Science.gov

Sample records for disturbance spatio-temporal change

  1. Spatio-temporal change modeling with array data

    NASA Astrophysics Data System (ADS)

    Lu, Meng; Pebesma, Edzer

    2015-04-01

    Spatio-temporal change modeling of our ecosystems is critical for environmental conservation. Open access to remote sensing satellite image archives provides new opportunities for change modeling, such as near real-time change monitoring with long term image time series. Newly developed time series analysis methods allow the detection of quantitative changes in trend and seasonality for each pixel of the image. A drawback of pure time series analysis is that spatial dependence is neglected. There are several spatio-temporal statistical approaches to incorporate spatial context. One method is to build hierarchical models with spatial effects for time series parameters. Other methods include representing regression parameters as spatially correlated random fields, or integrating spatial autoregressive models to time series analysis. Apart from spatio-temporal statistical modeling, the results can be further improved by qualification of detected change points with their spatio-temporal neighbors. Spatio-temporal modeling approaches are typically complex and large in scale, and call for new data management and analysis tools. Remote sensing satellite images, which are continuous and regular in space and time, can naturally be represented as three- or four-dimensional arrays for spatio-temporal data management and analysis. The developed spatio-temporal statistical algorithms can be flexibly applied within array partitions that span the relevant array-based dimensions. This study investigates the potential of array-based Data Data Management and Analytic Software (DMAS) for fast data access, data integration and large-scale complex spatio-temporal analysis. A study case is developed in near-real time deforestation monitoring in Amazonian rainforest with long-term 250 m, 8-day resolution MODIS image time series. A novel spatio-temporal change modeling process is being developed and implemented in DMAS to realize rapid and automated analysis of satellite image time series

  2. Spatio-temporal change detection from multidimensional arrays: Detecting deforestation from MODIS time series

    NASA Astrophysics Data System (ADS)

    Lu, Meng; Pebesma, Edzer; Sanchez, Alber; Verbesselt, Jan

    2016-07-01

    Growing availability of long-term satellite imagery enables change modeling with advanced spatio-temporal statistical methods. Multidimensional arrays naturally match the structure of spatio-temporal satellite data and can provide a clean modeling process for complex spatio-temporal analysis over large datasets. Our study case illustrates the detection of breakpoints in MODIS imagery time series for land cover change in the Brazilian Amazon using the BFAST (Breaks For Additive Season and Trend) change detection framework. BFAST includes an Empirical Fluctuation Process (EFP) to alarm the change and a change point time locating process. We extend the EFP to account for the spatial autocorrelation between spatial neighbors and assess the effects of spatial correlation when applying BFAST on satellite image time series. In addition, we evaluate how sensitive EFP is to the assumption that its time series residuals are temporally uncorrelated, by modeling it as an autoregressive process. We use arrays as a unified data structure for the modeling process, R to execute the analysis, and an array database management system to scale computation. Our results point to BFAST as a robust approach against mild temporal and spatial correlation, to the use of arrays to ease the modeling process of spatio-temporal change, and towards communicable and scalable analysis.

  3. Spatio-Temporal Change Modeling of Lulc: a Semantic Kriging Approach

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, S.; Ghosh, S. K.

    2015-07-01

    Spatio-temporal land-use/ land-cover (LULC) change modeling is important to forecast the future LULC distribution, which may facilitate natural resource management, urban planning, etc. The spatio-temporal change in LULC trend often exhibits non-linear behavior, due to various dynamic factors, such as, human intervention (e.g., urbanization), environmental factors, etc. Hence, proper forecasting of LULC distribution should involve the study and trend modeling of historical data. Existing literatures have reported that the meteorological attributes (e.g., NDVI, LST, MSI), are semantically related to the terrain. Being influenced by the terrestrial dynamics, the temporal changes of these attributes depend on the LULC properties. Hence, incorporating meteorological knowledge into the temporal prediction process may help in developing an accurate forecasting model. This work attempts to study the change in inter-annual LULC pattern and the distribution of different meteorological attributes of a region in Kolkata (a metropolitan city in India) during the years 2000-2010 and forecast the future spread of LULC using semantic kriging (SemK) approach. A new variant of time-series SemK is proposed, namely Rev-SemKts to capture the multivariate semantic associations between different attributes. From empirical analysis, it may be observed that the augmentation of semantic knowledge in spatio-temporal modeling of meteorological attributes facilitate more precise forecasting of LULC pattern.

  4. Effects of climate change adaptation scenarios on perceived spatio-temporal characteristics of drought events

    NASA Astrophysics Data System (ADS)

    Vidal, J.-P.; Martin, E.; Kitova, N.; Najac, J.; Soubeyroux, J.-M.

    2012-04-01

    Drought events develop in both space and time and they are therefore best described through summary joint spatio-temporal characteristics, like mean duration, mean affected area and total magnitude. This study addresses the issue of future projections of such characteristics of drought events over France through three main research questions: (1) Are downscaled climate projections able to reproduce spatio-temporal characteristics of meteorological and agricultural droughts in France over a present-day period? (2) How such characteristics will evolve over the 21st century under different emissions scenarios? (3) How would perceived drought characteristics evolve under theoretical adaptation scenarios? These questions are addressed using the Isba land surface model, downscaled climate projections from the ARPEGE General Circulation Model under three emissions scenarios, as well as results from a previously performed 50-year multilevel and multiscale drought reanalysis over France (Vidal et al., 2010). Spatio-temporal characteristics of meteorological and agricultural drought events are computed using the Standardized Precipitation Index (SPI) and the Standardized Soil Wetness Index (SSWI), respectively, and for time scales of 3 and 12 months. Results first show that the distributions of joint spatio-temporal characteristics of observed events are well reproduced by the downscaled hydroclimate projections over a present-day period. All spatio-temporal characteristics of drought events are then found to dramatically increase over the 21st century under all considered emissions scenarios, with stronger changes for agricultural droughts. Two theoretical adaptation scenarios are eventually built based on hypotheses of adaptation to evolving climate and hydrological normals. The two scenarios differ by the way the transient adaptation is performed for a given date in the future, with reference to the normals over either the previous 30-year window ("retrospective

  5. Spatio-temporal changes of seismic anisotropy in seismogenic zones

    NASA Astrophysics Data System (ADS)

    Saade, M.; Montagner, J.; Roux, P.; Paul, C.; Brenguier, F.; Enescu, B.; Shiomi, K.

    2013-12-01

    Seismic anisotropy plays a key role in the study of stress and strain fields in the earth. Potential temporal change of seismic anisotropy can be interpreted as change of the orientation of cracks in seismogenic zones and thus change of the stress field. Such temporal changes have been observed in seismogenic zones before and after earthquakes (Durand et al. , 2011) but are still not well understood. In this study, from a numerical point of view, we investigate the variations of the polarization of surface waves in anisotropic media. These variations are related to the elastic properties of the medium, in particular to anisotropy. The technique used is based on the calculation of the whole cross-correlation tensor (CCT) of ambient seismic noise. If the sources are randomly distributed in homogeneous medium, it allows us to reconstruct the Green's tensor between two stations continuously and to monitor the region through the use of its fluctuations. Therefore, the temporal change of the Green's cross-correlation tensor enables the monitoring of stress and strain fields. This technique is applied to synthetic seismograms computed in a transversally isotropic medium with horizontal symmetry axis (hereafter referred to an HTI medium) using a code RegSEM (Cupillard et al. , 2012) based on the spectral element method. We designed an experiment in order to investigate the influence of anisotropy on the CCT. In homogeneous, isotropic medium the off-diagonal terms of the Green's tensor are null. The CCT is computed between each pair of stations and then rotated in order to approximate the Green's tensor by minimizing the off-diagonal components. This procedure permits the calculation of the polarization angle of quasi-Rayleigh and quasi-Love waves, and to observe the azimuthal variation of their polarization. The results show that even a small variation of the azimuth of seismic anisotropy with respect to a certain pair of stations can induce, in some cases, a large

  6. Spatio-Temporal Pattern Analysis for Regional Climate Change Using Mathematical Morphology

    NASA Astrophysics Data System (ADS)

    Das, M.; Ghosh, S. K.

    2015-07-01

    Of late, significant changes in climate with their grave consequences have posed great challenges on humankind. Thus, the detection and assessment of climatic changes on a regional scale is gaining importance, since it helps to adopt adequate mitigation and adaptation measures. In this paper, we have presented a novel approach for detecting spatio-temporal pattern of regional climate change by exploiting the theory of mathematical morphology. At first, the various climatic zones in the region have been identified by using multifractal cross-correlation analysis (MF-DXA) of different climate variables of interest. Then, the directional granulometry with four different structuring elements has been studied to detect the temporal changes in spatial distribution of the identified climatic zones in the region and further insights have been drawn with respect to morphological uncertainty index and Hurst exponent. The approach has been evaluated with the daily time series data of land surface temperature (LST) and precipitation rate, collected from Microsoft Research - Fetch Climate Explorer, to analyze the spatio-temporal climatic pattern-change in the Eastern and North-Eastern regions of India throughout four quarters of the 20th century.

  7. Spatio-temporal changes of photosynthesis in carnivorous plants in response to prey capture, retention and digestion

    PubMed Central

    2010-01-01

    Carnivorous plants have evolved modified leaves into the traps that assist in nutrient uptake from captured prey. It is known that the traps of carnivorous plants usually have lower photosynthetic rates than assimilation leaves as a result of adaptation to carnivory. However, a few recent studies have indicated that photosynthesis and respiration undergo spatio-temporal changes during prey capture and retention, especially in the genera with active trapping mechanisms. This study describes the spatio-temporal changes of effective quantum yield of photochemical energy conversion in photosystem II (ΦPSII) in response to ant-derived formic acid during its capture and digestion. PMID:20523127

  8. Satellite Remote Sensing For Spatio-Temporal Changes Analysis Of Urban Surface Biogeophysical Parameters

    NASA Astrophysics Data System (ADS)

    Zoran, Maria

    2010-01-01

    Based on satellite imagery data, this research developed an analytical procedure based upon a spectral unmixing model for characterizing and quantifying spatio-temporal changes between 1989-2008 in Bucharest metropolitan area, Romania, and for examining the environmental impact of such changes on urban biogeophysical parameters. The changes over the years of surface biophysical parameters are examined in association with landcover/landuse changes to illustrate how these parameters respond to rapid urban expansion in Bucharest and surrounding region. For detailed landuse classifications in a digital form these properties were analyzed in a statistical way .This study attempts to provide environmental awareness to urban planners in future urban development. The land cover information, properly classified, can provide a spatially and temporally explicit view of societal and environmental attributes and can be an important complement to in-situ measurements. Also, this information provides a perspective for understanding factors potentially mediating the interactions between urbanisation and variations of environmental quality.

  9. Urban green spatio- temporal changes assessment through time-series satellite data

    NASA Astrophysics Data System (ADS)

    Zoran, Maria A.; Savastru, Roxana S.; Savastru, Dan M.; Tautan, Marina N.; Baschir, Laurentiu V.

    2015-10-01

    Understanding spatio-temporal changes of urban environments is essential for regional and local planning and environmental management. With the rapid changes of Bucharest city in Romania during past decades, green spaces have been fragmented and dispersed causing impairment and dysfunction of these urban elements. The main goal of this study is to address these tasks in synergy with in-situ data and new analytical methods. Spatio- temporal monitoring of urban vegetation land cover changes is important for policy decisions, regulatory actions and subsequent land use activities. This study explored the use of time-series MODIS Terra/Aqua Normalized Difference Vegetation Index (NDVI), Leaf Area Index (LAI), Land Surface Temperature (LST) and evapotranspiration (ET) data to provide vegetation change detection information for metropolitan area of Bucharest. Training and validation are based on a reference dataset collected from IKONOS high resolution remote sensing data. The mean detection accuracy for period 2002- 2014 was assessed to be of 87%, with a reasonable balance between change commission errors (20.24%), change omission errors (25.65%), and Kappa coefficient of 0.72. Annual change detection rates across the urban/periurban areas over the study period (2002-2014) were estimated at 0.79% per annum in the range of 0.46% (2002) to 0.77% (2014).Vegetation dynamics in urban areas at seasonal and longer timescales reflect large-scale interactions between the terrestrial biosphere and the climate system. Extracted green space areas were further analyzed quantitatively in relation with air quality data and extreme climate events. The results have been analyzed in terms of environmental impacts and future climate trends.

  10. Simulating Future Changes in Spatio-temporal Precipitation by Identifying and Characterizing Individual Rainstorm Events

    NASA Astrophysics Data System (ADS)

    Chang, W.; Stein, M.; Wang, J.; Kotamarthi, V. R.; Moyer, E. J.

    2015-12-01

    A growing body of literature suggests that human-induced climate change may cause significant changes in precipitation patterns, which could in turn influence future flood levels and frequencies and water supply and management practices. Although climate models produce full three-dimensional simulations of precipitation, analyses of model precipitation have focused either on time-averaged distributions or on individual timeseries with no spatial information. We describe here a new approach based on identifying and characterizing individual rainstorms in either data or model output. Our approach enables us to readily characterize important spatio-temporal aspects of rainstorms including initiation location, intensity (mean and patterns), spatial extent, duration, and trajectory. We apply this technique to high-resolution precipitation over the continental U.S. both from radar-based observations (NCEP Stage IV QPE product, 1-hourly, 4 km spatial resolution) and from model runs with dynamical downscaling (WRF regional climate model, 3-hourly, 12 km spatial resolution). In the model studies we investigate the changes in storm characteristics under a business-as-usual warming scenario to 2100 (RCP 8.5). We find that in these model runs, rainstorm intensity increases as expected with rising temperatures (approximately 7%/K, following increased atmospheric moisture content), while total precipitation increases by a lesser amount (3%/K), consistent with other studies. We identify for the first time the necessary compensating mechanism: in these model runs, individual precipitation events become smaller. Other aspects are approximately unchanged in the warmer climate. Because these spatio-temporal changes in rainfall patterns would impact regional hydrology, it is important that they be accurately incorporated into any impacts assessment. For this purpose we have developed a methodology for producing scenarios of future precipitation that combine observational data and

  11. [Spatio-temporal variability of habitat quality in Beijing-Tianjin-Hebei Area based on land use change].

    PubMed

    Wu, Jian-sheng; Cao, Qi-wen; Shi, Shu-qin; Huang, Xiu-lan; Lu, Zhi-qiang

    2015-11-01

    Land use change is the core content of global change. To achieve sustainable land use planning, it is necessary to evaluate the habitat quality pattern and its spatio-temporal variation resulted from land use change, which can provide basis for the formulation of land management policy. Based on the analysis of land use change from 2000 to 2010, this study investigated the spatio-temporal variation of habitat quality pattern of Beijing-Tianjin-Hebei Area. We used the watershed profile sampling points and spatial autocorrelation analysis based on watershed subdivision. The results showed that the main land use change types from 2000 to 2010 in this area included the transition from cultivated land to construction land, the transition between forest and grassland, and the transition from water bodies to cultivated land. This land use/cover change process led to the decrease of heterogeneity of landscape structure and increase of fragmentation. The overall spatial pattern of habitat quality was that southeast and south areas were relatively lower, while north and west areas were relatively higher. The analysis based on watershed profile showed that the habitat quality of each watershed presented significant difference in each part. Habitat quality of most sampling points degraded in a way, while some improved compared with 2000. In general, the habitat quality of the bottom part of Luanhe River basin, the medium part of Bai-Chaobai-Chaobaixin River basin, the medium and the bottom part of Yongding River basin and medium part of Laozhang-Fudongpai- Beipai River basin were poor and volatile, while other parts were relatively good. There was a decreasing agglomeration characteristic of distribution of habitat quality in Beijing-Tianjin-Hebei Area under the disturbance of human activities. Areas of high habitat quality in 2000 were mainly located in Luanhe River basin and top part of Baihe basin. Areas of low habitat quality were mainly located in medium and bottom part

  12. Long-term spatio-temporal changes in a West African bushmeat trade system.

    PubMed

    McNamara, J; Kusimi, J M; Rowcliffe, J M; Cowlishaw, G; Brenyah, A; Milner-Gulland, E J

    2015-10-01

    Landscapes in many developing countries consist of a heterogeneous matrix of mixed agriculture and forest. Many of the generalist species in this matrix are increasingly traded in the bushmeat markets of West and Central Africa. However, to date there has been little quantification of how the spatial configuration of the landscape influences the urban bushmeat trade over time. As anthropogenic landscapes become the face of rural West Africa, understanding the dynamics of these systems has important implications for conservation and landscape management. The bushmeat production of an area is likely to be defined by landscape characteristics such as habitat disturbance, hunting pressure, level of protection, and distance to market. We explored (SSG, tense) the role of these four characteristics in the spatio-temporal dynamics of the commercial bushmeat trade around the city of Kumasi, Ghana, over 27 years (1978 to 2004). We used geographic information system methods to generate maps delineating the spatial characteristics of the landscapes. These data were combined with spatially explicit market data collected in the main fresh bushmeat market in Kumasi to explore the relationship between trade volume (measured in terms of number of carcasses) and landscape characteristics. Over time, rodents, specifically cane rats (Thryonomys swinderianus), became more abundant in the trade relative to ungulates and the catchment area of the bushmeat market expanded. Areas of intermediate disturbance supplied more bushmeat, but protected areas had no effect. Heavily hunted areas showed significant declines in bushmeat supply over time. Our results highlight the role that low intensity, heterogeneous agricultural landscapes can play in providing ecosystem services, such as bushmeat, and therefore the importance of incorporating bushmeat into ecosystem service mapping exercises. Our results also indicate that even where high bushmeat production is possible, current harvest levels may

  13. Spatio-temporal evolution of shoreline changes along the coast between sousse- Monastir (Eastearn of Tunisia)

    NASA Astrophysics Data System (ADS)

    Fathallah, S.; Ben Amor, R.; Gueddari, M.

    2009-04-01

    Spatio-temporal evolution of shoreline Changes along the coast between Sousse-Monastir (Eastern of Tunisia). Safa Fathallah*, Rim Ben Amor and Moncef Gueddari Unit of Research of Geochemistry and Environmental Geology. Faculty of Science of Tunis, University of Tunis El Manar, 2092. (*) Corresponding author: safa_fathallah@yahoo.fr The coast of Sousse-Monastir in eastern of Tunisia, has undergone great changes, due to natural and anthropic factors. Increasing human use, the construction of two ports and coastal urbanization (hotels and industries) has accelerated the erosion process. The coastal defense structures (breakwaters and enrockment), built to protect the most eroded zone are efficient, but eroded zones appeared in the southern part of breakwaters. Recent and historic aerial photography was used to estimate, observe, and analyze past shoreline and bathymetric positions and trends involving shore evolution for Sousse-Monastir coast. All of the photographs were calibrated and mosaicked by Arc Map Gis 9.1, the years used are 1925, 1962, 1988, 1996, and 2001 for shoreline change analysis and 1884 and 2001 for bathymetric changes. The analyze of this photographs show that the zone located at the south of breakwater are mostly eroded with high speed process (2m/year). Another zone appears as eroded at the south part of Hamdoun River, with 1,5m/year erosion speed . Keywords: Shoreline evolution, defense structures, Sousse-Monastir coast, Tunisia.

  14. Spatio-temporal distribution of dengue fever under scenarios of climate change in the southern Taiwan

    NASA Astrophysics Data System (ADS)

    Lee, Chieh-Han; Yu, Hwa-Lung

    2014-05-01

    Dengue fever has been recognized as the most important widespread vector-borne infectious disease in recent decades. Over 40% of the world's population is risk from dengue and about 50-100 million people are infected world wide annually. Previous studies have found that dengue fever is highly correlated with climate covariates. Thus, the potential effects of global climate change on dengue fever are crucial to epidemic concern, in particular, the transmission of the disease. This present study investigated the nonlinearity of time-delayed impact of climate on spatio-temporal variations of dengue fever in the southern Taiwan during 1998 to 2011. A distributed lag nonlinear model (DLNM) is used to assess the nonlinear lagged effects of meteorology. The statistically significant meteorological factors are considered, including weekly minimum temperature and maximum 24-hour rainfall. The relative risk and the distribution of dengue fever then predict under various climate change scenarios. The result shows that the relative risk is similar for different scenarios. In addition, the impact of rainfall on the incidence risk is higher than temperature. Moreover, the incidence risk is associated to spatially population distribution. The results can be served as practical reference for environmental regulators for the epidemic prevention under climate change scenarios.

  15. Spatio-temporal assessment of ecological disturbance and its intensity in the Mangrove forest using MODIS derived disturbance index

    NASA Astrophysics Data System (ADS)

    Dutta, D.; Das, P. K.; Paul, S.; Sharma, J. R.; Dadhwal, V. K.

    2014-11-01

    The mangrove ecosystem of Sundarbans region plays an important ecological and socio-economical role in both India and Bangladesh. The ecological disturbance in the coastal mangrove forests are mainly attributed to the periodic cyclones caused by deep depression formed over the Bay of Bengal. In the present study, three of the major cyclones in the Sundarbans region were analyzed to establish the cause-and-effect relationship between cyclones and the resultant ecological disturbance. The Moderate Resolution Imaging Spectroradiometer (MODIS) time-series data was used to generate MODIS global disturbance index (MGDI) and its potential was explored to assess the instantaneous ecological disturbance caused by cyclones with varying landfall intensities and at different stages of mangrove phenology. The time-series MGDI was converted into the percentage change in MGDI using its multi-year mean for each pixel, and its response towards several cyclonic events was studied. The affected areas were identified by analyzing the Landsat-8 satellite data before and after the cyclone and the MGDI values of the affected areas were utilized to develop the threshold for delineation of the disturbed pixels. The selected threshold was applied on the time-series MGDI images to delineate the disturbed areas for each year individually to identify the frequently disturbed areas. The classified intensity map could able to detect the chronically affected areas, which can serve as a valuable input towards modelling the biomigration of the invasive species and efficient forest management.

  16. Evaluating Projected Changes in Mean Processes, Extreme Events, and their Spatio-Temporal Dependence Structures

    NASA Astrophysics Data System (ADS)

    Ganguly, A. R.; Steinhaeuser, K.; Kodra, E. A.; Kao, S.

    2010-12-01

    Observational datasets - both raw measurements and derived data products such as reanalysis data - are used to evaluate climate simulations run in forecast and hindcast modes. Bias and uncertainty in mean processes is quantified using statistical comparisons between observations and model-generated outputs. Weather and hydrological extremes under climate change are characterized using both event definitions and extreme value theory (EVT), and their aggregate statistics (intensity, duration and frequency) are likewise compared. The geographic variability and topographical biases are examined at continental to regional scales, and dependence structures (both spatio-temporal autocorrelation and long-range dependence) are assessed using statistical and nonlinear dynamical methods. These tools were developed primarily using the CMIP3/IPCC-AR4 archived model outputs, and are being additional tested with simulations from regional climate models which dynamically downscale the AR4 archives. This combination of traditional and novel tools is thus geared towards evaluation of multiple climate models which may handle processes or generate outputs at different spatial and temporal scales. The tools are expected to be immediately applicable to the CMIP5 data when it becomes available. The anticipated space-time resolutions will pose algorithmic challenges and computational demands, which will be addressed using analytic solutions and implementations thereof on high-performance scientific computing platforms.

  17. Spatio-temporal changes in biomass carbon sinks in China's forests from 1977 to 2008.

    PubMed

    Guo, Zhaodi; Hu, Huifeng; Li, Pin; Li, Nuyun; Fang, Jingyun

    2013-07-01

    Forests play a leading role in regional and global carbon (C) cycles. Detailed assessment of the temporal and spatial changes in C sinks/sources of China's forests is critical to the estimation of the national C budget and can help to constitute sustainable forest management policies for climate change. In this study, we explored the spatio-temporal changes in forest biomass C stocks in China between 1977 and 2008, using six periods of the national forest inventory data. According to the definition of the forest inventory, China's forest was categorized into three groups: forest stand, economic forest, and bamboo forest. We estimated forest biomass C stocks for each inventory period by using continuous biomass expansion factor (BEF) method for forest stands, and the mean biomass density method for economic and bamboo forests. As a result, China's forests have accumulated biomass C (i.e., biomass C sink) of 1896 Tg (1 Tg=10(12) g) during the study period, with 1710, 108 and 78 Tg C in forest stands, and economic and bamboo forests, respectively. Annual forest biomass C sink was 70.2 Tg C a(-1), offsetting 7.8% of the contemporary fossil CO2 emissions in the country. The results also showed that planted forests have functioned as a persistent C sink, sequestrating 818 Tg C and accounting for 47.8% of total C sink in forest stands, and that the old-, mid- and young-aged forests have sequestrated 930, 391 and 388 Tg C from 1977 to 2008. Our results suggest that China's forests have a big potential as biomass C sink in the future because of its large area of planted forests with young-aged growth and low C density. PMID:23722235

  18. Climate-driven changes to the spatio-temporal distribution of the parasitic nematode, Haemonchus contortus, in sheep in Europe.

    PubMed

    Rose, Hannah; Caminade, Cyril; Bolajoko, Muhammad Bashir; Phelan, Paul; van Dijk, Jan; Baylis, Matthew; Williams, Diana; Morgan, Eric R

    2016-03-01

    Recent climate change has resulted in changes to the phenology and distribution of invertebrates worldwide. Where invertebrates are associated with disease, climate variability and changes in climate may also affect the spatio-temporal dynamics of disease. Due to its significant impact on sheep production and welfare, the recent increase in diagnoses of ovine haemonchosis caused by the nematode Haemonchus contortus in some temperate regions is particularly concerning. This study is the first to evaluate the impact of climate change on H. contortus at a continental scale. A model of the basic reproductive quotient of macroparasites, Q0 , adapted to H. contortus and extended to incorporate environmental stochasticity and parasite behaviour, was used to simulate Pan-European spatio-temporal changes in H. contortus infection pressure under scenarios of climate change. Baseline Q0 simulations, using historic climate observations, reflected the current distribution of H. contortus in Europe. In northern Europe, the distribution of H. contortus is currently limited by temperatures falling below the development threshold during the winter months and within-host arrested development is necessary for population persistence over winter. In southern Europe, H. contortus infection pressure is limited during the summer months by increased temperature and decreased moisture. Compared with this baseline, Q0 simulations driven by a climate model ensemble predicted an increase in H. contortus infection pressure by the 2080s. In northern Europe, a temporal range expansion was predicted as the mean period of transmission increased by 2-3 months. A bimodal seasonal pattern of infection pressure, similar to that currently observed in southern Europe, emerges in northern Europe due to increasing summer temperatures and decreasing moisture. The predicted patterns of change could alter the epidemiology of H. contortus in Europe, affect the future sustainability of contemporary

  19. Understanding the Spatio-Temporal Response of Coral Reef Fish Communities to Natural Disturbances: Insights from Beta-Diversity Decomposition

    PubMed Central

    Lamy, Thomas; Legendre, Pierre; Chancerelle, Yannick; Siu, Gilles; Claudet, Joachim

    2015-01-01

    Understanding how communities respond to natural disturbances is fundamental to assess the mechanisms of ecosystem resistance and resilience. However, ecosystem responses to natural disturbances are rarely monitored both through space and time, while the factors promoting ecosystem stability act at various temporal and spatial scales. Hence, assessing both the spatial and temporal variations in species composition is important to comprehensively explore the effects of natural disturbances. Here, we suggest a framework to better scrutinize the mechanisms underlying community responses to disturbances through both time and space. Our analytical approach is based on beta diversity decomposition into two components, replacement and biomass difference. We illustrate this approach using a 9-year monitoring of coral reef fish communities off Moorea Island (French Polynesia), which encompassed two severe natural disturbances: a crown-of-thorns starfish outbreak and a hurricane. These disturbances triggered a fast logistic decline in coral cover, which suffered a 90% decrease on all reefs. However, we found that the coral reef fish composition remained largely stable through time and space whereas compensatory changes in biomass among species were responsible for most of the temporal fluctuations, as outlined by the overall high contribution of the replacement component to total beta diversity. This suggests that, despite the severity of the two disturbances, fish communities exhibited high resistance and the ability to reorganize their compositions to maintain the same level of total community biomass as before the disturbances. We further investigated the spatial congruence of this pattern and showed that temporal dynamics involved different species across sites; yet, herbivores controlling the proliferation of algae that compete with coral communities were consistently favored. These results suggest that compensatory changes in biomass among species and spatial

  20. Understanding the Spatio-Temporal Response of Coral Reef Fish Communities to Natural Disturbances: Insights from Beta-Diversity Decomposition.

