NASA Technical Reports Server (NTRS)
Macready, William; Wolpert, David
2005-01-01
We demonstrate a new framework for analyzing and controlling distributed systems, by solving constrained optimization problems with an algorithm based on that framework. The framework is ar. information-theoretic extension of conventional full-rationality game theory to allow bounded rational agents. The associated optimization algorithm is a game in which agents control the variables of the optimization problem. They do this by jointly minimizing a Lagrangian of (the probability distribution of) their joint state. The updating of the Lagrange parameters in that Lagrangian is a form of automated annealing, one that focuses the multi-agent system on the optimal pure strategy. We present computer experiments for the k-sat constraint satisfaction problem and for unconstrained minimization of NK functions.
NASA Astrophysics Data System (ADS)
Zheng, Feifei; Simpson, Angus R.; Zecchin, Aaron C.
2011-08-01
This paper proposes a novel optimization approach for the least cost design of looped water distribution systems (WDSs). Three distinct steps are involved in the proposed optimization approach. In the first step, the shortest-distance tree within the looped network is identified using the Dijkstra graph theory algorithm, for which an extension is proposed to find the shortest-distance tree for multisource WDSs. In the second step, a nonlinear programming (NLP) solver is employed to optimize the pipe diameters for the shortest-distance tree (chords of the shortest-distance tree are allocated the minimum allowable pipe sizes). Finally, in the third step, the original looped water network is optimized using a differential evolution (DE) algorithm seeded with diameters in the proximity of the continuous pipe sizes obtained in step two. As such, the proposed optimization approach combines the traditional deterministic optimization technique of NLP with the emerging evolutionary algorithm DE via the proposed network decomposition. The proposed methodology has been tested on four looped WDSs with the number of decision variables ranging from 21 to 454. Results obtained show the proposed approach is able to find optimal solutions with significantly less computational effort than other optimization techniques.
Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri
2016-01-01
This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality. PMID:26954783
Warid, Warid; Hizam, Hashim; Mariun, Norman; Abdul-Wahab, Noor Izzri
2016-01-01
This paper proposes a new formulation for the multi-objective optimal power flow (MOOPF) problem for meshed power networks considering distributed generation. An efficacious multi-objective fuzzy linear programming optimization (MFLP) algorithm is proposed to solve the aforementioned problem with and without considering the distributed generation (DG) effect. A variant combination of objectives is considered for simultaneous optimization, including power loss, voltage stability, and shunt capacitors MVAR reserve. Fuzzy membership functions for these objectives are designed with extreme targets, whereas the inequality constraints are treated as hard constraints. The multi-objective fuzzy optimal power flow (OPF) formulation was converted into a crisp OPF in a successive linear programming (SLP) framework and solved using an efficient interior point method (IPM). To test the efficacy of the proposed approach, simulations are performed on the IEEE 30-busand IEEE 118-bus test systems. The MFLP optimization is solved for several optimization cases. The obtained results are compared with those presented in the literature. A unique solution with a high satisfaction for the assigned targets is gained. Results demonstrate the effectiveness of the proposed MFLP technique in terms of solution optimality and rapid convergence. Moreover, the results indicate that using the optimal DG location with the MFLP algorithm provides the solution with the highest quality. PMID:26954783
A Scalable and Robust Multi-Agent Approach to Distributed Optimization
NASA Technical Reports Server (NTRS)
Tumer, Kagan
2005-01-01
Modularizing a large optimization problem so that the solutions to the subproblems provide a good overall solution is a challenging problem. In this paper we present a multi-agent approach to this problem based on aligning the agent objectives with the system objectives, obviating the need to impose external mechanisms to achieve collaboration among the agents. This approach naturally addresses scaling and robustness issues by ensuring that the agents do not rely on the reliable operation of other agents We test this approach in the difficult distributed optimization problem of imperfect device subset selection [Challet and Johnson, 2002]. In this problem, there are n devices, each of which has a "distortion", and the task is to find the subset of those n devices that minimizes the average distortion. Our results show that in large systems (1000 agents) the proposed approach provides improvements of over an order of magnitude over both traditional optimization methods and traditional multi-agent methods. Furthermore, the results show that even in extreme cases of agent failures (i.e., half the agents fail midway through the simulation) the system remains coordinated and still outperforms a failure-free and centralized optimization algorithm.
A jazz-based approach for optimal setting of pressure reducing valves in water distribution networks
NASA Astrophysics Data System (ADS)
De Paola, Francesco; Galdiero, Enzo; Giugni, Maurizio
2016-05-01
This study presents a model for valve setting in water distribution networks (WDNs), with the aim of reducing the level of leakage. The approach is based on the harmony search (HS) optimization algorithm. The HS mimics a jazz improvisation process able to find the best solutions, in this case corresponding to valve settings in a WDN. The model also interfaces with the improved version of a popular hydraulic simulator, EPANET 2.0, to check the hydraulic constraints and to evaluate the performances of the solutions. Penalties are introduced in the objective function in case of violation of the hydraulic constraints. The model is applied to two case studies, and the obtained results in terms of pressure reductions are comparable with those of competitive metaheuristic algorithms (e.g. genetic algorithms). The results demonstrate the suitability of the HS algorithm for water network management and optimization.
An efficient hybrid approach for multiobjective optimization of water distribution systems
NASA Astrophysics Data System (ADS)
Zheng, Feifei; Simpson, Angus R.; Zecchin, Aaron C.
2014-05-01
An efficient hybrid approach for the design of water distribution systems (WDSs) with multiple objectives is described in this paper. The objectives are the minimization of the network cost and maximization of the network resilience. A self-adaptive multiobjective differential evolution (SAMODE) algorithm has been developed, in which control parameters are automatically adapted by means of evolution instead of the presetting of fine-tuned parameter values. In the proposed method, a graph algorithm is first used to decompose a looped WDS into a shortest-distance tree (T) or forest, and chords (Ω). The original two-objective optimization problem is then approximated by a series of single-objective optimization problems of the T to be solved by nonlinear programming (NLP), thereby providing an approximate Pareto optimal front for the original whole network. Finally, the solutions at the approximate front are used to seed the SAMODE algorithm to find an improved front for the original entire network. The proposed approach is compared with two other conventional full-search optimization methods (the SAMODE algorithm and the NSGA-II) that seed the initial population with purely random solutions based on three case studies: a benchmark network and two real-world networks with multiple demand loading cases. Results show that (i) the proposed NLP-SAMODE method consistently generates better-quality Pareto fronts than the full-search methods with significantly improved efficiency; and (ii) the proposed SAMODE algorithm (no parameter tuning) exhibits better performance than the NSGA-II with calibrated parameter values in efficiently offering optimal fronts.
Pinning distributed synchronization of stochastic dynamical networks: a mixed optimization approach.
Tang, Yang; Gao, Huijun; Lu, Jianquan; Kurths, Jürgen Kurthsrgen
2014-10-01
This paper is concerned with the problem of pinning synchronization of nonlinear dynamical networks with multiple stochastic disturbances. Two kinds of pinning schemes are considered: 1) pinned nodes are fixed along the time evolution and 2) pinned nodes are switched from time to time according to a set of Bernoulli stochastic variables. Using Lyapunov function methods and stochastic analysis techniques, several easily verifiable criteria are derived for the problem of pinning distributed synchronization. For the case of fixed pinned nodes, a novel mixed optimization method is developed to select the pinned nodes and find feasible solutions, which is composed of a traditional convex optimization method and a constraint optimization evolutionary algorithm. For the case of switching pinning scheme, upper bounds of the convergence rate and the mean control gain are obtained theoretically. Simulation examples are provided to show the advantages of our proposed optimization method over previous ones and verify the effectiveness of the obtained results. PMID:25291734
A new systems approach to optimizing investments in gas production and distribution
Dougherty, E.L.
1983-03-01
This paper presents a new analytical approach for determining the optimal sequence of investments to make in each year of an extended planning horizon in each of a group of reservoirs producing gas and gas liquids through an interconnected trunkline network and a gas processing plant. The optimality criterion is to maximize net present value while satisfying fixed offtake requirements for dry gas, but with no limits on gas liquids production. The planning problem is broken into n + 2 separate but interrelated subproblems; gas reservoir development and production, gas flow in a trunkline gathering system, and plant separation activities to remove undesirable gas (CO/sub 2/) or to recover valuable liquid components. The optimal solution for each subproblem depends upon the optimal solutions for all of the other subproblems, so that the overall optimal solution is obtained iteratively. The iteration technique used is based upon a combination of heuristics and the decompostion algorithm of mathematical programming. Each subproblem is solved once during each overall iteration. In addition to presenting some mathematical details of the solution approach, this paper describes a computer system which has been developed to obtain solutions.
Learning Based Approach for Optimal Clustering of Distributed Program's Call Flow Graph
NASA Astrophysics Data System (ADS)
Abofathi, Yousef; Zarei, Bager; Parsa, Saeed
Optimal clustering of call flow graph for reaching maximum concurrency in execution of distributable components is one of the NP-Complete problems. Learning automatas (LAs) are search tools which are used for solving many NP-Complete problems. In this paper a learning based algorithm is proposed to optimal clustering of call flow graph and appropriate distributing of programs in network level. The algorithm uses learning feature of LAs to search in state space. It has been shown that the speed of reaching to solution increases remarkably using LA in search process, and it also prevents algorithm from being trapped in local minimums. Experimental results show the superiority of proposed algorithm over others.
NASA Astrophysics Data System (ADS)
Huhn, Oliver; Hauck, Judith; Hoppema, Mario; Rhein, Monika; Roether, Wolfgang
2010-05-01
We use a 20 year time series of chlorofluorocarbon (CFC) observations along the Prime Meridian to determine the temporal evolution of anthropogenic carbon (Cant) in the two deep boundary currents which enter the Weddell Basin in the south and leave it in the north. The Cant is inferred from transit time distributions (TTDs), with parameters (mean transit time and dispersion) adjusted to the observed mean CFC histories in these recently ventilated deep boundary currents. We optimize that "classic" TTD approach by accounting for water exchange of the boundary currents with an old but not CFC and Cant free interior reservoir. This reservoir in turn, is replenished by the boundary currents, which we parameterize as first order mixing. Furthermore, we account for the time-dependence of the CFC and Cant source water saturation. A conceptual model of an ideal saturated mixed layer and exchange with adjacent water is adjusted to observed CFC saturations in the source regions. The time-dependence for the CFC saturation appears to be much weaker than for Cant. We find a mean transit time of 14 years and an advection/dispersion ratio of 5 for the deep southern boundary current. For the northern boundary current we find a mean transit time of 8 years and a much advection/dispersion ratio of 140. The fractions directly supplied by the boundary currents are in both cases in the order of 10%, while 90% are admixed from the interior reservoirs, which are replenished with a renewal time of about 14 years. We determine Cant ~ 11 umol/kg (reference year 2006) in the deep water entering the Weddell Sea in the south (~2.1 Sv), and 12 umol/kg for the deep water leaving the Weddell Sea in the north (~2.7 Sv). These Cant estimates are, however, upper limits, considering that the Cant source water saturation is likely to be lower than that for the CFCs. Comparison with Cant intrusion estimates based on extended multiple linear regression (using potential temperature, salinity, oxygen, and
Heidari, M.; Ranjithan, S.R.
1998-01-01
In using non-linear optimization techniques for estimation of parameters in a distributed ground water model, the initial values of the parameters and prior information about them play important roles. In this paper, the genetic algorithm (GA) is combined with the truncated-Newton search technique to estimate groundwater parameters for a confined steady-state ground water model. Use of prior information about the parameters is shown to be important in estimating correct or near-correct values of parameters on a regional scale. The amount of prior information needed for an accurate solution is estimated by evaluation of the sensitivity of the performance function to the parameters. For the example presented here, it is experimentally demonstrated that only one piece of prior information of the least sensitive parameter is sufficient to arrive at the global or near-global optimum solution. For hydraulic head data with measurement errors, the error in the estimation of parameters increases as the standard deviation of the errors increases. Results from our experiments show that, in general, the accuracy of the estimated parameters depends on the level of noise in the hydraulic head data and the initial values used in the truncated-Newton search technique.In using non-linear optimization techniques for estimation of parameters in a distributed ground water model, the initial values of the parameters and prior information about them play important roles. In this paper, the genetic algorithm (GA) is combined with the truncated-Newton search technique to estimate groundwater parameters for a confined steady-state ground water model. Use of prior information about the parameters is shown to be important in estimating correct or near-correct values of parameters on a regional scale. The amount of prior information needed for an accurate solution is estimated by evaluation of the sensitivity of the performance function to the parameters. For the example presented here, it is
Lauzeral, Christine; Grenouillet, Gaël; Brosse, Sébastien
2012-01-01
Species distribution models (SDMs) are widespread in ecology and conservation biology, but their accuracy can be lowered by non-environmental (noisy) absences that are common in species occurrence data. Here we propose an iterative ensemble modelling (IEM) method to deal with noisy absences and hence improve the predictive reliability of ensemble modelling of species distributions. In the IEM approach, outputs of a classical ensemble model (EM) were used to update the raw occurrence data. The revised data was then used as input for a new EM run. This process was iterated until the predictions stabilized. The outputs of the iterative method were compared to those of the classical EM using virtual species. The IEM process tended to converge rapidly. It increased the consensus between predictions provided by the different methods as well as between those provided by different learning data sets. Comparing IEM and EM showed that for high levels of non-environmental absences, iterations significantly increased prediction reliability measured by the Kappa and TSS indices, as well as the percentage of well-predicted sites. Compared to EM, IEM also reduced biases in estimates of species prevalence. Compared to the classical EM method, IEM improves the reliability of species predictions. It particularly deals with noisy absences that are replaced in the data matrices by simulated presences during the iterative modelling process. IEM thus constitutes a promising way to increase the accuracy of EM predictions of difficult-to-detect species, as well as of species that are not in equilibrium with their environment. PMID:23166691
Distributed Optimization System
Hurtado, John E.; Dohrmann, Clark R.; Robinett, III, Rush D.
2004-11-30
A search system and method for controlling multiple agents to optimize an objective using distributed sensing and cooperative control. The search agent can be one or more physical agents, such as a robot, and can be software agents for searching cyberspace. The objective can be: chemical sources, temperature sources, radiation sources, light sources, evaders, trespassers, explosive sources, time dependent sources, time independent sources, function surfaces, maximization points, minimization points, and optimal control of a system such as a communication system, an economy, a crane, and a multi-processor computer.
Stadler, Michael; Marnay, Chris; Donadee, Jon; Lai, Judy; Megel, Olivier; Bhattacharya, Prajesh; Siddiqui, Afzal
2011-02-06
Together with OSIsoft LLC as its private sector partner and matching sponsor, the Lawrence Berkeley National Laboratory (Berkeley Lab) won an FY09 Technology Commercialization Fund (TCF) grant from the U.S. Department of Energy. The goal of the project is to commercialize Berkeley Lab's optimizing program, the Distributed Energy Resources Customer Adoption Model (DER-CAM) using a software as a service (SaaS) model with OSIsoft as its first non-scientific user. OSIsoft could in turn provide optimization capability to its software clients. In this way, energy efficiency and/or carbon minimizing strategies could be made readily available to commercial and industrial facilities. Specialized versions of DER-CAM dedicated to solving OSIsoft's customer problems have been set up on a server at Berkeley Lab. The objective of DER-CAM is to minimize the cost of technology adoption and operation or carbon emissions, or combinations thereof. DER-CAM determines which technologies should be installed and operated based on specific site load, price information, and performance data for available equipment options. An established user of OSIsoft's PI software suite, the University of California, Davis (UCD), was selected as a demonstration site for this project. UCD's participation in the project is driven by its motivation to reduce its carbon emissions. The campus currently buys electricity economically through the Western Area Power Administration (WAPA). The campus does not therefore face compelling cost incentives to improve the efficiency of its operations, but is nonetheless motivated to lower the carbon footprint of its buildings. Berkeley Lab attempted to demonstrate a scenario wherein UCD is forced to purchase electricity on a standard time-of-use tariff from Pacific Gas and Electric (PG&E), which is a concern to Facilities staff. Additionally, DER-CAM has been set up to consider the variability of carbon emissions throughout the day and seasons. Two distinct analyses of
NASA Astrophysics Data System (ADS)
Coutris, Pierre; Leroy, Delphine; Fontaine, Emmanuel; Schwarzenboeck, Alfons; Strapp, J. Walter
2016-04-01
A new method to retrieve cloud water content from in-situ measured 2D particle images from optical array probes (OAP) is presented. With the overall objective to build a statistical model of crystals' mass as a function of their size, environmental temperature and crystal microphysical history, this study presents the methodology to retrieve the mass of crystals sorted by size from 2D images using a numerical optimization approach. The methodology is validated using two datasets of in-situ measurements gathered during two airborne field campaigns held in Darwin, Australia (2014), and Cayenne, France (2015), in the frame of the High Altitude Ice Crystals (HAIC) / High Ice Water Content (HIWC) projects. During these campaigns, a Falcon F-20 research aircraft equipped with state-of-the art microphysical instrumentation sampled numerous mesoscale convective systems (MCS) in order to study dynamical and microphysical properties and processes of high ice water content areas. Experimentally, an isokinetic evaporator probe, referred to as IKP-2, provides a reference measurement of the total water content (TWC) which equals ice water content, (IWC) when (supercooled) liquid water is absent. Two optical array probes, namely 2D-S and PIP, produce 2D images of individual crystals ranging from 50 μm to 12840 μm from which particle size distributions (PSD) are derived. Mathematically, the problem is formulated as an inverse problem in which the crystals' mass is assumed constant over a size class and is computed for each size class from IWC and PSD data: PSD.m = IW C This problem is solved using numerical optimization technique in which an objective function is minimized. The objective function is defined as follows: 2 J(m)=∥P SD.m ‑ IW C ∥ + λ.R (m) where the regularization parameter λ and the regularization function R(m) are tuned based on data characteristics. The method is implemented in two steps. First, the method is developed on synthetic crystal populations in
Multicriteria optimization of the spatial dose distribution
Schlaefer, Alexander; Viulet, Tiberiu; Muacevic, Alexander; Fürweger, Christoph
2013-12-15
Purpose: Treatment planning for radiation therapy involves trade-offs with respect to different clinical goals. Typically, the dose distribution is evaluated based on few statistics and dose–volume histograms. Particularly for stereotactic treatments, the spatial dose distribution represents further criteria, e.g., when considering the gradient between subregions of volumes of interest. The authors have studied how to consider the spatial dose distribution using a multicriteria optimization approach.Methods: The authors have extended a stepwise multicriteria optimization approach to include criteria with respect to the local dose distribution. Based on a three-dimensional visualization of the dose the authors use a software tool allowing interaction with the dose distribution to map objectives with respect to its shape to a constrained optimization problem. Similarly, conflicting criteria are highlighted and the planner decides if and where to relax the shape of the dose distribution.Results: To demonstrate the potential of spatial multicriteria optimization, the tool was applied to a prostate and meningioma case. For the prostate case, local sparing of the rectal wall and shaping of a boost volume are achieved through local relaxations and while maintaining the remaining dose distribution. For the meningioma, target coverage is improved by compromising low dose conformality toward noncritical structures. A comparison of dose–volume histograms illustrates the importance of spatial information for achieving the trade-offs.Conclusions: The results show that it is possible to consider the location of conflicting criteria during treatment planning. Particularly, it is possible to conserve already achieved goals with respect to the dose distribution, to visualize potential trade-offs, and to relax constraints locally. Hence, the proposed approach facilitates a systematic exploration of the optimal shape of the dose distribution.
Distributed optimization system and method
Hurtado, John E.; Dohrmann, Clark R.; Robinett, III, Rush D.
2003-06-10
A search system and method for controlling multiple agents to optimize an objective using distributed sensing and cooperative control. The search agent can be one or more physical agents, such as a robot, and can be software agents for searching cyberspace. The objective can be: chemical sources, temperature sources, radiation sources, light sources, evaders, trespassers, explosive sources, time dependent sources, time independent sources, function surfaces, maximization points, minimization points, and optimal control of a system such as a communication system, an economy, a crane, and a multi-processor computer.
NASA Astrophysics Data System (ADS)
Gong, Qian; Xu, Rong; Lin, Jintong
2004-04-01
Wavelength Division Multiplexed (WDM) networks that route optical connections using intelligent optical cross-connects (OXCs) is firmly established as the core constituent of next generation networks. Rapid failure recovery is fundamental to building reliable transport networks. Mesh restoration promises cost effective failure recovery compared with legacy ring networks, and is now seeing large-scale deployment. Many carriers are migrating away from SONET ring restoration for their core transport networks and replacing it with mesh restoration through "intelligent" O-E-O cross-connects (XC). The mesh restoration is typically provided via two fiber-disjoint paths: a service path and a restoration path. this scheme can restore any single link failure or node failure. And by used shared mesh restoration, although every service route is assigned a restoration route, no dedicated capacity needs to be reserved for the restoration route, resulting in capacity savings. The restoration approach we propose is Centralized Pre-computing, Local Distributed Optimization, and Shared Disjoint-backup Path. This approach combines the merits of centralized and distributed solutions. It avoids the scalability issues of centralized solutions by using a distributed control plane for disjoint service path computation and restoration path provisioning. Moreover, if the service routes of two demands are disjoint, no single failure will affect both demands simultaneously. This means that the restoration routes of these two demands can share link capacities, because these two routes will not be activated at the same time. So we can say, this restoration capacity sharing approach achieves low restoration capacity and fast restoration speed, while requiring few control plane changes.
Portfolio optimization using median-variance approach
NASA Astrophysics Data System (ADS)
Wan Mohd, Wan Rosanisah; Mohamad, Daud; Mohamed, Zulkifli
2013-04-01
Optimization models have been applied in many decision-making problems particularly in portfolio selection. Since the introduction of Markowitz's theory of portfolio selection, various approaches based on mathematical programming have been introduced such as mean-variance, mean-absolute deviation, mean-variance-skewness and conditional value-at-risk (CVaR) mainly to maximize return and minimize risk. However most of the approaches assume that the distribution of data is normal and this is not generally true. As an alternative, in this paper, we employ the median-variance approach to improve the portfolio optimization. This approach has successfully catered both types of normal and non-normal distribution of data. With this actual representation, we analyze and compare the rate of return and risk between the mean-variance and the median-variance based portfolio which consist of 30 stocks from Bursa Malaysia. The results in this study show that the median-variance approach is capable to produce a lower risk for each return earning as compared to the mean-variance approach.
Optimal dynamic control of resources in a distributed system
NASA Technical Reports Server (NTRS)
Shin, Kang G.; Krishna, C. M.; Lee, Yann-Hang
1989-01-01
The authors quantitatively formulate the problem of controlling resources in a distributed system so as to optimize a reward function and derive optimal control strategies using Markov decision theory. The control variables treated are quite general; they could be control decisions related to system configuration, repair, diagnostics, files, or data. Two algorithms for resource control in distributed systems are derived for time-invariant and periodic environments, respectively. A detailed example to demonstrate the power and usefulness of the approach is provided.
Optimal source codes for geometrically distributed integer alphabets
NASA Technical Reports Server (NTRS)
Gallager, R. G.; Van Voorhis, D. C.
1975-01-01
An approach is shown for using the Huffman algorithm indirectly to prove the optimality of a code for an infinite alphabet if an estimate concerning the nature of the code can be made. Attention is given to nonnegative integers with a geometric probability assignment. The particular distribution considered arises in run-length coding and in encoding protocol information in data networks. Questions of redundancy of the optimal code are also investigated.
Distributed Constrained Optimization with Semicoordinate Transformations
NASA Technical Reports Server (NTRS)
Macready, William; Wolpert, David
2006-01-01
Recent work has shown how information theory extends conventional full-rationality game theory to allow bounded rational agents. The associated mathematical framework can be used to solve constrained optimization problems. This is done by translating the problem into an iterated game, where each agent controls a different variable of the problem, so that the joint probability distribution across the agents moves gives an expected value of the objective function. The dynamics of the agents is designed to minimize a Lagrangian function of that joint distribution. Here we illustrate how the updating of the Lagrange parameters in the Lagrangian is a form of automated annealing, which focuses the joint distribution more and more tightly about the joint moves that optimize the objective function. We then investigate the use of "semicoordinate" variable transformations. These separate the joint state of the agents from the variables of the optimization problem, with the two connected by an onto mapping. We present experiments illustrating the ability of such transformations to facilitate optimization. We focus on the special kind of transformation in which the statistically independent states of the agents induces a mixture distribution over the optimization variables. Computer experiment illustrate this for &sat constraint satisfaction problems and for unconstrained minimization of NK functions.
Quantum optimal control of photoelectron spectra and angular distributions
NASA Astrophysics Data System (ADS)
Goetz, R. Esteban; Karamatskou, Antonia; Santra, Robin; Koch, Christiane P.
2016-01-01
Photoelectron spectra and photoelectron angular distributions obtained in photoionization reveal important information on, e.g., charge transfer or hole coherence in the parent ion. Here we show that optimal control of the underlying quantum dynamics can be used to enhance desired features in the photoelectron spectra and angular distributions. To this end, we combine Krotov's method for optimal control theory with the time-dependent configuration interaction singles formalism and a splitting approach to calculate photoelectron spectra and angular distributions. The optimization target can account for specific desired properties in the photoelectron angular distribution alone, in the photoelectron spectrum, or in both. We demonstrate the method for hydrogen and then apply it to argon under strong XUV radiation, maximizing the difference of emission into the upper and lower hemispheres, in order to realize directed electron emission in the XUV regime.
Multiobjective optimization approach: thermal food processing.
Abakarov, A; Sushkov, Y; Almonacid, S; Simpson, R
2009-01-01
The objective of this study was to utilize a multiobjective optimization technique for the thermal sterilization of packaged foods. The multiobjective optimization approach used in this study is based on the optimization of well-known aggregating functions by an adaptive random search algorithm. The applicability of the proposed approach was illustrated by solving widely used multiobjective test problems taken from the literature. The numerical results obtained for the multiobjective test problems and for the thermal processing problem show that the proposed approach can be effectively used for solving multiobjective optimization problems arising in the food engineering field. PMID:20492109
Energy optimization of water distribution systems
1994-09-01
Energy costs associated with pumping treated water into the distribution system and boosting water pressures where necessary is one of the largest expenditures in the operating budget of a municipality. Due to the size and complexity of Detroit`s water transmission system, an energy optimization project has been developed to better manage the flow of water in the distribution system in an attempt to reduce these costs.
A distributed approach to the OPF problem
NASA Astrophysics Data System (ADS)
Erseghe, Tomaso
2015-12-01
This paper presents a distributed approach to optimal power flow (OPF) in an electrical network, suitable for application in a future smart grid scenario where access to resource and control is decentralized. The non-convex OPF problem is solved by an augmented Lagrangian method, similar to the widely known ADMM algorithm, with the key distinction that penalty parameters are constantly increased. A (weak) assumption on local solver reliability is required to always ensure convergence. A certificate of convergence to a local optimum is available in the case of bounded penalty parameters. For moderate sized networks (up to 300 nodes, and even in the presence of a severe partition of the network), the approach guarantees a performance very close to the optimum, with an appreciably fast convergence speed. The generality of the approach makes it applicable to any (convex or non-convex) distributed optimization problem in networked form. In the comparison with the literature, mostly focused on convex SDP approximations, the chosen approach guarantees adherence to the reference problem, and it also requires a smaller local computational complexity effort.
Analytical and Computational Properties of Distributed Approaches to MDO
NASA Technical Reports Server (NTRS)
Alexandrov, Natalia M.; Lewis, Robert Michael
2000-01-01
Historical evolution of engineering disciplines and the complexity of the MDO problem suggest that disciplinary autonomy is a desirable goal in formulating and solving MDO problems. We examine the notion of disciplinary autonomy and discuss the analytical properties of three approaches to formulating and solving MDO problems that achieve varying degrees of autonomy by distributing the problem along disciplinary lines. Two of the approaches-Optimization by Linear Decomposition and Collaborative Optimization-are based on bi-level optimization and reflect what we call a structural perspective. The third approach, Distributed Analysis Optimization, is a single-level approach that arises from what we call an algorithmic perspective. The main conclusion of the paper is that disciplinary autonomy may come at a price: in the bi-level approaches, the system-level constraints introduced to relax the interdisciplinary coupling and enable disciplinary autonomy can cause analytical and computational difficulties for optimization algorithms. The single-level alternative we discuss affords a more limited degree of autonomy than that of the bi-level approaches, but without the computational difficulties of the bi-level methods. Key Words: Autonomy, bi-level optimization, distributed optimization, multidisciplinary optimization, multilevel optimization, nonlinear programming, problem integration, system synthesis
Distributed Optimization and Games: A Tutorial Overview
NASA Astrophysics Data System (ADS)
Yang, Bo; Johansson, Mikael
This chapter provides a tutorial overview of distributed optimization and game theory for decision-making in networked systems. We discuss properties of first-order methods for smooth and non-smooth convex optimization, and review mathematical decomposition techniques. A model of networked decision-making is introduced in which a communication structure is enforced that determines which nodes are allowed to coordinate with each other, and several recent techniques for solving such problems are reviewed. We then continue to study the impact of noncooperative games, in which no communication and coordination are enforced. Special attention is given to existence and uniqueness of Nash equilibria, as well as the efficiency loss in not coordinating nodes. Finally, we discuss methods for studying the dynamics of distributed optimization algorithms in continuous time.
Optimal Distributed Excitation of Surface Wave Plasmas
NASA Astrophysics Data System (ADS)
Bowers, K. J.; Birdsall, C. K.
2000-10-01
Surface wave sustained plasmas are an emerging technology for next generation sources for material processing. There is promise of producing high density, uniform sheath plasmas at low neutral pressures over large target surface areas. Such plasmas are being produced by distributed arrays of slot antennas by numerous groups. However, work remains to obtain the optimal surface wave frequency and wave vector for sustaining a plasma. In this work, the optimal phase shift between slot antennas in a surface wave plasma is being sought using 2d3v PIC-MCC simulation. A long plasma loaded planar metal waveguide with a distributed exciting structure along one wall is modeled in these simulations. Of particular interest is the wave-particle interaction of electrons in the high energy tail of the velocity distribution (responsible for ionization in low pressure discharges) with driven low phase velocity (v << c) surface waves.
Optimal Device Independent Quantum Key Distribution
NASA Astrophysics Data System (ADS)
Kamaruddin, S.; Shaari, J. S.
2016-08-01
We consider an optimal quantum key distribution setup based on minimal number of measurement bases with binary yields used by parties against an eavesdropper limited only by the no-signaling principle. We note that in general, the maximal key rate can be achieved by determining the optimal tradeoff between measurements that attain the maximal Bell violation and those that maximise the bit correlation between the parties. We show that higher correlation between shared raw keys at the expense of maximal Bell violation provide for better key rates for low channel disturbance.
Optimal Device Independent Quantum Key Distribution
Kamaruddin, S.; Shaari, J. S.
2016-01-01
We consider an optimal quantum key distribution setup based on minimal number of measurement bases with binary yields used by parties against an eavesdropper limited only by the no-signaling principle. We note that in general, the maximal key rate can be achieved by determining the optimal tradeoff between measurements that attain the maximal Bell violation and those that maximise the bit correlation between the parties. We show that higher correlation between shared raw keys at the expense of maximal Bell violation provide for better key rates for low channel disturbance. PMID:27485160
Optimal Device Independent Quantum Key Distribution.
