Science.gov

Sample records for distributed immiscible liquid

  1. APPLICATION OF A LUMPED-PROCESS MATHEMATICAL MODEL TO DISSOLUTION OF NON-UNIFORMLY DISTRIBUTED IMMISCIBLE LIQUID IN HETEROGENEOUS POROUS MEDIA

    PubMed Central

    Marble, J. C.; DiFilippo, E. L.; Zhang, Z.; Tick, G. R.; Brusseau, M. L.

    2010-01-01

    The use of a lumped-process mathematical model to simulate the complete dissolution of immiscible liquid non-uniformly distributed in physically heterogeneous porous-media systems was investigated. The study focused specifically on systems wherein immiscible liquid was poorly accessible to flowing water. Two representative, idealized scenarios were examined, one wherein immiscible liquid at residual saturation exists within a lower-permeability unit residing in a higher-permeability matrix, and one wherein immiscible liquid at higher saturation (a pool) exists within a higher-permeability unit adjacent to a lower-permeability unit. As expected, effluent concentrations were significantly less than aqueous solubility due to dilution and by-pass flow effects. The measured data were simulated with two mathematical models, one based on a simple description of the system and one based on a more complex description. The permeability field and the distribution of the immiscible-liquid zones were represented explicitly in the more complex, distributed-process model. The dissolution rate coefficient in this case represents only the impact of local-scale (and smaller) processes on dissolution, and the parameter values were accordingly obtained from the results of experiments conducted with one-dimensional, homogeneously-packed columns. In contrast, the system was conceptualized as a pseudo-homogeneous medium with immiscible liquid uniformly distributed throughout the system for the simpler, lumped-process model. With this approach, all factors that influence immiscible-liquid dissolution are incorporated into the calibrated dissolution rate coefficient, which in such cases serves as a composite or lumped term. The calibrated dissolution rate coefficients obtained from the simulations conducted with the lumped-process model were approximately two to three orders of magnitude smaller than the independently-determined values used for the simulations conducted with the

  2. Evaporative Mass Transfer Behavior of a Complex Immiscible Liquid

    PubMed Central

    McColl, Colleen M.; Johnson, Gwynn R.; Brusseau, Mark L.

    2010-01-01

    A series of laboratory experiments was conducted with a multiple-component immiscible liquid, collected from the Picillo Farm Superfund Site in Rhode Island, to examine liquid-vapor mass-transfer behavior. The immiscible liquid, which comprises solvents, oils, pesticides, PCBs, paint sludges, explosives, and other compounds, was characterized using gas chromatography and gas chromatography/mass spectrometry to determine mole fractions of selected constituents. Batch experiments were conducted to evaluate equilibrium phase-partitioning behavior. Two sets of air-stripping column studies were conducted to examine the mass-transfer dynamics of five selected target compounds present in the immiscible-liquid mixture. One set of column experiments was designed to represent a system with free-phase immiscible liquid present; the other was designed to represent a system with a residual phase of immiscible liquid. Initial elution behavior of all target components generally appeared to be ideal for both systems, as the initial vapor-phase concentrations were similar to vapor-phase concentrations measured for the batch experiment and those estimated using Raoult’s law (incorporating the immiscible-liquid composition data). Later-stage removal of 1,2-dichlorobenzene appeared to be rate limited for the columns containing free-phase immiscible liquid and no porous medium. Conversely, evaporative mass transfer appeared to be ideal throughout the experiment conducted with immiscible liquid distributed relatively uniformly as a residual phase within a sandy porous medium. PMID:18614196

  3. Measuring Interfacial Tension Between Immiscible Liquids

    NASA Technical Reports Server (NTRS)

    Rashidnia, Nasser; Balasubramaniam, R.; Delsignore, David M.

    1995-01-01

    Glass capillary tube technique measures interfacial tension between two immiscible liquids. Yields useful data over fairly wide range of interfacial tensions, both for pairs of liquids having equal densities and pairs of liquids having unequal densities. Data on interfacial tensions important in diverse industrial chemical applications, including enhanced extraction of oil; printing; processing foods; and manufacture of paper, emulsions, foams, aerosols, detergents, gel encapsulants, coating materials, fertilizers, pesticides, and cosmetics.

  4. Phase separation kinetics in immiscible liquids

    NASA Technical Reports Server (NTRS)

    Sadoway, D. R.

    1986-01-01

    The kinetics of phase separation in the succinonitrile-water system are being investigated. Experiments involve initial physical mixing of the two immiscible liquids at a temperature above the consolute, decreasing the temperature into the miscibility gap, followed by imaging of the resultant microstructure as it evolves with time. Refractive index differences allow documentation of the changing microstructures by noninvasive optical techniques without the need to quench the liquid structures for analysis.

  5. Phase separation kinetics in immiscible liquids

    NASA Technical Reports Server (NTRS)

    Ng, Lee H.; Sadoway, Donald R.

    1987-01-01

    The kinetics of phase separation in the succinonitrile-water system are being investigated. Experiments involve initial physical mixing of the two immiscible liquids at a temperature above the consolute, decreasing the temperature into the miscibility gap, followed by iamging of the resultant microstructure as it evolves with time. Refractive index differences allow documentation of the changing microstructures by noninvasive optical techniques without the need to quench the liquid structures for analysis.

  6. Interfacial and gravitational convection in immiscible liquid layers

    NASA Technical Reports Server (NTRS)

    Prakash, A.; Koster, J. N.

    1992-01-01

    Liquid encapsulation of electronic melts is currently being investigated by several materials science research groups. Pertinent fluid dynamics of immiscible liquid layers is the objective of this investigation. First results on convective flow in double liquid layers, in preparation for a spaceflight experiment aboard the International Microgravity Laboratory, IML-2, are discussed.

  7. Process for blending coal with water immiscible liquid

    DOEpatents

    Heavin, Leonard J.; King, Edward E.; Milliron, Dennis L.

    1982-10-26

    A continuous process for blending coal with a water immiscible liquid produces a uniform, pumpable slurry. Pulverized raw feed coal and preferably a coal derived, water immiscible liquid are continuously fed to a blending zone (12 and 18) in which coal particles and liquid are intimately admixed and advanced in substantially plug flow to form a first slurry. The first slurry is withdrawn from the blending zone (12 and 18) and fed to a mixing zone (24) where it is mixed with a hot slurry to form the pumpable slurry. A portion of the pumpable slurry is continuously recycled to the blending zone (12 and 18) for mixing with the feed coal.

  8. Solidification Processing of Immiscible Liquids in the Presence of Applied Ultrasonic Energy

    NASA Technical Reports Server (NTRS)

    Kim, Shinwood; Grugel, R. N.

    2000-01-01

    Uniform microstructural development during solidification of immiscible liquids on Earth is hampered by inherent density differences between the phases. Microgravity processing minimizes settling but segregation still occurs due to gravity independent wetting and coalescence phenomena. Experiments with the transparent organic, metal analogue, succinonitrile-glycerol system were conducted in conjunction with applied ultrasonic energy. The processing parameters associated with this technique have been evaluated in view of optimizing dispersion uniformity. Experimental results to evaluate microstructural phase distributions, based on other liquid-liquid immiscibility systems, will also be presented.

  9. Experimental confirmation of high temperature silicate liquid immiscibility

    NASA Astrophysics Data System (ADS)

    Hou, T.; Veksler, I. V.

    2014-12-01

    The existence of stable, super-liquidus silicate liquid immiscibility at temperatures up to 1200 °C has been proposed for some multicomponent ferrobasaltic-ferroandesitic compositions on the basis of centrifuge experiments (Veksler et al., 2007) but the evidence and interpretation of experimental results were challenged by Philpotts (2008) who argued that the products of centrifuge experiments were metastable phases formed during quenching. Here we report the results of static reverse experiments, which were aimed at resolving the debate. The idea of the reverse experiments was to test miscibility between pre-synthesized pairs of silica-rich and Fe-rich immiscible melts at static conditions and long exposure times. Three pairs of the potentially immiscible compositions were taken from the original study by Veksler et al. (2007) and one more pair was taken from a recent report of liquid immiscibility in the Panzhihua intrusion in China. Experiments were carried out in one-atmosphere gas-mixing furnace (Ar-H2-CO2 gas mixture) at 1150 and 1200 °C and oxygen fugacity corresponding to that of the QFM buffer. Pairs of the silica-rich and Fe-rich starting compositions were loaded in Pt wire loops, fused separately at 1200 °C, and then brought in contact and kept at constant experimental temperature for more than 24 hours. Three pairs of compositions out of four used in this study did not mix. Some temperature-dependent chemical re-equilibration was observed in the Fe-rich melts but, in the cases of immiscibility, two liquids remained compositionally distinct and showed sharp compositional gradients at contacts. One pair of liquids crystallized some tridymite, whereas the other compositions were clearly above liquidus. Overall, the results of the reverse experiments are in good agreement with the earlier centrifugation study and confirm the existence of stable, super-liquids immiscibility in some Fe-rich basaltic-andesitic compositions at temperatures up to 1200

  10. Measurement of interfacial tension of immiscible liquid pairs in microgravity

    NASA Technical Reports Server (NTRS)

    Weinberg, Michael C.; Neilson, George F.; Baertlein, Carl; Subramanian, R. Shankar; Trinh, Eugene H.

    1994-01-01

    A discussion is given of a containerless microgravity experiment aimed at measuring the interfacial tension of immiscible liquid pairs using a compound drop rotation method. The reasons for the failure to execute such experiments in microgravity are described. Also, the results of post-flight analyses used to confirm our arguments are presented.

  11. Electroanalytical Ventures at Nanoscale Interfaces Between Immiscible Liquids

    NASA Astrophysics Data System (ADS)

    Arrigan, Damien W. M.; Liu, Yang

    2016-06-01

    Ion transfer at the interface between immiscible electrolyte solutions offers many benefits to analytical chemistry, including the ability to detect nonredox active ionized analytes, to detect ions whose redox electrochemistry is accompanied by complications, and to separate ions based on electrocontrolled partition. Nanoscale miniaturization of such interfaces brings the benefits of enhanced mass transport, which in turn leads to improved analytical performance in areas such as sensitivity and limits of detection. This review discusses the development of such nanoscale interfaces between immiscible liquids and examines the analytical advances that have been made to date, including prospects for trace detection of ion concentrations.

  12. Electroanalytical Ventures at Nanoscale Interfaces Between Immiscible Liquids.

    PubMed

    Arrigan, Damien W M; Liu, Yang

    2016-06-12

    Ion transfer at the interface between immiscible electrolyte solutions offers many benefits to analytical chemistry, including the ability to detect nonredox active ionized analytes, to detect ions whose redox electrochemistry is accompanied by complications, and to separate ions based on electrocontrolled partition. Nanoscale miniaturization of such interfaces brings the benefits of enhanced mass transport, which in turn leads to improved analytical performance in areas such as sensitivity and limits of detection. This review discusses the development of such nanoscale interfaces between immiscible liquids and examines the analytical advances that have been made to date, including prospects for trace detection of ion concentrations. PMID:27049634

  13. Optical limiting based on liquid-liquid immiscibility

    NASA Astrophysics Data System (ADS)

    Exarhos, Gregory J.; Ferris, Kim F.; Samuels, William D.; Owings, Robert R.

    2003-05-01

    Nonionic surfactants are used to stabilize a dispersed droplet phase in a continuous liquid phase when two immiscible liquids are mixed. As both liquid phases approach the index-matched condition, interfacial scattering is suppressed, and the mixture takes on the characteristics of a Christiansen-Shelyubskii filter. If, in addition, one of the liquids exhibits a substantial nonlinear optical response, then interfacial light scattering can be reversibly turned on when a laser beam incident upon the filter exceeds a critical fluence. To demonstrate this effect, an organic phase (dichloroethane) was dispersed in an aqueous phase containing sodium thiocyanate (NaSCN) using an alkyl end-capped polyethylene glycol ether. Optical limiting was observed through this transparent medium under conditions where the focused second-harmonic output of a Q-Switched Nd:YAG laser was on the order of about 50 mJ/cm2. An open-aperture z-scan technique was used to quantify the limiting behavior. Since the thiocyanate anion is both isostructural and isoelectronic with carbon disulfide which exhibits a large optical nonlinearity, the mechanism of optical limiting is proposed to be associated with a nonlinear shift in the aqueous fluid index of refraction, resulting in an index mismatch between the disparate phases at high laser fluence. Index mismatch between the two phases leads to multiple reflections, loss of coherence, and a significant transmission decrease due to Tyndall scattering. Fundamental studies of such systems are used to verify theoretical predictions of the limiting effect, and aid in the design and development of improved sub nanosecond limiters based upon this optical deflection approach.

  14. Thermocapillary convection in two immiscible liquid layers with free surface

    NASA Technical Reports Server (NTRS)

    Doi, Takao; Koster, Jean N.

    1993-01-01

    Thermocapillary convection is studied in two immiscible liquid layers with one free surface, one liquid/liquid interface, and differential heating applied parallel to the interfaces. An analytical solution is introduced for infinite horizontal layers. The defining parameter for the flow pattern is lambda, the ratio of the temperature coefficient of the interfacial tension to that of the surface tension. Four different flow patterns exist under zero gravity conditions. 'Halt' conditions which halt the fluid motion in the lower encapsulated liquid layer have been found. A numerical experiment is carried out to study effects of vertical end walls on the double layer convection in a 2D cavity. The halt condition obtained from the analytical study is found to be valid in the limit of small Reynolds numbers. The flow in the encapsulated liquid layer can be suppressed substantially.

  15. The role of liquid immiscibility in the genesis of carbonatites — An experimental study

    NASA Astrophysics Data System (ADS)

    Freestone, I. C.; Hamilton, D. L.

    1980-07-01

    The two-liquid field between alkali-carbonate liquids and phonolite or nephelinite magmas from the Oldoinyo Lengai volcano has been determined between 0.7 and 7.6 kb and 900° 1,250° C. The miscibility gap expands with increase in P_{CO_2 } and decrease in temperature. Concomitantly there is a rotation of tie-lines so that the carbonate liquids become richer in CaO. The element distribution between the melts indicates that a carbonate liquid equivalent in composition to Oldoinyo Lengai natrocarbonatite lava would have separated from a phonolitic rather than a nephelinitic magma. CO2-saturated nephelinites coexist with carbonate liquids much richer in CaO than the Lengai carbonatites, but even so these liquids have high alkali concentrations. If the sövites of hypabyssal and plutonic ijolite-carbonatite complexes originated by liquid immiscibility, then large quantities of alkalis have been lost, as is suggested by fenitization and related phenomena. The miscibility gap closes away from Na2O-rich compositions, so that the tendency to exsolve a carbonatite melt is greater in salic than in mafic silicate magmas. The two-liquid field does not approach kimberlitic compositions over the range of pressures studied, suggesting that the globular textures observed in many kimberlite sills and dykes may be the result of processes other than liquid immiscibility at crustal pressures.

  16. MASS-REMOVAL AND MASS-FLUX-REDUCTION BEHAVIOR FOR IDEALIZED SOURCE ZONES WITH HYDRAULICALLY POORLY-ACCESSIBLE IMMISCIBLE LIQUID

    SciTech Connect

    Brusseau, M. L.; Difilippo, Erica L.; marble, justin C.; Oostrom, Mart

    2008-04-01

    A series of flow-cell experiments was conducted to investigate aqueous dissolution and mass-removal behavior for systems wherein immiscible liquid was non-uniformly distributed in physically heterogeneous source zones. The study focused specifically on characterizing the relationship between mass flux reduction and mass removal for systems for which immiscible liquid is poorly accessible to flowing water. Two idealized scenarios were examined, one wherein immiscible liquid at residual saturation exists within a lower-permeability unit residing in a higher-permeability matrix, and one wherein immiscible liquid at higher saturation (a pool) exists within a higher-permeability unit adjacent to a lower-permeability unit. The results showed that significant reductions in mass flux occurred at relatively moderate mass-removal fractions for all systems. Conversely, minimalmass flux reduction occurred until a relatively large fraction of mass (>80%) was removed for the control experiment, which was designed to exhibit ideal mass removal. In general, mass flux reduction was observed to follow an approximately one-to-one relationship with mass removal. Two methods for estimating mass-flux-reduction/mass-removal behavior, one based on system-indicator parameters (ganglia-to-pool ratio) and the other a simple mass-removal function, were used to evaluate the measured data. The results of this study illustrate the impact of poorly accessible immiscible liquid on mass-removal and mass-flux processes, and the difficulties posed for estimating mass-flux-reduction/mass-removal behavior.

  17. Thermodynamic estimation of minor element distribution between immiscible liquids in Fe-Cu-based metal phase generated in melting treatment of municipal solid wastes

    SciTech Connect

    Lu, X.; Nakajima, K.; Sakanakura, H.; Matsubae, K.; Bai, H.; Nagasaka, T.

    2012-06-15

    Graphical abstract: Display Omitted Highlights: Black-Right-Pointing-Pointer Two liquids separation of metal occurs in the melting of municipal solid waste. Black-Right-Pointing-Pointer The distribution of PGMs etc. between two liquid metal phases is studied. Black-Right-Pointing-Pointer Quite simple thermodynamic model is applied to predict the distribution ratio. Black-Right-Pointing-Pointer Au and Ag originated from WEEE are found to be concentrated into Cu-rich phase. - Abstract: Waste electrical and electronic equipment (WEEE) has become an important target in managing material cycles from the viewpoint of not only waste management and control of environmental pollution but also resource conservation. This study investigated the distribution tendency of trace elements in municipal solid waste (MSW) or incinerator ash, including valuable non-ferrous metals (Ni, Co, Cr, Mn, Mo, Ti, V, W, Zr), precious group metals (PGMs) originated from WEEE (Ag, Au, Pd, Pt), and others (Al, B, Pb, Si), between Fe-rich and Cu-rich metal phases by means of simple thermodynamic calculations. Most of the typical alloying elements for steel (Co, Cr, Mo, Nb, Ni, Si, Ti, V, and W) and Rh were preferentially distributed into the Fe-rich phase. PGMs, such as Au, Ag, and Pd, were enriched in the Cu-rich phase, whereas Pt was almost equally distributed into both phases. Since the primary metallurgical processing of Cu is followed by an electrolysis for refining, and since PGMs in crude copper have been industrially recovered from the resulting anode slime, our results indicated that Ag, Au, and Pd could be effectively recovered from MSW if the Cu-rich phase could be selectively collected.

  18. Heat transfer between immiscible liquids enhanced by gas bubbling

    NASA Astrophysics Data System (ADS)

    Greene, G. A.; Schwarz, C. E.; Klages, J.; Klein, J.

    1982-08-01

    The phenomena of core-concrete interactions impact upon containment integrity of light water reactors (LWR) following postulated complete meltdown of the core by containment pressurization, production of combustible gases, and basemat penetration. Experiments were performed with nonreactor materials to investigate one aspect of this problem, heat transfer between overlying immiscible liquids whose interface is disturbed by a transverse non-condensable gas flux emanating from below. Hydrodynamic studies were performed to test a criterion for onset of entrainment due to bubbling through the interface and subsequent heat transfer studies were performed to assess the effect of bubbling on interfacial heat transfer rates, both with and without bubble induced entrainment. Non entraining interfacial heat transfer data with mercury-water/oil fluid pairs were observed to be bounded from below within a factor of two to three by the Szekeley surface renewal heat transfer model.

  19. Solidification Processing of Immiscible Liquids in the Presence of Applied Ultrasonic Energy

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Fedoseyev, A. I.; Kim, S.

    2001-01-01

    Uniform microstructural distribution during solidification of immiscible liquids (e.g., oil and water; aluminum and lead) on Earth is hampered by inherent density differences between the phases. Microgravity processing minimizes settling but segregation still occurs due to gravity independent wetting and coalescence phenomena. Experiments with the transparent organic, metal analogue, succinonitrile-glycerol system were conducted in conjunction with applied ultrasonic energy. The processing parameters associated with this technique have been evaluated in view of optimizing dispersion uniformity. Characterization of the experimental results in terms of a modeling effort will also be presented,

  20. Stabilization of liquid foams through the synergistic action of particles and an immiscible liquid.

    PubMed

    Zhang, Yi; Wu, Jie; Wang, Hongzhi; Meredith, J Carson; Behrens, Sven H

    2014-12-01

    Liquid foams are familiar from beer, frothed milk, or bubble baths; foams in general also play important roles in oil recovery, lightweight packaging, and insulation. Here a new class of foams is reported, obtained by frothing a suspension of colloidal particles in the presence of a small amount of an immiscible secondary liquid. A unique aspect of these foams, termed capillary foams, is the particle-mediated spreading of the minority liquid around the gas bubbles. The resulting mixed particle/liquid coating can stabilize bubbles against coalescence even when the particles alone cannot. The coated bubbles are further immobilized by entrapment in a network of excess particles connected by bridges of the minority liquid. Capillary foams were prepared with a diverse set of particle/liquid combinations to demonstrate the generality of the phenomenon. The observed foam stability correlates with the particle affinity for the liquid interface formed by spreading the minority liquid at the bubble surface. PMID:25284445

  1. Silicate liquid immiscibility in isothermal crystallization experiments. [lunar-evolution simulation

    NASA Technical Reports Server (NTRS)

    Longhi, J.

    1990-01-01

    The role of silicate liquid immiscibility (SLI) in the petrogenesis of lunar granites was investigated in experiments in which four glasses were synthesized from reagent-grade oxides and carbonates with the compositions of two of the sets of coexisting liquids reported by Hess et al. (1975): a KREEP basalt derivative and a mare basalt derivative. Isothermal crystallization experiments showed that SLI is a stable phenomenon in residual lunar liquids saturated with plagioclase, and is likely to produce large compositional separations. The results indicate that controlled-cooling-rate experiments of Rutherford et al. (1974), and Hess et al. (1975, 1978) were substantially correct analogs of the natural process of liquid immiscibility.

  2. Hydrogenation with monolith reactor under conditions of immiscible liquid phases

    SciTech Connect

    Nordquist, Andrew Francis; Wilhelm, Frederick Carl; Waller, Francis Joseph; Machado, Reinaldo Mario

    2002-01-01

    The present invention relates to an improved for the hydrogenation of an immiscible mixture of an organic reactant in water. The immiscible mixture can result from the generation of water by the hydrogenation reaction itself or, by the addition of, water to the reactant prior to contact with the catalyst. The improvement resides in effecting the hydrogenation reaction in a monolith catalytic reactor from 100 to 800 cpi, at a superficial velocity of from 0.1 to 2 m/second in the absence of a cosolvent for the immiscible mixture. In a preferred embodiment, the hydrogenation is carried out using a monolith support which has a polymer network/carbon coating onto which a transition metal is deposited.

  3. Thermodynamic estimation of minor element distribution between immiscible liquids in Fe-Cu-based metal phase generated in melting treatment of municipal solid wastes.

    PubMed

    Lu, X; Nakajima, K; Sakanakura, H; Matsubae, K; Bai, H; Nagasaka, T

    2012-06-01

    Waste electrical and electronic equipment (WEEE) has become an important target in managing material cycles from the viewpoint of not only waste management and control of environmental pollution but also resource conservation. This study investigated the distribution tendency of trace elements in municipal solid waste (MSW) or incinerator ash, including valuable non-ferrous metals (Ni, Co, Cr, Mn, Mo, Ti, V, W, Zr), precious group metals (PGMs) originated from WEEE (Ag, Au, Pd, Pt), and others (Al, B, Pb, Si), between Fe-rich and Cu-rich metal phases by means of simple thermodynamic calculations. Most of the typical alloying elements for steel (Co, Cr, Mo, Nb, Ni, Si, Ti, V, and W) and Rh were preferentially distributed into the Fe-rich phase. PGMs, such as Au, Ag, and Pd, were enriched in the Cu-rich phase, whereas Pt was almost equally distributed into both phases. Since the primary metallurgical processing of Cu is followed by an electrolysis for refining, and since PGMs in crude copper have been industrially recovered from the resulting anode slime, our results indicated that Ag, Au, and Pd could be effectively recovered from MSW if the Cu-rich phase could be selectively collected. PMID:22370049

  4. NONIDEAL BEHAVIOR DURING COMPLETE DISSOLUTION OF ORGANIC IMMISCIBLE LIQUID IN NATURAL POROUS MEDIA

    PubMed Central

    Russo, A.E.; Mahal, M.K.; Brusseau, M.L.

    2011-01-01

    Experiments were conducted to investigate the complete dissolution of organic immiscible liquid residing within natural porous media. Organic-liquid dissolution was investigated by conducting experiments with homogeneously packed columns containing a residual saturation of organic liquid (trichloroethene). The porous media used comprised different textures (ranges of particle-size distributions) and organic-carbon contents. The dissolution behavior that was observed for the soil and aquifer sediment systems deviated from the behavior typically observed for systems composed of ideal sands. Specifically, multi-step elution curves were observed, with multiple extended periods of relatively constant contaminant flux. This behavior was more pronounced for the two media with larger particle-size distributions. Conversely, this type of dissolution behavior was not observed for the control system, which consisted of a well-sorted sand. It is hypothesized that the pore-scale configuration of the organic liquid and of the flow field is more complex for the poorly sorted media, and that this greater complexity constrains dissolution dynamics, leading to the observed nonideal behavior. PMID:19643542

  5. Why are blue zhamanshinites blue Liquid immiscibility in an impact melt

    SciTech Connect

    Zolensky, M.E. ); Koeberl, C. )

    1991-05-01

    The authors report here a study of the cause of the coloration of blue zhamanshinites, which are glassy impact melt rocks from the Zhamanshin crater in the USSR. They find that the blue color results from Rayleigh scattering from spherical, 100 nm-diameter inclusions of a separate Ca-Fe-Mg-P-rich silicate glass. These observations can best be explained by the operation of liquid immiscibility in the zhamanshinite melt, and suggest that liquid immiscibility may have a more general role in impactite evolution.

  6. Why are blue zhamanshinites blue? Liquid immiscibility in an impact melt

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E.; Koeberl, Christian

    1991-01-01

    A study of the cause of the coloration of blue zhamanshinites, which are glassy impact melt rocks from the Zhamanshin crater in the USSR are reported. It is found that the blue color results from Rayleigh scattering from spherical, 100 nm-diameter inclusions of a separate Ca-Fe-Mg-P-rich silicate glass. These observations can best be explained by the operation of liquid immiscibility in the zhamanshinite melt, and suggest that liquid immiscibility may have a more general role in impactite evolution.

  7. Liquid-liquid phase equilibrium and core-shell structure formation in immiscible Al-Bi-Sn alloys

    NASA Astrophysics Data System (ADS)

    Li, Mingyang; Jia, Peng; Sun, Xiaofei; Geng, Haoran; Zuo, Min; Zhao, Degang

    2016-04-01

    In this paper, the liquid-phase separation of ternary immiscible Al45Bi19.8Sn35.2 and Al60Bi14.4Sn25.6 melts was studied with resistivity and thermal analysis methods at different temperature. The resistivity-temperature curves appear abrupt and anomalously change with rising temperature, corresponding to the anomalous and low peak of melting process in DSC curves, indicative of the occurrence of the liquid-phase separation. The anomalous behavior of the resistivity temperature dependence is attributable to concentration-concentration fluctuations. The effect of composition and melt temperature on the liquid-phase separation and core-shell structure formation in immiscible Al-Bi-Sn alloys was studied. The liquid-phase separation and formation of the core-shell structure in immiscible Al-Bi-Sn alloys are readily acquired when the alloy compositions fall into liquid miscibility gap. What's more, the cross-sectional structure changes from irregular, dispersed to core-type shapes under the actions of Marangoni motion with increasing melt temperature. This study provides some clues for the preparation of core-shell microspheres of immiscible Al-Bi-Sn alloys via liquid-phase separation.

  8. Predicting liquid immiscibility in multicomponent nuclear waste glasses

    SciTech Connect

    Peeler, D.K.; Hrma, P.R.

    1994-04-01

    Taylor`s model for predicting amorphous phase separation in complex, multicomponent systems has been applied to high-level (simulated) radioactive waste glasses at the US Department of Energy`s Hanford site. Taylor`s model is primarily based on additions of modifying cations to a Na{sub 2}O-B{sub 2}O{sub 3}-SiO{sub 2} (NBS) submixture of the multicomponent glass. The position of the submixture relative to the miscibility dome defines the development probability of amorphous phase separation. Although prediction of amorphous phase separation in Hanford glasses (via experimental SEM/TEM analysis) is the primary thrust of this work; reported durability data is also provides limited insight into the composition/durability relationship. Using a modified model similar to Taylor`s, the results indicate that immiscibility may be predicted for multicomponent waste glasses by the addition of Li{sub 2}O to the ``alkali`` corner of the NBS submixture.

  9. Rebound of continuous droplet streams from an immiscible liquid pool

    NASA Astrophysics Data System (ADS)

    Doak, William J.; Laiacona, Danielle M.; German, Guy K.; Chiarot, Paul R.

    2016-05-01

    We report on the rebound of high velocity continuous water droplet streams from the surface of an immiscible oil pool. The droplets have diameters and velocities of less than 90 μm and 15 m/s, respectively, and were created at frequencies up to 60 kHz. The impact and rebound of continuous droplet streams at this scale and velocity have been largely unexplored. This regime bridges the gap between single drop and jet impacts. The impinging droplets create a divot at the surface of the oil pool that had a common characteristic shape across a wide-range of droplet and oil properties. After impact, the reflected droplets maintain the same uniformity and periodicity of the incoming droplets but have significantly lower velocity and kinetic energy. This was solely attributed to the generation of a flow induced in the viscous oil pool by the impacting droplets. Unlike normally directed impact of millimeter-scale droplets with a solid surface, our results show that an air film does not appear to be maintained beneath the droplets during impact. This suggests direct contact between the droplets and the surface of the oil pool. A ballistic failure limit, correlated with the Weber number, was identified where the rebound was suppressed and the droplets were driven through the oil surface. A secondary failure mode was identified for aperiodic incoming streams. Startup effects and early time dynamics of the rebounding droplet stream were also investigated.

  10. Drop Fragmentation at Impact onto a Bath of an Immiscible Liquid

    NASA Astrophysics Data System (ADS)

    Lhuissier, H.; Sun, C.; Prosperetti, A.; Lohse, D.

    2013-06-01

    The impact of a drop onto a deep bath of an immiscible liquid is studied with emphasis on the drop fragmentation into a collection of noncoalescing daughter drops. At impact the drop flattens and spreads at the surface of the crater it transiently opens in the bath and reaches a maximum deformation, which gets larger with increasing impact velocity, before surface tension drives its recession. This recession can promote the fragmentation by two different mechanisms: At moderate impact velocity, the drop recession converges to the axis of symmetry to form a jet which then fragments by a Plateau-Rayleigh mechanism. At higher velocity the edge of the receding drop destabilizes and shapes into radial ligaments which subsequently fragment. For this latter mechanism the number N∝We3 and the size distribution of the daughter drops p(d)∝d-4 as a function of the impact Weber number We are explained on the basis of the observed spreading of the drop. The universality of this model for the fragmentation of receding liquid sheets might be relevant for other configurations.

  11. METHOD FOR MEASURING AIR-IMMISCIBLE LIQUID PARTITION COEFFICIENTS

    EPA Science Inventory

    The principal objective of this work was to measure nonaqueous phase liquid-air partition coefficients for various gas tracer compounds. Known amounts of trichloroethene (TCE) and tracer, as neat compounds, were introduced into glass vials and allowed to equilibrate. The TCE and ...

  12. Capillary foams: highly stable bubbles formed by synergistic action of particles and immiscible liquid

    NASA Astrophysics Data System (ADS)

    Meredith, Carson; Zhang, Yi; Behrens, Sven

    2015-03-01

    Liquid foams are a familiar part of everyday life from beer and frothed milk to bubble baths; they also play important roles in enhanced oil recovery, lightweight packaging, and insulation. We report a new class of foams, obtained by frothing a suspension of colloidal particles in the presence of a small amount of an immiscible secondary liquid. A unique aspect of the new foams, termed capillary foams, is that suspended particles mediate spreading of a minority liquid around gas bubbles. The resulting mixed particle/liquid coating can stabilize bubbles against coalescence even when the particles alone cannot. We demonstrate the generality of capillary foams by forming them from a diverse set of particle/liquid combinations and rationalize the results with a simple free energy model. In addition to many applications as liquid foams, capillary foams can serve as precursors for hierarchically-structured solids with porosity on different length scales and with significant application potential.