    PubMed

    Lamy, Thomas; Legendre, Pierre; Chancerelle, Yannick; Siu, Gilles; Claudet, Joachim

    2015-01-01

    Understanding how communities respond to natural disturbances is fundamental to assess the mechanisms of ecosystem resistance and resilience. However, ecosystem responses to natural disturbances are rarely monitored both through space and time, while the factors promoting ecosystem stability act at various temporal and spatial scales. Hence, assessing both the spatial and temporal variations in species composition is important to comprehensively explore the effects of natural disturbances. Here, we suggest a framework to better scrutinize the mechanisms underlying community responses to disturbances through both time and space. Our analytical approach is based on beta diversity decomposition into two components, replacement and biomass difference. We illustrate this approach using a 9-year monitoring of coral reef fish communities off Moorea Island (French Polynesia), which encompassed two severe natural disturbances: a crown-of-thorns starfish outbreak and a hurricane. These disturbances triggered a fast logistic decline in coral cover, which suffered a 90% decrease on all reefs. However, we found that the coral reef fish composition remained largely stable through time and space whereas compensatory changes in biomass among species were responsible for most of the temporal fluctuations, as outlined by the overall high contribution of the replacement component to total beta diversity. This suggests that, despite the severity of the two disturbances, fish communities exhibited high resistance and the ability to reorganize their compositions to maintain the same level of total community biomass as before the disturbances. We further investigated the spatial congruence of this pattern and showed that temporal dynamics involved different species across sites; yet, herbivores controlling the proliferation of algae that compete with coral communities were consistently favored. These results suggest that compensatory changes in biomass among species and spatial

  1. Characterizing and explaining spatio-temporal variation of water quality in a highly disturbed river by multi-statistical techniques.

    PubMed

    Liu, Jianfeng; Zhang, Xiang; Xia, Jun; Wu, Shaofei; She, Dunxian; Zou, Lei

    2016-01-01

    Assessing the spatio-temporal variations of surface water quality is important for water environment management. In this study, surface water samples are collected from 2008 to 2015 at 17 stations in the Ying River basin in China. The two pollutants i.e. chemical oxygen demand (COD) and ammonia nitrogen (NH3-N) are analyzed to characterize the river water quality. Cluster analysis and the seasonal Kendall test are used to detect the seasonal and inter-annual variations in the dataset, while the Moran's index is utilized to understand the spatial autocorrelation of the variables. The influence of natural factors such as hydrological regime, water temperature and etc., and anthropogenic activities with respect to land use and pollutant load are considered as driving factors to understand the water quality evolution. The results of cluster analysis present three groups according to the similarity in seasonal pattern of water quality. The trend analysis indicates an improvement in water quality during the dry seasons at most of the stations. Further, the spatial autocorrelation of water quality shows great difference between the dry and wet seasons due to sluices and dams regulation and local nonpoint source pollution. The seasonal variation in water quality is found associated with the climatic factors (hydrological and biochemical processes) and flow regulation. The analysis of land use indicates a good explanation for spatial distribution and seasonality of COD at the sub-catchment scale. Our results suggest that an integrated water quality measures including city sewage treatment, agricultural diffuse pollution control as well as joint scientific operations of river projects is needed for an effective water quality management in the Ying River basin. PMID:27512630

  2. Environmental and socio-economic change in Thailand: quantifying spatio-temporal risk factors of dengue to inform decision making

    NASA Astrophysics Data System (ADS)

    Rodo, X.; Lowe, R.; Karczewska-Gibert, A.; Cazelles, B.

    2013-12-01

    Dengue is a peri-urban mosquito-transmitted disease, ubiquitous in the tropics and the subtropics. The geographic distribution of dengue and its more severe form, dengue haemorrhagic fever (DHF), have expanded dramatically in the last decades and dengue is now considered to be the world's most important arboviral disease. Recent demographic changes have greatly contributed to the acceleration and spread of the disease along with uncontrolled urbanization, population growth and increased air travel, which acts as a mechanism for transporting and exchanging dengue viruses between endemic and epidemic populations. The dengue vector and virus are extremely sensitive to environmental conditions such as temperature, humidity and precipitation that influence mosquito biology, abundance and habitat and the virus replication speed. In order to control the spread of dengue and impede epidemics, decision support systems are required that take into account the multi-faceted array of factors that contribute to increased dengue risk. Due to availability of seasonal climate forecasts, that predict the average climate conditions for forthcoming months/seasons in both time and space, there is an opportunity to incorporate precursory climate information in a dengue decision support system to aid epidemic planning months in advance. Furthermore, oceanic indicators from teleconnected areas in the Pacific and Indian Ocean, that can provide some indication of the likely prevailing climate conditions in certain regions, could potentially extend predictive lead time in a dengue early warning system. In this paper we adopt a spatio-temporal Bayesian modelling framework for dengue in Thailand to support public health decision making. Monthly cases of dengue in the 76 provinces of Thailand for the period 1982-2012 are modelled using a multi-layered approach. Explanatory variables at various spatial and temporal resolutions are incorporated into a hierarchical model in order to make spatio-temporal

  3. Spatio-temporal changes in the distribution of phytopigments and phytoplanktonic groups at the Porcupine Abyssal Plain (PAP) site

    NASA Astrophysics Data System (ADS)

    Smythe-Wright, Denise; Boswell, Stephen; Kim, Young-Nam; Kemp, Alan

    2010-08-01

    We have made a comprehensive study of pigment distributions and microscopically determined phytoplankton abundances within the Porcupine Abyssal Plain (PAP) location in the North Atlantic to better understand phytoplankton variability, and make some suggestions regarding the composition of the material falling to the sea bed and its impacts on benthic organisms such as Amperima rosea. The area has been the focus of many studies of ocean fluxes and benthic communities over recent years, but little attention has been given to the spatio-temporal variability in the surface waters. Dawn casts over a 12-day period at the PAP mooring site (48.83°N 16.5°W) revealed the presence of only one species, the diatom Actinocyclus exiguus, at bloom concentrations for just 5 days. Smaller populations of other diatoms and the dinoflagellates Gymnodinium and Gyrodinium were also present at this time. Following this 5-day interval, a mixed population of small-sized dinoflagellates, prymnesiophytes, prasinophytes, chrysophytes and cyanobacteria occurred. It is clear from concomitant CTD/bottle surveys that rapid changes in phytoplankton community structure at a fixed time series position do not necessarily reflect a degradation or manifestation of one particular species but rather represent the movement of eddies and other water masses within very short timescales. These cause substantial variability in the species class and size fraction that may explain the variability in carbon export that has been seen at the PAP site. We also make some suggestions on the variable composition of the material falling to the seabed and its impact on benthic organisms such as Amperima rosea.

  4. Spatio-temporal dynamics of maize yield water constraints under climate change in Spain.

    PubMed

    Ferrero, Rosana; Lima, Mauricio; Gonzalez-Andujar, Jose Luis

    2014-01-01

    Many studies have analyzed the impact of climate change on crop productivity, but comparing the performance of water management systems has rarely been explored. Because water supply and crop demand in agro-systems may be affected by global climate change in shaping the spatial patterns of agricultural production, we should evaluate how and where irrigation practices are effective in mitigating climate change effects. Here we have constructed simple, general models, based on biological mechanisms and a theoretical framework, which could be useful in explaining and predicting crop productivity dynamics. We have studied maize in irrigated and rain-fed systems at a provincial scale, from 1996 to 2009 in Spain, one of the most prominent "hot-spots" in future climate change projections. Our new approach allowed us to: (1) evaluate new structural properties such as the stability of crop yield dynamics, (2) detect nonlinear responses to climate change (thresholds and discontinuities), challenging the usual linear way of thinking, and (3) examine spatial patterns of yield losses due to water constraints and identify clusters of provinces that have been negatively affected by warming. We have reduced the uncertainty associated with climate change impacts on maize productivity by improving the understanding of the relative contributions of individual factors and providing a better spatial comprehension of the key processes. We have identified water stress and water management systems as being key causes of the yield gap, and detected vulnerable regions where efforts in research and policy should be prioritized in order to increase maize productivity. PMID:24878747

  5. A spatio-temporal analysis of landscape dynamics under changing environmental regimes in southern African savannas

    NASA Astrophysics Data System (ADS)

    Bunting, Erin L.

    The United Nations and Intergovernmental Panel on Climate Change (IPCC) deem many regions of southern Africa as vulnerable landscapes due to changing climatic regimes, ecological condition, and low adaptive capacity. The savanna ecosystems of southern Africa are of great ecological importance due to the high biodiversity they sustain, their high level of productivity, and the great role they play in the global carbon cycle. Given the dependence of humans on the lands it is essential to explore landscape level trends in patterns and processes in an effort to inform management practices. Even if climate change mitigation strategies were put in place, this is still a region heavily dependent on rain-fed agriculture and tourism of the biological diverse lands. Therefore analysis of climate variability, both interannual and intra-annual, and the changing role it plays on the landscape is critical. This body of research analyzes the role of climate variability and climate on environmental condition and socio-economic development via research on (1) spatial and temporal vegetation patterns, (2) the underlying processes that influence savanna ecosystem resilience, (3) local perception of risk to livelihood development, and (4) potential consequences of climate change on vegetation patterns. As a whole this demonstrates the key role that climate plays on savanna landscapes, which would be highly beneficial when developing conservation or mitigation strategies. Increased climate variability is occurring, but what is still open to debate is the resilience of savanna landscape and vulnerability of socio-economic development.

  6. A New Framework for Spatio-temporal Climate Change Impact Assessment for Terrestrial Wildlife.

    PubMed

    Lankford-Bingle, Amber J; Svancara, Leona K; Vierling, Kerri

    2015-12-01

    We describe a first step framework for climate change species' impact assessments that produces spatially and temporally heterogeneous models of climate impacts. Case study results are provided for great gray owl (Strix nebulosa) in Idaho as an example of framework application. This framework applies species-specific sensitivity weights to spatial and seasonal models of climate exposure to produce spatial and seasonal models of climate impact. We also evaluated three methods of calculating sensitivity by comparing spatial models of combined exposure and sensitivity. We found the methods used to calculated sensitivity showed little difference, except where sensitivity was directional (i.e., more sensitive to an increase in temperature than a decrease). This approach may assist in the development of State Wildlife Action Plans and other wildlife management plans in the face of potential future climate change. PMID:26164841

  7. A New Framework for Spatio-temporal Climate Change Impact Assessment for Terrestrial Wildlife

    NASA Astrophysics Data System (ADS)

    Lankford-Bingle, Amber J.; Svancara, Leona K.; Vierling, Kerri

    2015-12-01

    We describe a first step framework for climate change species' impact assessments that produces spatially and temporally heterogeneous models of climate impacts. Case study results are provided for great gray owl ( Strix nebulosa) in Idaho as an example of framework application. This framework applies species-specific sensitivity weights to spatial and seasonal models of climate exposure to produce spatial and seasonal models of climate impact. We also evaluated three methods of calculating sensitivity by comparing spatial models of combined exposure and sensitivity. We found the methods used to calculated sensitivity showed little difference, except where sensitivity was directional (i.e., more sensitive to an increase in temperature than a decrease). This approach may assist in the development of State Wildlife Action Plans and other wildlife management plans in the face of potential future climate change.

  8. Schistosomiasis transmission and environmental change: a spatio-temporal analysis in Porto de Galinhas, Pernambuco - Brazil

    PubMed Central

    2012-01-01

    Background In Brazil, schistosomiasis mansoni infection is an endemic disease that mainly affects the country’s rural populations who carry out domestic and social activities in rivers and water accumulations that provide shelter for the snails of the disease. The process of rural migration to urban centers and the disorderly occupation of natural environments by these populations from endemic areas have favored expansion of schistosomiasis to locations that had been considered to be disease-free. Based on environmental changes that have occurred in consequent to an occupation and urbanization process in the locality of Porto de Galinhas, the present study sought to identify the relationship between those chances, measure by remote-sensing techniques, and establish a new endemic area for schistosomiasis on the coast of Pernambuco State - Brazil. Methods To gather prevalence data, two parasitological census surveys were conducted (2000 and 2010) using the Kato-Katz technique. Two malacological surveys were also conducted in the same years in order to define the density and infection rate of the intermediate host. Based on these data, spatial analyses were done, resulting in maps of the risk of disease transmission. To ascertain the environmental changes that have occurred at the locality, images from the QuickBird satellite were analyzed, thus resulting in land use maps. Results Over this 10-year period, the foci of schistosomiasis became more concentrated in the Salinas district. This area was considered to be at the greatest risk of schistosomiasis transmission and had the highest prevalence rates over this period. The study illustrated that this was the area most affected by the environmental changes resulting from the disorderly urbanization process, which gave rise to unsanitary environments that favored the establishment and maintenance of foci of schistosomiasis transmission, thereby consolidating the process of expansion and endemization of this

  9. Understanding the relationship between sediment connectivity and spatio-temporal landscape changes in two small catchments

    NASA Astrophysics Data System (ADS)

    Giuseppina Persichillo, Maria; Meisina, Claudia; Cavalli, Marco; Crema, Stefano; Bordoni, Massimiliano

    2016-04-01

    The degree of linkage between the sediments sources and downstream areas (i.e., sediment connectivity) is one of the most important properties controlling landscape evolution. Many factors have been found to affect sediment connectivity, especially at the catchment scale. In particular, the degree of linkage between different areas within a catchment depends largely on the morphological complexity of the catchment (relief, terrain roughness, stream network density and catchment shape) and the combined effects of vegetation, such as land use changes and land abandonment. Moreover, the analysis of the spatial distribution of sediment connectivity and its temporal evolution can be also useful for the characterization of sediment source areas. Specifically, these areas represent sites of instability and their connectivity influences the probability that a local on-site effect could propagate within a multiple-events feedback system. Within this framework, the aim of this study is to apply a geomorphometric approach to analyze the linkage between landscape complexity and the sediment connectivity at the catchment scale. Moreover, to assess sediment delivery, the index of connectivity (IC) proposed by Cavalli et al. (2013) was used to evaluate the potential connection of sediment source areas with the main channel network. To better understand the relationship between morphological complexity of the catchment's landscape and the sediment spatial distribution and mobilization, two catchments with different size and geomorphological and land use characteristics were analysed: the Rio Frate and Versa catchments (Oltrepo Pavese, Southern Lombardy, Italy). Several shallow landslides, which represents the main sediment source area type in the catchments, were triggered especially in the period from 2009 to 2013. Moreover, relevant modification of land use and drainage system during last decades, especially related to land abandonment, have conditioned the sediment connectivity

  10. Spatio-temporal variability of relative sea-level change across the Eocene-Oligocene transition

    NASA Astrophysics Data System (ADS)

    Stocchi, Paolo; Pekar, Stephen; Houben, Alexander; DeConto, Robert; Escutia, Carlota; Vermeersen, Bert; Pollard, David; Bijl, Peter; Rugenstein, Maria; Brinkhuis, Henk; Wade, Bridget; Galeotti, Simone

    2013-04-01

    The first glaciation of Antarctica marks the Eocene-Oligocene transition (EOT; ~34 Myr ago) with a contrasting signal of relative sea-level (rsl) change between the ice-sheet proximal and the far-field marginal marine settings. The Northern Hemisphere sites (New Jersey, Alabama, Northern Italy) record, in fact, a 50 - 80 m rsl drop, which is in line with the eustatic trend. Conversely, the sedimentary facies in the proximity of the Antarctic ice-sheet show that rsl locally rose up to 150 m. Accounting for the mutual gravitational attraction between the Antarctic ice-sheet and the ocean is a necessary first requirement to solve this apparent paradox. The newly formed ice-sheet, in fact, would cause the sea level to rise in the proximity of the ice-sheet margins while poles apart the sea-level drop would be ~20% larger than the eustatic. Furthermore, the uneven redistribution of the surface load (ice and meltwater) between the continents and the oceans would cause the solid Earth to deform and consequently the equipotential surface of gravity (mean sea surface) to change. At last, but not least, the ice-sheet thickness variations and the consequent meltwater redistribution would cause the rotation pole to move, with a consequent effect on the sea level. In this work we account for these intimately related feedbacks which define the Glacial Isostatic Adjustment (GIA process by solving the gravitationally self-consistent Sea Level Equation (SLE) for a Maxwell viscoelastic and rotating earth model. We force the SLE with a new thermo-mechanical ice-sheet model for the EOT glaciation driven by the variations of atmospheric CO2 concentrations. We show that the geological data are sensitive to the strong latitude-dependent GIA process.

  11. Modeling change from large-scale high-dimensional spatio-temporal array data

    NASA Astrophysics Data System (ADS)

    Lu, Meng; Pebesma, Edzer

    2014-05-01

    The massive data that come from Earth observation satellite and other sensors provide significant information for modeling global change. At the same time, the high dimensionality of the data has brought challenges in data acquisition, management, effective querying and processing. In addition, the output of earth system modeling tends to be data intensive and needs methodologies for storing, validation, analyzing and visualization, e.g. as maps. An important proportion of earth system observations and simulated data can be represented as multi-dimensional array data, which has received increasingly attention in big data management and spatial-temporal analysis. Study cases will be developed in natural science such as climate change, hydrological modeling, sediment dynamics, from which the addressing of big data problems is necessary. Multi-dimensional array-based database management and analytics system such as Rasdaman, SciDB, and R will be applied to these cases. From these studies will hope to learn the strengths and weaknesses of these systems, how they might work together or how semantics of array operations differ, through addressing the problems associated with big data. Research questions include: • How can we reduce dimensions spatially and temporally, or thematically? • How can we extend existing GIS functions to work on multidimensional arrays? • How can we combine data sets of different dimensionality or different resolutions? • Can map algebra be extended to an intelligible array algebra? • What are effective semantics for array programming of dynamic data driven applications? • In which sense are space and time special, as dimensions, compared to other properties? • How can we make the analysis of multi-spectral, multi-temporal and multi-sensor earth observation data easy?

  12. Spatio-temporal changes of the nitrate-ion concentration in the groundwater

    NASA Astrophysics Data System (ADS)

    Kerek, B.; Fugedi, U.; Kuti, L.; Vatai, J.

    2009-04-01

    The first observation wells were established in 1995 at Nyírőlapos in Hortobágy (eastern part of the Great Hungarian Plain) for searching the connection between alkalinization and pedogeochemistry. Later on other wells were installed in new study areas (Szarvas, Apajpuszta, Csípőhalom, Gödöllő, Bugac, Fülöpháza, Fülöpszállás, Csólyospálos) that represent different geological regions of the Great Hungarian Plain. Recent research focused on alkalinization, nutrient circles, water management in forests and environmental effects on the groundwater in the soil-parent material-base rock system. The observation wells were sampled monthly. Depth to the groundwater was measured and the pH and conductivity were checked in the field. All water samples were analysed for the major components (Na+, K+, Ca++, Mg++, Fe++, NH4+, Mn++, Cl-, HCO3-, CO3- - , SO4 - -, NO3-, NO2-, H2SiO3 ) and for the micro-elements (Cr, Zn, Co, Ni, Ba, Al, Cu, Sr, Mo, B, Pb, Cd, Li). Based on the first evaluation of the analytical results, new wells were established in 2001 on the Nyírőlapos-model area next to the existing ones, for sampling in different water depths at the same place. Since that time water samples have been taken from the uppermost zone of the groundwater (2-3 m) (the original sampling depth), between 4-6 m, and from the depth to 8-10 m. From our first observations, most of the measured ion concentrations varies widely in the certain levels of the studied profiles and they change strongly in time, too. This paper shows the changes of the nitrate-ion concentration in the groundwater, in space and time in different study areas. Nitrate-ion was chosen because its concentration reached the environmental limit value in the drinking water at some settlements (according to Hungarian law, the background concentration in the groundwater is 10 mg/l, the contamination limit value is 25 mg/l, the limit value in drinking water is 40 mg/l). Follow-up the changes in space and time

  13. Trend Assessment of Spatio-Temporal Change of Tehran Heat Island Using Satellite Images

    NASA Astrophysics Data System (ADS)

    Saradjian, M. R.; Sherafati, Sh.

    2015-12-01

    Numerous investigations on Urban Heat Island (UHI) show that land cover change is the main factor of increasing Land Surface Temperature (LST) in urban areas, especially conversion of vegetation and bare soil to concrete, asphalt and other man-made structures. On the other hand, other human activities like those which cause to burning fossil fuels, that increase the amount of carbon dioxide, may raise temperature in global scale in comparison with small scales (urban areas). In this study, multiple satellite images with different spatial and temporal resolutions have been used to determine Land Surface Temperature (LST) variability in Tehran metropolitan area. High temporal resolution of AVHRR images have been used as the main data source when investigating temperature variability in the urban area. The analysis shows that UHI appears more significant at afternoon and night hours. But the urban class temperature is almost equal to its surrounding vegetation and bare soil classes at around noon. It also reveals that there is no specific difference in UHI intense during the days throughout the year. However, it can be concluded that in the process of city expansion in years, UHI has been grown both spatially and in magnitude. In order to locate land-cover types and relate them to LST, Thematic Mapper (TM) images have been exploited. The influence of elevation on the LST has also been studied, using digital elevation model derived from SRTM database.

  14. An Open Source Geovisual Analytics Toolbox for Multivariate Spatio-Temporal Data in Environmental Change Modelling

    NASA Astrophysics Data System (ADS)

    Bernasocchi, M.; Coltekin, A.; Gruber, S.

    2012-07-01

    In environmental change studies, often multiple variables are measured or modelled, and temporal information is essential for the task. These multivariate geographic time-series datasets are often big and difficult to analyse. While many established methods such as PCP (parallel coordinate plots), STC (space-time cubes), scatter-plots and multiple (linked) visualisations help provide more information, we observe that most of the common geovisual analytics suits do not include three-dimensional (3D) visualisations. However, in many environmental studies, we hypothesize that the addition of 3D terrain visualisations along with appropriate data plots and two-dimensional views can help improve the analysts' ability to interpret the spatial relevance better. To test our ideas, we conceptualize, develop, implement and evaluate a geovisual analytics toolbox in a user-centred manner. The conceptualization of the tool is based on concrete user needs that have been identified and collected during informal brainstorming sessions and in a structured focus group session prior to the development. The design process, therefore, is based on a combination of user-centred design with a requirement analysis and agile development. Based on the findings from this phase, the toolbox was designed to have a modular structure and was built on open source geographic information systems (GIS) program Quantum GIS (QGIS), thus benefiting from existing GIS functionality. The modules include a globe view for 3D terrain visualisation (OSGEarth), a scattergram, a time vs. value plot, and a 3D helix visualisation as well as the possibility to view the raw data. The visualisation frame allows real-time linking of these representations. After the design and development stage, a case study was created featuring data from Zermatt valley and the toolbox was evaluated based on expert interviews. Analysts performed multiple spatial and temporal tasks with the case study using the toolbox. The expert

  15. Spatio-temporal changes in totally and enzymatically hydrolyzable amino acids of superficial sediments from three contrasted areas

    NASA Astrophysics Data System (ADS)

    Grémare, Antoine; Gutiérrez, Dimitri; Anschutz, Pierre; Amouroux, Jean Michel; Deflandre, Bruno; Vétion, Gilles

    2005-04-01

    Spatio-temporal changes in totally and enzymatically hydrolyzable amino acids (THAA and EHHA) and EHAA/THAA ratios of superficial sediments were assessed during 1997-1999 in three areas (i.e., the Gulf of Lions, the Bay of Biscay, and Central Chile) differing in their primary productivity. In all three areas, and even off Central Chile where a strong El Niño event took place during 1997-1998, spatial changes were always much greater than temporal ones. The factors affecting the spatial distributions of amino acid concentrations differed among areas. In the Gulf of Lions, sediment granulometry was apparently the most important driving force of THAA, EHAA, and EHAA/THAA, and there was no marked difference between stations located on the open slope and those in submarine canyons. Conversely, in the Bay of Biscay, there were clear differences between the stations located off Cap-Breton, on the open slope, and those in the Cap-Ferret canyon; the latter two featuring lower EHAA and THAA but higher EHAA/THAA. This pattern is likely to result from the predominance of different sources of organic matter and especially from the importance of continental inputs to the Cap-Breton canyon. Off Central Chile, amino acid concentrations and ratios were both maximal around 100 m depth, probably reflecting the interaction between the primary productivity gradient and the presence of an oxygen minimum zone (OMZ) reducing the degradation of sedimentary organics. When comparing the average values collected in the three areas studied, THAA and EHAA were highest in Central Chile, intermediate in the Bay of Biscay and lowest in the Gulf of Lions. EHAA/THAA ratios were also highest in Central Chile but were lowest in the Bay of Biscay. Differences between the Gulf of Lions and the Bay of Biscay could have been affected by sampling design. In Central Chile, the use of labile organic carbon to total organic carbon (C-LOM/TOC) and EHAA/THAA as indices of organic matter lability led to very

  16. The Voronoi spatio-temporal data structure

    NASA Astrophysics Data System (ADS)

    Mioc, Darka

    2002-04-01

    Current GIS models cannot integrate the temporal dimension of spatial data easily. Indeed, current GISs do not support incremental (local) addition and deletion of spatial objects, and they can not support the temporal evolution of spatial data. Spatio-temporal facilities would be very useful in many GIS applications: harvesting and forest planning, cadastre, urban and regional planning, and emergency planning. The spatio-temporal model that can overcome these problems is based on a topological model---the Voronoi data structure. Voronoi diagrams are irregular tessellations of space, that adapt to spatial objects and therefore they are a synthesis of raster and vector spatial data models. The main advantage of the Voronoi data structure is its local and sequential map updates, which allows us to automatically record each event and performed map updates within the system. These map updates are executed through map construction commands that are composed of atomic actions (geometric algorithms for addition, deletion, and motion of spatial objects) on the dynamic Voronoi data structure. The formalization of map commands led to the development of a spatial language comprising a set of atomic operations or constructs on spatial primitives (points and lines), powerful enough to define the complex operations. This resulted in a new formal model for spatio-temporal change representation, where each update is uniquely characterized by the numbers of newly created and inactivated Voronoi regions. This is used for the extension of the model towards the hierarchical Voronoi data structure. In this model, spatio-temporal changes induced by map updates are preserved in a hierarchical data structure that combines events and corresponding changes in topology. This hierarchical Voronoi data structure has an implicit time ordering of events visible through changes in topology, and it is equivalent to an event structure that can support temporal data without precise temporal

  17. Hydrogeochemistry and spatio-temporal changes of a tropical coastal wetland system: Veli-Akkulam Lake, Thiruvananthapuram, India

    NASA Astrophysics Data System (ADS)

    Sajinkumar, K. S.; Revathy, A.; Rani, V. R.