Kamaruddin, S; Shaari, J S
2016-01-01
We consider an optimal quantum key distribution setup based on minimal number of measurement bases with binary yields used by parties against an eavesdropper limited only by the no-signaling principle. We note that in general, the maximal key rate can be achieved by determining the optimal tradeoff between measurements that attain the maximal Bell violation and those that maximise the bit correlation between the parties. We show that higher correlation between shared raw keys at the expense of maximal Bell violation provide for better key rates for low channel disturbance. PMID:27485160
Optimal Operation of Energy Storage in Power Transmission and Distribution
NASA Astrophysics Data System (ADS)
Akhavan Hejazi, Seyed Hossein
In this thesis, we investigate optimal operation of energy storage units in power transmission and distribution grids. At transmission level, we investigate the problem where an investor-owned independently-operated energy storage system seeks to offer energy and ancillary services in the day-ahead and real-time markets. We specifically consider the case where a significant portion of the power generated in the grid is from renewable energy resources and there exists significant uncertainty in system operation. In this regard, we formulate a stochastic programming framework to choose optimal energy and reserve bids for the storage units that takes into account the fluctuating nature of the market prices due to the randomness in the renewable power generation availability. At distribution level, we develop a comprehensive data set to model various stochastic factors on power distribution networks, with focus on networks that have high penetration of electric vehicle charging load and distributed renewable generation. Furthermore, we develop a data-driven stochastic model for energy storage operation at distribution level, where the distribution of nodal voltage and line power flow are modelled as stochastic functions of the energy storage unit's charge and discharge schedules. In particular, we develop new closed-form stochastic models for such key operational parameters in the system. Our approach is analytical and allows formulating tractable optimization problems. Yet, it does not involve any restricting assumption on the distribution of random parameters, hence, it results in accurate modeling of uncertainties. By considering the specific characteristics of random variables, such as their statistical dependencies and often irregularly-shaped probability distributions, we propose a non-parametric chance-constrained optimization approach to operate and plan energy storage units in power distribution girds. In the proposed stochastic optimization, we consider
NASA Astrophysics Data System (ADS)
Lejeune, Bernard; Mahieu, Emmanuel; Servais, Christian; Duchatelet, Pierre; Demoulin, Philippe
2010-05-01
Carbonyl sulfide (OCS), which is produced in the troposphere from both biogenic and anthropogenic sources, is the most abundant gaseous sulfur species in the unpolluted atmosphere. Due to its low chemical reactivity and water solubility, a significant fraction of OCS is able to reach the stratosphere where it is converted to SO2 and ultimately to H2SO4 aerosols (Junge layer). These aerosols have the potential to amplify stratospheric ozone destruction on a global scale and may influence Earth's radiation budget and climate through increasing solar scattering. The transport of OCS from troposphere to stratosphere is thought to be the primary mechanism by which the Junge layer is sustained during nonvolcanic periods. Because of this, long-term trends in atmospheric OCS concentration, not only in the troposphere but also in the stratosphere, are of great interest. A new approach has been developed and optimized to retrieve atmospheric abundance of OCS from high-resolution ground-based infrared solar spectra by using the SFIT-2 (v3.91) algorithm, including a new model for solar lines simulation (solar lines often produce significant interferences in the OCS microwindows). The strongest lines of the ν3 fundamental band of OCS at 2062 cm-1 have been systematically evaluated with objective criteria to select a new set of microwindows, assuming the HITRAN 2004 spectroscopic parameters with an increase in the OCS line intensities of the ν3band main isotopologue 16O12C32S by 15.79% as compared to HITRAN 2000 (Rothman et al., 2008, and references therein). Two regularization schemes have further been compared (deducted from ATMOS and ACE-FTS measurements or based on a Tikhonov approach), in order to select the one which optimizes the information content while minimizing the error budget. The selected approach has allowed us to determine updated OCS long-term trend from 1988 to 2009 in both the troposphere and the stratosphere, using spectra recorded on a regular basis with
A flexible approach to distributed data anonymization.
Kohlmayer, Florian; Prasser, Fabian; Eckert, Claudia; Kuhn, Klaus A
2014-08-01
Sensitive biomedical data is often collected from distributed sources, involving different information systems and different organizational units. Local autonomy and legal reasons lead to the need of privacy preserving integration concepts. In this article, we focus on anonymization, which plays an important role for the re-use of clinical data and for the sharing of research data. We present a flexible solution for anonymizing distributed data in the semi-honest model. Prior to the anonymization procedure, an encrypted global view of the dataset is constructed by means of a secure multi-party computing (SMC) protocol. This global representation can then be anonymized. Our approach is not limited to specific anonymization algorithms but provides pre- and postprocessing for a broad spectrum of algorithms and many privacy criteria. We present an extensive analytical and experimental evaluation and discuss which types of methods and criteria are supported. Our prototype demonstrates the approach by implementing k-anonymity, ℓ-diversity, t-closeness and δ-presence with a globally optimal de-identification method in horizontally and vertically distributed setups. The experiments show that our method provides highly competitive performance and offers a practical and flexible solution for anonymizing distributed biomedical datasets. PMID:24333850
Bayesian approach to global discrete optimization
Mockus, J.; Mockus, A.; Mockus, L.
1994-12-31
We discuss advantages and disadvantages of the Bayesian approach (average case analysis). We present the portable interactive version of software for continuous global optimization. We consider practical multidimensional problems of continuous global optimization, such as optimization of VLSI yield, optimization of composite laminates, estimation of unknown parameters of bilinear time series. We extend Bayesian approach to discrete optimization. We regard the discrete optimization as a multi-stage decision problem. We assume that there exists some simple heuristic function which roughly predicts the consequences of the decisions. We suppose randomized decisions. We define the probability of the decision by the randomized decision function depending on heuristics. We fix this function with exception of some parameters. We repeat the randomized decision several times at the fixed values of those parameters and accept the best decision as the result. We optimize the parameters of the randomized decision function to make the search more efficient. Thus we reduce the discrete optimization problem to the continuous problem of global stochastic optimization. We solve this problem by the Bayesian methods of continuous global optimization. We describe the applications to some well known An problems of discrete programming, such as knapsack, traveling salesman, and scheduling.
Numerical approach for unstructured quantum key distribution
Coles, Patrick J.; Metodiev, Eric M.; Lütkenhaus, Norbert
2016-01-01
Quantum key distribution (QKD) allows for communication with security guaranteed by quantum theory. The main theoretical problem in QKD is to calculate the secret key rate for a given protocol. Analytical formulas are known for protocols with symmetries, since symmetry simplifies the analysis. However, experimental imperfections break symmetries, hence the effect of imperfections on key rates is difficult to estimate. Furthermore, it is an interesting question whether (intentionally) asymmetric protocols could outperform symmetric ones. Here we develop a robust numerical approach for calculating the key rate for arbitrary discrete-variable QKD protocols. Ultimately this will allow researchers to study ‘unstructured' protocols, that is, those that lack symmetry. Our approach relies on transforming the key rate calculation to the dual optimization problem, which markedly reduces the number of parameters and hence the calculation time. We illustrate our method by investigating some unstructured protocols for which the key rate was previously unknown. PMID:27198739
Numerical approach for unstructured quantum key distribution.
Coles, Patrick J; Metodiev, Eric M; Lütkenhaus, Norbert
2016-01-01
Quantum key distribution (QKD) allows for communication with security guaranteed by quantum theory. The main theoretical problem in QKD is to calculate the secret key rate for a given protocol. Analytical formulas are known for protocols with symmetries, since symmetry simplifies the analysis. However, experimental imperfections break symmetries, hence the effect of imperfections on key rates is difficult to estimate. Furthermore, it is an interesting question whether (intentionally) asymmetric protocols could outperform symmetric ones. Here we develop a robust numerical approach for calculating the key rate for arbitrary discrete-variable QKD protocols. Ultimately this will allow researchers to study 'unstructured' protocols, that is, those that lack symmetry. Our approach relies on transforming the key rate calculation to the dual optimization problem, which markedly reduces the number of parameters and hence the calculation time. We illustrate our method by investigating some unstructured protocols for which the key rate was previously unknown. PMID:27198739
Numerical approach for unstructured quantum key distribution
NASA Astrophysics Data System (ADS)
Coles, Patrick J.; Metodiev, Eric M.; Lütkenhaus, Norbert
2016-05-01
Quantum key distribution (QKD) allows for communication with security guaranteed by quantum theory. The main theoretical problem in QKD is to calculate the secret key rate for a given protocol. Analytical formulas are known for protocols with symmetries, since symmetry simplifies the analysis. However, experimental imperfections break symmetries, hence the effect of imperfections on key rates is difficult to estimate. Furthermore, it is an interesting question whether (intentionally) asymmetric protocols could outperform symmetric ones. Here we develop a robust numerical approach for calculating the key rate for arbitrary discrete-variable QKD protocols. Ultimately this will allow researchers to study `unstructured' protocols, that is, those that lack symmetry. Our approach relies on transforming the key rate calculation to the dual optimization problem, which markedly reduces the number of parameters and hence the calculation time. We illustrate our method by investigating some unstructured protocols for which the key rate was previously unknown.
Multiobjective sensitivity analysis and optimization of distributed hydrologic model MOBIDIC
NASA Astrophysics Data System (ADS)
Yang, J.; Castelli, F.; Chen, Y.
2014-10-01
Calibration of distributed hydrologic models usually involves how to deal with the large number of distributed parameters and optimization problems with multiple but often conflicting objectives that arise in a natural fashion. This study presents a multiobjective sensitivity and optimization approach to handle these problems for the MOBIDIC (MOdello di Bilancio Idrologico DIstribuito e Continuo) distributed hydrologic model, which combines two sensitivity analysis techniques (the Morris method and the state-dependent parameter (SDP) method) with multiobjective optimization (MOO) approach ɛ-NSGAII (Non-dominated Sorting Genetic Algorithm-II). This approach was implemented to calibrate MOBIDIC with its application to the Davidson watershed, North Carolina, with three objective functions, i.e., the standardized root mean square error (SRMSE) of logarithmic transformed discharge, the water balance index, and the mean absolute error of the logarithmic transformed flow duration curve, and its results were compared with those of a single objective optimization (SOO) with the traditional Nelder-Mead simplex algorithm used in MOBIDIC by taking the objective function as the Euclidean norm of these three objectives. Results show that (1) the two sensitivity analysis techniques are effective and efficient for determining the sensitive processes and insensitive parameters: surface runoff and evaporation are very sensitive processes to all three objective functions, while groundwater recession and soil hydraulic conductivity are not sensitive and were excluded in the optimization. (2) Both MOO and SOO lead to acceptable simulations; e.g., for MOO, the average Nash-Sutcliffe value is 0.75 in the calibration period and 0.70 in the validation period. (3) Evaporation and surface runoff show similar importance for watershed water balance, while the contribution of baseflow can be ignored. (4) Compared to SOO, which was dependent on the initial starting location, MOO provides more
Optimal smoothing of site-energy distributions from adsorption isotherms
Brown, L.F.; Travis, B.J.
1983-01-01
The equation for the adsorption isotherm on a heterogeneous surface is a Fredholm integral equation. In solving it for the site-energy distribution (SED), some sort of smoothing must be carried out. The optimal amount of smoothing will give the most information that is possible without introducing nonexistent structure into the SED. Recently, Butler, Reeds, and Dawson proposed a criterion (the BRD criterion) for choosing the optimal smoothing parameter when using regularization to solve Fredholm equations. The BRD criterion is tested for its suitability in obtaining optimal SED's. This criterion is found to be too conservative. While using it never introduces nonexistent structure into the SED, significant information is often lost. At present, no simple criterion for choosing the optimal smoothing parameter exists, and a modeling approach is recommended.
Optimal design of spatial distribution networks
NASA Astrophysics Data System (ADS)
Gastner, Michael T.; Newman, M. E. J.
2006-07-01
We consider the problem of constructing facilities such as hospitals, airports, or malls in a country with a nonuniform population density, such that the average distance from a person’s home to the nearest facility is minimized. We review some previous approximate treatments of this problem that indicate that the optimal distribution of facilities should have a density that increases with population density, but does so slower than linearly, as the two-thirds power. We confirm this result numerically for the particular case of the United States with recent population data using two independent methods, one a straightforward regression analysis, the other based on density-dependent map projections. We also consider strategies for linking the facilities to form a spatial network, such as a network of flights between airports, so that the combined cost of maintenance of and travel on the network is minimized. We show specific examples of such optimal networks for the case of the United States.
Optimal operation of a potable water distribution network.
Biscos, C; Mulholland, M; Le Lann, M V; Brouckaert, C J; Bailey, R; Roustan, M
2002-01-01
This paper presents an approach to an optimal operation of a potable water distribution network. The main control objective defined during the preliminary steps was to maximise the use of low-cost power, maintaining at the same time minimum emergency levels in all reservoirs. The combination of dynamic elements (e.g. reservoirs) and discrete elements (pumps, valves, routing) makes this a challenging predictive control and constrained optimisation problem, which is being solved by MINLP (Mixed Integer Non-linear Programming). Initial experimental results show the performance of this algorithm and its ability to control the water distribution process. PMID:12448464
Optimizing Distribution of Pandemic Influenza Antiviral Drugs
Huang, Hsin-Chan; Morton, David P.; Johnson, Gregory P.; Gutfraind, Alexander; Galvani, Alison P.; Clements, Bruce; Meyers, Lauren A.
2015-01-01
We provide a data-driven method for optimizing pharmacy-based distribution of antiviral drugs during an influenza pandemic in terms of overall access for a target population and apply it to the state of Texas, USA. We found that during the 2009 influenza pandemic, the Texas Department of State Health Services achieved an estimated statewide access of 88% (proportion of population willing to travel to the nearest dispensing point). However, access reached only 34.5% of US postal code (ZIP code) areas containing <1,000 underinsured persons. Optimized distribution networks increased expected access to 91% overall and 60% in hard-to-reach regions, and 2 or 3 major pharmacy chains achieved near maximal coverage in well-populated areas. Independent pharmacies were essential for reaching ZIP code areas containing <1,000 underinsured persons. This model was developed during a collaboration between academic researchers and public health officials and is available as a decision support tool for Texas Department of State Health Services at a Web-based interface. PMID:25625858
Optimizing the Distribution of Leg Muscles for Vertical Jumping
Wong, Jeremy D.; Bobbert, Maarten F.; van Soest, Arthur J.; Gribble, Paul L.; Kistemaker, Dinant A.
2016-01-01
A goal of biomechanics and motor control is to understand the design of the human musculoskeletal system. Here we investigated human functional morphology by making predictions about the muscle volume distribution that is optimal for a specific motor task. We examined a well-studied and relatively simple human movement, vertical jumping. We investigated how high a human could jump if muscle volume were optimized for jumping, and determined how the optimal parameters improve performance. We used a four-link inverted pendulum model of human vertical jumping actuated by Hill-type muscles, that well-approximates skilled human performance. We optimized muscle volume by allowing the cross-sectional area and muscle fiber optimum length to be changed for each muscle, while maintaining constant total muscle volume. We observed, perhaps surprisingly, that the reference model, based on human anthropometric data, is relatively good for vertical jumping; it achieves 90% of the jump height predicted by a model with muscles designed specifically for jumping. Alteration of cross-sectional areas—which determine the maximum force deliverable by the muscles—constitutes the majority of improvement to jump height. The optimal distribution results in large vastus, gastrocnemius and hamstrings muscles that deliver more work, while producing a kinematic pattern essentially identical to the reference model. Work output is increased by removing muscle from rectus femoris, which cannot do work on the skeleton given its moment arm at the hip and the joint excursions during push-off. The gluteus composes a disproportionate amount of muscle volume and jump height is improved by moving it to other muscles. This approach represents a way to test hypotheses about optimal human functional morphology. Future studies may extend this approach to address other morphological questions in ethological tasks such as locomotion, and feature other sets of parameters such as properties of the skeletal
Optimizing the Distribution of Leg Muscles for Vertical Jumping.
Wong, Jeremy D; Bobbert, Maarten F; van Soest, Arthur J; Gribble, Paul L; Kistemaker, Dinant A
2016-01-01
A goal of biomechanics and motor control is to understand the design of the human musculoskeletal system. Here we investigated human functional morphology by making predictions about the muscle volume distribution that is optimal for a specific motor task. We examined a well-studied and relatively simple human movement, vertical jumping. We investigated how high a human could jump if muscle volume were optimized for jumping, and determined how the optimal parameters improve performance. We used a four-link inverted pendulum model of human vertical jumping actuated by Hill-type muscles, that well-approximates skilled human performance. We optimized muscle volume by allowing the cross-sectional area and muscle fiber optimum length to be changed for each muscle, while maintaining constant total muscle volume. We observed, perhaps surprisingly, that the reference model, based on human anthropometric data, is relatively good for vertical jumping; it achieves 90% of the jump height predicted by a model with muscles designed specifically for jumping. Alteration of cross-sectional areas-which determine the maximum force deliverable by the muscles-constitutes the majority of improvement to jump height. The optimal distribution results in large vastus, gastrocnemius and hamstrings muscles that deliver more work, while producing a kinematic pattern essentially identical to the reference model. Work output is increased by removing muscle from rectus femoris, which cannot do work on the skeleton given its moment arm at the hip and the joint excursions during push-off. The gluteus composes a disproportionate amount of muscle volume and jump height is improved by moving it to other muscles. This approach represents a way to test hypotheses about optimal human functional morphology. Future studies may extend this approach to address other morphological questions in ethological tasks such as locomotion, and feature other sets of parameters such as properties of the skeletal
Quantum Resonance Approach to Combinatorial Optimization
NASA Technical Reports Server (NTRS)
Zak, Michail
1997-01-01
It is shown that quantum resonance can be used for combinatorial optimization. The advantage of the approach is in independence of the computing time upon the dimensionality of the problem. As an example, the solution to a constraint satisfaction problem of exponential complexity is demonstrated.
Autoadaptivity and optimization in distributed ECG interpretation.
Augustyniak, Piotr
2010-03-01
This paper addresses principal issues of the ECG interpretation adaptivity in a distributed surveillance network. In the age of pervasive access to wireless digital communication, distributed biosignal interpretation networks may not only optimally solve difficult medical cases, but also adapt the data acquisition, interpretation, and transmission to the variable patient's status and availability of technical resources. The background of such adaptivity is the innovative use of results from the automatic ECG analysis to the seamless remote modification of the interpreting software. Since the medical relevance of issued diagnostic data depends on the patient's status, the interpretation adaptivity implies the flexibility of report content and frequency. Proposed solutions are based on the research on human experts behavior, procedures reliability, and usage statistics. Despite the limited scale of our prototype client-server application, the tests yielded very promising results: the transmission channel occupation was reduced by 2.6 to 5.6 times comparing to the rigid reporting mode and the improvement of the remotely computed diagnostic outcome was achieved in case of over 80% of software adaptation attempts. PMID:20064764
Steam distribution and energy delivery optimization using wireless sensors
NASA Astrophysics Data System (ADS)
Olama, Mohammed M.; Allgood, Glenn O.; Kuruganti, Teja P.; Sukumar, Sreenivas R.; Djouadi, Seddik M.; Lake, Joe E.
2011-05-01
The Extreme Measurement Communications Center at Oak Ridge National Laboratory (ORNL) explores the deployment of a wireless sensor system with a real-time measurement-based energy efficiency optimization framework in the ORNL campus. With particular focus on the 12-mile long steam distribution network in our campus, we propose an integrated system-level approach to optimize the energy delivery within the steam distribution system. We address the goal of achieving significant energy-saving in steam lines by monitoring and acting on leaking steam valves/traps. Our approach leverages an integrated wireless sensor and real-time monitoring capabilities. We make assessments on the real-time status of the distribution system by mounting acoustic sensors on the steam pipes/traps/valves and observe the state measurements of these sensors. Our assessments are based on analysis of the wireless sensor measurements. We describe Fourier-spectrum based algorithms that interpret acoustic vibration sensor data to characterize flows and classify the steam system status. We are able to present the sensor readings, steam flow, steam trap status and the assessed alerts as an interactive overlay within a web-based Google Earth geographic platform that enables decision makers to take remedial action. We believe our demonstration serves as an instantiation of a platform that extends implementation to include newer modalities to manage water flow, sewage and energy consumption.
Steam distribution and energy delivery optimization using wireless sensors
Olama, Mohammed M; Allgood, Glenn O; Kuruganti, Phani Teja; Sukumar, Sreenivas R; Djouadi, Seddik M; Lake, Joe E
2011-01-01
The Extreme Measurement Communications Center at Oak Ridge National Laboratory (ORNL) explores the deployment of a wireless sensor system with a real-time measurement-based energy efficiency optimization framework in the ORNL campus. With particular focus on the 12-mile long steam distribution network in our campus, we propose an integrated system-level approach to optimize the energy delivery within the steam distribution system. We address the goal of achieving significant energy-saving in steam lines by monitoring and acting on leaking steam valves/traps. Our approach leverages an integrated wireless sensor and real-time monitoring capabilities. We make assessments on the real-time status of the distribution system by mounting acoustic sensors on the steam pipes/traps/valves and observe the state measurements of these sensors. Our assessments are based on analysis of the wireless sensor measurements. We describe Fourier-spectrum based algorithms that interpret acoustic vibration sensor data to characterize flows and classify the steam system status. We are able to present the sensor readings, steam flow, steam trap status and the assessed alerts as an interactive overlay within a web-based Google Earth geographic platform that enables decision makers to take remedial action. We believe our demonstration serves as an instantiation of a platform that extends implementation to include newer modalities to manage water flow, sewage and energy consumption.
Multidisciplinary Approach to Linear Aerospike Nozzle Optimization
NASA Technical Reports Server (NTRS)
Korte, J. J.; Salas, A. O.; Dunn, H. J.; Alexandrov, N. M.; Follett, W. W.; Orient, G. E.; Hadid, A. H.
1997-01-01
A model of a linear aerospike rocket nozzle that consists of coupled aerodynamic and structural analyses has been developed. A nonlinear computational fluid dynamics code is used to calculate the aerodynamic thrust, and a three-dimensional fink-element model is used to determine the structural response and weight. The model will be used to demonstrate multidisciplinary design optimization (MDO) capabilities for relevant engine concepts, assess performance of various MDO approaches, and provide a guide for future application development. In this study, the MDO problem is formulated using the multidisciplinary feasible (MDF) strategy. The results for the MDF formulation are presented with comparisons against sequential aerodynamic and structural optimized designs. Significant improvements are demonstrated by using a multidisciplinary approach in comparison with the single- discipline design strategy.
Reliability analysis and optimization in the design of distributed systems
Hariri, S.
1986-01-01
Reliability measures and efficient evaluation algorithms are presented to aid in designing reliable distributed systems. The terminal reliability between a pair of computers is a good measure in computer networks. For distributed systems, to capture more effectively the redundancy in resources, such as programs and files, two new reliability measures are introduced. These measures are Distributed Program Reliability (DPR) and Distributed System Reliability (DSR). A simple and efficient algorithm, SYREL, is developed to evaluate the reliability between two computing centers. This algorithm incorporates conditional probability, set theory, and Boolean algebra in a distinct approach to achieve fast execution times and obtain compact expressions. An elegant and unified approach based on graph-theoretic techniques is used in developing algorithms to evaluate DPR and DSR measures. It performs a breadth-first search on the graph representing a given distributed system to enumerate all the subgraphs that guarantee the proper accessibility for executing the given tasks(s). These subgraphs are then used to evaluate the desired reliabilities. Several optimization algorithms are developed for designing reliable systems under a cost constraint.
Cancer Behavior: An Optimal Control Approach
Gutiérrez, Pedro J.; Russo, Irma H.; Russo, J.
2009-01-01
With special attention to cancer, this essay explains how Optimal Control Theory, mainly used in Economics, can be applied to the analysis of biological behaviors, and illustrates the ability of this mathematical branch to describe biological phenomena and biological interrelationships. Two examples are provided to show the capability and versatility of this powerful mathematical approach in the study of biological questions. The first describes a process of organogenesis, and the second the development of tumors. PMID:22247736
A Bayesian approach to optimizing cryopreservation protocols
2015-01-01
Cryopreservation is beset with the challenge of protocol alignment across a wide range of cell types and process variables. By taking a cross-sectional assessment of previously published cryopreservation data (sample means and standard errors) as preliminary meta-data, a decision tree learning analysis (DTLA) was performed to develop an understanding of target survival using optimized pruning methods based on different approaches. Briefly, a clear direction on the decision process for selection of methods was developed with key choices being the cooling rate, plunge temperature on the one hand and biomaterial choice, use of composites (sugars and proteins as additional constituents), loading procedure and cell location in 3D scaffolding on the other. Secondly, using machine learning and generalized approaches via the Naïve Bayes Classification (NBC) method, these metadata were used to develop posterior probabilities for combinatorial approaches that were implicitly recorded in the metadata. These latter results showed that newer protocol choices developed using probability elicitation techniques can unearth improved protocols consistent with multiple unidimensionally-optimized physical protocols. In conclusion, this article proposes the use of DTLA models and subsequently NBC for the improvement of modern cryopreservation techniques through an integrative approach. PMID:26131379
Optimization approaches for planning external beam radiotherapy
NASA Astrophysics Data System (ADS)
Gozbasi, Halil Ozan
Cancer begins when cells grow out of control as a result of damage to their DNA. These abnormal cells can invade healthy tissue and form tumors in various parts of the body. Chemotherapy, immunotherapy, surgery and radiotherapy are the most common treatment methods for cancer. According to American Cancer Society about half of the cancer patients receive a form of radiation therapy at some stage. External beam radiotherapy is delivered from outside the body and aimed at cancer cells to damage their DNA making them unable to divide and reproduce. The beams travel through the body and may damage nearby healthy tissue unless carefully planned. Therefore, the goal of treatment plan optimization is to find the best system parameters to deliver sufficient dose to target structures while avoiding damage to healthy tissue. This thesis investigates optimization approaches for two external beam radiation therapy techniques: Intensity-Modulated Radiation Therapy (IMRT) and Volumetric-Modulated Arc Therapy (VMAT). We develop automated treatment planning technology for IMRT that produces several high-quality treatment plans satisfying provided clinical requirements in a single invocation and without human guidance. A novel bi-criteria scoring based beam selection algorithm is part of the planning system and produces better plans compared to those produced using a well-known scoring-based algorithm. Our algorithm is very efficient and finds the beam configuration at least ten times faster than an exact integer programming approach. Solution times range from 2 minutes to 15 minutes which is clinically acceptable. With certain cancers, especially lung cancer, a patient's anatomy changes during treatment. These anatomical changes need to be considered in treatment planning. Fortunately, recent advances in imaging technology can provide multiple images of the treatment region taken at different points of the breathing cycle, and deformable image registration algorithms can
LP based approach to optimal stable matchings
Teo, Chung-Piaw; Sethuraman, J.
1997-06-01
We study the classical stable marriage and stable roommates problems using a polyhedral approach. We propose a new LP formulation for the stable roommates problem. This formulation is non-empty if and only if the underlying roommates problem has a stable matching. Furthermore, for certain special weight functions on the edges, we construct a 2-approximation algorithm for the optimal stable roommates problem. Our technique uses a crucial geometry of the fractional solutions in this formulation. For the stable marriage problem, we show that a related geometry allows us to express any fractional solution in the stable marriage polytope as convex combination of stable marriage solutions. This leads to a genuinely simple proof of the integrality of the stable marriage polytope. Based on these ideas, we devise a heuristic to solve the optimal stable roommates problem. The heuristic combines the power of rounding and cutting-plane methods. We present some computational results based on preliminary implementations of this heuristic.
Mohanasundaram, Ranganathan; Periasamy, Pappampalayam Sanmugam
2015-01-01
The current high profile debate with regard to data storage and its growth have become strategic task in the world of networking. It mainly depends on the sensor nodes called producers, base stations, and also the consumers (users and sensor nodes) to retrieve and use the data. The main concern dealt here is to find an optimal data storage position in wireless sensor networks. The works that have been carried out earlier did not utilize swarm intelligence based optimization approaches to find the optimal data storage positions. To achieve this goal, an efficient swam intelligence approach is used to choose suitable positions for a storage node. Thus, hybrid particle swarm optimization algorithm has been used to find the suitable positions for storage nodes while the total energy cost of data transmission is minimized. Clustering-based distributed data storage is utilized to solve clustering problem using fuzzy-C-means algorithm. This research work also considers the data rates and locations of multiple producers and consumers to find optimal data storage positions. The algorithm is implemented in a network simulator and the experimental results show that the proposed clustering and swarm intelligence based ODS strategy is more effective than the earlier approaches. PMID:25734182
Mohanasundaram, Ranganathan; Periasamy, Pappampalayam Sanmugam
2015-01-01
The current high profile debate with regard to data storage and its growth have become strategic task in the world of networking. It mainly depends on the sensor nodes called producers, base stations, and also the consumers (users and sensor nodes) to retrieve and use the data. The main concern dealt here is to find an optimal data storage position in wireless sensor networks. The works that have been carried out earlier did not utilize swarm intelligence based optimization approaches to find the optimal data storage positions. To achieve this goal, an efficient swam intelligence approach is used to choose suitable positions for a storage node. Thus, hybrid particle swarm optimization algorithm has been used to find the suitable positions for storage nodes while the total energy cost of data transmission is minimized. Clustering-based distributed data storage is utilized to solve clustering problem using fuzzy-C-means algorithm. This research work also considers the data rates and locations of multiple producers and consumers to find optimal data storage positions. The algorithm is implemented in a network simulator and the experimental results show that the proposed clustering and swarm intelligence based ODS strategy is more effective than the earlier approaches. PMID:25734182
Optimized Dose Distribution of Gammamed Plus Vaginal Cylinders
Supe, Sanjay S. Bijina, T.K.; Varatharaj, C.; Shwetha, B.; Arunkumar, T.; Sathiyan, S.; Ganesh, K.M.; Ravikumar, M.
2009-04-01
Endometrial carcinoma is the most common malignancy arising in the female genital tract. Intracavitary vaginal cuff irradiation may be given alone or with external beam irradiation in patients determined to be at risk for locoregional recurrence. Vaginal cylinders are often used to deliver a brachytherapy dose to the vaginal apex and upper vagina or the entire vaginal surface in the management of postoperative endometrial cancer or cervical cancer. The dose distributions of HDR vaginal cylinders must be evaluated carefully, so that clinical experiences with LDR techniques can be used in guiding optimal use of HDR techniques. The aim of this study was to optimize dose distribution for Gammamed plus vaginal cylinders. Placement of dose optimization points was evaluated for its effect on optimized dose distributions. Two different dose optimization point models were used in this study, namely non-apex (dose optimization points only on periphery of cylinder) and apex (dose optimization points on periphery and along the curvature including the apex points). Thirteen dwell positions were used for the HDR dosimetry to obtain a 6-cm active length. Thus 13 optimization points were available at the periphery of the cylinder. The coordinates of the points along the curvature depended on the cylinder diameters and were chosen for each cylinder so that four points were distributed evenly in the curvature portion of the cylinder. Diameter of vaginal cylinders varied from 2.0 to 4.0 cm. Iterative optimization routine was utilized for all optimizations. The effects of various optimization routines (iterative, geometric, equal times) was studied for the 3.0-cm diameter vaginal cylinder. The effect of source travel step size on the optimized dose distributions for vaginal cylinders was also evaluated. All optimizations in this study were carried for dose of 6 Gy at dose optimization points. For both non-apex and apex models of vaginal cylinders, doses for apex point and three dome
A Simulation Optimization Approach to Epidemic Forecasting.