  13. Immiscible iron- and silica-rich liquids in the Upper Zone of the Bushveld Complex

    NASA Astrophysics Data System (ADS)

    Fischer, Lennart A.; Wang, Meng; Charlier, Bernard; Namur, Olivier; Roberts, R. James; Veksler, Ilya V.; Cawthorn, R. Grant; Holtz, François

    2016-06-01

    The Bushveld Complex (South Africa) is the largest layered intrusion on Earth and plays a considerable role in our understanding of magmatic differentiation and ore-forming processes. In this study, we present new geochemical data for apatite-hosted multiphase inclusions in gabbroic cumulates from the Bushveld Upper Zone. Inclusions re-homogenized at high-temperature (1060-1100 °C) display a range of compositions in each rock sample, from iron-rich (35 wt.% FeOtot; 28 wt.% SiO2) to silica-rich (5 wt.% FeOtot; 65 wt.% SiO2). This trend is best explained by an immiscible process and trapping of contrasted melts in apatite crystals during progressive cooling along the binodal of a two-liquid field. The coexistence of both Si-rich and Fe-rich immiscible melts in single apatite grains is used to discuss the ability of immiscible melts to segregate from each other, and the implications for mineral and bulk cumulate compositions. We argue that complete separation of immiscible liquids did not occur, resulting in crystallization of similar phases from both melts but in different proportions. However, partial segregation in a crystal mush and the production of contrasting phase proportions from the Fe-rich melt and the Si-rich melt can be responsible for the cyclic evolution from melanocratic (Fe-Ti-P-rich) to leucocratic (plagioclase-rich) gabbros which is commonly observed in the Upper Zone of the Bushveld Complex where it occurs at a vertical scale of 50 to 200 m.

  14. Liquid immiscibility and core-shell morphology formation in ternary Al–Bi–Sn alloys

    SciTech Connect

    Dai, R.; Zhang, J.F.; Zhang, S.G. Li, J.G.

    2013-07-15

    The effects of composition on liquid immiscibility, macroscopic morphology, microstructure and phase transformation in ternary Al–Bi–Sn alloys were investigated. Three types of morphology, the core-shell type, the stochastic droplet type and uniform dispersion type, of Al–Bi–Sn particles prepared by a jet breakup process were distinguished, and the relationships between which were discussed. The phase transformation behaviors of the Al–Bi–Sn alloys were studied by thermal analysis, in agreement with the microstructural observation and microanalysis. The liquid immiscibility and formation of the core-shell morphology in Al–Bi–Sn alloys are easily achieved when the composition lies in the liquid miscibility gap. The particles exhibit a high melting point Al-rich core with a low melting point Sn–Bi-rich solder shell, showing promise for application as high-density electronic packaging materials. - Highlights: • The liquid demixing, morphology and microstructure in Al–Bi–Sn alloys were studied. • Three types of morphology were classified and discussed. • The conditions for formation of the core-shell morphology were obtained. • The phase transition behaviors agree with the microstructure characterization. • The Al/Sn–Bi core-shell particles show promise for use in electronic packaging.

  15. Immiscible liquid-liquid pressure-driven flow in capillary tubes: Experimental results and numerical comparison

    NASA Astrophysics Data System (ADS)

    Soares, Edson J.; Thompson, Roney L.; Niero, Debora C.

    2015-08-01

    The immiscible displacement of one viscous liquid by another in a capillary tube is experimentally and numerically analyzed in the low inertia regime with negligible buoyancy effects. The dimensionless numbers that govern the problem are the capillary number Ca and the viscosity ratio of the displaced to the displacing fluids Nμ. In general, there are two output quantities of interest. One is associated to the relation between the front velocity, Ub, and the mean velocity of the displaced fluid, U ¯ 2 . The other is the layer thickness of the displaced fluid that remains attached to the wall. We compute these quantities as mass fractions in order to make them able to be compared. In this connection, the efficiency mass fraction, me, is defined as the complement of the mass fraction of the displaced fluid that leaves the tube while the displacing fluid crosses its length. The geometric mass fraction, mg, is defined as the fraction of the volume of the layer that remains attached to the wall. Because in gas-liquid displacement, these two quantities coincide, it is not uncommon in the literature to use mg as a measure of the displacement efficiency for liquid-liquid displacements. However, as is shown in the present paper, these two quantities have opposite tendencies when we increase the viscosity of the displacing fluid, making this distinction a crucial aspect of the problem. Results from a Galerkin finite element approach are also presented in order to make a comparison. Experimental and numerical results show that while the displacement efficiency decreases, the geometrical fraction increases when the viscosity ratio decreases. This fact leads to different decisions depending on the quantity to be optimized. The quantitative agreement between the numerical and experimental results was not completely achieved, especially for intermediate values of Ca. The reasons for that are still under investigation. The experiments conducted were able to achieve a wide range

  16. Compositions of magmas and carbonate silicate liquid immiscibility in the Vulture alkaline igneous complex, Italy

    NASA Astrophysics Data System (ADS)

    Solovova, I. P.; Girnis, A. V.; Kogarko, L. N.; Kononkova, N. N.; Stoppa, F.; Rosatelli, G.

    2005-11-01

    This paper presents a study of melt and fluid inclusions in minerals of an olivine-leucite phonolitic nephelinite bomb from the Monticchio Lake Formation, Vulture. The rock contains 50 vol.% clinopyroxene, 12% leucite, 10% alkali feldspars, 8% hauyne/sodalite, 7.5% nepheline, 4.5% apatite, 3.2% olivine, 2% opaques, 2.6% plagioclase, and < 1% amphibole. We distinguished three generations of clinopyroxene differing in composition and morphology. All the phenocrysts bear primary and secondary melt and fluid inclusions, which recorded successive stages of melt evolution. The most primitive melts were found in the most magnesian olivine and the earliest clinopyroxene phenocrysts. The melts are near primary mantle liquids and are rich in Ca, Mg and incompatible and volatile elements. Thermometric experiments with the melt inclusions suggested that melt crystallization began at temperatures of about 1200 °C. Because of the partial leakage of all primary fluid inclusions, the pressure of crystallization is constrained only to minimum of 3.5 kbar. Combined silicate-carbonate melt inclusions were found in apatite phenocrysts. They are indicative of carbonate-silicate liquid immiscibility, which occurred during magma evolution. Large hydrous secondary melt inclusions were found in olivine and clinopyroxene. The inclusions in the phenocrysts recorded an open-system magma evolution during its rise towards the surface including crystallization, degassing, oxidation, and liquid immiscibility processes.

  17. A planar lens based on the electrowetting of two immiscible liquids

    NASA Astrophysics Data System (ADS)

    Liu, Chao-Xuan; Park, Jihwan; Choi, Jin-Woo

    2008-03-01

    This paper reports the development and characterization of a planar liquid lens based on electrowetting. The working concept of electrowetting two immiscible liquids is demonstrated with measurement and characterization of contact angles with regard to externally applied electric voltages. Consequently, a planar liquid lens is designed and implemented based on this competitive electrowetting. A droplet of silicone oil confined in an aqueous solution (1% KCl) works as a liquid lens. Electrowetting then controls the shape of the confined silicone oil and the focal length of the liquid lens varies depending upon an applied dc voltage. A unique feature of this lens design is the double-ring planar electrodes beneath the hydrophobic substrate. While an outer ring electrode provides an initial boundary for the silicone oil droplet, an inner ring works as the actuation electrode for the lens. Further, the planar electrodes, instead of vertical or out-of-plane wall electrodes, facilitate the integration of liquid lenses into microfluidic systems. With the voltage applied in the range of 50-250 V, the confined silicone oil droplet changed its shape and the optical magnification of a 3 mm-diameter liquid lens was clearly demonstrated. Moreover, focal lengths of liquid lenses with diameters of 2 mm, 3 mm and 4 mm were characterized, respectively. The obtained results suggest that a larger lens diameter yields a longer focal length and a wider range of focal length change in response to voltage. The demonstrated liquid lens has a simple structure and is easy to fabricate.

  18. Heat transfer between stratified immiscible liquid layers driven by gas bubbling across the interface

    SciTech Connect

    Greene, G.A.; Irvine, T.F. Jr.

    1988-01-01

    The modeling of molten core debris in the CORCON and VANESA computer codes as overlying, immiscible liquid layers is discussed as it relates to the transfer of heat and mass between the layers. This initial structure is identified and possible configurations are discussed. The stratified, gas-sparged configuration that is presently employed in CORCON and VANESA is examined and the existing literature for interlayer heat transfer is assessed. An experiment which was designed to measure interlayer heat transfer with gas sparging is described. The results are presented and compared to previously existing models. A dimensionless correlation for stratified, interlayer heat transfer with gas sparging is developed. This relationship is recommended for inclusion in CORCON-MOD2 for heat transfer between stratified, molten liquid layers. 12 refs., 6 figs., 3 tabs.

  19. Natural damped frequencies of an infinitely long column of immiscible viscous liquids

    NASA Astrophysics Data System (ADS)

    Bauer, H. F.

    Extended space flights and manned earth-orbiting space laboratories provide for manufacturing processes and experiments conditions which are not found on the surface of the earth. The availability of conditions involving highly reduced or zero gravity are of interest for many engineering disciplines, taking into account fluid mechanics, materials sciences, and crystal growth. Thus, floating zone melting under zero gravity conditions has great advantages. However, there are also certain difficulties. The floating zone has, for instance, a free liquid surface which is susceptible to dynamic disturbances. The stability problems which arise have been studied by a number of authors. The present investigation is concerned with infinitely long systems which consist of immiscible liquids of different densities and viscosities. Approaches for determining the natural damped frequencies and the decay of the motion of surface waves are discussed.

  20. Analysis of convection in immiscible liquid layers with novel particle tracking velocimetry

    NASA Technical Reports Server (NTRS)

    Koster, J. N.; Prakash, A.; Campbell, T. A.; Pline, A.

    1992-01-01

    The problem under study is convective flow in immiscible liquid layers with one or two horizontal interfaces. In one-g the flow results primarily from the buoyancy force acting perpendicular to the interfaces. This creates a fluid mechanical system in which the coupling of the fluid layers across an interface plays a fundamental role. The contribution of two horizontal interface tension forces is marginal. Interface tension driven flow requires testing in microgravity. A flight experiment on the Bubble, Drop, and Particle Unit (BDPU) is planned for the second International Microgravity Laboratory (IML-2) mission onboard the Shuttle in 1994. The flow velocity fields will be analyzed by a whole-field Particle Displacement Tracking (PDT) velocimetry technique. The capabilities of this technique to address fundamental issues, such as those regarding the flow stucture, will be discussed with a few sample experiments. Experimental and numerical flow patterns are compared.

  1. Silica Transport and Distribution in Saline, Immiscible Fluids: Application to Subseafloor Hydrothermal Systems

    NASA Astrophysics Data System (ADS)

    Steele-Macinnis, M.; Bodnar, R. J.; Lowell, R.; Rimstidt, J. D.

    2009-05-01

    Quartz is a nearly ubiquitous gangue mineral in hydrothermal mineral deposits, most often constituting the bulk of hydrothermal mineralization. The dissolution, transport and precipitation of quartz is controlled by the solubility of silica; in particular, in hot hydrothermal fluids in contact with quartz, silica saturation can generally be assumed, as rates of dissolution and precipitation are generally much faster than fluid flow rates. The solubility of silica in aqueous fluids can be used to understand the evolution of hydrothermal systems by tracing the silica distribution in these systems through time. The solubility of quartz in an aqueous fluid is dependent upon the pressure, temperature and composition (PTX) of the fluid. Silica solubility in pure water as a function of pressure and temperature is well understood. However, natural fluids contain variable amounts of dissolved ionic species, thus it is necessary to include the effects of salinity on silica solubility to accurately predict quartz distribution in hydrothermal systems. In particular, addition of NaCl results in enhanced quartz solubility over a wide range of PT conditions. Furthermore, if phase separation occurs in saline fluids, silica is preferentially partitioned into the higher salinity brine phase; if vapor is removed from the system, the bulk salinity in the system evolves towards the brine end member, and overall silica solubility is enhanced. There is abundant evidence from natural fluid inclusions for fluid immiscibility in hydrothermal ore deposits. Additionally, recent hydrothermal models that include fluid phase equilibria effects predict that phase separation may be an important control on the distribution of dissolved components in seafloor hydrothermal systems. An empirical equation describing the solubility of silica in salt-bearing hydrothermal solutions over a wide range of PTX conditions has been incorporated into a multiphase fluid flow model for seafloor hydrothermal

  2. TWOLIQ.FOR: a FORTRAN77 program for simulating immiscibility in silicate liquids

    NASA Astrophysics Data System (ADS)

    Ma, H.; Hu, Y.; Fang, T.

    1999-03-01

    The program TWOLIQ.FOR is designed for predicting immiscibility in silicate liquids, by the thermodynamic criterion: ∑( Ai/ T+ CiP/ T) XiHo≥-∑(∑ DiXiHo- Bi) XiHo and for calculating compositions and amounts of the conjugate liquids from oxide partition coefficients between the coexisting Si- and Fe-rich melts, expressed as: ln( XiSi/ XiFe)= ai/ T+ bi+ ciP/ T+∑ diXiHo. Where T and P denote temperature (in Kelvin) and pressure (in GPa), respectively, X i mole fraction of oxide i, Ho, Si and Fe refer to homogeneous, Si- and Fe-rich melt phases, respectively and A i to D i, a i to d i are constants. Uncertainties of calculated oxide compositions in the liquids are 3.0-4.0 mol% for SiO 2, Al 2O 3 and FeO, less than 1.0 mol% for the other oxides and predicted amounts around 1.0 mol% for the coexisting two liquids. Ore-forming processes of magnetite-apatite deposits, therefore, can be numerically simulated by the program.

  3. Optofluidic restricted imaging, spectroscopy and counting of nanoparticles by evanescent wave using immiscible liquids.

    PubMed

    Liang, L; Zuo, Y F; Wu, W; Zhu, X Q; Yang, Y

    2016-08-21

    Conventional flow cytometry (FC) suffers from the diffraction limit for the detection of nanoparticles smaller than 100 nm, whereas traditional total internal reflection (TIR) microscopy can only detect few samples near the solid-liquid interface mostly in static states. Here we demonstrate a novel on-chip optofluidic technique using evanescent wave sensing for single nanoparticle real time detection by combining hydrodynamic focusing and TIR using immiscible flows. The immiscibility of the high-index sheath flow and the low-index core flow naturally generate a smooth, flat and step-index interface that is ideal for the TIR effect, whose evanescent field can penetrate the full width of the core flow. Hydrodynamic focusing can focus on all the nanoparticles in the extreme centre of the core flow with a width smaller than 1 μm. This technique enables us to illuminate every single sample in the running core flow by the evanescent field, leaving none unaffected. Moreover, it works well for samples much smaller than the diffraction limit. We have successfully demonstrated the scattering imaging and counting of 50 nm and 100 nm Au nanoparticles and also the fluorescence imaging and counting of 200 nm beads. The effective counting speeds are estimated as 1500, 2300 and 2000 particles per second for the three types of nanoparticles, respectively. The optical scattering spectra were also measured to determine the size of individual Au nanoparticles. This provides a new technique to detect nanoparticles and we foresee its application in the detection of molecules for biomedical analyses. PMID:26984126

  4. Dynamics of Pinch-Off in Immiscible Liquid/Liquid Jets

    NASA Astrophysics Data System (ADS)

    Longmire, E. K.; Webster, D. R.; Lowengrub, J. S.

    1997-11-01

    The behavior of glycerine/water jets flowing into a nearly immiscible ambient of Dow Corning 200 fluid is investigated using laser induced fluorescence flow visualization and particle image velocimetry. Clear images are obtained by matching the index of refraction in the glycerine/water solution with the index of refraction in the surrounding Dow Corning fluid. Jet Reynolds numbers are on the order of 100. The pinch-off of the jet column into droplets can be made repeatable by periodic forcing, and several pinch-off modes are examined. These modes are produced by varying the forcing frequency and amplitude, fluid viscosity ratio, and jet Reynolds number. The details of the pinch-off, including local variations in concentration near the transition location and the associated velocity fields will be discussed. The experimental results will be compared with numerical simulations that allow limited chemical mixing across the finite-thickness interface.

  5. Silicate-natrocarbonatite liquid immiscibility in 1917 eruption combeite-wollastonite nephelinite, Oldoinyo Lengai Volcano, Tanzania: Melt inclusion study

    NASA Astrophysics Data System (ADS)

    Sharygin, Victor V.; Kamenetsky, Vadim S.; Zaitsev, Anatoly N.; Kamenetsky, Maya B.

    2012-11-01

    Primary silicate-melt and carbonate-salt inclusions occur in the phenocrysts (nepheline, fluorapatite, wollastonite, clinopyroxene) in the 1917 eruption combeite-wollastonite nephelinite at Oldoinyo Lengai. Silicate-melt inclusions in nepheline clearly show liquid immiscibility phenomena expressed in the presence of carbonate globules in silicate glass. The coexistence of inclusions with markedly different proportions of silicate glass + vapor-carbonate globule in the core of nepheline phenocrysts, the presence of carbonate-salt inclusions in fluorapatite and our heating experiments strongly suggest that their entrapment began at temperatures higher than 1130 °C in an intermediate chamber when initial carbonated nephelinite melt was heterogeneous and represented a mixture of immiscible liquids. Silicate-natrocarbonatite melt immiscibility took place at high temperature and immiscible nephelinite and carbonatite liquids coexisted over a wide temperature range from ≥ 1130 °C to 600 °C. Homogenization of a carbonate globule (dissolution of the gas bubble in carbonate melt) at 900-940 °C indicates that after separation from silicate magma the natrocarbonatite represented homogeneous liquid in the 900-1130 °C temperature range, whereas below these temperatures immiscible melts of different composition and fluid phase have separated from it. The bulk composition of homogeneous natrocarbonatite melt may be estimated as ≈ 20% CaF2, 40-60% (Na,K)2CO3 and 20-40% CaCO3 based on the coexistence of nyerereite, calcite and fluorite and the rapid phase transition (carbonate aggregate → carbonate liquid) at 550-570 °C observed in vapor-carbonate globules of nepheline-hosted silicate-melt inclusions and on the Na2CO3-CaCO3-CaF2 phase diagram. Silicate glasses of nepheline-hosted immiscible inclusions drastically differ from host nephelinite in the abundance of major and trace elements. They are high peralkaline ((Na + K)/Al — up to 9.5) and virtually free of water (H2

  6. SPAR 5 experiment no. 74-30 agglomeration in immiscible liquids

    NASA Technical Reports Server (NTRS)

    Gelles, S.; Markworth, A. J.

    1979-01-01

    The influence of gravity, cooling rate, and composition on the macro-and microstructure of liquid phase immiscible alloys were researched. Aluminum indium alloys of compositions 30, 40, 70, and 90 weight percent indium were processed aboard two sounding rocket flights, SPAR 2 and SPAR 5. Radiographic and metallographic examination of the SPAR 2 flight and ground base samples showed the expected separation at lg of the ground base alloys into indium rich and aluminum rich layers. The flight alloys produced an aluminum rich core surrounding by indium rich metal. The results obtained from the SPAR 5 40 and 70 weight percent indium alloys were essentially identical to those from SPAR 2. The 30 and 90 weight percent indium alloys also showed massive separation into configuration similar to the 40 and 70 weight percent indium alloys. The 90 weight percent indium alloy showed additional evidence that surface tension induced droplet migration had occurred in this alloy which could at least in part account for the observed structures.

  7. Sol-Gel synthesis of MgO-SiO2 glass compositions having stable liquid-liquid immiscibility

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1987-01-01

    MgO-SiO2 glasses containing up to 15 mol % MgO, which could not have been prepared by the conventional glass melting method due to the presence of stable liquid-liquid immiscibility, were synthesized by the sol-gel technique. Clear and transparent gels were obtained from the hydrolysis and polycondensation of silicon tetraethoxide (TEOS) and magnesium nitrate hexahydrate when the water/TEOS mole ratio was four or more. The gelling time decreased with increase in magnesium content, water/TEOS ratio, and reaction temperature. Magnesium nitrate hexahydrate crystallized out of the gels containing 15 and 20 mol % MgO on slow drying. This problem was partially alleviated by drying the gels quickly at higher temperatures. Monolithic gel samples were prepared using glycerol as the drying control additive. The gels were subjected to various thermal treatments and characterized by several methods. No organic groups could be detected in the glasses after heat treatments to approx. 800 C, but trace amounts of hydroxyl groups were still present. No crystalline phase was found from X-ray diffraction in the gel samples to approx. 890 C. At higher temperatures, alpha quartz precipitated out as the crystalline phase in gels containing up to 10 mol % MgO. The overall activation energy for gel formation in 10MgO-90SiO2 (mol %) system for water/TEOS mole ratio of 7.5 was calculated to be 58.7 kJ/mol.

  8. Low temperature synthesis of CaO-SiO2 glasses having stable liquid-liquid immiscibility by sol-gel process

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1990-01-01

    Calcium silicate glass compositions lying within the liquid-liquid immiscibility dome of the phase diagram, which could not have been prepared by the conventional melting method, were synthesized by the sol-gel process. Hydrolysis and polycondensation of tetraethyl orthosilicate (TEOS) solutions containing up to 20 mol percent calcium nitrate resulted in the formation of clear and transparent gels. The gel formation time decreased with increase in water:TEOS mole ratio, calcium content, and the reaction temperature. Smaller values of gel times in the presence of calcium nitrate are probably caused by lowering of the ionic charge on the sol particles by the salt present. The gelation activation energy, E(sub gel), was evaluated from temperature dependence of the gel time. Presence of Ca(2+) ions or the water:TEOS mole ratio did not have an appreciable effect on the value of E(sub gel). Presence of glycerol in the solution helped in the formation of crack-free monolithic gel specimens. Chemical and structural changes occurring in the gels, as a function of the heat treatments, have been monitored using DTA, TGA, IR-spectroscopy, x ray diffraction, surface area and pore size distribution measurements.

  9. Low temperature synthesis of CaO-SiO2 glasses having stable liquid-liquid immiscibility by the sol-gel process

    NASA Technical Reports Server (NTRS)

    Bansal, N. P.

    1992-01-01

    Calcium silicate glass compositions lying within the liquid-liquid immiscibility dome of the phase diagram, which could not have been prepared by the conventional melting method, were synthesized by the sol-gel process. Hydrolysis and polycondensation of tetraethyl orthosilicate (TEOS) solutions containing up to 20 mol percent calcium nitrate resulted in the formation of clear and transparent gels. The gel formation time decreased with increase in water: TEOS mole ratio, calcium content, and the reaction temperature. Smaller values of gel times in the presence of calcium nitrate are probably caused by lowering of the ionic charge on the sol particles by the salt present. The gelation activation energy, E(sub gel), was evaluated from temperature dependence of the gel time. Presence of Ca(2+) ions or the water:TEOS mole ratio did not have an appreciable effect on the value of E(sub gel). Presence of glycerol in the solution helped in the formation of crack-free monolithic gel specimens. Chemical and structural changes occurring in the gels, as a function of the heat treatments, have been monitored using DTA, TGA, IR-spectroscopy, X-ray diffraction, surface area and pore size distribution measurements.

  10. In situ synchrotron study of liquid phase separation process in Al-10 wt.% Bi immiscible alloys by radiography and small angle X-ray scattering

    NASA Astrophysics Data System (ADS)

    Lu, W. Q.; Zhang, S. G.; Li, J. G.

    2016-03-01

    Liquid phase separation process of immiscible alloys has been repeatedly tuned to create special structure for developing materials with unique properties. However, the fundamental understanding of the liquid phase separation process is still under debate due to the characteristics of immiscible alloys in opacity and high temperature environment of alloy melt. Here, the liquid phase separation process in solidifying Al-Bi immiscible alloys was investigated by synchrotron radiography and small angle X-ray scattering. We provide the first direct evidence of surface segregation prior to liquid decomposition and present that the time dependence on the number of Bi droplets follows Logistic curve. The liquid decomposition results from a nucleation and growth process rather than spinodal decomposition mechanism because of the positive deviation from Porod's law. We also found that the nanometer-sized Bi-rich droplets in Al matrix melt present mass fractal characteristics.

  11. Field and modelling studies of immiscible fluid flow above a contaminated water-table aquifer

    USGS Publications Warehouse

    Herkelrath, W.N.; Essaid, H.I.; Hess, K.M.

    1991-01-01

    A method was developed for measuring the spatial distribution of immiscible liquid contaminants in the subsurface. Fluid saturation distributions measured at a crude-oil spill site were used to test a numerical multiphase flow model.

  12. A General Strategy for the Separation of Immiscible Organic Liquids by Manipulating the Surface Tensions of Nanofibrous Membranes.

    PubMed

    Wang, Li; Zhao, Yong; Tian, Ye; Jiang, Lei

    2015-12-01

    Oil/water separation membranes with different wettability towards water are attractive for their economic efficiency and convenience. The key factor for the separation process is the roughness-enhanced wettability of membranes based on the intrinsic wetting threshold (IWT) of water, that is, the limitation of the wettability caused by hydrophobicity and hydrophilicity. However, the separation of organic liquids (OLs) remains a challenge. Herein, we manipulate the surface tensions of nanofibrous membranes to lie between the IWTs of the two OLs to be separated so that the nanofibrous membranes can be endowed with superlyophobicity and superlyophilicity for the two liquids, and thus lead to successful separation. Our investigations provide a general strategy to separate any immiscible liquids efficiently, and may lead to the development of membranes with a large capacity, high flux, and high selectivity for organic reactions or liquid extraction in chemical engineering. PMID:26492856

  13. The Study of a Liquid Droplet Falling Through Two Immiscible Layers of Liquids

    NASA Astrophysics Data System (ADS)

    Mesa, Bianca

    2013-11-01

    In an exploratory experiment, we noticed the unusual behaviors of liquid droplets falling through layers of oil and water. A rectangular container was filled with an aqueous solution and a layer of oil. A dropper was used to control the size of the droplet. Water was mixed with Bromothymol Blue dye, a chemical indicator, to visualize the flow processes. Surface tension and the buoyancy of the oil layer between the liquid droplet and the water below caused the liquid droplet to be stopped at the interface. Over time, the support weakened and the droplet would fall quickly through the water. The first of two cases was a salt water solution with NaOH, and the second consisted of balsamic vinegar and NaOH. Once the salt water droplet touched the aqueous solution, it collapsed, sank and spread rapidly at the interface. The sinking motion dragged the spreading fluid back to its center and then down. For the second case, a trace amount of the droplet spread rapidly at the interface while the main portion of the droplet sank and then spontaneously exploded. The difference in behavior is mainly due to the surface tension of the droplet in water. The underlying mechanisms of the droplet's flow instability are from the effects of diffusion weakening the surface tension. Bianca Mesa is an undergraduate student in the Ocean and Mechanical Engineering Department at Florida Atlantic University. She is pursuing a B.S. degree in Ocean Engineering. In addition to her academic interests, she is also an avid sailor.

  14. Rare earth element selenochemistry of immiscible liquids and zircon at Apollo 14 - An ion probe study of evolved rocks on the moon

    NASA Technical Reports Server (NTRS)

    Snyder, Gregory A.; Taylor, Lawrence A.; Crozaz, Ghislaine

    1993-01-01

    Results are presented of trace-element analyses of three lunar zircons. The major-element and REE compositions were determined using electron microprobes, and a correction was made for zircon for Zr-Si-O molecular interferences in the La to Pr mass region. The three zircons were found to exhibit similar REE abundances and patterns. Results of the analyses confirm earlier studies (Hess et al., 1975; Watson, 1976; Neal and Taylor, 1989) on the partitioning behavior of trace elements in immiscible liquid-liquid pairs. The results also support the postulated importance of silicate liquid immiscibility in the differentiation of the upper mantle and crust of the moon.

  15. The formation of metal/metal-matrix nano-composites by the ultrasonic dispersion of immiscible liquid metals

    SciTech Connect

    Keppens, V.M.; Mandrus, D.; Boatner, L.A.; Rankin, J.

    1996-12-01

    Ultrasonic energy has been used to disperse one liquid metallic component in a second immiscible liquid metal, thereby producing a metallic emulsion. Upon lowering the temperature of this emulsion below the mp of the lowest-melting constituent, a metal/metal-matrix composite is formed. This composite consists of sub-micron-to-micron- sized particles of the minor metallic phase that are embedded in a matrix consisting of the major metallic phase. Zinc-bismuth was used as a model system, and ultrasonic dispersion of a minor Bi liquid phase was used to synthesize metal/metal-matrix composites. These materials were characterized using SEM and energy-dispersive x-ray analysis.

  16. Apparatus and method for pumping hot, erosive slurry of coal solids in coal derived, water immiscible liquid

    DOEpatents

    Ackerman, Carl D.

    1983-03-29

    An apparatus for and method of pumping hot, erosive slurry of coal solids in a coal derived, water immiscible liquid to higher pressure involves the use of a motive fluid which is miscible with the liquid of the slurry. The apparatus includes a pump 12, a remote check valve 14 and a chamber 16 between and in fluid communication with the pump 12 and check valve 14 through conduits 18,20. Pump 12 exerts pressure on the motive fluid and thereby on the slurry through a concentration gradient of coal solids within chamber 16 to alternately discharge slurry under pressure from the outlet port of check valve 14 and draw slurry in through the inlet port of check valve 14.

  17. FIELD TEST OF CYCLODEXTRIN FOR ENHANCED IN-SITU FLUSHING OF MULTIPLE-COMPONENT IMMISCIBLE ORGANIC LIQUID CONTAMINATION: PROJECT OVERVIEW AND INITIAL RESULTS

    EPA Science Inventory

    The purpose of this paper is to present an overview and the initial results of a pilot-scale experiment designated to test the use of cyclodextrin for enhanced in-situ flushing of an aquifer contaminated by immiscible liquid. This is the first field test of this technology, terme...

  18. Dissolution of a multicomponent droplet in an immiscible ambient fluid: Application of the distribution law

    NASA Astrophysics Data System (ADS)

    Chu, Shigan; Prosperetti, Andrea; Andrea Prosperetti Collaboration

    2015-11-01

    A liquid droplet will shrink in an undersaturated ambient liquid medium due to mass transfer across the interface even when the drop liquid is only sparingly soluble in the host liquid. The dissolution rate of a single-component droplet can be accurately predicted by an adaptation of the the Epstein-Plesset theory, in which it is assumed that the droplet surface remains at saturation. This hypothesis may be violated in the case of a multi-component droplet, as the more soluble component dissolves faster than the other(s). As a consequence, the droplet surface cannot remain saturated with this component in the later stages of the process. To account for this feature a modified Epstein-Plesset theory is developed on the basis of the distribution law of liquid-liquid solutions. The implications of the teory are illustrated with several examples. This study was supported by a grant from BP/The Gulf of Mexico Research Initiative through the University of Texas Marine Science Institute (DROPPS consortium: ``Dispersion Research on Oil: Physics and Plankton Studies''). The funders had no role in study.

  19. Surrogate immiscible liquid pairs with refractive indexes matchable over a wide range of density and viscosity ratios

    NASA Astrophysics Data System (ADS)

    Saksena, Rajat; Christensen, Kenneth T.; Pearlstein, Arne J.

    2015-08-01

    In liquid-liquid flows, use of optical diagnostics is limited by interphase refractive index mismatch, which leads to optical distortion and complicates data interpretation, and sometimes also by opacity. Both problems can be eliminated using a surrogate pair of immiscible index-matched transparent liquids, whose density and viscosity ratios match corresponding ratios for the original liquid pair. We show that a wide range of density and viscosity ratios is accessible using aqueous solutions of 1,2-propanediol and CsBr (for which index, density, and viscosity are available), and solutions of light and heavy silicone oils and 1-bromooctane (for which we measured the same properties at 119 compositions). For each liquid phase, polynomials in the composition variables, least-squares fitted to index and density and to the logarithm of kinematic viscosity, were used to determine accessible density and viscosity ratios for each matchable index. Index-matched solution pairs can be prepared with density and viscosity ratios equal to those for water-liquid CO2 at 0 °C over a range of pressure (allowing water-liquid CO2 behavior at inconveniently high pressure to be simulated by 1-bar experiments), and for water-crude oil and water-trichloroethylene (avoiding opacity and toxicity problems, respectively), each over a range of temperature. For representative index-matched solutions, equilibration changes index, density, and viscosity only slightly, and mass spectrometry and elemental analysis show that no component of either phase has significant interphase solubility. Finally, procedures are described for iteratively reducing the residual index mismatch in surrogate solution pairs prepared on the basis of approximate polynomial fits to experimental data, and for systematically dealing with nonzero interphase solubility.