    2015-09-01

    The backwater of Veli-Akkulam, adjoining the Arabian Sea in the south-west part of Indian Peninsula, is a coastal wetland system and forms an integral part of the local ecosystem. In addition to the usual marine interactions, this water body is subjected to anthropogenic interference due to their proximity to the Thiruvananthapuram City urban agglomeration. This paper showcases how an urban agglomeration alters wetland system located within a tropical monsoonal environment. Water samples from this lake together with different feeder streams reveal that the lake is under the threat to eutrophication. A spatio-temporal analysis has shown that the lake and adjacent wetlands are shrinking in a fast pace. Over a period of about seven decades, the lake has shrunk by 28.05 % and the wetlands by 37.81 %. And hence, there is a pressing requirement of eco-management practices to be adopted to protect this lake.

  18. Anticipating the spatio-temporal response of plant diversity and vegetation structure to climate and land use change in a protected area

    PubMed Central

    Boulangeat, Isabelle; Georges, Damien; Dentant, Cédric; Bonet, Richard; Van Es, Jérémie; Abdulhak, Sylvain; Zimmermann, Niklaus E.; Thuiller, Wilfried

    2014-01-01

    Vegetation is a key driver of ecosystem functioning (e.g. productivity and stability) and of the maintenance of biodiversity (e.g. creating habitats for other species groups). While vegetation sensitivity to climate change has been widely investgated, its spatio-temporally response to the dual efects of land management and climate change has been ignored at landscape scale. Here we use a dynamic vegetation model called FATE-HD, which describes the dominant vegetation dynamics and associated functional diversity, in order to anticipate vegetation response to climate and land-use changes in both short and long-term perspectives. Using three contrasted management scenarios for the Ecrins National Park (French Alps) developed in collaboration with the park managers, and one regional climate change scenario, we tracked the dynamics of vegetation structure (forest expansion) and functional diversity over 100 years of climate change and a further 400 additional years of stabilization. As expected, we observed a slow upward shift in forest cover distribution, which appears to be severely impacted by pasture management (i.e. maintenance or abandonment). The tme lag before observing changes in vegetation cover was the result of demographic and seed dispersal processes. However, plant diversity response to environmental changes was rapid. Afer land abandonment, local diversity increased and spatial turnover was reduced, whereas local diversity decreased following land use intensification. Interestingly, in the long term, as both climate and management scenarios interacted, the regional diversity declined. Our innovative spatio-temporally explicit framework demonstrates that the vegetation may have contrasting responses to changes in the short and the long term. Moreover, climate and land-abandonment interact extensively leading to a decrease in both regional diversity and turnover in the long term. Based on our simulations we therefore suggest a continuing moderate intensity

  19. Spatio-Temporal Sensitivity of MODIS Land Surface Temperature Anomalies Indicates High Potential for Large-Scale Land Cover Change Detection in Permafrost Landscapes

    NASA Astrophysics Data System (ADS)

    Muster, S.; Langer, M.; Abnizova, A.; Young, K. L.; Boike, J.

    2014-12-01

    The accelerated warming Arctic climate may alter the surface energy balance locally and regionally of which a changing land surface temperature (LST) is a key indicator. Modelling current and anticipated changes of the surface energy balance requires an understanding of the spatio-temporal interactions between LST and land cover. This paper investigated the accuracy of MODIS LST V5 1 km level 3 product and its spatio-temporal sensitivity to land cover properties in a Canadian High Arctic permafrost landscape. Land cover ranged from fully vegetated moss/segde grass tundra to sparsely vegetated bare soil and barren areas. Daily mean MODIS LST were compared to in-situ radiometer measurements over wet tundra for three summers and two winters in 2008, 2009, and 2010. MODIS LST showed an accuracy of 1.8°C and a RMSE of 3.8°C in the total observation period including both summer and winter. Agreement was lowest during summer 2009 and freeze-back periods which were associated with prevailing overcast conditions. A multi-year anomaly analysis revealed robust spatio-temporal patterns taking into account the found uncertainty and different atmospheric conditions. Summer periods with regional mean LST larger than 5°C showed highest spatial diversity with four distinct anomaly classes. Dry ridge areas heated up most whereas wetland areas and dry barren surfaces with high albedo were coolest. Mean inter-annual differences of LST anomalies for different land cover classes were less than 1°C. However, spatial pattern showed fewer positive anomalies in 2010 suggesting differences in surface moisture due to inter­annual differences in the amount of end-of-winter snow. Presented summer LST anomalies might serve as a baseline against which to evaluate past and future changes in land surface properties with regard to the surface energy balance. Sub-temporal heterogeneity due to snow or ice on/off as well as the effect of subpixel water bodies has to be taken into account. A multi

  20. Tier-Scalable Reconnaissance Missions for Autonomous Exploration and Spatio-Temporal Monitoring of Climate Change with Particular Application to Glaciers and their Environs

    NASA Astrophysics Data System (ADS)

    Fink, W.; Tarbell, M. A.; Furfaro, R.; Kargel, J. S.

    2010-12-01

    Spatio-temporal monitoring of climate change and its impacts is needed globally and thus requires satellite-based observations and analysis. However, needed ground truth can only be obtained in situ. In situ exploration of extreme and often hazardous environments can pose a significant challenge to human access. We propose the use of a disruptive exploration paradigm that has earlier been introduced with autonomous robotic space exploration, termed Tier-Scalable Reconnaissance (PSS 2005; SCIENCE 2010). Tier-scalable reconnaissance utilizes orbital, aerial, and surface/subsurface robotic platforms working in concert, enabling event-driven and integrated global to regional to local reconnaissance capabilities. We report on the development of a robotic test bed for Tier-scalable Reconnaissance at the University of Arizona and Caltech (SCIENCE 2010) for distributed and science-driven autonomous exploration, mapping, and spatio-temporal monitoring of climate change in hazardous or inaccessible environments. We focus in particular on glaciers and their environs, especially glacier lakes. Such glacier lakes can pose a significant natural hazard to inhabited areas and economies downstream. The test bed currently comprises several robotic surface vehicles: rovers equipped with cameras, and boats equipped with cameras and side-scanning sonar technology for bathymetry and the characterization of subsurface structures in glacier lakes and other water bodies. To achieve a fully operational Tier-scalable Reconnaissance test bed, aerial platforms will be integrated in short order. Automated mapping and spatio-temporal monitoring of glaciers and their environs necessitate increasing degrees of operational autonomy: (1) Automatic mapping of an operational area from different vantages (i.e., airborne, surface, subsurface); (2) automatic sensor deployment and sensor data gathering; (3) automatic feature extraction and region-of-interest/anomaly identification within the mapped

  1. Changes in the perceived direction of drifting plaids, induced by asymmetrical changes in the spatio-temporal structure of the underlying components.

    PubMed

    Heeley, D W; Buchanan-Smith, H M

    1994-03-01

    When a plaid pattern with symmetrical velocity components (Type I) is changed to a plaid pattern with asymmetrical velocity components (Type IA), the overall direction of drift appears to undergo a rotation without any other change to the spatial parameters of the components. This change in the perceived drift direction can be induced by altering either the temporal frequency of the components or by altering their spatial frequency. In separate experiments, we have estimated the magnitude of the temporal and spatial frequency thresholds that are necessary to create a liminal change in direction of this type. The results from both temporal and spatial frequency experiments are closely similar. We find that liminal rotations can be induced by changes in the spatio-temporal structure of the sine-wave grating components that are undetectable when these components are presented in isolation. Further, we find that the "velocity threshold for direction" is not a constant factor, but critically depends on the relative orientation of the two elements that form the plaid. Forced-choice experiments were also conducted to estimate the extent of the apparent rotation of the plaid pattern for differing levels of asymmetry in the spatial frequency and temporal frequency of the components. The magnitude of the pattern rotation is predicted by a model of motion direction that encodes the successive displacements of the intersections of the gratings. Finally, we demonstrate that the velocity thresholds for perceived rotation exhibit a meridional anisotropy that depends on the direction of drift of the overall pattern and not on the orientation of the components.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8160393

  2. Modeling spatio-temporal risk changes in the incidence of Dengue fever in Saudi Arabia: a geographical information system case study.

    PubMed

    Khormi, Hassan M; Kumar, Lalit; Elzahrany, Ramze A

    2011-11-01

    The aim of this study was to use geographical information systems to demonstrate the Dengue fever (DF) risk on a monthly basis in Jeddah, Saudi Arabia with the purpose to provide documentation serving to improve surveillance and monitor the Aedes aegypti mosquito vector. Getis-Ord Gi* statistics and a frequency index covering a five-year period (2006-2010) were used to map DF and model the risk spatio-temporally. The results show that monthly hotspots were mainly concentrated in central Jeddah districts and that the pattern changes considerably with time. For example, on a yearly basis, for the month of January, the Burman district was identified as a low risk area in 2006, a high-risk area in 2007, medium risk in 2008, very low risk in 2009 and low risk in 2010. The results demonstrate that it would be useful to follow the monthly DF pattern, based on the average weekly frequency, as this can facilitate the allocation of resources for the treatment of the disease, preventing its prevalence and monitoring its vector. PMID:22109865

  3. Spatio-temporal changes in glutathione and thioredoxin redox couples during ionizing radiation-induced oxidative stress regulate tumor radio-resistance.

    PubMed

    Patwardhan, R S; Sharma, D; Checker, R; Thoh, M; Sandur, S K

    2015-10-01

    Ionizing radiation (IR)-induced oxidative stress in tumor cells is effectively managed by constitutive and inducible antioxidant defense systems. This study was initiated to understand the relative contribution of different redox regulatory systems in determining the tumor radio-resistance. In this study, human T-cell lymphoma (Jurkat) cells were exposed to IR (4 Gy) and monitored for the spatio-temporal changes in cellular redox regulatory parameters. We monitored the changes in the levels of reactive oxygen species (ROS) (total, mitochondrial, primary, and secondary), thiols (total, surface, and intracellular), GSH/GSSG ratio, antioxidant enzyme activity viz. thioredoxin (Trx), Trx reductase (TrxR), glutathione peroxidase, and glutathione reductase with respect to time. We have also measured protein glutathionylation. We observed that tumor cells mount a biphasic response after IR exposure which can be divided into early (0-6 h) and late (16-48 h) responses in terms of changes in cellular redox parameters. During early response, constitutively active GSH and Trx systems respond to restore cellular redox balance to pre-exposure levels and help in activation of redox-sensitive transcription factor Nrf-2. During late response, increase in the levels of antioxidants GSH and Trx rescue cells against IR-mediated damage. We observed that disruption of either glutathione or thioredoxin metabolism led to partial impairment of ability of cells to survive against IR-induced damage. But simultaneous disruption of both the pathways significantly increased radio sensitivity of Jurkat cells. This highlighted the importance of these two antioxidant pathways in regulating redox homeostasis under conditions of IR-induced oxidative stress. PMID:26021764

  4. Spatio-temporal characteristics of cerebral blood volume changes in different microvascular compartments evoked by sciatic nerve stimulation in rat somatosensory cortex

    NASA Astrophysics Data System (ADS)

    Li, Pengcheng; Luo, Qingming; Luo, Weihua; Chen, Shangbin; Chen, Haiying; Zeng, Shaoqun

    2003-10-01

    The spatio-temporal characteristics of changes in cerebral blood volume associated with neuronal activity were investigated in the hindlimb somatosensory cortex of α-chloralose/urethan anesthetized rats (n=10) with optical imaging at 570nm through a thinned skull. Activation of cortex was carried out by electrical stimulation of the contralateral sciatic nerve with 5Hz, 0.3V pulses (0.5ms) for duration of 2s. The stimulation evoked a monophasic optical reflectance decrease at cortical parenchyma and arteries sites rapidly after the onset of stimulation, whereas no similar response was observed at vein compartments. The optical signal changes reached 10% of the peak response 0.70+/-0.32s after stimulation onset and no significant time lag in this 10% start latency time was observed between the response at cortical parenchyma and arteries compartments. The evoked optical reflectance decrease reached the peak (0.25%+/-0.047%)2.66+/-0.61s after the stimulus onset at parenchyma site, 0.40+/-0.20s earlier (P<0.05) than that at arteries site (0.50%+/-0.068% 3.06+/-0.70s). Variable location within the cortical parenchyma and arteries compartment themselves didn"t affect the temporal characteristics of the evoked signal significantly. These results suggest that the sciatic nerve stimulation evokes a local blood volume increase at both capillaries (cortical parenchyma) and arterioles rapidly after the stimulus onset but the evoked blood volume increase in capillaries could not be entirely accounted for by the dilation of arterioles.

  5. Imaging and imagining the spatio-temporal variations of photosynthesis - remote sensing of sun-induced fluorescence to understand physiological changes of the photosynthetic apparatus

    NASA Astrophysics Data System (ADS)

    Rascher, Uwe

    2010-05-01

    Light use efficiency of photosynthesis dynamically adapts to environmental factors, which lead to complex spatio-temporal variations of photosynthesis on various scales from the leaf to the canopy level. The need to scale leaf-level physiology to ecosystem responses and climate feedbacks has been emphasized recently in the context of global climate change research. Recently the FLuorescence EXplorer (FLEX) mission that proposed to launch a satellite for the global monitoring of steady-state chlorophyll fluorescence in terrestrial vegetation was selected for pre-phase A by European Space Agency (ESA). This method aims for mapping photosynthetic efficiency by quantifying steady state fluorescence in the so called Fraunhofer lines. In preparation for this satellite mission an extensive field campaign was conducted. The CEFLES2 campaign during the Carbo Europe Regional Experiment Strategy was designed to provide simultaneous airborne measurements of solar induced fluorescence and CO2 fluxes. It was combined with extensive ground-based quantification of leaf- and canopy-level processes. The aim of this campaign was to test if fluorescence signal detected from an airborne platform can be used to improve estimates of plant mediated exchange on the mesoscale. Canopy fluorescence was quantified from four airborne platforms using a combination of novel sensors including a prototype airborne sensor AirFLEX quantifing fluorescence in the oxygen A and B bands, and the first employment of the high performance imaging spectrometer HYPER delivering spatially explicit and multi-temporal transects across the whole region. During three measurement periods in April, June and September 2007 structural, functional and radiometric characteristics of more than 20 different vegetation types in the Les Landes region, Southwest France, were extensively characterized on the ground focussing especially on quantifying plant mediated exchange processes (photosynthetic electron transport, CO2

  6. Spatio-temporal snow cover change and hydrological characteristics of the Astore, Gilgit and Hunza river basins (western Himalayas, Hindukush and Karakoram region) - Northern Pakistan

    NASA Astrophysics Data System (ADS)

    Tahir, Adnan Ahmad; Chevallier, Pierre; Arnaud, Yves; Lane, Stuart; Terzago, Silvia; Adamowski, Jan Franklin

    2015-04-01

    A large proportion of Pakistan's irrigation water supply is drawn from the Upper Indus River Basin (UIB) situated in the Himalaya-Karakoram-Hindukush (HKH) ranges. More than half of the annual flow in the UIB is contributed by five of its high-altitude snow and glacier-fed sub-basins including the Astore (Western Himalaya - southern part of the UIB), Gilgit (Hindukush - western part of the UIB) and Hunza (Central Karakoram - northern part of the UIB) River basins. Studying the snow cover, its spatio-temporal evolution and the hydrological response of these sub-basins is important so as to better manage water resources. This study compares data from the Astore, Gilgit and Hunza River basins (mean catchment elevation, 4100, 4250 and 4650 m ASL, respectively), obtained using MODIS satellite snow cover images. The hydrological regime of these sub-catchments was analyzed using hydrological and climate data available at different altitudes from the basin areas. The results suggest that the UIB is a region undergoing a stable or slightly increasing trend of snow cover in the southern (Western Himalayas), western (Hindukush) and northern (Central Karakoram) parts. Discharge from the UIB is a combination of snow and glacier melt with rainfall-runoff in the southern part, but snow and glacier melt is dominant in the northern and western parts of the catchment. Despite similar snow cover trends (stable or slightly increasing), different river flow trends (increasing in Astore and Gilgit, decreasing in Hunza) suggest that a sub-catchment level study of the UIB is needed to understand thoroughly its hydrological behavior for better flood forecasting and water resources management and to quantify how the system is being forced by changing climate.

  7. Spatio-temporal change in forest cover and carbon storage considering actual and potential forest cover in South Korea.

    PubMed

    Nam, Kijun; Lee, Woo-Kyun; Kim, Moonil; Kwak, Doo-Ahn; Byun, Woo-Hyuk; Yu, Hangnan; Kwak, Hanbin; Kwon, Taesung; Sung, Joohan; Chung, Dong-Jun; Lee, Seung-Ho

    2015-07-01

    This study analyzes change in carbon storage by applying forest growth models and final cutting age to actual and potential forest cover for six major tree species in South Korea. Using National Forest Inventory data, the growth models were developed to estimate mean diameter at breast height, tree height, and number of trees for Pinus densiflora, Pinus koraiensis, Pinus rigida, Larix kaempferi, Castanea crenata and Quercus spp. stands. We assumed that actual forest cover in a forest type map will change into potential forest covers according to the Hydrological and Thermal Analogy Groups model. When actual forest cover reaches the final cutting age, forest volume and carbon storage are estimated by changed forest cover and its growth model. Forest volume between 2010 and 2110 would increase from 126.73 to 157.33 m(3) hm(-2). Our results also show that forest cover, volume, and carbon storage could abruptly change by 2060. This is attributed to the fact that most forests are presumed to reach final cutting age. To avoid such dramatic change, a regeneration and yield control scheme should be prepared and implemented in a way that ensures balance in forest practice and yield. PMID:25666842

  8. Spatio-temporal modelling of heat stress and climate change implications for the Murray dairy region, Australia.

    PubMed

    Nidumolu, Uday; Crimp, Steven; Gobbett, David; Laing, Alison; Howden, Mark; Little, Stephen

    2014-08-01

    The Murray dairy region produces approximately 1.85 billion litres of milk each year, representing about 20 % of Australia's total annual milk production. An ongoing production challenge in this region is the management of the impacts of heat stress during spring and summer. An increase in the frequency and severity of extreme temperature events due to climate change may result in additional heat stress and production losses. This paper assesses the changing nature of heat stress now, and into the future, using historical data and climate change projections for the region using the temperature humidity index (THI). Projected temperature and relative humidity changes from two global climate models (GCMs), CSIRO MK3.5 and CCR-MIROC-H, have been used to calculate THI values for 2025 and 2050, and summarized as mean occurrence of, and mean length of consecutive high heat stress periods. The future climate scenarios explored show that by 2025 an additional 12-15 days (compared to 1971 to 2000 baseline data) of moderate to severe heat stress are likely across much of the study region. By 2050, larger increases in severity and occurrence of heat stress are likely (i.e. an additional 31-42 moderate to severe heat stress days compared with baseline data). This increasing trend will have a negative impact on milk production among dairy cattle in the region. The results from this study provide useful insights on the trends in THI in the region. Dairy farmers and the dairy industry could use these results to devise and prioritise adaptation options to deal with projected increases in heat stress frequency and severity. PMID:23907174

  9. Application of the AMBUR R package for spatio-temporal analysis of shoreline change: Jekyll Island, Georgia, USA

    NASA Astrophysics Data System (ADS)

    Jackson, Chester W.; Alexander, Clark R.; Bush, David M.

    2012-04-01

    The AMBUR (Analyzing Moving Boundaries Using R) package for the R software environment provides a collection of functions for assisting with analyzing and visualizing historical shoreline change. The package allows import and export of geospatial data in ESRI shapefile format, which is compatible with most commercial and open-source GIS software. The "baseline and transect" method is the primary technique used to quantify distances and rates of shoreline movement, and to detect classification changes across time. Along with the traditional "perpendicular" transect method, two new transect methods, "near" and "filtered," assist with quantifying changes along curved shorelines that are problematic for perpendicular transect methods. Output from the analyses includes data tables, graphics, and geospatial data, which are useful in rapidly assessing trends and potential errors in the dataset. A forecasting function also allows the user to estimate the future location of the shoreline and store the results in a shapefile. Other utilities and tools provided in the package assist with preparing and manipulating geospatial data, error checking, and generating supporting graphics and shapefiles. The package can be customized to perform additional statistical, graphical, and geospatial functions, and, it is capable of analyzing the movement of any boundary (e.g., shorelines, glacier terminus, fire edge, and marine and terrestrial ecozones).

  10. Geo-information Based Spatio-temporal Modeling of Urban Land Use and Land Cover Change in Butwal Municipality, Nepal

    NASA Astrophysics Data System (ADS)

    Mandal, U. K.

    2014-11-01

    Unscientific utilization of land use and land cover due to rapid growth of urban population deteriorates urban condition. Urban growth, land use change and future urban land demand are key concerns of urban planners. This paper is aimed to model urban land use change essential for sustainable urban development. GI science technology was employed to study the urban change dynamics using Markov Chain and CA-Markov and predicted the magnitude and spatial pattern. It was performed using the probability transition matrix from the Markov chain process, the suitability map of each land use/cover types and the contiguity filter. Suitability maps were generated from the MCE process where weight was derived from the pair wise comparison in the AHP process considering slope, land capability, distance to road, and settlement and water bodies as criterion of factor maps. Thematic land use land cover types of 1999, 2006, and 2013 of Landsat sensors were classified using MLC algorithm. The spatial extent increase from 1999 to 2013 in built up , bush and forest was observed to be 48.30 percent,79.48 percent and 7.79 percent, respectively, while decrease in agriculture and water bodies were 30.26 percent and 28.22 percent. The predicted urban LULC for 2020 and 2027 would provide useful inputs to the decision makers. Built up and bush expansion are explored as the main driving force for loss of agriculture and river areas and has the potential to continue in future also. The abandoned area of river bed has been converted to built- up areas.

  11. Spatio-temporal Urban Change Analysis and the Ecological Threats Concerning The Third Bridge in Istanbul City

    NASA Astrophysics Data System (ADS)

    Akin, A.; Aliffi, S.; Sunar, F.

    2014-09-01

    Urban growth is a complex dynamical process associated with landscape change driving forces such as the environment, politics, geography and many others that affect the city at multiple spatial and temporal scales. Istanbul, one of the largest agglomerations in Europe and the fifth-largest city in the world in terms of population within city limits, has been growing very rapidly over the late 20th century at a rate of 3.45 %, causing to have many environmental issues. Recently, Istanbul's new third bridge and proposed new routes for across the Bosphorus are foreseen to not only threaten the ecology of the city, but also it will give a way to new areas for unplanned urbanization. The dimensions of this threat are affirmed by the urban sprawl especially after the construction of the second bridge and the connections such as Trans European Motorway (TEM). Since the spatial and temporal components of urbanization can be more simply identified through modeling, this study aims to analyze the urban change and assess the ecological threats in Istanbul city through the proper modeling for the year 2040. For this purpose, commonly used urban modeling approach, the Markov Chain within Cellular Automata (CA), was selected to simulate urban/non-urban growth process. CA is a simple and effective tool to capture and simulate the complexity of urban system dynamic. The key factor for a Markov is the transition probability matrix, which defines change trend from past to today and into the future for a certain class type, and land use suitability maps for urban. Multi Criteria Analysis was used to build these suitability maps. Distance from each pixel to the urban, road and water classes, plus the elevation, slope and land use maps (as excluded layer) were defined as factors. Calibration data were obtained from remotely sensed data recorded in 1972, 1986 and 2013. Validation was performed by overlaying the simulated and actual 2013 urban maps and Kappa Index of Agreement was

  12. Spatio-temporal changes in trophic categories of infaunal polychaetes near the four wastewater ocean outfalls on Oahu, Hawaii.

    PubMed

    Shuai, Xiufu; Bailey-Brock, Julie H; Lin, David T

    2014-07-01

    This study examines the effect of sewage discharge on benthic polychaete assemblages in the context of their functional trophic categories. We present data spanning 20 years of monitoring benthic invertebrate assemblages and sediment properties at all 4 primary- and secondary-treatment wastewater outfalls servicing Honolulu and the island of Oahu, Hawaii, USA. Samples collected within mandated zones of initial dilution (ZIDs) near outfall discharge sites were compared to samples collected at reference stations at varying distances away. Our findings indicate that sediment properties were not affected by the outfall discharge rate or distance from each ZID. The number of polychaete species in 4 functional trophic categories (carnivore, detritivore, omnivore, and suspension feeder) did not change with the outfall solid loading rate or with distance from each ZID, thus suggesting relatively little organic enrichment. We find no evidence of heavy organic enrichment beyond the designated ZIDs at these 4 wastewater outfalls. PMID:24735911

  13. Detection of spatio-temporal changes of Norway spruce forest stands in Ore Mountains using airborne hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Misurec, J.; Kopačková, V.; Lhotáková, Z.; Albrechtova, J.; Campbell, P. K. E.

    2015-12-01

    The Ore Mountains are an example of the region that suffered from severe environmental pollution caused by long-term coal mining and heavy industry leading to massive dieback of the local Norway spruce forests between the 1970's and 1990's. The situation became getting better at the end of 1990's after pollution loads significantly decreased. In 1998 and 2013, airborne hyperspectral data (with sensor ASAS and APEX, respectively) were used to study recovery of the originally damaged forest stands and compared them with those that have been less affected by environmental pollution. The field campaign (needle biochemical analysis, tree defoliation etc.) accompanied hyperspectral imagery acquisition. An analysis was conducted assessing a set of 16 vegetation indices providing complex information on foliage, biochemistry and canopy biophysics and structure. Five of them (NDVI, NDVI705, VOG1, MSR and TCARI/OSAVI) showing the best results were employed to study spatial gradients as well as temporal changes. The detected gradients are in accordance with ground truth data on representative trees. The obtained results indicate that the original significant differences between the damaged and undamaged stands have been generally levelled until 2013, although it is still possible to detect signs of the previous damages in several cases.

