Science.gov

Sample records for district heating pipelines

  1. Study of the causes and identification of the dominant mechanisms of failure of bellows expansion joints used in district heating system pipelines at MOEK

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Nikolaev, A. E.; Semenov, V. N.; Shipkov, A. A.; Shepelev, S. V.

    2015-06-01

    The results of laboratory studies of material properties and of numerical and analytical investigations to assess the stress-strain state of the metal of the bellows expansion joints used in the district heating system pipelines at MOEK subjected to corrosion failure are presented. The main causes and the dominant mechanisms of failure of the expansion joints have been identified. The influence of the initial crevice defects and the operating conditions on the features and intensity of destruction processes in expansion joints used in the district heating system pipelines at MOEK has been established.

  2. Geothermal district heating systems

    NASA Astrophysics Data System (ADS)

    Budney, G. S.; Childs, F.

    1982-06-01

    Ten district heating demonstration projects and their present status are described. The projects are Klamath County YMCA, Susanville District Heating, Klamath Falls District Heating, Reno Salem Plaza Condominium, El Centro Community Center Heating/Cooling, Haakon School and Business District Heating, St. Mary's Hospital, Diamond Ring Ranch, Pagosa Springs District Heating, and Boise District Heating.

  3. Minneapolis district-heating options

    NASA Astrophysics Data System (ADS)

    Stovall, T. K.; Borkowski, R. J.; Karnitz, M. A.; Strom, S.; Linwick, K.

    1981-10-01

    The feasibility of a large-scale district heating system for the Minneapolis central city area was investigated. The analysis was based on a previous city of St. Paul Hot-water district heating study and other studies done by a Swedish engineering firm. Capital costs such as building and heat source conversion, pipeline construction, and equipment were used in comparing the projected expenses of various district heating scenarios. Options such as coal, refuse-derived fuel burning, and cogeneration at the Riverside Power Station were discussed as energy supplies for a cost-effective district heating system.

  4. Boise geothermal district heating system

    SciTech Connect

    Hanson, P.J.

    1985-10-01

    This document describes the Boise geothermal district heating project from preliminary feasibility studies completed in 1979 to a fully operational system by 1983. The report includes information about the two local governments that participated in the project - the City of Boise, Idaho and the Boise Warm Springs Water District. It also discusses the federal funding sources; the financial studies; the feasibility studies conducted; the general system planning and design; design of detailed system components; the legal issues involved in production; geological analysis of the resource area; distribution and disposal; the program to market system services; and the methods of retrofitting buildings to use geothermal hot water for space heating. Technically this report describes the Boise City district heating system based on 170/sup 0/F water, a 4000 gpm production system, a 41,000 foot pipeline system, and system economies. Comparable data are also provided for the Boise Warm Springs Water District. 62 figs., 31 tabs.

  5. Geothermal District Heating Economics

    Energy Science and Technology Software Center (ESTSC)

    1995-07-12

    GEOCITY is a large-scale simulation model which combines both engineering and economic submodels to systematically calculate the cost of geothermal district heating systems for space heating, hot-water heating, and process heating based upon hydrothermal geothermal resources. The GEOCITY program simulates the entire production, distribution, and waste disposal process for geothermal district heating systems, but does not include the cost of radiators, convectors, or other in-house heating systems. GEOCITY calculates the cost of district heating basedmore » on the climate, population, and heat demand of the district; characteristics of the geothermal resource and distance from the distribution center; well-drilling costs; design of the distribution system; tax rates; and financial conditions.« less

  6. Turbine modifications for district heating

    SciTech Connect

    Sawhney, H.S.; Oliker, I.; Silaghy, F.J.

    1983-01-01

    This paper discusses the technical and economic feasibilities of retrofitting existing turbine-generators and replacing existing turbine-generators with specially designed district heating units. Topics considered include turbine retrofit options (approach and design criteria, district heating equipment), new district heating turbines (approach and design criteria, turbine selection), and heat generation costs. The conclusions of the analysis include: no technical barrier was discovered for converting the Potomac River Power Plant to a cogeneration facility, additional equipment required for the district heating operation is of conventional design, the existing steam turbines and associated system components can be retrofitted for district heating operation, the modified units retain the flexibility of producing 100% electric power output when the district heating load is disconnected, the district heating system uses indirect heating of water by extraction steam (the purity of which is not degraded), about three and a half times more heat can be extracted from units designed specifically for cogeneration than from modified units, and the described methodology can be used for the assessment of retrofitting existing units to cogeneration operation for power plants located close to heat load centers.

  7. Moorhead district heating, phase 2

    NASA Astrophysics Data System (ADS)

    Sundberg, R. E.

    1981-01-01

    The feasibility of developing a demonstration cogeneration hot water district heating system was studied. The district heating system would use coal and cogenerated heat from the Moorhead power plant to heat the water that would be distributed through underground pipes to customers or their space and domestic water heating needs, serving a substantial portion of the commercial and institutional loads as well as single and multiple family residences near the distribution lines. The technical feasibility effort considered the distribution network, retrofit of the power plant, and conversion of heating systems in customers' buildings to use hot water from the system. The system would be developed over six years. The economic analysis consisted of a market assessment and development of business plans for construction and operation of the system. Rate design methodology, institutional issues, development risk, and the proposal for implementation are discussed.

  8. Groundwater and geothermal: urban district heating applications

    SciTech Connect

    Mounts, R.; Frazier, A.; Wood, E.; Pyles, O.

    1982-01-01

    This report describes how several cities use groundwater and geothermal energy in district heating systems. It begins with groundwater, introducing the basic technology and techniques of development, and describing two case studies of cities with groundwater-based district heating systems. The second half of the report consists of three case studies of cities with district heating systems using higher temperature geothermal resources.

  9. Modelling of the District Heating System's Operation

    NASA Astrophysics Data System (ADS)

    Vigants, Girts; Blumberga, Dagnija; Vīgants, Ģirts; Blumberga, Dagnija

    2011-01-01

    The development of a district heating systems calculation model means improvement in the energy efficiency of a district heating system, which makes it possible to reduce the heat losses, thus positively affecting the tariffs on thermal energy. In this paper, a universal approach is considered, based on which the optimal flow and temperature conditions in a district heating system network could be calculated. The optimality is determined by the least operational costs. The developed calculation model has been tested on the Ludza district heating system based on the technical parameters of this system.

  10. Midland, South Dakota geothermal district heating

    SciTech Connect

    Lund, J.W.

    1997-12-01

    This article describes historical aspects and present usage of geothermal district heating systems in the town of Midland, South Dakota. The use of geothermal resources exists due to a joint venture between the school district and the city back in the early 1960`s. A total of approximately 30,000 square feet (2800 square meters) of floor space is heated using geothermal energy in Midland. This provides an estimated annual saving in propane cost of $15,000 to the community.

  11. Dual energy use systems: District heating survey

    NASA Astrophysics Data System (ADS)

    1980-07-01

    The current status of and problems facing district heating systems operated by electric utilities were identified. The technical and economic factors which can affect the present and future success of district heating systems in the United States were evaluated. A survey of 59 district heating electric utilities was conducted to determine the current status of the industry. Questions developed to obtain data on technical, economic, regulator, and marketing factors were included in the survey. Literature on district heating in the U.S. and abroad was collected from governments, industry and foreign sources and reviewed to aid in evaluating the current and future potential of the industry. Interviews were held with executives of 16 utilities that operate district heating systems in order to determine corporate attitudes. A summary of the literature obtained is provided. Survey results are tabulated and described. The interviews and survey data were used to compile 10 case studies of utilities operating district heating systems under a braod range of circumstances.

  12. District heating strategy model: community manual

    SciTech Connect

    Hrabak, R. A.; Kron, Jr., N. F.; Pferdehirt, W. P.

    1981-10-01

    The US Department of Housing and Urban Development (HUD) and the US Department of Energy (DOE) cosponsor a program aimed at increasing the number of district heating and cooling systems. Twenty-eight communities have received HUD cooperative agreements to aid in a national feasibility assessment of district heating and cooling systems. The HUD/DOE program includes technical assistance provided by Argonne National Laboratory and Oak Ridge National Laboratory. Part of this assistance is a computer program, called the district heating strategy model, that performs preliminary calculations to analyze potential district heating and cooling systems. The model uses information about a community's physical characteristics, current electricity-supply systems, and local economic conditions to calculate heat demands, heat supplies from existing power plants and a new boiler, system construction costs, basic financial forecasts, and changes in air-pollutant emissions resulting from installation of a district heating and cooling system. This report explains the operation of the district heating strategy model, provides simplified forms for organizing the input data required, and describes and illustrates the model's output data. The report is written for three groups of people: (1) those in the HUD/DOE-sponsored communities who will be collecting input data, and studying output data, to assess the potential for district heating and cooling applications in their communiites; (2) those in any other communities who may wish to use the model for the same purpose; and (3) technical-support people assigned by the national laboratories to explain to community personnel how the model is used.

  13. Geothermal district heating: basics to success

    SciTech Connect

    Lunis, B.C.

    1985-01-01

    A district heating system using geothermal energy is a viable and economic option in many locations. A successful system, however, is dependent upon a variety of factors, and it is the purpose of this presentation to accent those items that are proving to have significant impact upon the successful operation of geothermal district heating systems. (These lessons can also apply to other sources of energy.) The six major basics to success that are discussed in this paper are economic viability, an adequate geothermal resource, simplicity of design, a closed loop system, a local champion, and good public relations.

  14. Electrometrical Methods Application for Detection of Heating System Pipeline Corrosion

    NASA Astrophysics Data System (ADS)

    Vetrov, A.; Ilyin, Y.; Isaev, V.; Rondel, A.; Shapovalov, N.

    2004-12-01

    Coated steel underground pipelines are widely used for the petroleum and gaze transportation, for the water and heat supply. The soils, where the pipelines are placed, are usually highly corrosive for pipe's metal. In the places of crippling of external coating the corrosion processes begin, and this can provoke a pipe breakage. To ensure the pipeline survivability it is necessary to carry out the control of pipeline conditions. The geophysical methods are used to provide such diagnostic. Authors have studied the corrosion processes of the municipal heating system pipelines in Saint-Petersburg (Russia) using the air thermal imaging method, the investigation of electromagnetic fields and spontaneous polarization, measurements of electrode potentials of metal tubes. The pipeline reparation works, which have been provided this year, allowed us to make the visual observation of pipes. The investigation object comprises a pipeline composed of two parallel tubes, which are placed 1-2 meters deep. The fact that the Russian Federation and CIS countries still use the direct heat supply system makes impossible any addition of anticorrosion components to circulating water. Pipelines operate under high pressure (up to 5 atm) and high temperature (designed temperature is 150°C). Tube's isolation is meant for heat loss minimization, and ordinary has poor hydro-isolation. Some pipeline construction elements (sliding and fixed bearings, pressure compensators, heat enclosures) are often non-isolated, and tube's metal contacts with soil. Hard usage condition, ingress of technical contamination cause, stray currents etc. cause high accidental rate. Realization of geophysical diagnostics, including electrometry, is hampered in a city by underground communication systems, power lines, isolating ground cover (asphalt), limitation of the working area with buildings. These restrictions form the investigation conditions. In order to detect and localize isolation (coat) defects authors

  15. District heating. Section 2: Products and services

    SciTech Connect

    Not Available

    1991-12-01

    This is a directory of companies providing products and services in the area of district heating. The subheadings of the directory include developers and owner operators, equipment manufacturers, measuring instruments and controls, consulting services, engineering and construction, operation and maintenance, project management, repair, and financial and legal services.

  16. Reliability analysis of the combined district heating systems

    NASA Astrophysics Data System (ADS)

    Sharapov, V. I.; Orlov, M. E.; Kunin, M. V.

    2015-12-01

    Technologies that improve the reliability and efficiency of the combined district heating systems in urban areas are considered. The calculation method of reliability of the CHP combined district heating systems is proposed. The comparative estimation of the reliability of traditional and combined district heating systems is performed.

  17. Potential role of district heating in the US

    SciTech Connect

    Powell, J.R.; Karkheck, J.

    1981-01-01

    The potential market penetration of district heating in the US is discussed. Estimates of optimal service levels, capital investment, and energy conservation potential are discussed. The technological concept of modern district heating and specific assessments of district heating in the US are briefly described. (MCW)

  18. Six Districts Begin the Principal Pipeline Initiative. Building a Stronger Principalship: Volume 1

    ERIC Educational Resources Information Center

    Turnbull, Brenda J.; Riley, Derek L.; Arcaira, Erikson R.; Anderson, Leslie M.; MacFarlane, Jaclyn R.

    2013-01-01

    This first report of an ongoing evaluation of "The Wallace Foundation's Principal Pipeline Initiative" describes the six participating school districts' plans and activities during the first year of their grants. The evaluation, conducted by "Policy Studies Associates" and the "RAND Corporation," is intended to inform…

  19. District heating system, City of Caliente, Nevada

    SciTech Connect

    Karlsson, T.

    1984-06-01

    An updated feasibility study of the district heating system is described. The study was made in two parts, Option 1 and Option 2. Option 1 is a district heating system for the city of Caliente only, whereas Option 2 assumes making 140{sup 0}F water available to the Mark West Development, about five miles to the west of the city. The city district heating system is based on a supply water temperature of 175{sup 0}F and 120{sup 0}F return temperature. The capital cost estimate for Option 1 is $3,140,000. The resultant savings in conventional energy cost over a 20 year project life, assuming 12% bond financing, show a present worth of $4,074,000. This shows that the project should be economically feasible. The capital cost for Option 2 is estimated to be $4,230,000. The additional cost of Option 2 over Option 1, $1,090,000, will have to be recovered by the fee charged to the Mark West Development users for the water made available to them. Since, however, this use is unknown an evaluation of the economic feasibility of Option 2 cannot be made at this time.

  20. Optimal Operation System of the Integrated District Heating System with Multiple Regional Branches

    NASA Astrophysics Data System (ADS)

    Kim, Ui Sik; Park, Tae Chang; Kim, Lae-Hyun; Yeo, Yeong Koo

    This paper presents an optimal production and distribution management for structural and operational optimization of the integrated district heating system (DHS) with multiple regional branches. A DHS consists of energy suppliers and consumers, district heating pipelines network and heat storage facilities in the covered region. In the optimal management system, production of heat and electric power, regional heat demand, electric power bidding and sales, transport and storage of heat at each regional DHS are taken into account. The optimal management system is formulated as a mixed integer linear programming (MILP) where the objectives is to minimize the overall cost of the integrated DHS while satisfying the operation constraints of heat units and networks as well as fulfilling heating demands from consumers. Piecewise linear formulation of the production cost function and stairwise formulation of the start-up cost function are used to compute nonlinear cost function approximately. Evaluation of the total overall cost is based on weekly operations at each district heat branches. Numerical simulations show the increase of energy efficiency due to the introduction of the present optimal management system.

  1. District heating and cogeneration for the City of Croswell, Michigan

    SciTech Connect

    Spelman, P.; Soumis, D.

    1986-03-01

    The report shows that District Heating is not a viable option for Croswell at this time. After assembling the data on the various markets for thermal energy it was found that their loads both in quality, quantity and duration were not compatible with the sustained loads necessary for the type of district heating system that could be constructed under existing conditions in Croswell.

  2. District Heating Systems Performance Analyses. Heat Energy Tariff

    NASA Astrophysics Data System (ADS)

    Ziemele, Jelena; Vigants, Girts; Vitolins, Valdis; Blumberga, Dagnija; Veidenbergs, Ivars

    2014-12-01

    The paper addresses an important element of the European energy sector: the evaluation of district heating (DH) system operations from the standpoint of increasing energy efficiency and increasing the use of renewable energy resources. This has been done by developing a new methodology for the evaluation of the heat tariff. The paper presents an algorithm of this methodology, which includes not only a data base and calculation equation systems, but also an integrated multi-criteria analysis module using MADM/MCDM (Multi-Attribute Decision Making / Multi-Criteria Decision Making) based on TOPSIS (Technique for Order Performance by Similarity to Ideal Solution). The results of the multi-criteria analysis are used to set the tariff benchmarks. The evaluation methodology has been tested for Latvian heat tariffs, and the obtained results show that only half of heating companies reach a benchmark value equal to 0.5 for the efficiency closeness to the ideal solution indicator. This means that the proposed evaluation methodology would not only allow companies to determine how they perform with regard to the proposed benchmark, but also to identify their need to restructure so that they may reach the level of a low-carbon business.

  3. World Energy Projection System Plus Model Documentation: District Heat Model

    EIA Publications

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) District Heat Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  4. Geothermal-district-heating assessment model for decision making

    SciTech Connect

    Reisman, A.

    1981-11-01

    A methodology developed to assess the economic feasibility of district heating for any community in the United States is described. The overall philosophy which has guided its development is the conviction that district heating must be examined on a site-by-site basis. To support this approach, a set of extensive, in-house supporting data bases has been created and useful external data bases with national coverage have been identified. These data bases provide information at a sufficient level of detail to permit a first-cut examination of the district heating potential of a community without requiring outside data collection (allowing a substantial cost and time savings). The results of this blind look at a community permit a rapid, yet adequate estimate of district heating potential, costs, and energy savings. The data utilized in the initial examination can be supplemented or replaced by more detailed information obtained from on-site data collection, if the first results are promising. The fact that the data and methodology are computerized allows many locations within the community, alternate heat sources, ownership options, pipe technologies, etc. to be examined in a short period of time. The structure of the District Heating Model (DHM) (the methodology in computerized form) is described followed by a discussion of the application of the model to Provo, UT.

  5. HPASS: a computer program for evaluation of district heating with heat pumps. Users manual

    SciTech Connect

    Sapienza, G.R.; Calm, J.M.

    1981-03-01

    HPASS (Heat Pump district heating ASSessment) is a computer program for assessment of district heating and cooling with heat pumps. The software facilitates comparison of site- and source-energy use, discounted payback, and life-cycle costs of these systems with alternative systems providing similar services. The program also performs parametric studies of these analyses. This report explains the use of HPASS; the input requirements, available outputs, and program options are described.

  6. Application of solar ponds to district heating and cooling

    NASA Astrophysics Data System (ADS)

    Leboeuf, C. M.

    1981-04-01

    A preliminary investigation is reported of the feasibility of incorporating solar ponds into subdivisions to provide district heating, domestic hot water (DHW), and district cooling. Two locations were chosen for analysis: Fort Worth, Texas and Washington, D.C. Solar ponds were sized to meet space heating, cooling, and DHW loads in each location for differing community sizes. Parameters such as storage layer temperature, pond geometry, and storage depth vs surface area were varied to determine the most effective approach to solar pond utilization. A distribution system for the district heating system was designed, including sizing of heat exchangers, piping, and pumps. Cost estimates for the pond and distribution system were formulated by using data generated in pond sizing, as well as associated system costs (e.g., salt costs and distribution system costs). Finally, solar ponds were found to be competitive with residential flat plate collector systems, with delivered energy costs as low as $16.00/GJ.

  7. Status of Natural Gas Pipeline System Capacity Entering the 2000-2001 Heating Season

    EIA Publications

    2000-01-01

    This special report looks at the capabilities of the national natural gas pipeline network in 2000 and provides an assessment of the current levels of available capacity to transport supplies from production areas to markets throughout the United States during the upcoming heating season. It also examines how completion of currently planned expansion projects and proposed new pipelines would affect the network.

  8. The use of heat pumps in district heat supply

    NASA Astrophysics Data System (ADS)

    Winkens, H. P.

    1985-04-01

    The cost elements of heat pump heat supply stations are examined and the optimum relationship between peak load boiler and heat pump output is shown. The dependence of plant size and temperature on heat generating costs is indicated and the costs of heat distribution and heat transfer are analysed. The possibility of a combined system of chop and heat pumps for the transport of heat over larger distances is shown.

  9. Co-sponsored second quarter progress review conference on district heating

    SciTech Connect

    1980-01-01

    A summary of the progress review conference on district heating and cooling systems is presented. The agenda and lists of speakers and attendees are presented. A history of district heating and some present needs and future policies are given and an excerpt from the National District Heating Program Strategy (DOE, March 1980) is included. Following the presentation, District Heating and Cooling Systems Program, by Alan M. Rubin, a fact sheet on DOE's Integrated Community Energy Systems Program and information from an oral presentation, District Heating and Cooling Systems for Communities Through Power Plant Retrofit Distribution Network, are given. The Second Quarterly Oral Report to the US DOE on the District Heating and Cooling Project in Detroit; the executive summary of the Piqua, Ohio District Heating and Cooling Demonstration Project; the Second Quarterly Report of the Moorehead, Minnesota District Heating Project; and the report from the Moorehead, Minnesota mayor on the Hot Water District Heating Project are presented.

  10. District cooling and heating development in Stamford, CT. Final report

    SciTech Connect

    1994-12-01

    This report summarizes the development options for introducing district cooling and heating in downtown Stamford, Connecticut. A district energy system as defined for the Stamford project is the production of chilled and hot water at a central energy plant, and its distribution underground to participating building in the vicinity. The objective of the study was to investigate implementation of a district energy system in conjunction with cogeneration as a means to encourage energy conservation and provide the city with an economic development tool. Analysis of the system configuration focused on selecting an arrangement which offered a realistic opportunity for implementation. Three main alternatives were investigated: (1) construction of an 82 MW cogeneration plant and a district heating and cooling system to serve downtown buildings, (2) construction of a small (4 MW) in-fence cogeneration plant combined with cooling and heating, and (3) construction of a district cooling and heating plant to supply selected buildings. Option (1) was determined to be unfeasible at this time due to low electricity prices. The analysis demonstrated that alternatives (2) and (3) were feasible. A number of recommendations are made for detailed cost estimates and ownership, leasing, and financial issues. 12 figs., 10 tabs.

  11. 1992 National census for district heating, cooling and cogeneration

    SciTech Connect

    Not Available

    1993-07-01

    District energy systems are a major part of the energy use and delivery infrastructure of the United States. With nearly 6,000 operating systems currently in place, district energy represents approximately 800 billion BTU per hour of installed thermal production capacity, and provides over 1.1 quadrillion BTU of energy annually -- about 1.3% of all energy used in the US each year. Delivered through more that 20,000 miles of pipe, this energy is used to heat and cool almost 12 billion square feet of enclosed space in buildings that serve a diverse range of office, education, health care, military, industrial and residential needs. This Census is intended to provide a better understanding of the character and extent of district heating, cooling and cogeneration in the United States. It defines a district energy system as: Any system that provides thermal energy (steam, hot water, or chilled water) for space heating, space cooling, or process uses from a central plant, and that distributes the energy to two or more buildings through a network of pipes. If electricity is produced, the system is a cogenerating facility. The Census was conducted through surveys administered to the memberships of eleven national associations and agencies that collectively represent the great majority of the nation`s district energy system operators. Responses received from these surveys account for about 11% of all district systems in the United States. Data in this report is organized and presented within six user sectors selected to illustrate the significance of district energy in institutional, community and utility settings. Projections estimate the full extent of district energy systems in each sector.

  12. Philip, South Dakota geothermal district heating systems

    SciTech Connect

    Lund, J.W.

    1997-12-01

    The geothermal heating project in Philip, South Dakota which uses the waste water from the Haakon School has now been in operation for 15 years. This project was one of the 23 cost shared by the U.S. DOE starting in 1978, of which 15 became operational. This article describes the geothermal heating system for eight buildings in downtown Philip.

  13. Analysis of the Impact of Decreasing District Heating Supply Temperature on Combined Heat and Power Plant Operation

    NASA Astrophysics Data System (ADS)

    Bolonina, Alona; Bolonins, Genadijs; Blumberga, Dagnija

    2014-12-01

    District heating systems are widely used to supply heat to different groups of heat consumers. The district heating system offers great opportunities for combined heat and power production. In this paper decreasing district heating supply temperature is analysed in the context of combined heat and power plant operation. A mathematical model of a CHP plant is developed using both empirical and theoretical equations. The model is used for analysis of modified CHP plant operation modes with reduced district heating supply temperature. Conclusions on the benefits of new operation modes are introduced.

  14. Steamtown District Heating and Cooling Project, Scranton, Pennsylvania. Final report

    SciTech Connect

    1990-04-01

    This report summarizes the activities of a study intended to examine the feasibility of a district heating and cooling alternative for the Steamtown National Historic Site in Scranton, PA. The objective of the study was to investigate the import of steam from the existing district heating system in Scranton which is operated by the Community Central Energy Corporation and through the use of modern technology provide hot and chilled water to Steamtown for its internal heating and cooling requirements. Such a project would benefit Steamtown by introducing a clean technology, eliminating on-site fuel use, avoiding first costs for central heating and cooling plants and reducing operation and maintenance expenditures. For operators of the existing district heating system, this project represents an opportunity to expand their customer base and demonstrate new technologies. The study was conducted by Joseph Technology Corporation, Inc. and performed for the Community Central Energy Corporation through a grant by the US Department of Energy. Steamtown was represented by the National Park Service, the developers of the site.

  15. Modular cogeneration in district heating and cooling systems

    SciTech Connect

    Andrews, J.W.; Aalto, P.; Gleason, T.C.J.; Skalafuris, A.J.

    1987-12-01

    The use of prepackaged cogeneration systems of modular size (100 kWe - 10 MWe) in conjunction with district heating and cooling is proposed as a way to enhance the energy conservation potential of both cogeneration and district energy systems. This report examines the technical and institutional aspects of this marriage of technologies, and develops a research agenda whose goal is to define this potential use of cogeneration more accurately and to develop the generic technology base needed to bring it to actuality. 11 refs.

  16. Experience gained from the use of polyurethane foam-insulated pipelines at OAO Moscow Heating-Network Company

    NASA Astrophysics Data System (ADS)

    Kashinskii, V. I.; Lipovskikh, V. M.; Rotmistrov, Ya. G.

    2007-07-01

    Results from 10 years of experience using polyurethane foam-insulated pipelines at OAO Moscow Heating-Network Co. are presented. It is shown that the failure rate of such pipelines is considerably lower than that of pipelines laid in conduits.

  17. Saint Paul Energy Park: the potential for district heating

    SciTech Connect

    Lee, C.; Kron, R.; Davis, H.

    1980-03-01

    The results of ANL's study of the energy and economic aspects of using district heating in the St. Paul Energy Park are summarized. The Energy Park is a 6 million ft/sup 2/ residential, commercial office, and light industrial complex to be built in the midway area of St. Paul, Minnesota. Space heating and cooling design loads for the park were calculated assuming that the ASHRAE's 90-75 energy-conserving construction standards would be used in constructing the park's buildings. Based in part on this assumption, ANL estimated the costs and energy use characteristics of six possible energy system options for supplying Energy Park's space heating, space cooling, and domestic hot water heating needs. The results indicate that in today's economy, a central heating and cooling plant with natural gas boilers and electrically driven centrifugal chillers with thermal storage has good potential for energy and economic savings and clearly merits further consideration.

  18. Geothermal district heating system feasibility analysis, Thermopolis, Wyoming

    SciTech Connect

    Goering, S.W.; Garing, K.L.; Coury, G.; Mickley, M.C.

