16 males) and 11 controls (C: 52 ± 16 years, 7 males) were included in the study. ARDS airways showed a shorter extension of normal epithelium (A:32.9 ± 27.2%, C:76.7 ± 32.7%, P < 0.001), a larger extension of epithelium denudation (A:52.6 ± 35.2%, C:21.8 ± 32.1%, P < 0.01), increased airway inflammation (A:1(3), C:0(1), P = 0.03), higher airway wall thickness (A:138.7 ± 54.3 μm, C:86.4 ± 33.3 μm, P < 0.01), and higher airway content of collagen I, fibronectin, versican and matrix metalloproteinase-9 (MMP-9) compared to controls (P ≤0.03). The extension of normal epithelium

  3. A Markov computer simulation model of the economics of neuromuscular blockade in patients with acute respiratory distress syndrome

    PubMed Central

    Macario, Alex; Chow, John L; Dexter, Franklin

    2006-01-01

    Background Management of acute respiratory distress syndrome (ARDS) in the intensive care unit (ICU) is clinically challenging and costly. Neuromuscular blocking agents may facilitate mechanical ventilation and improve oxygenation, but may result in prolonged recovery of neuromuscular function and acute quadriplegic myopathy syndrome (AQMS). The goal of this study was to address a hypothetical question via computer modeling: Would a reduction in intubation time of 6 hours and/or a reduction in the incidence of AQMS from 25% to 21%, provide enough benefit to justify a drug with an additional expenditure of $267 (the difference in acquisition cost between a generic and brand name neuromuscular blocker)? Methods The base case was a 55 year-old man in the ICU with ARDS who receives neuromuscular blockade for 3.5 days. A Markov model was designed with hypothetical patients in 1 of 6 mutually exclusive health states: ICU-intubated, ICU-extubated, hospital ward, long-term care, home, or death, over a period of 6 months. The net monetary benefit was computed. Results Our computer simulation modeling predicted the mean cost for ARDS patients receiving standard care for 6 months to be $62,238 (5% – 95% percentiles $42,259 – $83,766), with an overall 6-month mortality of 39%. Assuming a ceiling ratio of $35,000, even if a drug (that cost $267 more) hypothetically reduced AQMS from 25% to 21% and decreased intubation time by 6 hours, the net monetary benefit would only equal $137. Conclusion ARDS patients receiving a neuromuscular blocker have a high mortality, and unpredictable outcome, which results in large variability in costs per case. If a patient dies, there is no benefit to any drug that reduces ventilation time or AQMS incidence. A prospective, randomized pharmacoeconomic study of neuromuscular blockers in the ICU to asses AQMS or intubation times is impractical because of the highly variable clinical course of patients with ARDS. PMID:16539706

  4. Right heart failure in acute respiratory distress syndrome: An unappreciated albeit a potential target for intervention in the management of the disease.

    PubMed

    Biswas, Abhishek

    2015-10-01

    Mortality from acute respiratory distress syndrome (ARDS) has gone down recently. In spite of this trend, the absolute numbers continue to be high even with improvements in ventilator strategies and a better understanding of fluid management with this disease. A possible reason for this could be an under-recognized involvement of the pulmonary vasculature and the right side of the heart in ARDS. The right heart is not designed to function under situations leading to acute elevations in afterload as seen in ARDS, and hence it decompensates. This brief review focuses on the magnitude of the problem, its detection in the intensive care unit, and recognizes the beneficial effect of prone-positioning on the pulmonary vasculature and right heart. PMID:26628826

  5. Act fast and ventilate soft: the Düsseldorf hands-on translation of the acute respiratory distress syndrome Berlin definition.

    PubMed

    Luedike, Peter; Totzeck, Matthias; Meyer, Christian; Westenfeld, Ralf; Kindgen-Milles, Detlef; Kelm, Malte; Rassaf, Tienush

    2014-10-01

    Early identification of acute respiratory distress syndrome (ARDS) and forceful implementation of standardized therapy algorithms are the mandatory basis of an effective therapy to improve patient outcome. Recently, a new definition of ARDS was implemented, which simplified the diagnostic criteria for ARDS. Evidence-based therapies are rare, but some cornerstone interventions can be recommended. Lung-protective ventilation with high positive end-expiratory pressure and low tidal volume and early prone positioning in severe cases improve survival rate. We here present an integrated "Düsseldorf hands-on translation" in the form of a "one-page" standard operating procedure in order to fasten and standardize both diagnosis and therapeutic algorithms on an intensive care unit. PMID:24768567

  6. Progress and perspectives in pediatric acute respiratory distress syndrome.

    PubMed

    Rotta, Alexandre Tellechea; Piva, Jefferson Pedro; Andreolio, Cinara; de Carvalho, Werther Brunow; Garcia, Pedro Celiny Ramos

    2015-01-01

    Acute respiratory distress syndrome is a disease of acute onset characterized by hypoxemia and infiltrates on chest radiographs that affects both adults and children of all ages. It is an important cause of respiratory failure in pediatric intensive care units and is associated with significant morbidity and mortality. Nevertheless, until recently, the definitions and diagnostic criteria for acute respiratory distress syndrome have focused on the adult population. In this article, we review the evolution of the definition of acute respiratory distress syndrome over nearly five decades, with a special focus on the new pediatric definition. We also discuss recommendations for the implementation of mechanical ventilation strategies in the treatment of acute respiratory distress syndrome in children and the use of adjuvant therapies. PMID:26331971

  7. Progress and perspectives in pediatric acute respiratory distress syndrome

    PubMed Central

    Rotta, Alexandre Tellechea; Piva, Jefferson Pedro; Andreolio, Cinara; de Carvalho, Werther Brunow; Garcia, Pedro Celiny Ramos

    2015-01-01

    Acute respiratory distress syndrome is a disease of acute onset characterized by hypoxemia and infiltrates on chest radiographs that affects both adults and children of all ages. It is an important cause of respiratory failure in pediatric intensive care units and is associated with significant morbidity and mortality. Nevertheless, until recently, the definitions and diagnostic criteria for acute respiratory distress syndrome have focused on the adult population. In this article, we review the evolution of the definition of acute respiratory distress syndrome over nearly five decades, with a special focus on the new pediatric definition. We also discuss recommendations for the implementation of mechanical ventilation strategies in the treatment of acute respiratory distress syndrome in children and the use of adjuvant therapies. PMID:26331971

  8. [Role of computed tomography in the diagnosis of acute lung injury/acute respiratory distress syndrome].

    PubMed

    Mazzei, Maria Antonietta; Guerrini, Susanna; Cioffi Squitieri, Nevada; Franchi, Federico; Volterrani, Luca; Genovese, Eugenio Annibale; Macarini, Luca

    2012-11-01

    Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a complex pulmonary pathology with high mortality rates, manifesting over a wide range of severity. Clinical diagnosis relies on the following 4 criteria stated by the American-European Consensus Conference: acute onset of impaired gas exchange, severe hypoxemia defined as a PaO2 to FiO2 ratio <300 (PaO2 in mmHg), bilateral diffuse infiltration on chest X-ray; pulmonary artery wedge pressure of ≤18 mmHg to rule out cardiogenic causes of pulmonary edema. The aim of this study was to determine the usefulness of CT in the diagnosis and management of this condition. PMID:23096732

  9. Assessment of PaO2/FiO2 for stratification of patients with moderate and severe acute respiratory distress syndrome

    PubMed Central

    Villar, Jesús; Blanco, Jesús; del Campo, Rafael; Andaluz-Ojeda, David; Díaz-Domínguez, Francisco J; Muriel, Arturo; Córcoles, Virgilio; Suárez-Sipmann, Fernando; Tarancón, Concepción; González-Higueras, Elena; López, Julia; Blanch, Lluis; Pérez-Méndez, Lina; Fernández, Rosa Lidia; Kacmarek, Robert M

    2015-01-01

    Objectives A recent update of the definition of acute respiratory distress syndrome (ARDS) proposed an empirical classification based on ratio of arterial partial pressure of oxygen to fraction of inspired oxygen (PaO2/FiO2) at ARDS onset. Since the proposal did not mandate PaO2/FiO2 calculation under standardised ventilator settings (SVS), we hypothesised that a stratification based on baseline PaO2/FiO2 would not provide accurate assessment of lung injury severity. Design A prospective, multicentre, observational study. Setting A network of teaching hospitals. Participants 478 patients with eligible criteria for moderate (100ARDS and followed until hospital discharge. Interventions We examined physiological and ventilator parameters in association with the PaO2/FiO2 at ARDS onset, after 24 h of usual care and at 24 h under a SVS. At 24 h, patients were reclassified as severe, moderate, mild (200ARDS and non-ARDS (PaO2/FiO2>300). Primary and secondary outcomes Group severity and hospital mortality. Results At ARDS onset, 173 patients had a PaO2/FiO2≤100 but only 38.7% met criteria for severe ARDS at 24 h under SVS. When assessed under SVS, 61.3% of patients with severe ARDS were reclassified as moderate, mild and non-ARDS, while lung severity and hospital mortality changed markedly with every PaO2/FiO2 category (p<0.000001). Our model of risk stratification outperformed the stratification using baseline PaO2/FiO2 and non-standardised PaO2/FiO2 at 24 h, when analysed by the predictive receiver operating characteristic (ROC) curve: area under the ROC curve for stratification at baseline was 0.583 (95% CI 0.525 to 0.636), 0.605 (95% CI 0.552 to 0.658) at 24 h without SVS and 0.693 (95% CI 0.645 to 0.742) at 24 h under SVS (p<0.000001). Conclusions Our findings support the need for patient assessment under SVS at 24 h after ARDS onset to assess disease severity, and have implications for the

  10. Sequelae of the adult respiratory distress syndrome.

    PubMed Central

    Hert, R.; Albert, R. K.

    1994-01-01

    Most survivors of ARDS have persistent mild reductions of TLCO even as long as a year after their episode. The lung volumes and flows return to normal in most instances, although a subset of patients will have persistent impairment. Both obstructive and restrictive deficits may be seen. This group may be predicted by the degree of acute lung injury assessed by the level of FIO2, PEEP, and gas exchange abnormality that exists in the first few days. In the first year after ARDS most physiological abnormalities will improve, but if deficits persist at one year further improvement is unlikely. Although many patients report dyspnoea following ARDS, the symptom does not correlate with abnormalities of pulmonary function. The possibility that conventional management may augment the degree of acute injury and worsen outcome must be considered. The effects of chronic hyperoxia in humans with acute lung injury or those of high levels of PEEP compared with low levels are not known. Exploring new ventilator management strategies while we await more specific treatment directed at the primary problem of acute lung inflammation will hopefully reduce acute mortality as well as acute and chronic morbidity. Images PMID:8153946

  11. Uncomplicated Plasmodium vivax malaria in pregnancy associated with mortality from acute respiratory distress syndrome.

    PubMed

    McGready, Rose; Wongsaen, Klanarong; Chu, Cindy S; Tun, Nay Win; Chotivanich, Kesinee; White, Nicholas J; Nosten, François

    2014-01-01

    The association between severe malaria and Plasmodium vivax species is contentious. On the Thai-Myanmar border, all pregnant women are followed systematically with active weekly malaria screening. Over a 27-year period of providing antenatal care, 48,983 have been prospectively followed until pregnancy outcome (miscarriage or delivery) and 4,298 women have had P. vivax detected at least once. Reported here is the first known P. vivax-associated death amongst these women. The initial patient presentation was of uncomplicated P. vivax (0.5% parasitaemia) in a term, multigravida woman who responded rapidly to oral artesunate and mefloquine treatment, clearing her blood stage parasites within 48 hours. The patient appeared well, was ambulatory and due to be discharged but became unwell with acute respiratory distress syndrome (ARDS) requiring ventilation three days (67 hours) into treatment. Despite induction and delivery of a stillborn foetus, ventilatory requirements increased and the patient died on day 7. The patient had a low body mass index. Sensitive detection with nested PCR confirmed only the presence of P. vivax species and concomitant infections such as tuberculosis and human immunodeficiency virus (HIV) were also ruled out. The contemporaneous treatment of acute uncomplicated P. vivax and the onset of ARDS on day 3 in this patient implies a possible but unconfirmed association with death in this patient. Assuming this death was caused by P. vivax, the risk of ARDS-related maternal mortality in this setting did not differ significantly between Plasmodium falciparum and P. vivax (0.24 per 1,000 (1/4,158) versus 0.23 per 1,000 (1/4,298), contrary to the increased risk of maternal mortality from P. falciparum compared to P. vivax, 2.89 per 1,000 (12/4,158) versus 0.23 per 1,000 (1/4,298), P = 0.003. PMID:24886559

  12. Uncomplicated Plasmodium vivax malaria in pregnancy associated with mortality from acute respiratory distress syndrome

    PubMed Central

    2014-01-01

    The association between severe malaria and Plasmodium vivax species is contentious. On the Thai-Myanmar border, all pregnant women are followed systematically with active weekly malaria screening. Over a 27-year period of providing antenatal care, 48,983 have been prospectively followed until pregnancy outcome (miscarriage or delivery) and 4,298 women have had P. vivax detected at least once. Reported here is the first known P. vivax-associated death amongst these women. The initial patient presentation was of uncomplicated P. vivax (0.5% parasitaemia) in a term, multigravida woman who responded rapidly to oral artesunate and mefloquine treatment, clearing her blood stage parasites within 48 hours. The patient appeared well, was ambulatory and due to be discharged but became unwell with acute respiratory distress syndrome (ARDS) requiring ventilation three days (67 hours) into treatment. Despite induction and delivery of a stillborn foetus, ventilatory requirements increased and the patient died on day 7. The patient had a low body mass index. Sensitive detection with nested PCR confirmed only the presence of P. vivax species and concomitant infections such as tuberculosis and human immunodeficiency virus (HIV) were also ruled out. The contemporaneous treatment of acute uncomplicated P. vivax and the onset of ARDS on day 3 in this patient implies a possible but unconfirmed association with death in this patient. Assuming this death was caused by P. vivax, the risk of ARDS-related maternal mortality in this setting did not differ significantly between Plasmodium falciparum and P. vivax (0.24 per 1,000 (1/4,158) versus 0.23 per 1,000 (1/4,298), contrary to the increased risk of maternal mortality from P. falciparum compared to P. vivax, 2.89 per 1,000 (12/4,158) versus 0.23 per 1,000 (1/4,298), P = 0.003. PMID:24886559

  13. Lung ventilation strategies for acute respiratory distress syndrome: a systematic review and network meta-analysis.

    PubMed

    Wang, Changsong; Wang, Xiaoyang; Chi, Chunjie; Guo, Libo; Guo, Lei; Zhao, Nana; Wang, Weiwei; Pi, Xin; Sun, Bo; Lian, Ailing; Shi, Jinghui; Li, Enyou

    2016-01-01

    To identify the best lung ventilation strategy for acute respiratory distress syndrome (ARDS), we performed a network meta-analysis. The Cochrane Central Register of Controlled Trials, EMBASE, MEDLINE, CINAHL, and the Web of Science were searched, and 36 eligible articles were included. Compared with higher tidal volumes with FiO2-guided lower positive end-expiratory pressure [PEEP], the hazard ratios (HRs) for mortality were 0.624 (95% confidence interval (CI) 0.419-0.98) for lower tidal volumes with FiO2-guided lower PEEP and prone positioning and 0.572 (0.34-0.968) for pressure-controlled ventilation with FiO2-guided lower PEEP. Lower tidal volumes with FiO2-guided higher PEEP and prone positioning had the greatest potential to reduce mortality, and the possibility of receiving the first ranking was 61.6%. Permissive hypercapnia, recruitment maneuver, and low airway pressures were most likely to be the worst in terms of all-cause mortality. Compared with higher tidal volumes with FiO2-guided lower PEEP, pressure-controlled ventilation with FiO2-guided lower PEEP and lower tidal volumes with FiO2-guided lower PEEP and prone positioning ventilation are associated with lower mortality in ARDS patients. Lower tidal volumes with FiO2-guided higher PEEP and prone positioning ventilation and lower tidal volumes with pressure-volume (P-V) static curve-guided individual PEEP are potential optimal strategies for ARDS patients. PMID:26955891

  14. Lung ventilation strategies for acute respiratory distress syndrome: a systematic review and network meta-analysis

    PubMed Central

    Wang, Changsong; Wang, Xiaoyang; Chi, Chunjie; Guo, Libo; Guo, Lei; Zhao, Nana; Wang, Weiwei; Pi, Xin; Sun, Bo; Lian, Ailing; Shi, Jinghui; Li, Enyou

    2016-01-01

    To identify the best lung ventilation strategy for acute respiratory distress syndrome (ARDS), we performed a network meta-analysis. The Cochrane Central Register of Controlled Trials, EMBASE, MEDLINE, CINAHL, and the Web of Science were searched, and 36 eligible articles were included. Compared with higher tidal volumes with FiO2-guided lower positive end-expiratory pressure [PEEP], the hazard ratios (HRs) for mortality were 0.624 (95% confidence interval (CI) 0.419–0.98) for lower tidal volumes with FiO2-guided lower PEEP and prone positioning and 0.572 (0.34–0.968) for pressure-controlled ventilation with FiO2-guided lower PEEP. Lower tidal volumes with FiO2-guided higher PEEP and prone positioning had the greatest potential to reduce mortality, and the possibility of receiving the first ranking was 61.6%. Permissive hypercapnia, recruitment maneuver, and low airway pressures were most likely to be the worst in terms of all-cause mortality. Compared with higher tidal volumes with FiO2-guided lower PEEP, pressure-controlled ventilation with FiO2-guided lower PEEP and lower tidal volumes with FiO2-guided lower PEEP and prone positioning ventilation are associated with lower mortality in ARDS patients. Lower tidal volumes with FiO2-guided higher PEEP and prone positioning ventilation and lower tidal volumes with pressure-volume (P–V) static curve-guided individual PEEP are potential optimal strategies for ARDS patients. PMID:26955891

  15. Computer simulation allows goal-oriented mechanical ventilation in acute respiratory distress syndrome

    PubMed Central

    Uttman, Leif; Ögren, Helena; Niklason, Lisbet; Drefeldt, Björn; Jonson, Björn

    2007-01-01

    Introduction To prevent further lung damage in patients with acute respiratory distress syndrome (ARDS), it is important to avoid overdistension and cyclic opening and closing of atelectatic alveoli. Previous studies have demonstrated protective effects of using low tidal volume (VT), moderate positive end-expiratory pressure and low airway pressure. Aspiration of dead space (ASPIDS) allows a reduction in VT by eliminating dead space in the tracheal tube and tubing. We hypothesized that, by applying goal-orientated ventilation based on iterative computer simulation, VT can be reduced at high respiratory rate and much further reduced during ASPIDS without compromising gas exchange or causing high airway pressure. Methods ARDS was induced in eight pigs by surfactant perturbation and ventilator-induced lung injury. Ventilator resetting guided by computer simulation was then performed, aiming at minimal VT, plateau pressure 30 cmH2O and isocapnia, first by only increasing respiratory rate and then by using ASPIDS as well. Results VT decreased from 7.2 ± 0.5 ml/kg to 6.6 ± 0.5 ml/kg as respiratory rate increased from 40 to 64 ± 6 breaths/min, and to 4.0 ± 0.4 ml/kg when ASPIDS was used at 80 ± 6 breaths/min. Measured values of arterial carbon dioxide tension were close to predicted values. Without ASPIDS, total positive end-expiratory pressure and plateau pressure were slightly higher than predicted, and with ASPIDS they were lower than predicted. Conclusion In principle, computer simulation may be used in goal-oriented ventilation in ARDS. Further studies are needed to investigate potential benefits and limitations over extended study periods. PMID:17352801

  16. Altered Lipid Composition of Surfactant and Lung Tissue in Murine Experimental Malaria-Associated Acute Respiratory Distress Syndrome.

