Science.gov

Sample records for district cooling phase

  1. District heating/cooling potential in New York City. phase 1. Final report

    SciTech Connect

    McLoughlin, G.T.; Kuo, R.P.; Karol, J.

    1983-02-01

    New York City through its Energy Office has identified and evaluated the technical and economic feasibility of district heating and cooling at three locations: Brooklyn Navy Yard, Kings County Medical Complex, and the S.W. Brooklyn Incinerator. Of these the Navy Yard has the most immediate potential for implementation. The Navy Yard has an extensive steam and electrical system that has not been used since the Navy turned most of the property over to New York City more than a decade ago. By remodeling several of the smaller boilers still in place or purchasing new boilers, an ample supply of steam and hot water can be produced. The steam will be used for heating and industrial process for the industrial tenants now occupying the former yards. Hot water will be sold to the New York City Housing Authority to heat between 3,500 and 5,000 nearby public housing units operated by the authority. Electricity will be cogenerated using present generators that will be overhauled. It is expected that some of the electricity will be used directly to supply power to a planned nearby Red Hook Sewage Treatment plant, while most will be sold to the industrial tenants of the Navy Yard. Studies will continue to determine the best market for excess power.

  2. Minnesota Project: district heating and cooling through power plant retrofit and distribution network. Final report. Phase 1. [Minnesota Project

    SciTech Connect

    1980-01-01

    Appendices are presented for the Minnesota Project: District Heating and Cooling Through Power Plant Retrofit and Distribution Network. These are: SYNTHA results (SYNTHA II is a proprietary program of the SYNTHA Corporation); Market Survey Questionnaire: Environmental Review Procedures; Public Service Commission Regulation of District Heating; Energy Use Normalization Procedures; Power Plant Description; Letters of Commitment; Bond Opinion and Issuance; and Marvin Koeplin Letter, Chairman of Public Service Commission, Moorehead, Minnesota.

  3. District heating and cooling systems for communities through power plant retrofit distribution network. Phase 2. Final report, 1 March 1980-31 January 1984. Volume III

    SciTech Connect

    Not Available

    1984-01-31

    The technical information in the report, includes staged development of district heating systems, central power station retrofit, intermediate and peaking/backup thermal plants, transmission and distribution, user connections, and alternatives to district heating. Discussion of heat pumps, cooling, waste heat recovery, small cogeneration and/or solid fuel-burning plants, solar alternatives to district heating and nuclear district heating are included.

  4. Integrating district cooling with cogeneration

    SciTech Connect

    Spurr, M.

    1996-11-01

    Chillers can be driven with cogenerated thermal energy, thereby offering the potential to increase utilization of cogeneration throughout the year. However, cogeneration decreases electric output compared to condensing power generation in power plants using a steam cycle (steam turbine or gas turbine combined cycle plants). The foregone electric production increases with increasing temperature of heat recovery. Given a range of conditions for key variables (such as cogeneration utilization, chiller utilization, cost of fuel, value of electricity, value of heat and temperature of heat recovered), how do technology alternatives for combining district cooling with cogeneration compare? This paper summarizes key findings from a report recently published by the International Energy Agency which examines the energy efficiency and economics of alternatives for combining cogeneration technology options (gas turbine simple cycle, diesel engine, steam turbine, gas turbine combined cycle) with chiller options (electric centrifugal, steam turbine centrifugal one-stage steam absorption, two-stage steam absorption, hot water absorption).

  5. District cooling in Stockholm using sea water

    SciTech Connect

    Fermbaeck, G.

    1995-12-31

    In May this year Stockholm Energi started supplying properties in central Stockholm with cooling for comfort and for various processes from its new district cooling system. The project is unique in that most of the cooling energy is produced using cold water from the Baltic Sea. The following article describes the system and provides a summary of the considerations that resulted in venturing to invest in sea-water cooling for such a large project. There is also a description of the hydrological conditions that made the system feasible in Stockholm and some speculations about the possibilities to use cooled sea water elsewhere in the world.

  6. District heating and cooling systems for communities through power plant retrofit distribution network. Phase 2. Final report, 1 March 1980-31 January 1984

    SciTech Connect

    Not Available

    1984-01-01

    The potential for district heating was examined in terms of a total (regional) system and two subsystems of overlapping scales. The basis of the economic analysis of district heating was that the utility's electric and gas customers would not be economically burdened by the implementation of district heating, and that any incremental costs due to district heating (e.g. district heating capital and operating costs, replacement electric power, abandonment of unamortized gas mains) would be charged to district heating customers.

  7. Cogeneration, district heating and district cooling: A century of district energy in Indianapolis

    SciTech Connect

    Pierce, M.A.

    1995-09-01

    In 1888, the proprietors of the Grand Opera House in Indianapolis requested electric light and steam heating service from the new Marmon-Perry Lighting Company, which the following year installed a small plant nearby to light several buildings and also heat the Opera House with exhaust steam piped through 250 feet of four-inch pipe. Indianapolis soon turned to natural gas for its heating needs, but the depletion of local gas fields at the turn of the century led to installation of several new low pressure steam and hot water district heating systems in the Indiana capital. These combined heat and power systems were finally merged together in 1927 to form Indianapolis Power and Light, which recently became a subsidiary of IPALCO Enterprises and is now the second-largest district energy utility in the United States. Mid-America Energy Resources, and unregulated subsidiary of IPALCO Enterprises formed in 1989, operates a 20,000 ton (70.4 mW) chilled water plant serving seventeen customers in downtown Indianapolis and also owns another district heating and cooling system serving downtown Cleveland.

  8. 1992 National census for district heating, cooling and cogeneration

    SciTech Connect

    Not Available

    1993-07-01

    District energy systems are a major part of the energy use and delivery infrastructure of the United States. With nearly 6,000 operating systems currently in place, district energy represents approximately 800 billion BTU per hour of installed thermal production capacity, and provides over 1.1 quadrillion BTU of energy annually -- about 1.3% of all energy used in the US each year. Delivered through more that 20,000 miles of pipe, this energy is used to heat and cool almost 12 billion square feet of enclosed space in buildings that serve a diverse range of office, education, health care, military, industrial and residential needs. This Census is intended to provide a better understanding of the character and extent of district heating, cooling and cogeneration in the United States. It defines a district energy system as: Any system that provides thermal energy (steam, hot water, or chilled water) for space heating, space cooling, or process uses from a central plant, and that distributes the energy to two or more buildings through a network of pipes. If electricity is produced, the system is a cogenerating facility. The Census was conducted through surveys administered to the memberships of eleven national associations and agencies that collectively represent the great majority of the nation`s district energy system operators. Responses received from these surveys account for about 11% of all district systems in the United States. Data in this report is organized and presented within six user sectors selected to illustrate the significance of district energy in institutional, community and utility settings. Projections estimate the full extent of district energy systems in each sector.

  9. Conceptual design phase of a district heating and cooling plant with cogeneration to serve James Madison University and the Harrisonburg Electric Commission

    SciTech Connect

    Belcher, J.B.

    1995-12-31

    A unique opportunity for cooperation and community development exists in Harrisonburg, Virginia. James Madison University, located in Harrisonburg, is undergoing an aggressive growth plan of its academic base which also includes the physical expansion of its campus. The City of Harrisonburg is presently supplying steam to meet a portion of the heating needs of the existing James Madison campus from a city owned and operated waste-to-energy plant. In an effort of cooperation, Harrisonburg and James Madison University have now negotiated an agreement for the city to provide all of the heating and cooling requirements of the new campus expansion. In another unique turn of events, the local electrical power distributor, Harrisonburg Electric Commission, approached the city concerning the inclusion of cogeneration in the project in order to reduce and maintain existing electric rates thus further benefiting the community. Through the cooperation of these three entities, the conceptual design phase of the project has been completed. The plant design developed through this process includes 3,000 tons of chilled water capacity, an additional 64,000 lb/hr of steam capacity and 2.5 MW of cogeneration capacity. This paper describes the conceptual design process for this interesting project.

  10. Modular cogeneration in district heating and cooling systems

    SciTech Connect

    Andrews, J.W.; Aalto, P.; Gleason, T.C.J.; Skalafuris, A.J.

    1987-12-01

    The use of prepackaged cogeneration systems of modular size (100 kWe - 10 MWe) in conjunction with district heating and cooling is proposed as a way to enhance the energy conservation potential of both cogeneration and district energy systems. This report examines the technical and institutional aspects of this marriage of technologies, and develops a research agenda whose goal is to define this potential use of cogeneration more accurately and to develop the generic technology base needed to bring it to actuality. 11 refs.

  11. Energy and economic implications of combining district cooling with cogeneration

    SciTech Connect

    Spurr, M.; Larsson, I.

    1995-12-31

    Chillers can be driven with cogenerated thermal energy, thereby offering the potential to increase utilization of cogeneration throughout the year. However, cogeneration decreases electric output compared to condensing power generation. The foregone electric production increases with increasing temperature of heat recovery. The economics of alternatives for combining district cooling with cogeneration depend on many variables, including cogeneration utilization, chiller utilization, value of electricity, value and temperature of heat recovered and other factors.

  12. District heating and cooling systems for communities through power plant retrofit distribution network, Phase 2. Final report, March 1, 1980-January 31, 1984. Volume 5, Appendix A

    SciTech Connect

    Not Available

    1984-01-31

    This volume contains the backup data for the portion of the load and service assessment in Section 2, Volume II of this report. This includes: locations of industrial and commercial establishments, locations of high rise buildings, data from the Newark (Essex County) Directory of Business, data from the Hudson County Industrial Directory, data from the N. J. Department of Energy Inventory of Public Buildings, data on commercial and industrial establishments and new developments in the Hackensack Meadowlands, data on urban redevelopment and Operation Breakthrough, and list of streets in the potential district heating areas of Newark/Harrison and Jersey City/Hoboken.

  13. Steamtown District Heating and Cooling Project, Scranton, Pennsylvania. Final report

    SciTech Connect

    1990-04-01

    This report summarizes the activities of a study intended to examine the feasibility of a district heating and cooling alternative for the Steamtown National Historic Site in Scranton, PA. The objective of the study was to investigate the import of steam from the existing district heating system in Scranton which is operated by the Community Central Energy Corporation and through the use of modern technology provide hot and chilled water to Steamtown for its internal heating and cooling requirements. Such a project would benefit Steamtown by introducing a clean technology, eliminating on-site fuel use, avoiding first costs for central heating and cooling plants and reducing operation and maintenance expenditures. For operators of the existing district heating system, this project represents an opportunity to expand their customer base and demonstrate new technologies. The study was conducted by Joseph Technology Corporation, Inc. and performed for the Community Central Energy Corporation through a grant by the US Department of Energy. Steamtown was represented by the National Park Service, the developers of the site.

  14. District heating and cooling systems for communities through power plant retrofit distribution network, Phase 2. Final report, 1 March 1980-31 January 1984. Volume II

    SciTech Connect

    Not Available

    1984-01-31

    This volume begins with an Introduction summarizing the history, methodology and scope of the study, the project team members and the private and public groups consulted in the course of the study. The Load and Service Area Assessment follows, including: a compilation and analysis of existing statistical thermal load data from census data, industrial directories, PSE and G records and other sources; an analysis of responses to a detailed, 4-page thermal load questionnaire; data on public buildings and fuel and energy use provided by the New Jersey Dept. of Energy; and results of other customer surveys conducted by PSE and G. A discussion of institutional questions follows. The general topic of rates is then discussed, including a draft hypothetical Tariff for Thermal Services. Financial considerations are discussed including a report identifying alternative ownership/financing options for district heating systems and the tax implications of these options. Four of these options were then selected by PSE and G and a financial (cash-flow) analysis done (by the PSE and G System Planning Dept.) in comparison with a conventional heating alternative. Year-by-year cost of heat ($/10/sup 6/ Btu) was calculated and tabulated, and the various options compared.

  15. Downtown district cooling: A 21st century approach

    SciTech Connect

    1995-12-01

    On December 1, 1992, the Board of Directors of the Metropolitan Pier and Exposition Authority (MPEA) met on Chicago`s historic Navy Pier and ushered in a new era of competition for energy supply in Chicago. The MPEA, a state agency created for the purposes of promoting and operating fair and exposition facilities within the Chicago area (including the McCormick Place exposition center and Navy Pier), voted to accept a third-party proposal to provide district heating and cooling services to the existing McCormick Place facilities and a million square feet of new exposition space. The winning bidder was a joint venture between Trigen Energy, the nation`s largest provider of district energy services, and Peoples Gas, the gas distribution company which serves Chicago. This vote culminated two years of effort by the Energy Division of Chicago`s Department of Environment to analyze the feasibility and promote the implementation of a district energy system to serve the expanded McCormick Place and its environs in the South Loop neighborhood. Initial services began in November, 1993, with a new hot and cold water piping system interconnecting the three existing exhibition facilities. The final buildout of the system, with a combined peak demand predicted at 160 MMBtu of heating and 15,920 tons of and cooling, is scheduled for completion in the summer of 1997.

  16. Hydraulic modeling of large district cooling systems for master planning purposes 

    E-print Network

    Xu, Chen

    2007-09-17

    District Cooling Systems (DCS) have been widely applied in large institutions such as universities, government facilities, commercial districts, airports, etc. The hydraulic system of a large DCS can be complicated. They ...

  17. District heating and cooling: a 28-city assessment

    SciTech Connect

    Meshenberg, M.J.

    1983-08-01

    Findings of a project that assessed the potential for construction of district heating and cooling (DHC) systems in 28 US cities are presented. The project sought to determine whether DHC could promote local community and economic development. In the preliminary assessment, 17 of the cities identified up to 23 projects that could be built within three to five years. Most of these projects would rely on nonscarce heat sources such as refuse or geothermal energy, and to improve financial feasibility, the majority would cogenerate electricity along with heat. Many would use existing power plants or industrial boilers to hold down capital costs. Overall, the projects could generate as amany as 24,000 jobs and retain $165 million that otherwise could leave the communities, thereby helping to stabilize local economies.

  18. Characterization of selected application of biomass energy technologies and a solar district heating and cooling system

    SciTech Connect

    D'Alessio, Dr., Gregory J.; Blaunstein, Robert P.

    1980-09-01

    The following systems are discussed: energy self-sufficient farms, wood gasification, energy from high-yield silviculture farms, and solar district heating and cooling. System descriptions and environmental data are included for each one. (MHR)

  19. Retro-Commissioning and Improvement for District Heating and Cooling System Using Simulation 

    E-print Network

    Shingu, H.; Nakajima, R.; Yoshida, H.; Wang, F.

    2006-01-01

    In order to improve the energy performance of a district heating and cooling (DHC) system, retro-commissioning was analyzed using visualization method and simulation based on mathematical models, and improved operation schemes were proposed...

  20. Reduction of pumping energy losses in district heating and cooling systems

    SciTech Connect

    Zakin, J.L.; Christensen, R.N.

    1992-10-01

    This project was designed to find effective surfactant friction reducing additives for use in district heating systems with temperatures of 50 to 90[degrees]C and effective additives fore district cooling systems with temperatures of 5 to 15[degrees]C. Heat transfer measurements in conventional shell and tube heat exchangers and in plate heat exchangers were also carried out to see how seriously these surfactant drag reducing additives reduce heat transfer coefficients.

  1. Reduction of pumping energy losses in district heating and cooling systems. Final report

    SciTech Connect

    Zakin, J.L.; Christensen, R.N.

    1992-10-01

    This project was designed to find effective surfactant friction reducing additives for use in district heating systems with temperatures of 50 to 90{degrees}C and effective additives fore district cooling systems with temperatures of 5 to 15{degrees}C. Heat transfer measurements in conventional shell and tube heat exchangers and in plate heat exchangers were also carried out to see how seriously these surfactant drag reducing additives reduce heat transfer coefficients.

  2. The Operation Management and Energy Consumption Analysis of the District Cooling System 

    E-print Network

    Xu, Q.; Li, D.; Xu, W.

    2006-01-01

    the rotate speed of the electric engine smoothly. The technology of frequency conversion applies in the refrigeration and air conditioning can save the energy under the part load. At the same time, the technology of frequency conversion increases... and operation cost will be reduced. Zhongguancun district cooling system adopts the ice storage cool, its initial cost is lower than that of the refrigeration station separately. And the total installation capability decreases, the refrigerate equipment...

  3. Two-Phase Cooling Method Using R134a Refrigerant to Cool Power Electronic Devices

    E-print Network

    Tolbert, Leon M.

    Two-Phase Cooling Method Using R134a Refrigerant to Cool Power Electronic Devices Jeremy B, TN 37932 Abstract This paper presents a two-phase cooling method using R134a refrigerant configuration. Second, experimental tests that included simultaneous operation with a mock automotive air

  4. Advanced heat pump cycle for district heating and cooling systems

    SciTech Connect

    Radermacher, R.

    1991-07-01

    A bread board heat pump was designed and built to test the performance of a vapor compression heat pump with two stage ammonia-water solution circuits. The design was updated based on the experience gained with the single stage version of this heat pump. A major improvement was obtained by eliminating the rectifier. The new scheme was first investigated by computer simulation and then incorporated in the experimental setup. Water balance in the high and low temperature circuits is now maintained by bleeding up to 2.5% of the weak solution flow from one solution circuit to the other. The advantages of this scheme are reduced first cost, simplified design and control, 20--30% improvement in cooling coefficient of performance and 10--15% increase in cooling capacity as compared to the cycle with a rectifier. Coefficients of performance in the range of 0.84 to 1.03 were obtained experimentally for a temperature lift of 100-K. The pressure ratios encountered were in the range of 7.6 to 9.9, which are 35 to 50% of the pressure ratio expected for a conventional heat pump. Thus the results demonstrate that high temperature lifts can be achieved at pressure ratios which are less than half as large as for conventional systems. The cooling capacities were in the range of 2.79 to 4.21 kW. 13 refs., 5 figs., 2 tabs.

  5. ADMX Phase II : Relocation and Millikelvin Cooling

    SciTech Connect

    Heilman, Jesse; Tracy, Kyle

    2010-08-30

    Low mass axions are an attractive candidate for making up dark matter. While there are several models for how the Axion couples with other matter, were they to be the majority of the local galactic dark matter halo, they would have a number density on the order of 10{sup 14} cm{sup -3}. The Axion Dark Matter eXperiment (ADMX) is a microwave cavity experiment searching for axion Dark Matter via the axion's electromagnetic coupling. While the original ADMX did not see evidence of axions, the experiment is planned to go through two phases of upgrades to expand its sensitivity and provide a definitive search for axion dark matter. The first phase established the use of a SQUID amplifier which can reduce the amplifier noise temperature to the 100 mK range. In the second phase we will first move the experiment from LLNL to CENPA at the University of Washington. Once the experiment has been moved successfully we will install a dilution refrigerator to cool the cavity to the 100 mK range thus increasing the sensititivity to the level required to scan the remainder of the allowed model space.

  6. Energy Accounting for District Heating and Cooling Plants 

    E-print Network

    Barrett, J. A.

    1979-01-01

    .llily -,\\vcuSe, differed I1gnHicantly cho!n chue cuuld be I'. Building UIlII! Lbl. 24,816,040.000 800,517.419 c.JlJse to ii'l\\lestleate further. 19. Building Un/Area Lb ?. /H 2 4.921 1>9 '0 Buildlllg Co't/Area S/F't 2 .016 .... \\Jhenever the meter...(Purchaoed Electric). 6. Electric Drive KWII 10. Item 17(Produced St....) divided by item 2. .53 11. Calendar uae total from met.rl. Add totah for cooling tower and CHW make -up. 7. E1ect ric Tona, input / output KWH/Ton 8. Steam Ton.: input/output Lbl...

  7. Hydraulic Modeling of Large District Cooling Systems for Master Planning Purposes 

    E-print Network

    Xu, C.; Chen, Q.; Claridge, D. E.; Turner, W. D.; Deng, S.

    2006-01-01

    for a large District Cooling System (DCS). A model for one of the largest DCS hydraulic systems in the United States has been developed based on this procedure and has been successfully utilized to assist the decision makings for its master planning... system model can be used to answer important decision-making questions regarding to planning purposes. Also, the model can serve as an analysis tool for the Continuous Commissioning ® (CC ® ) 1 of the DCS system. Eventually, the DCS hydraulic model...

  8. Application of imitation steam'' systems to hot water district heating and cooling systems

    SciTech Connect

    Aalto, P.J.; Chen, D.B.

    1991-10-01

    Pequod Associates, Inc. and District Energy St. Paul, Inc. installed a pilot project of an innovative District Heating technology through a contract with the US DOE. This applied research was funded by the Energy Research and Development Act (94--163) for District Heating and Cooling Research. The experimental design is an intervention technique that permits hot water district heating systems to connect to buildings equipped with steam heating systems to connect to buildings equipped with steam heating systems. This method can substantially reduce conversion costs in many older buildings. The method circulates Imitation Steam, which is moist hot air, as a heating medium in standard steam radiators and steam heating coils. Based on the operation of the system during the 1989--90 and 1990--91 winter heating seasons, we conclude the following: the basic concept of using Imitation Steam was proved feasible. The performance of the system can be improved beyond the levels achieved in this installation. Imitation Steam did not cause significant corrosion in the piping system. The technology can be used by other district heating systems to lower conversion costs and increase market penetration. Among the additional benefits from this technology are: eliminating old, inefficient boilers; lower maintenance costs; improved fuel efficiency; reduced emissions.

  9. District cooling engineering & design program. Final technical report

    SciTech Connect

    Not Available

    1994-03-01

    Phoenix, Arizona is located in the Sonoran desert. Daytime temperatures typically rise to over 100 F during the three summer months. Average and peak temperatures have tended to rise over recent decades. This is generally attributed to what is known as the heat island effect, due to an increase in heat absorbing concrete and a decrease in irrigated farmland in the area. Phoenix is the eighth largest city in the US with a population of just over one million (1,000,000). The metropolitan area is one of the fastest growing in the nation. Over the last ten years its population has increased by over 40%. It is not an exaggeration to say the general availability of refrigerated air conditioning, both for buildings and automobiles has been an important factor enabling growth. The cost of operating public buildings has risen significantly in the last decade. In fiscal year 92/93 the City of Phoenix had energy expenses of over thirty four million dollars ($34,000,000). Because the City was planning a major new construction project, a new high-rise City Hall, it was decided to study and then optimize the design and selection of building systems to minimize long term owning and operating costs. The City Hall was to be constructed in downtown Phoenix. Phoenix presently owns other buildings in the area. A number of large cooling systems serving groups of buildings are currently operating in the Phoenix area. The City requested that the design consultants analyze the available options and present recommendations to the City`s engineering staff.

  10. Reduction of pumping energy losses in district heating and cooling systems. Final report

    SciTech Connect

    Zakin, J.L.

    1991-12-01

    This project was designed to explore the effects of different structures of cationic surfactant drag reducing additives on their efficiency and on their effective temperature ranges. The goal was to develop surfactant systems that would be useful in the appropriate temperature ranges for district heating systems (50--110{degree}C) and for district cooling systems (2--20{degree}C). To this end the chemical compositions of quaternary annonium salts and of counter-ions were varied. More than twenty different commercial or semi commercial quarterly ammonium salts from US suppliers and two from a German supplier (Hoechst) were tested along with thirty five different counter-ions. In addition, blends of several of each were also tested. A further object of this project was to check the compatibility of surfactant drag reducers with commercial or semi-commercial corrosion inhibitors in regard to maintaining their drag reducing ability and corrosion inhibiting capability.

  11. Reduction of pumping energy losses in district heating and cooling systems

    SciTech Connect

    Zakin, J.L.

    1991-12-01

    This project was designed to explore the effects of different structures of cationic surfactant drag reducing additives on their efficiency and on their effective temperature ranges. The goal was to develop surfactant systems that would be useful in the appropriate temperature ranges for district heating systems (50--110{degree}C) and for district cooling systems (2--20{degree}C). To this end the chemical compositions of quaternary annonium salts and of counter-ions were varied. More than twenty different commercial or semi commercial quarterly ammonium salts from US suppliers and two from a German supplier (Hoechst) were tested along with thirty five different counter-ions. In addition, blends of several of each were also tested. A further object of this project was to check the compatibility of surfactant drag reducers with commercial or semi-commercial corrosion inhibitors in regard to maintaining their drag reducing ability and corrosion inhibiting capability.

  12. Emerging Two-Phase Cooling Technologies for Power Electronic Inverters

    SciTech Connect

    Hsu, J.S.

    2005-08-17

    In order to meet the Department of Energy's (DOE's) FreedomCAR and Vehicle Technologies (FVCT) goals for volume, weight, efficiency, reliability, and cost, the cooling of the power electronic devices, traction motors, and generators is critical. Currently the power electronic devices, traction motors, and generators in a hybrid electric vehicle (HEV) are primarily cooled by water-ethylene glycol (WEG) mixture. The cooling fluid operates as a single-phase coolant as the liquid phase of the WEG does not change to its vapor phase during the cooling process. In these single-phase systems, two cooling loops of WEG produce a low temperature (around 70 C) cooling loop for the power electronics and motor/generator, and higher temperature loop (around 105 C) for the internal combustion engine. There is another coolant option currently available in automobiles. It is possible to use the transmission oil as a coolant. The oil temperature exists at approximately 85 C which can be utilized to cool the power electronic and electrical devices. Because heat flux is proportional to the temperature difference between the device's hot surface and the coolant, a device that can tolerate higher temperatures enables the device to be smaller while dissipating the same amount of heat. Presently, new silicon carbide (SiC) devices and high temperature direct current (dc)-link capacitors, such as Teflon capacitors, are available but at significantly higher costs. Higher junction temperature (175 C) silicon (Si) dies are gradually emerging in the market, which will eventually help to lower hardware costs for cooling. The development of high-temperature devices is not the only way to reduce device size. Two-phase cooling that utilizes the vaporization of the liquid to dissipate heat is expected to be a very effective cooling method. Among two-phase cooling methods, different technologies such as spray, jet impingement, pool boiling and submersion, etc. are being developed. The Oak Ridge National Laboratory (ORNL) is leading the research on a novel floating refrigerant loop that cools high-power electronic devices and the motor/generator with very low cooling energy. The loop can be operated independently or attached to the air conditioning system of the vehicle to share the condenser and other mutually needed components. The ability to achieve low cooling energy in the floating loop is attributable to the liquid refrigerant operating at its hot saturated temperature (around 50 C+). In an air conditioning system, the liquid refrigerant is sub-cooled for producing cool air to the passenger compartment. The ORNL floating loop avoids the sub-cooling of the liquid refrigerant and saves significant cooling energy. It can raise the coefficient of performance (COP) more than 10 fold from that of the existing air-conditioning system, where the COP is the ratio of the cooled power and the input power for dissipating the cooled power. In order to thoroughly investigate emerging two-phase cooling technologies, ORNL subcontracted three university/companies to look into three leading two-phase cooling technologies. ORNL's assessments on these technologies are summarized in Section I. Detailed descriptions of the reports by the three university/companies (subcontractors) are in Section II.

  13. Microwave link phase compensation for longitudinal stochastic cooling in RHIC

    SciTech Connect

    Mernick, K.; Blaskiewicz, M.; Brennan, J.M.; Johnson, B.; Severino, F.

    2010-05-02

    A new microwave link has been developed for the longitudinal stochastic cooling system, replacing the fiberoptic link used for the transmission of the beam signal from the pickup to the kicker. This new link reduces the pickup to kicker delay from 2/3 of a turn to 1/6 of a turn, which greatly improves the phase margin of the system and allows operation at higher frequencies. The microwave link also introduces phase modulation on the transmitted signal due to variations in the local oscillators and time of flight. A phase locked loop tracks a pilot tone generated at a frequency outside the bandwidth of the cooling system. Information from the PLL is used to calculate real-time corrections to the cooling system at a 10 kHz rate. The design of the pilot tone system is discussed and results from commissioning are described.

  14. Optimization of the engineering design for the Lansing District Cooling System by comparative analysis of the impact of advanced technologies on a conventional design approach. Volume 1

    SciTech Connect

    Not Available

    1994-02-01

    The Lansing Board of Water and Light (LBWL) began investigating development of a cooling district in the Lansing Downtown in 1989 in order to retain and build summer load for its steam utility. A feasibility study was conducted in conjunction with SFT, Inc. and ZBA, Inc. which addressed many factors such as marketability of the product, impact on the summer steam load, distribution system development, system design, probable capital and operating costs, reliability and environmental and other regulatory impacts on a preliminary feasibility basis. The Phase I study completed in September of 1989 provided highly promising results for establishing a District Cooling System (DCS). An existing chilled water production facility owned by the State of Michigan was identified as a potential location for a DCS plant. With these changes a review of the feasibility with a new set of alternatives and sensitivities was evaluated. This enhancement to the Phase I Study was nearing completion when the LBWL in conjunction with Energy, Mines and Resources Canada proposed to conduct the Phase II project in conjunction with DOE. The project was structured to proceed along a dual track to demonstrate the impact of the application of various innovative technologies.

  15. Feasibility and Supply Analysis of U.S. Geothermal District Heating and Cooling System

    NASA Astrophysics Data System (ADS)

    He, Xiaoning

    Geothermal energy is a globally distributed sustainable energy with the advantages of a stable base load energy production with a high capacity factor and zero SOx, CO, and particulates emissions. It can provide a potential solution to the depletion of fossil fuels and air pollution problems. The geothermal district heating and cooling system is one of the most common applications of geothermal energy, and consists of geothermal wells to provide hot water from a fractured geothermal reservoir, a surface energy distribution system for hot water transmission, and heating/cooling facilities to provide water and space heating as well as air conditioning for residential and commercial buildings. To gain wider recognition for the geothermal district heating and cooling (GDHC) system, the potential to develop such a system was evaluated in the western United States, and in the state of West Virginia. The geothermal resources were categorized into identified hydrothermal resources, undiscovered hydrothermal resources, near hydrothermal enhanced geothermal system (EGS), and deep EGS. Reservoir characteristics of the first three categories were estimated individually, and their thermal potential calculated. A cost model for such a system was developed for technical performance and economic analysis at each geothermally active location. A supply curve for the system was then developed, establishing the quantity and the cost of potential geothermal energy which can be used for the GDHC system. A West Virginia University (WVU) case study was performed to compare the competiveness of a geothermal energy system to the current steam based system. An Aspen Plus model was created to simulate the year-round campus heating and cooling scenario. Five cases of varying water flow rates and temperatures were simulated to find the lowest levelized cost of heat (LCOH) for the WVU case study. The model was then used to derive a levelized cost of heat as a function of the population density at a constant geothermal gradient. By use of such functions in West Virginia at a census tract level, the most promising census tracts in WV for the development of geothermal district heating and cooling systems were mapped. This study is unique in that its purpose was to utilize supply analyses for the GDHC systems and determine an appropriate economic assessment of the viability and sustainability of the systems. It was found that the market energy demand, production temperature, and project lifetime have negative effects on the levelized cost, while the drilling cost, discount rate, and capital cost have positive effects on the levelized cost by sensitivity analysis. Moreover, increasing the energy demand is the most effective way to decrease the levelized cost. The derived levelized cost function shows that for EGS based systems, the population density has a strong negative effect on the LCOH at any geothermal gradient, while the gradient only has a negative effect on the LCOH at a low population density.

  16. Passive Two-Phase Cooling of Automotive Power Electronics: Preprint

    SciTech Connect

    Moreno, G.; Jeffers, J. R.; Narumanchi, S.; Bennion, K.

    2014-08-01

    Experiments were conducted to evaluate the use of a passive two-phase cooling strategy as a means of cooling automotive power electronics. The proposed cooling approach utilizes an indirect cooling configuration to alleviate some reliability concerns and to allow the use of conventional power modules. An inverter-scale proof-of-concept cooling system was fabricated, and tests were conducted using the refrigerants hydrofluoroolefin HFO-1234yf and hydrofluorocarbon HFC-245fa. Results demonstrated that the system can dissipate at least 3.5 kW of heat with 250 cm3 of HFC-245fa. An advanced evaporator design that incorporates features to improve performance and reduce size was conceived. Simulation results indicate its thermal resistance can be 37% to 48% lower than automotive dual side cooled power modules. Tests were also conducted to measure the thermal performance of two air-cooled condensers--plain and rifled finned tube designs. The results combined with some analysis were then used to estimate the required condenser size per operating conditions and maximum allowable system (i.e., vapor and liquid) temperatures.

  17. Two-Phase Cooling Method Using R134a Refrigerant to Cool Power Electronic Devices

    SciTech Connect

    Lowe, Kirk T; Tolbert, Leon M; Ayers, Curtis William; Ozpineci, Burak; Campbell, Jeremy B

    2007-01-01

    This paper presents a two-phase cooling method using R134a refrigerant to dissipate the heat energy (loss) generated by power electronics (PE) such as those associated with rectifiers, converters, and inverters for a specific application in hybrid-electric vehicles (HEVs). The cooling method involves submerging PE devices in an R134a bath, which limits the junction temperature of PE devices while conserving weight and volume of the heat sink without sacrificing equipment reliability. First, experimental tests that included an extended soak for more than 300 days were performed on a submerged IGBT and gate-controller card to study dielectric characteristics, deterioration effects, and heat flux capability of R134a. Results from these tests illustrate that R134a has high dielectric characteristics, no deterioration on electrical components, and a heat flux of 114 W/cm 2 for the experimental configuration. Second, experimental tests that included simultaneous operation with a mock automotive air-conditioner (A/C) system were performed on the same IGBT and gate controller card. Data extrapolation from these tests determined that a typical automotive A/C system has more than sufficient cooling capacity to cool a typical 30 kW traction inverter. Last, a discussion and simulation of active cooling of the IGBT junction layer with R134a refrigerant is given. This technique will drastically increase the forward current ratings and reliability of the PE device

  18. Gasifier wastewater treatment: Phase I cooling tower assessment

    SciTech Connect

    Mann, M.D.; Willson, W.G.; Hendrikson, J.G.; Winton, S.L.

    1984-01-01

    The principle goal of the gasification research at UNDERC is to develop environmental data on the treatability of wastewaters from the fixed-bed gasification of lignite. Research activities are focused around the cooling tower, where the reuse of treated gasification wastewaters has not been demonstrated in this country. The objective of Phase I cooling tower testing was to evaluate the effectiveness of using minimally treated wastewater (solvent extracted and steam stripped - referred to as stripped gas liquor) as makeup to a cooling tower. Ammonia, alkalinity, phenol, and other non-hydantoin organics were removed from the cooling water by stripping and/or biological degradation. Foaming of the circulating water will be a problem using SGL as makeup and foaming control will be required. The SGL feed cooling system supported a high level of biological activity (1 to 10 million/ml). Pseudomonas aeruginosa was identified as the predominant specie in the system. Severe fouling can be expected for all carbon steel surfaces. Fouling of stainless steel was not a major problem. General corrosion rates of 10 to 24 mils/yr were measured for carbon steel in various parts of the system. Carbon steel heat exchanger tube analysis indicated pitting corrosion penetration rates of 20 to 125 mils/yr under deposits. Computer analysis also indicated a strong potential for scaling from calcium carbonate precipitation. Results from this study indicate that the use of stripped gas liquor similar to that produced by the UNDERC pilot gasifier as cooling tower makeup is limited by a number of potentially serious operating problems. This water could be used for cooling tower makeup only after additional treatment or possibly with the use of biocides, corrosion inhibitors, and other control methods. 12 references, 6 figures, 7 tables. (DMC)

  19. Reduction in air emissions attainable through implementation of district heating and cooling

    SciTech Connect

    Bloomquist, R.G.

    1996-12-31

    District heating and cooling (DHC) can provide multiple opportunities to reduce air emissions associated with space conditioning and electricity generation, which contribute 30% to 50% of all such emissions. When DHC is combined with cogeneration (CHP), maximum reductions in sulfur oxides (SO{sub x}), nitrogen oxides (NO{sub x}), carbon dioxide (CO{sub 2}), particulates, and ozone-depleting chlorofluorocarbon (CFC) refrigerants can most effectively be achieved. Although significant improvements in air quality have been documented in Europe and Scandinavia due to DHC and CHP implementation, accurately predicting such improvements has been difficult. Without acceptable quantification methods, regulatory bodies are reluctant to grant air emissions credits, and local community leaders are unwilling to invest in DHC and CHP as preferred methods of providing energy or strategies for air quality improvement. The recent development and release of a number of computer models designed specifically to provide quantification of air emissions that can result from DHC and CHP implementation should help provide local, state, and national policymakers with information vital to increasing support and investment in DHC development.

  20. [Isolation of Legionella spp. from cooling tower water in Kinki District, Japan].

    PubMed

    Koide, M; Kamino, T; Tsukahara, Y; Maejima, K; Saitoh, A

    1991-12-01

    Distribution of Legionella spp. were surveyed two different times in Kinki District, Japan. The first time, eighty six building cooling tower waters were collected from Osaka, Hyogo and Nara Prefecture between April and December, 1987. The second time, thirty five waters were studied from Nishinomiya City in Hyogo Prefecture on July, 1989. BMPA alpha agar plate was used as the isolation medium for the first eighty six samples and MWY agar plate for the second thirty five samples. Legionella were isolated from forty two samples (48.8%) of the first eighty six samples. Three different species of Legionella were isolated simultaneously from one sample and two species from eight samples. L. pneumophila serogroup 1 was the most predominant species. Twenty three samples (65.7%) were positive in culture from the second thirty five samples. Three different species of Legionella were isolated simultaneously from three samples and two species from eleven samples. Legionella anisa was more predominant than L. pneumophila serogroup 1 in this study. PMID:1783809

  1. Thermal performance of phase change wallboard for residential cooling application

    SciTech Connect

    Feustel, H.E.; Stetiu, C.

    1997-04-01

    Cooling of residential California buildings contributes significantly to electrical consumption and peak power demand mainly due to very poor load factors in milder climates. Thermal mass can be utilized to reduce the peak-power demand, downsize the cooling systems, and/or switch to low-energy cooling sources. Large thermal storage devices have been used in the past to overcome the shortcomings of alternative cooling sources, or to avoid high demand charges. The manufacturing of phase change material (PCM) implemented in gypsum board, plaster or other wall-covering material, would permit the thermal storage to become part of the building structure. PCMs have two important advantages as storage media: they can offer an order-of-magnitude increase in thermal storage capacity, and their discharge is almost isothermal. This allows the storage of high amounts of energy without significantly changing the temperature of the room envelope. As heat storage takes place inside the building, where the loads occur, rather than externally, additional transport energy is not required. RADCOOL, a thermal building simulation program based on the finite difference approach, was used to numerically evaluate the latent storage performance of treated wallboard. Extended storage capacity obtained by using double PCM-wallboard is able to keep the room temperatures close to the upper comfort limits without using mechanical cooling. Simulation results for a living room with high internal loads and weather data for Sunnyvale, California, show significant reduction of room air temperature when heat can be stored in PCM-treated wallboards.

  2. Preliminary Retro-Commissioning Study on Optimal Operation for the Heat Source System of a District Heating Cooling Plant 

    E-print Network

    Shingu, H.; Yoshida, H.; Wang, F.; Ono, E.

    2008-01-01

    RETRO-COMMISSIONING STUDY ON OPTIMAL OPERATION FOR THE HEAT SOURCE SYSTEM OF A DISTRICT HEATING/COOLING PLANT Hirotake Shingu Harunori Yoshida Fulin Wang Eikichi ONO Former master student Professor Assistant professor Master student Kyoto... according to equation 11; 2) Fully open the bypass valve during the no-ice-thermal ?discharge period; 3) Set the chillers? chilled water temperature set point at 8 o C. CONCLUSIONS A preliminary retro-commission study on the heat source system of a...

  3. Optics for Phase Ionization Cooling of Muon Beams

    SciTech Connect

    R.P. Johnson; S.A. Bogacz; Y.S. Derbenev

    2006-06-26

    The realization of a muon collider requires a reduction of the 6D normalized emittance of an initially generated muon beam by a factor of more than 106. Analytical and simulation studies of 6D muon beam ionization cooling in a helical channel filled with pressurized gas or liquid hydrogen absorber indicate that a factor of 106 is possible. Further reduction of the normalized 4D transverse emittance by an additional two orders of magnitude is envisioned using Parametric-resonance Ionization Cooling (PIC). To realize the phase shrinkage effect in the parametric resonance method, one needs to design a focusing channel free of chromatic and spherical aberrations. We report results of our study of a concept of an aberration-free wiggler transport line with an alternating dispersion function. Resonant beam focusing at thin beryllium wedge absorber plates positioned near zero dispersion points then provides the predicted PIC effect.

  4. User manual for AQUASTOR: a computer model for cost analysis of aquifer thermal energy storage coupled with district heating or cooling systems. Volume I. Main text

    SciTech Connect

    Huber, H.D.; Brown, D.R.; Reilly, R.W.

    1982-04-01

    A computer model called AQUASTOR was developed for calculating the cost of district heating (cooling) using thermal energy supplied by an aquifer thermal energy storage (ATES) system. The AQUASTOR model can simulate ATES district heating systems using stored hot water or ATES district cooling systems using stored chilled water. AQUASTOR simulates the complete ATES district heating (cooling) system, which consists of two principal parts: the ATES supply system and the district heating (cooling) distribution system. The supply system submodel calculates the life-cycle cost of thermal energy supplied to the distribution system by simulating the technical design and cash flows for the exploration, development, and operation of the ATES supply system. The distribution system submodel calculates the life-cycle cost of heat (chill) delivered by the distribution system to the end-users by simulating the technical design and cash flows for the construction and operation of the distribution system. The model combines the technical characteristics of the supply system and the technical characteristics of the distribution system with financial and tax conditions for the entities operating the two systems into one techno-economic model. This provides the flexibility to individually or collectively evaluate the impact of different economic and technical parameters, assumptions, and uncertainties on the cost of providing district heating (cooling) with an ATES system. This volume contains the main text, including introduction, program description, input data instruction, a description of the output, and Appendix H, which contains the indices for supply input parameters, distribution input parameters, and AQUASTOR subroutines.

  5. The CERES S'COOL Project: Development and Operational Phases

    NASA Technical Reports Server (NTRS)

    Chambers, Lin H.; Young, David F.; Racel, Anne M.

    1998-01-01

    As part of NASA's Mission to Planet Earth, the first Clouds and the Earth's Radiant Energy System (CERES) instrument will be launched on the Tropical Rainfall Measuring Mission (TRMM) spacecraft from the Tanegashima launch site in Japan in November 1997. The instrument will measure the radiation budget incoming and outgoing radiant energy - of the Earth. The major feature of interest is clouds, which play a very strong role in regulating our climate. CERES will identify clear and cloudy regions and determine cloud physical and microphysical properties using imager data from a companion instrument. Validation efforts for the remote sensing algorithms will be intensive. As one component of the validation, the S'COOL (Students' Cloud Observations On-Line) project will involve school children around the globe in making ground truth measurements at the time of a CERES overpass. They will report cloud type, height, fraction, and opacity, as well as the local surface conditions. Their observations will be collected at the NASA Langley Distributed Active Archive Center (DAAC) and made available over the Internet for educational purposes as well as for use by the CERES Science Team in validation efforts. Pilot testing of the S'COOL project began in January 1997 with two local schools in Southeastern Virginia and one remote site in Montana. National testing in April 1997 involved 8 schools (grades 3 to high school) across the United States. Global testing will be carried out in October 1997. Details of the S'COOL project, which is mainly Internet-based, are being developed in each of these phases according to feedback received from participants. In 1998, when the CERES instrument is operational, a global observer network should be in place providing useful information to the scientists and learning opportunities to the students. Broad participation in the S'COOL project is planned, both to obtain data from a wide range of geographic areas, and to involve as many students as possible in learning about clouds and atmospheric science. This paper reports on the development phase of the S'COOL project, including the reaction of the teachers and students who have been involved. It describes the operational state of the S'COOL network, and identifies opportunities for additional participants.