Nsoesie, Elaine O; Beckman, Richard J; Shashaani, Sara; Nagaraj, Kalyani S; Marathe, Madhav V
2013-01-01
Reliable forecasts of influenza can aid in the control of both seasonal and pandemic outbreaks. We introduce a simulation optimization (SIMOP) approach for forecasting the influenza epidemic curve. This study represents the final step of a project aimed at using a combination of simulation, classification, statistical and optimization techniques to forecast the epidemic curve and infer underlying model parameters during an influenza outbreak. The SIMOP procedure combines an individual-based model and the Nelder-Mead simplex optimization method. The method is used to forecast epidemics simulated over synthetic social networks representing Montgomery County in Virginia, Miami, Seattle and surrounding metropolitan regions. The results are presented for the first four weeks. Depending on the synthetic network, the peak time could be predicted within a 95% CI as early as seven weeks before the actual peak. The peak infected and total infected were also accurately forecasted for Montgomery County in Virginia within the forecasting period. Forecasting of the epidemic curve for both seasonal and pandemic influenza outbreaks is a complex problem, however this is a preliminary step and the results suggest that more can be achieved in this area. PMID:23826222
Distributed-Computer System Optimizes SRB Joints
NASA Technical Reports Server (NTRS)
Rogers, James L., Jr.; Young, Katherine C.; Barthelemy, Jean-Francois M.
1991-01-01
Initial calculations of redesign of joint on solid rocket booster (SRB) that failed during Space Shuttle tragedy showed redesign increased weight. Optimization techniques applied to determine whether weight could be reduced while keeping joint closed and limiting stresses. Analysis system developed by use of existing software coupling structural analysis with optimization computations. Software designed executable on network of computer workstations. Took advantage of parallelism offered by finite-difference technique of computing gradients to enable several workstations to contribute simultaneously to solution of problem. Key features, effective use of redundancies in hardware and flexible software, enabling optimization to proceed with minimal delay and decreased overall time to completion.
Optimization approaches to nonlinear model predictive control
Biegler, L.T. . Dept. of Chemical Engineering); Rawlings, J.B. . Dept. of Chemical Engineering)
1991-01-01
With the development of sophisticated methods for nonlinear programming and powerful computer hardware, it now becomes useful and efficient to formulate and solve nonlinear process control problems through on-line optimization methods. This paper explores and reviews control techniques based on repeated solution of nonlinear programming (NLP) problems. Here several advantages present themselves. These include minimization of readily quantifiable objectives, coordinated and accurate handling of process nonlinearities and interactions, and systematic ways of dealing with process constraints. We motivate this NLP-based approach with small nonlinear examples and present a basic algorithm for optimization-based process control. As can be seen this approach is a straightforward extension of popular model-predictive controllers (MPCs) that are used for linear systems. The statement of the basic algorithm raises a number of questions regarding stability and robustness of the method, efficiency of the control calculations, incorporation of feedback into the controller and reliable ways of handling process constraints. Each of these will be treated through analysis and/or modification of the basic algorithm. To highlight and support this discussion, several examples are presented and key results are examined and further developed. 74 refs., 11 figs.
Optimization of an interactive distributive computer network
NASA Technical Reports Server (NTRS)
Frederick, V.
1985-01-01
The activities under a cooperative agreement for the development of a computer network are briefly summarized. Research activities covered are: computer operating systems optimization and integration; software development and implementation of the IRIS (Infrared Imaging of Shuttle) Experiment; and software design, development, and implementation of the APS (Aerosol Particle System) Experiment.
Optimality of collective choices: a stochastic approach.
Nicolis, S C; Detrain, C; Demolin, D; Deneubourg, J L
2003-09-01
Amplifying communication is a characteristic of group-living animals. This study is concerned with food recruitment by chemical means, known to be associated with foraging in most ant colonies but also with defence or nest moving. A stochastic approach of collective choices made by ants faced with different sources is developed to account for the fluctuations inherent to the recruitment process. It has been established that ants are able to optimize their foraging by selecting the most rewarding source. Our results not only confirm that selection is the result of a trail modulation according to food quality but also show the existence of an optimal quantity of laid pheromone for which the selection of a source is at the maximum, whatever the difference between the two sources might be. In terms of colony size, large colonies more easily focus their activity on one source. Moreover, the selection of the rich source is more efficient if many individuals lay small quantities of pheromone, instead of a small group of individuals laying a higher trail amount. These properties due to the stochasticity of the recruitment process can be extended to other social phenomena in which competition between different sources of information occurs. PMID:12909251
Optimal Statistical Approach to Optoacoustic Image Reconstruction
NASA Astrophysics Data System (ADS)
Zhulina, Yulia V.
2000-11-01
An optimal statistical approach is applied to the task of image reconstruction in photoacoustics. The physical essence of the task is as follows: Pulse laser irradiation induces an ultrasound wave on the inhomogeneities inside the investigated volume. This acoustic wave is received by the set of receivers outside this volume. It is necessary to reconstruct a spatial image of these inhomogeneities. Developed mathematical techniques of the radio location theory are used for solving the task. An algorithm of maximum likelihood is synthesized for the image reconstruction. The obtained algorithm is investigated by digital modeling. The number of receivers and their disposition in space are arbitrary. Results of the synthesis are applied to noninvasive medical diagnostics (breast cancer). The capability of the algorithm is tested on real signals. The image is built with use of signals obtained in vitro . The essence of the algorithm includes (i) summing of all signals in the image plane with the transform from the time coordinates of signals to the spatial coordinates of the image and (ii) optimal spatial filtration of this sum. The results are shown in the figures.
Optimal distributions for multiplex logistic networks.
Solá Conde, Luis E; Used, Javier; Romance, Miguel
2016-06-01
This paper presents some mathematical models for distribution of goods in logistic networks based on spectral analysis of complex networks. Given a steady distribution of a finished product, some numerical algorithms are presented for computing the weights in a multiplex logistic network that reach the equilibrium dynamics with high convergence rate. As an application, the logistic networks of Germany and Spain are analyzed in terms of their convergence rates. PMID:27368801
Optimal distributions for multiplex logistic networks
NASA Astrophysics Data System (ADS)
Solá Conde, Luis E.; Used, Javier; Romance, Miguel
2016-06-01
This paper presents some mathematical models for distribution of goods in logistic networks based on spectral analysis of complex networks. Given a steady distribution of a finished product, some numerical algorithms are presented for computing the weights in a multiplex logistic network that reach the equilibrium dynamics with high convergence rate. As an application, the logistic networks of Germany and Spain are analyzed in terms of their convergence rates.
Optimality of nitrogen distribution among leaves in plant canopies.
Hikosaka, Kouki
2016-05-01
The vertical gradient of the leaf nitrogen content in a plant canopy is one of the determinants of vegetation productivity. The ecological significance of the nitrogen distribution in plant canopies has been discussed in relation to its optimality; nitrogen distribution in actual plant canopies is close to but always less steep than the optimal distribution that maximizes canopy photosynthesis. In this paper, I review the optimality of nitrogen distribution within canopies focusing on recent advancements. Although the optimal nitrogen distribution has been believed to be proportional to the light gradient in the canopy, this rule holds only when diffuse light is considered; the optimal distribution is steeper when the direct light is considered. A recent meta-analysis has shown that the nitrogen gradient is similar between herbaceous and tree canopies when it is expressed as the function of the light gradient. Various hypotheses have been proposed to explain why nitrogen distribution is suboptimal. However, hypotheses explain patterns observed in some specific stands but not in others; there seems to be no general hypothesis that can explain the nitrogen distributions under different conditions. Therefore, how the nitrogen distribution in canopies is determined remains open for future studies; its understanding should contribute to the correct prediction and improvement of plant productivity under changing environments. PMID:27059755
Inversion of generalized relaxation time distributions with optimized damping parameter
NASA Astrophysics Data System (ADS)
Florsch, Nicolas; Revil, André; Camerlynck, Christian
2014-10-01
Retrieving the Relaxation Time Distribution (RDT), the Grains Size Distribution (GSD) or the Pore Size Distribution (PSD) from low-frequency impedance spectra is a major goal in geophysics. The “Generalized RTD” generalizes parametric models like Cole-Cole and many others, but remains tricky to invert since this inverse problem is ill-posed. We propose to use generalized relaxation basis function (for instance by decomposing the spectra on basis of generalized Cole-Cole relaxation elements instead of the classical Debye basis) and to use the L-curve approach to optimize the damping parameter required to get smooth and realistic inverse solutions. We apply our algorithm to three examples, one synthetic and two real data sets, and the program includes the possibility of converting the RTD into GSD or PSD by choosing the value of the constant connecting the relaxation time to the characteristic polarization size of interest. A high frequencies (typically above 1 kHz), a dielectric term in taken into account in the model. The code is provided as an open Matlab source as a supplementary file associated with this paper.
NASA Astrophysics Data System (ADS)
Tiwary, Aditya; Arya, L. D.; Arya, Rajesh; Choube, S. C.
2015-03-01
This paper describes a technique for optimizing inspection and repair based availability of distribution systems. Optimum duration between two inspections has been obtained for each feeder section with respect to cost function and subject to satisfaction of availability at each load point. Teaching learning based optimization has been used for availability optimization. The developed algorithm has been implemented on radial and meshed distribution systems. The result obtained has been compared with those obtained with differential evolution.
Parallel Harmony Search Based Distributed Energy Resource Optimization
Ceylan, Oguzhan; Liu, Guodong; Tomsovic, Kevin
2015-01-01
This paper presents a harmony search based parallel optimization algorithm to minimize voltage deviations in three phase unbalanced electrical distribution systems and to maximize active power outputs of distributed energy resources (DR). The main contribution is to reduce the adverse impacts on voltage profile during a day as photovoltaics (PVs) output or electrical vehicles (EVs) charging changes throughout a day. The IEEE 123- bus distribution test system is modified by adding DRs and EVs under different load profiles. The simulation results show that by using parallel computing techniques, heuristic methods may be used as an alternative optimization tool in electrical power distribution systems operation.
Optimal control of vaccine distribution in a rabies metapopulation model.
Asano, Erika; Gross, Louis J; Lenhart, Suzanne; Real, Leslie A
2008-04-01
We consider an SIR metapopulation model for the spread of rabies in raccoons. This system of ordinary differential equations considers subpopulations connected by movement. Vaccine for raccoons is distributed through food baits. We apply optimal control theory to find the best timing for distribution of vaccine in each of the linked subpopulations across the landscape. This strategy is chosen to limit the disease optimally by making the number of infections as small as possible while accounting for the cost of vaccination. PMID:18613731
NASA Astrophysics Data System (ADS)
Severson, Tracie Andrusiak
The long-term goal of this research is to contribute to the design of a conceptual architecture and framework for the distributed coordination of multifunction radar systems. The specific research objective of this dissertation is to apply results from graph theory, probabilistic optimization, and consensus control to the problem of distributed optimization of resource allocation for multifunction radars coordinating on their search and track assignments. For multiple radars communicating on a radar network, cooperation and agreement on a network resource management strategy increases the group's collective search and track capability as compared to non-cooperative radars. Existing resource management approaches for a single multifunction radar optimize the radar's configuration by modifying the radar waveform and beam-pattern. Also, multi-radar approaches implement a top-down, centralized sensor management framework that relies on fused sensor data, which may be impractical due to bandwidth constraints. This dissertation presents a distributed radar resource optimization approach for a network of multifunction radars. Linear and nonlinear models estimate the resource allocation for multifunction radar search and track functions. Interactions between radars occur over time-invariant balanced graphs that may be directed or undirected. The collective search area and target-assignment solution for coordinated radars is optimized by balancing resource usage across the radar network and minimizing total resource usage. Agreement on the global optimal target-assignment solution is ensured using a distributed binary consensus algorithm. Monte Carlo simulations validate the coordinated approach over uncoordinated alternatives.
NASA Astrophysics Data System (ADS)
Mao, Jiandong; Li, Jinxuan
2015-10-01
Particle size distribution is essential for describing direct and indirect radiation of aerosols. Because the relationship between the aerosol size distribution and optical thickness (AOT) is an ill-posed Fredholm integral equation of the first type, the traditional techniques for determining such size distributions, such as the Phillips-Twomey regularization method, are often ambiguous. Here, we use an approach based on an improved particle swarm optimization algorithm (IPSO) to retrieve aerosol size distribution. Using AOT data measured by a CE318 sun photometer in Yinchuan, we compared the aerosol size distributions retrieved using a simple genetic algorithm, a basic particle swarm optimization algorithm and the IPSO. Aerosol size distributions for different weather conditions were analyzed, including sunny, dusty and hazy conditions. Our results show that the IPSO-based inversion method retrieved aerosol size distributions under all weather conditions, showing great potential for similar size distribution inversions.
Energy optimization of water distribution system
Not Available
1993-02-01
In order to analyze pump operating scenarios for the system with the computer model, information on existing pumping equipment and the distribution system was collected. The information includes the following: component description and design criteria for line booster stations, booster stations with reservoirs, and high lift pumps at the water treatment plants; daily operations data for 1988; annual reports from fiscal year 1987/1988 to fiscal year 1991/1992; and a 1985 calibrated KYPIPE computer model of DWSD`s water distribution system which included input data for the maximum hour and average day demands on the system for that year. This information has been used to produce the inventory database of the system and will be used to develop the computer program to analyze the system.
A two-stage sequential linear programming approach to IMRT dose optimization
Zhang, Hao H; Meyer, Robert R; Wu, Jianzhou; Naqvi, Shahid A; Shi, Leyuan; D’Souza, Warren D
2010-01-01
The conventional IMRT planning process involves two stages in which the first stage consists of fast but approximate idealized pencil beam dose calculations and dose optimization and the second stage consists of discretization of the intensity maps followed by intensity map segmentation and a more accurate final dose calculation corresponding to physical beam apertures. Consequently, there can be differences between the presumed dose distribution corresponding to pencil beam calculations and optimization and a more accurately computed dose distribution corresponding to beam segments that takes into account collimator-specific effects. IMRT optimization is computationally expensive and has therefore led to the use of heuristic (e.g., simulated annealing and genetic algorithms) approaches that do not encompass a global view of the solution space. We modify the traditional two-stage IMRT optimization process by augmenting the second stage via an accurate Monte-Carlo based kernel-superposition dose calculations corresponding to beam apertures combined with an exact mathematical programming based sequential optimization approach that uses linear programming (SLP). Our approach was tested on three challenging clinical test cases with multileaf collimator constraints corresponding to two vendors. We compared our approach to the conventional IMRT planning approach, a direct-aperture approach and a segment weight optimization approach. Our results in all three cases indicate that the SLP approach outperformed the other approaches, achieving superior critical structure sparing. Convergence of our approach is also demonstrated. Finally, our approach has also been integrated with a commercial treatment planning system and may be utilized clinically. PMID:20071764
Optimal calibration method for water distribution water quality model.
Wu, Zheng Yi
2006-01-01
A water quality model is to predict water quality transport and fate throughout a water distribution system. The model is not only a promising alternative for analyzing disinfectant residuals in a cost-effective manner, but also a means of providing enormous engineering insights into the characteristics of water quality variation and constituent reactions. However, a water quality model is a reliable tool only if it predicts what a real system behaves. This paper presents a methodology that enables a modeler to efficiently calibrate a water quality model such that the field observed water quality values match with the model simulated values. The method is formulated to adjust the global water quality parameters and also the element-dependent water quality reaction rates for pipelines and tank storages. A genetic algorithm is applied to optimize the model parameters by minimizing the difference between the model-predicted values and the field-observed values. It is seamlessly integrated with a well-developed hydraulic and water quality modeling system. The approach has provided a generic tool and methodology for engineers to construct the sound water quality model in expedient manner. The method is applied to a real water system and demonstrated that a water quality model can be optimized for managing adequate water supply to public communities. PMID:16854809
Electronic enclosure design using distributed particle swarm optimization
NASA Astrophysics Data System (ADS)
Scriven, Ian; Lu, Junwei; Lewis, Andrew
2013-02-01
This article proposes a method for designing electromagnetic compatibility shielding enclosures using a peer-to-peer based distributed optimization system based on a modified particle swarm optimization algorithm. This optimization system is used to obtain optimal solutions to a shielding enclosure design problem efficiently with respect to both electromagnetic shielding efficiency and thermal performance. During the optimization procedure it becomes evident that optimization algorithms and computational models must be properly matched in order to achieve efficient operation. The proposed system is designed to be tolerant of faults and resource heterogeneity, and as such would find use in environments where large-scale computing resources are not available, such as smaller engineering companies, where it would allow computer-aided design by optimization using existing resources with little to no financial outlay.
A flow path model for regional water distribution optimization
NASA Astrophysics Data System (ADS)
Cheng, Wei-Chen; Hsu, Nien-Sheng; Cheng, Wen-Ming; Yeh, William W.-G.
2009-09-01
We develop a flow path model for the optimization of a regional water distribution system. The model simultaneously describes a water distribution system in two parts: (1) the water delivery relationship between suppliers and receivers and (2) the physical water delivery network. In the first part, the model considers waters from different suppliers as multiple commodities. This helps the model clearly describe water deliveries by identifying the relationship between suppliers and receivers. The physical part characterizes a physical water distribution network by all possible flow paths. The flow path model can be used to optimize not only the suppliers to each receiver but also their associated flow paths for supplying water. This characteristic leads to the optimum solution that contains the optimal scheduling results and detailed information concerning water distribution in the physical system. That is, the water rights owner, water quantity, water location, and associated flow path of each delivery action are represented explicitly in the results rather than merely as an optimized total flow quantity in each arc of a distribution network. We first verify the proposed methodology on a hypothetical water distribution system. Then we apply the methodology to the water distribution system associated with the Tou-Qian River basin in northern Taiwan. The results show that the flow path model can be used to optimize the quantity of each water delivery, the associated flow path, and the water trade and transfer strategy.
The Relationship between Distributed Leadership and Teachers' Academic Optimism
ERIC Educational Resources Information Center
Mascall, Blair; Leithwood, Kenneth; Straus, Tiiu; Sacks, Robin
2008-01-01
Purpose: The goal of this study was to examine the relationship between four patterns of distributed leadership and a modified version of a variable Hoy et al. have labeled "teachers' academic optimism." The distributed leadership patterns reflect the extent to which the performance of leadership functions is consciously aligned across the sources…
Optimal Reward Functions in Distributed Reinforcement Learning
NASA Technical Reports Server (NTRS)
Wolpert, David H.; Tumer, Kagan
2000-01-01
We consider the design of multi-agent systems so as to optimize an overall world utility function when (1) those systems lack centralized communication and control, and (2) each agents runs a distinct Reinforcement Learning (RL) algorithm. A crucial issue in such design problems is to initialize/update each agent's private utility function, so as to induce best possible world utility. Traditional 'team game' solutions to this problem sidestep this issue and simply assign to each agent the world utility as its private utility function. In previous work we used the 'Collective Intelligence' framework to derive a better choice of private utility functions, one that results in world utility performance up to orders of magnitude superior to that ensuing from use of the team game utility. In this paper we extend these results. We derive the general class of private utility functions that both are easy for the individual agents to learn and that, if learned well, result in high world utility. We demonstrate experimentally that using these new utility functions can result in significantly improved performance over that of our previously proposed utility, over and above that previous utility's superiority to the conventional team game utility.
Factorization and the synthesis of optimal feedback gains for distributed parameter systems
NASA Technical Reports Server (NTRS)
Milman, Mark H.; Scheid, Robert E.
1990-01-01
An approach based on Volterra factorization leads to a new methodology for the analysis and synthesis of the optimal feedback gain in the finite-time linear quadratic control problem for distributed parameter systems. The approach circumvents the need for solving and analyzing Riccati equations and provides a more transparent connection between the system dynamics and the optimal gain. The general results are further extended and specialized for the case where the underlying state is characterized by autonomous differential-delay dynamics. Numerical examples are given to illustrate the second-order convergence rate that is derived for an approximation scheme for the optimal feedback gain in the differential-delay problem.
Execution of Multidisciplinary Design Optimization Approaches on Common Test Problems
NASA Technical Reports Server (NTRS)
Balling, R. J.; Wilkinson, C. A.
1997-01-01
A class of synthetic problems for testing multidisciplinary design optimization (MDO) approaches is presented. These test problems are easy to reproduce because all functions are given as closed-form mathematical expressions. They are constructed in such a way that the optimal value of all variables and the objective is unity. The test problems involve three disciplines and allow the user to specify the number of design variables, state variables, coupling functions, design constraints, controlling design constraints, and the strength of coupling. Several MDO approaches were executed on two sample synthetic test problems. These approaches included single-level optimization approaches, collaborative optimization approaches, and concurrent subspace optimization approaches. Execution results are presented, and the robustness and efficiency of these approaches an evaluated for these sample problems.
Pitfalls and optimal approaches to diagnose melioidosis.
Kingsley, Paul Vijay; Arunkumar, Govindakarnavar; Tipre, Meghan; Leader, Mark; Sathiakumar, Nalini
2016-06-01
Melioidosis is a severe and fatal infectious disease in the tropics and subtropics. It presents as a febrile illness with protean manifestation ranging from chronic localized infection to acute fulminant septicemia with dissemination of infection to multiple organs characterized by abscesses. Pneumonia is the most common clinical presentation. Because of the wide range of clinical presentations, physicians may often misdiagnose and mistreat the disease for tuberculosis, pneumonia or other pyogenic infections. The purpose of this paper is to present common pitfalls in diagnosis and provide optimal approaches to enable early diagnosis and prompt treatment of melioidosis. Melioidosis may occur beyond the boundaries of endemic areas. There is no pathognomonic feature specific to a diagnosis of melioidosis. In endemic areas, physicians need to expand the diagnostic work-up to include melioidosis when confronted with clinical scenarios of pyrexia of unknown origin, progressive pneumonia or sepsis. Radiological imaging is an integral part of the diagnostic workup. Knowledge of the modes of transmission and risk factors will add support in clinically suspected cases to initiate therapy. In situations of clinically highly probable or possible cases where laboratory bacteriological confirmation is not possible, applying evidence-based criteria and empirical treatment with antimicrobials is recommended. It is of prime importance that patients undergo the full course of antimicrobial therapy to avoid relapse and recurrence. Early diagnosis and appropriate management is crucial in reducing serious complications leading to high mortality, and in preventing recurrences of the disease. Thus, there is a crucial need for promoting awareness among physicians at all levels and for improved diagnostic microbiology services. Further, the need for making the disease notifiable and/or initiating melioidosis registries in endemic countries appears to be compelling. PMID:27262061
NASA Astrophysics Data System (ADS)
Suh, Tae-Suk
The work suggested in this paper addresses a method for obtaining an optimal dose distribution for stereotactic radiosurgery. Since stereotactic radiosurgery utilizes multiple noncoplanar arcs and a three-dimensional dose evaluation technique, many beam parameters and complex optimization criteria are included in the dose optimization. Consequently, a lengthy computation time is required to optimize even the simplest case by a trial and error method. The basic approach presented here is to use both an analytical and an experimental optimization to minimize the dose to critical organs while maintaining a dose shaped to the target. The experimental approach is based on shaping the target volumes using multiple isocenters from dose experience, or on field shaping using a beam's eye view technique. The analytical approach is to adapt computer -aided design optimization to find optimum parameters automatically. Three-dimensional approximate dose models are developed to simulate the exact dose model using a spherical or cylindrical coordinate system. Optimum parameters are found much faster with the use of computer-aided design optimization techniques. The implementation of computer-aided design algorithms with the approximate dose model and the application of the algorithms to several cases are discussed. It is shown that the approximate dose model gives dose distributions similar to those of the exact dose model, which makes the approximate dose model an attractive alternative to the exact dose model, and much more efficient in terms of computer -aided design and visual optimization.
Optical clock signal distribution and packaging optimization
NASA Astrophysics Data System (ADS)
Wu, Linghui
Polymer-based waveguides for optoelectronic interconnects and packagings were fabricated by a fabrication process that is compatible with the Si CMOS packaging process. An optoelectronic interconnection layer (OIL) for the high-speed massive clock signal distribution for the Cray T-90 supercomputer board employing optical multimode channel waveguides in conjunction with surface-normal waveguide grating couplers and a 1-to-2 3 dB splitter was constructed. Equalized optical paths were realized using an optical H-tree structure having 48 optical fanouts. This device could be increased to 64 without introducing any additional complications. A 1-to-48 fanout H-tree structure using Ultradel 9000D series polyimide was fabricated. The propagation loss and splitting loss have been measured as 0.21 dB/cm and 0.4 dB/splitter at 850 nm. The power budget was discussed, and the H-tree waveguide fully satisfies the power budget requirement. A tapered waveguide coupler was employed to match the mode profile between the single-mode fiber and the multimode channel waveguides of the OIL. A thermo-optical based multimode switch was designed, fabricated, and tested. The finite difference method was used to simulate the thermal distribution in the polymer waveguide. Both stable and transient conditions have been calculated. The thermo-optical switch was fabricated and tested. The switching speed of 1 ms was experimentally confirmed, fitting well with the simulation results. Thermo-optic switching for randomly polarized light at wavelengths of 850 nm was experimental confirmed, as was a stable attenuation of 25 dB. The details of tapered waveguide fabrication were investigated. Compression-molded 3-D tapered waveguides were demonstrated for the first time. Not only the vertical depth variation but also the linear dimensions of the molded waveguides were well beyond the limits of what any other conventional waveguide fabrication method is capable of providing. Molded waveguides with
A multiple objective optimization approach to aircraft control systems design
NASA Technical Reports Server (NTRS)
Tabak, D.; Schy, A. A.; Johnson, K. G.; Giesy, D. P.
1979-01-01
The design of an aircraft lateral control system, subject to several performance criteria and constraints, is considered. While in the previous studies of the same model a single criterion optimization, with other performance requirements expressed as constraints, has been pursued, the current approach involves a multiple criteria optimization. In particular, a Pareto optimal solution is sought.
Multiobjective Optimization Using a Pareto Differential Evolution Approach
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.; Biegel, Bryan A. (Technical Monitor)
2002-01-01
Differential Evolution is a simple, fast, and robust evolutionary algorithm that has proven effective in determining the global optimum for several difficult single-objective optimization problems. In this paper, the Differential Evolution algorithm is extended to multiobjective optimization problems by using a Pareto-based approach. The algorithm performs well when applied to several test optimization problems from the literature.
A new distributed systems scheduling algorithm: a swarm intelligence approach
NASA Astrophysics Data System (ADS)
Haghi Kashani, Mostafa; Sarvizadeh, Raheleh; Jameii, Mahdi
2011-12-01
The scheduling problem in distributed systems is known as an NP-complete problem, and methods based on heuristic or metaheuristic search have been proposed to obtain optimal and suboptimal solutions. The task scheduling is a key factor for distributed systems to gain better performance. In this paper, an efficient method based on memetic algorithm is developed to solve the problem of distributed systems scheduling. With regard to load balancing efficiently, Artificial Bee Colony (ABC) has been applied as local search in the proposed memetic algorithm. The proposed method has been compared to existing memetic-Based approach in which Learning Automata method has been used as local search. The results demonstrated that the proposed method outperform the above mentioned method in terms of communication cost.
An Optimization Framework for Dynamic, Distributed Real-Time Systems
NASA Technical Reports Server (NTRS)
Eckert, Klaus; Juedes, David; Welch, Lonnie; Chelberg, David; Bruggerman, Carl; Drews, Frank; Fleeman, David; Parrott, David; Pfarr, Barbara
2003-01-01
Abstract. This paper presents a model that is useful for developing resource allocation algorithms for distributed real-time systems .that operate in dynamic environments. Interesting aspects of the model include dynamic environments, utility and service levels, which provide a means for graceful degradation in resource-constrained situations and support optimization of the allocation of resources. The paper also provides an allocation algorithm that illustrates how to use the model for producing feasible, optimal resource allocations.
Computation and Optimization of Dose Distributions for Rotational Stereotactic Radiosurgery
NASA Astrophysics Data System (ADS)
Fox, Timothy Harold
1994-01-01
The stereotactic radiosurgery technique presented in this work is the patient rotator method which rotates the patient in a sitting position with a stereotactic head frame attached to the skull while collimated non-coplanar radiation beams from a 6 MV medical linear accelerator are delivered to the target point. The hypothesis of this dissertation is that accurate, three-dimensional dose distributions can be computed and optimized for the patient rotator method used in stereotactic radiosurgery. This dissertation presents research results in three areas related to computing and optimizing dose distributions for the patient rotator method. A three-dimensional dose model was developed to calculate the dose at any point in the cerebral cortex using a circular and adjustable collimator system and the geometry of the radiation beam with respect to the target point. The computed dose distributions compared to experimental measurements had an average maximum deviation of <0.7 mm for the relative isodose distributions greater than 50%. A system was developed to qualitatively and quantitatively visualize the computed dose distributions with patient anatomy. A registration method was presented for transforming each dataset to a common reference system. A method for computing the intersections of anatomical contour's boundaries was developed to calculate dose-volume information. The system efficiently and accurately reduced the large computed, volumetric sets of dose data, medical images, and anatomical contours to manageable images and graphs. A computer-aided optimization method was developed for rigorously selecting beam angles and weights for minimizing the dose to normal tissue. Linear programming was applied as the optimization method. The computed optimal beam angles and weights for a defined objective function and dose constraints exhibited a superior dose distribution compared to a standard plan. The developed dose model, qualitative and quantitative visualization
Group Counseling Optimization: A Novel Approach
NASA Astrophysics Data System (ADS)
Eita, M. A.; Fahmy, M. M.
A new population-based search algorithm, which we call Group Counseling Optimizer (GCO), is presented. It mimics the group counseling behavior of humans in solving their problems. The algorithm is tested using seven known benchmark functions: Sphere, Rosenbrock, Griewank, Rastrigin, Ackley, Weierstrass, and Schwefel functions. A comparison is made with the recently published comprehensive learning particle swarm optimizer (CLPSO). The results demonstrate the efficiency and robustness of the proposed algorithm.
Multi-objective optimal dispatch of distributed energy resources
NASA Astrophysics Data System (ADS)
Longe, Ayomide
This thesis is composed of two papers which investigate the optimal dispatch for distributed energy resources. In the first paper, an economic dispatch problem for a community microgrid is studied. In this microgrid, each agent pursues an economic dispatch for its personal resources. In addition, each agent is capable of trading electricity with other agents through a local energy market. In this paper, a simple market structure is introduced as a framework for energy trades in a small community microgrid such as the Solar Village. It was found that both sellers and buyers benefited by participating in this market. In the second paper, Semidefinite Programming (SDP) for convex relaxation of power flow equations is used for optimal active and reactive dispatch for Distributed Energy Resources (DER). Various objective functions including voltage regulation, reduced transmission line power losses, and minimized reactive power charges for a microgrid are introduced. Combinations of these goals are attained by solving a multiobjective optimization for the proposed ORPD problem. Also, both centralized and distributed versions of this optimal dispatch are investigated. It was found that SDP made the optimal dispatch faster and distributed solution allowed for scalability.
Methodology for utilizing CD distributions for optimization of lithographic processes
NASA Astrophysics Data System (ADS)
Charrier, Edward W.; Mack, Chris A.; Zuo, Qiang; Maslow, Mark J.
1997-07-01
As the critical dimension (CD) of optical lithography processes continues to decrease, the process latitude also decreases and CD control becomes more difficult. As this trend continues, lithography engineers will find that they require improved process optimization methods which take into account the random and systematic errors that are inherent in any manufacturing process. This paper shows the methodology of such an optimization method. Lithography simulation and analysis software, combined with experimental process error distributions, are used to perform optimizations of numerical aperture and partial coherence, as well as the selection of the best OPC pattern for a given mask.
Regularized Primal-Dual Subgradient Method for Distributed Constrained Optimization.