  14. Effects of fire on ash thickness in a Lithuanian grassland and short-term spatio-temporal changes

    NASA Astrophysics Data System (ADS)

    Pereira, P.; Cerdà, A.; Úbeda, X.; Mataix-Solera, J.; Martin, D.; Jordán, A.; Burguet, M.

    2012-12-01

    Ash thickness is a key variable in the protection of soil against erosion agents after planned and unplanned fires. Thicker ash provides better protection against raindrop impact and reduces the runoff response by retaining water and promoting water infiltration although little is known about the distribution and the evolution of the ash layer after the fires. Ash thickness measurements were conducted along two transects (flat and sloping areas) following a a grid experimental design. Both transects extended from the burned area into an adjacent unburned area. We analysed ash thickness evolution according to time and fire severity. In order to interpolate data with accuracy and identify the techniques with the least bias, several interpolation methods were tested in the grid plot. Overall, the fire had a low severity. The fire significantly reduced the ground cover, especially on sloping areas owing to the higher fire severity and/or less biomass previous to the fire. Ash thickness depends on fire severity and is thin where fire severity was higher and thicker in lower fire severity sites. The ash thickness decreased with time after the fire. Between 4 and 16 days after the fire, ash was transported by wind. The major reduction took place between 16 and 34 days after the fire as a result of rainfall, and was more efficient where fire severity was higher. Between 34 and 45 days after the fire no significant differences in ash thickness were identified among ash colours and only traces of the ash layer remained. The omni-directional experimental variograms shown that variable structure did not change importantly with the time, however, the most accurate interpolation methods were different highlighting the slight different patterns of ash thickness distribution with the time. The ash spatial variability increased with the time, particularly on the slope, as a result of water erosion.

  15. Visual Experience Modulates Spatio-Temporal Dynamics of Circuit Activation

    PubMed Central

    Wang, Lang; Fontanini, Alfredo; Maffei, Arianna

    2011-01-01

    Persistent reduction in sensory drive in early development results in multiple plastic changes of different cortical synapses. How these experience-dependent modifications affect the spatio-temporal dynamics of signal propagation in neocortical circuits is poorly understood. Here we demonstrate that brief visual deprivation significantly affects the propagation of electrical signals in the primary visual cortex. The spatio-temporal spread of circuit activation upon direct stimulation of its input layer (Layer 4) is reduced, as is the activation of L2/3 – the main recipient of the output from L4. Our data suggest that the decrease in spatio-temporal activation of L2/3 depends on reduced L4 output, and is not intrinsically generated within L2/3. The data shown here suggest that changes in the synaptic components of the visual cortical circuit result not only in alteration of local integration of excitatory and inhibitory inputs, but also in a significant decrease in overall circuit activation. Furthermore, our data indicate a differential effect of visual deprivation on L4 and L2/3, suggesting that while feedforward activation of L2/3 is reduced, its activation by long range, within layer inputs is unaltered. Thus, brief visual deprivation induces experience-dependent circuit re-organization by modulating not only circuit excitability, but also the spatio-temporal patterns of cortical activation within and between layers. PMID:21743804

  16. Spatio-temporal properties of letter crowding.

    PubMed

    Chung, Susana T L

    2016-04-01

    Crowding between adjacent letters has been investigated primarily as a spatial effect. The purpose of this study was to investigate the spatio-temporal properties of letter crowding. Specifically, we examined the systematic changes in the degradation effects in letter identification performance when adjacent letters were presented with a temporal asynchrony, as a function of letter separation and between the fovea and the periphery. We measured proportion-correct performance for identifying the middle target letter in strings of three lowercase letters at the fovea and 10° in the inferior visual field, for a range of center-to-center letter separations and a range of stimulus onset asynchronies (SOA) between the target and flanking letters (positive SOAs: target preceded flankers). As expected, the accuracy for identifying the target letters reduces with decreases in letter separation. This crowding effect shows a strong dependency on SOAs, such that crowding is maximal between 0 and ∼100 ms (depending on conditions) and diminishes for larger SOAs (positive or negative). Maximal crowding does not require the target and flanking letters to physically coexist for the entire presentation duration. Most importantly, crowding can be minimized even for closely spaced letters if there is a large temporal asynchrony between the target and flankers. The reliance of letter identification performance on SOAs and how it changes with letter separations imply that the crowding effect can be traded between space and time. Our findings are consistent with the notion that crowding should be considered as a spatio-temporal, and not simply a spatial, effect. PMID:27088895

  17. Spatio-temporal properties of letter crowding

    PubMed Central

    Chung, Susana T. L.

    2016-01-01

    Crowding between adjacent letters has been investigated primarily as a spatial effect. The purpose of this study was to investigate the spatio-temporal properties of letter crowding. Specifically, we examined the systematic changes in the degradation effects in letter identification performance when adjacent letters were presented with a temporal asynchrony, as a function of letter separation and between the fovea and the periphery. We measured proportion-correct performance for identifying the middle target letter in strings of three lowercase letters at the fovea and 10° in the inferior visual field, for a range of center-to-center letter separations and a range of stimulus onset asynchronies (SOA) between the target and flanking letters (positive SOAs: target preceded flankers). As expected, the accuracy for identifying the target letters reduces with decreases in letter separation. This crowding effect shows a strong dependency on SOAs, such that crowding is maximal between 0 and ∼100 ms (depending on conditions) and diminishes for larger SOAs (positive or negative). Maximal crowding does not require the target and flanking letters to physically coexist for the entire presentation duration. Most importantly, crowding can be minimized even for closely spaced letters if there is a large temporal asynchrony between the target and flankers. The reliance of letter identification performance on SOAs and how it changes with letter separations imply that the crowding effect can be traded between space and time. Our findings are consistent with the notion that crowding should be considered as a spatio-temporal, and not simply a spatial, effect. PMID:27088895

  18. Robust visual tracking with dual spatio-temporal context trackers

    NASA Astrophysics Data System (ADS)

    Sun, Shiyan; Zhang, Hong; Yuan, Ding

    2015-12-01

    Visual tracking is a challenging problem in computer vision. Recent years, significant numbers of trackers have been proposed. Among these trackers, tracking with dense spatio-temporal context has been proved to be an efficient and accurate method. Other than trackers with online trained classifier that struggle to meet the requirement of real-time tracking task, a tracker with spatio-temporal context can run at hundreds of frames per second with Fast Fourier Transform (FFT). Nevertheless, the performance of the tracker with Spatio-temporal context relies heavily on the learning rate of the context, which restricts the robustness of the tracker. In this paper, we proposed a tracking method with dual spatio-temporal context trackers that hold different learning rate during tracking. The tracker with high learning rate could track the target smoothly when the appearance of target changes, while the tracker with low learning rate could percepts the occlusion occurring and continues to track when the target starts to emerge again. To find the target among the candidates from these two trackers, we adopt Normalized Correlation Coefficient (NCC) to evaluate the confidence of each sample. Experimental results show that the proposed algorithm performs robustly against several state-of-the-art tracking methods.

  19. Kernel Averaged Predictors for Spatio-Temporal Regression Models.

    PubMed

    Heaton, Matthew J; Gelfand, Alan E

    2012-12-01

    In applications where covariates and responses are observed across space and time, a common goal is to quantify the effect of a change in the covariates on the response while adequately accounting for the spatio-temporal structure of the observations. The most common approach for building such a model is to confine the relationship between a covariate and response variable to a single spatio-temporal location. However, oftentimes the relationship between the response and predictors may extend across space and time. In other words, the response may be affected by levels of predictors in spatio-temporal proximity to the response location. Here, a flexible modeling framework is proposed to capture such spatial and temporal lagged effects between a predictor and a response. Specifically, kernel functions are used to weight a spatio-temporal covariate surface in a regression model for the response. The kernels are assumed to be parametric and non-stationary with the data informing the parameter values of the kernel. The methodology is illustrated on simulated data as well as a physical data set of ozone concentrations to be explained by temperature. PMID:24010051

  20. Spatio-temporal morphology changes in and quenching effects on the 2D spreading dynamics of cell colonies in both plain and methylcellulose-containing culture media.

    PubMed

    Muzzio, N E; Pasquale, M A; Huergo, M A C; Bolzán, A E; González, P H; Arvia, A J

    2016-06-01

    To deal with complex systems, microscopic and global approaches become of particular interest. Our previous results from the dynamics of large cell colonies indicated that their 2D front roughness dynamics is compatible with the standard Kardar-Parisi-Zhang (KPZ) or the quenched KPZ equations either in plain or methylcellulose (MC)-containing gel culture media, respectively. In both cases, the influence of a non-uniform distribution of the colony constituents was significant. These results encouraged us to investigate the overall dynamics of those systems considering the morphology and size, the duplication rate, and the motility of single cells. For this purpose, colonies with different cell populations (N) exhibiting quasi-circular and quasi-linear growth fronts in plain and MC-containing culture media are investigated. For small N, the average radial front velocity and its change with time depend on MC concentration. MC in the medium interferes with cell mitosis, contributes to the local enlargement of cells, and increases the distribution of spatio-temporal cell density heterogeneities. Colony spreading in MC-containing media proceeds under two main quenching effects, I and II; the former mainly depending on the culture medium composition and structure and the latter caused by the distribution of enlarged local cell domains. For large N, colony spreading occurs at constant velocity. The characteristics of cell motility, assessed by measuring their trajectories and the corresponding velocity field, reflect the effect of enlarged, slow-moving cells and the structure of the medium. Local average cell size distribution and individual cell motility data from plain and MC-containing media are qualitatively consistent with the predictions of both the extended cellular Potts models and the observed transition of the front roughness dynamics from a standard KPZ to a quenched KPZ. In this case, quenching effects I and II cooperate and give rise to the quenched

  1. Spatio-temporal variations of plant mediated exchange - diurnal and seasonal changes of the function status of plant canopies measured by sun-induced fluorescence

    NASA Astrophysics Data System (ADS)

    Rascher, Uwe; Schickling, Anke; Crewell, Susanne; Schween, Jan; Geiß, Heiner

    2010-05-01

    how passive remote sensing of sun-induced fluorescence can be used together with eddy covariance measurements and leaf-level characterization of the photosynthetic apparatus, to better parametrize local and regional CO2 and water fluxes. We aim to derive a quantitative map of GPP that includes physiological changes of the photosynthetic machinery n green and structurally unaffected canopies. Selected Publications [1] Rascher U. & Nedbal L. (2006) Dynamics of plant photosynthesis under fluctuating natural conditions. Current Opinion in Plant Biology, 9, 671-678. [2] Rascher U. & Pieruschka R. (2008) Spatio-temporal variations of photosynthesis ¬ The potential of optical remote sensing to better understand and scale light use efficiency and stresses of plant ecosystems. Precision Agriculture, 9, 355-366. [3] Rascher U., and 35 others (2009) CEFLES2: The remote sensing component to quantify photosynthetic efficiency from the leaf to the region by measuring sun-induced fluorescence in the oxygen absorption bands, Biogeosciences, 6, 1181-1198. [4] Damm A., Elbers J., Erler E., Gioli B., Hamdi K., Hutjes R., Kosvancova M., Meroni M., Miglietta F., Moersch A., Moreno J., Schickling A., Sonnenschein R., Udelhoven T., van der Linden S., Hostert P. & Rascher U. (2010) Remote sensing of sun induced fluorescence to improve modeling of diurnal courses of gross primary production (GPP). Global Change Biology, 16, 171-186.

  2. a Spatio-Temporal Framework for Modeling Active Layer Thickness

    NASA Astrophysics Data System (ADS)

    Touyz, J.; Streletskiy, D. A.; Nelson, F. E.; Apanasovich, T. V.

    2015-07-01

    The Arctic is experiencing an unprecedented rate of environmental and climate change. The active layer (the uppermost layer of soil between the atmosphere and permafrost that freezes in winter and thaws in summer) is sensitive to both climatic and environmental changes, and plays an important role in the functioning, planning, and economic activities of Arctic human and natural ecosystems. This study develops a methodology for modeling and estimating spatial-temporal variations in active layer thickness (ALT) using data from several sites of the Circumpolar Active Layer Monitoring network, and demonstrates its use in spatial-temporal interpolation. The simplest model's stochastic component exhibits no spatial or spatio-temporal dependency and is referred to as the naïve model, against which we evaluate the performance of the other models, which assume that the stochastic component exhibits either spatial or spatio-temporal dependency. The methods used to fit the models are then discussed, along with point forecasting. We compare the predicted fit of the various models at key study sites located in the North Slope of Alaska and demonstrate the advantages of space-time models through a series of error statistics such as mean squared error, mean absolute and percent deviance from observed data. We find the difference in performance between the spatio-temporal and remaining models is significant for all three error statistics. The best stochastic spatio-temporal model increases predictive accuracy, compared to the naïve model, of 33.3%, 36.2% and 32.5% on average across the three error metrics at the key sites for a one-year hold out period.

  3. A Bayesian spatio-temporal method for disease outbreak detection

    PubMed Central

    Cooper, Gregory F

    2010-01-01

    A system that monitors a region for a disease outbreak is called a disease outbreak surveillance system. A spatial surveillance system searches for patterns of disease outbreak in spatial subregions of the monitored region. A temporal surveillance system looks for emerging patterns of outbreak disease by analyzing how patterns have changed during recent periods of time. If a non-spatial, non-temporal system could be converted to a spatio-temporal one, the performance of the system might be improved in terms of early detection, accuracy, and reliability. A Bayesian network framework is proposed for a class of space-time surveillance systems called BNST. The framework is applied to a non-spatial, non-temporal disease outbreak detection system called PC in order to create the spatio-temporal system called PCTS. Differences in the detection performance of PC and PCTS are examined. The results show that the spatio-temporal Bayesian approach performs well, relative to the non-spatial, non-temporal approach. PMID:20595315

  4. Assessing global vegetation activity using spatio-temporal Bayesian modelling

    NASA Astrophysics Data System (ADS)

    Mulder, Vera L.; van Eck, Christel M.; Friedlingstein, Pierre; Regnier, Pierre A. G.

    2016-04-01

    This work demonstrates the potential of modelling vegetation activity using a hierarchical Bayesian spatio-temporal model. This approach allows modelling changes in vegetation and climate simultaneous in space and time. Changes of vegetation activity such as phenology are modelled as a dynamic process depending on climate variability in both space and time. Additionally, differences in observed vegetation status can be contributed to other abiotic ecosystem properties, e.g. soil and terrain properties. Although these properties do not change in time, they do change in space and may provide valuable information in addition to the climate dynamics. The spatio-temporal Bayesian models were calibrated at a regional scale because the local trends in space and time can be better captured by the model. The regional subsets were defined according to the SREX segmentation, as defined by the IPCC. Each region is considered being relatively homogeneous in terms of large-scale climate and biomes, still capturing small-scale (grid-cell level) variability. Modelling within these regions is hence expected to be less uncertain due to the absence of these large-scale patterns, compared to a global approach. This overall modelling approach allows the comparison of model behavior for the different regions and may provide insights on the main dynamic processes driving the interaction between vegetation and climate within different regions. The data employed in this study encompasses the global datasets for soil properties (SoilGrids), terrain properties (Global Relief Model based on SRTM DEM and ETOPO), monthly time series of satellite-derived vegetation indices (GIMMS NDVI3g) and climate variables (Princeton Meteorological Forcing Dataset). The findings proved the potential of a spatio-temporal Bayesian modelling approach for assessing vegetation dynamics, at a regional scale. The observed interrelationships of the employed data and the different spatial and temporal trends support

  5. Bayesian Spatio-Temporal Analysis and Geospatial Risk Factors of Human Monocytic Ehrlichiosis

    PubMed Central

    Raghavan, Ram K.; Neises, Daniel; Goodin, Douglas G.; Andresen, Daniel A.; Ganta, Roman R.

    2014-01-01

    Variations in spatio-temporal patterns of Human Monocytic Ehrlichiosis (HME) infection in the state of Kansas, USA were examined and the relationship between HME relative risk and various environmental, climatic and socio-economic variables were evaluated. HME data used in the study was reported to the Kansas Department of Health and Environment between years 2005–2012, and geospatial variables representing the physical environment [National Land cover/Land use, NASA Moderate Resolution Imaging Spectroradiometer (MODIS)], climate [NASA MODIS, Prediction of Worldwide Renewable Energy (POWER)], and socio-economic conditions (US Census Bureau) were derived from publicly available sources. Following univariate screening of candidate variables using logistic regressions, two Bayesian hierarchical models were fit; a partial spatio-temporal model with random effects and a spatio-temporal interaction term, and a second model that included additional covariate terms. The best fitting model revealed that spatio-temporal autocorrelation in Kansas increased steadily from 2005–2012, and identified poverty status, relative humidity, and an interactive factor, ‘diurnal temperature range x mixed forest area’ as significant county-level risk factors for HME. The identification of significant spatio-temporal pattern and new risk factors are important in the context of HME prevention, for future research in the areas of ecology and evolution of HME, and as well as climate change impacts on tick-borne diseases. PMID:24992684

  6. Bayesian spatio-temporal analysis and geospatial risk factors of human monocytic ehrlichiosis.

    PubMed

    Raghavan, Ram K; Neises, Daniel; Goodin, Douglas G; Andresen, Daniel A; Ganta, Roman R

    2014-01-01

    Variations in spatio-temporal patterns of Human Monocytic Ehrlichiosis (HME) infection in the state of Kansas, USA were examined and the relationship between HME relative risk and various environmental, climatic and socio-economic variables were evaluated. HME data used in the study was reported to the Kansas Department of Health and Environment between years 2005-2012, and geospatial variables representing the physical environment [National Land cover/Land use, NASA Moderate Resolution Imaging Spectroradiometer (MODIS)], climate [NASA MODIS, Prediction of Worldwide Renewable Energy (POWER)], and socio-economic conditions (US Census Bureau) were derived from publicly available sources. Following univariate screening of candidate variables using logistic regressions, two Bayesian hierarchical models were fit; a partial spatio-temporal model with random effects and a spatio-temporal interaction term, and a second model that included additional covariate terms. The best fitting model revealed that spatio-temporal autocorrelation in Kansas increased steadily from 2005-2012, and identified poverty status, relative humidity, and an interactive factor, 'diurnal temperature range x mixed forest area' as significant county-level risk factors for HME. The identification of significant spatio-temporal pattern and new risk factors are important in the context of HME prevention, for future research in the areas of ecology and evolution of HME, and as well as climate change impacts on tick-borne diseases. PMID:24992684

  7. A hierarchical spatio-temporal data model for dynamic monitoring of land use

    NASA Astrophysics Data System (ADS)

    Wang, Hao; Liu, Yaolin

    2007-06-01

    Dynamic monitoring of land use is a perennial and persistent process now in Shanghai. Therefore, the cumulated amount of monitoring data will be very large. It is an exigent problem how to manage and use this data effectively. The key issue is finding a suitable spatio-temporal data model that must take into account space, time and attribute factor adequately. In dynamic monitoring of land use, it is change that is of direct interest. With analyzing the feature of land use dynamic monitoring and the shortage of some spatio-temporal data models when they are used in the field, this paper proposes a Hierarchical Spatio-Temporal Data Model (HSDM) that stores elements of change and makes these available for direct query and analysis.

  8. Modeling spatio-temporal field evolution

    NASA Astrophysics Data System (ADS)

    Borštnik Bračič, A.; Grabec, I.; Govekar, E.

    2009-06-01

    Prediction of spatio-temporal field evolution is based on the extraction of a physical law from joint experimental data. This extraction is usually described by a set of differential equations. If the only source of information is a field record, a method of field generators based on nonparametric modeling by conditional average can successfully replace differential equations. In this article we apply the method of field generators to a two-dimensional chaotic field record that describes the asynchronous motion of high-amplitude striations. We show how to choose the model structure in order to optimize the quality of the prediction process.

  9. Stochastic spatio-temporal modelling with PCRaster Python

    NASA Astrophysics Data System (ADS)

    Karssenberg, D.; Schmitz, O.; de Jong, K.

    2012-04-01

    PCRaster Python is a software framework for building spatio-temporal models of land surface processes (Karssenberg, Schmitz, Salamon, De Jong, & Bierkens, 2010; PCRaster, 2012). Building blocks of models are spatial operations on raster maps, including a large suite of operations for water and sediment routing. These operations, developed in C++, are available to model builders as Python functions. Users create models by combining these functions in a Python script. As construction of large iterative models is often difficult and time consuming for non-specialists in programming, the software comes with a set of Python framework classes that provide control flow for static modelling, temporal modelling, stochastic modelling using Monte Carlo simulation, and data assimilation techniques including the Ensemble Kalman filter and the Particle Filter. A framework for integrating model components with different time steps and spatial discretization is currently available as a prototype (Schmitz, de Jong, & Karssenberg, in review). The software includes routines for visualisation of stochastic spatio-temporal data for prompt, interactive, visualisation of model inputs and outputs. Visualisation techniques include animated maps, time series, probability distributions, and animated maps with exceedance probabilities. The PCRaster Python software is used by researchers from a large range of disciplines, including hydrology, ecology, sedimentology, and land use change studies. Applications include global scale hydrological modelling and error propagation in large-scale land use change models. The software runs on MS Windows and Linux operating systems, and OS X (under development).

  10. Mining fuzzy association rules in spatio-temporal databases

    NASA Astrophysics Data System (ADS)

    Shu, Hong; Dong, Lin; Zhu, Xinyan

    2008-12-01

    A huge amount of geospatial and temporal data have been collected through various networks of environment monitoring stations. For instance, daily precipitation and temperature are observed at hundreds of meteorological stations in Northeastern China. However, these massive raw data from the stations are not fully utilized for meeting the requirements of human decision-making. In nature, the discovery of geographical data mining is the computation of multivariate spatio-temporal correlations through the stages of data mining. In this paper, a procedure of mining association rules in regional climate-changing databases is introduced. The methods of Kriging interpolation, fuzzy cmeans clustering, and Apriori-based logical rules extraction are employed subsequently. Formally, we define geographical spatio-temporal transactions and fuzzy association rules. Innovatively, we make fuzzy data conceptualization by means of fuzzy c-means clustering, and transform fuzzy data items with membership grades into Boolean data items with weights by means ofλ-cut sets. When the algorithm Apriori is executed on Boolean transactions with weights, fuzzy association rules are derived. Fuzzy association rules are more nature than crisp association rules for human cognition about the reality.

  11. Event Detection using Twitter: A Spatio-Temporal Approach

    PubMed Central

    Cheng, Tao; Wicks, Thomas

    2014-01-01

    Background Every day, around 400 million tweets are sent worldwide, which has become a rich source for detecting, monitoring and analysing news stories and special (disaster) events. Existing research within this field follows key words attributed to an event, monitoring temporal changes in word usage. However, this method requires prior knowledge of the event in order to know which words to follow, and does not guarantee that the words chosen will be the most appropriate to monitor. Methods This paper suggests an alternative methodology for event detection using space-time scan statistics (STSS). This technique looks for clusters within the dataset across both space and time, regardless of tweet content. It is expected that clusters of tweets will emerge during spatio-temporally relevant events, as people will tweet more than expected in order to describe the event and spread information. The special event used as a case study is the 2013 London helicopter crash. Results and Conclusion A spatio-temporally significant cluster is found relating to the London helicopter crash. Although the cluster only remains significant for a relatively short time, it is rich in information, such as important key words and photographs. The method also detects other special events such as football matches, as well as train and flight delays from Twitter data. These findings demonstrate that STSS is an effective approach to analysing Twitter data for event detection. PMID:24893168

  12. Climate-induced spatio-temporal changes of rock glacier kinematics and temperature regime of permafrost in the Hohe Tauern Range, Austria: One work package within the permAfrost project

    NASA Astrophysics Data System (ADS)

    Kellerer-Pirklbauer, A.; Avian, M.; Kaufmann, V.; Niesner, E.; Kühnast, B.

    2012-04-01

    High latitude as well as high mountain areas are recognized as being particularly sensitive to the effects of the ongoing climate change. Large areas of mountain permafrost in the European Alps are for instance close to melting conditions and are therefore very sensitive to minor changes in climatic conditions. Degrading permafrost might cause slope instabilities and therefore pose a threat to both infrastructure and humans in alpine and subalpine environments. However, knowledge regarding permafrost distribution and its climatologically driven dynamics in the European Alps is still far from being complete. To increase the knowledge about permafrost occurrence and dynamics in Austria and the Eastern European Alps, the national project "permAfrost - Austrian Permafrost Research Initiative" was launched in 2010. The project consortium consists of permafrost researcher from the University of Innsbruck, Graz University of Technology, University of Leoben, University of Salzburg, and Vienna University of Technology and is coordinated by the Austrian Academy of Sciences. permAfrost is a first step establishing a nation-wide permafrost monitoring program in Austria. One work package (WP) of permAfrost focuses on climate-induced spatio-temporal changes of rock glacier kinematics and temperature regime of permafrost at the three rock glaciers Weissenkar (N46°57´, E12°45´), Hinteres Langtalkar (N46°59´, E12°47´) and Dösen (N46°59´, E13°17´), all located in the Hohe Tauern Range, central Austria. This WP aims to continue and improve previous research in the field of kinematics, volumetric and thermal monitoring of rock glacier and permafrost and to understand the inner structure of the three mentioned rock glaciers. To reach this aim, a synergistic approach by using geodesy, aerial photogrammetry, terrestrial and airborne laser scanning, different geophysical techniques and automatic ground temperature and climate monitoring is applied. First results from the

  13. A Flexible Spatio-Temporal Model for Air Pollution with Spatial and Spatio-Temporal Covariates.

    PubMed

    Lindström, Johan; Szpiro, Adam A; Sampson, Paul D; Oron, Assaf P; Richards, Mark; Larson, Tim V; Sheppard, Lianne

    2014-09-01

    The development of models that provide accurate spatio-temporal predictions of ambient air pollution at small spatial scales is of great importance for the assessment of potential health effects of air pollution. Here we present a spatio-temporal framework that predicts ambient air pollution by combining data from several different monitoring networks and deterministic air pollution model(s) with geographic information system (GIS) covariates. The model presented in this paper has been implemented in an R package, SpatioTemporal, available on CRAN. The model is used by the EPA funded Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) to produce estimates of ambient air pollution; MESA Air uses the estimates to investigate the relationship between chronic exposure to air pollution and cardiovascular disease. In this paper we use the model to predict long-term average concentrations of NOx in the Los Angeles area during a ten year period. Predictions are based on measurements from the EPA Air Quality System, MESA Air specific monitoring, and output from a source dispersion model for traffic related air pollution (Caline3QHCR). Accuracy in predicting long-term average concentrations is evaluated using an elaborate cross-validation setup that accounts for a sparse spatio-temporal sampling pattern in the data, and adjusts for temporal effects. The predictive ability of the model is good with cross-validated R (2) of approximately 0.7 at subject sites. Replacing four geographic covariate indicators of traffic density with the Caline3QHCR dispersion model output resulted in very similar prediction accuracy from a more parsimonious and more interpretable model. Adding traffic-related geographic covariates to the model that included Caline3QHCR did not further improve the prediction accuracy. PMID:25264424

  14. A Flexible Spatio-Temporal Model for Air Pollution with Spatial and Spatio-Temporal Covariates

    PubMed Central

    Lindström, Johan; Szpiro, Adam A; Sampson, Paul D; Oron, Assaf P; Richards, Mark; Larson, Tim V; Sheppard, Lianne

    2013-01-01

    The development of models that provide accurate spatio-temporal predictions of ambient air pollution at small spatial scales is of great importance for the assessment of potential health effects of air pollution. Here we present a spatio-temporal framework that predicts ambient air pollution by combining data from several different monitoring networks and deterministic air pollution model(s) with geographic information system (GIS) covariates. The model presented in this paper has been implemented in an R package, SpatioTemporal, available on CRAN. The model is used by the EPA funded Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) to produce estimates of ambient air pollution; MESA Air uses the estimates to investigate the relationship between chronic exposure to air pollution and cardiovascular disease. In this paper we use the model to predict long-term average concentrations of NOx in the Los Angeles area during a ten year period. Predictions are based on measurements from the EPA Air Quality System, MESA Air specific monitoring, and output from a source dispersion model for traffic related air pollution (Caline3QHCR). Accuracy in predicting long-term average concentrations is evaluated using an elaborate cross-validation setup that accounts for a sparse spatio-temporal sampling pattern in the data, and adjusts for temporal effects. The predictive ability of the model is good with cross-validated R2 of approximately 0.7 at subject sites. Replacing four geographic covariate indicators of traffic density with the Caline3QHCR dispersion model output resulted in very similar prediction accuracy from a more parsimonious and more interpretable model. Adding traffic-related geographic covariates to the model that included Caline3QHCR did not further improve the prediction accuracy. PMID:25264424

  15. Spatio-Temporal Clustering of Monitoring Network

    NASA Astrophysics Data System (ADS)

    Hussain, I.; Pilz, J.