    1982-04-26

    The purpose of this study is to determine the technical and economic feasibility of constructing and operating a district heating system to serve the residential, commercial, and public sectors in Thermopolis. The project geothermal resource assessment, based on reviews of existing information and data, indicated that substantial hot water resources likely exist in the Rose Dome region 10 miles northeast of Thermopolis, and with quantities capable of supporting the proposed geothermal uses. Preliminary engineering designs were developed to serve the space heating and hot water heating demands for buildings in the Thermopolis-East Thermopolis town service area. The heating district design is based on indirect geothermal heat supply and includes production wells, transmission lines, heat exchanger units, and the closed loop distribution and collection system necessary to serve the individual customers. Three options are presented for disposal of the cooled waters-reinjection, river disposal, and agricultural reuse. The preliminary engineering effort indicates the proposed system is technically feasible. The design is sized to serve 1545 residences, 190 businesses, and 24 public buildings. The peak design meets a demand of 128.2 million Btu at production rates of 6400 gpm.

  19. Life cycle assessment of base-load heat sources for district heating system options

    SciTech Connect

    Ghafghazi, Saeed; Sowlati, T.; Sokhansanj, Shahabaddine; Melin, Staffan

    2011-03-01

    Purpose There has been an increased interest in utilizing renewable energy sources in district heating systems. District heating systems are centralized systems that provide heat for residential and commercial buildings in a community. While various renewable and conventional energy sources can be used in such systems, many stakeholders are interested in choosing the feasible option with the least environmental impacts. This paper evaluates and compares environmental burdens of alternative energy source options for the base load of a district heating center in Vancouver, British Columbia (BC) using the life cycle assessment method. The considered energy sources include natural gas, wood pellet, sewer heat, and ground heat. Methods The life cycle stages considered in the LCA model cover all stages from fuel production, fuel transmission/transportation, construction, operation, and finally demolition of the district heating system. The impact categories were analyzed based on the IMPACT 2002+ method. Results and discussion On a life-cycle basis, the global warming effect of renewable energy options were at least 200 kgeqCO2 less than that of the natural gas option per MWh of heat produced by the base load system. It was concluded that less than 25% of the upstream global warming impact associated with the wood pellet energy source option was due to transportation activities and about 50% of that was resulted from wood pellet production processes. In comparison with other energy options, the wood pellets option has higher impacts on respiratory of inorganics, terrestrial ecotoxicity, acidification, and nutrification categories. Among renewable options, the global warming impact of heat pump options in the studied case in Vancouver, BC, were lower than the wood pellet option due to BC's low carbon electricity generation profile. Ozone layer depletion and mineral extraction were the highest for the heat pump options due to extensive construction required for these

  20. A multicriteria approach to evaluate district heating system options

    SciTech Connect

    Ghafghazi, Saeed; Sowlati, T.; Sokhansanj, Shahabaddine; Melin, Staffan

    2009-07-01

    District energy systems, in which renewable energy sources may be utilized, are centralized systems to provide energy to residential and commercial buildings. The aim of this paper is to evaluate and rank energy sources available for a case of district heating system in Vancouver, Canada, based on multiple criteria and the view points of different stakeholders, and to show how communication would affect the ranking of alternatives. The available energy sources are natural gas, biomass (wood pellets), sewer heat, and geothermal heat. The evaluation criteria include GHG emissions, particulate matter emissions, maturity of technology, traffic load, and local source. In order to rank the energy options the PROMETHEE method is used. In this paper, two different scenarios were developed to indicate how the communication between the stakeholders would affect their preferences about criteria weights and would change the ranking of alternatives. The result of this study shows that without communication the best energy source for the considered district energy system is different for different stakeholders. While, addressing concerns through efficient communication would result in a general consensus. In this case, wood pellet is the best energy alternative for all the stakeholders.

  1. Preliminary business plan: Plzen district heating system upgrade

    SciTech Connect

    1996-06-01

    The district heating system of the City of Plzen, Czech Republic, needs to have physical upgrades to replace aging equipment and to comply with upcoming environmental regulations. Also, its ownership and management are being changed as a result of privatization. As majority owner, the City has the primary goal of ensuring that the heating needs of its customers are met as reliably and cost-effectively as possible. This preliminary business plan is part of the detailed analysis (5 reports in all) done to assist the City in deciding the issues. Preparation included investigation of ownership, management, and technology alternatives; estimation of market value of assets and investment requirements; and forecasting of future cash flow. The district heating system consists of the Central Plzen cogeneration plant, two interconnected heating plants [one supplying both hot water and steam], three satellite heating plants, and cooperative agreements with three industrial facilities generating steam and hot water. Most of the plants are coal-fired, with some peaking units fired by fuel oil.

  2. Advanced heat pump cycle for district heating and cooling systems

    SciTech Connect

    Radermacher, R.

    1991-07-01

    A bread board heat pump was designed and built to test the performance of a vapor compression heat pump with two stage ammonia-water solution circuits. The design was updated based on the experience gained with the single stage version of this heat pump. A major improvement was obtained by eliminating the rectifier. The new scheme was first investigated by computer simulation and then incorporated in the experimental setup. Water balance in the high and low temperature circuits is now maintained by bleeding up to 2.5% of the weak solution flow from one solution circuit to the other. The advantages of this scheme are reduced first cost, simplified design and control, 20--30% improvement in cooling coefficient of performance and 10--15% increase in cooling capacity as compared to the cycle with a rectifier. Coefficients of performance in the range of 0.84 to 1.03 were obtained experimentally for a temperature lift of 100-K. The pressure ratios encountered were in the range of 7.6 to 9.9, which are 35 to 50% of the pressure ratio expected for a conventional heat pump. Thus the results demonstrate that high temperature lifts can be achieved at pressure ratios which are less than half as large as for conventional systems. The cooling capacities were in the range of 2.79 to 4.21 kW. 13 refs., 5 figs., 2 tabs.

  3. Possibility of using adsorption refrigeration unit in district heating network

    NASA Astrophysics Data System (ADS)

    Grzebielec, Andrzej; Rusowicz, Artur; Jaworski, Maciej; Laskowski, Rafał

    2015-09-01

    Adsorption refrigeration systems are able to work with heat sources of temperature starting with 50 °C. The aim of the article is to determine whether in terms of technical and economic issues adsorption refrigeration equipment can work as elements that produce cold using hot water from the district heating network. For this purpose, examined was the work of the adsorption air conditioning equipment cooperating with drycooler, and the opportunities offered by the district heating network in Warsaw during the summer. It turns out that the efficiency of the adsorption device from the economic perspective is not sufficient for production of cold even during the transitional period. The main problem is not the low temperature of the water supply, but the large difference between the coefficients of performance, COPs, of adsorption device and a traditional compressor air conditioning unit. When outside air temperature is 25 °C, the COP of the compressor type reaches a value of 4.49, whereas that of the adsorption device in the same conditions is 0.14. The ratio of the COPs is 32. At the same time ratio between the price of 1 kWh of electric power and 1 kWh of heat is only 2.85. Adsorption refrigeration equipment to be able to compete with compressor devices, should feature COPads efficiency to be greater than 1.52. At such a low driving temperature and even changing the drycooler into the evaporative cooler it is not currently possible to achieve.

  4. The analysis of thermal network of district heating system from investor point of view

    NASA Astrophysics Data System (ADS)

    Takács, Ján; Rácz, Lukáš

    2016-06-01

    The hydraulics of a thermal network of a district heating system is a very important issue, to which not enough attention is often paid. In this paper the authors want to point out some of the important aspects of the design and operation of thermal networks in district heating systems. The design boundary conditions of a heat distribution network and the requirements on active pressure - circulation pump - influencing the operation costs of the centralized district heating system as a whole, are analyzed in detail. The heat generators and the heat exchange stations are designed according to the design heat loads after thermal insulation, and modern boiler units are installed in the heating plant.

  5. Environmental Assessment for the Bison School District Heating Plant Project, Institutional Conservation Program (ICP)

    SciTech Connect

    1995-12-31

    This environmental assessment analyzes the environmental impacts of replacing the Bison, South Dakota School District`s elementary school and high school heating system consisting of oil-fired boilers and supporting control system and piping

  6. Hydrodynamic, Heat and Acoustic Processes Modelling in Tranport of Rheologically Complex Viscous Media Technology in Pipelines

    NASA Astrophysics Data System (ADS)

    Kharlamov, Sergey N.; Kudelin, Nikita S.; Dedeyev, Pavel O.

    2014-08-01

    The paper describes the results of mathematical modelling of acoustic processes, hydrodynamics and heat exchange in case of oil products transportation in pipelines with constant and variable cross-section. The turbulence model features of RANS approach and intensification of heat exchange in substances with anomalous rheology are reviewed. It is shown that statistic second order models are appropriate to use for forecasting details of the pulsating flows. The paper states the numerical integration features of determining equations. The properties of vibratory effect influence are determined. Vortex and heat perturbations, rheological changes impact on resistance regularities and intensity of heat exchange are analyzed.

  7. Maryvale Terrace: Geothermal residential district space heating and cooling

    NASA Astrophysics Data System (ADS)

    White, D. H.; Goldstone, L. A.

    1982-08-01

    A preliminary study of the technical and economic feasibility of installing a geothermal district heating and cooling system is analyzed for the Maryvale Terrace residential subdevelopment in Phoenix, Arizona, consisting of 557 residential houses. The design heating load was estimated to be 16.77 million Btu/h and the design cooling load was estimated to be 14.65 million Btu/h. Average annual energy use for the development was estimated to be 5870 million Btu/y and 14,650 million Btu/y for heating and cooling, respectively. Competing fuels are natural gas for heating and electricity for cooling. A geothermal resource is assumed to exist beneath the site at a depth of 6000 feet. Five production wells producing 1000 qpm each of 2200 F geothermal fluid are required. Total estimated cost for installing the system is $5,079,300. First year system operations cost (including debt service) is $974,361. The average annual geothermal heating and cooling cost per home is estimated to be $1750 as compared to a conventional system annual cost of $1145.

  8. Heat transfer and multiphase flow with hydrate formation in subsea pipelines

    NASA Astrophysics Data System (ADS)

    Odukoya, A.; Naterer, G. F.

    2015-07-01

    A new predictive model is developed to analyze hydrate formation with coupled heat and mass transfer in a pipe. The model tracks the particle velocity at each time step, while estimating the growth of the hydrate using the change in Biot number and dimensionless time. The numerical results are validated experimental results for R134a hydrates. The effects of change in heat transfer ratio, phase change number, superheating, and pipe diameter on hydrate formation are reported in this paper. The results indicate that higher heat transfer ratio between the internal and external fluids reduces the possibility of hydrates creating a blockage in the pipeline. The pipes with smaller diameters are also found to reduce the possibility of hydrate formation at a constant pipeline pressure. The results show that at temperatures below -10 °C, changing thermophysical properties have limited impact on the rate of hydrate formation in the pipe.

  9. Development of advanced low-temperature heat transfer fluids for district heating and cooling

    SciTech Connect

    Not Available

    1991-09-30

    The feasibility of adding phase change materials (PCMs) and surfactants to the heat transfer fluids in district cooling systems was investigated. It increases the thermal capacity of the heat transfer fluid and therefore decreases the volume that needs to be pumped. It also increases the heat transfer rate, resulting in smaller heat exchangers. The thermal behavior of two potential PCMs, hexadecane and tetradecane paraffin wax, was experimentally evaluated. The heat of fusion of these materials is approximately 60% of that of ice. They exhibit no supercooling and are stable under repeated thermal cycling. While test results for laboratory grade materials showed good agreement with data in the literature, both melting point and heat of fusion for commercial grade hexadecane were found to be considerably lower than literaturevalues. PCM/water mixtures were tested in a laboratory-scale test loop to determine heat transfer and flow resistance properties. When using PCMs in district cooling systems, clogging of frozen PCM particles isone of the major problems to be overcome. In the present project it is proposed to minimize or prevent clogging by the addition of an emulsifier. Effects of the emulsifier on the mixture of water and hexadecane(a PCM) were studied. As the amount of the emulsifier was increased, the size of the solid PCM particles became smaller. When the size of the particles was small enough, they did not stick together or stick to the cold surface of a heat exchanger. The amount of emulsifier to produce this condition was determined.

  10. Principals in the Pipeline: Districts Construct a Framework to Develop School Leadership

    ERIC Educational Resources Information Center

    Mendels, Pamela

    2012-01-01

    A diverse school district hugging the eastern border of Washington, D.C., Prince George's County, has introduced rigorous hiring methods and other practices to boost the quality of leadership in its 198 schools. In so doing, the district has also earned a spot among the pioneers in efforts nationally to ensure that public schools are led by the…

  11. Keep the Leadership Pipeline Flowing: Districts Can Adopt These 5 Strategies to Streamline Succession Planning

    ERIC Educational Resources Information Center

    Hall, Bill

    2008-01-01

    A school improvement process that relies on professionals learning in concert with each other also holds the key to developing the leadership capacity and sustainability that schools and systems so desperately need. Professional learning communities thrive when districts experience consistent leadership across the district, so succession planning…

  12. Innovations in district heating and cooling 1984--1994 and their economic impact

    SciTech Connect

    Mornhed, G.; Casten, T.R.

    1995-08-01

    The period from 1984 to 1994 saw the concept of district heating and cooling revived. Many new district energy systems were established and existing systems expanded. The expansion can be attributed to technical innovations as well as institutional, environmental, and economic changes; no one event can be singled out as a main reason for the improved climate. The district cooling industry in particular, fueled by growing demand and technical innovation, experienced a period of unprecedented expansion. On the surface, the concept of district cooling would appear to be uneconomical. Although economic benefits can be achieved using traditional district cooling technology over individual building systems, the benefits from technical innovations during the last 10 years, such as low-temperature chilled-water storage, trigeneration, variable-speed-drive technology, and automation, have made district cooling more competitive and have contributed to industry growth. On the district heating side, innovations such as low-cost distribution technology and cost-effective cogeneration helped create a renaissance. The improved competitiveness of district heating and cooling has made the combined service attractive for users who now do not need to rely on either in-house heating or cooling plants. Ongoing innovations in the industry set the stage for continued expansion as district heating and cooling--district energy--move into the next century and help improve their urban environment more than ever.

  13. Phase 1 feasibility study: district heating and cooling using wastewater effluent and sea water in Olympia, Washington

    SciTech Connect

    Not Available

    1986-01-01

    The feasibility of district heating and cooling (DHC) using low-temperature hydrothermal sources in conjunction with heat pumps has been assessed on a preliminary basis for downtown Olympia and the Capitol Campus. The conclusion is that DHC can provide thermal energy at approximately 75 to 85% of the lowest competing fuel cost in the community. Three potential hydrothermal sources for DHC were evaluated: treated wastewater effluent from the LOTT plant; surface water from Capitol Lake or Budd Inlet; and waste process water from the Olympia Brewery. LOTT effluent and Budd Inlet sea water were both found to be favorable sources, possessing heat pump output potentials far in excess of the service area's heating or cooling demands. Capitol Lake was found to be an unfavorable source because its maximum potential as a heat pump source falls below the service area's thermal demands. The Olympia Brewery was also eliminated because its waste heat was likewise insufficient to meet winter demands, and it requires a costly transmission pipeline to the service area. However, it should be noted that at some point in the future the Brewery could become a DHC customer if its large demand for conventionally-fueled process heat becomes too costly.

  14. Development of advanced low-temperature heat transfer fluids for district heating and cooling, final report

    SciTech Connect

    Cho, Y.I.; Lorsch, H.G.

    1991-03-31

    The feasibility of adding phase change materials (PCMS) and surfactants to the heat transfer fluids in district cooling systems was investigated. It increases the thermal capacity of the heat transfer fluid and therefore decreases the volume that needs to be pumped. It also increases the heat transfer rate, resulting in smaller heat exchangers. The thermal behavior of two potential PCMS, hexadecane and tetradecane paraffin wax, was experimentally evaluated. The heat of fusion of these materials is approximately 60% of that of ice. They exhibit no supercooling and are stable under repeated thermal cycling. While test results for laboratory grade materials showed good agreement with data in the literature, both melting point and heat of fusion for commercial grade hexadecane were found to be considerably lower than literature values. PCM/water mixtures were tested in a laboratory-scale test loop to determine heat transfer and flow resistance properties. For 10% and 25% PCM/water slurries, the heat transfer enhancement was found to be approximately 18 and 30 percent above the value for water, respectively. Within the turbulent region, there is only a minor pumping penalty from the addition of up to 25% PCM to the water. Research is continuing on these fluids in order to determine their behavior in large-size loops and to arrive at optimum formulations.

  15. Union County - La Grande, Oregon geothermal district heating: feasibility assessment. Final report

    SciTech Connect

    Jenkins, H. II; Giddings, M.; Hanson, P.

    1982-09-01

    This report presents an assessment of geothermal district heating in the City of La Grande, Oregon. Eight study area districts were analyzed to determine their economic feasibility. Results from the analyses conclude that certain districts within the City of La Grande are economically feasible if certain assumptions are correct. Development of geothermal district heating for these areas would provide direct energy and dollar savings to the building owners and would also provide direct and indirect benefits to low and moderate income households within the City.

  16. Desiccant-based, heat-actuated cooling assessment for DHC (District Heating and Cooling) systems

    SciTech Connect

    Patch, K.D.; DiBella, F.A.; Becker, F.E.

    1990-07-01

    An assessment has been completed of the use of desiccant-based, heat-actuated cooling for District Heating and Cooling (DHC) systems, showing that such desiccant-based cooling (DBC) systems are generally applicable to District Heating (DH) systems. Since the DH system only has to supply hot water (or steam) to its customers, systems that were designed as conventional two-pipe DH systems can now be operated as DHC systems without major additional capital expense. Desiccant-based DHC systems can be operated with low-grade DH-supplied heat, at temperatures below 180{degree}F, without significant loss in operating capacity, relative to absorption chillers. During this assessment, a systems analysis was performed, an experimental investigation was conducted, developmental requirements for commercializing DBC systems were examined, and two case studies were conducted. As a result of the case studies, it was found that the operating cost of a DBC system was competitive with or lower than the cost of purchasing DHC-supplied chilled water. However, because of the limited production volume and the current high capital costs of desiccant systems, the payback period is relatively long. In this regard, through the substitution of low-cost components specifically engineered for low-temperature DHC systems, the capital costs should be significantly reduced and overall economics made attractive to future users. 17 figs.

  17. Recovery Act: Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumps and Ground Source Water Loops

    SciTech Connect

    Jarrell, Mark

    2013-09-30

    Cedarville School District retrofitted the heating and cooling systems in three campus areas (High School, Middle School, and Upper Elementary School) with geothermal heat pumps and ground source water loops, as a demonstration project for the effective implementation of geothermal heat pump systems and other energy efficiency and air quality improvements.

  18. Techno-economic analysis of renewable energy source options for a district heating project

    SciTech Connect

    Ghafghazi, S.; Sowlati, T.; Sokhansanj, Shahabaddine; Melin, Staffan

    2009-09-01

    With the increased interest in exploiting renewable energy sources for district heating applications, the economic comparison of viable options has been considered as an important step in making a sound decision. In this paper, the economic performance of several energy options for a district heating system in Vancouver, British Columbia, is studied. The considered district heating system includes a 10 MW peaking/ backup natural gas boiler to provide about 40% of the annual energy requirement and a 2.5 MW base-load system. The energy options for the base-load system include: wood pellet, sewer heat, and geothermal heat. Present values of initial and operating costs of each system were calculated over 25-year service life of the systems, considering depreciation and salvage as a negative cost item. It was shown that the wood pellet heat producing technologies provided less expensive energy followed by the sewer heat recovery, geothermal and natural gas systems. Among wood pellet technologies, the grate burner was a less expensive option than powder and gasifier technologies. It was found that using natural gas as a fuel source for the peaking/backup system accounted for more than 40% of the heat production cost for the considered district heating center. This is mainly due to the high natural gas prices which cause high operating costs over the service life of the district heating system. Variations in several economic inputs did not change the ranking of the technology options in the sensitivity analysis. However, it was found that the results were more sensitive to changes in operating costs of the system than changes in initial investment. It is economical to utilize wood pellet boilers to provide the base-load energy requirement of district heating systems Moreover, the current business approach to use natural gas systems for peaking and backup in district heating systems could increase the cost of heat production significantly.

  19. Advanced thermoplastic materials for district heating piping systems

    SciTech Connect

    Raske, D.T.; Karvelas, D.E.

    1988-04-01

    The work described in this report represents research conducted in the first year of a three-year program to assess, characterize, and design thermoplastic piping for use in elevated-temperature district heating (DH) systems. The present report describes the results of a program to assess the potential usefulness of advanced thermoplastics as piping materials for use in DH systems. This includes the review of design rules for thermoplastic materials used as pipes, a survey of candidate materials and available mechanical properties data, and mechanical properties testing to obtain baseline data on a candidate thermoplastic material extruded as pipe. The candidate material studied in this phase of the research was a polyetherimide resin, Ultem 1000, which has a UL continuous service temperature rating of 338/degree/F (170/degree/C). The results of experiments to determine the mechanical properties between 68 and 350/degree/F (20 and 177/degree/C) were used to establish preliminary design values for this material. Because these prototypic pipes were extruded under less than optimal conditions, the mechanical properties obtained are inferior to those expected from typical production pipes. Nevertheless, the present material in the form of 2-in. SDR 11 pipe (2.375-in. O. D. by 0.216-in. wall) would have a saturated water design pressure rating of /approximately/34 psig at 280/degree/F. 16 refs., 6 figs., 8 tabs.

  20. Characterization of selected application of biomass energy technologies and a solar district heating and cooling system

    SciTech Connect

    D'Alessio, Dr., Gregory J.; Blaunstein, Robert P.

    1980-09-01

    The following systems are discussed: energy self-sufficient farms, wood gasification, energy from high-yield silviculture farms, and solar district heating and cooling. System descriptions and environmental data are included for each one. (MHR)

  1. Evaluation of thermal energy storage for the proposed Twin Cities District Heating system. [using cogeneration heat production and aquifiers for heat storage

    NASA Technical Reports Server (NTRS)

    Meyer, C. F.

    1980-01-01

    The technical and economic feasibility of incorporating thermal energy storage components into the proposed Twin Cities District heating project was evaluated. The technical status of the project is reviewed and conceptual designs of district heating systems with and without thermal energy storage were compared in terms of estimated capital requirements, fuel consumption, delivered energy cost, and environmental aspects. The thermal energy storage system is based on cogeneration and the storage of heat in aquifers.

  2. Heat loss of heat pipelines in moisture conditions of thermal insulation

    NASA Astrophysics Data System (ADS)

    Polovnikov, V. Yu.; Gubina, E. V.

    2014-08-01

    Results of numerical simulation of heat and mass transfer in a wet fibroporous material in conditions of evaporation and steam diffusion were obtained. Values of heat and mass fluxes were established. The contribution of evaporation effect to total heat flux and need to consider volume fractions of water and steam into the structure of fibroporous material in calculation of effective thermal conductivity were shown. Nonstationarity of heat and mass transfer in conditions of considered problem can be ignored.

  3. District heating from electric-generating plants and municipal incinerators: local planner's assessment guide

    SciTech Connect

    Pferdehirt, W.; Kron, N. Jr.

    1980-11-01

    This guide is designed to aid local government planners in the preliminary evaluation of the feasibility of district heating using heat recovered from electric generating plants and municipal incinerators. System feasibility is indicated by: (1) the existence of an adequate supply of nearby waste heat, (2) the presence of a sufficiently dense and large thermal load, and (3) a favorable cost comparison with conventional heating methods. 34 references.

  4. Improving the turbine district heating installations of single-circuit nuclear power plants

    NASA Astrophysics Data System (ADS)

    Kondurov, E. P.; Kruglikov, P. A.; Smolkin, Yu. V.

    2015-10-01

    Ways for improving the turbine district heating installations of single-circuit nuclear power plants are considered as a possible approach to improving the nuclear power plant energy efficiency. The results of thermal tests carried out at one of single-circuit NPPs in Russia with a view to reveal the possibilities of improving the existing heat-transfer equipment of the turbine district heating installation without making significant investments in it were taken as a basis for the analysis. The tests have shown that there is certain energy saving potential in some individual units and elements in the turbine district heating installation's process circuit. A significant amount of thermal energy can be obtained only by decreasing the intermediate circuit temperature at the inlet to the heater of the first district-heating extraction. The taking of this measure will also lead to an additional amount of generated electricity because during operation with the partially loaded first heater, the necessary amount of heat has to be obtained from the peaking heater by reducing live steam. An additional amount of thermal energy can also be obtained by eliminating leaks through the bypass control valves. The possibility of achieving smaller consumption of electric energy for power plant auxiliaries by taking measures on reducing the available head in the intermediate circuit installation's pump unit is demonstrated. Partial cutting of pump impellers and dismantling of control valves are regarded to be the most efficient methods. The latter is attributed to qualitative control of the turbine district heating installation's thermal load. Adjustment of the noncondensable gas removal system will make it possible to improve the performance of the turbine district heating installation's heat-transfer equipment owing to bringing the heat-transfer coefficients in the heaters to the design level. The obtained results can be used for estimating the energy saving potential at other

  5. Development of heat transfer method for non-intrusive pressure measurement in natural gas pipelines

    SciTech Connect

    Brown, S.T.; Holderbaum, G.S.; Philips, D.B.; Stulen, F.B.; Eberle, A.C.

    1994-12-31

    A method for non-intrusive measurement of internal pressures in flowing and non-flowing natural gas distribution pipelines has been developed. The method is based on temperature changes observed at various locations on the outside wall of the pipe in response to a circumferential band of heat applied to it. Because of the complex flow patterns in the pipe, the pressure-related phenomena induce second-order effects on the heat transfer to the gas or liquid in the pipeline. Experimental results from both laboratory and field measurements have been compared with predictions from TEMPEST, a computation fluid dynamics (CFD) model, to aid in understanding the flow characteristics. In this method, a 2.5-in. band or ring heater device placed around the outer circumference of the pipe is used to apply that to the outer wall of the pipe. The effect of heat input ranging from 250 to 1,000 watts has been evaluated for pipe diameters ranging from 4 in. to 12 in. The expected range of Reynolds numbers spans the laminar, transitional, and turbulent flow regimes, thus adding significant complexity to the problem. Results have shown that a heater power of about 1,000 watts for flowing gas and 250 watts for non-flowing gas enables an acceptable estimate of pressures for most cases. The method can be used to effectively determine whether a pipe is filled with gas or liquid. It can also indicate whether the gas is flowing or static. For flowing gas, upstream-to-downstream and top-to-bottom temperature differences at the surface of the pipe are jointly used to determine gas flow rate and pressure. For no-flow conditions, the upstream-to-downstream temperature difference is zero, and pressures ranging from 0 to 150 psig can be differentiated solely by the temperatures along the outside wall of the pipe.

  6. District heating and cooling systems of the future: Strategies for global change

    SciTech Connect

    McCabe, R.E.