Yuan, Deming; Ho, Daniel W C; Xu, Shengyuan
2016-09-01
In this paper, we study the distributed constrained optimization problem where the objective function is the sum of local convex cost functions of distributed nodes in a network, subject to a global inequality constraint. To solve this problem, we propose a consensus-based distributed regularized primal-dual subgradient method. In contrast to the existing methods, most of which require projecting the estimates onto the constraint set at every iteration, only one projection at the last iteration is needed for our proposed method. We establish the convergence of the method by showing that it achieves an O ( K (-1/4) ) convergence rate for general distributed constrained optimization, where K is the iteration counter. Finally, a numerical example is provided to validate the convergence of the propose method. PMID:26285232
NASA Astrophysics Data System (ADS)
Selvam, Kayalvizhi; Vinod Kumar, D. M.; Siripuram, Ramakanth
2016-06-01
In this paper, an optimization technique called peer enhanced teaching learning based optimization (PeTLBO) algorithm is used in multi-objective problem domain. The PeTLBO algorithm is parameter less so it reduced the computational burden. The proposed peer enhanced multi-objective based TLBO (PeMOTLBO) algorithm has been utilized to find a set of non-dominated optimal solutions [distributed generation (DG) location and sizing in distribution network]. The objectives considered are: real power loss and the voltage deviation subjected to voltage limits and maximum penetration level of DG in distribution network. Since the DG considered is capable of injecting real and reactive power to the distribution network the power factor is considered as 0.85 lead. The proposed peer enhanced multi-objective optimization technique provides different trade-off solutions in order to find the best compromise solution a fuzzy set theory approach has been used. The effectiveness of this proposed PeMOTLBO is tested on IEEE 33-bus and Indian 85-bus distribution system. The performance is validated with Pareto fronts and two performance metrics (C-metric and S-metric) by comparing with robust multi-objective technique called non-dominated sorting genetic algorithm-II and also with the basic TLBO.
Optimization of composite structures by estimation of distribution algorithms
NASA Astrophysics Data System (ADS)
Grosset, Laurent
The design of high performance composite laminates, such as those used in aerospace structures, leads to complex combinatorial optimization problems that cannot be addressed by conventional methods. These problems are typically solved by stochastic algorithms, such as evolutionary algorithms. This dissertation proposes a new evolutionary algorithm for composite laminate optimization, named Double-Distribution Optimization Algorithm (DDOA). DDOA belongs to the family of estimation of distributions algorithms (EDA) that build a statistical model of promising regions of the design space based on sets of good points, and use it to guide the search. A generic framework for introducing statistical variable dependencies by making use of the physics of the problem is proposed. The algorithm uses two distributions simultaneously: the marginal distributions of the design variables, complemented by the distribution of auxiliary variables. The combination of the two generates complex distributions at a low computational cost. The dissertation demonstrates the efficiency of DDOA for several laminate optimization problems where the design variables are the fiber angles and the auxiliary variables are the lamination parameters. The results show that its reliability in finding the optima is greater than that of a simple EDA and of a standard genetic algorithm, and that its advantage increases with the problem dimension. A continuous version of the algorithm is presented and applied to a constrained quadratic problem. Finally, a modification of the algorithm incorporating probabilistic and directional search mechanisms is proposed. The algorithm exhibits a faster convergence to the optimum and opens the way for a unified framework for stochastic and directional optimization.
New approaches to the design optimization of hydrofoils
NASA Astrophysics Data System (ADS)
Beyhaghi, Pooriya; Meneghello, Gianluca; Bewley, Thomas
2015-11-01
Two simulation-based approaches are developed to optimize the design of hydrofoils for foiling catamarans, with the objective of maximizing efficiency (lift/drag). In the first, a simple hydrofoil model based on the vortex-lattice method is coupled with a hybrid global and local optimization algorithm that combines our Delaunay-based optimization algorithm with a Generalized Pattern Search. This optimization procedure is compared with the classical Newton-based optimization method. The accuracy of the vortex-lattice simulation of the optimized design is compared with a more accurate and computationally expensive LES-based simulation. In the second approach, the (expensive) LES model of the flow is used directly during the optimization. A modified Delaunay-based optimization algorithm is used to maximize the efficiency of the optimization, which measures a finite-time averaged approximation of the infinite-time averaged value of an ergodic and stationary process. Since the optimization algorithm takes into account the uncertainty of the finite-time averaged approximation of the infinite-time averaged statistic of interest, the total computational time of the optimization algorithm is significantly reduced. Results from the two different approaches are compared.
Russian Loanword Adaptation in Persian; Optimal Approach
ERIC Educational Resources Information Center
Kambuziya, Aliye Kord Zafaranlu; Hashemi, Eftekhar Sadat
2011-01-01
In this paper we analyzed some of the phonological rules of Russian loanword adaptation in Persian, on the view of Optimal Theory (OT) (Prince & Smolensky, 1993/2004). It is the first study of phonological process on Russian loanwords adaptation in Persian. By gathering about 50 current Russian loanwords, we selected some of them to analyze. We…
Optimal cloning for finite distributions of coherent states
Cochrane, P.T.; Ralph, T.C.; Dolinska, A.
2004-04-01
We derive optimal cloning limits for finite Gaussian distributions of coherent states and describe techniques for achieving them. We discuss the relation of these limits to state estimation and the no-cloning limit in teleportation. A qualitatively different cloning limit is derived for a single-quadrature Gaussian quantum cloner.
NASA Astrophysics Data System (ADS)
Hsiao, Kuang-Ting; Devillard, Mathieu; Advani, Suresh G.
2004-05-01
In the vacuum assisted resin transfer moulding (VARTM) process, using a flow distribution network such as flow channels and high permeability fabrics can accelerate the resin infiltration of the fibre reinforcement during the manufacture of composite parts. The flow distribution network significantly influences the fill time and fill pattern and is essential for the process design. The current practice has been to cover the top surface of the fibre preform with the distribution media with the hope that the resin will flood the top surface immediately and penetrate through the thickness. However, this approach has some drawbacks. One is when the resin finds its way to the vent before it has penetrated the preform entirely, which results in a defective part or resin wastage. Also, if the composite structure contains ribs or inserts, this approach invariably results in dry spots. Instead of this intuitive approach, we propose a science-based approach to design the layout of the distribution network. Our approach uses flow simulation of the resin into the network and the preform and a genetic algorithm to optimize the flow distribution network. An experimental case study of a co-cured rib structure is conducted to demonstrate the design procedure and validate the optimized flow distribution network design. Good agreement between the flow simulations and the experimental results was observed. It was found that the proposed design algorithm effectively optimized the flow distribution network of the part considered in our case study and hence should prove to be a useful tool to extend the VARTM process to manufacture of complex structures with effective use of the distribution network layup.
A Novel Particle Swarm Optimization Approach for Grid Job Scheduling
NASA Astrophysics Data System (ADS)
Izakian, Hesam; Tork Ladani, Behrouz; Zamanifar, Kamran; Abraham, Ajith
This paper represents a Particle Swarm Optimization (PSO) algorithm, for grid job scheduling. PSO is a population-based search algorithm based on the simulation of the social behavior of bird flocking and fish schooling. Particles fly in problem search space to find optimal or near-optimal solutions. In this paper we used a PSO approach for grid job scheduling. The scheduler aims at minimizing makespan and flowtime simultaneously. Experimental studies show that the proposed novel approach is more efficient than the PSO approach reported in the literature.
System approach to distributed sensor management
NASA Astrophysics Data System (ADS)
Mayott, Gregory; Miller, Gordon; Harrell, John; Hepp, Jared; Self, Mid
2010-04-01
Since 2003, the US Army's RDECOM CERDEC Night Vision Electronic Sensor Directorate (NVESD) has been developing a distributed Sensor Management System (SMS) that utilizes a framework which demonstrates application layer, net-centric sensor management. The core principles of the design support distributed and dynamic discovery of sensing devices and processes through a multi-layered implementation. This results in a sensor management layer that acts as a System with defined interfaces for which the characteristics, parameters, and behaviors can be described. Within the framework, the definition of a protocol is required to establish the rules for how distributed sensors should operate. The protocol defines the behaviors, capabilities, and message structures needed to operate within the functional design boundaries. The protocol definition addresses the requirements for a device (sensors or processes) to dynamically join or leave a sensor network, dynamically describe device control and data capabilities, and allow dynamic addressing of publish and subscribe functionality. The message structure is a multi-tiered definition that identifies standard, extended, and payload representations that are specifically designed to accommodate the need for standard representations of common functions, while supporting the need for feature-based functions that are typically vendor specific. The dynamic qualities of the protocol enable a User GUI application the flexibility of mapping widget-level controls to each device based on reported capabilities in real-time. The SMS approach is designed to accommodate scalability and flexibility within a defined architecture. The distributed sensor management framework and its application to a tactical sensor network will be described in this paper.
Molecular Approaches for Optimizing Vitamin D Supplementation.
Carlberg, Carsten
2016-01-01
Vitamin D can be synthesized endogenously within UV-B exposed human skin. However, avoidance of sufficient sun exposure via predominant indoor activities, textile coverage, dark skin at higher latitude, and seasonal variations makes the intake of vitamin D fortified food or direct vitamin D supplementation necessary. Vitamin D has via its biologically most active metabolite 1α,25-dihydroxyvitamin D and the transcription factor vitamin D receptor a direct effect on the epigenome and transcriptome of many human tissues and cell types. Different interpretation of results from observational studies with vitamin D led to some dispute in the field on the desired optimal vitamin D level and the recommended daily supplementation. This chapter will provide background on the epigenome- and transcriptome-wide functions of vitamin D and will outline how this insight may be used for determining of the optimal vitamin D status of human individuals. These reflections will lead to the concept of a personal vitamin D index that may be a better guideline for an optimized vitamin D supplementation than population-based recommendations. PMID:26827955
Scalar and Multivariate Approaches for Optimal Network Design in Antarctica
NASA Astrophysics Data System (ADS)
Hryniw, Natalia
Observations are crucial for weather and climate, not only for daily forecasts and logistical purposes, for but maintaining representative records and for tuning atmospheric models. Here scalar theory for optimal network design is expanded in a multivariate framework, to allow for optimal station siting for full field optimization. Ensemble sensitivity theory is expanded to produce the covariance trace approach, which optimizes for the trace of the covariance matrix. Relative entropy is also used for multivariate optimization as an information theory approach for finding optimal locations. Antarctic surface temperature data is used as a testbed for these methods. Both methods produce different results which are tied to the fundamental physical parameters of the Antarctic temperature field.
NASA Technical Reports Server (NTRS)
Armand, J. P.
1972-01-01
An extension of classical methods of optimal control theory for systems described by ordinary differential equations to distributed-parameter systems described by partial differential equations is presented. An application is given involving the minimum-mass design of a simply-supported shear plate with a fixed fundamental frequency of vibration. An optimal plate thickness distribution in analytical form is found. The case of a minimum-mass design of an elastic sandwich plate whose fundamental frequency of free vibration is fixed. Under the most general conditions, the optimization problem reduces to the solution of two simultaneous partial differential equations involving the optimal thickness distribution and the modal displacement. One equation is the uniform energy distribution expression which was found by Ashley and McIntosh for the optimal design of one-dimensional structures with frequency constraints, and by Prager and Taylor for various design criteria in one and two dimensions. The second equation requires dynamic equilibrium at the preassigned vibration frequency.
A system approach to aircraft optimization
NASA Technical Reports Server (NTRS)
Sobieszczanski-Sobieski, Jaroslaw
1991-01-01
Mutual couplings among the mathematical models of physical phenomena and parts of a system such as an aircraft complicate the design process because each contemplated design change may have a far reaching consequence throughout the system. Techniques are outlined for computing these influences as system design derivatives useful for both judgemental and formal optimization purposes. The techniques facilitate decomposition of the design process into smaller, more manageable tasks and they form a methodology that can easily fit into existing engineering organizations and incorporate their design tools.
[Approaches to the optimization of medical services for the population].
Babanov, S A
2001-01-01
Describes modern approaches to optimization of medical care of the population under conditions of finance deficiency. Expenditure cutting is evaluated from viewpoint of "proof" medicine (allotting finances for concrete patients and services). PMID:11515111
Optimization of an Aeroservoelastic Wing with Distributed Multiple Control Surfaces
NASA Technical Reports Server (NTRS)
Stanford, Bret K.
2015-01-01
This paper considers the aeroelastic optimization of a subsonic transport wingbox under a variety of static and dynamic aeroelastic constraints. Three types of design variables are utilized: structural variables (skin thickness, stiffener details), the quasi-steady deflection scheduling of a series of control surfaces distributed along the trailing edge for maneuver load alleviation and trim attainment, and the design details of an LQR controller, which commands oscillatory hinge moments into those same control surfaces. Optimization problems are solved where a closed loop flutter constraint is forced to satisfy the required flight margin, and mass reduction benefits are realized by relaxing the open loop flutter requirements.
Distributed memory approaches for robotic neural controllers
NASA Technical Reports Server (NTRS)
Jorgensen, Charles C.
1990-01-01
The suitability is explored of two varieties of distributed memory neutral networks as trainable controllers for a simulated robotics task. The task requires that two cameras observe an arbitrary target point in space. Coordinates of the target on the camera image planes are passed to a neural controller which must learn to solve the inverse kinematics of a manipulator with one revolute and two prismatic joints. Two new network designs are evaluated. The first, radial basis sparse distributed memory (RBSDM), approximates functional mappings as sums of multivariate gaussians centered around previously learned patterns. The second network types involved variations of Adaptive Vector Quantizers or Self Organizing Maps. In these networks, random N dimensional points are given local connectivities. They are then exposed to training patterns and readjust their locations based on a nearest neighbor rule. Both approaches are tested based on their ability to interpolate manipulator joint coordinates for simulated arm movement while simultaneously performing stereo fusion of the camera data. Comparisons are made with classical k-nearest neighbor pattern recognition techniques.
Optimization approaches to volumetric modulated arc therapy planning.
Unkelbach, Jan; Bortfeld, Thomas; Craft, David; Alber, Markus; Bangert, Mark; Bokrantz, Rasmus; Chen, Danny; Li, Ruijiang; Xing, Lei; Men, Chunhua; Nill, Simeon; Papp, Dávid; Romeijn, Edwin; Salari, Ehsan
2015-03-01
Volumetric modulated arc therapy (VMAT) has found widespread clinical application in recent years. A large number of treatment planning studies have evaluated the potential for VMAT for different disease sites based on the currently available commercial implementations of VMAT planning. In contrast, literature on the underlying mathematical optimization methods used in treatment planning is scarce. VMAT planning represents a challenging large scale optimization problem. In contrast to fluence map optimization in intensity-modulated radiotherapy planning for static beams, VMAT planning represents a nonconvex optimization problem. In this paper, the authors review the state-of-the-art in VMAT planning from an algorithmic perspective. Different approaches to VMAT optimization, including arc sequencing methods, extensions of direct aperture optimization, and direct optimization of leaf trajectories are reviewed. Their advantages and limitations are outlined and recommendations for improvements are discussed. PMID:25735291
Optimization approaches to volumetric modulated arc therapy planning
Unkelbach, Jan Bortfeld, Thomas; Craft, David; Alber, Markus; Bangert, Mark; Bokrantz, Rasmus; Chen, Danny; Li, Ruijiang; Xing, Lei; Men, Chunhua; Nill, Simeon; Papp, Dávid; Romeijn, Edwin; Salari, Ehsan
2015-03-15
Volumetric modulated arc therapy (VMAT) has found widespread clinical application in recent years. A large number of treatment planning studies have evaluated the potential for VMAT for different disease sites based on the currently available commercial implementations of VMAT planning. In contrast, literature on the underlying mathematical optimization methods used in treatment planning is scarce. VMAT planning represents a challenging large scale optimization problem. In contrast to fluence map optimization in intensity-modulated radiotherapy planning for static beams, VMAT planning represents a nonconvex optimization problem. In this paper, the authors review the state-of-the-art in VMAT planning from an algorithmic perspective. Different approaches to VMAT optimization, including arc sequencing methods, extensions of direct aperture optimization, and direct optimization of leaf trajectories are reviewed. Their advantages and limitations are outlined and recommendations for improvements are discussed.
NASA Astrophysics Data System (ADS)
Kela, K. B.; Arya, L. D.
2014-09-01
This paper describes a methodology for determination of optimum failure rate and repair time for each section of a radial distribution system. An objective function in terms of reliability indices and their target values is selected. These indices depend mainly on failure rate and repair time of a section present in a distribution network. A cost is associated with the modification of failure rate and repair time. Hence the objective function is optimized subject to failure rate and repair time of each section of the distribution network considering the total budget allocated to achieve the task. The problem has been solved using differential evolution and bare bones particle swarm optimization. The algorithm has been implemented on a sample radial distribution system.
Distribution function approach to redshift space distortions
Seljak, Uroš; McDonald, Patrick E-mail: pvmcdonald@lbl.gov
2011-11-01
We develop a phase space distribution function approach to redshift space distortions (RSD), in which the redshift space density can be written as a sum over velocity moments of the distribution function. These moments are density weighted and have well defined physical interpretation: their lowest orders are density, momentum density, and stress energy density. The series expansion is convergent if kμu/aH < 1, where k is the wavevector, H the Hubble parameter, u the typical gravitational velocity and μ = cos θ, with θ being the angle between the Fourier mode and the line of sight. We perform an expansion of these velocity moments into helicity modes, which are eigenmodes under rotation around the axis of Fourier mode direction, generalizing the scalar, vector, tensor decomposition of perturbations to an arbitrary order. We show that only equal helicity moments correlate and derive the angular dependence of the individual contributions to the redshift space power spectrum. We show that the dominant term of μ{sup 2} dependence on large scales is the cross-correlation between the density and scalar part of momentum density, which can be related to the time derivative of the matter power spectrum. Additional terms contributing to μ{sup 2} and dominating on small scales are the vector part of momentum density-momentum density correlations, the energy density-density correlations, and the scalar part of anisotropic stress density-density correlations. The second term is what is usually associated with the small scale Fingers-of-God damping and always suppresses power, but the first term comes with the opposite sign and always adds power. Similarly, we identify 7 terms contributing to μ{sup 4} dependence. Some of the advantages of the distribution function approach are that the series expansion converges on large scales and remains valid in multi-stream situations. We finish with a brief discussion of implications for RSD in galaxies relative to dark matter
Universal scaling of optimal current distribution in transportation networks.
Simini, Filippo; Rinaldo, Andrea; Maritan, Amos
2009-04-01
Transportation networks are inevitably selected with reference to their global cost which depends on the strengths and the distribution of the embedded currents. We prove that optimal current distributions for a uniformly injected d -dimensional network exhibit robust scale-invariance properties, independently of the particular cost function considered, as long as it is convex. We find that, in the limit of large currents, the distribution decays as a power law with an exponent equal to (2d-1)/(d-1). The current distribution can be exactly calculated in d=2 for all values of the current. Numerical simulations further suggest that the scaling properties remain unchanged for both random injections and by randomizing the convex cost functions. PMID:19518304
NASA Astrophysics Data System (ADS)
Meyer, Burghard Christian; Lescot, Jean-Marie; Laplana, Ramon
2009-02-01
Two spatial optimization approaches, developed from the opposing perspectives of ecological economics and landscape planning and aimed at the definition of new distributions of farming systems and of land use elements, are compared and integrated into a general framework. The first approach, applied to a small river catchment in southwestern France, uses SWAT (Soil and Water Assessment Tool) and a weighted goal programming model in combination with a geographical information system (GIS) for the determination of optimal farming system patterns, based on selected objective functions to minimize deviations from the goals of reducing nitrogen and maintaining income. The second approach, demonstrated in a suburban landscape near Leipzig, Germany, defines a GIS-based predictive habitat model for the search of unfragmented regions suitable for hare populations ( Lepus europaeus), followed by compromise optimization with the aim of planning a new habitat structure distribution for the hare. The multifunctional problem is solved by the integration of the three landscape functions (“production of cereals,” “resistance to soil erosion by water,” and “landscape water retention”). Through the comparison, we propose a framework for the definition of optimal land use patterns based on optimization techniques. The framework includes the main aspects to solve land use distribution problems with the aim of finding the optimal or best land use decisions. It integrates indicators, goals of spatial developments and stakeholders, including weighting, and model tools for the prediction of objective functions and risk assessments. Methodological limits of the uncertainty of data and model outcomes are stressed. The framework clarifies the use of optimization techniques in spatial planning.
NASA Astrophysics Data System (ADS)
Kawasaki, Shoji; Hayashi, Yasuhiro; Matsuki, Junya; Kikuya, Hirotaka; Hojo, Masahide
Recently, the harmonic troubles in a distribution network are worried in the background of the increase of the connection of distributed generation (DG) and the spread of the power electronics equipments. As one of the strategies, control the harmonic voltage by installing an active filter (AF) has been researched. In this paper, the authors propose a computation method to determine the optimal allocations, gains and installation number of AFs so as to minimize the maximum value of voltage total harmonic distortion (THD) for a distribution network with DGs. The developed method is based on particle swarm optimization (PSO) which is one of the nonlinear optimization methods. Especially, in this paper, the case where the harmonic voltage or the harmonic current in a distribution network is assumed by connecting many DGs through the inverters, and the authors propose a determination method of the optimal allocation and gain of AF that has the harmonic restrictive effect in the whole distribution network. Moreover, the authors propose also about a determination method of the necessary minimum installation number of AFs, by taking into consideration also about the case where the target value of harmonic suppression cannot be reached, by one set only of AF. In order to verify the validity and effectiveness of the proposed method, the numerical simulations are carried out by using an analytical model of distribution network with DGs.
NASA Astrophysics Data System (ADS)
Ayvaz, M. Tamer
2016-07-01
In this study, a new simulation-optimization approach is proposed for solving the areal groundwater pollution source identification problems which is an ill-posed inverse problem. In the simulation part of the proposed approach, groundwater flow and pollution transport processes are simulated by modeling the given aquifer system on MODFLOW and MT3DMS models. The developed simulation model is then integrated to a newly proposed hybrid optimization model where a binary genetic algorithm and a generalized reduced gradient method are mutually used. This is a novel approach and it is employed for the first time in the areal pollution source identification problems. The objective of the proposed hybrid optimization approach is to simultaneously identify the spatial distributions and input concentrations of the unknown areal groundwater pollution sources by using the limited number of pollution concentration time series at the monitoring well locations. The applicability of the proposed simulation-optimization approach is evaluated on a hypothetical aquifer model for different pollution source distributions. Furthermore, model performance is evaluated for measurement error conditions, different genetic algorithm parameter combinations, different numbers and locations of the monitoring wells, and different heterogeneous hydraulic conductivity fields. Identified results indicated that the proposed simulation-optimization approach may be an effective way to solve the areal groundwater pollution source identification problems.
Approaches for Informing Optimal Dose of Behavioral Interventions
King, Heather A.; Maciejewski, Matthew L.; Allen, Kelli D.; Yancy, William S.; Shaffer, Jonathan A.
2015-01-01
Background There is little guidance about to how select dose parameter values when designing behavioral interventions. Purpose The purpose of this study is to present approaches to inform intervention duration, frequency, and amount when (1) the investigator has no a priori expectation and is seeking a descriptive approach for identifying and narrowing the universe of dose values or (2) the investigator has an a priori expectation and is seeking validation of this expectation using an inferential approach. Methods Strengths and weaknesses of various approaches are described and illustrated with examples. Results Descriptive approaches include retrospective analysis of data from randomized trials, assessment of perceived optimal dose via prospective surveys or interviews of key stakeholders, and assessment of target patient behavior via prospective, longitudinal, observational studies. Inferential approaches include nonrandomized, early-phase trials and randomized designs. Conclusions By utilizing these approaches, researchers may more efficiently apply resources to identify the optimal values of dose parameters for behavioral interventions. PMID:24722964
Optimality approaches to describe characteristic fluvial patterns on landscapes
Paik, Kyungrock; Kumar, Praveen
2010-01-01
Mother Nature has left amazingly regular geomorphic patterns on the Earth's surface. These patterns are often explained as having arisen as a result of some optimal behaviour of natural processes. However, there is little agreement on what is being optimized. As a result, a number of alternatives have been proposed, often with little a priori justification with the argument that successful predictions will lend a posteriori support to the hypothesized optimality principle. Given that maximum entropy production is an optimality principle attempting to predict the microscopic behaviour from a macroscopic characterization, this paper provides a review of similar approaches with the goal of providing a comparison and contrast between them to enable synthesis. While assumptions of optimal behaviour approach a system from a macroscopic viewpoint, process-based formulations attempt to resolve the mechanistic details whose interactions lead to the system level functions. Using observed optimality trends may help simplify problem formulation at appropriate levels of scale of interest. However, for such an approach to be successful, we suggest that optimality approaches should be formulated at a broader level of environmental systems' viewpoint, i.e. incorporating the dynamic nature of environmental variables and complex feedback mechanisms between fluvial and non-fluvial processes. PMID:20368257
Optimization of coupled systems: A critical overview of approaches
NASA Technical Reports Server (NTRS)
Balling, R. J.; Sobieszczanski-Sobieski, J.
1994-01-01
A unified overview is given of problem formulation approaches for the optimization of multidisciplinary coupled systems. The overview includes six fundamental approaches upon which a large number of variations may be made. Consistent approach names and a compact approach notation are given. The approaches are formulated to apply to general nonhierarchic systems. The approaches are compared both from a computational viewpoint and a managerial viewpoint. Opportunities for parallelism of both computation and manpower resources are discussed. Recommendations regarding the need for future research are advanced.
Annular flow optimization: A new integrated approach
Maglione, R.; Robotti, G.; Romagnoli, R.
1997-07-01
During the drilling stage of an oil and gas well the hydraulic circuit of the mud assumes great importance with respect to most of the numerous and various constituting parts (mostly in the annular sections). Each of them has some points to be satisfied in order to guarantee both the safety of the operations and the performance optimization of each of the single elements of the circuit. The most important tasks for the annular part of the drilling hydraulic circuit are the following: (1) Maximum available pressure to the last casing shoe; (2) avoid borehole wall erosions; and (3) guarantee the hole cleaning. A new integrated system considering all the elements of the annular part of the drilling hydraulic circuit and the constraints imposed from each of them has been realized. In this way the family of the flow parameters (mud rheology and pump rate) satisfying simultaneously all the variables of the annular section has been found. Finally two examples regarding a standard and narrow annular section (slim hole) will be reported, showing briefly all the steps of the calculations until reaching the optimum flow parameters family (for that operational condition of drilling) that satisfies simultaneous all the flow parameters limitations imposed by the elements of the annular section circuit.
Strategic approaches to optimizing peptide ADME properties.
Di, Li
2015-01-01
Development of peptide drugs is challenging but also quite rewarding. Five blockbuster peptide drugs are currently on the market, and six new peptides received first marketing approval as new molecular entities in 2012. Although peptides only represent 2% of the drug market, the market is growing twice as quickly and might soon occupy a larger niche. Natural peptides typically have poor absorption, distribution, metabolism, and excretion (ADME) properties with rapid clearance, short half-life, low permeability, and sometimes low solubility. Strategies have been developed to improve peptide drugability through enhancing permeability, reducing proteolysis and renal clearance, and prolonging half-life. In vivo, in vitro, and in silico tools are available to evaluate ADME properties of peptides, and structural modification strategies are in place to improve peptide developability. PMID:25366889
Comparative Properties of Collaborative Optimization and Other Approaches to MDO
NASA Technical Reports Server (NTRS)
Alexandrov, Natalia M.; Lewis, Robert Michael
1999-01-01
We, discuss criteria by which one can classify, analyze, and evaluate approaches to solving multidisciplinary design optimization (MDO) problems. Central to our discussion is the often overlooked distinction between questions of formulating MDO problems and solving the resulting computational problem. We illustrate our general remarks by comparing several approaches to MDO that have been proposed.
Comparative Properties of Collaborative Optimization and other Approaches to MDO
NASA Technical Reports Server (NTRS)
Alexandrov, Natalia M.; Lewis, Robert Michael
1999-01-01
We discuss criteria by which one can classify, analyze, and evaluate approaches to solving multidisciplinary design optimization (MDO) problems. Central to our discussion is the often overlooked distinction between questions of formulating MDO problems and solving the resulting computational problem. We illustrate our general remarks by comparing several approaches to MDO that have been proposed.
A collective neurodynamic optimization approach to bound-constrained nonconvex optimization.
Yan, Zheng; Wang, Jun; Li, Guocheng
2014-07-01
This paper presents a novel collective neurodynamic optimization method for solving nonconvex optimization problems with bound constraints. First, it is proved that a one-layer projection neural network has a property that its equilibria are in one-to-one correspondence with the Karush-Kuhn-Tucker points of the constrained optimization problem. Next, a collective neurodynamic optimization approach is developed by utilizing a group of recurrent neural networks in framework of particle swarm optimization by emulating the paradigm of brainstorming. Each recurrent neural network carries out precise constrained local search according to its own neurodynamic equations. By iteratively improving the solution quality of each recurrent neural network using the information of locally best known solution and globally best known solution, the group can obtain the global optimal solution to a nonconvex optimization problem. The advantages of the proposed collective neurodynamic optimization approach over evolutionary approaches lie in its constraint handling ability and real-time computational efficiency. The effectiveness and characteristics of the proposed approach are illustrated by using many multimodal benchmark functions. PMID:24705545
Structural approaches to spin glasses and optimization problems
NASA Astrophysics Data System (ADS)
de Sanctis, Luca
We introduce the concept of Random Multi-Overlap Structure (RaMOSt) as a generalization of the one introduced by M. Aizenman et al. for non-diluted spin glasses. We use this concept to find generalized bounds for the free energy of the Viana-Bray model of diluted spin glasses and to formulate and prove the Extended Variational Principle that implicitly provides the free energy of the model. Then we exhibit a theorem for the limiting RaMOSt, analogous to the one found by F. Guerra for the Sherrington-Kirkpatrick model, that describes some stability properties of the model. We also show how our technique can be used to prove the existence of the thermodynamic limit of the free energy. We then propose an ultrametric breaking of replica symmetry for diluted spin glasses in the framework of Random Multi-Overlap Structures (RaMOSt). Such a proposal is closer to the Parisi theory for non-diluted spin glasses than the theory based on the iterative approach. Our approach allows to formulate an ansatz in which the Broken Replica Symmetry trial function depends on a set of numbers, over which one has to take the infimum (as opposed to a nested chain of probabilty distributions). Our scheme suggests that the order parameter is determined by the probability distribution of the multi-overlap in a similar sense as in the non-diluted case, and it is not necessarily a functional. Such results are then extended to the K-SAT and p-XOR-SAT optimization problems, and to the spherical mean field spin glass. The ultrametric structure exhibits a factorization property similar to the one of the optimal structures for the Viana-Bray model. The present work paves the way to a revisited Parisi theory for diluted spin systems. Moreover, it emphasizes some structural analogies among different models, which also seem to be plausible for models that still escape good mathematical control. This structural analysis seems quite promising both mathematically and physically.
An approach to structure/control simultaneous optimization for large flexible spacecraft
NASA Technical Reports Server (NTRS)
Onoda, Junjiro; Haftka, Raphael T.
1987-01-01
This paper presents an approach to the simultaneous optimal design of a structure and control system for large flexible spacecrafts based on realistic objective function and constraints. The weight or total cost of structure and control system is minimized subject to constraints on the magnitude of response to a given disturbance involving both rigid-body and elastic modes. A nested optimization technique is developed to solve the combined problem. As an example, simple beam-like spacecraft under a steady-state white-noise disturbance force is investigated and some results of optimization are presented. In the numerical examples, the stiffness distribution, location of controller, and control gains are optimized. Direct feedback control and linear quadratic optimal controls laws are used with both inertial and noninertial disturbing force. It is shown that the total cost is sensitive to the overall structural stiffness, so that simultaneous optimization of the structure and control system is indeed useful.