    2009-04-01

    Pakistan has much diversity in seasonal variation of different locations. Some areas are in desserts and remain very hot and waterless, for example coastal areas are situated along the Arabian Sea and have very warm season and a little rainfall. Some areas are covered with mountains, have very low temperature and heavy rainfall; for instance Karakoram ranges. The most important variables that have an impact on the climate are temperature, precipitation, humidity, wind speed and elevation. Furthermore, it is hard to find homogeneous regions in Pakistan with respect to climate variation. Identification of homogeneous regions in Pakistan can be useful in many aspects. It can be helpful for prediction of the climate in the sub-regions and for optimizing the number of monitoring sites. In the earlier literature no one tried to identify homogeneous regions of Pakistan with respect to climate variation. There are only a few papers about spatio-temporal clustering of monitoring network. Steinhaus (1956) presented the well-known K-means clustering method. It can identify a predefined number of clusters by iteratively assigning centriods to clusters based. Castro et al. (1997) developed a genetic heuristic algorithm to solve medoids based clustering. Their method is based on genetic recombination upon random assorting recombination. The suggested method is appropriate for clustering the attributes which have genetic characteristics. Sap and Awan (2005) presented a robust weighted kernel K-means algorithm incorporating spatial constraints for clustering climate data. The proposed algorithm can effectively handle noise, outliers and auto-correlation in the spatial data, for effective and efficient data analysis by exploring patterns and structures in the data. Soltani and Modarres (2006) used hierarchical and divisive cluster analysis to categorize patterns of rainfall in Iran. They only considered rainfall at twenty-eight monitoring sites and concluded that eight clusters

  16. Effects of Spatio-Temporal Aliasing on Pilot Performance in Active Control Tasks

    NASA Technical Reports Server (NTRS)

    Zaal, Peter; Sweet, Barbara

    2010-01-01

    Spatio-temporal aliasing affects pilot performance and control behavior. For increasing refresh rates: 1) Significant change in control behavior: a) Increase in visual gain and neuromuscular frequency. b) Decrease in visual time delay. 2) Increase in tracking performance: a) Decrease in RMSe. b) Increase in crossover frequency.

  17. Geostatistical Analysis of Spatio-Temporal Forest Fire Data

    NASA Astrophysics Data System (ADS)

    Vega Orozco, Carmen D.; Kanevski, Mikhail; Tonini, Marj; Conedera, Marc

    2010-05-01

    Forest fire is one of the major phenomena causing degradation of environment, landscape, natural ecosystems, human health and economy. One of the main topic in forest fire data studies deals with the detection, analysis and modelling of spatio-temporal patterns of clustering. Spatial patterns of forest fire locations, their sizes and their sequence in time are of great interest for fire prediction and for forest fire management planning and distribution in optimal way necessary resources. Currently, fires can be analyzed and monitored by using different statistical tools, for example, Ripley's k-function, fractals, Allan factor, scan statistics, etc. Some of them are adapted to temporal or spatial data and are either local or global. In the present study the main attention is paid to the application of geostatistical tools - variography and methods for the analysis of monitoring networks (MN) clustering techniques (topological, statistical and fractal measures), in order to detect and to characterize spatio-temporal forest fire patterns. The main studies performed include: a) analysis of forest fires temporal sequences; b) spatial clustering of forest fires; c) geostatistical spatial analysis of burnt areas. Variography was carried out both for temporal and spatial data. Real case study is based on the forest-fire event data from Canton of Ticino (Switzerland) for a period of 1969 to 2008. The results from temporal analysis show the presence of clustering and seasonal periodicities. Comprehensive analysis of the variograms shows an anisotropy in the direction 30° East-North where smooth changes are detected, while on the direction 30° North-West a greater variability was identified. The research was completed with an application of different MN analysis techniques including, analysis of distributions of distances between events, Morisita Index (MI), fractal dimensions (sandbox counting and box counting methods) and functional fractal dimensions, adapted and

  18. Spatio-temporal Analysis on the Combined Impact of Long-term Climate and Landuse Changes on Blue and Green Water Dynamics over the Ohio River Basin

    NASA Astrophysics Data System (ADS)

    Du, L.; Rajib, M. A.; Merwade, V.

    2015-12-01

    Impacts of climate and landuse change on the overall water availability can be analytically comprehended in terms of long-term trends in surface and subsurface hydrologic fluxes. The surface and subsurface fluxes can be represented in terms of blue water (BW; surface runoff and deep aquifer recharge) and green water (GW; soil water content and actual evapotranspiration). The objective of this study is to present a comprehensive assessment of the spatial and temporal trend of BW and GW under the historical climate and landuse data over the period of 1935 to 2014 in the Ohio River Basin (490,000 km2), and thereby, quantify the relative effects of climate and landuse changes on their long-term dynamics. The Soil and Water Assessment Tool (SWAT) is used to simulate hydrologic fluxes for the Ohio River Basin by first changing both climate and landuse inputs, and then by only changing the climate input keeping landuse constant. The Mann-Kendall and Theil-Sen trend analyses over the whole basin show volumetric increase in both BW and GW. However, the trends reveal a regional pattern, where GW has increased significantly in the upper and lower parts of the basin in response to prominent landuse change. Whereas, BW has increased significantly only in the lower part that can be related to the significant change in precipitation there. The finding that BW is more affected by precipitation while landuse change is more influential in changing GW, is further supported from the BW and GW trend analyses at the individual sub-basin scale. The results from this study help to understand the collective influence of natural and anthropogenic impacts on hydrologic responses in the Ohio River basin, and thereby provide useful information for future water security and planning.

  19. Analysis of the spatio-temporal and semantic aspects of land-cover/use change dynamics 1991-2001 in Albania at national and district levels.

    PubMed

    Jansen, Louisa J M; Carrai, Giancarlo; Morandini, Luca; Cerutti, Paolo O; Spisni, Andrea

    2006-08-01

    In the turmoil of a rapidly changing economy the Albanian government needs accurate and timely information for management of their natural resources and formulation of land-use policies. The transformation of the forestry sector has required major changes in the legal, regulatory and management framework. The World Bank financed Albanian National Forest Inventory project provides an analysis of spatially explicit land-cover/use change dynamics in the period 1991-2001 using the FAO/UNEP Land Cover Classification System for codification of classes, satellite remote sensing and field survey for data collection and elements of the object-oriented geo-database approach to handle changes as an evolution of land-cover/use objects, i.e. polygons, over time to facilitate change dynamics analysis. Analysis results at national level show the trend of natural resources depletion in the form of modifications and conversions that lead to a gradual shift from land-cover/use types with a tree cover to less dense tree covers or even a complete removal of trees. Policy failure (e.g., corruption, lack of law enforcement) is seen as the underlying cause. Another major trend is urbanisation of areas near large urban centres that change urban-rural linkages. Furthermore, after privatisation agricultural areas increased in the hills where environmental effects may be detrimental, while prime agricultural land in the plains is lost to urbanisation. At district level, the local variability of spatially explicit land-cover/use changes shows different types of natural resources depletion. The distribution of changes indicates a regional prevalence, thus a decentralised approach to the natural resources management could be advocated. PMID:16770509

  20. Radiometric Normalization, Land Cover Classification, and Spatio-Temporal Change Detection Using Multitemporal Landsat Imagery: a Case study of Land Development in the Eastern Nile Delta Region, Egypt

    NASA Astrophysics Data System (ADS)

    Abdulaziz, A. M.; Hurtado, J. M.; Al-Douri, R.

    2006-12-01

    This study evaluates changes in land use associated with agricultural development and urban expansion in Eastern Nile Delta region from 1984 to 1990 and from 1990 to 2003. Three Landsat TM scenes were used to produce land use maps for the years 1984, 1990, and 2003. Normalization of corresponding bands in our multitemporal dataset enhanced the ability of classification algorithms to distinguish among spectrally similar, yet biophysically distinct, land use classes. The classes employed in this study include: "urban"," water", "marshland", "agricultural", and "fallow agricultural". Land use maps were prepared using a hybrid classification approach in which the ISODATA algorithm was used to identify training sites to be used in a subsequent supervised classification using the Minimum Distance to the Mean algorithm. This method resulted in an average overall accuracy of 94 percent in the resulting land use maps. Two change detection techniques were applied to the land use maps to produce "from-to" statistics and change detection maps with overall accuracies of ca. 90 percent. Our change detection results show that agricultural development during 1990- 2003 exceeded the amount of land reclamation during 1984-1990 by a factor of 2 reflecting unswerving development. We also find that the increase in urbanization (ca. 52674 acres) during 1990-2003 was predominantly due to encroachment into traditionally cultivated land at the fringes of urban centers. A marked decrease in wetland area, resulting from conversion to agricultural land northwest of Lake El Manzala was also documented. Our change detection maps show that recent agricultural development is concentrated around the eastern part of Ismaelia Canal and east of the northern part of Bahr El Baqar Drain. Furthermore the expansion of urban land dominated the desert fringe east of Cairo during 1984-1990, and overwhelmed traditionally cultivated land through 1990-2003. Three regions of maximum change, or hotspots, were

  1. Research on spatio-temporal ontology based on description logic

    NASA Astrophysics Data System (ADS)

    Huang, Yongqi; Ding, Zhimin; Zhao, Zhui; Ouyang, Fucheng

    2008-10-01

    DL, short for Description Logic, is aimed at getting a balance between describing ability and reasoning complexity. Users can adopt DL to write clear and formalized concept description for domain model, which makes ontology description possess well-defined syntax and semantics and helps to resolve the problem of spatio-temporal reasoning based on ontology. This paper studies on basic theory of DL and relationship between DL and OWL at first. By analyzing spatio-temporal concepts and relationship of spatio-temporal GIS, the purpose of this paper is adopting ontology language based on DL to express spatio-temporal ontology, and employing suitable ontology-building tool to build spatio-temporal ontology. With regard to existing spatio-temporal ontology based on first-order predicate logic, we need to transform it into spatio-temporal ontology based on DL so as to make the best of existing research fruits. This paper also makes a research on translating relationships between DL and first-order predicate logic.

  2. Spatio-temporal variation in small mammal species richness, relative abundance and body mass reveal changes in a coastal wetland ecosystem in Ghana.

    PubMed

    Ofori, Benjamin Y; Attuquayefio, Daniel K; Owusu, Erasmus H; Musah, Yahaya; Ntiamoa-Baidu, Yaa

    2016-06-01

    Coastal wetlands in Ghana are under severe threat of anthropogenic drivers of habitat degradation and climate change, thereby increasing the need for assessment and monitoring to inform targeted and effective conservation of these ecosystems. Here, we assess small mammal species richness, relative abundance and body mass in three habitats at the Muni-Pomadze Ramsar site of Ghana, and compare these to baseline data gathered in 1997 to evaluate changes in the wetland ecosystem. Small mammals were live-trapped using Sherman collapsible and pitfall traps. We recorded 84 individuals of 10 species in 1485 trap-nights, whereas the baseline study recorded 45 individuals of seven species in 986 trap-nights. The overall trap-success was therefore greater in the present study (5.66 %) than the baseline study (4.56 %). The species richness increased from one to four in the forest, and from zero to eight in the thicket, but decreased from six to four in the grassland. The total number of individuals increased in all habitats, with the dominant species in the grassland shifting from Lemniscomys striatus to Mastomys erythroleucus. Three species, Malacomys edwardsi, Grammomys poensis and Praomys tullbergi are the first records for the Muni-Pomadze Ramsar site. Generally, the average body mass of individual species in the grassland was lower in the present study. The considerable changes in small mammal community structure suggest changes in the wetland ecosystem. The conservation implications of our findings are discussed. PMID:27154051

  3. The spatio-temporal responses of the carbon cycle to climate and land use/land cover changes between 1981-2000 in China

    NASA Astrophysics Data System (ADS)

    Gao, Zhiqiang; Cao, Xiaoming; Gao, Wei

    2013-03-01

    This paper represents the first national effort of its kind to systematically investigate the impact of changes in climate and land use and land cover (LULC) on the carbon cycle with high-resolution dynamic LULC data at the decadal scale (1990s and 2000s). Based on simulations using well calibrated and validated Carbon Exchanges in the Vegetation-Soil-Atmosphere (CEVSA) model, temporal and spatial variations in carbon storage and fluxes in China may be generated empower us to relate these variations to climate variability and LULC with respect to net primary productivity (NPP), heterotrophic respiration (HR), net ecosystem productivity (NEP), storage and soil carbon (SOC), and vegetation carbon (VEGC) individually or collectively. Overall, the increases in NPP were greater than HR in most cases due to the effect of global warming with more precipitation in China from 1981 to 2000. With this trend, the NEP remained positive during that period, resulting in a net increase of total amount of carbon being stored by about 0.296 PgC within a 20-year time frame. Because the climate effect was much greater than that of changes of LULC, the total carbon storage in China actually increased by about 0.17 PgC within the 20-year time period. Such findings will contribute to the generation of carbon emissions control policies under global climate change impacts.

  4. STGP: Spatio-temporal Gaussian process models for longitudinal neuroimaging data.

    PubMed

    Hyun, Jung Won; Li, Yimei; Huang, Chao; Styner, Martin; Lin, Weili; Zhu, Hongtu

    2016-07-01

    Longitudinal neuroimaging data plays an important role in mapping the neural developmental profile of major neuropsychiatric and neurodegenerative disorders and normal brain. The development of such developmental maps is critical for the prevention, diagnosis, and treatment of many brain-related diseases. The aim of this paper is to develop a spatio-temporal Gaussian process (STGP) framework to accurately delineate the developmental trajectories of brain structure and function, while achieving better prediction by explicitly incorporating the spatial and temporal features of longitudinal neuroimaging data. Our STGP integrates a functional principal component model (FPCA) and a partition parametric space-time covariance model to capture the medium-to-large and small-to-medium spatio-temporal dependence structures, respectively. We develop a three-stage efficient estimation procedure as well as a predictive method based on a kriging technique. Two key novelties of STGP are that it can efficiently use a small number of parameters to capture complex non-stationary and non-separable spatio-temporal dependence structures and that it can accurately predict spatio-temporal changes. We illustrate STGP using simulated data sets and two real data analyses including longitudinal positron emission tomography data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and longitudinal lateral ventricle surface data from a longitudinal study of early brain development. PMID:27103140

  5. Construction of an Unbiased Spatio-temporal Atlas of the Tongue During Speech

    PubMed Central

    Woo, Jonghye; Xing, Fangxu; Lee, Junghoon; Stone, Maureen; Prince, Jerry L.

    2016-01-01

    Quantitative characterization and comparison of tongue motion during speech and swallowing present fundamental challenges because of striking variations in tongue structure and motion across subjects. A reliable and objective description of the dynamics tongue motion requires the consistent integration of inter-subject variability to detect the subtle changes in populations. To this end, in this work, we present an approach to constructing an unbiased spatio-temporal atlas of the tongue during speech for the first time, based on cine-MRI from twenty two normal subjects. First, we create a common spatial space using images from the reference time frame, a neutral position, in which the unbiased spatio-temporal atlas can be created. Second, we transport images from all time frames of all subjects into this common space via the single transformation. Third, we construct atlases for each time frame via groupwise diffeomorphic registration, which serves as the initial spatio-temporal atlas. Fourth, we update the spatio-temporal atlas by realigning each time sequence based on the Lipschitz norm on diffeomorphisms between each subject and the initial atlas. We evaluate and compare different configurations such as similarity measures to build the atlas. Our proposed method permits to accurately and objectively explain the main pattern of tongue surface motion. PMID:26221715

  6. Spatio-temporal activity of lightnings over Greece

    NASA Astrophysics Data System (ADS)

    Nastos, P. T.; Matsangouras, I. T.; Chronis, T. G.

    2012-04-01

    Extreme precipitation events are always associated with convective weather conditions driving to intense lightning activity: Cloud to Ground (CG), Ground to Cloud (GC) and Cloud to Cloud (CC). Thus, the study of lightnings, which typically occur during thunderstorms, gives evidence of the spatio-temporal variability of intense precipitation. Lightning is a natural phenomenon in the atmosphere, being a major cause of storm related with deaths and main trigger of forest fires during dry season. Lightning affects the many electrochemical systems of the body causing nerve damage, memory loss, personality change, and emotional problems. Besides, among the various nitrogen oxides sources, the contribution from lightning likely represents the largest uncertainty. An operational lightning detection network (LDN) has been established since 2007 by HNMS, consisting of eight time-of-arrival sensors (TOA), spatially distributed across Greek territory. In this study, the spatial and temporal variability of recorded lightnings (CG, GC and CC) are analyzed over Greece, during the period from January 14, 2008 to December 31, 2009, for the first time. The data for retrieving the location and time-of-occurrence of lightning were acquired from Hellenic National Meteorological Service (HNMS). In addition to the analysis of spatio-temporal activity over Greece, the HNMS-LDN characteristics are also presented. The results of the performed analysis reveal the specific geographical sub-regions associated with lightnings incidence. Lightning activity occurs mainly during the autumn season, followed by summer and spring. Higher frequencies of flashes appear over Ionian and Aegean Sea than over land during winter period against continental mountainous regions during summer period.

  7. High Spatio-Temporal Resolution Bathymetry Estimation and Morphology

    NASA Astrophysics Data System (ADS)

    Bergsma, E. W. J.; Conley, D. C.; Davidson, M. A.; O'Hare, T. J.

    2015-12-01

    In recent years, bathymetry estimates using video images have become increasingly accurate. With the cBathy code (Holman et al., 2013) fully operational, bathymetry results with 0.5 metres accuracy have been regularly obtained at Duck, USA. cBathy is based on observations of the dominant frequencies and wavelengths of surface wave motions and estimates the depth (and hence allows inference of bathymetry profiles) based on linear wave theory. Despite the good performance at Duck, large discrepancies were found related to tidal elevation and camera height (Bergsma et al., 2014) and on the camera boundaries. A tide dependent floating pixel and camera boundary solution have been proposed to overcome these issues (Bergsma et al., under review). The video-data collection is set estimate depths hourly on a grid with resolution in the order of 10x25 meters. Here, the application of the cBathy at Porthtowan in the South-West of England is presented. Hourly depth estimates are combined and analysed over a period of 1.5 years (2013-2014). In this work the focus is on the sub-tidal region, where the best cBathy results are achieved. The morphology of the sub-tidal bar is tracked with high spatio-temporal resolution on short and longer time scales. Furthermore, the impact of the storm and reset (sudden and large changes in bathymetry) of the sub-tidal area is clearly captured with the depth estimations. This application shows that the high spatio-temporal resolution of cBathy makes it a powerful tool for coastal research and coastal zone management.

  8. Hirarchical Bayesian Spatio-Temporal Interpolation including Covariates

    NASA Astrophysics Data System (ADS)

    Hussain, Ijaz; Mohsin, Muhammad; Spoeck, Gunter; Pilz, Juergen

    2010-05-01

    The space-time interpolation of precipitation has significant contribution to river control,reservoir operations, forestry interest and flash flood watches etc. The changes in environmental covariates and spatial covariates make space-time estimation of precipitation a challenging task. In our earlier paper [1], we used transformed hirarchical Bayesian sapce-time interpolation method for predicting the amount of precipiation. In present paper, we modified the [2] method to include covarites which varaies with respect to space-time. The proposed method is applied to estimating space-time monthly precipitation in the monsoon periods during 1974 - 2000. The 27-years monthly average data of precipitation, temperature, humidity and wind speed are obtained from 51 monitoring stations in Pakistan. The average monthly precipitation is used response variable and temperature, humidity and wind speed are used as time varying covariates. Moreovere the spatial covarites elevation, latitude and longitude of same monitoring stations are also included. The cross-validation method is used to compare the results of transformed hierarchical Bayesian spatio-temporal interpolation with and without including environmental and spatial covariates. The software of [3] is modified to incorprate enviornmental covariates and spatil covarites. It is observed that the transformed hierarchical Bayesian method including covarites provides more accuracy than the transformed hierarchical Bayesian method without including covarites. Moreover, the five potential monitoring cites are selected based on maximum entropy sampaling design approach. References [1] I.Hussain, J.Pilz,G. Spoeck and H.L.Yu. Spatio-Temporal Interpolation of Precipitation during Monsoon Periods in Pakistan. submitted in Advances in water Resources,2009. [2] N.D. Le, W. Sun, and J.V. Zidek, Bayesian multivariate spatial interpolation with data missing by design. Journal of the Royal Statistical Society. Series B (Methodological

  9. A Spatio-temporal Model of African Animal Trypanosomosis Risk

    PubMed Central

    Dicko, Ahmadou H.; Percoma, Lassane; Sow, Adama; Adam, Yahaya; Mahama, Charles; Sidibé, Issa; Dayo, Guiguigbaza-Kossigan; Thévenon, Sophie; Fonta, William; Sanfo, Safietou; Djiteye, Aligui; Salou, Ernest; Djohan, Vincent; Cecchi, Giuliano; Bouyer, Jérémy

    2015-01-01

    Background African animal trypanosomosis (AAT) is a major constraint to sustainable development of cattle farming in sub-Saharan Africa. The habitat of the tsetse fly vector is increasingly fragmented owing to demographic pressure and shifts in climate, which leads to heterogeneous risk of cyclical transmission both in space and time. In Burkina Faso and Ghana, the most important vectors are riverine species, namely Glossina palpalis gambiensis and G. tachinoides, which are more resilient to human-induced changes than the savannah and forest species. Although many authors studied the distribution of AAT risk both in space and time, spatio-temporal models allowing predictions of it are lacking. Methodology/Principal Findings We used datasets generated by various projects, including two baseline surveys conducted in Burkina Faso and Ghana within PATTEC (Pan African Tsetse and Trypanosomosis Eradication Campaign) national initiatives. We computed the entomological inoculation rate (EIR) or tsetse challenge using a range of environmental data. The tsetse apparent density and their infection rate were separately estimated and subsequently combined to derive the EIR using a “one layer-one model” approach. The estimated EIR was then projected into suitable habitat. This risk index was finally validated against data on bovine trypanosomosis. It allowed a good prediction of the parasitological status (r2 = 67%), showed a positive correlation but less predictive power with serological status (r2 = 22%) aggregated at the village level but was not related to the illness status (r2 = 2%). Conclusions/Significance The presented spatio-temporal model provides a fine-scale picture of the dynamics of AAT risk in sub-humid areas of West Africa. The estimated EIR was high in the proximity of rivers during the dry season and more widespread during the rainy season. The present analysis is a first step in a broader framework for an efficient risk management of climate

  10. Climate change in Bangladesh: a spatio-temporal analysis and simulation of recent temperature and rainfall data using GIS and time series analysis model

    NASA Astrophysics Data System (ADS)

    Rahman, Md. Rejaur; Lateh, Habibah

    2015-12-01

    In this paper, temperature and rainfall data series were analysed from 34 meteorological stations distributed throughout Bangladesh over a 40-year period (1971 to 2010) in order to evaluate the magnitude of these changes statistically and spatially. Linear regression, coefficient of variation, inverse distance weighted interpolation techniques and geographical information systems were performed to analyse the trends, variability and spatial patterns of temperature and rainfall. Autoregressive integrated moving average time series model was used to simulate the temperature and rainfall data. The results confirm a particularly strong and recent climate change in Bangladesh with a 0.20 °C per decade upward trend of mean temperature. The highest upward trend in minimum temperature (range of 0.80-2.4 °C) was observed in the northern, northwestern, northeastern, central and central southern parts while greatest warming in the maximum temperature (range of 1.20-2.48 °C) was found in the southern, southeastern and northeastern parts during 1971-2010. An upward trend of annual rainfall (+7.13 mm per year) and downward pre-monsoon (-0.75 mm per year) and post-monsoon rainfall (-0.55 mm per year) trends were observed during this period. Rainfall was erratic in pre-monsoon season and even more so during the post-monsoon season (variability of 44.84 and 85.25 % per year, respectively). The mean forecasted temperature exhibited an increase of 0.018 °C per year in 2011-2020, and if this trend continues, this would lead to approximately 1.0 °C warmer temperatures in Bangladesh by 2020, compared to that of 1971. A greater rise is projected for the mean minimum (0.20 °C) than the mean maximum (0.16 °C) temperature. Annual rainfall is projected to decline 153 mm from 2011 to 2020, and a drying condition will persist in the northwestern, western and southwestern parts of the country during the pre- and post-monsoonal seasons.