    1996-12-31

    The future of district heating and cooling, also known as district energy, will be a function of economic and regulatory forces in the US. Typically a district energy system provides thermal energy in the form of steam, hot water, or chilled water from a central plant, and distributes the energy through pipes to two or more buildings. At the present time, district energy is under-utilized and serves only 1.3 percent of US energy needs, providing a total of 1.1 quadrillion Btu of energy annually. A brief review of the historical development of district energy, the status of the technology in the US, and a few basics on world energy consumption lead in to the economic and environmental advantages of district energy. District energy systems have been retrofitted to comply wit h the regulations of the Clean Air Act (CAA); presently emissions of greenhouse gases, such as CO{sub 2}, are not regulated by the CAA. If the results of ongoing investigation on global climate change determine that regulation is warranted, several strategies exist for district energy systems to offer significant reductions in greenhouse gas emissions. Projections of district energy`s reaction to the ongoing forces are possible with the use of energy consumption forecasts through the year 2015, and a discussion of trend setting concepts being applied involving: gas turbines, cogeneration, fuel cells, chillers, advanced transmission fluids, renewable energies, and CO{sub 2} capture. District energy has potential to be an important part of the evolving strategies for global climate change. For this reason, combined with technology advancements and a supportive economic climate, a new era in district energy has begun. Growth and development of district energy into the foreseeable future is expected to be strong.

  7. Feasibility study for retrofitting biogas cogeneration systems to district heating in South Korea.

    PubMed

    Chung, Mo; Park, Hwa-Choon

    2015-08-01

    A feasibility study was performed to assess the technical and economic merits of retrofitting biogas-based cogeneration systems to district heating networks. Three district heating plants were selected as candidates for accommodating heat recovery from nearby waste treatment stations, where a massive amount of biogas can be produced on a regular basis. The scenario involves constructing cogeneration systems in each waste treatment station and producing electricity and heat. The amounts of biogas production for each station are estimated based on the monthly treatment capacities surveyed over the most recent years. Heat produced by the cogeneration system is first consumed on site by the waste treatment system to keep the operating temperature at a proper level. If surplus heat is available, it will be transported to the nearest district heating plant. The year-round operation of the cogeneration system was simulated to estimate the electricity and heat production. We considered cost associated with the installation of the cogeneration system and piping as initial investments. Profits from selling electricity and recovering heat are counted as income, while costs associated with buying biogas are expenses. Simple payback periods of 2-10 years were projected under the current economic conditions of South Korea. We found that most of the proposed scenarios can contribute to both energy savings and environmental protection. PMID:26159562

  8. The Role of the Latvian District Heating System in the Development of Sustainable Energy Supply

    NASA Astrophysics Data System (ADS)

    Bazbauers, Gatis; Cimdina, Ginta

    2011-01-01

    The aim of the study is to determine whether and to what extent it is possible to use excess electricity produced by wind power plants during low demand periods for district heat production by heat pumps. Energy system analysis on an hourly basis is conducted at various capacities of wind power plants. The results show that it is possible to increase the share of renewable energy sources, decrease the use of primary energy sources and CO2 emissions per unit of the produced energy, i.e. heat and electricity, by using the surplus electricity produced by wind power in the heat pumps combined with the heat storage.

  9. Geothermal district-heating potential for casinos/hotels in Reno, Nevada

    SciTech Connect

    Not Available

    1981-11-30

    Results from the pre-feasibility study of a geothermal district heating system for greater Reno and the pre-feasibility study of providing geothermal heat to casinos/hotels located in downtown Reno by connection to the proposed district heating system (DHS) are combined. Geothermal sources were selected from published data. Potential users were selected from aerial and city planning maps, and published building and demographic information. Energy consumption data from the electric and gas utility was matched with consumption information from surveys of representative buildings by category and climatic data. As an example, a written survey was mailed to the casino/hotels and two on-site visits were made. Retrofit methodology and cost were examined for the casino/hotels and representative buildings. Based on the pre-feasibility studies, a geothermal district heating system for Reno appears technically and economically feasible. Furthermore, additional economic savings are achieved when the Reno casinos/hotels are connected to the DHS. Steamboat Hot Springs and a geothermal area east of downtown are the most promising geothermal sources for the DHS. The City of Reno has a large yearly heat load with an average heating degree days per year of 6022/sup 0/F days and a heating season greater than eight months.

  10. Blueprint for financing geothermal district heating in California

    SciTech Connect

    Grattan, J.P.; Hansen, D.P.

    1981-03-01

    The current legal and investment climate surrounding geothermal development is depicted. Changes that would make the climate more favorable to direct heat geothermal development are recommended. The Boise, Susanville, and Brady Hot Springs projects are analyzed. (MHR)

  11. Geothermal district heating and cooling system for the city of Calistoga, California

    SciTech Connect

    Frederick, J.

    1982-01-01

    Calistoga has long been known for having moderate (270/sup 0/F maximum) hydrothermal deposits. The economic feasibility of a geothermal heating and cooling district for a portion of the downtown commercial area and city-owned building was studied. Descriptions of existing and proposed systems for each building in the block are presented. Heating and cooling loads for each building, retrofit costs, detailed cost estimates, system schematics, and energy consumption data for each building are included. (MHR)

  12. Particulate matter emissions from combustion of wood in district heating applications

    SciTech Connect

    Ghafghazi, S.; Sowlati, T.; Sokhansanj, Shahabaddine; Bi, X.T.; Melin, Staffan

    2011-01-01

    The utilization of wood biomass to generate district heat and power in communities that have access to this energy source is increasing. In this paper the effect of wood fuel properties, combustion condition, and flue gas cleaning system on variation in the amount and formation of particles in the flue gas of typical district heating wood boilers are discussed based on the literature survey. Direct measurements of particulate matter (PM) emissions from wood boilers with district heating applications are reviewed and presented. Finally, recommendations are given regarding the selection of wood fuel, combustion system condition, and flue gas cleaning system in district heating systems in order to meet stringent air quality standards. It is concluded that utilization of high quality wood fuel, such as wood pellets produced from natural, uncontaminated stem wood, would generate the least PM emissions compared to other wood fuel types. Particulate matter emissions from grate burners equipped with electrostatic precipitators when using wood pellets can be well below stringent regulatory emission limit such as particulate emission limit of Metro Vancouver, Canada.

  13. Environmental Assessment and FONSI for the Bison School District Heating Plant Project (Institutional Conservation Program [ICP]).

    ERIC Educational Resources Information Center

    Department of Energy, Washington, DC.

    This paper examines the environmental impacts of replacing the Bison, South Dakota School District's elementary and high school heating system consisting of oil-fired boilers, and supporting electrical components with a new coal-fired boiler and supporting control system piping. Various alternative systems are also examined, including purchasing a…

  14. District heating system, College Industrial Park, Klamath Falls, Oregon

    SciTech Connect

    Not Available

    1981-10-01

    The College Industrial Park (CIP) is located to the northwest of the Oregon Institute of Technology (OIT) campus. Waste water from the OIT campus geothermal heating system flows through an open ditch to the south of the Park. Being aware of this, city personnel have requested the Geo-Heat Center design a distribution network for the Park to eventually utilize an estimated 600 GPM of the 130/sup 0/F waste water. Geothermal water from each campus building is discharged into storm drains which also collect surface run off from parking lots, roofs and grounds. Waste water temperatures are generally between 120/sup 0/F and 130/sup 0/F, however, it may drop as low as 90/sup 0/F when mixing occurs with large amounts of surface run off. Peak heating load requirements for the OIT campus are estimated to be 17.8 x 10/sup 6/ Btu/hour for 567,000 square feet of space. Peak flow rate of geothermal fluid to satisfy this load is then 593 GPM based on a net 60/sup 0/F temperature differential. Three wells are available to supply the necessary flow. A Lithium-Bromide Absorption Chiller (185 ton) was installed in 1980 to provide space cooling. The chiller requires a constant flow rate of 550 GPM and discharges 170/sup 0/F water to the storm drains during summer months.

  15. Effects of heat recovery for district heating on waste incineration health impact: a simulation study in Northern Italy.

    PubMed

    Cordioli, Michele; Vincenzi, Simone; De Leo, Giulio A

    2013-02-01

    The construction of waste incinerators in populated areas always causes substantial public concern. Since the heat from waste combustion can be recovered to power district heating networks and allows for the switch-off of domestic boilers in urbanized areas, predictive models for health assessment should also take into account the potential benefits of abating an important source of diffuse emission. In this work, we simulated the dispersion of atmospheric pollutants from a waste incinerator under construction in Parma (Italy) into different environmental compartments and estimated the potential health effect of both criteria- (PM(10)) and micro-pollutants (PCDD/F, PAH, Cd, Hg). We analyzed two emission scenarios, one considering only the new incinerator, and the other accounting for the potential decrease in pollutant concentrations due to the activation of a district heating network. We estimated the effect of uncertainty in parameter estimation on health risk through Monte Carlo simulations. In addition, we analyzed the robustness of health risk to alternative assumptions on: a) the geographical origins of the potentially contaminated food, and b) the dietary habits of the exposed population. Our analysis showed that under the specific set of assumptions and emission scenarios explored in the present work: (i) the proposed waste incinerator plant appears to cause negligible harm to the resident population; (ii) despite the net increase in PM(10) mass balance, ground-level concentration of fine particulate matter may be curbed by the activation of an extensive district heating system powered through waste combustion heat recovery and the concurrent switch-off of domestic/industrial heating boilers. In addition, our study showed that the health risk caused by waste incineration emissions is sensitive to assumptions about the typical diet of the resident population, and the geographical origins of food production. PMID:23280295

  16. A novel concept for heat transfer fluids used in district cooling systems

    SciTech Connect

    Cho, Y.I.; Choi, E.; Lorsch, H.G.

    1991-01-04

    Low-temperature phase-change materials (PCMS) were mixed with water to enhance the performance of heat transfer fluid. Several PCMs were tested in a laboratory-scale test loop to check their suitability to district cooling applications. The phase-change temperatures and latent heats of fusion of tetradecane, pentadecane, and hexadecane paraffin waxes were measured using a differential scanning calorimeter. The heat of fusion of these materials is approximately 60% of that of ice. They exhibit no supercooling and are stable under repeated thermal cycling. For 10% and 25% PCM-water slurries, the heat transfer enhancement was found to be approximately 18 and 30 percent over the value of water, respectively. It was also found that, in the turbulent region, there is only a minor pumping penalty from the addition of up to 25% PCM to the water. It was demonstrated that pentadecane does not clog in a glass-tube chiller, and continuous pumping below its freezing, point (9.9[degrees]C):was successfully carried out in a bench-scale flow loop. Adding PCM to water increases the thermal capacity of the heat transfer fluid and therefore decreases the volume that needs to be pumped in a district cooling system. It also increases the heat transfer rate, resulting in smaller heat exchangers. Research is continuing on these fluids in order to determine their behavior in large-size loops and to arrive at optimum formulations.

  17. IRP applied to district heating in Eastern Europe

    SciTech Connect

    Bull, M.; Secrest, T.; Zeman, J.; Popelka, A.

    1994-08-01

    The cities of Plzen, Czech Republic, and Handlova, Republic of Slovakia, are examining options for meeting the thermal energy requirements of their citizens with consideration of both economics and the environment. Major energy related issues faced by the cities are: the frequent need to replace and/or implement a major rehabilitation of the central heating plants and the transmission and distribution systems that supply the consumers; and the need to reduce emissions in order to comply with more stringent environmental regulations and improve air quality; and the need to minimize consumer energy bills, particularly to accommodate the upcoming decontrol of energy prices and to minimize non-payment problems. The intent of the integrated resource planning (IRP) projects is to present analyses of options to support the cities` decision-making processes, not to provide specific recommendations or guidance for the cities to follow.

  18. Selected cost considerations for geothermal district heating in existing single-family residential areas

    SciTech Connect

    Rafferty, K.

    1996-06-01

    In the past, district heating (geothermal or conventionally fueled) has not been widely applied to the single-family residential sector. Low-heat load density is the commonly cited reason for this. Although it`s true that load density in these areas is much lower than for downtown business districts, other frequently overlooked factors may compensate for load density. In particular, costs for distribution system installation can be substantially lower in some residential areas due to a variety of factors. This reduced development cost may partially compensate for the reduced revenue resulting from low-load density. This report examines cost associated with the overall design of the system (direct or indirect system design), distribution piping installation, and customer branch lines. It concludes with a comparison of the costs for system development and the revenue from an example residential area.

  19. Application of Service Oriented Architecture for Sensors and Actuators in District Heating Substations

    PubMed Central

    Gustafsson, Jonas; Kyusakov, Rumen; Mäkitaavola, Henrik; Delsing, Jerker

    2014-01-01

    Hardwired sensor installations using proprietary protocols found in today's district heating substations limit the potential usability of the sensors in and around the substations. If sensor resources can be shared and re-used in a variety of applications, the cost of sensors and installation can be reduced, and their functionality and operability can be increased. In this paper, we present a new concept of district heating substation control and monitoring, where a service oriented architecture (SOA) is deployed in a wireless sensor network (WSN), which is integrated with the substation. IP-networking is exclusively used from sensor to server; hence, no middleware is needed for Internet integration. Further, by enabling thousands of sensors with SOA capabilities, a System of Systems approach can be applied. The results of this paper show that it is possible to utilize SOA solutions with heavily resource-constrained embedded devices in contexts where the real-time constrains are limited, such as in a district heating substation. PMID:25196165

  20. Application of service oriented architecture for sensors and actuators in district heating substations.

    PubMed

    Gustafsson, Jonas; Kyusakov, Rumen; Mäkitaavola, Henrik; Delsing, Jerker

    2014-01-01

    Hardwired sensor installations using proprietary protocols found in today's district heating substations limit the potential usability of the sensors in and around the substations. If sensor resources can be shared and re-used in a variety of applications, the cost of sensors and installation can be reduced, and their functionality and operability can be increased. In this paper, we present a new concept of district heating substation control and monitoring, where a service oriented architecture (SOA) is deployed in a wireless sensor network (WSN), which is integrated with the substation. IP-networking is exclusively used from sensor to server; hence, no middleware is needed for Internet integration. Further, by enabling thousands of sensors with SOA capabilities, a System of Systems approach can be applied. The results of this paper show that it is possible to utilize SOA solutions with heavily resource-constrained embedded devices in contexts where the real-time constrains are limited, such as in a district heating substation. PMID:25196165

  1. Economic Assessment of Rural District Heating by Bio-Steam Supplied by a Paper Mill in Canada

    ERIC Educational Resources Information Center

    Marinova, Mariya; Beaudry, Catherine; Taoussi, Abdelaziz; Trepanier, Martin; Paris, Jean

    2008-01-01

    The article investigates the feasibility of district heating in a small town adjacent to a Kraft pulp mill in eastern Canada. A detailed heat demand analysis is performed for all buildings using a geographical information system and archived data provided by the municipality. The study shows that the entire space heating requirement of the town…

  2. Minnesota Project: district heating and cooling through power plant retrofit and distribution network. Final report. Phase 1. [Minnesota Project

    SciTech Connect

    1980-01-01

    Appendices are presented for the Minnesota Project: District Heating and Cooling Through Power Plant Retrofit and Distribution Network. These are: SYNTHA results (SYNTHA II is a proprietary program of the SYNTHA Corporation); Market Survey Questionnaire: Environmental Review Procedures; Public Service Commission Regulation of District Heating; Energy Use Normalization Procedures; Power Plant Description; Letters of Commitment; Bond Opinion and Issuance; and Marvin Koeplin Letter, Chairman of Public Service Commission, Moorehead, Minnesota.

  3. Institutional and financial guide to geothermal district heating, serial no. 2

    NASA Astrophysics Data System (ADS)

    1982-03-01

    General planning considerations which affect nearly every community are reviewed, and alternative operating structures which are available to communities are reviewed, including local governments, nonprofit cooperatives, private enterprises, and joint ventures. The financing options available to publicly-owned and privately-owned district heating systems are then summarized. The geothermal production and distribution activities most appropriate to each type of operating structure are reviewed, along with typical equity and debt funding sources. The tax advantages for private developers are described, as are the issues of customer contracts and service prices, and customer retrofit financing. The treatment is limited to an introductory overview.

  4. Warren Estates-Manzanita Estates Reno, Nevada residential geothermal district heating system

    SciTech Connect

    McKay, F.; McKay, G.; McKay, S.; Flynn, T.

    1995-12-31

    Warren Estates-Manzanita Estates is the largest privately-owned and operated residential geothermal district heating system in the State of Nevada. The system has operated for ten years and presently services 95 homes. Geothermal energy is used to heat homes, domestic water, spas, swimming pools, and greenhouses. Four homes have installed driveway deicing systems using geothermal energy. This paper briefly describes the geothermal resource, wells, system engineering, operation, applications, and economics. The accompanying posters illustrate the geothermal area, system design, and various applications. The resource is part of the Moana geothermal field, located in southwest Reno. Excluding the Warren-Manzanita Estates, the well-known Moana field supports nearly 300 geothermal wells that supply fluids to individual residences, several motels, a garden nursery, a few churches, and a municipal swimming pool. The Warren-Manzanita Estates is ideally suited for residential district space heating because the resource is shallow, moderate-temperature, and chemically benign. The primary reservoir rock is the Kate Peak andesite, a Tertiary volcanic lahar that has excellent permeability within the narrow fault zones that bisect the property. The Kate Peak formation is overlain by impermeable Tertiary lake sediments and alluvium. Two production wells, each about 240 m deep, are completed near the center of the residential development at the intersection of two fault zones. Geothermal fluids are pumped at a rate of 15 to 25 l/s (260-400 gpm) from one of two wells at a temperature of 95{degrees}C (202{degrees}F) to two flat-plate heat exchangers. The heat exchangers transfer energy from the geothermal fluids to a second fluid, much like a binary geothermal power plant.

  5. Influence of biomass cofiring on the optimal coefficient of the cogeneration share in a district heating system

    NASA Astrophysics Data System (ADS)

    Ziębik, Andrzej; Gładysz, Paweł

    2014-03-01

    The paper presents a modified algorithm for choosing the optimal coefficient of the share of cogeneration in district heating systems taking into account additional benefits concerning the promotion of highefficiency cogeneration and biomass cofiring. The optimal coefficient of the share of cogeneration depends first of all on the share of the heat required for preparing the hot tap water. The final result of investigations is an empirical equation describing the influence of the ratio of the heat flux for the production of hot tap water to the maximum flux for space heating and ventilation, as well as the share of chemical energy of biomass in the fuel mixture on the optimal value of the share of cogeneration in district heating systems. The approach presented in the paper may be applied both in back-pressure combined heat and power (CHP) plants and in extraction-condensing CHP plants.

  6. City of New York preparing of a district heating and cooling systems Project (Phase II)

    SciTech Connect

    Not Available

    1982-08-27

    The project with the greatest, and most immediate potential, is the Brooklyn Navy Yard Complex, which included the Brooklyn Navy Yard Industrial Complex, nearby public housing apartments, Brooklyn Hospital, Cumberland Hospital, the Red Hook Sewage Treatment Plant and Pratt Institute. Initial engineering investigation indicates that five, and probably six, of the 160,000 lb/hr, 500 psi boilers in the generating plant at the Navy Yard can be economically refurbished, and could produce up to 900,000 lbs/hr of steam. Further, at least two of the on site turbines appear to be refurbishable, making possible cogeneration of electricity with district heating and/or cooling. The NYCEO research has shown that an innovative system, using pressurized hot water and heat exchangers (to generate low pressure steam for individual apartment houses) is an effective means to satisfy the heating requirements of New York City's apartment buildings, many of which are already steam heated, while reducing their energy costs and oil consumption. This approach takes advantage of a modern hot water system, while avoiding the disadvantage of expensive building retrofit. Preliminary studies have shown that thermal energy costs to Yard tenants, among the highest anywhere in the USA, will be reduced. These savings will increase long term tenant occupancy as well as ability to create and hold jobs in the area.

  7. Feasibility and Supply Analysis of U.S. Geothermal District Heating and Cooling System

    NASA Astrophysics Data System (ADS)

    He, Xiaoning

    Geothermal energy is a globally distributed sustainable energy with the advantages of a stable base load energy production with a high capacity factor and zero SOx, CO, and particulates emissions. It can provide a potential solution to the depletion of fossil fuels and air pollution problems. The geothermal district heating and cooling system is one of the most common applications of geothermal energy, and consists of geothermal wells to provide hot water from a fractured geothermal reservoir, a surface energy distribution system for hot water transmission, and heating/cooling facilities to provide water and space heating as well as air conditioning for residential and commercial buildings. To gain wider recognition for the geothermal district heating and cooling (GDHC) system, the potential to develop such a system was evaluated in the western United States, and in the state of West Virginia. The geothermal resources were categorized into identified hydrothermal resources, undiscovered hydrothermal resources, near hydrothermal enhanced geothermal system (EGS), and deep EGS. Reservoir characteristics of the first three categories were estimated individually, and their thermal potential calculated. A cost model for such a system was developed for technical performance and economic analysis at each geothermally active location. A supply curve for the system was then developed, establishing the quantity and the cost of potential geothermal energy which can be used for the GDHC system. A West Virginia University (WVU) case study was performed to compare the competiveness of a geothermal energy system to the current steam based system. An Aspen Plus model was created to simulate the year-round campus heating and cooling scenario. Five cases of varying water flow rates and temperatures were simulated to find the lowest levelized cost of heat (LCOH) for the WVU case study. The model was then used to derive a levelized cost of heat as a function of the population density

  8. Preliminary business plan: District Heating Company for the city of Handlova, Slovakia

    SciTech Connect

    1996-06-01

    The city of Handlova, Slovakia, needs to replace its district heating system, which is old, unreliable, and expensive to maintain. The current plant is owned by a state-run utility, the Slovensky Energeticky Podnik (SEP). The plan is to privatize the heating plant, acquire capital to rehabilitate the central plant (converting it to a cogeneration facility), install a new hot-water distribution system, and implement an extensive energy efficiency effort in the residential buildings on the system. System capacity is 100 MWt, with annual heat sales estimated to be 450,000 gigajoules per year (GJ/yr). The capital necessary for system improvements is estimated to be 465 million Slovakian Krowns (SK) (in 1997 price levels). The total market value of existing fixed assets that will survive the rehabilitation effort as part of the new systems is estimated at 342 million SK. There has been substantial analysis and preparation for this activity, which is documented in demand-side and supply-side technical and economic analyses, an integrated demand/supply report, and this preliminary business plan. The preparation includes investigation of ownership, management, and technology alternatives; estimation of the market value of existing assets and investment requirements; and forecasting of future cash flows. These preliminary projections indicate that the cost of heating from the new system will be reasonable from both a cost per unit of energy basis (SK/GJ) and, form the perspective of an apartment dweller in Handlova, on a total cost per year basis. Delivering heat at the projected cost will, however, require a substantial change in the way that the heating plant is run, with proportionally very large reductions in labor, operations and maintenance, and overhead charges. In addition, there will need to be significant revenues from the sale of electricity to the national grid.

  9. RESTful M2M Gateway for Remote Wireless Monitoring for District Central Heating Networks

    PubMed Central

    Cheng, Bo; Wei, Zesan

    2014-01-01

    In recent years, the increased interest in energy conservation and environmental protection, combined with the development of modern communication and computer technology, has resulted in the replacement of distributed heating by central heating in urban areas. This paper proposes a Representational State Transfer (REST) Machine-to-Machine (M2M) gateway for wireless remote monitoring for a district central heating network. In particular, we focus on the resource-oriented RESTful M2M gateway architecture, and present an uniform devices abstraction approach based on Open Service Gateway Initiative (OSGi) technology, and implement the resource mapping mechanism between resource address mapping mechanism between RESTful resources and the physical sensor devices, and present the buffer queue combined with polling method to implement the data scheduling and Quality of Service (QoS) guarantee, and also give the RESTful M2M gateway open service Application Programming Interface (API) set. The performance has been measured and analyzed. Finally, the conclusions and future work are presented. PMID:25436650

  10. RESTful M2M gateway for remote wireless monitoring for district central heating networks.

    PubMed

    Cheng, Bo; Wei, Zesan

    2014-01-01

    In recent years, the increased interest in energy conservation and environmental protection, combined with the development of modern communication and computer technology, has resulted in the replacement of distributed heating by central heating in urban areas. This paper proposes a Representational State Transfer (REST) Machine-to-Machine (M2M) gateway for wireless remote monitoring for a district central heating network. In particular, we focus on the resource-oriented RESTful M2M gateway architecture, and present an uniform devices abstraction approach based on Open Service Gateway Initiative (OSGi) technology, and implement the resource mapping mechanism between resource address mapping mechanism between RESTful resources and the physical sensor devices, and present the buffer queue combined with polling method to implement the data scheduling and Quality of Service (QoS) guarantee, and also give the RESTful M2M gateway open service Application Programming Interface (API) set. The performance has been measured and analyzed. Finally, the conclusions and future work are presented. PMID:25436650

  11. Definitional study for district heating and cogeneration prospects in Turkey. Export trade information

    SciTech Connect

    Not Available

    1985-07-01

    The United States Trade and Development Program (US TDP) sponsored a definitional study to Turkey to assess the potential market for U.S. cogeneration and district heating (DH) technologies. The overall goal of the study was to carry out an assessment of the market for self-generation, DH, and cogeneration in Turkey and to develop initial perceptions about the role of the Turkish Government and industry, vis-a-vis the involvement of US and Turkish companies in the implementation of the above technologies. The opportunities for US firms to market cogeneration and DH technologies in Turkey are developing against a background of Government policies pertaining to foreign investments, energy demand and the role of the private sector. It is also developing within a private sector framework, which is dynamic, welcomes foreign technology and can secure Government support and participation in key projects.

  12. A life cycle evaluation of wood pellet gasification for district heating in British Columbia.

    PubMed

    Pa, Ann; Bi, Xiaotao T; Sokhansanj, Shahab

    2011-05-01

    The replacement of natural gas combustion for district heating by wood waste and wood pellets gasification systems with or without emission control has been investigated by a streamlined LCA. While stack emissions from controlled gasification systems are lower than the applicable regulations, compared to the current base case, 12% and 133% increases are expected in the overall human health impacts for wood pellets and wood waste, respectively. With controlled gasification, external costs and GHG emission can be reduced by 35% and 82% on average, respectively. Between wood pellets and wood waste, wood pellets appear to be the better choice as it requires less primary energy and has a much lower impact on the local air quality. PMID:21377867

  13. Macroeconomic effects under the proposed District Heating and Cooling Tax Incentives Act of 1982. Technology-related policy evaluation using a market penetration model and a macromodel

    SciTech Connect

    Teotia, A.P.S.; Poyer, D.A.