Liu, Guodong; Ceylan, Oguzhan; Xu, Yan; Tomsovic, Kevin
2015-01-01
With increasing penetration of distributed generation in the distribution networks (DN), the secure and optimal operation of DN has become an important concern. In this paper, an iterative quadratic constrained quadratic programming model to minimize voltage deviations and maximize distributed energy resource (DER) active power output in a three phase unbalanced distribution system is developed. The optimization model is based on the linearized sensitivity coefficients between controlled variables (e.g., node voltages) and control variables (e.g., real and reactive power injections of DERs). To avoid the oscillation of solution when it is close to the optimum, a golden search method is introduced to control the step size. Numerical simulations on modified IEEE 13 nodes test feeders show the efficiency of the proposed model. Compared to the results solved by heuristic search (harmony algorithm), the proposed model converges quickly to the global optimum.
An Optimality-Based Fully-Distributed Watershed Ecohydrological Model
NASA Astrophysics Data System (ADS)
Chen, L., Jr.
2015-12-01
Watershed ecohydrological models are essential tools to assess the impact of climate change and human activities on hydrological and ecological processes for watershed management. Existing models can be classified as empirically based model, quasi-mechanistic and mechanistic models. The empirically based and quasi-mechanistic models usually adopt empirical or quasi-empirical equations, which may be incapable of capturing non-stationary dynamics of target processes. Mechanistic models that are designed to represent process feedbacks may capture vegetation dynamics, but often have more demanding spatial and temporal parameterization requirements to represent vegetation physiological variables. In recent years, optimality based ecohydrological models have been proposed which have the advantage of reducing the need for model calibration by assuming critical aspects of system behavior. However, this work to date has been limited to plot scale that only considers one-dimensional exchange of soil moisture, carbon and nutrients in vegetation parameterization without lateral hydrological transport. Conceptual isolation of individual ecosystem patches from upslope and downslope flow paths compromises the ability to represent and test the relationships between hydrology and vegetation in mountainous and hilly terrain. This work presents an optimality-based watershed ecohydrological model, which incorporates lateral hydrological process influence on hydrological flow-path patterns that emerge from the optimality assumption. The model has been tested in the Walnut Gulch watershed and shows good agreement with observed temporal and spatial patterns of evapotranspiration (ET) and gross primary productivity (GPP). Spatial variability of ET and GPP produced by the model match spatial distribution of TWI, SCA, and slope well over the area. Compared with the one dimensional vegetation optimality model (VOM), we find that the distributed VOM (DisVOM) produces more reasonable spatial
Optimization of the light distribution of luminaries for tunnel and street lighting
NASA Astrophysics Data System (ADS)
Pachamanov, Angel; Pachamanova, Dessislava
2008-01-01
An optimization approach is discussed for the problem of designing light distributions for luminaries for tunnel and street lighting which satisfy luminance-based and glare-based requirements set by the International Commision on Illumination (CIE) and the European Committee for Standardization (CEN) while consuming minimal power. The problem is formulated as a linear optimization problem that incorporates the geometrical parameters of the lighting installation and the reflective properties of the road surface. A polynomial representation for the light intensities is used in order to construct smooth light distribution curves, so that the luminaries can be manufactured with existing technology. Computational experiments indicate that optimization models can substantially improve the lighting parameters of luminaries, and make lighting installations more energy-efficient.
A Communication-Optimal Framework for Contracting Distributed Tensors
Rajbhandari, Samyam; NIkam, Akshay; Lai, Pai-Wei; Stock, Kevin; Krishnamoorthy, Sriram; Sadayappan, Ponnuswamy
2014-11-16
Tensor contractions are extremely compute intensive generalized matrix multiplication operations encountered in many computational science fields, such as quantum chemistry and nuclear physics. Unlike distributed matrix multiplication, which has been extensively studied, limited work has been done in understanding distributed tensor contractions. In this paper, we characterize distributed tensor contraction algorithms on torus networks. We develop a framework with three fundamental communication operators to generate communication-efficient contraction algorithms for arbitrary tensor contractions. We show that for a given amount of memory per processor, our framework is communication optimal for all tensor contractions. We demonstrate performance and scalability of our framework on up to 262,144 cores of BG/Q supercomputer using five tensor contraction examples.
Multiobjective sensitivity analysis and optimization of a distributed hydrologic model MOBIDIC
NASA Astrophysics Data System (ADS)
Yang, J.; Castelli, F.; Chen, Y.
2014-03-01
Calibration of distributed hydrologic models usually involves how to deal with the large number of distributed parameters and optimization problems with multiple but often conflicting objectives which arise in a natural fashion. This study presents a multiobjective sensitivity and optimization approach to handle these problems for a distributed hydrologic model MOBIDIC, which combines two sensitivity analysis techniques (Morris method and State Dependent Parameter method) with a multiobjective optimization (MOO) approach ϵ-NSGAII. This approach was implemented to calibrate MOBIDIC with its application to the Davidson watershed, North Carolina with three objective functions, i.e., standardized root mean square error of logarithmic transformed discharge, water balance index, and mean absolute error of logarithmic transformed flow duration curve, and its results were compared with those with a single objective optimization (SOO) with the traditional Nelder-Mead Simplex algorithm used in MOBIDIC by taking the objective function as the Euclidean norm of these three objectives. Results show: (1) the two sensitivity analysis techniques are effective and efficient to determine the sensitive processes and insensitive parameters: surface runoff and evaporation are very sensitive processes to all three objective functions, while groundwater recession and soil hydraulic conductivity are not sensitive and were excluded in the optimization; (2) both MOO and SOO lead to acceptable simulations, e.g., for MOO, average Nash-Sutcliffe is 0.75 in the calibration period and 0.70 in the validation period; (3) evaporation and surface runoff shows similar importance to watershed water balance while the contribution of baseflow can be ignored; (4) compared to SOO which was dependent of initial starting location, MOO provides more insight on parameter sensitivity and conflicting characteristics of these objective functions. Multiobjective sensitivity analysis and optimization
Multi-resolution imaging with an optimized number and distribution of sampling points.
Capozzoli, Amedeo; Curcio, Claudio; Liseno, Angelo
2014-05-01
We propose an approach of interest in Imaging and Synthetic Aperture Radar (SAR) tomography, for the optimal determination of the scanning region dimension, of the number of sampling points therein, and their spatial distribution, in the case of single frequency monostatic multi-view and multi-static single-view target reflectivity reconstruction. The method recasts the reconstruction of the target reflectivity from the field data collected on the scanning region in terms of a finite dimensional algebraic linear inverse problem. The dimension of the scanning region, the number and the positions of the sampling points are optimally determined by optimizing the singular value behavior of the matrix defining the linear operator. Single resolution, multi-resolution and dynamic multi-resolution can be afforded by the method, allowing a flexibility not available in previous approaches. The performance has been evaluated via a numerical and experimental analysis. PMID:24921717
Principled negotiation and distributed optimization for advanced air traffic management
NASA Astrophysics Data System (ADS)
Wangermann, John Paul
Today's aircraft/airspace system faces complex challenges. Congestion and delays are widespread as air traffic continues to grow. Airlines want to better optimize their operations, and general aviation wants easier access to the system. Additionally, the accident rate must decline just to keep the number of accidents each year constant. New technology provides an opportunity to rethink the air traffic management process. Faster computers, new sensors, and high-bandwidth communications can be used to create new operating models. The choice is no longer between "inflexible" strategic separation assurance and "flexible" tactical conflict resolution. With suitable operating procedures, it is possible to have strategic, four-dimensional separation assurance that is flexible and allows system users maximum freedom to optimize operations. This thesis describes an operating model based on principled negotiation between agents. Many multi-agent systems have agents that have different, competing interests but have a shared interest in coordinating their actions. Principled negotiation is a method of finding agreement between agents with different interests. By focusing on fundamental interests and searching for options for mutual gain, agents with different interests reach agreements that provide benefits for both sides. Using principled negotiation, distributed optimization by each agent can be coordinated leading to iterative optimization of the system. Principled negotiation is well-suited to aircraft/airspace systems. It allows aircraft and operators to propose changes to air traffic control. Air traffic managers check the proposal maintains required aircraft separation. If it does, the proposal is either accepted or passed to agents whose trajectories change as part of the proposal for approval. Aircraft and operators can use all the data at hand to develop proposals that optimize their operations, while traffic managers can focus on their primary duty of ensuring
Optimal design of light distribution of LED luminaries for road lighting
NASA Astrophysics Data System (ADS)
Lai, Wei; Chen, Weimin; Liu, Xianming; Lei, Xiaohua
2011-10-01
Conventional road lighting luminaries are gradually upgraded by LED luminaries nowadays. It is an urgent problem to design the light distribution of LED luminaries fixed at the former luminaries arrangement position, that are both energysaving and capable of meeting the lighting requirements made by the International Commission on Illumination (CIE). In this paper, a nonlinear optimization approach is proposed for light distribution design of LED road lighting luminaries, in which the average road surface luminance, overall road surface luminance uniformity, longitudinal road surface luminance uniformity, glare and surround ratio specified by CIE are set as constraint conditions to minimize the total luminous flux. The nonlinear problem can be transformed to a linear problem by doing rational equivalent transformation on constraint conditions. A polynomial of cosine function for the illumination distribution on the road is used to make the problem solvable and construct smooth light distribution curves. Taking the C2 class road with five different lighting classes M1 to M5 defined by CIE for example, the most energy-saving light distributions are obtained with the above method. Compared with a sample luminary produced by linear optimization method, the LED luminary with theoretically optimal lighting distribution in the paper can save 40% of the energy at the least.
Departures From Optimality When Pursuing Multiple Approach or Avoidance Goals
2016-01-01
This article examines how people depart from optimality during multiple-goal pursuit. The authors operationalized optimality using dynamic programming, which is a mathematical model used to calculate expected value in multistage decisions. Drawing on prospect theory, they predicted that people are risk-averse when pursuing approach goals and are therefore more likely to prioritize the goal in the best position than the dynamic programming model suggests is optimal. The authors predicted that people are risk-seeking when pursuing avoidance goals and are therefore more likely to prioritize the goal in the worst position than is optimal. These predictions were supported by results from an experimental paradigm in which participants made a series of prioritization decisions while pursuing either 2 approach or 2 avoidance goals. This research demonstrates the usefulness of using decision-making theories and normative models to understand multiple-goal pursuit. PMID:26963081
A simple approach for predicting time-optimal slew capability
NASA Astrophysics Data System (ADS)
King, Jeffery T.; Karpenko, Mark
2016-03-01
The productivity of space-based imaging satellite sensors to collect images is directly related to the agility of the spacecraft. Increasing the satellite agility, without changing the attitude control hardware, can be accomplished by using optimal control to design shortest-time maneuvers. The performance improvement that can be obtained using optimal control is tied to the specific configuration of the satellite, e.g. mass properties and reaction wheel array geometry. Therefore, it is generally difficult to predict performance without an extensive simulation study. This paper presents a simple idea for estimating the agility enhancement that can be obtained using optimal control without the need to solve any optimal control problems. The approach is based on the concept of the agility envelope, which expresses the capability of a spacecraft in terms of a three-dimensional agility volume. Validation of this new approach is conducted using both simulation and on-orbit data.
Departures from optimality when pursuing multiple approach or avoidance goals.
Ballard, Timothy; Yeo, Gillian; Neal, Andrew; Farrell, Simon
2016-07-01
This article examines how people depart from optimality during multiple-goal pursuit. The authors operationalized optimality using dynamic programming, which is a mathematical model used to calculate expected value in multistage decisions. Drawing on prospect theory, they predicted that people are risk-averse when pursuing approach goals and are therefore more likely to prioritize the goal in the best position than the dynamic programming model suggests is optimal. The authors predicted that people are risk-seeking when pursuing avoidance goals and are therefore more likely to prioritize the goal in the worst position than is optimal. These predictions were supported by results from an experimental paradigm in which participants made a series of prioritization decisions while pursuing either 2 approach or 2 avoidance goals. This research demonstrates the usefulness of using decision-making theories and normative models to understand multiple-goal pursuit. (PsycINFO Database Record PMID:26963081
Distributed computer system enhances productivity for SRB joint optimization
NASA Technical Reports Server (NTRS)
Rogers, James L., Jr.; Young, Katherine C.; Barthelemy, Jean-Francois M.
1987-01-01
Initial calculations of a redesign of the solid rocket booster joint that failed during the shuttle tragedy showed that the design had a weight penalty associated with it. Optimization techniques were to be applied to determine if there was any way to reduce the weight while keeping the joint opening closed and limiting the stresses. To allow engineers to examine as many alternatives as possible, a system was developed consisting of existing software that coupled structural analysis with optimization which would execute on a network of computer workstations. To increase turnaround, this system took advantage of the parallelism offered by the finite difference technique of computing gradients to allow several workstations to contribute to the solution of the problem simultaneously. The resulting system reduced the amount of time to complete one optimization cycle from two hours to one-half hour with a potential of reducing it to 15 minutes. The current distributed system, which contains numerous extensions, requires one hour turnaround per optimization cycle. This would take four hours for the sequential system.
NASA Astrophysics Data System (ADS)
Miquelez, Teresa; Bengoetxea, Endika; Mendiburu, Alexander; Larranaga, Pedro
2007-12-01
This paper introduces a evolutionary computation method that applies Bayesian classifiers to optimization problems. This approach is based on Estimation of Distribution Algorithms (EDAs) in which Bayesian or Gaussian networks are applied to the evolution of a population of individuals (i.e. potential solutions to the optimization problem) in order to improve the quality of the individuals of the next generation. Our new approach, called Evolutionary Bayesian Classifier-based Optimization Algorithm (EBCOA), employs Bayesian classifiers instead of Bayesian or Gaussian networks in order to evolve individuals to a fitter population. In brief, EBCOAs are characterized by applying Bayesian classification techniques - usually applied to supervised classification problems - to optimization in continuous domains. We propose and review in this paper different Bayesian classifiers for implementing our EBCOA method, focusing particularly on EBCOAs applying naive Bayes, semi-na¨ive Bayes, and tree augmented na¨ive Bayes classifiers. This work presents a deep study on the behavior of these algorithms with classical optimiztion problems in continuous domains. The different parameters used for tuning the performance of the algorithms are discussed, and a comprehensive overview of their influence is provided. We also present experimental results to compare this new method with other state of the art approaches of the evolutionary computation field for continuous domains such as Evolutionary Strategies (ES) and Estimation of Distribution Algorithms (EDAs).
Optimization of convective fin systems: a holistic approach
NASA Astrophysics Data System (ADS)
Sasikumar, M.; Balaji, C.
A numerical analysis of natural convection heat transfer and entropy generation from an array of vertical fins, standing on a horizontal duct, with turbulent fluid flow inside, has been carried out. The analysis takes into account the variation of base temperature along the duct, traditionally ignored by most studies on such problems. One-dimensional fin equation is solved using a second order finite difference scheme for each of the fins in the system and this, in conjunction with the use of turbulent flow correlations for duct, is used to obtain the temperature distribution along the duct. The influence of the geometric and thermal parameters, which are normally employed in the design of a thermal system, has been studied. Correlations are developed for (i) the total heat transfer rate per unit mass of the fin system (ii) total entropy generation rate and (iii) fin height, as a function of the geometric parameters of the fin system. Optimal dimensions of the fin system for (i) maximum heat transfer rate per unit mass and (ii) minimum total entropy generation rate are obtained using Genetic Algorithm. As expected, these optima do not match. An approach to a `holistic' design that takes into account both these criteria has also been presented.
Metabolic Adaptation Processes That Converge to Optimal Biomass Flux Distributions
Altafini, Claudio; Facchetti, Giuseppe
2015-01-01
In simple organisms like E.coli, the metabolic response to an external perturbation passes through a transient phase in which the activation of a number of latent pathways can guarantee survival at the expenses of growth. Growth is gradually recovered as the organism adapts to the new condition. This adaptation can be modeled as a process of repeated metabolic adjustments obtained through the resilencings of the non-essential metabolic reactions, using growth rate as selection probability for the phenotypes obtained. The resulting metabolic adaptation process tends naturally to steer the metabolic fluxes towards high growth phenotypes. Quite remarkably, when applied to the central carbon metabolism of E.coli, it follows that nearly all flux distributions converge to the flux vector representing optimal growth, i.e., the solution of the biomass optimization problem turns out to be the dominant attractor of the metabolic adaptation process. PMID:26340476
Optimal purchasing of raw materials: A data-driven approach
Muteki, K.; MacGregor, J.F.
2008-06-15
An approach to the optimal purchasing of raw materials that will achieve a desired product quality at a minimum cost is presented. A PLS (Partial Least Squares) approach to formulation modeling is used to combine databases on raw material properties and on past process operations and to relate these to final product quality. These PLS latent variable models are then used in a sequential quadratic programming (SQP) or mixed integer nonlinear programming (MINLP) optimization to select those raw-materials, among all those available on the market, the ratios in which to combine them and the process conditions under which they should be processed. The approach is illustrated for the optimal purchasing of metallurgical coals for coke making in the steel industry.
A Surrogate Approach to the Experimental Optimization of Multielement Airfoils
NASA Technical Reports Server (NTRS)
Otto, John C.; Landman, Drew; Patera, Anthony T.
1996-01-01
The incorporation of experimental test data into the optimization process is accomplished through the use of Bayesian-validated surrogates. In the surrogate approach, a surrogate for the experiment (e.g., a response surface) serves in the optimization process. The validation step of the framework provides a qualitative assessment of the surrogate quality, and bounds the surrogate-for-experiment error on designs "near" surrogate-predicted optimal designs. The utility of the framework is demonstrated through its application to the experimental selection of the trailing edge ap position to achieve a design lift coefficient for a three-element airfoil.
Mathematical optimization of matter distribution for a planetary system configuration
NASA Astrophysics Data System (ADS)
Morozov, Yegor; Bukhtoyarov, Mikhail
2016-07-01
Planetary formation is mostly a random process. When the humanity reaches the point when it can transform planetary systems for the purpose of interstellar life expansion, the optimal distribution of matter in a planetary system will determine its population and expansive potential. Maximization of the planetary system carrying capacity and its potential for the interstellar life expansion depends on planetary sizes, orbits, rotation, chemical composition and other vital parameters. The distribution of planetesimals to achieve maximal carrying capacity of the planets during their life cycle, and maximal potential to inhabit other planetary systems must be calculated comprehensively. Moving much material from one planetary system to another is uneconomic because of the high amounts of energy and time required. Terraforming of the particular planets before the whole planetary system is configured might drastically decrease the potential habitability the whole system. Thus a planetary system is the basic unit for calculations to sustain maximal overall population and expand further. The mathematical model of optimization of matter distribution for a planetary system configuration includes the input observed parameters: the map of material orbiting in the planetary system with specified orbits, masses, sizes, and the chemical compound for each, and the optimized output parameters. The optimized output parameters are sizes, masses, the number of planets, their chemical compound, and masses of the satellites required to make tidal forces. Also the magnetic fields and planetary rotations are crucial, but they will be considered in further versions of this model. The optimization criteria is the maximal carrying capacity plus maximal expansive potential of the planetary system. The maximal carrying capacity means the availability of essential life ingredients on the planetary surface, and the maximal expansive potential means availability of uranium and metals to build
Optimal multi-stage planning of power distribution systems
Gonen, T.; Ramirez-Rosado, I.J.
1987-04-01
This paper presents a completely-dynamic mixed-integer model to solve the optimal sizing, timing, and location of distribution substation and feeder expansion problems simultaneously. The objective function of the model represents the present worth of costs of investment, energy, and demand losses of the system which takes place throughout the planning time horizon. It is minimized subject to the Kirchhoff's current law, power capacity limits, and logical constraints by using a standard mathematical programming system. The developed model allows to include the explicit constraints of radiality and voltage drop in its formulation.
The reproductive value in distributed optimal control models.
Wrzaczek, Stefan; Kuhn, Michael; Prskawetz, Alexia; Feichtinger, Gustav
2010-05-01
We show that in a large class of distributed optimal control models (DOCM), where population is described by a McKendrick type equation with an endogenous number of newborns, the reproductive value of Fisher shows up as part of the shadow price of the population. Depending on the objective function, the reproductive value may be negative. Moreover, we show results of the reproductive value for changing vital rates. To motivate and demonstrate the general framework, we provide examples in health economics, epidemiology, and population biology. PMID:20096297
Universal Approach to Optimal Photon Storage in Atomic Media
Gorshkov, Alexey V.; Andre, Axel; Lukin, Mikhail D.; Fleischhauer, Michael; Soerensen, Anders S.
2007-03-23
We present a universal physical picture for describing storage and retrieval of photon wave packets in a {lambda}-type atomic medium. This physical picture encompasses a variety of different approaches to pulse storage ranging from adiabatic reduction of the photon group velocity and pulse-propagation control via off-resonant Raman fields to photon-echo-based techniques. Furthermore, we derive an optimal control strategy for storage and retrieval of a photon wave packet of any given shape. All these approaches, when optimized, yield identical maximum efficiencies, which only depend on the optical depth of the medium.
A Numerical Optimization Approach for Tuning Fuzzy Logic Controllers
NASA Technical Reports Server (NTRS)
Woodard, Stanley E.; Garg, Devendra P.
1998-01-01
This paper develops a method to tune fuzzy controllers using numerical optimization. The main attribute of this approach is that it allows fuzzy logic controllers to be tuned to achieve global performance requirements. Furthermore, this approach allows design constraints to be implemented during the tuning process. The method tunes the controller by parameterizing the membership functions for error, change-in-error and control output. The resulting parameters form a design vector which is iteratively changed to minimize an objective function. The minimal objective function results in an optimal performance of the system. A spacecraft mounted science instrument line-of-sight pointing control is used to demonstrate results.
Optimal Mass Distribution Prediction for Human Proximal Femur with Bi-modulus Property.
Shi, Jiao; Cai, Kun; Qin, Qing H
2014-12-01
Simulation of the mass distribution in a human proximal femur is important to provide a reasonable therapy scheme for a patient with osteoporosis. An algorithm is developed for prediction of optimal mass distribution in a human proximal femur under a given loading environment. In this algorithm, the bone material is assumed to be bi-modulus, i.e., the tension modulus is not identical to the compression modulus in the same direction. With this bi-modulus bone material, a topology optimization method, i.e., modified SIMP approach, is employed to determine the optimal mass distribution in a proximal femur. The effects of the difference between two moduli on the final material distribution are numerically investigated. Numerical results obtained show that the mass distribution in bi-modular bone materials is different from that in traditional isotropic material. As the tension modulus is less than the compression modulus for bone tissues, the amount of mass required to support tension loads is greater than that required by isotropic material for the same daily activities including one-leg stance, abduction and adduction. PMID:26336694
Pressure distribution based optimization of phase-coded acoustical vortices
Zheng, Haixiang; Gao, Lu; Dai, Yafei; Ma, Qingyu; Zhang, Dong
2014-02-28
Based on the acoustic radiation of point source, the physical mechanism of phase-coded acoustical vortices is investigated with formulae derivations of acoustic pressure and vibration velocity. Various factors that affect the optimization of acoustical vortices are analyzed. Numerical simulations of the axial, radial, and circular pressure distributions are performed with different source numbers, frequencies, and axial distances. The results prove that the acoustic pressure of acoustical vortices is linearly proportional to the source number, and lower fluctuations of circular pressure distributions can be produced for more sources. With the increase of source frequency, the acoustic pressure of acoustical vortices increases accordingly with decreased vortex radius. Meanwhile, increased vortex radius with reduced acoustic pressure is also achieved for longer axial distance. With the 6-source experimental system, circular and radial pressure distributions at various frequencies and axial distances have been measured, which have good agreements with the results of numerical simulations. The favorable results of acoustic pressure distributions provide theoretical basis for further studies of acoustical vortices.
Optimal pattern distributions in Rete-based production systems
NASA Technical Reports Server (NTRS)
Scott, Stephen L.
1994-01-01
Since its introduction into the AI community in the early 1980's, the Rete algorithm has been widely used. This algorithm has formed the basis for many AI tools, including NASA's CLIPS. One drawback of Rete-based implementation, however, is that the network structures used internally by the Rete algorithm make it sensitive to the arrangement of individual patterns within rules. Thus while rules may be more or less arbitrarily placed within source files, the distribution of individual patterns within these rules can significantly affect the overall system performance. Some heuristics have been proposed to optimize pattern placement, however, these suggestions can be conflicting. This paper describes a systematic effort to measure the effect of pattern distribution on production system performance. An overview of the Rete algorithm is presented to provide context. A description of the methods used to explore the pattern ordering problem area are presented, using internal production system metrics such as the number of partial matches, and coarse-grained operating system data such as memory usage and time. The results of this study should be of interest to those developing and optimizing software for Rete-based production systems.
NASA Astrophysics Data System (ADS)
Tsuchiya, Takeshi; Ishii, Hirokazu; Uchida, Junichi; Gomi, Hiromi; Matayoshi, Naoki; Okuno, Yoshinori
This study aims to obtain the optimal flights of a helicopter that reduce ground noise during landing approach with an optimization technique, and to conduct flight tests for confirming the effectiveness of the optimal solutions. Past experiments of Japan Aerospace Exploration Agency (JAXA) show that the noise of a helicopter varies significantly according to its flight conditions, especially depending on the flight path angle. We therefore build a simple noise model for a helicopter, in which the level of the noise generated from a point sound source is a function only of the flight path angle. Using equations of motion for flight in a vertical plane, we define optimal control problems for minimizing noise levels measured at points on the ground surface, and obtain optimal controls for specified initial altitudes, flight constraints, and wind conditions. The obtained optimal flights avoid the flight path angle which generates large noise and decrease the flight time, which are different from conventional flight. Finally, we verify the validity of the optimal flight patterns through flight experiments. The actual flights following the optimal paths resulted in noise reduction, which shows the effectiveness of the optimization.
The optimality of potential rescaling approaches in land data assimilation
Technology Transfer Automated Retrieval System (TEKTRAN)
It is well-known that systematic differences exist between modeled and observed realizations of hydrological variables like soil moisture. Prior to data assimilation, these differences must be removed in order to obtain an optimal analysis. A number of rescaling approaches have been proposed for rem...
About Distributed Simulation-based Optimization of Forming Processes using a Grid Architecture
NASA Astrophysics Data System (ADS)
Grauer, Manfred; Barth, Thomas
2004-06-01
Permanently increasing complexity of products and their manufacturing processes combined with a shorter "time-to-market" leads to more and more use of simulation and optimization software systems for product design. Finding a "good" design of a product implies the solution of computationally expensive optimization problems based on the results of simulation. Due to the computational load caused by the solution of these problems, the requirements on the Information&Telecommunication (IT) infrastructure of an enterprise or research facility are shifting from stand-alone resources towards the integration of software and hardware resources in a distributed environment for high-performance computing. Resources can either comprise software systems, hardware systems, or communication networks. An appropriate IT-infrastructure must provide the means to integrate all these resources and enable their use even across a network to cope with requirements from geographically distributed scenarios, e.g. in computational engineering and/or collaborative engineering. Integrating expert's knowledge into the optimization process is inevitable in order to reduce the complexity caused by the number of design variables and the high dimensionality of the design space. Hence, utilization of knowledge-based systems must be supported by providing data management facilities as a basis for knowledge extraction from product data. In this paper, the focus is put on a distributed problem solving environment (PSE) capable of providing access to a variety of necessary resources and services. A distributed approach integrating simulation and optimization on a network of workstations and cluster systems is presented. For geometry generation the CAD-system CATIA is used which is coupled with the FEM-simulation system INDEED for simulation of sheet-metal forming processes and the problem solving environment OpTiX for distributed optimization.
Successive linear optimization approach to the dynamic traffic assignment problem
Ho, J.K.
1980-11-01
A dynamic model for the optimal control of traffic flow over a network is considered. The model, which treats congestion explicitly in the flow equations, gives rise to nonlinear, nonconvex mathematical programming problems. It has been shown for a piecewise linear version of this model that a global optimum is contained in the set of optimal solutions of a certain linear program. A sufficient condition for optimality which implies that a global optimum can be obtained by successively optimizing at most N + 1 objective functions for the linear program, where N is the number of time periods in the planning horizon is presented. Computational results are reported to indicate the efficiency of this approach.
New approaches to optimization in aerospace conceptual design
NASA Technical Reports Server (NTRS)
Gage, Peter J.
1995-01-01
Aerospace design can be viewed as an optimization process, but conceptual studies are rarely performed using formal search algorithms. Three issues that restrict the success of automatic search are identified in this work. New approaches are introduced to address the integration of analyses and optimizers, to avoid the need for accurate gradient information and a smooth search space (required for calculus-based optimization), and to remove the restrictions imposed by fixed complexity problem formulations. (1) Optimization should be performed in a flexible environment. A quasi-procedural architecture is used to conveniently link analysis modules and automatically coordinate their execution. It efficiently controls a large-scale design tasks. (2) Genetic algorithms provide a search method for discontinuous or noisy domains. The utility of genetic optimization is demonstrated here, but parameter encodings and constraint-handling schemes must be carefully chosen to avoid premature convergence to suboptimal designs. The relationship between genetic and calculus-based methods is explored. (3) A variable-complexity genetic algorithm is created to permit flexible parameterization, so that the level of description can change during optimization. This new optimizer automatically discovers novel designs in structural and aerodynamic tasks.
PARETO: A novel evolutionary optimization approach to multiobjective IMRT planning
Fiege, Jason; McCurdy, Boyd; Potrebko, Peter; Champion, Heather; Cull, Andrew
2011-09-15
Purpose: In radiation therapy treatment planning, the clinical objectives of uniform high dose to the planning target volume (PTV) and low dose to the organs-at-risk (OARs) are invariably in conflict, often requiring compromises to be made between them when selecting the best treatment plan for a particular patient. In this work, the authors introduce Pareto-Aware Radiotherapy Evolutionary Treatment Optimization (pareto), a multiobjective optimization tool to solve for beam angles and fluence patterns in intensity-modulated radiation therapy (IMRT) treatment planning. Methods: pareto is built around a powerful multiobjective genetic algorithm (GA), which allows us to treat the problem of IMRT treatment plan optimization as a combined monolithic problem, where all beam fluence and angle parameters are treated equally during the optimization. We have employed a simple parameterized beam fluence representation with a realistic dose calculation approach, incorporating patient scatter effects, to demonstrate feasibility of the proposed approach on two phantoms. The first phantom is a simple cylindrical phantom containing a target surrounded by three OARs, while the second phantom is more complex and represents a paraspinal patient. Results: pareto results in a large database of Pareto nondominated solutions that represent the necessary trade-offs between objectives. The solution quality was examined for several PTV and OAR fitness functions. The combination of a conformity-based PTV fitness function and a dose-volume histogram (DVH) or equivalent uniform dose (EUD) -based fitness function for the OAR produced relatively uniform and conformal PTV doses, with well-spaced beams. A penalty function added to the fitness functions eliminates hotspots. Comparison of resulting DVHs to those from treatment plans developed with a single-objective fluence optimizer (from a commercial treatment planning system) showed good correlation. Results also indicated that pareto shows
AI approach to optimal var control with fuzzy reactive loads
Abdul-Rahman, K.H.; Shahidehpour, S.M.; Daneshdoost, M.
1995-02-01
This paper presents an artificial intelligence (AI) approach to the optimal reactive power (var) control problem. The method incorporates the reactive load uncertainty in optimizing the overall system performance. The artificial neural network (ANN) enhanced by fuzzy sets is used to determine the memberships of control variables corresponding to the given load values. A power flow solution will determine the corresponding state of the system. Since the resulting system state may not be feasible in real-time, a heuristic method based on the application of sensitivities in expert system is employed to refine the solution with minimum adjustments of control variables. Test cases and numerical results demonstrate the applicability of the proposed approach. Simplicity, processing speed and ability to model load uncertainties make this approach a viable option for on-line var control.