  11. Spatio-temporal registration of multiple trajectories.

    PubMed

    Padoy, Nicolas; Hager, Gregory D

    2011-01-01

    A growing number of medical datasets now contain both a spatial and a temporal dimension. Trajectories, from tools or body features, are thus becoming increasingly important for their analysis. In this paper, we are interested in recovering the spatial and temporal differences between trajectories coming from different datasets. In particular, we address the case of surgical gestures, where trajectories contain both spatial transformations and speed differences in the execution. We first define the spatio-temporal registration problem between multiple trajectories. We then propose an optimization method to jointly recover both the rigid spatial motions and the non-linear time warpings. The optimization generates also a generic trajectory template, in which spatial and temporal differences have been factored out. This approach can be potentially used to register and compare gestures side-by-side for training sessions, to build gesture trajectory models for automation by a robot, or to register the trajectories of natural or artificial markers which follow similar motions. We demonstrate its usefulness with synthetic and real experiments. In particular, we register and analyze complex surgical gestures performed by tele-manipulation using the da Vinci robot. PMID:22003611

  12. Spatio-temporal correlations in Coulomb clusters

    NASA Astrophysics Data System (ADS)

    Ghosal, Amit; Ash, Biswarup; Chakrabarti, Jaydeb

    Dynamical response of Coulomb-particles in nanoclusters are investigated at different temperatures characterizing their solid-like (Wigner molecule) and liquid-like behavior. The density correlations probe spatio-temporal relaxation, uncovering distinct behavior at multiple time scales in these systems. They show a stretched-Gaussian or stretched-exponential spatial decay at long times in circular and irregular traps. Interplay of confinement and long-range nature of interactions yields spatially correlated motion of the particles in string-like paths, leaving the system heterogeneous even at long times. While particles in a `solid' flow producing dynamic heterogeneities, their random motion in `liquid' defies central limit theorem. Distinguishing the two confinements, temperature dependent motional signatures serve as a criterion for the crossover between `solid' and `liquid'. The irregular Wigner molecule turns into a nearly homogeneous liquid over a much wider temperature window compared to the circular case. The temperature dependence of different relaxation time scales builds crucial insights. A phenomenological model, relating the unusual dynamics to the heterogeneous nature of the diffusivities in the system, captures much of the subtleties of our numerical simulations.

  13. A LANGUAGE FOR MODULAR SPATIO-TEMPORAL SIMULATION (R824766)

    EPA Science Inventory

    Creating an effective environment for collaborative spatio-temporal model development will require computational systems that provide support for the user in three key areas: (1) Support for modular, hierarchical model construction and archiving/linking of simulation modules; (2)...

  14. Parallel indexing technique for spatio-temporal data

    NASA Astrophysics Data System (ADS)

    He, Zhenwen; Kraak, Menno-Jan; Huisman, Otto; Ma, Xiaogang; Xiao, Jing

    2013-04-01

    The requirements for efficient access and management of massive multi-dimensional spatio-temporal data in geographical information system and its applications are well recognized and researched. The most popular spatio-temporal access method is the R-Tree and its variants. However, it is difficult to use them for parallel access to multi-dimensional spatio-temporal data because R-Trees, and variants thereof, are in hierarchical structures which have severe overlapping problems in high dimensional space. We extended a two-dimensional interval space representation of intervals to a multi-dimensional parallel space, and present a set of formulae to transform spatio-temporal queries into parallel interval set operations. This transformation reduces problems of multi-dimensional object relationships to simpler two-dimensional spatial intersection problems. Experimental results show that the new parallel approach presented in this paper has superior range query performance than R*-trees for handling multi-dimensional spatio-temporal data and multi-dimensional interval data. When the number of CPU cores is larger than that of the space dimensions, the insertion performance of this new approach is also superior to R*-trees. The proposed approach provides a potential parallel indexing solution for fast data retrieval of massive four-dimensional or higher dimensional spatio-temporal data.

  15. Detection of Spatio-temporal variations of rainfall and temperature extremes over India

    NASA Astrophysics Data System (ADS)

    Hari, V.; Karmakar, S.; Ghosh, S.

    2012-12-01

    Hydrologic disturbances are commonly associated with the phenomenal occurrence of extreme events. The human kind has always been facing problem with hydrologic extremes in terms of deaths and economic loss. Hence, a complete analysis of observed extreme events will have a substantial role in planning, designing and management of the water resource systems. In India, the occurrence of extreme events, such as heavy rainfall, which is directly associated with the flash flood have been observed. For example; in 2005, Mumbai city of India suffered a huge economic damage, due to the record rainfall of 94 cm in a day. In the same year, two other major cities Chennai and Bangalore had also experienced the flash floods due to the heavy rainfall. Hence, occurrence of these recent events instigates researchers to investigate long term variation and trend of extreme rainfall over India. Very few previous studies have been conducted in India either considering a particular region or by considering a single extreme rainfall variable (either frequency or intensity of rainfall). In the present study, rainfall variables such as intensity, duration, frequency and volume are considered to investigate spatio-temporal variations for the entire India. The peak over threshold method with 95 percentile is considered to delineate the extreme variables from the observed rainfall data available (at 1×1 deg) for a period of 1901-2004. The temporal variability is determined by implementing a moving window of 30 years. As well as, the correlation analysis is conducted with the implementation of non-parametric coefficients. The spatio-temporal variability of 50 year return level (RL) for the rainfall intensity is determined considering Generalized Pareto and non-parametric kernel distributions as best fit. To identify the significant changes in the derived RL from first to last time window, a bootstrap-based approach proposed by Kharin and Zwiers (2005, Jl. of Climate, 18, 1156-1173) is

  16. Spatio-temporal Dynamics of Land-use and Land-cover Change: A Multi-agent Simulation Model and Its Application to an Upland Watershed in Central Vietnam

    NASA Astrophysics Data System (ADS)

    Le, Q.; Vlek, P. L.; Park, S.

    2005-12-01

    Land-use and land-cover change (LUCC) is an essential environmental process that should be monitored and prognosticated to provide a basis for better land management policy. However, LUCC modeling is a challenge due to the complex nature and unexpected behavior of both human drivers and natural constraints. This paper presents a multi-agent-based model to simulate spatio-temporal land-use changes and the interdependent socio-economic dynamics emerging from the complex socio-ecological interactions at micro levels resulting from land-use policy interventions. The model provides land-use scenarios under alternative policy to support decisions on land management for improved rural livelihoods while protecting the environment. In the multi-agent simulation model, the human community is represented by household agents (heterogeneous farming households) with their profiles and decision-making mechanisms about land use. The household profile defines the five asset dimensions of household livelihood (e.g., social, human, financial, natural and physical assets). The land-use decision-making program works by taking inputs from the household profile, perceived spatial environmental attributes, and introduced policies. The decision-making program is a logical procedure that combines a land-use choice model (multi-nominal logistic choices) and anthropological rules. The landscape environment is represented by landscape agents (congruent land patches of 30mx30m) with their state variables and ecological response mechanisms to environmental changes and human interventions. State variables of landscape agents correspond to spatial GIS-raster layers of biophysical, economic, and institutional variables. Ecological mechanisms of landscape agents are represented by internal sub-models of agricultural and forest productivity dynamics, which work in response to the current state, history, and spatial neighbourhood of the landscape agents. A multi-agent based protocol coordinates the

  17. Spatio-temporal networks: reachability, centrality and robustness

    PubMed Central

    Musolesi, Mirco

    2016-01-01

    Recent advances in spatial and temporal networks have enabled researchers to more-accurately describe many real-world systems such as urban transport networks. In this paper, we study the response of real-world spatio-temporal networks to random error and systematic attack, taking a unified view of their spatial and temporal performance. We propose a model of spatio-temporal paths in time-varying spatially embedded networks which captures the property that, as in many real-world systems, interaction between nodes is non-instantaneous and governed by the space in which they are embedded. Through numerical experiments on three real-world urban transport systems, we study the effect of node failure on a network's topological, temporal and spatial structure. We also demonstrate the broader applicability of this framework to three other classes of network. To identify weaknesses specific to the behaviour of a spatio-temporal system, we introduce centrality measures that evaluate the importance of a node as a structural bridge and its role in supporting spatio-temporally efficient flows through the network. This exposes the complex nature of fragility in a spatio-temporal system, showing that there is a variety of failure modes when a network is subject to systematic attacks. PMID:27429776

  18. Spatio-temporal networks: reachability, centrality and robustness.

    PubMed

    Williams, Matthew J; Musolesi, Mirco

    2016-06-01

    Recent advances in spatial and temporal networks have enabled researchers to more-accurately describe many real-world systems such as urban transport networks. In this paper, we study the response of real-world spatio-temporal networks to random error and systematic attack, taking a unified view of their spatial and temporal performance. We propose a model of spatio-temporal paths in time-varying spatially embedded networks which captures the property that, as in many real-world systems, interaction between nodes is non-instantaneous and governed by the space in which they are embedded. Through numerical experiments on three real-world urban transport systems, we study the effect of node failure on a network's topological, temporal and spatial structure. We also demonstrate the broader applicability of this framework to three other classes of network. To identify weaknesses specific to the behaviour of a spatio-temporal system, we introduce centrality measures that evaluate the importance of a node as a structural bridge and its role in supporting spatio-temporally efficient flows through the network. This exposes the complex nature of fragility in a spatio-temporal system, showing that there is a variety of failure modes when a network is subject to systematic attacks. PMID:27429776

  19. Dynamic design of ecological monitoring networks for non-Gaussian spatio-temporal data

    USGS Publications Warehouse

    Wikle, C.K.; Royle, J. Andrew

    2005-01-01

    Many ecological processes exhibit spatial structure that changes over time in a coherent, dynamical fashion. This dynamical component is often ignored in the design of spatial monitoring networks. Furthermore, ecological variables related to processes such as habitat are often non-Gaussian (e.g. Poisson or log-normal). We demonstrate that a simulation-based design approach can be used in settings where the data distribution is from a spatio-temporal exponential family. The key random component in the conditional mean function from this distribution is then a spatio-temporal dynamic process. Given the computational burden of estimating the expected utility of various designs in this setting, we utilize an extended Kalman filter approximation to facilitate implementation. The approach is motivated by, and demonstrated on, the problem of selecting sampling locations to estimate July brood counts in the prairie pothole region of the U.S.

  20. Spatio-Temporal Dynamics in Collective Frog Choruses Examined by Mathematical Modeling and Field Observations

    NASA Astrophysics Data System (ADS)

    Aihara, Ikkyu; Mizumoto, Takeshi; Otsuka, Takuma; Awano, Hiromitsu; Nagira, Kohei; Okuno, Hiroshi G.; Aihara, Kazuyuki

    2014-01-01

    This paper reports theoretical and experimental studies on spatio-temporal dynamics in the choruses of male Japanese tree frogs. First, we theoretically model their calling times and positions as a system of coupled mobile oscillators. Numerical simulation of the model as well as calculation of the order parameters show that the spatio-temporal dynamics exhibits bistability between two-cluster antisynchronization and wavy antisynchronization, by assuming that the frogs are attracted to the edge of a simple circular breeding site. Second, we change the shape of the breeding site from the circle to rectangles including a straight line, and evaluate the stability of two-cluster and wavy antisynchronization. Numerical simulation shows that two-cluster antisynchronization is more frequently observed than wavy antisynchronization. Finally, we recorded frog choruses at an actual paddy field using our sound-imaging method. Analysis of the video demonstrated a consistent result with the aforementioned simulation: namely, two-cluster antisynchronization was more frequently realized.

  1. Reaction diffusion equation with spatio-temporal delay

    NASA Astrophysics Data System (ADS)

    Zhao, Zhihong; Rong, Erhua

    2014-07-01

    We investigate reaction-diffusion equation with spatio-temporal delays, the global existence, uniqueness and asymptotic behavior of solutions for which in relation to constant steady-state solution, included in the region of attraction of a stable steady solution. It is shown that if the delay reaction function satisfies some conditions and the system possesses a pair of upper and lower solutions then there exists a unique global solution. In terms of the maximal and minimal constant solutions of the corresponding steady-state problem, we get the asymptotic stability of reaction-diffusion equation with spatio-temporal delay. Applying this theory to Lotka-Volterra model with spatio-temporal delay, we get the global solution asymptotically tend to the steady-state problem's steady-state solution.

  2. Spatio-Temporal Self-Organization in Mudstones (Invited)

    NASA Astrophysics Data System (ADS)

    Dewers, T. A.

    2010-12-01

    Shales and other mudstones are the most abundant rock types in sedimentary basins, yet have received comparatively little attention. Common as hydrocarbon seals, these are increasingly being targeted as unconventional gas reservoirs, caprocks for CO2 sequestration, and storage repositories for waste. The small pore and grain size, large specific surface areas, and clay mineral structures lend themselves to rapid reaction rates, high capillary pressures, and semi-permeable membrane behavior accompanying changes in stress, pressure, temperature and chemical conditions. Under far from equilibrium conditions, mudrocks display a variety of spatio-temporal self-organized phenomena arising from nonlinear thermo-mechano-chemo-hydro coupling. Beginning with a detailed examination of nano-scale pore network structures in mudstones, we discuss the dynamics behind such self-organized phenomena as pressure solitons in unconsolidated muds, chemically-induced flow self focusing and permeability transients, localized compaction, time dependent well-bore failure, and oscillatory osmotic fluxes as they occur in clay-bearing sediments. Examples are draw from experiments, numerical simulation, and the field. These phenomena bear on the ability of these rocks to serve as containment barriers. This work is funded by the US Department of Energy, Office of Basic Energy Sciences. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000

  3. Spatio-temporal self-organization in mudstones.

    SciTech Connect

    Dewers, Thomas A.

    2010-12-01

    Shales and other mudstones are the most abundant rock types in sedimentary basins, yet have received comparatively little attention. Common as hydrocarbon seals, these are increasingly being targeted as unconventional gas reservoirs, caprocks for CO2 sequestration, and storage repositories for waste. The small pore and grain size, large specific surface areas, and clay mineral structures lend themselves to rapid reaction rates, high capillary pressures, and semi-permeable membrane behavior accompanying changes in stress, pressure, temperature and chemical conditions. Under far from equilibrium conditions, mudrocks display a variety of spatio-temporal self-organized phenomena arising from nonlinear thermo-mechano-chemo-hydro coupling. Beginning with a detailed examination of nano-scale pore network structures in mudstones, we discuss the dynamics behind such self-organized phenomena as pressure solitons in unconsolidated muds, chemically-induced flow self focusing and permeability transients, localized compaction, time dependent well-bore failure, and oscillatory osmotic fluxes as they occur in clay-bearing sediments. Examples are draw from experiments, numerical simulation, and the field. These phenomena bear on the ability of these rocks to serve as containment barriers.

  4. Research of spatio-temporal analysis of agricultural pest

    NASA Astrophysics Data System (ADS)

    Wang, Changwei; Li, Deren; Hu, Yueming; Wu, Xiaofang; Qi, Yu

    2009-10-01

    The increase of agricultural pest disasters in recent years has become one of major problems in agriculture harvest; how to predict and control the disasters of agricultural pest has thus attracted great research interest. Although a series of works have been done and some achievements have been attained, the knowledge in this area remains limited. The migration of agricultural pest is not only related to the time variation, but also the space; consequently, the population of agricultural pest has complex spatio-temporal characteristics. The space factor and the temporal factor must be considered at the same time in the research of dynamics changes of the pest population. Using plant hoppers as an object of study, this study employed the biological analogy deviation model to study the distribution of pest population in different periods of time in Guangdong Province. It is demonstrated that the population distribution of plant hoppers is not only related to the space location, but also has a certain direction. The result reported here offers help to the monitor, prevention and control of plant hoppers in Guangdong Provinces.

  5. Time reversal and the spatio-temporal matched filter

    SciTech Connect

    Lehman, S K; Poggio, A J; Kallman, J S; Meyer, A W; Candy, J V

    2004-03-08

    It is known that focusing of an acoustic field by a time-reversal mirror (TRM) is equivalent to a spatio-temporal matched filter under conditions where the Green's function of the field satisfies reciprocity and is time invariant, i.e. the Green's function is independent of the choice of time origin. In this letter, it is shown that both reciprocity and time invariance can be replaced by a more general constraint on the Green's function that allows a TRM to implement the spatio-temporal matched filter even when conditions are time varying.

  6. Oversaturated part-based visual tracking via spatio-temporal context learning.

    PubMed

    Liu, Wei; Li, Jicheng; Shi, Zhiguang; Chen, Xiaotian; Chen, Xiao

    2016-09-01

    Partial occlusion is one of the key challenging factors in a robust visual tracking method. To solve this issue, part-based trackers are widely explored; most of them are computationally expensive and therefore infeasible for real-time applications. Context information around the target has been used in tracking, which was recently renewed by a spatio-temporal context (STC) tracker. The fast Fourier transform adopted in STC equips it with high efficiency. However, the global context used in STC alleviates the performance when dealing with occlusion. In this paper, we propose an oversaturated part-based tracker based on spatio-temporal context learning, which tracks objects based on selected parts with spatio-temporal context learning. Furthermore, a structural layout constraint and a novel model update strategy are utilized to enhance the tracker's anti-occlusion ability and to deal with other appearance changes effectively. Extensive experimental results demonstrate our tracker's superior robustness against the original STC and other state-of-art methods. PMID:27607271

  7. Real-Time Spatio-Temporal Twice Whitening for MIMO Energy Detector

    SciTech Connect

    Humble, Travis S; Mitra, Pramita; Barhen, Jacob; Schleck, Bryan

    2010-01-01

    While many techniques exist for local spectrum sensing of a primary user, each represents a computationally demanding task to secondary user receivers. In software-defined radio, computational complexity lengthens the time for a cognitive radio to recognize changes in the transmission environment. This complexity is even more significant for spatially multiplexed receivers, e.g., in SIMO and MIMO, where the spatio-temporal data sets grow in size with the number of antennae. Limits on power and space for the processor hardware further constrain SDR performance. In this report, we discuss improvements in spatio-temporal twice whitening (STTW) for real-time local spectrum sensing by demonstrating a form of STTW well suited for MIMO environments. We implement STTW on the Coherent Logix hx3100 processor, a multicore processor intended for low-power, high-throughput software-defined signal processing. These results demonstrate how coupling the novel capabilities of emerging multicore processors with algorithmic advances can enable real-time, software-defined processing of large spatio-temporal data sets.

  8. Evaluating the Spatio-Temporal Factors that Structure Network Parameters of Plant-Herbivore Interactions

    PubMed Central

    López-Carretero, Antonio; Díaz-Castelazo, Cecilia; Boege, Karina; Rico-Gray, Víctor

    2014-01-01

    Despite the dynamic nature of ecological interactions, most studies on species networks offer static representations of their structure, constraining our understanding of the ecological mechanisms involved in their spatio-temporal stability. This is the first study to evaluate plant-herbivore interaction networks on a small spatio-temporal scale. Specifically, we simultaneously assessed the effect of host plant availability, habitat complexity and seasonality on the structure of plant-herbivore networks in a coastal tropical ecosystem. Our results revealed that changes in the host plant community resulting from seasonality and habitat structure are reflected not only in the herbivore community, but also in the emergent properties (network parameters) of the plant-herbivore interaction network such as connectance, selectiveness and modularity. Habitat conditions and periods that are most stressful favored the presence of less selective and susceptible herbivore species, resulting in increased connectance within networks. In contrast, the high degree of selectivennes (i.e. interaction specialization) and modularity of the networks under less stressful conditions was promoted by the diversification in resource use by herbivores. By analyzing networks at a small spatio-temporal scale we identified the ecological factors structuring this network such as habitat complexity and seasonality. Our research offers new evidence on the role of abiotic and biotic factors in the variation of the properties of species interaction networks. PMID:25340790

  9. Fast Spatio-Temporal Data Mining from Large Geophysical Datasets

    NASA Technical Reports Server (NTRS)

    Stolorz, P.; Mesrobian, E.; Muntz, R.; Santos, J. R.; Shek, E.; Yi, J.; Mechoso, C.; Farrara, J.

    1995-01-01

    Use of the UCLA CONQUEST (CONtent-based Querying in Space and Time) is reviewed for performance of automatic cyclone extraction and detection of spatio-temporal blocking conditions on MPP. CONQUEST is a data analysis environment for knowledge and data mining to aid in high-resolution modeling of climate modeling.

  10. Spatio-temporal analysis of environmental radiation in Korea

    SciTech Connect

    Kim, J.Y.; Lee, B.C.; Shin, H.K.

    2007-07-01

    Geostatistical visualization of environmental radiation is a very powerful approach to explore and understand spatio-temporal variabilities of environmental radiation data. Spatial patterns of environmental radiation can be described quantitatively in terms of variogram and kriging, which are based on the idea that statistical variation of data are functions of distance. (authors)

  11. Spatio-temporal evaluation matrices for geospatial data

    NASA Astrophysics Data System (ADS)

    Triglav, Joc; Petrovič, Dušan; Stopar, Bojan

    2011-02-01

    The global geospatial community is investing substantial effort in providing tools for geospatial data-quality information analysis and systematizing the criteria for geospatial data quality. The importance of these activities is increasing, especially in the last decade, which has witnessed an enormous expansion of geospatial data use in general and especially among mass users. Although geospatial data producers are striving to define and present data-quality standards to users and users increasingly need to assess the fitness for use of the data, the success of these activities is still far from what is expected or required. As a consequence, neglect or misunderstanding of data quality among users results in misuse or risks. This paper presents an aid in spatio-temporal quality evaluation through the use of spatio-temporal evaluation matrices (STEM) and the index of spatio-temporal anticipations (INSTANT) matrices. With the help of these two simple tools, geospatial data producers can systematically categorize and visualize the granularity of their spatio-temporal data, and users can present their requirements in the same way using business intelligence principles and a Web 2.0 approach. The basic principles and some examples are presented in the paper, and potential further applied research activities are briefly described.

  12. Finding Spatio-Temporal Patterns in Large Sensor Datasets

    ERIC Educational Resources Information Center

    McGuire, Michael Patrick

    2010-01-01

    Spatial or temporal data mining tasks are performed in the context of the relevant space, defined by a spatial neighborhood, and the relevant time period, defined by a specific time interval. Furthermore, when mining large spatio-temporal datasets, interesting patterns typically emerge where the dataset is most dynamic. This dissertation is…

  13. Cubic map algebra functions for spatio-temporal analysis

    USGS Publications Warehouse

    Mennis, J.; Viger, R.; Tomlin, C.D.

    2005-01-01

    We propose an extension of map algebra to three dimensions for spatio-temporal data handling. This approach yields a new class of map algebra functions that we call "cube functions." Whereas conventional map algebra functions operate on data layers representing two-dimensional space, cube functions operate on data cubes representing two-dimensional space over a third-dimensional period of time. We describe the prototype implementation of a spatio-temporal data structure and selected cube function versions of conventional local, focal, and zonal map algebra functions. The utility of cube functions is demonstrated through a case study analyzing the spatio-temporal variability of remotely sensed, southeastern U.S. vegetation character over various land covers and during different El Nin??o/Southern Oscillation (ENSO) phases. Like conventional map algebra, the application of cube functions may demand significant data preprocessing when integrating diverse data sets, and are subject to limitations related to data storage and algorithm performance. Solutions to these issues include extending data compression and computing strategies for calculations on very large data volumes to spatio-temporal data handling.

  14. Spatio-Temporal Patterns of Surface Irradiance in the Himalaya

    NASA Astrophysics Data System (ADS)

    Dobreva, I. D.; Bishop, M. P.

    2014-12-01

    Climate-glacier dynamics in the Himalaya are complex. Research indicates extreme local variability in glacier fluctuations and the presence of regional trends. The glaciers in the Karakoram Himalaya depart from world trends of glacier recession, as many are advancing or surging. Nevertheless, glacier sensitivity to climate change has yet to be quantitatively assessed given numerous controlling factors. We attempt to address part of the problem by evaluating the role of topography in explaining variations in surface irradiance. Specifically, we developed a spectral-based topographic solar radiation model that accounts for multi-scale topographic effects. We evaluate surface irradiance simulations over a multitude of glaciers across the Karakoram and Nepalese Himalaya and examine spatio-temporal patterns to determine which alpine glaciers are more susceptible to radiation forcing. Simulation results reveal that many Nepalese glaciers characterized by rapid downwasting, retreat and expanding proglacial lakes, exhibit relatively high-magnitude daily irradiance patterns spatially focused over the terminus region, while other glacier surface areas received less short-wave irradiance. These results were found to be associated with basin-scale relief conditions and topographic shielding. Altitudinal variation in glacier surface irradiance was found to increase during the later portion of the ablation season, as changes in solar geometry produce more cast shadows that protect glaciers given extreme relief. Topographic effects on surface irradiance vary significantly from glacier to glacier, demonstrating the important role of glacier and mountain geodynamics on glacier sensitivity to climate change. Spatial and altitudinal patterns, coupled with information regarding supraglacial debris distribution, depth and ice-flow velocities, may potentially explain glacier sensitivity to climate change and the local variability of glacier fluctuations in the Himalaya.

  15. Identifying spatio-temporal patterns of transboundary disease spread: examples using avian influenza H5N1 outbreaks

    PubMed Central

    Farnsworth, Matthew L.; Ward, Michael P.

    2009-01-01

    Characterizing spatio-temporal patterns among epidemics in which the mechanism of spread is uncertain is important for generating disease spread hypotheses, which may in turn inform disease control and prevention strategies. Using a dataset representing three phases of highly pathogenic avian influenza H5N1 outbreaks in village poultry in Romania, 2005–2006, spatio-temporal patterns were characterized. We first fit a set of hierarchical Bayesian models that quantified changes in the spatio-temporal relative risk for each of the 23 affected counties. We then modeled spatial synchrony in each of the three epidemic phases using non-parametric covariance functions and Thin Plate Spline regression models. We found clear differences in the spatio-temporal patterns among the epidemic phases (local versus regional correlated processes), which may indicate differing spread mechanisms (for example wild bird versus human-mediated). Elucidating these patterns allowed us to postulate that a shift in the primary mechanism of disease spread may have taken place between the second and third phases of this epidemic. Information generated by such analyses could assist affected countries in determining the most appropriate control programs to implement, and to allocate appropriate resources to preventing contact between domestic poultry and wild birds versus enforcing bans on poultry movements and quarantine. The methods used in this study could be applied in many different situations to analyze transboundary disease data in which only location and time of occurrence data are reported. PMID:19210952

  16. Nonlinear Spatio-Temporal Dynamics and Chaos in Semiconductors

    NASA Astrophysics Data System (ADS)

    Schöll, Eckehard

    2005-08-01

    Nonlinear transport phenomena are an increasingly important aspect of modern semiconductor research. This volume deals with complex nonlinear dynamics, pattern formation, and chaotic behavior in such systems. It bridges the gap between two well-established fields: the theory of dynamic systems and nonlinear charge transport in semiconductors. This unified approach helps reveal important electronic transport instabilities. The initial chapters lay a general framework for the theoretical description of nonlinear self-organized spatio-temporal patterns, such as current filaments, field domains, fronts, and analysis of their stability. Later chapters consider important model systems in detail: impact ionization induced impurity breakdown, Hall instabilities, superlattices, and low-dimensional structures. State-of-the-art results include chaos control, spatio-temporal chaos, multistability, pattern selection, activator-inhibitor kinetics, and global coupling, linking fundamental issues to electronic device applications. This book will be of great value to semiconductor physicists and nonlinear scientists alike.