    PubMed

    Scaccabarozzi, Diletta; Deroost, Katrien; Lays, Natacha; Omodeo Salè, Fausta; Van den Steen, Philippe E; Taramelli, Donatella

    2015-01-01

    Malaria-associated acute lung injury (MA-ALI) and its more severe form malaria-associated acute respiratory distress syndrome (MA-ARDS) are common, often fatal complications of severe malaria infections. However, little is known about their pathogenesis. In this study, biochemical alterations of the lipid composition of the lungs were investigated as possible contributing factors to the severity of murine MA-ALI/ARDS. C57BL/6J mice were infected with Plasmodium berghei NK65 to induce lethal MA-ARDS, or with Plasmodium chabaudi AS, a parasite strain that does not induce lung pathology. The lipid profile of the lung tissue from mice infected with Plasmodium berghei NK65 developing MA-ALI/ARDS, but not that from mice without lung pathology or controls, was characterized by high levels of phospholipids -mainly phosphatidylcholine- and esterified cholesterol. The high levels of polyunsaturated fatty acids and the linoleic/oleic fatty acid ratio of the latter reflect the fatty acid composition of plasma cholesterol esters. In spite of the increased total polyunsaturated fatty acid pool, which augments the relative oxidability of the lung membranes, and the presence of hemozoin, a known pro-oxidant, no excess oxidative stress was detected in the lungs of Plasmodium berghei NK65 infected mice. The bronchoalveolar lavage (BAL) fluid of Plasmodium berghei NK65 infected mice was characterized by high levels of plasma proteins. The phospholipid profile of BAL large and small aggregate fractions was also different from uninfected controls, with a significant increase in the amounts of sphingomyelin and lysophosphatidylcholine and the decrease in phosphatidylglycerol. Both the increase of proteins and lysophosphatidylcholine are known to decrease the intrinsic surface activity of surfactant. Together, these data indicate that an altered lipid composition of lung tissue and BAL fluid, partially ascribed to oedema and lipoprotein infiltration, is a characteristic feature of murine

  17. A study on the role of noninvasive ventilation in mild-to-moderate acute respiratory distress syndrome

    PubMed Central

    Sehgal, Inderpaul Singh; Chaudhuri, Soumik; Dhooria, Sahajal; Agarwal, Ritesh; Chaudhry, Dhruva

    2015-01-01

    Aim: There is sparse data on the role of noninvasive ventilation (NIV) in acute respiratory distress syndrome (ARDS) from India. Herein, we report our experience with the use of NIV in mild to moderate ARDS. Materials and Methods: This was a prospective observational study involving consecutive subjects of ARDS treated with NIV using an oronasal mask. Patients were monitored clinically with serial arterial blood gas analysis. The success of NIV, duration of NIV use, Intensive Care Unit stay, hospital mortality, and improvement in clinical and blood gas parameters were assessed. The success of NIV was defined as prevention of endotracheal intubation. Results: A total of 41 subjects (27 women, mean age: 30.9 years) were included in the study. Tropical infections followed by abdominal sepsis were the most common causes of ARDS. The use of NIV was successful in 18 (44%) subjects, while 23 subjects required intubation. The median time to intubation was 3 h. Overall, 19 (46.3%) deaths were encountered, all in those requiring invasive ventilation. The mean duration of ventilation was significantly higher in the intubated patients (7.1 vs. 2.6 days, P = 0.004). Univariate analysis revealed a lack of improvement in PaO2/FiO2 at 1 h and high baseline Acute Physiology and Chronic Health Evaluation II (APACHE II) as predictors of NIV failure. Conclusions: Use of NIV in mild to moderate ARDS helped in avoiding intubation in about 44% of the subjects. A baseline APACHE II score of >17 and a PaO2/FiO2 ratio <150 at 1 h predicts NIV failure. PMID:26628824

  18. Altered Lipid Composition of Surfactant and Lung Tissue in Murine Experimental Malaria-Associated Acute Respiratory Distress Syndrome

    PubMed Central

    Scaccabarozzi, Diletta; Deroost, Katrien; Lays, Natacha; Taramelli, Donatella

    2015-01-01

    Malaria-associated acute lung injury (MA-ALI) and its more severe form malaria-associated acute respiratory distress syndrome (MA-ARDS) are common, often fatal complications of severe malaria infections. However, little is known about their pathogenesis. In this study, biochemical alterations of the lipid composition of the lungs were investigated as possible contributing factors to the severity of murine MA-ALI/ARDS. C57BL/6J mice were infected with Plasmodium berghei NK65 to induce lethal MA-ARDS, or with Plasmodium chabaudi AS, a parasite strain that does not induce lung pathology. The lipid profile of the lung tissue from mice infected with Plasmodium berghei NK65 developing MA-ALI/ARDS, but not that from mice without lung pathology or controls, was characterized by high levels of phospholipids -mainly phosphatidylcholine- and esterified cholesterol. The high levels of polyunsaturated fatty acids and the linoleic/oleic fatty acid ratio of the latter reflect the fatty acid composition of plasma cholesterol esters. In spite of the increased total polyunsaturated fatty acid pool, which augments the relative oxidability of the lung membranes, and the presence of hemozoin, a known pro-oxidant, no excess oxidative stress was detected in the lungs of Plasmodium berghei NK65 infected mice. The bronchoalveolar lavage (BAL) fluid of Plasmodium berghei NK65 infected mice was characterized by high levels of plasma proteins. The phospholipid profile of BAL large and small aggregate fractions was also different from uninfected controls, with a significant increase in the amounts of sphingomyelin and lysophosphatidylcholine and the decrease in phosphatidylglycerol. Both the increase of proteins and lysophosphatidylcholine are known to decrease the intrinsic surface activity of surfactant. Together, these data indicate that an altered lipid composition of lung tissue and BAL fluid, partially ascribed to oedema and lipoprotein infiltration, is a characteristic feature of murine

  19. The role of stretch-activated ion channels in acute respiratory distress syndrome: finally a new target?

    PubMed

    Schwingshackl, Andreas

    2016-09-01

    Mechanical ventilation (MV) and oxygen therapy (hyperoxia; HO) comprise the cornerstones of life-saving interventions for patients with acute respiratory distress syndrome (ARDS). Unfortunately, the side effects of MV and HO include exacerbation of lung injury by barotrauma, volutrauma, and propagation of lung inflammation. Despite significant improvements in ventilator technologies and a heightened awareness of oxygen toxicity, besides low tidal volume ventilation few if any medical interventions have improved ARDS outcomes over the past two decades. We are lacking a comprehensive understanding of mechanotransduction processes in the healthy lung and know little about the interactions between simultaneously activated stretch-, HO-, and cytokine-induced signaling cascades in ARDS. Nevertheless, as we are unraveling these mechanisms we are gathering increasing evidence for the importance of stretch-activated ion channels (SACs) in the activation of lung-resident and inflammatory cells. In addition to the discovery of new SAC families in the lung, e.g., two-pore domain potassium channels, we are increasingly assigning mechanosensing properties to already known Na(+), Ca(2+), K(+), and Cl(-) channels. Better insights into the mechanotransduction mechanisms of SACs will improve our understanding of the pathways leading to ventilator-induced lung injury and lead to much needed novel therapeutic approaches against ARDS by specifically targeting SACs. This review 1) summarizes the reasons why the time has come to seriously consider SACs as new therapeutic targets against ARDS, 2) critically analyzes the physiological and experimental factors that currently limit our knowledge about SACs, and 3) outlines the most important questions future research studies need to address. PMID:27521425

  20. A model-based simulator for testing rule-based decision support systems for mechanical ventilation of ARDS patients.

    PubMed Central

    Sailors, R. M.; East, T. D.

    1994-01-01

    A model-based simulator was developed for testing rule-based decision support systems that manages ventilator therapy of patients with the Adult Respiratory Distress Syndrome (ARDS). The simulator is based on a multi-compartment model of the human body and mathematical models of the gas exchange abnormalities associated with ARDS. Initial testing of this system indicates that model-based simulators are a viable tool for testing rule-based expert systems used in health-care. PMID:7949849

  1. Strong correlation between lung ultrasound and chest computerized tomography imaging for the detection of acute lung injury/acute respiratory distress syndrome in rats

    PubMed Central

    Ma, Huan; Huang, Daozheng; Guo, Liheng; Chen, Quanfu; Zhong, Wenzhao

    2016-01-01

    Background Lung ultrasound (LUS) is a clinical imaging technique for diagnosing acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). In humans and several large animals, LUS demonstrates similar specificity and sensitivity to computerized tomography (CT) scanning. Current study evaluated the degree of agreement between LUS and CT imaging in characterizing ALI/ARDS in rats. Methods Thirty male Sprague-Dawley rats were imaged by LUS before randomization into three groups to receive intratracheal saline, 3 or 6 mg/kg LPS respectively (n=10). LUS and CT imaging was conducted 2 hours after instillation. Cross table analyses and kappa statistics were used to determine agreement levels between LUS and CT assessments of lung condition. Results Before instillation, rats presented with a largely A-pattern in LUS images, however, a significantly increase B-lines were observed in all groups after instillation and showed dose response to LPS or to saline. One rat treated with 6 mg/kg lipopolysaccharide (LPS) presented with lung consolidation. The agreement between the LUS and the CT in detecting the main characteristics of ALI/ARDS in rat was strong (r=0.758, P<0.01, k=0.737). Conclusions In conclusion, LUS detects ALI/ARDS with high agreement with micro PET/CT scanning in a rat model, suggesting that LUS represents a positive refinement in rat ALI/ARDS disease models. PMID:27499930

  2. Sleep after critical illness: Study of survivors of acute respiratory distress syndrome and systematic review of literature

    PubMed Central

    Dhooria, Sahajal; Sehgal, Inderpaul Singh; Agrawal, Anshu Kumar; Agarwal, Ritesh; Aggarwal, Ashutosh Nath; Behera, Digambar

    2016-01-01

    Background and Aims: This study aims to evaluate the sleep quality, architecture, sleep-related quality of life, and sleep-disordered breathing (SDB) in acute respiratory distress syndrome (ARDS) survivors early after discharge. Materials and Methods: In this prospective, observational study, consecutive patients with ARDS discharged from the Intensive Care Unit (ICU) underwent evaluation with Epworth sleepiness scale (ESS), Pittsburgh Sleep Quality Index (PSQI), Functional Outcomes of Sleep Questionnaire (FOSQ), and overnight polysomnography. Patients having one or more of the following characteristics were classified as having abnormal sleep: ESS>10, PSQI>5, FOSQ <17.9, apnea–hypopnea index (AHI) ≥5, or AHI during rapid eye movement (REM) sleep ≥5. Results: Twenty patients (median interquartile range [IQR] age of 24 [22–28] years, 11 [55%] females) were included in the study. Acute febrile illness of unknown etiology with multi-organ dysfunction syndrome was the most common underlying etiology for ARDS. The median (IQR) PaO2/FiO2 ratio and APACHE II scores on admission were 176 (151–191.5) and 14 (14–16), respectively. The median (IQR) duration of stay in the ICU was 10 days (7.3–19.5). The overall sleep efficiency (median [IQR], 54% [32.3–65.4%]) was poor. None of the patients had ESS>10, seven (35%) had global PSQI>5 and one had FOSQ <17.9. Ten (50%) patients had at least one characteristic that suggested abnormal sleep (4 insomnia, 2 central sleep apnea, 1 obstructive sleep apnea, 1 REM-SDB, and 2 with a high PSQI, but no specific sleep abnormality). Conclusions: Sleep disturbances are common in ARDS survivors early after discharge from the ICU. PMID:27390455

  3. Quantification of asymmetric lung pathophysiology as a guide to the use of simultaneous independent lung ventilation in posttraumatic and septic adult respiratory distress syndrome.

    PubMed Central

    Siegel, J H; Stoklosa, J C; Borg, U; Wiles, C E; Sganga, G; Geisler, F H; Belzberg, H; Wedel, S; Blevins, S; Goh, K C

    1985-01-01

    The management of impaired respiratory gas exchange in patients with nonuniform posttraumatic and septic adult respiratory distress syndrome (ARDS) contains its own therapeutic paradox, since the need for volume-controlled ventilation and PEEP in the lung with the most reduced compliance increases pulmonary barotrauma to the better lung. A computer-based system has been developed by which respiratory pressure-flow-volume relations and gas exchange characteristics can be obtained and respiratory dynamic and static compliance curves computed and displayed for each lung, as a means of evaluating the effectiveness of ventilation therapy in ARDS. Using these techniques, eight patients with asymmetrical posttraumatic or septic ARDS, or both, have been managed using simultaneous independent lung ventilation (SILV). The computer assessment technique allows quantification of the nonuniform ARDS pattern between the two lungs. This enabled SILV to be utilized using two synchronized servo-ventilators at different pressure-flow-volumes, inspiratory/expiratory ratios, and PEEP settings to optimize the ventilatory volumes and gas exchange of each lung, without inducing excess barotrauma in the better lung. In the patients with nonuniform ARDS, conventional ventilation was not effective in reducing shunt (QS/QT) or in permitting a lower FIO2 to be used for maintenance of an acceptable PaO2. SILV reduced per cent v-a shunt and permitted a higher PaO2 at lower FIO2. Also, there was x-ray evidence of ARDS improvement in the poorer lung. While the ultimate outcome was largely dependent on the patient's injury and the adequacy of the septic host defense, by utilizing the SILV technique to match the quantitative aspects of respiratory dysfunction in each lung at specific times in the clinical course, it was possible to optimize gas exchange, to reduce barotrauma, and often to reverse apparently fixed ARDS changes. In some instances, this type of physiologically directed ventilatory

  4. Early Hepatic Dysfunction Is Associated with a Worse Outcome in Patients Presenting with Acute Respiratory Distress Syndrome: A Post-Hoc Analysis of the ACURASYS and PROSEVA Studies

    PubMed Central

    Dizier, Stéphanie; Forel, Jean-Marie; Ayzac, Louis; Richard, Jean-Christophe; Hraiech, Sami; Lehingue, Samuel; Loundou, Anderson; Roch, Antoine; Guerin, Claude; Papazian, Laurent

    2015-01-01

    Introduction Bilirubin is well-recognized marker of hepatic dysfunction in intensive care unit (ICU) patients. Multiple organ failure often complicates acute respiratory distress syndrome (ARDS) evolution and is associated with high mortality. The effect of early hepatic dysfunction on ARDS mortality has been poorly investigated. We evaluated the incidence and the prognostic significance of increased serum bilirubin levels in the initial phase of ARDS. Methods The data of 805 patients with ARDS were retrospectively analysed. This population was extracted from two recent multicenter, prospective and randomised trials. Patients presenting with ARDS with a ratio of the partial pressure of arterial oxygen to the fraction of inspired oxygen < 150 mmHg measured with a PEEP ≥ 5 cm of water were included. The total serum bilirubin was measured at inclusion and at days 2, 4, 7 and 14. The primary objective was to analyse the bilirubin at inclusion according to the 90-day mortality rate. Results The 90-day mortality rate was 33.8% (n = 272). The non-survivors were older, had higher Sepsis-related Organ Failure Assessment (SOFA) score and were more likely to have a medical diagnosis on admission than the survivors. At inclusion, the SOFA score without the liver score (10.3±2.9 vs. 9.0±3.0, p<0.0001) and the serum bilirubin levels (36.1±57.0 vs. 20.5±31.5 μmol/L, p<0.0001) were significantly higher in the non-survivors than in the survivors. Age, the hepatic SOFA score, the coagulation SOFA score, the arterial pH level, and the plateau pressure were independently associated with 90-day mortality in patients with ARDS. Conclusion Bilirubin used as a surrogate marker of hepatic dysfunction and measured early in the course of ARDS was associated with the 90-day mortality rate. PMID:26636318

  5. Incidence and Outcomes of Acute Respiratory Distress Syndrome: A Nationwide Registry-Based Study in Taiwan, 1997 to 2011.

    PubMed

    Chen, Wei; Chen, Yih-Yuan; Tsai, Ching-Fang; Chen, Solomon Chih-Cheng; Lin, Ming-Shian; Ware, Lorraine B; Chen, Chuan-Mu

    2015-10-01

    Most epidemiological studies of acute respiratory distress syndrome (ARDS) have been conducted in western countries, and studies in Asia are limited. The aim of our study was to evaluate the incidence, in-hospital mortality, and 1-year mortality of ARDS in Taiwan.We conducted a nationwide inpatient cohort study based on the Taiwan National Health Insurance Research Database between 1997 and 2011. A total of 40,876 ARDS patients (68% male; mean age 66 years) were identified by International Classification of Diseases, 9th edition coding and further analyzed for clinical characteristics, medical costs, and mortality.The overall crude incidence of ARDS was 15.74 per 100,000 person-years, and increased from 2.53 to 19.26 per 100,000 person-years during the study period. The age-adjusted incidence of ARDS was 15.19 per 100,000 person-years. The overall in-hospital mortality was 57.8%. In-hospital mortality decreased from 59.7% in 1997 to 47.5% in 2011 (P < 0.001). The in-hospital mortality rate was lowest (33.5%) in the youngest patients (age 18-29 years) and highest (68.2%) in the oldest patients (>80 years, P < 0.001). The overall 1-year mortality rate was 72.1%, and decreased from 75.8% to 54.7% during the study period. Patients who died during hospitalization were older (69 ± 17 versus 62 ± 19, P < 0.001) and predominantly male (69.8% versus 65.3%, P < 0.001). In addition, patients who died during hospitalization had significantly higher medical costs (6421 versus 5825 US Dollars, P < 0.001) and shorter lengths of stay (13 versus 19 days, P < 0.001) than patients who survived.We provide the first large-scale epidemiological analysis of ARDS incidence and outcomes in Asia. Although the overall incidence was lower than has been reported in a prospective US study, this may reflect underdiagnosis by International Classification of Diseases, 9th edition code and identification of only patients with more severe ARDS in this analysis

  6. Bayesian inference of the lung alveolar spatial model for the identification of alveolar mechanics associated with acute respiratory distress syndrome

    NASA Astrophysics Data System (ADS)

    Christley, Scott; Emr, Bryanna; Ghosh, Auyon; Satalin, Josh; Gatto, Louis; Vodovotz, Yoram; Nieman, Gary F.; An, Gary

    2013-06-01

    Acute respiratory distress syndrome (ARDS) is acute lung failure secondary to severe systemic inflammation, resulting in a derangement of alveolar mechanics (i.e. the dynamic change in alveolar size and shape during tidal ventilation), leading to alveolar instability that can cause further damage to the pulmonary parenchyma. Mechanical ventilation is a mainstay in the treatment of ARDS, but may induce mechano-physical stresses on unstable alveoli, which can paradoxically propagate the cellular and molecular processes exacerbating ARDS pathology. This phenomenon is called ventilator induced lung injury (VILI), and plays a significant role in morbidity and mortality associated with ARDS. In order to identify optimal ventilation strategies to limit VILI and treat ARDS, it is necessary to understand the complex interplay between biological and physical mechanisms of VILI, first at the alveolar level, and then in aggregate at the whole-lung level. Since there is no current consensus about the underlying dynamics of alveolar mechanics, as an initial step we investigate the ventilatory dynamics of an alveolar sac (AS) with the lung alveolar spatial model (LASM), a 3D spatial biomechanical representation of the AS and its interaction with airflow pressure and the surface tension effects of pulmonary surfactant. We use the LASM to identify the mechanical ramifications of alveolar dynamics associated with ARDS. Using graphical processing unit parallel algorithms, we perform Bayesian inference on the model parameters using experimental data from rat lung under control and Tween-induced ARDS conditions. Our results provide two plausible models that recapitulate two fundamental hypotheses about volume change at the alveolar level: (1) increase in alveolar size through isotropic volume change, or (2) minimal change in AS radius with primary expansion of the mouth of the AS, with the implication that the majority of change in lung volume during the respiratory cycle occurs in the

  7. Bayesian inference of the lung alveolar spatial model for the identification of alveolar mechanics associated with acute respiratory distress syndrome.

    PubMed

    Christley, Scott; Emr, Bryanna; Ghosh, Auyon; Satalin, Josh; Gatto, Louis; Vodovotz, Yoram; Nieman, Gary F; An, Gary

    2013-06-01

    Acute respiratory distress syndrome (ARDS) is acute lung failure secondary to severe systemic inflammation, resulting in a derangement of alveolar mechanics (i.e. the dynamic change in alveolar size and shape during tidal ventilation), leading to alveolar instability that can cause further damage to the pulmonary parenchyma. Mechanical ventilation is a mainstay in the treatment of ARDS, but may induce mechano-physical stresses on unstable alveoli, which can paradoxically propagate the cellular and molecular processes exacerbating ARDS pathology. This phenomenon is called ventilator induced lung injury (VILI), and plays a significant role in morbidity and mortality associated with ARDS. In order to identify optimal ventilation strategies to limit VILI and treat ARDS, it is necessary to understand the complex interplay between biological and physical mechanisms of VILI, first at the alveolar level, and then in aggregate at the whole-lung level. Since there is no current consensus about the underlying dynamics of alveolar mechanics, as an initial step we investigate the ventilatory dynamics of an alveolar sac (AS) with the lung alveolar spatial model (LASM), a 3D spatial biomechanical representation of the AS and its interaction with airflow pressure and the surface tension effects of pulmonary surfactant. We use the LASM to identify the mechanical ramifications of alveolar dynamics associated with ARDS. Using graphical processing unit parallel algorithms, we perform Bayesian inference on the model parameters using experimental data from rat lung under control and Tween-induced ARDS conditions. Our results provide two plausible models that recapitulate two fundamental hypotheses about volume change at the alveolar level: (1) increase in alveolar size through isotropic volume change, or (2) minimal change in AS radius with primary expansion of the mouth of the AS, with the implication that the majority of change in lung volume during the respiratory cycle occurs in the

  8. Validity of Outcome Prediction Scoring Systems in Korean Patients with Severe Adult Respiratory Distress Syndrome Receiving Extracorporeal Membrane Oxygenation Therapy

    PubMed Central

    2016-01-01

    Recently, several prognostic scoring systems for patients with severe acute respiratory distress syndrome (ARDS) requiring extracorporeal membrane oxygenation (ECMO) have been published. The aim of this study was to validate the established scoring systems for outcome prediction in Korean patients. We retrospectively reviewed the data of 50 patients on ECMO therapy in our center from 2012 to 2014. A calculation of outcome prediction scoring tools was performed and the comparison across various models was conducted. In our study, the overall hospital survival was 46% and successful weaning rate was 58%. The Predicting Death for Severe ARDS on V-V ECMO (PRESERVE) score showed good discrimination of mortality prediction for patients on ECMO with AUC of 0.80 (95% CI 0.66-0.90). The respiratory extracorporeal membrane oxygenation survival prediction (RESP) score and simplified acute physiology score (SAPS) II score also showed fair prediction ability with AUC of 0.79 (95% CI 0.65-0.89) and AUC of 0.78 (95% CI 0.64-0.88), respectively. However, the ECMOnet score failed to predict mortality with AUC of 0.51 (95% CI 0.37-0.66). When evaluating the predictive accuracy according to optimal cut-off point of each scoring system, RESP score had a best specificity of 91.3% and 66.7% of sensitivity, respectively. This study supports the clinical usefulness of the prognostic scoring tools for severe ARDS with ECMO therapy when applying to the Korean patients receiving ECMO. PMID:27247503

  9. Validity of Outcome Prediction Scoring Systems in Korean Patients with Severe Adult Respiratory Distress Syndrome Receiving Extracorporeal Membrane Oxygenation Therapy.