An optimal torque distribution control strategy for four-independent wheel drive electric vehicles
NASA Astrophysics Data System (ADS)
Li, Bin; Goodarzi, Avesta; Khajepour, Amir; Chen, Shih-ken; Litkouhi, Baktiar
2015-08-01
In this paper, an optimal torque distribution approach is proposed for electric vehicle equipped with four independent wheel motors to improve vehicle handling and stability performance. A novel objective function is formulated which works in a multifunctional way by considering the interference among different performance indices: forces and moment errors at the centre of gravity of the vehicle, actuator control efforts and tyre workload usage. To adapt different driving conditions, a weighting factors tuning scheme is designed to adjust the relative weight of each performance in the objective function. The effectiveness of the proposed optimal torque distribution is evaluated by simulations with CarSim and Matlab/Simulink. The simulation results under different driving scenarios indicate that the proposed control strategy can effectively improve the vehicle handling and stability even in slippery road conditions.
NASA Astrophysics Data System (ADS)
Meeks, Sanford L.; Bova, Frank J.; Buatti, John M.; Friedman, William A.; Eyster, Brian; Kendrick, Lance A.
1999-11-01
Linear accelerator (linac) radiosurgery utilizes non-coplanar arc therapy delivered through circular collimators. Generally, spherically symmetric arc sets are used, resulting in nominally spherical dose distributions. Various treatment planning parameters may be manipulated to provide dose conformation to irregular lesions. Iterative manipulation of these variables can be a difficult and time-consuming task, because (a) understanding the effect of these parameters is complicated and (b) three-dimensional (3D) dose calculations are computationally expensive. This manipulation can be simplified, however, because the prescription isodose surface for all single isocentre distributions can be approximated by conic sections. In this study, the effects of treatment planning parameter manipulation on the dimensions of the treatment isodose surface were determined empirically. These dimensions were then fitted to analytic functions, assuming that the dose distributions were characterized as conic sections. These analytic functions allowed real-time approximation of the 3D isodose surface. Iterative plan optimization, either manual or automated, is achieved more efficiently using this real time approximation of the dose matrix. Subsequent to iterative plan optimization, the analytic function is related back to the appropriate plan parameters, and the dose distribution is determined using conventional dosimetry calculations. This provides a pseudo-inverse approach to radiosurgery optimization, based solely on geometric considerations.
Optimal Sensor Placement for Leak Location in Water Distribution Networks Using Genetic Algorithms
Casillas, Myrna V.; Puig, Vicenç; Garza-Castañón, Luis E.; Rosich, Albert
2013-01-01
This paper proposes a new sensor placement approach for leak location in water distribution networks (WDNs). The sensor placement problem is formulated as an integer optimization problem. The optimization criterion consists in minimizing the number of non-isolable leaks according to the isolability criteria introduced. Because of the large size and non-linear integer nature of the resulting optimization problem, genetic algorithms (GAs) are used as the solution approach. The obtained results are compared with a semi-exhaustive search method with higher computational effort, proving that GA allows one to find near-optimal solutions with less computational load. Moreover, three ways of increasing the robustness of the GA-based sensor placement method have been proposed using a time horizon analysis, a distance-based scoring and considering different leaks sizes. A great advantage of the proposed methodology is that it does not depend on the isolation method chosen by the user, as long as it is based on leak sensitivity analysis. Experiments in two networks allow us to evaluate the performance of the proposed approach. PMID:24193099
Effects of optimism on creativity under approach and avoidance motivation
Icekson, Tamar; Roskes, Marieke; Moran, Simone
2014-01-01
Focusing on avoiding failure or negative outcomes (avoidance motivation) can undermine creativity, due to cognitive (e.g., threat appraisals), affective (e.g., anxiety), and volitional processes (e.g., low intrinsic motivation). This can be problematic for people who are avoidance motivated by nature and in situations in which threats or potential losses are salient. Here, we review the relation between avoidance motivation and creativity, and the processes underlying this relation. We highlight the role of optimism as a potential remedy for the creativity undermining effects of avoidance motivation, due to its impact on the underlying processes. Optimism, expecting to succeed in achieving success or avoiding failure, may reduce negative effects of avoidance motivation, as it eases threat appraisals, anxiety, and disengagement—barriers playing a key role in undermining creativity. People experience these barriers more under avoidance than under approach motivation, and beneficial effects of optimism should therefore be more pronounced under avoidance than approach motivation. Moreover, due to their eagerness, approach motivated people may even be more prone to unrealistic over-optimism and its negative consequences. PMID:24616690
NASA Technical Reports Server (NTRS)
Bernstein, Dennis S.; Rosen, I. G.
1988-01-01
In controlling distributed parameter systems it is often desirable to obtain low-order, finite-dimensional controllers in order to minimize real-time computational requirements. Standard approaches to this problem employ model/controller reduction techniques in conjunction with LQG theory. In this paper we consider the finite-dimensional approximation of the infinite-dimensional Bernstein/Hyland optimal projection theory. This approach yields fixed-finite-order controllers which are optimal with respect to high-order, approximating, finite-dimensional plant models. The technique is illustrated by computing a sequence of first-order controllers for one-dimensional, single-input/single-output, parabolic (heat/diffusion) and hereditary systems using spline-based, Ritz-Galerkin, finite element approximation. Numerical studies indicate convergence of the feedback gains with less than 2 percent performance degradation over full-order LQG controllers for the parabolic system and 10 percent degradation for the hereditary system.
Correction of linear-array lidar intensity data using an optimal beam shaping approach
NASA Astrophysics Data System (ADS)
Xu, Fan; Wang, Yuanqing; Yang, Xingyu; Zhang, Bingqing; Li, Fenfang
2016-08-01
The linear-array lidar has been recently developed and applied for its superiority of vertically non-scanning, large field of view, high sensitivity and high precision. The beam shaper is the key component for the linear-array detection. However, the traditional beam shaping approaches can hardly satisfy our requirement for obtaining unbiased and complete backscattered intensity data. The required beam distribution should roughly be oblate U-shaped rather than Gaussian or uniform. Thus, an optimal beam shaping approach is proposed in this paper. By employing a pair of conical lenses and a cylindrical lens behind the beam expander, the expanded Gaussian laser was shaped to a line-shaped beam whose intensity distribution is more consistent with the required distribution. To provide a better fit to the requirement, off-axis method is adopted. The design of the optimal beam shaping module is mathematically explained and the experimental verification of the module performance is also presented in this paper. The experimental results indicate that the optimal beam shaping approach can effectively correct the intensity image and provide ~30% gain of detection area over traditional approach, thus improving the imaging quality of linear-array lidar.
Shape Optimization and Supremal Minimization Approaches in Landslides Modeling
Hassani, Riad Ionescu, Ioan R. Lachand-Robert, Thomas
2005-10-15
The steady-state unidirectional (anti-plane) flow for a Bingham fluid is considered. We take into account the inhomogeneous yield limit of the fluid, which is well adjusted to the description of landslides. The blocking property is analyzed and we introduce the safety factor which is connected to two optimization problems in terms of velocities and stresses. Concerning the velocity analysis the minimum problem in Bv({omega}) is equivalent to a shape-optimization problem. The optimal set is the part of the land which slides whenever the loading parameter becomes greater than the safety factor. This is proved in the one-dimensional case and conjectured for the two-dimensional flow. For the stress-optimization problem we give a stream function formulation in order to deduce a minimum problem in W{sup 1,{infinity}}({omega}) and we prove the existence of a minimizer. The L{sup p}({omega}) approximation technique is used to get a sequence of minimum problems for smooth functionals. We propose two numerical approaches following the two analysis presented before.First, we describe a numerical method to compute the safety factor through equivalence with the shape-optimization problem.Then the finite-element approach and a Newton method is used to obtain a numerical scheme for the stress formulation. Some numerical results are given in order to compare the two methods. The shape-optimization method is sharp in detecting the sliding zones but the convergence is very sensitive to the choice of the parameters. The stress-optimization method is more robust, gives precise safety factors but the results cannot be easily compiled to obtain the sliding zone.
Optimal control of underactuated mechanical systems: A geometric approach
NASA Astrophysics Data System (ADS)
Colombo, Leonardo; Martín De Diego, David; Zuccalli, Marcela
2010-08-01
In this paper, we consider a geometric formalism for optimal control of underactuated mechanical systems. Our techniques are an adaptation of the classical Skinner and Rusk approach for the case of Lagrangian dynamics with higher-order constraints. We study a regular case where it is possible to establish a symplectic framework and, as a consequence, to obtain a unique vector field determining the dynamics of the optimal control problem. These developments will allow us to develop a new class of geometric integrators based on discrete variational calculus.
Adaptive Wing Camber Optimization: A Periodic Perturbation Approach
NASA Technical Reports Server (NTRS)
Espana, Martin; Gilyard, Glenn
1994-01-01
Available redundancy among aircraft control surfaces allows for effective wing camber modifications. As shown in the past, this fact can be used to improve aircraft performance. To date, however, algorithm developments for in-flight camber optimization have been limited. This paper presents a perturbational approach for cruise optimization through in-flight camber adaptation. The method uses, as a performance index, an indirect measurement of the instantaneous net thrust. As such, the actual performance improvement comes from the integrated effects of airframe and engine. The algorithm, whose design and robustness properties are discussed, is demonstrated on the NASA Dryden B-720 flight simulator.
Multiobjective genetic approach for optimal control of photoinduced processes
Bonacina, Luigi; Extermann, Jerome; Rondi, Ariana; Wolf, Jean-Pierre; Boutou, Veronique
2007-08-15
We have applied a multiobjective genetic algorithm to the optimization of multiphoton-excited fluorescence. Our study shows the advantages that this approach can offer to experiments based on adaptive shaping of femtosecond pulses. The algorithm outperforms single-objective optimizations, being totally independent from the bias of user defined parameters and giving simultaneous access to a large set of feasible solutions. The global inspection of their ensemble represents a powerful support to unravel the connections between pulse spectral field features and excitation dynamics of the sample.
Sequential activation of metabolic pathways: a dynamic optimization approach.
Oyarzún, Diego A; Ingalls, Brian P; Middleton, Richard H; Kalamatianos, Dimitrios
2009-11-01
The regulation of cellular metabolism facilitates robust cellular operation in the face of changing external conditions. The cellular response to this varying environment may include the activation or inactivation of appropriate metabolic pathways. Experimental and numerical observations of sequential timing in pathway activation have been reported in the literature. It has been argued that such patterns can be rationalized by means of an underlying optimal metabolic design. In this paper we pose a dynamic optimization problem that accounts for time-resource minimization in pathway activation under constrained total enzyme abundance. The optimized variables are time-dependent enzyme concentrations that drive the pathway to a steady state characterized by a prescribed metabolic flux. The problem formulation addresses unbranched pathways with irreversible kinetics. Neither specific reaction kinetics nor fixed pathway length are assumed.In the optimal solution, each enzyme follows a switching profile between zero and maximum concentration, following a temporal sequence that matches the pathway topology. This result provides an analytic justification of the sequential activation previously described in the literature. In contrast with the existent numerical approaches, the activation sequence is proven to be optimal for a generic class of monomolecular kinetics. This class includes, but is not limited to, Mass Action, Michaelis-Menten, Hill, and some Power-law models. This suggests that sequential enzyme expression may be a common feature of metabolic regulation, as it is a robust property of optimal pathway activation. PMID:19412635
New Results in the Quantum Statistical Approach to Parton Distributions
NASA Astrophysics Data System (ADS)
Soffer, Jacques; Bourrely, Claude; Buccella, Franco
2015-02-01
We will describe the quantum statistical approach to parton distributions allowing to obtain simultaneously the unpolarized distributions and the helicity distributions. We will present some recent results, in particular related to the nucleon spin structure in QCD. Future measurements are challenging to check the validity of this novel physical framework.
Rajora, Manik; Zou, Pan; Yang, Yao Guang; Fan, Zhi Wen; Chen, Hung Yi; Wu, Wen Chieh; Li, Beizhi; Liang, Steven Y
2016-01-01
It can be observed from the experimental data of different processes that different process parameter combinations can lead to the same performance indicators, but during the optimization of process parameters, using current techniques, only one of these combinations can be found when a given objective function is specified. The combination of process parameters obtained after optimization may not always be applicable in actual production or may lead to undesired experimental conditions. In this paper, a split-optimization approach is proposed for obtaining multiple solutions in a single-objective process parameter optimization problem. This is accomplished by splitting the original search space into smaller sub-search spaces and using GA in each sub-search space to optimize the process parameters. Two different methods, i.e., cluster centers and hill and valley splitting strategy, were used to split the original search space, and their efficiency was measured against a method in which the original search space is split into equal smaller sub-search spaces. The proposed approach was used to obtain multiple optimal process parameter combinations for electrochemical micro-machining. The result obtained from the case study showed that the cluster centers and hill and valley splitting strategies were more efficient in splitting the original search space than the method in which the original search space is divided into smaller equal sub-search spaces. PMID:27625978
Optimal Control of Distributed Energy Resources using Model Predictive Control
Mayhorn, Ebony T.; Kalsi, Karanjit; Elizondo, Marcelo A.; Zhang, Wei; Lu, Shuai; Samaan, Nader A.; Butler-Purry, Karen
2012-07-22
In an isolated power system (rural microgrid), Distributed Energy Resources (DERs) such as renewable energy resources (wind, solar), energy storage and demand response can be used to complement fossil fueled generators. The uncertainty and variability due to high penetration of wind makes reliable system operations and controls challenging. In this paper, an optimal control strategy is proposed to coordinate energy storage and diesel generators to maximize wind penetration while maintaining system economics and normal operation. The problem is formulated as a multi-objective optimization problem with the goals of minimizing fuel costs and changes in power output of diesel generators, minimizing costs associated with low battery life of energy storage and maintaining system frequency at the nominal operating value. Two control modes are considered for controlling the energy storage to compensate either net load variability or wind variability. Model predictive control (MPC) is used to solve the aforementioned problem and the performance is compared to an open-loop look-ahead dispatch problem. Simulation studies using high and low wind profiles, as well as, different MPC prediction horizons demonstrate the efficacy of the closed-loop MPC in compensating for uncertainties in wind and demand.
Barlow, P.M.; Wagner, B.J.; Belitz, K.
1996-01-01
The simulation-optimization approach is used to identify ground-water pumping strategies for control of the shallow water table in the western San Joaquin Valley, California, where shallow ground water threatens continued agricultural productivity. The approach combines the use of ground-water flow simulation with optimization techniques to build on and refine pumping strategies identified in previous research that used flow simulation alone. Use of the combined simulation-optimization model resulted in a 20 percent reduction in the area subject to a shallow water table over that identified by use of the simulation model alone. The simulation-optimization model identifies increasingly more effective pumping strategies for control of the water table as the complexity of the problem increases; that is, as the number of subareas in which pumping is to be managed increases, the simulation-optimization model is better able to discriminate areally among subareas to determine optimal pumping locations. The simulation-optimization approach provides an improved understanding of controls on the ground-water flow system and management alternatives that can be implemented in the valley. In particular, results of the simulation-optimization model indicate that optimal pumping strategies are constrained by the existing distribution of wells between the semiconfined and confined zones of the aquifer, by the distribution of sediment types (and associated hydraulic conductivities) in the western valley, and by the historical distribution of pumping throughout the western valley.
A novel surrogate-based approach for optimal design of electromagnetic-based circuits
NASA Astrophysics Data System (ADS)
Hassan, Abdel-Karim S. O.; Mohamed, Ahmed S. A.; Rabie, Azza A.; Etman, Ahmed S.
2016-02-01
A new geometric design centring approach for optimal design of central processing unit-intensive electromagnetic (EM)-based circuits is introduced. The approach uses norms related to the probability distribution of the circuit parameters to find distances from a point to the feasible region boundaries by solving nonlinear optimization problems. Based on these normed distances, the design centring problem is formulated as a max-min optimization problem. A convergent iterative boundary search technique is exploited to find the normed distances. To alleviate the computation cost associated with the EM-based circuits design cycle, space-mapping (SM) surrogates are used to create a sequence of iteratively updated feasible region approximations. In each SM feasible region approximation, the centring process using normed distances is implemented, leading to a better centre point. The process is repeated until a final design centre is attained. Practical examples are given to show the effectiveness of the new design centring method for EM-based circuits.
Optimal Solar PV Arrays Integration for Distributed Generation
Omitaomu, Olufemi A; Li, Xueping
2012-01-01
Solar photovoltaic (PV) systems hold great potential for distributed energy generation by installing PV panels on rooftops of residential and commercial buildings. Yet challenges arise along with the variability and non-dispatchability of the PV systems that affect the stability of the grid and the economics of the PV system. This paper investigates the integration of PV arrays for distributed generation applications by identifying a combination of buildings that will maximize solar energy output and minimize system variability. Particularly, we propose mean-variance optimization models to choose suitable rooftops for PV integration based on Markowitz mean-variance portfolio selection model. We further introduce quantity and cardinality constraints to result in a mixed integer quadratic programming problem. Case studies based on real data are presented. An efficient frontier is obtained for sample data that allows decision makers to choose a desired solar energy generation level with a comfortable variability tolerance level. Sensitivity analysis is conducted to show the tradeoffs between solar PV energy generation potential and variability.
A common distributed language approach to software integration
NASA Technical Reports Server (NTRS)
Antonelli, Charles J.; Volz, Richard A.; Mudge, Trevor N.
1989-01-01
An important objective in software integration is the development of techniques to allow programs written in different languages to function together. Several approaches are discussed toward achieving this objective and the Common Distributed Language Approach is presented as the approach of choice.
A Global Optimization Approach to Multi-Polarity Sentiment Analysis
Li, Xinmiao; Li, Jing; Wu, Yukeng
2015-01-01
Following the rapid development of social media, sentiment analysis has become an important social media mining technique. The performance of automatic sentiment analysis primarily depends on feature selection and sentiment classification. While information gain (IG) and support vector machines (SVM) are two important techniques, few studies have optimized both approaches in sentiment analysis. The effectiveness of applying a global optimization approach to sentiment analysis remains unclear. We propose a global optimization-based sentiment analysis (PSOGO-Senti) approach to improve sentiment analysis with IG for feature selection and SVM as the learning engine. The PSOGO-Senti approach utilizes a particle swarm optimization algorithm to obtain a global optimal combination of feature dimensions and parameters in the SVM. We evaluate the PSOGO-Senti model on two datasets from different fields. The experimental results showed that the PSOGO-Senti model can improve binary and multi-polarity Chinese sentiment analysis. We compared the optimal feature subset selected by PSOGO-Senti with the features in the sentiment dictionary. The results of this comparison indicated that PSOGO-Senti can effectively remove redundant and noisy features and can select a domain-specific feature subset with a higher-explanatory power for a particular sentiment analysis task. The experimental results showed that the PSOGO-Senti approach is effective and robust for sentiment analysis tasks in different domains. By comparing the improvements of two-polarity, three-polarity and five-polarity sentiment analysis results, we found that the five-polarity sentiment analysis delivered the largest improvement. The improvement of the two-polarity sentiment analysis was the smallest. We conclude that the PSOGO-Senti achieves higher improvement for a more complicated sentiment analysis task. We also compared the results of PSOGO-Senti with those of the genetic algorithm (GA) and grid search method. From
A global optimization approach to multi-polarity sentiment analysis.
Li, Xinmiao; Li, Jing; Wu, Yukeng
2015-01-01
Following the rapid development of social media, sentiment analysis has become an important social media mining technique. The performance of automatic sentiment analysis primarily depends on feature selection and sentiment classification. While information gain (IG) and support vector machines (SVM) are two important techniques, few studies have optimized both approaches in sentiment analysis. The effectiveness of applying a global optimization approach to sentiment analysis remains unclear. We propose a global optimization-based sentiment analysis (PSOGO-Senti) approach to improve sentiment analysis with IG for feature selection and SVM as the learning engine. The PSOGO-Senti approach utilizes a particle swarm optimization algorithm to obtain a global optimal combination of feature dimensions and parameters in the SVM. We evaluate the PSOGO-Senti model on two datasets from different fields. The experimental results showed that the PSOGO-Senti model can improve binary and multi-polarity Chinese sentiment analysis. We compared the optimal feature subset selected by PSOGO-Senti with the features in the sentiment dictionary. The results of this comparison indicated that PSOGO-Senti can effectively remove redundant and noisy features and can select a domain-specific feature subset with a higher-explanatory power for a particular sentiment analysis task. The experimental results showed that the PSOGO-Senti approach is effective and robust for sentiment analysis tasks in different domains. By comparing the improvements of two-polarity, three-polarity and five-polarity sentiment analysis results, we found that the five-polarity sentiment analysis delivered the largest improvement. The improvement of the two-polarity sentiment analysis was the smallest. We conclude that the PSOGO-Senti achieves higher improvement for a more complicated sentiment analysis task. We also compared the results of PSOGO-Senti with those of the genetic algorithm (GA) and grid search method. From
Optimal Decision Stimuli for Risky Choice Experiments: An Adaptive Approach
Cavagnaro, Daniel R.; Gonzalez, Richard; Myung, Jay I.; Pitt, Mark A.
2014-01-01
Collecting data to discriminate between models of risky choice requires careful selection of decision stimuli. Models of decision making aim to predict decisions across a wide range of possible stimuli, but practical limitations force experimenters to select only a handful of them for actual testing. Some stimuli are more diagnostic between models than others, so the choice of stimuli is critical. This paper provides the theoretical background and a methodological framework for adaptive selection of optimal stimuli for discriminating among models of risky choice. The approach, called Adaptive Design Optimization (ADO), adapts the stimulus in each experimental trial based on the results of the preceding trials. We demonstrate the validity of the approach with simulation studies aiming to discriminate Expected Utility, Weighted Expected Utility, Original Prospect Theory, and Cumulative Prospect Theory models. PMID:24532856
Optimal Decision Stimuli for Risky Choice Experiments: An Adaptive Approach.
Cavagnaro, Daniel R; Gonzalez, Richard; Myung, Jay I; Pitt, Mark A
2013-02-01
Collecting data to discriminate between models of risky choice requires careful selection of decision stimuli. Models of decision making aim to predict decisions across a wide range of possible stimuli, but practical limitations force experimenters to select only a handful of them for actual testing. Some stimuli are more diagnostic between models than others, so the choice of stimuli is critical. This paper provides the theoretical background and a methodological framework for adaptive selection of optimal stimuli for discriminating among models of risky choice. The approach, called Adaptive Design Optimization (ADO), adapts the stimulus in each experimental trial based on the results of the preceding trials. We demonstrate the validity of the approach with simulation studies aiming to discriminate Expected Utility, Weighted Expected Utility, Original Prospect Theory, and Cumulative Prospect Theory models. PMID:24532856
Finding Bayesian Optimal Designs for Nonlinear Models: A Semidefinite Programming-Based Approach
Duarte, Belmiro P. M.; Wong, Weng Kee
2014-01-01
Summary This paper uses semidefinite programming (SDP) to construct Bayesian optimal design for nonlinear regression models. The setup here extends the formulation of the optimal designs problem as an SDP problem from linear to nonlinear models. Gaussian quadrature formulas (GQF) are used to compute the expectation in the Bayesian design criterion, such as D-, A- or E-optimality. As an illustrative example, we demonstrate the approach using the power-logistic model and compare results in the literature. Additionally, we investigate how the optimal design is impacted by different discretising schemes for the design space, different amounts of uncertainty in the parameter values, different choices of GQF and different prior distributions for the vector of model parameters, including normal priors with and without correlated components. Further applications to find Bayesian D-optimal designs with two regressors for a logistic model and a two-variable generalised linear model with a gamma distributed response are discussed, and some limitations of our approach are noted. PMID:26512159
A statistical approach for polarized parton distributions
NASA Astrophysics Data System (ADS)
Bourrely, C.; Soffer, J.; Buccella, F.
2002-04-01
A global next-to-leading order QCD analysis of unpolarized and polarized deep-inelastic scattering data is performed with parton distributions constructed in a statistical physical picture of the nucleon. The chiral properties of QCD lead to strong relations between quarks and antiquarks distributions and the importance of the Pauli exclusion principle is also emphasized. We obtain a good description, in a broad range of x and Q^2, of all measured structure functions in terms of very few free parameters. We stress the fact that at RHIC-BNL the ratio of the unpolarized cross sections for the production of W^+ and W^- in pp collisions will directly probe the behavior of the bar d(x) / bar u(x) ratio for x ≥ 0.2, a definite and important test for the statistical model. Finally, we give specific predictions for various helicity asymmetries for the W^±, Z production in pp collisions at high energies, which will be measured with forthcoming experiments at RHIC-BNL and which are sensitive tests of the statistical model for Δ bar u(x) and Δ bar d(x).
RFI mitigation for SMOS: a distributed approach
NASA Astrophysics Data System (ADS)
Soldo, Y.; Khazaal, A.; Cabot, F.; Anterrieu, E.
2012-04-01
The Soil Moisture and Ocean Salinity (SMOS) satellite was launched by ESA on November 2nd, 2009. Its payload MIRAS (Microwave Imaging Radiometer by Aperture Synthesis), is a two-dimensional L-band interferometric radiometer, and measures brightness temperatures (BT) in the protected 1400-1427 MHz band. Although this band was preserved for passive measurements, numerous radio frequency interferences (RFIs) are clearly visible in SMOS' data. Three main foci of interest are detection, geo-localization and mitigation of the RFI sources. In this contribution is presented a method that addresses detection and mitigation in a snapshot-wise sense using the L1A SMOS products and the hexagonal 256x256 grid. Localization of the sources can also be inferred. Previous studies have already pointed out the large extent of RFIs impact on SMOS snapshots. Most of the RFI signal's energy is found around the source and its aliases, but it affects all points of the reconstructed BT scene. In principle it is known how a point source influences all grid points, so one way of mitigating RFIs is to obtain the precise localization of the source and have a snapshot-wise estimation of the source's temperature. But particularly tricky configurations may appear. For example the BT distribution pattern of a RFI may not match that of a point source or multiple RFIs can be so close to each other to be hard to process independently. This algorithm defines clusters around the points with highest BT, then within this cluster, it simulates an RFI source in a distributed sense, i.e. it simulates RFIs in various points inside the cluster, in order to obtain a BT distribution that is as close as possible to the distribution pattern in the measured data. This is done knowing that a source in a grid point will affect all other grid points to a certain known amount, which depends on the G-matrix and the aposization window, and the final BT distribution we want to obtain. Also, thanks to the use of detailed
The GRG approach for large-scale optimization
Drud, A.
1994-12-31
The Generalized Reduced Gradient (GRG) algorithm for general Nonlinear Programming (NLP) has been used successfully for over 25 years. The ideas of the original GRG algorithm have been modified and have absorbed developments in unconstrained optimization, linear programming, sparse matrix techniques, etc. The talk will review the essential aspects of the GRG approach and will discuss current development trends, especially related to very large models. Examples will be based on the CONOPT implementation.
Optimized probabilistic quantum processors: A unified geometric approach 1
NASA Astrophysics Data System (ADS)
Bergou, Janos; Bagan, Emilio; Feldman, Edgar
Using probabilistic and deterministic quantum cloning, and quantum state separation as illustrative examples we develop a complete geometric solution for finding their optimal success probabilities. The method is related to the approach that we introduced earlier for the unambiguous discrimination of more than two states. In some cases the method delivers analytical results, in others it leads to intuitive and straightforward numerical solutions. We also present implementations of the schemes based on linear optics employing few-photon interferometry
Activity-Centric Approach to Distributed Programming
NASA Technical Reports Server (NTRS)
Levy, Renato; Satapathy, Goutam; Lang, Jun
2004-01-01
The first phase of an effort to develop a NASA version of the Cybele software system has been completed. To give meaning to even a highly abbreviated summary of the modifications to be embodied in the NASA version, it is necessary to present the following background information on Cybele: Cybele is a proprietary software infrastructure for use by programmers in developing agent-based application programs [complex application programs that contain autonomous, interacting components (agents)]. Cybele provides support for event handling from multiple sources, multithreading, concurrency control, migration, and load balancing. A Cybele agent follows a programming paradigm, called activity-centric programming, that enables an abstraction over system-level thread mechanisms. Activity centric programming relieves application programmers of the complex tasks of thread management, concurrency control, and event management. In order to provide such functionality, activity-centric programming demands support of other layers of software. This concludes the background information. In the first phase of the present development, a new architecture for Cybele was defined. In this architecture, Cybele follows a modular service-based approach to coupling of the programming and service layers of software architecture. In a service-based approach, the functionalities supported by activity-centric programming are apportioned, according to their characteristics, among several groups called services. A well-defined interface among all such services serves as a path that facilitates the maintenance and enhancement of such services without adverse effect on the whole software framework. The activity-centric application-program interface (API) is part of a kernel. The kernel API calls the services by use of their published interface. This approach makes it possible for any application code written exclusively under the API to be portable for any configuration of Cybele.
Particle Swarm and Ant Colony Approaches in Multiobjective Optimization
NASA Astrophysics Data System (ADS)
Rao, S. S.
2010-10-01
The social behavior of groups of birds, ants, insects and fish has been used to develop evolutionary algorithms known as swarm intelligence techniques for solving optimization problems. This work presents the development of strategies for the application of two of the popular swarm intelligence techniques, namely the particle swarm and ant colony methods, for the solution of multiobjective optimization problems. In a multiobjective optimization problem, the objectives exhibit a conflicting nature and hence no design vector can minimize all the objectives simultaneously. The concept of Pareto-optimal solution is used in finding a compromise solution. A modified cooperative game theory approach, in which each objective is associated with a different player, is used in this work. The applicability and computational efficiencies of the proposed techniques are demonstrated through several illustrative examples involving unconstrained and constrained problems with single and multiple objectives and continuous and mixed design variables. The present methodologies are expected to be useful for the solution of a variety of practical continuous and mixed optimization problems involving single or multiple objectives with or without constraints.
Learning approach to sampling optimization: Applications in astrodynamics
NASA Astrophysics Data System (ADS)
Henderson, Troy Allen
A new, novel numerical optimization algorithm is developed, tested, and used to solve difficult numerical problems from the field of astrodynamics. First, a brief review of optimization theory is presented and common numerical optimization techniques are discussed. Then, the new method, called the Learning Approach to Sampling Optimization (LA) is presented. Simple, illustrative examples are given to further emphasize the simplicity and accuracy of the LA method. Benchmark functions in lower dimensions are studied and the LA is compared, in terms of performance, to widely used methods. Three classes of problems from astrodynamics are then solved. First, the N-impulse orbit transfer and rendezvous problems are solved by using the LA optimization technique along with derived bounds that make the problem computationally feasible. This marriage between analytical and numerical methods allows an answer to be found for an order of magnitude greater number of impulses than are currently published. Next, the N-impulse work is applied to design periodic close encounters (PCE) in space. The encounters are defined as an open rendezvous, meaning that two spacecraft must be at the same position at the same time, but their velocities are not necessarily equal. The PCE work is extended to include N-impulses and other constraints, and new examples are given. Finally, a trajectory optimization problem is solved using the LA algorithm and comparing performance with other methods based on two models---with varying complexity---of the Cassini-Huygens mission to Saturn. The results show that the LA consistently outperforms commonly used numerical optimization algorithms.
Optimal synchronization of Kuramoto oscillators: A dimensional reduction approach
NASA Astrophysics Data System (ADS)
Pinto, Rafael S.; Saa, Alberto
2015-12-01
A recently proposed dimensional reduction approach for studying synchronization in the Kuramoto model is employed to build optimal network topologies to favor or to suppress synchronization. The approach is based in the introduction of a collective coordinate for the time evolution of the phase locked oscillators, in the spirit of the Ott-Antonsen ansatz. We show that the optimal synchronization of a Kuramoto network demands the maximization of the quadratic function ωTL ω , where ω stands for the vector of the natural frequencies of the oscillators and L for the network Laplacian matrix. Many recently obtained numerical results can be reobtained analytically and in a simpler way from our maximization condition. A computationally efficient hill climb rewiring algorithm is proposed to generate networks with optimal synchronization properties. Our approach can be easily adapted to the case of the Kuramoto models with both attractive and repulsive interactions, and again many recent numerical results can be rederived in a simpler and clearer analytical manner.