  17. Nonlinear Spatio-Temporal Dynamics and Chaos in Semiconductors

    NASA Astrophysics Data System (ADS)

    Schöll, Eckehard

    2001-02-01

    Nonlinear transport phenomena are an increasingly important aspect of modern semiconductor research. This volume deals with complex nonlinear dynamics, pattern formation, and chaotic behavior in such systems. It bridges the gap between two well-established fields: the theory of dynamic systems and nonlinear charge transport in semiconductors. This unified approach helps reveal important electronic transport instabilities. The initial chapters lay a general framework for the theoretical description of nonlinear self-organized spatio-temporal patterns, such as current filaments, field domains, fronts, and analysis of their stability. Later chapters consider important model systems in detail: impact ionization induced impurity breakdown, Hall instabilities, superlattices, and low-dimensional structures. State-of-the-art results include chaos control, spatio-temporal chaos, multistability, pattern selection, activator-inhibitor kinetics, and global coupling, linking fundamental issues to electronic device applications. This book will be of great value to semiconductor physicists and nonlinear scientists alike.

  18. A semiparametric spatio-temporal model for solar irradiance data

    DOE PAGESBeta

    Patrick, Joshua D.; Harvill, Jane L.; Hansen, Clifford W.

    2016-03-01

    Here, we evaluate semiparametric spatio-temporal models for global horizontal irradiance at high spatial and temporal resolution. These models represent the spatial domain as a lattice and are capable of predicting irradiance at lattice points, given data measured at other lattice points. Using data from a 1.2 MW PV plant located in Lanai, Hawaii, we show that a semiparametric model can be more accurate than simple interpolation between sensor locations. We investigate spatio-temporal models with separable and nonseparable covariance structures and find no evidence to support assuming a separable covariance structure. These results indicate a promising approach for modeling irradiance atmore » high spatial resolution consistent with available ground-based measurements. Moreover, this kind of modeling may find application in design, valuation, and operation of fleets of utility-scale photovoltaic power systems.« less

  19. Inverse hydrological modelling of spatio-temporal rainfall patterns

    NASA Astrophysics Data System (ADS)

    Grundmann, Jens; Hörning, Sebastian; Bárdossy, András

    2016-04-01

    Distributed hydrological models are commonly used for simulating the non-linear response of a watershed to rainfall events for addressing different hydrological properties of the landscape. Such models are driven by spatial rainfall patterns for consecutive time steps, which are normally generated from point measurements using spatial interpolation methods. However, such methods fail in reproducing the true spatio-temporal rainfall patterns especially in data scarce regions with poorly gauged catchments or for highly dynamic, small scaled rainstorms which are not well recorded by existing monitoring networks. Consequently, uncertainties are associated with poorly identified spatio-temporal rainfall distribution in distributed rainfall-runoff-modelling since the amount of rainfall received by a catchment as well as the dynamics of the runoff generation of flood waves are underestimated. For addressing these challenges a novel methodology for inverse hydrological modelling is proposed using a Markov-Chain-Monte-Carlo framework. Thereby, potential candidates of spatio-temporal rainfall patterns are generated and selected according their ability to reproduce the observed surface runoff at the catchment outlet for a given transfer function in a best way. The Methodology combines the concept of random mixing of random spatial fields with a grid-based spatial distributed rainfall runoff model. The conditional target rainfall field is obtained as a linear combination of unconditional spatial random fields. The corresponding weights of the linear combination are selected such that the spatial variability of the rainfall amounts as well as the actual observed rainfall values are reproduced. The functionality of the methodology is demonstrated on a synthetic example. Thereby, the known spatio-temporal distribution of rainfall is reproduced for a given number of point observations of rainfall and the integral catchment response at the catchment outlet for a synthetic catchment

  20. Spatio-temporal description of the cavitating flow behavior around NACA 2412 hydrofoil

    NASA Astrophysics Data System (ADS)

    Rudolf, P.; Štefan, D.; Sedlář, M.; Kozák, J.; Habán, V.; Huzlík, R.

    2015-12-01

    Spatio-temporal description of the cavitating flow around hydrofoil with 8 degrees incidence using proper orthogonal decomposition (POD) is presented. POD is a suitable tool, which provides information not only about the flow dynamics, but also about relevance of different flow structures. POD also enables to track energy transport within the domain and energy transfer among the eigenmodes of the flow field. Analysis documents change of the flow structure for decreasing cavitation number, which can be most likely attributed to sheet/cloud cavitation transition.

  1. Fast multidimensional ensemble empirical mode decomposition for the analysis of big spatio-temporal datasets.

    PubMed

    Wu, Zhaohua; Feng, Jiaxin; Qiao, Fangli; Tan, Zhe-Min

    2016-04-13

    In this big data era, it is more urgent than ever to solve two major issues: (i) fast data transmission methods that can facilitate access to data from non-local sources and (ii) fast and efficient data analysis methods that can reveal the key information from the available data for particular purposes. Although approaches in different fields to address these two questions may differ significantly, the common part must involve data compression techniques and a fast algorithm. This paper introduces the recently developed adaptive and spatio-temporally local analysis method, namely the fast multidimensional ensemble empirical mode decomposition (MEEMD), for the analysis of a large spatio-temporal dataset. The original MEEMD uses ensemble empirical mode decomposition to decompose time series at each spatial grid and then pieces together the temporal-spatial evolution of climate variability and change on naturally separated timescales, which is computationally expensive. By taking advantage of the high efficiency of the expression using principal component analysis/empirical orthogonal function analysis for spatio-temporally coherent data, we design a lossy compression method for climate data to facilitate its non-local transmission. We also explain the basic principles behind the fast MEEMD through decomposing principal components instead of original grid-wise time series to speed up computation of MEEMD. Using a typical climate dataset as an example, we demonstrate that our newly designed methods can (i) compress data with a compression rate of one to two orders; and (ii) speed-up the MEEMD algorithm by one to two orders. PMID:26953173

  2. China's water resources vulnerability: A spatio-temporal analysis during 2003-2013

    NASA Astrophysics Data System (ADS)

    Cai, J.; Varis, O.; Yin, H.

    2015-12-01

    The present highly serious situation of China's water environment and aquatic ecosystems has occurred in the context of its stunning socioeconomic development over the past several decades. Therefore, an analysis with a high spatio-temporal resolution of the vulnerability assessment of water resources (VAWR) in China is burningly needed. However, to our knowledge, the temporal analysis of VAWR has been not yet addressed. Consequently, we performed, for the first time, a comprehensive spatio-temporal analysis of China's water resources vulnerability (WRV), using a composite index approach with an array of aspects highlighting key challenges that China's water resources system is nowadays facing. During our study period of 2003-2013, the political weight of China's integrated water resources management has been increasing continuously. Hence, it is essential and significant, based on the historical socioeconomic changes influenced by water-environment policy making and implementation, to reveal China's WRV for pinpointing key challenges to the healthy functionality of its water resources system. The water resources system in North and Central Coast appeared more vulnerable than that in Western China. China's water use efficiency has grown substantially over the study period, and so is water supply and sanitation coverage. In contrast, water pollution has been worsening remarkably in most parts of China, and so have water scarcity and shortage in the most stressed parts of the country. This spatio-temporal analysis implies that the key challenges to China's water resources system not only root in the geographical mismatch between socioeconomic development (e.g. water demand) and water resources endowments (e.g. water resources availability), but also stem from the intertwinement between socioeconomic development and national strategic policy making.

  3. Spatio-temporal patterns of dengue in Malaysia: combining address and sub-district level.

    PubMed

    Ling, Cheong Y; Gruebner, Oliver; Krämer, Alexander; Lakes, Tobia

    2014-11-01

    Spatio-temporal patterns of dengue risk in Malaysia were studied both at the address and the sub-district level in the province of Selangor and the Federal Territory of Kuala Lumpur. We geocoded laboratory-confirmed dengue cases from the years 2008 to 2010 at the address level and further aggregated the cases in proportion to the population at risk at the sub-district level. Kulldorff's spatial scan statistic was applied for the investigation that identified changing spatial patterns of dengue cases at both levels. At the address level, spatio-temporal clusters of dengue cases were concentrated at the central and south-eastern part of the study area in the early part of the years studied. Analyses at the sub-district level revealed a consistent spatial clustering of a high number of cases proportional to the population at risk. Linking both levels assisted in the identification of differences and confirmed the presence of areas at high risk for dengue infection. Our results suggest that the observed dengue cases had both a spatial and a temporal epidemiological component, which needs to be acknowledged and addressed to develop efficient control measures, including spatially explicit vector control. Our findings highlight the importance of detailed geographical analysis of disease cases in heterogeneous environments with a focus on clustered populations at different spatial and temporal scales. We conclude that bringing together information on the spatio-temporal distribution of dengue cases with a deeper insight of linkages between dengue risk, climate factors and land use constitutes an important step towards the development of an effective risk management strategy. PMID:25545931

  4. Fast multidimensional ensemble empirical mode decomposition for the analysis of big spatio-temporal datasets

    PubMed Central

    Wu, Zhaohua; Feng, Jiaxin; Qiao, Fangli; Tan, Zhe-Min

    2016-01-01

    In this big data era, it is more urgent than ever to solve two major issues: (i) fast data transmission methods that can facilitate access to data from non-local sources and (ii) fast and efficient data analysis methods that can reveal the key information from the available data for particular purposes. Although approaches in different fields to address these two questions may differ significantly, the common part must involve data compression techniques and a fast algorithm. This paper introduces the recently developed adaptive and spatio-temporally local analysis method, namely the fast multidimensional ensemble empirical mode decomposition (MEEMD), for the analysis of a large spatio-temporal dataset. The original MEEMD uses ensemble empirical mode decomposition to decompose time series at each spatial grid and then pieces together the temporal–spatial evolution of climate variability and change on naturally separated timescales, which is computationally expensive. By taking advantage of the high efficiency of the expression using principal component analysis/empirical orthogonal function analysis for spatio-temporally coherent data, we design a lossy compression method for climate data to facilitate its non-local transmission. We also explain the basic principles behind the fast MEEMD through decomposing principal components instead of original grid-wise time series to speed up computation of MEEMD. Using a typical climate dataset as an example, we demonstrate that our newly designed methods can (i) compress data with a compression rate of one to two orders; and (ii) speed-up the MEEMD algorithm by one to two orders. PMID:26953173

  5. Spatio-temporal variation and prediction of ischemic heart disease hospitalizations in Shenzhen, China.

    PubMed

    Wang, Yanxia; Du, Qingyun; Ren, Fu; Liang, Shi; Lin, De-nan; Tian, Qin; Chen, Yan; Li, Jia-jia

    2014-05-01

    Ischemic heart disease (IHD) is a leading cause of death worldwide. Urban public health and medical management in Shenzhen, an international city in the developing country of China, is challenged by an increasing burden of IHD. This study analyzed the spatio-temporal variation of IHD hospital admissions from 2003 to 2012 utilizing spatial statistics, spatial analysis, and space-time scan statistics. The spatial statistics and spatial analysis measured the incidence rate (hospital admissions per 1,000 residents) and the standardized rate (the observed cases standardized by the expected cases) of IHD at the district level to determine the spatio-temporal distribution and identify patterns of change. The space-time scan statistics was used to identify spatio-temporal clusters of IHD hospital admissions at the district level. The other objective of this study was to forecast the IHD hospital admissions over the next three years (2013-2015) to predict the IHD incidence rates and the varying burdens of IHD-related medical services among the districts in Shenzhen. The results show that the highest hospital admissions, incidence rates, and standardized rates of IHD are in Futian. From 2003 to 2012, the IHD hospital admissions exhibited similar mean centers and directional distributions, with a slight increase in admissions toward the north in accordance with the movement of the total population. The incidence rates of IHD exhibited a gradual increase from 2003 to 2012 for all districts in Shenzhen, which may be the result of the rapid development of the economy and the increasing traffic pollution. In addition, some neighboring areas exhibited similar temporal change patterns, which were also detected by the spatio-temporal cluster analysis. Futian and Dapeng would have the highest and the lowest hospital admissions, respectively, although these districts have the highest incidence rates among all of the districts from 2013 to 2015 based on the prediction using the GM (1

  6. Brazilian Amazonia Deforestation Detection Using Spatio-Temporal Scan Statistics

    NASA Astrophysics Data System (ADS)

    Vieira, C. A. O.; Santos, N. T.; Carneiro, A. P. S.; Balieiro, A. A. S.

    2012-07-01

    The spatio-temporal models, developed for analyses of diseases, can also be used for others fields of study, including concerns about forest and deforestation. The aim of this paper is to quantitatively check priority areas in order to combat deforestation on the Amazon forest, using the space-time scan statistic. The study area location is at the south of the Amazonas State and cover around 297.183 kilometre squares, including the municipality of Boca do Acre, Labrea, Canutama, Humaita, Manicore, Novo Aripuana e Apui County on the north region of Brazil. This area has showed a significant change for land cover, which has increased the number of deforestation's alerts. Therefore this situation becomes a concern and gets more investigation, trying to stop factors that increase the number of cases in the area. The methodology includes the location and year that deforestation's alert occurred. These deforestation's alerts are mapped by the DETER (Detection System of Deforestation in Real Time in Amazonia), which is carry out by the Brazilian Space Agency (INPE). The software SatScanTM v7.0 was used in order to define space-time permutation scan statistic for detection of deforestation cases. The outcome of this experiment shows an efficient model to detect space-time clusters of deforestation's alerts. The model was efficient to detect the location, the size, the order and characteristics about activities at the end of the experiments. Two clusters were considered actives and kept actives up to the end of the study. These clusters are located in Canutama and Lábrea County. This quantitative spatial modelling of deforestation warnings allowed: firstly, identifying actives clustering of deforestation, in which the environment government official are able to concentrate their actions; secondly, identifying historic clustering of deforestation, in which the environment government official are able to monitoring in order to avoid them to became actives again; and finally

  7. Spatio-Temporal Regularization for Longitudinal Registration to Subject-Specific 3d Template

    PubMed Central

    Guizard, Nicolas; Fonov, Vladimir S.; García-Lorenzo, Daniel; Nakamura, Kunio; Aubert-Broche, Bérengère; Collins, D. Louis

    2015-01-01

    Neurodegenerative diseases such as Alzheimer's disease present subtle anatomical brain changes before the appearance of clinical symptoms. Manual structure segmentation is long and tedious and although automatic methods exist, they are often performed in a cross-sectional manner where each time-point is analyzed independently. With such analysis methods, bias, error and longitudinal noise may be introduced. Noise due to MR scanners and other physiological effects may also introduce variability in the measurement. We propose to use 4D non-linear registration with spatio-temporal regularization to correct for potential longitudinal inconsistencies in the context of structure segmentation. The major contribution of this article is the use of individual template creation with spatio-temporal regularization of the deformation fields for each subject. We validate our method with different sets of real MRI data, compare it to available longitudinal methods such as FreeSurfer, SPM12, QUARC, TBM, and KNBSI, and demonstrate that spatially local temporal regularization yields more consistent rates of change of global structures resulting in better statistical power to detect significant changes over time and between populations. PMID:26301716

  8. Macroscopic hotspots identification: A Bayesian spatio-temporal interaction approach.

    PubMed

    Dong, Ni; Huang, Helai; Lee, Jaeyoung; Gao, Mingyun; Abdel-Aty, Mohamed

    2016-07-01

    This study proposes a Bayesian spatio-temporal interaction approach for hotspot identification by applying the full Bayesian (FB) technique in the context of macroscopic safety analysis. Compared with the emerging Bayesian spatial and temporal approach, the Bayesian spatio-temporal interaction model contributes to a detailed understanding of differential trends through analyzing and mapping probabilities of area-specific crash trends as differing from the mean trend and highlights specific locations where crash occurrence is deteriorating or improving over time. With traffic analysis zones (TAZs) crash data collected in Florida, an empirical analysis was conducted to evaluate the following three approaches for hotspot identification: FB ranking using a Poisson-lognormal (PLN) model, FB ranking using a Bayesian spatial and temporal (B-ST) model and FB ranking using a Bayesian spatio-temporal interaction (B-ST-I) model. The results show that (a) the models accounting for space-time effects perform better in safety ranking than does the PLN model, and (b) the FB approach using the B-ST-I model significantly outperforms the B-ST approach in correctly identifying hotspots by explicitly accounting for the space-time variation in addition to the stable spatial/temporal patterns of crash occurrence. In practice, the B-ST-I approach plays key roles in addressing two issues: (a) how the identified hotspots have evolved over time and (b) the identification of areas that, whilst not yet hotspots, show a tendency to become hotspots. Finally, it can provide guidance to policy decision makers to efficiently improve zonal-level safety. PMID:27110645

  9. Clifford algebra-based spatio-temporal modelling and analysis for complex geo-simulation data

    NASA Astrophysics Data System (ADS)

    Luo, Wen; Yu, Zhaoyuan; Hu, Yong; Yuan, Linwang

    2013-10-01

    The spatio-temporal data simulating Ice-Land-Ocean interaction of Antarctic are used to demonstrate the Clifford algebra-based data model construction, spatio-temporal query and data analysis. The results suggest that Clifford algebra provides a powerful mathematical tool for the whole modelling and analysis chains for complex geo-simulation data. It can also help implement spatio-temporal analysis algorithms more clearly and simply.

  10. Spontaneous bursting: From temporal to spatio-temporal intermittency

    SciTech Connect

    Platt, N.; Hammel, S.M.

    1996-06-01

    A simple model for temporal bursting is introduced. This model invokes either dynamic or random forcing of a bifurcation parameter of some simple dynamical system in a way that makes the bifurcation parameter spend suitable amounts of time below and above the bifurcation threshold. This model is extended to coupled map lattices to produce spontaneous spatio-temporal burstings. It models physical systems which are embedded in a random background that is statistically homogeneous in space and time. An application of this model to optical turbulence is discussed. {copyright} {ital 1996 American Institute of Physics.}

  11. Spatio-temporal dynamics in the origin of genetic information

    NASA Astrophysics Data System (ADS)

    Kim, Pan-Jun; Jeong, Hawoong

    2005-04-01

    We study evolutionary processes induced by spatio-temporal dynamics in prebiotic evolution. Using numerical simulations, we demonstrate that hypercycles emerge from complex interaction structures in multispecies systems. In this work, we also find that ‘hypercycle hybrid’ protects the hypercycle from its environment during the growth process. There is little selective advantage for one hypercycle to maintain coexistence with others. This brings the possibility of the outcompetition between hypercycles resulting in the negative effect on information diversity. To enrich the information in hypercycles, symbiosis with parasites is suggested. It is shown that symbiosis with parasites can play an important role in the prebiotic immunology.

  12. Chaotic itinerancy, temporal segmentation and spatio-temporal combinatorial codes

    NASA Astrophysics Data System (ADS)

    Dias, Juliana R.; Oliveira, Rodrigo F.; Kinouchi, Osame

    2008-01-01

    We study a deterministic dynamics with two time scales in a continuous state attractor network. To the usual (fast) relaxation dynamics towards point attractors (“patterns”) we add a slow coupling dynamics that makes the visited patterns lose stability, leading to an itinerant behavior in the form of punctuated equilibria. One finds that the transition frequency matrix for transitions between patterns shows non-trivial statistical properties in the chaotic itinerant regime. We show that mixture input patterns can be temporally segmented by the itinerant dynamics. The viability of a combinatorial spatio-temporal neural code is also demonstrated.

  13. Evaluation of spatio-temporal variability in Land Surface Temperature: A case study of Zonguldak, Turkey.

    PubMed

    Sekertekin, Aliihsan; Kutoglu, Senol Hakan; Kaya, Sinasi

    2016-01-01

    The aim of this study is to analyze spatio-temporal variability in Land Surface Temperature (LST) in and around the city of Zonguldak as a result of the growing urbanization and industrialization during the last decade. Three Landsat 5 data and one Landsat 8 data acquired on different dates were exploited in acquiring LST maps utilizing mono-window algorithm. The outcomes obtained from this study indicate that there exists a significant temperature rise in the region for the time period between 1986 and 2015. Some cross sections were selected in order to examine the relationship between the land use and LST changes in more detail. The mean LST difference between 1986 and 2015 in ERDEMIR iron and steel plant (6.8 °C), forestland (3 °C), city and town centers (4.2 °C), municipal rubbish tip (-3.9 °C), coal dump site (12.2 °C), and power plants' region (7 °C) were presented. In addition, the results indicated that the mean LST difference between forestland and city centers was approximately 5 °C, and the difference between forestland and industrial enterprises was almost 8 °C for all years. Spatio-temporal variability in LST in Zonguldak was examined in that study and due to the increase in LST, policy makers and urban planners should consider LST and urban heat island parameters for sustainable development. PMID:26666659

  14. A spatio-temporal database for diagnosing drought vulnerability in the Upper Colorado River Basin, Colorado

    NASA Astrophysics Data System (ADS)

    Sampson, K. M.; Wilhelmi, O.

    2009-12-01

    Effective drought planning and mitigation requires an understanding of water supply and demand, including historical biophysical and legal conditions that lead to water shortages among various end-users. With the goal of providing information that is useful for managing current drought risks and for adapting to changing climate, this project aims to fill the gaps in the knowledge about spatio-temporal variations in water demand patterns in the Upper Colorado River Basin (UCRB). This information will help to identify vulnerabilities in the water management structure for more targeted drought preparedness and early warning. Though monitoring of hydro-meteorological properties is important to the forecast of drought conditions, the availability of water is complicated by the administration of existing water rights. The picture is increasingly complicated by the common practice of transmountain diversion, in which water in one basin is transported to another basin for use. This presentation will discuss development of a water demand data model and a spatio-temporal database that will support topological relationships among water users and their respective sources of water supply, including transfers and exchanges. GIS processes for linking water supply to the end users and their water demands will be discussed.

  15. Statistical study of spatio-temporal distribution of precursor solar flares associated with major flares

    NASA Astrophysics Data System (ADS)

    Gyenge, N.; Ballai, I.; Baranyi, T.

    2016-07-01

    The aim of the present investigation is to study the spatio-temporal distribution of precursor flares during the 24 h interval preceding M- and X-class major flares and the evolution of follower flares. Information on associated (precursor and follower) flares is provided by Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Flare list, while the major flares are observed by the Geostationary Operational Environmental Satellite (GOES) system satellites between 2002 and 2014. There are distinct evolutionary differences between the spatio-temporal distributions of associated flares in about one-day period depending on the type of the main flare. The spatial distribution was characterized by the normalized frequency distribution of the quantity δ (the distance between the major flare and its precursor flare normalized by the sunspot group diameter) in four 6 h time intervals before the major event. The precursors of X-class flares have a double-peaked spatial distribution for more than half a day prior to the major flare, but it changes to a lognormal-like distribution roughly 6 h prior to the event. The precursors of M-class flares show lognormal-like distribution in each 6 h subinterval. The most frequent sites of the precursors in the active region are within a distance of about 0.1 diameter of sunspot group from the site of the major flare in each case. Our investigation shows that the build-up of energy is more effective than the release of energy because of precursors.

  16. Statistical study of spatio-temporal distribution of precursor solar flares associated with major flares

    NASA Astrophysics Data System (ADS)

    Gyenge, N.; Ballai, I.; Baranyi, T.

    2016-04-01

    The aim of the present investigation is to study the spatio-temporal distribution of precursor flares during the 24-hour interval preceding M- and X-class major flares and the evolution of follower flares. Information on associated (precursor and follower) flares is provided by Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI). Flare List, while the major flares are observed by the Geostationary Operational Environmental Satellite (GOES) system satellites between 2002 and 2014. There are distinct evolutionary differences between the spatio-temporal distributions of associated flares in about one day period depending on the type of the main flare. The spatial distribution was characterised by the normalised frequency distribution of the quantity δ (the distance between the major flare and its precursor flare normalised by the sunspot group diameter) in four 6-hour time intervals before the major event. The precursors of X-class flares have a double-peaked spatial distribution for more than half a day prior to the major flare, but it changes to a lognormal-like distribution roughly 6 hours prior to the event. The precursors of M-class flares show lognormal-like distribution in each 6-hour subinterval. The most frequent sites of the precursors in the active region are within a distance of about 0.1 diameter of sunspot group from the site of the major flare in each case. Our investigation shows that the build-up of energy is more effective than the release of energy because of precursors.

  17. Spatio-temporal dynamics in the phenology of croplands across the Indo-Gangetic Plains

    NASA Astrophysics Data System (ADS)

    Duncan, John M. A.; Dash, Jadunandan; Atkinson, Peter M.

    2014-08-01

    Spatio-temporal dynamics in land surface phenology parameters observed over croplands can inform on crop-climate interactions and, elucidate local to regional scale vulnerabilities either due to climate change or prevailing sub-optimal agricultural practices. Here, we observe spatio-temporal trends in land surface phenology parameters (cropping intensity, length of growing season and productivity) for kharif and rabi cropping seasons from satellite data across the Indo-Gangetic Plains from 1982 to 2006. The productivity of the Indo-Gangetic Plains croplands is of regional importance and is a vital component of Indian national food security efforts. Aside from local and intra-state heterogeneity in observed trends there was a clear west-to-east gradient in cropping intensity. Key observed trends include increasing cropping intensity in the eastern IGP, increasing number of growing days per year in Bihar, Uttar Pradesh and Haryana and increasing productivity in both cropping seasons across the IGP. This information is a crucial input to integrated assessments of the croplands to ensure management of the agricultural system shifts towards a trajectory of climate-resilience and environmental sustainability. To create spatially explicit time-series, at a spatial resolution of 8 km across the IGP of the following LSP parameters: (i) cropping intensity, (ii) LGS and (iii) agro-ecosystem productivity. To quantify normal conditions, inter-annual variation and long-term trends in these LSP parameters at an 8 km spatial resolution across the IGP croplands.

  18. A geomatic methodology for spatio-temporal analysis of climatologic variables and water related diseases

    NASA Astrophysics Data System (ADS)

    Quentin, E.; Gómez Albores, M. A.; Díaz Delgado, C.

    2009-04-01

    The main objective of this research is to propose, by the way of geomatic developments, an integrated tool to analyze and model the spatio-temporal pattern of human diseases related to environmental conditions, in particular the ones that are linked to water resources. The geomatic developments follows four generic steps : requirement analysis, conceptual modeling, geomatic modeling and implementation (in Idrisi GIS software). A first development consists of the preprocessing of water, population and health data in order to facilitate the conversion and validation of tabular data into the required structure for spatio-temporal analysis. Three parallel developments follow : water balance, demographic state and evolution, epidemiological measures (morbidity and mortality rates, diseases burden). The new geomatic modules in their actual state have been tested on various regions of Mexico Republic (Lerma watershed, Chiapas state) focusing on diarrhea and vector borne diseases (dengue and malaria) and considering records over the last decade : a yearly as well as seasonal spreading trend can be observed in correlation with precipitation and temperature data. In an ecohealth perspective, the geomatic approach results particularly appropriate since one of its purposes is the integration of the various spatial themes implied in the study problem, environmental as anthropogenic. By the use of powerful spatial analysis functions, it permits the detection of spatial trends which, combined to the temporal evolution, can be of particularly use for example in climate change context, if sufficiently valid historical data can be obtain.