  20. The role of liquid-liquid immiscibility and crystal fractionation in the genesis of carbonatite magmas: insights from Kerimasi melt inclusions

    NASA Astrophysics Data System (ADS)

    Guzmics, Tibor; Zajacz, Zoltán; Mitchell, Roger H.; Szabó, Csaba; Wälle, Markus

    2015-02-01

    We have reconstructed the compositional evolution of the silicate and carbonate melt, and various crystalline phases in the subvolcanic reservoir of Kerimasi Volcano in the East African Rift. Trace element concentrations of silicate and carbonate melt inclusions trapped in nepheline, apatite and magnetite from plutonic afrikandite (clinopyroxene-nepheline-perovskite-magnetite-melilite rock) and calciocarbonatite (calcite-apatite-magnetite-perovskite-monticellite-phlogopite rock) show that liquid immiscibility occurred during the generation of carbonatite magmas from a CO2-rich melilite-nephelinite magma formed at relatively high temperatures (1,100 °C). This carbonatite magma is notably more calcic and less alkaline than that occurring at Oldoinyo Lengai. The CaO-rich (32-41 wt%) nature and alkali-"poor" (at least 7-10 wt% Na2O + K2O) nature of these high-temperature (>1,000 °C) carbonate melts result from strong partitioning of Ca (relative to Mg, Fe and Mn) in the immiscible carbonate and the CaO-rich nature (12-17 wt%) of its silicate parent (e.g., melilite-nephelinite). Evolution of the Kerimasi carbonate magma can result in the formation of natrocarbonatite melts with similar composition to those of Oldoinyo Lengai, but with pronounced depletion in REE and HFSE elements. We suggest that this compositional difference results from the different initial parental magmas, e.g., melilite-nephelinite at Kerimasi and a nephelinite at Oldoinyo Lengai. The difference in parental magma composition led to a significant difference in the fractionating mineral phase assemblage and the element partitioning systematics upon silicate-carbonate melt immiscibility. LA-ICP-MS analysis of coeval silicate and carbonate melt inclusions provides an opportunity to infer carbonate melt/silicate melt partition coefficients for a wide range of elements. These data show that Li, Na, Pb, Ca, Sr, Ba, B, all REE (except Sc), U, V, Nb, Ta, P, Mo, W and S are partitioned into the carbonate

  1. Large-scale liquid immiscibility and fractional crystallization in the 1780 Ma Taihang dyke swarm: Implications for genesis of the bimodal Xiong'er volcanic province

    NASA Astrophysics Data System (ADS)

    Peng, Peng; Wang, Xinping; Lai, Yong; Wang, Chong; Windley, Brian F.

    2015-11-01

    Immiscibility is a potential mechanism for the formation of high-Fe-Ti-P rocks; however, whether large-scale segregation and eruption of high-Si lavas can occur in nature has yet to be proven. In this study, we investigate the possibility of immiscibility between the cogenetic 1780 Ma high-Fe-Ti-P-bearing Taihang dykes and the 'bimodal' Xiong'er volcanics in North China. The compositions of silicate melt inclusions in plagioclase megacrysts of the dykes provide a new approach to obtain the primary liquid. Mineral and bulk-rock compositions reveal that large compositional variations in the dykes are the result of plagioclase- and clinopyroxene-dominated fractional crystallization and of density-driven mineral sorting, which together caused the liquids to be poor in Ca-Al but rich in Fe-Ti-P-K, and thus chemically immiscible. Conjugate interstitial granophyric and ilmenite-rich intergrowths and reactive microstructures especially olivine coronas in the dykes, and Si-/Fe-Ti-rich globules in the volcanics, provide petrographic evidence for the presence of two coeval, coexisting liquids in equilibrium separated by a miscibility gap, and thus for immiscibility and segregation/migration. The fractional crystallization and subsequent segregation were responsible for the compositional diversity of the Taihang dykes and also of the 'bimodal' Xiong'er volcanics. Accordingly, the dacite and rhyolite lavas are potentially the high-Si counterparts of the high-Ti dykes, and the basalt and andesite lavas are the erupted equivalents of the relatively low-Ti dykes. It is likely that the sustained plagioclase- and clinopyroxene-dominated fractional crystallization, and the enhanced fO2 were responsible for the immiscibility. The segregation probably took place during the ascent of the liquid in the pumping system (feeder dykes). This likely represents one natural example of crust-scale immiscibility from which many high-Ti dykes and silicic lavas (~ 1/3 volume of the Xiong

  2. ASSESSMENT OF THE ABILITY OF STANDARD SLURRY PUMPS TO MIX MISCIBLE AND IMMISCIBLE LIQUIDS IN TANK 50H

    SciTech Connect

    Poirier, M.

    2011-06-15

    Tank 50H is the feed tank for the Saltstone Production Facility (SPF). At present, Tank 50H contains two standard slurry pumps and two Quad Volute slurry pumps. Current requirements and mixing operation is to run three pumps for one hour prior to initiating a feed transfer to SPF. Savannah River Site (SRS) Liquid Waste would like to move one or both of the Quad Volute pumps from Tank 50H to Tank 51H to replace pumps in Tank 51H that are failing. In addition, one of the standard pumps in Tank 50H exhibits high seal leakage and vibration. SRS Liquid Waste requested Savannah River National (SRNL) to conduct a study to evaluate the feasibility of mixing the contents of Tank 50H with one to three standard slurry pumps. To determine the pump requirements to blend miscible and immiscible liquids in Tank 50H, the author reviewed the pilot-scale blending work performed for the Salt Disposition Integration Project (SDIP) and the technical literature, and applied the results to Tank 50H to determine the number, size, and operating parameters needed to blend the tank contents. The conclusions from this analysis are: (1) A single rotating standard slurry pump (with a 13.6 ft{sup 2}/s U{sub 0}D) will be able to blend miscible liquids (i.e., salt solution) in Tank 50H within 4.4 hours. (2) Two rotating standard slurry pumps will be able to blend miscible liquids in Tank 50H within 3.1 hours. (3) Three rotating standard slurry pumps will be able to blend miscible liquids in Tank 50H within 2.5 hours. (4) A single rotating standard slurry pump (with a 13.6 ft{sup 2}/s U{sub 0}D) will disperse Isopar L{reg_sign} droplets that are less than or equal to 15 micron in diameter. If the droplets are less than 15 micron, they will be dispersed within 4.4 hours. Isopar L{reg_sign} provides a lower bound on the maximum size of droplets that will be dispersed by the slurry pumps in Tank 50H. (5) Two rotating standard slurry pumps will disperse Isopar L{reg_sign} droplets less than 15 micron

  3. Silicate liquid immiscibility in magmas and in the system K2O-FeO-AI2O3-SiO2: an example of serendipity

    USGS Publications Warehouse

    Roedder, E.

    1978-01-01

    The concept of silicate liquid immiscibility was invoked early in the history of petrology to explain certain pairs of compositionally divergent rocks, but. as a result of papers by Greig (Am. J. Sci. 13, 1-44, 133-154) and Bowen (The Evolution of the Igneous Rocks), it fell into disfavor for many years. The discovery of immiscibility in geologically reasonable temperature ranges and compositions in experimental work on the system K2O-FeO-Al2O3-SiO2, and of evidence for immiscibility in a variety of lunar and terrestrial rocks, has reinstated the process. Phase equilibria in the high-silica corner of the tetrahedron representing the system K2O- FeO-Al2O3-SiO2 are presented, in the form of constant FeO sections through the tetrahedron, at 10% increments. Those sections, showing the tentative relationships of the primary phase volumes, are based on 5631 quenching runs on 519 compositions, made in metallic iron containers in pure nitrogen. Thirteen crystalline compounds are involved, of which at least six show two or more crystal modifica-tions. Two separate phase volumes, in each of which two immiscible liquids, one iron-rich and the other iron-poor, are present at the liquidus. One of these volumes is entirely within the quaternary system, astride the 1:1 K2O:Al2O3 plane. No quaternary compounds as such have been found, but evidence does point toward at least partial quaternary solid solution, with rapidly lowering liquidus temperatures, from K2O??Al2O3?? 2SiO2 ('potash nepheline', kalsilite. kaliophilite) to the isostructural compound K2O??FeO??3SiO2, and from K2O??Al2O3??4SiO2 (leucite) to the isostructural compound K2O??FeO??5SiO2, Both of these series apparently involve substitution, in tetrahedral coordination. of a ferrous iron and a silicon ion for two aluminum ions. Some of the 'impurities' found in analyses of the natural phases may reflect these substitutions. As a result of the geometry of the immiscibility volume located entirely within the quaternary

  4. The liquid immiscibility and associated monotectic reaction in Zn-ln system

    NASA Astrophysics Data System (ADS)

    Dhua, S. K.; Raju, S.; Chattopadhyay, K.

    1991-01-01

    The Zn-In system is shown to have a submerged miscibility gap in the liquid state. This and the resulting monotectic reaction can be accessed by purifying the alloy with a zinc chloride slag. The metallography of slowly cooled ZnCl2 slag enclosed alloys reveals a variety of monotectic microstructures including those characteristic of cooperative growth. The monotectic second liquid is often plate-shaped. The special role of the anisotropy of surface energy of zinc in the evolution of such microstructural features is elucidated.

  5. The liquid immiscibility and associated monotectic reaction in Zn-ln system

    NASA Astrophysics Data System (ADS)

    Dhua, S. K.; Raju, S.; Chattopadhyay, K.

    1987-01-01

    The Zn-In system is shown to have a submerged miscibility gap in the liquid state. This and the resulting monotectic reaction can be accessed by purifying the alloy with a zinc chloride slag. The metallography of slowly cooled ZnCl2 slag enclosed alloys reveals a variety of monotectic microstructures including those characteristic of cooperative growth. The monotectic second liquid is often plate-shaped. The special role of the anisotropy of surface energy of zinc in the evolution of such microstructural features is elucidated.

  6. Lightning strike fusion: extreme reduction and metal-silicate liquid immiscibility.

    PubMed

    Essene, E J; Fisher, D C

    1986-10-10

    A glassy fulgurite, formed recently on a morainal ridge in southeastern Michigan, contains micrometer- to centimeter-sized metallic globules rich in native silicon, which unmixed from a silica-rich liquid. The unusual character of these globules and their potential for elucidating conditions of fulgurite formation prompted further study. Thermodynamic calculations indicate that temperatures in excess of 2000 K and reducing conditions approaching those of the SiO(2)-Si buffer were needed to form the coexisting metallic and silicate liquids. The phases produced are among the most highly reduced naturally occurring materials known. Some occurrences of other highly reduced minerals may also be due to lightning strike reduction. Extreme reduction and volatilization may also occur during high-temperature events such as lightning strikes in presolar nebulae and impacts of extraterrestrial bodies. As a result of scavenging of platinum-group elements by highly reduced metallic liquids, geochemical anomalies associated with the Cretaceous-Tertiary boundary may have a significant terrestrial component even if produced through bolide impact. PMID:17746479

  7. One-step synthesis of layered yttrium hydroxides in immiscible liquid–liquid systems: Intercalation of sterically-bulky hydrophobic organic anions and doping of europium ions

    SciTech Connect

    Watanabe, Mebae; Fujihara, Shinobu

    2014-02-15

    Inorganic–organic layered rare-earth compounds were synthesized on the basis of a biphasic liquid–liquid system in one pot. Layered yttrium hydroxides (LYHs) were chosen as a host material for the intercalation of hydrophobic organic guest anions such as benzoate, sebacate, or laurate. In a typical synthesis, an organic phase dissolving carboxylic acid was placed in contact with an equal amount of an aqueous phase dissolving yttrium nitrate n-hydrate and urea. At elevated temperatures up to 80 °C, urea was hydrolyzed to release hydroxyl anions which were used to form yttrium hydroxide layers. LYHs were then precipitated with the intercalation of carboxylate anions delivered from the organic phase under the distribution law. The structure and the morphology of the LYHs could be modulated by the intercalated anions. Doped with Eu{sup 3+} ions, the LYHs exhibited red photoluminescence which was enhanced by the intercalated anions due to the antenna effect. - Graphical abstract: The Eu{sup 3+}-doped layered yttrium hydroxide exhibits intense red photoluminescence after intercalation of benzoate ions. Display Omitted - Highlights: • Immiscible biphasic liquid systems were introduced to synthesize layered yttrium hydroxides. • The temperature of the biphasic systems does not exceed 80 °C in one step of the synthesis. • Hydrophobic organic anions were intercalated between the hydroxide layers in one pot. • Structure and morphology of the hydroxides were modulated by changing the kind of organic anions. • Eu{sup 3+}-doping led to red luminescence from the hydroxides in association with the intercalated organic anions.

  8. Dynamics of a flowing liquid column with an immiscible reactive micellar interface

    NASA Astrophysics Data System (ADS)

    Niroobakhsh, Zahra; Belmonte, Andrew

    2015-11-01

    We experimentally investigate the instabilities resulting from the reactive formation of a thin layer of micellar material around a flowing liquid column. The material is produced when an aqueous surfactant solution (cetylpyridinium chloride) descends through a reservoir of oleic acid, a room temperature oil which can act as a weak surfactant. A variety of instabilities are observed, including connected and disconnected droplets, a straight cylindrical pipe which undergoes buckling, and various surface wave morphologies on the column. These states appear to be determined by a competition between surface tension and the growth of the interfacial material layer, as a function of imposed flow rate and surfactant concentration. Rheology provides evidence for the structural nature of the oleic/surfactant interaction, in the context of similar observations from other experiments.

  9. Characterizing the Use of Ultrasonic Energy in Promoting Uniform Microstructural Dispersions in Immiscible Mixtures

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Fedoseyev, A. I.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Gravity driven separation and preferential wetting precludes uniform microstructural distributions during solidification processing of immiscible, liquid-liquid mixtures. Historically, it is, however, established that liquid/liquid suspensions can be established and maintained by utilizing ultrasound. Following a brief introduction the results of experiments on immiscible mixtures subjected to ultrasonic energy during solidification processing will be compared and evaluated in view of a recently developed mathematical model. The presentation continues by discussion of scaling the model to commercial viability and concludes with the implications of such processing in a microgravity environment.

  10. Characterizing the Use of Ultrasonic Energy in Promoting Uniform Microstructural Dispersions in Immiscible Mixtures

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Fedoseyev, A. I.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Gravity driven separation and preferential wetting precludes uniform microstructural distributions during solidification processing of immiscible, liquid-liquid mixtures. Historically, it is, however, established that liquid/liquid suspensions can be established and maintained by utilizing ultrasound. Following a brief introduction the results of experiments on immiscible mixtures subjected to ultrasonic energy during solidification processing will be compared and evaluated in view of a recently developed mathematical model. The presentation continues by discussion of scaling the model to commercial viability and concludes with the implications of such processing in a microgravity environment.

  11. Carbonate-silicate liquid immiscibility in the mantle propels kimberlite magma ascent

    NASA Astrophysics Data System (ADS)

    Kamenetsky, Vadim S.; Yaxley, Gregory M.

    2015-06-01

    Kimberlite is a rare volcanic rock renowned as the major host of diamonds and originated at the base of the subcontinental lithospheric mantle. Although kimberlite magmas are dense in crystals and deeply-derived rock fragments, they ascend to the surface extremely rapidly, enabling diamonds to survive. The unique physical properties of kimberlite magmas depend on the specific compositions of their parental melts that, in absence of historical eruptions and due to pervasive alteration of kimberlite rocks, remain highly debatable. We explain exceptionally rapid ascent of kimberlite magma from mantle depths by combining empirical data on the essentially carbonatite composition of the kimberlite primary melts and experimental evidence on interaction of the carbonate liquids with mantle minerals. Our experimental study shows that orthopyroxene is completely dissolved in a Na2CO3 melt at 2.0-5.0 GPa and 1000-1200 °C. The dissolution of orthopyroxene results in homogeneous silicate-carbonate melt at 5.0 GPa and 1200 °C, and is followed by unmixing of carbonate and carbonated silicate melts and formation of stable magmatic emulsion at lower pressures and temperatures. The dispersed silicate melt has a significant capacity for storing a carbonate component in the deep mantle (13 wt% CO2 at 2.0 GPa). We envisage that this component reaches saturation and is gradually released as CO2 bubbles, as the silicate melt globules are transported upwards through the lithosphere by the carbonatite magma. The globules of unmixed, CO2-rich silicate melt are continuously produced upon further reaction between the natrocarbonatite melt and mantle peridotite. On decompression the dispersed silicate melt phase ensures a continuous supply of CO2 bubbles that decrease density and increase buoyancy and promote rapid ascent of the magmatic emulsion.

  12. Partitioning of Nb, Mo, Ba, Ce, Pb, Th and U between immiscible carbonate and silicate liquids: Evaluating the effects of P2O5,F, and carbonate composition

    NASA Technical Reports Server (NTRS)

    Jones, J. H.; Walker, D.

    1993-01-01

    Previously we have reported carbonate liq./silicate liq. partition coefficients (D) for a standard suite of trace elements (Nb, Mo, Ba, Ce, Pb, Th, and U) and Ra and Pa as well. In brief, we have found that immiscible liquid partitioning is a strong function of temperature. As the critical temperature of the carbonate-silicate solvus is approached, all partition coefficients approach unity. Additionally, for the overwhelming majority of the partitioning elements, InD is a linear function of 'ionic field strength,' z/r, where z is the charge of the partitioned cation and r is its ionic radius.

  13. Liquid immiscibility between silicate, carbonate and sulfide melts in melt inclusions hosted in co-precipitated minerals from Kerimasi volcano (Tanzania): evolution of carbonated nephelinitic magma

    NASA Astrophysics Data System (ADS)

    Guzmics, Tibor; Mitchell, Roger H.; Szabó, Csaba; Berkesi, Márta; Milke, Ralf; Ratter, Kitti

    2012-07-01

    The evolution of a carbonated nephelinitic magma can be followed by the study of a statistically significant number of melt inclusions, entrapped in co-precipitated perovskite, nepheline and magnetite in a clinopyroxene- and nepheline-rich rock (afrikandite) from Kerimasi volcano (Tanzania). Temperatures are estimated to be 1,100°C for the early stage of the melt evolution of the magma, which formed the rock. During evolution, the magma became enriched in CaO, depleted in SiO2 and Al2O3, resulting in immiscibility at ~1,050°C and crustal pressures (0.5-1 GPa) with the formation of three fluid-saturated melts: an alkali- and MgO-bearing, CaO- and FeO-rich silicate melt; an alkali- and F-bearing, CaO- and P2O5-rich carbonate melt; and a Cu-Fe sulfide melt. The sulfide and the carbonate melt could be physically separated from their silicate parent and form a Cu-Fe-S ore and a carbonatite rock. The separated carbonate melt could initially crystallize calciocarbonatite and ultimately become alkali rich in composition and similar to natrocarbonatite, demonstrating an evolution from nephelinite to natrocarbonatite through Ca-rich carbonatite magma. The distribution of major elements between perovskite-hosted coexisting immiscible silicate and carbonate melts shows strong partitioning of Ca, P and F relative to FeT, Si, Al, Mn, Ti and Mg in the carbonate melt, suggesting that immiscibility occurred at crustal pressures and plays a significant role in explaining the dominance of calciocarbonatites (sövites) relative to dolomitic or sideritic carbonatites. Our data suggest that Cu-Fe-S compositions are characteristic of immiscible sulfide melts originating from the parental silicate melts of alkaline silicate-carbonatite complexes.

  14. Liquid-liquid immiscibility under non-equilibrium conditions in a model membrane: an X-ray synchrotron study.

    PubMed

    Tessier, Cedric; Staneva, Galya; Trugnan, Germain; Wolf, Claude; Nuss, Philippe

    2009-11-01

    Several non-random lipid mixtures have been proposed as models of lipid plasma membrane, as they mimic the ability of biomembranes to form lateral domains. Biological membranes are characterised by a succession of localised transient steady-state lipid organisations rather than stable equilibria. This suggests that several quasi at-equilibrium lipid organisations may exist at different times in the same local patch of membranes. Identification of the conditions which can mimic heterogeneous dynamic membrane states in a lipid membrane model is a challenge. This is of particular importance as the lateral organisation of lipids mixtures in fully equilibrated samples may differ from the arrangement found in quasi at-equilibrium conditions. To address this issue, we have performed a real-time synchrotron X-ray diffraction study in ternary mixtures of egg-phosphatidylcholine/egg-sphingomyelin and cholesterol using a 0.5 degrees C/15 s step within a 20-50-20 degrees C thermal cycle. In the present study, all ternary mixtures displayed lamellar phase separation. A d-spacing value was observed reversibly during the heating and cooling scan for each of the two coexisting phases. In mixtures with a cholesterol concentration from 20 to 50 mol%, a liquid-ordered (Lo) and liquid-disordered (Ld) phase separation was observed in the 20-50 degrees C thermal range. These results are discussed in terms of a specific interaction between lipid molecular aggregates. PMID:19720510

  15. Physical properties of immiscible polymers

    NASA Technical Reports Server (NTRS)

    Harris, J. Milton

    1987-01-01

    The demixing of immiscible polymers in low gravity is discussed. Applications of knowledge gained in this research will provide a better understanding of the role of phase segregation in determining the properties of polymer blends made from immiscible polymers. Knowledge will also be gained regarding the purification of biological materials by partitioning between the two liquid phases formed by solution of the polymers polyethylene glycol and dextran in water. Testing of new apparatus for space flight, extension of affinity phase partitioning, refinement of polymer chemistry, and demixing of isopycnic polymer phases in a one gravity environment are discussed.

  16. Method of removing an immiscible lubricant from a refrigeration system and apparatus for same

    DOEpatents

    Spauschus, Hans O.; Starr, Thomas L.

    1999-01-01

    A method of separating an immiscible lubricant from a liquid refrigerant in a refrigerating system including a compressor, a condenser, an expansion device and an evaporator, wherein the expansion device is connected to the condenser by a liquid refrigerant flow line for liquid refrigerant and immiscible lubricant. The method comprising slowing the rate of flow of the liquid refrigerant and immiscible lubricant between the condenser and the expansion device such that the liquid refrigerant and the immiscible lubricant separate based upon differences in density. The method also comprises collecting the separated immiscible lubricant in a collection chamber in fluid communication with the separated immiscible lubricant. Apparatus for performing the method is also disclosed.

  17. Enhancing distributive mixing of immiscible polyethylene/thermoplastic starch blend through zeolite ZSM-5 compounding sequence.

    PubMed

    Thipmanee, Ranumas; Lukubira, Sam; Ogale, Amod A; Sane, Amporn

    2016-01-20

    The aim of this work was to explore the effect of zeolite ZSM-5 (ZSM5) incorporation sequence on the phase morphology, microstructure, and performance of polyethylene/thermoplastic starch (PE/TPS) films. Two processing sequences were used for preparing PE/TPS/ZSM5 composites at a weight ratio of PE to TPS of 70:30 and ZSM5 concentrations of 1-5 wt%: (i) melt compounding of PE with ZSM5 prior to melt blending with TPS (SI); and (ii) TPS was compounded with ZSM5 prior to blending with PE (SII). Distributive mixing and mechanical properties of PE/TPS blend were greatly enhanced when ZSM5 was incorporated via SII. These were caused by both the higher affinity between PE and ZSM5, compared to that of TPS and ZSM5, and the reduction of TPS viscosity after compounding with ZSM5, leading to migration of ZSM5 from TPS dispersed phase toward PE matrix and increase in breakup of TPS droplets during SII sequence. PMID:26572416

  18. Immiscible Systems

    ERIC Educational Resources Information Center

    Eckelmann, Jens; Luning, Ulrich

    2013-01-01

    layers of liquids. The setup of both demonstrations is such that one homogeneous layer in a multiphasic mixture separates into two new layers upon shaking. The solvents used are methanol, toluene, petroleum ether or "n"-pentane, silicone oil, perfluoroheptanes,…

  19. A study of pressure-driven displacement flow of two immiscible liquids using a multiphase lattice Boltzmann approach

    NASA Astrophysics Data System (ADS)

    Redapangu, Prasanna; Vanka, Pratap; Sahu, Kirti

    2012-11-01

    The pressure-driven displacement of two immiscible fluids in an inclined channel in the presence of viscosity and density gradients is investigated using a multiphase lattice Boltzmann approach. The effects of viscosity ratio, Atwood number, Froude number, capillary number and channel inclination are investigated through flow structures, front velocities and fluid displacement rates. Our results indicate that increasing viscosity ratio between the fluids decreases the displacement rate. We observe that increasing the viscosity ratio has a non-monotonic effect on the velocity of the leading front; however, the velocity of the trailing edge decreases with increasing the viscosity ratio. The displacement rate of the thin-layers formed at the later times of the displacement process increases with increasing the angle of inclination because of the increase in the intensity of the interfacial instabilities. Our results also predict the front velocity of the lock-exchange flow of two immiscible fluids in the exchange flow dominated regime. Department of Science and Technology, India.

  20. Studies on immiscible alloys

    NASA Technical Reports Server (NTRS)

    Otto, G.

    1976-01-01

    To illustrate the behavior of immiscible liquids of different densities in zero-gravity and to determine the rate of coalescence like droplets, a demonstration experiment was performed on the Skylab 4 mission. Dispersions of oil-in-water and of water-in-oil were prepared by the astronauts and their appearance photographed over a time span of 10 hours. The experiment indicated that all emulsions were stable over this period and that the coalescent rate was at least 3 times 10 to the 5th power times smaller on Skylab than on earth. The recorded melting of a cylindrical piece of ice on Skylab 3 is used to study the mode of heat transfer for the latent heat of melting in low-gravity.

  1. Liquid-Phase Synthesis of Ba2V2O7 Phosphor Powders and Films Using Immiscible Biphasic Organic-Aqueous Systems.

    PubMed

    Takahashi, Mami; Hagiwara, Manabu; Fujihara, Shinobu

    2016-08-15

    A liquid-phase synthesis of inorganic phosphor materials at a moderate temperature was proposed by using immiscible liquid-liquid biphasic systems. A self-activated Ba2V2O7 phosphor was actually synthesized from vanadium alkoxide dissolved in an organic solution and barium acetate in an aqueous solution. A mild hydrolysis reaction of the alkoxide started at the organic-inorganic interface, and an intermediate compound, Ba(VO3)2·H2O, was initially formed. Ba2V2O7 powders were then obtained by the conversion from Ba(VO3)2·H2O promoted in the aqueous solution. Ba2V2O7 films were obtained on surface-modified silica glass substrates through the similar chemical reactions. Factors such as the surface state of substrates, the kind of organic solvents, and the volume of aqueous solutions were examined to improve the film deposition behavior. The resultant Ba2V2O7 materials showed broad-band visible photoluminescence upon irradiation with ultraviolet light based on the charge transfer transition in the VO4(3-) units existing as dimers. PMID:27472450

  2. Liquid carry-over in an injection moulded all-polymer chip system for immiscible phase magnetic bead-based solid-phase extraction

    NASA Astrophysics Data System (ADS)

    Kistrup, Kasper; Skotte Sørensen, Karen; Wolff, Anders; Fougt Hansen, Mikkel

    2015-04-01

    We present an all-polymer, single-use microfluidic chip system produced by injection moulding and bonded by ultrasonic welding. Both techniques are compatible with low-cost industrial mass-production. The chip is produced for magnetic bead-based solid-phase extraction facilitated by immiscible phase filtration and features passive liquid filling and magnetic bead manipulation using an external magnet. In this work, we determine the system compatibility with various surfactants. Moreover, we quantify the volume of liquid co-transported with magnetic bead clusters from Milli-Q water or a lysis-binding buffer for nucleic acid extraction (0.1 (v/v)% Triton X-100 in 5 M guanidine hydrochloride). A linear relationship was found between the liquid carry-over and mass of magnetic beads used. Interestingly, similar average carry-overs of 1.74(8) nL/μg and 1.72(14) nL/μg were found for Milli-Q water and lysis-binding buffer, respectively.

  3. Liquid immiscibility between arsenide and sulfide melts: evidence from a LA-ICP-MS study in magmatic deposits at Serranía de Ronda (Spain)

    NASA Astrophysics Data System (ADS)

    Piña, R.; Gervilla, F.; Barnes, S.-J.; Ortega, L.; Lunar, R.

    2015-03-01

    The chromite-Ni arsenide (Cr-Ni-As) and sulfide-graphite (S-G) deposits from the Serranía de Ronda (Málaga, South Spain) contain an arsenide assemblage (nickeline, maucherite and nickeliferous löllingite) that has been interpreted to represent an arsenide melt and a sulfide-graphite assemblage (pyrrhotite, pentlandite, chalcopyrite and graphite) that has been interpreted to represent a sulfide melt, both of which have been interpreted to have segregated as immiscible liquids from an arsenic-rich sulfide melt. We have determined the platinum-group element (PGE), Au, Ag, Se, Sb, Bi and Te contents of the arsenide and sulfide assemblages using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to establish their partitioning behaviour during the immiscibility of an arsenide melt from a sulfide melt. Previous experimental work has shown that PGE partition more strongly into arsenide melts than into sulfide melts and our results fit with this observation. Arsenide minerals are enriched in all PGE, but especially in elements with the strongest affinity for the arsenide melt, including Ir, Rh and Pt. In contrast and also in agreement with previous studies, Se and Ag partition preferentially into the sulfide assemblage. The PGE-depleted nature of sulfides in the S-G deposits along with the discordant morphologies of the bodies suggest that these sulfides are not mantle sulfides, but that they represent the crystallization product of a PGE-depleted sulfide melt due to the sequestering of PGE by an arsenide melt.

  4. Combination of corona discharge ion mobility spectrometry with a novel reagent gas and two immiscible organic solvent liquid-liquid-liquid microextraction for analysis of clomipramine in biological samples.

    PubMed

    Saraji, Mohammad; Bidgoli, Ali Akbar Hajialiakbari; Khayamian, Taghi; Moradmand, Ali

    2011-12-01

    A novel and sensitive method based on combination of two immiscible organic solvents hollow fiber-based liquid-liquid-liquid microextraction and corona discharge ion mobility spectrometry (HF-LLLME-CD-IMS) was employed for the analysis of clomipramine in human urine and plasma. The effect of formic, acetic and propionic acid as the reagent gas (dopant) on the corona discharge ion mobility signal was investigated. The influence of dopant amount was also studied. Optimum mass flow rates of the dopants were 3.7, 1.1 and 1.0 μmol min(-1) for formic, acetic and propionic acid, respectively. Experimental parameters influencing the extraction efficiency of HF-LLLME, such as NaOH concentration as donor solution, ionic strength of the sample, stirring rate, and extraction time were investigated and optimized. Under the optimum conditions, analytical parameters such as linearity, precision and limit of detection were also evaluated. The linear dynamic range was from 1 to 100 μg L(-1) (r(2)=0.9980) and the limit of detection was 0.35 μg L(-1). Intra- and inter-day precisions were satisfactory with a relative standard deviation (RSD) of 5.9 and 6.7%, respectively. The proposed method was satisfactorily applied for the determination of clomipramine in human plasma and urine. PMID:22041141

  5. Application of Proper Orthogonal Decomposition to the morphological analysis of confined co-axial jets of immiscible liquids with comparable densities

    NASA Astrophysics Data System (ADS)

    Charalampous, Georgios; Hardalupas, Yannis

    2014-11-01

    The development of a round liquid jet under the influence of a confined coaxial flow of an immiscible liquid of comparable density (central to annular flow density ratio of 8:10) was investigated in the vicinity of the nozzle exit. Two flow regimes were considered; one where the annular flow is faster than the central jet, so the central liquid jet is accelerated and one where the annular flow is slower, so the central liquid jet is decelerated. The central jet was visualised by high speed photography. Three modes of jet development were identified and classified in terms of the Reynolds number, Re, of the central jet which was in the range of 525 < Re < 2725, a modified definition of the Weber number, We, which allows the distinction between accelerating and deceleration flows and was in the range of -22 < We < 67 and the annular to central Momentum Ratio, MR, of the two streams which was in the range of 3.6 < MR < 91. By processing the time resolved jet images using Proper Orthogonal Decomposition (POD), it was possible to reduce the description of jet morphology to a small number of spatial modes, which isolated the most significant morphologies of the jet development. In this way, the temporal and spatial characteristics of the instabilities on the interface were clearly identified which highlights the advantages of POD over direct observation of the images. Relationships between the flow parameters and the interfacial waves were established. The wavelength of the interfacial instability was found to depend on the velocity of the fastest moving stream, which is contrary to findings for fluids with large density differences.

  6. One-dimensional immiscible displacement experiments

    NASA Astrophysics Data System (ADS)

    Thomson, N. R.; Graham, D. N.; Farquhar, G. J.

    1992-08-01

    In recent years, a great deal of attention has focused on the development of various methods to predict the fate of immiscible contaminants (NAPL's) in soils. In an attempt to satisfy this requirement, a host of numerical models has been developed. Unfortunately, there exist little experimental data to verify the assumptions used in the derivation of these immiscible flow models. One objective of this paper is to report on a non-destructive measurement technique which was used to capture the relative organic-phase saturation variations in a number of two-phase flow displacement experiments. The data obtained from these experiments were compared to results obtained from a one-dimensional, finite-element based, two-phase flow model. The experiments consisted of five separate trials using three different immiscible liquids (hydraulic oil, kerosene and hexane) in a water-saturated column. Irregular immiscible liquid infiltration fronts were observed in four of the five experiments, indicating that very small-scale heterogeneities control the infiltration of immiscible liquids into soil. Independent of the column experiments, saturation-capillary pressure curves were determined for the various liquids. In general, the simulated NAPL saturation vs. time profiles agreed very well with the observations for all five of the trials.

  7. Refolding effects of partially immiscible ammonium-based ionic liquids on the urea-induced unfolded lysozyme structure.