    1983-08-01

    In its energy conservation programs, the US Department of Energy (DOE) has supported research into and development of district heating and cooling systems to meet energy demands in the residential and commercial sectors. Toward this goal, DOE requested Argonne National Laboratory to estimate the macroeconomic effects of the Senate bill known as the ''District Heating and Cooling Tax Incentives Act of 1982.'' The first step was to estimate market penetration of district heating and cooling cogeneration energy systems under the provisions of the proposed act, using Argonne's district heating and cooling market penetration model. This model provided annual estimates of district heating and cooling investment and energy savings. In the second step, macroeconomic effects of district heating and cooling under the Act's provisions were estimated using the annual model of the US economy developed by Data Resources, Inc. The conclusion is that district heating and cooling penetration under the Act could have significant favorable effects on gross national product, US employment, fuel import costs, and similar factors. The analysis assumes that district heating and cooling can overcome the institutional and environmental barriers that have impeded it in the past. 16 references, 17 figures, 13 tables.

  14. Feasibility Study for the Ivano-Frankivsk District Heating Repowering: Analysis of Options

    SciTech Connect

    Markel, L.; Popelka, A.; Laskarevsky, V.

    2002-03-20

    Part of the U.S. Initiative on Joint Implementation with the Ukraine Inter-Ministerial Commission on Climate Change, financed by the US Department of Energy. The project was implemented by a team consisting of the US company SenTech, Inc. and the Ukrainian company Esco-West. The main objective of the effort was to assess available alternatives of Ivano-Frankivsk (I-F) District Heating repowering and provide information for I-F's investment decision process. This study provides information on positive and negative technical and economic aspects of available options. Three options were analyzed for technical merit and economic performance: 1. Installation of cogeneration system based on Gas Turbine (GT) and Heat Recovery Heat Exchanger with thermal capacity of 30 MW and electrical capacity of 13.5 MW. This Option assumes utilization of five existing boilers with total capacity of 221 MW. Existing boilers will be equipped with modern controls. Equipment in this Option was sized for longest operating hours, about 8000 based on the available summer baseload. 2. Installation of Gas Turbine Combined Cycle (GTCC) and Heat Recovery Steam Generator (HRSG) with thermal capacity 45 MW and electrical capacity of 58.7 MW. This Option assumes utilization of five existing boilers with total capacity of 221 MW. Existing boilers will be equipped with modern controls. The equipment was sized for medium, shoulder season thermal load, and some cooling was assumed during the summer operation for extension of operating hours for electricity production. 3. Retrofit of six existing boilers (NGB) with total thermal capacity of 255.9 MW by installation of modern control system and minor upgrades. This option assumes only heat production with minimum investment. The best economic performance and the largest investment cost would result from alternative GTCC. This alternative has positive Net Present Value (NPV) with discount rate lower than about 12%, and has IRR slightly above 12%. The

  15. Development of advanced low-temperature heat transfer fluids for district heating and cooling. Final report, September 25, 1990--September 24, 1991

    SciTech Connect

    Not Available

    1991-09-30

    The feasibility of adding phase change materials (PCMs) and surfactants to the heat transfer fluids in district cooling systems was investigated. It increases the thermal capacity of the heat transfer fluid and therefore decreases the volume that needs to be pumped. It also increases the heat transfer rate, resulting in smaller heat exchangers. The thermal behavior of two potential PCMs, hexadecane and tetradecane paraffin wax, was experimentally evaluated. The heat of fusion of these materials is approximately 60% of that of ice. They exhibit no supercooling and are stable under repeated thermal cycling. While test results for laboratory grade materials showed good agreement with data in the literature, both melting point and heat of fusion for commercial grade hexadecane were found to be considerably lower than literaturevalues. PCM/water mixtures were tested in a laboratory-scale test loop to determine heat transfer and flow resistance properties. When using PCMs in district cooling systems, clogging of frozen PCM particles isone of the major problems to be overcome. In the present project it is proposed to minimize or prevent clogging by the addition of an emulsifier. Effects of the emulsifier on the mixture of water and hexadecane(a PCM) were studied. As the amount of the emulsifier was increased, the size of the solid PCM particles became smaller. When the size of the particles was small enough, they did not stick together or stick to the cold surface of a heat exchanger. The amount of emulsifier to produce this condition was determined.

  16. Cleanup Verification Package for the 100-K-55:1 and 100-K-56:1 Pipelines and the 116-KW-4 and 116-KE-5 Heat Recovery Stations

    SciTech Connect

    J. M. Capron

    2005-09-28

    This cleanup verification package documents completion of remedial action for the 100-K-55:1 and 100-K-56:1 reactor cooling effluent underground pipelines and for the 116-KW-4 and 116-KE-5 heat recovery stations. The 100-K-55 and 100-K-56 sites consisted of those process effluent pipelines that serviced the 105-KW and 105-KE Reactors.

  17. Efficiency and supply resource options for the upgrade of the Plzen district heating system

    SciTech Connect

    1996-06-01

    We examined options for meeting the district heating system steam and hot water heating loads associated with the Plzefi Central Heating Plant, two interconnected boilers serving the Kosutka and Bory regions, and the distributed systems in the Letna/Doubravka and Svetovar regions. The assessment applied integrated resource planning to combine the separate supply and demand-side assessments conducted for the system. Four system load scenarios were examined-high and low growth with and without programmatic efficiency. Hot water loads ranged from the current level of 277 megawatts thermal (MW{sub t}) to 320 MW{sub t} in a high growth scenario without efficiency to 253 MW{sub t} in a low growth scenario with programmatic efficiency. The high growth scenario includes an addition of approximately 50 MW{sub t} load from the connection of distributed boilers. An additional 250 MW{sub t} load served by distributed boilers may provide additional potential for system expansion. Steam loads are projected to increase from 93 MW{sub t} to 100 MW{sub t} in the high growth scenario and. decrease to 89 MW{sub t}, in the low growth scenario. Two system expansion cases were considered. The moderate system expansion provided for the Heat Line East I connection to serve the Letna/Doubravka region and the fall system expansion case further provided for the Heat Line East II connection to serve the Svetovar region. In the moderate case, the life of the Svetovar plant is extended to continue as a stand-alone system. Four central plant supply configurations providing for additional cogeneration capacity were applied to the load scenarios: 1. Life extension to existing facilities with a new coal-fired cogeneration unit in 2003, 2. Retirement of some existing units and a new coal-fired cogeneration unit in 1997, 3. Retirement of some existing units and a new gas- fired cogeneration unit in 1997, 4. Gas: Retirement of some exiting units a new gas-fired cogeneration unit in 1997.

  18. Structure-Property-Fracture Mechanism Correlation in Heat-Affected Zone of X100 Ferrite-Bainite Pipeline Steel

    NASA Astrophysics Data System (ADS)

    Li, Xueda; Ma, Xiaoping; Subramanian, S. V.; Misra, R. D. K.; Shang, Chengjia

    2015-03-01

    Structural performance of a weld joint primarily depends on the microstructural characteristics of heat-affected zone (HAZ). In this regard, the HAZ in X100 ferrite-bainite pipeline steel was studied by separating the HAZ into intercritically reheated coarse-grained (ICCG) HAZ containing and non-containing regions. These two regions were individually evaluated for Charpy impact toughness and characterized by electron back-scattered diffraction (EBSD). Low toughness of ~50 J was obtained when the notch of impact specimen encountered ICCGHAZ and high toughness of ~180 J when the notch did not contain ICCGHAZ. Fracture surface was ~60 pct brittle in the absence of ICCGHAZ, and 95 pct brittle (excluding shear lip) in the presence of ICCGHAZ in the impact tested samples. The underlying reason is the microstructure of ICCGHAZ consisted of granular bainite and upper bainite with necklace-type martensite-austenite (M-A) constituent along grain boundaries. The presence of necklace-type M-A constituent notably increases the susceptibility of cleavage microcrack nucleation. ICCGHAZ was found to be both the initiation site of the whole fracture and cleavage facet initiation site during brittle fracture propagation stage. Furthermore, the study of secondary microcracks beneath CGHAZ and ICCGHAZ through EBSD suggested that the fracture mechanism changes from nucleation-controlled in CGHAZ to propagation-controlled in ICCGHAZ because of the presence of necklace-type M-A constituent in ICCGHAZ. Both fracture mechanisms contribute to the poor toughness of the sample contained ICCGHAZ.

  19. A novel concept for heat transfer fluids used in district cooling systems. Progress report, September 25, 1990--December 31, 1990

    SciTech Connect

    Cho, Y.I.; Choi, E.; Lorsch, H.G.

    1991-01-04

    Low-temperature phase-change materials (PCMS) were mixed with water to enhance the performance of heat transfer fluid. Several PCMs were tested in a laboratory-scale test loop to check their suitability to district cooling applications. The phase-change temperatures and latent heats of fusion of tetradecane, pentadecane, and hexadecane paraffin waxes were measured using a differential scanning calorimeter. The heat of fusion of these materials is approximately 60% of that of ice. They exhibit no supercooling and are stable under repeated thermal cycling. For 10% and 25% PCM-water slurries, the heat transfer enhancement was found to be approximately 18 and 30 percent over the value of water, respectively. It was also found that, in the turbulent region, there is only a minor pumping penalty from the addition of up to 25% PCM to the water. It was demonstrated that pentadecane does not clog in a glass-tube chiller, and continuous pumping below its freezing, point (9.9{degrees}C):was successfully carried out in a bench-scale flow loop. Adding PCM to water increases the thermal capacity of the heat transfer fluid and therefore decreases the volume that needs to be pumped in a district cooling system. It also increases the heat transfer rate, resulting in smaller heat exchangers. Research is continuing on these fluids in order to determine their behavior in large-size loops and to arrive at optimum formulations.

  20. Geothermal pipeline

    SciTech Connect

    1997-08-01

    The Geothermal Pipeline is a progress and development update from the Geothermal Progress Monitor and includes brief descriptions of various geothermal projects around the world. The following topics are covered: The retirement of Geo-Heat Center Director Paul Lienau, announcement of two upcoming geothermal meetings, and a proposed geothermal power plant project in the Medicine Lake/Glass Mountain area of California. Also included is an article about the Bonneville Power Administration`s settlements with two California companies who had agreed to build geothermal power plants on the federal agency`s behalf, geothermal space heating projects and use of geothermal energy for raising red crayfish in Oregon, and some updates on geothermal projects in Minnesota, Pennsylvania, and China.

  1. Reduction in air emissions attainable through implementation of district heating and cooling

    SciTech Connect

    Bloomquist, R.G.

    1996-12-31

    District heating and cooling (DHC) can provide multiple opportunities to reduce air emissions associated with space conditioning and electricity generation, which contribute 30% to 50% of all such emissions. When DHC is combined with cogeneration (CHP), maximum reductions in sulfur oxides (SO{sub x}), nitrogen oxides (NO{sub x}), carbon dioxide (CO{sub 2}), particulates, and ozone-depleting chlorofluorocarbon (CFC) refrigerants can most effectively be achieved. Although significant improvements in air quality have been documented in Europe and Scandinavia due to DHC and CHP implementation, accurately predicting such improvements has been difficult. Without acceptable quantification methods, regulatory bodies are reluctant to grant air emissions credits, and local community leaders are unwilling to invest in DHC and CHP as preferred methods of providing energy or strategies for air quality improvement. The recent development and release of a number of computer models designed specifically to provide quantification of air emissions that can result from DHC and CHP implementation should help provide local, state, and national policymakers with information vital to increasing support and investment in DHC development.

  2. Operation and performance of a 350 kW (100 RT) single-effect/double-lift absorption chiller in a district heating network

    SciTech Connect

    Schweigler, C.J.; Preissner, M.; Demmel, S.; Hellmann, H.M.; Ziegler, F.F.

    1998-10-01

    The efficiency of combined heat, power, and cold production in total energy systems could be improved significantly if absorption chillers were available that could be driven with limited mass flows of low-temperature hot water. In the case of district heat-driven air conditioning, for example, currently available standard absorption chillers are often not applied because they cannot provide the low hot water return temperature and the specific cooling capacity per unit hot water mass flow that are required by many district heating networks. Above all, a drastic increase in the size of the machine (total heat exchanger area) due to low driving temperature differences if of concern in low-temperature applications. A new type of multistage lithium bromide/water absorption chiller has been developed for the summertime operating conditions of district heating networks. It provides large cooling of the district heating water (some 30 K) and large cooling capacity per unit hot water mass flow. Two pilot plants of this novel absorption chiller were designed within the framework of a joint project sponsored by the German Federal Ministry of Education, Science, Research and Technology (BMBF), a consortium of 15 district heating utilities, and two manufacturers. The plants have been operated since summer 1996 in the district heating networks of Berlin and Duesseldorf. This paper describes the concept, installation, and control strategy of the two pilot plants, and it surveys the performance and operating experience of the plants under varying practical conditions.

  3. Annual emissions and air-quality impacts of an urban area district-heating system: Boston case study

    SciTech Connect

    Bernow, S.S.; McAnulty, D.R.; Buchsbaum, S.; Levine, E.

    1980-02-01

    A district-heating system, based on thermal energy from power plants retrofitted to operate in the cogeneration mode, is expected to improve local air quality. This possibility has been examined by comparing the emissions of five major atmospheric pollutants, i.e., particulates, sulfur oxides, carbon monoxide, hydrocarbons, and nitrogen oxides, from the existing heating and electric system in the City of Boston with those from a proposed district heating system. Detailed, spatial distribution of existing heating load and fuel mix is developed to specify emissions associated with existing heating systems. Actual electric-power-plant parameters and generation for the base year are specified. Additional plant fuel consumption and emissions resulting from cogeneration operation have been estimated. Six alternative fuel-emissions-control scenarios are considered. The average annual ground-level concentrations of sulfur oxides are calculated using a modified form of the EPA's Climatological Dispersion Model. This report describes the methodology, the results and their implications, and the areas for extended investigation. The initial results confirm expectations. Average sulfur oxides concentrations at various points within and near the city drop by up to 85% in the existing fuels scenarios and by 95% in scenarios in which different fuels and more-stringent emissions controls at the plants are used. These reductions are relative to concentrations caused by fuel combustion for heating and large commercial and industrial process uses within the city and Boston Edison Co. electric generation.

  4. Detection and location of leaks in district heating steam systems: Survey and review of current technology and practices

    SciTech Connect

    Kupperman, D.S.; Raptis, A.C.; Lanham, R.N.

    1992-03-01

    This report presents the results of a survey undertaken to identify and characterize current practices for detecting and locating leaks in district heating systems, particular steam systems. Currently used technology and practices are reviewed. In addition, the survey was used to gather information that may be important for the application of acoustic leak detection. A few examples of attempts to locate leaks in steam and hot water pipes by correlation of acoustic signals generated by the leaks are also discussed.

  5. Extension and improvement of Central Station District heating budget period 1 and 2, Krakow Clean Fossil Fuels and Energy Efficiency Program. Final report

    SciTech Connect

    1997-07-01

    Project aim was to reduce pollution levels in the City of Krakow through the retirement of coal-fired (hand and mechanically-stoked) boiler houses. This was achieved by identifying attractive candidates and connecting them to the Krakow district heating system, thus permitting them to eliminate boiler operations. Because coal is less costly than district hot water, the district heating company Miejskie Przedsiebiorstwo Energetyki Cieplnej S.A., henceforth identified as MPEC, needed to provide potential customers with incentives for purchasing district heat. These incentives consisted of offerings which MPEC made to the prospective client. The offerings presented the economic and environmental benefits to district heating tie-in and also could include conservation studies of the facilities, so that consumption of energy could be reduced and the cost impact on operations mitigated. Because some of the targeted boiler houses were large, the capacity of the district heating network required enhancement at strategic locations. Consequently, project construction work included both enhancement to the district piping network as well as facility tie-ins. The process of securing new customers necessitated the strengthening of MPEC`s competitive position in Krakow`s energy marketplace, which in turn required improvements in marketing, customer service, strategic planning, and project management. Learning how US utilities address these challenges became an integral segment of the project`s scope.

  6. A Crustal Scale Heat and Fluid Flow Model for the Giant Rio Tinto VMS District, Iberian Pyrite Belt

    NASA Astrophysics Data System (ADS)

    Barrie, C.; Cathles, L. M.; Erendi, A.

    2004-05-01

    Paleo - seafloor and sub-seafloor deposits of the Rio Tinto District constitute the largest accumulation of volcanic-associated massive sulfide (VMS) on Earth. The deposits are are the type examples of giant bimodal-siliciclastic VMS deposits. This study presents relatively simple, 2D finite element heat and fluid flow models that explain how such a massive hydrothermal system may have formed. Giant VMS deposits require: 1) crustal scale hydrothermal circulation; 2) deep intrusion heat sources to drive hydrothermal convection; and 3) an optimal crustal permeability that supports large scale convection cells. We consider convection to depths of 10 and 15 km in the crust, a felsic intrusion heat source, and bulk crustal permeabilities of 10-14 to 10-16 m2 (0.1-10 millidarcies). The cases have: 1) a felsic magma heat source that is kept at 900oC for 10,000 years and then allowed to cool; 2) a more permeable, crustal-scale fracture/fault and stockwork zone beneath a 2 km2 Rio Tinto District; and 3) a thermal cracking subroutine with increased permeability from 275-475oC, in keeping with fracture development due to thermal contraction where cool, downwelling seawater interacts with conductively heated rock. Results show that at the higher crustal permeabilities, multiple hydrothermal plumes develop in the subsurface, and hydrothermal venting occurs over broad areas of the paleo - seafloor. At lower crustal permeabilities of 10-16 m2, venting is confined to the Rio Tinto District. An appropriate volume of hydrothermal fluid is vented when the crustal-scale fracture is highly permeable at 10-12 m2; at lower permeabilities, the fracture does not allow enough fluids to rise. The depth to the top of the felsic sill affects venting temperatures in the Rio Tinto District, with higher temperature venting for a shallower sill. In the preferred case, the sill is at 8-10 km depth, and fluids vent at 100-220oC for a period of ~200,000 years. In the absence of tectonic or magmatic

  7. District heating comes to town: The social shaping of an energy system

    SciTech Connect

    Summerton, J.

    1992-01-01

    This thesis concerns the process by which a sociotechnical system is shaped in its social and cultural context. The empirical focus is the introduction of a district heating system in an ordinary Swedish town in the 1980s. Drawing from recent theories from the history and sociology of science and technology (actor-network theory, systems approach), the study examines interactions among actors in introducing the technology, viewed as a multiorganizational grid-based system. Grid-based systems have a number of specific properties (long lead times, high investment costs, tight coupling, etc) that often prove problematic for system builders. As a multiorganization, the system is also characterized by inherent interoganizational tensions and a lack of sovereign control by any one actor. The story centers around critical issues or interorganizational conflicts of building the system in the town. These are: deciding to build (decision-making process), shaping the organization and acquiring competence, obtaining subscribers (marketing strategies)-and keeping them, dealing with regulation (conflicts over siting), and meeting competition. It is argued that these issues reflect the core challenges of system-building in multiorganizational grid-based systems, namely: (1) enrolling others in the shared purpose, (2) staking out, expanding and defending the market, (3) handling conflict, (4) dealing with limits to control, (5) coordinating and timing system expansion. The thesis concludes with an analysis of why the Swedish town succeeded in the task, what its experience suggests about how grid-based systems are shaped, and what criteria can be used to define a [open quotes]good[close quotes] system.

  8. User manual for AQUASTOR: a computer model for cost analysis of aquifer thermal energy storage coupled with district heating or cooling systems. Volume I. Main text

    SciTech Connect

    Huber, H.D.; Brown, D.R.; Reilly, R.W.

    1982-04-01

    A computer model called AQUASTOR was developed for calculating the cost of district heating (cooling) using thermal energy supplied by an aquifer thermal energy storage (ATES) system. The AQUASTOR model can simulate ATES district heating systems using stored hot water or ATES district cooling systems using stored chilled water. AQUASTOR simulates the complete ATES district heating (cooling) system, which consists of two principal parts: the ATES supply system and the district heating (cooling) distribution system. The supply system submodel calculates the life-cycle cost of thermal energy supplied to the distribution system by simulating the technical design and cash flows for the exploration, development, and operation of the ATES supply system. The distribution system submodel calculates the life-cycle cost of heat (chill) delivered by the distribution system to the end-users by simulating the technical design and cash flows for the construction and operation of the distribution system. The model combines the technical characteristics of the supply system and the technical characteristics of the distribution system with financial and tax conditions for the entities operating the two systems into one techno-economic model. This provides the flexibility to individually or collectively evaluate the impact of different economic and technical parameters, assumptions, and uncertainties on the cost of providing district heating (cooling) with an ATES system. This volume contains the main text, including introduction, program description, input data instruction, a description of the output, and Appendix H, which contains the indices for supply input parameters, distribution input parameters, and AQUASTOR subroutines.

  9. Assessment and implementation of a district heating system upgrade for the city of Plzen, Czech Republic: Status report

    SciTech Connect

    Secrest, T.J.; Marousek, J. Popelka, A.

    1994-06-01

    The City of Plzen, Czech Republic, is considering options to upgrade its district heating system for compliance with emissions regulations and replacement of some existing heat generation units. This assessment examined two coal-fired and two-gas fired heat generation configurations coupled with buildings sector energy efficiency for meeting load growth from the current level of 370MWt to 420 and 367MWt for high and low growth scenarios, respectively. The supply and efficiency options were integrated and characterized by capital requirement, levelized energy cost, typical residential energy bill, and emissions. Life extension to the existing facilities required the least capital investment and provided the lowest levelized energy cost; efficiency increased the per unit price of energy and reduced the typical energy bill; connection of a satellite system provided for a lower weighted average energy cost of energy over life extension to the satellite boiler serving the system; and the gas-fired configurations provided for the greatest reduction in emissions.

  10. Magnesium-silicate scaling in mixture of geothermal water and deaerated fresh water in a district heating system

    SciTech Connect

    Gunnlaugsson, E. ); Einarsson, A. )

    1989-01-01

    The low-temperature geothermal fields in Reykjavik utilized by the Reykjavik Municipal District Heating Service are now fully exploited. Additional hot water will be obtained by heating and deaerating fresh water using high temperature geothermal fluid. The heated fresh water will mix with low-temperature geothermal water in the distribution system in Reykjavik. A pilot plant has been set up to investigate magnesium silicate scale formation when mixing of these waters occurs. Tests show that the scale formation is dependent on the severity of deaeration of the fresh water the proportion of geothermal water in the mixture. Increased deaeration and thermal water proportion increase the pH of the mixture, and this promotes scaling. The scale formed is poorly crystalline, near amorphous trioctahedral smectite close to saponite in composition. By using minimum deaeration and traces of geothermal steam to remove the last remaining dissolved oxygen, scaling in the distribution system can be avoided.

  11. An assessment of district heating and cooling potential in Joliet, Illinois: Phase I technical and economic feasibility study, final report

    SciTech Connect

    Not Available

    1987-11-01

    A preliminary assessment of the technical and economic feasibility of a district heating and cooling (DHC) system serving a portion of Joliet, Illinois, has been completed. The basic system, which was designed to provide thermal and electrical energy services to the assessment area, was found to be economically feasible while providing energy services at prices that are less than or equal to current costs. The DHC assessment area included the following: the Downtown Business District; the newly-designated Heritage Business Park; and the Joliet Correctional Center. The Heritage Business Park is the site of a former steel wire and rod mill. Approximately one-third of the site is currently occupied by a rod mill operated by American Steel and Wire while the rest of the Park is essentially undeveloped. In late 1985, plans were formulated to redevelop the site into an industrial park for light industry, offices and research and development facilities. The installation of a DHC system over the next five to ten years would not only complement the redevelopment of the Downtown Business District that was recently begun, but would help to encourage the eventual development of the Heritage Business Park as well.

  12. User manual for AQUASTOR: a computer model for cost analysis of aquifer thermal-energy storage oupled with district-heating or cooling systems. Volume II. Appendices

    SciTech Connect

    Huber, H.D.; Brown, D.R.; Reilly, R.W.

    1982-04-01

    A computer model called AQUASTOR was developed for calculating the cost of district heating (cooling) using thermal energy supplied by an aquifer thermal energy storage (ATES) system. the AQUASTOR Model can simulate ATES district heating systems using stored hot water or ATES district cooling systems using stored chilled water. AQUASTOR simulates the complete ATES district heating (cooling) system, which consists of two prinicpal parts: the ATES supply system and the district heating (cooling) distribution system. The supply system submodel calculates the life-cycle cost of thermal energy supplied to the distribution system by simulating the technical design and cash flows for the exploration, development, and operation of the ATES supply system. The distribution system submodel calculates the life-cycle cost of heat (chill) delivered by the distribution system to the end-users by simulating the technical design and cash flows for the construction and operation of the distribution system. The model combines the technical characteristics of the supply system and the technical characteristics of the distribution system with financial and tax conditions for the entities operating the two systems into one techno-economic model. This provides the flexibility to individually or collectively evaluate the impact of different economic and technical parameters, assumptions, and uncertainties on the cost of providing district heating (cooling) with an ATES system. This volume contains all the appendices, including supply and distribution system cost equations and models, descriptions of predefined residential districts, key equations for the cooling degree-hour methodology, a listing of the sample case output, and appendix H, which contains the indices for supply input parameters, distribution input parameters, and AQUASTOR subroutines.

  13. The geothermal potential of the Campania volcanic district and new heat exchanger technologies for exploitation of highly urbanised areas.

    NASA Astrophysics Data System (ADS)

    Carlino, S.; Somma, R.; Troiano, A.; Di Giuseppe, M. G.; Troise, C.; De Natale, G.