    PubMed

    Lee, Seunghyun; Yeo, Hye Ju; Yoon, Seong Hoon; Lee, Seung Eun; Cho, Woo Hyun; Jeon, Doo Soo; Kim, Yun Seong; Son, Bong Soo; Kim, Do Hyung

    2016-06-01

    Recently, several prognostic scoring systems for patients with severe acute respiratory distress syndrome (ARDS) requiring extracorporeal membrane oxygenation (ECMO) have been published. The aim of this study was to validate the established scoring systems for outcome prediction in Korean patients. We retrospectively reviewed the data of 50 patients on ECMO therapy in our center from 2012 to 2014. A calculation of outcome prediction scoring tools was performed and the comparison across various models was conducted. In our study, the overall hospital survival was 46% and successful weaning rate was 58%. The Predicting Death for Severe ARDS on V-V ECMO (PRESERVE) score showed good discrimination of mortality prediction for patients on ECMO with AUC of 0.80 (95% CI 0.66-0.90). The respiratory extracorporeal membrane oxygenation survival prediction (RESP) score and simplified acute physiology score (SAPS) II score also showed fair prediction ability with AUC of 0.79 (95% CI 0.65-0.89) and AUC of 0.78 (95% CI 0.64-0.88), respectively. However, the ECMOnet score failed to predict mortality with AUC of 0.51 (95% CI 0.37-0.66). When evaluating the predictive accuracy according to optimal cut-off point of each scoring system, RESP score had a best specificity of 91.3% and 66.7% of sensitivity, respectively. This study supports the clinical usefulness of the prognostic scoring tools for severe ARDS with ECMO therapy when applying to the Korean patients receiving ECMO. PMID:27247503

  10. Improvement of Oxygenation in Severe Acute Respiratory Distress Syndrome With High-Volume Continuous Veno-venous Hemofiltration

    PubMed Central

    Yang, Wenmin; Hong, Jie; Zeng, Qiyi; Tao, Jianping; Chen, Feiyan; Dang, Run; Liang, Yufeng; Wu, Zhiyuan; Yang, Yiyu

    2016-01-01

    The efficacy and therapeutic mechanisms of continuous renal replacement therapy (CRRT) for improvement of oxygenation in acute respiratory distress syndrome (ARDS) remain controversial. These questions were addressed by retrospective analysis of severe ARDS patients admitted to the pediatric intensive care unit of our hospital from 2009 to 2015 who received high-volume continuous veno-venous hemofiltration during mechanical ventilation. There was a significant improvement in partial oxygen pressure/fraction of inspired oxygen (PaO2/FiO2) 24 hours after CRRT onset compared with baseline (median change = 51.5; range = −19 to 450.5; P < .001) as well as decreases in FiO2, peak inspiratory pressure, positive end-expiratory pressure, and mean airway pressure (P < .05). The majority of patients had a negative fluid balance after 24 hours of CRRT. White blood cell (WBC) count decreased in the subgroup with high baseline WBC count (P < .05). PaO2/FiO2 was higher in ARDS patients with extrapulmonary etiology than in those with pulmonary etiology (P < .05). Improvement in oxygenation is likely related to both restoration of fluid balance and clearance of inflammatory mediators. PMID:27336018

  11. Toward Smarter Lumping and Smarter Splitting: Rethinking Strategies for Sepsis and Acute Respiratory Distress Syndrome Clinical Trial Design.

    PubMed

    Prescott, Hallie C; Calfee, Carolyn S; Thompson, B Taylor; Angus, Derek C; Liu, Vincent X

    2016-07-15

    Both quality improvement and clinical research efforts over the past few decades have focused on consensus definition of sepsis and acute respiratory distress syndrome (ARDS). Although clinical definitions based on readily available clinical data have advanced recognition and timely use of broad supportive treatments, they likely hinder the identification of more targeted therapies that manipulate select biological mechanisms underlying critical illness. Sepsis and ARDS are by definition heterogeneous, and patients vary in both their underlying biology and their severity of illness. We have long been able to identify subtypes of sepsis and ARDS that confer different prognoses. The key is that we are now on the verge of identifying subtypes that may confer different response to therapy. In this perspective, inspired by a 2015 American Thoracic Society International Conference Symposium entitled "Lumpers and Splitters: Phenotyping in Critical Illness," we highlight promising approaches to uncovering patient subtypes that may predict treatment responsiveness and not just differences in prognosis. We then discuss how this information can be leveraged to improve the success and translatability of clinical trials by using predictive enrichment and other design strategies. Last, we discuss the challenges and limitations to identifying biomarkers and endotypes and incorporating them into routine clinical practice. PMID:27244481

  12. Effect of Antiplatelet Therapy on Acute Respiratory Distress Syndrome and Mortality in Critically Ill Patients: A Meta-Analysis

    PubMed Central

    Wang, Lijun; Li, Heng; Gu, Xiaofei; Wang, Zhen; Liu, Su; Chen, Liyong

    2016-01-01

    Background Antiplatelet agents are commonly used for cardiovascular diseases, but their pleiotropic effects in critically ill patients are controversial. We therefore performed a meta-analysis of cohort studies to investigate the effect of antiplatelet therapy in the critically ill. Methods Nine cohort studies, retrieved from PubMed and Embase before November 2015, involving 14,612 critically ill patients and 4765 cases of antiplatelet users, were meta-analysed. The main outcome was hospital or 30-day mortality. Secondary outcome was acute respiratory distress syndrome (ARDS) or acute lung injury (ALI). Random- or fixed-effect models were taken for quantitative synthesis of the data. Results Antiplatelet therapy was associated with decreased mortality (odds ratio (OR) 0.61; 95% confidence interval (CI), 0.52–0.71; I2 = 0%; P <0. 001) and ARDS/ALI (OR 0.64; 95% CI, 0.50–0.82; I2 = 0%; P <0. 001). In every stratum of subgroups, similar findings on mortality reduction were consistently observed in critically ill patients. Conclusions Antiplatelet therapy is associated with reduced mortality and lower incidence of ARDS/ALI in critically ill patients, particularly those with predisposing conditions such as high-risk surgery, trauma, pneumonia, and sepsis. However, it remains unclear whether similar findings can be observed in the unselected and broad population with critical illness. PMID:27182704

  13. Extracorporeal membrane oxygenation improves survival in a novel 24-hour pig model of severe acute respiratory distress syndrome.

    PubMed

    Araos, Joaquín; Alegría, Leyla; García, Patricio; Damiani, Felipe; Tapia, Pablo; Soto, Dagoberto; Salomon, Tatiana; Rodriguez, Felipe; Amthauer, Macarena; Erranz, Benjamín; Castro, Gabriel; Carreño, Pamela; Medina, Tania; Retamal, Jaime; Cruces, Pablo; Bugedo, Guillermo; Bruhn, Alejandro

    2016-01-01

    Extracorporeal membrane oxygenation (ECMO) is increasingly being used to treat severe acute respiratory distress syndrome (ARDS). However, there is limited clinical evidence about how to optimize the technique. Experimental research can provide an alternative to fill the actual knowledge gap. The purpose of the present study was to develop and validate an animal model of acute lung injury (ALI) which resembled severe ARDS, and which could be successfully supported with ECMO. Eighteen pigs were randomly allocated into three groups: sham, ALI, and ALI + ECMO. ALI was induced by a double-hit consisting in repeated saline lavage followed by a 2-hour period of injurious ventilation. All animals were followed up to 24 hours while being ventilated with conventional ventilation (tidal volume 10 ml/kg). The lung injury model resulted in severe hypoxemia, increased airway pressures, pulmonary hypertension, and altered alveolar membrane barrier function, as indicated by an increased protein concentration in bronchoalveolar fluid, and increased wet/dry lung weight ratio. Histologic examination revealed severe diffuse alveolar damage, characteristic of ARDS. Veno-venous ECMO was started at the end of lung injury induction with a flow > 60 ml/kg/min resulting in rapid reversal of hypoxemia and pulmonary hypertension. Mortality was 0, 66.6 and 16.6% in the SHAM, ALI and ALI + ECMO groups, respectively (p < 0.05). This is a novel clinically relevant animal model that can be used to optimize the approach to ECMO and foster translational research in extracorporeal lung support. PMID:27398166

  14. Extracorporeal membrane oxygenation improves survival in a novel 24-hour pig model of severe acute respiratory distress syndrome

    PubMed Central

    Araos, Joaquín; Alegría, Leyla; García, Patricio; Damiani, Felipe; Tapia, Pablo; Soto, Dagoberto; Salomon, Tatiana; Rodriguez, Felipe; Amthauer, Macarena; Erranz, Benjamín; Castro, Gabriel; Carreño, Pamela; Medina, Tania; Retamal, Jaime; Cruces, Pablo; Bugedo, Guillermo; Bruhn, Alejandro

    2016-01-01

    Extracorporeal membrane oxygenation (ECMO) is increasingly being used to treat severe acute respiratory distress syndrome (ARDS). However, there is limited clinical evidence about how to optimize the technique. Experimental research can provide an alternative to fill the actual knowledge gap. The purpose of the present study was to develop and validate an animal model of acute lung injury (ALI) which resembled severe ARDS, and which could be successfully supported with ECMO. Eighteen pigs were randomly allocated into three groups: sham, ALI, and ALI + ECMO. ALI was induced by a double-hit consisting in repeated saline lavage followed by a 2-hour period of injurious ventilation. All animals were followed up to 24 hours while being ventilated with conventional ventilation (tidal volume 10 ml/kg). The lung injury model resulted in severe hypoxemia, increased airway pressures, pulmonary hypertension, and altered alveolar membrane barrier function, as indicated by an increased protein concentration in bronchoalveolar fluid, and increased wet/dry lung weight ratio. Histologic examination revealed severe diffuse alveolar damage, characteristic of ARDS. Veno-venous ECMO was started at the end of lung injury induction with a flow > 60 ml/kg/min resulting in rapid reversal of hypoxemia and pulmonary hypertension. Mortality was 0, 66.6 and 16.6% in the SHAM, ALI and ALI + ECMO groups, respectively (p < 0.05). This is a novel clinically relevant animal model that can be used to optimize the approach to ECMO and foster translational research in extracorporeal lung support. PMID:27398166

  15. Abdominal Muscle Activity during Mechanical Ventilation Increases Lung Injury in Severe Acute Respiratory Distress Syndrome

    PubMed Central

    Zhang, Xianming; Wu, Weiliang; Zhu, Yongcheng; Jiang, Ying; Du, Juan; Chen, Rongchang

    2016-01-01

    Objective It has proved that muscle paralysis was more protective for injured lung in severe acute respiratory distress syndrome (ARDS), but the precise mechanism is not clear. The purpose of this study was to test the hypothesis that abdominal muscle activity during mechanically ventilation increases lung injury in severe ARDS. Methods Eighteen male Beagles were studied under mechanical ventilation with anesthesia. Severe ARDS was induced by repetitive oleic acid infusion. After lung injury, Beagles were randomly assigned into spontaneous breathing group (BIPAPSB) and abdominal muscle paralysis group (BIPAPAP). All groups were ventilated with BIPAP model for 8h, and the high pressure titrated to reached a tidal volume of 6ml/kg, the low pressure was set at 10 cmH2O, with I:E ratio 1:1, and respiratory rate adjusted to a PaCO2 of 35–60 mmHg. Six Beagles without ventilator support comprised the control group. Respiratory variables, end-expiratory volume (EELV) and gas exchange were assessed during mechanical ventilation. The levels of Interleukin (IL)-6, IL-8 in lung tissue and plasma were measured by qRT-PCR and ELISA respectively. Lung injury scores were determined at end of the experiment. Results For the comparable ventilator setting, as compared with BIPAPSB group, the BIPAPAP group presented higher EELV (427±47 vs. 366±38 ml) and oxygenation index (293±36 vs. 226±31 mmHg), lower levels of IL-6(216.6±48.0 vs. 297.5±71.2 pg/ml) and IL-8(246.8±78.2 vs. 357.5±69.3 pg/ml) in plasma, and lower express levels of IL-6 mRNA (15.0±3.8 vs. 21.2±3.7) and IL-8 mRNA (18.9±6.8 vs. 29.5±7.9) in lung tissues. In addition, less lung histopathology injury were revealed in the BIPAPAP group (22.5±2.0 vs. 25.2±2.1). Conclusion Abdominal muscle activity during mechanically ventilation is one of the injurious factors in severe ARDS, so abdominal muscle paralysis might be an effective strategy to minimize ventilator-induce lung injury. PMID:26745868

  16. Polymyxin-B-immobilized-fiber column hemoperfusion with oseltamivir treatment for ARDS due to influenza H1N1/09

    PubMed Central

    Binh, Nguyen Gia; Manabe, Toshie; Co, Dao Xuan; Tuan, Nguyen Dang; Thach, Pham The; Kudo, Koichiro

    2015-01-01

    Acute respiratory distress syndrome (ARDS) is one of the severe complications of influenza H1N1/09 infection, resulting in high mortality. Effective treatment strategies for ARDS are needed. This report presents two cases of ARDS due to influenza in Vietnam. Both cases were similar in terms of starting symptoms, the rapid progression to ARDS, and the treatment strategy, direct hemoperfusion with a polymyxin-B-immobilized fiber column (PMX-DHP) and oseltamivir. However, the clinical course of disease and the outcomes were different. For case 1, treatment was initiated on day 4 following the onset of hypoxemia due to ARDS. Symptoms improved rapidly after treatment and the patient was discharged on day 12. For case 2, treatment was initiated on day 9 after the onset of symptoms. Despite intensive therapy, the patient died on day 18. In conclusion, treatment with PMX-DHP and oseltamivir is effective on ARDS due to influenza but only if initiated early. PMID:26090112

  17. Kartagener syndrome: an uncommon cause of neonatal respiratory distress?

    PubMed

    Losa, M; Ghelfi, D; Hof, E; Felix, H; Fanconi, S

    1995-03-01

    We report a newborn with respiratory distress and situs inversus totalis. The diagnosis of primary ciliary dyskinesia was confirmed by both ultrastructural and functional investigations. The immotile cilia syndrome was suspected because of respiratory distress, situs inversus, abnormal nasal discharge and hyperinflated chest X-ray. We suggest that ultrastructural and functional investigations of the respiratory mucosa should be done in any newborn with respiratory distress without explanation for the respiratory problems. Establishment of the correct diagnosis at an early stage may allow to improve the prognosis provided prophylactic physiotherapy, vaccinations, and aggressive antibiotic treatment of intercurrent respiratory infections are instituted. CONCLUSION Despite its rarity, primary ciliary dyskinesia should be considered in unexplained cases of neonatal distress. PMID:7758526

  18. Outcome of veno-venous extracorporeal membrane oxygenation use in acute respiratory distress syndrome after cardiac surgery with cardiopulmonary bypass

    PubMed Central

    Song, Joo Han; Woo, Won Ki; Song, Seung Hwan; Kim, Hyo Hyun; Kim, Bong Joon; Kim, Ha Eun; Kim, Do Jung; Suh, Jee Won; Shin, Yu Rim; Park, Han Ki; Lee, Seung Hyun; Joo, Hyun Chel; Lee, Sak; Chang, Byung Chul; Yoo, Kyung Jong; Kim, Young Sam

    2016-01-01

    Background Cardiac surgery with cardiopulmonary bypass (CPB) is a known risk factor for acute respiratory distress syndrome (ARDS). We aimed to analyze the treatment outcome in patients who required veno-venous extracorporeal membrane oxygenation (VV-ECMO) for postcardiotomy ARDS despite other rescue modalities. Methods We retrospectively reviewed the outcomes in 13 patients (mean age, 54.7±5.9 years) who received VV-ECMO support for refractory ARDS after cardiac surgery between March 2013 and February 2016 at Severance Hospital, Yonsei University (Seoul, Korea). Results At the start of VV-ECMO, the average lung injury score was 3.0±0.2, and the Respiratory Extracorporeal Membrane Oxygenation Survival Prediction (RESP) score was −4±1.1. Although 7 patients initiated VV-ECMO support within 24 h from operation, the remaining 6 started at a median of 8.5 days (range, 5−16 days). Nine (69.3%) patients were successfully weaned from VV-ECMO. After a median follow-up duration of 14.5 months (range, 1.0−33.0 months) for survivors, the 1-year overall survival was 58.6%±14.4%. The differences in the overall survival from VV-ECMO according to the RESP score risk classes were borderline significant (100% in class III, 50%±25% in class IV, and 20%±17.9% in class V; P=0.088). Conclusions VV-ECMO support can be a feasible rescue strategy for adult patients who develop refractory ARDS after a cardiac surgery. Additionally, the RESP score seems a valuable prognostic tool for post-ECMO survival outcome in this patient population as well. PMID:27499972

  19. Sepsis and ARDS: The Dark Side of Histones

    PubMed Central

    Xu, Zhiheng; Huang, Yongbo; Mao, Pu; Zhang, Jianrong; Li, Yimin

    2015-01-01

    Despite advances in management over the last several decades, sepsis and acute respiratory distress syndrome (ARDS) still remain major clinical challenges and the leading causes of death for patients in intensive care units (ICUs) due to insufficient understanding of the pathophysiological mechanisms of these diseases. However, recent studies have shown that histones, also known as chromatin-basic structure proteins, could be released into the extracellular space during severe stress and physical challenges to the body (e.g., sepsis and ARDS). Due to their cytotoxic and proinflammatory effects, extracellular histones can lead to excessive and overwhelming cell damage and death, thus contributing to the pathogenesis of both sepsis and ARDS. In addition, antihistone-based treatments (e.g., neutralizing antibodies, activated protein C, and heparin) have shown protective effects and have significantly improved the outcomes of mice suffering from sepsis and ARDS. Here, we review researches related to the pathological role of histone in context of sepsis and ARDS and evaluate the potential value of histones as biomarkers and therapeutic targets of these diseases. PMID:26609197

  20. Lung protective ventilation strategies: have we applied them in trauma patients at risk for acute lung injury and acute respiratory distress syndrome?

    PubMed

    Gillis, Robert C; Weireter, Leonard J; Britt, Rebecca C; Cole, Frederic J; Collins, Jay N; Britt, L D

    2007-04-01

    Lung protective ventilation strategies for patients with acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are well documented, and many medical centers fail to apply these strategies in ALI/ARDS. The objective of this study was to determine if we apply these strategies in trauma patients at risk for ALI/ARDS. We undertook a retrospective review of trauma patients mechanically ventilated for > or = 4 days with an ICD-9 for traumatic pneumothorax, hemothorax, lung contusion, and/or fractured ribs admitted from May 1, 1999 through April 30, 2000 (Group 1), the pre-ARDS Network study, and from May 1, 2003 through April 30, 2004 (Group 2), the post-ARDS Network study. Tidal volume (VT)/kg admission body weight, VT/kg ideal body weight (IBW), and plateau and peak pressures were analyzed with respect to mortality. VT/Kg admission body weight and IBW were significantly reduced when comparing Group 1 with Group 2 (9.27 to 8.03 and 11.67 to 10.04, respectively). VT/kg IBW was greater (P < 0.01) for patients who died in Group 1 (13.81) compared with patients who lived (10.29) or died (9.89) in Group 2. Peak and plateau pressures were greater (P < 0.01) in patients who died in Group 1 than patients who lived or died in Group 2. A strict ARDS Network ventilation strategy (VT < 6 mL/kg) is not followed, rather a low plateau/peak pressure strategy is used, which is a form of lung protective ventilation. PMID:17439026

  1. The Ratio of Partial Pressure Arterial Oxygen and Fraction of Inspired Oxygen 1 Day After Acute Respiratory Distress Syndrome Onset Can Predict the Outcomes of Involving Patients.