Computational approaches for microalgal biofuel optimization: a review.
Koussa, Joseph; Chaiboonchoe, Amphun; Salehi-Ashtiani, Kourosh
2014-01-01
The increased demand and consumption of fossil fuels have raised interest in finding renewable energy sources throughout the globe. Much focus has been placed on optimizing microorganisms and primarily microalgae, to efficiently produce compounds that can substitute for fossil fuels. However, the path to achieving economic feasibility is likely to require strain optimization through using available tools and technologies in the fields of systems and synthetic biology. Such approaches invoke a deep understanding of the metabolic networks of the organisms and their genomic and proteomic profiles. The advent of next generation sequencing and other high throughput methods has led to a major increase in availability of biological data. Integration of such disparate data can help define the emergent metabolic system properties, which is of crucial importance in addressing biofuel production optimization. Herein, we review major computational tools and approaches developed and used in order to potentially identify target genes, pathways, and reactions of particular interest to biofuel production in algae. As the use of these tools and approaches has not been fully implemented in algal biofuel research, the aim of this review is to highlight the potential utility of these resources toward their future implementation in algal research. PMID:25309916
Jevtić, Aleksandar; Gutiérrez, Alvaro
2011-01-01
Swarms of robots can use their sensing abilities to explore unknown environments and deploy on sites of interest. In this task, a large number of robots is more effective than a single unit because of their ability to quickly cover the area. However, the coordination of large teams of robots is not an easy problem, especially when the resources for the deployment are limited. In this paper, the distributed bees algorithm (DBA), previously proposed by the authors, is optimized and applied to distributed target allocation in swarms of robots. Improved target allocation in terms of deployment cost efficiency is achieved through optimization of the DBA's control parameters by means of a genetic algorithm. Experimental results show that with the optimized set of parameters, the deployment cost measured as the average distance traveled by the robots is reduced. The cost-efficient deployment is in some cases achieved at the expense of increased robots' distribution error. Nevertheless, the proposed approach allows the swarm to adapt to the operating conditions when available resources are scarce. PMID:22346677
Jevtić, Aleksandar; Gutiérrez, Álvaro
2011-01-01
Swarms of robots can use their sensing abilities to explore unknown environments and deploy on sites of interest. In this task, a large number of robots is more effective than a single unit because of their ability to quickly cover the area. However, the coordination of large teams of robots is not an easy problem, especially when the resources for the deployment are limited. In this paper, the Distributed Bees Algorithm (DBA), previously proposed by the authors, is optimized and applied to distributed target allocation in swarms of robots. Improved target allocation in terms of deployment cost efficiency is achieved through optimization of the DBA’s control parameters by means of a Genetic Algorithm. Experimental results show that with the optimized set of parameters, the deployment cost measured as the average distance traveled by the robots is reduced. The cost-efficient deployment is in some cases achieved at the expense of increased robots’ distribution error. Nevertheless, the proposed approach allows the swarm to adapt to the operating conditions when available resources are scarce. PMID:22346677
Optimal service distribution in WSN service system subject to data security constraints.
Wu, Zhao; Xiong, Naixue; Huang, Yannong; Gu, Qiong
2014-01-01
Services composition technology provides a flexible approach to building Wireless Sensor Network (WSN) Service Applications (WSA) in a service oriented tasking system for WSN. Maintaining the data security of WSA is one of the most important goals in sensor network research. In this paper, we consider a WSN service oriented tasking system in which the WSN Services Broker (WSB), as the resource management center, can map the service request from user into a set of atom-services (AS) and send them to some independent sensor nodes (SN) for parallel execution. The distribution of ASs among these SNs affects the data security as well as the reliability and performance of WSA because these SNs can be of different and independent specifications. By the optimal service partition into the ASs and their distribution among SNs, the WSB can provide the maximum possible service reliability and/or expected performance subject to data security constraints. This paper proposes an algorithm of optimal service partition and distribution based on the universal generating function (UGF) and the genetic algorithm (GA) approach. The experimental analysis is presented to demonstrate the feasibility of the suggested algorithm. PMID:25093346
Optimal Service Distribution in WSN Service System Subject to Data Security Constraints
Wu, Zhao; Xiong, Naixue; Huang, Yannong; Gu, Qiong
2014-01-01
Services composition technology provides a flexible approach to building Wireless Sensor Network (WSN) Service Applications (WSA) in a service oriented tasking system for WSN. Maintaining the data security of WSA is one of the most important goals in sensor network research. In this paper, we consider a WSN service oriented tasking system in which the WSN Services Broker (WSB), as the resource management center, can map the service request from user into a set of atom-services (AS) and send them to some independent sensor nodes (SN) for parallel execution. The distribution of ASs among these SNs affects the data security as well as the reliability and performance of WSA because these SNs can be of different and independent specifications. By the optimal service partition into the ASs and their distribution among SNs, the WSB can provide the maximum possible service reliability and/or expected performance subject to data security constraints. This paper proposes an algorithm of optimal service partition and distribution based on the universal generating function (UGF) and the genetic algorithm (GA) approach. The experimental analysis is presented to demonstrate the feasibility of the suggested algorithm. PMID:25093346
Luo, Biao; Wu, Huai-Ning; Li, Han-Xiong
2015-04-01
Highly dissipative nonlinear partial differential equations (PDEs) are widely employed to describe the system dynamics of industrial spatially distributed processes (SDPs). In this paper, we consider the optimal control problem of the general highly dissipative SDPs, and propose an adaptive optimal control approach based on neuro-dynamic programming (NDP). Initially, Karhunen-Loève decomposition is employed to compute empirical eigenfunctions (EEFs) of the SDP based on the method of snapshots. These EEFs together with singular perturbation technique are then used to obtain a finite-dimensional slow subsystem of ordinary differential equations that accurately describes the dominant dynamics of the PDE system. Subsequently, the optimal control problem is reformulated on the basis of the slow subsystem, which is further converted to solve a Hamilton-Jacobi-Bellman (HJB) equation. HJB equation is a nonlinear PDE that has proven to be impossible to solve analytically. Thus, an adaptive optimal control method is developed via NDP that solves the HJB equation online using neural network (NN) for approximating the value function; and an online NN weight tuning law is proposed without requiring an initial stabilizing control policy. Moreover, by involving the NN estimation error, we prove that the original closed-loop PDE system with the adaptive optimal control policy is semiglobally uniformly ultimately bounded. Finally, the developed method is tested on a nonlinear diffusion-convection-reaction process and applied to a temperature cooling fin of high-speed aerospace vehicle, and the achieved results show its effectiveness. PMID:25794375
A multiple objective optimization approach to quality control
NASA Technical Reports Server (NTRS)
Seaman, Christopher Michael
1991-01-01
The use of product quality as the performance criteria for manufacturing system control is explored. The goal in manufacturing, for economic reasons, is to optimize product quality. The problem is that since quality is a rather nebulous product characteristic, there is seldom an analytic function that can be used as a measure. Therefore standard control approaches, such as optimal control, cannot readily be applied. A second problem with optimizing product quality is that it is typically measured along many dimensions: there are many apsects of quality which must be optimized simultaneously. Very often these different aspects are incommensurate and competing. The concept of optimality must now include accepting tradeoffs among the different quality characteristics. These problems are addressed using multiple objective optimization. It is shown that the quality control problem can be defined as a multiple objective optimization problem. A controller structure is defined using this as the basis. Then, an algorithm is presented which can be used by an operator to interactively find the best operating point. Essentially, the algorithm uses process data to provide the operator with two pieces of information: (1) if it is possible to simultaneously improve all quality criteria, then determine what changes to the process input or controller parameters should be made to do this; and (2) if it is not possible to improve all criteria, and the current operating point is not a desirable one, select a criteria in which a tradeoff should be made, and make input changes to improve all other criteria. The process is not operating at an optimal point in any sense if no tradeoff has to be made to move to a new operating point. This algorithm ensures that operating points are optimal in some sense and provides the operator with information about tradeoffs when seeking the best operating point. The multiobjective algorithm was implemented in two different injection molding scenarios
Conductance Distributions for Empirical Orthogonal Function Analysis and Optimal Interpolation
NASA Astrophysics Data System (ADS)
Knipp, Delores; McGranaghan, Ryan; Matsuo, Tomoko
2016-04-01
We show the first characterizations of the primary modes of ionospheric Hall and Pedersen conductance variability as empirical orthogonal functions (EOFs). These are derived from six satellite years of Defense Meteorological Satellite Program (DMSP) particle data acquired during the rise of solar cycles 22 and 24. The 60 million DMSP spectra were each processed through the Global Airlglow Model. This is the first large-scale analysis of ionospheric conductances completely free of assumption of the incident electron energy spectra. We show that the mean patterns and first four EOFs capture ˜50.1 and 52.9% of the total Pedersen and Hall conductance variabilities, respectively. The mean patterns and first EOFs are consistent with typical diffuse auroral oval structures and quiet time strengthening/weakening of the mean pattern. The second and third EOFs show major disturbance features of magnetosphere-ionosphere (MI) interactions: geomagnetically induced auroral zone expansion in EOF2 and the auroral substorm current wedge in EOF3. The fourth EOFs suggest diminished conductance associated with ionospheric substorm recovery mode. These EOFs are then used in a new optimal interpolation (OI) technique to estimate complete high-latitude ionospheric conductance distributions. The technique combines particle precipitation-based calculations of ionospheric conductances and their errors with a background model and its error covariance (estimated by EOF analysis) to infer complete distributions of the high-latitude ionospheric conductances for a week in late 2011. The OI technique captures: 1) smaller-scaler ionospheric conductance features associated with discrete precipitation and 2) brings ground- and space-based data into closer agreement. We show quantitatively and qualitatively that this new technique provides better ionospheric conductance specification than past statistical models, especially during heightened geomagnetic activity.
A SAND approach based on cellular computation models for analysis and optimization
NASA Astrophysics Data System (ADS)
Canyurt, O. E.; Hajela, P.
2007-06-01
Genetic algorithms (GAs) have received considerable recent attention in problems of design optimization. The mechanics of population-based search in GAs are highly amenable to implementation on parallel computers. The present article describes a fine-grained model of parallel GA implementation that derives from a cellular-automata-like computation. The central idea behind the cellular genetic algorithm (CGA) approach is to treat the GA population as being distributed over a 2-D grid of cells, with each member of the population occupying a particular cell and defining the state of that cell. Evolution of the cell state is tantamount to updating the design information contained in a cell site and, as in cellular automata computations, takes place on the basis of local interaction with neighbouring cells. A special focus of the article is in the use of cellular automata (CA)-based models for structural analysis in conjunction with the CGA approach to optimization. In such an approach, the analysis and optimization are evolved simultaneously in a unified cellular computational framework. The article describes the implementation of this approach and examines its efficiency in the context of representative structural optimization problems.
Simultaneous optimization of dose distributions and fractionation schemes in particle radiotherapy
Unkelbach, Jan; Zeng, Chuan; Engelsman, Martijn
2013-09-15
Purpose: The paper considers the fractionation problem in intensity modulated proton therapy (IMPT). Conventionally, IMPT fields are optimized independently of the fractionation scheme. In this work, we discuss the simultaneous optimization of fractionation scheme and pencil beam intensities.Methods: This is performed by allowing for distinct pencil beam intensities in each fraction, which are optimized using objective and constraint functions based on biologically equivalent dose (BED). The paper presents a model that mimics an IMPT treatment with a single incident beam direction for which the optimal fractionation scheme can be determined despite the nonconvexity of the BED-based treatment planning problem.Results: For this model, it is shown that a small α/β ratio in the tumor gives rise to a hypofractionated treatment, whereas a large α/β ratio gives rise to hyperfractionation. It is further demonstrated that, for intermediate α/β ratios in the tumor, a nonuniform fractionation scheme emerges, in which it is optimal to deliver different dose distributions in subsequent fractions. The intuitive explanation for this phenomenon is as follows: By varying the dose distribution in the tumor between fractions, the same total BED can be achieved with a lower physical dose. If it is possible to achieve this dose variation in the tumor without varying the dose in the normal tissue (which would have an adverse effect), the reduction in physical dose may lead to a net reduction of the normal tissue BED. For proton therapy, this is indeed possible to some degree because the entrance dose is mostly independent of the range of the proton pencil beam.Conclusions: The paper provides conceptual insight into the interdependence of optimal fractionation schemes and the spatial optimization of dose distributions. It demonstrates the emergence of nonuniform fractionation schemes that arise from the standard BED model when IMPT fields and fractionation scheme are optimized
Unsteady Adjoint Approach for Design Optimization of Flapping Airfoils
NASA Technical Reports Server (NTRS)
Lee, Byung Joon; Liou, Meng-Sing
2012-01-01
This paper describes the work for optimizing the propulsive efficiency of flapping airfoils, i.e., improving the thrust under constraining aerodynamic work during the flapping flights by changing their shape and trajectory of motion with the unsteady discrete adjoint approach. For unsteady problems, it is essential to properly resolving time scales of motion under consideration and it must be compatible with the objective sought after. We include both the instantaneous and time-averaged (periodic) formulations in this study. For the design optimization with shape parameters or motion parameters, the time-averaged objective function is found to be more useful, while the instantaneous one is more suitable for flow control. The instantaneous objective function is operationally straightforward. On the other hand, the time-averaged objective function requires additional steps in the adjoint approach; the unsteady discrete adjoint equations for a periodic flow must be reformulated and the corresponding system of equations solved iteratively. We compare the design results from shape and trajectory optimizations and investigate the physical relevance of design variables to the flapping motion at on- and off-design conditions.
Portfolio optimization in enhanced index tracking with goal programming approach
NASA Astrophysics Data System (ADS)
Siew, Lam Weng; Jaaman, Saiful Hafizah Hj.; Ismail, Hamizun bin
2014-09-01
Enhanced index tracking is a popular form of passive fund management in stock market. Enhanced index tracking aims to generate excess return over the return achieved by the market index without purchasing all of the stocks that make up the index. This can be done by establishing an optimal portfolio to maximize the mean return and minimize the risk. The objective of this paper is to determine the portfolio composition and performance using goal programming approach in enhanced index tracking and comparing it to the market index. Goal programming is a branch of multi-objective optimization which can handle decision problems that involve two different goals in enhanced index tracking, a trade-off between maximizing the mean return and minimizing the risk. The results of this study show that the optimal portfolio with goal programming approach is able to outperform the Malaysia market index which is FTSE Bursa Malaysia Kuala Lumpur Composite Index because of higher mean return and lower risk without purchasing all the stocks in the market index.
General approach and scope. [rotor blade design optimization
NASA Technical Reports Server (NTRS)
Adelman, Howard M.; Mantay, Wayne R.
1989-01-01
This paper describes a joint activity involving NASA and Army researchers at the NASA Langley Research Center to develop optimization procedures aimed at improving the rotor blade design process by integrating appropriate disciplines and accounting for all of the important interactions among the disciplines. The disciplines involved include rotor aerodynamics, rotor dynamics, rotor structures, airframe dynamics, and acoustics. The work is focused on combining these five key disciplines in an optimization procedure capable of designing a rotor system to satisfy multidisciplinary design requirements. Fundamental to the plan is a three-phased approach. In phase 1, the disciplines of blade dynamics, blade aerodynamics, and blade structure will be closely coupled, while acoustics and airframe dynamics will be decoupled and be accounted for as effective constraints on the design for the first three disciplines. In phase 2, acoustics is to be integrated with the first three disciplines. Finally, in phase 3, airframe dynamics will be fully integrated with the other four disciplines. This paper deals with details of the phase 1 approach and includes details of the optimization formulation, design variables, constraints, and objective function, as well as details of discipline interactions, analysis methods, and methods for validating the procedure.
Optimal source distribution for binaural synthesis over loudspeakers
NASA Astrophysics Data System (ADS)
Takeuchi, Takashi; Nelson, Philip A.
2002-12-01
When binaural sound signals are presented with loudspeakers, the system inversion involved gives rise to a number of problems such as a loss of dynamic range and a lack of robustness to small errors and room reflections. The amplification required by the system inversion results in loss of dynamic range. The control performance of such a system deteriorates severely due to small errors resulting from, e.g., misalignment of the system and individual differences in the head related transfer functions at certain frequencies. The required large sound radiation results in severe reflection which also reduces the control performance. A method of overcoming these fundamental problems is proposed in this paper. A conceptual monopole transducer is introduced whose position varies continuously as frequency varies. This gives a minimum processing requirement of the binaural signals for the control to be achieved and all the above problems either disappear or are minimized. The inverse filters have flat amplitude response and the reproduced sound is not colored even outside the relatively large ``sweet area.'' A number of practical solutions are suggested for the realization of such optimally distributed transducers. One of them is a discretization that enables the use of conventional transducer units.
Optimal eavesdropping on quantum key distribution without quantum memory
NASA Astrophysics Data System (ADS)
Bocquet, Aurélien; Alléaume, Romain; Leverrier, Anthony
2012-01-01
We consider the security of the BB84 (Bennett and Brassard 1984 Proc. IEEE Int. Conf. on Computers, Systems, and Signal Processing pp 175-9), six-state (Bruß 1998 Phys. Rev. Lett. http://dx.doi.org/10.1103/PhysRevLett.81.3018) and SARG04 (Scarani et al 2004 Phys. Rev. Lett. http://dx.doi.org/10.1103/PhysRevLett.92.057901) quantum key distribution protocols when the eavesdropper does not have access to a quantum memory. In this case, Eve’s most general strategy is to measure her ancilla with an appropriate positive operator-valued measure designed to take advantage of the post-measurement information that will be released during the sifting phase of the protocol. After an optimization on all the parameters accessible to Eve, our method provides us with new bounds for the security of six-state and SARG04 against a memoryless adversary. In particular, for the six-state protocol we show that the maximum quantum bit error ratio for which a secure key can be extracted is increased from 12.6% (for collective attacks) to 20.4% with the memoryless assumption.
Optimizing communication satellites payload configuration with exact approaches
NASA Astrophysics Data System (ADS)
Stathakis, Apostolos; Danoy, Grégoire; Bouvry, Pascal; Talbi, El-Ghazali; Morelli, Gianluigi
2015-12-01
The satellite communications market is competitive and rapidly evolving. The payload, which is in charge of applying frequency conversion and amplification to the signals received from Earth before their retransmission, is made of various components. These include reconfigurable switches that permit the re-routing of signals based on market demand or because of some hardware failure. In order to meet modern requirements, the size and the complexity of current communication payloads are increasing significantly. Consequently, the optimal payload configuration, which was previously done manually by the engineers with the use of computerized schematics, is now becoming a difficult and time consuming task. Efficient optimization techniques are therefore required to find the optimal set(s) of switch positions to optimize some operational objective(s). In order to tackle this challenging problem for the satellite industry, this work proposes two Integer Linear Programming (ILP) models. The first one is single-objective and focuses on the minimization of the length of the longest channel path, while the second one is bi-objective and additionally aims at minimizing the number of switch changes in the payload switch matrix. Experiments are conducted on a large set of instances of realistic payload sizes using the CPLEX® solver and two well-known exact multi-objective algorithms. Numerical results demonstrate the efficiency and limitations of the ILP approach on this real-world problem.
Robust optimization for water distribution systems least cost design
NASA Astrophysics Data System (ADS)
Perelman, Lina; Housh, Mashor; Ostfeld, Avi
2013-10-01
The objective of the least cost design problem of a water distribution system is to find its minimum cost with discrete diameters as decision variables and hydraulic controls as constraints. The goal of a robust least cost design is to find solutions which guarantee its feasibility independent of the data (i.e., under model uncertainty). A robust counterpart approach for linear uncertain problems is adopted in this study, which represents the uncertain stochastic problem as its deterministic equivalent. Robustness is controlled by a single parameter providing a trade-off between the probability of constraint violation and the objective cost. Two principal models are developed: uncorrelated uncertainty model with implicit design reliability, and correlated uncertainty model with explicit design reliability. The models are tested on three example applications and compared for uncertainty in consumers' demands. The main contribution of this study is the inclusion of the ability to explicitly account for different correlations between water distribution system demand nodes. In particular, it is shown that including correlation information in the design phase has a substantial advantage in seeking more efficient robust solutions.
SolOpt: A Novel Approach to Solar Rooftop Optimization
Lisell, L.; Metzger, I.; Dean, J.
2011-01-01
Traditionally Photovoltaic Technology (PV) and Solar Hot Water Technology (SHW) have been designed with separate design tools, making it difficult to determine the appropriate mix of PV and SHW. A new tool developed at the National Renewable Energy Laboratory changes how the analysis is conducted through an integrated approach based on the life cycle cost effectiveness of each system. With 10 inputs someone with only basic knowledge of the building can simulate energy production from PV and SHW, and predict the optimal sizes of the systems. The user can select from four optimization criteria currently available: Greenhouse Gas Reduction, Net-Present Value, Renewable Energy Production, and Discounted Payback Period. SolOpt provides unique analysis capabilities that aren't currently available in any other software programs. Validation results with industry accepted tools for both SHW and PV are presented.
Optimal trading strategies—a time series approach
NASA Astrophysics Data System (ADS)
Bebbington, Peter A.; Kühn, Reimer
2016-05-01
Motivated by recent advances in the spectral theory of auto-covariance matrices, we are led to revisit a reformulation of Markowitz’ mean-variance portfolio optimization approach in the time domain. In its simplest incarnation it applies to a single traded asset and allows an optimal trading strategy to be found which—for a given return—is minimally exposed to market price fluctuations. The model is initially investigated for a range of synthetic price processes, taken to be either second order stationary, or to exhibit second order stationary increments. Attention is paid to consequences of estimating auto-covariance matrices from small finite samples, and auto-covariance matrix cleaning strategies to mitigate against these are investigated. Finally we apply our framework to real world data.
Optimal approach to quantum communication using dynamic programming.
Jiang, Liang; Taylor, Jacob M; Khaneja, Navin; Lukin, Mikhail D
2007-10-30
Reliable preparation of entanglement between distant systems is an outstanding problem in quantum information science and quantum communication. In practice, this has to be accomplished by noisy channels (such as optical fibers) that generally result in exponential attenuation of quantum signals at large distances. A special class of quantum error correction protocols, quantum repeater protocols, can be used to overcome such losses. In this work, we introduce a method for systematically optimizing existing protocols and developing more efficient protocols. Our approach makes use of a dynamic programming-based searching algorithm, the complexity of which scales only polynomially with the communication distance, letting us efficiently determine near-optimal solutions. We find significant improvements in both the speed and the final-state fidelity for preparing long-distance entangled states. PMID:17959783
Standardized approach for developing probabilistic exposure factor distributions
Maddalena, Randy L.; McKone, Thomas E.; Sohn, Michael D.
2003-03-01
The effectiveness of a probabilistic risk assessment (PRA) depends critically on the quality of input information that is available to the risk assessor and specifically on the probabilistic exposure factor distributions that are developed and used in the exposure and risk models. Deriving probabilistic distributions for model inputs can be time consuming and subjective. The absence of a standard approach for developing these distributions can result in PRAs that are inconsistent and difficult to review by regulatory agencies. We present an approach that reduces subjectivity in the distribution development process without limiting the flexibility needed to prepare relevant PRAs. The approach requires two steps. First, we analyze data pooled at a population scale to (1) identify the most robust demographic variables within the population for a given exposure factor, (2) partition the population data into subsets based on these variables, and (3) construct archetypal distributions for each subpopulation. Second, we sample from these archetypal distributions according to site- or scenario-specific conditions to simulate exposure factor values and use these values to construct the scenario-specific input distribution. It is envisaged that the archetypal distributions from step 1 will be generally applicable so risk assessors will not have to repeatedly collect and analyze raw data for each new assessment. We demonstrate the approach for two commonly used exposure factors--body weight (BW) and exposure duration (ED)--using data for the U.S. population. For these factors we provide a first set of subpopulation based archetypal distributions along with methodology for using these distributions to construct relevant scenario-specific probabilistic exposure factor distributions.
Friedrich, Tobias; Neumann, Frank; Thyssen, Christian
2015-01-01
Many optimization problems arising in applications have to consider several objective functions at the same time. Evolutionary algorithms seem to be a very natural choice for dealing with multi-objective problems as the population of such an algorithm can be used to represent the trade-offs with respect to the given objective functions. In this paper, we contribute to the theoretical understanding of evolutionary algorithms for multi-objective problems. We consider indicator-based algorithms whose goal is to maximize the hypervolume for a given problem by distributing [Formula: see text] points on the Pareto front. To gain new theoretical insights into the behavior of hypervolume-based algorithms, we compare their optimization goal to the goal of achieving an optimal multiplicative approximation ratio. Our studies are carried out for different Pareto front shapes of bi-objective problems. For the class of linear fronts and a class of convex fronts, we prove that maximizing the hypervolume gives the best possible approximation ratio when assuming that the extreme points have to be included in both distributions of the points on the Pareto front. Furthermore, we investigate the choice of the reference point on the approximation behavior of hypervolume-based approaches and examine Pareto fronts of different shapes by numerical calculations. PMID:24654679
Perspective: Codesign for materials science: An optimal learning approach
NASA Astrophysics Data System (ADS)
Lookman, Turab; Alexander, Francis J.; Bishop, Alan R.
2016-05-01
A key element of materials discovery and design is to learn from available data and prior knowledge to guide the next experiments or calculations in order to focus in on materials with targeted properties. We suggest that the tight coupling and feedback between experiments, theory and informatics demands a codesign approach, very reminiscent of computational codesign involving software and hardware in computer science. This requires dealing with a constrained optimization problem in which uncertainties are used to adaptively explore and exploit the predictions of a surrogate model to search the vast high dimensional space where the desired material may be found.
Optimal active power dispatch by network flow approach
Carvalho, M.F. ); Soares, S.; Ohishi, T. )
1988-11-01
In this paper the optimal active power dispatch problem is formulated as a nonlinear capacitated network flow problem with additional linear constraints. Transmission flow limits and both Kirchhoff's laws are taken into account. The problem is solved by a Generalized Upper Bounding technique that takes advantage of the network flow structure of the problem. The new approach has potential applications on power systems problems such as economic dispatch, load supplying capability, minimum load shedding, and generation-transmission reliability. The paper also reviews the use of transportation models for power system analysis. A detailed illustrative example is presented.
Optimal reconstruction of reaction rates from particle distributions
NASA Astrophysics Data System (ADS)
Fernandez-Garcia, Daniel; Sanchez-Vila, Xavier
2010-05-01
Random walk particle tracking methodologies to simulate solute transport of conservative species constitute an attractive alternative for their computational efficiency and absence of numerical dispersion. Yet, problems stemming from the reconstruction of concentrations from particle distributions have typically prevented its use in reactive transport problems. The numerical problem mainly arises from the need to first reconstruct the concentrations of species/components from a discrete number of particles, which is an error prone process, and then computing a spatial functional of the concentrations and/or its derivatives (either spatial or temporal). Errors are then propagated, so that common strategies to reconstruct this functional require an unfeasible amount of particles when dealing with nonlinear reactive transport problems. In this context, this article presents a methodology to directly reconstruct this functional based on kernel density estimators. The methodology mitigates the error propagation in the evaluation of the functional by avoiding the prior estimation of the actual concentrations of species. The multivariate kernel associated with the corresponding functional depends on the size of the support volume, which defines the area over which a given particle can influence the functional. The shape of the kernel functions and the size of the support volume determines the degree of smoothing, which is optimized to obtain the best unbiased predictor of the functional using an iterative plug-in support volume selector. We applied the methodology to directly reconstruct the reaction rates of a precipitation/dissolution problem involving the mixing of two different waters carrying two aqueous species in chemical equilibrium and moving through a randomly heterogeneous porous medium.
Automatic Calibration of a Semi-Distributed Hydrologic Model Using Particle Swarm Optimization
NASA Astrophysics Data System (ADS)
Bekele, E. G.; Nicklow, J. W.
2005-12-01
Hydrologic simulation models need to be calibrated and validated before using them for operational predictions. Spatially-distributed hydrologic models generally have a large number of parameters to capture the various physical characteristics of a hydrologic system. Manual calibration of such models is a very tedious and daunting task, and its success depends on the subjective assessment of a particular modeler, which includes knowledge of the basic approaches and interactions in the model. In order to alleviate these shortcomings, an automatic calibration model, which employs an evolutionary optimization technique known as Particle Swarm Optimizer (PSO) for parameter estimation, is developed. PSO is a heuristic search algorithm that is inspired by social behavior of bird flocking or fish schooling. The newly-developed calibration model is integrated to the U.S. Department of Agriculture's Soil and Water Assessment Tool (SWAT). SWAT is a physically-based, semi-distributed hydrologic model that was developed to predict the long term impacts of land management practices on water, sediment and agricultural chemical yields in large complex watersheds with varying soils, land use, and management conditions. SWAT was calibrated for streamflow and sediment concentration. The calibration process involves parameter specification, whereby sensitive model parameters are identified, and parameter estimation. In order to reduce the number of parameters to be calibrated, parameterization was performed. The methodology is applied to a demonstration watershed known as Big Creek, which is located in southern Illinois. Application results show the effectiveness of the approach and model predictions are significantly improved.
Double-layer evolutionary algorithm for distributed optimization of particle detection on the Grid
NASA Astrophysics Data System (ADS)
Padée, Adam; Kurek, Krzysztof; Zaremba, Krzysztof
2013-08-01
Reconstruction of particle tracks from information collected by position-sensitive detectors is an important procedure in HEP experiments. It is usually controlled by a set of numerical parameters which have to be manually optimized. This paper proposes an automatic approach to this task by utilizing evolutionary algorithm (EA) operating on both real-valued and binary representations. Because of computational complexity of the task a special distributed architecture of the algorithm is proposed, designed to be run in grid environment. It is two-level hierarchical hybrid utilizing asynchronous master-slave EA on the level of clusters and island model EA on the level of the grid. The technical aspects of usage of production grid infrastructure are covered, including communication protocols on both levels. The paper deals also with the problem of heterogeneity of the resources, presenting efficiency tests on a benchmark function. These tests confirm that even relatively small islands (clusters) can be beneficial to the optimization process when connected to the larger ones. Finally a real-life usage example is presented, which is an optimization of track reconstruction in Large Angle Spectrometer of NA-58 COMPASS experiment held at CERN, using a sample of Monte Carlo simulated data. The overall reconstruction efficiency gain, achieved by the proposed method, is more than 4%, compared to the manually optimized parameters.
An optimization approach for fitting canonical tensor decompositions.
Dunlavy, Daniel M.; Acar, Evrim; Kolda, Tamara Gibson
2009-02-01
Tensor decompositions are higher-order analogues of matrix decompositions and have proven to be powerful tools for data analysis. In particular, we are interested in the canonical tensor decomposition, otherwise known as the CANDECOMP/PARAFAC decomposition (CPD), which expresses a tensor as the sum of component rank-one tensors and is used in a multitude of applications such as chemometrics, signal processing, neuroscience, and web analysis. The task of computing the CPD, however, can be difficult. The typical approach is based on alternating least squares (ALS) optimization, which can be remarkably fast but is not very accurate. Previously, nonlinear least squares (NLS) methods have also been recommended; existing NLS methods are accurate but slow. In this paper, we propose the use of gradient-based optimization methods. We discuss the mathematical calculation of the derivatives and further show that they can be computed efficiently, at the same cost as one iteration of ALS. Computational experiments demonstrate that the gradient-based optimization methods are much more accurate than ALS and orders of magnitude faster than NLS.
Silanization of glass chips—A factorial approach for optimization
NASA Astrophysics Data System (ADS)
Vistas, Cláudia R.; Águas, Ana C. P.; Ferreira, Guilherme N. M.