    2012-04-01

    The geothermal research in Campania region (Italy), started since the 1930, and continued until the '80 by the SAFEN, ENEL and AGIP companies. Such exploration activity highlighted that most of the volcanic districts of the Campania Region have a very high geothermal gradient and heat flow. In particular, inside the Campi Flegrei caldera and at Ischia island the geothermal gradient measured inside the deep wells reaches temperatures above 100° C between few tens and few hundreds of metres of depth, while the heat flow varies between 120-160 mWm-2 at Agnano and Mofete (Campi Flegrei main drill sites) to more than 500 mWm-2 at Ischia island (south-western sector). A general review of the available literature data (temperature at depth, stratigraphic sections, logs etc.) of the deep wells (down to 3 km b.s.l.) allowed us to quantify the geothermal potential (thermal and electric) of such district. The geothermal potential is about 6 GWy for the Campi Flegrei (Mofete and S. Vito sectors) and 11 GWy for the Ischia island (south-western sector) showing a geothermal reservoir with water and vapour dominant respectively. This results in strong potential interest for economic exploitation of the geothermal resource, both in the range of low-medium enthalpy at few hundreds of meters depth and of high enthalpy at depths of 1-2 km. In this study we try to model the effectiveness of new technologies of boreholes heat exchangers, which would allow to avoid fluid withdrawal, then strongly decreasing the environmental impact. The proposed technology consists of a double-pipe placed in a borehole heat exchange that can work coupled with an ORC. The two pipes, one inside the other, are located in the well in order to transfer the thermal energy to the working fluid during the descent in the external pipe and then go back through the internal pipe properly isolated. We propose a complete design of the borehole heat exchangers. The design activity is performed on a theoretical basis

  14. Photoreversible micellar solution as a smart drag-reducing fluid for use in district heating/cooling systems.

    PubMed

    Shi, Haifeng; Ge, Wu; Oh, Hyuntaek; Pattison, Sean M; Huggins, Jacob T; Talmon, Yeshayahu; Hart, David J; Raghavan, Srinivasa R; Zakin, Jacques L

    2013-01-01

    A photoresponsive micellar solution is developed as a promising working fluid for district heating/cooling systems (DHCs). It can be reversibly switched between a drag reduction (DR) mode and an efficient heat transfer (EHT) mode by light irradiation. The DR mode is advantageous during fluid transport, and the EHT mode is favored when the fluid passes through heat exchangers. This smart fluid is an aqueous solution of cationic surfactant oleyl bis(2-hydroxyethyl)methyl ammonium chloride (OHAC, 3.4 mM) and the sodium salt of 4-phenylazo benzoic acid (ACA, 2 mM). Initially, ACA is in a trans configuration and the OHAC/ACA solution is viscoelastic and exhibits DR (of up to 80% relative to pure water). At the same time, this solution is not effective for heat transfer. Upon UV irradiation, trans-ACA is converted to cis-ACA, and in turn, the solution is converted to its EHT mode (i.e., it loses its viscoelasticity and DR) but it now has a heat-transfer capability comparable to that of water. Subsequent irradiation with visible light reverts the fluid to its viscoelastic DR mode. The above property changes are connected to photoinduced changes in the nanostructure of the fluid. In the DR mode, the OHAC/trans-ACA molecules assemble into long threadlike micelles that impart viscoelasticity and DR capability to the fluid. Conversely, in the EHT mode the mixture of OHAC and cis-ACA forms much shorter cylindrical micelles that contribute to negligible viscoelasticity and effective heat transfer. These nanostructural changes are confirmed by cryo-transmission electron microscopy (cryo-TEM), and the photoisomerization of trans-ACA and cis-ACA is verified by (1)H NMR. PMID:23210742

  15. Santa Ana Pueblo assessment of district heating and cooling. Final report

    SciTech Connect

    Not Available

    1982-07-01

    The evaluation covered six major tasks of technical, financial, environmental and cultural considerations of several heat sources including: traditional Indian bread ovens; community solid waste disposal; cogeneration and electric power plant; active solar collectors with fresh water pond storage; salt gradient ponds, both gel and free standing; heat pumps; geothermal - both hot dry rock and hydrothermal sources; and biomass resources for methane production.

  16. User manual for GEOCITY: A computer model for cost analysis of geothermal district-heating-and-cooling systems. Volume 2: Appendices

    NASA Astrophysics Data System (ADS)

    Huber, H. D.; Fassbender, L. L.; Bloomster, C. H.

    1982-09-01

    A model to calculate the costs of residential space heating, space cooling, and sanitary water heating or process heating (cooling) using geothermal energy from a hydrothermal reservoir is discussed. The model can calculate geothermal heating and cooling costs for residential developments, a multi-district city, or a point demand such as an industrial factor or commercial building. All the appendices, including cost equations and models for the reservoir and fluid transmission system and the distribution system, descriptions of predefined residential district types for the distribution system, key equations for the cooling degree hour methodology, and a listing of the sample case output are included. The indices for the input parameters and subroutines defined in the user manual are given.

  17. User manual for GEOCITY: a computer model for cost analysis of geothermal district-heating-and-cooling systems. Volume II. Appendices

    SciTech Connect

    Huber, H.D.; Fassbender, L.L.; Bloomster, C.H.

    1982-09-01

    The purpose of this model is to calculate the costs of residential space heating, space cooling, and sanitary water heating or process heating (cooling) using geothermal energy from a hydrothermal reservoir. The model can calculate geothermal heating and cooling costs for residential developments, a multi-district city, or a point demand such as an industrial factory or commercial building. Volume II contains all the appendices, including cost equations and models for the reservoir and fluid transmission system and the distribution system, descriptions of predefined residential district types for the distribution system, key equations for the cooling degree hour methodology, and a listing of the sample case output. Both volumes include the complete table of contents and lists of figures and tables. In addition, both volumes include the indices for the input parameters and subroutines defined in the user manual.

  18. Exploration and drilling for geothermal heat in the Capital District, New York. Volume 4. Final report

    SciTech Connect

    Not Available

    1983-08-01

    The Capital District area of New York was explored to determine the nature of a hydrothermal geothermal system. The chemistry of subsurface water and gas, the variation in gravity, magnetism, seismicity, and temperature gradients were determined. Water and gas analyses and temperature gradient measurements indicate the existence of a geothermal system located under an area from Ballston Spa, southward to Altamont, and eastward toward Albany. Gravimetric and magnetic surveys provided little useful data but microseismic activity in the Altamont area may be significant. Eight wells about 400 feet deep, one 600 feet and one 2232 feet were drilled and tested for geothermal potential. The highest temperature gradients, most unusual water chemistries, and greatest carbon dioxide exhalations were observed in the vicinity of the Saratoga and McGregor faults between Saratoga Springs and Schenectady, New York, suggesting some fault control over the geothermal system. Depths to the warm fluids within the system range from 500 meters (Ballston Spa) to 2 kilometers (Albany).

  19. Exploration and drilling for geothermal heat in the Capital District, New York. Final report

    SciTech Connect

    Not Available

    1983-08-01

    The Capital District area of New York was explored to determine the nature of a hydrothermal geothermal system. The chemistry of subsurface water and gas, the variation in gravity, magnetism, seismicity, and temperature gradients were determined. Water and gas analyses and temperature gradient measurements indicate the existence of a geothermal system located under an area from Ballston Spa, southward to Altamont, and eastware toward Albany. Gravimetric and magnetic surveys provided little useful data but microseismic activity in the Altamont area may be significant. Eight wells about 400 feet deep, one 600 feet and one 2232 feet were drilled and tested for geothermal potential. The highest temperature gradients, most unusual water chemistries, and greatest carbon dioxide exhalations were observed in the vicinity of the Saratoga and McGregor faults between Saratoga Springs and Schenectady, New York, suggesting some fault control over the geothermal system. Depths to the warm fluids within the system range from 500 meters (Ballston Spa) to 2 kilometers (Albany).

  20. Feasibility of cogenerated district heating and cooling for North Loop project

    NASA Astrophysics Data System (ADS)

    Porter, R. W.

    1982-03-01

    A thermal-economic analysis was performed in order to determine feasibility of cogeneration with central heating and cooling for Chicago's North Loop Development Project. Heating, cooling and electrical loads were predicted by using energy data according to use and floor area, representative of downtown Chicago. The central facility proposed would supply cogenerated heating for a part of the development's demand and about one half of the cooling demand by means of combined conventional and cogeneration equipment together on the 4-pipe distribution system. Electricity would also be distributed and used to substantially displace purchases. Additional options are also discussed and, if economical, could make implementation more attractive. Four alternatives involving gas turbines and diesels were selected for study and are reported. Energy savings extend over the assumed 25 years of the project and are indexed to inflation and fuel-cost escalation. It would appear that cogeneration could assist economic development of the North Loop Project.

  1. Integrated assessment of supply and efficiency resources for the district heating system, City of Handlova, Republic of Slovakia

    SciTech Connect

    1996-06-01

    This city needs to replace its old district heating system which is unreliable and expensive to maintain. Current plant is owned by a state-run utility; the plant is scheduled for privatization, and the city is examining options for its upgrade. Analysis and preparation for this activity is documented in demand-side and supply-side technical and economic analyses and in this integrated demand/supply report. Preliminary projections indicate the cost of heating from a cost per unit of energy basis and from the perspective of an apartment dweller in Handlova on a total cost per year basis. The centralized coal cogeneration option is the least expensive on a levelized energy cost both with and without energy efficiency. Centralized coal/gas dual-fuel cogeneration is a close second, and the decentralized gas natural gas boilers is significantly more expensive. When the effect of building efficiency measures is evaluated, efficiency always increases the cost on a levelized energy cost basis, but on a levelized cost per flat basis, both centralized systems with buildings efficiency are less expensive than without.

  2. District cooling in Scandinavia

    SciTech Connect

    Andersson, B.

    1996-11-01

    This paper will present the status of the development of district cooling systems in Scandinavia over the last 5 years. It will describe the technologies used in the systems that have been constructed as well as the options considered in different locations. It will identify the drivers for the development of the cooling business to-date, and what future drivers for a continuing development of district cooling in Sweden. To-date, approximately 25 different cities of varying sizes have completed feasibility studies to determine if district cooling is an attractive option. In a survey, that was conducted by the Swedish District Heating Association, some 25 cities expected to have district cooling systems in place by the year 2000. In Sweden, district heating systems with hot water is very common. In many cases, it is simply an addition to the current service for the district heating company to also supply district cooling to the building owners. A parallel from this can be drawn to North America where district cooling systems now are developing rapidly. I am convinced that in these cities a district heating service will be added as a natural expansion of the district cooling company`s service.

  3. Slurry pipelines

    SciTech Connect

    Wasp, E.J.

    1983-11-01

    Slurry pipelines are now transporting metal ores and coal/water suspensions. Their greatest potential is for transporting coal from Western states to power stations in other parts of the country. The physics of slurry transport encompases the principles of fluid dynamics and hydrostatics that were studied by Archimedes, but commercial slurry systems date only since World War II. An overview of their development covers policy debates and technological problems associated with existing and proposed pipeline projects. The author examines the tradeoffs of low sulfur content versus longer distances for transport, and describes the process of preparing coal slurries. 7 figures.

  4. Direct use of geothermal energy, Elko, Nevada district heating. Final report

    SciTech Connect

    Lattin, M.W.; Hoppe, R.D.

    1983-06-01

    In early 1978 the US Department of Energy, under its Project Opportunity Notice program, granted financial assistance for a project to demonstrate the direct use application of geothermal energy in Elko, Nevada. The project is to provide geothermal energy to three different types of users: a commercial office building, a commercial laundry and a hotel/casino complex, all located in downtown Elko. The project included assessment of the geothermal resource potential, resource exploration drilling, production well drilling, installation of an energy distribution system, spent fluid disposal facility, and connection of the end users buildings. The project was completed in November 1982 and the three end users were brought online in December 1982. Elko Heat Company has been providing continuous service since this time.

  5. Pipeline Expansions

    EIA Publications

    1999-01-01

    This appendix examines the nature and type of proposed pipeline projects announced or approved for construction during the next several years in the United States. It also includes those projects in Canada and Mexico that tie-in with the U.S. markets or projects.

  6. Retrofitting the Strogino district heat supply station with construction of a 260-MW combined-cycle power plant (Consisting of two PGU-130 combined-cycle power units)

    NASA Astrophysics Data System (ADS)

    Aleksandrov, V. F.

    2010-02-01

    The retrofitting carried out at the Strogino district heat supply station and the specific features of works accomplished in the course of constructing the thermal power station based on a combined-cycle power plant at the station site are described; the layout solutions for the main building and turbine building are presented, and a comparison of the retrofitted station with the Kolomenskoe and Vnukovo gas turbine-based power stations is given.

  7. TYPICAL VIEW OF TUMALO FEED CANAL OPEN CHANNEL BETWEEN PIPELINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    TYPICAL VIEW OF TUMALO FEED CANAL OPEN CHANNEL BETWEEN PIPELINE AND BEND FEED CANAL INTERSECTION. LOOKING NORTH/NORTHEAST - Tumalo Irrigation District, Tumalo Project, West of Deschutes River, Tumalo, Deschutes County, OR

  8. VIEW OF TUMALO FEED CANAL OUTLET STRUCTURE TO PIPELINE AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF TUMALO FEED CANAL OUTLET STRUCTURE TO PIPELINE AT TRANSITION TO INLINED OPEN CHANNEL, UPSTREAM OF THE BEND FEED CANAL INTERSECTION. LOOKING SOUTH - Tumalo Irrigation District, Tumalo Project, West of Deschutes River, Tumalo, Deschutes County, OR

  9. VIEW OF TUMALO FEED CANAL INLET STRUCTURE TO PIPELINE BETWEEN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF TUMALO FEED CANAL INLET STRUCTURE TO PIPELINE BETWEEN THE CONCRETE CHANNEL AND UNLINED OPEN CHANNEL NEAR THE BEND FEED CANAL INTERSECTION. LOOKING NORTHEAST - Tumalo Irrigation District, Tumalo Project, West of Deschutes River, Tumalo, Deschutes County, OR

  10. Life cycle assessment of an energy-system with a superheated steam dryer integrated in a local district heat and power plant

    SciTech Connect

    Bjoerk, H.; Rasmuson, A.

    1999-07-01

    Life cycle assessment (LCA) is a method for analyzing and assessing the environmental impact of a material, product or service throughout the entire life cycle. In this study 100 GWh heat is to be demanded by a local heat district. A mixture of coal and wet biofuel is frequently used as fuel for steam generation (Case 1). A conversion of the mixed fuel to dried biofuel is proposed. In the district it is also estimated that it is possible for 4000 private houses to convert from oil to wood pellets. It is proposed that sustainable solution to the actual problem is to combine heat and power production together with an improvement in the quality of wood residues and manufacture of pellets. It is also proposed that a steam dryer is integrated to the system (Case 2). Most of the heat from the drying process is used by the municipal heating networks. In this study the environmental impact of the two cases is examined with LCA. Different valuation methods shows the Case 2 is an improvement over Case 1, but there is diversity in the magnitudes of environmental impact in the comparison of the cases. The differences depend particularly on how the emissions of CO{sub 2}, NO{sub x} and hydrocarbons are estimated. The impact of the organic compounds from the exhaust gas during the drying is estimated as low in all of the three used methods.

  11. Alaska Pipeline Insulation

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Crude oil moving through the 800-mile Trans-Alaska Pipeline must be kept at a relatively high temperature, about 180 degrees Fahrenheit, to maintain the fluidity of the oil. In Arctic weather, that demands highly effective insulation. General Electric Co.'s Space Division, Valley Forge, Pennsylvania, provided it with a spinoff product called Therm-O-Trol. Shown being installed on the pipeline, Therm-O-Trol is a metal-bonded polyurethane foam especially formulated for Arctic insulation. A second GE spinoff product, Therm-O-Case, solved a related problem involved in bringing hot crude oil from 2,000-foot-deep wells to the surface without transferring oil heat to the surrounding permafrost soil; heat transfer could melt the frozen terrain and cause dislocations that might destroy expensive well casings. Therm-O-Case is a double-walled oil well casing with multi-layered insulation which provides an effective barrier to heat transfer. Therm-O-Trol and Therm-O-Case are members of a family of insulating products which stemmed from technology developed by GE Space Division in heat transferlthermal control work on Gemini, Apollo and other NASA programs.

  12. Parallel pipelining

    SciTech Connect

    Joseph, D.D.; Bai, R.; Liao, T.Y.; Huang, A.; Hu, H.H.

    1995-09-01

    In this paper the authors introduce the idea of parallel pipelining for water lubricated transportation of oil (or other viscous material). A parallel system can have major advantages over a single pipe with respect to the cost of maintenance and continuous operation of the system, to the pressure gradients required to restart a stopped system and to the reduction and even elimination of the fouling of pipe walls in continuous operation. The authors show that the action of capillarity in small pipes is more favorable for restart than in large pipes. In a parallel pipeline system, they estimate the number of small pipes needed to deliver the same oil flux as in one larger pipe as N = (R/r){sup {alpha}}, where r and R are the radii of the small and large pipes, respectively, and {alpha} = 4 or 19/7 when the lubricating water flow is laminar or turbulent.

  13. User manual for GEOCITY: a computer model for cost analysis of geothermal district-heating-and-cooling systems. Volume I. Main text

    SciTech Connect

    Huber, H.D.; Fassbender, L.L.; Bloomster, C.H.

    1982-09-01

    The purpose of this model is to calculate the costs of residential space heating, space cooling, and sanitary water heating or process heating (cooling) using geothermal energy from a hydrothermal reservoir. The model can calculate geothermal heating and cooling costs for residential developments, a multi-district city, or a point demand such as an industrial factory or commercial building. GEOCITY simulates the complete geothermal heating and cooling system, which consists of two principal parts: the reservoir and fluid transmission system and the distribution system. The reservoir and fluid transmission submodel calculates the life-cycle cost of thermal energy supplied to the distribution system by simulating the technical design and cash flows for the exploration, development, and operation of the reservoir and fluid transmission system. The distribution system submodel calculates the life-cycle cost of heat (chill) delivered by the distribution system to the end-users by simulating the technical design and cash flows for the construction and operation of the distribution system. Geothermal space heating is assumed to be provided by circulating hot water through radiators, convectors, fan-coil units, or other in-house heating systems. Geothermal process heating is provided by directly using the hot water or by circulating it through a process heat exchanger. Geothermal space or process cooling is simulated by circulating hot water through lithium bromide/water absorption chillers located at each building. Retrofit costs for both heating and cooling applications can be input by the user. The life-cycle cost of thermal energy from the reservoir and fluid transmission system to the distribution system and the life-cycle cost of heat (chill) to the end-users are calculated using discounted cash flow analysis.

  14. Georgia's Workforce Development Pipeline: One District's Journey

    ERIC Educational Resources Information Center

    Williams, Melissa H.; Hufstetler, Tammy L.

    2011-01-01

    Launched in 2006, the Georgia Work Ready initiative seeks to improve the job training and marketability of Georgia's workforce and drive the state's economic growth. Georgia Work Ready is a partnership between the state and the Georgia Chamber of Commerce. Comprised of three components, Georgia's initiative focuses on job profiling, skills…

  15. District heating and cooling systems for communities through power plant retrofit distribution network, Phase 2. Final report, March 1, 1980-January 31, 1984. Volume 5, Appendix A

    SciTech Connect

    Not Available

    1984-01-31

    This volume contains the backup data for the portion of the load and service assessment in Section 2, Volume II of this report. This includes: locations of industrial and commercial establishments, locations of high rise buildings, data from the Newark (Essex County) Directory of Business, data from the Hudson County Industrial Directory, data from the N. J. Department of Energy Inventory of Public Buildings, data on commercial and industrial establishments and new developments in the Hackensack Meadowlands, data on urban redevelopment and Operation Breakthrough, and list of streets in the potential district heating areas of Newark/Harrison and Jersey City/Hoboken.

  16. Pipeline issues

    NASA Technical Reports Server (NTRS)

    Eisley, Joe T.

    1990-01-01

    The declining pool of graduates, the lack of rigorous preparation in science and mathematics, and the declining interest in science and engineering careers at the precollege level promises a shortage of technically educated personnel at the college level for industry, government, and the universities in the next several decades. The educational process, which starts out with a large number of students at the elementary level, but with an ever smaller number preparing for science and engineering at each more advanced educational level, is in a state of crisis. These pipeline issues, so called because the educational process is likened to a series of ever smaller constrictions in a pipe, were examined in a workshop at the Space Grant Conference and a summary of the presentations and the results of the discussion, and the conclusions of the workshop participants are reported.

  17. Consolidation of Federal Heating Systems: A unique distric energy partnership

    SciTech Connect

    Smith, R.S.; McAdams, S.; Kumar, B.

    1996-11-01

    The United States Government operates three independent heating systems in the District of Columbia that are located within approximately 7,500 feet of one another. These three systems include the General Services Administration - National Capital Region, the Architect of the Capitol and the Washington Navy Yard. The Heating Operation and Transmission District of the General Services Administration has proposed a unique partnering agreement to utilize its one million pounds per hour of excess steam capacity to supplement the heating services of the Architect of the Capitol and the Navy Shipyard. By installing interconnecting pipelines these three systems could be combined to operate as a single district heating system. The partnering effort of the government agencies has many benefits. This consolidation would provide a reduction in labor cost, maintenance cost and capital expenditure. The interconnection of the plants will improve operating efficiencies and reduce pollution emissions. The estimated annual operating savings to the United Stated Government is approximately 4.3 million dollars per year. The capital cost of installing the connecting pipes would be amortized within a three year period. This project includes the development of an interconnecting strategy as well as the quantitative and qualitative advantages for a consolidated government heating system. Several methods of pipeline installation including innovative microtunneling and potential pipe routing alternatives are addressed. The existing operating costs of each facility are analyzed and strategies for cost reductions as a result of a consolidated system are developed.

  18. Development of Technologies on Innovative Simplified Nuclear Power Plant Using High-Efficiency Steam Injectors (10) Application to a Small District-Heating Reactor

    SciTech Connect

    Tadashi Narabayashi; Yoichiro Shimadu; Toshiiro Murase; Masatoshi Nagai; Michitsugu Mori; Shuichi Ohmori

    2006-07-01

    A steam injector (SI) is a simple, compact and passive pump and also acts as a high-performance direct-contact compact heater. This provides SI with capability to use as a passive ECCS pump and also as a direct-contact feedwater heater that heats up feedwater by using extracted steam from the turbine. In order to develop a high reliability passive ECCS pump and a compact feedwater heater, it is necessary to quantify the characteristics between physical properties of the flow field. We carried out experiments to observe the internal behavior of the water jet as well as measure the velocity of steam jet using a laser Doppler velocimetry. Its performance depends on the phenomena of steam condensation onto the water jet surface and heat transfer in the water jet due to turbulence on to the phase-interface. The analysis was also conducted by using a CFD code with the separate two-phase flow models. With regard to the simplified feed-water system, size of four-stage SI system is almost the same as the model SI that had done the steam and water test that pressures were same as that of current ABWR. The authors also conducted the hot water supply system test in the snow for a district heating. With regard to the SI core cooling system, the performance tests results showed that the low-pressure SI core cooling system will decrease the PCT to almost the same as the saturation temperature of the steam pressure in a pressure vessel. As it is compact equipment, SI is expected to bring about great simplification and materials-saving effects, while its simple structure ensures high reliability of its operation, thereby greatly contributing to the simplification of the power plant for not only an ABWR power plant but also a small PWR/ BWR for district heating system. (authors)

  19. Coupled heat and fluid flow modeling of the Carboniferous Kuna Basin, Alaska: Implications for the genesis of the Red Dog Pb-Zn-Ag-Ba ore district

    USGS Publications Warehouse

    Garven, G.; Raffensperger, J.P.; Dumoulin, J.A.; Bradley, D.A.; Young, L.E.; Kelley, K.D.; Leach, D.L.

    2003-01-01

    The Red Dog deposit is a giant 175 Mton (16% Zn, 5% Pb), shale-hosted Pb-Zn-Ag-Ba ore district situated in the Carboniferous Kuna Basin, Western Brooks Range, Alaska. These SEDEX-type ores are thought to have formed in calcareous turbidites and black mudstone at elevated sub-seafloor temperatures (120-150??C) within a hydrogeologic framework of submarine convection that was structurally organized by large normal faults. The theory for modeling brine migration and heat transport in the Kuna Basin is discussed with application to evaluating flow patterns and heat transport in faulted rift basins and the effects of buoyancy-driven free convection on reactive flow and ore genesis. Finite element simulations show that hydrothermal fluid was discharged into the Red Dog subbasin during a period of basin-wide crustal heat flow of 150-160 mW/m2. Basinal brines circulated to depths as great as 1-3 km along multiple normal faults flowed laterally through thick clastic aquifers acquiring metals and heat, and then rapidly ascended a single discharge fault zone at rates ??? 5 m/year to mix with seafloor sulfur and precipitate massive sulfide ores. ?? 2003 Elsevier Science B.V. All rights reserved.

  20. Solution to problems of bacterial impurity of heating systems

    NASA Astrophysics Data System (ADS)

    Sharapov, V. I.; Zamaleev, M. M.

    2015-09-01

    The article describes the problems of the operation of open and closed district heating systems related to the bacteriological contamination of heating-system water. It is noted that district heating systems are basically safe in sanitary epidemiological terms. Data on the dangers of sulfide contamination of heating systems are given. It is shown that the main causes of the development of sulfate-reducing and iron bacteria in heating systems are a significant biological contamination of source water to fuel heating systems, which is determined by water oxidizability, and a low velocity of the motion of heating-system water in the heating system elements. A case of sulfide contamination of a part of the outdoor heat-supply system of the city of Ulyanovsk is considered in detail. Measures for cleaning pipelines and heating system equipment from the waste products of sulfate-reducing bacteria and iron bacteria and for improving the quality of heating-system water by organizing the hydraulic and water-chemistry condition that makes it possible to avoid the bacteriological contamination of heating systems are proposed. The positive effect of sodium silicate on the prevention of sulfide contamination of heating systems is shown.

  1. Components in the Pipeline

    SciTech Connect

    Gorton, Ian; Wynne, Adam S.; Liu, Yan; Yin, Jian

    2011-02-24

    Scientists commonly describe their data processing systems metaphorically as software pipelines. These pipelines input one or more data sources and apply a sequence of processing steps to transform the data and create useful results. While conceptually simple, pipelines often adopt complex topologies and must meet stringent quality of service requirements that place stress on the software infrastructure used to construct the pipeline. In this paper we describe the MeDICi Integration Framework, which is a component-based framework for constructing complex software pipelines. The framework supports composing pipelines from distributed heterogeneous software components and provides mechanisms for controlling qualities of service to meet demanding performance, reliability and communication requirements.

  2. Solar heating and hot water system installed at Southeast of Saline, Unified School District 306, Mentor, Kansas

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The solar system, installed in a new building, was designed to provide 52 percent of the estimated annual space heating load and 84 percent of the estimated annual potable hot water requirement. The liquid flat plate collectors are ground-mounted and cover a total area of 5125 square feet. The system will provide supplemental heat for the school's closed-loop water-to-air heat pump system and domestic hot water. The storage medium is water inside steel tanks with a capacity of 11,828 gallons for space heating and 1,600 gallons for domestic hot water. The solar heating facility is described and drawings are presented of the completed system which was declared operational in September 1978, and has functioned successfully since.

  3. District heating and cooling systems for communities through power plant retrofit distribution network, Phase 2. Final report, 1 March 1980-31 January 1984. Volume II

    SciTech Connect

    Not Available

    1984-01-31

    This volume begins with an Introduction summarizing the history, methodology and scope of the study, the project team members and the private and public groups consulted in the course of the study. The Load and Service Area Assessment follows, including: a compilation and analysis of existing statistical thermal load data from census data, industrial directories, PSE and G records and other sources; an analysis of responses to a detailed, 4-page thermal load questionnaire; data on public buildings and fuel and energy use provided by the New Jersey Dept. of Energy; and results of other customer surveys conducted by PSE and G. A discussion of institutional questions follows. The general topic of rates is then discussed, including a draft hypothetical Tariff for Thermal Services. Financial considerations are discussed including a report identifying alternative ownership/financing options for district heating systems and the tax implications of these options. Four of these options were then selected by PSE and G and a financial (cash-flow) analysis done (by the PSE and G System Planning Dept.) in comparison with a conventional heating alternative. Year-by-year cost of heat ($/10/sup 6/ Btu) was calculated and tabulated, and the various options compared.