  6. Geothermal district heating systems

    SciTech Connect

    Budney, G.S.; Childs, F.

    1982-01-01

    Ten district heating demonstration projects and their present status are described. The projects are Klamath County YMCA, Susanville District Heating, Klamath Falls District Heating, Reno Salem Plaza Condominium, El Centro Community Center Heating/Cooling, Haakon School and Business District Heating, St. Mary's Hospital, Diamond Ring Ranch, Pagosa Springs District Heating, and Boise District Heating.

  7. Geothermal district heating systems

    NASA Astrophysics Data System (ADS)

    Budney, G. S.; Childs, F.

    1982-06-01

    Ten district heating demonstration projects and their present status are described. The projects are Klamath County YMCA, Susanville District Heating, Klamath Falls District Heating, Reno Salem Plaza Condominium, El Centro Community Center Heating/Cooling, Haakon School and Business District Heating, St. Mary's Hospital, Diamond Ring Ranch, Pagosa Springs District Heating, and Boise District Heating.

  8. User manual for AQUASTOR: a computer model for cost analysis of aquifer thermal-energy storage oupled with district-heating or cooling systems. Volume II. Appendices

    SciTech Connect

    Huber, H.D.; Brown, D.R.; Reilly, R.W.

    1982-04-01

    A computer model called AQUASTOR was developed for calculating the cost of district heating (cooling) using thermal energy supplied by an aquifer thermal energy storage (ATES) system. the AQUASTOR Model can simulate ATES district heating systems using stored hot water or ATES district cooling systems using stored chilled water. AQUASTOR simulates the complete ATES district heating (cooling) system, which consists of two prinicpal parts: the ATES supply system and the district heating (cooling) distribution system. The supply system submodel calculates the life-cycle cost of thermal energy supplied to the distribution system by simulating the technical design and cash flows for the exploration, development, and operation of the ATES supply system. The distribution system submodel calculates the life-cycle cost of heat (chill) delivered by the distribution system to the end-users by simulating the technical design and cash flows for the construction and operation of the distribution system. The model combines the technical characteristics of the supply system and the technical characteristics of the distribution system with financial and tax conditions for the entities operating the two systems into one techno-economic model. This provides the flexibility to individually or collectively evaluate the impact of different economic and technical parameters, assumptions, and uncertainties on the cost of providing district heating (cooling) with an ATES system. This volume contains all the appendices, including supply and distribution system cost equations and models, descriptions of predefined residential districts, key equations for the cooling degree-hour methodology, a listing of the sample case output, and appendix H, which contains the indices for supply input parameters, distribution input parameters, and AQUASTOR subroutines.

  9. Offshore Floating Wind Turbine-driven Deep Sea Water Pumping for Combined Electrical Power and District Cooling

    NASA Astrophysics Data System (ADS)

    Sant, T.; Buhagiar, D.; Farrugia, R. N.

    2014-06-01

    A new concept utilising floating wind turbines to exploit the low temperatures of deep sea water for space cooling in buildings is presented. The approach is based on offshore hydraulic wind turbines pumping pressurised deep sea water to a centralised plant consisting of a hydro-electric power system coupled to a large-scale sea water-cooled air conditioning (AC) unit of an urban district cooling network. In order to investigate the potential advantages of this new concept over conventional technologies, a simplified model for performance simulation of a vapour compression AC unit was applied independently to three different systems, with the AC unit operating with (1) a constant flow of sea surface water, (2) a constant flow of sea water consisting of a mixture of surface sea water and deep sea water delivered by a single offshore hydraulic wind turbine and (3) an intermittent flow of deep sea water pumped by a single offshore hydraulic wind turbine. The analysis was based on one year of wind and ambient temperature data for the Central Mediterranean that is known for its deep waters, warm climate and relatively low wind speeds. The study confirmed that while the present concept is less efficient than conventional turbines utilising grid-connected electrical generators, a significant portion of the losses associated with the hydraulic transmission through the pipeline are offset by the extraction of cool deep sea water which reduces the electricity consumption of urban air-conditioning units.

  10. Commissioning Process and Operational Improvement in the District Heating and Cooling-APCBC 

    E-print Network

    Takase,T.; Takada,O; Shima,K.; Moriya, M.; Shimoda,Y.

    2014-01-01

    Centrifugal Chiller Centrifugal Chiller Direct Cooling Mode (Ice Storage System) Ice Melting Mode (Ice Storage System) Absorption Chiller 0.50 1.50 2.50 40% 60% 80% 100% S y st em C O P Cooling Water Temperature : 24? Inverter Centrifugal Chiller Centrifugal... Chiller Direct Cooling Mode (Ice Storage System) Ice Melting Mode (Ice Storage System) Absorption Chiller 12 EXAMPLES OF COMMISSIONING AND OPERATIONAL IMPROVEMENTS Load Factor[?] Load Factor[?] Search for the most suitable operation method in consideration...

  11. Brazing of the Tore Supra actively cooled Phase III Limiter

    SciTech Connect

    Nygren, R.E.; Walker, C.A.; Lutz, T.J.; Hosking, F.M.; McGrath, R.T.

    1993-12-31

    The head of the water-cooled Tore Supra Phase 3 Limiter is a bank of 14 round OFHC copper tubes, curved to fit the plasma radius, onto which several hundred pyrolytic graphite (PG) tiles and a lesser number of carbon fiber composite tiles are brazed. The small allowable tolerances for fitting the tiles to the tubes and mating of compound curvatures made the brazing and fabrication extremely challenging. The paper describes the fabrication process with emphasis on the procedure for brazing. In the fixturing for vacuum furnace brazing, the tiles were each independently clamped to the tube with an elaborate set of window frame clamps. Braze quality was evaluated with transient heating tests. Some rebrazing was necessary.

  12. Proposed renovation of a district cooling plant to optimize the existing distribution system and increase production capacity

    SciTech Connect

    Tredinnick, S.M.

    1998-12-31

    The phaseout of chlorofluorocarbon (CFC) production in January 1996 is making district cooling (DC) an increasingly popular alternative to chiller retrofits and replacements. By connecting to a DC system, building owners and managers can focus on issues other than chilled-water production, thus liberating personnel, space, and financial resources for other important functions. A San Diego company has been serving the downtown business district of San Diego with reliable DC service since 1971. The existing system presently serves nine customers and, based on the current system plant pumping configuration, requires modifications in order to handle additional capacity. They are interested in signing on additional customers in the near future but cannot due to the limitations of the existing distribution system. This paper addresses modifications recommended to the company based on a hydraulic analysis and conceptual design completed in June 1995. The results of the analysis increased system distribution capacity from 5,245 tons (19.9 MW{sub th}) to almost 18,000 tons (62.9 MW{sub th}), while maintaining the present pipe system sizes. Investigations to increase plant capacity was not part of the scope of this paper since the focus was on the distribution system.

  13. Modeling Single-Phase and Boiling Liquid Jet Impingement Cooling in Power Electronics

    SciTech Connect

    Narumanchi, S. V. J.; Hassani, V.; Bharathan, D.

    2005-12-01

    Jet impingement has been an attractive cooling option in a number of industries over the past few decades. Over the past 15 years, jet impingement has been explored as a cooling option in microelectronics. Recently, interest has been expressed by the automotive industry in exploring jet impingement for cooling power electronics components. This technical report explores, from a modeling perspective, both single-phase and boiling jet impingement cooling in power electronics, primarily from a heat transfer viewpoint. The discussion is from the viewpoint of the cooling of IGBTs (insulated-gate bipolar transistors), which are found in hybrid automobile inverters.

  14. Study of Microsegregation and Laves Phase in INCONEL718 Superalloy Regarding Cooling Rate During Solidification

    NASA Astrophysics Data System (ADS)

    Ling, Lishibao; Han, Yanfeng; Zhou, Wei; Gao, Haiyan; Shu, Da; Wang, Jun; Kang, Maodong; Sun, Baode

    2015-01-01

    Cooling rate is an important and controllable variable in casting processing. The effect of cooling rate on the microsegregation and Laves phase in INCONEL718 superalloy castings was studied by high-temperature-laser confocal scanning microscopy and quantitative metallography in this study. The transformation rate of solid phase with a feature of Gaussian distribution in the solidifications at the cooling rates of 0.10 to 14 K/s is acquired. The solidification time and secondary dendrite arm spacing (SDAS) as a function of cooling rate are analyzed. The amount of Laves phase presents a maximum value at a threshold cooling rate of 3 K/s owing to the opposite effects of cooling rate on the solidification time and SDAS. A modified dimensionless microsegregation index criterion was used for the scaling of solute segregation and Laves phase depending on cooling rates. The prediction of maximal microsegregation and the amount of Laves phase by MSI and experiments provide a guide for cooling rate control in the casting applications.

  15. The district heating renaissance

    SciTech Connect

    Seeley, R.S.

    1992-09-01

    This article examines the expanding market for district heating and cooling systems as part of independent cogeneration systems. The topics of the article include expanding systems, future potential, government help, cogeneration, district cooling expanding, absorption chilling, indoor air quality, and institutional barriers to the expanding market. The article also includes a sidebar on Denmark's district heating systems.

  16. Light-Weight, Low-Cost, Single-Phase, Liquid-Cooled Cold Plate (Presentation)

    SciTech Connect

    Narumanchi, S.

    2013-07-01

    This presentation, 'Light-Weight, Low-Cost, Single-Phase Liquid-Cooled Cold Plate,' directly addresses program goals of increased power density, specific power, and lower cost of power electronics components through improved thermal management.

  17. Light-Weight, Single-Phase, Liquid-Cooled Cold Plate (Presentation)

    SciTech Connect

    Narumanchi, S.

    2013-07-01

    This presentation, 'Light-Weight, Low-Cost, Single-Phase Liquid-Cooled Cold Plate,' directly addresses program goals of increased power density, specific power, and lower cost of power electronics components through improved thermal management.

  18. MICE: The International Muon Ionization Cooling Experiment: Phase Space Cooling Measurement

    SciTech Connect

    Hart, T. L.

    2010-03-30

    MICE is an experimental demonstration of muon ionization cooling using a section of an ionization cooling channel and a muon beam. The muons are produced by the decay of pions from a target dipping into the ISIS proton beam at Rutherford Appleton Laboratory (RAL). The channel includes liquid-hydrogen absorbers providing transverse and longitudinal momentum loss and high-gradient radiofrequency (RF) cavities for longitudinal reacceleration, all packed into a solenoidal magnetic channel. MICE will reduce the beam transverse emittance by about 10% for muon momenta between 140 and 240 MeV/c. Time-of-flight (TOF) counters, threshold Cherenkov counters, and a calorimeter will identify background electrons and pions. Spectrometers before and after the cooling section will measure the beam transmission and input and output emittances with an absolute precision of 0.1%.

  19. Computer cooling using a two phase minichannel thermosyphon loop heated from horizontal and vertical sides and cooled from vertical side

    NASA Astrophysics Data System (ADS)

    Bieli?ski, Henryk; Mikielewicz, Jaros?aw

    2010-10-01

    In the present paper it is proposed to consider the computer cooling capacity using the thermosyphon loop. A closed thermosyphon loop consists of combined two heaters and a cooler connected to each other by tubes. The first heater may be a CPU processor located on the motherboard of the personal computer. The second heater may be a chip of a graphic card placed perpendicular to the motherboard of personal computer. The cooler can be placed above the heaters on the computer chassis. The thermosyphon cooling system on the use of computer can be modeled using the rectangular thermosyphon loop with minichannels heated at the bottom horizontal side and the bottom vertical side and cooled at the upper vertical side. The riser and a downcomer connect these parts. A one-dimensional model of two-phase flow and heat transfer in a closed thermosyphon loop is based on mass, momentum, and energy balances in the evaporators, rising tube, condenser and the falling tube. The separate two-phase flow model is used in calculations. A numerical investigation for the analysis of the mass flux rate and heat transfer coefficient in the steady state has been accomplished.

  20. CLOSURE OF HLW TANKS PHASE 2 FULL SCALE COOLING COILS GROUT FILL DEMONSTATIONS

    SciTech Connect

    Hansen, E; Alex Cozzi, A

    2008-06-19

    This report documents the Savannah River National Laboratory (SRNL) support for the Tank Closure and Technology Development (TCTD) group's strategy for closing high level radioactive waste (HLW) tanks at the Savannah River Site (SRS). Specifically, this task addresses the ability to successfully fill intact cooling coils, presently within the HLW tanks, with grout that satisfies the fresh and cured grout requirements [1] under simulated field conditions. The overall task was divided into two phases. The first phase was the development of a grout formulation that satisfies the processing requirements for filling the HLW tank cooling coils [5]. The second phase of the task, which is documented in this report, was the filling of full scale cooling coils under simulated field conditions using the grout formulation developed in the first phase. SRS Type I tank cooling coil assembly design drawings and pressure drop calculations were provided by the Liquid Waste (LW) customer to be used as the basis for configuring the test assemblies. The current concept for closing tanks equipped with internal cooling coils is to pump grout into the coils to inhibit pathways for infiltrating water. Access to the cooling coil assemblies is through the existing supply/return manifold headers located on top of the Type I tanks. The objectives for the second phase of the testing, as stated in the Task Technical and Quality Assurance plan (TTQAP) [2], were to: (1) Perform a demonstration test to assess cooling coil grout performance in simulated field conditions, and (2) Measure relevant properties of samples prepared under simulated field conditions. SRNL led the actual work of designing, fabricating and filling two full-scale cooling coil assemblies which were performed at Clemson Engineering Technologies Laboratory (CETL) using the South Carolina University Research and Education Foundation (SCUREF) program. A statement of work (SOW) was issued to CETL [6] to perform this work.

  1. Modeling phase transformations in ternary systems: Ferrite dissolution during continuous cooling

    SciTech Connect

    Vitek, J.M.; Vitek, S.A.

    1995-07-01

    The diffusion-controlled phase dissolution (or growth) in a ternary system of finite length has been modeled numerically using an implicit finite-difference method. The analysis has been applied to study the ferrite to austenite transformation in austenitic stainless steel weldments. The iron-chromium-nickel ternary system was taken as representative of this class of materials. The effect of system geometry was evaluated by considering planar, cylindrical, and spherical geometries. The numerical analysis was extended to the case of continuous cooling, for a range of cooling rates from 0.1 to 100 K/s. The results provide information on how quickly the system deviates from equilibrium during cooling, and what the final compositions and phase fractions are as a function of cooling rate. In most cases, the deviation from equilibrium, in terms of residual ferrite content and composition, increased as the cooling rate increased, as expected. However, under some conditions, it was found that the lowest cooling rates actually deviated further from equilibrium than intermediate cooling rates. This curious phenomenon was investigated in detail and was explained in terms of the indirect path toward final. Such indirect equilibration is often found during and typical of diffusion-controlled transformation behavior in multi-component systems.

  2. Heat pipe radiation cooling (HPRC) for high-speed aircraft propulsion. Phase 2 (feasibility) final report

    SciTech Connect

    Martin, R.A.; Merrigan, M.A.; Elder, M.G.; Sena, J.T.; Keddy, E.S.; Silverstein, C.C.

    1994-03-25

    The National Aeronautics and Space Administration (NASA), Los Alamos National Laboratory (Los Alamos), and CCS Associates are conducting the Heat Pipe Radiation Cooling (HPRC) for High-Speed Aircraft Propulsion program to determine the advantages and demonstrate the feasibility of using high-temperature heat pipes to cool hypersonic engine components. This innovative approach involves using heat pipes to transport heat away from the combustor, nozzle, or inlet regions, and to reject it to the environment by thermal radiation from adjacent external surfaces. HPRC is viewed as an alternative (or complementary) cooling technique to the use of pumped cryogenic or endothermic fuels to provide regenerative fuel or air cooling of the hot surfaces. The HPRC program has been conducted through two phases, an applications phase and a feasibility phase. The applications program (Phase 1) included concept and assessment analyses using hypersonic engine data obtained from US engine company contacts. The applications phase culminated with planning for experimental verification of the HPRC concept to be pursued in a feasibility program. The feasibility program (Phase 2), recently completed and summarized in this report, involved both analytical and experimental studies.

  3. Phase change based cooling for high burst mode heat loads with temperature regulation above the phase change temperature

    DOEpatents

    The United States of America as represented by the United States Department of Energy (Washington, DC)

    2009-12-15

    An apparatus and method for transferring thermal energy from a heat load is disclosed. In particular, use of a phase change material and specific flow designs enables cooling with temperature regulation well above the fusion temperature of the phase change material for medium and high heat loads from devices operated intermittently (in burst mode). Exemplary heat loads include burst mode lasers and laser diodes, flight avionics, and high power space instruments. Thermal energy is transferred from the heat load to liquid phase change material from a phase change material reservoir. The liquid phase change material is split into two flows. Thermal energy is transferred from the first flow via a phase change material heat sink. The second flow bypasses the phase change material heat sink and joins with liquid phase change material exiting from the phase change material heat sink. The combined liquid phase change material is returned to the liquid phase change material reservoir. The ratio of bypass flow to flow into the phase change material heat sink can be varied to adjust the temperature of the liquid phase change material returned to the liquid phase change material reservoir. Varying the flowrate and temperature of the liquid phase change material presented to the heat load determines the magnitude of thermal energy transferred from the heat load.

  4. Decay-phase cooling and inferred heating of M- and X-class solar flares

    SciTech Connect

    Ryan, Daniel F.; Gallagher, Peter T.; Chamberlin, Phillip C.; Milligan, Ryan O.

    2013-11-20

    In this paper, the cooling of 72 M- and X-class flares is examined using GOES/XRS and SDO/EVE. The observed cooling rates are quantified and the observed total cooling times are compared with the predictions of an analytical zero-dimensional hydrodynamic model. We find that the model does not fit the observations well, but does provide a well-defined lower limit on a flare's total cooling time. The discrepancy between observations and the model is then assumed to be primarily due to heating during the decay phase. The decay-phase heating necessary to account for the discrepancy is quantified and found be ?50% of the total thermally radiated energy, as calculated with GOES. This decay-phase heating is found to scale with the observed peak thermal energy. It is predicted that approximating the total thermal energy from the peak is minimally affected by the decay-phase heating in small flares. However, in the most energetic flares the decay-phase heating inferred from the model can be several times greater than the peak thermal energy.

  5. Development of a prototype thermoelectric space cooling system using phase change material to improve the performance

    NASA Astrophysics Data System (ADS)

    Zhao, Dongliang

    The thermoelectric cooling system has advantages over conventional vapor compression cooling devices, including compact in size, light in weight, high reliability, no mechanical moving parts, no refrigerant, being powered by direct current, and easily switching between cooling and heating modes. However, it has been long suffering from its relatively high cost and low energy efficiency, which has restricted its usage to niche applications, such as space missions, portable cooling devices, scientific and medical equipment, where coefficient of performance (COP) is not as important as reliability, energy availability, and quiet operation environment. Enhancement of thermoelectric cooling system performance generally relies on two methods: improving thermoelectric material efficiency and through thermoelectric cooling system thermal design. This research has been focused on the latter one. A prototype thermoelectric cooling system integrated with phase change material (PCM) thermal energy storage unit for space cooling has been developed. The PCM thermal storage unit used for cold storage at night, functions as the thermoelectric cooling system's heat sink during daytime's cooling period and provides relatively lower hot side temperature for the thermoelectric cooling system. The experimental test of the prototype system in a reduced-scale chamber has realized an average cooling COP of 0.87, with the maximum value of 1.22. Another comparison test for efficacy of PCM thermal storage unit shows that 35.3% electrical energy has been saved from using PCM for the thermoelectric cooling system. In general, PCM faces difficulty of poor thermal conductivity at both solid and liquid phases. This system implemented a finned inner tube to increase heat transfer during PCM charging (melting) process that directly impacts thermoelectric system's performance. A simulation tool for the entire system has been developed including mathematical models for a single thermoelectric module, for the thermoelectric cooling unit, for the PCM thermal storage unit, and for the outdoor air-water heat exchanger. When modeling PCM thermal storage unit, the enthalpy method has been adopted. Since natural convection has been observed in experiments playing a key effect on heat transfer in PCM, a staged effective thermal conductivity (ke) concept and modified Rayleigh (Ra) number formula have been developed to better capture natural convection's variable effects during the PCM charging process. Therefore, a modeling-based design procedure for thermoelectric cooling system integrating with PCM has been proposed. A case study has been completed for a model office room to demonstrate the qualitative and quantitative evaluations to the major system components. Results of this research can be extended to other applications in relevant areas. For instance, the proposed PCM thermal storage unit can be applied to integration with water-cooled conventional air-conditioning devices. Instead of using water cooling, a case study of using the proposed PCM unit for a water-cooled air-conditioner shows a COP increase of more than 25.6%.

  6. Research on Cool Storage Time of a Phase Change Wallboard Room in the Summer 

    E-print Network

    Feng, G.; Liang, R.; Li, G.

    2006-01-01

    . However, the effect could not improve obviously with prolonging the operating period, which indicated that cool-storing for 5 hours could make the function of phase change wallboard better. 2.2 The Effects Analysis of The Combination Of Residential..., the application of phase change wallboard could fix the matters mentioned above, reduce the frequency of the operation of air conditioning facility, prolong the lifetime of the facility and play an important role in reducing the indoor temperature.(to see Fig...

  7. Nuclear thermoelectric power unit with two-phase thermosiphons in the cooling circuit

    SciTech Connect

    Yakimov, V.; Kaplar, E.; Sveshnikov, V.; Sukhov, A.

    1993-12-31

    Nuclear thermoelectric units with electric power as high as 200 KWT, in case of of lifted thermogenerator blocks by their technical, ecological, and economic chracteristics, meet the requirements of autonomous electric energy sources for land-based and sea units of the stationary and transportable type. This report describes the developement of a thermoelectric unit with two phase thermosiphons in the cooling circuits.

  8. Modeling of phase transformation behavior in hot-deformed and continuously cooled C-Mn steels

    SciTech Connect

    Liu, Z.; Wang, G.; Gao, W.

    1996-08-01

    Computer models of phase transformation from austenite to ferrite, austenite to pearlite, and austenite to bainite in hot-deformed carbon-manganese steels during continuous cooling were established on the basis of Cahn`s transformation theory, thermal-dilatometric experiments, and thermodynamic calculations. These models showed good agreement with results measured from pilot hot rolling experiments.

  9. User manual for GEOCITY: a computer model for cost analysis of geothermal district-heating-and-cooling systems. Volume I. Main text

    SciTech Connect

    Huber, H.D.; Fassbender, L.L.; Bloomster, C.H.

    1982-09-01

    The purpose of this model is to calculate the costs of residential space heating, space cooling, and sanitary water heating or process heating (cooling) using geothermal energy from a hydrothermal reservoir. The model can calculate geothermal heating and cooling costs for residential developments, a multi-district city, or a point demand such as an industrial factory or commercial building. GEOCITY simulates the complete geothermal heating and cooling system, which consists of two principal parts: the reservoir and fluid transmission system and the distribution system. The reservoir and fluid transmission submodel calculates the life-cycle cost of thermal energy supplied to the distribution system by simulating the technical design and cash flows for the exploration, development, and operation of the reservoir and fluid transmission system. The distribution system submodel calculates the life-cycle cost of heat (chill) delivered by the distribution system to the end-users by simulating the technical design and cash flows for the construction and operation of the distribution system. Geothermal space heating is assumed to be provided by circulating hot water through radiators, convectors, fan-coil units, or other in-house heating systems. Geothermal process heating is provided by directly using the hot water or by circulating it through a process heat exchanger. Geothermal space or process cooling is simulated by circulating hot water through lithium bromide/water absorption chillers located at each building. Retrofit costs for both heating and cooling applications can be input by the user. The life-cycle cost of thermal energy from the reservoir and fluid transmission system to the distribution system and the life-cycle cost of heat (chill) to the end-users are calculated using discounted cash flow analysis.

  10. Cool Shelter

    ERIC Educational Resources Information Center

    Praeger, Charles E.

    2005-01-01

    Amid climbing energy costs and tightening budgets, administrators at school districts, colleges and universities are looking for all avenues of potential savings while promoting sustainable communities. Cool metal roofing can save schools money and promote sustainable design at the same time. Cool metal roofing keeps the sun's heat from collecting…

  11. Gray-molasses cooling of 39K to a high phase-space density

    NASA Astrophysics Data System (ADS)

    Salomon, G.; Fouché, L.; Wang, P.; Aspect, A.; Bouyer, P.; Bourdel, T.

    2013-12-01

    We present new techniques in cooling 39K atoms using laser light close to the D1 transition. First, a new compressed-MOT configuration is taking advantage of gray-molasses-type cooling induced by blue-detuned D1 light. It yields an optimized density of atoms. Then, we use pure D1 gray molasses to further cool the atoms to an ultra-low temperature of 6\\ \\mu\\text{K} . The resulting phase-space density is 2\\times 10^{-4} and will ease future experiments with ultracold potassium. As an example, we use it to directly load up to 3\\times 10^7 atoms in a far detuned optical trap, a result that opens the way to the all-optical production of potassium degenerate gases.

  12. Gray molasses cooling of $^{39}$K to a high phase-space density

    E-print Network

    Salomon, G; Wang, P; Aspect, A; Bouyer, P; Bourdel, T

    2013-01-01

    We present new techniques in cooling 39K atoms using laser light close to the D1 transition. First, a new compressed-MOT configuration is taking advantage of gray molasses type cooling induced by blue-detuned D1 light. It yields an optimized density of atoms. Then, we use pure D1 gray molasses to further cool the atoms to an ultra-low temperature of 6\\,$\\mu$K. The resulting phase-space density is $2 \\times 10^{-4}$ and will ease future experiments with ultracold potassium. As an example, we use it to directly load up to $3\\times 10^7$ atoms in a far detuned optical trap, a result that opens the way to the all-optical production of potassium degenerate gases.

  13. Transformation behavior of the ?U(Zr,Nb) phase under continuous cooling conditions

    NASA Astrophysics Data System (ADS)

    Komar Varela, C. L.; Gribaudo, L. M.; González, R. O.; Aricó, S. F.

    2014-10-01

    The selected alloy for designing a high-density monolithic-type nuclear fuel with U-Zr-Nb alloy as meat and Zry-4 as cladding, has to remain in the ?U(Zr,Nb) phase during the whole fabrication process. Therefore, it is necessary to define a range of concentrations in which the ?U(Zr,Nb) phase does not decompose under the process conditions. In this work, several U alloys with concentrations between 28.2-66.9 at.% Zr and 0-13.3 at.% Nb were fabricated to study the possible transformations of the ?U(Zr,Nb) phase under different continuous cooling conditions. The results of the electrical resistivity vs temperature experiments are presented. For a cooling rate of 4 °C/min a linear regression was determined by fitting the starting decomposition temperature as a function of Nb concentration. Under these conditions, a concentration of 45.3 at.% Nb would be enough to avoid any transformation of the ?U(Zr,Nb) phase. In experiments that involve higher cooling conditions, it has been determined that this concentration can be halved.

  14. Phase coexistence and transformations in field-cooled ternary piezoelectric single crystals near the morphotropic phase boundary

    SciTech Connect

    Luo, Chengtao; Wang, Yaojin Wang, Zhiguang; Ge, Wenwei; Li, Jiefang; Viehland, D.; Luo, Haosu

    2014-12-08

    Structural phase transformations in (100)-oriented Pb(In{sub 1/2}Nb{sub 1/2})O{sub 3}-Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-PbTiO{sub 3} single crystals have been investigated by X-ray diffraction. A cubic (C)???tetragonal (T)???monoclinic-C (M{sub C}) transformation sequence was observed in the field-cooled condition. Two phase coexistence regions of C?+?T and T?+?M{sub C} were found. In addition to an increase in the C???T phase transition temperature and a decrease of the T???M{sub C} one, a broadening of the coexistence regions was also found with increasing field. This broadening can be explained by the presence of polar nano regions within the C, T, and M{sub C} phase regions.

  15. Microstructural Study of the Phase Transformations Upon Cooling to Room Temperature of High Mn Steels

    NASA Astrophysics Data System (ADS)

    Cheng, Wei-Chun; Lin, Tung-Yi

    2012-06-01

    The phase transformations of high Mn steels during cooling have been characterized in this study. Widmanstätten plates occur in the austenite matrix upon cooling the steels from 1373 K (1100 °C). The Widmanstätten plates are composed of not only the hexagonal close-packed ?-martensite but also the face-centered cubic (FCC) micro-twins. The formation mechanism of the Widmanstätten phases is probably various stacking faults induced from Shockley partial dislocations in the austenite. The ?-martensitic plates, along with the ?-carbides, were observed in a Mn-Al steel at 873 K (600 °C). As most of the FCC matrix has transformed to ?-carbides, the partial dislocations neighboring ?-martensitic plates could not glide. The ?-martensite retained in the transformed matrix is the strongest evidence to support the above mechanism.

  16. The evolution of vacuum states and phase transitions in 2HDM during cooling of Universe

    E-print Network

    Ginzburg, I F; Kanishev, K A

    2009-01-01

    We consider the evolution of the ground state in the Two Higgs Doublet Model during cooling down of the Universe after the Big Bang. Different regions in the space of free parameters of this model correspond to different sequences of thermal phase transitions. We discuss different paths of thermal evolution and corresponding evolution of physical properties of the system for different modern values of the parameters.

  17. The evolution of vacuum states and phase transitions in 2HDM during cooling of Universe

    E-print Network

    I. F. Ginzburg; I. P. Ivanov; K. A. Kanishev

    2009-12-11

    We consider the evolution of the ground state in the Two Higgs Doublet Model during cooling down of the Universe after the Big Bang. Different regions in the space of free parameters of this model correspond to different sequences of thermal phase transitions. We discuss different paths of thermal evolution and corresponding evolution of physical properties of the system for different modern values of the parameters.

  18. Effect of Cooling Rate on Phase Transformations in a High-Strength Low-Alloy Steel Studied from the Liquid Phase

    NASA Astrophysics Data System (ADS)

    Dorin, Thomas; Stanford, Nicole; Taylor, Adam; Hodgson, Peter

    2015-12-01

    The phase transformation and precipitation in a high-strength low-alloy steel have been studied over a large range of cooling rates, and a continuous cooling transformation (CCT) diagram has been produced. These experiments are unique because the measurements were made from samples cooled directly from the melt, rather than in homogenized and re-heated billets. The purpose of this experimental design was to examine conditions pertinent to direct strip casting. At the highest cooling rates which simulate strip casting, the microstructure was fully bainitic with small regions of pearlite. At lower cooling rates, the fraction of polygonal ferrite increased and the pearlite regions became larger. The CCT diagram and the microstructural analysis showed that the precipitation of NbC is suppressed at high cooling rates, and is likely to be incomplete at intermediate cooling rates.

  19. Advanced phase change materials and systems for solar passive heating and cooling of residential buildings

    SciTech Connect

    Salyer, I.O.; Sircar, A.K.; Dantiki, S.

    1988-01-01

    During the last three years under the sponsorship of the DOE Solar Passive Division, the University of Dayton Research Institute (UDRI) has investigated four phase change material (PCM) systems for utility in thermal energy storage for solar passive heating and cooling applications. From this research on the basis of cost, performance, containment, and environmental acceptability, we have selected as our current and most promising series of candidate phase change materials, C-15 to C-24 linear crystalline alkyl hydrocarbons. The major part of the research during this contract period was directed toward the following three objectives. Find, test, and develop low-cost effective phase change materials (PCM) that melt and freeze sharply in the comfort temperature range of 73--77{degree}F for use in solar passive heating and cooling of buildings. Define practical materials and processes for fire retarding plasterboard/PCM building products. Develop cost-effective methods for incorporating PCM into building construction materials (concrete, plasterboard, etc.) which will lead to the commercial manufacture and sale of PCM-containing products resulting in significant energy conservation.

  20. Self-shaping of oil droplets via the formation of intermediate rotator phases upon cooling.

    PubMed

    Denkov, Nikolai; Tcholakova, Slavka; Lesov, Ivan; Cholakova, Diana; Smoukov, Stoyan K

    2015-12-17

    Revealing the chemical and physical mechanisms underlying symmetry breaking and shape transformations is key to understanding morphogenesis. If we are to synthesize artificial structures with similar control and complexity to biological systems, we need energy- and material-efficient bottom-up processes to create building blocks of various shapes that can further assemble into hierarchical structures. Lithographic top-down processing allows a high level of structural control in microparticle production but at the expense of limited productivity. Conversely, bottom-up particle syntheses have higher material and energy efficiency, but are more limited in the shapes achievable. Linear hydrocarbons are known to pass through a series of metastable plastic rotator phases before freezing. Here we show that by using appropriate cooling protocols, we can harness these phase transitions to control the deformation of liquid hydrocarbon droplets and then freeze them into solid particles, permanently preserving their shape. Upon cooling, the droplets spontaneously break their shape symmetry several times, morphing through a series of complex regular shapes owing to the internal phase-transition processes. In this way we produce particles including micrometre-sized octahedra, various polygonal platelets, O-shapes, and fibres of submicrometre diameter, which can be selectively frozen into the corresponding solid particles. This mechanism offers insights into achieving complex morphogenesis from a system with a minimal number of molecular components. PMID:26649824

  1. Study on Performance Verification and Evaluation of District Heating and Cooling System Using Thermal Energy of River Water 

    E-print Network

    Takahashi,N.; Niwa, H.; Kawano,M.; Koike,K.; Koga,O.; Ichitani, K.; Mishima,N.

    2014-01-01

    arrangement, and external factors such as earthquakes. -We have also seen the results of plant performance. Some heat source facilities indicate a slight downward trend, but since the operation started, the plant COP has steadily been increased and 2013 saw... was launched. Also, secular changes in river water heat exchangers are analyzed and the effect of cleaning heat exchangers are evaluated. (1) Overview of the heating and cooling facilities (2) Operational results since launch (3) Secular changes in plant...

  2. Arsenic speciation in pyrite and secondary weathering phases, Mother Lode gold district, Tuolumne County, California

    SciTech Connect

    Savage, K.S.; Tingle, Tracy N.; O'Day, Peggy A.; Waychunas, Glenn A.; Bird, Dennis K.

    2004-10-27

    Arsenian pyrite, formed during Cretaceous gold mineralization, is the primary source of As along the Melones fault zone in the southern Mother Lode Gold District of California. Mine tailings and associated weathering products from partially submerged inactive gold mines at Don Pedro Reservoir, on the Tuolumne River, contain approx. 20-1300 ppm As. The highest concentrations are in weathering crusts from the Clio mine and nearby outcrops which contain goethite or jarosite. As is concentrated up to 2150 ppm in the fine-grained (<63 mu-m) fraction of these Fe-rich weathering products. Individual pyrite grains in albite-chlorite schists of the Clio mine tailings contain an average of 1.2 wt. percent As. Pyrite grains are coarsely zoned, with local As concentrations ranging from approx. 0 to 5 wt. percent. Electron microprobe, transmission electron microscope, and extended X-ray absorption fine-structure spectroscopy (EXAFS) analyses indicate that As substitutes for S in pyrite and is not present as inclusions of arsenopyrite or other As-bearing phases. Comparison with simulated EXAFS spectra demonstrates that As atoms are locally clustered in the pyrite lattice and that the unit cell of arsenian pyrite is expanded by approx. 2.6 percent relative to pure pyrite. During weathering, clustered substitution of As into pyrite may be responsible for accelerating oxidation, hydrolysis, and dissolution of arsenian pyrite relative to pure pyrite in weathered tailings. Arsenic K-edge EXAFS analysis of the fine-grained Fe-rich weathering products are consistent with corner-sharing between As(V) tetrahedra and Fe(III)-octahedra. Determinations of nearest-neighbor distances and atomic identities, generated from least-squares fitting algorithms to spectral data, indicate that arsenate tetrahedra are sorbed on goethite mineral surfaces but substitute for SO4 in jarosite. Erosional transport of As-bearing goethite and jarosite to Don Pedro Reservoir increases the potential for As mobility and bioavailability by desorption or dissolution. Both the substrate minerals and dissolved As species are expected to respond to seasonal changes in lake chemistry caused by thermal stratification and turnover within the monomictic Don Pedro Reservoir. Arsenic is predicted to be most bioavailable and toxic in the reservoir's summer hypolimnion.

  3. Arsenic speciation in pyrite and secondary weathering phases, Mother Lode gold district, Tuolumne County, California

    SciTech Connect

    Savage, K.S.; Tingle, Tracy N.; O'Day, Peggy A.; Waychunas, Glenn A.; Bird, Dennis K.

    2004-10-27

    Arsenian pyrite, formed during Cretaceous gold mineralization, is the primary source of As along the Melones fault zone in the southern Mother Lode Gold District of California. Mine tailings and associated weathering products from partially submerged inactive gold mines at Don Pedro Reservoir, on the Tuolumne River, contain approx. 20-1300 ppm As. The highest concentrations are in weathering crusts from the Clio mine and nearby outcrops which contain goethite or jarosite. As is concentrated up to 2150 ppm in the fine-grained (<63 mu-m) fraction of these Fe-rich weathering products. Individual pyrite grains in albite-chlorite schists of the Clio mine tailings contain an average of 1.2 wt. percent As. Pyrite grains are coarsely zoned, with local As concentrations ranging from approx. 0 to 5 wt. percent. Electron microprobe, transmission electron microscope, and extended X-ray absorption fine-structure spectroscopy (EXAFS) analyses indicate that As substitutes for S in pyrite and is not p resent as inclusions of arsenopyrite or other As-bearing phases. Comparison with simulated EXAFS spectra demonstrates that As atoms are locally clustered in the pyrite lattice and that the unit cell of arsenian pyrite is expanded by approx. 2.6 percent relative to pure pyrite. During weathering, clustered substitution of As into pyrite may be responsible for accelerating oxidation, hydrolysis, and dissolution of arsenian pyrite relative to pure pyrite in weathered tailings. Arsenic K-edge EXAFS analysis of the fine-grained Fe-rich weathering products are consistent with corner-sharing between As(V) tetrahedra and Fe(III)-octahedra. Determinations of nearest-neighbor distances and atomic identities, generated from least-squares fitting algorithms to spectral data, indicate that arsenate tetrahedra are sorbed on goethite mineral surfaces but substitute for SO4 in jarosite. Erosional transport of As-bearing goethite and jarosite to Don Pedro Reservoir increases the potential for As mobility and bioavailability by desorption or dissolution. Both the substrate minerals and dissolved As species are expected to respond to seasonal changes in lake chemistry caused by thermal stratification and turnover within the monomictic Don Pedro Reservoir. Arsenic is predicted to be most bioavailable and toxic in the reservoir's summer hypolimnion.

  4. Mpemba effect and phase transitions in the adiabatic cooling of water before freezing

    E-print Network

    S. Esposito; R. De Risi; L. Somma

    2007-04-11

    An accurate experimental investigation on the Mpemba effect (that is, the freezing of initially hot water before cold one) is carried out, showing that in the adiabatic cooling of water a relevant role is played by supercooling as well as by phase transitions taking place at 6 +/- 1 oC, 3.5 +/- 0.5 oC and 1.3 +/- 0.6 oC, respectively. The last transition, occurring with a non negligible probability of 0.21, has not been detected earlier. Supported by the experimental results achieved, a thorough theoretical analysis of supercooling and such phase transitions, which are interpreted in terms of different ordering of clusters of molecules in water, is given.

  5. Cold fiber solid-phase microextraction device based on thermoelectric cooling of metal fiber.

    PubMed

    Haddadi, Shokouh Hosseinzadeh; Pawliszyn, Janusz

    2009-04-01

    A new cold fiber solid-phase microextraction device was designed and constructed based on thermoelectric cooling. A three-stage thermoelectric cooler (TEC) was used for cooling a copper rod coated with a poly(dimethylsiloxane) (PDMS) hollow fiber, which served as the solid-phase microextraction (SPME) fiber. The copper rod was mounted on a commercial SPME plunger and exposed to the cold surface of the TEC, which was enclosed in a small aluminum box. A heat sink and a fan were used to dissipate the generated heat at the hot side of the TEC. By applying an appropriate dc voltage to the TEC, the upper part of the copper rod, which was in contact to the cold side of the TEC, was cooled and the hollow fiber reached a lower temperature through heat transfer. A thermocouple was embedded in the cold side of the TEC for indirect measurement of the fiber temperature. The device was applied in quantitative analysis of off-flavors in a rice sample. Hexanal, nonanal, and undecanal were chosen as three off-flavors in rice. They were identified according to their retention times and analyzed by GC-flame ionization detection instrument. Headspace extraction conditions (i.e., temperature and time) were optimized. Standard addition calibration graphs were obtained at the optimized conditions and the concentrations of the three analytes were calculated. The concentration of hexanal was also measured using a conventional solvent extraction method (697+/-143ng/g) which was comparable to that obtained from the cold fiber SPME method (644+/-8). Moreover, the cold fiber SPME resulted in better reproducibility and shorter analysis time. Cold fiber SPME with TEC device can also be used as a portable device for field sampling. PMID:18814881

  6. Compact storage of heat and coolness by phase change materials while preventing stratification

    SciTech Connect

    MacCracken, C.D.

    1983-09-13

    While many materials and additives which will melt and freeze at various temperature levels for storing and releasing large amounts of heat thereby per unit volume have been disclosed, the packaging of these materials with suitable non-corrodible long-lasting heat exchange structures has been cumbersome and expensive. The present invention provides an inexpensive, high performance, non-corrodible thermal storage method and system adapted for use with heat storage materials of various compositions and adapted for use over a wide range of temperatures, including a heat exchanger which provides for phase change to occur approximately simultaneously throughout the volume of the entire storage mass and provides for the sites at which the phase change is occurring to be approximately uniformly distributed throughout the volume of the heat storage material. Problems of thermal expansion, stratification and sub-cooling are eliminated. Thermal storage methods and systems embodying the present system may advantageously be used for off-peak storage of electric refrigeration, cooling and heating as well as solar heating and other applications.

  7. Experimental and Numerical Investigation on the Phase Separation Affected by Cooling Rates and Marangoni Convection in Cu-Cr Alloys

    NASA Astrophysics Data System (ADS)

    Wang, Fei; von Klinski-Wetzel, Katharina; Mukherjee, Rajdip; Nestler, Britta; Heilmaier, Martin

    2015-04-01

    In this work, we study the microstructures upon rapid solidification from the melt which occurs in Cu-Cr electrical contacts after switching operations. As the local cooling rates are difficult to be determined experimentally, we numerically compute the mean radius of Cr-particles from phase separation as a function of the cooling rate by utilizing a convective Cahn-Hilliard model. Based on the computationally derived correlation and on the metallographically observed microstructure, we are able to extract back the local cooling rates during heat treatment. We further examine the effect of Marangoni convection on the phase separation structure in a particularly composed simulation study. We obtain the cooling rate for a given particle size affected by the solutal Marangoni convection.