    PubMed

    Lai, Chih-Cheng; Sung, Mei-I; Liu, Hsiao-Hua; Chen, Chin-Ming; Chiang, Shyh-Ren; Liu, Wei-Lun; Chao, Chien-Ming; Ho, Chung-Han; Weng, Shih-Feng; Hsing, Shu-Chen; Cheng, Kuo-Chen

    2016-04-01

    The initial hypoxemic level of acute respiratory distress syndrome (ARDS) defined according to Berlin definition might not be the optimal predictor for prognosis. We aimed to determine the predictive validity of the stabilized ratio of partial pressure arterial oxygen and fraction of inspired oxygen (PaO2/FiO2 ratio) following standard ventilator setting in the prognosis of patients with ARDS.This prospective observational study was conducted in a single tertiary medical center in Taiwan and compared the stabilized PaO2/FiO2 ratio (Day 1) following standard ventilator settings and the PaO2/FiO2 ratio on the day patients met ARDS Berlin criteria (Day 0). Patients admitted to intensive care units and in accordance with the Berlin criteria for ARDS were collected between December 1, 2012 and May 31, 2015. Main outcome was 28-day mortality. Arterial blood gas and ventilator setting on Days 0 and 1 were obtained.A total of 238 patients met the Berlin criteria for ARDS were enrolled, and they were classified as mild (n = 50), moderate (n = 125), and severe (n = 63) ARDS, respectively. Twelve (5%) patients who originally were classified as ARDS did not continually meet the Berlin definition, and a total of 134 (56%) patients had the changes regarding the severity of ARDS from Day 0 to Day 1. The 28-day mortality rate was 49.1%, and multivariate analysis identified age, PaO2/FiO2 on Day 1, number of organ failures, and positive fluid balance within 5 days as significant risk factors of death. Moreover, the area under receiver-operating curve for mortality prediction using PaO2/FiO2 on Day 1 was significant higher than that on Day 0 (P = 0.016).PaO2/FiO2 ratio on Day 1 after applying mechanical ventilator is a better predictor of outcomes in patients with ARDS than those on Day 0. PMID:27057912

  2. Hyperpolarized Gas Diffusion MRI for the Study of Atelectasis and Acute Respiratory Distress Syndrome

    PubMed Central

    Cereda, Maurizio; Xin, Yi; Kadlecek, Stephen; Hamedani, Hooman; Rajaei, Jennia; Clapp, Justin; Rizi, Rahim R.

    2014-01-01

    Considerable uncertainty remains about the best ventilator strategies for the mitigation of atelectasis and associated airspace stretch in patients with acute respiratory distress syndrome (ARDS). In addition to several immediate physiological effects, atelectasis increases the risk of ventilator-associated lung injury (VALI), which has been shown to significantly worsen ARDS outcomes. A number of lung imaging techniques have made substantial headway in clarifying the mechanisms of atelectasis. This paper reviews the contributions of CT, PET, and conventional MRI to understanding this phenomenon. In doing so, it also reveals several important shortcomings inherent to each of these approaches. Once these shortcomings have been made apparent, we describe how hyperpolarized gas magnetic resonance imaging (HP MRI)—a technique that is uniquely able to assess responses to mechanical ventilation and lung injury in peripheral airspaces—is poised to fill several of these knowledge gaps. The HP-MRI-derived apparent diffusion coefficient (ADC) quantifies the restriction of 3He diffusion by peripheral airspaces, thereby obtaining pulmonary structural information at an extremely small scale. Lastly, this paper reports the results of a series of experiments that measured ADC in mechanically ventilated rats in order to investigate (i) the effect of atelectasis on ventilated airspaces; (ii) the relationship between positive end-expiratory pressure (PEEP), hysteresis, and the dimensions of peripheral airspaces; and (iii) the ability of PEEP and surfactant to reduce airspace dimensions after lung injury. An increase in ADC was found to be a marker of atelectasis-induced overdistension. With recruitment, higher airway pressures were shown to reduce stretch rather than worsen it. Moving forward, HP MRI has significant potential to shed further light on the atelectatic processes that occur during mechanical ventilation. PMID:24920074

  3. Boussignac CPAP system for brain death confirmation with apneic test in case of acute lung injury/adult respiratory distress syndrome – series of cases

    PubMed Central

    Wieczorek, Andrzej; Gaszynski, Tomasz

    2015-01-01

    Introduction There are some patients with severe respiratory disturbances like adult respiratory distress syndrome (ARDS) and suspicion of brain death, for whom typical performance of the apneic test is difficult to complete because of quick desaturation and rapid deterioration without effective ventilation. To avoid failure of brain death confirmation and possible loss of organ donation another approach to apneic test is needed. We present two cases of patients with clinical symptoms of brain death, with lung pathology (acute lung injury, ARDS, lung embolism and lung infection), in whom apneic tests for recognizing brain death were difficult to perform. During typical performance of apneic test involving the use of oxygen catheter for apneic oxygenation we observed severe desaturation with growing hypotension and hemodynamic destabilization. But with the use of Boussignac CPAP system all necessary tests were successfully completed, confirming the patient’s brain death, which gave us the opportunity to perform procedures for organ donation. The main reason of apneic test difficulties was severe gas exchange disturbances secondary to ARDS. Thus lack of positive end expiratory pressure during classical performance of apneic test leads to quick desaturation and rapid hemodynamic deterioration, limiting the observation period below dedicated at least 10-minute interval. Conclusion The Boussignac CPAP system may be an effective tool for performing transparent apneic test in case of serious respiratory disturbances, especially in the form of acute lung injury or ARDS. PMID:26124664

  4. Pyogenic sacroiliitis and adult respiratory distress syndrome: a case report.

    PubMed

    Asavamongkolkul, A; Keerasuntonpong, A; Kuagoolwongse, C

    2007-08-01

    Staphylococcus aureus sacroiliitis is uncommon and may lead to bacteraemia, sepsis, and death if diagnosis and treatment are delayed. Its association with pulmonary symptoms has not been reported. We report a 36-year-old Thai woman who presented with a 4-day history of right buttock pain, aggravated by walking, which came on after having a traditional foot massage. She later developed adult respiratory distress syndrome. She was treated with open drainage, respiratory support, and antibiotics. PMID:17709867

  5. Dual hit lipopolysaccharide & oleic acid combination induced rat model of acute lung injury/acute respiratory distress syndrome

    PubMed Central

    Hagawane, T.N.; Gaikwad, R.V.; Kshirsagar, N.A.

    2016-01-01

    Background & objectives: Despite advances in therapy and overall medical care, acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) management remains a problem. Hence the objective of this study was to develop a rat model that mimics human ALI/ARDS. Methods: Four groups of Wistar rats, 48 per group were treated with (i) intratracheal (IT) lipopolysaccharide (LPS) (5 mg/kg) dissolved in normal saline (NS), (ii) intravenous (iv) oleic acid (OA) (250 μl/kg) suspension in bovine serum albumin (BSA), (iii) dual hit: IT LPS (2 mg/kg) dissolved in NS and iv OA (100 μl/kg) and (iv) control group: IT NS and iv BSA. From each group at set periods of time various investigations like chest X-rays, respiratory rate (RR), tidal volume (TV), total cell count, differential cell count, total protein count and cytokine levels in bronchoalveolar lavage fluid (BALF), lung wet/dry weight ratio and histopathological examination were done. Results: It was noted that the respiratory rate, and tumour necrosis factor-α (TNF-α) levels were significantly higher at 4 h in the dual hit group as compared to LPS, OA and control groups. Interleukin-6 (IL-6) levels were significantly higher in the dual hit group as compared to LPS at 8 and 24 h, OA at 8 h and control (at all time intervals) group. IL-1β levels were significantly higher in LPS and dual hit groups at all time intervals, but not in OA and control groups. The injury induced in dual hit group was earlier and more sustained as compared to LPS and OA alone. Interpretation & conclusions: The lung pathology and changes in respiration functions produced by the dual hit model were closer to the diagnostic criteria of ALI/ARDS in terms of clinical manifestations and pulmonary injury and the injury persisted longer as compared to LPS and OA single hit model. Therefore, the ARDS model produced by the dual hit method was closer to the diagnostic criteria of ARDS in terms of clinical manifestations and pulmonary injury. PMID

  6. Characteristics of microRNAs and their potential relevance for the diagnosis and therapy of the acute respiratory distress syndrome: from bench to bedside.

    PubMed

    Cardinal-Fernández, Pablo; Ferruelo, Antonio; Esteban, Andrés; Lorente, José A

    2016-03-01

    Acute respiratory distress syndrome (ARDS) is a complex disease associated with high morbidity and mortality. Biomarkers and specific pharmacologic treatment of the syndrome are lacking. MicroRNAs (miRNAs) are small (∼ 19-22 nucleotides) noncoding RNA molecules whose function is the regulation of gene expression. Their uncommon biochemical characteristics (eg, their resistance to degradation because of extreme temperature and pH fluctuations, freeze-thaw cycles, long storage times in frozen conditions, and RNAse digestion) and their presence in a wide range of different biological fluids and the relatively low number of individual miRNAs make these molecules good biomarkers in different clinical conditions. In addition, miRNAs are suitable therapeutic targets as their expression can be modulated by different available strategies. The aim of the present review is to offer clinicians a global perspective of miRNA, covering their structure and nomenclature, biogenesis, effects on gene expression, regulation of expression, and features as disease biomarkers and therapeutic targets, with special attention to ARDS. Because of the early stage of research on miRNAs applied to ARDS, attention has been focused on how knowledge sourced from basic and translational research could inspire future clinical studies. PMID:26687392

  7. Coping and Psychological Distress of Chinese Parents of Children with Down Syndrome.

    ERIC Educational Resources Information Center

    Cheng, Paul; Tang, Catherine So-Kum

    1995-01-01

    Coping and correlates of psychological distress of 174 Chinese parents of children with Down's syndrome, language delays, or no disabilities were compared. Down's syndrome parents more frequently used avoidance coping style. No differences were observed between Down's syndrome and language delay parents on psychological distress, optimism,…

  8. Clinical review: Stem cell therapies for acute lung injury/acute respiratory distress syndrome - hope or hype?

    PubMed Central

    2012-01-01

    A growing understanding of the complexity of the pathophysiology of acute lung injury (ALI)/acute respiratory distress syndrome (ARDS), coupled with advances in stem cell biology, has led to a renewed interest in the therapeutic potential of stem cells for this devastating disease. Mesenchymal stem cells appear closest to clinical translation, given the evidence that they may favourably modulate the immune response to reduce lung injury, while maintaining host immune-competence and also facilitating lung regeneration and repair. The demonstration that human mesenchymal stem cells exert benefit in the endotoxin-injured human lung is particularly persuasive. Endothelial progenitor cells also demonstrate promise in reducing endothelial damage, which is a key pathophysiological feature of ALI. Embryonic and induced pluripotent stem cells are at an earlier stage in the translational process, but offer the hope of directly replacing injured lung tissue. The lung itself also contains endogenous stem cells, which may ultimately offer the greatest hope for lung diseases, given their physiologic role in replacing and regenerating native lung tissues. However, significant deficits remain in our knowledge regarding the mechanisms of action of stem cells, their efficacy in relevant pre-clinical models, and their safety, particularly in critically ill patients. These gaps need to be addressed before the enormous therapeutic potential of stem cells for ALI/ARDS can be realised. PMID:22424108

  9. A specific phospholipase C activity regulates phosphatidylinositol levels in lung surfactant of patients with acute respiratory distress syndrome.

    PubMed

    Spyridakis, Spyros; Leondaritis, George; Nakos, George; Lekka, Marilena E; Galanopoulou, Dia

    2010-03-01

    Lung surfactant (LS) is a lipid-rich material lining the inside of the lungs. It reduces surface tension at the liquid/air interface and thus, it confers protection of the alveoli from collapsing. The surface-active component of LS is dipalmitoyl-phosphatidylcholine, while anionic phospholipids such as phosphatidylinositol (PtdIns) and primarily phosphatidylglycerol are involved in the stabilization of the LS monolayer. The exact role of PtdIns in this system is not well-understood; however, PtdIns levels change dramatically during the acute respiratory distress syndrome (ARDS) evolution. In this report we present evidence of a phosphoinositide-specific phospholipase C (PI-PLC) activity in bronchoalveolar lavage (BAL) fluid, which may regulate PtdIns levels. Characterization of this extracellular activity showed specificity for PtdIns and phosphatidylinositol 4,5-bisphosphate, sharing the typical substrate concentration-, pH-, and calcium-dependencies with mammalian PI-PLCs. Fractionation of BAL fluid showed that PI-PLC did not co-fractionate with large surfactant aggregates, but it was found mainly in the soluble fraction. Importantly, analysis of BAL samples from control subjects and from patients with ARDS showed that the PI-PLC specific activity was decreased by 4-fold in ARDS samples concurrently with the increase in BAL PtdIns levels. Thus, we have identified for the first time an extracellular PI-PLC enzyme activity that may be acutely involved in the regulation of PtdIns levels in LS. PMID:19491339

  10. The Hemagglutinin Stem-Binding Monoclonal Antibody VIS410 Controls Influenza Virus-Induced Acute Respiratory Distress Syndrome.

    PubMed

    Baranovich, Tatiana; Jones, Jeremy C; Russier, Marion; Vogel, Peter; Szretter, Kristy J; Sloan, Susan E; Seiler, Patrick; Trevejo, Jose M; Webby, Richard J; Govorkova, Elena A

    2016-04-01

    Most cases of severe influenza are associated with pulmonary complications, such as acute respiratory distress syndrome (ARDS), and no antiviral drugs of proven value for treating such complications are currently available. The use of monoclonal antibodies targeting the stem of the influenza virus surface hemagglutinin (HA) is a rapidly developing strategy for the control of viruses of multiple HA subtypes. However, the mechanisms of action of these antibodies are not fully understood, and their ability to mitigate severe complications of influenza has been poorly studied. We evaluated the effect of treatment with VIS410, a human monoclonal antibody targeting the HA stem region, on the development of ARDS in BALB/c mice after infection with influenza A(H7N9) viruses. Prophylactic administration of VIS410 resulted in the complete protection of mice against lethal A(H7N9) virus challenge. A single therapeutic dose of VIS410 given 24 h after virus inoculation resulted in dose-dependent protection of up to 100% of mice inoculated with neuraminidase inhibitor-susceptible or -resistant A(H7N9) viruses. Compared to the outcomes in mock-treated controls, a single administration of VIS410 improved viral clearance from the lungs, reduced virus spread in lungs in a dose-dependent manner, resulting in a lower lung injury score, reduced the extent of the alteration in lung vascular permeability and protein accumulation in bronchoalveolar lavage fluid, and improved lung physiologic function. Thus, antibodies targeting the HA stem can reduce the severity of ARDS and show promise as agents for controlling pulmonary complications in influenza. PMID:26787699

  11. Mechanical Ventilation in Patients with the Acute Respiratory Distress Syndrome and Treated with Extracorporeal Membrane Oxygenation: Impact on Hospital and 30 Day Postdischarge Survival.

    PubMed

    Modrykamien, Ariel M; Hernandez, Omar O; Im, Yunhee; Walters, Ryan W; Schrader, Caleb L; Smith, Lauren E; Lima, Brian

    2016-01-01

    Mechanical ventilation support for acute respiratory distress syndrome (ARDS) patients involves the use of low tidal volumes and positive end-expiratory pressure. Nevertheless, the optimal ventilator strategy for ARDS patients undergoing extracorporeal membrane oxygenation (ECMO) therapy remains unknown. A retrospective analysis of a consecutive series of adult ARDS patients treated with V-V ECMO from October 2012 to May 2015 was performed. Mechanical ventilation data, as well as demographic and clinical data, were collected. We assessed the association between ventilator data and outcomes of interest. The primary outcome was hospital survival. Secondary outcome was 30 day survival posthospital discharge. Sixty-four ARDS patients were treated with ECMO. Univariate analysis showed that plateau pressure was independently associated with hospital survival. Tidal volume, positive end-expiratory pressure (PEEP), and plateau were independently associated with 30 day survival. Multivariate analysis, after controlling for covariates, revealed that a 1 unit increase in plateau pressure was associated with a 21% decrease in the odds of hospital survival (95% confidence interval [CI] = 6.39-33.42%, p = 0.007). In regards to 30 day survival postdischarge, a 1 unit increase in plateau pressure was associated with a 14.4% decrease in the odds of achieving the aforementioned outcome (95% CI = 1.75-25.4%, p = 0.027). Also, a 1 unit increase in PEEP was associated with a 36.2% decrease in the odds of 30 day survival (95% CI = 10.8-54.4%, p = 0.009). Among ARDS patients undergoing ECMO therapy, only plateau pressure is associated with hospital survival. Plateau pressure and PEEP are both associated with 30 day survival posthospital discharge. PMID:27347707

  12. Feasibility of 68Ga-labeled Siglec-9 peptide for the imaging of acute lung inflammation: a pilot study in a porcine model of acute respiratory distress syndrome

    PubMed Central

    Retamal, Jaime; Sörensen, Jens; Lubberink, Mark; Suarez-Sipmann, Fernando; Borges, João Batista; Feinstein, Ricardo; Jalkanen, Sirpa; Antoni, Gunnar; Hedenstierna, Göran; Roivainen, Anne; Larsson, Anders; Velikyan, Irina

    2016-01-01

    There is an unmet need for noninvasive, specific and quantitative imaging of inherent inflammatory activity. Vascular adhesion protein-1 (VAP-1) translocates to the luminal surface of endothelial cells upon inflammatory challenge. We hypothesized that in a porcine model of acute respiratory distress syndrome (ARDS), positron emission tomography (PET) with sialic acid-binding immunoglobulin-like lectin 9 (Siglec-9) based imaging agent targeting VAP-1 would allow quantification of regional pulmonary inflammation. ARDS was induced by lung lavages and injurious mechanical ventilation. Hemodynamics, respiratory system compliance (Crs) and blood gases were monitored. Dynamic examination using [15O]water PET-CT (10 min) was followed by dynamic (90 min) and whole-body examination using VAP-1 targeting 68Ga-labeled 1,4,7,10-tetraaza cyclododecane-1,4,7-tris-acetic acid-10-ethylene glycol-conjugated Siglec-9 motif peptide ([68Ga]Ga-DOTA-Siglec-9). The animals received an anti-VAP-1 antibody for post-mortem immunohistochemistry assay of VAP-1 receptors. Tissue samples were collected post-mortem for the radioactivity uptake, histology and immunohistochemistry assessment. Marked reduction of oxygenation and Crs, and higher degree of inflammation were observed in ARDS animals. [68Ga]Ga-DOTA-Siglec-9 PET showed significant uptake in lungs, kidneys and urinary bladder. Normalization of the net uptake rate (Ki) for the tissue perfusion resulted in 4-fold higher uptake rate of [68Ga]Ga-DOTA-Siglec-9 in the ARDS lungs. Immunohistochemistry showed positive VAP-1 signal in the injured lungs. Detection of pulmonary inflammation associated with a porcine model of ARDS was possible with [68Ga]Ga-DOTA-Siglec-9 PET when using kinetic modeling and normalization for tissue perfusion. PMID:27069763

  13. Feasibility of (68)Ga-labeled Siglec-9 peptide for the imaging of acute lung inflammation: a pilot study in a porcine model of acute respiratory distress syndrome.

    PubMed

    Retamal, Jaime; Sörensen, Jens; Lubberink, Mark; Suarez-Sipmann, Fernando; Borges, João Batista; Feinstein, Ricardo; Jalkanen, Sirpa; Antoni, Gunnar; Hedenstierna, Göran; Roivainen, Anne; Larsson, Anders; Velikyan, Irina

    2016-01-01

    There is an unmet need for noninvasive, specific and quantitative imaging of inherent inflammatory activity. Vascular adhesion protein-1 (VAP-1) translocates to the luminal surface of endothelial cells upon inflammatory challenge. We hypothesized that in a porcine model of acute respiratory distress syndrome (ARDS), positron emission tomography (PET) with sialic acid-binding immunoglobulin-like lectin 9 (Siglec-9) based imaging agent targeting VAP-1 would allow quantification of regional pulmonary inflammation. ARDS was induced by lung lavages and injurious mechanical ventilation. Hemodynamics, respiratory system compliance (Crs) and blood gases were monitored. Dynamic examination using [(15)O]water PET-CT (10 min) was followed by dynamic (90 min) and whole-body examination using VAP-1 targeting (68)Ga-labeled 1,4,7,10-tetraaza cyclododecane-1,4,7-tris-acetic acid-10-ethylene glycol-conjugated Siglec-9 motif peptide ([(68)Ga]Ga-DOTA-Siglec-9). The animals received an anti-VAP-1 antibody for post-mortem immunohistochemistry assay of VAP-1 receptors. Tissue samples were collected post-mortem for the radioactivity uptake, histology and immunohistochemistry assessment. Marked reduction of oxygenation and Crs, and higher degree of inflammation were observed in ARDS animals. [(68)Ga]Ga-DOTA-Siglec-9 PET showed significant uptake in lungs, kidneys and urinary bladder. Normalization of the net uptake rate (Ki) for the tissue perfusion resulted in 4-fold higher uptake rate of [(68)Ga]Ga-DOTA-Siglec-9 in the ARDS lungs. Immunohistochemistry showed positive VAP-1 signal in the injured lungs. Detection of pulmonary inflammation associated with a porcine model of ARDS was possible with [(68)Ga]Ga-DOTA-Siglec-9 PET when using kinetic modeling and normalization for tissue perfusion. PMID:27069763

  14. Personalized medicine for ARDS: the 2035 research agenda.

    PubMed

    Beitler, Jeremy R; Goligher, Ewan C; Schmidt, Matthieu; Spieth, Peter M; Zanella, Alberto; Martin-Loeches, Ignacio; Calfee, Carolyn S; Cavalcanti, Alexandre B

    2016-05-01

    In the last 20 years, survival among patients with acute respiratory distress syndrome (ARDS) has increased substantially with advances in lung-protective ventilation and resuscitation. Building on this success, personalizing mechanical ventilation to patient-specific physiology for enhanced lung protection will be a top research priority for the years ahead. However, the ARDS research agenda must be broader in scope. Further understanding of the heterogeneous biology, from molecular to mechanical, underlying early ARDS pathogenesis is essential to inform therapeutic discovery and tailor treatment and prevention strategies to the individual patient. The ARDSne(x)t research agenda for the next 20 years calls for bringing personalized medicine to ARDS, asking simultaneously both whether a treatment affords clinically meaningful benefit and for whom. This expanded scope necessitates standard acquisition of highly granular biological, physiological, and clinical data across studies to identify biologically distinct subgroups that may respond differently to a given intervention. Clinical trials will need to consider enrichment strategies and incorporate long-term functional outcomes. Tremendous investment in research infrastructure and global collaboration will be vital to fulfilling this agenda. PMID:27040103

  15. Induced hypothermia for trauma-related ARDS

    PubMed Central

    Dhillon, Gagandeep; Gopal, Palepu B.; Kamat, Akshata S.; Mulavisala, K.P.