  4. Urban thermal environment measurements and numerical simulation for an actual complex urban area covering a large district heating and cooling system in summer

    NASA Astrophysics Data System (ADS)

    Huang, Hong; Ooka, Ryozo; Kato, Shinsuke

    Urban thermal situation is thought to have a great influence on the air quality in urban areas. In recent years, the urban thermal environment has become worse, such as the days on which the temperature goes above 30 °C, the sultry nights and heat stroke increase due to changes in terrestrial cover and increased anthropogenic heat emission accompanied by urbanization. Therefore, the urban thermal environment should be carefully investigated and accurately analyzed for a better study of the air quality. Here, in order to study the urban thermal environment in summer, (1) the actual status of an urban thermal environment in a complex urban area covering a large district heating and cooling (DHC) system in Tokyo is investigated using field measurements, and (2) a numerical simulation program which can be adapted to complex urban areas coupled with convection, radiation and conduction is developed and used to predict the urban thermal environment. Wind velocity, temperature and humidity are obtained from the simulation, which shows good agreement with results of the field measurement. The spatial distribution of the standard effective temperature (SET *), the comprehensive index of human thermal comfort, is also calculated using the above results, to estimate the thermal comfort at the pedestrian level. This urban thermal numerical simulation can be coupled with air pollution dispersion and chemical processes to provide a more precise air quality prediction in complex urban areas.

  5. Conceptual design study of geothermal district heating of a thirty-house subdivision in Elko, Nevada, using existing water-distribution systems, Phase III. Final technical report, October 1, 1979-September 30, 1980

    SciTech Connect

    Pitts, D.R.

    1980-09-30

    A conceptual design study for district heating of a 30-home subdivision located near the southeast extremity of the city of Elko, Nevada is presented. While a specific residential community was used in the study, the overall approach and methodologies are believed to be generally applicable for a large number of communities where low temperature geothermal fluid is available. The proposed district heating system utilizes moderate temperature, clean domestic water and existing community culinary water supply lines. The culinary water supply is heated by a moderate temperature geothermal source using a single heat exchanger at entry to the subdivision. The heated culinary water is then pumped to the houses in the community where energy is extracted by means of a water supplied heat pump. The use of heat pumps at the individual houses allows economic heating to result from supply of relatively cool water to the community, and this precludes the necessity of supplying objectionably hot water for normal household consumption use. Each heat pump unit is isolated from the consumptive water flow such that contamination of the water supply is avoided. The community water delivery system is modified to allow recirculation within the community, and very little rework of existing water lines is required. The entire system coefficient of performance (COP) for a typical year of heating is 3.36, exclusive of well pumping energy.

  6. Pipeline accident statistics: Base to pipeline rehabilitation

    SciTech Connect

    Chis, T.

    1996-12-31

    The climate in which pipeline companies operate continues to change. Industry failures, related to public safety and environmental concerns, are now front page news. New and proposed regulations such as drug and alcohol testing of employees, instruments internal inspection and standardize oil spill response plans, are modifying the way pipeline companies operate. Paralleling these influences, the market place is also changing. Declining domestic production refinery closures and new specification for refined products are altering the pipe line distribution system. All of these changes are presenting new opportunities and many challenges. In 1995, when Conpet S.A. Ploiesti Formalized Pipeline Integrity Program, the reasons for the program were: What is the location to pipeline rehabilitation? What is failure probability? This paper reviews some aspects of the pipeline accident statistic to the Constanta Division of Conpet S.A. Ploiesti.

  7. Computer models of complex multiloop branched pipeline systems

    NASA Astrophysics Data System (ADS)

    Kudinov, I. V.; Kolesnikov, S. V.; Eremin, A. V.; Branfileva, A. N.

    2013-11-01

    This paper describes the principal theoretical concepts of the method used for constructing computer models of complex multiloop branched pipeline networks, and this method is based on the theory of graphs and two Kirchhoff's laws applied to electrical circuits. The models make it possible to calculate velocities, flow rates, and pressures of a fluid medium in any section of pipeline networks, when the latter are considered as single hydraulic systems. On the basis of multivariant calculations the reasons for existing problems can be identified, the least costly methods of their elimination can be proposed, and recommendations for planning the modernization of pipeline systems and construction of their new sections can be made. The results obtained can be applied to complex pipeline systems intended for various purposes (water pipelines, petroleum pipelines, etc.). The operability of the model has been verified on an example of designing a unified computer model of the heat network for centralized heat supply of the city of Samara.

  8. Geothermal pipeline

    SciTech Connect

    Not Available

    1992-12-01

    A number of new ideas for geothermal power development and use have been proposed or initiated. British engineers have proposed using North Sea oil rigs as geothermal power stations. These stations would use the low temperature heat from the water that now occupies the former oil reservoirs to generate electricity. NASA recently retrofitted its engine test facility to enable it to use warm water from an underground aquifer as source water in a heat pump. A major policy guideline regarding electricity is issued by the California Energy Commission (CEC) every two years. This year, CEC appears to be revising its method for determining the total societal cost of various electricity supply options. The change may impact geothermal energy usage in a positive way. Virtually untapped geothermal resources in Preston, Idaho will be utilized for warm water catfish farming. Stockton State College in New Jersey will be the site of one of the nation's largest geothermal projects when it is completed in 1993. It is designed to satisfy the college's energy requirements at an estimated cost savings of $300,000 per year. Aquaculture projects using thermal springs are under consideration in Utah and Washington State. Utah may be the site of an alligator farm and Washington State is being considered for raising golden tilapia, a food fish.

  9. Charter Districts.

    ERIC Educational Resources Information Center

    Lockwood, Anne Turnbaugh

    2002-01-01

    Interviews with superintendents of eight charter-school districts in four states: California, Florida, Georgia, and New Mexico. Describes advantages and disadvantages. Includes a list (with website addresses) of all current charter-school districts. (PKP)

  10. Impact assessment of biomass-based district heating systems in densely populated communities. Part I: Dynamic intake fraction methodology

    NASA Astrophysics Data System (ADS)

    Petrov, Olga; Bi, Xiaotao; Lau, Anthony

    2015-08-01

    This study contributes to the literature by proposing a novel, state-of-the-art approach to estimate incremental air quality and health impacts of proposed or installed district energy systems (DES), such as the growing biomass-based DES, on the immediately surrounding community where population density varies significantly during day as well as the micrometeorological conditions. Spatial and temporal dynamics of pollutant concentrations at sensitive receptors obtained from modeled actual source emissions, inclusion of site-specific terrain, land use and microclimatic characteristics, population density and breathing rates are examined based on their impacts on the exposure potential expressed by the intake fraction (iF). Overall, results revealed that when those parameters are changing, the increase of iF calculated based on average ambient concentrations at each receptor for the UBC campus for the day and night hours for September 2012, ranges from 6.2% to 43.0%: introducing actual spatial receptor distribution led to 43% increase of iF, combined spatial and population dynamics led to 11.3% increase of iF, while introducing temporal dynamics and varying breathing rates resulted in 6.2% and 21.4% increase in iF respectively, compared to the base case box model where receptors and population were treated as static and uniformly distributed across the modeling domain. It is thus essential to take into consideration temporal and spatial variations of atmospheric conditions and dispersion, population density and varying aspiration rates in accurately assessing the health impacts of DES located at densely populated urban communities.

  11. Multinode reconfigurable pipeline computer

    NASA Technical Reports Server (NTRS)

    Nosenchuck, Daniel M. (Inventor); Littman, Michael G. (Inventor)

    1989-01-01

    A multinode parallel-processing computer is made up of a plurality of innerconnected, large capacity nodes each including a reconfigurable pipeline of functional units such as Integer Arithmetic Logic Processors, Floating Point Arithmetic Processors, Special Purpose Processors, etc. The reconfigurable pipeline of each node is connected to a multiplane memory by a Memory-ALU switch NETwork (MASNET). The reconfigurable pipeline includes three (3) basic substructures formed from functional units which have been found to be sufficient to perform the bulk of all calculations. The MASNET controls the flow of signals from the memory planes to the reconfigurable pipeline and vice versa. the nodes are connectable together by an internode data router (hyperspace router) so as to form a hypercube configuration. The capability of the nodes to conditionally configure the pipeline at each tick of the clock, without requiring a pipeline flush, permits many powerful algorithms to be implemented directly.

  12. Btu flow rate meter proof of concept demonstration for district heating and cooling systems: Final technical report

    SciTech Connect

    Mawardi, O.K.

    1988-10-01

    This report describes a research effort devoted to the development and subsequent feasibility demonstration of an instrument for the remote sensing of the Btu flow rate in a steam or hot water heating system. The concept of the Btu meter is based on a differential hot wire anemometer invented by Osman K. Mawardi. The incentive in the development of this device is the increased demand for an inexpensive and accurate (better than 1%) Btu meter. The ability of the meter to be read remotely is essential, since it is an effective way of reducing the manpower costs of the company operating the heating system. Other features of the Btu meter which are included in the design are simplicity of construction, ruggedness, and flexibility of the electronic interfacing system. The latter feature permits the incorporation of the telemetering circuit in a telephone or radio-based communication system. Both of these alternatives are commercially available today and are quite economical. With small modifications of the interfacing circuitry, the meter can be linked to a fiber optics automated meter reading network. 15 refs., 20 figs., 1 tab.

  13. 75 FR 13342 - Pipeline Safety: Workshop on Distribution Pipeline Construction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... Construction AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT. ACTION: Notice of... Safety Representatives (NAPSR) on new distribution pipeline construction. The workshop will allow stakeholders in the pipeline safety community to learn about and discuss construction issues and...

  14. 30 CFR 57.4604 - Preparation of pipelines or containers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Before welding, cutting, or applying heat with an open flame to pipelines or containers that have... compatible; or (2) Determined to be free of flammable gases by a flammable gas detection device prior to...

  15. 30 CFR 57.4604 - Preparation of pipelines or containers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Before welding, cutting, or applying heat with an open flame to pipelines or containers that have... compatible; or (2) Determined to be free of flammable gases by a flammable gas detection device prior to...

  16. 30 CFR 56.4604 - Preparation of pipelines or containers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Before welding, cutting, or applying heat with an open flame to pipelines or containers that have... compatible; or (2) Determined to be free of flammable gases by a flammable gas detection device prior to...

  17. 30 CFR 56.4604 - Preparation of pipelines or containers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Before welding, cutting, or applying heat with an open flame to pipelines or containers that have... compatible; or (2) Determined to be free of flammable gases by a flammable gas detection device prior to...

  18. 30 CFR 56.4604 - Preparation of pipelines or containers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... Before welding, cutting, or applying heat with an open flame to pipelines or containers that have... compatible; or (2) Determined to be free of flammable gases by a flammable gas detection device prior to...

  19. 30 CFR 57.4604 - Preparation of pipelines or containers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Before welding, cutting, or applying heat with an open flame to pipelines or containers that have... compatible; or (2) Determined to be free of flammable gases by a flammable gas detection device prior to...

  20. 30 CFR 57.4604 - Preparation of pipelines or containers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Before welding, cutting, or applying heat with an open flame to pipelines or containers that have... compatible; or (2) Determined to be free of flammable gases by a flammable gas detection device prior to...

  1. 30 CFR 56.4604 - Preparation of pipelines or containers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Before welding, cutting, or applying heat with an open flame to pipelines or containers that have... compatible; or (2) Determined to be free of flammable gases by a flammable gas detection device prior to...

  2. Effect of recycling activities on the heating value of solid waste: case study of the Greater Vancouver Regional District (Metro Vancouver).

    PubMed

    Abedini, Ali R; Atwater, James W; Fu, George Yuzhu

    2012-08-01

    Two main goals of the integrated solid waste management system (ISWMS) of Metro Vancouver (MV) include further recycling of waste and energy recovery via incineration of waste. These two very common goals, however, are not always compatible enough to fit in an ISWMS depending on waste characteristics and details of recycling programs. This study showed that recent recycling activities in MV have negatively affected the net heating value (NHV) of municipal solid waste (MSW) in this regional district. Results show that meeting MV's goal for additional recycling of MSW by 2015 will further reduce the NHV of waste, if additional recycling activities are solely focused on more extensive recycling of packaging materials (e.g. paper and plastic). It is concluded that 50% additional recycling of paper and plastic in MV will increase the overall recycling rate to 70% (as targeted by the MV for 2015) and result in more than 8% reduction in NHV of MSW. This reduction translates to up to 2.3 million Canadian dollar (CAD$) less revenue at a potential waste-to-energy (WTE) plant with 500 000 tonnes year(-1) capacity. Properly designed recycling programmes, however, can make this functional element of ISWMS compatible with green goals of energy recovery from waste. Herein an explanation of how communities can increase their recycling activities without affecting the feasibility of potential WTE projects is presented. PMID:22700857

  3. Chemical and physical properties of cyclone fly ash from the grate-fired boiler incinerating forest residues at a small municipal district heating plant (6MW).

    PubMed

    Pöykiö, R; Rönkkömäki, H; Nurmesniemi, H; Perämäki, P; Popov, K; Välimäki, I; Tuomi, T

    2009-03-15

    In Finland, the new limit values for maximal allowable heavy metal concentrations for materials used as an earth construction agent came into force in July 2006. These limit values are applied if ash is utilized, e.g. in roads, cycling paths, pavements, car parks, sport fields, etc. In this study we have determined the most important chemical and physical properties of the cyclone fly ash originating from the grate-fired boiler incinerating forest residues (i.e. wood chips, sawdust and bark) at a small municipal district heating plant (6 MW), Northern Finland. This study clearly shows that elements are enriched in cyclone fly ash, since the total element concentrations in the cyclone fly ash were within 0.2-10 times higher than those in the bottom ash. The total concentrations of Cd (25 mg kg(-1); d.w.), Zn (3630 mg kg(-1); d.w.), Ba (4260 mg kg(-1); d.w.) and Hg (1.7 mg kg(-1); d.w.) exceeded the limit values, and therefore the cyclone fly ash cannot be used as an earth construction agent. According to the leached amounts of Cr (38 mg kg(-1); d.w.), Zn (51 mg kg(-1); d.w.) and sulphate (50,000 mg kg(-1); d.w.), the cyclone fly ash is classified as a hazardous waste, and it has to be deposited in a hazardous waste landfill. PMID:18603362

  4. Pipeline system insulation: Thermal insulation and corrosion prevention. (Latest citations from the Rubber and Plastics Research Association database). Published Search

    SciTech Connect

    Not Available

    1994-05-01

    The bibliography contains citations concerning thermal and corrosion insulation of pipeline systems used to transport liquids and gases. Topics include thermal aging of polyurethane used for foam heating pipes, extrusion film pipeline insulation materials and processes, flexible expanded nitrile rubber pipeline insulation with Class 1 fire rating, and underground fiberglass reinforced polyester insulated pipeline systems. Applications in solar heating systems; underground water, oil, and gas pipelines; interior hot and cold water lines under seawater; and chemical plant pipeline system insulation are included. (Contains 250 citations and includes a subject term index and title list.)

  5. Pipeline system insulation: Thermal insulation and corrosion prevention. (Latest citations from the Rubber and Plastics Research Association database). Published Search

    SciTech Connect

    1995-11-01

    The bibliography contains citations concerning thermal and corrosion insulation of pipeline systems used to transport liquids and gases. Topics include thermal aging of polyurethane used for foam heating pipes, extrusion film pipeline insulation materials and processes, flexible expanded nitrile rubber pipeline insulation with Class 1 fire rating, and underground fiberglass reinforced polyester insulated pipeline systems. Applications in solar heating systems; underground water, oil, and gas pipelines; interior hot and cold water lines under seawater; and chemical plant pipeline system insulation are included. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  6. Pipeline system insulation: Thermal insulation and corrosion prevention. (Latest citations from the Rubber and Plastics Research Association database). Published Search

    SciTech Connect

    1995-01-01

    The bibliography contains citations concerning thermal and corrosion insulation of pipeline systems used to transport liquids and gases. Topics include thermal aging of polyurethane used for foam heating pipes, extrusion film pipeline insulation materials and processes, flexible expanded nitrile rubber pipeline insulation with Class 1 fire rating, and underground fiberglass reinforced polyester insulated pipeline systems. Applications in solar heating systems; underground water, oil, and gas pipelines; interior hot and cold water lines under seawater; and chemical plant pipeline system insulation are included. (Contains 250 citations and includes a subject term index and title list.)

  7. Pollution from pipelines

    SciTech Connect

    Not Available

    1991-01-01

    During the 1980s, over 3,900 spills from land-based pipelines released nearly 20 million gallons of oil into U.S. waters-almost twice as much as was released by the March 1989 Exxon Valdez oil spill. Although the Department of Transportation is responsible for preventing water pollution from petroleum pipelines, GAO found that it has not established a program to prevent such pollution. DOT has instead delegated this responsibility to the Coast Guard, which has a program to stop water pollution from ships, but not from pipelines. This paper reports that, in the absence of any federal program to prevent water pollution from pipelines, both the Coast Guard and the Environmental Protection Agency have taken steps to plan for and respond to oil spills, including those from pipelines, as required by the Clean Water Act. The Coast Guard cannot, however, adequately plan for or ensure a timely response to pipeline spills because it generally is unaware of specific locations and operators of pipelines.

  8. Pipeline joint protector

    SciTech Connect

    Baker, R.

    1989-02-28

    This patent describes a weight coated pipeline joint protective apparatus for protecting pipeline joints against impact or high stress concentrations. It consists of a high density plastic sheet wrapped around a pipeline joint with the opposite edges of such sheet overlaying the weight of coat material on the abutting pipes forming the joint. The first end of the sheet overlaps the wrapped sheet with means for securing such first end to the sheet surface near or adjacent to the opposite end of such sheet.

  9. Deepwater pipeline recovery

    SciTech Connect

    McStravick, D.M.; Baugh, B.F.

    1997-07-01

    The paper gives a presentation of the tooling concepts used for the recovery of steel and flexible flowlines in the Gulf of Mexico Shell Tahoe I area in the summer of 1996 in 1,370 ft. of sea water. This offshore operation required a Global Grabber to engage and retrieve 4 1/2-in. steel pipelines, an ROV Pipeline Spear to internally engage the end of the 4 1/2-in. steel pipelines, and a FlexGrip Assembly to wrap and grab 5.566-in. OD flexible pipe. The design of the tooling emphasized the use of API 17D ROV interfaces.

  10. INTERNAL REPAIR OF PIPELINES

    SciTech Connect

    Robin Gordon; Bill Bruce; Nancy Porter; Mike Sullivan; Chris Neary

    2003-05-01

    The two broad categories of deposited weld metal repair and fiber-reinforced composite repair technologies were reviewed for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Preliminary test programs were developed for both deposited weld metal repairs and for fiber-reinforced composite repair. To date, all of the experimental work pertaining to the evaluation of potential repair methods has focused on fiber-reinforced composite repairs. Hydrostatic testing was also conducted on four pipeline sections with simulated corrosion damage: two with composite liners and two without.

  11. Rnnotator Assembly Pipeline

    SciTech Connect

    Martin, Jeff

    2010-06-03

    Jeff Martin of the DOE Joint Genome Institute discusses a de novo transcriptome assembly pipeline from short RNA-Seq reads on June 3, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM

  12. Commanding Constellations (Pipeline Architecture)

    NASA Technical Reports Server (NTRS)

    Ray, Tim; Condron, Jeff

    2003-01-01

    Providing ground command software for constellations of spacecraft is a challenging problem. Reliable command delivery requires a feedback loop; for a constellation there will likely be an independent feedback loop for each constellation member. Each command must be sent via the proper Ground Station, which may change from one contact to the next (and may be different for different members). Dynamic configuration of the ground command software is usually required (e.g. directives to configure each member's feedback loop and assign the appropriate Ground Station). For testing purposes, there must be a way to insert command data at any level in the protocol stack. The Pipeline architecture described in this paper can support all these capabilities with a sequence of software modules (the pipeline), and a single self-identifying message format (for all types of command data and configuration directives). The Pipeline architecture is quite simple, yet it can solve some complex problems. The resulting solutions are conceptually simple, and therefore, reliable. They are also modular, and therefore, easy to distribute and extend. We first used the Pipeline architecture to design a CCSDS (Consultative Committee for Space Data Systems) Ground Telecommand system (to command one spacecraft at a time with a fixed Ground Station interface). This pipeline was later extended to include gateways to any of several Ground Stations. The resulting pipeline was then extended to handle a small constellation of spacecraft. The use of the Pipeline architecture allowed us to easily handle the increasing complexity. This paper will describe the Pipeline architecture, show how it was used to solve each of the above commanding situations, and how it can easily be extended to handle larger constellations.

  13. Colombian export oil pipeline

    SciTech Connect

    Duncan, K. ); Enright, B. )

    1989-06-01

    The authors discuss how bringing crude oil to market often requires extraordinary determination and effort to overcome the obstacles of terrain and time. They describe a pipeline project on a 53-week suicide schedule to get oil across the Colombian Andes. After confronting setbacks, they completed a job that included 304 miles of pipeline, 497 miles of telecommunications and a major offshore terminal in only 47 weeks.

  14. Virtual Astronomical Pipelines

    NASA Astrophysics Data System (ADS)

    Dave, R.; Protopapas, P.; Lehner, M.

    2007-10-01

    The sheer magnitude of databases and data rates in new surveys makes it hard to develop pipelines to enable both the analysis of data and the federation of these databases for correlation and followup. There is thus a compelling need to facilitate the creation and management of dynamic workflow pipelines that enable correlating data between separate, parallel streams; changing the workflow in response to an event; using the NVO to obtain additional needed information from databases; and modifying the observing program of a primary survey to follow-up a transient or moving object. This paper describes such a Virtual Astronomical Pipeline (VAP) system which is running in the TAOS project. The software enables components in the pipeline to react to events encapsulated in XML messages, modifying and subsequently routing these messages to multiple other components. This architecture allows for the bootstrapping of components individually in the development process and for dynamic reconfiguration of the pipeline as a response to external and internal events. The software will be extended for future work in combining the results of surveys and followups into a global virtual pipeline.

  15. Evaluation of the District of Columbia Energy Office Residential Conservation Assistance Program for Natural Gas-Heated Single-Family Homes

    SciTech Connect

    McCold, Lance Neil; Schmoyer, Richard L

    2007-03-01

    At the request of the U.S. Department of Energy (DOE), Oak Ridge National Laboratory (ORNL), with assistance from the District of Columbia Energy Office (DCEO) performed an evaluation of part of the DCEO Residential Conservation Assistance Program (RCAP). The primary objective of the evaluation was to evaluate the effectiveness of the DCEO weatherization program. Because Weatherization Assistance Program (WAP) funds are used primarily for weatherization of single-family homes and because evaluating the performance of multi-family residences would be more complex than the project budget would support, ORNL and DCEO focused the study on gas-heated single-family homes. DCEO provided treatment information and arranged for the gas utility to provide billing data for 100 treatment houses and 434 control houses. The Princeton Scorkeeping Method (PRISM) software package was used to normalize energy use for standard weather conditions. The houses of the initial treatment group of 100 houses received over 450 measures costing a little over $180,000, including labor and materials. The average cost per house was $1,811 and the median cost per house was $1,674. Window replacement was the most common measure and accounted for about 35% of total expenditures. Ceiling and floor insulation was installed in 61 houses and accounts for almost 22% of the expenditures. Twenty-seven houses received replacement doors at an average cost of $620 per house. Eight houses received furnace or boiler replacements at an average cost of about $3,000 per house. The control-adjusted average measured savings are about 20 therms/year. The 95% confidence interval is approximately +20 to +60 therms/year. The average pre-weatherization energy consumption of the houses was about 1,100 therm/year. Consequently, the adjusted average savings is approximately 2% ({+-}4%)-not significantly different than zero. Most RCAP expenditures appear to go to repairs. While some repairs may have energy benefits, measures

  16. Occurrence of Legionella in hot water systems of single-family residences in suburbs of two German cities with special reference to solar and district heating.

    PubMed

    Mathys, Werner; Stanke, Juliane; Harmuth, Margarita; Junge-Mathys, Elisabeth

    2008-03-01

    A total of 452 samples from hot water systems of randomly selected single family residences in the suburbs of two German cities were analysed for the occurrence of Legionella. Technical data were documented using a standardized questionnaire to evaluate possible factors promoting the growth of the bacterium in these small plumbing systems. All houses were supplied with treated groundwater from public water works. Drinking water quality was within the limits specified in the German regulations for drinking water and the water was not chlorinated. The results showed that plumbing systems in private houses that provided hot water from instantaneous water heaters were free of Legionella compared with a prevalence of 12% in houses with storage tanks and recirculating hot water where maximum counts of Legionella reached 100,000 CFU/100ml. The presence of L. pneumophila accounted for 93.9% of all Legionella positive specimens of which 71.8% belonged to serogroup 1. The volume of the storage tank, interrupting circulation for several hours daily and intermittently raising hot water temperatures to >60 degrees C had no influence on Legionella counts. Plumbing systems with copper pipes were more frequently contaminated than those made of synthetic materials or galvanized steel. An inhibitory effect due to copper was not present. Newly constructed systems (<2 years) were not colonized. The type of hot water preparation had a marked influence. More than 50% of all houses using district heating systems were colonized by Legionella. Their significantly lower hot water temperature is thought to be the key factor leading to intensified growth of Legionella. Although hot water systems using solar energy to supplement conventional hot water supplies operate at temperatures 3 degrees C lower than conventional systems, this technique does not seem to promote proliferation of the bacterium. Our data show convincingly that the temperature of the hot water is probably the most important

  17. 77 FR 31827 - Pipeline Safety: Pipeline Damage Prevention Programs

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    ... Safety: Pipeline Damage Prevention Programs AGENCY: Pipeline and Hazardous Materials Safety... excavation damage prevention law enforcement programs; establish an administrative process for making... excavation damage prevention law enforcement programs; and establish the adjudication process...

  18. Protecting a pipeline

    SciTech Connect

    Gray, D.H ); Garcia-Lopez, M. )

    1994-12-01

    This article describes some of the difficulties in constructing an oil pipeline in Colombia across a forested mountain range that has erosion-prone slopes. Engineers are finding ways to protect the pipeline against slope failures and severe erosion problems while contending with threats of guerrilla attacks. Torrential rainfall, precipitous slopes, unstable soils, unfavorable geology and difficult access make construction of an oil pipeline in Colombia a formidable undertaking. Add the threat of guerrilla attacks, and the project takes on a new dimension. In the country's central uplands, a 76 cm pipeline traverses some of the most daunting and formidable terrain in the world. The right-of-way crosses rugged mountains with vertical elevations ranging from 300 m to 2,000 mm above sea level over a distance of some 30 km. The pipeline snakes up and down steep forested inclines in some spots and crosses streams and faults in others, carrying the country's major export--petroleum--from the Cusiana oil field, located in Colombia's lowland interior, to the coast.