  8. Influence of Cooling Rate on Phase Formationin Spray-Formed H13 Tool Steel

    SciTech Connect

    K. M. Mchugh; Y. Lin; Y. Zhou; E. J. Lavernia

    2006-04-01

    Spray forming is an effective way to process many tool steels into near-net-shape molds, dies and related tooling. The general approach involves depositing atomized droplets onto a refractory pattern in order to image the pattern’s features. The pattern is removed and the die is fitted into a standard holding fixture. This approach results in significant cost and lead-time savings compared to conventional machining, Spray-formed dies perform well in many industrial forming operations, oftentimes exhibiting extended die life over conventional dies. Care must be exercised when spray forming tool steel dies to minimize porosity and control the nature and distribution of phases and residual stresses. Selection of post-deposition heat treatment is important to tailor the die’s properties (hardness, strength, impact energy, etc.) for a particular application. This paper examines how the cooling rate and other processing parameters during spray processing and heat treatment of H13 tool steel influence phase formation. Results of case studies on spray-formed die performance in forging, extrusion and die casting, conducted by industry during production runs, will be described.

  9. Coupled Analysis of Change in Fracture Permeability during the Cooling Phase of the Yucca Mountain Drift Scale Test

    SciTech Connect

    Rutqvist, Jonny; Rutqvist, J.; Freifeld, B.; Tsang, Y.W.; Min, K.B.; Elsworth, D.

    2008-06-01

    This paper presents results from a coupled thermal, hydrological and mechanical analysis of thermally-induced permeability changes during heating and cooling of fractured volcanic rock at the Drift Scale Test at Yucca Mountain, Nevada. The analysis extends the previous analysis of the four-year heating phase to include newly available data from the subsequent four year cooling phase. The new analysis of the cooling phase shows that the measured changes in fracture permeability follows that of a thermo-hydro-elastic model on average, but at several locations the measured permeability indicates (inelastic) irreversible behavior. At the end of the cooling phase, the air-permeability had decreased at some locations (to as low as 0.2 of initial), whereas it had increased at other locations (to as high as 1.8 of initial). Our analysis shows that such irreversible changes in fracture permeability are consistent with either inelastic fracture shear dilation (where permeability increased) or inelastic fracture surface asperity shortening (where permeability decreased). These data are important for bounding model predictions of potential thermally-induced changes in rock-mass permeability at a future repository at Yucca Mountain.

  10. The partitioning of copper among selected phases of geologic media of two porphyry copper districts, Puerto Rico

    USGS Publications Warehouse

    Learned, R.E.; Chao, T.T.; Sanzolone, R.F.

    1981-01-01

    In experiments designed to determine the manner in which copper is partitioned among selected phases that constitute geologic media, we have applied the five-step sequential extraction procedure of Chao and Theobald to the analysis of drill core, soils, and stream sediments of the Rio Vivi and Rio Tanama porphyry copper districts of Puerto Rico. The extraction procedure affords a convenient means of determining the trace-metal content of the following fractions: (1) Mn oxides and "reactive" Fe oxides; (2) "amorphous" Fe oxides; (3) "crystalline" Fe oxides; (4) sulfides and magnetite; and (5) silicates. An additional extraction between steps (1) and (2) was performed to determine organic-related copper in stream sediments. The experimental results indicate that apportionment of copper among phases constituting geologic media is a function of geochemical environment. Distinctive partitioning patterns were derived from the analysis of drill core from each of three geochemical zones: (a) the supergene zone of oxidation; (b) the supergene zone of enrichment; and (c) the hypogene zone; and similarly, from the analysis of; (d) soils on a weakly leached capping; (e) soils on a strongly leached capping; and (f) active stream sediment. The experimental results also show that geochemical contrasts (anomaly-to-background ratios) vary widely among the five fractions of each sampling medium investigated, and that at least one fraction of each medium provides substantially stronger contrast than does the bulk medium. Fraction (1) provides optimal contrast for stream sediments of the district; fraction (2) provides optimal contrast for soils on a weakly leached capping; fraction (3) provides optimal contrast for soils on a strongly leached capping. Selective extraction procedures appear to have important applications to the orientation and interpretive stages of geochemical exploration. Further investigation and testing of a similar nature are recommended. ?? 1981.

  11. A Study of Discrepant Reading Achievement of Minority and White Students in a Desegregating School District: Phase One, Two and Three.

    ERIC Educational Resources Information Center

    Zafirau, James; Fleming, Margaret

    This study investigated disparities in reading performance among minority and white students in an urban school district undergoing desegregation in 1980-81. Phase one compared minority and white students on reading comprehension test performance. It was found that white students performed significantly higher on the test than minority students,…

  12. Implementation of a Proficiency-Based Diploma System in Maine: Phase II--District Level Analysis

    ERIC Educational Resources Information Center

    Silvernail, David L.; Stump, Erika K.; McCafferty, Anita Stewart; Hawes, Kathryn M.

    2014-01-01

    This report describes the findings from Phase II of a study of Maine's implementation of a proficiency-based diploma system. At the request of the Joint Standing Committee on Education and Cultural Affairs of the Maine Legislature, the Maine Policy Research Institute (MEPRI) has conducted a two-phased study of the implementation of Maine law…

  13. High Resolution Infrared Spectroscopy of Jet-Cooled Phenyl Radical in the Gas Phase

    NASA Astrophysics Data System (ADS)

    Sharp-Williams, Erin N.; Roberts, Melanie A.; Nesbitt, David J.

    2009-06-01

    Phenyl radical (C_6H_5) is one of the most important reactive intermediates, as it is formed from the homolytic cleavage of a CH bond in benzene (C_6H_6), and hence it plays a central role in the combustion of fossil fuels that are typically rich in aromatics. We recently recorded the first high resolution infrared spectra of jet-cooled phenyl radical in the gas phase. This was obtained by direct absorption laser spectroscopy in a slit-jet discharge supersonic expansion of a phenyl halide precursor (C_6H_5X, i.e. C_6H_5I and C_6H_5Br) diluted in a Neon/Helium gas mixture. We observed an A-type band, which arises from a fundamental excitation of the out-of-phase symmetric CH stretch (?_{19}). The unambiguous assignment of the rotational structure in this band to C_6H_5 is facilitated by comparing 2-line combination differences with the Fourier transform microwave (FTM) and direct absorption millimeter-wave (mm-wave) measurements of the ground state by McMahon et al. A least-squares fit to an asymmetric top Hamiltonian of the rotationally-resolved vibrational band is done to determine upper-state rotational constants and a gas-phase band origin (?_0) of 3071.8904 (10) cm^{-1}. This is in very good agreement with the value of 3071 cm^{-1} for the out-of-phase symmetric CH stretch of phenyl reported by Friderichsen et al. from matrix isolation studies, which indicates a surprisingly small red shift due to the low-temperature argon environment. R. J. McMahon, M. C. McCarthy, C. A. Gottlieb, J. B. Dudek, J. F. Stanton and P. Thaddeus, Ap. J. 590, L61 (2003). A. V. Friderichsen, J. G. Radziszewski, M. R. Nimlos, P. R. Winter, D. C. Dayton, D. E. David and G. B. Ellison, J. Am. Chem. Soc. 123, 1977 (2001).

  14. The study of a reactor cooling pump under two-phase flow

    NASA Astrophysics Data System (ADS)

    Wang, P.; Yuan, S. Q.; Wang, X. L.; Zhang, F.

    2015-01-01

    In this paper, the steady pressure field has been investigated numerically by computational fluid dynamics (CFD) in a nuclear reactor cooling pump. As a multiphase approach the Eulerian-Eulerian two fluid model has been applied to calculated five computational models with different kinds of blades. The analysis of inner flow field of the five model pumps shows that the pressure in the impeller increases with the increase of the gas contents and the pressure distributions are irregular at the inlet of different blades when the gas contents less than 20%. With the increase of the number of blades, the vortexes at the outlet of impeller decrease whereas the vortexes in the deep of the volute markedly increases and high velocity of the fluid huddle is generated gradually at the outlet pipes. Under the action of centrifugal force and Coriolis force, gas phase mainly concentrated at the lower velocity and lower pressure area. The radial force on the impeller gradually increases with the increase of the gas contents.

  15. Solar Heating and Cooling of Buildings (Phase O). Volume 1: Executive Summary.

    ERIC Educational Resources Information Center

    TRW Systems Group, Redondo Beach, CA.

    The purpose of this study was to establish the technical and economic feasibility of using solar energy for the heating and cooling of buildings. Five selected building types in 14 selected cities were used to determine loads for space heating, space cooling and dehumidification, and domestic service hot water heating. Relying on existing and…

  16. Solar Heating and Cooling of Buildings: Phase 0. Executive Summary. Final Report.

    ERIC Educational Resources Information Center

    Westinghouse Electric Corp., Baltimore, MD.

    After the Westinghouse Electric Corporation made a comprehensive analysis of the technical, economic, social, environmental, and institutional factors affecting the feasibility of utilizing solar energy for heating and cooling buildings, it determined that solar heating and cooling systems can become competitive in most regions of the country in…

  17. UV photodissociation spectroscopy of cryogenically cooled gas phase host-guest complex ions of crown ethers.

    PubMed

    Inokuchi, Yoshiya; Haino, Takeharu; Sekiya, Ryo; Morishima, Fumiya; Dedonder, Claude; Féraud, Géraldine; Jouvet, Christophe; Ebata, Takayuki

    2015-10-21

    The geometric and electronic structures of cold host-guest complex ions of crown ethers (CEs) in the gas phase have been investigated by ultraviolet (UV) fragmentation spectroscopy. As host CEs, we chose 15-crown-5 (15C5), 18-crown-6 (18C6), 24-crown-8 (24C8), and dibenzo-24-crown-8 (DB24C8), and as guests protonated-aniline (aniline·H(+)) and protonated-dibenzylamine (dBAM·H(+)) were chosen. The ions generated by an electrospray ionization (ESI) source were cooled in a quadrupole ion-trap (QIT) using a cryogenic cooler, and UV spectra were obtained by UV photodissociation (UVPD) spectroscopy. UV spectroscopy was complemented by quantum chemical calculations of the most probable complex structures. The UV spectrum of aniline·H(+)·CEs is very sensitive to the symmetry of CEs; aniline·H(+)·18C6 shows a sharp electronic spectrum similar to aniline·H(+), while aniline·H(+)·15C5 shows a very broad structure with poor Franck-Condon factors. In addition, a remarkable cage effect in the fragmentation process after UV excitation was observed in both complex ions. In aniline·H(+)·CE complexes, the cage effect completely removed the dissociation channels of the aniline·H(+) moiety. A large difference in the fragmentation yield between dBAM·H(+)·18C6 and dBAM·H(+)·24C8 was observed due to a large barrier for releasing dBAM·H(+) from the axis of rotaxane in the latter complex. PMID:26095662

  18. Evolution of vacuum states and phase transitions in the two Higgs doublet model during cooling of the Universe

    NASA Astrophysics Data System (ADS)

    Ginzburg, I. F.; Ivanov, I. P.; Kanishev, K. A.

    2010-04-01

    We consider the evolution of the ground state in the two Higgs doublet model during cooling down of the Universe after the big bang. Different regions in the space of free parameters of this model correspond to different sequences of thermal phase transitions. We discuss different paths of thermal evolution and corresponding evolution of physical properties of the system for different modern values of the parameters.

  19. Evolution of vacuum states and phase transitions in the two Higgs doublet model during cooling of the Universe

    SciTech Connect

    Ginzburg, I. F.; Kanishev, K. A.; Ivanov, I. P.

    2010-04-15

    We consider the evolution of the ground state in the two Higgs doublet model during cooling down of the Universe after the big bang. Different regions in the space of free parameters of this model correspond to different sequences of thermal phase transitions. We discuss different paths of thermal evolution and corresponding evolution of physical properties of the system for different modern values of the parameters.

  20. Use of treated gasification wastewater in a pilot cooling tower. Phase I. Final report for the period ending January 31, 1984

    SciTech Connect

    Willson, W.G.; Hendrikson, J.G.; Mann, M.D.; Galegher, S.J.; Gallagher, J.R.; Mayer, G.G.; Thomas, W.C.; Winton, S.L.; Nelson, D.F.

    1984-05-16

    During the UNDERC cooling tower tests, data were colleced and evaluated in five major areas: characterization of cooling tower streams, process performance, biofouling, corrosion, and inorganic/organic fouling. A summary of the results and conclusions for each area is presented. Recommendations are provided for research and development programs to further define the pretreatment and operating requirements for the use of wastewater as cooling tower makeup. The results of the Phase I-Pilot Cooling Tower test have revealed several potential problems that may arise from the use of a relatively high organic content gas liquor as cooling tower makeup. Most of the problems identified are related to the presence of organics in the wastewater which promote biofouling/fouling, corrosion, and emissions from the cooling tower. The Phase II-Pilot Cooling Tower Test will address this issue by identifying the advantages of further treatment of stripped gas liquor to reduce the organic content to a lower level before use in the cooling tower. This test will parallel the Phase I test using the same system and monitoring procedures. Comparison of the results of Phase I and Phase II tests will provide an indication of how well problem areas can be avoided with additional makeup water pretreatment. 39 references, 34 tables, and 25 figures.

  1. Streamflow changes in Alaska between the cool phase (1947-1976) and the warm phase (1977-2006) of the Pacific Decadal Oscillation: The influence of glaciers

    USGS Publications Warehouse

    Hodgkins, Glenn A.

    2009-01-01

    Streamflow data from 35 stations in and near Alaska were analyzed for changes between the cool phase (1947-1976) and the warm phase (1977-2006) of the Pacific Decadal Oscillation. Winter, spring, and summer flow changes and maximum annual flow changes were different for glaciated basins (more than 10% glacier-covered area) than for nonglaciated basins, showing the influence of glaciers on historical streamflowchanges. Mean February flows, for example, increased for the median of available stations by 45% for glaciated basins and by 17% for nonglaciated ones.

  2. Flow boiling and two-phase flow instabilities in silicon microchannel heat sinks for microsystems cooling 

    E-print Network

    Bogojevi?, Dario

    2010-01-01

    Flow boiling in microchannels, while very promising as a cooling technology in electronics thermal management, is still a subject being explored that requires further investigation. Before applying this technology for ...

  3. Three phases of cooling and unroofing in the Appalachian Basin, Pennsylvania: Implications for flexural control

    SciTech Connect

    Blackmer, G.C.; Gold, D.P. . Dept. of Geosciences); Omar, G.I. . Geology Dept.)

    1992-01-01

    Apatite fission-track ages of 111--184 Ma and mean lengths of 10.7--13.1 [mu]m with unimodal, negatively skewed length distributions indicate slow cooling of Ordovician through Permian rocks in an area extending from the Anthracite Basin to the western Appalachian Plateau. Cooling histories modeled from fission-track data show that cooling began immediately following the Alleghanian Orogeny at 250--240 Ma. Ordovician rocks in the Juniata Culmination began to cool slightly earlier at 265 Ma, probably reflecting synorogenic unroofing of this area during formation of the Valley and Ridge duplex. Unroofing histories were modeled from cooling histories using the one-dimensional heat flow equation. Cooling and unroofing histories can be divided into three periods. The initial period of relatively rapid cooling and unroofing extended from the end of the Alleghanian Orogeny into the Jurassic and represents post-orogenic unroofing due to flexural rebound as orogenic load was removed through erosion. Initial unroofing rates are higher in eater Pennsylvania than in the west, consistent with a flexural model. A period of little to no unroofing from the Jurassic into the Miocene began contemporaneously with the inception of drift at the Atlantic continental margin. As the new continental margin subsided, the remaining load dropped below sea level and was no longer subject to removal, resulting in the cessation of flexural rebound and suppression of unroofing in the foreland. The most rapid unroofing occurred from the Miocene to the present. The nature of this event is unknown; however, it is also observed in increased sedimentation rates in the middle Atlantic offshore basins.

  4. Variable Gravity Effects on the Cooling Performance of a Single Phase Confined Spray

    NASA Technical Reports Server (NTRS)

    Michalak, Travis; Yerkes, Kirk; Baysinger, Karri; McQuillen, John

    2005-01-01

    The objective of this paper is to discuss the testing of a spray cooling experiment designed to be flown on NASA's KC-135 Reduced Gravity Testing Platform. Spray cooling is an example of a thermal management technique that may be utilized in high flux heat acquisition and high thermal energy transport concepts. Many researchers have investigated the utility of spray cooling for the thermal management of devices generating high heat fluxes. However, there has been little research addressing the physics and ultimate performance of spray cooling in a variable gravity environment. An experimental package, consisting of a spray chamber coupled to a fluid delivery loop system, was fabricated for variable gravity flight tests. The spray chamber contains two opposing nozzles spraying on target Indium Tin Oxide (ITO) heaters. These heaters are mounted on glass pedestals, which are part of a sump system to remove unconstrained liquid from the test chamber. Liquid is collected in the sumps and returned to the fluid delivery loop. Thermocouples mounted in and around the pedestals are used to determine both the heat loss through the underside of the IT0 heater and the heat extracted by the spray. A series of flight tests were carried out aboard the KC-135, utilizing the ability of the aircraft to produce various gravity conditions. During the flight tests, for a fixed flow rate, heat input was varied at 20, 30, 50, and 80W with variable gravities of 0.01, 0.16, 0.36, and 1.8g. Flight test data was compared to terrestrial baseline data in addition to analytical and numerical solutions to evaluate the heat transfer in the heater and support structure . There were significant differences observed in the spray cooling performance as a result of variable gravity conditions and heat inputs. In general, the Nussult number at the heater surface was found to increase with decreasing gravity conditions for heat loads greater than 30W.

  5. Optimal design of ground source heat pump system integrated with phase change cooling storage tank in an office building 

    E-print Network

    Zhu, N.

    2014-01-01

    (%) office equipment water supply & drain lighting elevator bioler air-conditioning 2014/11/11 ESL-IC-14-09-18a Proceedings of the 14th International Conference for Enhanced Building Operations, Beijing, China, September 14-17, 2014 Background • Common air... source heat pump system integrated with phase change cooling storage tank in an office building Dr. Na Zhu Department of Building Environment and Energy Engineering Huazhong University of Science & Technology, Wuhan, China 2014-09-14 ESL-IC-14-09-18a...

  6. Ice pack heat sink subsystem, phase 2. [astronaut life support cooling system

    NASA Technical Reports Server (NTRS)

    Roebelen, G. J., Jr.; Kellner, J. D.

    1975-01-01

    The report describes the design, development, fabrication, and test at one gravity of a prototype ice pack heat sink subsystem to be used eventually for astronaut cooling during manned space missions; the investigation of thermal storage material with the objective of uncovering materials with heats of fusion and/or solution in the range of 300 Btu/lb (700 kilojoules/kilogram); and the planned procedure for implementing an ice pack heat sink subsystem flight experiment. In normal use, excess heat in the liquid cooling garment (LCG) coolant is transferred to a reusable/regenerable ice pack heat sink. For emergency operation, or for extension of extravehicular activity mission time after all the ice has melted, water from the ice pack is boiled to vacuum, thereby continuing to remove heat from the LCG coolant. This subsystem incorporates a quick disconnect thermal interface between the ice pack heat sink and the subsystem heat exchanger.

  7. Study of two-phase turbine engine for solar space cooling. Final report

    SciTech Connect

    Amend, W.E.

    1980-08-01

    Detailed mathematical description of two promising Biphase refrigeration cycles were developed and programmed on the computer (all known first-order irreversibilities were accounted for). Extensive parameter sweeps were made to identify the most effective working-fluid combinations and to determine the sensitivity of cycle-performance levels. A Cycle configuration was established for a nominal 3-ton air cooled refrigeration system and the design parameters were determined from the computer code. A series of fluid compatibility tests were run to weed out potential fluid combinations that are reactive.

  8. Gas-phase saturation and evaporative cooling effects during wet compression of a fuel aerosol under RCM conditions

    SciTech Connect

    Goldsborough, S.S.; Johnson, M.V.; Zhu, G.S.; Aggarwal, S.K.

    2011-01-15

    Wet compression of a fuel aerosol has been proposed as a means of creating gas-phase mixtures of involatile diesel-representative fuels and oxidizer + diluent gases for rapid compression machine (RCM) experiments. The use of high concentration aerosols (e.g., {proportional_to}0.1 mL{sub fuel}/L{sub gas}, {proportional_to}1 x 10{sup 9} droplets/L{sub gas} for stoichiometric fuel loading at ambient conditions) can result in droplet-droplet interactions which lead to significant gas-phase fuel saturation and evaporative cooling during the volumetric compression process. In addition, localized stratification (i.e., on the droplet scale) of the fuel vapor and of temperature can lead to non-homogeneous reaction and heat release processes - features which could prevent adequate segregation of the underlying chemical kinetic rates from rates of physical transport. These characteristics are dependent on many factors including physical parameters such as overall fuel loading and initial droplet size relative to the compression rate, as well as fuel and diluent properties such as the boiling curve, vaporization enthalpy, heat capacity, and mass and thermal diffusivities. This study investigates the physical issues, especially fuel saturation and evaporative cooling effects, using a spherically-symmetric, single-droplet wet compression model. n-Dodecane is used as the fuel with the gas containing 21% O{sub 2} and 79% N{sub 2}. An overall compression time and compression ratio of 15.3 ms and 13.4 are used, respectively. It is found that smaller droplets (d{sub 0}{proportional_to} 2-3 {mu}m) are more affected by 'far-field' saturation and cooling effects, while larger droplets (d{sub 0}{proportional_to} 14 {mu}m) result in greater localized stratification of the gas-phase due to the larger diffusion distances for heat and mass transport. Vaporization of larger droplets is more affected by the volumetric compression process since evaporation requires more time to be completed even at the same overall fuel loading. All of the cases explored here yield greater compositional stratification than thermal stratification due to the high Lewis numbers of the fuel-air mixtures (Le{sub g} {proportional_to} 3.8). (author)

  9. Co-sponsored second quarter progress review conference on district heating

    SciTech Connect

    1980-01-01

    A summary of the progress review conference on district heating and cooling systems is presented. The agenda and lists of speakers and attendees are presented. A history of district heating and some present needs and future policies are given and an excerpt from the National District Heating Program Strategy (DOE, March 1980) is included. Following the presentation, District Heating and Cooling Systems Program, by Alan M. Rubin, a fact sheet on DOE's Integrated Community Energy Systems Program and information from an oral presentation, District Heating and Cooling Systems for Communities Through Power Plant Retrofit Distribution Network, are given. The Second Quarterly Oral Report to the US DOE on the District Heating and Cooling Project in Detroit; the executive summary of the Piqua, Ohio District Heating and Cooling Demonstration Project; the Second Quarterly Report of the Moorehead, Minnesota District Heating Project; and the report from the Moorehead, Minnesota mayor on the Hot Water District Heating Project are presented.

  10. Monitoring peak power and cooling energy savings of shade trees and white surfaces in the Sacramento Municipal Utility District (SMUD) service area: Project design and preliminary results

    SciTech Connect

    Akbari, H.; Bretz, S.; Hanford, J.; Rosenfeld, A.; Sailor, D.; Taha, H.; Bos, W.

    1992-12-01

    Urban areas in warm climates create summer heat islands of daily average intensity of 3--5{degrees}C, adding to discomfort and increasing air-conditioning loads. Two important factors contributing to urban heat islands are reductions in albedo (lower overall city reflectance) and loss of vegetation (less evapotranspiration). Reducing summer heat islands by planting vegetation (shade trees) and increasing surface albedos, saves cooling energy, allows down-sizing of air conditioners, lowers air-conditioning peak demand, and reduces the emission of CO{sub 2} and other pollutants from electric power plants. The focus of this multi-year project, jointly sponsored by SMUD and the California Institute for Energy Efficiency (CIEE), was to measure the direct cooling effects of trees and white surfaces (mainly roofs) in a few buildings in Sacramento. The first-year project was to design the experiment and obtain base case data. We also obtained limited post retrofit data for some sites. This report provides an overview of the project activities during the first year at six sites. The measurement period for some of the sites was limited to September and October, which are transitional cooling months in Sacramento and hence the interpretation of results only apply to this period. In one house, recoating the dark roof with a high-albedo coating rendered air conditioning unnecessary for the month of September (possible savings of up to 10 kWh per day and 2 kW of non-coincidental peak power). Savings of 50% relative to an identical base case bungalow were achieved when a school bungalow`s roof and southeast wall were coated with a high-albedo coating during the same period. Our measured data for the vegetation sites do not indicate conclusive results because shade trees were small and the cooling period was almost over. We need to collect more data over a longer cooling season in order to demonstrate savings conclusively.

  11. Effect of Al2O3 mole fraction and cooling method on vitrification of an artificial hazardous material. Part 1: variation of crystalline phases and slag structures.

    PubMed

    Kuo, Yi-Ming; Huang, Kuo-Lin; Wang, Chih-Ta; Wang, Jian-Wen

    2009-09-30

    This study investigated how Al ions affect slag structure. During vitrification, pure Al(2)O(3), CaO, and SiO(2) served as the encapsulation phases with the use of Al mol% as an operating parameter. All specimens with the same basicity (mass ratio of CaO to SiO(2)) of 2/3 were vitrified at 1400 degrees C and cooled by air cooling or water quenching. XRD was used to measure the volume fractions of crystalline and amorphous phases. In a non-Al environment, CaSiO(3) was formed in air-cooled and water-quenched slags. With the addition of Al(2)O(3), no crystalline phases were observed in water-quenched slags. With the increase of Al mol% in specimens, the Al ions in air-cooled slags initially acted as an intermediate linking one tetrahedron chain to another and reducing the amount of crystalline phase, then behaved as a network former making the slags amorphous, and finally replaced Si ions in silicate frames to generate a large amount of CaAl(2)Si(2)O(8). Air cooling improved the formation of crystallize structures with more leachable metal ions. A highly crystallized Al-framed structure is not suitable for encapsulating hazardous metals in vitrified slags. PMID:19428182

  12. Phase II Testing of Liquid Cooling Garments Using a Sweating Manikin, Controlled by a Human Physiological Model

    NASA Technical Reports Server (NTRS)

    Paul, Heather; Trevino, Luis; Bue,Grant; Rugh, John

    2006-01-01

    An Advanced Automotive Manikin (ADAM) developed at the National Renewable Energy Laboratory (NREL) is used to evaluate NASA's liquid cooling garments (LCGs) used in advanced space suits for extravehicular applications. The manikin has 120 separate heated/sweating zones and is controlled by a finite element physiological model of the human thermoregulatory system. Previous testing showed the thermal sensation and comfort followed the expected trends as the LCG inlet fluid temperature was changed. The Phase II test data demonstrates the repeatability of ADAM by retesting the baseline LCG. Skin and core temperature predictions using ADAM in an LCG/Arctic suit combination are compared to NASA physiological data to validate the manikin/model. Additional LCG configurations are assessed using the manikin and compared to the baseline LCG. Results can extend to other personal protective clothing, including HAZMAT suits, nuclear/biological/chemical protective suits, and fire protection suits.

  13. Phase modulation for reduced vibration sensitivity in laser-cooled clocks in space

    NASA Technical Reports Server (NTRS)

    Klipstein, W.; Dick, G.; Jefferts, S.; Walls, F.

    2001-01-01

    The standard interrogation technique in atomic beam clocks is square-wave frequency modulation (SWFM), which suffers a first order sensitivity to vibrations as changes in the transit time of the atoms translates to perceived frequency errors. Square-wave phase modulation (SWPM) interrogation eliminates sensitivity to this noise.

  14. Alaska Regional Energy Resources Planning Project. Phase 2: coal, hydroelectric and energy alternatives. Volume I. Beluga Coal District Analysis

    SciTech Connect

    Rutledge, G.; Lane, D.; Edblom, G.

    1980-01-01

    This volume deals with the problems and procedures inherent in the development of the Beluga Coal District. Socio-economic implications of the development and management alternatives are discussed. A review of permits and approvals necessary for the initial development of Beluga Coal Field is presented. Major land tenure issues in the Beluga Coal District as well as existing transportation routes and proposed routes and sites are discussed. The various coal technologies which might be employed at Beluga are described. Transportation options and associated costs of transporting coal from the mine site area to a connecting point with a major, longer distance transportation made and of transporting coal both within and outside (exportation) the state are discussed. Some environmental issues involved in the development of the Beluga Coal Field are presented. (DMC)

  15. A Phase I Archaeological Survey of the Proposed Wellborn Special Utility District Number 2001 Project in Central Brazos County, Texas 

    E-print Network

    Moore, William

    2015-06-15

    OF THE PROPOSED WELLBORN SPECIAL UTILITY DISTRICT NUMBER 2001 PROJECT IN CENTRAL BRAZOS COUNTY, TEXAS Texas Antiquities Permit Number 2522 By William E. Moore Brazos Valley Research Associates... An archaeological survey of a 2200 foot water line and a 1.5 acre pump site in central Brazos County, Texas was conducted in January 2001 by Brazos Valley Research Associates of Bryan, Texas under Texas Antiquities Permit 2522 with William E. Moore the Principal...

  16. Void fraction in two-phase flow in liquid impingement cooling system

    SciTech Connect

    Ohsone, Yasuo; Nakajima, Tadakatsu; Sasaki, Shigeyuki; Nishihara, Atsuo; Hirasawa, Shigeki

    1995-12-31

    Void fractions in forced-convection subcooled boiling were analyzed to gain information for designing a liquid impingement cooling system for electronic devices. The boiling vessel used in this study has a 160 mm x 160 mm heater. The heater is positioned to face jets of dielectric fluorocarbon (C{sub 6}F{sub 14},FC-72) liquid from circular nozzles 4 mm in diameter. The distance between the heater surface and the nozzles is 6 mm. The test section, which can be rotated 360 degrees, consists of 1.03-m-long acrylic pipes, 20 mm and 15 mm in diameter allows experiments to be conducted for both horizontal and vertical flow. Void fractions in the test section were examined with respect to variations in liquid jet temperature (T{sub Lin} = 26 C and 36C); nozzle exit velocity (U = 0.37--10 m/s); liquid pressure in the vessel (P{sub m} = 115--118 kPa); and heat flux in the heater (q = 3--50 W/cm{sup 2}). Results show that the effects on void fractions during liquid jet impingement flow boiling of nozzle exit velocity, pressure in the vessel, and heat flux in the heater, can be estimated by revising the exponents of these variables depending on the pressure of Miropolskii`s correlation of channel flow boiling.

  17. Measurement and simulation of two-phase CO2 cooling in Micromegas modules for a Large Prototype of Time Projection Chamber

    NASA Astrophysics Data System (ADS)

    Bhattacharya, D. S.; Attié, D.; Colas, P.; Mukhopadhyay, S.; Majumdar, N.; Bhattacharya, S.; Sarkar, S.; Bhattacharya, A.; Ganjour, S.

    2015-08-01

    The readout electronics of a Micromegas (MM) module consume nearly 26 W of electric power, which causes the temperature of electronic board to increase upto 70 oC. Increase in temperature results in damage of electronics. Development of temperature gradient in the Time Projection Chamber (TPC) may affect precise measurement as well. Two-phase CO2 cooling has been applied to remove heat from the MM modules during two test beam experiments at DESY, Hamburg. Following the experimental procedure, a comprehensive study of the cooling technique has been accomplished for a single MM module by means of numerical simulation. This paper is focused to discuss the application of two-phase CO2 cooling to keep the temperature below 30 oC and stabilized within 0.2 oC.

  18. Emerging cool white light emission from Dy(3+) doped single phase alkaline earth niobate phosphors for indoor lighting applications.

    PubMed

    Vishwakarma, Amit K; Jha, Kaushal; Jayasimhadri, M; Sivaiah, B; Gahtori, Bhasker; Haranath, D

    2015-10-21

    Single-phase cool white-light emitting BaNb2O6:Dy(3+) phosphors have been synthesized via a conventional solid-state reaction method and characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM) observations and spectrofluorophotometric measurements. XRD and Rietveld structural refinement studies confirm that all the samples exhibit pure orthorhombic structure [space group -C2221(20)]. SEM observations reveal the dense particle packaging with irregular morphology in a micron range. The as-prepared phosphors exhibit blue (482 nm) and yellow (574 nm) emissions under 349, 364, 386 and 399 nm excitations corresponding to (4)F9/2?(6)HJ (J = 15/2, 13/2) transitions of Dy(3+) ions. The energy transfer mechanism between Dy(3+) ions has been studied in detail and the luminescence decay lifetime for the (4)F9/2 level was found to be around 146.07 ?s for the optimized phosphor composition. The calculated Commission Internationale de L'Eclairage (CIE) chromaticity coordinates for the optimized phosphor are (x = 0.322, y = 0.339), which are close to the National Television Standard Committee (NTSC) (x = 0.310, y = 0.316) coordinates. The values of CIE chromaticity coordinates and correlated color temperature (CCT) of 5907 K endorse cool white-light emission from the phosphor. The study reveals that BaNb2O6:Dy(3+) phosphor could be a potential candidate for near ultra-violet (NUV) excited white-LED applications. PMID:26374377

  19. The influence of cooling conditions on grain size, secondary phase precipitates and mechanical properties of biomedical alloy specimens produced by investment casting.

    PubMed

    Kaiser, R; Williamson, K; O'Brien, C; Ramirez-Garcia, S; Browne, D J

    2013-08-01

    The objective of this work was to investigate and evaluate the effect of the cooling environment on the microstructure, secondary phase precipitates and mechanical properties of an as-cast cobalt alloy. The microstructure of castings has a large bearing on the mechanical properties, grain size, porosity and the morphology of carbide precipitates are thought to influence hardness, tensile strength and ductility. It is postulated that a greater understanding of microstructure and secondary phase precipitate response to casting parameters could lead to the optimisation of casting parameters and serve to reduce the requirement of thermo-mechanical treatments currently applied to refine as-cast structures and achieve adequate mechanical properties. Thermal analysis was performed to determine the critical stages of cooling. Ten millimetre diameter cylindrical specimens which could be machined into tension test specimens were cast and cooled under different conditions to impose different cooling rates. Analytical techniques such as optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX), tensile testing and micro-hardness testing were used to study the specimens. Parameters studied include grain size, secondary dendrite arm spacing, secondary phase precipitates, porosity, hardness, ultimate tensile strength, yield strength and elongation. The microstructure of as-cast Co-28Cr-6Mo was found to consist of a dendritic matrix with secondary phases precipitated at grain boundaries and interdendritic zones. These secondary phase precipitates consist of carbides, rich in chromium and molybdenum. The size and area fraction of carbides was found to decrease significantly with increasing cooling rate while the micro-porosity was only marginally affected. The as-cast grains are illustrated for the first time showing a significant difference in size between insulated and naturally cooled specimens. The secondary dendrite arm spacing was determined to be significantly affected by the various cooling environments and the mechanical properties of hardness, ultimate tensile strength and yield strength all increased with increasing cooling rate while the ductility decreased. Correlations between microstructural features and mechanical properties are proposed. PMID:23683759

  20. Stability and Phase Noise Tests of Two Cryo-Cooled Sapphire Oscillators

    NASA Technical Reports Server (NTRS)

    Dick, G. John; Wang, Rabi T.

    1998-01-01

    A cryocooled Compensated Sapphire Oscillator (CSO), developed for the Cassini Ka-band Radio Science experiment, and operating in the 8K - 10K temperature range was previously demonstrated to show ultra-high stability of sigma(sub y) = 2.5 x 10 (exp -15) for measuring times 200 seconds less than or equal to tau less than or equal to 600 seconds using a hydrogen maser as reference. We present here test results for a second unit which allows CSO short-term stability and phase noise to be measured for the first time. Also included are design details of a new RF receiver and an intercomparison with the first CSO unit. Cryogenic oscillators operating below about 10K offer the highest possible short term stability of any frequency sources. However, their use has so far been restricted to research environments due to the limited operating periods associated with liquid helium consumption. The cryocooled CSO is being built in support of the Cassini Ka-band Radio Science experiment and is designed to operate continuously for periods of a year or more. Performance targets are a stability of 3-4 x 10 (exp -15) (1 second less than or equal to tau less than or equal to 100 seconds) and phase noise of -73dB/Hz @ 1Hz measured at 34 GHz. Installation in 5 stations of NASA's deep space network (DSN) is planned in the years 2000 - 2002. In the previous tests, actual stability of the CSO for measuring times tau less than or equal to 200 seconds could not be directly measured, being masked by short-term fluctuations of the H-maser reference. Excellent short-term performance, however, could be inferred by the success of an application of the CSO as local oscillator (L.O.) to the JPL LITS passive atomic standard, where medium-term stability showed no degradation due to L.O. instabilities at a level of (sigma)y = 3 x 10 (exp -14)/square root of tau. A second CSO has now been constructed, and all cryogenic aspects have been verified, including a resonator turn-over temperature of 7.907 K, and Q of 7.4 x 10 (exp 8). These values compare to a turn-over of 8.821 K and Q of 1.0 x 10 (exp 9) for the first resonator. Operation of this second unit provides a capability to directly verify for the first time the short-term (1 second less than or equal to tau less than or equal to 200 seconds) stability and the phase noise of the CSO units. The RF receiver used in earlier tests was sufficient to meet Cassini requirements for tau greater than or equal to 10 seconds but had short-term stability limited to 2-4 x 10 (exp -14) at tau = 1 second, a value 10 times too high to meet our requirements. A new low-noise receiver has been designed to provide approximately equal to 10-15 performance at 1 second, and one receiver is now operational, demonstrating again short-term CSO performance with H maser-limited stability. Short-term performance was degraded in the old receiver due to insufficient tuning bandwidth in a 100MHZ quartz VCO that was frequency-locked to the cryogenic sapphire resonator. The new receivers are designed for sufficient bandwidth, loop gain and low noise to achieve the required performance.

  1. Studies of Phase Change Materials and a Latent Heat Storage Unit Used for a Natural Circulation Cooling/Latent Heat Storage System

    NASA Astrophysics Data System (ADS)

    Sakitani, Katsumi; Honda, Hiroshi

    Experimental and theoretical studies were made of the heat transfer characteristics of a latent heat storage unit used for a natural circulation cooling /latent heat storage system. Heating and cooling curves of the latent heat storage unit undergoing solid-liquid phase change of a PCM (lauric acid) was obtained by using anatural circulation loop of R22 which consisted of an electrically heated evaporater, a water cooled condenser and the latent heat storage unit. The latent heat storage unit showed a heat transfer performance which was high enough for practical use. An approximate theoretical analysis was conducted to investigate transient behavior of the latent heat storage unit. Predictions of the refrigerant and outer surface temperatures during the melting process were in fair agreement with the experimental data, whereas that of the refrigerant temperature during the solidification process was considerably lower than the measurement.

  2. Phase 1 archaeological investigation, cultural resources survey, Hawaii Geothermal Project, Makawao and Hana districts, south shore of Maui, Hawaii

    SciTech Connect

    Erkelens, C.

    1995-04-01

    This report details the archaeological investigation of a 200 foot wide sample corridor extending approximately 9 miles along the southern portion of Maui within the present districts of Hana and Makawao. The survey team documented a total of 51 archaeological sites encompassing 233 surface features. Archaeological sites are abundant throughout the region and only become scarce where vegetation has been bulldozed for ranching activities. At the sea-land transition points for the underwater transmission cable, both Ahihi Bay and Huakini Bay are subjected to seasonal erosion and redeposition of their boulder shorelines. The corridor at the Ahihi Bay transition point runs through the Maonakala Village Complex which is an archaeological site on the State Register of Historic Places within a State Natural Area Reserve. Numerous other potentially significant archaeological sites lie within the project corridor. It is likely that rerouting of the corridor in an attempt to avoid known sites would result in other undocumented sites located outside the sample corridor being impacted. Given the distribution of archaeological sites, there is no alternative route that can be suggested that is likely to avoid encountering sites. Twelve charcoal samples were obtained for potential taxon identification and radiocarbon analysis. Four of these samples were subsequently submitted for dating and species identification. Bird bones from various locations within a lava tube were collected for identification. Sediment samples for subsequent pollen analysis were obtained from within two lava tubes. With these three sources of information it is hoped that paleoenvironmental data can be recovered that will enable a better understanding of the setting for Hawaiian habitation of the area.

  3. Phase I Archaeological Investigation Cultural Resources Survey, Hawaii Geothermal Project, Makawao and Hana Districts, South Shore of Maui, Hawaii (DRAFT )

    SciTech Connect

    Erkelens, Conrad

    1994-03-01

    This report details the archaeological investigation of a 200 foot wide sample corridor extending approximately 9 miles along the southern portion of Maui within the present districts of Hana and Makawao. A total of 51 archaeological sites encompassing 233 surface features were documented. A GPS receiver was used to accurately and precisely plot locations for each of the documented sites. Analysis of the locational information suggests that archaeological sites are abundant throughout the region and only become scarce where vegetation has been bulldozed for ranching activities. At the sea-land transition points for the underwater transmission cable, both Ahihi Bay and Huakini Bay are subjected to seasonal erosion and redeposition of their boulder shorelines. The corridor at the Ahihi Bay transition point runs through the Moanakala Village Complex which is an archaeological site on the State Register of Historic Places within a State Natural Area Reserve. Numerous other potentially significant archaeological sites lie within the project corridor. It is likely that rerouting of the corridor in an attempt to avoid known sites would result in other undocumented sites located outside the sample corridor being impacted. Given the distribution of archaeological sites, there is no alternative route that can be suggested that is likely to avoid encountering sites. A total of twelve charcoal samples were obtained for potential taxon identification and radiocarbon analysis. Four of these samples were subsequently submitted for dating and species identification. Bird bone from various locations within a lava tube were collected for identification. Sediment samples for subsequent pollen analysis were obtained from within two lava tubes. With these three sources of information it is hoped that paleoenvironmental data can be recovered that will enable a better understanding of the setting for Hawaiian habitation of the area. A small test unit was excavated at one habitation site. Charcoal, molluscan and fish remains, basalt tools, and other artifacts were recovered. This material, while providing an extremely small sample, will greatly enhance our understanding of the use of the area. Recommendations regarding the need for further investigation and the preservation of sites within the project corridor are suggested. All sites within the project corridor must be considered potentially significant at this juncture. Further archaeological investigation consisting of a full inventory survey will be required prior to a final assessment of significance for each site and the development of a mitigation plan for sites likely to be impacted by the Hawaii Geothermal Project.

  4. New petrological constraints on the last eruptive phase of the Sabatini Volcanic District (central Italy): Clues from mineralogy, geochemistry, and Sr-Nd isotopes

    NASA Astrophysics Data System (ADS)

    Del Bello, Elisabetta; Mollo, Silvio; Scarlato, Piergiorgio; von Quadt, Albrecht; Forni, Francesca; Bachmann, Olivier

    2014-09-01

    We report results from mineralogical, geochemical and isotopic analyses of the three youngest pyroclastic products (ca. 86 ky) belonging to the Sabatini Volcanic District (Roman Province, central Italy). By means of thermometers, hygrometers and oxygen barometers, we have estimated that the crystallization temperature of magma progressively decreases over time (910-740 °C), whereas the amount of water dissolved in the melt and fO2 progressively increases as compositions of magmas become more differentiated (4.5-6.4 wt.% H2O and 0.4-2.6 ?QFM buffer, respectively). Thermodynamic simulations of phase equilibria indicate that geochemical trends in mafic magmas (MgO > 4 wt.%) can be reproduced by abundant fractionation of olivine and clinopyroxene (~ 50 wt.% crystallization), while the trends of more evolved magmas (MgO ? 4 wt.%) originated by fractional crystallization of plagioclase and sanidine (~ 45 wt.% crystallization). The behavior of trace elements highlights that magmatic differentiation is controlled by polybaric differentiation that includes: (1) prolonged fractionation of mafic, anhydrous minerals from a primitive, H2O-poor magma at depth and (2) extraction of a more evolved, H2O-rich magma that crystallizes abundant felsic and subordinated hydrous minerals at shallow crustal levels. Assimilation and fractional crystallization modeling also reveal that magmas interacted with the carbonate rocks of the subvolcanic basement. The effect of carbonate assimilation accounts for both trace element and Sr-Nd isotopic variations in magmas, suggesting a maximum degree of carbonate assimilation of less than 5 wt.%.