    2015-01-01

    We report a case of 27-year-old male with lung contusions related acute respiratory distress syndrome (ARDS) managed by ARDSNet guidelines and additional hypothermia. On 4th day, post trauma partial pressure of oxygen dropped to 38 mm of mercury (Hg), not improving even on high positive end-expiratory pressure of 18 cm water (H2O), inverse ratio ventilation and fraction of inspired oxygen of 1. Extracorporeal membrane oxygenation was ruled out due to the risk of hemorrhage from trauma sites. Thereafter, hypothermia along with muscle paralysis was considered to reduce total body oxygen consumption. Patient's condition improved under hypothermia, and he was extubated and taken up for fracture fixation surgeries and discharged later in stable condition. PMID:26195862

  16. Treatment of acute respiratory distress syndrome with allogeneic adipose-derived mesenchymal stem cells: a randomized, placebo-controlled pilot study

    PubMed Central

    2014-01-01

    Background Recent studies have demonstrated that mesenchymal stem cells (MSCs) modulate the immune response and reduce lung injury in animal models. Currently, no clinical studies of the effects of MSCs in acute respiratory distress syndrome (ARDS) exist. The objectives of this study were first to examine the possible adverse events after systemic administration of allogeneic adipose-derived MSCs in ARDS patients and second to determine potential efficacy of MSCs on ARDS. Methods Twelve adult patients meeting the Berlin definition of acute respiratory distress syndrome with a PaO2/FiO2 ratio of < 200 were randomized to receive allogeneic adipose-derived MSCs or placebo in a 1:1 fashion. Patients received one intravenous dose of 1 × 106 cells/kg of body weight or saline. Possible side effects were monitored after treatment. Acute lung injury biomarkers, including IL-6, IL-8 and surfactant protein D (SP-D), were examined to determine the effects of MSCs on lung injury and inflammation. Results There were no infusion toxicities or serious adverse events related to MSCs administration and there were no significant differences in the overall number of adverse events between the two groups. Length of hospital stay, ventilator-free days and ICU-free days at day 28 after treatment were similar. There were no changes in biomarkers examined in the placebo group. In the MSCs group, serum SP-D levels at day 5 were significantly lower than those at day 0 (p = 0.027) while the changes in IL-8 levels were not significant. The IL-6 levels at day 5 showed a trend towards lower levels as compared with day 0, but this trend was not statistically significant (p = 0.06). Conclusions Administration of allogeneic adipose-derived MSCs appears to be safe and feasible in the treatment of ARDS. However, the clinical effect with the doses of MSCs used is weak, and further optimization of this strategy will probably be required to reach the goal of reduced alveolar epithelial

  17. [Acute respiratory distress syndrome: definitions, mechanisms and treatment].

    PubMed

    Urso, Domenico Lorenzo

    2006-01-01

    Acute respiratory distress syndrome is a secondary acute respiratory insufficiency caused by an inflammatory syndrome which is characterized by an increased of permeability pulmonary edema, associated with many other clinic anomalies, radiological and pathophysiological not directly caused by, but with which it could coexist, a left atrial hypertension. The illness, characterized by refractory hypoxemia, recognizes several causes, which have direct or indirect harm on the cells of the membrane alveolus-capillary. In spite of the improvements in the therapeutic approach, during these last 40 years, represented by the aid of the mechanical ventilation and the use of selective pulmonary vasodilators, this condition is life threatening and often lethal: 90% of mortality rate amongst those older than 65 years. PMID:16913178

  18. Upright position mechanical ventilation: an alternative strategy for ALI/ARDS patients?

    PubMed

    Zhu, Min; Zhang, Wei; Wang, Jia-Ning; Yan, Hua; Li, Yang-Kai; Ai, Bo; Fu, Sheng-Lin; Fu, Xiang-Ning

    2009-11-01

    Use of body positioning to improve oxygenation in mechanically ventilated patients with acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) has been well documented. However, neither prone position ventilation nor side lying ventilation has been reported to improve the survival. Whether there is a body position superior to routine supine position or other positions as therapeutic adjunct for ventilated patients with ALI and ARDS? We propose the hypothesis that upright position ventilation may be helpful to improve oxygenation and benefit patients with ALI/ARDS. According to the existing physiologic and pathophysiologic data of upright position investigation, we suppose that improvement of V/Q matching, increased functional residual capacity, alveolar recruitment, accelerated diaphragm recovery, early gastric emptying and enteric feeding may be a potential protect mechanism of upright position ventilation. Whether this can be translated into improvement in patient outcome should be further tested in clinical trial. PMID:19683402

  19. Atrial natriuretic factor and postnatal diuresis in respiratory distress syndrome.

    PubMed Central

    Rozycki, H J; Baumgart, S

    1991-01-01

    To find out if atrial natriuretic factor plays a part in the control of urine output during the initiation alone or throughout postnatal diuresis in neonates with respiratory distress syndrome, atrial natriuretic factor concentrations and clinical and renal variables were measured prospectively three times during the first three days of life in 13 premature infants. Atrial natriuretic factor concentrations rose significantly between the first and second sample times as did the urine output and output:input ratio. By the time that the third sample was taken, atrial natriuretic factor concentration had decreased significantly since the second sample had been taken, while urine flow was maintained. All subjects initiated a spontaneous diuresis that was related to the second concentration of atrial natriuretic factor. With partial correlation analysis a significant relationship was shown between the concentration of atrial natriuretic factor and the maintenance of urine output throughout the study period. Individual hormone concentrations did not, however, correlate with simultaneous renal variables. Changes in the concentrations of atrial natriuretic factor coincided with initiation of spontaneous diuresis in babies with respiratory distress syndrome, and may have a role in the complex mechanisms that maintain this diuresis. PMID:1825462

  20. The Role of Surfactant in Respiratory Distress Syndrome

    PubMed Central

    Ma, Christopher Cheng-Hwa; Ma, Sze

    2012-01-01

    The key feature of respiratory distress syndrome (RDS) is the insufficient production of surfactant in the lungs of preterm infants. As a result, researchers have looked into the possibility of surfactant replacement therapy as a means of preventing and treating RDS. We sought to identify the role of surfactant in the prevention and management of RDS, comparing the various types, doses, and modes of administration, and the recent development. A PubMed search was carried out up to March 2012 using phrases: surfactant, respiratory distress syndrome, protein-containing surfactant, protein-free surfactant, natural surfactant, animal-derived surfactant, synthetic surfactant, lucinactant, surfaxin, surfactant protein-B, surfactant protein-C. Natural, or animal-derived, surfactant is currently the surfactant of choice in comparison to protein-free synthetic surfactant. However, it is hoped that the development of protein-containing synthetic surfactant, such as lucinactant, will rival the efficacy of natural surfactants, but without the risks of their possible side effects. Administration techniques have also been developed with nasal continuous positive airway pressure (nCPAP) and selective surfactant administration now recommended; multiple surfactant doses have also reported better outcomes. An aerosolised form of surfactant is being trialled in the hope that surfactant can be administered in a non-invasive way. Overall, the advancement, concerning the structure of surfactant and its mode of administration, offers an encouraging future in the management of RDS. PMID:22859930

  1. Role of Inhaled Nitric Oxide in the Management of Severe Acute Respiratory Distress Syndrome

    PubMed Central

    Hunt, Juliette Lucinda; Bronicki, Ronald A.; Anas, Nick

    2016-01-01

    To date, there have been several systematic reviews with meta-analysis that have shown no reduction in mortality with the use of inhaled nitric oxide (iNO) in patients with acute respiratory distress syndrome (ARDS). Importantly, these reports fail to make a distinction between the pediatric and adult patient. The number of adult patients in these reviews are far greater than the number of pediatric patients, which makes it difficult to interpret the data regarding the role of iNO on the pediatric population. Extrapolating data from the adult population to the pediatric population is complicated as we know that physiology and the body’s response to disease can be different between adult and pediatric patients. iNO has been demonstrated to improve outcomes in term and near-term infants with hypoxic respiratory failure associated with pulmonary hypertension. Recently, Bronicki et al. published a prospective randomized control trial investigating the impact of iNO on the pediatric patient population with acute respiratory failure. In this study, a benefit of decreased duration of mechanical ventilation and an increased rate of ECMO-free survival was demonstrated in patients who were randomized to receiving iNO, suggesting that there may be benefit to the use of iNO in pediatric ARDS (PARDS) that has not been demonstrated in adults. iNO has repeatedly been shown to transiently improve oxygenation in all age groups, and yet neonates and pediatric patients have shown improvement in other outcomes that have not been seen in adults. The mechanism that explains improvement with the use of iNO in these patient populations are not well understood but does not appear to be solely a result of sustained improvement in oxygenation. There are physiologic studies that suggest alternative mechanisms for explaining the positive effects of iNO, such as platelet aggregation inhibition and reduction in systemic inflammation. Hence, the role of iNO by various mechanisms and in various

  2. A Stromal Cell–Derived Factor 1α Analogue Improves Endothelial Cell Function in Lipopolysaccharide-Induced Acute Respiratory Distress Syndrome

    PubMed Central

    Guo, Changrun; Goodwin, Andrew; Buie, Joy N Jones; Cook, James; Halushka, Perry; Argraves, Kelley; Zingarelli, Basilia; Zhang, Xian; Wang, Liping; Fan, Hongkuan

    2016-01-01

    Endothelial cell (EC) dysfunction is a critical mediator of the acute respiratory distress syndrome (ARDS). Recent studies have demonstrated that stromal cell–derived factor 1α (SDF-1α) promotes EC barrier integrity. Our previous studies used a SDF-1α analogue CTCE-0214 (CTCE) in experimental sepsis and demonstrated that it attenuated vascular leak and modulated microRNA (miR) levels. We examined the hypothesis that CTCE improves EC function in lipopolysaccharide (LPS)-induced ARDS through increasing miR-126 expression. Human microvascular endothelial cells (HMVECs) were treated with thrombin to disrupt the EC integrity followed by incubation with CTCE or SDF-1α. Barrier function was determined by trans-endothelial electrical resistance assay. CTCE-induced alterations in miRNA expression and signaling pathways involved in barrier function were determined. Thrombin-induced vascular leak was abrogated by both CTCE and SDF-1α. CTCE also prevented thrombin-induced decreases of vascular endothelial (VE)-cadherin cell surface expression and expansion of the intercellular space. CTCE increased miR-126 levels and induced activation of AKT/Rac 1 signaling. Cotreatment with a miR-126 inhibitor blocked the protective effects of CTCE on AKT activation and endothelial permeability. In subsequent in vivo studies, ARDS was induced by intratracheal instillation of LPS. Intravenous injection of CTCE diminished the injury severity as evidenced by significant reductions in protein, immune cells, inflammatory cytokines and chemokines in the bronchoalveolar lavage fluid, increased miR-126 expression and decreased pulmonary vascular leak and alveolar edema. Taken together, our data show that CTCE improves endothelial barrier integrity through increased expression of miR-126 and activation of Rac 1 signaling and represents an important potential therapeutic strategy in ARDS. PMID:27031787

  3. Effect of intravenous β-2 agonist treatment on clinical outcomes in acute respiratory distress syndrome (BALTI-2): a multicentre, randomised controlled trial

    PubMed Central

    Smith, Fang Gao; Perkins, Gavin D; Gates, Simon; Young, Duncan; McAuley, Daniel F; Tunnicliffe, William; Khan, Zahid; Lamb, Sarah E

    2012-01-01

    Summary Background In a previous randomised controlled phase 2 trial, intravenous infusion of salbutamol for up to 7 days in patients with acute respiratory distress syndrome (ARDS) reduced extravascular lung water and plateau airway pressure. We assessed the effects of this intervention on mortality in patients with ARDS. Methods We did a multicentre, placebo-controlled, parallel-group, randomised trial at 46 UK intensive-care units between December, 2006, and March, 2010. Intubated and mechanically ventilated patients (aged ≥16 years) within 72 h of ARDS onset were randomly assigned to receive either salbutamol (15 μg/kg ideal bodyweight per h) or placebo for up to 7 days. Randomisation was done by a central telephone or web-based randomisation service with minmisation by centre, pressure of arterial oxygen to fractional inspired oxygen concentration (PaO2/FIO2) ratio, and age. All participants, caregivers, and investigators were masked to group allocation. The primary outcome was death within 28 days of randomisation. Analysis was by intention-to-treat. This trial is registered, ISRCTN38366450 and EudraCT number 2006-002647-86. Findings We randomly assigned 162 patients to the salbutamol group and 164 to the placebo group. One patient in each group withdrew consent. Recruitment was stopped after the second interim analysis because of safety concerns. Salbutamol increased 28-day mortality (55 [34%] of 161 patients died in the salbutamol group vs 38 (23%) of 163 in the placebo group; risk ratio [RR] 1·47, 95% CI 1·03–2·08). Interpretation Treatment with intravenous salbutamol early in the course of ARDS was poorly tolerated. Treatment is unlikely to be beneficial, and could worsen outcomes. Routine use of β-2 agonist treatment in ventilated patients with this disorder cannot be recommended. Funding UK Medical Research Council, UK Department of Health, UK Intensive Care Foundation. PMID:22166903

  4. [The ultrastructural morphogenetic bases of the adult respiratory distress syndrome].

    PubMed

    Di Carlo, V; Staudacher, C; Chiesa, R; Cristallo, M; Bevilacqua, G

    1980-09-01

    Sequential study of the submicroscopic pathological events characterising the natural history of the adult respiratory distress syndrome has pinpointed three different development stages related to clinical course and prognosis. In the first stage, the decisive biological element is represented by the increase in capillary permeability, whose morphological substrate consists of the distension of intercellular junctions. The result is the formation of interstitial oedema with the characteristics of the exudate. In the second stage, when reversibility is still possible, fluid and proteins pass into the alveolus. Finally, in the third stage, the persisting stimulus of pulmonary capillaries leads on the one hand to the formation of hyaline membranes and, on the other, to a reactive lung response in the form of interstitial fibrinogenesis and hyperplasia of granular pneumocytes. PMID:7219756

  5. Hemoptysis and Acute Respiratory Syndrome (ARDS) as Delayed-Type Hypersensitivity After FOLFOX4 Plus Bevacizumab Treatment

    PubMed Central

    Kobayashi, Takaaki; Masaki, Tadahiko; Kogawa, Koji; Matsuoka, Hiroyoshi; Sugiyama, Masanori

    2013-01-01

    As there have been many multidrug regimens introduced in colorectal cancer treatment, hypersensitivity is more often encountered than in the past. Though most allergic adverse events of oxaliplatin are mainly classified as type I reaction, a limited number of case reports of type IV reaction (delayed-type hypersensitivity) have been reported. A 73-year-old man was hospitalized for receiving the third cycle of FOLFOX4 plus bevacizumab. Forty-two hours after administration, he had dyspnea and hemoptysis. Acute respiratory distress syndrome was suspected, and the patient underwent mechanical ventilation and steroid pulse therapy. Delayed-type hypersensitivity is induced by induction of inflammation via IL-1, TNF-α and IL-6. The serum level of IL-6 in patients with advanced colorectal cancers is usually greater than the normal range. Therefore, delayed-type hypersensitivity may be easily induced in those patients. We should pay special attention to delayed-type hypersensitivity in advanced colorectal cancer patients undergoing FOLFOX treatment. PMID:24229039

  6. Functional characterization of polymorphisms in the peptidase inhibitor 3 (elafin) gene and validation of their contribution to risk of acute respiratory distress syndrome.

    PubMed

    Tejera, Paula; O'Mahony, D Shane; Owen, Caroline A; Wei, Yongyue; Wang, Zhaoxi; Gupta, Kushagra; Su, Li; Villar, Jesus; Wurfel, Mark; Christiani, David C

    2014-08-01

    Elafin (peptidase inhibitor 3 [PI3]) and its biologically active precursor, pre-elafin, are neutrophil serine proteinase inhibitors with an important role in preventing excessive tissue injury during inflammatory events. Recently, we reported an association between single-nucleotide polymorphism (SNP) rs2664581 in the PI3 gene, increased risk of acute respiratory distress syndrome (ARDS) and pre-elafin circulating levels. This study aims to validate the legitimacy of this association by using a cohort of patients who met the criteria for systemic inflammatory response syndrome and were at risk of developing ARDS (n = 840). A comprehensive functional study of SNPs in PI3 gene was also performed. Luciferase assays and electrophoretic mobility shift assays were conducted to determine the functional relevance of promoter region variants. The effect of the coding SNP rs2664581 on the neutrophil elastase inhibitory activity and transglutaminase binding properties of pre-elafin was also investigated. The variant allele of rs2664581 (C) was significantly associated with increased ARDS risk, mainly among subjects with sepsis (odds ratio = 1.44; 95% confidence interval = 1.04-1.99; P = 0.0276, adjusted by age, sex, and Acute Physiology and Chronic Health Evaluation III). Pre-elafin recombinant protein carrying the amino acid change associated with rs2664581 (Thr34Pro, mutant protein [MT]) had greater capacity to undergo transglutaminase-mediated cross-linking to immobilized fibronectin than wild-type protein in vitro (P < 0.003). No differences were observed in the neutrophil elastase inhibitory activities of wild-type versus MT proteins. In addition, the risk allele-promoter construct had significantly lower cytokine-induced transcriptional activity. Electrophoretic mobility shift assay results indicated a differential binding of nuclear proteins to the G and A alleles of SNP -338G > A. Our results confirm the association between SNP rs2664581 and enhanced risk of ARDS

  7. Functional Characterization of Polymorphisms in the Peptidase Inhibitor 3 (Elafin) Gene and Validation of Their Contribution to Risk of Acute Respiratory Distress Syndrome

    PubMed Central

    Tejera, Paula; O’Mahony, D. Shane; Owen, Caroline A.; Wei, Yongyue; Wang, Zhaoxi; Gupta, Kushagra; Su, Li; Villar, Jesus; Wurfel, Mark

    2014-01-01

    Elafin (peptidase inhibitor 3 [PI3]) and its biologically active precursor, pre-elafin, are neutrophil serine proteinase inhibitors with an important role in preventing excessive tissue injury during inflammatory events. Recently, we reported an association between single-nucleotide polymorphism (SNP) rs2664581 in the PI3 gene, increased risk of acute respiratory distress syndrome (ARDS) and pre-elafin circulating levels. This study aims to validate the legitimacy of this association by using a cohort of patients who met the criteria for systemic inflammatory response syndrome and were at risk of developing ARDS (n = 840). A comprehensive functional study of SNPs in PI3 gene was also performed. Luciferase assays and electrophoretic mobility shift assays were conducted to determine the functional relevance of promoter region variants. The effect of the coding SNP rs2664581 on the neutrophil elastase inhibitory activity and transglutaminase binding properties of pre-elafin was also investigated. The variant allele of rs2664581 (C) was significantly associated with increased ARDS risk, mainly among subjects with sepsis (odds ratio = 1.44; 95% confidence interval = 1.04–1.99; P = 0.0276, adjusted by age, sex, and Acute Physiology and Chronic Health Evaluation III). Pre-elafin recombinant protein carrying the amino acid change associated with rs2664581 (Thr34Pro, mutant protein [MT]) had greater capacity to undergo transglutaminase-mediated cross-linking to immobilized fibronectin than wild-type protein in vitro (P < 0.003). No differences were observed in the neutrophil elastase inhibitory activities of wild-type versus MT proteins. In addition, the risk allele–promoter construct had significantly lower cytokine-induced transcriptional activity. Electrophoretic mobility shift assay results indicated a differential binding of nuclear proteins to the G and A alleles of SNP −338G > A. Our results confirm the association between SNP rs2664581 and enhanced risk of