    PubMed

    Bisht, Meena; Kumar, Awanish; Venkatesu, Pannuru

    2016-05-14

    The activity of lysozyme over a Micrococcus lysodeikticus cell suspension increased to 13% of the initial value in the presence of 1% v/v ammonium-based ionic liquids after deactivation with 4.0 M urea. This increase in activity reflects the refolding ability of the ionic liquids against the denaturation effects of urea on lysozyme. PMID:27094019

  8. One-step synthesis of layered yttrium hydroxides in immiscible liquid-liquid systems: Intercalation of sterically-bulky hydrophobic organic anions and doping of europium ions

    NASA Astrophysics Data System (ADS)

    Watanabe, Mebae; Fujihara, Shinobu

    2014-02-01

    Inorganic-organic layered rare-earth compounds were synthesized on the basis of a biphasic liquid-liquid system in one pot. Layered yttrium hydroxides (LYHs) were chosen as a host material for the intercalation of hydrophobic organic guest anions such as benzoate, sebacate, or laurate. In a typical synthesis, an organic phase dissolving carboxylic acid was placed in contact with an equal amount of an aqueous phase dissolving yttrium nitrate n-hydrate and urea. At elevated temperatures up to 80 °C, urea was hydrolyzed to release hydroxyl anions which were used to form yttrium hydroxide layers. LYHs were then precipitated with the intercalation of carboxylate anions delivered from the organic phase under the distribution law. The structure and the morphology of the LYHs could be modulated by the intercalated anions. Doped with Eu3+ ions, the LYHs exhibited red photoluminescence which was enhanced by the intercalated anions due to the antenna effect.

  9. Development of a microfluidic-chip system for liquid-phase microextraction based on two immiscible organic solvents for the extraction and preconcentration of some hormonal drugs.

    PubMed

    Asl, Yousef Abdossalami; Yamini, Yadollah; Seidi, Shahram

    2016-11-01

    In the present study, for the first time, an on-chip liquid phase microextraction (LPME) coupled with high performance liquid chromatography was introduced for the analysis of levonorgestrel (Levo), dydrogesterone (Dydo) and medroxyprogesterone (Medo) as the model analytes in biological samples. The chip-based LPME set-up was composed of two polymethyl methacrylate (PMMA) plates with microfabricated channels and a microporous membrane sandwiched between them to separate the sample solution and acceptor phase. These channels were used as a flow path for the sample solution and a thin compartment for the acceptor phase, respectively. In this system, two immiscible organic solvents were used as supported liquid membrane (SLM) and acceptor phase, respectively. During extraction, the model analytes in the sample solution were transported through the SLM (n-dodecane) into the acceptor organic solvent (methanol). The new set-up provided effective and reproducible extractions using low volumes of the sample solution. The effective parameters on the extraction efficiency of the model analytes were optimized using one variable at a time method. Under the optimized conditions, the new set-up provided good linearity in the range of 5.0-500µgL(-1) for the model analytes with the coefficients of determination (r(2)) higher than 0.9909. The relative standard deviations (RSDs%) and limits of detection (LODs) values were less than 6.5% (n=5) and 5.0µgL(-1), respectively. The preconcentration factors (PFs) were obtained using 1.0mL of the sample solution and 20.0µL of the acceptor solution higher than 19.9-fold. Finally, the proposed method was successfully applied for the extraction and determination of the model analytes in urine samples. PMID:27591655

  10. Low gravity containerless processing of immiscible gold rhodium alloys

    NASA Technical Reports Server (NTRS)

    Andrews, J. Barry

    1986-01-01

    Under normal one-g conditions immiscible alloys segregate extensively during solidification due to sedementation of the more dense of the immiscible liquid phases. However, under low-g conditions it should be possible to form a dispersion of the two immiscible liquids and maintain this dispersed structure during solidification. Immiscible (hypermonotectic) gold-rhodium alloys were processed in the Marshall Space Flight Center 105 meter drop tube in order to investigate the influence of low gravity, containerless solidification on their microstructure. Hypermonotectic alloys composed of 65 atomic % rhodium exhibited a tendency for the gold rich liquid to wet the outer surface of the containerless processed samples. This tendency led to extensive segregation in several cases. However, well dispersed microstructures consisting of 2 to 3 micron diameter rhodium-rich spheres in a gold-rich matrix were produced in 23.4 atomic % rhodium alloys. This is one of the best dispersions obtained in research on immiscible alloy-systems to data.

  11. More About Measuring Interfacial Tension Between Liquids

    NASA Technical Reports Server (NTRS)

    Rashidnia, Nasser; Balasubramaniam, R.; Del Signore, David M.

    1995-01-01

    Report presents additional discussion of technique for measuring interfacial tension between two immiscible liquids. Technique described in "Measuring Interfacial Tension Between Immiscible Liquids" (LEW-15855).

  12. Effects of crucible wetting during solidification of immiscible Pb-Zn

    NASA Technical Reports Server (NTRS)

    Degroh, Henry C., III; Probst, Hubert B.

    1988-01-01

    Many industrial uses for liquid phase miscibility gap alloys are proposed. However, the commercial production of these alloys into useful ingots with a reasonable amount of homogeneity is arduous because of their immiscibility in the liquid state. In the low-g environment of space gravitational settling forces are abated, thus solidification of an immiscible alloys with a uniform distribution of phases becomes feasible. Elimination of gravitational settling and coalescence processes in low-g also makes possible the study of other separation and coarsening mechanisms. Even with gravitational separation forces reduced, many low-g experiments have resulted in severely segregated structures. The segregation in many cases was due to preferential wetting of the crucible by one of the immiscible liquids. The objective was to analyze the wetting behavior of Pb-Zn alloys on various crucible materials in an effort to identify a crucible in which the fluid flow induced by preferential wetting is minimized. It is proposed that by choosing the crucible for a particular alloy so that the difference in surface energy between the solid and two liqud phases is minimized, the effects of preferential wetting can be diminished and possibly avoided. Qualitative experiments were conducted and have shown the competitive wetting behavior of the immiscible Pb-Zn system and 13 different crucible materials.

  13. Method of removing an immiscible lubricant from a refrigeration system and apparatus for same

    DOEpatents

    Spauschus, H.O.; Starr, T.L.

    1999-03-30

    A method is described for separating an immiscible lubricant from a liquid refrigerant in a refrigerating system including a compressor, a condenser, an expansion device and an evaporator, wherein the expansion device is connected to the condenser by a liquid refrigerant flow line for liquid refrigerant and immiscible lubricant. The method comprising slowing the rate of flow of the liquid refrigerant and immiscible lubricant between the condenser and the expansion device such that the liquid refrigerant and the immiscible lubricant separate based upon differences in density. The method also comprises collecting the separated immiscible lubricant in a collection chamber in fluid communication with the separated immiscible lubricant. Apparatus for performing the method is also disclosed. 3 figs.

  14. Liquid distribution in trickle bed reactors

    SciTech Connect

    Sundaresan, S.

    1993-12-31

    The quality of liquid distribution at the top of the bed and the manner in which the flows are established can affect the liquid flow behavior profoundly. This, in turn, can impact the rates of chemical reactions. Some recent experimental results highlighting these points are reviewed.

  15. Partitioning of elements between silicate melt and immiscible fluoride, chloride, carbonate, phosphate and sulfate melts, with implications to the origin of natrocarbonatite

    NASA Astrophysics Data System (ADS)

    Veksler, Ilya V.; Dorfman, Alexander M.; Dulski, Peter; Kamenetsky, Vadim S.; Danyushevsky, Leonid V.; Jeffries, Teresa; Dingwell, Donald B.

    2012-02-01

    Liquid-liquid partitioning of 42 elements between synthetic silicate melts and immiscible fluoride, chloride, carbonate, phosphate and sulfate liquids was studied at temperatures of 650-1100 °C, pressures 72-100 MPa, with 0-11 wt.% H2O. One series of experiments was performed in a rotating internally-heated autoclave where separation of the immiscible liquids was assisted by centrifugal forces. An analogous series of experiments was done in static rapid-quench cold-seal pressure vessels. The experimentally determined liquid-liquid distribution coefficients (D's) vary over several orders of magnitude, as a result of variable Coulombic interactions between cations and anions. For alkaline, alkaline earth and rare earth elements ther is a strong and systematic dependence of the liquid/liquid D values on the ionic potential Z/r for all the examined systems. In contrast, highly charged cations (e.g., HFSE) show no systematic relationships between the D's and Z/r. New experimental constraints on the carbonate/silicate liquid-liquid D values presented here confirm that rare metals such as Nb, Zr, REE, Th and U concentrate in silicate liquids, and therefore carbonatites that carry economical rare metal mineralization are not likely to have formed by liquid immiscibility. The comparison between experimentally-determined carbonate-silicate liquid-liquid D values and bulk-rock natrocarbonatite vs. nephelinite compositions at the Oldoinyo Lengai in Tanzania reveals significant discrepancies for Cs, Rb, Ba, Be, Zn, heavy REE, Ti, Mo and W, thus rendering a simple, one-stage immiscibility model for Oldoinyo Lengai questionable.

  16. THE LIQUID AND GASEOUS FUEL DISTRIBUTION SYSTEM

    EPA Science Inventory

    The report describes the national liquid and gaseous fuel distribution system. he study leading to the report was performed as part of an effort to better understand emissions of volatile organic compounds from the fuel distribution system. he primary, secondary, and tertiary seg...

  17. LIQUID AND GASEOUS FUEL DISTRIBUTION SYSTEM

    EPA Science Inventory

    The report describes the national liquid and gaseous fuel distribution system. he study leading to the report was performed as part of an effort to better understand emissions of volatile organic compounds from the fuel distribution system. he primary, secondary, and tertiary seg...

  18. Ultrathin-skinned asymmetric membranes by immiscible solvents treatment

    DOEpatents

    Friesen, Dwayne T.; Babcock, Walter C.

    1989-01-01

    Improved semipermeable asymmetric fluid separation membranes useful in gas, vapor and liquid separations are disclosed. The membranes are prepared by substantially filling the pores of asymmetric cellulosic semipermeable membranes having a finely porous layer on one side thereof with a water immiscible organic liquid, followed by contacting the finely porous layer with water.

  19. Ultrathin-skinned asymmetric membranes by immiscible solvents treatment

    DOEpatents

    Friesen, D.T.; Babcock, W.C.

    1989-11-28

    Improved semipermeable asymmetric fluid separation membranes useful in gas, vapor and liquid separations are disclosed. The membranes are prepared by substantially filling the pores of asymmetric cellulosic semipermeable membranes having a finely porous layer on one side thereof with a water immiscible organic liquid, followed by contacting the finely porous layer with water.

  20. Quantification of immiscible fluid distribution of an oil-wet and water-wet bead pack imaged using x-ray computed microtomography

    NASA Astrophysics Data System (ADS)

    Landry, C. J.; Karpyn, Z. T.; Piri, M.

    2009-12-01

    history hysteresis and a zone of distinct saturation history hysteresis. The meniscus specific interfacial area of the fluids is shown to trend towards a maximum at a brine saturation of 0.25 to 0.40, in good agreement with previously reported values, regardless of saturation history and wettability. The total specific interfacial area of the fluids is shown to correlate linearly with non-wetting phase saturation, independent of fluid distribution zone, saturation history and wettability. The fluid-normalized specific interfacial areas are shown to be nearly constant, independent of saturation, saturation history and wettability. Furthermore a population analysis of individual blob volume, surface area, shape, aspect ratio and orientation provides insight into the effect of wettability on immiscible fluid microstructure. The agreement between our measurements and others conducted with natural soils, sands and rock cores is promising for furthering our understanding of how pore-scale processes influence macroscale properties used to describe multiphase flow and transport.

  1. The nature and barium partitioning between immiscible melts - A comparison of experimental and natural systems with reference to lunar granite petrogenesis

    NASA Technical Reports Server (NTRS)

    Neal, C. R.; Taylor, L. A.

    1989-01-01

    Elemental partitioning between immiscible melts has been studied using experimental liquid-liquid Kds and those determined by analysis of immiscible glasses in basalt mesostases in order to investigate lunar granite petrogenesis. Experimental data show that Ba is partitioned into the basic immiscible melt, while probe analysis results show that Ba is partitioned into the granitic immiscible melt. It is concluded that lunar granite of significant size can only occur in a plutonic or deep hypabyssal environment.

  2. Electrified microscopic and conventional interfaces between two immiscible electrolyte solutions

    NASA Astrophysics Data System (ADS)

    Vanysek, Petr

    1991-06-01

    Transport studies on interfaces between immiscible phases bridges the field of heterogeneous electrode electrochemistry and that of homogeneous solution chemistry. Early work on liquid/liquid boundary was concerned with large area (order of a square centimeter) interfaces. Recent studies investigate phenomena on interfaces rendered in pores, capillaries, and small holes. The behavior of such interfaces in the presence of dodecyl sulfate, forming micelles, is investigated. Voltammetry and amperometry on these small interfaces reveals that the accompanying voltammetric characteristics are similar to that of metal ultramicroelectrodes. Potentiometric studies of dodecyl sulfate on water/nitrobenzene and aqueous polymer immiscible interfaces allow determination of critical micelle concentration.

  3. Studies of Model Immiscible Systems

    NASA Technical Reports Server (NTRS)

    Frazier, D. O.; Facemire, B. R.; Witherow, W. K.; Fanning, U.; Kaukler, W. F.

    1985-01-01

    The objectives are to use model transparent monotectics to obtain fundamental information applicable to two-phase systems in general, to apply this understanding to materials of interest in the Microgravity Science and Applications program, and to interpret results of flight experimental involving monotectic alloys. A number of model immiscible systems are in use to study various aspects of two-phase behavior within the miscibility gap and during solidification. Particle growth, coalescence and particle motions are under investigation using a holographic microscopy system. The system is capable of working with particle densities up to 10 to the 7th power particles/cubic centimeters through a 100 micron depth and can resolve particles of the order of 2 to 3 micron in diameter throughout the entire cell volume. Particle size, distribution changes with respect to time and temperature are observable from sequential holograms. Initial experiments using diethylene glycol/ethyl salicylate (DEG/ES) have demonstrated the usefulness of the technique. The thermal system controls temperature to at least plus or minus 0.001 K over the course of an experiment. A time-lapse film, made from holograms, of a succinonitrile/water solution shows particle size and number distribution changes with time under isothermal conditions. The observations are consistent with Ostwald ripening theory.

  4. Containerless low gravity processing of glass forming and immiscible alloys

    NASA Technical Reports Server (NTRS)

    Andrews, J. Barry; Briggs, Craig; Robinson, M. B.

    1990-01-01

    Under normal one-g conditions immiscible alloys segregate extensively during solidification due to sedimentation of the more dense of the immiscible liquid phases. Immiscible (hypermonotectic) gold-rhodium alloys were processed in the 100 meter drop tube under low gravity, containerless conditions to determine the feasibility of producing dispersed structures. Three alloy compositions were utilized. Alloys containing 10 percent by volume of the gold-rich hypermonotectic phase exhibited a tendency for the gold-rich liquid to wet the outer surface of the samples. This wetting tendency led to extensive segregation in several cases. Alloys containing 80 and 90 percent by volume of the gold-rich phase possessed completely different microstructures from the 10 percent samples when processed under low-g, containerless conditions. Several samples exhibited microstructures consisting of well dispersed 2 to 3 microns diameter rhodium-rich spheres in a gold-rich matrix.

  5. Silicate-carbonate-salt liquid immiscibility and origin of the sodalite-haüyne rocks: study of melt inclusions in olivine foidite from Vulture volcano, S. Italy

    NASA Astrophysics Data System (ADS)

    Panina, Liya; Stoppa, Francesco

    2009-12-01

    Melt inclusions in clinopyroxenes of olivine foidite bombs from Serra di Constantinopoli pyroclastic flows of the Vulture volcano (Southern Italy) were studied in detail. The rocks contain abundant zoned phenocrysts and xenocrysts of clinopyroxene, scarce grains of olivine, leucite, haüyne, glass with microlites of plagioclase and K-feldspar. The composition of clinopyroxene in xenocrysts (Cpx I), cores (Cpx II), and in rims (Cpx III) of phenocrysts differs in the content of Mg, Fe, Ti, and Al. All clinopyroxenes contain two types of primary inclusion-pure silicate and of silicate-carbonate-salt composition. This fact suggests that the phenomena of silicate-carbonate immiscibility took place prior to crystallization of clinopyroxene. Homogenization of pure silicate inclusions proceeded at 1 225 - 1 190°C. The composition of conserved melts corresponded to that of olivine foidite in Cpx I, to tephrite-phonolite in Cpx II, and phonolite-nepheline trachyte in Cpx III. The amount of water in them was no more than 0.9 wt.%. Silicate-carbonate inclusions decrepitated on heating. Salt globules contained salts of alkali-sulphate, alkali-carbonate, and Ca-carbonate composition somewhat enriched in Ba and Sr. This composition is typical of carbonatite melts when decomposed into immiscible fractions. The formation of sodalite-haüyne rocks from Vulture is related to the presence of carbonate-salt melts in magma chamber. The melts conserved in clinopyroxenes were enriched in incompatible elements, especially in Cpx III. High ratios of La, Nb, and Ta in melts on crystallization of Cpx I and Cpx II suggest the influence of a carbonatite melt as carbonatites have extremely high La/Nb and Nb/Ta and this is confirmed by the appearance of carbonatite melts in magma chamber. Some anomalies in the concentrations and relatives values of Eu and especially Ga seems typical of Italian carbonatite related melts. The mantle source for initial melts was, most likely, rather uniform

  6. FINITE-ELEMENT ANALYSIS OF MULTIPHASE IMMISCIBLE FLOW THROUGH SOILS

    EPA Science Inventory

    A finite-element model is developed for multiphase flow through soil involving three immiscible fluids: namely, air, water, and a nonaqueous phase liquid (NAPL). A variational method is employed for the finite-element formulation corresponding to the coupled differential equation...

  7. FIELD TEST OF CYCLODEXTRIN FOR ENHANCED IN-SITU FLUSHING OF MULTIPLE-COMPONENT IMMISCIBLE ORGANIC LIQUID CONTAMINATION: COMPARISON TO WATER FLUSHING

    EPA Science Inventory

    A pilot-scale field experiment was conducted to compare the remediation effectiveness of an enhanced-solubilization technique to that of water flushing for removal of multicomponent nonaqueous-phase organic liquid (NAPL) contaminants form a phreatic aquifer. This innovative remed...

  8. Mixing of immiscible polymers using nanoporous coordination templates

    PubMed Central

    Uemura, Takashi; Kaseda, Tetsuya; Sasaki, Yotaro; Inukai, Munehiro; Toriyama, Takaaki; Takahara, Atsushi; Jinnai, Hiroshi; Kitagawa, Susumu

    2015-01-01

    The establishment of methodologies for the mixing of immiscible substances is highly desirable to facilitate the development of fundamental science and materials technology. Herein we describe a new protocol for the compatibilization of immiscible polymers at the molecular level using porous coordination polymers (PCPs) as removable templates. In this process, the typical immiscible polymer pair of polystyrene (PSt) and poly(methyl methacrylate) (PMMA) was prepared via the successive homopolymerizations of their monomers in a PCP to distribute the polymers inside the PCP particles. Subsequent dissolution of the PCP frameworks in a chelator solution affords a PSt/PMMA blend that is homogeneous in the range of several nanometers. Due to the unusual compatibilization, the thermal properties of the polymer blend are remarkably improved compared with the conventional solvent-cast blend. This method is also applicable to the compatibilization of PSt and polyacrylonitrile, which have very different solubility parameters. PMID:26130294

  9. Mixing of immiscible polymers using nanoporous coordination templates.

    PubMed

    Uemura, Takashi; Kaseda, Tetsuya; Sasaki, Yotaro; Inukai, Munehiro; Toriyama, Takaaki; Takahara, Atsushi; Jinnai, Hiroshi; Kitagawa, Susumu

    2015-01-01

    The establishment of methodologies for the mixing of immiscible substances is highly desirable to facilitate the development of fundamental science and materials technology. Herein we describe a new protocol for the compatibilization of immiscible polymers at the molecular level using porous coordination polymers (PCPs) as removable templates. In this process, the typical immiscible polymer pair of polystyrene (PSt) and poly(methyl methacrylate) (PMMA) was prepared via the successive homopolymerizations of their monomers in a PCP to distribute the polymers inside the PCP particles. Subsequent dissolution of the PCP frameworks in a chelator solution affords a PSt/PMMA blend that is homogeneous in the range of several nanometers. Due to the unusual compatibilization, the thermal properties of the polymer blend are remarkably improved compared with the conventional solvent-cast blend. This method is also applicable to the compatibilization of PSt and polyacrylonitrile, which have very different solubility parameters. PMID:26130294

  10. Miscible and immiscible experiments on the Rayleigh-Taylor instability using planar laser induced fluorescence visualization

    NASA Astrophysics Data System (ADS)

    Mokler, Matthew; Roberts, Michael; Jacobs, Jeffrey

    2013-11-01

    Incompressible Rayleigh-Taylor instability experiments are presented in which two stratified liquids having Atwood number of 0.2 are accelerated in a vertical linear induction motor driven drop tower. A test sled having only vertical freedom of motion contains the experiment tank and visualization equipment. The sled is positioned at the top of the tower within the linear induction motors and accelerated downward causing the initially stable interface to be unstable and allowing the Rayleigh-Taylor instability to develop. Forced and unforced experiments are conducted using both immiscible and miscible liquid combinations. Forced initial perturbations are produced by vertically oscillating the test sled prior to the start of acceleration. The interface is visualized using a 445 nm laser light source that illuminates a fluorescent dye mixed in one of the fluids. The resulting fluorescent images are recorded using a monochromatic high speed video camera. The laser beam is synchronously swept across the fluorescent fluid, at the frame rate of the camera, exposing a single plane of the interface allowing for the measurement of spike and bubble growth. Comparisons between miscible and immiscible mixing layer distributions are made from the resulting interface concentration profiles.

  11. Deformation of a partially engulfed compound drop slowly moving in an immiscible viscous fluid

    NASA Astrophysics Data System (ADS)

    Rosenfeld, L.; Lavrenteva, O. M.; Spivak, R.; Nir, A.

    2011-02-01

    Compound drops are comprised of two or more immiscible phases, one of which entirely or partially engulfs the others. In this work, we consider a partially engulfed compound drop comprised of two immiscible incompressible fluids, dispersed in an isothermal liquid, and that moved under the action of gravity and buoyancy. The contact angles between the three phases are determined by three interfacial tensions associated with the different fluids comprising the compound drop. The surfaces deform as the drop moves through the ambient fluid. If the capillary number is small (Ca≪1), corrections to the shapes of the undeformable case (Ca=0) are constructed, making use of a perturbation technique. We report on stationary drops' deformation for a variety of the physical parameters involved, such as volume ratio and surface tension of each interface, which determine the unperturbed configuration and the distribution of density between the two phases of the drop. Several examples of various transient behaviors of highly deformable compound drops are computed using FLUENT software and are presented as well.

  12. Liquid-liquid distribution of B group vitamins in polyethylene glycol-based systems

    NASA Astrophysics Data System (ADS)

    Korenman, Ya. I.; Zykov, A. V.; Mokshina, N. Ya.

    2011-05-01

    General regularities of the liquid-liquid distribution of B1, B2, B6, and B12 vitamins in aqueous polyethylene glycol (PEG-2000, PEG-5000) solution-aqueous salt solution systems are studied. The influence of the salting-out agent, the concentration of the polymer, and its molecular weight on the distribution coefficients and recovery factors of the vitamins are considered. Equations relating the distribution coefficients (log D) to the polymer concentration are derived.

  13. Identification of Gravity-Related Effects on Crystal Growth From Melts With an Immiscibility Gap

    NASA Technical Reports Server (NTRS)

    Kassemi, M.; Sayir, A.; Farmer, S.

    1999-01-01

    This work involves an experimental-numerical approach to study the effects of natural and Marangoni convections on solidification of single crystals from a silicate melt with a liquid-liquid immiscibility gap. Industrial use of crystals grown from silicate melts is becoming increasingly important in electronic, optical, and high temperature structural applications. Even the simplest silicate systems like Al203-SiO2 have had, and will continue to have, a significant role in the development of traditional and advanced ceramics. A unique feature of crystals grown from the silicate systems is their outstanding linear electro-optic properties. They also exhibit exceptionally high optical rotativity. As a result, these crystals are attractive materials for dielectric, optical, and microwave applications. Experimental work in our laboratory has indicated that directional solidification of a single crystal mullite appears to be preceded by liquid-liquid phase separation in the melt. Disruption of the immiscible state results in crystallization of a two phase structure. There is also evidence that mixing in the melt caused by density-driven convection can significantly affect the stability of the immiscible liquid layers and result in poly-crystalline growth. On earth, the immiscible state has only been observed for small diameter crystals grown in float zone systems where natural convection is almost negligible. Therefore, it is anticipated that growth of large single crystals from silicate melts would benefit from microgravity conditions because of the reduction of the natural convective mixing. The main objective of this research is to determine the effects of transport processes on the phase separation in the melt during growth of a single crystal while addressing the following issues: (1) When do the immiscible layers form and are they real?; (2) What are the main physical characteristics of the immiscible liquids?; and (3) How mixing by natural or Marangoni convection

  14. Characteristics of liquid-liquid immiscibility in Al-Bi-Cu, Al-Bi-Si, and Al-Bi-Sn monotectic alloys: Differential scanning calorimetry, interfacial tension, and density difference measurements

    NASA Astrophysics Data System (ADS)

    Kaban, Ivan G.; Hoyer, Walter

    2008-03-01

    Phase separation in ternary monotectic alloys (Al0.345Bi0.655)90X10 ( X=Cu,Si,Sn ; wt %) has been investigated. Experimental work included differential scanning calorimetry and measurements of the liquid-liquid (l-l) interfacial tension and difference in densities of coexisting phases. It is established that the interfacial tension between Al-rich and Bi-rich liquid phases increases when either Cu or Si is added and it decreases when Sn is added to the Al34.5Bi65.5 binary. This is related to the size of miscibility gap and is explained by increasing composition gradient across the (l-l) interface upon addition of either Cu or Si and its decreasing upon addition of Sn to the Al-Bi binary. The drop of interfacial tension in liquid (Al0.345Bi0.655)90Sn10 against Al34.5Bi65.5 is also caused by adsorption of Sn at the interface. Temperature dependences of the interfacial tension and density difference in the alloys studied follow a power law in reduced temperature (TC-T) at approach of the critical point with exponents close to the values predicted by the renormalization group theory of critical behavior.

  15. NMR imaging of immiscible displacements in porous media

    SciTech Connect

    Majors, P.D.; Li, P.; Peters, E.J.

    1995-12-31

    We introduce a rapid, quantitative nuclear magnetic resonance imaging (NMRI) technique to resolve and measure multiple fluid phases in porous media. Liquids are resolved on the basis of their NMR spin-spin (T{sub 2}) relaxation times, and their intensities are corrected via attenuation analysis. The spatially resolved and corrected NMRI intensities are normalized to yield fluid saturations. In-situ saturation measurements are presented for three immiscible (oil and water) displacements in the same Berea sandstone core. NMRI and effluent recovery methods were compared. T{sub 2} of the displacement fluids were observed to be sensitive to displacement conditions.

  16. Interfacial tension in immiscible mixtures of alkali halides.

    PubMed

    Lockett, Vera; Rukavishnikova, Irina V; Stepanov, Victor P; Tkachev, Nikolai K

    2010-02-01

    The interfacial tension of the liquid-phase interface in seven immiscible reciprocal ternary mixtures of lithium fluoride with the following alkali halides: CsCl, KBr, RbBr, CsBr, KI, RbI, and CsI was measured using the cylinder weighing method over a wide temperature range. It was shown that for all mixtures the interfacial tension gradually decreases with growing temperature. The interfacial tension of the reciprocal ternary mixtures at a given temperature increases both with the alkali cation radius (K(+) < Rb(+) < Cs(+)) and with the radius of the halogen anion (Cl(-) < Br(-) < I(-)). PMID:20094678

  17. Immiscible Lattice Gas with Long-Range Interaction

    NASA Astrophysics Data System (ADS)

    Tsumaya, Akira; Ohashi, Hirotada

    We developed a new LGA model which has the applicability for simulation of immiscible two phases with wide difference in density. We introduced long-range interparticle forces into the Rothman and Keller's ILG model to represent density difference between phases. We attempted some simulations of phase separation using our new model. Two-phase interfaces are stably made with density distribution coinciding with particle color distribution. Furthermore, the two-phase interface is clearer than that obtained by the Appert and Zaleski's LG model.

  18. Terahertz absorption spectra and potential energy distribution of liquid crystals.

    PubMed

    Chen, Zezhang; Jiang, Yurong; Jiang, Lulu; Ma, Heng

    2016-01-15

    In this work, the terahertz (THz) absorption spectra of a set of nematic liquid crystals were studied using the density functional theories (DFT). An accurate assignment of the vibrational modes corresponding to absorption frequencies were performed using potential energy distribution (PED) in a frequency range of 0-3 THz. The impacts of different core structures on THz absorption spectra were discussed. The results indicate that scope of application must be considered in the LC-based THz device designing. This proposed work may give a useful suggestion on the design of novel liquid crystal material in THz wave. PMID:26476072

  19. A Study of Undercooling Behavior Of Immiscible Metal Alloys in the Absence of Crucible-Induced Nucleation

    NASA Technical Reports Server (NTRS)

    Robinson, Michael B.; Rathz, Thomas J.; Li, Delin; Workman, Gary

    1998-01-01

    The purpose of this study is to investigate the question: Would eliminating the crucible eliminate the wall-induced nucleation of one of the liquid phases in an immiscible alloy and result in undercooling of the liquid into the metastable region thereby producing significant differences in the separation process and the microstructure upon solidification. Another primary objective of this research is to study systems with a metastable miscibility gap and to directly determine the metastable liquid miscibility gap by undercooling experiments. Nucleation and growth of droplets in these undercooled metallic liquid-liquid mixtures is also being studied. Results of this investigation indicate that containerless processing of immiscibles may not promote the undercooling of the single-phase liquid into the metastable region. Although no recalescence event was observed for this liquid-liquid transition, undercooling did occur across the miscibility gap for the solidification of the Ti phase that eventually separated.

  20. 26 CFR 1.332-5 - Distributions in liquidation as affecting minority interests.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 4 2011-04-01 2011-04-01 false Distributions in liquidation as affecting... TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Corporate Liquidations § 1.332-5 Distributions in liquidation as affecting minority interests. Upon the liquidation of a corporation in pursuance of a plan...

  1. Pair distribution function study on compression of liquid gallium

    SciTech Connect

    Luo, Shengnian; Yu, Tony; Chen, Jiuhua; Ehm, Lars; Guo, Quanzhong; Parise, John

    2008-01-01

    Integrating a hydrothermal diamond anvil cell (HDAC) and focused high energy x-ray beam from the superconductor wiggler X17 beamline at the National Synchrotron Light Source (NSLS) at the Brookhaven National Laboratory (BNL), we have successfully collected high quality total x-ray scattering data of liquid gallium. The experiments were conducted at a pressure range from 0.1GPa up to 2GPa at ambient temperature. For the first time, pair distribution functions (PDF) for liquid gallium at high pressure were derived up to 10 {angstrom}. Liquid gallium structure has been studied by x-ray absorption (Di Cicco & Filipponi, 1993; Wei et al., 2000; Comez et al., 2001), x-ray diffraction studies (Waseda & Suzuki, 1972), and molecular dynamics simulation (Tsay, 1993; Hui et al., 2002). These previous reports have focused on the 1st nearest neighbor structure, which tells us little about the atomic arrangement outside the first shell in non- crystalline materials. This study focuses on the structure of liquid gallium and the atomic structure change due to compression. The PDF results show that the observed atomic distance of the first nearest neighbor at 2.78 {angstrom} (first G(r) peak and its shoulder at the higher Q position) is consistent with previous studies by x-ray absorption (2.76 {angstrom}, Comez et al., 2001). We have also observed that the first nearest neighbor peak position did not change with pressure increasing, while the farther peaks positions in the intermediate distance range decreased with pressure increasing. This leads to a conclusion of the possible existence of 'locally rigid units' in the liquid. With the addition of reverse Monte Carlo modeling, we have observed that the coordination number in the local rigit unit increases with pressure. The bulk modulus of liquid gallium derived from the volume compression curve at ambient temperature (300K) is 12.1(6) GPa.

  2. 26 CFR 1.332-5 - Distributions in liquidation as affecting minority interests.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 4 2012-04-01 2012-04-01 false Distributions in liquidation as affecting... Distributions in liquidation as affecting minority interests. Upon the liquidation of a corporation in pursuance... without regard to section 332, since it does not apply to that part of distributions in...

  3. 26 CFR 1.332-5 - Distributions in liquidation as affecting minority interests.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 4 2014-04-01 2014-04-01 false Distributions in liquidation as affecting... Distributions in liquidation as affecting minority interests. Upon the liquidation of a corporation in pursuance... without regard to section 332, since it does not apply to that part of distributions in...