  19. CPL: Common Pipeline Library

    NASA Astrophysics Data System (ADS)

    ESO CPL Development Team

    2014-02-01

    The Common Pipeline Library (CPL) is a set of ISO-C libraries that provide a comprehensive, efficient and robust software toolkit to create automated astronomical data reduction pipelines. Though initially developed as a standardized way to build VLT instrument pipelines, the CPL may be more generally applied to any similar application. The code also provides a variety of general purpose image- and signal-processing functions, making it an excellent framework for the creation of more generic data handling packages. The CPL handles low-level data types (images, tables, matrices, strings, property lists, etc.) and medium-level data access methods (a simple data abstraction layer for FITS files). It also provides table organization and manipulation, keyword/value handling and management, and support for dynamic loading of recipe modules using programs such as EsoRex (ascl:1504.003).

  20. User manual for GEOCITY: A computer model for cost analysis of geothermal district-heating-and-cooling systems. Volume 1: Main text

    NASA Astrophysics Data System (ADS)

    Huber, H. D.; Fassbender, L. L.; Bloomster, C. H.

    1982-09-01

    The cost of residential space heating, space cooling, and sanitary water heating or process heating (cooling) using geothermal energy from a hydrothermal reservoir was calculated. The GEOCITY simulates the complete geothermal heating and cooling system, which consists of two principal parts: the reservoir and fluid transmission system and the distribution system. Geothermal space heating is provided by circulating hot water through radiators, convectors, and fan-coil units. Geothermal process heating is provided by directly using the hot water or by circulating it through a process heat exchanger. The life cycle cost of thermal energy from the reservoir and fluid transmission system to the distribution system and the life cycle cost of heat (chill) to the end users are calculated by discounted cash flow analysis.

  1. Infrared thermographic pipeline leak detection systems for pipeline rehabilitation programs

    NASA Astrophysics Data System (ADS)

    Weil, Gary J.

    1995-05-01

    Computerized infrared thermographic pipeline inspection is now a refined and accurate process having been thoroughly proven to be accurate, cost effective, and efficient technology for pipeline rehabilitation programs, during a 10 year development and testing process. The process has been used to test pipelines in chemical plants, water supply systems, steam lines, natural gas pipelines and sewer systems. Its non-contact, non-destructive ability to inspect large areas, from above ground, with 100% coverage and to locate subsurface leaks as well as the additional capability to locate voids and erosion surrounding pipelines, make its testing capabilities unique and highly desirable. This paper details the development of computerized infrared thermographic pipeline testing along with nine case histories illustrating its implementation problems and successes during various rehabilitation programs involving pipelines carrying water, gas, petroleum, and sewage.

  2. Infrared thermographic pipeline leak detection systems for pipeline rehabilitation programs

    NASA Astrophysics Data System (ADS)

    Weil, Gary J.

    1998-03-01

    Computerized infrared thermographic pipeline inspection is now a refined and accurate process having been thoroughly proven to be an accurate, cost effective, and efficient technology for pipeline rehabilitation programs, during a 10 year development and testing process. The process has been used to test pipelines in chemical plants, water supply systems, steam lines, natural gas pipelines and sewer systems. Its non- contact, non-destructive ability to inspect large areas, from above ground, with 100% coverage and to locate subsurface leaks as well as the additional capability to locate voids and erosion areas surrounding pipelines, make its testing capabilities unique and highly desirable. This paper details the development of computerized infrared thermographic pipeline testing along with case histories illustrating its implementation problems and successes during various rehabilitation programs involving pipelines carrying water, gas, petroleum, and sewage.

  3. Highlander prompts pipeline innovations

    SciTech Connect

    Akten, H.T.

    1986-05-05

    Texaco North Sea UK Co.'s Highlander field was developed with innovative subsea engineering which helped bring the field onstream in an 18-month period. Among the engineering challenges met were the design and construction of the Highlander Pipeline System and especially the innovations evident in the first-ever subsea slug catcher and in the retrievable subsea pigging facilities. Located in 420 ft of water in Texaco's North Sea Block 14/20, Highlander is 8 miles west of Texaco's existing Tartan A production platform which stands in approximately 465 ft of water. To bring oil on-stream rapidly, thus maximizing early cash flow, the project was undertaken in two phases. The first phase consisted of one water injector and two producer wells connected to Tartan A via three 8-in. pipelines and associated flexible jumpers/risers. The remaining 4-in. and 12-in. pipelines were flooded with inhibited sea water and left on the seabed for approximately 1 year until commissioning for the project's second phase. All steel pipelines were trenched immediately after laying, and umbilicals were laid into certain of these trenches. Highlander's second phase included an innovative subsea production facility with such unique features as subsea slug catchers and retrievable subsea pigging facilities. Much of the technology involved was developed in Britain and will have worldwide application linking smaller marginal fields to existing platforms swiftly and in a cost effective manner.

  4. UQ Pipeline Lorenz Portlet

    SciTech Connect

    2012-08-31

    This is web client software that can help initiate UQ Pipeline jobs on LLNL's LC compute systems and visually shows the status of such jobs in a browser window. The web client interacts with LC's interactive compute nodes using (LLNL) Lorenz REST API to initiate action and obtain status data in JSON format.

  5. The COS Calibration Pipeline

    NASA Astrophysics Data System (ADS)

    Hodge, Philip E.; Keyes, C.; Kaiser, M.

    2007-12-01

    The COS calibration pipeline (CALCOS) includes three main components: basic calibration, wavelength calibration, and spectral extraction. Calibration of modes using the far ultraviolet (FUV) and near ultraviolet (NUV) detectors share a common structure, although the individual reference files differ and there are some additional steps for the FUV channel. The pipeline is designed to calibrate data acquired in either ACCUM or time-tag mode. The basic calibration includes pulse-height filtering and geometric correction for FUV, and flat-field, deadtime, and Doppler correction for both detectors. Wavelength calibration can be done either by using separate lamp exposures or by taking several short lamp exposures concurrently with a science exposure. For time-tag data, the latter mode ("tagflash") will allow better correction of potential drift of the spectrum on the detector. One-dimensional spectra will be extracted and saved in a FITS binary table. Separate columns will be used for the flux-calibrated spectrum, error estimate, and the associated wavelengths. CALCOS is written in Python, with some functions in C. It is similar in style to other HST pipeline code in that it uses an association table to specify which files to be included, and the calibration steps to be performed and the reference files to use are specified by header keywords. Currently, in conjunction with the Instrument Definition Team (led by J. Green), the ground-based reference files are being refined, delivered, and tested with the pipeline.

  6. Charter School Districts.

    ERIC Educational Resources Information Center

    Hill, Paul T.

    2002-01-01

    Discusses the difference between charter schools and charter districts (all schools in the district are chartered), why charter school districts are spreading, and how local school districts can become charter districts. Current laws in Arizona, California, Florida, Georgia, New Mexico, Oregon, and Texas allow charter districts. (PKP)

  7. Orchestrator Telemetry Processing Pipeline

    NASA Technical Reports Server (NTRS)

    Powell, Mark; Mittman, David; Joswig, Joseph; Crockett, Thomas; Norris, Jeffrey

    2008-01-01

    Orchestrator is a software application infrastructure for telemetry monitoring, logging, processing, and distribution. The architecture has been applied to support operations of a variety of planetary rovers. Built in Java with the Eclipse Rich Client Platform, Orchestrator can run on most commonly used operating systems. The pipeline supports configurable parallel processing that can significantly reduce the time needed to process a large volume of data products. Processors in the pipeline implement a simple Java interface and declare their required input from upstream processors. Orchestrator is programmatically constructed by specifying a list of Java processor classes that are initiated at runtime to form the pipeline. Input dependencies are checked at runtime. Fault tolerance can be configured to attempt continuation of processing in the event of an error or failed input dependency if possible, or to abort further processing when an error is detected. This innovation also provides support for Java Message Service broadcasts of telemetry objects to clients and provides a file system and relational database logging of telemetry. Orchestrator supports remote monitoring and control of the pipeline using browser-based JMX controls and provides several integration paths for pre-compiled legacy data processors. At the time of this reporting, the Orchestrator architecture has been used by four NASA customers to build telemetry pipelines to support field operations. Example applications include high-volume stereo image capture and processing, simultaneous data monitoring and logging from multiple vehicles. Example telemetry processors used in field test operations support include vehicle position, attitude, articulation, GPS location, power, and stereo images.

  8. 77 FR 43711 - Standards for Business Practices of Interstate Natural Gas Pipelines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-26

    ... Gas Pipelines, Notice of Proposed Rulemaking, 77 FR 10415 (Feb. 22, 2012), FERC Stats. & Regs. ] 32... of information regarding waste heat; and ] (6) minor technical maintenance revisions designed to more... Natural Gas Pipelines, 77 FR 28331 (May 14, 2012). II. Discussion A. Incorporation by Reference of...

  9. Look at Western Natural Gas Infrastructure During the Recent El Paso Pipeline Disruption, A

    EIA Publications

    2000-01-01

    This special report looks at the capabilities of the national natural gas pipeline network in 2000 and provides an assessment of the current levels of available capacity to transport supplies from production areas to markets throughout the United States during the upcoming heating season. It also examines how completion of currently planned expansion projects and proposed new pipelines would affect the network.

  10. Pipeline Calibration for STIS

    NASA Astrophysics Data System (ADS)

    Hodge, P. E.; Hulbert, S. J.; Lindler, D.; Busko, I.; Hsu, J.-C.; Baum, S.; McGrath, M.; Goudfrooij, P.; Shaw, R.; Katsanis, R.; Keener, S.; Bohlin, R.

    The CALSTIS program for calibration of Space Telescope Imaging Spectrograph data in the OPUS pipeline differs in several significant ways from calibration for earlier HST instruments, such as the use of FITS format, computation of error estimates, and association of related exposures. Several steps are now done in the pipeline that previously had to be done off-line by the user, such as cosmic ray rejection and extraction of 1-D spectra. Although the program is linked with IRAF for image and table I/O, it is written in ANSI C rather than SPP, which should make the code more accessible. FITS extension I/O makes use of the new IRAF FITS kernel for images and the HEASARC FITSIO package for tables.

  11. Instrumented Pipeline Initiative

    SciTech Connect

    Thomas Piro; Michael Ream

    2010-07-31

    This report summarizes technical progress achieved during the cooperative agreement between Concurrent Technologies Corporation (CTC) and U.S. Department of Energy to address the need for a for low-cost monitoring and inspection sensor system as identified in the Department of Energy (DOE) National Gas Infrastructure Research & Development (R&D) Delivery Reliability Program Roadmap.. The Instrumented Pipeline Initiative (IPI) achieved the objective by researching technologies for the monitoring of pipeline delivery integrity, through a ubiquitous network of sensors and controllers to detect and diagnose incipient defects, leaks, and failures. This report is organized by tasks as detailed in the Statement of Project Objectives (SOPO). The sections all state the objective and approach before detailing results of work.

  12. Pipeline corridors through wetlands

    SciTech Connect

    Zimmerman, R.E.; Wilkey, P.L.; Isaacson, H.R.

    1992-12-01

    This paper presents preliminary findings from six vegetational surveys of gas pipeline rights-of-way (ROW) through wetlands and quantifies the impacts of a 20-year-old pipeline ROW through a boreal forest wetland. Six sites of various ages were surveyed in ecosystems ranging from coastal marsh to forested wetland. At all sites except one, both the number and the percentage of wetland species on the Row approximated or exceeded those in the adjacent natural area. The boreal forest study showed that (1) adjacent natural wetland areas were not altered in type; (2) water sheet flow restriction had been reversed by nature; (3) no nonnative plant species invaded the natural area; (4) three-quarters of the ROW area was a wetland, and (5) the ROW increased diversity.

  13. Pipeline corridors through wetlands

    SciTech Connect

    Zimmerman, R.E.; Wilkey, P.L. ); Isaacson, H.R. )

    1992-01-01

    This paper presents preliminary findings from six vegetational surveys of gas pipeline rights-of-way (ROW) through wetlands and quantifies the impacts of a 20-year-old pipeline ROW through a boreal forest wetland. Six sites of various ages were surveyed in ecosystems ranging from coastal marsh to forested wetland. At all sites except one, both the number and the percentage of wetland species on the Row approximated or exceeded those in the adjacent natural area. The boreal forest study showed that (1) adjacent natural wetland areas were not altered in type; (2) water sheet flow restriction had been reversed by nature; (3) no nonnative plant species invaded the natural area; (4) three-quarters of the ROW area was a wetland, and (5) the ROW increased diversity.

  14. Constructing computational pipelines.

    PubMed

    Halling-Brown, Mark; Shepherd, Adrian J

    2008-01-01

    Many bioinformatics tasks involve creating a computational pipeline from existing software components and algorithms. The traditional approach is to glue components together using scripts written in a programming language such as Perl. However, a new, more powerful approach is emerging that promises to revolutionise the way bioinformaticians create applications from existing components, an approach based on the concept of the scientific workflow. Scientific workflows are created in graphical environments known as workflow management systems. They have many benefits over traditional program scripts, including speed of development, portability, and their suitability for developing complex, distributed applications. This chapter explains how to design and implement bioinformatics workflows using free, Open Source software tools, such as the Taverna workflow management system. We also demonstrate how new and existing tools can be deployed as Web services so that they can be easily integrated into novel computational pipelines using the scientific workflow paradigm. PMID:18712319

  15. Sludge pipeline design.

    PubMed

    Slatter, P T

    2001-01-01

    The need for the design engineer to have a sound basis for designing sludge pumping and pipelining plant is becoming more critical. This paper examines both a traditional text-book approach and one of the latest approaches from the literature, and compares them with experimental data. The pipelining problem can be divided into the following main areas; rheological characterisation, laminar, transitional and turbulent flow and each is addressed in turn. Experimental data for a digested sludge tested in large pipes is analysed and compared with the two different theoretical approaches. Discussion is centred on the differences between the two methods and the degree of agreement with the data. It is concluded that the new approach has merit and can be used for practical design. PMID:11794641

  16. 78 FR 70623 - Pipeline Safety: Meeting of the Gas Pipeline Advisory Committee and the Liquid Pipeline Advisory...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-26

    ... published on April 11, 2000, (65 FR 19477-78) or you may visit http://docketsinfo.dot.gov . Docket: For... Pipeline and Hazardous Materials Safety Administration Pipeline Safety: Meeting of the Gas Pipeline Advisory Committee and the Liquid Pipeline Advisory Committee AGENCY: Pipeline and Hazardous...

  17. The MIS Pipeline Toolkit

    NASA Astrophysics Data System (ADS)

    Teuben, Peter J.; Pound, M. W.; Storm, S.; Mundy, L. G.; Salter, D. M.; Lee, K.; Kwon, W.; Fernandez Lopez, M.; Plunkett, A.

    2013-01-01

    A pipeline toolkit was developed to help organizing, reducing and analyzing a large number of near-identical datasets. This is a very general problem, for which many different solutions have been implemented. In this poster we present one such solution that lends itself to users of the Unix command line, using the Unix "make" utility, and adapts itself easily to observational as well as theoretical projects. Two examples are given, one from the CARMA CLASSy survey, and another from a simulated kinematic survey of early galaxy forming disks. The CLASSy survey (discussed in more detail in three accompanying posters) consists of 5 different star forming regions, observed with CARMA, each containing roughly 10-20 datasets in continuum and 3 different molecular lines, that need to be combined in final data cubes and maps. The strength of such a pipeline toolkit shows itself as new data are accumulated, the data reduction steps are improved and easily re-applied to previously taken data. For this we employed a master script that was run nightly, and collaborators submitted improved script and/or pipeline parameters that control these scripts. MIS is freely available for download.

  18. ALMA Pipeline Heuristics

    NASA Astrophysics Data System (ADS)

    Lightfoot, J.; Wyrowski, F.; Muders, D.; Boone, F.; Davis, L.; Shepherd, D.; Wilson, C.

    2006-07-01

    The ALMA (Atacama Large Millimeter Array) Pipeline Heuristics system is being developed to automatically reduce data taken with the standard observing modes. The goal is to make ALMA user-friendly to astronomers who are not experts in radio interferometry. The Pipeline Heuristics system must capture the expert knowledge required to provide data products that can be used without further processing. Observing modes to be processed by the system include single field interferometry, mosaics and single dish `on-the-fly' maps, and combinations of these modes. The data will be produced by the main ALMA array, the ALMA Compact Array (ACA) and single dish antennas. The Pipeline Heuristics system is being developed as a set of Python scripts. For interferometry these use as data processing engines the CASA/AIPS++ libraries and their bindings as CORBA objects within the ALMA Common Software (ACS). Initial development has used VLA and Plateau de Bure data sets to build and test a heuristic script capable of reducing single field data. In this paper we describe the reduction datapath and the algorithms used at each stage. Test results are presented. The path for future development is outlined.

  19. The inverse electroencephalography pipeline

    NASA Astrophysics Data System (ADS)

    Weinstein, David Michael

    The inverse electroencephalography (EEG) problem is defined as determining which regions of the brain are active based on remote measurements recorded with scalp EEG electrodes. An accurate solution to this problem would benefit both fundamental neuroscience research and clinical neuroscience applications. However, constructing accurate patient-specific inverse EEG solutions requires complex modeling, simulation, and visualization algorithms, and to date only a few systems have been developed that provide such capabilities. In this dissertation, a computational system for generating and investigating patient-specific inverse EEG solutions is introduced, and the requirements for each stage of this Inverse EEG Pipeline are defined and discussed. While the requirements of many of the stages are satisfied with existing algorithms, others have motivated research into novel modeling and simulation methods. The principal technical results of this work include novel surface-based volume modeling techniques, an efficient construction for the EEG lead field, and the Open Source release of the Inverse EEG Pipeline software for use by the bioelectric field research community. In this work, the Inverse EEG Pipeline is applied to three research problems in neurology: comparing focal and distributed source imaging algorithms; separating measurements into independent activation components for multifocal epilepsy; and localizing the cortical activity that produces the P300 effect in schizophrenia.

  20. Trans ecuadorian pipeline; Mountainous pipeline restoration a logistical masterpiece

    SciTech Connect

    Hamilton, L. )

    1988-06-01

    The Trans Ecuadorian Pipeline pumped approximately 300,000 b/d of crude from fields in eastern Ecuador to an export terminal and refinery at Esmeraldas on the Pacific coast. The devastation resulting from an earthquake cut off the main portion of export income as well as domestic fuel supplies and propane gas. Approximately 25 km of the pipeline was destroyed. This article details how the pipeline was reconstructed, including both the construction of a temporary line and of permanent facilities.

  1. 77 FR 61825 - Pipeline Safety: Notice of Public Meeting on Pipeline Data

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-11

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration Pipeline Safety: Notice of Public Meeting on Pipeline Data AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA), DOT. ACTION:...

  2. A Cross-Sectional Study of Heat Wave-Related Knowledge, Attitude, and Practice among the Public in the Licheng District of Jinan City, China.

    PubMed

    Li, Jing; Xu, Xin; Ding, Guoyong; Zhao, Yun; Zhao, Ruixia; Xue, Fuzhong; Li, Jing; Gao, Jinghong; Yang, Jun; Jiang, Baofa; Liu, Qiyong

    2016-01-01

    Knowledge, attitude, and practice (KAP) are three key components for reducing the adverse health impacts of heat waves. However, research in eastern China regarding this is scarce. The present study aimed to evaluate the heat wave-related KAP of a population in Licheng in northeast China. This cross-sectional study included 2241 participants. Data regarding demographic characteristics, KAP, and heat illnesses were collected using a structured questionnaire. Univariate analysis and unconditional logistic regression models were used to analyze the data. Most residents had high KAP scores, with a mean score of 12.23 (standard deviation = 2.23) on a 17-point scale. Urban women and participants aged 35-44 years had relatively high total scores, and those with high education levels had the highest total score. There was an increased risk of heat-related illness among those with knowledge scores of 3-5 on an 8-point scale with mean score of 5.40 (standard deviation = 1.45). Having a positive attitude toward sunstroke prevention and engaging in more preventive practices to avoid heat exposure had a protective interaction effect on reducing the prevalence of heat-related illnesses. Although the KAP scores were relatively high, knowledge and practice were lacking to some extent. Therefore, governments should further develop risk-awareness strategies that increase awareness and knowledge regarding the adverse health impact of heat and help in planning response strategies to improve the ability of individuals to cope with heat waves. PMID:27367715

  3. A Cross-Sectional Study of Heat Wave-Related Knowledge, Attitude, and Practice among the Public in the Licheng District of Jinan City, China

    PubMed Central

    Li, Jing; Xu, Xin; Ding, Guoyong; Zhao, Yun; Zhao, Ruixia; Xue, Fuzhong; Li, Jing; Gao, Jinghong; Yang, Jun; Jiang, Baofa; Liu, Qiyong

    2016-01-01

    Knowledge, attitude, and practice (KAP) are three key components for reducing the adverse health impacts of heat waves. However, research in eastern China regarding this is scarce. The present study aimed to evaluate the heat wave-related KAP of a population in Licheng in northeast China. This cross-sectional study included 2241 participants. Data regarding demographic characteristics, KAP, and heat illnesses were collected using a structured questionnaire. Univariate analysis and unconditional logistic regression models were used to analyze the data. Most residents had high KAP scores, with a mean score of 12.23 (standard deviation = 2.23) on a 17-point scale. Urban women and participants aged 35–44 years had relatively high total scores, and those with high education levels had the highest total score. There was an increased risk of heat-related illness among those with knowledge scores of 3–5 on an 8-point scale with mean score of 5.40 (standard deviation = 1.45). Having a positive attitude toward sunstroke prevention and engaging in more preventive practices to avoid heat exposure had a protective interaction effect on reducing the prevalence of heat-related illnesses. Although the KAP scores were relatively high, knowledge and practice were lacking to some extent. Therefore, governments should further develop risk-awareness strategies that increase awareness and knowledge regarding the adverse health impact of heat and help in planning response strategies to improve the ability of individuals to cope with heat waves. PMID:27367715

  4. 27 CFR 19.187 - Pipelines.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Pipelines. 19.187 Section... Package Scale and Pipeline Requirements § 19.187 Pipelines. All pipelines, including flexible hoses, that... TTB officer may approve pipelines that cannot be readily examined if they pose no jeopardy to...

  5. 27 CFR 19.187 - Pipelines.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Pipelines. 19.187 Section... Package Scale and Pipeline Requirements § 19.187 Pipelines. All pipelines, including flexible hoses, that... TTB officer may approve pipelines that cannot be readily examined if they pose no jeopardy to...

  6. 27 CFR 19.187 - Pipelines.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Pipelines. 19.187 Section... Package Scale and Pipeline Requirements § 19.187 Pipelines. All pipelines, including flexible hoses, that... TTB officer may approve pipelines that cannot be readily examined if they pose no jeopardy to...

  7. 27 CFR 19.187 - Pipelines.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Pipelines. 19.187 Section... Package Scale and Pipeline Requirements § 19.187 Pipelines. All pipelines, including flexible hoses, that... TTB officer may approve pipelines that cannot be readily examined if they pose no jeopardy to...

  8. 49 CFR 195.210 - Pipeline location.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 3 2014-10-01 2014-10-01 false Pipeline location. 195.210 Section 195.210 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.210 Pipeline location. (a) Pipeline right-of-way must be selected to avoid,...

  9. 49 CFR 195.210 - Pipeline location.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 3 2012-10-01 2012-10-01 false Pipeline location. 195.210 Section 195.210 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.210 Pipeline location. (a) Pipeline right-of-way must be selected to avoid,...

  10. The SPIRE Data Reduction Pipeline

    NASA Astrophysics Data System (ADS)

    Rizzo, D.; Lim, T.

    2008-08-01

    This paper describes the data reduction pipeline of the SPIRE instrument for the Herschel Space Observatory. The pipeline is being written in Java and Jython as part of the multi-platform Herschel Common Science System. We concentrate on the algorithmic design of the pipeline based on the analysis of test data. We also discuss some of the alternative designs under consideration and give the reasons for the design adopted.

  11. Southeast geysers effluent pipeline project. Final report

    SciTech Connect

    Dellinger, M.

    1998-01-15

    The project concept originated in 1990 with the convergence of two problems: (1) a need for augmented injection to mitigate declining reservoir productivity at the Geysers; and (2) a need for a new method of wastewater disposal for Lake County communities near the The Geysers. A public/private partnership of Geysers operators and the Lake County Sanitation District (LACOSAN) was formed in 1991 to conduct a series of engineering, environmental, and financing studies of transporting treated wastewater effluent from the communities to the southeast portion of The Geysers via a 29-mile pipeline. By 1994, these evaluations concluded that the concept was feasible and the stakeholders proceeded to formally develop the project, including pipeline and associated facilities design; preparation of an environmental impact statement; negotiation of construction and operating agreements; and assembly of $45 million in construction funding from the stakeholders, and from state and federal agencies with related program goals. The project development process culminated in the system`s dedication on October 16, 1997. As of this writing, all project components have been constructed or installed, successfully tested in compliance with design specifications, and are operating satisfactorily.

  12. Cultivating Talent through a Principal Pipeline. Building a Stronger Principalship: Volume 2

    ERIC Educational Resources Information Center

    Turnbull, Brenda J.; Riley, Derek L.; MacFarlane, Jaclyn R.

    2013-01-01

    This second report of an ongoing evaluation of "The Wallace Foundation's Principal Pipeline Initiative" describes the six participating school districts' activities in school leader preparation and support and analyzes their progress over two years. The evaluation, conducted by "Policy Studies Associates" and the "RAND…

  13. Promising Leadership for School Turnarounds. The School Leadership Pipeline Series. Part 2

    ERIC Educational Resources Information Center

    Dolan, Kim Knous

    2014-01-01

    In the fall of 2012, the Donnell-Kay Foundation conducted a survey of Colorado's superintendents and charter management organization (CMO) leaders to understand the pipeline challenges faced by district and charter leaders in the state. The results of the survey found particular challenges with recruiting, supporting, and retaining qualified…

  14. INTERNAL REPAIR OF PIPELINES

    SciTech Connect

    Bill Bruce; Nancy Porter; George Ritter; Matt Boring; Mark Lozev; Ian Harris; Bill Mohr; Dennis Harwig; Robin Gordon; Chris Neary; Mike Sullivan

    2005-07-20

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without

  15. 76 FR 70953 - Pipeline Safety: Safety of Gas Transmission Pipelines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-16

    ... August 25, 2011, (76 FR 53086) PHMSA published in the Federal Register an Advance Notice of Proposed... by email at mike.israni@dot.gov . SUPPLEMENTARY INFORMATION: On August 25, 2011, (76 FR 53086), PHMSA... Pipeline and Hazardous Materials Safety Administration 49 CFR Part 192 RIN 2137-AE72 Pipeline...