  8. Surfactant replacement therapy for adult respiratory distress syndrome in children.

    PubMed

    Evans, D A; Wilmott, R W; Whitsett, J A

    1996-05-01

    Surfactant replacement therapy may have a role in the treatment of ARDS in children. The current studies suggest that rapid instillation of exogenous surfactant is more effective than slow tracheal instillation or aerosolized delivery. Studies suggest that exogenous surfactant given early in the development of ARDS is more effective than therapy provided late in the course of the disease. Natural surfactants appear to be more effective than artificial surfactants due to the presence of SP-B and SP-C, which prevent inhibition of the exogenous surfactant by the protein leakage into the alveolus that is characteristic of ARDS. Exogenous surfactant replacement therapy appears to be safe and well tolerated. A surfactant that can be delivered by aerosol would be useful since this is more easily tolerated by the patients, requires less surfactant, and would be more cost effective when compared with tracheal instillation. Aerosolized surfactant could be given to patients who have not yet required mechanical ventilation, thus potentially preventing the progression of the acute lung injury to respiratory failure. The recent failure of a large multi-center trial of aerosolized Exosurf for the treatment of sepsis-related ARDS72 may have been due to the failure of the delivery system as opposed to the surfactant used in the trial; therefore, further research into aerosol delivery systems is needed. There may be different responses to exogenous surfactant therapy by patients with ARDS of different etiologies, such as aspiration pneumonia, sepsis, or trauma. Well-planned placebo-controlled trials will be required to determine these differences. The data supporting the role of surfactant replacement for the treatment of ARDS in children is growing. However, before widespread use of surfactant is considered, a multi-center, placebo-controlled trial will be required to establish the safety and efficacy of surfactant replacement in such patients. PMID:8726159

  9. 3D cine magnetic resonance imaging of rat lung ARDS using gradient-modulated SWIFT with retrospective respiratory gating

    NASA Astrophysics Data System (ADS)

    Kobayashi, Naoharu; Lei, Jianxun; Utecht, Lynn; Garwood, Michael; Ingbar, David H.; Bhargava, Maneesh

    2015-03-01

    SWeep Imaging with Fourier Transformation (SWIFT) with gradient modulation and DC navigator retrospective gating is introduced as a 3D cine magnetic resonance imaging (MRI) method for the lung. In anesthetized normal rats, the quasi-simultaneous excitation and acquisition in SWIFT enabled extremely high sensitivity to the fast-decaying parenchymal signals (TE=~4 μs), which are invisible with conventional MRI techniques. Respiratory motion information was extracted from DC navigator signals and the SWIFT data were reconstructed to 3D cine images with 16 respiratory phases. To test this technique's capabilities, rats exposed to > 95% O2 for 60 hours for induction of acute respiratory distress syndrome (ARDS), were imaged and compared with normal rat lungs (N=7 and 5 for ARDS and normal groups, respectively). SWIFT images showed lung tissue density differences along the gravity direction. In the cine SWIFT images, a parenchymal signal drop at the inhalation phase was consistently observed for both normal and ARDS rats due to lung inflation (i.e. decrease of the proton density), but the drop was less for ARDS rats. Depending on the respiratory phase and lung region, the lungs from the ARDS rats showed 1-24% higher parenchymal signal intensities relative to the normal rat lungs, likely due to accumulated extravascular water (EVLW). Those results demonstrate that SWIFT has high enough sensitivity for detecting the lung proton density changes due to gravity, different phases of respiration and accumulation of EVLW in the rat ARDS lungs.

  10. Acute Respiratory Distress Syndrome Associated with Tumor Lysis Syndrome in a Child with Acute Lymphoblastic Leukemia

    PubMed Central

    Macaluso, Alessandra; Genova, Selene; Maringhini, Silvio; Coffaro, Giancarlo; Ziino, Ottavio; D’Angelo, Paolo

    2015-01-01

    Tumor lysis syndrome is a serious and dangerous complication usually associated with antiblastic treatment in some malignancies characterized by high cell turn-over. Mild or severe electrolyte abnormalities including high serum levels of uric acid, potassium, phosphorus, creatinine, bun and reduction of calcium can be responsible for multi-organ failure, involving mostly kidneys, heart and central nervous system. Renal damage can be followed by acute renal failure, weight gain, progressive liver impairment, overproduction of cytokines, and subsequent maintenance of multi-organ damage. Life-threatening acute respiratory failure associated with tumor lysis syndrome is rare. We describe a child with T-cell acute lymphoblastic leukemia, who developed an unusually dramatic tumor lysis syndrome, after administration of the first low doses of steroid, that was rapidly associated with severe acute respiratory distress syndrome. Subsequent clinical course and treatment modalities that resulted in the gradual and full recovery of the child are also described. PMID:25918625

  11. Acute respiratory distress syndrome in a 10-year-old dog.

    PubMed Central

    Hunter, T L

    2001-01-01

    A 10-year-old shih tzu was presented with lethargy, anorexia, coughing, and dyspnea of 2 days' duration. Despite treatment with parenteral fluids, corticosteroids, antibiotics, and diuretics, the dog died. Acute respiratory distress syndrome was diagnosed histologically. PMID:11565374

  12. Successful treatment of adult respiratory distress syndrome by histamine and prostaglandin blockade in a porcine Pseudomonas model.

    PubMed

    Sielaff, T D; Sugerman, H J; Tatum, J L; Blocher, C R

    1987-08-01

    Porcine Pseudomonas adult respiratory distress syndrome (ARDS) has been shown to respond to combination therapy of 150 mg of cimetidine, 12.5 mg/kg of ibuprofen, 10 mg/kg of diphenhydramine, 0.2 mg/kg of ketanserin, and 30 mg/kg of methylprednisolone (CIDKM or Poly-5) given at 20 and 120 minutes after the onset of a continuous infusion of liver Pseudomonas aeruginosa, 5 X 10(8) colony-forming units (CFU) ml at 0.3 ml/20 kg/min. The present study was designed to determine the minimal, effective therapy by selective deletion of individual agents from CIDKM. Eight groups were studied: saline control (S, n = 9), Pseudomonas control (P, n = 8), and the following Pseudomonas plus treatment groups (each n = 5): CIDKM (cimetidine, ibuprofen, diphenhydramine, and ketanserin), CID (cimetidine, ibuprofen, and diphenhydramine), IC (ibuprofen and cimetidine), ID (ibuprofen and diphenhydramine), and CD (cimetidine and diphenhydramine). Pseudomonas alone produced severe ARDS with significant (p less than .05) decreases in PAO2 cardiac index, and systemic arterial pressure and significant increases in pulmonary artery pressure, extravascular lung water (EVLW) and scintigraphically determined pulmonary albumin flux measured as slope index (SI). Full therapy, CIDKM or Poly-5, showed significant improvement in all parameters. Deletion of methylprednisolone did not significantly effect any parameter measured. The deletion of ketanserin, leaving CID, did not alter treatment efficacy, except for a significant decline in cardiac index at 3 hours. Deletion of ibuprofen from CID resulted in a failure to reverse pulmonary arterial hypertension, hypoxemia, elevated EVLW, and increased SI. Removal of either cimetidine or diphenhydramine from CID resulted in significant increases in EVLW compared with control levels and SI compared with both control levels and CID. These results indicate that a combination of both histamine H1 and H2 receptor blockers and the cyclooxygenase inhibitor

  13. Omentin protects against LPS-induced ARDS through suppressing pulmonary inflammation and promoting endothelial barrier via an Akt/eNOS-dependent mechanism.

    PubMed

    Qi, Di; Tang, Xumao; He, Jing; Wang, Daoxin; Zhao, Yan; Deng, Wang; Deng, Xinyu; Zhou, Guoqi; Xia, Jing; Zhong, Xi; Pu, Shenglan

    2016-01-01

    Acute respiratory distress syndrome (ARDS) is characterized by increased pulmonary inflammation and endothelial barrier permeability. Omentin has been shown to benefit obesity-related systemic vascular diseases; however, its effects on ARDS are unknown. In the present study, the level of circulating omentin in patients with ARDS was assessed to appraise its clinical significance in ARDS. Mice were subjected to systemic administration of adenoviral vector expressing omentin (Ad-omentin) and one-shot treatment of recombinant human omentin (rh-omentin) to examine omentin's effects on lipopolysaccharide (LPS)-induced ARDS. Pulmonary endothelial cells (ECs) were treated with rh-omentin to further investigate its underlying mechanism. We found that a decreased level of circulating omentin negatively correlated with white blood cells and procalcitonin in patients with ARDS. Ad-omentin protected against LPS-induced ARDS by alleviating the pulmonary inflammatory response and endothelial barrier injury in mice, accompanied by Akt/eNOS pathway activation. Treatment of pulmonary ECs with rh-omentin attenuated inflammatory response and restored adherens junctions (AJs), and cytoskeleton organization promoted endothelial barrier after LPS insult. Moreover, the omentin-mediated enhancement of EC survival and differentiation was blocked by the Akt/eNOS pathway inactivation. Therapeutic rh-omentin treatment also effectively protected against LPS-induced ARDS via the Akt/eNOS pathway. Collectively, these data indicated that omentin protects against LPS-induced ARDS by suppressing inflammation and promoting the pulmonary endothelial barrier, at least partially, through an Akt/eNOS-dependent mechanism. Therapeutic strategies aiming to restore omentin levels may be valuable for the prevention or treatment of ARDS. PMID:27607575

  14. A PREGNANT WOMAN WITH AVIAN INFLUENZA A (H7N9) VIRUS PNEUMONIA AND ARDS MANAGED WITH EXTRACORPOREAL MEMBRANE OXYGENATION.

    PubMed

    Wang, Guyi; Zhou, Yanyan; Gong, Subo; Dong, Haiyun; Wu, Guobao; Xiang, Xudong; Tang, Jianjun

    2015-05-01

    We report a case of H7N9 avian influenza pneumonia in a pregnant woman who developed acute respiratory distress syndrome (ARDS) managed with extracorporeal membrane oxygenation (ECMO). A 29-year-old, 27 week pregnant woman developed rapidly progressive pneumonia with bilateral infiltrates on chest x-ray and was confirmed to have influenza A (H7N9) infection. Her condition deteriorated and she developed ARDS which was managed with veno-venous extracorporeal membrane oxygenation (V-V ECMO) and treated with antimicrobials. Her clinical symptoms and oxygenation gradually improved and the ECMO was discontinued on the 19t day. Unfortunately, she suddenly died a few days later, due to a presumed pulmonary embolism. Based on our experience, ECMO may be useful to manage pneumonia due to H7N9 avian influenza and ARDS in pregnant women. PMID:26521517

  15. Early airway pressure release ventilation prevents ARDS-a novel preventive approach to lung injury.

    PubMed

    Roy, Shreyas; Habashi, Nader; Sadowitz, Benjamin; Andrews, Penny; Ge, Lin; Wang, Guirong; Roy, Preyas; Ghosh, Auyon; Kuhn, Michael; Satalin, Joshua; Gatto, Louis A; Lin, Xin; Dean, David A; Vodovotz, Yoram; Nieman, Gary

    2013-01-01

    Acute respiratory distress syndrome (ARDS) afflicts 200,000 patients annually with a mortality rate of 30% to 60% despite wide use of low tidal volume (LTV) ventilation, the present standard of care. High-permeability alveolar edema and instability occur early in the development of ARDS, before clinical signs of lung injury, and represent potential targets for therapy. We hypothesize that early application of a protective ventilation strategy (airway pressure release ventilation [APRV]) will stabilize alveoli and reduce alveolar edema, preventing the development of ARDS. Yorkshire pigs (30-40 kg) were anesthetized and subjected to two-hit injury: (a) intestinal ischemia-reperfusion, (b) peritoneal sepsis, or sham surgery. Following surgery, pigs were randomized into APRV (n = 4), according to current published guidelines for APRV; LTV ventilation (n = 3), using the current published ARDS Network guidelines (6 mL/kg); or sham (n = 5). The clinical care of all pigs was administered per the Surviving Sepsis Campaign guidelines. Animals were killed, and necropsy performed at 48 h. Arterial blood gases were measured to assess for the development of clinical lung injury. Lung tissue epithelial cadherin (E-cadherin) was measured to assess alveolar permeability. Bronchoalveolar lavage fluid (BALF) surfactant protein A was measured to assess alveolar stability. Lung edema content and histopathology were analyzed at 48 h. Airway pressure release ventilation pigs did not develop ARDS. In contrast, pigs in the LTV ventilation met ARDS criteria (PaO2/FIO2 ratio) (APRV: baseline = 471 ± 16; 48 h = 392 ± 8; vs. LTV ventilation: baseline = 551 ± 28; 48 h = 138 ± 88; P < 0.001). Airway pressure release ventilation preserved alveolar epithelial integrity demonstrated by higher levels of E-cadherin in lung tissue as compared with LTV ventilation (P < 0.05). Surfactant protein A levels were higher in BALF from the APRV group, suggesting APRV preserved alveolar stability

  16. Increased incidence of neonatal respiratory distress in infants with mucopolysaccharidosis type II (MPS II, Hunter syndrome).

    PubMed

    Dodsworth, Charlotte; Burton, Barbara K

    2014-02-01

    Records were reviewed on all patients with mucopolysaccharidosis type II (Hunter syndrome) seen at a single institution from 1999 to 2013 to identify those with a history of neonatal intensive care. Eleven of 34 patients were in a neonatal intensive care unit and all had respiratory distress with 8 diagnoses of respiratory distress syndrome and 3 of transient tachypnea of the newborn. None of the infants were premature; four were delivered by cesarean section. These findings suggest that respiratory distress is more commonly observed in neonates with MPS II than in the general population. This may reflect airway disease already present in this disorder at the time of birth. PMID:24238892

  17. [Non-cardiogenic pulmonary edema, acute respiratory distress syndrome].

    PubMed

    Skalická, Hana; Bělohlávek, Jan

    2015-01-01

    Non-cardiogenic pulmonary edema is a clinical syndrome manifested by rapidly progressive respiratory distress leading, without therapy, to severe respiratory insufficiency and subsequent multiorgan failure. The pathophysiological causes are: the change in the pressure gradients in the pulmonary capillaries, the impaired membrane permeability of the alveolocapillary in the lungs, and impaired lymphatic drainage. Unlike in cardiogenic pulmonary edema, cardiac disease is not a cause, and there is no increase in wedge pressure (< 18 mm Hg). The aetiological base is diverse and includes more clinical pathological factors. The diagnosis and evaluation are usually very difficult due to the rapidly deteriorating clinical condition of the patients. A decisive, quick and comprehensive approach, using all available invasive and non-invasive methods is necessary. The basic steps of treatment are: the use of different types of ventilatory support in order to achieve adequate oxygenation, dealing with possible hemodynamic instability, and, when needed, other specific procedures. It is always important to keep in mind that this is a very serious condition with a high mortality rate. And there is a need for fast and efficient access to the best specialized clinic. PMID:26750623

  18. Respiratory distress syndrome in the newborn: role of oxidative stress.

    PubMed

    Gitto, E; Reiter, R J; Karbownik, M; Xian-Tan, D; Barberi, I

    2001-07-01

    Reactive oxygen and nitrogen species are generated by several inflammatory and structural cells of the airways. These oxidant species have important effects on a variety of lung cells as regulators of signal transduction, activators of key transcription factors and modulators of gene expression and apoptosis. Thus, increased oxidative stress accompanied by reduced endogenous antioxidant defenses may play a role in the pathogenesis of a number of inflammatory pulmonary diseases, including respiratory distress syndrome (RDS) in the newborn. There obviously are conflicting reports on the effect of oxygen, ventilation and nitric oxide (NO) on RDS and, thus, the question arises as what the neonatologist should do when confronted with a newborn with RDS. Clearly, utilizing lung protective strategies requires compromises between gas exchange goals and potential toxicities associated with over-distension, derecruitment of lung units and high oxygen concentrations. The results discussed in this brief review suggest rigorous clinical tests with antioxidants which may help to define the mechanisms associated with RDS and which could lead to new treatment strategies. PMID:11534558

  19. [Current approaches to the treatment of severe hypoxic respiratory insufficiency (acute lung injury; acute respiratory distress syndrome)].

    PubMed

    Kluge, S; Müller, T; Pfeifer, M

    2011-02-01

    Lung-protective ventilation with a low tidal volume, plateau pressure < 30 cm H(2)O. oxygen saturation > 90% and permissive hypercapnia results in reduction of the mortality rate in patients with acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). The level of the positive end-expiratory pressure (PEEP) must be chosen in relation to oxygen requirement. High frequency oscillatory ventilation and neurally adjusted ventilatory assist are promising methods. However, further studies with firm end-points have to be awaited before a final judgment is possible. Veno-venous extracorporeal membrane oxygenation (ECMO) can ensure life-sustaining gas exchange in patients with severe vitally compromised pulmonary failure, to provide time for lung tissue to heal and reduce ventilatory stress. The latest guidelines for analgesia and sedation in intensive care medicine demand consistent monitoring of the level of sedation and the intensity of pain. The sedation should be interrupted daily, with phases of awakenings and, if possible, spontaneous breathing. Methods of supportive treatment: Positional treatment (prone position) and inhalation of vasodilators can improve ventilation/perfusion mismatch and thus oxygenation. However, administration of surfactant is currently not advised in adult respiratory failure. PMID:21271478

  20. 3,5,4′-Tri-O-acetylresveratrol Attenuates Lipopolysaccharide-Induced Acute Respiratory Distress Syndrome via MAPK/SIRT1 Pathway

    PubMed Central

    Ma, Lijie; Zhao, Yilin; Wang, Ruixuan; Chen, Tingting; Li, Wangping; Nan, Yandong; Liu, Xueying; Jin, Faguang

    2015-01-01

    The aim of the present research was to investigate the protecting effects of 3,5,4′-tri-O-acetylresveratrol (AC-Rsv) on LPS-induced acute respiratory distress syndrome (ARDS). Lung injuries have been evaluated by histological examination, wet-to-dry weight ratios, and cell count and protein content in bronchoalveolar lavage fluid. Inflammation was assessed by MPO activities and cytokine secretion in lungs and cells. The results showed that AC-Rsv significantly reduced the mortality of mice stimulated with LPS. Pretreatment of AC-Rsv attenuated LPS-induced histological changes, alleviated pulmonary edema, reduced blood vascular leakage, and inhibited the MPO activities in lungs. What was more, AC-Rsv and Rsv treatment reduced the secretion of TNF-α, IL-6, and IL-1β in lungs and NR8383 cells, respectively. Further exploration revealed that AC-Rsv and Rsv treatment relieved LPS-induced inhibition on SIRT1 expression and restrained the activation effects of LPS on MAPKs and NF-κB activation both in vitro and in vivo. More importantly, in vivo results have also demonstrated that the protecting effects of Rsv on LPS-induced inflammation would be neutralized when SIRT1 was in-hibited by EX527. Taken together, these results indicated that AC-Rsv protected lung tissue against LPS-induced ARDS by attenuating inflammation via p38 MAPK/SIRT1 pathway. PMID:26648661

  1. Use of ECMO in the Management of Severe Acute Respiratory Distress Syndrome: A Survey of Academic Medical Centers in the United States.

    PubMed

    Sharma, Nirmal S; Wille, Keith M; Zhi, Degui; Thannickal, Victor J; Brodie, Daniel M; Hoopes, Charles W; Diaz-Guzman, Enrique

    2015-01-01

    Mortality of severe acute respiratory distress syndrome (ARDS) remains high. Once conventional mechanical ventilation fails, alternative modes of therapy are used; most of which have limited evidence to support their use. No definitive guidelines exist for the management of these patients with alternate modalities of treatment. We conducted a cross-sectional national survey of 302 adult critical care training programs in the United States to understand the current preferences of intensivists regarding the use of different therapies for severe ARDS, including the use of extracorporeal membrane oxygenation (ECMO). A total of 381 responses were received: 203 critical care faculty and 174 critical care trainees. Airway pressure release ventilation was the initial choice of treatment reported by most when conventional mechanical ventilation strategy failed followed by inhaled nitric oxide and prone positioning. Extracorporeal membrane oxygenation availability was reported by 80% of the respondents at their institutions. Most respondents (83%) would consider ECMO in patients who fail optimal mechanical ventilation strategies, and the majority (60%) believed that ECMO use can facilitate lung protective ventilation, but few favored its use as a first-line modality. The majority of respondents reported limited knowledge of ECMO and desired specific ECMO education during training. PMID:25914957

  2. Disease-specific dynamic biomarkers selected by integrating inflammatory mediators with clinical informatics in ARDS patients with severe pneumonia.