  4. 26 CFR 1.332-5 - Distributions in liquidation as affecting minority interests.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 4 2013-04-01 2013-04-01 false Distributions in liquidation as affecting... Distributions in liquidation as affecting minority interests. Upon the liquidation of a corporation in pursuance... without regard to section 332, since it does not apply to that part of distributions in...

  5. A novel coarsening mechanism of droplets in immiscible fluid mixtures

    NASA Astrophysics Data System (ADS)

    Shimizu, Ryotaro; Tanaka, Hajime

    2015-06-01

    In our daily lives, after shaking a salad dressing, we see the coarsening of oil droplets suspended in vinegar. Such a demixing process is observed everywhere in nature and also of technological importance. For a case of high droplet density, domain coarsening proceeds with inter-droplet collisions and the resulting coalescence. This phenomenon has been explained primarily by the so-called Brownian-coagulation mechanism: stochastic thermal forces exerted by molecules induce random motion of individual droplets, causing accidental collisions and subsequent interface-tension-driven coalescence. Contrary to this, here we demonstrate that the droplet motion is not random, but hydrodynamically driven by the composition Marangoni force due to an interfacial tension gradient produced in each droplet as a consequence of composition correlation among droplets. This alters our physical understanding of droplet coarsening in immiscible liquid mixtures on a fundamental level.

  6. Immiscible fluids in mixed wet porous media: the role of wettability correlations

    NASA Astrophysics Data System (ADS)

    Murison, Julie; Semin, Benoit; Baret, Jean-Christophe; Herminghaus, Stephan; Schroeter, Matthias; Brinkmann, Martin

    2013-11-01

    Various phenomena observed during immiscible displacement in a porous medium can be related to pore wall wettability. Petroleum engineers traditionally quantify the overall wettability of a rock sample in terms of the Ammot-Harvey or USBM index. To establish a link between these gloabl quantities and the pore-scale distribution of surface energies, we developed a series of model porous media. Using a variety of preparation methods, we are able to create dense beds of glass beads with the same average surface energy, differing only in the typical extension of the wetting and non-wetting surface domains. Experimental measurements of capillary pressure saturation curves for repeated imbibition and drainage show that the work dissipated in a complete cycle is monotonically increasing with the correlation length ξ of the surface energies. To test whether capillary hysteresis can be linked to specific features of the front morphology, we visualized the distribution of liquids by means of X-ray microtomography. The Minkowski measures volume, surface area, and Euler number are employed to characterize the interfacial shape. Differences of the front morphology during imbibition and drainage match with trends observed for the hysteresis loop opening.

  7. Distribution of Bi Between Slags and Liquid Copper

    NASA Astrophysics Data System (ADS)

    Chen, Chunlin; Wright, Steven

    2016-06-01

    The distribution of Bi between liquid copper and calcium ferrite slag containing 24 wt pct CaO, iron silicate slag with 25 wt pct SiO2, and calcium iron silicate slags was measured at 1573 K (1300 °C) under controlled CO-CO2 atmosphere. The experimental results showed that bismuth distribution is affected by the oxygen partial pressure, and bismuth is likely to exist in slags in the 2+ oxidation state, i.e., as BiO. The distribution ratio between calcium ferrite slag and metal was found to be close to that of iron silicate slag. The Bi distribution ratio was found to decrease with increasing SiO2 and Al2O3 content in slag. Increasing temperature was found to decrease the Bi distribution ratio between slag and metal. Using the measured equilibrium data on Bi content of the metal and slag and composition dependence of the activity of Bi in liquid copper, the activity and hence activity coefficient of BiO in the slag was calculated. The close value of activity coefficient of BiO in both slags at the same oxygen partial pressure indicates that the CaO-BiO and SiO2-BiO interactions are likely to be at the same level, or the FeO x -BiO interaction is the predominant interaction for BiO in the slag. Therefore at a constant FeO x content in the slag, the CaO-BiO and SiO2-BiO interactions doesn't affect γ_{{BiO}} significantly.

  8. Size distributions of gold nanoclusters studied by liquid chromatography

    SciTech Connect

    WILCOXON,JESS P.; MARTIN,JAMES E.; PROVENCIO,PAULA P.

    2000-05-23

    The authors report high pressure liquid chromatography, (HPLC), and transmission electron microscopy, (TEM), studies of the size distributions of nanosize gold clusters dispersed in organic solvents. These metal clusters are synthesized in inverse micelles at room temperature and those investigated range in diameter from 1--10 nm. HPLC is sensitive enough to discern changes in hydrodynamic volume corresponding to only 2 carbon atoms of the passivating agent or metal core size changes of less than 4 {angstrom}. The authors have determined for the first time how the total cluster volume (metal core + passivating organic shell) changes with the size of the passivating agent.

  9. Collision between immiscible drops with large surface tension difference

    NASA Astrophysics Data System (ADS)

    Arienti, Marco; Li, Xiaoyi; Soteriou, Marios; Sussman, Mark

    2009-11-01

    Immiscible drop collision, as occurring in fuel-oxidizer sprays or in the release of certain fire-extinguishing agents, tends to exhibit a much richer behavior with respect to miscible drops collision thanks to the formation of a liquid-liquid interface during impact. For instance, in near-head-on diesel-water drop collisions, ``overlaying'' may occur in which the diesel oil flows from the collision point around the water drop to gather at the opposite location of the drop. To simulate this class of multi-material flows, the combined volume-of-fluid / level set methodology that sharply captures a single liquid-gas interface (Sussman et al, J. of Comp. Phys., 2007) needs to be duplicated for a second, independent interface. In this presentation, we will show that simulation results are not affected by the reconstruction order of the interfaces, as in other surface capturing methods. We will also propose different numerical solutions to treat surface tension in the triple point computational cells, and examine the characteristics of the flow developing at the contact line between the two liquids and air in overlaying head-on collisions.

  10. Detecting energy dependent neutron capture distributions in a liquid scintillator

    NASA Astrophysics Data System (ADS)

    Balmer, Matthew J. I.; Gamage, Kelum A. A.; Taylor, Graeme C.

    2015-03-01

    A novel technique is being developed to estimate the effective dose of a neutron field based on the distribution of neutron captures in a scintillator. Using Monte Carlo techniques, a number of monoenergetic neutron source energies and locations were modelled and their neutron capture response was recorded. Using back propagation Artificial Neural Networks (ANN) the energy and incident direction of the neutron field was predicted from the distribution of neutron captures within a 6Li-loaded liquid scintillator. Using this proposed technique, the effective dose of 252Cf, 241AmBe and 241AmLi neutron fields was estimated to within 30% for four perpendicular angles in the horizontal plane. Initial theoretical investigations show that this technique holds some promise for real-time estimation of the effective dose of a neutron field.

  11. Solute location in a nanoconfined liquid depends on charge distribution

    SciTech Connect

    Harvey, Jacob A.; Thompson, Ward H.

    2015-07-28

    Nanostructured materials that can confine liquids have attracted increasing attention for their diverse properties and potential applications. Yet, significant gaps remain in our fundamental understanding of such nanoconfined liquids. Using replica exchange molecular dynamics simulations of a nanoscale, hydroxyl-terminated silica pore system, we determine how the locations explored by a coumarin 153 (C153) solute in ethanol depend on its charge distribution, which can be changed through a charge transfer electronic excitation. The solute position change is driven by the internal energy, which favors C153 at the pore surface compared to the pore interior, but less so for the more polar, excited-state molecule. This is attributed to more favorable non-specific solvation of the large dipole moment excited-state C153 by ethanol at the expense of hydrogen-bonding with the pore. It is shown that a change in molecule location resulting from shifts in the charge distribution is a general result, though how the solute position changes will depend upon the specific system. This has important implications for interpreting measurements and designing applications of mesoporous materials.

  12. Distributed polarizability models for imidazolium-based ionic liquids.

    PubMed

    Millot, Claude; Chaumont, Alain; Engler, Etienne; Wipff, Georges

    2014-09-25

    Quantum chemical calculations are used to derive distributed polarizability models sufficiently accurate and compact to be used in classical molecular dynamics simulations of imidazolium-based room temperature ionic liquids. Two distributed polarizability models are fitted to reproduce the induction energy of three imidazolium cations (1,3-dimethyl-, 1-ethyl-3-methyl-, and 1-butyl-3-methylimidazolium) and four anions (tetrafluoroborate, hexafluorophosphate, nitrate, and thiocyanate) polarized by a point charge located successively on a grid of surrounding points. The first model includes charge-flow polarizabilities between first-neighbor atoms and isotropic dipolar polarizability on all atoms (except H), while the second model includes anisotropic dipolar polarizabilities on all atoms (except H). For the imidazolium cations, particular attention is given to the transferability of the distributed polarizability sets. The molecular polarizability and its anisotropy rebuilt by the distributed models are found to be in good agreement with the exact ab initio values for the three cations and 23 additional conformers of 1-ethyl-3-methyl-, 1-butyl-3-methyl-, 1-pentyl-3-methyl-, and 1-hexyl-3-methylimidazolium cations. PMID:25133873

  13. 26 CFR 1.332-5 - Distributions in liquidation as affecting minority interests.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 4 2010-04-01 2010-04-01 false Distributions in liquidation as affecting minority interests. 1.332-5 Section 1.332-5 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Corporate Liquidations § 1.332-5 Distributions in liquidation as affecting minority...

  14. Immiscible phase incorporation during directional solidification of hypermonotectics

    NASA Technical Reports Server (NTRS)

    Andrews, J. Barry; Merrick, Roger A.

    1993-01-01

    Solidification processes in immiscible samples were investigated by directly observing the events taking place at the solid-liquid interface during directional solidification. Visualization of these events was made possible through the use of a transparent metal analog system and a temperature gradient stage assembly fitted to an optical microscope. The immiscible transparent analog system utilized was the succinonitrile-glycerol system. This system has been shown to exhibit the same morphological transitions as observed in metallic alloys of monotectic composition. Both monotectic and hypermonotectic composition samples were directionally solidified in order to gain an improved understanding of the manner in which the excess hypermonotectic liquid is incorporated into the solidifying structure. The processing conditions utilized prevented sedimentation of the excess hypermonotectic liquid by directionally solidifying the samples in very thin (13 microns), horizontally oriented cells. High thermal gradient to growth rate ratios (G/R) were used in an effort to prevent constitutional supercooling and the subsequent formation of L(sub 2) droplets in advance of the solidification front during the growth of fibrous composite structures. Results demonstrated that hypermonotectic composites could be produced in samples up to two weight percent off of the monotectic composition by using a G/R ratio greater than or equal to 4.6 x 10(exp 4) C(s)/mm(sup 2) to avoid constitutional supercooling. For hypermonotectic samples processed with G/R ratios below 4.6 x 10(exp 4) C(s)/mm(sup 2), constitutional supercooling occurred and resulted in slight interfacial instability. For these samples, two methods of incorporation of the hypermonotectic liquid were observed and are reported. The correlation between the phase spacing, lambda, and the growth rate, R, was examined and was found to obey a relationship generally associated with a diffusion controlled coupled growth process. For

  15. Interfacial dynamics of two immiscible fluids in spatially periodic porous media: The role of substrate wettability

    NASA Astrophysics Data System (ADS)

    Mondal, Pranab Kumar; DasGupta, Debabrata; Chakraborty, Suman

    2014-07-01

    We delineate the contact line dynamics of two immiscible fluids in a medium having spatially periodic porous structures. The flow is driven by an external applied pressure gradient. We bring out the combined consequences of the solid fraction distribution and the substrate wettability on the resulting dynamics of the contact line, by employing phase-field formalism. We capture the sequence of spatiotemporal events leading to formation of liquid bridges by trapping a small amount of displaced phase fluid between two consecutive porous blocks, as dictated by the combinations of substrate wettability and solid fraction. We also demonstrate the existence of a regime of complete interfacial recovery, depending on the parametric space of the governing parameters under concern. Our results essentially demonstrate the intricate mechanisms by virtue of which the wettabilities of the substrates alter the dynamical evolutions of interfaces and the subsequent shapes and sizes of the adsorbed dispersed phases, bearing far-ranging consequences in several practical applications ranging from oil recovery to groundwater flow.

  16. Blob population dynamics during immiscible two-phase flows in reconstructed porous media

    NASA Astrophysics Data System (ADS)

    Yiotis, A. G.; Talon, L.; Salin, D.

    2013-03-01

    We study the dynamics of nonwetting liquid blobs during immiscible two-phase flows in stochastically reconstructed porous domains predominantly saturated by a wetting fluid. The flow problem is solved explicitly using a Lattice-Boltzmann model that captures both the bulk phase and interfacial dynamics of the process. We show that the nonwetting blobs undergo a continuous life cycle of dynamic breaking up and coalescence producing two populations of blobs, a mobile and a stranded one, that exchange continuously mass between them. The process reaches a “steady state” when the rates of coalescence and breaking up become equal, and the macroscopic flow variables remain practically constant with time. At steady state, mass partitioning between mobile and immobile populations depends strongly on the applied Bond number Bo and the initial nonwetting phase distributions. Three flow regimes are identified: a single-phase flow Darcy-type regime at low Bo numbers, a non-Darcy two-phase flow regime at intermediate values of Bo, where the capillary number scales as Ca∝Bo2, and a Darcy-type two-phase flow regime at higher values of Bo. Our numerical results are found to be in good agreement with recent experimental and theoretical works.

  17. Distributed Health Monitoring System for Reusable Liquid Rocket Engines

    NASA Technical Reports Server (NTRS)

    Lin, C. F.; Figueroa, F.; Politopoulos, T.; Oonk, S.

    2009-01-01

    The ability to correctly detect and identify any possible failure in the systems, subsystems, or sensors within a reusable liquid rocket engine is a major goal at NASA John C. Stennis Space Center (SSC). A health management (HM) system is required to provide an on-ground operation crew with an integrated awareness of the condition of every element of interest by determining anomalies, examining their causes, and making predictive statements. However, the complexity associated with relevant systems, and the large amount of data typically necessary for proper interpretation and analysis, presents difficulties in implementing complete failure detection, identification, and prognostics (FDI&P). As such, this paper presents a Distributed Health Monitoring System for Reusable Liquid Rocket Engines as a solution to these problems through the use of highly intelligent algorithms for real-time FDI&P, and efficient and embedded processing at multiple levels. The end result is the ability to successfully incorporate a comprehensive HM platform despite the complexity of the systems under consideration.

  18. 26 CFR 1.6043-2 - Return of information respecting distributions in liquidation.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 13 2012-04-01 2012-04-01 false Return of information respecting distributions...-2 Return of information respecting distributions in liquidation. (a) Unless the distribution is one... shareholder in liquidation of the whole or any part of its capital stock shall file a return of information...

  19. 26 CFR 1.6043-2 - Return of information respecting distributions in liquidation.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 13 2013-04-01 2013-04-01 false Return of information respecting distributions...-2 Return of information respecting distributions in liquidation. (a) Unless the distribution is one... shareholder in liquidation of the whole or any part of its capital stock shall file a return of information...

  20. 26 CFR 1.6043-2 - Return of information respecting distributions in liquidation.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 13 2010-04-01 2010-04-01 false Return of information respecting distributions in liquidation. 1.6043-2 Section 1.6043-2 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF... information respecting distributions in liquidation. (a) Unless the distribution is one in respect of...

  1. Real-Time Observation on Evolution of Droplets Morphology Affected by Electric Current Pulse in Al-Bi Immiscible Alloy

    NASA Astrophysics Data System (ADS)

    Zhu, Jing; Wang, Tongmin; Cao, Fei; Fu, Hongwang; Fu, Yanan; Xie, Honglan; Xiao, Tiqiao

    2013-05-01

    The evolution of Bi-rich droplets morphology in a solidifying Al-Bi immiscible alloy was directly observed using a synchrotron microradiography technique. The electric current pulse (ECP) was applied to control the solidification process of Al-Bi immiscible alloy. It was found that the electromagnetic pinch force and Marangoni force induced by ECP and temperature gradient, respectively, can significantly affect the distribution of Bi-rich droplets. The electromagnetic pinch force drove the droplets from the center to side; meanwhile, the Marangoni force lifted the droplets from the bottom to the top. As a result, the droplets finally distributed with a manner of "inverted triangle."

  2. Melt immiscibility in Apollo 15 KREEP - Origin of Fe-rich mare basalts

    NASA Technical Reports Server (NTRS)

    Hollister, L. S.; Crawford, M. L.

    1977-01-01

    Silicate liquid immiscibility (SLI) is investigated in terms of chemistry and occurrence in two KREEP-rich Apollo 15 basalts. The two samples have different cooling histories but the same composition. In the first sample, SLI occurred at the time of 58% crystallization. In the second sample, SLI occurred after 20% had crystallized. It is noted that SLI could be initiated as soon as plagioclase (out of a total composition which also included zircon, FeS, SiO2, whitlockite, and ilmenite) alone had crystallized. Attention is given to Fe-rich immiscible melts, and it is suggested that SLI may play an important role in the formation of the source regions of Fe-rich mare basalts. The analytical technique used for the assays was an energy dispersive analysis system with a resolution of 167 eV.

  3. Production of cell-enclosing hollow-core agarose microcapsules via jetting in water-immiscible liquid paraffin and formation of embryoid body-like spherical tissues from mouse ES cells enclosed within these microcapsules.

    PubMed

    Sakai, Shinji; Hashimoto, Ichiro; Kawakami, Koei

    2008-01-01

    We developed agarose microcapsules with a single hollow core templated by alginate microparticles using a jet-technique. We extruded an agarose aqueous solution containing suspended alginate microparticles into a coflowing stream of liquid paraffin and controlled the diameter of the agarose microparticles by changing the flow rate of the liquid paraffin. Subsequent degradation of the inner alginate microparticles using alginate lyase resulted in the hollow-core structure. We successfully obtained agarose microcapsules with 20-50 microm of agarose gel layer thickness and hollow cores ranging in diameter from ca. 50 to 450 microm. Using alginate microparticles of ca. 150 microm in diameter and enclosing feline kidney cells, we were able to create cell-enclosing agarose microcapsules with a hollow core of ca. 150 microm in diameter. The cells in these microcapsules grew much faster than those in alginate microparticles. In addition, we enclosed mouse embryonic stem cells in agarose microcapsules. The embryonic stem cells began to self-aggregate in the core just after encapsulation, and subsequently grew and formed embryoid body-like spherical tissues in the hollow core of the microcapsules. These results show that our novel microcapsule production technique and the resultant microcapsules have potential for tissue engineering, cell therapy and biopharmaceutical applications. PMID:17705234

  4. Measurements of Gas Bubble Size Distributions in Flowing Liquid Mercury

    SciTech Connect

    Wendel, Mark W; Riemer, Bernie; Abdou, Ashraf A

    2012-01-01

    ABSTRACT Pressure waves created in liquid mercury pulsed spallation targets have been shown to induce cavitation damage on the target container. One way to mitigate such damage would be to absorb the pressure pulse energy into a dispersed population of small bubbles, however, measuring such a population in mercury is difficult since it is opaque and the mercury is involved in a turbulent flow. Ultrasonic measurements have been attempted on these types of flows, but the flow noise can interfere with the measurement, and the results are unverifiable and often unrealistic. Recently, a flow loop was built and operated at Oak Ridge National Labarotory to assess the capability of various bubbler designs to deliver an adequate population of bubbles to mitigate cavitation damage. The invented diagnostic technique involves flowing the mercury with entrained gas bubbles in a steady state through a horizontal piping section with a glass-window observation port located on the top. The mercury flow is then suddenly stopped and the bubbles are allowed to settle on the glass due to buoyancy. Using a bright-field illumination and a high-speed camera, the arriving bubbles are detected and counted, and then the images can be processed to determine the bubble populations. After using this technique to collect data on each bubbler, bubble size distributions were built for the purpose of quantifying bubbler performance, allowing the selection of the best bubbler options. This paper presents the novel procedure, photographic technique, sample visual results and some example bubble size distributions. The best bubbler options were subsequently used in proton beam irradiation tests performed at the Los Alamos National Laboratory. The cavitation damage results from the irradiated test plates in contact with the mercury are available for correlation with the bubble populations. The most effective mitigating population can now be designed into prototypical geometries for implementation into

  5. Distribution of rubidium between sodic sanidine and natural silicic liquid

    USGS Publications Warehouse

    Noble, D.C.; Hedge, C.E.

    1970-01-01

    Phenocrysts of sodic sanidine from twelve upper Cenozoic units of silicic ash-flow tuff and lava from the Western United States contain from 0.25 to 0.45 the Rb present in the associated groundmass materials. The ratios of potassium to rubidium in the sanidines are, on the average, about four times greater than those of the groundmass. Separation of phenocrystic sanidine from salic melts provides an efficient method for raising the Rb content and lowering the K/Rb ratio of the melts, although the amount of differentiation probably is limited by continuous reequilibration of the alkalis between crystal and liquid phases through ion exchange. Syenites of cumulate origin will have appreciably lower Rb contents and higher K/Rb ratios than the melts from which they precipitated. Available data on the distribution of Rb between synthetic biotite and K-sanidine demonstrate that the separation of biotite probably will not deplete salic melts in Rb relative to K. ?? 1970 Springer-Verlag.

  6. 25 CFR 16.8 - Summary distribution of small liquid estates.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false Summary distribution of small liquid estates. 16.8 Section 16.8 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR PROBATE ESTATES OF INDIANS OF THE FIVE CIVILIZED TRIBES § 16.8 Summary distribution of small liquid estates. Where...

  7. 25 CFR 16.8 - Summary distribution of small liquid estates.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false Summary distribution of small liquid estates. 16.8 Section 16.8 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR PROBATE ESTATES OF INDIANS OF THE FIVE CIVILIZED TRIBES § 16.8 Summary distribution of small liquid estates. Where...

  8. 25 CFR 16.8 - Summary distribution of small liquid estates.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Summary distribution of small liquid estates. 16.8 Section 16.8 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR PROBATE ESTATES OF INDIANS OF THE FIVE CIVILIZED TRIBES § 16.8 Summary distribution of small liquid estates. Where...

  9. On Theories for Reacting Immiscible Mixtures

    SciTech Connect

    Drumheller, D.S.

    1998-11-05

    On some small scale each constituent of an immiscible mixture occupies a separate region of space. Given sufficient time and computing power, we could solve the continuum field equations and boundary conditions for this het erogenous system. This usually represents an enormously difficult task that is well beyond today's computational ca- pabilities. Mixture theories approximate this complex heterogeneous formulation with a set of field equations for an equivalent homoge- neous mat erial. In this work, we compare the theory for immiscible mixtures by Drumheller and Bedford with the theory of Passman, Nunziato, and Walsh. We describe the conditions under which these theories reduce to an equivalent formulation, and we also investigate the differences in their microinertial descriptions. Two variables play special roles in both theories. They are t he true material density and the volume fraction. Here we use a kinematical approach based on two new variables-t he true deformation gradient and the distention gradient. We show how the true deformation gra- dient is connected to the true material density and, in the absence of chemical reactions, the volume fraction is the inverse of the deter- minant of the distention gradient. However, when chemical reactions occur, the distention gradient and the volume fraction are not directly connected. We ako present a mixture model for a granuIar expIosive. This model is based upon the work of Baer and Nunziato, but our theory differs from their work in that we Present a three-dimension-al rnodd, `.. ` - - we cast the constitutive postulates in terms of the distention gradient rather than the volume fraction, and we incorporate elastic-plastic effects into the constitutive description of the solid granules.

  10. Finite-Element Analysis of Multiphase Immiscible Flow Through Soils

    NASA Astrophysics Data System (ADS)

    Kuppusamy, T.; Sheng, J.; Parker, J. C.; Lenhard, R. J.

    1987-04-01

    A finite-element model is developed for multiphase flow through soil involving three immiscible fluids: namely, air, water, and a nonaqueous phase liquid (NAPL). A variational method is employed for the finite-element formulation corresponding to the coupled differential equations governing flow in a three-fluid phase porous medium system with constant air phase pressure. Constitutive relationships for fluid conductivities and saturations as functions of fluid pressures, which are derived in a companion paper by J. C. Parker et al. (this issue) and which may be calibrated from two-phase laboratory measurements, are employed in the finite-element program. The solution procedure uses backward time integration with iteration by a modified Picard method to handle the nonlinear properties. Laboratory experiments involving water displacement from soil columns by p cymene (a benzene-derivative hydrocarbon) under constant pressure were simulated by the finite-element program to validate the numerical model and formulation for constitutive properties. Transient water outflow predicted using independently measured saturation-capillary head data agreed with observed outflow data within the limits of precision of the predictions as estimated by a first-order Taylor series approximation considering parameter uncertainty due to experimental reproducability and constitutive model accuracy. Two-dimensional simulations are presented for a hypothetical field case involving introduction of NAPL near the soil surface due to leakage from an underground storage tank. Subsequent transport of NAPL in the variably saturated vadose and groundwater zones is analyzed.

  11. Thermally induced collision of droplets in an immiscible outer fluid

    NASA Astrophysics Data System (ADS)

    Davanlou, Ashkan; Kumar, Ranganathan

    2015-05-01

    Micro-total analysis systems (μTAS) have attracted wide attention and are identified as a promising solution for sample transport, filtration, chemical reactions, separation and detection. Despite their popularity, the selection of an appropriate mechanism for droplet transport and coalescence has always been a challenge. This paper investigates the use of Marangoni flow as a mechanism for levitating and transporting droplets on immiscible liquid films at higher speeds than is possible currently. For the first time, we show that it is possible to realize the natural coalescence of droplets through Marangoni effect without any external stimulation, and deliver the coalesced droplet to a certain destination through the use of surface tension gradients. The effects of shape and size on collision outcome are studied. Regions of coalescence and stretching separation of colliding droplets are delineated based on Weber number and impact number. In addition, the effect of viscosity on post collision regimes is studied. The findings in this fundamental study can be beneficial to many applications such as welding, drug delivery and microfluidics devices in controlling small droplets and targeting them to various locations.

  12. Electrically induced displacement transport of immiscible oil in saline sediments.

    PubMed

    Pamukcu, Sibel; Shrestha, Reena A; Ribeiro, Alexandra B; Mateus, Eduardo P

    2016-08-01

    Electrically assisted mitigation of coastal sediment oil pollution was simulated in floor-scale laboratory experiments using light crude oil and saline water at approximately 1/10 oil/water (O/W) mass ratio in pore fluid. The mass transport of the immiscible liquid phases was induced under constant direct current density of 2A/m(2), without water flooding. The transient pore water pressures (PWP) and the voltage differences (V) at and in between consecutive ports lined along the test specimen cell were measured over 90days. The oil phase transport occurred towards the anode half of the test specimen where the O/W volume ratio increased by 50% over its initial value within that half-length of the specimen. In contrast, the O/W ratio decreased within the cathode side half of the specimen. During this time, the PWP decreased systematically at the anode side with oil bank accumulation. PWP increased at the cathode side of the specimen, signaling increased concentration of water there as it replaced oil in the pore space. Electrically induced transport of the non-polar, non-conductive oil was accomplished in the opposing direction of flow by displacement in absence of viscous coupling of oil-water phases. PMID:27064863

  13. Particle Swarm Transport through Immiscible Fluid Layers in a Fracture

    NASA Astrophysics Data System (ADS)

    Teasdale, N. D.; Boomsma, E.; Pyrak-Nolte, L. J.

    2011-12-01

    Immiscible fluids occur either naturally (e.g. oil & water) or from anthropogenic processes (e.g. liquid CO2 & water) in the subsurface and complicate the transport of natural or engineered micro- or nano-scale particles. In this study, we examined the effect of immiscible fluids on the formation and evolution of particle swarms in a fracture. A particle swarm is a collection of colloidal-size particles in a dilute suspension that exhibits cohesive behavior. Swarms fall under gravity with a velocity that is greater than the settling velocity of a single particle. Thus a particle swarm of colloidal contaminants can potentially travel farther and faster in a fracture than expected for a dispersion or emulsion of colloidal particles. We investigated the formation, evolution, and break-up of colloidal swarms under gravity in a uniform aperture fracture as hydrophobic/hydrophyllic particle swarms move across an oil-water interface. A uniform aperture fracture was fabricated from two transparent acrylic rectangular prisms (100 mm x 50 mm x 100 mm) that are separated by 1, 2.5, 5, 10 or 50 mm. The fracture was placed, vertically, inside a glass tank containing a layer of pure silicone oil (polydimethylsiloxane) on distilled water. Along the length of the fracture, 30 mm was filled with oil and 70 mm with water. Experiments were conducted using silicone oils with viscosities of 5, 10, 100, or 1000 cSt. Particle swarms (5 μl) were comprised of a 1% concentration (by mass) of 25 micron glass beads (hydrophilic) suspended in a water drop, or a 1% concentration (by mass) of 3 micron polystyrene fluorescent beads (hydrophobic) suspended in a water drop. The swarm behavior was imaged using an optical fluorescent imaging system composed of a CCD camera and by green (525 nm) LED arrays for illumination. Swarms were spherical and remained coherent as they fell through the oil because of the immiscibility of oil and water. However, as a swarm approached the oil-water interface, it

  14. REDISTRIBUTOR FOR LIQUID-LIQUID EXTRACTION COLUMNS

    DOEpatents

    Bradley, J.G.

    1957-10-29

    An improved baffle plate construction to intimately mix immiscible liquid solvents for solvent extraction processes in a liquid-liquid pulse column is described. To prevent the light and heavy liquids from forming separate continuous homogeneous vertical channels through sections of the column, a baffle having radially placed rectangular louvers with deflection plates opening upon alternate sides of the baffle is placed in the column, normal to the axis. This improvement substantially completely reduces strippiig losses due to poor mixing.

  15. Effect of Organoclays on Immiscible Polymer Blends

    NASA Astrophysics Data System (ADS)

    Ha, Mai; Krishnamoorti, Ramanan

    2011-03-01

    The effect of adding organoclays on the phase behavior, rheological properties and bulk mechanical properties of immiscible polymer blends of polystyrene (PS) and poly(methyl methacrylate) (PMMA) is investigated. Traditional organoclays, prepared using alkyl ammonium chains, display a preference to segregate to the PS phase for high PS volume fraction blends where the PS forms the continuous matrix. On the other hand, for blends with low PS volume fractions, the organoclay segregates to the interface between the PS and PMMA domains and leads to a decrease in the domain size that does not change much with organoclay concentration variations from 0.1 to 2 wt %. Linear dynamic rheological data of these samples show significant increase in the low-frequency modulus of the blends with added organoclay. A thermodynamic model for estimating the interfacial modulus is proposed and the results agree well with the interfacial modulus calculated by Palierne's emulsion model. The toughness of the blends increases at low concentrations of added organoclays with the optimal improvements observed for less than 0.5 wt % added organoclay.

  16. Sol-gel auto-combustion synthesis of totally immiscible NiAg alloy

    SciTech Connect

    Jiang, Yuwen; Yang, Shaoguang; Hua, Zhenghe; Gong, Jiangfeng; Zhao, Xiaoning

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Chemically synthesized immiscible NiAg alloy nanoparticles without protecting matrix. Black-Right-Pointing-Pointer A chemical method providing both a nonequilibrium thermal process and a good mixing of precursors. Black-Right-Pointing-Pointer Observation of extinction planes in NiAg alloy. -- Abstract: Immiscible crystalline NiAg alloy was successfully synthesized by the newly developed sol-gel auto-combustion method. The structure and composition were examined by X-ray diffraction (XRD) and high resolution transmission electron microscope (HRTEM). All evidence supports that homogeneous NiAg alloy with FCC structure was synthesized. The differential thermal analysis and thermogravimetry (DTA-TG) measurement shows that the alloy has a good thermal stability until 315 Degree-Sign C. Unusually some extinction planes are observed in the XRD pattern and HRTEM images. The random distribution of atoms and the large difference between Ni and Ag atom form factors should be regarded as the main reasons for the observation of the extinction planes. The quenching like nonequilibrium thermal process in the combustion is taken as the key factor in the synthesis of immiscible alloy. And the addition of ethylene glycol in the precursors is found to benefit the formation of NiAg alloy.

  17. Chemical amplification based on fluid partitioning in an immiscible liquid

    DOEpatents

    Anderson, Brian L.; Colston, Bill W.; Elkin, Christopher J.

    2010-09-28

    A system for nucleic acid amplification of a sample comprises partitioning the sample into partitioned sections and performing PCR on the partitioned sections of the sample. Another embodiment of the invention provides a system for nucleic acid amplification and detection of a sample comprising partitioning the sample into partitioned sections, performing PCR on the partitioned sections of the sample, and detecting and analyzing the partitioned sections of the sample.

  18. Capillary pinning of immiscible gravity currents in porous media

    NASA Astrophysics Data System (ADS)

    Zhao, B.; MacMinn, C. W.; Huppert, H. E.; Juanes, R.