  5. Continuous Commissioning at Alamo Community College District 

    E-print Network

    Strybos, J.

    2013-01-01

    STAR Program ? Interior and Exterior Lighting Projects ? Boiler Retrofits ? Chiller and cooling tower replacements ? Pump VFD installation ? Solar Thermal Pool Heating System ? Install thermal storage systems: NLC, NVC and PAC ? AHU Fan VFD installation... Energy Audits ? 2011 – District Wide – SECO ECRM Assessment ? 2009 – District Wide – 4 day work week ? 2008 – NVC Recycled water ? 2004 - Recycling ? 2004 – PAC – 4 Day work week ? 2003 – SAC, SPC and PAC - SECO ECRM Projects 22ESL-KT-13-12-26 CATEE 2013...

  6. District heating strategy model: community manual

    SciTech Connect

    Hrabak, R. A.; Kron, Jr., N. F.; Pferdehirt, W. P.

    1981-10-01

    The US Department of Housing and Urban Development (HUD) and the US Department of Energy (DOE) cosponsor a program aimed at increasing the number of district heating and cooling systems. Twenty-eight communities have received HUD cooperative agreements to aid in a national feasibility assessment of district heating and cooling systems. The HUD/DOE program includes technical assistance provided by Argonne National Laboratory and Oak Ridge National Laboratory. Part of this assistance is a computer program, called the district heating strategy model, that performs preliminary calculations to analyze potential district heating and cooling systems. The model uses information about a community's physical characteristics, current electricity-supply systems, and local economic conditions to calculate heat demands, heat supplies from existing power plants and a new boiler, system construction costs, basic financial forecasts, and changes in air-pollutant emissions resulting from installation of a district heating and cooling system. This report explains the operation of the district heating strategy model, provides simplified forms for organizing the input data required, and describes and illustrates the model's output data. The report is written for three groups of people: (1) those in the HUD/DOE-sponsored communities who will be collecting input data, and studying output data, to assess the potential for district heating and cooling applications in their communiites; (2) those in any other communities who may wish to use the model for the same purpose; and (3) technical-support people assigned by the national laboratories to explain to community personnel how the model is used.

  7. Microstructure characterization of InAs{sub 0.93}Sb{sub 0.07} films grown by ramp-cooled liquid phase epitaxy

    SciTech Connect

    Deng, H.Y.; Hong, X.K.; Fang, W.Z.; Dai, N. . E-mail: ndai@mail.sitp.ac.cn

    2007-03-15

    InAs{sub 0.93}Sb{sub 0.07} alloy thin films were grown by ramp-cooled liquid phase epitaxy on (100) InAs substrate using horizontally sliding multi-wells graphite boats. The systematic microstructural characterizations of the epi-grown films were analyzed by X-ray diffraction, scanning electronic microscopy and energy dispersive spectra. Four typical surface morphologies of the films were observed, which depend sensitively on growth parameters such as the growth temperature, the substrate etching time, the flux of the hydrogen, and the cooling range and rate. The film shows high crystal perfection with (100) orientation, as evidenced by X-ray measurement. The crystal quality of the epilayer was evaluated by the X-ray double axes diffraction, and the dislocation density was estimated through fitting the (200) and (400) rocking curves by Gaussian lineshape.

  8. Microseismic monitoring for evidence of geothermal heat in the capital district of New York. Final report, Phases I-III

    SciTech Connect

    Not Available

    1983-06-01

    The seismic monitoring work of the geothermal project was initiated for the purpose of determining more exactly the relationship between seismicity and the postulated geothermal and related activity in the Albany-Saratoga Springs area in upstate New York. The seismic monitoring aspect of this work consisted of setting up and operating a network of seven seismograph stations within and around the study area capable of detecting and locating small earthquakes. To supplement the evidence from present day seismic activity, a list of all known historical and early instrumental earthquakes was compiled and improved from original sources for a larger region centered on the study area. Additional field work was done to determine seismic velocities of P and S phases by special recording of quarry blasts. The velocity results were used both as an aid to improve earthquake locations based on computer programs and to make inferences about the existence of temperature anomalies, and hence geothermal potential, at depths beneath the study area. Finally, the level in the continuous background earth vibration, microseisms, was measured throughout the study area to test a possibility that a relationship may exist at the surface between the level in microseisms and the geothermal or related activity. The observed seismic activity within the study area, although considerably higher (two to three times) than inferred from the historical and early instrumental data, is still not only low for a potential geothermal area but appears to be related to coherent regional tectonic stresses and not to the proposed more localized geothermal activity reflected in the mineralized, CO/sub 2/ rich spring discharge.

  9. Quench Cooling Slow Cooling

    E-print Network

    Hasegawa, Shuji

    0.76 ML -!3 !3 !3 !3 !3 !3 !3 DW Domain Wall 18 19 DW -!3 DW Au 19 1.0 ML DW -!3 Fig. 1 c -!3 STM !3 !3 !3 !3 Fig. 1 d STM d !3 !3 LEED 19 20 -!3 650 DW 19 30 Slow Cooling DW 6 6 18 19 Fig. 1 a 6 6 STM 6 6 6 6 -!3 Fig. 1 b a 6 6 6 6 650 Quench Cooling -!3 DW 2 -!3 2 6 6 Fig. 1. (a) A filled

  10. Silico-ferrite of Calcium and Aluminum (SFCA) Iron Ore Sinter Bonding Phases: New Insights into Their Formation During Heating and Cooling

    NASA Astrophysics Data System (ADS)

    Webster, Nathan A. S.; Pownceby, Mark I.; Madsen, Ian C.; Kimpton, Justin A.

    2012-12-01

    The formation of silico-ferrite of calcium and aluminum (SFCA) and SFCA-I iron ore sinter phases during heating and cooling of synthetic iron ore sinter mixtures in the range 298 K to 1623 K (25 °C to 1350 °C) and at oxygen partial pressure of 5 × 10-3 atm has been characterized using in situ synchrotron X-ray diffraction. SFCA and SFCA-I are the key bonding phases in iron ore sinter, and an improved understanding of their formation mechanisms may lead to improved efficiency of industrial sintering processes. During heating, SFCA-I formation at 1327 K to 1392 K (1054 °C to 1119 °C) (depending on composition) was associated with the reaction of Fe2O3, 2CaO·Fe2O3, and SiO2. SFCA formation (1380 K to 1437 K [1107 °C to 1164 °C]) was associated with the reaction of CaO·Fe2O3, SiO2, and a phase with average composition 49.60, 9.09, 0.14, 7.93, and 32.15 wt pct Fe, Ca, Si, Al, and O, respectively. Increasing Al2O3 concentration in the starting sinter mixture increased the temperature range over which SFCA-I was stable before the formation of SFCA, and it stabilized SFCA to a higher temperature before it melted to form a Fe3O4 + melt phase assemblage (1486 K to 1581 K [1213 °C to 1308 °C]). During cooling, the first phase to crystallize from the melt (1452 K to 1561 K [1179 °C to 1288 °C]) was an Fe-rich phase, similar in composition to SFCA-I, and it had an average composition 58.88, 6.89, 0.82, 3.00, and 31.68 wt pct Fe, Ca, Si, Al, and O, respectively. At lower temperatures (1418 K to 1543 K [1145 °C to 1270 °C]), this phase reacted with melt to form SFCA. Increasing Al2O3 increased the temperature at which crystallization of the Fe-rich phase occurred, increased the temperature at which crystallization of SFCA occurred, and suppressed the formation of Fe2O3 (1358 K to 1418 K [1085 °C to 1145 °C]) to lower temperatures.

  11. Influence of a weak dc electric field on tricritical phase transition in TGSe: evidence of different specific heat behaviour on cooling and heating runs

    NASA Astrophysics Data System (ADS)

    Romero, F. J.; Gallardo, M. C.; Jiménez, J.; del Cerro, J.

    2006-11-01

    The para-ferroelectric tricritical phase transition of a single crystal of triglycine selenate (TGSe) has been studied in the neighbourhood of the transition temperature, under weak electric fields, E, using a highly sensitive calorimetric technique. The specific heat, cE, under fields in the range between 5 and 175 V cm-1 and close to transition temperature (0.2 K), shows different behaviour on cooling and on heating at a temperature variation rate of ± 0.03 K h-1 for Tphase. The different relation between ? and E obtained on heating and on cooling runs is discussed and it is concluded that data on heating correspond to the thermal equilibrium.

  12. District heating and cooling systems for communities through power plant retrofit distribution network. Phase 2. Final report, 1 March 1980-31 January 1984. Volume VII. Appendix C

    SciTech Connect

    Not Available

    1984-01-31

    This volume contains: Hudson No. 2 Limited Retrofit Cost Estimates provided by Stone and Webster Engineering Corp. (SWEC); backup data and basis of estimate for SWEC Heater Plant and Gas Turbine Plant (Kearny No. 12) cost estimates; and Appendices - Analysis of Relevant Tax Laws.

  13. SAFE AND FAST QUENCH RECOVERY OF LARGE SUPERCONDUCTING SOLENOIDS COOLED BY FORCED TWO-PHASE HELIUM FLOW.

    SciTech Connect

    JIA,L.X.

    1999-07-12

    The cryogenic characteristics in energy extraction of the four fifteen-meter-diameter superconducting solenoids of the g-2 magnet are reported in this paper. The energy extraction tests at full-current and half-current of its operating value were deliberately carried out for the quench analyses and evaluation of the cryogenic system. The temperature profiles of each coil mandrel and pressure profiles in its helium cooling tube during the energy extraction are discussed. The low peak temperature and pressure as well as the short recovery time indicated the desirable characteristics of the cryogenic system.

  14. Method and apparatus for maintaining multi-component sample gas constituents in vapor phase during sample extraction and cooling

    DOEpatents

    Farthing, William Earl (Pinson, AL) [Pinson, AL; Felix, Larry Gordon (Pelham, AL) [Pelham, AL; Snyder, Todd Robert (Birmingham, AL) [Birmingham, AL

    2008-02-12

    An apparatus and method for diluting and cooling that is extracted from high temperature and/or high pressure industrial processes. Through a feedback process, a specialized, CFD-modeled dilution cooler is employed along with real-time estimations of the point at which condensation will occur within the dilution cooler to define a level of dilution and diluted gas temperature that results in a gas that can be conveyed to standard gas analyzers that contains no condensed hydrocarbon compounds or condensed moisture.

  15. Method and apparatus maintaining multi-component sample gas constituents in vapor phase during sample extraction and cooling

    DOEpatents

    Farthing, William Earl (Pinson, AL); Felix, Larry Gordon (Pelham, AL); Snyder, Todd Robert (Birmingham, AL)

    2009-12-15

    An apparatus and method for diluting and cooling that is extracted from high temperature and/or high pressure industrial processes. Through a feedback process, a specialized, CFD-modeled dilution cooler is employed along with real-time estimations of the point at which condensation will occur within the dilution cooler to define a level of dilution and diluted gas temperature that results in a gas that can be conveyed to standard gas analyzers that contains no condensed hydrocarbon compounds or condensed moisture.

  16. Stochastic Cooling

    SciTech Connect

    Blaskiewicz, M.

    2011-01-01

    Stochastic Cooling was invented by Simon van der Meer and was demonstrated at the CERN ISR and ICE (Initial Cooling Experiment). Operational systems were developed at Fermilab and CERN. A complete theory of cooling of unbunched beams was developed, and was applied at CERN and Fermilab. Several new and existing rings employ coasting beam cooling. Bunched beam cooling was demonstrated in ICE and has been observed in several rings designed for coasting beam cooling. High energy bunched beams have proven more difficult. Signal suppression was achieved in the Tevatron, though operational cooling was not pursued at Fermilab. Longitudinal cooling was achieved in the RHIC collider. More recently a vertical cooling system in RHIC cooled both transverse dimensions via betatron coupling.

  17. School District Mergers: What One District Learned

    ERIC Educational Resources Information Center

    Kingston, Kathleen

    2009-01-01

    Throughout the planning process for a school district merger in a northwestern Pennsylvania school district, effective communication proved to be a challenge. Formed in 1932, this school district of approximately 1400 students was part of a utopian community; one established by a transportation system's corporation that was a major industrial…

  18. Conceptual design study of geothermal district heating of a thirty-house subdivision in Elko, Nevada, using existing water-distribution systems, Phase III. Final technical report, October 1, 1979-September 30, 1980

    SciTech Connect

    Pitts, D.R.

    1980-09-30

    A conceptual design study for district heating of a 30-home subdivision located near the southeast extremity of the city of Elko, Nevada is presented. While a specific residential community was used in the study, the overall approach and methodologies are believed to be generally applicable for a large number of communities where low temperature geothermal fluid is available. The proposed district heating system utilizes moderate temperature, clean domestic water and existing community culinary water supply lines. The culinary water supply is heated by a moderate temperature geothermal source using a single heat exchanger at entry to the subdivision. The heated culinary water is then pumped to the houses in the community where energy is extracted by means of a water supplied heat pump. The use of heat pumps at the individual houses allows economic heating to result from supply of relatively cool water to the community, and this precludes the necessity of supplying objectionably hot water for normal household consumption use. Each heat pump unit is isolated from the consumptive water flow such that contamination of the water supply is avoided. The community water delivery system is modified to allow recirculation within the community, and very little rework of existing water lines is required. The entire system coefficient of performance (COP) for a typical year of heating is 3.36, exclusive of well pumping energy.

  19. Alfv\\'en wave phase mixing in flows -- why over-dense solar coronal open magnetic field structures are cool?

    E-print Network

    Tsiklauri, D

    2015-01-01

    Our magnetohydrodynamic (MHD) simulations and analytical calculations show that, when a background flow is present, mathematical expressions for the Alfv\\'en wave (AW) damping via phase mixing are modified by a following substitution $C_A^\\prime(x) \\to C_A^\\prime(x)+V_0^\\prime(x)$, where $C_A$ and $V_0$ are AW phase and the flow speeds and prime denotes derivative in the direction across the background magnetic field. In uniform magnetic field and over-dense plasma structures, in which $C_A$ is smaller compared to surrounding plasma, the flow, that is confined to the structure, in the same direction as the AW, reduces the effect of phase mixing, because on the edges of the structure $C_A^\\prime$ and $V_0^\\prime$ have opposite sign. Thus, the wave damps via phase mixing {\\it slower} compared to the case without the flow. This is the consequence of the co-directional flow reducing the wave front stretching in the transverse direction. Although, the result is generic and is applicable to different laboratory or ...

  20. Gas cooled solar power plant for generating electrical energy in the 20MWe operating range (GAST): Preliminary design phase

    NASA Astrophysics Data System (ADS)

    Kostrzewa, S.; Wehowsky, P.

    1981-07-01

    R&D work required for the erection of a pilot plant was defined. Since the location of the site is not yet determined, the project work was based on preliminary basic data. Significant results of the preliminary design phase include both the choice of a combined gas/steam thermal energy conversion process for the reference concept and basic concepts for heliostat, heliostat field arrangement, receiver, tower and master control/process computer system.

  1. Muon cooling channels

    SciTech Connect

    Eberhard K Keil

    2003-03-10

    A procedure uses the equations that govern ionization cooling, and leads to the most important parameters of a muon cooling channel that achieves assumed performance parameters. First, purely transverse cooling is considered, followed by both transverse and longitudinal cooling in quadrupole and solenoid channels. Similarities and differences in the results are discussed in detail, and a common notation is developed. Procedure and notation are applied to a few published cooling channels. The parameters of the cooling channels are derived step by step, starting from assumed values of the initial, final and equilibrium emittances, both transverse and longitudinal, the length of the cooling channel, and the material properties of the absorber. The results obtained include cooling lengths and partition numbers, amplitude functions and limits on the dispersion at the absorber, length, aperture and spacing of the absorber, parameters of the RF system that achieve the longitudinal amplitude function and bucket area needed. Finally, I compute the merit factor that describes the enhancement of the density in 6D phase space. The consequences of changes in the input parameters are discussed. The lattice parameters needed to achieve the assumed performance are summarized. The design proper of such a lattice, i.e. finding the precise arrangement of magnets, RF cavities, absorbers, etc., which has these properties is well beyond the scope of this document.

  2. Cooling the two-dimensional short spherocylinder liquid to the tetratic phase: Heterogeneous dynamics with one-way coupling between rotational and translational hopping

    NASA Astrophysics Data System (ADS)

    Su, Yen-Shuo; I, Lin

    2015-07-01

    We numerically demonstrate the transition from the isotropic liquid to the tetratic phase with quasilong-range tetratic alignment order (i.e., with nearly parallel or perpendicular aligned rods), for the cold two-dimensional (2D) short spherocylinder system before crystallization and investigate the thermal assisted heterogeneous rotational and translational micromotions. Comparing with the 2D liquid of isotropic particles, spherocylinders introduce extra rotational degrees of freedom and destroy packing isotropy and the equivalence between rotational and translational motions. It is found that cooling leads to the stronger dynamical heterogeneity with more cooperative hopping and the stronger retardations of rotational hopping than translational hopping. Under topological constraints from nearly parallel and perpendicular rods of the tetratic phase, longitudinal and transverse translational hopping can occur without rotational hopping, but not the reverse. The empty space trailing a neighboring translational hopping patch is needed for triggering the patch rotational hopping with its translational motion into the empty space. It is the origin for the observed increasing separation of hopping time scales and the one-way coupling between rotational and translational hopping. Strips of longitudinally or transversely aligned rods can be ruptured and reconnected with neighboring strips through buckling, kink formation, and patch rotation, under the unbalanced torques or forces from their neighboring rods and thermal kicks.

  3. The Automated District.

    ERIC Educational Resources Information Center

    American School and University, 1982

    1982-01-01

    A school district saves time and costs with an integrated word and data processing system based on a computer that handles, on two mainframe computers, database inquiries and all district office word processing. (Author/MLF)

  4. Lost in Transition: HIV Prevalence and Correlates of Infection among Young People Living in Post-Emergency Phase Transit Camps in Gulu District, Northern Uganda

    PubMed Central

    Patel, Sheetal; Schechter, Martin T.; Sewankambo, Nelson K.; Atim, Stella; Kiwanuka, Noah; Spittal, Patricia M.

    2014-01-01

    Objective Little is known about HIV infection and the related vulnerabilities of young people living in resource-scarce, post-emergency transit camps that are now home to thousands of Internally Displaced Persons (IDPs) following two decades of war in northern Uganda. The objective of this analysis was to assess the prevalence and correlates of HIV infection among young people living in post-conflict transition in Gulu District, northern Uganda. Methods In 2010, a cross-sectional demographic and behavioural survey was conducted in two of Gulu District’s sub-counties with 384 purposively selected transit camp residents aged 15 to 29 years. Biological specimens were collected for rapid HIV testing in the field and confirmatory laboratory testing. Multivariable logistic regression identified independent determinants of HIV infection. Results HIV prevalence was alarmingly high at 12.8% (95% CI: 9.6%, 16.5%). The strongest determinant of HIV infection among young people was a non-consensual sexual debut (adjusted odds ratio [AOR], 9.88; 95% CI: 1.70–18.06). Residing in Awach sub-county (AOR, 2.93; 95% CI: 1.28–6.68), experiencing STI symptoms in the previous 12 months (AOR, 2.36; 95% CI: 1.43–6.17), and practicing dry sex (AOR, 2.31; 95% CI: 1.04–5.13) were other key determinants of HIV infection. Conclusions Study findings contribute to filling an important gap in epidemiological evidence and are useful for planning public health interventions in northern Uganda that effectively target young people in post-conflict transition and support them in the resettlement process. Findings serve to recommend reaching beyond traditional prevention programming in a way more effectively beneficial to young people in post-conflict settings by developing population-specific responses sensitive to local contexts and sufficient to address the underlying causes of the complex risk factors influencing the spread of HIV. PMID:24587034

  5. UNITED STATES DISTRICT COURT DISTRICT OF COLUMBIA

    E-print Network

    Shamos, Michael I.

    UNITED STATES DISTRICT COURT DISTRICT OF COLUMBIA IN RE SUBPOENA TO VERIZON INTERNET SERVICES, INC., _________________________________________ RECORDING INDUSTRY ASSOCIATION OF AMERICA, Plaintiff, v. VERIZON INTERNET SERVICES, INC., Defendant)..................................................................8, 13 In re Verizon Subpoena Enforcement Matter, 240 F.Supp.2d 24 (D.D.C. 2003

  6. Cooling wall

    SciTech Connect

    Nosenko, V.I.

    1995-07-01

    Protecting the shells of blast furnaces is being resolved by installing cast iron cooling plates. The cooling plates become non-operational in three to five years. The problem is that defects occur in manufacturing the cooling plates. With increased volume and intensity of work placed on blast furnaces, heat on the cast iron cooling plates reduces their reliability that limits the interim repair period of blast furnaces. Scientists and engineers from the Ukraine studied this problem for several years, developing a new method of cooling the blast furnace shaft called the cooling wall. Traditional cast iron plates were replaced by a screen of steel tubes, with the area between the tubes filled with fireproof concrete. Before placing the newly developed furnace shaft into operation, considerable work was completed such as theoretical calculations, design, research of temperature fields and tension. Continual testing over many years confirms the value of this research in operating blast furnaces. The cooling wall works with water cooling as well as vapor cooling and is operating in 14 blast furnaces in the Ukraine and two in Russia, and has operated for as long as 14 years.

  7. Laser Cooling of Molecular Anions

    NASA Astrophysics Data System (ADS)

    Yzombard, Pauline; Hamamda, Mehdi; Gerber, Sebastian; Doser, Michael; Comparat, Daniel

    2015-05-01

    We propose a scheme for laser cooling of negatively charged molecules. We briefly summarize the requirements for such laser cooling and we identify a number of potential candidates. A detailed computation study with C2 - , the most studied molecular anion, is carried out. Simulations of 3D laser cooling in a gas phase show that this molecule could be cooled down to below 1 mK in only a few tens of milliseconds, using standard lasers. Sisyphus cooling, where no photodetachment process is present, as well as Doppler laser cooling of trapped C2 - , are also simulated. This cooling scheme has an impact on the study of cold molecules, molecular anions, charged particle sources, and antimatter physics.

  8. Laser cooling of molecular anions.

    PubMed

    Yzombard, Pauline; Hamamda, Mehdi; Gerber, Sebastian; Doser, Michael; Comparat, Daniel

    2015-05-29

    We propose a scheme for laser cooling of negatively charged molecules. We briefly summarize the requirements for such laser cooling and we identify a number of potential candidates. A detailed computation study with C_{2}^{-}, the most studied molecular anion, is carried out. Simulations of 3D laser cooling in a gas phase show that this molecule could be cooled down to below 1 mK in only a few tens of milliseconds, using standard lasers. Sisyphus cooling, where no photodetachment process is present, as well as Doppler laser cooling of trapped C_{2}^{-}, are also simulated. This cooling scheme has an impact on the study of cold molecules, molecular anions, charged particle sources, and antimatter physics. PMID:26066432

  9. Temperature initiated passive cooling system

    DOEpatents

    Forsberg, Charles W. (Oak Ridge, TN)

    1994-01-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature.

  10. Temperature initiated passive cooling system

    DOEpatents

    Forsberg, C.W.

    1994-11-01

    A passive cooling system for cooling an enclosure only when the enclosure temperature exceeds a maximum standby temperature comprises a passive heat transfer loop containing heat transfer fluid having a particular thermodynamic critical point temperature just above the maximum standby temperature. An upper portion of the heat transfer loop is insulated to prevent two phase operation below the maximum standby temperature. 1 fig.

  11. New directions for district heating in the United States

    NASA Astrophysics Data System (ADS)

    Olszewski, M.; Karnitz, M. A.

    A description is given of the status of major US district heating projects and the potential impact of the newly implemented US National District Heating plan. Five major district heating projects moving into the construction and demonstration phase are described. Although all have hot water distribution systems, a variety of heat sources are utilized. These include geothermal water, industrial reject heat, and utility cogeneration using coal-fired power plants.

  12. Cooled railplug

    DOEpatents

    Weldon, William F. (Austin, TX)

    1996-01-01

    The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers.

  13. Effect of cooling and annealing on the phase composition of a nickel-base superalloy. [66. 7 Ni, 12. 0 Al, 2. 8 Ti. 0. 9 Ta, 9. 6 Cr, 5. 0 Co, 3. 0 W

    SciTech Connect

    Schmidt, R.; Feller-Kniepmeier, M. . Inst. fuer Metallforschung)

    1993-09-01

    Concentration gradients of the elements near the [gamma]/[gamma][prime]-interface, as well as in the volume of the precipitates are believed to influence the mechanical behavior of [gamma][prime]-strengthened superalloys. In this paper the effect of cooling rates and annealing on the elemental profiles near the phase boundary and within the precipitates of the single crystal superalloy SRR 99 is demonstrated. It is shown that the observed concentration profiles can be explained by the temperature dependent solubility, the different diffusion rates of elements, and by the shift of the [gamma]/[gamma][prime] interfaces during cooling or Ostwald ripening. On the basis of the chromium distribution within the [gamma][prime]-phase the evolution of the precipitates can be divided into four stages: (1) nucleation, (2) growth, (3) homogenization and (4) Ostwald ripening.

  14. Cool Vest

    NASA Technical Reports Server (NTRS)

    1982-01-01

    ILC, Dover Division's lightweight cooling garment, called Cool Vest was designed to eliminate the harmful effects of heat stress; increases tolerance time in hot environments by almost 300 percent. Made of urethane-coated nylon used in Apollo, it works to keep the body cool, circulating chilled water throughout the lining by means of a small battery-powered pump. A pocket houses the pump, battery and the coolant which can be ice or a frozen gel, a valve control allows temperature regulation. One version is self-contained and portable for unrestrained movement, another has an umbilical line attached to an external source of coolant, such as standard tap water, when extended mobility is not required. It is reported from customers that the Cool Vest pays for itself in increased productivity in very high temperatures.

  15. Ventilative cooling

    E-print Network

    Graça, Guilherme Carrilho da, 1972-

    1999-01-01

    This thesis evaluates the performance of daytime and nighttime passive ventilation cooling strategies for Beijing, Shanghai and Tokyo. A new simulation method for cross-ventilated wind driven airflow is presented . This ...

  16. An Alternative to Laser Cooling

    NASA Astrophysics Data System (ADS)

    Raizen, Mark

    2015-03-01

    Laser cooling has been the standard approach for over thirty years for cooling the translational motion of atoms. While laser cooling is an extremely successful method, it has been limited to a small set of elements in the periodic table. The performance of laser cooling for those elements has saturated in terms of flux of ultra-cold atoms, density, and phase-space density. I report our progress towards the development of an alternative to laser cooling. Our approach relies on magnetic stopping of supersonic beams, an atomic coilgun. A recent advance is the experimental realization of an adiabatic coilgun which preserves phase-space density. Further cooling was demonstrated with a one-way wall, realizing the historic thought experiment of Maxwell's Demon. More recently, we showed how to apply this method to compress atomic phase space with almost no loss of atom number. Our approach is fundamentally different than laser cooling as it does not rely on the momentum of the photon, but rather the photon entropy. I will report on our experimental progress towards this goal, and describe future experiments that will be enabled by this work.

  17. 77 FR 63326 - Huron Wetland Management District, Madison Wetland Management District, and Sand Lake Wetland...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-16

    ...Madison Wetland Management District, and Sand Lake Wetland Management District, SD...EA) involving Huron, Madison, and Sand Lake Wetland Management Districts (Districts...Madison Wetland Management District, Sand Lake Wetland Management District...

  18. Cooled railplug

    DOEpatents

    Weldon, W.F.

    1996-05-07

    The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers. 10 figs.

  19. Cooling of Color Superconducting Compact Stars

    E-print Network

    David Blaschke

    2006-03-26

    We review the status of research on the cooling of compact stars, with emphasis on the influence of color superconducting quark matter phases. Although a consistent microscopic approach is not yet available, severe constraints on the phase structure of matter at high densities come from recent mass and cooling observations of compact stars.

  20. Building a Construction Curriculum for Your School District

    ERIC Educational Resources Information Center

    Ruder, Robert

    2010-01-01

    Embracing the notion of going green, an affluent school district in Pennsylvania spent $83 million as part of the high school's renovation and expansion project. The three-level addition is now equipped with self-dimming lights, energy-efficient windows, a rooftop solar water heater, and a geothermal cooling and heating system. As a bonus for…

  1. Effect of oxygen on phase formation and thermal stability of slowly cooled Zr{sub 65}Al{sub 7.5}Cu{sub 17.5}Ni{sub 10} metallic glass

    SciTech Connect

    Gebert, A.; Eckert, J.; Schultz, L.

    1998-09-18

    The effect of small amounts of oxygen (0.28--0.6 at.%) on the phase formation and the thermal stability of bulk samples of the Zr{sub 65}Al{sub 7.5}Cu{sub 17.5}Ni{sub 10} alloy prepared by die casting into a copper mould has been studied by X-ray diffraction, microstructural characterization and differential scanning calorimetry. In contrast to rapidly quenched ribbons, the crystalline volume fraction in slowly cooled bulk samples increases with increasing oxygen content. Oxygen triggers the formation of a metastable f.c.c. NiZr{sub 2}-type crystalline phase which also depends on the local cooling conditions during casting. The processes o the oxygen-induced crystallization are discussed in detail considering initial nucleation of metastable f.c.c. crystalline phases. Furthermore, there is a strong influence of the oxygen content on the thermal stability during constant-rate heating to elevated temperatures. With increasing oxygen content a drastic reduction of the supercooled liquid region is observed, resulting mainly from a change of the crystallization sequence from a single- to a double-step process which is attributed to the oxygen-triggered formation and the subsequent transformation of the metastable f.c.c. phase.

  2. Laser cooling to quantum degeneracy.

    PubMed

    Stellmer, Simon; Pasquiou, Benjamin; Grimm, Rudolf; Schreck, Florian

    2013-06-28

    We report on Bose-Einstein condensation in a gas of strontium atoms, using laser cooling as the only cooling mechanism. The condensate is formed within a sample that is continuously Doppler cooled to below 1???K on a narrow-linewidth transition. The critical phase-space density for condensation is reached in a central region of the sample, in which atoms are rendered transparent for laser cooling photons. The density in this region is enhanced by an additional dipole trap potential. Thermal equilibrium between the gas in this central region and the surrounding laser cooled part of the cloud is established by elastic collisions. Condensates of up to 10(5) atoms can be repeatedly formed on a time scale of 100 ms, with prospects for the generation of a continuous atom laser. PMID:23848870

  3. UNITED STATES DISTRICT COURT DISTRICT OF NEVADA

    E-print Network

    Shamos, Michael I.

    COURT DISTRICT OF NEVADA BEST ODDS CORP., Plaintiff, vs. IBUS MEDIA LIMITED, a foreign company; IBUS Best Odds Corp. is a Nevada corporation that provides "news and information via a global computer Nevada common law. (Compl., ECF No. 1). On January 21, 2014, Defendants moved to dismiss for lack

  4. Laser cooling to quantum degeneracy

    NASA Astrophysics Data System (ADS)

    Schreck, Florian

    2013-05-01

    We have created Bose-Einstein condensates (BECs) of strontium using laser cooling as the only cooling method. Our scheme is based on the combination of three techniques, favored by the properties of this element. Using a narrow intercombination transition, we prepare a laser cooled sample of 107 84Sr atoms in a large ``reservoir'' dipole trap at a phase-space density of ~ 0.1. Further increase of the phase-space density has formerly been hindered by detrimental effects of the laser cooling photons, such as an effective repulsion between atoms by multiple scattering. To avoid these effects, we render atoms transparent for these photons in a small spatial region within the laser cooled cloud. Transparency is induced by a light shift on the optically excited state of the laser cooling transition. In the region of transparency, we are able to increase the density of the gas by accumulating atoms in a small ``dimple'' dipole trap. Atoms in the dimple thermalize with the reservoir of laser-cooled atoms by elastic collisions and form a BEC. Condensates of up to 105 atoms can be repeatedly formed on a timescale of 100 ms. Our method opens new prospects for the generation of a continuous atom laser. This work was supported by the Austrian Science Fund (FWF Project No. Y507-N20) and the European Commission (FET-Open Grant No. 250072).

  5. Solar Heating and Cooling of Buildings: Phase 0. Feasibility and Planning Study. Volume 1: Executive Summary. Document No. 74SD419. Final Report.

    ERIC Educational Resources Information Center

    General Electric Co., Philadelphia, PA. Space Div.

    The purpose of this study was to establish the technical and economic feasibility of using solar energy for the heating and cooling of buildings and to provide baseline information for the widespread application of solar energy. The initial step in this program was a study of the technical, economic, societal, legal, and environmental factors…

  6. Compilation of Diversity Factors and Schedules for Energy and Cooling Load Calculations, ASHRAE Research Project 1093, Phase III Draft Report, Compilation of Diversity Factors and Load Shapes 

    E-print Network

    Abushakra, B.; Haberl, J. S.; Claridge, D. E.; Sreshthaputra, A.

    2000-01-01

    This is a draft of the Final Report in the ASHRAE RP-1093 project that, first summarizes the work completed during the scheduled Phase I and Phase II (presented to the PMSC in Seattle - June 1999, and Dallas February 2000), ...

  7. Geothermal District Heating Economics

    Energy Science and Technology Software Center (ESTSC)

    1995-07-12

    GEOCITY is a large-scale simulation model which combines both engineering and economic submodels to systematically calculate the cost of geothermal district heating systems for space heating, hot-water heating, and process heating based upon hydrothermal geothermal resources. The GEOCITY program simulates the entire production, distribution, and waste disposal process for geothermal district heating systems, but does not include the cost of radiators, convectors, or other in-house heating systems. GEOCITY calculates the cost of district heating basedmore »on the climate, population, and heat demand of the district; characteristics of the geothermal resource and distance from the distribution center; well-drilling costs; design of the distribution system; tax rates; and financial conditions.« less

  8. Geothermal district G1

    SciTech Connect

    Not Available

    1988-12-01

    Geothermal District G1 includes 37 northeastern California counties and six geothermal fields: Lake City, Susanville, Litchfield, Wendel, Amedee, and Casa Diablo. Electrical generation from geothermal resources occurs in three of the fields: Wendel, Amedee, and Casa Diablo. Low-temperature geothermal projects are underway throughout the district and are described in a road log format. The ten projects described are located at Big Bend, Glass Mountain, Bieber, Alturas, Cedarville, Lake City, Honey Lake Valley, Greenville, and in Sierra and Mono Counties.

  9. Microseismic monitoring for evidence of geothermal heat in the capital district of New York. Volume 5. Phases I-III. Final report

    SciTech Connect

    Not Available

    1983-06-01

    The seismic monitoring aspect of this work consisted of setting up and operating a network of seven seismograph stations within and around the study area capable of detecting and locating small earthquakes. To supplement the evidence from present day seismic activity, a list of all known historical and early instrumental earthquakes was compiled and improved from original sources for a larger region centered on the study area. Additional field work was done to determine seismic velocities of P and S phases by special recording of quarry blasts. The velocity results were used both as an aid to improve earthquake locations based on computer programs and to make inferences about the existence of temperature anomalies, and hence geothermal potential, at depths beneath the study area. Finally, the level in the continuous background earth vibration, microseisms, was measured throughout the study area to test a possibility that a relationship may exist at the surface between the level in microseisms and the geothermal or related activity. The observed seismic activity within the study area, although considerably higher (two to three times) than inferred from the historical and early instrumental data, is still not only low for a potential geothermal area but appears to be related to coherent regional tectonic stresses and not to the proposed more localized geothermal activity reflected in the mineralized, CO/sub 2/ rich spring discharge.

  10. Calculation and visual displaying of the water chemistry conditions in return cooling systems at thermal power stations

    NASA Astrophysics Data System (ADS)

    Ochkov, V. F.; Orlov, K. A.; Ivanov, E. N.; Makushin, A. A.

    2013-07-01

    Matters concerned with treatment of cooling water at thermal power stations are addressed. Problems arising during operation of return cooling systems equipped with cooling towers are analyzed. The software used for monitoring, control, and indication of the hydraulic and water chemistry operating conditions of the circulation system at the Yaivinsk district power station is considered.

  11. Pressure drop, heat transfer, critical heat flux, and flow stability of two-phase flow boiling of water and ethylene glycol/water mixtures - final report for project "Efficent cooling in engines with nucleate boiling."

    SciTech Connect

    Yu, W.; France, D. M.; Routbort, J. L.

    2011-01-19

    Because of its order-of-magnitude higher heat transfer rates, there is interest in using controllable two-phase nucleate boiling instead of conventional single-phase forced convection in vehicular cooling systems to remove ever increasing heat loads and to eliminate potential hot spots in engines. However, the fundamental understanding of flow boiling mechanisms of a 50/50 ethylene glycol/water mixture under engineering application conditions is still limited. In addition, it is impractical to precisely maintain the volume concentration ratio of the ethylene glycol/water mixture coolant at 50/50. Therefore, any investigation into engine coolant characteristics should include a range of volume concentration ratios around the nominal 50/50 mark. In this study, the forced convective boiling heat transfer of distilled water and ethylene glycol/water mixtures with volume concentration ratios of 40/60, 50/50, and 60/40 in a 2.98-mm-inner-diameter circular tube has been investigated in both the horizontal flow and the vertical flow. The two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux of the test fluids were determined experimentally over a range of the mass flux, the vapor mass quality, and the inlet subcooling through a new boiling data reduction procedure that allowed the analytical calculation of the fluid boiling temperatures along the experimental test section by applying the ideal mixture assumption and the equilibrium assumption along with Raoult's law. Based on the experimental data, predictive methods for the two-phase pressure drop, the forced convective boiling heat transfer coefficient, and the critical heat flux under engine application conditions were developed. The results summarized in this final project report provide the necessary information for designing and implementing nucleate-boiling vehicular cooling systems.

  12. Executive Summary Multnomah County Drainage District #1

    E-print Network

    US Army Corps of Engineers

    District #1, Peninsula Drainage District #2, Multnomah County Drainage District #1, and Sandy Drainage certification requirements for FEMA accreditation. Any alternative selected to address this deficiency, Multnomah County, Metro, Port of Portland, USACE Portland District, FEMA Region X, Columbia Corridor

  13. Cab Heating and Cooling

    SciTech Connect

    Damman, Dennis

    2005-10-31

    Schneider National, Inc., SNI, has concluded the Cab Heating and Cooling evaluation of onboard, engine off idling solutions. During the evaluation period three technologies were tested, a Webasto Airtronic diesel fired heater for cold weather operation, and two different approaches to cab cooling in warm weather, a Webasto Parking Cooler, phase change storage system and a Bergstrom Nite System, a 12 volt electrical air conditioning approach to cooling. Diesel fired cab heaters were concluded to provide adequate heat in winter environments down to 10 F. With a targeted idle reduction of 17%, the payback period is under 2 years. The Webasto Parking Cooler demonstrated the viability of this type of technology, but required significant driver involvement to achieve maximum performance. Drivers rated the technology as ''acceptable'', however, in individual discussions it became apparent they were not satisfied with the system limitations in hot weather, (over 85 F). The Bergstrom Nite system was recognized as an improvement by drivers and required less direct driver input to operate. While slightly improved over the Parking Cooler, the hot temperature limitations were only slightly better. Neither the Parking Cooler or the Nite System showed any payback potential at the targeted 17% idle reduction. Fleets who are starting at a higher idle baseline may have a more favorable payback.

  14. Rectlinear cooling scheme for bright muon sources

    SciTech Connect

    Stratakis, Diktys

    2015-05-03

    A fast cooling technique is described that simultaneously reduces all six phase-space dimensions of a charged particle beam. In this process, cooling is accomplished by reducing the beam momentum through ionization energy loss in absorbers and replenishing the momentum loss only in the longitudinal direction rf cavities. In this work we review its main features and describe the main results.

  15. Suburban District Leaders' Perception of Their Practices

    ERIC Educational Resources Information Center

    Garcia France, Roxanne

    2013-01-01

    In the field of district leadership, most studies focus only on the context and conditions existing in large urban districts in need of reform. This study examined whether district leadership practices have applicability to district leaders working within the suburban context. In addition, it determined whether district conditions (i.e., district

  16. USACE DIVISION AND DISTRICT BOUNDARIES

    EPA Science Inventory

    The USACE Division and District Boundary data contains the delination of Corps Division and District boundaries. District and Division Boundaries are based on the US political and watershed boundaries. In the mid 1990's, WES created the file by digitizing the 1984 Civil Wor...

  17. A District Level Planning Model.

    ERIC Educational Resources Information Center

    McHenry, W. E.; Achilles, C. M.

    This report examines school district planning models in South Carolina. It focuses on three questions: (1) Of those school districts conducting some type of systematic planning, how many are producing strategic plans? Long-range plans? Accountability reports? (2) In those same districts, how many are preparing adequate program-management…

  18. FACTORS IN FUTURE DISTRICT ORGANIZATION.

    ERIC Educational Resources Information Center

    Citrus Junior Coll., Azusa, CA.

    CALIFORNIA HAS ACCEPTED THE CONCEPT THAT ALL SCHOOL DISTRICTS ARE TO BE INCLUDED IN JUNIOR COLLEGE DISTRICTS. THIS STUDY DETERMINED WHAT EFFECT ANY CHANGE IN THE TERRITORY NOW INCLUDED IN THE CITRUS JUNIOR COLLEGE DISTRICT WOULD HAVE UPON THE SCHOOL'S ENROLLMENTS, BUILDING PROGRAM, AND FINANCIAL STRUCTURE. TOTAL ENROLLMENT IN THE COLLEGE, 1963-64,…

  19. District Consolidation: Rivals Coming Together

    ERIC Educational Resources Information Center

    Mart, Dan

    2011-01-01

    District consolidation is a highly emotional process. One key to success is sticking to the facts. In Iowa, school districts facing financial difficulties or enrollment concerns do not have to move directly to consolidation. In many cases, districts begin by developing sharing agreements. These sharing agreements may start with simple sharing of…

  20. March 1, 2013. Campus Wide District Heating & Cooling System

    E-print Network

    . Today · Decentralisation of the heating plant · Introduction of an Energy Loop · Geothermal 4. Results 5 · Decentralisation of the heating plant · Introduction of an Energy Loop · Geothermal 4. Results 5. Tomorrow 6. Yesterday 3. Today · Decentralisation of the heating plant · Introduction of an Energy Loop · Geothermal 4

  1. Rightsizing a School District

    ERIC Educational Resources Information Center

    Esselman, Mary; Lee-Gwin, Rebecca; Rounds, Michael

    2012-01-01

    The transformation of the Kansas City, Missouri Public Schools (KCMSD) has been long overdue. Multiple superintendents and administrations, using billions of dollars of desegregation funds ventured to transform the district by creating magnet schools, themed schools, and career-focused high schools. Missing from these initiatives, but included in…

  2. Districts Weigh Obesity Screening

    ERIC Educational Resources Information Center

    Butler, Kevin

    2008-01-01

    Parents of children in most elementary grades in Minnesota's Independent School District 191 receive an annual notice with potentially life-altering data for their children--and they are not state test scores, attendance rates, or grades. The notice contains the child's body mass index (BMI) score, which estimates whether the student has excess…

  3. District-Level Downsizing

    ERIC Educational Resources Information Center

    Schachter, Ron

    2011-01-01

    Draconian cuts have become the order of business for many school districts since the economic recession hit in 2008. But for the coming school year, "draconian" has taken on an even harsher meaning, as states from California and Texas to Illinois and New York wrestle with deficits in the tens of billions of dollars and make multi-billion-dollar…

  4. HPASS: a computer program for evaluation of district heating with heat pumps. Users manual

    SciTech Connect

    Sapienza, G.R.; Calm, J.M.