    PubMed

    Chen, Chengshui; Shi, Lin; Li, Yuping; Wang, Xiangdong; Yang, Shuanying

    2016-06-01

    Acute respiratory distress syndrome (ARDS) is a heterogeneous syndrome that occurs as a result of various risk factors, including either direct or indirect lung injury, and systemic inflammation triggered also by severe pneumonia (SP). SP-ARDS-associated morbidity and mortality remains high also due to the lack of disease-specific biomarkers. The present study aimed at identifying disease-specific biomarkers in SP or SP-ARDS by integrating proteomic profiles of inflammatory mediators with clinical informatics. Plasma was sampled from the healthy as controls or patients with SP infected with bacteria or infection-associated SP-ARDS on the day of admission, day 3, and day 7. About 15 or 52 cytokines showed significant difference between SP and SP-ARDS patients with controls or 13 between SP-ARDS with SP alone and controls, including bone morphogenetic protein-15 (BMP-15), chemokine (C-X-C motif) ligand 16 (CXCL16), chemokine (C-X-C motif) receptor 3 (CXCR3), interleukin-6 (IL-6), protein NOV homolog (NOV/CCN3), glypican 3, insulin-like growth factor binding protein 4 (IGFBP-4), IL-5, IL-5 R alpha, IL-22 BP, leptin, MIP-1d, and orexin B with a significant correlation with Digital Evaluation Score System (DESS) scores. ARDS patients with overexpressed IL-6, CXCL16, or IGFBP-4 had significantly longer hospital stay and higher incidence of secondary infection. We also found higher levels of those mediators were associated with poor survival rates in patients with lung cancer and involved in the process of the epithelial mesenchymal transition of alveolar epithelial cells. Our preliminary study suggested that integration of proteomic profiles with clinical informatics as part of clinical bioinformatics is important to validate and optimize disease-specific and disease-staged biomarkers. PMID:27095254

  3. Intra-breath arterial oxygen oscillations detected by a fast oxygen sensor in an animal model of acute respiratory distress syndrome

    PubMed Central

    Formenti, F.; Chen, R.; McPeak, H.; Murison, P. J.; Matejovic, M.; Hahn, C. E. W.; Farmery, A. D.

    2015-01-01

    Background There is considerable interest in oxygen partial pressure (Po2) monitoring in physiology, and in tracking Po2 changes dynamically when it varies rapidly. For example, arterial Po2 (PaO2) can vary within the respiratory cycle in cyclical atelectasis (CA), where PaO2 is thought to increase and decrease during inspiration and expiration, respectively. A sensor that detects these PaO2 oscillations could become a useful diagnostic tool of CA during acute respiratory distress syndrome (ARDS). Methods We developed a fibreoptic Po2 sensor (<200 µm diameter), suitable for human use, that has a fast response time, and can measure Po2 continuously in blood. By altering the inspired fraction of oxygen (FIO2) from 21 to 100% in four healthy animal models, we determined the linearity of the sensor's signal over a wide range of PaO2 values in vivo. We also hypothesized that the sensor could measure rapid intra-breath PaO2 oscillations in a large animal model of ARDS. Results In the healthy animal models, PaO2 responses to changes in FIO2 were in agreement with conventional intermittent blood-gas analysis (n=39) for a wide range of PaO2 values, from 10 to 73 kPa. In the animal lavage model of CA, the sensor detected PaO2 oscillations, also at clinically relevant PaO2 levels close to 9 kPa. Conclusions We conclude that these fibreoptic PaO2 sensors have the potential to become a diagnostic tool for CA in ARDS. PMID:25631471

  4. Administration of microparticles from blood of the lipopolysaccharide-treated rats serves to induce pathologic changes of acute respiratory distress syndrome.

    PubMed

    Li, Hongxia; Meng, Xiangyu; Liang, Xiaoyan; Gao, Yue; Cai, Shaohua

    2015-12-01

    This study was conducted to investigate the effect of intratracheal and intravenous administration of microparticles (MPs) on developing acute respiratory distress syndrome (ARDS). The blood MPs from lipopolysaccharide-treated rats were collected and examined by transmission electron microscopy (TEM). Cellular source of the MPs was identified by fluorescent-labeled antibodies after the circulating MPs were delivered to naïve rats. Levels of myeloperoxidase (MPO), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-10 productions in bronchoalveolar lavage fluid (BALF) and plasma were determined 24 h after the rats received intratracheal and intravenous administration of the MPs. Histopathologic examination of lungs was performed by light microscope. A TEM image of MPs showed spherical particles at a variable diameter from 0.1 to 0.5 µm. Endothelial- and leukocyte-derived vesicles were abundant in the investigated samples. Treatment with MPs may lead to significant increases in MPO, TNF-α, IL-1β, and IL-10 productions in BALF and plasma of the rats (all P < 0.001). Morphological observation indicated that alveolar structures were destroyed with a large amount of neutrophil infiltration in the lungs of the MP-treated rats. Perivascular and/or intra-alveolar hemorrhage were serious and hyaline membrane formed in the alveoli. Intratracheal and intravenous approaches to delivery of the circulating MPs to naïve recipient rats may induce ARDS. This presents an inducer of the onset of ARDS and provides potential therapeutic targets for attenuating lung injury. PMID:26088862

  5. Accuracy and precision of end-expiratory lung-volume measurements by automated nitrogen washout/washin technique in patients with acute respiratory distress syndrome

    PubMed Central

    2011-01-01

    Introduction End-expiratory lung volume (EELV) is decreased in acute respiratory distress syndrome (ARDS), and bedside EELV measurement may help to set positive end-expiratory pressure (PEEP). Nitrogen washout/washin for EELV measurement is available at the bedside, but assessments of accuracy and precision in real-life conditions are scant. Our purpose was to (a) assess EELV measurement precision in ARDS patients at two PEEP levels (three pairs of measurements), and (b) compare the changes (Δ) induced by PEEP for total EELV with the PEEP-induced changes in lung volume above functional residual capacity measured with passive spirometry (ΔPEEP-volume). The minimal predicted increase in lung volume was calculated from compliance at low PEEP and ΔPEEP to ensure the validity of lung-volume changes. Methods Thirty-four patients with ARDS were prospectively included in five university-hospital intensive care units. ΔEELV and ΔPEEP volumes were compared between 6 and 15 cm H2O of PEEP. Results After exclusion of three patients, variability of the nitrogen technique was less than 4%, and the largest difference between measurements was 81 ± 64 ml. ΔEELV and ΔPEEP-volume were only weakly correlated (r2 = 0.47); 95% confidence interval limits, -414 to 608 ml). In four patients with the highest PEEP (≥ 16 cm H2O), ΔEELV was lower than the minimal predicted increase in lung volume, suggesting flawed measurements, possibly due to leaks. Excluding those from the analysis markedly strengthened the correlation between ΔEELV and ΔPEEP volume (r2 = 0.80). Conclusions In most patients, the EELV technique has good reproducibility and accuracy, even at high PEEP. At high pressures, its accuracy may be limited in case of leaks. The minimal predicted increase in lung volume may help to check for accuracy. PMID:22166727

  6. Impairment and Distress Judgments of Symptoms Composing Childhood Externalizing and Internalizing Syndromes

    ERIC Educational Resources Information Center

    Howell, Andrew J.; Watson, David C.

    2009-01-01

    The pattern of perceived dysfunction associated with symptoms composing the externalizing childhood disorder syndrome was compared to the pattern characterizing the internalizing syndrome. In Study 1, undergraduate students (N = 205) judged the social impairment, academic/occupational impairment and personal distress associated with symptoms from…

  7. Survival Predictors for Severe ARDS Patients Treated with Extracorporeal Membrane Oxygenation: A Retrospective Study in China

    PubMed Central

    Liu, Xiaoqing; Xu, Yonghao; Zhang, Rong; Huang, Yongbo; He, Weiqun; Sang, Ling; Chen, Sibei; Nong, Lingbo; Li, Xi; Mao, Pu

    2016-01-01

    Extracorporeal membrane oxygenation (ECMO) is increasingly being applied as life support for acute respiratory distress syndrome (ARDS) patients. However, the outcomes of this procedure have not yet been characterized in severe ARDS patients. The aim of this study was to evaluate the outcomes of severe ARDS patients supported with ECMO and to identify potential predictors of mortality in these patients. A total of 38 severe ARDS patients (aged 51.39±13.27 years, 32 males) who were treated with ECMO in the specialized medical intensive care unit of Guangzhou Institute of Respiratory Diseases from July 2009 to December 2014 were retrospectively reviewed. The clinical data of the patients on the day before ECMO initiation, on the first day of ECMO treatment and on the day of ECMO removal were collected and analyzed. All patients were treated with veno-venous ECMO after a median mechanical ventilation duration of 6.4±7.6 days. Among the 20 patients (52.6%) who were successfully weaned from ECMO, 16 patients (42.1%) survived to hospital discharge. Of the identified pre-ECMO factors, advanced age, a long duration of ventilation before ECMO, a higher Acute Physiology and Chronic Health Evaluation II (APACHE II) score, underlying lung disease, and pulmonary barotrauma prior to ECMO were associated with unsuccessful weaning from ECMO. Furthermore, multiple logistic regression analysis indicated that both barotrauma pre-ECMO and underlying lung disease were independent predictors of hospital mortality. In conclusion, for severe ARDS patients treated with ECMO, barotrauma prior to ECMO and underlying lung disease may be major predictors of ARDS prognosis based on multivariate analysis. PMID:27336170

  8. Prone positioning improves survival in severe ARDS: a pathophysiologic review and individual patient meta-analysis.

    PubMed

    Gattinoni, L; Carlesso, E; Taccone, P; Polli, F; Guérin, C; Mancebo, J

    2010-06-01

    Prone positioning has been used for over 30 years in the management of patients with acute respiratory distress syndrome (ARDS). This maneuver has consistently proven capable of improving oxygenation in patients with acute respiratory failure. Several mechanisms can explain this observation, including possible intervening net recruitment and more homogeneously distributed alveolar inflation. It is also progressively becoming clear that prone positioning may reduce the nonphysiological stress and strain associated with mechanical ventilation, thus decreasing the risk of ventilator-induced lung injury, which is known to adversely impact patient survival. The available randomized clinical trials, however, have failed to demonstrate that prone positioning improves the outcomes of patients with ARDS overall. In contrast, the individual patient meta-analysis of the four major clinical trials available clearly shows that with prone positioning, the absolute mortality of severely hypoxemic ARDS patients may be reduced by approximately 10%. On the other hand, all data suggest that long-term prone positioning may expose patients with less severe ARDS to unnecessary complications. PMID:20473258

  9. Combined Negative- and Positive-Pressure Ventilation for the Treatment of ARDS

    PubMed Central

    Raymondos, Konstantinos; Ahrens, Jörg; Molitoris, Ulrich

    2015-01-01

    Objective. Tracheal intubation and positive-pressure ventilation as the current standard of care for the adult respiratory distress syndrome (ARDS) seem to have reached their limit in terms of a further relevant reduction of the still very high mortality. Case Presentation. A 75-year-old male patient developed ARDS after abscess drainage with deteriorating oxygenation, despite positive end-expiratory pressure (PEEP) values above 15 cm H2O. We applied external negative-pressure ventilation with a chamber respirator using −33 cm H2O at inspiration and −15 cm H2O at expiration, combined with conventional pressure support using a PEEP of about 8 cm H2O and a pressure support of 4–12 cm H2O. Alveolar infiltrates disappeared rapidly and PaO2/FiO2 values surpassed 300 mmHg after the first application and 500 mmHg after the second. Negative-pressure ventilation was used for 6–18 hours/day over five days. Now, 13 years later, the patient is still alive and has a good quality of life. Conclusion. Using this or similar concepts, not only in intubated patients but also as a noninvasive approach in patients with ARDS, offers new options that may genuinely differ from the present therapeutic approaches and may, therefore, have the potential to decrease the present high mortality from ARDS. PMID:26290758

  10. Extracorporeal carbon dioxide removal for patients with acute respiratory failure secondary to the acute respiratory distress syndrome: a systematic review.

    PubMed

    Fitzgerald, Marianne; Millar, Jonathan; Blackwood, Bronagh; Davies, Andrew; Brett, Stephen J; McAuley, Daniel F; McNamee, James J

    2014-01-01

    Acute respiratory distress syndrome (ARDS) continues to have significant mortality and morbidity. The only intervention proven to reduce mortality is the use of lung-protective mechanical ventilation strategies, although such a strategy may lead to problematic hypercapnia. Extracorporeal carbon dioxide removal (ECCO₂R) devices allow uncoupling of ventilation from oxygenation, thereby removing carbon dioxide and facilitating lower tidal volume ventilation. We performed a systematic review to assess efficacy, complication rates, and utility of ECCO₂R devices. We included randomised controlled trials (RCTs), case-control studies and case series with 10 or more patients. We searched MEDLINE, Embase, LILACS (Literatura Latino Americana em Ciências da Saúde), and ISI Web of Science, in addition to grey literature and clinical trials registries. Data were independently extracted by two reviewers against predefined criteria and agreement was reached by consensus. Outcomes of interest included mortality, intensive care and hospital lengths of stay, respiratory parameters and complications. The review included 14 studies with 495 patients (two RCTs and 12 observational studies). Arteriovenous ECCO₂R was used in seven studies, and venovenous ECCO₂R in seven studies. Available evidence suggests no mortality benefit to ECCO₂R, although post hoc analysis of data from the most recent RCT showed an improvement in ventilator-free days in more severe ARDS. Organ failure-free days or ICU stay have not been shown to decrease with ECCOvR. Carbon dioxide removal was widely demonstrated as feasible, facilitating the use of lower tidal volume ventilation. Complication rates varied greatly across the included studies, representing technological advances. There was a general paucity of high-quality data and significant variation in both practice and technology used among studies, which confounded analysis. ECCO₂R is a rapidly evolving technology and is an efficacious treatment

  11. Effect of Noninvasive Ventilation Delivered by Helmet vs Face Mask on the Rate of Endotracheal Intubation in Patients With Acute Respiratory Distress Syndrome

    PubMed Central

    Patel, Bhakti K.; Wolfe, Krysta S.; Pohlman, Anne S.; Hall, Jesse B.; Kress, John P.

    2016-01-01

    IMPORTANCE Noninvasive ventilation (NIV) with a face mask is relatively ineffective at preventing endotracheal intubation in patients with acute respiratory distress syndrome (ARDS). Delivery of NIV with a helmet may be a superior strategy for these patients. OBJECTIVE To determine whether NIV delivered by helmet improves intubation rate among patients with ARDS. DESIGN, SETTING, AND PARTICIPANTS Single-center randomized clinical trial of 83 patients with ARDS requiring NIV delivered by face mask for at least 8 hours while in the medical intensive care unit at the University of Chicago between October 3, 2012, through September 21, 2015. INTERVENTIONS Patients were randomly assigned to continue face mask NIV or switch to a helmet for NIV support for a planned enrollment of 206 patients (103 patients per group). The helmet is a transparent hood that covers the entire head of the patient and has a rubber collar neck seal. Early trial termination resulted in 44 patients randomized to the helmet group and 39 to the face mask group. MAIN OUTCOMES AND MEASURES The primary outcome was the proportion of patients who required endotracheal intubation. Secondary outcomes included 28-day invasive ventilator–free days (ie, days alive without mechanical ventilation), duration of ICU and hospital length of stay, and hospital and 90-day mortality. RESULTS Eighty-three patients (45% women; median age, 59 years; median Acute Physiology and Chronic Health Evaluation [APACHE] II score, 26) were included in the analysis after the trial was stopped early based on predefined criteria for efficacy. The intubation rate was 61.5% (n = 24) for the face mask group and 18.2% (n = 8) for the helmet group (absolute difference, −43.3%; 95% CI, −62.4%to −24.3%; P < .001). The number of ventilator-free days was significantly higher in the helmet group (28 vs 12.5, P < .001). At 90 days, 15 patients (34.1%) in the helmet group died compared with 22 patients (56.4%) in the face mask group

  12. Initial synchronized intermittent mandatory ventilation versus assist/control ventilation in treatment of moderate acute respiratory distress syndrome: a prospective randomized controlled trial

    PubMed Central

    Luo, Jian; Wang, Mao-Yun; Liang, Bin-Miao; Yu, He; Jiang, Fa-Ming; Wang, Ting; Shi, Chao-Li; Li, Pei-Jun; Liu, Dan; Wu, Xiao-Ling

    2015-01-01

    Background Assist/control (A/C) ventilation may induce delirium in patients with acute respiratory distress syndrome (ARDS). We conducted a trial to determine whether initial synchronized intermittent mandatory ventilation with pressure support (SIMV + PS) could improve clinical outcomes in these patients. Methods Intubated patients with moderate ARDS were enrolled and we compared SIMV + PS with A/C. Identical sedation, analgesia and ventilation strategies were performed. The co-primary outcomes were early (≤72 h) partial pressure of arterial oxygen to fraction of inspired oxygen (PaO2/FiO2) and incidence of delirium. The secondary outcomes were all-cause in-hospital mortality, dosages of analgesics and sedatives, incidence of patient-ventilator asynchrony, and duration of mechanical ventilation and hospital stay. Results We screened 2,684 patients and 40 patients were enrolled in our study. In SIMV + PS, early (≤72 h) PaO2/FiO2 was greater improved than that at baseline and that in A/C (P<0.05) with lower positive end-expiratory pressure (PEEP) (8.7±3.0 vs. 10.3±3.2, P<0.001) and FiO2 (58%±18% vs. 67%±19%, P<0.001). We found more SIMV + PS success (defined as SIMV + PS successfully applied without switching to A/C) (100.0% vs. 16.7%, P<0.001), less male (46.3% vs. 85.7%, P=0.015) and pulmonary etiology of ARDS (53.8% vs. 92.9%, P=0.015), and lower PEEP (9.1±3.1 vs. 10.3±3.3, P=0.004) and FiO2 (58%±19% vs. 71%±19%, P<0.001) in survival patients. However, there were no significant differences in incidence of delirium and mortality, dosages of analgesics and sedatives, incidence of patient-ventilator asynchrony, duration of mechanical ventilation and hospital stay (P>0.05). Conclusions In patients with moderate ARDS, SIMV + PS can safely and effectively improve oxygenation, but does not decrease mortality, incidence of delirium and patient-ventilator asynchrony, dosages of analgesics and sedatives, and duration of mechanical ventilation and hospital stay

  13. Inhibition of c-Jun N-terminal Kinase Signaling Pathway Alleviates Lipopolysaccharide-induced Acute Respiratory Distress Syndrome in Rats

    PubMed Central

    Lai, Jian-Bo; Qiu, Chun-Fang; Chen, Chuan-Xi; Chen, Min-Ying; Chen, Juan; Guan, Xiang-Dong; Ouyang, Bin

    2016-01-01

    Background: An acute respiratory distress syndrome (ARDS) is still one of the major challenges in critically ill patients. This study aimed to investigate the effect of inhibiting c-Jun N-terminal kinase (JNK) on ARDS in a lipopolysaccharide (LPS)-induced ARDS rat model. Methods: Thirty-six rats were randomized into three groups: control, LPS, and LPS + JNK inhibitor. Rats were sacrificed 8 h after LPS treatment. The lung edema was observed by measuring the wet-to-dry weight (W/D) ratio of the lung. The severity of pulmonary inflammation was observed by measuring myeloperoxidase (MPO) activity of lung tissue. Moreover, the neutrophils in bronchoalveolar lavage fluid (BALF) were counted to observe the airway inflammation. In addition, lung collagen accumulation was quantified by Sircol Collagen Assay. At the same time, the pulmonary histologic examination was performed, and lung injury score was achieved in all three groups. Results: MPO activity in lung tissue was found increased in rats treated with LPS comparing with that in control (1.26 ± 0.15 U in LPS vs. 0.77 ± 0.27 U in control, P < 0.05). Inhibiting JNK attenuated LPS-induced MPO activity upregulation (0.52 ± 0.12 U in LPS + JNK inhibitor vs. 1.26 ± 0.15 U in LPS, P < 0.05). Neutrophils in BALF were also found to be increased with LPS treatment, and inhibiting JNK attenuated LPS-induced neutrophils increase in BALF (255.0 ± 164.4 in LPS vs. 53 (44.5-103) in control vs. 127.0 ± 44.3 in LPS + JNK inhibitor, P < 0.05). At the same time, the lung injury score showed a reduction in LPS + JNK inhibitor group comparing with that in LPS group (13.42 ± 4.82 vs. 7.00 ± 1.83, P = 0.001). However, the lung W/D ratio and the collagen in BALF did not show any differences between LPS and LPS + JNK inhibitor group. Conclusions: Inhibiting JNK alleviated LPS-induced acute lung inflammation and had no effects on pulmonary edema and fibrosis. JNK inhibitor might be a potential therapeutic medication in ARDS, in the

  14. ARDS User Manual

    NASA Technical Reports Server (NTRS)

    Fleming, David P.

    2001-01-01

    Personal computers (PCs) are now used extensively for engineering analysis. their capability exceeds that of mainframe computers of only a few years ago. Programs originally written for mainframes have been ported to PCs to make their use easier. One of these programs is ARDS (Analysis of Rotor Dynamic Systems) which was developed at Arizona State University (ASU) by Nelson et al. to quickly and accurately analyze rotor steady state and transient response using the method of component mode synthesis. The original ARDS program was ported to the PC in 1995. Several extensions were made at ASU to increase the capability of mainframe ARDS. These extensions have also been incorporated into the PC version of ARDS. Each mainframe extension had its own user manual generally covering only that extension. Thus to exploit the full capability of ARDS required a large set of user manuals. Moreover, necessary changes and enhancements for PC ARDS were undocumented. The present document is intended to remedy those problems by combining all pertinent information needed for the use of PC ARDS into one volume.