    2013-12-01

    Gravity currents in porous media have attracted interest recently in the context of geological carbon dioxide (CO2) storage, where supercritical CO2 is captured from the flue gas of power plants and injected underground into deep saline aquifers. Capillarity can be important in the spreading and migration of the buoyant CO2 after injection because the typical pore size is very small (~10-100 microns), but the impact of capillarity on these flows is not well understood. Here, we study the impact of capillarity on the buoyant spreading of a finite gravity current of non-wetting fluid into a dense, wetting fluid in a vertically confined, horizontal aquifer. We show via simple, table-top experiments using glass bead packs that capillary pressure hysteresis pins a portion of the fluid-fluid interface. The horizontal extent of the pinned portion of the interface grows over time and this is responsible for ultimately stopping the spreading of the buoyant current after a finite distance. In addition, capillarity blunts the leading edge of the buoyant current. We demonstrate through micromodel experiments that the characteristic height of the nose of the current is controlled by the pore throat size distribution and the balance between capillarity and gravity. We develop a theoretical model that captures the evolution of immiscible gravity currents and predicts the maximum migration distance. Our work suggests that capillary pinning and capillary blunting exert an important control on finite-release gravity currents in the context of CO2 sequestration in deep saline aquifers. Gravity driven flow of a buoyant, nonwetting fluid (air) over a dense, wetting fluid (propylene glycol). Starting with a vertical interface between the fluids, the flow first undergoes a lock-exchange process. The process models a finite release problem after the dense fluid hits the left boundary. In contrast to finite release of a miscible current that spreads indefinitely, spreading of an immiscible

  19. Liquid distribution and cohesion in wet granular assemblies beyond the capillary bridge regime

    NASA Astrophysics Data System (ADS)

    Scheel, M.; Seemann, R.; Brinkmann, M.; Di Michiel, M.; Sheppard, A.; Herminghaus, S.

    2008-12-01

    Dry sand turns into a stiff and moldable material as soon as it is mixed with some liquid. This is a direct consequence of the internal liquid-air interfaces spanning between the grains which causes capillary cohesion by virtue of the surface tension of the liquid. As a model for wet granulates we investigated random packings of submillimeter spherical beads mixed with water. Measurements of the tensile strength and the fluidization threshold demonstrate that the mechanical stiffness is rather insensitive to the liquid content over a wide range. Only for a high liquid content, when more than half of the available pore space is filled with liquid, does the capillary cohesion weaken. In order to understand the interplay between the mechanical properties and the liquid content, we investigated the liquid distribution in random packings of glass spheres by means of x-ray microtomography. The three-dimensional images reveal that the liquid forms a network of capillary bridges fused at local triangular bead configurations. The spontaneous organization of the liquid into these ramified structures, which exhibit a large liquid-air interface, is responsible for the constancy of the cohesive forces in a wide range of liquid contents beyond the onset of capillary bridge coalescence.

  20. Atom Pair Distribution Functions of Liquid Water at 25circC from Neutron Diffraction

    NASA Astrophysics Data System (ADS)

    Narten, A. H.; Thiessen, W. E.; Blum, L.

    1982-09-01

    The structure of liquid water is described by three atom pair distribution functions gOO(r), gOH(r), and gHH(r). These functions have now been derived from neutron diffraction data on four mixtures of light and heavy water. They will provide a crucial and sensitive test for proposed models of liquid water.

  1. Manifold to uniformly distribute a solid-liquid slurry

    DOEpatents

    Kern, Kenneth C.

    1983-01-01

    This invention features a manifold that divides a stream of coal particles and liquid into several smaller streams maintaining equal or nearly equal mass compositions. The manifold consists of a horizontal, variable area header having sharp-edged, right-angled take-offs which are oriented on the bottom of the header.

  2. DOES VARIABLE DISTRIBUTION AFFECT LIQUID P-USE EFFICIENCY?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Experiments show that banding of liquid P is more effective than broadcast. The effectiveness of banded P has been shown to be increasingly superior, compared to broadcasting P, when P rate increases to the optimum level. The greater the speed of application, the smaller becomes the distance between...

  3. LIGHT NONAQUEOUS PHASE LIQUIDS

    EPA Science Inventory

    Nonaqueous phase liquids (NAPLS) are hydrocarbons that exist as a separate, immiscible phase when in contact with water and/or air. ifferences in the physical and chemical properties of water and NAPL result in the formation of a physical interface between the liquids which preve...

  4. A numerical study of liquid film distribution in wet natural gas pipelines

    NASA Astrophysics Data System (ADS)

    Gao, X. Q.; Zhao, Y. L.; Xu, W. W.; Guan, X. R.; Wang, J. J.; Jin, Y. H.

    2016-05-01

    The software of FLUENT was used to simulate the gas-liquid turbulent flow in wet natural gas pipeline of the Puguang gas field. The RNG k- ɛ model was used to simulate the turbulent flow, the Mixture model was used to simulate gas-liquid mixed phase, and the Eulerian wall film model was used to simulate the formation and development of liquid film. The gas phase flow field characteristics, the distribution of the axial and circumferential film thickness, and the droplet distribution in the pipeline were studied when the gas Reynolds number is 7.72 × 106(10.8m/s). The results can be concluded as followed: Liquid film distributes unevenly along the circumferential direction and mostly distributes under the pipeline wall because of gravity. The impact of the dean vortex and centrifugal force in the straight section can also influence the liquid film distribution. The wall shear stress distributions in horizontal straight pipeline is concerned with liquid membrane volatility, and consistent with the film volatility period, the wall shear stress reached the maximum value in a certain position of wave front. The influence of the wall shear stress on the film fluctuation in inclined pipeline is weakened by gravity and other factors.

  5. Distribution of solute at solid-liquid interface during solidification of melt

    NASA Astrophysics Data System (ADS)

    Fukui, Keisuke; Maeda, Kouji

    1998-11-01

    A model for predicting a distribution coefficient (ki) of solute at the solid-liquid (S-L) interface, when the solid layer is growing, is proposed. The interfacial distribution coefficient is expressed as a function of two gradients of the liquid concentration and equilibrium concentration at the S-L interface. The model is applied to the solidification of a simple eutectic binary liquid of lauric acid and myristic acid in an enclosed rectangular box in which a vertical wall is cooled. The impurity-concentration profile in solid is predicted from the direct numerical computations.

  6. Quantitative measurement of binary liquid distributions using multiple-tracer x-ray fluorescence and radiography

    SciTech Connect

    Halls, Benjamin R.; Meyer, Terrence R.; Kastengren, Alan L.

    2015-01-01

    The complex geometry and large index-of-refraction gradients that occur near the point of impingement of binary liquid jets present a challenging environment for optical interrogation. A simultaneous quadruple-tracer x-ray fluorescence and line-of-sight radiography technique is proposed as a means of distinguishing and quantifying individual liquid component distributions prior to, during, and after jet impact. Two different pairs of fluorescence tracers are seeded into each liquid stream to maximize their attenuation ratio for reabsorption correction and differentiation of the two fluids during mixing. This approach for instantaneous correction of x-ray fluorescence reabsorption is compared with a more time-intensive approach of using stereographic reconstruction of x-ray attenuation along multiple lines of sight. The proposed methodology addresses the need for a quantitative measurement technique capable of interrogating optically complex, near-field liquid distributions in many mixing systems of practical interest involving two or more liquid streams.

  7. Investigation of immiscible systems and potential applications

    NASA Technical Reports Server (NTRS)

    Markworth, A. J.; Oldfield, W.; Duga, J.; Gelles, S. H.

    1975-01-01

    The droplet coalescence kinetics at 0 g and 1 g were considered for two systems which contained liquid droplets in a host liquid. One of these (Al-In) typified a system containing a liquid phase miscibility gap and the order (oil-water) a mixture of two essentially insoluble liquids. A number of coalescence mechanisms potentially prominent at low g in this system were analyzed and explanations are presented for the observed unusual stability of the emulsion. Ground base experiments were conducted on the coalescence of In droplets in and Al-In alloy during cooling through the miscibility gap at different cooling rates. These were in qualitative agreement with the computer simulation. Potential applications for systems with liquid phase miscibility gaps were explored. Possibilities included superconductors, electrical contact materials, superplastic materials, catalysts, magnetic materials, and others. The role of space processing in their production was also analyzed.

  8. Effect of wettability on adverse mobility immiscible floods

    SciTech Connect

    Vives, M.T.; Chang, Y.C.; Mohanty, K.K.

    1995-12-31

    Many immiscible displacements in reservoirs occur at adverse mobility. Effect of wettability on these displacements is not well understood and often ignored in reservoir simulation. Recent macroscopic theories of viscous fingering treat adverse immiscible flows similar to miscible flows, the mixing in the fingered region being controlled by a Todd-Longstaff-type functional form. The wettability of the medium is taken into account only through the use of appropriate relative permeabilities. The goal of this paper is to understand the macroscopic bypassing in adverse mobility immiscible floods. Immiscible displacements are conducted in a quarter 5-spot model in both drainage and imbibition modes at similar effective mobility ratios and viscous-to-gravity numbers. The level of bypassing and gravity override is visualized and measured. Tertiary water-alternating-gas (WAG) displacements are also conducted at various WAG ratios and viscosity ratios. Fractional flow analysis and numerical simulation are used to understand these displacements. Experiments show that macroscopic viscous fingering is present in adverse viscosity immiscible displacements where no saturation shock is expected from 1-D fractional flow theory. Bypassing due to both fingering and gravity override is higher in the drainage mode than in the imbibition mode, with other key parameters being the same. Optimum WAG ratio in water-wet rock is a function of oil/solvent viscosity ratio. The macroscopic flow theory needs to include capillarity and viscous fingering to match these experimental findings.

  9. Peralkaline nephelinite-natrocarbonatite immiscibility and carbonatite assimilation at Oldoinyo Lengai, Tanzania

    NASA Astrophysics Data System (ADS)

    Mitchell, Roger H.

    2009-11-01

    This study presents petrographic and compositional data for coexisting peralkaline silicate glass and quenched natrocarbonatite melt in nepheline phenocrysts from the 24 September 2007 and July 2008 eruptions of the natrocarbonatite volcano Oldoinyo Lengai (Tanzania). Data are also given for peralkaline residual glass in combeite nephelinite ash clasts occurring in the March-April 2006 large volume natrocarbonatite flow. These data are considered to demonstrate the occurrence of liquid immiscibility between strongly peralkaline Fe-rich nephelinite melt and natrocarbonatite at Oldoinyo Lengai. Compositional data for coexisting silicate-carbonate pairs in conjunction with previous experimental studies suggest that the size of the field of liquid immiscibility for carbonated nephelinitic magmas is a function of their peralkalinity. It is shown that peralkaline combeite wollastonite nephelinite was present at Oldoinyo Lengai prior to, and during, the 24 September 2007 ash eruption. It is postulated that the driving force for this major eruption was assimilation and decomposition of previously emplaced solid natrocarbonatite. Assimilation resulted in the formation of the unusual hybrid nepheline-andradite-melilite-combeite-phosphate magma represented by the 24 September 2007 ash.

  10. Distributed hydrophone array based on liquid crystal cell

    NASA Astrophysics Data System (ADS)

    Brodzeli, Zourab; Ladouceur, Francois; Silvestri, Leonardo; Michie, Andrew; Chigrinov, Vladimir; Guo, Grace Qi; Pozhidaev, Eugene P.; Kiselev, Alexei D.

    2012-02-01

    We describe a fibre optic hydrophone array system that could be used for underwater acoustic surveillance applications e.g. military, counter terrorist and customs authorities in protecting ports and harbors, offshore production facilities or coastal approaches as well as various marine applications. In this paper we propose a new approach to underwater sonar systems using voltage-controlled Liquid Crystals (LC) and simple multiplexing method. The proposed method permits measurements of sound under water at multiple points along an optical fibre using low cost components (LC cells), standard single mode fibre, without complex interferometric measurement techniques, electronics or demodulation software.

  11. Liquid electrode

    DOEpatents

    Ekechukwu, Amy A.

    1994-01-01

    A dropping electrolyte electrode for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions.

  12. PHYSICS OF IMMISCIBLE FLOW IN POROUS MEDIA

    EPA Science Inventory

    Conceptual formulation, numerical implementation and experimental validation of a model for the movement of organic chemicals which are introduced into soils as nonaqueous phase liquids via surface spills or leakage from subsurface containment facilities were addressed. Relations...

  13. Water and hydrogen are immiscible in Earth's mantle.

    PubMed

    Bali, Enikő; Audétat, Andreas; Keppler, Hans

    2013-03-14

    In the deep, chemically reducing parts of Earth's mantle, hydrous fluids contain significant amounts of molecular hydrogen (H2). Thermodynamic models of fluids in Earth's mantle so far have always assumed that molecular hydrogen and water are completely miscible. Here we show experimental evidence that water and hydrogen can coexist as two separate, immiscible phases. Immiscibility between water and hydrogen may be the cause of the formation of enigmatic, ultra-reducing domains in the mantle that contain moissanite (SiC) and other phases indicative of extremely reducing conditions. Moreover, the immiscibility between water and hydrogen may provide a mechanism for the rapid oxidation of Earth's upper mantle immediately following core formation. PMID:23486061

  14. Liquid metal filtration and distribution using fiberglass fabric

    SciTech Connect

    Brochu, C.; Dault, R.; Tremblay, S.P.

    1996-10-01

    In the last decade, the aluminum industry has mainly focused on improving metal quality by working on furnaces and casting practices and especially on in-line treatment units. However, fiberglass fabric is widely used throughout the industry. It is specially used at the last step before the solidification process when molten metal is transferred from the trough to the ingot mold. In this regard, little effort has been reported on better understanding or using fiberglass fabric in molten aluminum filtration and distribution applications. This paper will review the fiberglass fabric options. The different fiberglass fabric coatings and finishes will be described as well as their properties and characteristics with regard to molten aluminum. Fiberglass fabric used in filtration applications will be defined as a function of selected parameters such as opening, finish, throughput, etc. Finally, metal distribution will be discussed. A better understanding of fiberglass fabric finishes and bag configuration will improve metal distribution and ultimately, the final ingot quality.

  15. A new insight into interfaces of immiscible binary polymer blends from the free volume approach

    NASA Astrophysics Data System (ADS)

    Ramya, P.; Meghala, D.; Pasang, T.; Raj, J. M.; Chandrashekara, M. N.; Ranganathaiah, C.

    2012-06-01

    The interface width in an immiscible (PVC/PS) polymer blend is determined using hydrodynamic interaction parameter (α) derived from free volume data measured using Positron lifetime spectrometer. CONTIN program has been employed to get the free volume hole size distribution. A new definition of interface width is presented, which originates from the Kirkwood-Riseman theory and friction coefficient as per Stokes equation. Friction at the interface of a binary blend decides how close the surfaces come or stay farther resulting in narrow or broad interface width respectively.

  16. Liquid crystal nanoparticle formulation as an oral drug delivery system for liver-specific distribution

    PubMed Central

    Lee, Dong Ryeol; Park, Ji Su; Bae, Il Hak; Lee, Yan; Kim, B Moon

    2016-01-01

    Liquid crystal nanoparticles have been utilized as an efficient tool for drug delivery with enhanced bioavailability, drug stability, and targeted drug delivery. However, the high energy requirements and the high cost of the liquid crystal preparation have been obstacles to their widespread use in the pharmaceutical industry. In this study, we prepared liquid crystal nanoparticles using a phase-inversion temperature method, which is a uniquely low energy process. Particles prepared with the above method were estimated to be ~100 nm in size and exhibited a lamellar liquid crystal structure with orthorhombic lateral packing. Pharmacokinetic and tissue distribution studies of a hydrophobic peptide-based drug candidate formulated with the liquid crystal nanoparticles showed a five-fold enhancement of bioavailability, sustained release, and liver-specific drug delivery compared to a host–guest complex formulation. PMID:27042053

  17. Liquidity, Technological Opportunities, and the Stage Distribution of Venture Capital Investments

    PubMed Central

    Lahr, Henry; Mina, Andrea

    2014-01-01

    This paper explores the determinants of the stage distribution of European venture capital investments from 1990 to 2011. Consistent with liquidity risk theory, we find that the likelihood of investing in earlier stages increases relative to all private equity investments during liquidity crisis years. While liquidity is the main driver of acquisition investments and, to some extent, of expansion financings, technological opportunities are overall the main driver of early and late stage venture capital investments. In contrast to the dotcom crash, the recent financial crisis negatively affected the relative likelihood of expansion investments, but not of early and late stage investments. PMID:26166906

  18. Self-Transport of Condensed Liquid in Micro Cooling Device Using Distributed Meniscus Pumping.

    PubMed

    So, Hongyun; Pisano, Albert P

    2015-06-16

    This paper reports a reliable passive micro pump system combining the physical properties of a tapered microchannel and sharp microstructures. This tailored microchannel with triple-spike microstructures was created to transport condensed liquid into the reservoir chamber in a micro cooling device and in the case of chip off-mode prepare the next cooling cycle before chip on-mode, allowing the reliable and continuous circulation of coolant without liquid being trapped in the vapor channel causing dryout limitation. At the tapered channel end, the pinned liquid meniscus was distributed by a middle spike and then continued to overflow into the condenser chamber due to extended capillary action. PMID:26010771

  19. Experimental Investigation on Liquid Metal Flow Distribution in Insulating Manifold under Uniform Magnetic Field

    NASA Astrophysics Data System (ADS)

    Miura, Masato; Ueki, Yoshitaka; Yokomine, Takehiko; Kunugi, Tomoaki

    2012-11-01

    Magnetohydrodynamics (MHD) problem which is caused by interaction between electrical conducting fluid flow and the magnetic field is one of the biggest problem in the liquid metal blanket of the fusion reactor. In the liquid metal blanket concept, it is necessary to distribute liquid metal flows uniformly in the manifold because imbalance of flow rates should affect the heat transfer performance directly, which leads to safety problem. While the manifold is insulated electrically as well as the flow duct, the 3D-MHD effect on the flowing liquid metal in the manifold is more apparent than that in straight duct. With reference to the flow distribution in this concept, the liquid metal flow in the electrical insulating manifold under the uniform transverse magnetic field is investigated experimentally. In this study, GaInSn is selected as working fluid. The experimental system includes the electrical magnet and the manifold test section which is made of acrylic resin for perfectly electrical insulation. The liquid metal flows in a non-symmetric 180°-turn with manifold, which consists of one upward channel and two downward channels. The flow rates in each channel are measured by electromagnetic flow meters for several combinations Reynolds number and Hartman number. The effects of magnetic field on the uniformity of flow distribution are cleared.

  20. Liquid flow and distribution in unsaturated porous media

    NASA Technical Reports Server (NTRS)

    Alexander, J. Iwan

    2004-01-01

    Flow and transport in permeable or porous media and microchannels occurs in a variety of situations in micro- and reduced-gravity environments, many of them associated with environmental control and life support systems. While the role of gravity is limited, due to the typically small size scales associated permeable media, gravity, at the very least, affects the overall disposition of fluid in a macroscopic system. This presentation will discuss examples where the absence of gravity affects flow and phase distribution in selected examples of unsaturated flow and transport of heat and mass in porous media and microchannels that are pertinent to spacecraft systems.

  1. LIQUID CYCLONE CONTACTOR

    DOEpatents

    Whatley, M.E.; Woods, W.M.

    1962-09-01

    This invention relates to liquid-liquid extraction systems. The invention, an improved hydroclone system, comprises a series of serially connected, axially aligned hydroclones, each of which is provided with an axially aligned overflow chamber. The chambers are so arranged that rotational motion of a fluid being passed through the system is not lost in passing from chamber to chamber; consequently, this system is highly efficient in contacting and separating two immiscible liquids. (AEC)

  2. Capillary pinning and blunting of immiscible gravity currents in porous media

    NASA Astrophysics Data System (ADS)

    Zhao, Benzhong; MacMinn, Christopher W.; Huppert, Herbert E.; Juanes, Ruben

    2014-09-01

    Gravity-driven flows in the subsurface have attracted recent interest in the context of geological carbon dioxide (CO2) storage, where supercritical CO2 is captured from the flue gas of power plants and injected underground into deep saline aquifers. After injection, the CO2 will spread and migrate as a buoyant gravity current relative to the denser, ambient brine. Although the CO2 and the brine are immiscible, the impact of capillarity on CO2 spreading and migration is poorly understood. We previously studied the early time evolution of an immiscible gravity current, showing that capillary pressure hysteresis pins a portion of the macroscopic fluid-fluid interface and that this can eventually stop the flow. Here we study the full lifetime of such a gravity current. Using tabletop experiments in packings of glass beads, we show that the horizontal extent of the pinned region grows with time and that this is ultimately responsible for limiting the migration of the current to a finite distance. We also find that capillarity blunts the leading edge of the current, which contributes to further limiting the migration distance. Using experiments in etched micromodels, we show that the thickness of the blunted nose is controlled by the distribution of pore-throat sizes and the strength of capillarity relative to buoyancy. We develop a theoretical model that captures the evolution of immiscible gravity currents and predicts the maximum migration distance. By applying this model to representative aquifers, we show that capillary pinning and blunting can exert an important control on gravity currents in the context of geological CO2 storage.

  3. Ionic Liquids for Utilization of Waste Heat from Distributed Power Generation Systems

    SciTech Connect

    Joan F. Brennecke; Mihir Sen; Edward J. Maginn; Samuel Paolucci; Mark A. Stadtherr; Peter T. Disser; Mike Zdyb

    2009-01-11

    The objective of this research project was the development of ionic liquids to capture and utilize waste heat from distributed power generation systems. Ionic Liquids (ILs) are organic salts that are liquid at room temperature and they have the potential to make fundamental and far-reaching changes in the way we use energy. In particular, the focus of this project was fundamental research on the potential use of IL/CO2 mixtures in absorption-refrigeration systems. Such systems can provide cooling by utilizing waste heat from various sources, including distributed power generation. The basic objectives of the research were to design and synthesize ILs appropriate for the task, to measure and model thermophysical properties and phase behavior of ILs and IL/CO2 mixtures, and to model the performance of IL/CO2 absorption-refrigeration systems.

  4. Burnout and distribution of liquid between the flow core and wall films in narrow slot channels

    NASA Astrophysics Data System (ADS)

    Boltenko, E. A.; Shpakovskii, A. A.

    2010-03-01

    Previous works on studying distribution of liquid between the flow core and wall films in narrow slot channels are briefly reviewed. Interrelation between mass transfer processes and burnout is shown. A procedure for calculating burnout on convex and concave heat-transfer surfaces in narrow slot channels is presented.

  5. Cooling tower with concrete support structure, fiberglass panels, and a fan supported by the liquid distribution system

    SciTech Connect

    Bardo, C. J.; Clark Jr., J. L.; Dylewski, A. J.; Seawell, J. Q.

    1985-09-24

    A liquid cooling tower includes precast concrete support legs and cross beams and fiberglass reinforced polyester resin side and top panels. A liquid distribution system is supplied with liquid by a vertically extending main pipe, and a fan and fan motor are supported by the main pipe.

  6. Study of miscible and immiscible flows in a microchannel using magnetic resonance imaging.

    PubMed

    Akpa, Belinda S; Matthews, Sinéad M; Sederman, Andrew J; Yunus, Kamran; Fisher, Adrian C; Johns, Michael L; Gladden, Lynn F

    2007-08-15

    Magnetic resonance imaging (MRI) is a noninvasive technique that can be used to visualize mixing processes in optically opaque systems in up to three dimensions. Here, MRI has been used for the first time to obtain both cross-sectional velocity and concentration maps of flow through an optically opaque Y-shaped microfluidic sensor. Images of 23 micromx23 microm resolution were obtained for a channel of rectangular cross section (250 micromx500 microm) fed by two square inlets (250 micromx250 microm). Both miscible and immiscible liquid systems have been studied. These include a system in which the coupling of flow and mass transfer has been observed, as the diffusion of the analyte perturbs local hydrodynamics. MRI has been shown to be a versatile tool for the study of mixing processes in a microfluidic system via the multidimensional spatial resolution of flow and mass transfer. PMID:17630718

  7. Influence of Viscous and Capillary Forces on Immiscible Fluid Displacement: Pore-Scale Experimental Study in a Water-Wet Micromodel Demonstrating Viscous and Capillary Fingering

    SciTech Connect

    Zhang, Changyong; Oostrom, Martinus; Wietsma, Thomas W.; Grate, Jay W.; Warner, Marvin G.

    2011-08-18

    Unstable immiscible fluid displacement in porous media affects geological carbon sequestration, enhanced oil recovery, and groundwater contamination by nonaqueous phase liquids. Characterization of immiscible displacement processes at the pore-scale is important to better understand macroscopic processes at the continuum-scale. A series of displacement experiments was conducted to investigate the impacts of viscous and capillary forces on displacement stability and fluid saturation distributions in a homogeneous water-wet pore network micromodel with precisely-microfabricated pore structures. Displacements were studied using seven wetting-nonwetting fluid pairs with viscosity ratios M (viscosity of the advancing nonwetting fluid divided by the viscosity of the displaced wetting fluid) ranging four orders of magnitude from logM = -1.95 to 1.88. The micromodel was initially saturated with either polyethylene glycol 200 (PEG200) or water as a wetting fluid, which was then displaced by a nonwetting alkane fluid under different flow rates. Capillary numbers (Ca) ranged over four orders of magnitude for the reported experiments, from logCa = -5.88 to -1.02. Fluorescent microscopy was used to visualize displacement and measure nonwetting fluid saturation distributions. These experiments extend the classical work by Lenormand et al. by using water-wet micromodels, high-precision fabrication, and enhanced image analysis of the saturation distributions. In the micromodel experiments initially saturated with PEG200, a viscous wetting fluid, unstable displacement occurred by viscous fingering over the whole range of imposed capillary numbers. For the experiments initially saturated with water, unstable displacement occurred by capillary fingering at low capillary numbers. When the viscous forces were increased by increasing the injection rate, crossover into stable displacement was observed for the fluid pairs with M > 0. For unstable displacement experiments applying the same

  8. Dimple coalescence and liquid droplets distributions during phase separation in a pure fluid under microgravity.

    PubMed

    Oprisan, Ana; Oprisan, Sorinel A; Hegseth, John J; Garrabos, Yves; Lecoutre-Chabot, Carole; Beysens, Daniel

    2014-09-01

    Phase separation has important implications for the mechanical, thermal, and electrical properties of materials. Weightless conditions prevent buoyancy and sedimentation from affecting the dynamics of phase separation and the morphology of the domains. In our experiments, sulfur hexafluoride (SF6) was initially heated about 1K above its critical temperature under microgravity conditions and then repeatedly quenched using temperature steps, the last one being of 3.6 mK, until it crossed its critical temperature and phase-separated into gas and liquid domains. Both full view (macroscopic) and microscopic view images of the sample cell unit were analyzed to determine the changes in the distribution of liquid droplet diameters during phase separation. Previously, dimple coalescences were only observed in density-matched binary liquid mixture near its critical point of miscibility. Here we present experimental evidences in support of dimple coalescence between phase-separated liquid droplets in pure, supercritical, fluids under microgravity conditions. Although both liquid mixtures and pure fluids belong to the same universality class, both the mass transport mechanisms and their thermophysical properties are significantly different. In supercritical pure fluids the transport of heat and mass are strongly coupled by the enthalpy of condensation, whereas in liquid mixtures mass transport processes are purely diffusive. The viscosity is also much smaller in pure fluids than in liquid mixtures. For these reasons, there are large differences in the fluctuation relaxation time and hydrodynamics flows that prompted this experimental investigation. We found that the number of droplets increases rapidly during the intermediate stage of phase separation. We also found that above a cutoff diameter of about 100 microns the size distribution of droplets follows a power law with an exponent close to -2, as predicted from phenomenological considerations. PMID:25260326

  9. Interfacial tension measurement of immiscible liq uids using a capillary tube

    NASA Technical Reports Server (NTRS)

    Rashidnia, N.; Balasubramaniam, R.; Delsignore, D.

    1992-01-01

    The interfacial tension of immiscible liquids is an important thermophysical property that is useful in the behavior of liquids both in microgravity (Martinez et al. (1987) and Karri and Mathur (1988)) and in enhanced oil recovery processes under normal gravity (Slattery (1974)). Many techniques are available for its measurement, such as the ring method, drop weight method, spinning drop method, and capillary height method (Adamson (1960) and Miller and Neogi (1985)). Karri and Mathur mention that many of the techniques use equations that contain a density difference term and are inappropriate for equal density liquids. They reported a new method that is suitable for both equal and unequal density liquids. In their method, a capillary tube forms one of the legs of a U-tube. The interfacial tension is related to the heights of the liquids in the cups of the U-tube above the interface in the capillary. Our interest in this area arose from a need to measure small interfacial tension (around 1 mN/m) for a vegetable oil/silicon oil system that was used in a thermocapillary drop migration experiment (Rashidnia and Balasubramaniam (1991)). In our attempts to duplicate the method proposed by Karri and Mathur, we found it quite difficult to anchor the interface inside the capillary tube; small differences of the liquid heights in the cups drove the interface out of the capillary. We present an alternative method using a capillary tube to measure the interfacial tensions of liquids of equal or unequal density. The method is based on the combined capillary rises of both liquids in the tube.

  10. Multiple (immiscible) melt phases of mafic composition in Chicxulub impact ejecta from northeastern Mexico: New constraints on target lithologies

    NASA Astrophysics Data System (ADS)

    Schulte, P.; Stinnesbeck, W.; Kontny, A.; Stüben, D.; Kramar, U.; Harting, M.

    2002-12-01

    Proximal ejecta deposits in sections from NE Mexico (Rancho Nuevo, La Sierrita, El Peñon, El Mimbral) have been investigated by backscattered electron imaging, wave-length dispersive electron microprobe analyses, and cathodoluminiscence, in order to characterize target lithologies, and ejecta mixing, fractionation, and distribution mechanisms. Additional investigations included magnetic properties (Kontny et al, this meeting) and trace element analyses (Harting et al, this meeting). Petrological features of these ejecta deposits are extraordinarily well preserved. They consist of mm-cm sized vesiculated spherical to drop-shaped spherules and angular to filamentous (ejecta-) fragments, as well as carbonate clasts, marl clasts, and rare benthic foraminifera floating in a carbonaceous matrix. Occasionally, spherules and fragments show welding-amalgamation features and enclose other components, thus resulting in a foam-like texture. An origin from the Chicxulub impact is suggested by geographical proximity and morphologically similarity to spherules found in other K-T sites in North to Central America and the Atlantic. The far distribution of such coarse-grained, foamy, and fragile ejecta-clasts as well as welding features suggest ignimbrite-like transport mechanisms or nearby secondary impacts. Several silicic ejecta phases have been observed that occur as distinct phases, even within one ejecta particle with textures indicative of liquid immiscibility: (1) Fe- (25-35 wt%), Mg- (10-15 wt%) rich phases with <25 wt% SiO2, altered to chlorite, (2) K- (5-8 wt.%) and Al- (25-30 wt%) rich hydrated glass with 45-50 wt% SiO2, and (3) rare SiO2- (>60 wt%) rich andesitic glasses. In addition to these silicic phases, abundant carbonate characterizes all studied ejecta deposits. It occurs within spherules and fragments and as clasts and globules, and shows textures indicative of either liquid immiscibility and/or quenching (`feathery calcite'). Quenched carbonates are enriched

  11. Streaming potential-modulated capillary filling dynamics of immiscible fluids.

    PubMed

    Bandopadhyay, Aditya; Mandal, Shubhadeep; Chakraborty, Suman

    2016-02-21

    The pressure driven transport of two immiscible electrolytes in a narrow channel with prescribed surface potential (zeta potential) is considered under the influence of a flow-induced electric field. The latter consideration is non-trivially and fundamentally different from the problem of electric field-driven motion (electroosmosis) of two immiscible electrolytes in a channel in a sense that in the former case, the genesis of the induced electric field, termed as streaming potential, is the advection of ions in the absence of any external electric field. As the flow occurs, one fluid displaces the other. Consequently, in cases where the conductivities of the two fluids differ, imbibition dynamically alters the net conductivity of the channel. We emphasize, through numerical simulations, that the alteration in the net conductivity has a significant impact on the contact line dynamics and the concomitant induced streaming potential. The results presented herein are expected to shed light on multiphase electrokinetics devices. PMID:26758228

  12. Covalent Fusion of layered Incompatible Gels in Immiscible Solvents

    NASA Astrophysics Data System (ADS)

    Biswas, Santidan; Singh, Awaneesh; Matyjaszewski, Krzysztof; Balazs, Anna C.

    We carry out dissipative particle dynamics (DPD) simulations to model a two layered stackable gel where the gels are incompatible and are present in immiscible solvent. The bottom layer of the gel is created first and then a solution of new initiators, monomers and cross-linkers is introduced on top of it. These components then undergo polymerization and form the second gel layer. We study all possible combinations of free radical polymerization (FRP) and atom transfer radical polymerization (ATRP) mechanisms with the two layers of the gel. For example, the bottom layer gel is created via ATRP, whereas the top layer gel follows FRP. Our focus is to do a systematic study of all these combinations and find out the factors responsible for combining two incompatible gels in immiscible solvents.