  16. The bacterial proteogenomic pipeline

    PubMed Central

    2014-01-01

    Background Proteogenomics combines the cutting-edge methods from genomics and proteomics. While it has become cheap to sequence whole genomes, the correct annotation of protein coding regions in the genome is still tedious and error prone. Mass spectrometry on the other hand relies on good characterizations of proteins derived from the genome, but can also be used to help improving the annotation of genomes or find species specific peptides. Additionally, proteomics is widely used to find evidence for differential expression of proteins under different conditions, e.g. growth conditions for bacteria. The concept of proteogenomics is not altogether new, in-house scripts are used by different labs and some special tools for eukaryotic and human analyses are available. Results The Bacterial Proteogenomic Pipeline, which is completely written in Java, alleviates the conducting of proteogenomic analyses of bacteria. From a given genome sequence, a naïve six frame translation is performed and, if desired, a decoy database generated. This database is used to identify MS/MS spectra by common peptide identification algorithms. After combination of the search results and optional flagging for different experimental conditions, the results can be browsed and further inspected. In particular, for each peptide the number of identifications for each condition and the positions in the corresponding protein sequences are shown. Intermediate and final results can be exported into GFF3 format for visualization in common genome browsers. Conclusions To facilitate proteogenomics analyses the Bacterial Proteogenomic Pipeline is a set of comprehensive tools running on common desktop computers, written in Java and thus platform independent. The pipeline allows integrating peptide identifications from various algorithms and emphasizes the visualization of spectral counts from different experimental conditions. PMID:25521444

  17. Coal log pipeline: Development status of the first commercial system

    SciTech Connect

    Marrero, T.R.

    1996-12-31

    The coal log pipeline (CLP) is an innovative means for long-distance transportation of coal. In the CLP concept, coal is pressed into the form of cylinders--coal logs--that are propelled by water flowing through underground pipe. A coal log pipeline has many advantages when compared to coal transport by unit train, slurry pipeline and long-distance trucking: low-cost, low energy consumption, low-water consumption, simple dewatering at pipeline exit, safe, and environmentally friendly. The coal logs travel butted together, as trains. Between the coal log {open_quotes}trains,{close_quotes} some space is allowed for valve switching. The optimum diameter of a coal log is approximately 90 to 95% the inside diameter of the pipe. The coal-to-water ratio is about 4 to 1. A 200 mm diameter CLP can transport about 2 million tonnes of coal per year. The coal logs at their destination come out of the pipeline onto a moving conveyer which transports the logs to a crusher or stock pile. Coal logs are crushed to match the size of existing fuel. The water effluent is treated and reused at the power plant; there is no need for its discharge. Coal logs can be manufactured with and without the use of binder. By using less than 2 percent emulsified asphalt as binder, no heat is required to compact coal logs. Binderless coal logs can be compacted at less than 90{degrees}C. Compaction pressures, for coal logs made with or without binder, are about 70 MPa. The coal particle size distribution and moisture content must be controlled. The economics of coal log pipeline system have been studied. Results indicate that a new coal log pipeline is cost-competitive with existing railroads for distances greater than 80 km, approximately. CLP is much more economical than coal slurry pipeline of the same diameter. This paper describes the current R&D and commercialization plan for CLP. 4 refs.

  18. Mathematical model of testing of pipeline integrity by thermal fields

    SciTech Connect

    Vaganova, Nataliia

    2014-11-18

    Thermal fields testing at the ground surface above a pipeline are considered. One method to obtain and investigate an ideal thermal field in different environments is a direct numerical simulation of heat transfer processes taking into account the most important physical factors. In the paper a mathematical model of heat propagation from an underground source is described with accounting of physical factors such as filtration of water in soil and solar radiation. Thermal processes are considered in 3D origin where the heat source is a pipeline with constant temperature and non-uniform isolated shell (with 'damages'). This problem leads to solution of heat diffusivity equation with nonlinear boundary conditions. Approaches to analysis of thermal fields are considered to detect damages.

  19. Biotech pipeline: Bottleneck ahead

    SciTech Connect

    Gibbons, A.

    1991-10-18

    A vast array of new genetically engineered drugs are heading for market - but an FDA backlog is holding them up. Patients may have to wait far longer than the biotech enthusiasts suggest before they reap the benefits of those new drugs. There is little hope the FDA will get the money it needs to do the job. The agency's pipeline is clogged with at least 58 monoclonal antibody-based drugs at all stages of testing to diagnose and treat a wide range of diseases, including a half-dozen cancers, diabetes, and sepsis.

  20. Microcomputers aid pipeline hydraulic analysis

    SciTech Connect

    Hein, M.A.; Brosius, M.

    1984-02-13

    Microcomputer technology has come a long way in the last few years, and now inexpensive desktop computers can be used to analyze fluid and heat flow in even the largest pipeline and networked piping systems. Except for network problems requiring dynamic compositional modeling and extremely large amounts of data storage, all processing, including input, calculation, and output, can be handled with the microcomputer. And, even for these large problems, a small personal computer can be used to efficiently build the input files, process the output, and generally enhance the whole computational procedure. Only a few years ago the engineer had to code up his data, give it to the keypunching department, wait several hours or days until he got his cards back, attach the appropriate job control language (JCL), submit the deck to the computer department, wait several more hours or days to receive the final results, and finally pore over endless tables of numbers to interpret the results. Further, if there was an error in the input or if several case studies were required, he had to go through the whole process repeatedly. With the advent of the microcomputer with graphics packages, light pens, graphic pads, tens of megaword, fast-access, disk storage, and versatile, user-friendly software the data preparation, interpretation, and computational times for hydraulic piping simulation are cut by an order of magnitude.

  1. Clamp for arctic pipeline support

    SciTech Connect

    Morton, A.W.

    1988-11-29

    This patent describes a ring clamp for supporting and anchoring a large diameter metallic arctic pipeline comprising substantially rigid, curved clamp portions adapted to completely encircle the pipeline and fastening means connecting the clamp portions, the clamp portions having inner and outer layers of fiber reinforced rigid polymer material and an intermediate core layer of honeycomb-form aramid paper.

  2. The LOFAR Transients Pipeline

    NASA Astrophysics Data System (ADS)

    Swinbank, John D.; Staley, Tim D.; Molenaar, Gijs J.; Rol, Evert; Rowlinson, Antonia; Scheers, Bart; Spreeuw, Hanno; Bell, Martin E.; Broderick, Jess W.; Carbone, Dario; Garsden, Hugh; van der Horst, Alexander J.; Law, Casey J.; Wise, Michael; Breton, Rene P.; Cendes, Yvette; Corbel, Stéphane; Eislöffel, Jochen; Falcke, Heino; Fender, Rob; Grießmeier, Jean-Mathias; Hessels, Jason W. T.; Stappers, Benjamin W.; Stewart, Adam J.; Wijers, Ralph A. M. J.; Wijnands, Rudy; Zarka, Philippe

    2015-06-01

    Current and future astronomical survey facilities provide a remarkably rich opportunity for transient astronomy, combining unprecedented fields of view with high sensitivity and the ability to access previously unexplored wavelength regimes. This is particularly true of LOFAR, a recently-commissioned, low-frequency radio interferometer, based in the Netherlands and with stations across Europe. The identification of and response to transients is one of LOFAR's key science goals. However, the large data volumes which LOFAR produces, combined with the scientific requirement for rapid response, make automation essential. To support this, we have developed the LOFAR Transients Pipeline, or TraP. The TraP ingests multi-frequency image data from LOFAR or other instruments and searches it for transients and variables, providing automatic alerts of significant detections and populating a lightcurve database for further analysis by astronomers. Here, we discuss the scientific goals of the TraP and how it has been designed to meet them. We describe its implementation, including both the algorithms adopted to maximize performance as well as the development methodology used to ensure it is robust and reliable, particularly in the presence of artefacts typical of radio astronomy imaging. Finally, we report on a series of tests of the pipeline carried out using simulated LOFAR observations with a known population of transients.

  3. The COS Calibration Pipeline

    NASA Astrophysics Data System (ADS)

    Hodge, Philip E.; Kaiser, M. E.; Keyes, C. D.; Ake, T. B.; Aloisi, A.; Friedman, S. D.; Oliveira, C. M.; Shaw, B.; Sahnow, D. J.; Penton, S. V.; Froning, C. S.; Beland, S.; Osterman, S.; Green, J.; COS/STIS STScI Team; IDT, COS

    2008-05-01

    The Cosmic Origins Spectrograph, COS, (Green, J, et al., 2000, Proc SPIE, 4013) will be installed in the Hubble Space Telescope (HST) during the next servicing mission. This will be the most sensitive ultraviolet spectrograph ever flown aboard HST. The program (CALCOS) for pipeline calibration of HST/COS data has been developed by the Space Telescope Science Institute. As with other HST pipelines, CALCOS uses an association table to list the data files to be included, and it employs header keywords to specify the calibration steps to be performed and the reference files to be used. COS includes both a cross delay line detector for the far ultraviolet (FUV) and a MAMA detector for the near ultraviolet (NUV). CALCOS uses a common structure for both channels, but the specific calibration steps differ. The calibration steps include pulse-height filtering and geometric correction for FUV, and flat-field, deadtime, and Doppler correction for both detectors. A 1-D spectrum will be extracted and flux calibrated. Data will normally be taken in TIME-TAG mode, recording the time and location of each detected photon, although ACCUM mode will also be supported. The wavelength calibration uses an on-board spectral line lamp. To enable precise wavelength calibration, default operations will simultaneously record the science target and lamp spectrum by executing brief (tag-flash) lamp exposures at least once per external target exposure.

  4. Mudslide effects on offshore pipelines

    SciTech Connect

    Swanson, R.C.; Jones, W.T.

    1982-11-01

    In regions of unstable soils such as portions of the Mississippi Delta, occasional pipeline failures during periods of severe weather have been attributed to mudslides. The effects of such downslope soil movements on the deflection and resulting stress in a pipeline have been studied in an attempt to reveal methods of routing or design which would reduce the risk of failure. Results show that the chances of surviving a slide are increased if the pipeline outer diameter is reduced to as small a value as possible, if the pipe wall thickness is increased, and if some slack is available in the line. The chance of survival is greatest if the slide occurs in a direction perpendicular to the pipeline route since the failure mode is primarily one of tension. When the slide crosses the pipeline at other angles of incidence, the chance of survival is significantly lessened.

  5. School District Mergers: What One District Learned

    ERIC Educational Resources Information Center

    Kingston, Kathleen

    2009-01-01

    Throughout the planning process for a school district merger in a northwestern Pennsylvania school district, effective communication proved to be a challenge. Formed in 1932, this school district of approximately 1400 students was part of a utopian community; one established by a transportation system's corporation that was a major industrial…

  6. Application of morphological segmentation to leaking defect detection in sewer pipelines.

    PubMed

    Su, Tung-Ching; Yang, Ming-Der

    2014-01-01

    As one of major underground pipelines, sewerage is an important infrastructure in any modern city. The most common problem occurring in sewerage is leaking, whose position and failure level is typically identified through closed circuit television (CCTV) inspection in order to facilitate rehabilitation process. This paper proposes a novel method of computer vision, morphological segmentation based on edge detection (MSED), to assist inspectors in detecting pipeline defects in CCTV inspection images. In addition to MSED, other mathematical morphology-based image segmentation methods, including opening top-hat operation (OTHO) and closing bottom-hat operation (CBHO), were also applied to the defect detection in vitrified clay sewer pipelines. The CCTV inspection images of the sewer system in the 9th district, Taichung City, Taiwan were selected as the experimental materials. The segmentation results demonstrate that MSED and OTHO are useful for the detection of cracks and open joints, respectively, which are the typical leakage defects found in sewer pipelines. PMID:24841247

  7. 36 CFR 28.3 - Boundaries: The Community Development District; The Dune District; The Seashore District.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Development District; The Dune District; The Seashore District. 28.3 Section 28.3 Parks, Forests, and Public... General Provisions § 28.3 Boundaries: The Community Development District; The Dune District; The Seashore... Community Development District, the Seashore District, and the Dune District. (b) The Community...

  8. 36 CFR 28.3 - Boundaries: The Community Development District; The Dune District; The Seashore District.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Development District; The Dune District; The Seashore District. 28.3 Section 28.3 Parks, Forests, and Public... General Provisions § 28.3 Boundaries: The Community Development District; The Dune District; The Seashore... Community Development District, the Seashore District, and the Dune District. (b) The Community...

  9. 36 CFR 28.3 - Boundaries: The Community Development District; The Dune District; The Seashore District.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Development District; The Dune District; The Seashore District. 28.3 Section 28.3 Parks, Forests, and Public... General Provisions § 28.3 Boundaries: The Community Development District; The Dune District; The Seashore... Community Development District, the Seashore District, and the Dune District. (b) The Community...

  10. 36 CFR 28.3 - Boundaries: The Community Development District; The Dune District; The Seashore District.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Development District; The Dune District; The Seashore District. 28.3 Section 28.3 Parks, Forests, and Public... General Provisions § 28.3 Boundaries: The Community Development District; The Dune District; The Seashore... Community Development District, the Seashore District, and the Dune District. (b) The Community...

  11. 36 CFR 28.3 - Boundaries: The Community Development District; The Dune District; The Seashore District.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Development District; The Dune District; The Seashore District. 28.3 Section 28.3 Parks, Forests, and Public... General Provisions § 28.3 Boundaries: The Community Development District; The Dune District; The Seashore... Community Development District, the Seashore District, and the Dune District. (b) The Community...

  12. IDC Infrasound Pipeline development

    NASA Astrophysics Data System (ADS)

    Mialle, P.; Bittner, P.; Brown, D.; Given, J.

    2012-04-01

    The first atmospheric event built only from infrasound arrivals was reported in the Reviewed Event Bulletin (REB) of the International Data Centre (IDC) of the Comprehensive Nuclear Test Ban Treaty Organization (CTBTO) in 2003. In the last decade, 44 infrasound stations from the International Monitoring System (IMS) have been installed and are transmitting data to the IDC. The growing amount of infrasound data and detections produced by the automatic system challenged the station and network processing at the IDC, which require the Organization to improve the infrasound data processing. For nearly 2 years, the IDC resumed automatic processing of infrasound data reviewed by interactive analysis; the detected and located events are being systematically included in the Late Event Bulletin (LEB) and REB. Approximately 16% of SEL3 (Selected Event List 3, produced 6 hours after real-time) events with an infrasound component make it to the IDC bulletins and 41% of SEL3 events rejected after review are built including only 2 associated infrasound phases (and potentially seismic and hydroacoustic detections). Therefore, the process whereby infrasound and seismic detections are associated into an event needed to be investigated further. The IDC works on enhancing the automatic system for the identification of valid signals and the optimization of the network detection threshold. Thus the IDC investigates ways to refine the signal characterization methodology and the association criteria. The objective of this study is to reduce the number of associated infrasound arrivals that are rejected from the SEL3 pipeline when generating the LEB and REB bulletins. The study is performed in the virtual Data Exploitation Center (vDEC) from the CTBTO in order to separate the automatic processing into two streams: seismic and hydroacoustic (SH) pipeline on one side, and infrasound (I) pipeline on the other side. The "fusion" of the two parallel event-forming streams will have to be

  13. Geothermal district piping - A primer

    SciTech Connect

    Rafferty, K.

    1989-11-01

    Transmission and distribution piping constitutes approximately 40 -60% of the capital costs of typical geothermal district heating systems. Selections of economical piping suitable for the fluid chemistry is critical. Presently, most piping (56%) in geothermal systems is of asbestos cement construction. Some fiberglass (19%) and steel (19%) is also in use. Identification of an economical material to replace asbestos cement is important to future project development. By providing information on relative costs, purchase considerations, existing material performance and new products, this report seeks to provide a background of information to the potential pipe purchaser. A brief discussion of the use of uninsulated piping in geothermal district heating systems is also provided. 5 refs., 19 figs., 1 tab.

  14. INTERNAL REPAIR OF PIPELINES

    SciTech Connect

    Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

    2004-12-31

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without

  15. INTERNAL REPAIR OF PIPELINES

    SciTech Connect

    Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; George Ritter; Bill Mohr; Matt Boring; Nancy Porter; Mike Sullivan; Chris Neary

    2004-08-17

    The two broad categories of fiber-reinforced composite liner repair and deposited weld metal repair technologies were reviewed and evaluated for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Principal conclusions from a survey of natural gas transmission industry pipeline operators can be summarized in terms of the following performance requirements for internal repair: (1) Use of internal repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling when a new bore must be created to solve a leak or other problem. (3) Typical travel distances can be divided into three distinct groups: up to 305 m (1,000 ft.); between 305 m and 610 m (1,000 ft. and 2,000 ft.); and beyond 914 m (3,000 ft.). All three groups require pig-based systems. A despooled umbilical system would suffice for the first two groups which represents 81% of survey respondents. The third group would require an onboard self-contained power unit for propulsion and welding/liner repair energy needs. (4) The most common size range for 80% to 90% of operators surveyed is 508 mm (20 in.) to 762 mm (30 in.), with 95% using 558.8 mm (22 in.) pipe. Evaluation trials were conducted on pipe sections with simulated corrosion damage repaired with glass fiber-reinforced composite liners, carbon fiber-reinforced composite liners, and weld deposition. Additional un-repaired pipe sections were evaluated in the virgin condition and with simulated damage. Hydrostatic failure pressures for pipe sections repaired with glass fiber-reinforced composite liner were only marginally greater than that of pipe sections without liners

  16. INTERNAL REPAIR OF PIPELINES

    SciTech Connect

    Robin Gordon; Bill Bruce; Ian Harris; Dennis Harwig; Nancy Porter; Mike Sullivan; Chris Neary

    2004-04-12

    The two broad categories of deposited weld metal repair and fiber-reinforced composite liner repair technologies were reviewed for potential application for internal repair of gas transmission pipelines. Both are used to some extent for other applications and could be further developed for internal, local, structural repair of gas transmission pipelines. Preliminary test programs were developed for both deposited weld metal repair and for fiber-reinforced composite liner repair. Evaluation trials have been conducted using a modified fiber-reinforced composite liner provided by RolaTube and pipe sections without liners. All pipe section specimens failed in areas of simulated damage. Pipe sections containing fiber-reinforced composite liners failed at pressures marginally greater than the pipe sections without liners. The next step is to evaluate a liner material with a modulus of elasticity approximately 95% of the modulus of elasticity for steel. Preliminary welding parameters were developed for deposited weld metal repair in preparation of the receipt of Pacific Gas & Electric's internal pipeline welding repair system (that was designed specifically for 559 mm (22 in.) diameter pipe) and the receipt of 559 mm (22 in.) pipe sections from Panhandle Eastern. The next steps are to transfer welding parameters to the PG&E system and to pressure test repaired pipe sections to failure. A survey of pipeline operators was conducted to better understand the needs and performance requirements of the natural gas transmission industry regarding internal repair. Completed surveys contained the following principal conclusions: (1) Use of internal weld repair is most attractive for river crossings, under other bodies of water, in difficult soil conditions, under highways, under congested intersections, and under railway crossings. (2) Internal pipe repair offers a strong potential advantage to the high cost of horizontal direct drilling (HDD) when a new bore must be created to

  17. Maglev crude oil pipeline

    NASA Technical Reports Server (NTRS)

    Knolle, Ernst G.

    1994-01-01

    This maglev crude oil pipeline consists of two conduits guiding an endless stream of long containers. One conduit carries loaded containers and the other empty returns. The containers are levitated by permanent magnets in repulsion and propelled by stationary linear induction motors. The containers are linked to each other in a manner that allows them, while in continuous motion, to be folded into side by side position at loading and unloading points. This folding causes a speed reduction in proportion to the ratio of container diameter to container length. While in side by side position, containers are opened at their ends to be filled or emptied. Container size and speed are elected to produce a desired carrying capacity.

  18. WFPC2 Pipeline Calibration

    NASA Astrophysics Data System (ADS)

    Burrows, Chris

    2004-03-01

    This document contains a listing of all WFPC2 reference files, grouped by type, that are presently available in the Calibration Data Base (CDB) System, and a summary of how they are used in the calibration of WFPC2 data. A summary memo is kept on STEIS and kept up to date as the reference files change. That memo is intended to inform observers as to the quality of the calibration applied to their data by the PODPS pipeline processing and to provide an aid in selecting appropriate reference files for the re-calibration of WFPC2 observations. The datafiles may be requested by name from the STScI in the same fashion as any other nonproprietary data products.

  19. Chill Down Process of Hydrogen Transport Pipelines

    NASA Technical Reports Server (NTRS)

    Mei, Renwei; Klausner, James

    2006-01-01

    A pseudo-steady model has been developed to predict the chilldown history of pipe wall temperature in the horizontal transport pipeline for cryogenic fluids. A new film boiling heat transfer model is developed by incorporating the stratified flow structure for cryogenic chilldown. A modified nucleate boiling heat transfer correlation for cryogenic chilldown process inside a horizontal pipe is proposed. The efficacy of the correlations is assessed by comparing the model predictions with measured values of wall temperature in several azimuthal positions in a well controlled experiment by Chung et al. (2004). The computed pipe wall temperature histories match well with the measured results. The present model captures important features of thermal interaction between the pipe wall and the cryogenic fluid, provides a simple and robust platform for predicting pipe wall chilldown history in long horizontal pipe at relatively low computational cost, and builds a foundation to incorporate the two-phase hydrodynamic interaction in the chilldown process.

  20. Preliminary conceptual design for geothermal space heating conversion of school district 50 joint facilities at Pagosa Springs, Colorado. GTA report no. 6

    NASA Astrophysics Data System (ADS)

    Engen, I. A.

    1981-11-01

    This feasibility study and preliminary conceptual design effect assesses the conversion of a high school and gym, and a middle school building to geothermal space heating is assessed. A preliminary cost benefit assessment made on the basis of estimated costs for conversion, system maintenance, debt service, resource development, electricity to power pumps, and savings from from reduced natural gas consumption concluded that an economic conversion depended on development of an adequate geothermal resource (approximately 1500F, 400 gpm). Material selection assumed that the geothermal water to the main supply system was isolated to minimize effects of corrosion and deposition, and that system compatible components are used for the building modifications. Asbestos cement distribution pipe, a stainless steel heat exchanger, and stainless steel lined valves were recommended for the supply, heat transfer, and disposal mechanisms, respectively. A comparison of the calculated average gas consumption cost, escalated at 10% per year, with conversion project cost, both in 1977 dollars, showed that the project could be amortized over less than 20 years at current interest rates.

  1. 27 CFR 24.169 - Pipelines.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Pipelines. 24.169 Section... THE TREASURY ALCOHOL WINE Construction and Equipment § 24.169 Pipelines. Pipelines, including flexible.... The appropriate TTB officer may approve pipelines which cannot be readily examined if no jeopardy...

  2. 27 CFR 24.169 - Pipelines.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Pipelines. 24.169 Section... THE TREASURY ALCOHOL WINE Construction and Equipment § 24.169 Pipelines. Pipelines, including flexible.... The appropriate TTB officer may approve pipelines which cannot be readily examined if no jeopardy...

  3. 27 CFR 24.169 - Pipelines.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Pipelines. 24.169 Section... THE TREASURY LIQUORS WINE Construction and Equipment § 24.169 Pipelines. Pipelines, including flexible.... The appropriate TTB officer may approve pipelines which cannot be readily examined if no jeopardy...

  4. 1997 annual pipeline directory and equipment guide

    SciTech Connect

    1997-09-01

    This annual guide is divided into the following sections: Equivalent valve tables; Complete 1997 line pipe tables; Engineering and construction services; Crude oil pipeline companies; Slurry companies; Natural gas companies; Gas distribution pipeline companies; Municipal gas systems; Canadian pipeline companies; International pipeline companies; and Company index. The tables list component materials, manufacturers, and service companies.

  5. 27 CFR 24.169 - Pipelines.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Pipelines. 24.169 Section... THE TREASURY LIQUORS WINE Construction and Equipment § 24.169 Pipelines. Pipelines, including flexible.... The appropriate TTB officer may approve pipelines which cannot be readily examined if no jeopardy...

  6. 27 CFR 24.169 - Pipelines.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Pipelines. 24.169 Section... THE TREASURY LIQUORS WINE Construction and Equipment § 24.169 Pipelines. Pipelines, including flexible.... The appropriate TTB officer may approve pipelines which cannot be readily examined if no jeopardy...

  7. 49 CFR 195.210 - Pipeline location.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 3 2013-10-01 2013-10-01 false Pipeline location. 195.210 Section 195.210 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) PIPELINE SAFETY TRANSPORTATION OF HAZARDOUS LIQUIDS BY PIPELINE Construction §...

  8. Toughness requirements for pipeline integrity

    SciTech Connect

    Denys, R.M.

    1995-12-31

    Experimental results of large scale (curved wide plate) tests on thin wall pipelines (thickness < 12.7 mm) have been compared with small scale (Charpy V notch impact and CTOD) test results. The result of the comparisons show that (a) the Charpy V notch impact test can be used to predict plastic collapse by pipe metal yielding of pipelines containing surface breaking root cracks and (b) the CTOD test should not be used as a basis for designing thin wall pipelines against brittle fracture. The assessment has further demonstrated that the effect of weld metal yield strength on the required minimum CVN or CTOD is an important factor.

  9. Natural gas pipeline technology overview.

    SciTech Connect

    Folga, S. M.; Decision and Information Sciences

    2007-11-01

    The United States relies on natural gas for one-quarter of its energy needs. In 2001 alone, the nation consumed 21.5 trillion cubic feet of natural gas. A large portion of natural gas pipeline capacity within the United States is directed from major production areas in Texas and Louisiana, Wyoming, and other states to markets in the western, eastern, and midwestern regions of the country. In the past 10 years, increasing levels of gas from Canada have also been brought into these markets (EIA 2007). The United States has several major natural gas production basins and an extensive natural gas pipeline network, with almost 95% of U.S. natural gas imports coming from Canada. At present, the gas pipeline infrastructure is more developed between Canada and the United States than between Mexico and the United States. Gas flows from Canada to the United States through several major pipelines feeding U.S. markets in the Midwest, Northeast, Pacific Northwest, and California. Some key examples are the Alliance Pipeline, the Northern Border Pipeline, the Maritimes & Northeast Pipeline, the TransCanada Pipeline System, and Westcoast Energy pipelines. Major connections join Texas and northeastern Mexico, with additional connections to Arizona and between California and Baja California, Mexico (INGAA 2007). Of the natural gas consumed in the United States, 85% is produced domestically. Figure 1.1-1 shows the complex North American natural gas network. The pipeline transmission system--the 'interstate highway' for natural gas--consists of 180,000 miles of high-strength steel pipe varying in diameter, normally between 30 and 36 inches in diameter. The primary function of the transmission pipeline company is to move huge amounts of natural gas thousands of miles from producing regions to local natural gas utility delivery points. These delivery points, called 'city gate stations', are usually owned by distribution companies, although some are owned by transmission companies

  10. Pipeline design essential in making pigging plans

    SciTech Connect

    Fisher, H.

    1998-08-01

    Pigs have gotten an unfortunate reputation for getting stuck in pipelines. As a result, for many years few pigged their pipelines and consequently, many companies are paying the price to repair or replace their corroded pipelines. It is currently considered a necessary evil to run pigs to improve pipeline efficiency and prevent corrosion. Some pipelines were not designed to run pigs and occasionally the wrong type of pig is selected to run in a particular pipeline, increasing the chances of sticking a pig. A pipeline properly designed for pigging along with proper pig selection greatly reduces chances of sticking a pig.