2013-12-01
Silanization of glass chips with 3-mercaptopropyltrimethoxysilane (MPTS) was investigated and optimized to generate a high-quality layer with well-oriented thiol groups. A full factorial design was used to evaluate the influence of silane concentration and reaction time. The stabilization of the silane monolayer by thermal curing was also investigated, and a disulfide reduction step was included to fully regenerate the thiol-modified surface function. Fluorescence analysis and water contact angle measurements were used to quantitatively assess the chemical modifications, wettability and quality of modified chip surfaces throughout the silanization, curing and reduction steps. The factorial design enables a systematic approach for the optimization of glass chips silanization process. The optimal conditions for the silanization were incubation of the chips in a 2.5% MPTS solution for 2 h, followed by a curing process at 110 °C for 2 h and a reduction step with 10 mM dithiothreitol for 30 min at 37 °C. For these conditions the surface density of functional thiol groups was 4.9 × 1013 molecules/cm2, which is similar to the expected maximum coverage obtained from the theoretical estimations based on projected molecular area (∼5 × 1013 molecules/cm2).
Holm, Åsa; Larsson, Torbjörn; Tedgren, Åsa Carlsson
2013-08-15
Purpose: Recent research has shown that the optimization model hitherto used in high-dose-rate (HDR) brachytherapy corresponds weakly to the dosimetric indices used to evaluate the quality of a dose distribution. Although alternative models that explicitly include such dosimetric indices have been presented, the inclusion of the dosimetric indices explicitly yields intractable models. The purpose of this paper is to develop a model for optimizing dosimetric indices that is easier to solve than those proposed earlier.Methods: In this paper, the authors present an alternative approach for optimizing dose distributions for HDR brachytherapy where dosimetric indices are taken into account through surrogates based on the conditional value-at-risk concept. This yields a linear optimization model that is easy to solve, and has the advantage that the constraints are easy to interpret and modify to obtain satisfactory dose distributions.Results: The authors show by experimental comparisons, carried out retrospectively for a set of prostate cancer patients, that their proposed model corresponds well with constraining dosimetric indices. All modifications of the parameters in the authors' model yield the expected result. The dose distributions generated are also comparable to those generated by the standard model with respect to the dosimetric indices that are used for evaluating quality.Conclusions: The authors' new model is a viable surrogate to optimizing dosimetric indices and quickly and easily yields high quality dose distributions.
A Statistical Approach to Optimizing Concrete Mixture Design
Alghamdi, Saeid A.
2014-01-01
A step-by-step statistical approach is proposed to obtain optimum proportioning of concrete mixtures using the data obtained through a statistically planned experimental program. The utility of the proposed approach for optimizing the design of concrete mixture is illustrated considering a typical case in which trial mixtures were considered according to a full factorial experiment design involving three factors and their three levels (33). A total of 27 concrete mixtures with three replicates (81 specimens) were considered by varying the levels of key factors affecting compressive strength of concrete, namely, water/cementitious materials ratio (0.38, 0.43, and 0.48), cementitious materials content (350, 375, and 400 kg/m3), and fine/total aggregate ratio (0.35, 0.40, and 0.45). The experimental data were utilized to carry out analysis of variance (ANOVA) and to develop a polynomial regression model for compressive strength in terms of the three design factors considered in this study. The developed statistical model was used to show how optimization of concrete mixtures can be carried out with different possible options. PMID:24688405
Optimal subinterval selection approach for power system transient stability simulation
Kim, Soobae; Overbye, Thomas J.
2015-10-21
Power system transient stability analysis requires an appropriate integration time step to avoid numerical instability as well as to reduce computational demands. For fast system dynamics, which vary more rapidly than what the time step covers, a fraction of the time step, called a subinterval, is used. However, the optimal value of this subinterval is not easily determined because the analysis of the system dynamics might be required. This selection is usually made from engineering experiences, and perhaps trial and error. This paper proposes an optimal subinterval selection approach for power system transient stability analysis, which is based on modalmore » analysis using a single machine infinite bus (SMIB) system. Fast system dynamics are identified with the modal analysis and the SMIB system is used focusing on fast local modes. An appropriate subinterval time step from the proposed approach can reduce computational burden and achieve accurate simulation responses as well. As a result, the performance of the proposed method is demonstrated with the GSO 37-bus system.« less
A statistical approach to optimizing concrete mixture design.
Ahmad, Shamsad; Alghamdi, Saeid A
2014-01-01
A step-by-step statistical approach is proposed to obtain optimum proportioning of concrete mixtures using the data obtained through a statistically planned experimental program. The utility of the proposed approach for optimizing the design of concrete mixture is illustrated considering a typical case in which trial mixtures were considered according to a full factorial experiment design involving three factors and their three levels (3(3)). A total of 27 concrete mixtures with three replicates (81 specimens) were considered by varying the levels of key factors affecting compressive strength of concrete, namely, water/cementitious materials ratio (0.38, 0.43, and 0.48), cementitious materials content (350, 375, and 400 kg/m(3)), and fine/total aggregate ratio (0.35, 0.40, and 0.45). The experimental data were utilized to carry out analysis of variance (ANOVA) and to develop a polynomial regression model for compressive strength in terms of the three design factors considered in this study. The developed statistical model was used to show how optimization of concrete mixtures can be carried out with different possible options. PMID:24688405
Optimal subinterval selection approach for power system transient stability simulation
Kim, Soobae; Overbye, Thomas J.
2015-10-21
Power system transient stability analysis requires an appropriate integration time step to avoid numerical instability as well as to reduce computational demands. For fast system dynamics, which vary more rapidly than what the time step covers, a fraction of the time step, called a subinterval, is used. However, the optimal value of this subinterval is not easily determined because the analysis of the system dynamics might be required. This selection is usually made from engineering experiences, and perhaps trial and error. This paper proposes an optimal subinterval selection approach for power system transient stability analysis, which is based on modal analysis using a single machine infinite bus (SMIB) system. Fast system dynamics are identified with the modal analysis and the SMIB system is used focusing on fast local modes. An appropriate subinterval time step from the proposed approach can reduce computational burden and achieve accurate simulation responses as well. As a result, the performance of the proposed method is demonstrated with the GSO 37-bus system.
NASA Astrophysics Data System (ADS)
Kumar, Ashwani; Vijay Babu, P.; Murty, V. V. S. N.
2016-07-01
Rapidly increasing electricity demands and capacity shortage of transmission and distribution facilities are the main driving forces for the growth of distributed generation (DG) integration in power grids. One of the reasons for choosing a DG is its ability to support voltage in a distribution system. Selection of effective DG characteristics and DG parameters is a significant concern of distribution system planners to obtain maximum potential benefits from the DG unit. The objective of the paper is to reduce the power losses and improve the voltage profile of the radial distribution system with optimal allocation of the multiple DG in the system. The main contribution in this paper is (i) combined power loss sensitivity (CPLS) based method for multiple DG locations, (ii) determination of optimal sizes for multiple DG units at unity and lagging power factor, (iii) impact of DG installed at optimal, that is, combined load power factor on the system performance, (iv) impact of load growth on optimal DG planning, (v) Impact of DG integration in distribution systems on voltage stability index, (vi) Economic and technical Impact of DG integration in the distribution systems. The load growth factor has been considered in the study which is essential for planning and expansion of the existing systems. The technical and economic aspects are investigated in terms of improvement in voltage profile, reduction in total power losses, cost of energy loss, cost of power obtained from DG, cost of power intake from the substation, and savings in cost of energy loss. The results are obtained on IEEE 69-bus radial distribution systems and also compared with other existing methods.
Optimized Switch Allocation to Improve the Restoration Energy in Distribution Systems
NASA Astrophysics Data System (ADS)
Dezaki, Hamed H.; Abyaneh, Hossein A.; Agheli, Ali; Mazlumi, Kazem
2012-01-01
In distribution networks switching devices play critical role in energy restoration and improving reliability indices. This paper presents a novel objective function to optimally allocate switches in electric power distribution systems. Identifying the optimized location of the switches is a nonlinear programming problem (NLP). In the proposed objective function a new auxiliary function is used to simplify the calculation of the objective function. The output of the auxiliary function is binary. The genetic algorithm (GA) optimization method is used to solve this optimization problem. The proposed method is applied to a real distribution network and the results reveal that the method is successful.
A systems biology approach to radiation therapy optimization.
Brahme, Anders; Lind, Bengt K
2010-05-01
During the last 20 years, the field of cellular and not least molecular radiation biology has been developed substantially and can today describe the response of heterogeneous tumors and organized normal tissues to radiation therapy quite well. An increased understanding of the sub-cellular and molecular response is leading to a more general systems biological approach to radiation therapy and treatment optimization. It is interesting that most of the characteristics of the tissue infrastructure, such as the vascular system and the degree of hypoxia, have to be considered to get an accurate description of tumor and normal tissue responses to ionizing radiation. In the limited space available, only a brief description of some of the most important concepts and processes is possible, starting from the key functional genomics pathways of the cell that are not only responsible for tumor development but also responsible for the response of the cells to radiation therapy. The key mechanisms for cellular damage and damage repair are described. It is further more discussed how these processes can be brought to inactivate the tumor without severely damaging surrounding normal tissues using suitable radiation modalities like intensity-modulated radiation therapy (IMRT) or light ions. The use of such methods may lead to a truly scientific approach to radiation therapy optimization, particularly when invivo predictive assays of radiation responsiveness becomes clinically available at a larger scale. Brief examples of the efficiency of IMRT are also given showing how sensitive normal tissues can be spared at the same time as highly curative doses are delivered to a tumor that is often radiation resistant and located near organs at risk. This new approach maximizes the probability to eradicate the tumor, while at the same time, adverse reactions in sensitive normal tissues are as far as possible minimized using IMRT with photons and light ions. PMID:20191284
NASA Astrophysics Data System (ADS)
Li, Yongbao; Tian, Zhen; Shi, Feng; Song, Ting; Wu, Zhaoxia; Liu, Yaqiang; Jiang, Steve; Jia, Xun
2015-04-01
Intensity-modulated radiation treatment (IMRT) plan optimization needs beamlet dose distributions. Pencil-beam or superposition/convolution type algorithms are typically used because of their high computational speed. However, inaccurate beamlet dose distributions may mislead the optimization process and hinder the resulting plan quality. To solve this problem, the Monte Carlo (MC) simulation method has been used to compute all beamlet doses prior to the optimization step. The conventional approach samples the same number of particles from each beamlet. Yet this is not the optimal use of MC in this problem. In fact, there are beamlets that have very small intensities after solving the plan optimization problem. For those beamlets, it may be possible to use fewer particles in dose calculations to increase efficiency. Based on this idea, we have developed a new MC-based IMRT plan optimization framework that iteratively performs MC dose calculation and plan optimization. At each dose calculation step, the particle numbers for beamlets were adjusted based on the beamlet intensities obtained through solving the plan optimization problem in the last iteration step. We modified a GPU-based MC dose engine to allow simultaneous computations of a large number of beamlet doses. To test the accuracy of our modified dose engine, we compared the dose from a broad beam and the summed beamlet doses in this beam in an inhomogeneous phantom. Agreement within 1% for the maximum difference and 0.55% for the average difference was observed. We then validated the proposed MC-based optimization schemes in one lung IMRT case. It was found that the conventional scheme required 106 particles from each beamlet to achieve an optimization result that was 3% difference in fluence map and 1% difference in dose from the ground truth. In contrast, the proposed scheme achieved the same level of accuracy with on average 1.2 × 105 particles per beamlet. Correspondingly, the computation time
Li, Yongbao; Tian, Zhen; Shi, Feng; Song, Ting; Wu, Zhaoxia; Liu, Yaqiang; Jiang, Steve; Jia, Xun
2015-04-01
Intensity-modulated radiation treatment (IMRT) plan optimization needs beamlet dose distributions. Pencil-beam or superposition/convolution type algorithms are typically used because of their high computational speed. However, inaccurate beamlet dose distributions may mislead the optimization process and hinder the resulting plan quality. To solve this problem, the Monte Carlo (MC) simulation method has been used to compute all beamlet doses prior to the optimization step. The conventional approach samples the same number of particles from each beamlet. Yet this is not the optimal use of MC in this problem. In fact, there are beamlets that have very small intensities after solving the plan optimization problem. For those beamlets, it may be possible to use fewer particles in dose calculations to increase efficiency. Based on this idea, we have developed a new MC-based IMRT plan optimization framework that iteratively performs MC dose calculation and plan optimization. At each dose calculation step, the particle numbers for beamlets were adjusted based on the beamlet intensities obtained through solving the plan optimization problem in the last iteration step. We modified a GPU-based MC dose engine to allow simultaneous computations of a large number of beamlet doses. To test the accuracy of our modified dose engine, we compared the dose from a broad beam and the summed beamlet doses in this beam in an inhomogeneous phantom. Agreement within 1% for the maximum difference and 0.55% for the average difference was observed. We then validated the proposed MC-based optimization schemes in one lung IMRT case. It was found that the conventional scheme required 10(6) particles from each beamlet to achieve an optimization result that was 3% difference in fluence map and 1% difference in dose from the ground truth. In contrast, the proposed scheme achieved the same level of accuracy with on average 1.2 × 10(5) particles per beamlet. Correspondingly, the computation
NASA Astrophysics Data System (ADS)
Ouyang, Bo; Shang, Weiwei
2016-03-01
The solution of tension distributions is infinite for cable-driven parallel manipulators(CDPMs) with redundant cables. A rapid optimization method for determining the optimal tension distribution is presented. The new optimization method is primarily based on the geometry properties of a polyhedron and convex analysis. The computational efficiency of the optimization method is improved by the designed projection algorithm, and a fast algorithm is proposed to determine which two of the lines are intersected at the optimal point. Moreover, a method for avoiding the operating point on the lower tension limit is developed. Simulation experiments are implemented on a six degree-of-freedom(6-DOF) CDPM with eight cables, and the results indicate that the new method is one order of magnitude faster than the standard simplex method. The optimal distribution of tension distribution is thus rapidly established on real-time by the proposed method.
OPTIMAL SCHEDULING OF BOOSTER DISINFECTION IN WATER DISTRIBUTION SYSTEMS
Booster disinfection is the addition of disinfectant at locations distributed throughout a water distribution system. Such a strategy can reduce the mass of disinfectant required to maintain a detectable residual at points of consumption in the distribution system, which may lea...
Han, Zong-wei; Huang, Wei; Luo, Yun; Zhang, Chun-di; Qi, Da-cheng
2015-03-01
Taking the soil organic matter in eastern Zhongxiang County, Hubei Province, as a research object, thirteen sample sets from different regions were arranged surrounding the road network, the spatial configuration of which was optimized by the simulated annealing approach. The topographic factors of these thirteen sample sets, including slope, plane curvature, profile curvature, topographic wetness index, stream power index and sediment transport index, were extracted by the terrain analysis. Based on the results of optimization, a multiple linear regression model with topographic factors as independent variables was built. At the same time, a multilayer perception model on the basis of neural network approach was implemented. The comparison between these two models was carried out then. The results revealed that the proposed approach was practicable in optimizing soil sampling scheme. The optimal configuration was capable of gaining soil-landscape knowledge exactly, and the accuracy of optimal configuration was better than that of original samples. This study designed a sampling configuration to study the soil attribute distribution by referring to the spatial layout of road network, historical samples, and digital elevation data, which provided an effective means as well as a theoretical basis for determining the sampling configuration and displaying spatial distribution of soil organic matter with low cost and high efficiency. PMID:26211074
The process group approach to reliable distributed computing
NASA Technical Reports Server (NTRS)
Birman, Kenneth P.
1992-01-01
The difficulty of developing reliable distribution software is an impediment to applying distributed computing technology in many settings. Experience with the ISIS system suggests that a structured approach based on virtually synchronous process groups yields systems that are substantially easier to develop, exploit sophisticated forms of cooperative computation, and achieve high reliability. Six years of research on ISIS, describing the model, its implementation challenges, and the types of applications to which ISIS has been applied are reviewed.
Spectral Approach to Optimal Estimation of the Global Average Temperature.
NASA Astrophysics Data System (ADS)
Shen, Samuel S. P.; North, Gerald R.; Kim, Kwang-Y.
1994-12-01
Making use of EOF analysis and statistical optimal averaging techniques, the problem of random sampling error in estimating the global average temperature by a network of surface stations has been investigated. The EOF representation makes it unnecessary to use simplified empirical models of the correlation structure of temperature anomalies. If an adjustable weight is assigned to each station according to the criterion of minimum mean-square error, a formula for this error can be derived that consists of a sum of contributions from successive EOF modes. The EOFs were calculated from both observed data and a noise-forced EBM for the problem of one-year and five-year averages. The mean square statistical sampling error depends on the spatial distribution of the stations, length of the averaging interval, and the choice of the weight for each station data stream. Examples used here include four symmetric configurations of 4 × 4, 6 × 4, 9 × 7, and 20 × 10 stations and the Angell-Korshover configuration. Comparisons with the 100-yr U.K. dataset show that correlations for the time series of the global temperature anomaly average between the full dataset and this study's sparse configurations are rather high. For example, the 63-station Angell-Korshover network with uniform weighting explains 92.7% of the total variance, whereas the same network with optimal weighting can lead to 97.8% explained total variance of the U.K. dataset.
Spectral approach to optimal estimation of the global average temperature
Shen, S.S.P.; North, G.R.; Kim, K.Y.
1994-12-01
Making use of EOF analysis and statistical optimal averaging techniques, the problem of random sampling error in estimating the global average temperature by a network of surface stations has been investigated. The EOF representation makes it unnecessary to use simplified empirical models of the correlation structure of temperature anomalies. If an adjustable weight is assigned to each station according to the criterion of minimum mean-square error, a formula for this error can be derived that consists of a sum of contributions from successive EOF modes. The EOFs were calculated from both observed data a noise-forced EBM for the problem of one-year and five-year averages. The mean square statistical sampling error depends on the spatial distribution of the stations, length of the averaging interval, and the choice of the weight for each station data stream. Examples used here include four symmetric configurations of 4 X 4, 5 X 4, 9 X 7, and 20 X 10 stations and the Angell-Korshover configuration. Comparisons with the 100-yr U.K. dataset show that correlations for the time series of the global temperature anomaly average between the full dataset and this study`s sparse configurations are rather high. For example, the 63-station Angell-Korshover network with uniform weighting explains 92.7% of the total variance, whereas the same network with optimal weighting can lead to 97.8% explained total variance of the U.K. dataset. 27 refs., 5 figs., 4 tabs.
A Multi-agent Approach to Distribution System Restoration
NASA Astrophysics Data System (ADS)
Nagata, Takeshi; Tao, Yasuhiro; Sasaki, Hiroshi; Fujita, Hideki
This paper proposes a multi-agent approach to decentralized power system restoration for a distribution system network. The proposed method consists of several Feeder Agents (FAGs) and Load Agents (LAGs). LAG corresponds to the customer load, while a FAG is developed to act as a manager for the decision process. From the simulation results, it can be seen the proposed multi-agent system could reach the right solution by making use of only local information. This means that the proposed multi-agent restoration system is a promising approach to more large-scale distribution networks.
Webster, Clayton G; Gunzburger, Max D
2013-01-01
We present a scalable, parallel mechanism for stochastic identification/control for problems constrained by partial differential equations with random input data. Several identification objectives will be discussed that either minimize the expectation of a tracking cost functional or minimize the difference of desired statistical quantities in the appropriate $L^p$ norm, and the distributed parameters/control can both deterministic or stochastic. Given an objective we prove the existence of an optimal solution, establish the validity of the Lagrange multiplier rule and obtain a stochastic optimality system of equations. The modeling process may describe the solution in terms of high dimensional spaces, particularly in the case when the input data (coefficients, forcing terms, boundary conditions, geometry, etc) are affected by a large amount of uncertainty. For higher accuracy, the computer simulation must increase the number of random variables (dimensions), and expend more effort approximating the quantity of interest in each individual dimension. Hence, we introduce a novel stochastic parameter identification algorithm that integrates an adjoint-based deterministic algorithm with the sparse grid stochastic collocation FEM approach. This allows for decoupled, moderately high dimensional, parameterized computations of the stochastic optimality system, where at each collocation point, deterministic analysis and techniques can be utilized. The advantage of our approach is that it allows for the optimal identification of statistical moments (mean value, variance, covariance, etc.) or even the whole probability distribution of the input random fields, given the probability distribution of some responses of the system (quantities of physical interest). Our rigorously derived error estimates, for the fully discrete problems, will be described and used to compare the efficiency of the method with several other techniques. Numerical examples illustrate the theoretical
NASA Astrophysics Data System (ADS)
Donadel, Clainer Bravin; Fardin, Jussara Farias; Encarnação, Lucas Frizera
2015-10-01
In the literature, several papers propose new methodologies to determine the optimal placement/sizing of medium size Distributed Generation Units (DGs), using heuristic algorithms like Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). However, in all methodologies, the optimal placement solution is strongly dependent of network topologies. Therefore, a specific solution is valid only for a particular network topology. Furthermore, such methodologies does not consider the presence of small DGs, whose connection point cannot be defined by Distribution Network Operators (DNOs). In this paper it is proposed a new methodology to determine the optimal location of medium size DGs in a distribution system with uncertain topologies, considering the particular behavior of small DGs, using Monte Carlo Simulation.
Wireless Sensing, Monitoring and Optimization for Campus-Wide Steam Distribution
Olama, Mohammed M; Allgood, Glenn O; Kuruganti, Phani Teja; Sukumar, Sreenivas R; Woodworth, Ken; Lake, Joe E
2011-11-01
The US Congress has passed legislation dictating that all government agencies establish a plan and process for improving energy efficiencies at their sites. In response to this legislation, Oak Ridge National Laboratory (ORNL) has recently conducted a pilot study to explore the deployment of a wireless sensor system for a real-time measurement-based energy efficiency optimization. With particular focus on the 12-mile long steam distribution network in our campus, we propose an integrated system-level approach to optimize energy delivery within the steam distribution system. Our approach leverages an integrated wireless sensor and real-time monitoring capability. We make real time state assessment on the steam trap health and steam flow estimate of the distribution system by mounting acoustic sensors on the steam pipes/traps/valves and observing measurements of these sensors with state estimators for system health. Our assessments are based on a spectral-based energy signature scheme that interprets acoustic vibration sensor data to estimate steam flow rates and assess steam traps status. Experimental results show that the energy signature scheme has the potential to identify different steam trap states and it has sufficient sensitivity to estimate flow rate. Moreover, results indicate a nearly quadratic relationship over the test region between the overall energy signature factor and flow rate in the pipe. We are able to present the steam flow and steam trap status, sensor readings, and the assessed alerts as an interactive overlay within a web-based Google Earth geographic platform that enables decision makers to take remedial action. The goal is to achieve significant energy-saving in steam lines by monitoring and acting on leaking steam pipes/traps/valves. We believe our demonstration serves as an instantiation of a platform that extends implementation to include newer modalities to manage water flow, sewage and energy consumption.
Collaborative Distributed Scheduling Approaches for Wireless Sensor Network
Niu, Jianjun; Deng, Zhidong
2009-01-01
Energy constraints restrict the lifetime of wireless sensor networks (WSNs) with battery-powered nodes, which poses great challenges for their large scale application. In this paper, we propose a family of collaborative distributed scheduling approaches (CDSAs) based on the Markov process to reduce the energy consumption of a WSN. The family of CDSAs comprises of two approaches: a one-step collaborative distributed approach and a two-step collaborative distributed approach. The approaches enable nodes to learn the behavior information of its environment collaboratively and integrate sleep scheduling with transmission scheduling to reduce the energy consumption. We analyze the adaptability and practicality features of the CDSAs. The simulation results show that the two proposed approaches can effectively reduce nodes' energy consumption. Some other characteristics of the CDSAs like buffer occupation and packet delay are also analyzed in this paper. We evaluate CDSAs extensively on a 15-node WSN testbed. The test results show that the CDSAs conserve the energy effectively and are feasible for real WSNs. PMID:22408491
Optimizing Dendritic Cell-Based Approaches for Cancer Immunotherapy
Datta, Jashodeep; Terhune, Julia H.; Lowenfeld, Lea; Cintolo, Jessica A.; Xu, Shuwen; Roses, Robert E.; Czerniecki, Brian J.
2014-01-01
Dendritic cells (DC) are professional antigen-presenting cells uniquely suited for cancer immunotherapy. They induce primary immune responses, potentiate the effector functions of previously primed T-lymphocytes, and orchestrate communication between innate and adaptive immunity. The remarkable diversity of cytokine activation regimens, DC maturation states, and antigen-loading strategies employed in current DC-based vaccine design reflect an evolving, but incomplete, understanding of optimal DC immunobiology. In the clinical realm, existing DC-based cancer immunotherapy efforts have yielded encouraging but inconsistent results. Despite recent U.S. Federal and Drug Administration (FDA) approval of DC-based sipuleucel-T for metastatic castration-resistant prostate cancer, clinically effective DC immunotherapy as monotherapy for a majority of tumors remains a distant goal. Recent work has identified strategies that may allow for more potent “next-generation” DC vaccines. Additionally, multimodality approaches incorporating DC-based immunotherapy may improve clinical outcomes. PMID:25506283
[OPTIMAL APPROACH TO COMBINED TREATMENT OF PATIENTS WITH UROGENITAL PAPILLOMATOSIS].
Breusov, A A; Kulchavenya, E V; Brizhatyukl, E V; Filimonov, P N
2015-01-01
The review analyzed 59 sources of domestic and foreign literature on the use of immunomodulator izoprinozin in treating patients infected with human papilloma virus, and the results of their own experience. The high prevalence of HPV and its role in the development of cervical cancer are shown, the mechanisms of HPV development and the host protection from this infection are described. The authors present approaches to the treatment of HPV-infected patients with particular attention to izoprinozin. Isoprinosine belongs to immunomodulators with antiviral activity. It inhibits the replication of viral DNA and RNA by binding to cell ribosomes and changing their stereochemical structure. HPV infection, especially in the early stages, may be successfully cured till the complete elimination of the virus. Inosine Pranobex (izoprinozin) having dual action and the most abundant evidence base, may be recognized as the optimal treatment option. PMID:26859953
Model reduction for chemical kinetics: An optimization approach
Petzold, L.; Zhu, W.
1999-04-01
The kinetics of a detailed chemically reacting system can potentially be very complex. Although the chemist may be interested in only a few species, the reaction model almost always involves a much larger number of species. Some of those species are radicals, which are very reactive species and can be important intermediaries in the reaction scheme. A large number of elementary reactions can occur among the species; some of these reactions are fast and some are slow. The aim of simplified kinetics modeling is to derive the simplest reaction system which retains the essential features of the full system. An optimization-based method for reduction of the number of species and reactions in chemical kinetics model is described. Numerical results for several reaction mechanisms illustrate the potential of this approach.
Approaches of Russian oil companies to optimal capital structure
NASA Astrophysics Data System (ADS)
Ishuk, T.; Ulyanova, O.; Savchitz, V.
2015-11-01
Oil companies play a vital role in Russian economy. Demand for hydrocarbon products will be increasing for the nearest decades simultaneously with the population growth and social needs. Change of raw-material orientation of Russian economy and the transition to the innovative way of the development do not exclude the development of oil industry in future. Moreover, society believes that this sector must bring the Russian economy on to the road of innovative development due to neo-industrialization. To achieve this, the government power as well as capital management of companies are required. To make their optimal capital structure, it is necessary to minimize the capital cost, decrease definite risks under existing limits, and maximize profitability. The capital structure analysis of Russian and foreign oil companies shows different approaches, reasons, as well as conditions and, consequently, equity capital and debt capital relationship and their cost, which demands the effective capital management strategy.
An optimization approach and its application to compare DNA sequences
NASA Astrophysics Data System (ADS)
Liu, Liwei; Li, Chao; Bai, Fenglan; Zhao, Qi; Wang, Ying
2015-02-01
Studying the evolutionary relationship between biological sequences has become one of the main tasks in bioinformatics research by means of comparing and analyzing the gene sequence. Many valid methods have been applied to the DNA sequence alignment. In this paper, we propose a novel comparing method based on the Lempel-Ziv (LZ) complexity to compare biological sequences. Moreover, we introduce a new distance measure and make use of the corresponding similarity matrix to construct phylogenic tree without multiple sequence alignment. Further, we construct phylogenic tree for 24 species of Eutherian mammals and 48 countries of Hepatitis E virus (HEV) by an optimization approach. The results indicate that this new method improves the efficiency of sequence comparison and successfully construct phylogenies.
Structural Query Optimization in Native XML Databases: A Hybrid Approach
NASA Astrophysics Data System (ADS)
Haw, Su-Cheng; Lee, Chien-Sing
As XML (eXtensible Mark-up Language) is gaining its popularity in data exchange over the Web, querying XML data has become an important issue to be addressed. In native XML databases (NXD), XML documents are usually modeled as trees and XML queries are typically specified in path expression. The primitive structural relationships are Parent-Child (P-C), Ancestor-Descendant (A-D), sibling and ordered query. Thus, a suitable and compact labeling scheme is crucial to identify these relationships and henceforth to process the query efficiently. We propose a novel labeling scheme consisting of < self-level:parent> to support all these relationships efficiently. Besides, we adopt the decomposition-matching-merging approach for structural query processing and propose a hybrid query optimization technique, TwigINLAB to process and optimize the twig query evaluation. Experimental results indicate that TwigINLAB can process all types of XML queries 15% better than the TwigStack algorithm in terms of execution time in most test cases.
Design optimization for cost and quality: The robust design approach
NASA Technical Reports Server (NTRS)
Unal, Resit
1990-01-01
Designing reliable, low cost, and operable space systems has become the key to future space operations. Designing high quality space systems at low cost is an economic and technological challenge to the designer. A systematic and efficient way to meet this challenge is a new method of design optimization for performance, quality, and cost, called Robust Design. Robust Design is an approach for design optimization. It consists of: making system performance insensitive to material and subsystem variation, thus allowing the use of less costly materials and components; making designs less sensitive to the variations in the operating environment, thus improving reliability and reducing operating costs; and using a new structured development process so that engineering time is used most productively. The objective in Robust Design is to select the best combination of controllable design parameters so that the system is most robust to uncontrollable noise factors. The robust design methodology uses a mathematical tool called an orthogonal array, from design of experiments theory, to study a large number of decision variables with a significantly small number of experiments. Robust design also uses a statistical measure of performance, called a signal-to-noise ratio, from electrical control theory, to evaluate the level of performance and the effect of noise factors. The purpose is to investigate the Robust Design methodology for improving quality and cost, demonstrate its application by the use of an example, and suggest its use as an integral part of space system design process.
An improved ant colony optimization approach for optimization of process planning.
Wang, JinFeng; Fan, XiaoLiang; Ding, Haimin
2014-01-01
Computer-aided process planning (CAPP) is an important interface between computer-aided design (CAD) and computer-aided manufacturing (CAM) in computer-integrated manufacturing environments (CIMs). In this paper, process planning problem is described based on a weighted graph, and an ant colony optimization (ACO) approach is improved to deal with it effectively. The weighted graph consists of nodes, directed arcs, and undirected arcs, which denote operations, precedence constraints among operation, and the possible visited path among operations, respectively. Ant colony goes through the necessary nodes on the graph to achieve the optimal solution with the objective of minimizing total production costs (TPCs). A pheromone updating strategy proposed in this paper is incorporated in the standard ACO, which includes Global Update Rule and Local Update Rule. A simple method by controlling the repeated number of the same process plans is designed to avoid the local convergence. A case has been carried out to study the influence of various parameters of ACO on the system performance. Extensive comparative experiments have been carried out to validate the feasibility and efficiency of the proposed approach. PMID:25097874