  13. Immiscible fluid: Heat of fusion heat storage system

    NASA Technical Reports Server (NTRS)

    Edie, D. D.; Melsheimer, S. S.; Mullins, J. C.

    1980-01-01

    Both heat and mass transfer in direct contact aqueous crystallizing systems were studied as part of a program desig- ned to evaluate the feasibility of direct contact heat transfer in phase change storage using aqueous salt system. Major research areas, discussed include (1) crystal growth velocity study on selected salts; (2) selection of salt solutions; (3) selection of immiscible fluids; (4) studies of heat transfer and system geometry; and (5) system demonstration.

  14. Electric-Field-Assisted Droplet Dispensing on Immiscible Fluids

    NASA Astrophysics Data System (ADS)

    Uhm, Taewoong; Hong, Jiwoo; Lee, Sang Joon; Kang, In Seok

    2014-11-01

    Dispensing tiny droplets is a basic and crucial process in numerous practical applications, such as printed electronics, DNA microarray, and digital microfluidics. The precise positioning with demanded size of droplets is the main issue of dispensing tiny droplets. Furthermore, capability of dispensing charged droplets on the immiscible fluids could bring out more utilities. In this work, we demonstrate the droplet dispensing on immiscible fluids by means of electrical charge concentration (ECC). This results from the fact that the droplet is generated by electric force caused by electric induction between the surface of droplet and the immiscible fluid. The temporal evolution of the droplet-dispensing process was observed consecutively with a high-speed camera. In addition, the relationship between the size of dispensed droplet and the parameters, such as physical properties of fluids and electrical field strength, is established. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (Grant Number: 2013R1A1A2011956).

  15. NOVEL FISSION PRODUCT SEPARATION BASED ON ROOM-TEMPERATURE IONIC LIQUIDS

    SciTech Connect

    Hussey, Charles L.

    2004-06-01

    The DoE/NE underground storage tanks at Hanford, SRS, and INEEL contain liquid wastes with high concentrations of radioactive species, mainly 137Cs and 90Sr. Because the other components of the liquid waste are mainly sodium nitrate and sodium hydroxide, most of this tank waste can be treated inexpensively as low-level waste if 137Cs and 90Sr can be selectively removed. Many ionophores (crown ether and calixarene compounds) have been synthesized for the purpose of selectively extracting Cs+ and Sr2+ from an aqueous phase into an immiscible organic phase. Recent studies conducted at ORNL1,2 reveal that hydrophobic ionic liquids might be better solvents for extracting metal ions from aqueous solutions with these ionophores than conventional immiscible organic solvents, such as benzene, toluene, and dichloromethane, because both Cs+ and Sr2+ exhibit larger distribution coefficients in the ionic liquids. In addition, the vapor pressures of these ionic liquids are insignificant. Thus, there is little or no vaporization loss of these solvents. Most of the ionic liquids under investigation are relatively nontoxic compared to the hydrocarbon solvents that they replace, classifying them as ''green'' solvents.

  16. Experiments on the impact and turbulent coalescence of a blob at a liquid-liquid interface

    NASA Astrophysics Data System (ADS)

    Landeau, Maylis; Olson, Peter; Deguen, Renaud; Hirsh, Ben; Earth; Planetary Sciences Team

    2015-11-01

    We present experiments on finite liquid volumes, hereafter referred to as blobs, of variable densities impacting an interface between two immiscible liquids at high Reynolds and Weber numbers. Such processes occurred on a massive scale during the giant impacts that formed terrestrial planets and satellites, including the Earth and the Moon. We find that the fall distance of the blob controls an abrupt transition in coalescence regime and in the amount of mixing with the lower liquid. This transition coincides with a brief and global breakup of the impacting blob into drops. For small fall distances, the large-scale flow following impact behaves as a turbulent fountain: a mixture of immiscible liquids penetrates in the lower liquid, collapses and spreads along the immiscible interface. We derive an experimental scaling relation for turbulent mixing of the impacting blob with the lower liquid as a function of a Richardson number.

  17. Visualization of residual organic liquid trapped in aquifers

    SciTech Connect

    Conrad, S.H.; Wilson, J.L.; Mason, W.R.; Peplinski, W.J. )

    1992-02-01

    Organic liquids that are essentially immiscible with water migrate through the subsurface under the influence of capillary, viscous, and buoyancy forces. These liquids originate from the improper disposal of hazardous wastes, and the spills and leaks of petroleum hydrocarbons and solvents. The flow visualization experiments described in this study examined the migration of organic liquids through the saturated zone of aquifers, with a primary focus on the behavior of the residual organic liquid saturation, referring to that portion of the organic liquid that is trapped by capillary forces. Etched glass micromodels were used to visually observe dynamic multiphase displacement processes in pore networks. The resulting fluid distributions were photographed. Pore and blob casts were produced by a technique in which an organic liquid was solidified in place within a sand column at the conclusion of a displacement. The columns were sectioned and examined under optical and scanning electron microscopes. Photomicrographs of these sections show the morphology of the organic phase and its location within the sand matrix. The photographs from both experimental techniques reveal that in the saturated zone large amounts of residual organic liquid are trapped as isolated blobs of microscopic size. The size, shape, and spatial distribution of these blobs of residual organic liquid affect the dissolution of organic liquid into the water phase and the biotransformation of organic components. These processes are of concern for the prediction of pollution migration and the design of aquifer remediation schemes.

  18. Investigation of liquid phase axial dispersion in Taylor bubble flow by radiotracer residence time distribution analysis

    NASA Astrophysics Data System (ADS)

    Chughtai, I. R.; Iqbal, W.; Din, G. U.; Mehdi, S.; Khan, I. H.; Inayat, M. H.; Jin, J. H.

    2013-05-01

    A gas-liquid Taylor bubble flow occurs in small diameter channels in which gas bubbles are separated by slugs of pure liquid. This type of flow regime is well suited for solid catalyzed gas-liquid reactors in which the reaction efficiency is a strong function of axial dispersion in the regions of pure liquid. This paper presents an experimental study of liquid phase axial dispersion in a Taylor bubble flow developed in a horizontal tube using high speed photography and radiotracer residence time distribution (RTD) analysis. A parametric dependence of axial dispersion on average volume fraction of gas phase was also investigated by varying the relative volumetric flow rates of the two phases. 137mBa produced from a 137Cs/137mBa radionuclide generator was used as radiotracer and measurements were made using the NaI(Tl) scintillation detectors. Validation of 137mBa in the form of barium chloride as aqueous phase radiotracer was also carried out. Axial Dispersion Model (ADM) was used to simulate the hydrodynamics of the system and the results of the experiment are presented. It was observed that the system is characterized by very high values of Peclet Number (Pe˜102) which reveals an approaching plug type flow. The experimental and model estimated values of mean residence times were observed in agreement with each other.

  19. Equilibrium distribution of samarium and europium between fluoride salt melts and liquid bismuth

    NASA Astrophysics Data System (ADS)

    Zagnit'ko, A. V.; Ignat'ev, V. V.

    2016-01-01

    The extraction of samarium and europium from a melt of a molar composition 73LiF-27BeF2 into liquid bismuth with additions of lithium as a reducing agent at a temperature of 600-610°C was studied. The equilibrium distribution coefficients of samarium and europium were measured. In the metal fluoride salt melt under study, the valence of samarium and europium was shown to be equal to two.

  20. Size Distribution and Velocity of Ethanol Drops in a Rocket Combustor Burning Ethanol and Liquid Oxygen

    NASA Technical Reports Server (NTRS)

    Ingebo, Robert D.

    1961-01-01

    Single jets of ethanol were studied photomicrographically inside a rocket chamber as they broke up into sprays of drops which underwent simultaneous acceleration and vaporization with chemical reaction occurring in the surrounding combustion gas stream. In each rocket test-firing, liquid oxygen was used as the oxidant. Both drop velocity and drop size distribution data were obtained from photomicrographs of the ethanol drops taken with an ultra-high speed tracking camera developed at NASA, Lewis Research Center.

  1. Orientational order of solutes in liquid crystals: The effect of distributed electric quadrupoles

    NASA Astrophysics Data System (ADS)

    Lee, J. S. J.; Sokolovskii, R. O.; Berardi, R.; Zannoni, C.; Burnell, E. E.

    2008-03-01

    We perform Monte Carlo simulations of a mixture of soft ellipsoids with embedded quadrupoles as a model of various small molecules dissolved in nematic liquid crystals. We find that Gay-Berne ellipsoids with distributed embedded quadrupoles qualitatively reproduce the trend in the order parameters observed experimentally in NMR spectra. In contrast, ellipsoids with a single embedded quadrupole cannot reproduce the negative order parameter of acetylene in EBBA.

  2. Equilibrium distribution of lanthanum, neodymium, and thorium between lithium chloride melt and liquid bismuth

    NASA Astrophysics Data System (ADS)

    Zagnit'ko, A. V.; Ignat'ev, V. V.

    2013-04-01

    The distribution of lanthanum, neodymium, and thorium between a lithium chloride melt and liquid bismuth with additions of lithium as a reducing agent are investigated at 650°C. Equilibrium values of their distribution constants are measured. It is shown that in contrast to neodymium and lanthanum, thorium cannot be extracted from bismuth into lithium chloride. This allows us to propose an efficient scheme for separating lanthanides and thorium in a system for the extraction of fuel salts in molten-salt nuclear reactors.

  3. Distribution of binding energies of a water molecule in the water liquid-vapor interface

    SciTech Connect

    Chempath, Shaji; Pratt, Lawrence R

    2008-01-01

    Distributions of binding energies of a water molecule in the water liquid-vapor interface are obtained on the basis of molecular simulation with the SPC/E model of water. These binding energies together with the observed interfacial density profile are used to test a minimally conditioned Gaussian quasi-chemical statistical thermodynamic theory. Binding energy distributions for water molecules in that interfacial region clearly exhibit a composite structure. A minimally conditioned Gaussian quasi-chemical model that is accurate for the free energy of bulk liquid water breaks down for water molecules in the liquid-vapor interfacial region. This breakdown is associated with the fact that this minimally conditioned Gaussian model would be inaccurate for the statistical thermodynamics of a dilute gas. Aggressive conditioning greatly improves the performance of that Gaussian quasi-chemical model. The analogy between the Gaussian quasi-chemical model and dielectric models of hydration free energies suggests that naive dielectric models without the conditioning features of quasi-chemical theory will be unreliable for these interfacial problems. Multi-Gaussian models that address the composite nature of the binding energy distributions observed in the interfacial region might provide a mechanism for correcting dielectric models for practical applications.

  4. Interfacial tension between immiscible melts in the system K2O - FeO - Fe2O3 - Al2O3 - SiO2

    NASA Astrophysics Data System (ADS)

    Kaehn, J.; Veksler, I. V.; Franz, G.; Dingwell, D. B.

    2009-12-01

    Interfacial tension is a very important parameter of the kinetics of phase nucleation, dissolution and growth. Excess surface energy contributes to the energy barrier for phase nucleation, and works as the main driving force for minimization of phase contact surfaces in heterogeneous systems. Immiscible silicate melts have been found to form in a broad range of basaltic, dacitic and rhyolitic magmas (Philpotts, 1982). However, liquid-liquid interfaces remain poorly studied in comparison with crystal-melt and vapor-melt interfaces. Here we present first experimental measurements of interfacial tension between synthetic Fe-rich and silica-rich immiscible melts composed of Fe oxides, K2O, alumina and silica. According to Naslund (1983), the miscibility gap in the 5-oxide system expands with increasing fO2 and becomes widest in air (fO2 = 0.2). Our goal was to estimate the maximal liquid-liquid interfacial tension for the immiscible liquids composed of silica and Fe oxides. Therefore, we have chosen the most contrasting liquid compositions that coexist in air at and above 1465 °C. Silica-rich and Fe-rich conjugate liquids at these conditions contain 73 and 17 wt. % SiO2, and 14 and 80 wt. % FeOt, respectively. These starting compositions were synthesized by fusion of reagent-grade oxides and K2CO3 at 1600 °C. In addition to interfacial tension, we have measured density and surface tension of individual coexisting liquids. All the measurements were done at 1500, 1527 and 1550 °C. Density was measured by the Archimedean method; surface and interfacial tensions were calculated from the maximal pool on a vertical cylinder (a 3-mm Pt rod attached to a high precision balance). We found interfacial tension between the immiscible liquids to decrease with increasing temperature from 16.4±2 mN/m at 1500 °C to 8.2±0.8 mN/m at 1550 °C. These values are approximately 2 orders of magnitude lower than typical interfacial tensions between silicate melts and crystals (Wanamaker

  5. LABORATORY INVESTIGATION OF RESIDUAL LIQUID ORGANICS FROM SPILLS, LEAKS, AND THE DISPOSAL OF HAZARDOUS WASTES IN GROUNDWATER

    EPA Science Inventory

    Organic liquids that are essentially immiscible with water migrate through the subsurface under the influence of capillary, viscous, and buoyancy forces. These liquids originate from the improper disposal of hazardous wastes, and the spills and leaks of petroleum hydrocarbons a...

  6. Study on the spatial distribution of the liquid temperature near a cavitation bubble wall.

    PubMed

    Shen, Yang; Yasui, Kyuichi; Sun, Zhicheng; Mei, Bin; You, Meiyan; Zhu, Tong

    2016-03-01

    A simple new model of the spatial distribution of the liquid temperature near a cavitation bubble wall (Tli) is employed to numerically calculate Tli. The result shows that Tli is almost same with the ambient liquid temperature (T0) during the bubble oscillations except at strong collapse. At strong collapse, Tli can increase to about 1510 K, the same order of magnitude with that of the maximum temperature inside the bubble, which means that the chemical reactions occur not only in gas-phase inside the collapsing bubble but also in liquid-phase just outside the collapsing bubble. Four factors (ultrasonic vibration amplitude, ultrasonic frequency, the surface tension and the viscosity) are considered to study their effects for the thin liquid layer. The results show that for the thin layer, the thickness and the temperature increase as the ultrasonic vibration amplitude rise; conversely, the thickness and the temperature decrease with the increase of the ultrasonic frequency, the surface tension or the viscosity. PMID:26585020

  7. Liquid electrode

    DOEpatents

    Ekechukwu, A.A.

    1994-07-05

    A dropping electrolyte electrode is described for use in electrochemical analysis of non-polar sample solutions, such as benzene or cyclohexane. The liquid electrode, preferably an aqueous salt solution immiscible in the sample solution, is introduced into the solution in dropwise fashion from a capillary. The electrolyte is introduced at a known rate, thus, the droplets each have the same volume and surface area. The electrode is used in making standard electrochemical measurements in order to determine properties of non-polar sample solutions. 2 figures.

  8. Calculated depth-dose distributions for H + and He + beams in liquid water

    NASA Astrophysics Data System (ADS)

    Garcia-Molina, Rafael; Abril, Isabel; Denton, Cristian D.; Heredia-Avalos, Santiago; Kyriakou, Ioanna; Emfietzoglou, Dimitris

    2009-08-01

    We have calculated the dose distribution delivered by proton and helium beams in liquid water as a function of the target-depth, for incident energies in the range 0.5-10 MeV/u. The motion of the projectiles through the stopping medium is simulated by a code that combines Monte Carlo and a finite differences algorithm to consider the electronic stopping power, evaluated in the dielectric framework, and the multiple nuclear scattering with the target nuclei. Changes in projectile charge-state are taken into account dynamically as it moves through the target. We use the MELF-GOS model to describe the energy loss function of liquid water, obtaining a value of 79.4 eV for its mean excitation energy. Our calculated stopping powers and depth-dose distributions are compared with those obtained using other methods to describe the energy loss function of liquid water, such as the extended Drude and the Penn models, as well as with the prediction of the SRIM code and the tables of ICRU.

  9. Mapping drug distribution in brain tissue using liquid extraction surface analysis mass spectrometry imaging.

    PubMed

    Swales, John G; Tucker, James W; Spreadborough, Michael J; Iverson, Suzanne L; Clench, Malcolm R; Webborn, Peter J H; Goodwin, Richard J A

    2015-10-01

    Liquid extraction surface analysis mass spectrometry (LESA-MS) is a surface sampling technique that incorporates liquid extraction from the surface of tissue sections with nanoelectrospray mass spectrometry. Traditional tissue analysis techniques usually require homogenization of the sample prior to analysis via high-performance liquid chromatography mass spectrometry (HPLC-MS), but an intrinsic weakness of this is a loss of all spatial information and the inability of the technique to distinguish between actual tissue penetration and response caused by residual blood contamination. LESA-MS, in contrast, has the ability to spatially resolve drug distributions and has historically been used to profile discrete spots on the surface of tissue sections. Here, we use the technique as a mass spectrometry imaging (MSI) tool, extracting points at 1 mm spatial resolution across tissue sections to build an image of xenobiotic and endogenous compound distribution to assess drug blood-brain barrier penetration into brain tissue. A selection of penetrant and "nonpenetrant" drugs were dosed to rats via oral and intravenous administration. Whole brains were snap-frozen at necropsy and were subsequently sectioned prior to analysis by matrix-assisted laser desorption ionization mass spectrometry imaging (MALDI-MSI) and LESA-MSI. MALDI-MSI, as expected, was shown to effectively map the distribution of brain penetrative compounds but lacked sufficient sensitivity when compounds were marginally penetrative. LESA-MSI was used to effectively map the distribution of these poorly penetrative compounds, highlighting its value as a complementary technique to MALDI-MSI. The technique also showed benefits when compared to traditional homogenization, particularly for drugs that were considered nonpenetrant by homogenization but were shown to have a measurable penetration using LESA-MSI. PMID:26350423

  10. A nanoglass alloying immiscible Fe and Cu at the nanoscale.

    PubMed

    Chen, Na; Wang, Di; Feng, Tao; Kruk, Robert; Yao, Ke-Fu; Louzguine-Luzgin, Dmitri V; Hahn, Horst; Gleiter, Herbert

    2015-04-21

    Synthesized from ultrafine particles with a bottom-up approach, nanoglasses are of particular importance in pursuing unique properties. Here, we design a metallic nanoglass alloy from two components of ∼Cu64Sc36 and ∼Fe90Sc10 nanoglasses. With nanoalloying mutually immiscible Fe and Cu, the properties of the nanoglass alloys can be tuned by varying the proportions of the ∼Fe90Sc10 component. This offers opportunity to create novel metallic glass nanocomposites and sheds light on building a structure-property correlation for the nanoglass alloys. PMID:25792519

  11. Rayleigh-Taylor instability of immiscible fluids in porous media

    NASA Astrophysics Data System (ADS)

    Kalisch, H.; Mitrovic, D.; Nordbotten, J. M.

    2016-05-01

    The time development of an interface separating two immiscible fluids of different densities in heterogeneous two-dimensional porous media is studied. The governing equations are simplified with the help of approximate Green's functions which allow computation of the shape of the interface directly without resolving the fluid flow in the entire domain. The new formulation is amenable to numerical approximation, and the reduction in dimension leads to a significant gain in efficiency in the numerical simulation of the interfacial dynamics. Several test cases are investigated, and the numerical solutions are compared to known exact solutions and experimental data.

  12. Nanomaterial size distribution analysis via liquid nebulization coupled with ion mobility spectrometry (LN-IMS).

    PubMed

    Jeon, Seongho; Oberreit, Derek R; Van Schooneveld, Gary; Hogan, Christopher J

    2016-02-21

    We apply liquid nebulization (LN) in series with ion mobility spectrometry (IMS, using a differential mobility analyzer coupled to a condensation particle counter) to measure the size distribution functions (the number concentration per unit log diameter) of gold nanospheres in the 5-30 nm range, 70 nm × 11.7 nm gold nanorods, and albumin proteins originally in aqueous suspensions. In prior studies, IMS measurements have only been carried out for colloidal nanoparticles in this size range using electrosprays for aerosolization, as traditional nebulizers produce supermicrometer droplets which leave residue particles from non-volatile species. Residue particles mask the size distribution of the particles of interest. Uniquely, the LN employed in this study uses both online dilution (with dilution factors of up to 10(4)) with ultra-high purity water and a ball-impactor to remove droplets larger than 500 nm in diameter. This combination enables hydrosol-to-aerosol conversion preserving the size and morphology of particles, and also enables higher non-volatile residue tolerance than electrospray based aerosolization. Through LN-IMS measurements we show that the size distribution functions of narrowly distributed but similarly sized particles can be distinguished from one another, which is not possible with Nanoparticle Tracking Analysis in the sub-30 nm size range. Through comparison to electron microscopy measurements, we find that the size distribution functions inferred via LN-IMS measurements correspond to the particle sizes coated by surfactants, i.e. as they persist in colloidal suspensions. Finally, we show that the gas phase particle concentrations inferred from IMS size distribution functions are functions of only of the liquid phase particle concentration, and are independent of particle size, shape, and chemical composition. Therefore LN-IMS enables characterization of the size, yield, and polydispersity of sub-30 nm particles. PMID:26750519

  13. The distribution of Sr and REE between diopside and silicate liquid. [Rare Earth Elements

    NASA Technical Reports Server (NTRS)

    Grutzeck, M.; Kridelbaugh, S.; Weill, D.

    1974-01-01

    Experimental determination of the distribution coefficients in diopside-liquid pairs for strontium and nine rare-earth elements in the system CaMgSi2O6-NaAlSi3O8-CaAl2Si2O8. In experiments in air at 1265 C it is found that most of the Sr(2+), Eu(2+), and RE(3+) ions substitute for Ca(2+) and, in addition, a coupled substitution of Al(3+) for Si(4+) occurs. All of the trace ions considered are found to be excluded from the diopside lattice relative to the liquid. In the case of the trivalent ions the exclusion is much more pronounced for La and Ce, which have ionic radii larger than that of Ca(2+) in 8-fold oxygen coordination. Divalent Sr and Eu with even larger radii are also strongly excluded.

  14. Flow field distribution of liquid film of water lubricated bearing-rotor coupling systems

    NASA Astrophysics Data System (ADS)

    Hu, Q. L.; Hu, J. N.; Ye, X. Y.; Zhang, D. S.; Zheng, J. B.

    2016-05-01

    According to the desalination high-pressure pump water lubricated bearing-rotor coupling systems flow field distribution of liquid film in the starting transient process and its power transmission mechanism can lay the foundation of further exploring and judging lubrication state at the boot process. By using the computational fluid dynamics Fluent secondary development platform and calling the relevant DEFINE macro function to achieve the translation and rotation movement of the journal, we will use the dynamic grid technique to realize the automatic calculation and grid update of water lubricated bearings 3d unsteady liquid film flow field, and finally we will dispose the results of numerical simulation and get the pressure. When the eccentricity is large, film thickness was negatively correlated with the pressure, and positive with the velocity. Differential pressure was negatively correlated with velocity. When the eccentricity is small, film thickness is no significant relationship with differential pressure and velocity. Differential pressure has little difference with velocity.

  15. Experimental triplet and quadruplet fluctuation densities and spatial distribution function integrals for pure liquids

    PubMed Central

    Karunaweera, Sadish

    2015-01-01

    Fluctuation solution theory has provided an alternative view of many liquid mixture properties in terms of particle number fluctuations. The particle number fluctuations can also be related to integrals of the corresponding two body distribution functions between molecular pairs in order to provide a more physical picture of solution behavior and molecule affinities. Here, we extend this type of approach to provide expressions for higher order triplet and quadruplet fluctuations, and thereby integrals over the corresponding distribution functions, all of which can be obtained from available experimental thermodynamic data. The fluctuations and integrals are then determined using the International Association for the Properties of Water and Steam Formulation 1995 (IAPWS-95) equation of state for the liquid phase of pure water. The results indicate small, but significant, deviations from a Gaussian distribution for the molecules in this system. The pressure and temperature dependence of the fluctuations and integrals, as well as the limiting behavior as one approaches both the triple point and the critical point, are also examined. PMID:25637990

  16. Experimental triplet and quadruplet fluctuation densities and spatial distribution function integrals for pure liquids

    SciTech Connect

    Ploetz, Elizabeth A.; Karunaweera, Sadish; Smith, Paul E.

    2015-01-28

    Fluctuation solution theory has provided an alternative view of many liquid mixture properties in terms of particle number fluctuations. The particle number fluctuations can also be related to integrals of the corresponding two body distribution functions between molecular pairs in order to provide a more physical picture of solution behavior and molecule affinities. Here, we extend this type of approach to provide expressions for higher order triplet and quadruplet fluctuations, and thereby integrals over the corresponding distribution functions, all of which can be obtained from available experimental thermodynamic data. The fluctuations and integrals are then determined using the International Association for the Properties of Water and Steam Formulation 1995 (IAPWS-95) equation of state for the liquid phase of pure water. The results indicate small, but significant, deviations from a Gaussian distribution for the molecules in this system. The pressure and temperature dependence of the fluctuations and integrals, as well as the limiting behavior as one approaches both the triple point and the critical point, are also examined.

  17. Experimental triplet and quadruplet fluctuation densities and spatial distribution function integrals for pure liquids.

    PubMed

    Ploetz, Elizabeth A; Karunaweera, Sadish; Smith, Paul E

    2015-01-28

    Fluctuation solution theory has provided an alternative view of many liquid mixture properties in terms of particle number fluctuations. The particle number fluctuations can also be related to integrals of the corresponding two body distribution functions between molecular pairs in order to provide a more physical picture of solution behavior and molecule affinities. Here, we extend this type of approach to provide expressions for higher order triplet and quadruplet fluctuations, and thereby integrals over the corresponding distribution functions, all of which can be obtained from available experimental thermodynamic data. The fluctuations and integrals are then determined using the International Association for the Properties of Water and Steam Formulation 1995 (IAPWS-95) equation of state for the liquid phase of pure water. The results indicate small, but significant, deviations from a Gaussian distribution for the molecules in this system. The pressure and temperature dependence of the fluctuations and integrals, as well as the limiting behavior as one approaches both the triple point and the critical point, are also examined. PMID:25637990

  18. Simple method for highlighting the temperature distribution into a liquid sample heated by microwave power field

    SciTech Connect

    Surducan, V.; Surducan, E.; Dadarlat, D.

    2013-11-13

    Microwave induced heating is widely used in medical treatments, scientific and industrial applications. The temperature field inside a microwave heated sample is often inhomogenous, therefore multiple temperature sensors are required for an accurate result. Nowadays, non-contact (Infra Red thermography or microwave radiometry) or direct contact temperature measurement methods (expensive and sophisticated fiber optic temperature sensors transparent to microwave radiation) are mainly used. IR thermography gives only the surface temperature and can not be used for measuring temperature distributions in cross sections of a sample. In this paper we present a very simple experimental method for temperature distribution highlighting inside a cross section of a liquid sample, heated by a microwave radiation through a coaxial applicator. The method proposed is able to offer qualitative information about the heating distribution, using a temperature sensitive liquid crystal sheet. Inhomogeneities as smaller as 1°-2°C produced by the symmetry irregularities of the microwave applicator can be easily detected by visual inspection or by computer assisted color to temperature conversion. Therefore, the microwave applicator is tuned and verified with described method until the temperature inhomogeneities are solved.

  19. Effects of nanoclay and conductive carbon black on morphology development in chaotic mixing of immiscible polymers

    NASA Astrophysics Data System (ADS)

    Dharaiya, Dhawal

    Chaotic mixing of immiscible polymer blends has been known to produce morphological features such as lamellas, fibrils and droplets. In this research work, we studied the effect of fillers, such as carbon black (CB) and organically treated nanoclay, on morphology development in an immiscible polymer system, consisting of polyamide 6 (PA6) and polypropylene (PP) in a chaotic mixer. Operating conditions were chosen such that chaotic mixing was widespread inside the mixer. The filler particles were mixed with minor component PP before blending with PA6. It was found that continuous lamellar and fibrillar morphology of PP formed early in mixing produced double percolating conductive networks with only 1 wt% CB particles. The conductive networks sustained their existence even after fibrils broke into droplets. This was attributed to migration of CB particles from the bulk of PP droplets and selective localization at the interfaces of closely spaced PP droplets. It was also found that much smaller PP droplets resulted in the presence of CB particles. Prior reports in literature indicated that organically treated nanoclay particles can act as compatibilizer of immiscible polymer blends, although no study showed that how nanoclay would influence morphology development. In this study, we showed that clay particles helped produce PP droplets of much smaller size and with narrower size distribution due to their direct influence on breakup of PP domains. The clay particles reduced interfacial tension between PP and PA6 phases. Consequently, the PP domains sustained lamellar and fibrillar forms and significantly thin fibrils were formed. These thin fibrils in turn broke rapidly into smaller droplets. It was also found that a large fraction of clay particles migrated into PA6 phase and contained intercalated PA6 chains in their galleries. This indicated that clay particles did not participate in compatibilization in this system. The effect of degradation of surface treatment of

  20. BHR equations re-derived with immiscible particle effects

    SciTech Connect

    Schwarzkopf, John Dennis; Horwitz, Jeremy A.

    2015-05-01

    Compressible and variable density turbulent flows with dispersed phase effects are found in many applications ranging from combustion to cloud formation. These types of flows are among the most challenging to simulate. While the exact equations governing a system of particles and fluid are known, computational resources limit the scale and detail that can be simulated in this type of problem. Therefore, a common method is to simulate averaged versions of the flow equations, which still capture salient physics and is relatively less computationally expensive. Besnard developed such a model for variable density miscible turbulence, where ensemble-averaging was applied to the flow equations to yield a set of filtered equations. Besnard further derived transport equations for the Reynolds stresses, the turbulent mass flux, and the density-specific volume covariance, to help close the filtered momentum and continuity equations. We re-derive the exact BHR closure equations which include integral terms owing to immiscible effects. Physical interpretations of the additional terms are proposed along with simple models. The goal of this work is to extend the BHR model to allow for the simulation of turbulent flows where an immiscible dispersed phase is non-trivially coupled with the carrier phase.

  1. Intrusive rocks viewed from fitness landscape diagrams: Evolution and immiscibility

    NASA Astrophysics Data System (ADS)

    Vigneresse, J. D.

    2011-12-01

    We introduce the hard-soft acid-base concepts to magma evolution. Those concepts and their derived chemical parameters provide a new insight into mantle- and continental-derived magmas. Hence magma evolution represents a free suite of chemical reactions, thus showing natural chemical trends. They should be controlled by the principles of maximum hardness and minimum electrophilicity that rule chemical reactions. When plotting into a fitness landscape diagram, rocks suites define two major tendencies. Mantle-derived rocks present all character of an closed chemical system. Conversely, rocks contaminated within the continental crust define two other trends, depending on whether they have affinities toward a silica pole or an alkaline one. They both show the character of an open chemical system. When plotting major igneous minerals onto that diagram shows the importance of olivine, silica and alkali-bearing oxides. It points to the development of immiscibility, depending on the path along which magmas evolve. It thus provides explanation to experimentally observed immiscibility.

  2. The rotating movement of three immiscible fluids - A benchmark problem

    USGS Publications Warehouse

    Bakker, M.; Oude, Essink G.H.P.; Langevin, C.D.

    2004-01-01

    A benchmark problem involving the rotating movement of three immiscible fluids is proposed for verifying the density-dependent flow component of groundwater flow codes. The problem consists of a two-dimensional strip in the vertical plane filled with three fluids of different densities separated by interfaces. Initially, the interfaces between the fluids make a 45??angle with the horizontal. Over time, the fluids rotate to the stable position whereby the interfaces are horizontal; all flow is caused by density differences. Two cases of the problem are presented, one resulting in a symmetric flow field and one resulting in an asymmetric flow field. An exact analytical solution for the initial flow field is presented by application of the vortex theory and complex variables. Numerical results are obtained using three variable-density groundwater flow codes (SWI, MOCDENS3D, and SEAWAT). Initial horizontal velocities of the interfaces, as simulated by the three codes, compare well with the exact solution. The three codes are used to simulate the positions of the interfaces at two times; the three codes produce nearly identical results. The agreement between the results is evidence that the specific rotational behavior predicted by the models is correct. It also shows that the proposed problem may be used to benchmark variable-density codes. It is concluded that the three models can be used to model accurately the movement of interfaces between immiscible fluids, and have little or no numerical dispersion. ?? 2003 Elsevier B.V. All rights reserved.

  3. Molecular dynamics of immiscible fluids in chemically patterned nanochannels

    NASA Astrophysics Data System (ADS)

    Cieplak, Marek; Banavar, Jayanth R.

    2008-03-01

    Molecular dynamics simulations of chain molecules are used to elucidate physical phenomena involved in flows of dense immiscible fluids in nanochannels. We first consider a force driven flow in which the channel walls are homogeneous and wetting to one fluid and nonwetting to the other fluid. The coating of the walls by the wetting fluid provides a fluctuating surface that confines the flow of the nonwetting fluid. The resulting dissipation yields stationary Poiseuille-like flows in contrast to the accelerating nature of flow in the absence of the coating. We then consider walls consisting of patches whose wetting preferences to a fluid alternate along the walls. In the resulting flow, the immiscible components exhibit periodic structures in their velocity fields such that the crests are located at the wettability steps in contrast to the behavior of a single fluid for which the crest occurs in the wetting region. We demonstrate that for a single fluid, the modulated velocity field scales with the size of the chain molecules.