    1981-03-01

    HPASS (Heat Pump district heating ASSessment) is a computer program for assessment of district heating and cooling with heat pumps. The software facilitates comparison of site- and source-energy use, discounted payback, and life-cycle costs of these systems with alternative systems providing similar services. The program also performs parametric studies of these analyses. This report explains the use of HPASS; the input requirements, available outputs, and program options are described.

  5. 36 CFR 28.3 - Boundaries: The Community Development District; The Dune District; The Seashore District.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 36 Parks, Forests, and Public Property 1 2014-07-01 2014-07-01 false Boundaries: The Community Development District; The Dune District; The Seashore District. 28.3 Section 28.3 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR FIRE ISLAND NATIONAL SEASHORE: ZONING...

  6. 36 CFR 28.3 - Boundaries: The Community Development District; The Dune District; The Seashore District.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 1 2011-07-01 2011-07-01 false Boundaries: The Community Development District; The Dune District; The Seashore District. 28.3 Section 28.3 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR FIRE ISLAND NATIONAL SEASHORE: ZONING...

  7. 36 CFR 28.3 - Boundaries: The Community Development District; The Dune District; The Seashore District.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 36 Parks, Forests, and Public Property 1 2013-07-01 2013-07-01 false Boundaries: The Community Development District; The Dune District; The Seashore District. 28.3 Section 28.3 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR FIRE ISLAND NATIONAL SEASHORE: ZONING...

  8. 36 CFR 28.3 - Boundaries: The Community Development District; The Dune District; The Seashore District.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Boundaries: The Community Development District; The Dune District; The Seashore District. 28.3 Section 28.3 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR FIRE ISLAND NATIONAL SEASHORE: ZONING...

  9. 36 CFR 28.3 - Boundaries: The Community Development District; The Dune District; The Seashore District.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 36 Parks, Forests, and Public Property 1 2012-07-01 2012-07-01 false Boundaries: The Community Development District; The Dune District; The Seashore District. 28.3 Section 28.3 Parks, Forests, and Public Property NATIONAL PARK SERVICE, DEPARTMENT OF THE INTERIOR FIRE ISLAND NATIONAL SEASHORE: ZONING...

  10. Superconducting magnet system for muon beam cooling

    SciTech Connect

    Andreev, N.; Johnson, R.P.; Kashikhin, V.S.; Kashikhin, V.V.; Novitski, I.; Yonehara, K.; Zlobin, A.; /Fermilab

    2006-08-01

    A helical cooling channel has been proposed to quickly reduce the six-dimensional phase space of muon beams for muon colliders, neutrino factories, and intense muon sources. A novel superconducting magnet system for a muon beam cooling experiment is being designed at Fermilab. The inner volume of the cooling channel is filled with liquid helium where passing muon beam can be decelerated and cooled in a process of ionization energy loss. The magnet parameters are optimized to match the momentum of the beam as it slows down. The results of 3D magnetic analysis for two designs of magnet system, mechanical and quench protection considerations are discussed.

  11. Magneto-optical cooling of atoms.

    PubMed

    Raizen, Mark G; Budker, Dmitry; Rochester, Simon M; Narevicius, Julia; Narevicius, Edvardas

    2014-08-01

    We propose an alternative method to laser cooling. Our approach utilizes the extreme brightness of a supersonic atomic beam, and the adiabatic atomic coilgun to slow atoms in the beam or to bring them to rest. We show how internal-state optical pumping and stimulated optical transitions, combined with magnetic forces, can be used to cool the translational motion of atoms. This approach does not rely on momentum transfer from photons to atoms, as in laser cooling. We predict that our method can surpass laser cooling in terms of flux of ultracold atoms and phase-space density, with lower required laser power. PMID:25078213

  12. Compilation of Diversity Factors and Schedules for Energy and Cooling Load Calculations, Phase II Report - Identified Relevant Data Sets, Methods, and Variability Analysis 

    E-print Network

    Abushakra, B.; Haberl, J. S.; Claridge, D. E.

    1999-01-01

    reported in the literature; (6) a test to assure the non-weather dependency (seasonal variation) of the lighting and equipment data sets; and (7) a proposed occupancy surrogate variable. The results obtained during Phase II will enable us to proceed...

  13. Comments on optical stochastic cooling

    SciTech Connect

    K.Y. Ng, S.Y. Lee and Y.K. Zhang

    2002-10-08

    An important necessary condition for transverse phase space damping in the optical stochastic cooling with transit-time method is derived. The longitudinal and transverse damping dynamics for the optical stochastic cooling is studied. The authors also obtain an optimal laser focusing condition for laser-beam interaction in the correction undulator. The amplification factor and the output peak power of the laser amplifier are found to differ substantially from earlier publications. The required power is large for hadron colliders at very high energy.

  14. Cooling of Kilauea Iki lava lake

    SciTech Connect

    Hills, R.G.

    1982-02-01

    In 1959 Kilauea Iki erupted leaving a 110 to 120 m lake of molten lava in its crater. The resulting lava lake has provided a unique opportunity to study the cooling dynamics of a molten body and its associated hydrothermal system. Field measurements taken at Kilauea Iki indicate that the hydrothermal system above the cooling magma body goes through several stages, some of which are well modeled analytically. Field measurements also indicate that during most of the solidification period of the lake, cooling from above is controlled by 2-phase convection while conduction dominates the cooling of the lake from below. A summary of the field work related to the study of the cooling dynamics of Kilauea Iki is presented. Quantitative and qualitative cooling models for the lake are discussed.

  15. Pumps, valves and piping for cogeneration and district heating

    SciTech Connect

    O'Keefe, W.

    1993-01-01

    The two concepts of cogeneration (cogen) and district heating (DH) have certain points of similarity. They are both quite old, fell into disuse some decades ago, have had a renaissance of late, and often are plagued by economics that are only marginal. At present, however, both cogeneration and district heating ride a wave of popular fancy and regulatory whim, all of which has had as one result the inducing of swarms of lawyers and financial soldiers of fortune to flock to the standards, for at least the time being. Although the finances of the two technologies frequently call for innovation, at least the fluid-handling engineering problems are not extraordinary. Pressures, temperatures, flow rates, and corrosion dangers are nearly always within readily mastered limits. The major difficulties arise generally either from the indifference and parsimony of the owners or from the ignorance of the plant management and operations personnel. This report intends to be only a general perspective which the reader must enlarge upon by such other aids as POWER special reports on narrower sectors. Retain in mind the basic definitions for the two technologies: Cogeneration is a simultaneous production of both useful thermal energy (as steam, hot water, or hot gas) and electric power from a fuel source. District heating is the supplying of thermal energy in steam or water to remote and usually noncontiguous locations which are often under separate ownership. District cooling, the increasingly popular supplement to district heating, supplies chilled water under similar circumstances.

  16. Laser cooling without spontaneous emission.

    PubMed

    Corder, Christopher; Arnold, Brian; Metcalf, Harold

    2015-01-30

    This Letter reports the demonstration of laser cooling without spontaneous emission, and thereby addresses a significant controversy. It works by restricting the atom-light interaction to a time short compared to a cycle of absorption followed by natural decay. It is achieved by using the bichromatic force on an atomic transition with a relatively long excited state lifetime and a relatively short cooling time so that spontaneous emission effects are minimized. The observed width of the one-dimensional velocity distribution is reduced by ×2 thereby reducing the "temperature" by ×4. Moreover, our results comprise a compression in phase space because the spatial expansion of the atomic sample is limited. This accomplishment is of interest to direct laser cooling of molecules or in experiments where working space or time is limited. PMID:25679888

  17. Alabama district flood plan

    USGS Publications Warehouse

    Hedgecock, T. Scott; Pearman, J. Leroy; Stricklin, Victor E.

    2002-01-01

    The purpose of this flood plan is to outline and record advance planning for flood emergencies, so that all personnel will know the general plan and have a ready-reference for necessary information. This will ensure that during any flood event, regardless of the extent or magnitude, the resources of the District can be mobilized into a maximum data collection operation with a mimimum of effort.

  18. 75 FR 35778 - Modesto Irrigation District and Turlock Irrigation District; Notice of Preliminary Permit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-23

    ...Commission [Project No. 12745-002] Modesto Irrigation District and Turlock Irrigation District; Notice of Preliminary Permit Application...16, 2010. On February 1, 2010, Modesto Irrigation District and Turlock Irrigation District...

  19. 33 CFR 1.01-50 - Delegation to District Commander, Seventeenth Coast Guard District.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...District Commander, Seventeenth Coast Guard District. 1.01-50 Section...Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY...District Commander, Seventeenth Coast Guard District. The Commandant...

  20. 33 CFR 1.01-50 - Delegation to District Commander, Seventeenth Coast Guard District.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...District Commander, Seventeenth Coast Guard District. 1.01-50 Section...Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY...District Commander, Seventeenth Coast Guard District. The Commandant...

  1. 33 CFR 1.01-50 - Delegation to District Commander, Seventeenth Coast Guard District.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...District Commander, Seventeenth Coast Guard District. 1.01-50 Section...Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY...District Commander, Seventeenth Coast Guard District. The Commandant...

  2. 33 CFR 1.01-50 - Delegation to District Commander, Seventeenth Coast Guard District.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...District Commander, Seventeenth Coast Guard District. 1.01-50 Section...Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY...District Commander, Seventeenth Coast Guard District. The Commandant...

  3. 33 CFR 1.01-50 - Delegation to District Commander, Seventeenth Coast Guard District.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...District Commander, Seventeenth Coast Guard District. 1.01-50 Section...Navigation and Navigable Waters COAST GUARD, DEPARTMENT OF HOMELAND SECURITY...District Commander, Seventeenth Coast Guard District. The Commandant...

  4. A Demographic Analysis of the Impact of Property Tax Caps on Indiana School Districts

    ERIC Educational Resources Information Center

    Hirth, Marilyn A.; Lagoni, Christopher

    2014-01-01

    In 2008, the Indiana legislature passed and the governor signed into law House Enrolled Act No. 1001, now referred to as Public Law 146-2008, which capped Indiana school districts' ability to raise revenues from the local property tax without local voter approval. To phase in the impact of the law, the state provided school districts with…

  5. Analysis of County School Districts in Arkansas.

    ERIC Educational Resources Information Center

    Budd, Karol B.; Charlton, J.L.

    The 1948, Arkansas School District Reorganization Act was passed in an effort to reduce the 1589 small school districts to a smaller number. Those districts not consolidated would form county districts. As of the 1967-68 school year, 26 of these county districts remained. The purpose of this study was to provide information drawing attention to…

  6. ASTROMAG coil cooling study

    NASA Technical Reports Server (NTRS)

    Maytal, Ben-Zion; Vansciver, Steven W.

    1990-01-01

    ASTROMAG is a planned particle astrophysics magnetic facility. Basically it is a large magnetic spectrometer outside the Earth's atmosphere for an extended period of time in orbit on a space station. A definition team summarized its scientific objectives assumably related to fundamental questions of astrophysics, cosmology, and elementary particle physics. Since magnetic induction of about 7 Tesla is desired, it is planned to be a superconducting magnet cooled to liquid helium 2 temperatures. The general structure of ASTROMAG is based on: (1) two superconducting magnetic coils, (2) dewar of liquid helium 2 to provide cooling capability for the magnets; (3) instrumentation, matter-anti matter spectrometer (MAS) and cosmic ray isotope spectrometer (CRIS); and (4) interfaces to the shuttle and space station. Many configurations of the superconducting magnets and the dewar were proposed and evaluated, since those are the heart of the ASTROMAG. Baseline of the magnet configuration and cryostat as presented in the phase A study and the one kept in mind while doing the present study are presented. ASTROMAG's development schedule reflects the plan of launching to the space station in 1995.

  7. Minneapolis district-heating options

    SciTech Connect

    Stovall, T.K.; Borkowski, R.J.; Karnitz, M.A.; Strom, S.; Linwick, K.

    1981-10-01

    A study was undertaken to determine the feasibility of a large-scale district heating system for the Minneapolis central city area. The analysis was based on a previous city of St. Paul hot-water district heating study and other studies done by a Swedish engineering firm, Studsvik Energiteknik A.B. Capital costs such as building and heat source conversion, pipeline construction, and equipment were used in comparing the projected expenses of various district heating scenarios. Options such as coal, refuse-derived fuel burning, and cogeneration at the Riverside Power Station were discussed as energy supplies for a cost-effective district heating system.

  8. Evidence of the existence of the high-density and low-density phases in deeply-cooled confined heavy water under high pressures

    SciTech Connect

    Wang, Zhe; Chen, Sow-Hsin; Liu, Kao-Hsiang; Harriger, Leland; Leão, Juscelino B.

    2014-07-07

    The average density of D{sub 2}O confined in a nanoporous silica matrix (MCM-41-S) is studied with neutron scattering. We find that below ?210 K, the pressure-temperature plane of the system can be divided into two regions. The average density of the confined D{sub 2}O in the higher-pressure region is about 16% larger than that in the lower-pressure region. These two regions could represent the so-called “low-density liquid” and “high-density liquid” phases. The dividing line of these two regions, which could represent the associated 1st order liquid-liquid transition line, is also determined.

  9. COOLING FORCE MEASUREMENTS IN CELSIUS.

    SciTech Connect

    GALNANDER, B.; FEDOTOV, A.V.; LITVINENKO, V.N.; ET AL.

    2005-09-18

    The design of future high energy coolers relies heavily on extending the results of cooling force measurements into new regimes by using simulation codes. In order to carefully benchmark these codes we have accurately measured the longitudinal friction force in CELSIUS by recording the phase shift between the beam and the RF voltage while varying the RF frequency. Moreover, parameter dependencies on the electron current, solenoid magnetic field and magnetic field alignment were carried out.

  10. UNITED STATES DISTRICT COURT EASTERN DISTRICT OF CALIFORNIA -FRESNO

    E-print Network

    Hansen, James E.

    in California and around the world, including a tendency for increased drought in the American SouthwestUNITED STATES DISTRICT COURT EASTERN DISTRICT OF CALIFORNIA - FRESNO CENTRAL VALLEY CHRYSLER-06663 REC LJO DECLARATION OF JAMES HANSEN The Case for Action by the State of California to Mitigate

  11. UNITED STATES DISTRICT COURT SOUTHERN DISTRICT OF FLORIDA

    E-print Network

    Shamos, Michael I.

    and equal protection under the Fifth and Fourteenth Amendments to the United States Constitution. The caseUNITED STATES DISTRICT COURT SOUTHERN DISTRICT OF FLORIDA Case No. 04-80216-CIV-COHN CONGRESSMAN States Constitution and is brought pursuant to 42 U.S.C. § 1983. INTRODUCTION Plaintiffs, Robert Wexler

  12. Natural Cooling Retrofit 

    E-print Network

    Fenster, L. C.; Grantier, A. J.

    1981-01-01

    chilled water, but not with 42 degree chi lIed water. The following is a description of three meth ods of water-side Natural Cool ing: Tower Water Injection, Heat Exchanger, and C:entrifugal Natural Cool ing. TOWER WATER INJECTION Tower Water... Injection Cool ing is a method of providing natural cool ing by injecting condenser water from a cool ing tower directly into a chilled water system, as dictated by outdoor air wet bulb temperature (see Figure V). Tower Water Injection Natural Cool ing...

  13. Dilemmas Presented by State Agency Takeovers of Local School Districts.

    ERIC Educational Resources Information Center

    Steffy, Betty E.

    During the 1988-89 school year, two local school districts were placed into "Phase III" of the Kentucky Educational Improvement Act (1978), a category of state receivership in which much local decision-making power was transferred to Kentucky Department of Education officials. When state education department intervention occurs, major issues arise…

  14. Elastic Metal Alloy Refrigerants: Thermoelastic Cooling

    SciTech Connect

    2010-10-01

    BEETIT Project: UMD is developing an energy-efficient cooling system that eliminates the need for synthetic refrigerants that harm the environment. More than 90% of the cooling and refrigeration systems in the U.S. today use vapor compression systems which rely on liquid to vapor phase transformation of synthetic refrigerants to absorb or release heat. Thermoelastic cooling systems, however, use a solid-state material—an elastic shape memory metal alloy—as a refrigerant and a solid to solid phase transformation to absorb or release heat. UMD is developing and testing shape memory alloys and a cooling device that alternately absorbs or creates heat in much the same way as a vapor compression system, but with significantly less energy and a smaller operational footprint.

  15. Electoral Competition in Heterogeneous Districts

    ERIC Educational Resources Information Center

    Callander, Steven

    2005-01-01

    This paper considers a model of elections in which parties compete simultaneously for multiple districts. I show that if districts are heterogeneous, then a unique two-party equilibrium exists under plurality rule in which further entry is deterred. The equilibrium requires that parties choose noncentrist policy platforms and not converge to the…

  16. Presumptions against School District Secession

    ERIC Educational Resources Information Center

    Murray, Dale

    2009-01-01

    While political philosophers have paid a great deal of attention to providing a theory of secession for cases of nations breaking away from nation-states, little has been said about perhaps the most common type of secession--school district secession. I argue that while there is no principled prohibition against school district secession, there…

  17. Internal Auditing for School Districts.

    ERIC Educational Resources Information Center

    Cuzzetto, Charles

    This book provides guidelines for conducting internal audits of school districts. The first five chapters provide an overview of internal auditing and describe techniques that can be used to improve or implement internal audits in school districts. They offer information on the definition and benefits of internal auditing, the role of internal…

  18. Districts Refashion Teacher Base Pay

    ERIC Educational Resources Information Center

    Sawchuk, Stephen

    2010-01-01

    A handful of districts, some with the approval of their local teachers' unions, are experimenting with alternatives to the fundamental components that govern teachers' base-pay raises. Ranging from a long-standing plan in Eagle County, Colorado, to a contract ratified earlier this year by teachers in the Pittsburgh district, the systems tie raises…

  19. Districts' Efficiency Evaluated in Report

    ERIC Educational Resources Information Center

    Samuels, Christina A.

    2011-01-01

    A report from a progressive think tank measuring the "educational productivity" of more than 9,000 school districts around the country says that districts getting the most for their money tend to spend more on teachers and less on administration, partner with their communities to save money, and have school boards willing to make potentially…

  20. RF Integration into Helical Magnet for Muon 6-Dimensional Beam Cooling

    SciTech Connect

    Yonehara, K.; Kashikhin, V.; Lamm, M.; Lee, A.; Lopes, M.; Zlobin, A.; Johnson, R.P.; Kahn, S.; Neubauer, M.; /Muons Inc., Batavia

    2009-05-01

    The helical cooling channel is proposed to make a quick muon beam phase space cooling in a short channel length. The challenging part of the helical cooling channel magnet design is how to integrate the RF cavity into the compact helical cooling magnet. This report shows the possibility of the integration of the system.

  1. Cooling Water System Optimization 

    E-print Network

    Aegerter, R.

    2005-01-01

    During summer months, many manufacturing plants have to cut back in rates because the cooling water system is not providing sufficient cooling to support higher production rates. There are many low/no-cost techniques available to improve tower...

  2. Debuncher cooling performance

    SciTech Connect

    Derwent, P.F.; McGinnis, David; Pasquinelli, Ralph; Vander Meulen, David; Werkema, Steven; /Fermilab

    2005-11-01

    We present measurements of the Fermilab Debuncher momentum and transverse cooling systems. These systems use liquid helium cooled waveguide pickups and slotted waveguide kickers covering the frequency range 4-8 GHz.

  3. Debuncher Cooling Performance

    SciTech Connect

    Derwent, P. F.; McGinnis, David; Pasquinelli, Ralph; Vander Meulen, David; Werkema, Steven

    2006-03-20

    We present measurements of the Fermilab Debuncher momentum and transverse cooling systems. These systems use liquid helium cooled waveguide pickups and slotted waveguide kickers covering the frequency range 4-8 GHz.

  4. Liquid cooled garments

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Liquid cooled garments employed in several applications in which severe heat is encountered are discussed. In particular, the use of the garments to replace air line cooling units in a variety of industrial processing situations is discussed.

  5. Potential Refrigerants for Power Electronics Cooling

    SciTech Connect

    Starke, M.R.

    2005-10-24

    In the past, automotive refrigerants have conventionally been used solely for the purpose of air conditioning. However, with the development of hybrid-electric vehicles and the incorporation of power electronics (PEs) into the automobile, automotive refrigerants are taking on a new role. Unfortunately, PEs have lifetimes and functionalities that are highly dependent on temperature and as a result thermal control plays an important role in the performance of PEs. Typically, PEs are placed in the engine compartment where the internal combustion engine (ICE) already produces substantial heat. Along with the ICE heat, the additional thermal energy produced by PEs themselves forces designers to use different cooling methods to prevent overheating. Generally, heat sinks and separate cooling loops are used to maintain the temperature. Disturbingly, the thermal control system can consume one third of the total volume and may weigh more than the PEs [1]. Hence, other avenues have been sought to cool PEs, including submerging PEs in automobile refrigerants to take advantage of two-phase cooling. The objective of this report is to explore the different automotive refrigerants presently available that could be used for PE cooling. Evaluation of the refrigerants will be done by comparing environmental effects and some thermo-physical properties important to two-phase cooling, specifically measuring the dielectric strengths of potential candidates. Results of this report will be used to assess the different candidates with good potential for future use in PE cooling.

  6. The MANX Muon Cooling Experiment Detection System

    SciTech Connect

    Kahn, S. A.; Abrams, R. J.; Ankenbrandt, C.; Cummings, M. A. C.; Johnson, R. P.; Robertsa, T. J.; Yoneharab, K.

    2010-03-30

    The MANX experiment is being proposed to demonstrate the reduction of 6D muon phase space emittance, using a continuous liquid absorber to provide ionization cooling in a helical solenoid magnetic channel. The experiment involves the construction of a two-period-long helical cooling channel (HCC) to reduce the muon invariant emittance by a factor of two. The HCC would replace the current cooling section of the MICE experiment now being set up at the Rutherford Appleton Laboratory. The MANX experiment would use the existing MICE spectrometers and muon beam line. We discuss the placement of detection planes to optimize the muon track resolution.

  7. Data center cooling system

    DOEpatents

    Chainer, Timothy J; Dang, Hien P; Parida, Pritish R; Schultz, Mark D; Sharma, Arun

    2015-03-17

    A data center cooling system may include heat transfer equipment to cool a liquid coolant without vapor compression refrigeration, and the liquid coolant is used on a liquid cooled information technology equipment rack housed in the data center. The system may also include a controller-apparatus to regulate the liquid coolant flow to the liquid cooled information technology equipment rack through a range of liquid coolant flow values based upon information technology equipment temperature thresholds.

  8. Cooling Dry Cows 

    E-print Network

    Stokes, Sandra R.

    2000-07-17

    - search reports that rectal tem- perature respiration rate and calf birth weight respond consistently and positively to prepartum cool- ing. Responses in postpartum milk production and reproductive measures have been variable and are less defined... produc- tion. yeast, etc.). Management consid- erations include installing cool- ing systems. Although much of the diet adjustment is made with a nutritional consultant, it is typ- ically the dairy producer who decides on the cooling system. Cooling...

  9. Effects of a finite melt on the thickness and composition of liquid phase epitaxial InGaAsP and InGaAs layers grown by the diffusion-limited step-cooling technique

    SciTech Connect

    Cook, L.W.; Tashima, M.M.; Stillman, G.E.

    1980-06-01

    The thickness of InGaAsP (lambda/sub g/=1.15 ..mu..m) and InGaAs (lambda/sub g/=1.68 ..mu..m) liquid phase epitaxial layers grown on (100) InP substrates by the step-cooling technique has been measured as a function of growth time. (lambda/sub g/ is defined as the wavelength corresponding to the energy gap of the epitaxial layer.) For growth times much less than the shortest diffusion time tau/sub i/=l/sup 2//D/sub i/ of the melt constituents, where l is the melt height and D/sub i/ is the diffusivity of each component in the melt, the thickness is consistent with diffusion-limited theory, and the composition is constant. The time at which the growth rate deviates sharply from diffusion-limited theory and beyond which constant composition growth can no longer be maintained has been determined for the melt size used in our experiments and can be estimated for any melt size.

  10. The Cool Flames Experiment

    NASA Technical Reports Server (NTRS)

    Pearlman, Howard; Chapek, Richard; Neville, Donna; Sheredy, William; Wu, Ming-Shin; Tornabene, Robert

    2001-01-01

    A space-based experiment is currently under development to study diffusion-controlled, gas-phase, low temperature oxidation reactions, cool flames and auto-ignition in an unstirred, static reactor. At Earth's gravity (1g), natural convection due to self-heating during the course of slow reaction dominates diffusive transport and produces spatio-temporal variations in the thermal and thus species concentration profiles via the Arrhenius temperature dependence of the reaction rates. Natural convection is important in all terrestrial cool flame and auto-ignition studies, except for select low pressure, highly dilute (small temperature excess) studies in small vessels (i.e., small Rayleigh number). On Earth, natural convection occurs when the Rayleigh number (Ra) exceeds a critical value of approximately 600. Typical values of the Ra, associated with cool flames and auto-ignitions, range from 104-105 (or larger), a regime where both natural convection and conduction heat transport are important. When natural convection occurs, it alters the temperature, hydrodynamic, and species concentration fields, thus generating a multi-dimensional field that is extremely difficult, if not impossible, to be modeled analytically. This point has been emphasized recently by Kagan and co-workers who have shown that explosion limits can shift depending on the characteristic length scale associated with the natural convection. Moreover, natural convection in unstirred reactors is never "sufficiently strong to generate a spatially uniform temperature distribution throughout the reacting gas." Thus, an unstirred, nonisothermal reaction on Earth does not reduce to that generated in a mechanically, well-stirred system. Interestingly, however, thermal ignition theories and thermokinetic models neglect natural convection and assume a heat transfer correlation of the form: q=h(S/V)(T(bar) - Tw) where q is the heat loss per unit volume, h is the heat transfer coefficient, S/V is the surface to volume ratio, and (T(bar) - Tw ) is the spatially averaged temperature excess. This Newtonian form has been validated in spatially-uniform, well-stirred reactors, provided the effective heat transfer coefficient associated with the unsteady process is properly evaluated. Unfortunately, it is not a valid assumption for spatially-nonuniform temperature distributions induced by natural convection in unstirred reactors. "This is why the analysis of such a system is so difficult." Historically, the complexities associated with natural convection were perhaps recognized as early as 1938 when thermal ignition theory was first developed. In the 1955 text "Diffusion and Heat Exchange in Chemical Kinetics", Frank-Kamenetskii recognized that "the purely conductive theory can be applied at sufficiently low pressure and small dimensions of the vessel when the influence of natural convection can be disregarded." This was reiterated by Tyler in 1966 and further emphasized by Barnard and Harwood in 1974. Specifically, they state: "It is generally assumed that heat losses are purely conductive. While this may be valid for certain low pressure slow combustion regimes, it is unlikely to be true for the cool flame and ignition regimes." While this statement is true for terrestrial experiments, the purely conductive heat transport assumption is valid at microgravity (mu-g). Specifically, buoyant complexities are suppressed at mu-g and the reaction-diffusion structure associated with low temperature oxidation reactions, cool flames and auto-ignitions can be studied. Without natural convection, the system is simpler, does not require determination of the effective heat transfer coefficient, and is a testbed for analytic and numerical models that assume pure diffusive transport. In addition, mu-g experiments will provide baseline data that will improve our understanding of the effects of natural convection on Earth.

  11. Stochastic cooling in RHIC

    SciTech Connect

    Brennan,J.M.; Blaskiewicz, M. M.; Severino, F.

    2009-05-04

    After the success of longitudinal stochastic cooling of bunched heavy ion beam in RHIC, transverse stochastic cooling in the vertical plane of Yellow ring was installed and is being commissioned with proton beam. This report presents the status of the effort and gives an estimate, based on simulation, of the RHIC luminosity with stochastic cooling in all planes.

  12. Cooling load estimation methods

    SciTech Connect

    McFarland, R.D.

    1984-01-01

    Ongoing research on quantifying the cooling loads in residential buildings, particularly buildings with passive solar heating systems, is described. Correlations are described that permit auxiliary cooling estimates from monthly average insolation and weather data. The objective of the research is to develop a simple analysis method, useful early in design, to estimate the annual cooling energy required of a given building.

  13. MCDDFlood Protection Multnomah County Drainage District #1 Peninsula Drainage District #1 Peninsula Drainage District #2 Sandy Drainage Improvement Company

    E-print Network

    US Army Corps of Engineers

    · Peninsula Drainage District #2 ·Sandy Drainage Improvement Company 1880 NE Elrod Drive· Portland, Oregon Drainage District #2, Multnomah County Drainage District #1, and Sandy Drainage Improvement Company-federal agencies including the USACE Portland District, FEMA Region X, the State of Oregon, the City of

  14. Cooling water distribution system

    DOEpatents

    Orr, Richard (Pittsburgh, PA)

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  15. The Sudbury Mining District

    E-print Network

    Bedell, Frank G.

    1906-06-01

    Scholarship. http://kuscholarworks.ku.edu Submitted to the School of Engineering of the University of Kansas in partial fulfillment of the requirements for a course in Mining Engineering ran THE SUDBURY MINING DISTRICT. A D i s s e r t a t i o n P r e s e... n t e d t o the F a c u l t y o f the SCHOOL OP ENGINEERING i n the UNIVERSITY OP KANSAS. F o r the Completion o f a Course i n MINING ENGINEERING. fey Prank G. B e d e l l . June 1906. PREFACE• I n t h i s paper w i l l be g i v e n a b r...

  16. 33 CFR 1.01-50 - Delegation to District Commander, Seventeenth Coast Guard District.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., Seventeenth Coast Guard District. 1.01-50 Section 1.01-50 Navigation and Navigable Waters COAST GUARD... District Commander, Seventeenth Coast Guard District. The Commandant redelegates to the District Commander, Seventeenth Coast Guard District, the authority in 46 U.S.C. 3302(i)(1) to issue permits to certain...

  17. 33 CFR 1.01-50 - Delegation to District Commander, Seventeenth Coast Guard District.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., Seventeenth Coast Guard District. 1.01-50 Section 1.01-50 Navigation and Navigable Waters COAST GUARD... District Commander, Seventeenth Coast Guard District. The Commandant redelegates to the District Commander, Seventeenth Coast Guard District, the authority in 46 U.S.C. 3302(i)(1) to issue permits to certain...

  18. 33 CFR 1.01-50 - Delegation to District Commander, Seventeenth Coast Guard District.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., Seventeenth Coast Guard District. 1.01-50 Section 1.01-50 Navigation and Navigable Waters COAST GUARD... District Commander, Seventeenth Coast Guard District. The Commandant redelegates to the District Commander, Seventeenth Coast Guard District, the authority in 46 U.S.C. 3302(i)(1) to issue permits to certain...

  19. 33 CFR 1.01-50 - Delegation to District Commander, Seventeenth Coast Guard District.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Seventeenth Coast Guard District. 1.01-50 Section 1.01-50 Navigation and Navigable Waters COAST GUARD... District Commander, Seventeenth Coast Guard District. The Commandant redelegates to the District Commander, Seventeenth Coast Guard District, the authority in 46 U.S.C. 3302(i)(1) to issue permits to certain...

  20. 33 CFR 1.01-50 - Delegation to District Commander, Seventeenth Coast Guard District.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., Seventeenth Coast Guard District. 1.01-50 Section 1.01-50 Navigation and Navigable Waters COAST GUARD... District Commander, Seventeenth Coast Guard District. The Commandant redelegates to the District Commander, Seventeenth Coast Guard District, the authority in 46 U.S.C. 3302(i)(1) to issue permits to certain...

  1. 77 FR 16828 - Turlock Irrigation District, & Modesto Irrigation District; Notice of Dispute Resolution Process...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-22

    ... Energy Regulatory Commission Turlock Irrigation District, & Modesto Irrigation District; Notice of... relicensing proceeding for the Don Pedro Hydroelectric Project No. 2299-075.\\1\\ Turlock Irrigation District and the Modesto Irrigation District (collectively, the Districts), are co-licensees for the Don...

  2. 76 FR 20971 - Turlock Irrigation District and Modesto Irrigation District; Notice of Intent To File License...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-14

    ... Energy Regulatory Commission Turlock Irrigation District and Modesto Irrigation District; Notice of..., 2011. d. Submitted By: Turlock Irrigation District and Modesto Irrigation District. e. Name of Project... Regulatory Affairs, Turlock Irrigation District, P.O. Box 949, Turlock, California 95381, 209-883-8241...

  3. 77 FR 5507 - Turlock Irrigation District, Modesto Irrigation District; Notice of Proposed Restricted Service...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-03

    ... Energy Regulatory Commission Turlock Irrigation District, Modesto Irrigation District; Notice of Proposed... any Order issuing a license. Turlock Irrigation District and Modesto Irrigation District, as the..., Sacramento, CA 95816. Robert Nees, or Representative, Turlock Irrigation District, P.O. Box 949, Turlock,...

  4. 77 FR 4291 - Turlock Irrigation District; Modesto Irrigation District; Notice of Proposed Restricted Service...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-27

    ... Energy Regulatory Commission Turlock Irrigation District; Modesto Irrigation District; Notice of Proposed... any Order issuing a license. Turlock Irrigation District and Modesto Irrigation District, as the..., Turlock Irrigation District, P.O. Box 949, Turlock, CA 95381. Greg Dias or Representative,...

  5. I. IONIZATION COOLING A. Introduction

    E-print Network

    McDonald, Kirk

    for beam cooling. Cooling by synchrotron radiation, conventional stochastic cooling and conventional electron cooling are all too slow. Optical stochastic cooling [1], electron cooling in a plasma discharge transverse emittance, fi ? is the betatron function at the absorber, dE ¯ =ds is the energy loss, and LR

  6. Stochastic cooling in RHIC

    SciTech Connect

    Brennan J. M.; Blaskiewicz, M.; Mernick, K.

    2012-05-20

    The full 6-dimensional [x,x'; y,y'; z,z'] stochastic cooling system for RHIC was completed and operational for the FY12 Uranium-Uranium collider run. Cooling enhances the integrated luminosity of the Uranium collisions by a factor of 5, primarily by reducing the transverse emittances but also by cooling in the longitudinal plane to preserve the bunch length. The components have been deployed incrementally over the past several runs, beginning with longitudinal cooling, then cooling in the vertical planes but multiplexed between the Yellow and Blue rings, next cooling both rings simultaneously in vertical (the horizontal plane was cooled by betatron coupling), and now simultaneous horizontal cooling has been commissioned. The system operated between 5 and 9 GHz and with 3 x 10{sup 8} Uranium ions per bunch and produces a cooling half-time of approximately 20 minutes. The ultimate emittance is determined by the balance between cooling and emittance growth from Intra-Beam Scattering. Specific details of the apparatus and mathematical techniques for calculating its performance have been published elsewhere. Here we report on: the method of operation, results with beam, and comparison of results to simulations.

  7. District heating campaign in Sweden

    SciTech Connect

    Stalebrant, R.E.

    1995-09-01

    During the fall of 1994 a district heating campaign was conducted in Sweden. The campaign was initiated because the Swedish district heating companies agreed that it was time to increase knowledge and awareness of district heating among the general public, especially among potential customers. The campaign involved many district heating companies and was organized as a special project. Advertising companies, media advisers, consultants and investigators were also engaged. The campaign was conducted in two stages, a national campaign followed by local campaign was conducted in two stages, a national campaign followed by local campaigns. The national campaign was conducted during two weeks of November 1994 and comprised advertising on commercial TV and in the press.

  8. Boise geothermal district heating system

    SciTech Connect

    Hanson, P.J.

    1985-10-01

    This document describes the Boise geothermal district heating project from preliminary feasibility studies completed in 1979 to a fully operational system by 1983. The report includes information about the two local governments that participated in the project - the City of Boise, Idaho and the Boise Warm Springs Water District. It also discusses the federal funding sources; the financial studies; the feasibility studies conducted; the general system planning and design; design of detailed system components; the legal issues involved in production; geological analysis of the resource area; distribution and disposal; the program to market system services; and the methods of retrofitting buildings to use geothermal hot water for space heating. Technically this report describes the Boise City district heating system based on 170/sup 0/F water, a 4000 gpm production system, a 41,000 foot pipeline system, and system economies. Comparable data are also provided for the Boise Warm Springs Water District. 62 figs., 31 tabs.

  9. Groundwater Conservation Districts: Success Stories 

    E-print Network

    Porter, Dana; Persyn, Russell A.; Enciso, Juan

    1999-09-06

    Demand for water is increasing, so our aquifers must be conserved and protected. The Groundwater Conservation Districts in Texas are carrying out a number of successful programs in the areas of education and public awareness, technical assistance...

  10. 78 FR 3892 - Turlock Irrigation District and Modesto Irrigation District; Notice Clarifying Party Status

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-17

    ...No. UL11-1-000; Project No. 2299-078] Turlock Irrigation District and Modesto Irrigation District; Notice Clarifying Party Status On January 9, 2013, the Modesto Irrigation District (Modesto) filed a motion for clarification...

  11. 77 FR 4291 - Turlock Irrigation District; Modesto Irrigation District; Notice of Proposed Restricted Service...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-27

    ...Commission [ Project No. 2299-075] Turlock Irrigation District; Modesto Irrigation District; Notice of Proposed Restricted Service...into any Order issuing a license. Turlock Irrigation District and Modesto Irrigation...

  12. 77 FR 5507 - Turlock Irrigation District, Modesto Irrigation District; Notice of Proposed Restricted Service...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-03

    ...Commission [Project No. 2299-075] Turlock Irrigation District, Modesto Irrigation District; Notice of Proposed Restricted Service...into any Order issuing a license. Turlock Irrigation District and Modesto Irrigation...

  13. 78 FR 37538 - Idaho Irrigation District; New Sweden Irrigation District; Notice of Preliminary Permit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-21

    ...Commission [Project No. 14513-000] Idaho Irrigation District; New Sweden Irrigation District; Notice of Preliminary Permit Application...April 19, 2013, the Idaho and New Sweden Irrigation Districts, filed a joint application for...

  14. 75 FR 43958 - Turlock Irrigation District and Modesto Irrigation District; Notice of Application for Amendment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ...Commission [Project No. 2299-074] Turlock Irrigation District and Modesto Irrigation District; Notice of Application for Amendment...Filed: May 24, 2010. d. Applicant: Turlock Irrigation District and Modesto Irrigation...

  15. 77 FR 16828 - Turlock Irrigation District, & Modesto Irrigation District; Notice of Dispute Resolution Process...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-22

    ...Hydroelectric Project Project No. 2299-075] Turlock Irrigation District, & Modesto Irrigation District; Notice of Dispute Resolution Process...Hydroelectric Project No. 2299-075.\\1\\ Turlock Irrigation District and the Modesto Irrigation...

  16. 46 CFR 42.05-25 - Coast Guard District Commander or District Commander.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...2010-10-01 2010-10-01 false Coast Guard District Commander or District...Section 42.05-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY...This Subchapter § 42.05-25 Coast Guard District Commander or...

  17. 46 CFR 50.10-5 - Coast Guard District Commander or District Commander.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...2012-10-01 2012-10-01 false Coast Guard District Commander or District...Section 50.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY...This Subchapter § 50.10-5 Coast Guard District Commander or...

  18. 46 CFR 50.10-5 - Coast Guard District Commander or District Commander.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...2014-10-01 2014-10-01 false Coast Guard District Commander or District...Section 50.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY...This Subchapter § 50.10-5 Coast Guard District Commander or...

  19. 46 CFR 42.05-25 - Coast Guard District Commander or District Commander.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...2012-10-01 2012-10-01 false Coast Guard District Commander or District...Section 42.05-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY...This Subchapter § 42.05-25 Coast Guard District Commander or...

  20. 46 CFR 42.05-25 - Coast Guard District Commander or District Commander.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...2011-10-01 2011-10-01 false Coast Guard District Commander or District...Section 42.05-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY...This Subchapter § 42.05-25 Coast Guard District Commander or...

  1. 46 CFR 42.05-25 - Coast Guard District Commander or District Commander.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...2013-10-01 2013-10-01 false Coast Guard District Commander or District...Section 42.05-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY...This Subchapter § 42.05-25 Coast Guard District Commander or...

  2. 46 CFR 50.10-5 - Coast Guard District Commander or District Commander.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...2010-10-01 2010-10-01 false Coast Guard District Commander or District...Section 50.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY...This Subchapter § 50.10-5 Coast Guard District Commander or...

  3. 46 CFR 42.05-25 - Coast Guard District Commander or District Commander.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...2014-10-01 2014-10-01 false Coast Guard District Commander or District...Section 42.05-25 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY...This Subchapter § 42.05-25 Coast Guard District Commander or...

  4. 46 CFR 50.10-5 - Coast Guard District Commander or District Commander.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...2013-10-01 2013-10-01 false Coast Guard District Commander or District...Section 50.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY...This Subchapter § 50.10-5 Coast Guard District Commander or...

  5. 46 CFR 50.10-5 - Coast Guard District Commander or District Commander.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...2011-10-01 2011-10-01 false Coast Guard District Commander or District...Section 50.10-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY...This Subchapter § 50.10-5 Coast Guard District Commander or...

  6. 78 FR 3892 - Turlock Irrigation District and Modesto Irrigation District; Notice Clarifying Party Status

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-17

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Turlock Irrigation District and Modesto Irrigation District; Notice Clarifying Party Status On January 9, 2013, the Modesto Irrigation District (Modesto) filed a motion...

  7. Ionization Cooling Using a Parametric Resonance

    SciTech Connect

    Y.S. Derbenev; R.P. Johnson

    2005-05-16

    Muon collider luminosity depends on the number of muons in the storage ring and on the transverse size of the beams in collision. Ionization cooling as it is presently envisioned will not cool the beam sizes sufficiently well to provide adequate luminosity without large muon intensities. A new idea to combine ionization cooling with parametric resonances has been developed that will lead to beams with much smaller sizes so that high luminosity in a muon collider can be achieved with fewer muons. In the linear channel described here, a half integer resonance is induced such that the normal elliptical motion of particles in x-x' phase space becomes hyperbolic, with particles moving to smaller x and larger x' as they pass down the channel. Thin absorbers placed at the focal points of the channel then cool the angular divergence of the beam by the usual ionization cooling mechanism where each absorber is followed by RF cavities. We discuss the theory of Parametric-resonance Ionization Cooling, including the sensitivity to aberrations and the need to start with a beam that has already been cooled adequately.