  15. Mechanical Ventilation as a Therapeutic Tool to Reduce ARDS Incidence.

    PubMed

    Nieman, Gary F; Gatto, Louis A; Bates, Jason H T; Habashi, Nader M

    2015-12-01

    Trauma, hemorrhagic shock, or sepsis can incite systemic inflammatory response syndrome, which can result in early acute lung injury (EALI). As EALI advances, improperly set mechanical ventilation (MV) can amplify early injury into a secondary ventilator-induced lung injury that invariably develops into overt ARDS. Once established, ARDS is refractory to most therapeutic strategies, which have not been able to lower ARDS mortality below the current unacceptably high 40%. Low tidal volume ventilation is one of the few treatments shown to have a moderate positive impact on ARDS survival, presumably by reducing ventilator-induced lung injury. Thus, there is a compelling case to be made that the focus of ARDS management should switch from treatment once this syndrome has become established to the application of preventative measures while patients are still in the EALI stage. Indeed, studies have shown that ARDS incidence is markedly reduced when conventional MV is applied preemptively using a combination of low tidal volume and positive end-expiratory pressure in both patients in the ICU and in surgical patients at high risk for developing ARDS. Furthermore, there is evidence from animal models and high-risk trauma patients that superior prevention of ARDS can be achieved using preemptive airway pressure release ventilation with a very brief duration of pressure release. Preventing rather than treating ARDS may be the way forward in dealing with this recalcitrant condition and would represent a paradigm shift in the way that MV is currently practiced. PMID:26135199

  16. ARDS. The future.

    PubMed

    Wong, Hector R

    2002-01-01

    Improving the course and outcome of patients with ARDS presents a considerable challenge. An important component of meeting this challenge is a more comprehensive understanding of the heterogeneous pathophysiology of ARDS and the biologic response of the individual patient. This understanding may be developed through the power of genomics and its related technology. In particular, it will be crucial to characterize the immunophenotypes of individual patients with ARDS. By understanding the immune status of a given patient at a given point in the disease process, physicians can consider manipulating proinflammatory systems more rationally, such as the complement and chemokine cascades, or the anti-inflammatory arm of the immune system. Finally, a more refined molecular and genetic understanding of endogenous cytoprotective molecules and mechanisms, such as the heat shock response and HO-1, may provide further tools in the future armamentarium against ARDS. PMID:11910730

  17. BPD Following Preterm Birth: A Model for Chronic Lung Disease and a Substrate for ARDS in Childhood.

    PubMed

    Bhandari, Anita; Carroll, Christopher; Bhandari, Vineet

    2016-01-01

    It has been suggested that pediatric acute respiratory distress syndrome (PARDS) may be a different entity, vis-à-vis adult acute respiratory distress syndrome (ARDS), based on its epidemiology and outcomes. A more pediatric-specific definition of PARDS to include the subgroup of patients with underlying lung (and heart) disease has been proposed. Epidemiological data suggest that up to 13% of the children with ARDS have a history of prematurity and/or underlying chronic lung disease. However, the specific contribution of bronchopulmonary dysplasia (BPD), the most common chronic lung disease in infants, to the development of PARDS is not known. BPD leads to damaged lungs with long-term consequences secondary to disordered growth and immune function. These damaged lungs could potentially act as a substrate, which given the appropriate noxious stimuli, can predispose a child to PARDS. Interestingly, similar biomarkers [KL-6, interleukin (IL)-6, IL-8, sICAM-1, angiopoietin-2, and matrix metalloproteinase-8 and -9] of pulmonary injury have been associated both with BPD and ARDS. Recognition of a unique pattern of clinical symptomatology and/or outcomes of PARDS, if present, could potentially be useful for investigating targeted therapeutic interventions. PMID:27379219

  18. BPD Following Preterm Birth: A Model for Chronic Lung Disease and a Substrate for ARDS in Childhood

    PubMed Central

    Bhandari, Anita; Carroll, Christopher; Bhandari, Vineet

    2016-01-01

    It has been suggested that pediatric acute respiratory distress syndrome (PARDS) may be a different entity, vis-à-vis adult acute respiratory distress syndrome (ARDS), based on its epidemiology and outcomes. A more pediatric-specific definition of PARDS to include the subgroup of patients with underlying lung (and heart) disease has been proposed. Epidemiological data suggest that up to 13% of the children with ARDS have a history of prematurity and/or underlying chronic lung disease. However, the specific contribution of bronchopulmonary dysplasia (BPD), the most common chronic lung disease in infants, to the development of PARDS is not known. BPD leads to damaged lungs with long-term consequences secondary to disordered growth and immune function. These damaged lungs could potentially act as a substrate, which given the appropriate noxious stimuli, can predispose a child to PARDS. Interestingly, similar biomarkers [KL-6, interleukin (IL)-6, IL-8, sICAM-1, angiopoietin-2, and matrix metalloproteinase-8 and -9] of pulmonary injury have been associated both with BPD and ARDS. Recognition of a unique pattern of clinical symptomatology and/or outcomes of PARDS, if present, could potentially be useful for investigating targeted therapeutic interventions. PMID:27379219

  19. Acute respiratory distress syndrome due to overdose desferrioxamine: report of a child.

    PubMed

    Atas, B; Caksen, H; Tuncer, O; Oner, A F; Kirimi, E; Akbayram, S

    2005-03-01

    In this article, we present an 18-month-old girl with acute iron poisoning who died from acute respiratory distress syndrome due to overdose of desferrioxamine. Our purpose is to emphasize the importance of close follow-up children with acute iron poisoning for desferrioxamine toxicity. PMID:16250288

  20. Acute respiratory distress syndrome in an adult patient with a myelodysplastic disorder.

    PubMed

    Pentimone, F; Cini, G; Meola, N; Ferrannini, E

    1983-01-01

    A 58-year-old man was diagnosed to have refractory anaemia with excessive blasts. After 3 1/2 years of relative control on periodic blood transfusions, the patient developed an acute leukaemia. Although the blastic crisis was not extreme (WBC counts less than 100 X 10(9)/l), a severe, intractable respiratory distress syndrome set in and brought the patient to the exitus in a few days. Overt signs of septic shock were absent, as was evidence of any other known cause of adult respiratory distress. Acute pulmonary failure can be the cause of death in leukaemic patients even in the absence of overwhelming sepsis or hyperleucocytosis. PMID:6404107

  1. Restrictive Fluid Resuscitation Leads to Better Oxygenation than Non-Restrictive Fluid Resuscitation in Piglets with Pulmonary or Extrapulmonary Acute Respiratory Distress Syndrome

    PubMed Central

    Ye, Shunan; Li, Qiujie; Yuan, Shiying; Shu, Huaqing; Yuan, Yin

    2015-01-01

    Background Early goal-directed therapy (EGDT) is used to reduce mortality from septic shock and could be used in early fluid resuscitation of acute respiratory distress syndrome (ARDS). The aim of the present study was to assess the effects of restrictive (RFR) and nonrestrictive fluid resuscitation (NRFR) on hemodynamics, oxygenation, pulmonary function, tissue perfusion, and inflammation in piglets with pulmonary or extrapulmonary ARDS (ARDSp and ARDSexp). Material/Methods Chinese miniature piglets (6–8 weeks; 15±1 kg) were randomly divided into 2 groups (n=12/group) for establishing ARDSp and ARDSexp models, and were further divided into 2 subgroups (n=6/subgroup) for performing RFR and NRFR. Piglets were anesthetized and hemodynamic, pulmonary, and oxygenation indicators were collected at different time points for 6 hours. The goal of EGDT was set for PiCCO parameters (mean arterial pressure (MAP), urine output and cardiac index (CI), and central venous oxygen saturation (ScvO2). Results Piglets under RFR had lower urine output compared with NRFR, as well as lower total fluid volume (P<0.05). EVLW was decreased in ARDSp+RFR and NRFR, as well as in ARDSexp+RFR, but EVLW increased in ARDSexp+NRFR (P<0.05). PaO2/FiO2 decreased in ARDSp using both methods, but was higher with RFR (P<0.05), and was increased in ARDSexp+RFR. Other pulmonary indicators were comparable. The anti-inflammatory cytokines IL-10 and LXA4 were increased in ARDSexp after RFR (P<0.05), but not in the other groups. Conclusions RFR led to better oxygenation in ARDSp and ARDSexp compared with NRFR, but fluid restriction improved oxygenation in ARDSexp only. PMID:26166324

  2. Meta-analysis of high doses of ambroxol treatment for acute lung injury/acute respiratory distress syndrome based on randomized controlled trials.

    PubMed

    Wu, Xiangdong; Li, Suwei; Zhang, Jiuzhi; Zhang, Yongli; Han, Lili; Deng, Qiuming; Wan, Xianyao

    2014-11-01

    This study seeks to evaluate the potential benefits of high doses of ambroxol treatment for acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) by conducting a meta-analysis based on randomized controlled trials (RCTs). We searched the Pubmed, Embase, China National Knowledge Infrastructure, and Wanfang databases through December 2013. Only RCTs evaluating high doses of ambroxol (≥15 mg/kg or 1000 mg/day) treatment for patients with ALI/ARDS were selected. We included 10 RCTs involving 508 patients. Adjuvant treatment with high doses of ambroxol increased PaO(2)/FiO(2) (weight mean differences [WMD] = 69.18, 95% confidence intervals [CI]: 41.71-96.65), PO(2) (WMD = 11.74, 95% CI: 8.50-14.99), and SaO(2) (WMD = 2.15, 95% CI: 1.60-2.71) compared with usual treatment. Treatment with high doses of ambroxol appeared to reduce serum tumor necrosis factor-α level (WMD -7.92 µg/L; 95% CI, -10.94 to -4.9) and interleukin-6 level (WMD = -20.65 µg/L, 95% CI: -24.74 to -16.55) and to increase serum superoxide dismutase level (WMD = 19.07 NU/mL, 95% CI: 6.16-31.97). The findings suggest that treatment with high doses of ambroxol appears to improve PaO(2)/FiO(2), PO(2), and SaO(2), and the benefits might be related to ambroxol's anti-oxidant and anti-inflammatory properties. PMID:25174313

  3. Inhaled nitric oxide in acute respiratory distress syndrome with and without septic shock requiring norepinephrine administration: a dose–response study

    PubMed Central

    Mourgeon, Eric; Puybasset, Louis; Law-Koune, Jean-Dominique; Lu, Qin; Abdennour, Lamine; Gallart, Lluis; Malassine, Patrick; Rao, GS Umamaheswara; Cluzel, Philippe; Bennani, Abdelhai; Coriat, Pierre; Rouby, Jean-Jacques

    1997-01-01

    Background: The aim of this prospective study was to assess whether the presence of septic shock could influence the dose response to inhaled nitric oxide (NO) in NO-responding patients with adult respiratory distress syndrome (ARDS). Results: Eight patients with ARDS and without septic shock (PaO2 = 95 ± 16 mmHg, PEEP = 0, FiO2 = 1.0), and eight patients with ARDS and septic shock (PaO2 = 88 ± 11 mmHg, PEEP = 0, FiO2 = 1.0) receiving exclusively norepinephrine were studied. All responded to 15 ppm inhaled NO with an increase in PaO2 of at least 40 mmHg, at FiO2 1.0 and PEEP 10 cmH2O. Inspiratory intratracheal NO concentrations were recorded continuously using a fast response time chemiluminescence apparatus. Seven inspiratory NO concentrations were randomly administered: 0.15, 0.45, 1.5, 4.5, 15, 45 and 150 ppm. In both groups, NO induced a dose-dependent decrease in mean pulmonary artery pressure (MPAP), pulmonary vascular resistance index (PVRI), and venous admixture (QVA/QT), and a dose-dependent increase in PaO2/FiO2 (P ≤ 0.012). Dose-response of MPAP and PVRI were similar in both groups with a plateau effect at 4.5 ppm. Dose-response of PaO2/FiO2 was influenced by the presence of septic shock. No plateau effect was observed in patients with septic shock and PaO2/FiO2 increased by 173 ± 37% at 150 ppm. In patients without septic shock, an 82 ± 26% increase in PaO2/FiO2 was observed with a plateau effect obtained at 15 ppm. In both groups, dose-response curves demonstrated a marked interindividual variability and in five patients pulmonary vascular effect and improvement in arterial oxygenation were dissociated. Conclusion: For similar NOinduced decreases in MPAP and PVRI in both groups, the increase in arterial oxygenation was more marked in patients with septic shock. PMID:11056694

  4. Fibroproliferative changes on high-resolution CT in the acute respiratory distress syndrome predict mortality and ventilator dependency: a prospective observational cohort study

    PubMed Central

    Muranaka, Hiroyuki; Gushima, Yasuhiro; Kotani, Toru; Nader, Habashi M; Fujimoto, Kiminori; Johkoh, Takeshi; Iwamoto, Norihiro; Kawamura, Kodai; Nagano, Junji; Fukuda, Koichiro; Hirata, Naomi; Yoshinaga, Takeshi; Ichiyasu, Hidenori; Tsumura, Shinsuke; Kohrogi, Hirotsugu; Kawaguchi, Atsushi; Yoshioka, Masakazu; Sakuma, Tsutomu; Suga, Moritaka

    2012-01-01

    Objectives To examine whether the extent of fibroproliferative changes on high-resolution CT (HRCT) scan influences prognosis, ventilator dependency and the associated outcomes in patients with early acute respiratory distress syndrome (ARDS). Design A prospective observational cohort study. Setting Intensive care unit in a teaching hospital. Participants 85 patients with ARDS who met American-European Consensus Conference Criteria and eligible criteria. Interventions HRCT scans were performed and prospectively evaluated by two independent observers on the day of diagnosis and graded into six findings according to the extent of fibroproliferation. An overall HRCT score was obtained by previously published method. Primary and secondary outcomes The primary outcome was 60-day mortality. Secondary outcomes included the number of ventilator-free days, organ failure-free days, the incidence of barotraumas and the occurrence of ventilator-associated pneumonia. Results Higher HRCT scores were associated with statistically significant decreases in organ failure-free days as well as ventilator-free days. Multivariate Cox proportional hazards model showed that the HRCT score remained an independent risk factor for mortality (HR 1.20; 95% CI 1.06 to 1.36; p=0.005). Multivariate analysis also revealed that the CT score had predictive value for ventilator weaning within 28 days (OR 0.63; 95% CI 0.48 to 0.82; p=0.0006) as well as for an incidence of barotraumas (OR 1.61; 95% CI 1.08 to 2.38; p=0.018) and for an occurrence of ventilator-associated pneumonia (OR 1.46; 95% CI 1.13 to 1.89; p=0.004). A HRCT score <210 enabled prediction of 60-day survival with 71% sensitivity and 72% specificity and of ventilator-weaning within 28 days with 75% sensitivity and 76% specificity. Conclusions Pulmonary fibroproliferation assessed by HRCT in patients with early ARDS predicts increased mortality with an increased susceptibility to multiple organ failure, including ventilator

  5. Astilbin alleviates LPS-induced ARDS by suppressing MAPK signaling pathway and protecting pulmonary endothelial glycocalyx.

    PubMed

    Kong, Guiqing; Huang, Xiao; Wang, Lipeng; Li, Yan; Sun, Ting; Han, Shasha; Zhu, Weiwei; Ma, Mingming; Xu, Haixiao; Li, Jiankui; Zhang, Xiaohua; Liu, Xiangyong; Wang, Xiaozhi

    2016-07-01

    Acute respiratory distress syndrome (ARDS) is a devastating disorder that is characterized by increased vascular endothelial permeability and inflammation. Unfortunately, no effective treatment beyond supportive care is available for ARDS. Astilbin, a flavonoid compound isolated from Rhizoma Smilacis Glabrae, has been used for anti-hepatic, anti-arthritic, and anti-renal injury treatments. This study examined the effects of Astilbin on pulmonary inflammatory activation and endothelial cell barrier dysfunction caused by Gram-negative bacterial endotoxin lipopolysaccharide (LPS). Endothelial cells from human umbilical veins or male Kunming mice were pretreated with Astilbin 24h before LPS stimulation. Results showed that Astilbin significantly attenuated the pulmonary histopathological changes and neutrophil infiltration 6h after the LPS challenge. Astilbin suppressed the activities of myeloperoxidase and malondialdehyde, as well as the expression of tumor necrosis factor-α and interleukin-6 in vivo and in vitro. As indices of pulmonary edema, lung wet-to-dry weight ratios, were markedly decreased by Astilbin pretreatment. Western blot analysis also showed that Astilbin inhibited LPS-induced activation of mitogen-activated protein kinase (MAPK) pathways in lung tissues. Furthermore, Astilbin significantly inhibited the activity of heparanase and reduced the production of heparan sulfate in the blood serum as determined by ELISA. These findings indicated that Astilbin can alleviate LPS-induced ARDS, which potentially contributed to the suppression of MAPK pathway activation and the degradation of endothelial glycocalyx. PMID:27111514

  6. Clinical study on VATS combined mechanical ventilation treatment of ARDS secondary to severe chest trauma

    PubMed Central

    Qi, Yongjun

    2016-01-01

    The aim of the study was to investigate the clinical effects of microinvasive video-assisted thoracoscopic surgery (VATS) combined with mechanical ventilation in the treatment of acute respiratory distress syndrome (ARDS) secondary to severe chest trauma. A total of 62 patients with ARDS secondary to severe chest trauma were divided into the observation and control groups. The patients in the observation groups were treated with VATS combined with early mechanical ventilation while patients in the control group were treated using routine open thoracotomy combined with early mechanical ventilation. Compared to the controls, the survival rate of the observation group was significantly higher. The average operation time of the observation group was significantly shorter than that of the control group, and the incidence of complications in the perioperative period of the observation group was significantly lower than that of the control group (p<0.05). The average application time of the observation group was significantly shorter than that of the control group, and the incidence of ventilator-associated complications was significantly lower than that of the control group (p<0.05). In conclusion, a reasonable understanding of the indications and contraindications of VATS, combined with early mechanical treatment significantly improved the success rate of the treatment of ARDS patients secondary to severe chest trauma and reduced the complications. PMID:27446317

  7. The effect of fibreoptic bronchoscopy in acute respiratory distress syndrome: experimental evidence from a lung model.

    PubMed

    Nay, M-A; Mankikian, J; Auvet, A; Dequin, P-F; Guillon, A

    2016-02-01

    Flexible bronchoscopy is essential for appropriate care during mechanical ventilation, but can significantly affect mechanical ventilation of the lungs, particularly for patients with acute respiratory distress syndrome. We aimed to describe the consequences of bronchoscopy during lung-protective ventilation in a bench study, and thereby to determine the optimal diameter of the bronchoscope for avoiding disruption of the protective-ventilation strategy during the procedure. Immediately following the insertion of the bronchoscope into the tracheal tube, either minute ventilation decreased significantly, or positive end-expiratory pressure increased substantially, according to the setting of the inspiratory pressure limit. The increase in end-expiratory pressure led to an equivalent increase in the plateau pressure, and lung-protective ventilation was significantly altered during the procedure. We showed that a bronchoscope with an external diameter of 4 mm (or less) would allow safer bronchoscopic interventions in patients with severe acute respiratory distress syndrome. PMID:26559154

  8. Individualized positive end-expiratory pressure application in patients with acute respiratory distress syndrome.

    PubMed

    Pintado, M C; de Pablo, R

    2014-11-01

    Current treatment of acute respiratory distress syndrome is based on ventilatory support with a lung protective strategy, avoiding the development of iatrogenic injury, including ventilator-induced lung injury. One of the mechanisms underlying such injury is atelectrauma, and positive end-expiratory pressure (PEEP) is advocated in order to avoid it. The indicated PEEP level has not been defined, and in many cases is based on the patient oxygen requirements for maintaining adequate oxygenation. However, this strategy does not consider the mechanics of the respiratory system, which varies in each patient and depends on many factors-including particularly the duration of acute respiratory distress syndrome. A review is therefore made of the different methods for adjusting PEEP, focusing on the benefits of individualized application. PMID:24485531

  9. Fatal measles presenting as acute respiratory distress syndrome in an immunocompetent adult

    PubMed Central

    Karanth, Suman S; Marupudi, Krishna Chaitanya; Gupta, Anurag; Rau, Nileshwar Radhakrishna

    2014-01-01

    Fatal measles is known to occur among immunocompromised adults. We report a rare case of an immunocompetent non-pregnant young lady who suffered from fatal acute respiratory distress syndrome due to measles. Physicians must be vigilant to this deadly presentation of measles even in immunocompetent individuals. We emphasise the inadequacies of vaccination programmes in India reflected not only by the existing high measles-related childhood mortalities, but also an emerging rise in deaths among adults. PMID:25139919

  10. Pulmonary Alveolar Type II Epithelial Cells and Adult Respiratory Distress Syndrome

    PubMed Central

    Mason, Robert J.

    1985-01-01

    During the past ten years, functions of alveolar type II cells have been well characterized with isolated cells in vitro. Some of the functions were well known from studies in vivo, but others such as transepithelial sodium transport were unsuspected. A better understanding of this important pulmonary cell type improves our knowledge of the pathophysiology of adult respiratory distress syndrome and may in time lead to new therapeutic strategies. ImagesFigure 1.Figure 2.Figure 3.Figure 4. PMID:3909639