  4. Semi-empirical analysis of liquid fuel distribution downstream of a plain orifice injector under cross-stream air flow

    NASA Astrophysics Data System (ADS)

    Chin, J. S.; Jiang, H. K.; Cao, M. H.

    1981-07-01

    A simple, flat-fan spray model is proposed, which can with two empirical parameters predict both the value and the position of liquid fuel distribution curve maximums downstream of a plain orifice injector under high-velocity cross flow. It was found that the model is useful in the preliminary design of the fan air flow portion of a turbofan afterburner, due to its ability to predict the influence on liquid fuel distribution of (1) such flow parameters as air velocity and viscosity, pressure and temperature; (2) injector parameters such as diameter and injection velocity; and (3) liquid properties including viscosity, density, and surface tension.

  5. Visualization and understanding of the granulation liquid mixing and distribution during continuous twin screw granulation using NIR chemical imaging.

    PubMed

    Vercruysse, Jurgen; Toiviainen, Maunu; Fonteyne, Margot; Helkimo, Niko; Ketolainen, Jarkko; Juuti, Mikko; Delaet, Urbain; Van Assche, Ivo; Remon, Jean Paul; Vervaet, Chris; De Beer, Thomas

    2014-04-01

    Over the last decade, there has been increased interest in the application of twin screw granulation as a continuous wet granulation technique for pharmaceutical drug formulations. However, the mixing of granulation liquid and powder material during the short residence time inside the screw chamber and the atypical particle size distribution (PSD) of granules produced by twin screw granulation is not yet fully understood. Therefore, this study aims at visualizing the granulation liquid mixing and distribution during continuous twin screw granulation using NIR chemical imaging. In first instance, the residence time of material inside the barrel was investigated as function of screw speed and moisture content followed by the visualization of the granulation liquid distribution as function of different formulation and process parameters (liquid feed rate, liquid addition method, screw configuration, moisture content and barrel filling degree). The link between moisture uniformity and granule size distributions was also studied. For residence time analysis, increased screw speed and lower moisture content resulted to a shorter mean residence time and narrower residence time distribution. Besides, the distribution of granulation liquid was more homogenous at higher moisture content and with more kneading zones on the granulator screws. After optimization of the screw configuration, a two-level full factorial experimental design was performed to evaluate the influence of moisture content, screw speed and powder feed rate on the mixing efficiency of the powder and liquid phase. From these results, it was concluded that only increasing the moisture content significantly improved the granulation liquid distribution. This study demonstrates that NIR chemical imaging is a fast and adequate measurement tool for allowing process visualization and hence for providing better process understanding of a continuous twin screw granulation system. PMID:24211658

  6. Two-Liquid Cartesian Diver

    ERIC Educational Resources Information Center

    Planinsic, G.; Kos, M.; Jerman, R.

    2004-01-01

    It is quite easy to make a version of the well known Cartesian diver experiment that uses two immiscible liquids. This allows students to test their knowledge of density and pressure in explaining the diver's behaviour. Construction details are presented here together with a mathematical model to explain the observations.

  7. Gas-liquid Phase Distribution and Void Fraction Measurements Using the MRI

    NASA Technical Reports Server (NTRS)

    Daidzic, N. E.; Schmidt, E.; Hasan, M. M.; Altobelli, S.

    2004-01-01

    We used a permanent-magnet MRI system to estimate the integral and spatially- and/or temporally-resolved void-fraction distributions and flow patterns in gas-liquid two-phase flows. Air was introduced at the bottom of the stagnant liquid column using an accurate and programmable syringe pump. Air flow rates were varied between 1 and 200 ml/min. The cylindrical non-conducting test tube in which two-phase flow was measured was placed in a 2.67 kGauss MRI with MRT spectrometer/imager. Roughly linear relationship has been obtained for the integral void-fraction, obtained by volume-averaging of the spatially-resolved signals, and the air flow rate in upward direction. The time-averaged spatially-resolved void fraction has also been obtained for the quasi-steady flow of air in a stagnant liquid column. No great accuracy is claimed as this was an exploratory proof-of-concept type of experiment. Preliminary results show that MRI a non-invasive and non-intrusive experimental technique can indeed provide a wealth of different qualitative and quantitative data and is especially well suited for averaged transport processes in adiabatic and diabatic multi-phase and/or multi-component flows.

  8. A novel numerical approach for the solution of the problem of two-phase, immiscible flow in porous media: Application to LNAPL and DNAPL

    NASA Astrophysics Data System (ADS)

    Salama, Amgad; Sun, Shuyu; El Amin, Mohamed F.

    2012-05-01

    The flow of two immiscible fluids in porous media is ubiquitous particularly in petroleum exploration and extraction. The displacement of one fluid by another immiscible with it represents a very important aspect in what is called enhanced oil recovery. Another example is related to the long-term sequestration of carbon dioxide, CO2, in deep geologic formations. In this technique, supercritical CO2 is introduced into deep saline aquifer where it displaces the hosting fluid. Furthermore, very important classes of contaminants that are very slightly soluble in water and represent a huge concern if they get introduced to groundwater could basically be assumed immiscible. These are called light non-aqueous phase liquids (LNAPL) and dense non-aqueous phase liquids (DNAPL). All these applications necessitate that efficient algorithms be developed for the numerical solution of these problems. In this work we introduce the use of shifting matrices to numerically solving the problem of two-phase immiscible flows in the subsurface. We implement the cell-center finite difference method which discretizes the governing set of partial differential equations in conservative manner. Unlike traditional solution methodologies, which are based on performing the discretization on a generic cell and solve for all the cells within a loop, in this technique, the cell center information for all the cells are obtained all at once without loops using matrix oriented operations. This technique is significantly faster than the traditional looping algorithms, particularly for larger systems when coding using languages that require repeating interpretation each time a loop is called like Mat Lab, Python and the like. We apply this technique to the transport of LNAPL and DNAPL into a rectangular domain.

  9. Liquid-crystal variable-focus lenses with a spatially-distributed tilt angles.

    PubMed

    Honma, Michinori; Nose, Toshiaki; Yanase, Satoshi; Yamaguchi, Rumiko; Sato, Susumu

    2009-06-22

    A pretilt angle controlling method by the density of rubbings using a tiny stylus is proposed. The control of the surface pretilt angle is achieved by rubbing a side-chain type polyimide film for a homeotropic alignment. Smooth liquid crystal (LC) director distribution in the bulk layer is successfully obtained even though the rough surface orientation. This approach is applied to LC cylindrical and rectangular lenses with a variable-focusing function. The distribution profile of the rubbing pitch (the reciprocal of the rubbing density) for small aberration is determined to be quadratic. The variable focusing function is successfully achieved in the LC rectangular lens, and the voltage dependence of the focal length is tried to be explained by the LC molecular reorientation behavior. PMID:19550499

  10. Experimental triplet and quadruplet fluctuation densities and spatial distribution function integrals for liquid mixtures

    SciTech Connect

    Ploetz, Elizabeth A.; Smith, Paul E.

    2015-03-07

    Kirkwood-Buff or Fluctuation Solution Theory can be used to provide experimental pair fluctuations, and/or integrals over the pair distribution functions, from experimental thermodynamic data on liquid mixtures. Here, this type of approach is used to provide triplet and quadruplet fluctuations, and the corresponding integrals over the triplet and quadruplet distribution functions, in a purely thermodynamic manner that avoids the use of structure factors. The approach is then applied to binary mixtures of water + methanol and benzene + methanol over the full composition range under ambient conditions. The observed correlations between the different species vary significantly with composition. The magnitude of the fluctuations and integrals appears to increase as the number of the most polar molecule involved in the fluctuation or integral also increases. A simple physical picture of the fluctuations is provided to help rationalize some of these variations.

  11. Dual origin of Fe-Ti-P gabbros by immiscibility and fractional crystallization of evolved tholeiitic basalts in the Sept Iles layered intrusion

    NASA Astrophysics Data System (ADS)

    Namur, Olivier; Charlier, Bernard; Holness, Marian B.

    2012-12-01

    We present a detailed study of two ca. 200 m-thick apatite-bearing ferrogabbro horizons of the Sept Iles layered intrusion (Canada). These rocks are the most evolved cumulates of the megacyclic units (MCU) I and II, and mark the transition between basaltic and silicic magmatism. They are made up of plagioclase (An55-34), olivine (Fo66-21), clinopyroxene (Mg#75-55), ilmenite, magnetite, apatite, ± pigeonite and are a significant source of Fe-Ti-P ore. Ferrogabbros have relatively uniform bulk-rock compositions in MCU I but are bimodal in MCU II. The liquid lines of descent for major elements in equilibrium with cumulates of MCU I and II have been calculated using a forward model formalism. Both trends evolve towards SiO2-enrichment and FeOt-depletion after saturation in Fe-Ti oxides. However, because of magma mixing in MCU II, they do not follow the same path. Evolved liquids from MCU II are shown to enter the experimentally-determined two liquid stability field, while MCU I liquids do not. Immiscibility in MCU II and its absence in MCU I are supported by the presence of contrasted reactive symplectites in cumulate rocks. Apatite-bearing ferrogabbros in MCU II have crystallized from distinct immiscible Fe-rich and Si-rich silicate melts which have physically segregated in the slow-cooling magma chamber. Two different types of cumulate rocks are thus produced: leucocratic and melanocratic gabbros. This is consistent with the presence of Si-rich and Fe-rich melt inclusions in apatite. In contrast, homogeneous ferrogabbros from MCU I were produced by simple fractional crystallization of a homogeneous liquid. Our data suggest that immiscibility could also explain the large geochemical variability of ferrogabbros in the Upper Zone of the Bushveld Complex (South Africa).

  12. Research on the pattern of solid-liquid two-phase distribution in chemical process pump

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Jiang, Y.; Han, Z. J.

    2012-11-01

    In order to explore the pattern of solid-liquid two-phase flow distribution in first stage of double-suction impeller and the double volute channel of the HD type petrol-chemical process pump, the flow field in double-suction impeller and double volute is simulated with the CFD software, by taking the Reynolds Averaged Navier Stokes equations as its governing equations, and the standard k-ε model for turbulence, derives the pattern of solid particle concentration distribution in the impeller and double volute channel under different initial particle concentrations and different particle diameters. The results show that in the double-suction impeller, solid phase distribution changes a lot along with the increase of initial particle concentration; the concentration near the back side is higher than the face side. Solid particles have the motion trend to the back side of blade in double-suction impeller along with the increase of particle diameters. In double volute channel, solid phase concentration distribution is uneven and solid particle concentration is relatively higher from section 1 to section 8. In the diffusion section, concentration is high in lateral side and low in medial side, the solid particles have the motion trend to the lateral side and the solid particle concentration is relatively higher.

  13. Mode-distribution analysis of quasielastic neutron scattering and application to liquid water

    NASA Astrophysics Data System (ADS)

    Kikuchi, Tatsuya; Nakajima, Kenji; Ohira-Kawamura, Seiko; Inamura, Yasuhiro; Yamamuro, Osamu; Kofu, Maiko; Kawakita, Yukinobu; Suzuya, Kentaro; Nakamura, Mitsutaka; Arai, Masatoshi

    2013-06-01

    A quasielastic neutron scattering (QENS) experiment is a particular technique that endeavors to define a relationship between time and space for the diffusion dynamics of atoms and molecules. However, in most cases, analyses of QENS data are model dependent, which may distort attempts to elucidate the actual diffusion dynamics. We have developed a method for processing QENS data without a specific model, wherein all modes can be described as combinations of the relaxations based on the exponential law. By this method, we can obtain a distribution function B(Q,Γ), which we call the mode-distribution function (MDF), to represent the number of relaxation modes and distributions of the relaxation times in the modes. The deduction of MDF is based on the maximum entropy method and is very versatile in QENS data analysis. To verify this method, reproducibility was checked against several analytical models, such as that with a mode of distributed relaxation time, that with two modes closely located, and that represented by the Kohlrausch-Williams-Watts function. We report the first application to experimental data of liquid water. In addition to the two known modes, the existence of a relaxation mode of water molecules with an intermediate time scale has been discovered. We propose that the fast mode might be assigned to an intermolecular motion and the intermediate motion might be assigned to a rotational motion of the water molecules instead of to the fast mode.

  14. Evaporation of a Volatile Liquid Lens on the Surface of an Immiscible Liquid.

    PubMed

    Sun, Wei; Yang, Fuqian

    2016-06-21

    The evaporation behavior of toluene and hexane lenses on the surface of deionized (DI) water is studied. The toluene and hexane lenses during evaporation experience an advancing stage and a receding stage. There exists a significant difference of the evaporation behavior between the toluene lenses and the hexane lenses. The lifetime and largest diameter of both the toluene and hexane lenses increase with increasing the initial volume of the lenses. For the evaporation of the toluene lenses, the lifetime and largest diameter of the lenses decrease with increasing the temperature of DI water. The effect of the residual of the oil molecules on the evaporation of toluene lenses at a temperature of 21 °C is investigated via the evaporation of a series of consecutive toluene lenses being placed on the same position of the surface of DI water. The temporal evolution of the toluene lenses placed after the first toluene lens deviates significantly from that of the first toluene lens. Significant increase of the receding speed occurs at the dimensionless time in a range 0.7-0.8. PMID:27257742

  15. Clast assemblages of possible deep-seated /77517/ and immiscible-melt /77538/ origins in Apollo 17 breccias

    NASA Technical Reports Server (NTRS)

    Warner, R. D.; Taylor, G. J.; Mansker, W. L.; Keil, K.

    1978-01-01

    Breccia samples 77517 and 77538 are composed of abundant mineral and lithic clasts set in porous, poorly sintered matrices. Clast assemblages in the two rocks are of contrasting composition and origin. Breccia 77517 has Mg-rich olivine and pyroxene and calcic plagioclase clasts, indicating limited, almost exclusively ANT-suite parentage. A significant feature is the presence of an assemblage (aluminous enstatite, forsterite, anorthite, aluminous spinel) corresponding to spinel cataclasite, a rock type of deep-seated (about 60 km) crustal origin. Breccia 77538 contains Fe-rich pyroxene and rather sodic plagioclase clasts, indicative of predominantly KREEP and/or mare derivation. An important feature is the occurrence of high-K and high-Fe lithic clasts whose compositions resemble those of immiscible-melts produced during late-stage magmatic crystallization, and which probably originated via silicate liquid immiscibility in a KREEP or mare basalt magma. Both rocks contain numerous fine-grained breccia clasts which represent material that has been modified by impact processes at or very near the moon's surface.

  16. Long term stability of immiscible ferrofluid/water interfaces

    NASA Astrophysics Data System (ADS)

    Malouin, Bernard; Posada, David; Hirsa, Amir

    2010-11-01

    Recently we have demonstrated pinned-contact, coupled droplet pairs of aqueous ferrofluids in air that can form electromagnetically-activated capillary switches and oscillators. The great variety of available ferrofluids, however, enables the use of immiscible oil-based ferrofluid droplets in a water environment to obtain the same behavior. Such immersed ferrofluid oscillators exhibit natural frequencies (for 5 mm devices) of about 10 Hz. Here we report on the observation of a gradual increase in the resonant frequency of the system in time. Experimental observations suggest that the drift in the natural frequency is a consequence of changes occurring at the ferrofluid/water interface. The interfacial structure of such a complex system (water, oil, surfactant, iron particles) is examined along with its evolution in time, using various microscopy techniques.

  17. Detachment of Sessile Droplets in Immiscible Fluids Using Electrowetting

    NASA Astrophysics Data System (ADS)

    Hong, Jiwoo; Lee, Sang Joon

    2014-11-01

    The detachment (or removal) of droplets from a solid surface is an indispensable process in numerous practical applications. Here we firstly detach sessile droplets in immiscible fluids from a hydrophobic surface by electrowetting. The critical conditions for droplet detachment are determined by exploring the retracting dynamics for a wide range of driving voltages and physical properties of fluids. The relationships between physical parameters and dynamic characteristics of retracting and jumping droplets, such as contact time and jumping height, are also established. The threshold voltage for droplet detachment in oil with high viscosity is largely reduced by electrowetting actuations with a square pulse. Finally, by using DC and AC electrowetting actuations, we demonstrate the detachment of oil droplets with very low contact angle on a hydrophobic surface in water.

  18. Flow behaviour of negatively buoyant jets in immiscible ambient fluid

    NASA Astrophysics Data System (ADS)

    Geyer, A.; Phillips, J. C.; Mier-Torrecilla, M.; Idelsohn, S. R.; Oñate, E.

    2012-01-01

    In this paper we investigate experimentally the injection of a negatively buoyant jet into a homogenous immiscible ambient fluid. Experiments are carried out by injecting a jet of dyed fresh water through a nozzle in the base of a cylindrical tank containing rapeseed oil. The fountain inlet flow rate and nozzle diameter were varied to cover a wide range of Richardson Ri (8 × 10-4 < Ri < 1.98), Reynolds Re (467 < Re < 5,928) and Weber We (2.40 < We < 308.56) numbers. Based on the Re, Ri and We values for the experiments, we have determined a regime map to define how these values may control the occurrence of the observed flow types. Whereas Ri plays a stronger role when determining the maximum penetration height, the effect of the Reynolds number is stronger predicting the flow behaviour for a specific nozzle diameter and injection velocity.

  19. Abnormal alloying behaviour observed in an immiscible Zr Nb system

    NASA Astrophysics Data System (ADS)

    Wang, T. L.; Liang, S. H.; Li, J. H.; Tai, K. P.; Liu, B. X.

    2008-05-01

    For the immiscible Zr-Nb system characterized by a positive heat of formation (+6 kJ mol-1), thermodynamic calculation showed that the Gibbs free energy of the properly designed Zr-Nb multilayered films could be elevated to a higher level than that of the corresponding amorphous phase as well as the supersaturated solid solutions. Accordingly, nano-sized Zr-Nb multilayered films were prepared and then irradiated by 200 keV xenon ions. It was found that amorphous phases could be obtained within a composition range 12-92 at% of Nb. Also, two metastable crystalline phases of fcc structures with different lattice parameters were also obtained. Molecular dynamic simulation was carried out, based on a proven realistic Zr-Nb potential, to reveal the atomistic mechanism of the solid-state crystal-to-amorphous transition. A brief discussion on the formation of the two metastable crystalline phases is presented.

  20. Study on processing immiscible materials in zero gravity

    NASA Technical Reports Server (NTRS)

    Reger, J. L.; Mendelson, R. A.

    1975-01-01

    An experimental investigation was conducted to evaluate mixing immiscible metal combinations under several process conditions. Under one-gravity, these included thermal processing, thermal plus electromagnetic mixing, and thermal plus acoustic mixing. The same process methods were applied during free fall on the MSFC drop tower facility. The design is included of drop tower apparatus to provide the electromagnetic and acoustic mixing equipment, and a thermal model was prepared to design the specimen and cooling procedure. Materials systems studied were Ca-La, Cd-Ga and Al-Bi; evaluation of the processed samples included the morphology and electronic property measurements. The morphology was developed using optical and scanning electron microscopy and microprobe analyses. Electronic property characterization of the superconducting transition temperatures were made using an impedance change-tuned coil method.

  1. Linking granulation performance with residence time and granulation liquid distributions in twin-screw granulation: An experimental investigation.

    PubMed

    Kumar, Ashish; Alakarjula, Maija; Vanhoorne, Valérie; Toiviainen, Maunu; De Leersnyder, Fien; Vercruysse, Jurgen; Juuti, Mikko; Ketolainen, Jarkko; Vervaet, Chris; Remon, Jean Paul; Gernaey, Krist V; De Beer, Thomas; Nopens, Ingmar

    2016-07-30

    Twin-screw granulation is a promising wet granulation technique for the continuous manufacturing of pharmaceutical solid dosage forms. A twin screw granulator displays a short residence time. Thus, the solid-liquid mixing must be achieved quickly by appropriate arrangement of transport and kneading elements in the granulator screw allowing the production of granules with a size distribution appropriate for tableting. The distribution of residence time and granulation liquid is governed by the field conditions (such as location and length of mixing zones) in the twin-screw granulator, thus contain interesting information on granulation time, mixing and resulting sub-processes such as wetting, aggregation and breakage. In this study, the impact of process (feed rate, screw speed and liquid-to-solid ratio) and equipment parameters (number of kneading discs and stagger angle) on the residence time (distribution), the granulation liquid-powder mixing and the resulting granule size distributions during twin-screw granulation were investigated. Residence time and axial mixing data was extracted from tracer maps and the solid-liquid mixing was quantified from moisture maps, obtained by monitoring the granules at the granulator outlet using near infra-red chemical imaging (NIR-CI). The granule size distribution was measured using the sieving method. An increasing screw speed dominantly reduced the mean residence time. Interaction of material throughput with the screw speed and with the number of kneading discs led to most variation in the studied responses including residence time and mixing capacity. At a high screw speed, granulation yield improved due to high axial mixing. However, increasing material throughput quickly lowers the yield due to insufficient mixing of liquid and powder. Moreover, increasing liquid-to-solid ratio resulted in more oversized granules, and the fraction of oversized granules further increased at higher throughput. Although an increasing number

  2. Bulk and Surface Molecular Orientation Distribution in Injection-molded Liquid Crystalline Polymers: Experiment and Simulation

    SciTech Connect

    Fang, J.; Burghardt, W; Bubeck, R; Burgard, S; Fischer, D

    2010-01-01

    Bulk and surface distributions of molecular orientation in injection-molded plaques of thermotropic liquid crystalline polymers (TLCPs) have been studied using a combination of techniques, coordinated with process simulations using the Larson-Doi 'polydomain' model. Wide-angle X-ray scattering was used to map out the bulk orientation distribution. Fourier Transform Infrared Attenuated Total Reflectance (FTIR-ATR) and Near-Edge X-ray Absorption Fine Structure (NEXAFS) were utilized to probe the molecular orientation states to within about {approx}5 {micro}m and {approx}2 nm, respectively, of the sample surface. These noninvasive, surface-sensitive techniques yield reasonable self-consistency, providing complementary validation of the robustness of these methods. An analogy between Larson-Doi and fiber orientation models has allowed the first simulations of TLCP injection molding. The simulations capture many fine details in the bulk orientation distribution across the sample plaque. Direct simulation of surface orientation at the level probed by FTIR-ATR and NEXAFS was not possible due to the limited spatial resolution of the simulations. However, simulation results extracted from the shear-dominant skin region are found to provide a qualitatively accurate indicator of surface orientation. Finally, simulations capture the relation between bulk and surface orientation states across the different regions of the sample plaque.

  3. Immiscibility of magmatic fluids and their relation to Mo and Cu mineralization at the Bangpu porphyry deposit, Tibet, China

    NASA Astrophysics Data System (ADS)

    Luo, Maocheng; Tang, Juxing; Mao, Jingwen; Wang, Liqiang; Chen, Wei; Leng, Qiufeng

    2015-05-01

    The coexistence of aqueous fluid inclusions and silicate melt inclusions in quartz phenocrysts from porphyrites at the Bangpu porphyry Mo-Cu deposit, Tibet, China were examined to characterize the immiscibility processes during the magmatic to hydrothermal transition. The physical and chemical environment during crystallization of the magmas has been reconstructed on the basis of microthermometric experiments and trace element microanalysis. Compositions of melt and brine fluid phases are determined using Synchrotron radiation X-ray fluorescence analysis, SEM-EDS and Laser Raman spectroscopy analyses. Brine fluids were directly exsolved by a crystallizing melt, and the simultaneous entrapment of volatile-rich (brine fluid) and volatile-poor immiscible phases (silicate melt) occurred at 670-700 °C and 1.6-1.95 kbar when the magma had H2O contents between 5 and 6 wt% and crystal contents of 60-80%. A later low-density fluid with a higher Mo concentration exsolved after about 80-90% crystallization had occurred. This fluid contained significant concentrations of Cl, Na, K, Ca, Fe, Cu, Zn, Rb, and small amounts of Mn, Br and Pb. Immiscibility of magmatic fluids can lead to different metal partitioning behaviors between residual melt and volatile phases, which generate variable metal ratios. Copper was partitioned preferentially into the brine phase, in contrast to the behavior observed in other porphyry Cu deposits. Ore deposition by a dense brine could explain the partially deep Cu mineralization. Condensation of brine from a later low-density parental fluid could be an efficient mechanism to concentrate shallow Cu mineralization and broadly distributed Mo mineralization. The source of the Mo mineralizing fluids probably was a particularly large magma chamber that crystallized and fractionated at depth greater than upper continental crust level.

  4. One-step purification of nucleic acid for gene expression analysis via Immiscible Filtration Assisted by Surface Tension (IFAST)†

    PubMed Central

    Berry, Scott M.; Alarid, Elaine T.; Beebe, David J.

    2011-01-01

    The extraction and purification of nucleic acids from complex samples (e.g. blood, biopsied tissue, cultured cells, food) is an essential prerequisite for many applications in biology including genotyping, transcriptional analysis, systems biology, epigenetic analysis, and virus/bacterial detection. In this report, we describe a new process of nucleic acid extraction that utilizes “pinned” aqueous/organic liquid interfaces in microchannels to streamline the extraction mechanism, replacing all washing steps with a single traverse of an immiscible fluid barrier, termed Immiscible Filtration Assisted by Surface Tension (IFAST). Nucleic acids in biological samples are bound to paramagnetic particles and then drawn across the IFAST device (or array of IFAST devices) using a magnet. While the strength of the IFAST barrier is suitable for separation of nucleic acids from lysate in its current embodiment, its permeability can be selectively adapted by adjusting the surface tensions/energies associated with the cell lysate, the immiscible phase, and the device surface, enabling future expansion to other non-nucleic acid applications. Importantly, processing time is reduced from 15–45 minutes to less than 5 minutes while maintaining purity, yield, and scalability equal to or better than prevailing methods. Operation is extremely simple and no additional lab infrastructure is required. The IFAST technology thus significantly enhances researchers’ abilities to isolate and analyze nucleic acids, a process which is critical and ubiquitous in an extensive array of scientific fields. PMID:21423999

  5. Distribution of trace-element emissions from the liquid-injection incinerator Combustion Research Facility

    SciTech Connect

    Lee, J.W.; Ross, R.W.; Vocque, R.H.; Lewis, J.W.; Waterland, L.R.

    1987-08-01

    A series of tests was conducted at EPA's Combustion Research Facility (CRF) to investigate the fate of volatile trace elements in liquid-injection hazardous-waste incineration. In these tests, arsenic in the form of arsenic trioxide and antimony in the form of antimony trichloride were added to a methanol base containing varying amounts of chlorobenzene and carbon tetrachloride, and fired in the liquid-injection incinerator at the CRF. Test variables included incinerator temperature and excess air level, and feed chlorine content. Test results show a relatively even distribution of both elements between scrubber-exit flue gas and scrubber blowdown. Both elements are found in the vapor phase at high temperatures, though most condenses to particulate at scrubber exit temperatures. Designated POHC destruction and removal efficiency (DRE) ranged from 99.99 to 99.999% at the afterburner exit to 99.999 to 99.9999% in the scrubber-exit flue gas. Typical levels of common products of incomplete combustion were measured.

  6. Morphology and distribution of liquid inclusions in young sea ice as imaged by magnetic resonance

    NASA Astrophysics Data System (ADS)

    Galley, R. J.; Else, B. G. T.; Geilfus, N.-X.; Hare, A. A.; Isleifson, D.; Ryner, L.; Barber, D. G.; Rysgaard, S.

    2013-10-01

    In order to determine the morphology and distribution of liquid inclusions in young sea ice, magnetic resonance imaging of an 18 cm sea ice core was done using a Siemens 3T TIM TRIO human scanner. The sample was stored at about -20 °C until the beginning of a constructive interference steady state gradient echo sequence which lasted four and a half min. Here we present the first three-dimensional reconstruction of a brine drainage channel network in young sea ice using magnetic resonance imaging. The magnetic resonance image sequence data presented here clearly illustrate that brine drainage channels are established relatively quickly during ice formation, and indicates the amount and location of vertical and horizontal fluid permeability in young sea ice. A simple analysis of the image sequence reveals that magnetic resonance imaging is useful in describing the vertical profile of liquid fraction that compares well to volumes calculated for similar sea ice temperatures. Future work in this vein may include three-dimensional magnetic resonance scans of sea ice cores at in situ temperatures using different magnetic resonance sequences in order to improve the observation of inclusions, though this will necessitate both access to a scanner and the construction of a cooling system compatible with a magnetic resonance imager.

  7. An Oil-Stream Photomicrographic Aeroscope for Obtaining Cloud Liquid-Water Content and Droplet Size Distributions in Flight

    NASA Technical Reports Server (NTRS)

    Hacker, Paul T.

    1956-01-01

    An airborne cloud aeroscope by which droplet size, size distribution, and liquid-water content of clouds can be determined has been developed and tested in flight and in wind tunnels with water sprays. In this aeroscope the cloud droplets are continuously captured in a stream of oil, which Is then photographed by a photomicrographic camera. The droplet size and size distribution can be determined directly from the photographs. With the droplet size distribution known, the liquid-water content of the cloud can be computed from the geometry of the aeroscope, the airspeed, and the oil-flow rate. The aeroscope has the following features: Data are obtained semi-automatically, and permanent data are taken in the form of photographs. A single picture usually contains a sufficient number of droplets to establish the droplet size distribution. Cloud droplets are continuously captured in the stream of oil, but pictures are taken at Intervals. The aeroscope can be operated in icing and non-icing conditions. Because of mixing of oil in the instrument, the droplet-distribution patterns and liquid-water content values from a single picture are exponentially weighted average values over a path length of about 3/4 mile at 150 miles per hour. The liquid-water contents, volume-median diameters, and distribution patterns obtained on test flights and in the Lewis icing tunnel are similar to previously published data.

  8. Stability of liquid crystalline bridges

    NASA Astrophysics Data System (ADS)

    Mahajan, Milind P.; Tsige, Mesfin; Taylor, P. L.; Rosenblatt, Charles

    1999-02-01

    The stability of cylindrical bridges of the liquid crystal octylcyanobiphenyl in an immiscible liquid bath was investigated in the nematic and smectic A phases. In the nematic phase the bridge was found to destabilize at a length-to-diameter (slenderness) ratio R similar to that of ordinary Newtonian fluids. On the other hand, the Bingham behavior of the smectic A phase, i.e., an apparent yield stress, enabled the formation of stable columns with R well in excess of π.

  9. Low-frequency dilatational wave propagation through unsaturated porous media containing two immiscible fluids

    SciTech Connect

    Lo, W.-C.; Sposito, G.; Majer, E.

    2007-02-01

    An analytical theory is presented for the low-frequency behavior of dilatational waves propagating through a homogeneous elastic porous medium containing two immiscible fluids. The theory is based on the Berryman-Thigpen-Chin (BTC) model, in which capillary pressure effects are neglected. We show that the BTC model equations in the frequency domain can be transformed, at sufficiently low frequencies, into a dissipative wave equation (telegraph equation) and a propagating wave equation in the time domain. These partial differential equations describe two independent modes of dilatational wave motion that are analogous to the Biot fast and slow compressional waves in a single-fluid system. The equations can be solved analytically under a variety of initial and boundary conditions. The stipulation of 'low frequency' underlying the derivation of our equations in the time domain is shown to require that the excitation frequency of wave motions be much smaller than a critical frequency. This frequency is shown to be the inverse of an intrinsic time scale that depends on an effective kinematic shear viscosity of the interstitial fluids and the intrinsic permeability of the porous medium. Numerical calculations indicate that the critical frequency in both unconsolidated and consolidated materials containing water and a nonaqueous phase liquid ranges typically from kHz to MHz. Thus engineering problems involving the dynamic response of an unsaturated porous medium to low excitation frequencies (e.g. seismic wave stimulation) should be accurately modeled by our equations after suitable initial and boundary conditions are imposed.

  10. Average size and size distribution of large droplets produced in a free-jet expansion of a liquid

    NASA Astrophysics Data System (ADS)

    Knuth, E. L.; Henne, U.

    1999-02-01

    The experimental parameters and fluid properties affecting the average size N¯ and the size distribution P(N) of droplets formed by fragmentation of a liquid after expansion into a vacuum are investigated. The mean droplet size is found to be a function of the surface tension of the liquid, the nozzle diameter, and a characteristic flow speed. The size distribution is found to be a linear exponential distribution; measurements deviate from this distribution at small sizes if a factor which is a function of the cluster size is included in the measuring process. Good agreement with measured distributions of both positive and negative droplet ions formed from neutral 4He droplets by electron impact is found. The strong dependence of mean droplet size on source-orifice diameter found in the present analysis indicates that earlier correlations of droplet size with specific entropy in the source were useful at best only for a fixed nozzle size.