  8. Gas turbine cooling system

    DOEpatents

    Bancalari, Eduardo E. (Orlando, FL)

    2001-01-01

    A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

  9. Prospects of laser cooling in atomic thallium

    SciTech Connect

    Fan, Isaac; Chen, Tzu-Ling; Liu, Yu-Sheng; Lien, Yu-Hung; Liu, Yi-Wei; Shy, Jow-Tsong

    2011-10-15

    One of the most precisely determined upper limits for the electron electric dipole moment (EDM) is set by the thallium (Tl) atomic beam experiment. One way to enhance the sensitivity of the atomic beam setup is to laser cool the Tl atoms to reduce the EDM-like phase caused by the Exv effect. In this report, a cooling scheme based on the 6P{sub 3/2}(F=2){r_reversible}6D{sub 5/2}(F{sup '}=3) transition in Tl is proposed. The absolute frequency measurement of this nearly closed-cycle transition was performed in an atomic beam apparatus. Two Ti:sapphire lasers were frequency-doubled using enhancement cavities in X-type configurations to provide the needed 377- and 352-nm light sources for the optical pumping and cooling transitions, respectively. The absolute frequency of this cooling transition is determined to be 851 634 646(56) MHz.

  10. Solar heating and cooling

    NASA Technical Reports Server (NTRS)

    Bartera, R. E.

    1978-01-01

    To emphasize energy conservation and low cost energy, the systems of solar heating and cooling are analyzed and compared with fossil fuel systems. The application of solar heating and cooling systems for industrial and domestic use are discussed. Topics of discussion include: solar collectors; space heating; pools and spas; domestic hot water; industrial heat less than 200 F; space cooling; industrial steam; and initial systems cost. A question and answer period is generated which closes out the discussion.

  11. Analytical investigation of chord size and cooling methods on turbine blade cooling requirements. Book 1: Sections 1 through 8 and appendixes A through I

    NASA Technical Reports Server (NTRS)

    Faulkner, F. E.

    1971-01-01

    A study was conducted to determine the effect of chord size on air cooled turbine blades. In the preliminary design phase, eight turbine blade cooling configurations in 0.75-in., 1.0-in., and 1.5-in. chord sizes were analyzed to determine the maximum turbine inlet temperature capabilities. A pin fin convection cooled configuration and a film-impingement cooled configuration were selected for a final design analysis in which the maximum turbine inlet temperature was determined as a function of the cooling air inlet temperature and the turbine inlet total pressure for each of the three chord sizes. The cooling air flow requirements were also determined for a varying cooling air inlet temperature with a constant turbine inlet temperature. It was determined that allowable turbine inlet temperature increases with increasing chord for the convection cooled and transpiration cooled designs, however, the film-convection cooled designs did not have a significant change in turbine inlet temperature with chord.

  12. Applying a Domestic Water-cooled Air-conditioner in Subtropical Cities 

    E-print Network

    Lee, W.; Chen, H.

    2006-01-01

    , China HVAC Technologies for Energy Efficiency, Vol. IV-9-4 Applying a Domestic Water-cooled Air-conditioner in Subtropical Cities WL Lee Hua Chen Assistant Professor Research Associate The Hong Kong Polytechnic University Hong Kong bewll...) and district cooling systems (DCS) to buildings. There is no exception for Hong Kong. In 1998, the Energy Efficiency Office (EEO) of the Hong Kong SAR Government has started to explore the possibility of wider application of WACS and DCS...

  13. Semioptimal practicable algorithmic cooling

    SciTech Connect

    Elias, Yuval; Mor, Tal; Weinstein, Yossi

    2011-04-15

    Algorithmic cooling (AC) of spins applies entropy manipulation algorithms in open spin systems in order to cool spins far beyond Shannon's entropy bound. Algorithmic cooling of nuclear spins was demonstrated experimentally and may contribute to nuclear magnetic resonance spectroscopy. Several cooling algorithms were suggested in recent years, including practicable algorithmic cooling (PAC) and exhaustive AC. Practicable algorithms have simple implementations, yet their level of cooling is far from optimal; exhaustive algorithms, on the other hand, cool much better, and some even reach (asymptotically) an optimal level of cooling, but they are not practicable. We introduce here semioptimal practicable AC (SOPAC), wherein a few cycles (typically two to six) are performed at each recursive level. Two classes of SOPAC algorithms are proposed and analyzed. Both attain cooling levels significantly better than PAC and are much more efficient than the exhaustive algorithms. These algorithms are shown to bridge the gap between PAC and exhaustive AC. In addition, we calculated the number of spins required by SOPAC in order to purify qubits for quantum computation. As few as 12 and 7 spins are required (in an ideal scenario) to yield a mildly pure spin (60% polarized) from initial polarizations of 1% and 10%, respectively. In the latter case, about five more spins are sufficient to produce a highly pure spin (99.99% polarized), which could be relevant for fault-tolerant quantum computing.

  14. Power electronics cooling apparatus

    DOEpatents

    Sanger, Philip Albert (Monroeville, PA); Lindberg, Frank A. (Baltimore, MD); Garcen, Walter (Glen Burnie, MD)

    2000-01-01

    A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

  15. Passive containment cooling system

    DOEpatents

    Conway, Lawrence E. (Robinson Township, Allegheny County, PA); Stewart, William A. (Penn Hills Township, Allegheny County, PA)

    1991-01-01

    A containment cooling system utilizes a naturally induced air flow and a gravity flow of water over the containment shell which encloses a reactor core to cool reactor core decay heat in two stages. When core decay heat is greatest, the water and air flow combine to provide adequate evaporative cooling as heat from within the containment is transferred to the water flowing over the same. The water is heated by heat transfer and then evaporated and removed by the air flow. After an initial period of about three to four days when core decay heat is greatest, air flow alone is sufficient to cool the containment.

  16. Liquid metal cooled nuclear reactors with passive cooling system

    DOEpatents

    Hunsbedt, Anstein (Los Gatos, CA); Fanning, Alan W. (San Jose, CA)

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of cooling medium flow circuits which cooperate to remove and carry heat away from the fuel core upon loss of the normal cooling flow circuit to areas external thereto.

  17. Sympathetic Cooling of Molecules Using Laser-Cooled Atoms

    E-print Network

    California at Los Angles, University of

    Sympathetic Cooling of Molecules Using Laser-Cooled Atoms Maya Lewin-Berlin January 18, 2013 Abstract Sympathetic cooling of molecules using laser-cooled neutral atoms is a new technique being allows researchers to quickly determine the state of the cooling system. Measurements of the temperature

  18. Cooling of solar flares plasmas. 1: Theoretical considerations

    NASA Technical Reports Server (NTRS)

    Cargill, Peter J.; Mariska, John T.; Antiochos, Spiro K.

    1995-01-01

    Theoretical models of the cooling of flare plasma are reexamined. By assuming that the cooling occurs in two separate phase where conduction and radiation, respectively, dominate, a simple analytic formula for the cooling time of a flare plasma is derived. Unlike earlier order-of-magnitude scalings, this result accounts for the effect of the evolution of the loop plasma parameters on the cooling time. When the conductive cooling leads to an 'evaporation' of chromospheric material, the cooling time scales L(exp 5/6)/p(exp 1/6), where the coronal phase (defined as the time maximum temperature). When the conductive cooling is static, the cooling time scales as L(exp 3/4)n(exp 1/4). In deriving these results, use was made of an important scaling law (T proportional to n(exp 2)) during the radiative cooling phase that was forst noted in one-dimensional hydrodynamic numerical simulations (Serio et al. 1991; Jakimiec et al. 1992). Our own simulations show that this result is restricted to approximately the radiative loss function of Rosner, Tucker, & Vaiana (1978). for different radiative loss functions, other scaling result, with T and n scaling almost linearly when the radiative loss falls off as T(exp -2). It is shown that these scaling laws are part of a class of analytic solutions developed by Antiocos (1980).

  19. Multilayer composite material and method for evaporative cooling

    NASA Technical Reports Server (NTRS)

    Buckley, Theresa M. (Inventor)

    2002-01-01

    A multilayer composite material and method for evaporative cooling of a person employs an evaporative cooling liquid that changes phase from a liquid to a gaseous state to absorb thermal energy. The evaporative cooling liquid is absorbed into a superabsorbent material enclosed within the multilayer composite material. The multilayer composite material has a high percentage of the evaporative cooling liquid in the matrix. The cooling effect can be sustained for an extended period of time because of the high percentage of phase change liquid that can be absorbed into the superabsorbent. Such a composite can be used for cooling febrile patients by evaporative cooling as the evaporative cooling liquid in the matrix changes from a liquid to a gaseous state to absorb thermal energy. The composite can be made with a perforated barrier material around the outside to regulate the evaporation rate of the phase change liquid. Alternatively, the composite can be made with an imperveous barrier material or semipermeable membrane on one side to prevent the liquid from contacting the person's skin. The evaporative cooling liquid in the matrix can be recharged by soaking the material in the liquid. The multilayer composite material can be fashioned into blankets, garments and other articles.

  20. RHIC stochastic cooling motion control

    SciTech Connect

    Gassner, D.; DeSanto, L.; Olsen, R.H.; Fu, W.; Brennan, J.M.; Liaw, CJ; Bellavia, S.; Brodowski, J.

    2011-03-28

    Relativistic Heavy Ion Collider (RHIC) beams are subject to Intra-Beam Scattering (IBS) that causes an emittance growth in all three-phase space planes. The only way to increase integrated luminosity is to counteract IBS with cooling during RHIC stores. A stochastic cooling system for this purpose has been developed, it includes moveable pick-ups and kickers in the collider that require precise motion control mechanics, drives and controllers. Since these moving parts can limit the beam path aperture, accuracy and reliability is important. Servo, stepper, and DC motors are used to provide actuation solutions for position control. The choice of motion stage, drive motor type, and controls are based on needs defined by the variety of mechanical specifications, the unique performance requirements, and the special needs required for remote operations in an accelerator environment. In this report we will describe the remote motion control related beam line hardware, position transducers, rack electronics, and software developed for the RHIC stochastic cooling pick-ups and kickers.

  1. Energy Sources and Systems Analysis: 40 South Lincoln Redevelopment District (Full Report)

    SciTech Connect

    Not Available

    2011-08-01

    This report presents the results of a case study to analyze district energy systems for their potential use in a project that involves redeveloping 270 units of existing public housing, along with other nearby sites. When complete, the redevelopment project will encompass more than 900 mixed-income residential units, commercial and retail properties, and open space. The analysis estimated the hourly heating, cooling, domestic hot water, and electric loads required by the community; investigated potential district system technologies to meet those needs; and researched available fuel sources to power such systems.

  2. Energy Sources and Systems Analysis: 40 South Lincoln Redevelopment District (Short Report)

    SciTech Connect

    Not Available

    2011-08-01

    This report presents the a brief overview of the results of a case study to analyze district energy systems for their potential use in a project that involves redeveloping 270 units of existing public housing, along with other nearby sites. When complete, the redevelopment project will encompass more than 900 mixed-income residential units, commercial and retail properties, and open space. The analysis estimated the hourly heating, cooling, domestic hot water, and electric loads required by the community; investigated potential district system technologies to meet those needs; and researched available fuel sources to power such systems. A full report of this case study is also available.

  3. Disks around Brown Dwarfs and Cool Stars

    E-print Network

    Daniel Apai; Kevin Luhman; Michael Liu

    2007-02-10

    We review the current picture of disks around cool stars and brown dwarfs, including disk fractions, mass estimates, disk structure and dispersal, accretion, dust composition, and the debris disk phase. We discuss these in the framework of recent planet formation models.

  4. Variability in the implementation of the No Child Left Behind Act in Wisconsin school districts and science departments

    NASA Astrophysics Data System (ADS)

    Miller, Christopher L.

    In the United States of America, the public education system is comprised of over 14,000 school districts. Each of these unique districts is being affected by the enactment of the No Child Left Behind Act of 2001. In turn, this diverse population of school districts is determining the impact on education of this sweeping federal education policy. This study examines eight of those school districts to determine their actions related to the early phase of the implementation of one portion of NCLB, the accountability provisions prescribing standardized assessment for the determination of Adequate Yearly Progress. Specifically, this study examines what these eight Wisconsin school districts, serving from 1,000 to over 5,000 students, did with the student achievement data resulting from their state assessment, the Wisconsin Knowledge and Concepts Examinations (WKCE). A wide variety of responses were found in how school districts used the WKCE data. The eight school districts were examined to determine what features of their organizations were responsible for how they responded to the enactment of the AYP provisions, specifically how they used the WCKE data. District responses were found to be determined by district size, governance structures, personnel, and dispositions. The interactions of these characteristics were considered in light of organizational studies using conceptualizations borrowed from ecology and the theory of evolution and by studies of school districts.

  5. Implementation of Stochastic Cooling Hardware at Fermilab's Tevatron Collider

    SciTech Connect

    Pasquinelli, Ralph J.; /Fermilab

    2011-08-01

    The invention of Stochastic cooling by Simon van der Meer made possible the increase in phase space density of charged particle beams. In particular, this feedback technique allowed the development of proton antiproton colliders at both CERN and Fermilab. This paper describes the development of hardware systems necessary to cool antiprotons at the Fermilab Tevatron Collider complex.

  6. Sperm Membrane Behaviour during Cooling and Cryopreservation.

    PubMed

    Sieme, H; Oldenhof, H; Wolkers, W F

    2015-09-01

    Native sperm is only marginally stable after collection. Cryopreservation of semen facilitates transport and storage for later use in artificial reproduction technologies, but cryopreservation processing may result in cellular damage compromising sperm function. Membranes are thought to be the primary site of cryopreservation injury. Therefore, insights into the effects of cooling, ice formation and protective agents on sperm membranes may help to rationally design cryopreservation protocols. In this review, we describe membrane phase behaviour of sperm at supra- and subzero temperatures. In addition, factors affecting membrane phase transitions and stability, sperm osmotic tolerance limits and mode of action of cryoprotective agents are discussed. It is shown how cooling only results in minor thermotropic non-cooperative phase transitions, whereas freezing causes sharp lyotropic fluid-to-gel phase transitions. Membrane cholesterol content affects suprazero membrane phase behaviour and osmotic tolerance. The rate and extent of cellular dehydration coinciding with freezing-induced membrane phase transitions are affected by the cooling rate and ice nucleation temperature and can be modulated by cryoprotective agents. Permeating agents such as glycerol can move across cellular membranes, whereas non-permeating agents such as sucrose cannot. Both, permeating and non-permeating protectants preserve biomolecular and cellular structures by forming a protective glassy state during freezing. PMID:26382025

  7. Beam cooling with ionization losses

    NASA Astrophysics Data System (ADS)

    Rubbia, C.; Ferrari, A.; Kadi, Y.; Vlachoudis, V.

    2006-12-01

    This novel type of Ionization Cooling is an effective method in order to enhance the (strong) interaction probability of slow (few MeV/A) ions stored in a small ring. The many traversals through a thin target strongly improve the nuclear reaction rate with respect to a single-pass collision, in a steady configuration in which ionization losses of a target "foil" (typically few hundred ?g/cm 2 thick) are continuously recovered by an RF-cavity. With a flat foil, betatron oscillations are "cooled", but the momentum spread diverges exponentially, since faster (slower) particles ionize less (more) than the average. In order to "cool" the beam also longitudinally, a chromaticity has to be introduced with a wedge-shaped "foil". Therefore, in equilibrium conditions, multiple scattering and straggling are both balanced by phase-space compression. Classic Ionization Cooling [A.A. Kolomensky, Atomnaya Energiya 19 (1965) 534; Yu.M. Ado, V.I. Balbekov, Atomnaya Energiya 31(1) (1971) 40-44; A.N. Skrinsky, V.V. Parkhomchuk, Sov. J. Nucl. Phys. 12 (1981) 3; E.A. Perevendentsev, A.N. Skrinsky, in: Proceedings of the 12th International Conference on High Energy Acceleration, 1983, p. 485] is designed to cool the direct beam until it has been compressed and extracted for further use. In practice, this limits its applicability to non-interacting muon beams. Instead, in this new method, applicable to strongly interacting collisions, the circulating beam is not extracted. Ionization cooling provides "in situ" storage of the beam until it is converted by a nuclear interaction with the target. Simple reactions—for instance 7Li+D?8Li+p—are more favourably produced in the "mirror" kinematical frame, namely with a heavier ion colliding against a gas-jet D 2 target. Kinematics is generally very favourable, with angles in a narrow angular cone (around ˜10° for the mentioned reaction) and with a relatively concentrated outgoing energy spectrum which allows an efficient collection of 8Li as a neutral gas in a tiny volume, a technology perfected by ISOLDE at high temperatures. The method should be capable of producing a "table top" storage ring with an accumulation rate in excess of 10 148Li radioactive ion/s. It has however a much more general applicability to many other nuclear reactions.

  8. Very Cool Close Binaries

    E-print Network

    J. Scott Shaw; Mercedes Lopez-Morales

    2006-03-28

    We present new observations of cool <6000K and low mass <1Msun binary systems that have been discovered by searching several modern stellar photometric databases. The search has led to a factor of 10 increase in the number of known cool close eclipsing binary systems.

  9. Why Cool Roofs?

    ScienceCinema

    Chu, Steven

    2013-05-29

    By installing a cool roof at DOE, the federal government and Secretary Chu are helping to educate families and businesses about the important energy and cost savings that can come with this simple, low-cost technology. Cool roofs have the potential to quickly and dramatically reduce global carbon emissions while saving money every month on consumers' electrical bills.

  10. DOAS, Radiant Cooling Revisited

    SciTech Connect

    Hastbacka, Mildred; Dieckmann, John; Bouza, Antonio

    2012-12-01

    The article discusses dedicated outdoor air systems (DOAS) and radiant cooling technologies. Both of these topics were covered in previous ASHRAE Journal columns. This article reviews the technologies and their increasing acceptance. The two steps that ASHRAE is taking to disseminate DOAS information to the design community, available energy savings and the market potential of radiant cooling systems are addressed as well.

  11. Why Cool Roofs?

    SciTech Connect

    Chu, Steven

    2010-01-01

    By installing a cool roof at DOE, the federal government and Secretary Chu are helping to educate families and businesses about the important energy and cost savings that can come with this simple, low-cost technology. Cool roofs have the potential to quickly and dramatically reduce global carbon emissions while saving money every month on consumers' electrical bills.

  12. Cooling with night air

    SciTech Connect

    Baer, S.

    1984-01-01

    Opening the windows at night and closing them during the day is a traditional way to cool an adobe house during the summer in New Mexico. How big the windows should be, where the should be located, and how much hot weather can be tolerated with this cooling scheme is discussed.

  13. S'COOL Science

    ERIC Educational Resources Information Center

    Bryson, Linda

    2004-01-01

    This article describes one fifth grade's participation in in NASA's S'COOL (Students' Cloud Observations On-Line) Project, making cloud observations, reporting them online, exploring weather concepts, and gleaning some of the things involved in authentic scientific research. S?COOL is part of a real scientific study of the effect of clouds on…

  14. Measure Guideline: Ventilation Cooling

    SciTech Connect

    Springer, D.; Dakin, B.; German, A.

    2012-04-01

    The purpose of this measure guideline on ventilation cooling is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  15. Data center cooling method

    DOEpatents

    Chainer, Timothy J.; Dang, Hien P.; Parida, Pritish R.; Schultz, Mark D.; Sharma, Arun

    2015-08-11

    A method aspect for removing heat from a data center may use liquid coolant cooled without vapor compression refrigeration on a liquid cooled information technology equipment rack. The method may also include regulating liquid coolant flow to the data center through a range of liquid coolant flow values with a controller-apparatus based upon information technology equipment temperature threshold of the data center.

  16. Cool Earth Solar

    SciTech Connect

    Lamkin, Rob; McIlroy, Andy; Swalwell, Eric; Rajan, Kish

    2013-04-22

    In a public-private partnership that takes full advantage of the Livermore Valley Open Campus (LVOC) for the first time, Sandia National Laboratories and Cool Earth Solar have signed an agreement that could make solar energy more affordable and accessible. In this piece, representatives from Sandia, Cool Earth Solar, and leaders in California government all discuss the unique partnership and its expected impact.

  17. Cool Earth Solar

    ScienceCinema

    Lamkin, Rob; McIlroy, Andy; Swalwell, Eric; Rajan, Kish

    2014-02-26

    In a public-private partnership that takes full advantage of the Livermore Valley Open Campus (LVOC) for the first time, Sandia National Laboratories and Cool Earth Solar have signed an agreement that could make solar energy more affordable and accessible. In this piece, representatives from Sandia, Cool Earth Solar, and leaders in California government all discuss the unique partnership and its expected impact.

  18. Water cooled steam jet

    DOEpatents

    Wagner, Jr., Edward P. (Idaho Falls, ID)

    1999-01-01

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed therebetween. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock.

  19. Hydronic rooftop cooling systems

    SciTech Connect

    Bourne, Richard C.; Lee, Brian Eric; Berman, Mark J.

    2008-01-29

    A roof top cooling unit has an evaporative cooling section that includes at least one evaporative module that pre-cools ventilation air and water; a condenser; a water reservoir and pump that captures and re-circulates water within the evaporative modules; a fan that exhausts air from the building and the evaporative modules and systems that refill and drain the water reservoir. The cooling unit also has a refrigerant section that includes a compressor, an expansion device, evaporator and condenser heat exchangers, and connecting refrigerant piping. Supply air components include a blower, an air filter, a cooling and/or heating coil to condition air for supply to the building, and optional dampers that, in designs that supply less than 100% outdoor air to the building, control the mixture of return and ventilation air.

  20. Turbine blade cooling

    DOEpatents

    Staub, Fred Wolf (Schenectady, NY); Willett, Fred Thomas (Niskayuna, NY)

    1999-07-20

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

  1. Turbine blade cooling

    SciTech Connect

    Staub, Fred Wolf; Willett, Fred Thomas

    2000-01-01

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

  2. Turbine blade cooling

    DOEpatents

    Staub, F.W.; Willett, F.T.

    1999-07-20

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number. 13 figs.

  3. Water cooled steam jet

    DOEpatents

    Wagner, E.P. Jr.

    1999-01-12

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed there between. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock. 2 figs.

  4. 7 CFR 945.22 - Districts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...Butte, Clark, Fremont, Jefferson, Madison, and Teton; (b) District No. 2: The counties of Bannock, Bear Lake, Bingham, Caribou, Franklin, Oneida, and Power; and (c) District No. 3: Malheur County, Oregon, and the remaining...

  5. Evaluating Water Transfers in Irrigation Districts 

    E-print Network

    Ghimire, Narishwar

    2013-04-11

    The participation of irrigation districts (IDs) in surface water transfers from agriculture-to-municipal uses is studied by examining IDs’ economic and political behavior, comparing their performance with non-districts (non-IDs), and analyzing...

  6. 7 CFR 945.22 - Districts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...in § 945.23. (a) District No. 1: The counties of Bonneville, Butte, Clark, Fremont, Jefferson, Madison, and Teton; (b) District No. 2: The counties of Bannock, Bear Lake, Bingham, Caribou, Franklin, Oneida, and Power;...

  7. 7 CFR 920.12 - District

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE KIWIFRUIT GROWN IN CALIFORNIA Definitions § 920.12 District District means the applicable one of the following...

  8. 7 CFR 920.12 - District.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE KIWIFRUIT GROWN IN CALIFORNIA Definitions § 920.12 District. District means the applicable one of the following...

  9. 7 CFR 920.12 - District.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE KIWIFRUIT GROWN IN CALIFORNIA Definitions § 920.12 District. District means the applicable one of the following...

  10. 7 CFR 920.12 - District.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE KIWIFRUIT GROWN IN CALIFORNIA Definitions § 920.12 District. District means the applicable one of the following...

  11. 7 CFR 920.12 - District.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE KIWIFRUIT GROWN IN CALIFORNIA Definitions § 920.12 District. District means the applicable one of the following...

  12. 7 CFR 932.21 - District.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE OLIVES GROWN IN CALIFORNIA Order Regulating Handling Definitions § 932.21 District. District means any of the...

  13. 7 CFR 932.21 - District.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE OLIVES GROWN IN CALIFORNIA Order Regulating Handling Definitions § 932.21 District. District means any of the...

  14. 7 CFR 932.21 - District.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE OLIVES GROWN IN CALIFORNIA Order Regulating Handling Definitions § 932.21 District. District means any of the...

  15. 7 CFR 932.21 - District.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE OLIVES GROWN IN CALIFORNIA Order Regulating Handling Definitions § 932.21 District. District means any of the...

  16. 7 CFR 932.21 - District.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE OLIVES GROWN IN CALIFORNIA Order Regulating Handling Definitions § 932.21 District. District means any of the...

  17. 7 CFR 983.11 - Districts.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...OF AGRICULTURE PISTACHIOS GROWN IN CALIFORNIA, ARIZONA, AND NEW MEXICO Definitions...San Diego, and Imperial Counties of California. (2) District 2 consists of...Fresno, Madera, and Merced Counties of California. (3) District 3 consists of...

  18. 7 CFR 983.11 - Districts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...OF AGRICULTURE PISTACHIOS GROWN IN CALIFORNIA, ARIZONA, AND NEW MEXICO Definitions...San Diego, and Imperial Counties of California. (2) District 2 consists of...Fresno, Madera, and Merced Counties of California. (3) District 3 consists of...

  19. 7 CFR 983.11 - Districts.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...OF AGRICULTURE PISTACHIOS GROWN IN CALIFORNIA, ARIZONA, AND NEW MEXICO Definitions...San Diego, and Imperial Counties of California. (2) District 2 consists of...Fresno, Madera, and Merced Counties of California. (3) District 3 consists of...

  20. 7 CFR 983.11 - Districts.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE PISTACHIOS GROWN IN CALIFORNIA, ARIZONA, AND NEW MEXICO Definitions...District 3 consists of all counties in California where pistachios are produced that are not included in Districts 1 and...

  1. 7 CFR 983.11 - Districts.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE PISTACHIOS GROWN IN CALIFORNIA, ARIZONA, AND NEW MEXICO Definitions...District 3 consists of all counties in California where pistachios are produced that are not included in Districts 1 and...

  2. 7 CFR 923.14 - District.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...CHERRIES GROWN IN DESIGNATED COUNTIES IN WASHINGTON Order Regulating...District 1 shall include the Counties of Chelan, Okanogan, Douglas, Grant, Lincoln, Spokane, Pend Oreille, Stevens...District 2 shall include the counties of Kittitas,...

  3. 7 CFR 923.14 - District.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...CHERRIES GROWN IN DESIGNATED COUNTIES IN WASHINGTON Order Regulating...District 1 shall include the Counties of Chelan, Okanogan, Douglas, Grant, Lincoln, Spokane, Pend Oreille, Stevens...District 2 shall include the counties of Kittitas,...

  4. 7 CFR 923.14 - District.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...CHERRIES GROWN IN DESIGNATED COUNTIES IN WASHINGTON Order Regulating...District 1 shall include the Counties of Chelan, Okanogan, Douglas, Grant, Lincoln, Spokane, Pend Oreille, Stevens...District 2 shall include the counties of Kittitas,...

  5. 7 CFR 923.14 - District.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...CHERRIES GROWN IN DESIGNATED COUNTIES IN WASHINGTON Order Regulating...District 1 shall include the Counties of Chelan, Okanogan, Douglas, Grant, Lincoln, Spokane, Pend Oreille, Stevens...District 2 shall include the counties of Kittitas,...

  6. 7 CFR 923.14 - District.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...CHERRIES GROWN IN DESIGNATED COUNTIES IN WASHINGTON Order Regulating...District 1 shall include the Counties of Chelan, Okanogan, Douglas, Grant, Lincoln, Spokane, Pend Oreille, Stevens...District 2 shall include the counties of Kittitas,...

  7. 7 CFR 917.14 - District.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... line from the northeast corner of Solano County to the town of Rio Vista. (d) El Dorado District includes and consists of El Dorado County. (e) Placer-Colfax District includes and consists of Nevada...

  8. 7 CFR 917.14 - District.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... line from the northeast corner of Solano County to the town of Rio Vista. (d) El Dorado District includes and consists of El Dorado County. (e) Placer-Colfax District includes and consists of Nevada...

  9. 7 CFR 989.22 - District.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE RAISINS PRODUCED FROM GRAPES GROWN IN CALIFORNIA Order Regulating Handling Definitions § 989.22 District. District means any one of...

  10. Metallographic Cooling Rate of IVA Irons Revisited

    NASA Technical Reports Server (NTRS)

    Yang, J.; Goldstein, J. I.; Scott, E. R. D.

    2005-01-01

    There is long standing problem reconciling the chemical evidence that the IVA iron meteorites formed in a core with the diverse cooling rates reported by several researchers. This large inferred range of cooling rates suggests that the IVA irons were distributed at different depths in a parent body with a complex structure when the Widmanstatten pattern formed. On the other hand, some researchers argued that the diverse cooling rates in group IVA result from inaccurate model parameters such as phase diagram, interdiffusion coefficients, and kamacite nucleation and growth mechanisms. In addition, the measured cooling rates may not apply for the same cooling temperature ranges, and the variation in the crystallographic orientations of the Widmanstatten plates on the analysis surface may result in inaccurate measurements of widths needed for the computer simulation models. We have revaluated the major parameters in computer model developed by Hopfe and Goldstein and measured cooling rates for the IVA irons. Such data are useful in evaluating whether these meteorites were part of a single core of a parent body during the formation of the Widmanstatten pattern.

  11. SUMMARY OF BEAM COOLING AND INTRABEAM SCATTERING.

    SciTech Connect

    FEDOTOV, A.V.; MESHKOV, I.N.; WEI, J.

    2006-05-26

    For heavy-particle beams in storage rings where there is no significant synchrotron radiation damping, beam cooling is an essential tool in obtaining high phase-space density high brightness beams. Advances in various types of cooling such as electron, stochastic, laser and muon cooling are covered in dedicated Conferences. In this series of Workshops (HB2002-06), discussions are aimed only at a few specific subjects which are crucial for future projects. The discussion topics in our session closely followed those discussed during the HB2004 workshop [1]. Specifically, we concentrated on the topics of electron cooling and intrabeam scattering, motivated by the design of the future high-energy coolers [2,3,4]. These cooling projects at high-energy require accurate numerical modeling and experimental verification. A variety of tasks were put together at HB2004 [1]. In our working group we discussed a progress in addressing these tasks. We had 10 presentations [5]-[14] (with additional presentations in the joint sessions) which followed by dedicated discussions. Our main topics of discussions: intrabeam scattering (IBS), electron cooling, and beam stability are summarized.

  12. 75 FR 43958 - Turlock Irrigation District and Modesto Irrigation District; Notice of Application for Amendment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-27

    ... Energy Regulatory Commission Turlock Irrigation District and Modesto Irrigation District; Notice of...: May 24, 2010. d. Applicant: Turlock Irrigation District and Modesto Irrigation District. e. Name of.... g. Filed Pursuant to: Federal Power Act, 16 USC 791a-825r. h. Applicant Contact: Turlock...

  13. 75 FR 35778 - Modesto Irrigation District and Turlock Irrigation District; Notice of Preliminary Permit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-23

    ... Energy Regulatory Commission Modesto Irrigation District and Turlock Irrigation District; Notice of... Competing Applications June 16, 2010. On February 1, 2010, Modesto Irrigation District and Turlock Irrigation District filed an application for a preliminary permit, pursuant to section 4(f) of the...

  14. MEIC electron cooling program

    SciTech Connect

    Derbenev, Yaroslav S.; Zhang, Yuhong

    2014-12-01

    Cooling of proton and ion beams is essential for achieving high luminosities (up to above 1034 cm-2s-1) for MEIC, a Medium energy Electron-Ion Collider envisioned at JLab [1] for advanced nuclear science research. In the present conceptual design, we utilize the conventional election cooling method and adopted a multi-staged cooling scheme for reduction of and maintaining low beam emittances [2,3,4]. Two electron cooling facilities are required to support the scheme: one is a low energy (up to 2 MeV) DC cooler installed in the MEIC ion pre-booster (with the proton kinetic energy up to 3 GeV); the other is a high electron energy (up to 55 MeV) cooler in the collider ring (with the proton kinetic energy from 25 to 100 GeV). The high energy cooler, which is based on the ERL technology and a circulator ring, utilizes a bunched electron beam to cool bunched proton or ion beams. To complete the MEIC cooling concept and a technical design of the ERL cooler as well as to develop supporting technologies, an R&D program has been initiated at Jefferson Lab and significant progresses have been made since then. In this study, we present a brief description of the cooler design and a summary of the progress in this cooling R&D.

  15. MEIC electron cooling program

    DOE PAGESBeta

    Derbenev, Yaroslav S.; Zhang, Yuhong

    2014-12-01

    Cooling of proton and ion beams is essential for achieving high luminosities (up to above 1034 cm-2s-1) for MEIC, a Medium energy Electron-Ion Collider envisioned at JLab [1] for advanced nuclear science research. In the present conceptual design, we utilize the conventional election cooling method and adopted a multi-staged cooling scheme for reduction of and maintaining low beam emittances [2,3,4]. Two electron cooling facilities are required to support the scheme: one is a low energy (up to 2 MeV) DC cooler installed in the MEIC ion pre-booster (with the proton kinetic energy up to 3 GeV); the other is amore »high electron energy (up to 55 MeV) cooler in the collider ring (with the proton kinetic energy from 25 to 100 GeV). The high energy cooler, which is based on the ERL technology and a circulator ring, utilizes a bunched electron beam to cool bunched proton or ion beams. To complete the MEIC cooling concept and a technical design of the ERL cooler as well as to develop supporting technologies, an R&D program has been initiated at Jefferson Lab and significant progresses have been made since then. In this study, we present a brief description of the cooler design and a summary of the progress in this cooling R&D.« less

  16. Power cooling primer

    SciTech Connect

    Williams, P.L. )

    1993-01-01

    Power cooling technology has come a long way since the Clean Water Act was passed in the 1970s. Now, the choice between a wet, dry or hybrid cooling system depends on a host of variables. Since the initial passage of the Clean Water Act and other environmental laws in the early 1970's, both the regulations governing discharge of the resulting waste heat and the technology for complying with them have become increasingly complex. As a result, the decision as to the type of cooling system to use depends on a variety of project parameters, such as size of unit, site, and environmental constraints.

  17. Cooling without water

    SciTech Connect

    Moore, T.; Bartz, J.; Maulbetsch, J.

    1983-05-01

    Shakedown tests are under way on advanced ammonia-based cooling at a heavily instrumented test facility in southern California. Favorable results could open the door to greater economy and siting flexibility for power plants in water-short areas. Dry-cooling technology may be needed in the western United States in about 40 years, and worldwide interest is growing in countries like Israel which faces growing generating-capacity needs on a heavily populated coastline. South Africa is already constructing all-dry direct condensation cooling stations near large coal deposits. 3 figures.

  18. Groundwater and geothermal: urban district heating applications

    SciTech Connect

    Mounts, R.; Frazier, A.; Wood, E.; Pyles, O.

    1982-01-01

    This report describes how several cities use groundwater and geothermal energy in district heating systems. It begins with groundwater, introducing the basic technology and techniques of development, and describing two case studies of cities with groundwater-based district heating systems. The second half of the report consists of three case studies of cities with district heating systems using higher temperature geothermal resources.

  19. School District Leadership: Systems, Strategies, and Structures

    ERIC Educational Resources Information Center

    Kovash, Lynne A.

    2009-01-01

    The researcher studied eight Minnesota school district leadership systems, strategies, and structures and the effect on student achievement. Quantitative research methods were used to collect data from the eight Minnesota school districts. The population included eight northwestern Minnesota public school districts identified for "Needing…

  20. School District Consolidation: The Benefits and Costs

    ERIC Educational Resources Information Center

    Duncombe, William D.; Yinger, John M.

    2010-01-01

    School district consolidation is a striking phenomenon. According to the National Center for Education Statistics, 117,108 school districts provided elementary and secondary education in 1939-1940. By 2006-2007, the number of districts had dropped to 13,862, a decline of 88 percent. The rate of consolidation has slowed in recent years, but at…

  1. School District Cash Management. Program Audit.

    ERIC Educational Resources Information Center

    New York State Legislative Commission on Expenditure Review, Albany.

    New York State law permits school districts to invest cash not immediately needed for district operation and also specifies the kinds of investments that may be made in order to ensure the safety and liquidity of public funds. This audit examines cash management and investment practices in New York state's financially independent school districts.…

  2. California's Districts of Choice

    ERIC Educational Resources Information Center

    Kronholz, June

    2014-01-01

    This article describes the results of a California state law established in 2010 that created "Districts of Choice." The District of Choice law was meant to encourage districts to compete for students by offering innovative programs and this-school-fits-my-child options that parents wanted. This designation meant that children from any…

  3. Sharing Local Revenue: One District's Perspective

    ERIC Educational Resources Information Center

    Cline, David S.

    2011-01-01

    The vast majority of U.S. school districts are considered independent and have taxing authority; the remaining districts rely on revenue and budgetary approval from their local government. In the latter case, localities often use some form of negotiated process to determine the amount of revenue their school districts will receive. Typically, a…

  4. District Dives into Data to Improve Feedback

    ERIC Educational Resources Information Center

    Robinson, Sheila B.; Dimgba, Marguerite G.

    2014-01-01

    The Greece Professional Learning Center, a New York State Teacher Center in Greece Central School District, works to ensure all district employees have access to high-quality professional learning that supports and facilitates their learning and ultimately advances student achievement. The center is an integral part of the district -- the…

  5. Reading a District Budget: Reporter Guide

    ERIC Educational Resources Information Center

    McNeil, Michele

    2013-01-01

    Every school budget tells a story--about a district's spending plan, its priorities, goals, and financial health. The challenge is to wade through the jargon and numbers to unlock that story. Although budgets can vary significantly from district to district, and state to state, this primer seeks to introduce reporters to the fundamental components…

  6. On radiational cooling computations in clouds.

    NASA Technical Reports Server (NTRS)

    Knollenberg, R. G.

    1972-01-01

    Expressions are derived for the cooling or heating rates for clouds in which the condensed phase is either ice or water. Values are computed for ice and water clouds over a reasonable temperature range for pressures of 1000, 500, and 200 mb. The importance is shown of adequately allowing for the latent load in computations of radiative cooling or heating rates based on measurements of radiative divergence in clouds. It is shown that, other things being equal, the effect of the latent load is always greatest at low levels and higher temperatures.

  7. Metallographic cooling rates of the IIIAB iron meteorites

    NASA Astrophysics Data System (ADS)

    Yang, Jijin; Goldstein, Joseph I.

    2006-06-01

    An improved computer simulation program has been developed and used to re-measure the metallographic cooling rates of the IIIAB irons, the largest iron meteorite chemical group. The formation of this chemical group is attributed to fractional crystallization of a single molten metallic core during solidification. Group IIIAB irons cooling rates vary by a factor of 6 from 56 to 338 °C/My. The cooling rate variation for each meteorite is much smaller than in previous studies and the uncertainty in the measured cooling rate for each meteorite is greatly reduced. The lack of correction for the orientation of the kamacite-taenite interface in the cooling rate measurement of a given meteorite in previous studies not only leads to large cooling rate variations but also to inaccurate and low cooling rates. The cooling rate variation with Ni content in the IIIAB chemical group measured in this study is attributable, in part, to the variation in nucleation temperature of the Widmanstatten pattern with Ni content and nucleation mechanism. However, the factor of 6 variation in cooling rate of the IIIAB irons is hard to explain unless the IIIAB asteroidal core was exposed or partially exposed in the temperature range in which the Widmanstatten pattern formed. Measurements of the size of the island phase in the cloudy zone of the taenite phase and Re-Os data from the IIIAB irons and the pallasites make it hard to reconcile the idea that pallasites are located at the boundary of the IIIAB asteroid core.

  8. Fluoride levels and dental fluorosis in two districts in Zimbabwe.

    PubMed

    Tobayiwa, C; Musiyambiri, M; Chironga, L; Mazorodze, O; Sapahla, S

    1991-11-01

    Water from two rural communities in Zimbabwe was analysed for fluoride content and school children in the two districts were examined for dental fluorosis. The survey for fluoride distribution in drinking water and the survey for the prevalence of fluorosis in the two districts were two complementary phases of the same project. In Gokwe District, water from artesian wells was found to contain between 5ppm and 10ppm fluoride ion concentration and as a result, fluorosis was found to be extremely severe in those communities solely dependent on artesian wells. In Chimanimani District, water from hot springs was found to contain five to six ppm fluoride ion concentration and in the catchment area of schools, drinking from hot springs fluorosis was also found to be very severe. In both cases, access to high fluoride water can be linked to administrative decisions taken some thirty years ago. Consideration for the long-term adverse effects of drinking water with excess fluoride had not been taken and now, corrective action will need to incorporate inter-disciplinary expertise. PMID:1806246

  9. PERFORMANCE ANALYSIS OF MECHANICAL DRAFT COOLING TOWER

    SciTech Connect

    Lee, S; Alfred Garrett, A; James02 Bollinger, J; Larry Koffman, L

    2009-02-10

    Industrial processes use mechanical draft cooling towers (MDCT's) to dissipate waste heat by transferring heat from water to air via evaporative cooling, which causes air humidification. The Savannah River Site (SRS) has cross-flow and counter-current MDCT's consisting of four independent compartments called cells. Each cell has its own fan to help maximize heat transfer between ambient air and circulated water. The primary objective of the work is to simulate the cooling tower performance for the counter-current cooling tower and to conduct a parametric study under different fan speeds and ambient air conditions. The Savannah River National Laboratory (SRNL) developed a computational fluid dynamics (CFD) model and performed the benchmarking analysis against the integral measurement results to accomplish the objective. The model uses three-dimensional steady-state momentum, continuity equations, air-vapor species balance equation, and two-equation turbulence as the basic governing equations. It was assumed that vapor phase is always transported by the continuous air phase with no slip velocity. In this case, water droplet component was considered as discrete phase for the interfacial heat and mass transfer via Lagrangian approach. Thus, the air-vapor mixture model with discrete water droplet phase is used for the analysis. A series of parametric calculations was performed to investigate the impact of wind speeds and ambient conditions on the thermal performance of the cooling tower when fans were operating and when they were turned off. The model was also benchmarked against the literature data and the SRS integral test results for key parameters such as air temperature and humidity at the tower exit and water temperature for given ambient conditions. Detailed results will be published here.

  10. Absorption heat pump in heating and cooling systems of buildings

    NASA Astrophysics Data System (ADS)

    Aho, I.

    This report focuses on the operation and applicability of absorption heat pumps (AHP) in building heating and cooling systems. Examples are presented on heating systems of residential buildings and a heating/cooling system of an office building. Despite the limitations of present AHP technology the examples assume AHPs which produce heat at an appropriate temperature level for each application. According to the calculations the primary energy saving potential of AHPs in building specific heat production is 20 to 40 percent. For AHPs coupled with district heating systems the primary energy saving potential can not be unambiguously defined because it is influenced by the production form of district heat, the influence of district heat demand on power generation etc. For the time being economical aspects limit the application potential of AHPs. The profitability of AHP investments is quite poor because of present energy prices, the price ratio of different energy forms and the high investment cost of AHP-systems. The environmental impact of AHPs depend on the fuel used in the generator. Using fuel oil or gas will decrease sulphur and particle emissions but might increase the emissions of NO(x) and hydrocarbons because of the smaller size of combustion units. CFC-emissions will be decreased because AHPs apply alternative refrigerants.

  11. Sisyphus cooling of lithium

    NASA Astrophysics Data System (ADS)

    Hamilton, Paul; Kim, Geena; Joshi, Trinity; Mukherjee, Biswaroop; Tiarks, Daniel; Müller, Holger

    2014-02-01

    Laser cooling to sub-Doppler temperatures by optical molasses is thought to be inhibited in atoms with unresolved, near-degenerate hyperfine structure in the excited state. We demonstrate that such cooling is possible in one to three dimensions, not only near the standard D2 line for laser cooling, but over a wide range extending to the D1 line. Via a combination of Sisyphus cooling followed by adiabatic expansion, we reach temperatures as low as 40 ?K, which corresponds to atomic velocities a factor of 2.6 above the limit imposed by a single-photon recoil. Our method requires modest laser power at a frequency within reach of standard frequency-locking methods. It is largely insensitive to laser power, polarization and detuning, magnetic fields, and initial hyperfine populations. Our results suggest that optical molasses should be possible with all alkali-metal species.

  12. Keeping Your Cool

    MedlinePLUS

    ... About Helmets H2O Smartz Keeping Your Cool The Bully Roundup Comeback Play it Safe Safety Smartz Having ... Out Your Issues Break the Anger Chain The Bully Roundup Comebacks Choices & Consequences Feeling Left Out? Tricks ...

  13. Evaporative Cooling Membrane Device

    NASA Technical Reports Server (NTRS)

    Lomax, Curtis (Inventor); Moskito, John (Inventor)

    1999-01-01

    An evaporative cooling membrane device is disclosed having a flat or pleated plate housing with an enclosed bottom and an exposed top that is covered with at least one sheet of hydrophobic porous material having a thin thickness so as to serve as a membrane. The hydrophobic porous material has pores with predetermined dimensions so as to resist any fluid in its liquid state from passing therethrough but to allow passage of the fluid in its vapor state, thereby, causing the evaporation of the fluid and the cooling of the remaining fluid. The fluid has a predetermined flow rate. The evaporative cooling membrane device has a channel which is sized in cooperation with the predetermined flow rate of the fluid so as to produce laminar flow therein. The evaporative cooling membrane device provides for the convenient control of the evaporation rates of the circulating fluid by adjusting the flow rates of the laminar flowing fluid.

  14. Optimization of Cooling Water 

    E-print Network

    Matson, J.

    1985-01-01

    A cooling water system can be optimized by operation at the highest possible cycles of concentration without risking sealing and fouling on heat exchanger surfaces. The way to optimize will be shown, with a number of examples of new systems....

  15. Cooling of dense stars

    NASA Technical Reports Server (NTRS)

    Tsuruta, S.

    1972-01-01

    Cooling rates were calculated for neutron stars of about one solar mass and 10 km radius, with magnetic fields from zero to about 10 to the 14th power gauss, for extreme cases of maximum and zero superfluidity. The results show that most pulsars are so cold that thermal ionization of surface atoms would be negligible. Nucleon superfluidity and crystallization of heavy nuclei were treated quantitatively, and more realistic hadron star models were chosen. Cooling rates were calculated for a stable hyperon star near the maximum mass limit, a medium weight neutron star, and a light neutron star with neutron-rich heavy nuclei near the minimum mass limit. Results show that cooling rates are a sensitive function of density. The Crab and Vela pulsars are considered, as well as cooling of a massive white dwarf star.

  16. Warm and Cool Dinosaurs.

    ERIC Educational Resources Information Center

    Mannlein, Sally

    2001-01-01

    Presents an art activity in which first grade students draw dinosaurs in order to learn about the concept of warm and cool colors. Explains how the activity also helped the students learn about the concept of distance when drawing. (CMK)

  17. Process Cooling Systems 

    E-print Network

    McCann, C. J.

    1983-01-01

    Cooling towers have been on the scene for more than 50 years. It is because they have proven to be an economic choice for waste heat dissipation. But it seems, for some reason, that after installation very little attention ...

  18. Too cool to work

    NASA Astrophysics Data System (ADS)

    Moya, Xavier; Defay, Emmanuel; Heine, Volker; Mathur, Neil D.

    2015-03-01

    Magnetocaloric and electrocaloric effects are driven by doing work, but this work has barely been explored, even though these caloric effects are being exploited in a growing number of prototype cooling devices.

  19. Districts Created to Steer "Turnarounds"

    ERIC Educational Resources Information Center

    Samuels, Christina A.

    2011-01-01

    If the job of a traditional superintendent is hard, imagine the complexities involved in building a school system from scratch--especially one composed of schools with some of the most intractable educational challenges. That's the task facing education leaders in Michigan and Tennessee, which are building special districts to take over…

  20. Competition with Charters Motivates Districts

    ERIC Educational Resources Information Center

    Holley, Marc J.; Lueken, Martin F.; Egalite, Anna J.

    2013-01-01

    Proponents of market-based education reform often argue that introducing charter schools and other school choice policies creates a competitive dynamic that will prompt low-performing districts to improve their practice. Rather than simply providing an alternative to neighborhood public schools for a handful of students, the theory says, school…

  1. Equalization among Florida School Districts.

    ERIC Educational Resources Information Center

    Alexander, Kern; Shiver, Lee

    1983-01-01

    This statistical analysis of funding equalization from 1970 to 1981 evaluates the distributional equity achieved by Florida's school finance plan and examines the relationship between selected per pupil revenue measures and variables thought to influence school district spending, concluding that greater equity has not been attained. (MJL)

  2. Nation, Districts Step up Safety

    ERIC Educational Resources Information Center

    Shah, Nirvi

    2013-01-01

    President Barack Obama's announcement last week of a wide-ranging anti-violence plan in response to the Newtown, Connecticut, school shootings comes as many districts are adopting new and sometimes dramatic measures--including arming teachers and volunteers--intended to prevent similar tragedies in their own schools. School safety experts warn…

  3. Spatial Planning of School Districts

    ERIC Educational Resources Information Center

    Maxfield, Donald W.

    1972-01-01

    The development of several plans based on linear programming and geographic methodology will permit school administrators to make better decisions concerning the planning of school districts: where to locate boundaries, how to eliminate overcrowding, where to locate new classrooms, and how to overcome de facto segregation. The primal and dual…

  4. Districts Neglecting Programs for ELLs

    ERIC Educational Resources Information Center

    Zehr, Mary Ann

    2010-01-01

    The author reports on state and independent reviews that cite shortcomings in four urban systems. According to the reviews of those school systems over the past two years, four urban districts--in Boston, Massachusetts; Buffalo, New York; Portland, Oregon; and Seattle, Washington--did not provide special help to learn English to all students…

  5. By Tracy Robillard Savannah District

    E-print Network

    US Army Corps of Engineers

    in Bradenton, Fla., the U.S. Army Corps of Engineers, Savannah District is helping kids spread the word about to warn kids of the dangers of UXO. The Corps funded the production as part of its Formerly Used Defense meant. However, I think that sustainability is an umbrella concept that encompasses energy, climate

  6. School Districts and Student Achievement

    ERIC Educational Resources Information Center

    Chingos, Matthew M.; Whitehurst, Grover J.; Gallaher, Michael R.

    2015-01-01

    School districts are a focus of education reform efforts in the United States, but there is very little existing research about how important they are to student achievement. We fill this gap in the literature using 10 years of student-level, statewide data on fourth- and fifth-grade students in Florida and North Carolina. A variance decomposition…

  7. Spray Cooling Modeling: Droplet Sub-Cooling Effect on Heat Transfer

    SciTech Connect

    Johnston, Joseph E.; Selvam, R. P.; Silk, Eric A.

    2008-01-21

    Spray cooling has become increasingly popular as a thermal management solution for high-heat flux (>100 W/cm{sup 2}) applications such as laser diodes and radars. Research has shown that using sub-cooled liquid can increase the heat flux from the hot surface. The objective of this study was to use a multi-phase numerical model to simulate the effect of a sub-cooled droplet impacting a growing vapor bubble in a thin (<100 {mu}m) liquid film. The two-phase model captured the liquid-vapor interface using the level set method. The effects of surface tension, viscosity, gravity and phase change were accounted for by using a modification to the incompressible Navier-Stokes equations, which were solved using the finite difference method. The computed liquid-vapor interface and temperature distributions were visualized for better understanding of the heat removal process. To understand the heat transfer mechanisms of sub-cooled droplet impact on a growing vapor bubble, various initial droplet temperatures were modeled (from 20 deg. C below saturation temperature to saturation temperature). This may provide insights into how to improve the heat transfer in future spray cooling systems.

  8. Cooling tower waste reduction

    SciTech Connect

    Coleman, S.J.; Celeste, J.; Chine, R.; Scott, C.

    1998-05-01

    At Lawrence Livermore National Laboratory (LLNL), the two main cooling tower systems (central and northwest) were upgraded during the summer of 1997 to reduce the generation of hazardous waste. In 1996, these two tower systems generated approximately 135,400 lbs (61,400 kg) of hazardous sludge, which is more than 90 percent of the hazardous waste for the site annually. At both, wet decks (cascade reservoirs) were covered to block sunlight. Covering the cascade reservoirs reduced the amount of chemical conditioners (e.g. algaecide and biocide), required and in turn the amount of waste generated was reduced. Additionally, at the northwest cooling tower system, a sand filtration system was installed to allow cyclical filtering and backflushing, and new pumps, piping, and spray nozzles were installed to increase agitation. the appurtenance upgrade increased the efficiency of the cooling towers. The sand filtration system at the northwest cooling tower system enables operators to continuously maintain the cooling tower water quality without taking the towers out of service. Operational costs (including waste handling and disposal) and maintenance activities are compared for the cooling towers before and after upgrades. Additionally, the effectiveness of the sand filter system in conjunction with the wet deck covers (northwest cooling tower system), versus the cascade reservoir covers alone (south cooling tower south) is discussed. the overall expected return on investment is calculated to be in excess of 250 percent. this upgrade has been incorporated into the 1998 DOE complex-wide water conservation project being led by Sandia National Laboratory/Albuquerque.

  9. Liquid cooled helmet

    NASA Technical Reports Server (NTRS)

    Elkins, William (Inventor); Williams, Bill A. (Inventor)

    1979-01-01

    Liquid cooled helmet comprising a cap of flexible material adapted to fit the head of a person, cooling panels mounted inside the cap forming passageways for carrying a liquid coolant, the panels being positioned to engage the cranium and neck of a person wearing the helmet, inlet and outlet lines communicating with the passageways, and releasable straps for securing the helmet about the neck of the wearer.

  10. Refrigerant directly cooled capacitors

    DOEpatents

    Hsu, John S. (Oak Ridge, TN); Seiber, Larry E. (Oak Ridge, TN); Marlino, Laura D. (Oak Ridge, TN); Ayers, Curtis W. (Kingston, TN)

    2007-09-11

    The invention is a direct contact refrigerant cooling system using a refrigerant floating loop having a refrigerant and refrigeration devices. The cooling system has at least one hermetic container disposed in the refrigerant floating loop. The hermetic container has at least one electronic component selected from the group consisting of capacitors, power electronic switches and gating signal module. The refrigerant is in direct contact with the electronic component.

  11. Laser cooling of solids

    SciTech Connect

    Epstein, Richard I; Sheik-bahae, Mansoor

    2008-01-01

    We present an overview of solid-state optical refrigeration also known as laser cooling in solids by fluorescence upconversion. The idea of cooling a solid-state optical material by simply shining a laser beam onto it may sound counter intuitive but is rapidly becoming a promising technology for future cryocooler. We chart the evolution of this science in rare-earth doped solids and semiconductors.

  12. Electron cooling for RHIC

    SciTech Connect

    Burov, A., FNAL,

    1998-09-25

    Electron cooling of completely stripped gold ions {sup 197}Au{sup 79+} in RHIC is considered for the store energy, {gamma} = 108. The optimal parameters of the required electron storage ring are discussed and proposed. The cooling time is calculated as 15 minutes, which would allow not only to avoid the beam loss due to the intra-beam scattering, but also reduce the transverse emittance and increase the luminosity several times.

  13. Comment on the Word 'Cooling' as it is Used in Beam Physics

    SciTech Connect

    Sessler, Andrew M.

    2006-03-20

    Beam physicists use the word 'cooling' differently than it is used by the general public or even by other physicists. It is recommended that we no longer use this term, but replace it with some other term such as: 'Phase Density Cooling' (PDF) or 'damping', or alternatively 'Liouville Cooling', which would make our field more easily understood by outsiders.

  14. Quantum Mechanical Treatment of Transit-Time Optical Stochastic Cooling of Muons A. E. Charman1

    E-print Network

    Wurtele, Jonathan

    Quantum Mechanical Treatment of Transit-Time Optical Stochastic Cooling of Muons A. E. Charman1 quantum mechanically, and raising doubts as to whether this weak signal even contains sufficient phase are treated quantum mechanically, indicates that fast cooling is in principle possible, with cooling rates

  15. Weld electrode cooling study

    NASA Astrophysics Data System (ADS)

    Masters, Robert C.; Simon, Daniel L.

    1999-03-01

    The U.S. auto/truck industry has been mandated by the Federal government to continuously improve their fleet average gas mileage, measured in miles per gallon. Several techniques are typically used to meet these mandates, one of which is to reduce the overall mass of cars and trucks. To help accomplish this goal, lighter weight sheet metal parts, with smaller weld flanges, have been designed and fabricated. This paper will examine the cooling characteristics of various water cooled weld electrodes and shanks used in resistance spot welding applications. The smaller weld flanges utilized in modern vehicle sheet metal fabrications have increased industry's interest in using one size of weld electrode (1/2 inch diameter) for certain spot welding operations. The welding community wants more data about the cooling characteristics of these 1/2 inch weld electrodes. To hep define the cooling characteristics, an infrared radiometer thermal vision system (TVS) was used to capture images (thermograms) of the heating and cooling cycles of several size combinations of weld electrodes under typical production conditions. Tests results will show why the open ended shanks are more suitable for cooling the weld electrode assembly then closed ended shanks.

  16. Research Proposal for the Design and Engineering Phase of a Solar Heating and Cooling System Experiment at the Warner Robins Public Library, Warner Robins, Georgia. Submitted to the United States Energy Research and Development Administration.

    ERIC Educational Resources Information Center

    Phillips, Warren H.; And Others

    A number of reasons are advanced to include a solar heating and cooling experiment in a library building. The unique aspects of the experiment are to be a seasonally adjustable collector tilt and testing of a new generation of absorption air conditioners. After a brief description of the proposed experiment, the proposal contains forms filed by…

  17. Design and development of LH2 cooled rolling element radial bearings for the NERVA engine turbopump. Volume 3: Phase 2: Tests on build-ups 16, 17, and 18 at NRDS, Jackass Flats, Nevada, December 1971 - March 1972

    NASA Technical Reports Server (NTRS)

    Accinelli, J. B.; Koch, D. A.; Reuter, F.

    1972-01-01

    The use of liquid hydrogen to cool the rolling element radial bearings in the nuclear engine for rocket vehicles is discussed. The fifteen hour service life goal was obtained during the tests. The increase in bearing life was also considered to be produced by: (1) improvements in bearing material, (2) bearing retainer configuration and manufacturing changes, and (3) better control of operating parameters.

  18. Spin gradient demagnetization cooling of ultracold atoms

    E-print Network

    Medley, Patrick; Miyake, Hirokazu; Pritchard, David E; Ketterle, Wolfgang

    2010-01-01

    Attainment of lower temperatures has frequently enabled discoveries of new physical phenomena, from superconductivity to Bose-Einstein condensation. Here we describe and demonstrate a cooling method, spin gradient demagnetization, which has several novel features: It operates directly in the spin degree of freedom, it can be applied to atoms in an optical lattice, and it is able to reach positive and negative spin temperatures of $\\pm$50 picokelvin, the lowest temperatures which have been achieved in any system. The cooling method consists of applying a time-varying magnetic field gradient to a spin mixture of ultracold atoms. The spin system can also be used to cool other degrees of freedom, and we have used this coupling to reduce the temperature of an apparently equilibrated sample of rubidium atoms in an optical lattice to 350 picokelvin. These results open a realistic path to the observation of magnetic quantum phase transitions in optical lattices.

  19. A Novel VLSI Technology to Manufacture High-Density Thermoelectric Cooling Devices

    E-print Network

    H. Chen; L. Hsu; X. Wei

    2008-01-07

    This paper describes a novel integrated circuit technology to manufacture high-density thermoelectric devices on a semiconductor wafer. With no moving parts, a thermoelectric cooler operates quietly, allows cooling below ambient temperature, and may be used for temperature control or heating if the direction of current flow is reversed. By using a monolithic process to increase the number of thermoelectric couples, the proposed solid-state cooling technology can be combined with traditional air cooling, liquid cooling, and phase-change cooling to yield greater heat flux and provide better cooling capability.

  20. Engineering Design Cooling flow design

    E-print Network

    McDonald, Kirk

    contours in cooling water, b) elliptical target plate with cooling channels, c) schematic showing chamferedEngineering Design · Cooling flow design · Number of plates · Target X-section geometry · Methods to this poster. Flux trap plate target Plate target Cone coolingTS2 cylindrical target Cannelloni target Solid

  1. Mechano-caloric cooling device

    NASA Technical Reports Server (NTRS)

    Frederking, T. H. K.; Luna, Jack; Abbassi, P.; Carandang, R. M.

    1989-01-01

    The mechano-caloric effect is potentially useful in the He II temperature range. Aside from demonstration work, little quantification effort appears to have been known since other refrigeration possibilities have been available for some time. Successful He II use-related system examples are as follows: in space, the utilization of the latent heat of vaporization has been quite successful in vapor-liquid phase separation (VLPS) in conjunction with thermomechanical force application in plugs. In magnet cooling systems, the possibility of using the mechano-caloric cooling effect in conjunction with thermo-mechanical circulation pump schemes, has been assessed (but not quantified yet to the extent desirable). A third example is quoted in conjunction with superfluid wind tunnel studies and liquid helium tow tank for surface vessels respectively. In all of these (partially future) R and D areas, the question of refrigerator effectiveness using the mechano-caloric effect appears to be relevant, possibly in conjunction with questions of reliability and simplicity. The present work is concerned with quantification of phenomena including simplified thermodynamic cycle calculations.

  2. Muon Beam Helical Cooling Channel Design

    SciTech Connect

    Johnson, Rolland; Ankenbrandt, Charles; Flanagan, G.; Kazakevich, G.M.; Marhauser, Frank; Neubauer, Michael; Roberts, T.; Yoshikawa, C.; Derbenev, Yaroslav; Morozov, Vasiliy; Kashikhin, V.S.; Lopes, Mattlock; Tollestrup, A.; Yonehara, Katsuya; Zloblin, A.

    2013-06-01

    The Helical Cooling Channel (HCC) achieves effective ionization cooling of the six-dimensional (6d) phase space of a muon beam by means of a series of 21st century inventions. In the HCC, hydrogen-pressurized RF cavities enable high RF gradients in strong external magnetic fields. The theory of the HCC, which requires a magnetic field with solenoid, helical dipole, and helical quadrupole components, demonstrates that dispersion in the gaseous hydrogen energy absorber provides effective emittance exchange to enable longitudinal ionization cooling. The 10-year development of a practical implementation of a muon-beam cooling device has involved a series of technical innovations and experiments that imply that an HCC of less than 300 m length can cool the 6d emittance of a muon beam by six orders of magnitude. We describe the design and construction plans for a prototype HCC module based on oxygen-doped hydrogen-pressurized RF cavities that are loaded with dielectric, fed by magnetrons, and operate in a superconducting helical solenoid magnet.

  3. Conduction and cooling flows

    E-print Network

    L. M. Voigt; R. W. Schmidt; A. C. Fabian; S. W. Allen; R. M. Johnstone

    2002-06-13

    Chandra and XMM-Newton observations have confirmed the presence of large temperature gradients within the cores of many relaxed clusters of galaxies. Here we investigate whether thermal conduction operating over those gradients can supply sufficient heat to offset radiative cooling. Narayan & Medvedev (2001) and Gruzinov (2002) have noted, using published results on cluster temperatures, that conduction within a factor of a few of the Spitzer rate is sufficient to balance bremsstrahlung cooling. From a detailed study of the temperature and emission measure profiles of Abell 2199 and Abell 1835, we find that the heat flux required by conduction is consistent with or below the rate predicted by Spitzer in the outer regions of the core. Conduction may therefore explain the lack of observational evidence for large mass cooling rates inferred from arguments based simply on radiative cooling, provided that conductivity is suppressed by no more than a factor of three below the full Spitzer rate. To stem cooling in the cluster centre, however, would necessitate conductivity values at least a factor of two larger than the Spitzer values, which we consider implausible. This may provide an explanation for the observed star formation and optical nebulosities in cluster cores. The solution is likely to be time dependent. We briefly discuss the possible origin of the cooler gas and the implications for massive galaxies.

  4. Cooling-water treatment

    SciTech Connect

    Puckorius, P.R.; Strauss, S.D.

    1995-05-01

    This article examines how new chemicals, application technology, and control systems enhance treatment of water for cooling and powerplant reuse, while minimizing discharges to protect the environment. Effective operation of cooling-water treatment systems continues to hinge on the control of scaling, fouling, and corrosion. Though these maladies have not changed in nature over recent years, the operating problems encountered have intensified considerably. Depletion and degradation of water sources and environmental concerns have been the driving forces for change. In some states, regulations--such as California`s Title 22--now mandate the use of reclaimed water (treated sewage) and are harbingers of future trends. While these and other influences combine to reduce freshwater consumption and wastewater discharge, they force reliance on poorer-quality, more aggressive water in powerplant cooling systems. Responses to the challenge include a continuing move from once-through to recirculating systems featuring cooling towers, higher-cycle operation of existing cooling-tower systems, and improvements in treatment chemicals, technology, and controls.

  5. Cooling Atomic Gases With Disorder.

    PubMed

    Paiva, Thereza; Khatami, Ehsan; Yang, Shuxiang; Rousseau, Valéry; Jarrell, Mark; Moreno, Juana; Hulet, Randall G; Scalettar, Richard T

    2015-12-11

    Cold atomic gases have proven capable of emulating a number of fundamental condensed matter phenomena including Bose-Einstein condensation, the Mott transition, Fulde-Ferrell-Larkin-Ovchinnikov pairing, and the quantum Hall effect. Cooling to a low enough temperature to explore magnetism and exotic superconductivity in lattices of fermionic atoms remains a challenge. We propose a method to produce a low temperature gas by preparing it in a disordered potential and following a constant entropy trajectory to deliver the gas into a nondisordered state which exhibits these incompletely understood phases. We show, using quantum Monte Carlo simulations, that we can approach the Néel temperature of the three-dimensional Hubbard model for experimentally achievable parameters. Recent experimental estimates suggest the randomness required lies in a regime where atom transport and equilibration are still robust. PMID:26705614

  6. Solar-powered cooling system

    DOEpatents

    Farmer, Joseph C.

    2015-07-28

    A solar-powered adsorption-desorption refrigeration and air conditioning system that uses nanostructural materials such as aerogels, zeolites, and sol gels as the adsorptive media. Refrigerant molecules are adsorbed on the high surface area of the nanostructural material while the material is at a relatively low temperature, perhaps at night. During daylight hours, when the nanostructural materials is heated by the sun, the refrigerant are thermally desorbed from the surface of the aerogel, thereby creating a pressurized gas phase in the vessel that contains the aerogel. This solar-driven pressurization forces the heated gaseous refrigerant through a condenser, followed by an expansion valve. In the condenser, heat is removed from the refrigerant, first by circulating air or water. Eventually, the cooled gaseous refrigerant expands isenthalpically through a throttle valve into an evaporator, in a fashion similar to that in more conventional vapor recompression systems.

  7. Emergency cooling system and method

    DOEpatents

    Oosterkamp, W.J.; Cheung, Y.K.

    1994-01-04

    An improved emergency cooling system and method are disclosed that may be adapted for incorporation into or use with a nuclear BWR wherein a reactor pressure vessel (RPV) containing a nuclear core and a heat transfer fluid for circulation in a heat transfer relationship with the core is housed within an annular sealed drywell and is fluid communicable therewith for passage thereto in an emergency situation the heat transfer fluid in a gaseous phase and any noncondensibles present in the RPV, an annular sealed wetwell houses the drywell, and a pressure suppression pool of liquid is disposed in the wetwell and is connected to the drywell by submerged vents. The improved emergency cooling system and method has a containment condenser for receiving condensible heat transfer fluid in a gaseous phase and noncondensibles for condensing at least a portion of the heat transfer fluid. The containment condenser has an inlet in fluid communication with the drywell for receiving heat transfer fluid and noncondensibles, a first outlet in fluid communication with the RPV for the return to the RPV of the condensed portion of the heat transfer fluid and a second outlet in fluid communication with the drywell for passage of the noncondensed balance of the heat transfer fluid and the noncondensibles. The noncondensed balance of the heat transfer fluid and the noncondensibles passed to the drywell from the containment condenser are mixed with the heat transfer fluid and the noncondensibles from the RPV for passage into the containment condenser. A water pool is provided in heat transfer relationship with the containment condenser and is thermally communicable in an emergency situation with an environment outside of the drywell and the wetwell for conducting heat transferred from the containment condenser away from the wetwell and the drywell. 5 figs.

  8. Cooling of neutron stars

    NASA Technical Reports Server (NTRS)

    Pethick, C. J.

    1992-01-01

    It is at present impossible to predict the interior constitution of neutron stars based on theory and results from laboratory studies. It has been proposed that it is possible to obtain information on neutron star interiors by studying thermal radiation from their surfaces, because neutrino emission rates, and hence the temperature of the central part of a neutron star, depend on the properties of dense matter. The theory predicts that neutron stars cool relatively slowly if their cores are made up of nucleons, and cool faster if the matter is in an exotic state, such as a pion condensate, a kaon condensate, or quark matter. This view has recently been questioned by the discovery of a number of other processes that could lead to copious neutrino emission and rapid cooling.

  9. ELECTRON COOLING OF RHIC.

    SciTech Connect

    BEN-ZVI, I.; LITVINENKO, V.; BARTON, D.; ET AL.

    2005-05-16

    We report progress on the R&D program for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This electron cooler is designed to cool 100 GeV/nucleon at storage energy using 54 MeV electrons. The electron source will be a superconducting RF photocathode gun. The accelerator will be a superconducting energy recovery linac. The frequency of the accelerator is set at 703.75 MHz. The maximum electron bunch frequency is 9.38 MHz, with bunch charge of 20 nC. The R&D program has the following components: The photoinjector and its photocathode, the superconducting linac cavity, start-to-end beam dynamics with magnetized electrons, electron cooling calculations including benchmarking experiments and development of a large superconducting solenoid. The photoinjector and linac cavity are being incorporated into an energy recovery linac aimed at demonstrating ampere class current at about 20 MeV.

  10. STOCHASTIC COOLING FOR RHIC.

    SciTech Connect

    BLASKIEWICZ,M.BRENNAN,J.M.CAMERON,P.WEI,J.

    2003-05-12

    Emittance growth due to Intra-Beam Scattering significantly reduces the heavy ion luminosity lifetime in RHIC. Stochastic cooling of the stored beam could improve things considerably by counteracting IBS and preventing particles from escaping the rf bucket [1]. High frequency bunched-beam stochastic cooling is especially challenging but observations of Schottky signals in the 4-8 GHz band indicate that conditions are favorable in RHIC [2]. We report here on measurements of the longitudinal beam transfer function carried out with a pickup kicker pair on loan from FNAL TEVATRON. Results imply that for ions a coasting beam description is applicable and we outline some general features of a viable momentum cooling system for RHIC.

  11. Passive containment cooling system

    DOEpatents

    Billig, P.F.; Cooke, F.E.; Fitch, J.R.

    1994-01-25

    A passive containment cooling system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel and is vented to the drywell. An isolation pool is disposed above the GDCS pool and includes an isolation condenser therein. The condenser has an inlet line disposed in flow communication with the drywell for receiving the non-condensable gas along with any steam released therein following a loss-of-coolant accident (LOCA). The condenser also has an outlet line disposed in flow communication with the drywell for returning to the drywell both liquid condensate produced upon cooling of the steam and the non-condensable gas for reducing pressure within the containment vessel following the LOCA. 1 figure.

  12. Passive containment cooling system

    DOEpatents

    Billig, Paul F. (San Jose, CA); Cooke, Franklin E. (San Jose, CA); Fitch, James R. (San Jose, CA)

    1994-01-01

    A passive containment cooling system includes a containment vessel surrounding a reactor pressure vessel and defining a drywell therein containing a non-condensable gas. An enclosed wetwell pool is disposed inside the containment vessel, and a gravity driven cooling system (GDCS) pool is disposed above the wetwell pool in the containment vessel and is vented to the drywell. An isolation pool is disposed above the GDCS pool and includes an isolation condenser therein. The condenser has an inlet line disposed in flow communication with the drywell for receiving the non-condensable gas along with any steam released therein following a loss-of-coolant accident (LOCA). The condenser also has an outlet line disposed in flow communication with the drywell for returning to the drywell both liquid condensate produced upon cooling of the steam and the non-condensable gas for reducing pressure within the containment vessel following the LOCA.

  13. Laser-Cooling-Assisted Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Schneider, Christian; Schowalter, Steven J.; Chen, Kuang; Sullivan, Scott T.; Hudson, Eric R.

    2014-09-01

    Mass spectrometry is used in a wide range of scientific disciplines including proteomics, pharmaceutics, forensics, and fundamental physics and chemistry. Given this ubiquity, there is a worldwide effort to improve the efficiency and resolution of mass spectrometers. However, the performance of all techniques is ultimately limited by the initial phase-space distribution of the molecules being analyzed. Here, we dramatically reduce the width of this initial phase-space distribution by sympathetically cooling the input molecules with laser-cooled, cotrapped atomic ions, improving both the mass resolution and detection efficiency of a time-of-flight mass spectrometer by over an order of magnitude. Detailed molecular-dynamics simulations verify the technique and aid with evaluating its effectiveness. This technique appears to be applicable to other types of mass spectrometers.

  14. Superconductor rotor cooling system

    DOEpatents

    Gamble, Bruce B. (Wellesley, MA); Sidi-Yekhlef, Ahmed (Framingham, MA); Schwall, Robert E. (Northborough, MA); Driscoll, David I. (South Euclid, OH); Shoykhet, Boris A. (Beachwood, OH)

    2002-01-01

    A system for cooling a superconductor device includes a cryocooler located in a stationary reference frame and a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with a rotating reference frame in which the superconductor device is located. A method of cooling a superconductor device includes locating a cryocooler in a stationary reference frame, and transferring heat from a superconductor device located in a rotating reference frame to the cryocooler through a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with the rotating reference frame.

  15. Superconductor rotor cooling system

    DOEpatents

    Gamble, Bruce B.; Sidi-Yekhlef, Ahmed; Schwall, Robert E.; Driscoll, David I.; Shoykhet, Boris A.

    2004-11-02

    A system for cooling a superconductor device includes a cryocooler located in a stationary reference frame and a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with a rotating reference frame in which the superconductor device is located. A method of cooling a superconductor device includes locating a cryocooler in a stationary reference frame, and transferring heat from a superconductor device located in a rotating reference frame to the cryocooler through a closed circulation system external to the cryocooler. The closed circulation system interfaces the stationary reference frame with the rotating reference frame.

  16. Anomalous law of cooling

    NASA Astrophysics Data System (ADS)

    Lapas, Luciano C.; Ferreira, Rogelma M. S.; Rubí, J. Miguel; Oliveira, Fernando A.

    2015-03-01

    We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergoes a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton's law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature may oscillate. Despite this anomalous behavior, we show that the variation of entropy remains always positive in accordance with the second law of thermodynamics.

  17. Quantum thermodynamic cooling cycle.

    PubMed

    Palao, J P; Kosloff, R; Gordon, J M

    2001-11-01

    The quantum-mechanical and thermodynamic properties of a three-level molecular cooling cycle are derived. An inadequacy of earlier models is rectified in accounting for the spontaneous emission and absorption associated with the coupling to the coherent driving field via an environmental reservoir. This additional coupling need not be dissipative, and can provide a thermal driving force-the quantum analog of classical absorption chillers. The dependence of the maximum attainable cooling rate on temperature, at ultralow temperatures, is determined and shown to respect the recently established fundamental bound based on the second and third laws of thermodynamics. PMID:11736037

  18. Combustor liner cooling system

    DOEpatents

    Lacy, Benjamin Paul; Berkman, Mert Enis

    2013-08-06

    A combustor liner is disclosed. The combustor liner includes an upstream portion, a downstream end portion extending from the upstream portion along a generally longitudinal axis, and a cover layer associated with an inner surface of the downstream end portion. The downstream end portion includes the inner surface and an outer surface, the inner surface defining a plurality of microchannels. The downstream end portion further defines a plurality of passages extending between the inner surface and the outer surface. The plurality of microchannels are fluidly connected to the plurality of passages, and are configured to flow a cooling medium therethrough, cooling the combustor liner.

  19. Anomalous law of cooling.

    PubMed

    Lapas, Luciano C; Ferreira, Rogelma M S; Rubí, J Miguel; Oliveira, Fernando A

    2015-03-14

    We analyze the temperature relaxation phenomena of systems in contact with a thermal reservoir that undergoes a non-Markovian diffusion process. From a generalized Langevin equation, we show that the temperature is governed by a law of cooling of the Newton's law type in which the relaxation time depends on the velocity autocorrelation and is then characterized by the memory function. The analysis of the temperature decay reveals the existence of an anomalous cooling in which the temperature may oscillate. Despite this anomalous behavior, we show that the variation of entropy remains always positive in accordance with the second law of thermodynamics. PMID:25770525

  20. Physiologic and Functional Responses of MS Patients to Body Cooling Using Commercially Available Cooling Garments

    NASA Technical Reports Server (NTRS)

    Ku, Yu-Tsuan E.; Montgomery, Leslie D.; Lee, Hank C.; Luna, Bernadette; Webbon, Bruce W.; Mead, Susan C. (Technical Monitor)

    1999-01-01

    Personal cooling systems are widely used in industrial and aerospace environments to alleviate thermal stress. Increasingly they are also used by heat sensitive multiple sclerosis (HSMS) patients to relieve symptoms and improve quality of life. There are a variety of cooling systems commercially available to the MS community. However, little information is available regarding the comparative physiological changes produced by routine operation of these various systems. The objective of this study was to document and compare the patient response to two passive cooling vests and one active cooling garment. The Life Enhancement Technology, Inc. (LET) lightweight active cooling vest with cap, the MicroClimate Systems (MCS) Change of Phase garment, and the Steele Vest were each used to cool 13 male and 13 female MS subjects (31 to 67 yr.) in this study. The subjects, seated in an upright position at normal room temperature (approximately 22 C), were tested with one of the cooling garments. Oral, fight and left ear temperatures were logged manually every 5 min. An-n, leg, chest and rectal temperatures; heart rate; and respiration were recorded continuously on a U.F.I., Inc. Biolog ambulatory monitor. Each subject was given a series of subjective and objective evaluation tests before and after cooling. The LET and Steele vests test groups had similar, significant (P less than 0.01) cooling effects on oral and ear canal temperature, which decreased approximately 0.4 C, and 0.3 C, respectively. Core temperature increased (N.S.) with all three vests during cooling. The LET vest produced the coldest (P less than 0.01) skin temperature. Overall, the LET vest provided the most improvement on subjective and objective performance measures. These results show that the garment configurations tested do not elicit a similar thermal response in all MS patients. Cooling with the LET active garment configuration resulted in the lowest body temperatures for the MS subjects; cooling with the MCS vest was least effective. For functional responses, the LET test group performed better than the other two vests.

  1. Stochastic cooling of bunched beams from fluctuation and kinetic theory

    SciTech Connect

    Chattopadhyay, S.

    1982-09-01

    A theoretical formalism for stochastic phase-space cooling of bunched beams in storage rings is developed on the dual basis of classical fluctuation theory and kinetic theory of many-body systems in phase-space. The physics is that of a collection of three-dimensional oscillators coupled via retarded nonconservative interactions determined by an electronic feedback loop. At the heart of the formulation is the existence of several disparate time-scales characterizing the cooling process. Both theoretical approaches describe the cooling process in the form of a Fokker-Planck transport equation in phase-space valid up to second order in the strength and first order in the auto-correlation of the cooling signal. With neglect of the collective correlations induced by the feedback loop, identical expressions are obtained in both cases for the coherent damping and Schottky noise diffusion coefficients. These are expressed in terms of Fourier coefficients in a harmonic decomposition in angle of the generalized nonconservative cooling force written in canonical action-angle variables of the particles in six-dimensional phase-space. Comparison of analytic results to a numerical simulation study with 90 pseudo-particles in a model cooling system is presented.

  2. Cooling System Using Natural Circulation for Air Conditioning

    NASA Astrophysics Data System (ADS)

    Okazaki, Takashi; Seshimo, Yu

    In this paper, Cooling systems with natural circulation loop of refrigerants are reviewed. The cooling system can largely reduce energy consumption of a cooling system for the telecommunication base site. The cooling system consists of two refrigeration units; vapor compression refrigeration unit and sub-cooling unit with a natural-circulation loop. The experiments and calculations were carried out to evaluate the cycle performance of natural circulation loop with HFCs and CO2. The experimental results showed that the cooling capacity of R410A is approximately 30% larger than that of R407C at the temperature difference of 20K and the cooling capacity of CO2 was approximately 4-13% larger than that of R410A under the two-phase condition. On the other hand, the cooling capacity of CO2 was approximately 11% smaller than that of R410A under the supercritical condition. The cooling capacity took a maximum value at an amount of refrigerant and lineally increased as the temperature difference increases and the slightly increased as the height difference. The air intake temperature profile in the inlet of the heat exchangers makes the reverse circulation under the supercritical state and the driving head difference for the reverse circulation depends on the density change to temperature under the supercritical state. Also, a new fan control method to convert the reverse circulation into the normal circulation was reviewed.

  3. Turbomachine rotor with improved cooling

    DOEpatents

    Hultgren, K.G.; McLaurin, L.D.; Bertsch, O.L.; Lowe, P.E.

    1998-05-26

    A gas turbine rotor has an essentially closed loop cooling air scheme in which cooling air drawn from the compressor discharge air that is supplied to the combustion chamber is further compressed, cooled, and then directed to the aft end of the turbine rotor. Downstream seal rings attached to the downstream face of each rotor disc direct the cooling air over the downstream disc face, thereby cooling it, and then to cooling air passages formed in the rotating blades. Upstream seal rings attached to the upstream face of each disc direct the heated cooling air away from the blade root while keeping the disc thermally isolated from the heated cooling air. From each upstream seal ring, the heated cooling air flows through passages in the upstream discs and is then combined and returned to the combustion chamber from which it was drawn. 5 figs.

  4. Turbomachine rotor with improved cooling

    DOEpatents

    Hultgren, Kent Goran (Winter Park, FL); McLaurin, Leroy Dixon (Winter Springs, FL); Bertsch, Oran Leroy (Titusville, FL); Lowe, Perry Eugene (Oviedo, FL)

    1998-01-01

    A gas turbine rotor has an essentially closed loop cooling air scheme in which cooling air drawn from the compressor discharge air that is supplied to the combustion chamber is further compressed, cooled, and then directed to the aft end of the turbine rotor. Downstream seal rings attached to the downstream face of each rotor disc direct the cooling air over the downstream disc face, thereby cooling it, and then to cooling air passages formed in the rotating blades. Upstream seal rings attached to the upstream face of each disc direct the heated cooling air away from the blade root while keeping the disc thermally isolated from the heated cooling air. From each upstream seal ring, the heated cooling air flows through passages in the upstream discs and is then combined and returned to the combustion chamber from which it was drawn.

  5. Curved film cooling admission tube

    NASA Technical Reports Server (NTRS)

    Graham, R. W.; Papell, S. S. (inventors)

    1980-01-01

    Effective film cooling to protect a wall surface from a hot fluid which impinges on or flows along the surface is provided. A film of cooling fluid having increased area is provided by changing the direction of a stream of cooling fluid through an angle of from 135 deg. to 165 deg. before injecting it through the wall into the hot flowing gas. The 1, cooling fluid is injected from an orifice through a wall into a hot flowing gas at an angle to form a cooling fluid film. Cooling fluid is supplied to the orifice from a cooling fluid source via a turbulence control passageway having a curved portion between two straight portions. The angle through which the direction of the cooling fluid is turned results in less mixing of the cooling fluid with the hot gas, thereby substantially increasing the length of the film in a downstream direction.

  6. Safe motherhood and district health systems.

    PubMed

    Tarimo, E

    1996-10-01

    Although WHO and many countries are intensifying their efforts to improve the performance of district health systems, a lot remains to be done. The district is the most peripheral fully-organized unit of local government. As it is small enough for health staff to observe and understand major problems and developments, the district offers great opportunities for action on maternal mortality. A number of these potentials are elaborated. They include the availability of intersectoral mechanisms, a network of health facilities with at least a district hospital, the presence of non-governmental organizations, and other informal mechanisms that will enable "counting and accounting' of maternal deaths to be made. Reduction in maternal mortality is a good indication of improved performance of district health systems. It will be argued that the "district focus' is the way forward in the fight against maternal mortality. PMID:8909950

  7. Accountability in district nursing practice: key concepts.

    PubMed

    Griffith, Richard

    2015-03-01

    Public trust and confidence in district nurses is essential to the nurse-patient relationship that underpins effective care and treatment. That trust and confidence has even greater focus for district nurses who care for patients in their own homes. Those patients need to be able to count on the professionalism and probity of their district nurses. The professionalism and probity of district nurses is based on their accountability, which protects the public by imposing standards on district nurses and holds them answerable for their acts and omissions. This is the first of a series of articles on accountability in district nursing practice to mark the introduction of the revised Nursing and Midwifery Code on the 31 March 2015. This month's article considers the key concepts of accountability. PMID:25754783

  8. 77 FR 21556 - Don Pedro Hydroelectric Project: Turlock Irrigation District; Modesto Irrigation District...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ...Federal Energy Regulatory Commission [Project No. 2299-075] Don Pedro Hydroelectric Project: Turlock Irrigation District; Modesto Irrigation District; Supplement to Notice of Study Dispute Resolution Technical Conference On March 16,...

  9. 77 FR 21556 - Don Pedro Hydroelectric Project: Turlock Irrigation District; Modesto Irrigation District...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-10

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Don Pedro Hydroelectric Project: Turlock Irrigation District; Modesto Irrigation District; Supplement to Notice of Study Dispute Resolution Technical Conference On March 16,...

  10. ELECTRON COOLING STUDY FOR MEIC

    SciTech Connect

    He, Zhang; Douglas, David R.; Derbenev, Yaroslav S.; Zhang, Yuhong

    2015-09-01

    Electron cooling of the ion beams is one critical R&D to achieve high luminosities in JLab's MEIC proposal. In the present MEIC design, a multi-staged cooling scheme is adapted, which includes DC electron cooling in the booster ring and bunched beam electron cooling in the collider ring at both the injection energy and the collision energy. We explored the feasibility of using both magnetized and non-magnetized electron beam for cooling, and concluded that a magnetized electron beam is necessary. Electron cooling simulation results for the newly updated MEIC design is also presented.

  11. Got Web? Investing in a District Website

    ERIC Educational Resources Information Center

    Swann, Patricia A.

    2006-01-01

    School and school district websites began to mushroom in the mid-1990s in what looked like a rush to stake a cyber-claim in a new frontier. As a byproduct, these early experiments also seemed like a good place to let parents know what is going on in the local school district. Today, it is all too easy to find district websites that are little more…

  12. Guide to Cool Roofs

    SciTech Connect

    2011-02-01

    Traditional dark-colored roofing materials absorb sunlight, making them warm in the sun and increasing the need for air conditioning. White or special "cool color" roofs absorb less sunlight, stay cooler in the sun and transmit less heat into the building.

  13. Warm and Cool Cityscapes

    ERIC Educational Resources Information Center

    Jubelirer, Shelly

    2012-01-01

    Painting cityscapes is a great way to teach first-grade students about warm and cool colors. Before the painting begins, the author and her class have an in-depth discussion about big cities and what types of buildings or structures that might be seen in them. They talk about large apartment and condo buildings, skyscrapers, art museums,…

  14. COOLING TOWER PLUME MODEL

    EPA Science Inventory

    A review of recently reported cooling tower plume models yields none that is universally accepted. The entrainment and drag mechanisms and the effect of moisture on the plume trajectory are phenomena which are treated differently by various investigators. In order to better under...

  15. Transpiration Cooling Experiment

    NASA Technical Reports Server (NTRS)

    Song, Kyo D.; Ries, Heidi R.; Scotti, Stephen J.; Choi, Sang H.

    1997-01-01

    The transpiration cooling method was considered for a scram-jet engine to accommodate thermally the situation where a very high heat flux (200 Btu/sq. ft sec) from hydrogen fuel combustion process is imposed to the engine walls. In a scram-jet engine, a small portion of hydrogen fuel passes through the porous walls of the engine combustor to cool the engine walls and at the same time the rest passes along combustion chamber walls and is preheated. Such a regenerative system promises simultaneously cooling of engine combustor and preheating the cryogenic fuel. In the experiment, an optical heating method was used to provide a heat flux of 200 Btu/sq. ft sec to the cylindrical surface of a porous stainless steel specimen which carried helium gas. The cooling efficiencies by transpiration were studied for specimens with various porosity. The experiments of various test specimens under high heat flux have revealed a phenomenon that chokes the medium flow when passing through a porous structure. This research includes the analysis of the system and a scaling conversion study that interprets the results from helium into the case when hydrogen medium is used.

  16. Cooling Towers, The Debottleneckers 

    E-print Network

    Burger, R.

    1998-01-01

    Power generating plants and petro-chemical works are always expanding. An on-going problem is to identify and de-bottle neck restricting conditions of growth. The cooling tower is a highly visible piece of equipment. Most industrial crossflow units...

  17. ELECTRON COOLING FOR RHIC.

    SciTech Connect

    BEN-ZVI,I.

    2001-05-13

    The Accelerator Collider Department (CAD) at Brookhaven National Laboratory is operating the Relativistic Heavy Ion Collider (RHIC), which includes the dual-ring, 3.834 km circumference superconducting collider and the venerable AGS as the last part of the RHIC injection chain. CAD is planning on a luminosity upgrade of the machine under the designation RHIC II. One important component of the RHIC II upgrade is electron cooling of RHIC gold ion beams. For this purpose, BNL and the Budker Institute of Nuclear Physics in Novosibirsk entered into a collaboration aimed initially at the development of the electron cooling conceptual design, resolution of technical issues, and finally extend the collaboration towards the construction and commissioning of the cooler. Many of the results presented in this paper are derived from the Electron Cooling for RHIC Design Report [1], produced by the, BINP team within the framework of this collaboration. BNL is also collaborating with Fermi National Laboratory, Thomas Jefferson National Accelerator Facility and the University of Indiana on various aspects of electron cooling.

  18. Elementary stochastic cooling

    SciTech Connect

    Tollestrup, A.V.; Dugan, G

    1983-12-01

    Major headings in this review include: proton sources; antiproton production; antiproton sources and Liouville, the role of the Debuncher; transverse stochastic cooling, time domain; the accumulator; frequency domain; pickups and kickers; Fokker-Planck equation; calculation of constants in the Fokker-Planck equation; and beam feedback. (GHT)

  19. Stability of cooled beams

    NASA Astrophysics Data System (ADS)

    Bosser, J.; Carli, C.; Chanel, M.; Madsen, N.; Maury, S.; Möhl, D.; Tranquille, G.

    2000-02-01

    Because of their high density together with extremely small spreads in betatron frequency and momentum, cooled beams are very vulnerable to incoherent and coherent space-charge effects and instabilities. Moreover, the cooling system itself, i.e. the electron beam in the case of e-cooling, presents large linear and non-linear "impedances" to the circulating ion beam, in addition to the usual beam-environment coupling impedances of the storage ring. Beam blow-up and losses, attributed to such effects, have been observed in virtually all the existing electron cooling rings. The adverse effects seem to be more pronounced in those rings, like CELSIUS, that are equipped with a cooler capable of reaching the presently highest energy (100-300 keV electrons corresponding to 180-560 MeV protons). The stability conditions will be revisited with emphasis on the experience gained at LEAR. It will be argued that for all present coolers, three conditions are necessary (although probably not sufficient) for the stability of intense cold beams: (i) operation below transition energy, (ii) active damping to counteract coherent instability, and (iii) careful control of the e-beam neutralisation. An extrapolation to the future "medium energy coolers", planned to work for (anti)protons of several GeV, will also be attempted.

  20. Electron Cooling of RHIC

    SciTech Connect

    I. Ben-Zvi; D.S. Barton; D.B. Beavis; M. Blaskiewicz; J.M. Brennan; A. Burrill; R. Calaga; P. Cameron; X.Y. Chang; R. Connolly; Yu.I. Eidelman; A.V. Fedotov; W. Fischer; D.M. Gassner; H. Hahn; M. Harrison; A. Hershcovitch; H.-C. Hseuh; A.K. Jain; P.D.J. Johnson; D. Kayran; J. Kewisch; R.F. Lambiase; V. Litvinenko; W.W. MacKay; G.J. Mahler; N. Malitsky; G.T. McIntyre; W. Meng; K.A.M. Mirabella; C. Montag; T.C.N. Nehring; T. Nicoletti; B. Oerter; G. Parzen; D. Pate; J. Rank; T. Rao; T. Roser; T. Russo; J. Scaduto; K. Smith; D. Trbojevic; G. Wang; J. Wei; N.W.W. Williams; K.-C. Wu; V. Yakimenko; A. Zaltsman; Y. Zhao; D.T. Abell; D.L. Bruhwiler; H. Bluem; A. Burger; M.D. Cole; A.J. Favale; D. Holmes; J. Rathke; T. Schultheiss; A.M.M. Todd; A.V. Burov; S. Nagaitsev; J.R. Delayen; Y.S. Derbenev; L. W. Funk; P. Kneisel; L. Merminga; H.L. Phillips; J.P. Preble; I. Koop; V.V. Parkhomchuk; Y.M. Shatunov; A.N. Skrinsky; I. Koop; V.V. Parkhomchuk; Y.M. Shatunov; A.N. Skrinsky; J.S. Sekutowicz

    2005-05-16

    We report progress on the R&D program for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This electron cooler is designed to cool 100 GeV/nucleon at storage energy using 54 MeV electrons. The electron source will be a superconducting RF photocathode gun. The accelerator will be a superconducting energy recovery linac. The frequency of the accelerator is set at 703.75 MHz. The maximum electron bunch frequency is 9.38 MHz, with bunch charge of 20 nC. The R&D program has the following components: The photoinjector and its photocathode, the superconducting linac cavity, start-to-end beam dynamics with magnetized electrons, electron cooling calculations including benchmarking experiments and development of a large superconducting solenoid. The photoinjector and linac cavity are being incorporated into an energy recovery linac aimed at demonstrating ampere class current at about 20 MeV. A Zeroth Order Design Report is in an advanced draft state, and can be found on the web at http://www.agsrhichome.bnl.gov/eCool/.

  1. Measure Guideline: Ventilation Cooling

    SciTech Connect

    Springer, D.; Dakin, B.; German, A.

    2012-04-01

    The purpose of this measure guideline is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  2. Brain cooling therapy.

    PubMed

    Gancia, P; Pomero, G

    2010-06-01

    Therapeutic hypothermia (whole body or selective head cooling) is becoming standard of care for brain injury in infants with perinatal hypoxic ischemic encephalopathy (HIE). Brain cooling reduces the rate of apoptosis and early necrosis, reduces cerebral metabolic rate and the release of nitric oxide and free radicals. Animal models of perinatal brain injury show histological and functional improvement due to of early hypothermia. The brain protection depends on the temperature and time delay between insult and beginning of treatment (more effective with cooling to 33 +/- 0.5 degrees C, and less than 6 hours after hypoxic-ischemic insult). Recent meta-analyses and systematic reviews in human neonates show reduction in mortality and long-term neurodevelopmental disability at 12-24 months of age, with more favourable effects in the less severe forms of HIE. The authors describe their experience in 53 term newborns with moderate-severe HIE treated with whole body cooling between 2001 and 2009, and studied with magnetic resonance imaging (MRI) and general movements (GMs) assessment. The creation of a network connecting the Neonatal Intensive Care Unit with the level I-II hospitals of the reference area, as part of regional network, is of paramount importance to enroll potential candidates and to start therapeutic hypothermia within optimal time window. PMID:21089736

  3. Ground Water Cooling System 

    E-print Network

    Greaves, K.; Chave, G. H.

    1984-01-01

    has a total shop area of 128,000 square feet and the majority of the machine tools are equipped with computerized numerical controls. The cooling system was designed around five (5) floor mounted, 50,000 CFM, air handling units which had been...

  4. Cooling Towers- Energy Conservation Strategies Understanding Cooling Towers 

    E-print Network

    Smith, M.

    1991-01-01

    Cooling towers are energy conservation devices that Management, more often than not, historically overlooks in the survey of strategies for plant operating efficiencies. The utilization of the colder water off the cooling tower is the money maker!...

  5. 7 CFR 922.14 - District.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE APRICOTS GROWN IN DESIGNATED COUNTIES IN WASHINGTON Order Regulating Handling Definitions § 922.14 District....

  6. 7 CFR 922.14 - District.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE APRICOTS GROWN IN DESIGNATED COUNTIES IN WASHINGTON Order Regulating Handling Definitions § 922.14 District....

  7. 7 CFR 922.14 - District.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE APRICOTS GROWN IN DESIGNATED COUNTIES IN WASHINGTON Order Regulating Handling Definitions § 922.14 District....

  8. 7 CFR 922.14 - District.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE APRICOTS GROWN IN DESIGNATED COUNTIES IN WASHINGTON Order Regulating Handling Definitions § 922.14 District....

  9. 7 CFR 922.14 - District.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE APRICOTS GROWN IN DESIGNATED COUNTIES IN WASHINGTON Order Regulating Handling Definitions § 922.14 District....

  10. 7 CFR 905.13 - District.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE ORANGES, GRAPEFRUIT, TANGERINES, AND...) Citrus District Two shall include the Counties of Osceola, Orange, Seminole, Alachua, Putnam, St....

  11. 7 CFR 905.13 - District.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE ORANGES, GRAPEFRUIT, TANGERINES, AND...) Citrus District Two shall include the Counties of Osceola, Orange, Seminole, Alachua, Putnam, St....

  12. 7 CFR 905.13 - District.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ORANGES, GRAPEFRUIT, TANGERINES, AND...) Citrus District Two shall include the Counties of Osceola, Orange, Seminole, Alachua, Putnam, St....

  13. 7 CFR 905.13 - District.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ORANGES, GRAPEFRUIT, TANGERINES, AND...) Citrus District Two shall include the Counties of Osceola, Orange, Seminole, Alachua, Putnam, St....

  14. 7 CFR 905.13 - District.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE ORANGES, GRAPEFRUIT, TANGERINES, AND...) Citrus District Two shall include the Counties of Osceola, Orange, Seminole, Alachua, Putnam, St....

  15. 7 CFR 1210.401 - District conventions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE WATERMELON RESEARCH AND... Watermelon Promotion Board. Each district, as defined in § 1210.501, is entitled to two producer and...

  16. 7 CFR 1210.401 - District conventions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE WATERMELON RESEARCH AND... Watermelon Promotion Board. Each district, as defined in § 1210.501, is entitled to two producer and...

  17. 7 CFR 1210.401 - District conventions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE WATERMELON RESEARCH AND... Watermelon Promotion Board. Each district, as defined in § 1210.501, is entitled to two producer and...

  18. 7 CFR 1210.401 - District conventions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE WATERMELON RESEARCH AND... Watermelon Promotion Board. Each district, as defined in § 1210.501, is entitled to two producer and...

  19. 7 CFR 1210.401 - District conventions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE WATERMELON RESEARCH AND... Watermelon Promotion Board. Each district, as defined in § 1210.501, is entitled to two producer and...

  20. Budget Stability, Revenue Volatility, and District Relations: Determinants of Georgia ELOST Distribution to Municipal School Districts

    ERIC Educational Resources Information Center

    Reinagel, Tyler P.

    2014-01-01

    School districts across the United States are often forced into situations where limited public funds must be distributed among multiple districts. These are often reliant on distribution rates negotiated by district leadership and elected officials. An example of this is Georgia's 1% Education Local Option Sales Tax (ELOST). The tax is collected…

  1. A Report and Estimating Tool for K-12 School Districts. Missouri District Case Study

    ERIC Educational Resources Information Center

    Consortium for School Networking, 2004

    2004-01-01

    The Missouri district is a small rural school district with 450 students and 51 staff with a total of 210 client computers. The district consists of two schools (K-6 and 7-12) housed in a single building. This document contains the results of the four 2004 Total Cost of Ownership (TCO) case studies: (1) Software costs; (2) Hardware costs; (3)…

  2. Towards a Healthy District: Organizing and Managing District Health Systems Based on Primary Health Care.

    ERIC Educational Resources Information Center

    Tarimo, E.

    This book is concerned with orienting health care workers in district health systems in developing countries to ways and means of overcoming problems, and describes briefly how district health systems can be improved. The book is organized around nine issues in nine chapters, each of which is an integral part of a district planning cycle. The…

  3. The Interrelationship of School District Expenditures and Student Academic Achievement in Oklahoma Public Elementary School Districts

    ERIC Educational Resources Information Center

    Moore, Glenn M.

    2012-01-01

    Purpose and Method of Study. The primary purpose of this quantitative study was to analyze the relationship between school district expenditures and student academic achievement in 102 public elementary school districts in the state of Oklahoma. The secondary purpose was to investigate the relationship between school district expenditures and…

  4. 78 FR 37538 - Idaho Irrigation District; New Sweden Irrigation District; Notice of Preliminary Permit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-21

    ... Energy Regulatory Commission Idaho Irrigation District; New Sweden Irrigation District; Notice of... Competing Applications On April 19, 2013, the Idaho and New Sweden Irrigation Districts, filed a joint... maintaining irrigation flows; (4) a powerhouse containing a 1.2- megawatt (MW) Kaplan turbine; (5) a...

  5. From Districts to Schools: The Distribution of Resources across Schools in Big City School Districts

    ERIC Educational Resources Information Center

    Rubenstein, Ross; Schwartz, Amy Ellen; Stiefel, Leanna; Amor, Hella Bel Hadj

    2007-01-01

    While the distribution of resources across school districts is well studied, relatively little attention has been paid to how resources are allocated to individual schools inside those districts. This paper explores the determinants of resource allocation across schools in large districts based on factors that reflect differential school costs or…

  6. Liquid metal cooling of synchrotron optics

    SciTech Connect

    Smither, R.K.

    1992-09-01

    The installation of insertion devices at existing synchrotron facilities around the world has stimulated the development of new ways to cool the optical elements in the associated x-ray beamlines. Argonne has been a leader in the development of liquid metal cooling for high heat load x-ray optics for the next generation of synchrotron facilities. The high thermal conductivity, high volume specific heat, low kinematic viscosity, and large working temperature range make liquid metals a very efficient heat transfer fluid. A wide range of liquid metals were considered in the initial phase of this work. The most promising liquid metal cooling fluid identified to date is liquid gallium, which appears to have all the desired properties and the fewest number of undesired features of the liquid metals examined. Besides the special features of liquid metals that make them good heat transfer fluids, the very low vapor pressure over a large working temperature range make liquid gallium an ideal cooling fluid for use in a high vacuum environment. A leak of the liquid gallium into the high vacuum and even into very high vacuum areas will not result in any detectable vapor pressure and may even improve the vacuum environment as the liquid gallium combines with any water vapor or oxygen present in the system. The practical use of a liquid metal for cooling silicon crystals and other high heat load applications depends on having a convenient and efficient delivery system. The requirements for a typical cooling system for a silicon crystal used in a monochromator are pumping speeds of 2 to 5 gpm (120 cc per sec to 600 cc per sec) at pressures up to 100 psi.

  7. System and method for cooling a combustion gas charge

    DOEpatents

    Massey, Mary Cecelia; Boberg, Thomas Earl

    2010-05-25

    The present invention relates to a system and method for cooling a combustion gas charge prior. The combustion gas charge may include compressed intake air, exhaust gas, or a mixture thereof. An evaporator is provided that may then receive a relatively high temperature combustion gas charge and discharge at a relatively lower temperature. The evaporator may be configured to operate with refrigeration cycle components and/or to receive a fluid below atmospheric pressure as the phase-change cooling medium.

  8. Solar residential heating and cooling system development test program

    NASA Technical Reports Server (NTRS)

    Humphries, W. R.; Melton, D. E.

    1974-01-01

    A solar heating and cooling system is described, which was installed in a simulated home at Marshall Space Flight Center. Performance data are provided for the checkout and initial operational phase for key subsystems and for the total system. Valuable information was obtained with regard to operation of a solar cooling system during the first summer of operation. Areas where improvements and modifications are required to optimize such a system are discussed.

  9. Evaporative Cooling for Energy Conservation 

    E-print Network

    Meyer, J. R.

    1983-01-01

    The evaporative cooling principle applies to all equipment that exchanges sensible heat for latent heat. Equipment of this type falls into two general categories: (1) equipment for heat rejection, such as cooling towers and (2) equipment for air...

  10. The UCLA energy facility - a total approach to district energy

    SciTech Connect

    Johnson, D.N.; Hisey, D.; Wiedemann, L.; Burford, H.

    1996-12-31

    The UCLA Energy Facility is a complete example of the principals and benefits of the application of district energy. The facility serves the electrical, cooling, heating and campus wide maintenance needs of this major university and hospital campus located in urban West Los Angeles. The design-build project was completed in early 1994 and has since been in continuous and successful operation. The facility relies on twin LM1600 gas turbines coupled with an extraction/induction/condensing steam turbine. This combined cycle, cogeneration system produces up to 43.5 MW of electricity, 21,600 tons of chilled water and 160,000 lb/hr of steam, all while maintaining some of the lowest emissions in the nation. The plant includes a state-of-the-art, SF6 switchgear installation which allows for the distribution and wheeling of electric power throughout the campus. A 100,000 ft{sup 2}, multi-purpose office/maintenance shop complex is part of the facility and satisfies the overall campus physical plant maintenance and administration needs. To complete the district energy picture, the addition of an ice based, thermal energy storage system is being considered to increase the chiller plant capacity and levelize the overall energy requirements.

  11. The cooling and condensation of flare coronal plasma

    NASA Technical Reports Server (NTRS)

    Antiochos, S. K.; Sturrock, P. A.

    1981-01-01

    A model is investigated for the decay of flare heated coronal loops in which rapid radiative cooling at the loop base creates strong pressure gradients which, in turn, generate large (supersonic) downward flows. The coronal material cools and 'condenses' onto the flare chromosphere. The features which distinguish this model from previous models of flare cooling are: (1) most of the thermal energy of the coronal plasma may be lost by mass motion rather than by conduction or coronal radiation; (2) flare loops are not isobaric during their decay phase, and large downward velocities are present near the footpoints; (3) the differential emission measure q has a strong temperature dependence.

  12. Vaporization Would Cool Primary Battery

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep; Miyake, Robert N.

    1991-01-01

    Temperature of discharging high-power-density primary battery maintained below specified level by evaporation of suitable liquid from jacket surrounding battery, according to proposal. Pressure-relief valve regulates pressure and boiling temperature of liquid. Less material needed in cooling by vaporization than in cooling by melting. Technique used to cool batteries in situations in which engineering constraints on volume, mass, and location prevent attachment of cooling fins, heat pipes, or like.

  13. Conduction cooling: multicrate fastbus hardware

    SciTech Connect

    Makowiecki, D.; Sims, W.; Larsen, R.

    1980-11-01

    Described is a new and novel approach for cooling nuclear instrumentation modules via heat conduction. The simplicity of liquid cooled crates and ease of thermal management with conduction cooled modules are described. While this system was developed primarily for the higher power levels expected with Fastbus electronics, it has many general applications.

  14. Water-Cooled Optical Thermometer

    NASA Technical Reports Server (NTRS)

    Menna, A. A.

    1987-01-01

    Water-cooled optical probe measures temperature of nearby radiating object. Intended primarily for use in silicon-growing furnace for measuring and controlling temperatures of silicon ribbon, meniscus, cartridge surfaces, heaters, or other parts. Cooling water and flushing gas cool fiber-optic probe and keep it clean. Fiber passes thermal radiation from observed surface to measuring instrument.

  15. An Overview of Operational Characteristics of Selected Irrigation Districts in the Texas Lower Rio Grande Valley: Delta Lake Irrigation District 

    E-print Network

    Wolfe, Clint D.; Stubbs, Megan J.; Pennington, Ellen L.; Rister, M. Edward; Sturdivant, Allen W.; Lacewell, Ronald D.; Rogers, Callie S.

    2007-01-01

    to the topography, water-delivery infrastructure system, past financial decisions, and population demographics and clientele base of each irrigation district. Delta Lake Irrigation District (DLID) is one of the 29 irrigation districts in the Valley. This study...

  16. Laser cooling in the Penning trap: an analytical model for cooling rates in the presence of an axializing field

    E-print Network

    R. J. Hendricks; E. S. Phillips; D. M. Segal; R. C. Thompson

    2007-09-24

    Ions stored in Penning traps may have useful applications in the field of quantum information processing. There are, however, difficulties associated with the laser cooling of one of the radial motions of ions in these traps, namely the magnetron motion. The application of a small radio-frequency quadrupolar electric potential resonant with the sum of the two radial motional frequencies has been shown to couple these motions and to lead to more efficient laser cooling. We present an analytical model that enables us to determine laser cooling rates in the presence of such an 'axializing' field. It is found that this field leads to an averaging of the laser cooling rates for the two motions and hence improves the overall laser cooling efficiency. The model also predicts shifts in the motional frequencies due to the axializing field that are in qualitative agreement with those measured in recent experiments. It is possible to determine laser cooling rates experimentally by studying the phase response of the cooled ions to a near resonant excitation field. Using the model developed in this paper, we study the expected phase response when an axializing field is present.

  17. Impingement cooling of electronics

    SciTech Connect

    Hollworth, B.R. ); Durbin, M. )

    1992-08-01

    Experiments were conducted to determine the performance of a system of low-velocity air jets used to cool a simulated electronics package. The test model consisted of a uniform array of rectangular elements mounted to a circuit board. Each element was cooled by a cluster of four jets, and the spent fluid was vented at one end of the channel formed between the circuit board and the plate from which the jets were discharged. Reported are measurements of system pressure drop and convective heat transfer coefficients for elements at various sites within the array. Results indicate that (for the geometry tested) the largest portion of the total pressure drop occurs across the jet orifices. Further, the crossflow of spent air appears to enhance heat transfer for those elements near the exit end of the channel.

  18. Radial turbine cooling

    NASA Technical Reports Server (NTRS)

    Roelke, Richard J.

    1992-01-01

    Radial turbines have been used extensively in many applications including small ground based electrical power generators, automotive engine turbochargers and aircraft auxiliary power units. In all of these applications the turbine inlet temperature is limited to a value commensurate with the material strength limitations and life requirements of uncooled metal rotors. To take advantage of all the benefits that higher temperatures offer, such as increased turbine specific power output or higher cycle thermal efficiency, requires improved high temperature materials and/or blade cooling. Extensive research is on-going to advance the material properties of high temperature superalloys as well as composite materials including ceramics. The use of ceramics with their high temperature potential and low cost is particularly appealing for radial turbines. However until these programs reach fruition the only way to make significant step increases beyond the present material temperature barriers is to cool the radial blading.

  19. Cooling by heating

    E-print Network

    A. Mari; J. Eisert

    2011-04-01

    We introduce the idea of actually cooling quantum systems by means of incoherent thermal light, hence giving rise to a counter-intuitive mechanism of "cooling by heating". In this effect, the mere incoherent occupation of a quantum mechanical mode serves as a trigger to enhance the coupling between other modes. This notion of effectively rendering states more coherent by driving with incoherent thermal quantum noise is applied here to the opto-mechanical setting, where this effect occurs most naturally. We discuss two ways of describing this situation, one of them making use of stochastic sampling of Gaussian quantum states with respect to stationary classical stochastic processes. The potential of experimentally demonstrating this counter-intuitive effect in opto-mechanical systems with present technology is sketched.

  20. Water Cooled Mirror Design

    SciTech Connect

    Dale, Gregory E.; Holloway, Michael Andrew; Pulliam, Elias Noel

    2015-03-30

    This design is intended to replace the current mirror setup being used for the NorthStar Moly 99 project in order to monitor the target coupon. The existing setup has limited movement for camera alignment and is difficult to align properly. This proposed conceptual design for a water cooled mirror will allow for greater thermal transfer between the mirror and the water block. It will also improve positioning of the mirror by using flexible vacuum hosing and a ball head joint capable of a wide range of motion. Incorporating this design into the target monitoring system will provide more efficient cooling of the mirror which will improve the amount of diffraction caused by the heating of the mirror. The process of aligning the mirror for accurate position will be greatly improved by increasing the range of motion by offering six degrees of freedom.

  1. Marketing Cool Storage Technology 

    E-print Network

    McCannon, L.

    1987-01-01

    ? Enhance Development of TechnolollY ? Provide Forum for TechnolollY Evaluation ? Serve as Information Clearing House ? Disseminate U~to-date Information ? Encourage Widespread Application Initial financinlOt of ITSAC has been by EPRI and the Edison...-09-74 Proceedings from the Ninth Annual Industrial Energy Technology Conference, Houston, TX, September 16-18, 1987 Utility Cool Storage Inducement Progra~ ,.,.. ?? ,.. ,., Utilities With Inducement~ CA -- Southern California Edison San Diego Gas &Electric...

  2. Utility avoids cooling tower

    SciTech Connect

    1994-08-01

    After more than four years of often rancorous debate, New Jersey late last month approved a plan that permits the state`s largest utility to reclaim and restore Delaware Bay marshland instead of constructing a costly cooling tower for two nuclear power units. Environmental interests say they`ll appeal the wetlands proposal, calling it an {open_quotes}unproven experiment{close_quotes} that violates Clean Water Act provisions.

  3. Conduction cooled tube supports

    DOEpatents

    Worley, Arthur C. (Mt. Tabor, NJ); Becht, IV, Charles (Morristown, NJ)

    1984-01-01

    In boilers, process tubes are suspended by means of support studs that are in thermal contact with and attached to the metal roof casing of the boiler and the upper bend portions of the process tubes. The support studs are sufficiently short that when the boiler is in use, the support studs are cooled by conduction of heat to the process tubes and the roof casing thereby maintaining the temperature of the stud so that it does not exceed 1400.degree. F.

  4. Cooling your home naturally

    SciTech Connect

    1994-10-01

    This fact sheet describes some alternatives to air conditioning which are common sense suggestions and low-cost retrofit options to cool a house. It first describes how to reflect heat away from roofs, walls, and windows. Blocking heat by using insulation or shading are described. The publication then discusses removing built-up heat, reducing heat-generating sources, and saving energy by selecting energy efficient retrofit appliances. A resource list is provided for further information.

  5. Impingement cooled transition duct

    SciTech Connect

    Davis, L.B. Jr.; Goodwin, W.W.; Steber, C.E.

    1987-01-19

    An impingement cooling apparatus for cooling a surface of a transition duct disposed between a combustor and a turbine stage of a gas turbine engine is described. The transition duct being disposed in a compressed air plenum, comprising: an impingement sleeve surrounding the transition duct and spaced a distance therefrom to form a flow volume therebetween: apertures in the impingement sleeve; each of the apertures having an area: adjacent ones of apertures being separated by a spacing: a closed end at a turbine end of the flow volume; an exit at a combustor end of the flow volume; a flow sleeve within the compressed air-plention surrounding the combustor; a flared entry portion at an end of the flow sleeve overlapping the exit and forming an aerodynamic converging shape therebetween; a flow of air through the aerodynamic converging shape flowing toward the combustor being effective to reduce a pressure at the exit below a pressure in the compressed air plenum whereby a pressure drop across the impingement sleeve produces an impingement jet of air from each of the plurality of apertures directed toward the transition duct; and at least one of the distance, the area and the spacing being non-uniform over the impingement sleeve to control a cooling in the surface.

  6. Lamination cooling system

    DOEpatents

    Rippel, Wally E.; Kobayashi, Daryl M.

    2005-10-11

    An electric motor, transformer or inductor having a lamination cooling system including a stack of laminations, each defining a plurality of apertures at least partially coincident with apertures of adjacent laminations. The apertures define a plurality of cooling-fluid passageways through the lamination stack, and gaps between the adjacent laminations are sealed to prevent a liquid cooling fluid in the passageways from escaping between the laminations. The gaps are sealed by injecting a heat-cured sealant into the passageways, expelling excess sealant, and heat-curing the lamination stack. The apertures of each lamination can be coincident with the same-sized apertures of adjacent laminations to form straight passageways, or they can vary in size, shape and/or position to form non-axial passageways, angled passageways, bidirectional passageways, and manifold sections of passageways that connect a plurality of different passageway sections. Manifold members adjoin opposite ends of the lamination stack, and each is configured with one or more cavities to act as a manifold to adjacent passageway ends. Complex manifold arrangements can create bidirectional flow in a variety of patterns.

  7. Project S'COOL

    NASA Technical Reports Server (NTRS)

    Green, Carolyn J.; Chambers, Lin H.

    1998-01-01

    The Students Clouds Observations On-Line or S'COOL project was piloted in 1997. It was created with the idea of using students to serve as one component of the validation for the Clouds and the Earth's Radiant Energy System (CERES) instrument which was launched with the Tropical Rainfall Measuring Mission (TRMM) in November, 1997. As part of NASA's Earth Science Enterprise CERES is interested in the role clouds play in regulating our climate. Over thirty schools became involved in the initial thrust of the project. The CERES instrument detects the location of clouds and identifies their physical properties. S'COOL students coordinate their ground truth observations with the exact overpass of the satellite at their location. Their findings regarding cloud type, height, fraction and opacity as well as surface conditions are then reported to the NASA Langley Distributed Active Archive Center (DAAC). The data is then accessible to both the CERES team for validation and to schools for educational application via the Internet. By March of 1998 ninety-three schools, in nine countries had enrolled in the S'COOL project. Joining the United States participants were from schools in Australia, Canada, France, Germany, Norway, Spain, Sweden, and Switzerland. The project is gradually becoming the global project envisioned by the project s creators. As students obtain the requested data useful for the scientists, it was hoped that students with guidance from their instructors would have opportunity and motivation to learn more about clouds and atmospheric science as well.

  8. Teacher-Quality Checklist for School Districts

    ERIC Educational Resources Information Center

    National Council on Teacher Quality, 2010

    2010-01-01

    Many districts struggle with multiple--and often incompatible--data systems for tracking payroll, collecting teacher evaluations, recruiting and hiring. Aligning these systems and annually assessing where a district stands is the first step towards developing a smart human capital strategy. This checklist outlines the goals, data and questions a…

  9. District Awards for Teacher Excellence: Research Brief

    ERIC Educational Resources Information Center

    National Center on Performance Incentives, 2010

    2010-01-01

    Since 2008 Texas's District Awards for Teacher Excellence (D.A.T.E.) program has provided grants to districts for the implementation of locally designed incentive pay plans. The 2010-11 school year is the third year of the D.A.T.E. incentive pay plans with approximately $197 million in annual state funding. This research brief summarizes the key…

  10. Making Use of District and School Data

    ERIC Educational Resources Information Center

    Parke, Carol S.

    2012-01-01

    This paper describes how districts can better use their extensive student databases and other existing data to explore questions of interest. School districts are required to maintain a wealth of student information in electronic data systems and other formats. The meaningfulness of the data depends to a large degree on whether they can understand…

  11. Lessons in Innovative Funding for District Improvements

    ERIC Educational Resources Information Center

    McDaniel, Gwenn

    2010-01-01

    Near the shores of Lake Superior, Michigan's Houghton-Portage Township School District is known for academic leadership and strives to provide an exceptional and secure learning environment for its students. However, like many districts around the country, Houghton-Portage is not immune to the economic restrictions. In a recent effort to address…

  12. 1 District, 1 Set of Math Goals

    ERIC Educational Resources Information Center

    Kanold, Timothy; Ebert, Jhone

    2010-01-01

    In March 2008, teachers and leaders of the mathematics programs grades 6-12 in the Clark County School District (Las Vegas, Nevada) found themselves under the urgent spotlight of failed expectations. District leaders and teachers had been bold enough to create highstakes, districtwide common assessment semester exams in five subject areas of…

  13. Educational Specifications, New Caney Independent School District.

    ERIC Educational Resources Information Center

    Houston Univ., TX. Bureau of Educational Research and Services.

    A year-long study of the communities encompassed by the New Caney Independent School District in Montgomery County, Texas, was conducted by the College of Education at the University of Houston. Educational facilities and program were surveyed. Planning data included--description of district, land usage, pupil residence, population density and…

  14. Transportation in the Millard School District.

    ERIC Educational Resources Information Center

    Bosse, Jerry

    Due to increasing costs for bus service, the Millard School District in Nebraska has instituted a successful plan whereby students pay partially for bus service by purchasing coupon books. While elementary students more than one mile away are still bused at district expense, junior high students more than two miles away must pay the partial cost…

  15. School Dropouts in Rural Colorado School Districts

    ERIC Educational Resources Information Center

    Tombari, Martin; Andrews, Alex; Gallinati, Tina

    2009-01-01

    Dropouts from rural school districts have not received the same scrutiny as given to those from urban ones. The reasons behind this lack of knowledge about the experience of rural school districts with dropouts are unclear. The purpose of the present study was to begin to close this knowledge gap. A first major study of rural dropouts in the…

  16. A Case Study of School District Consolidation

    ERIC Educational Resources Information Center

    Cronin, Joseph M.

    2010-01-01

    Several New England states have been rethinking the system whereby small towns make the key decisions about school budgets and staffing under the banner of local control. Maine already has mandated a reduction in the number of local school districts from 290 to 80, allowing localities to vote on the larger districts. This consolidation, unpopular…

  17. DISTRICT OF HOPE SEWAGE TREATMENT STUDY

    E-print Network

    shock loads from septage discharge can upset the treatment process. The typical comparison of septage#12;DISTRICT OF HOPE SEWAGE TREATMENT STUDY DOE FIL4P 1994-12 Preparedfor: Districtof Hope.0 7.0 8.0 . DISTRICT OF HOPE SEWAGE TREATMENT STUDY CONTENTS INTRODUCTION ASSESS LOADING AND IMPACT

  18. Brevard District Plan for Career Education Development.

    ERIC Educational Resources Information Center

    Thomas, Olive W.

    The Brevard County Plan was written to include goals and objectives for the years 1974-77. Goals for 1974-75 include promoting the career education concept in all district schools (emphasizing the various career education elements at appropriate grade levels), setting up placement services, coordinating county and district goals, program…

  19. Rural Districts Bolster Choices with Online Learning

    ERIC Educational Resources Information Center

    Brown, Don

    2012-01-01

    All schools can benefit from giving students the option of online learning, but for many rural schools, online learning is a lifeline. In the past two years, Lane Education Service District in Oregon, USA, has developed online resources for 14 Lane County school districts, which vary in size from 170 students to as many as 17,000. Many of the…

  20. Study of School District Administration and Staffing.

    ERIC Educational Resources Information Center

    Colorado State Dept. of Education, Denver.

    School district administration and staffing patterns are examined in this report prepared in response to CRS 22-2-118, which requires the Colorado Department of Education to conduct a study to determine where savings of state and local funds may be realized. Section 1 offers an analysis of district staffing patterns from existing data. The second…

  1. 43 CFR 426.19 - District responsibilities.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false District responsibilities. 426.19 Section 426.19 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT... district that delivers irrigation water to nonexempt land under a contract with the United States must:...

  2. A School District Plan of Functional Organization.

    ERIC Educational Resources Information Center

    Miller, Donald R.

    A school district plan of functional organization is designed to integrate the functional and the organizational aspects of performance. The plan can be used to seek solutions to three basic management problems: (1) The functions which must be performed in a school district, (2) the plan of organization which should be implemented to facilitate…

  3. Comprehensive Assessment Report, Pearl River School District.

    ERIC Educational Resources Information Center

    Pearl River Union Free School District, NY.

    The 1986 Comprehensive Assessment Report on the Pearl River (New York) Public School District describes the district's 1,807-student population (grades K through 12), the community, and its schools. Tables provide data on: (1) students' performance on standardized tests, including the California Achievement/Aptitude Tests; New York State Pupil…

  4. Calif. Districts Link to Push Shared Goals

    ERIC Educational Resources Information Center

    Maxwell, Lesli A.

    2013-01-01

    Frustrated by their own state's pace and direction of school improvement, eight California districts have banded together to move ahead on rolling out the Common Core State Standards and designing new teacher evaluations based in part on student performance. Known as CORE--the California Office to Reform Education--the member districts also…

  5. SOME ETHNOMEDICINAL PLANTS OF KORAPUT DISTRICT ORISSA

    PubMed Central

    Das, P.K.; Misra, M.K.

    1988-01-01

    The paper presents the ethnomedicinal use of 35 plants by the tribals of Koraput district to cure 25 diseases they suffer from. Apart from this, a note on the vegetation pattern, tribal population and geography of the district is given here. PMID:22557632

  6. Districts Adjust to Growth in Older Population

    ERIC Educational Resources Information Center

    Sparks, Sarah D.

    2012-01-01

    The 1,000-student Allegheny Valley district in Pennsylvania boasts generations of alumni and a community so involved with the schools that high school graduation becomes an open celebration in downtown Springdale Borough. Yet the district hasn't asked for a tax increase in three years, and it is pushing out a message to older residents about…

  7. AASA Cites Five Districts for Professional Development.

    ERIC Educational Resources Information Center

    School Administrator, 1990

    1990-01-01

    The AASA Instructional Leadership and Technology Committee this year honored five school districts with Outstanding Achievement in Professional Development awards. Honored were Deer Valley Unified School District (Arizona), South Windsor Public Schools (Connecticut), Fort Knox Community Schools (Kentucky), West Orange Public Schools (New Jersey),…

  8. Districts Abandon Grants Targeting Teacher Quality

    ERIC Educational Resources Information Center

    Zubrzycki, Jaclyn

    2012-01-01

    Three big-city districts--Chicago, Milwaukee, and New York--have terminated federal grants aimed at promoting performance-based compensation plans and professional development for teachers and principals. Overall, the 2010 Teacher Incentive Fund (TIF) grants to the three districts would have provided an $88 million payout over five years--nearly 7…

  9. Examining Fund Balance in Michigan School Districts

    ERIC Educational Resources Information Center

    Bidin, Zainin

    2012-01-01

    This research examines the financial profiles of 550 public school districts in Michigan and highlights the association between school district fund balance and the following eleven indicators: enrollment, percent enrollment change, percent of students receive free and reduced lunch (FRL), percent of special education students, percent of English…

  10. 5 Steps to a Greener School District

    ERIC Educational Resources Information Center

    Hines, Gary

    2010-01-01

    Sometimes all it takes is a little fate to accomplish something great, or in this case, something green. The Broward County Public School (BCPS) District shows how a natural disaster (Hurricane Wilma) inspired a green revolution. This article presents the five steps that the Broward County School District followed in implementing an Environmental…

  11. Implementing Clinical Supervision: A District Approach.

    ERIC Educational Resources Information Center

    Blake, Norine; DeMont, Roger A.

    This paper describes the Avondale School District's approach to incorporating clinical supervision within the teacher evaluation process. The development of major teacher appraisal systems, their underlying philosophies, and their characteristics are reviewed. In addition, specific processes and training activities used to develop a district model…

  12. City Districts Embracing K-8 Schools

    ERIC Educational Resources Information Center

    Gewertz, Catherine

    2004-01-01

    This article deals with school districts' K-8 configurations. Cincinnati, Cleveland, Milwaukee, New York, and Philadelphia are among the districts making the change, driven by a small body of research and a rising pile of anecdotes suggesting that K-8 configurations help academic performance, decrease discipline problems, enhance parent…

  13. Supporting Solo at the District Level

    ERIC Educational Resources Information Center

    Woodard, Mary

    2011-01-01

    School librarians in the Mesquite Independent School District (ISD) have been operating solo on their campuses since the 1970s. Campus clerical assistance in the school libraries was a luxury that they couldn't afford. Since the district's vision was of a teaching librarian, a Library Processing Department was established in 1972. As years passed,…

  14. 7 CFR 917.14 - District.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... includes and consists of Sacramento County, that portion of Yolo County east of a straight line from the northwest corner of...Solano District includes and consists of that portion of Yolo County not included in the Sacramento River District, and...

  15. Districts Create Community Connections with Social Media

    ERIC Educational Resources Information Center

    Gordon, Dan

    2012-01-01

    More districts realize that communicating in a clear and engaging way with stakeholders about everything from the district's overall education vision to scholastic and extracurricular success stories can go a long way toward enlisting broad community support. And although face-to-face communications are still important, technology provides a…

  16. A Handbook for School District Financial Management.

    ERIC Educational Resources Information Center

    Dembowski, Frederick L.

    Designed for school business officials, this handbook provides research information and guidelines on school district banking and cash management systems. Section 1 gives an overview of district financial management operations, discussing the administrative framework, cash budgeting, information and control systems, collection and disbursement…

  17. Granite School District First Grade Reading Study.

    ERIC Educational Resources Information Center

    Castner, Myra H.; And Others

    A comparative study of first-grade reading instructional methods was undertaken with the support of the Granite School District Exemplary Center for Reading Instruction. This study was conducted in 19 schools of the district and involved approximately 1,295 students. Nine hypotheses concerning the various approaches used in reading instruction…

  18. School Attendance and District and School Size

    ERIC Educational Resources Information Center

    Jones, John T.; Toma, Eugenia F.; Zimmer, Ron W.

    2008-01-01

    The size of schools and districts in which they are located has become a salient policy issue in recent years. While consolidation of school districts and expanding high school size were in vogue from the 1960s until recently, funding agencies are now sponsoring projects to reduce school size under the assumption that smaller schools will lead to…

  19. Superintendent Leadership: Focusing on District Culture

    ERIC Educational Resources Information Center

    Donnelly, Tanya A.; Adams, Jeffery S.; Smith, Dwayne E.

    2012-01-01

    This report describes a problem-based learning project focusing on superintendent leadership and stakeholder influence of school district culture. Current research findings suggest the importance of superintendent leadership in assessing, influencing, and enhancing school district culture. Multiple scholars wrote literature in the area of…

  20. Does School District Consolidation Cut Costs?

    ERIC Educational Resources Information Center

    Duncombe, William; Yinger, John

    2007-01-01

    Consolidation has dramatically reduced the number of school districts in the United States. Using data from rural school districts in New York, this article provides the first direct estimation of consolidation's cost impacts. We find economies of size in operating spending: all else equal, doubling enrollment cuts operating costs per pupil by…