  19. Multiple dipole modeling of spatio-temporal MEG (magnetoencephalogram) data

    SciTech Connect

    Mosher, J.C. . Systems Engineering and Development Div. University of Southern California, Los Angeles, CA . Signal and Image Processing Inst.); Lewis, P.S. ); Leahy, R. . Signal and Image Processing Inst.); Singh, M. (University of Southern Californi

    1990-01-01

    An array of SQUID biomagentometers may be used to measure the spatio-temporal neuromagnetic field produced by the brain in response to a given sensory stimulus. A popular model for the neural activity that produces these fields is a set of current dipoles. We present here a common linear algebraic framework for three common spatio-temporal dipole models: moving and rotating dipoles, rotating dipoles with fixed location, and dipoles with fixed orientation and location. Our intent here is not to argue the merits of one model over another, but rather show how each model may be solved efficiently, and within the same framework as the others. In all cases, we assume that the location, orientation, and magnitude of the dipoles are unknown. We present the parameter estimation problem for these three models in a common framework, and show how, in each case, the problem may be decomposed into the estimation of the dipole locations using nonlinear minimization followed by linear estimation of the associated moment time series. Numerically efficient means of calculating the cost function are presented, and problems of model order selection and missing moments are also investigated. The methods described are demonstrated in a simulated application to a three dipole problem. 21 refs., 2 figs., 1 tab.

  20. Spatio-temporal Granger causality: a new framework

    PubMed Central

    Luo, Qiang; Lu, Wenlian; Cheng, Wei; Valdes-Sosa, Pedro A.; Wen, Xiaotong; Ding, Mingzhou; Feng, Jianfeng

    2015-01-01

    That physiological oscillations of various frequencies are present in fMRI signals is the rule, not the exception. Herein, we propose a novel theoretical framework, spatio-temporal Granger causality, which allows us to more reliably and precisely estimate the Granger causality from experimental datasets possessing time-varying properties caused by physiological oscillations. Within this framework, Granger causality is redefined as a global index measuring the directed information flow between two time series with time-varying properties. Both theoretical analyses and numerical examples demonstrate that Granger causality is a monotonically increasing function of the temporal resolution used in the estimation. This is consistent with the general principle of coarse graining, which causes information loss by smoothing out very fine-scale details in time and space. Our results confirm that the Granger causality at the finer spatio-temporal scales considerably outperforms the traditional approach in terms of an improved consistency between two resting-state scans of the same subject. To optimally estimate the Granger causality, the proposed theoretical framework is implemented through a combination of several approaches, such as dividing the optimal time window and estimating the parameters at the fine temporal and spatial scales. Taken together, our approach provides a novel and robust framework for estimating the Granger causality from fMRI, EEG, and other related data. PMID:23643924

  1. Standards-Based Services for Big Spatio-Temporal Data

    NASA Astrophysics Data System (ADS)

    Baumann, P.; Merticariu, V.; Dumitru, A.; Misev, D.

    2016-06-01

    With the unprecedented availability of continuously updated measured and generated data there is an immense potential for getting new and timely insights - yet, the value is not fully leveraged as of today. The quest is up for high-level service interfaces for dissecting datasets and rejoining them with other datasets - ultimately, to allow users to ask "any question, anytime, on any size" enabling them to "build their own product on the go". With OGC Coverages, a concrete, interoperable data model has been established which unifies n-D spatio-temporal regular and irregular grids, point clouds, and meshes. The Web Coverage Service (WCS) suite provides versatile streamlined coverage functionality ranging from simple access to flexible spatio-temporal analytics. Flexibility and scalability of the WCS suite has been demonstrated in practice through massive services run by large-scale data centers. We present the current status in OGC Coverage data and service models, contrast them to related work, and describe a scalable implementation based on the rasdaman array engine.

  2. Gait recognition using spatio-temporal silhouette-based features

    NASA Astrophysics Data System (ADS)

    Sabir, Azhin; Al-jawad, Naseer; Jassim, Sabah

    2013-05-01

    This paper presents a new algorithm for human gait recognition based on Spatio-temporal body biometric features using wavelet transforms. The proposed algorithm extracts the Gait cycle depending on the width of boundary box from a sequence of Silhouette images. Gait recognition is based on feature level fusion of three feature vectors: the gait spatio-temporal feature represented by the distances between (feet, knees, hands, shoulders, and height); binary difference between consecutive frames of the silhouette for each leg detected separately based on hamming distance; a vector of statistical parameters captured from the wavelet low frequency domain. The fused feature vector is subjected to dimension reduction using linear discriminate analysis. The Nearest Neighbour with a certain threshold used for classification. The threshold is obtained by experiment from a set of data captured from the CASIA database. We shall demonstrate that our method provides a non-traditional identification based on certain threshold to classify the outsider members as non-classified members.

  3. Spatio-temporal statistical models with applications to atmospheric processes

    SciTech Connect

    Wikle, C.K.

    1996-12-31

    This doctoral dissertation is presented as three self-contained papers. An introductory chapter considers traditional spatio-temporal statistical methods used in the atmospheric sciences from a statistical perspective. Although this section is primarily a review, many of the statistical issues considered have not been considered in the context of these methods and several open questions are posed. The first paper attempts to determine a means of characterizing the semiannual oscillation (SAO) spatial variation in the northern hemisphere extratropical height field. It was discovered that the midlatitude SAO in 500hPa geopotential height could be explained almost entirely as a result of spatial and temporal asymmetries in the annual variation of stationary eddies. It was concluded that the mechanism for the SAO in the northern hemisphere is a result of land-sea contrasts. The second paper examines the seasonal variability of mixed Rossby-gravity waves (MRGW) in lower stratospheric over the equatorial Pacific. Advanced cyclostationary time series techniques were used for analysis. It was found that there are significant twice-yearly peaks in MRGW activity. Analyses also suggested a convergence of horizontal momentum flux associated with these waves. In the third paper, a new spatio-temporal statistical model is proposed that attempts to consider the influence of both temporal and spatial variability. This method is mainly concerned with prediction in space and time, and provides a spatially descriptive and temporally dynamic model.

  4. The spatio-temporal spectrum of turbulent flows.

    PubMed

    Clark di Leoni, P; Cobelli, P J; Mininni, P D

    2015-12-01

    Identification and extraction of vortical structures and of waves in a disorganised flow is a mayor challenge in the study of turbulence. We present a study of the spatio-temporal behavior of turbulent flows in the presence of different restitutive forces. We show how to compute and analyse the spatio-temporal spectrum from data stemming from numerical simulations and from laboratory experiments. Four cases are considered: homogeneous and isotropic turbulence, rotating turbulence, stratified turbulence, and water wave turbulence. For homogeneous and isotropic turbulence, the spectrum allows identification of sweeping by the large-scale flow. For rotating and for stratified turbulence, the spectrum allows identification of the waves, precise quantification of the energy in the waves and in the turbulent eddies, and identification of physical mechanisms such as Doppler shift and wave absorption in critical layers. Finally, in water wave turbulence the spectrum shows a transition from gravity-capillary waves to bound waves as the amplitude of the forcing is increased. PMID:26701711

  5. Spatio-temporal Granger causality: a new framework.

    PubMed

    Luo, Qiang; Lu, Wenlian; Cheng, Wei; Valdes-Sosa, Pedro A; Wen, Xiaotong; Ding, Mingzhou; Feng, Jianfeng

    2013-10-01

    That physiological oscillations of various frequencies are present in fMRI signals is the rule, not the exception. Herein, we propose a novel theoretical framework, spatio-temporal Granger causality, which allows us to more reliably and precisely estimate the Granger causality from experimental datasets possessing time-varying properties caused by physiological oscillations. Within this framework, Granger causality is redefined as a global index measuring the directed information flow between two time series with time-varying properties. Both theoretical analyses and numerical examples demonstrate that Granger causality is a monotonically increasing function of the temporal resolution used in the estimation. This is consistent with the general principle of coarse graining, which causes information loss by smoothing out very fine-scale details in time and space. Our results confirm that the Granger causality at the finer spatio-temporal scales considerably outperforms the traditional approach in terms of an improved consistency between two resting-state scans of the same subject. To optimally estimate the Granger causality, the proposed theoretical framework is implemented through a combination of several approaches, such as dividing the optimal time window and estimating the parameters at the fine temporal and spatial scales. Taken together, our approach provides a novel and robust framework for estimating the Granger causality from fMRI, EEG, and other related data. PMID:23643924

  6. Multiscale recurrence analysis of spatio-temporal data

    NASA Astrophysics Data System (ADS)

    Riedl, M.; Marwan, N.; Kurths, J.

    2015-12-01

    The description and analysis of spatio-temporal dynamics is a crucial task in many scientific disciplines. In this work, we propose a method which uses the mapogram as a similarity measure between spatially distributed data instances at different time points. The resulting similarity values of the pairwise comparison are used to construct a recurrence plot in order to benefit from established tools of recurrence quantification analysis and recurrence network analysis. In contrast to other recurrence tools for this purpose, the mapogram approach allows the specific focus on different spatial scales that can be used in a multi-scale analysis of spatio-temporal dynamics. We illustrate this approach by application on mixed dynamics, such as traveling parallel wave fronts with additive noise, as well as more complicate examples, pseudo-random numbers and coupled map lattices with a semi-logistic mapping rule. Especially the complicate examples show the usefulness of the multi-scale consideration in order to take spatial pattern of different scales and with different rhythms into account. So, this mapogram approach promises new insights in problems of climatology, ecology, or medicine.

  7. Spatio-Temporal Distribution Characteristics and Trajectory Similarity Analysis of Tuberculosis in Beijing, China.

    PubMed

    Li, Lan; Xi, Yuliang; Ren, Fu

    2016-03-01

    Tuberculosis (TB) is an infectious disease with one of the highest reported incidences in China. The detection of the spatio-temporal distribution characteristics of TB is indicative of its prevention and control conditions. Trajectory similarity analysis detects variations and loopholes in prevention and provides urban public health officials and related decision makers more information for the allocation of public health resources and the formulation of prioritized health-related policies. This study analysed the spatio-temporal distribution characteristics of TB from 2009 to 2014 by utilizing spatial statistics, spatial autocorrelation analysis, and space-time scan statistics. Spatial statistics measured the TB incidence rate (TB patients per 100,000 residents) at the district level to determine its spatio-temporal distribution and to identify characteristics of change. Spatial autocorrelation analysis was used to detect global and local spatial autocorrelations across the study area. Purely spatial, purely temporal and space-time scan statistics were used to identify purely spatial, purely temporal and spatio-temporal clusters of TB at the district level. The other objective of this study was to compare the trajectory similarities between the incidence rates of TB and new smear-positive (NSP) TB patients in the resident population (NSPRP)/new smear-positive TB patients in the TB patient population (NSPTBP)/retreated smear-positive (RSP) TB patients in the resident population (RSPRP)/retreated smear-positive TB patients in the TB patient population (RSPTBP) to detect variations and loopholes in TB prevention and control among the districts in Beijing. The incidence rates in Beijing exhibited a gradual decrease from 2009 to 2014. Although global spatial autocorrelation was not detected overall across all of the districts of Beijing, individual districts did show evidence of local spatial autocorrelation: Chaoyang and Daxing were Low-Low districts over the six

  8. Spatio-Temporal Distribution Characteristics and Trajectory Similarity Analysis of Tuberculosis in Beijing, China

    PubMed Central

    Li, Lan; Xi, Yuliang; Ren, Fu

    2016-01-01

    Tuberculosis (TB) is an infectious disease with one of the highest reported incidences in China. The detection of the spatio-temporal distribution characteristics of TB is indicative of its prevention and control conditions. Trajectory similarity analysis detects variations and loopholes in prevention and provides urban public health officials and related decision makers more information for the allocation of public health resources and the formulation of prioritized health-related policies. This study analysed the spatio-temporal distribution characteristics of TB from 2009 to 2014 by utilizing spatial statistics, spatial autocorrelation analysis, and space-time scan statistics. Spatial statistics measured the TB incidence rate (TB patients per 100,000 residents) at the district level to determine its spatio-temporal distribution and to identify characteristics of change. Spatial autocorrelation analysis was used to detect global and local spatial autocorrelations across the study area. Purely spatial, purely temporal and space-time scan statistics were used to identify purely spatial, purely temporal and spatio-temporal clusters of TB at the district level. The other objective of this study was to compare the trajectory similarities between the incidence rates of TB and new smear-positive (NSP) TB patients in the resident population (NSPRP)/new smear-positive TB patients in the TB patient population (NSPTBP)/retreated smear-positive (RSP) TB patients in the resident population (RSPRP)/retreated smear-positive TB patients in the TB patient population (RSPTBP) to detect variations and loopholes in TB prevention and control among the districts in Beijing. The incidence rates in Beijing exhibited a gradual decrease from 2009 to 2014. Although global spatial autocorrelation was not detected overall across all of the districts of Beijing, individual districts did show evidence of local spatial autocorrelation: Chaoyang and Daxing were Low-Low districts over the six

  9. Unravelling spatio-temporal evapotranspiration patterns in topographically complex landscapes

    NASA Astrophysics Data System (ADS)

    Metzen, Daniel; Sheridan, Gary; Nyman, Petter; Lane, Patrick

    2016-04-01

    Vegetation co-evolves with soils and topography under a given long-term climatic forcing. Previous studies demonstrated a strong eco-hydrologic feedback between topography, vegetation and energy and water fluxes. Slope orientation (aspect and gradient) alter the magnitude of incoming solar radiation resulting in larger evaporative losses and less water availability on equator-facing slopes. Furthermore, non-local water inputs from upslope areas potentially contribute to available water at downslope positions. The combined effect of slope orientation and drainage position creates complex spatial patterns in biological productivity and pedogenesis, which in turn alter the local hydrology. In complex upland landscapes, topographic alteration of incoming radiation can cause substantial aridity index (ratio of potential evapotranspiration to precipitation) variations over small spatial extents. Most of the upland forests in south-east Australia are located in an aridity index (AI) range of 1-2, around the energy limited to water limited boundary, where forested systems are expected to be most sensitive to AI changes. In this research we aim to improve the fundamental understanding of spatio-temporal evolution of evapotranspiration (ET) patterns in complex terrain, accounting for local topographic effects on system properties (e.g. soil depth, sapwood area, leaf area) and variation in energy and water exchange processes due to slope orientation and drainage position. Six measurement plots were set-up in a mixed species eucalypt forest on a polar and equatorial-facing hillslope (AI ˜1.3 vs. 1.8) at varying drainage position (ridge, mid-slope, gully), while minimizing variations in other factors, e.g. geology and weather patterns. Sap flow, soil water content, incoming solar radiation and throughfall were continuously monitored at field sites spanning a wide range of soil depth (0.5 - >3m), maximum tree heights (17 - 51m) and LAI (1.2 - 4.6). Site-specific response curves

  10. Spatio-temporal characteristics of Trichel pulse at low pressure

    NASA Astrophysics Data System (ADS)

    He, Shoujie; Jing, Ha

    2014-01-01

    Trichel pulses are investigated using a needle-to-plane electrode geometry at low pressure. The evolution of current and voltage, the spatio-temporal discharge images of Trichel pulse are measured. The rising time and duration time in a pulse are about 10 μs and several tens of microseconds, respectively. One period of pulse can be divided into three stages: the stage preceding cathode breakdown, cathode glow formation, and discharge decaying process. Besides a cathode glow and a dark space, an anode glow is also observed. The emission spectra mainly originate from the C3Пu → B3Пg transition for nitrogen. In addition, the capacitances in parallel connected with the discharge cell have important influence on the pulsing frequency.

  11. Spatio-Temporal Structure of Hooded Gull Flocks

    PubMed Central

    Yomosa, Makoto; Mizuguchi, Tsuyoshi; Hayakawa, Yoshinori

    2013-01-01

    We analyzed the spatio-temporal structure of hooded gull flocks with a portable stereo camera system. The 3-dimensional positions of individuals were reconstructed from pairs of videos. The motions of each individual were analyzed, and both gliding and flapping motions were quantified based on the velocity time series. We analyzed the distributions of the nearest neighbor’s position in terms of coordinates based on each individual’s motion. The obtained results were consistent with the aerodynamic interaction between individuals. We characterized the leader-follower relationship between individuals by a delay time to mimic the direction of a motion. A relation between the delay time and a relative position was analyzed quantitatively, which suggested the basic properties of the formation flight that maintains order in the flock. PMID:24339960

  12. Target tracking based on spatio-temporal fractal error

    NASA Astrophysics Data System (ADS)

    Allen, Brian S.

    2007-04-01

    This paper presents a novel approach to target tracking using a measurement process based on spatio-temporal fractal error. Moving targets are automatically detected using one-dimensional temporal fractal error. A template derived from the two-dimensional spatial fractal error is then extracted for a designated target to allow for correlation-based template matching in subsequent frames. The outputs of both the spatial and temporal fractal error components are combined and presented as input to a kinematic tracking filter. It is shown that combining the two outputs provides improved tracking performance in the presence of noise, occlusion, other moving objects, and when the target of interest stops moving. Furthermore, reconciliation of the spatial and temporal components also provides a useful mechanism for detecting occlusion and avoiding template drift, a problem typically present in correlation-based trackers. Results are demonstrated using airborne MWIR sequences from the DARPA VIVID dataset.

  13. Spatio-temporal characteristics of Trichel pulse at low pressure

    SciTech Connect

    He, Shoujie; Jing, Ha

    2014-01-15

    Trichel pulses are investigated using a needle-to-plane electrode geometry at low pressure. The evolution of current and voltage, the spatio-temporal discharge images of Trichel pulse are measured. The rising time and duration time in a pulse are about 10 μs and several tens of microseconds, respectively. One period of pulse can be divided into three stages: the stage preceding cathode breakdown, cathode glow formation, and discharge decaying process. Besides a cathode glow and a dark space, an anode glow is also observed. The emission spectra mainly originate from the C{sup 3}Π{sub u} → B{sup 3}Π{sub g} transition for nitrogen. In addition, the capacitances in parallel connected with the discharge cell have important influence on the pulsing frequency.

  14. Numerical spatio-temporal characterization of Listeria monocytogenes biofilms.

    PubMed

    Mosquera-Fernández, M; Rodríguez-López, P; Cabo, M L; Balsa-Canto, E

    2014-07-16

    As the structure of biofilms plays a key role in their resistance and persistence, this work presents for the first time the numerical characterization of the temporal evolution of biofilm structures formed by three Listeria monocytogenes strains on two types of stainless-steel supports, AISI 304 SS No. 2B and AISI 316 SS No. 2R. Counting methods, motility tests, fluorescence microscopy and image analysis were combined to study the dynamic evolution of biofilm formation and structure. Image analysis was performed with several well-known parameters as well as a newly defined parameter to quantify spatio-temporal distribution. The results confirm the interstrain variability of L. monocytogenes species regarding biofilm structure and structure evolution. Two types of biofilm were observed: homogeneous or flat and heterogeneous or clustered. Differences in clusters and in attachment and detachment processes were due mainly to the topography and composition of the two surfaces although an effect due to motility was also found. PMID:24858448

  15. A spatio-temporal filter approach to synchronous brain activities.

    PubMed

    Nakagawa, T; Ohashi, A

    1980-01-01

    This paper presents a mathematical mechanism for neuronal synchronization in oscillatory brain activities on the basis of the layer structures with recurrent inhibition. To begin with, a linear theory reveals that the recurrent inhibition tends to cause a synchronous uniform oscillation if the loop delay increases, and that an oscillating neuron recruits neighboring neurons by delivering synchronous inputs through the recurrent inhibition loop if the frequency is that of the selfexcitatory oscillation. Then, a quasilinearized dual wave model (DWM), employing the two-sinusoids plus bias input describing functions (TSBDF), shows the competitive relationship between the synchronous oscillation and a spatial wave that is introduced to represent normal brain activity patterns. Results of computer simulations conform well to the predictions of the DWM. Thus, synchronous brain activities are suggested to be the result of the spatio-temporal filter characteristics of the brain layer structures, modified by the neural nonlinearity. PMID:7353063

  16. Sparse cortical source localization using spatio-temporal atoms.

    PubMed

    Korats, Gundars; Ranta, Radu; Le Cam, Steven; Louis-Dorr, Valérie

    2015-08-01

    This paper addresses the problem of sparse localization of cortical sources from scalp EEG recordings. Localization algorithms use propagation model under spatial and/or temporal constraints, but their performance highly depends on the data signal-to-noise ratio (SNR). In this work we propose a dictionary based sparse localization method which uses a data driven spatio-temporal dictionary to reconstruct the measurements using Single Best Replacement (SBR) and Continuation Single Best Replacement (CSBR) algorithms. We tested and compared our methods with the well-known MUSIC and RAP-MUSIC algorithms on simulated realistic data. Tests were carried out for different noise levels. The results show that our method has a strong advantage over MUSIC-type methods in case of synchronized sources. PMID:26737185

  17. A spatio-temporal extension to the map cube operator

    NASA Astrophysics Data System (ADS)

    Alzate, Juan C.; Moreno, Francisco J.; Echeverri, Jaime

    2012-09-01

    OLAP (On Line Analytical Processing) is a set of techniques and operators to facilitate the data analysis usually stored in a data warehouse. In this paper, we extend the functionality of an OLAP operator known as Map Cube with the definition and incorporation of a function that allows the formulation of spatio-temporal queries. For example, consider a data warehouse about crimes that includes data about the places where the crimes were committed. Suppose we want to find and visualize the trajectory (a trajectory is just the path that an object follows through space as a function of time) of the crimes of a suspect beginning with his oldest crime and ending with his most recent one. In order to meet this requirement, we extend the Map Cube operator.

  18. Spatio-temporal population estimates for risk management

    NASA Astrophysics Data System (ADS)

    Cockings, Samantha; Martin, David; Smith, Alan; Martin, Rebecca

    2013-04-01

    Accurate estimation of population at risk from hazards and effective emergency management of events require not just appropriate spatio-temporal modelling of hazards but also of population. While much recent effort has been focused on improving the modelling and predictions of hazards (both natural and anthropogenic), there has been little parallel advance in the measurement or modelling of population statistics. Different hazard types occur over diverse temporal cycles, are of varying duration and differ significantly in their spatial extent. Even events of the same hazard type, such as flood events, vary markedly in their spatial and temporal characteristics. Conceptually and pragmatically then, population estimates should also be available for similarly varying spatio-temporal scales. Routine population statistics derived from traditional censuses or surveys are usually static representations in both space and time, recording people at their place of usual residence on census/survey night and presenting data for administratively defined areas. Such representations effectively fix the scale of population estimates in both space and time, which is unhelpful for meaningful risk management. Over recent years, the Pop24/7 programme of research, based at the University of Southampton (UK), has developed a framework for spatio-temporal modelling of population, based on gridded population surfaces. Based on a data model which is fully flexible in terms of space and time, the framework allows population estimates to be produced for any time slice relevant to the data contained in the model. It is based around a set of origin and destination centroids, which have capacities, spatial extents and catchment areas, all of which can vary temporally, such as by time of day, day of week, season. A background layer, containing information on features such as transport networks and landuse, provides information on the likelihood of people being in certain places at specific times

  19. Spatio-temporal variability of the North Sea cod recruitment in relation to temperature and zooplankton.

    PubMed

    Nicolas, Delphine; Rochette, Sébastien; Llope, Marcos; Licandro, Priscilla

    2014-01-01

    The North Sea cod (Gadus morhua, L.) stock has continuously declined over the past four decades linked with overfishing and climate change. Changes in stock structure due to overfishing have made the stock largely dependent on its recruitment success, which greatly relies on environmental conditions. Here we focus on the spatio-temporal variability of cod recruitment in an effort to detect changes during the critical early life stages. Using International Bottom Trawl Survey (IBTS) data from 1974 to 2011, a major spatio-temporal change in the distribution of cod recruits was identified in the late 1990s, characterized by a pronounced decrease in the central and southeastern North Sea stock. Other minor spatial changes were also recorded in the mid-1980s and early 1990s. We tested whether the observed changes in recruits distribution could be related with direct (i.e. temperature) and/or indirect (i.e. changes in the quantity and quality of zooplankton prey) effects of climate variability. The analyses were based on spatially-resolved time series, i.e. sea surface temperature (SST) from the Hadley Center and zooplankton records from the Continuous Plankton Recorder Survey. We showed that spring SST increase was the main driver for the most recent decrease in cod recruitment. The late 1990s were also characterized by relatively low total zooplankton biomass, particularly of energy-rich zooplankton such as the copepod Calanus finmarchicus, which have further contributed to the decline of North Sea cod recruitment. Long-term spatially-resolved observations were used to produce regional distribution models that could further be used to predict the abundance of North Sea cod recruits based on temperature and zooplankton food availability. PMID:24551103

  20. SPATIO-TEMPORAL COMPLEXITY OF THE AORTIC SINUS VORTEX

    PubMed Central

    Moore, Brandon; Dasi, Lakshmi Prasad

    2014-01-01

    The aortic sinus vortex is a classical flow structure of significant importance to aortic valve dynamics and the initiation and progression of calific aortic valve disease. We characterize the spatio-temporal characteristics of aortic sinus voxtex dynamics in relation to the viscosity of blood analog solution as well as heart rate. High resolution time-resolved (2KHz) particle image velocimetry was conducted to capture 2D particle streak videos and 2D instantaneous velocity and streamlines along the sinus midplane using a physiological but rigid aorta model fitted with a porcine bioprosthetic heart valve. Blood analog fluids used include a water-glycerin mixture and saline to elucidate the sensitivity of vortex dynamics to viscosity. Experiments were conducted to record 10 heart beats for each combination of blood analog and heart rate condition. Results show that the topological characteristics of the velocity field vary in time-scales as revealed using time bin averaged vectors and corresponding instantaneous streamlines. There exist small time-scale vortices and a large time-scale main vortex. A key flow structure observed is the counter vortex at the upstream end of the sinus adjacent to the base (lower half) of the leaflet. The spatio-temporal complexity of vortex dynamics is shown to be profoundly influenced by strong leaflet flutter during systole with a peak frequency of 200Hz and peak amplitude of 4 mm observed in the saline case. While fluid viscosity influences the length and time-scales as well as the introduction of leaflet flutter, heart rate influences the formation of counter vortex at the upstream end of the sinus. Higher heart rates are shown to reduce the strength of the counter vortex that can greatly influence the directionality and strength of shear stresses along the base of the leaflet. This study demonstrates the impact of heart rate and blood analog viscosity on aortic sinus hemodynamics. PMID:25067881

  1. Spatio-temporal clustering of wildfires in Portugal

    NASA Astrophysics Data System (ADS)

    Costa, R.; Pereira, M. G.; Caramelo, L.; Vega Orozco, C.; Kanevski, M.

    2012-04-01

    Several studies have shown that wildfires in Portugal presenthigh temporal as well as high spatial variability (Pereira et al., 2005, 2011). The identification and characterization of spatio-temporal clusters contributes to a comprehensivecharacterization of the fire regime and to improve the efficiency of fire prevention and combat activities. The main goalsin this studyare: (i) to detect the spatio-temporal clusters of burned area; and, (ii) to characterize these clusters along with the role of human and environmental factors. The data were supplied by the National Forest Authority(AFN, 2011) and comprises: (a)the Portuguese Rural Fire Database, PRFD, (Pereira et al., 2011) for the 1980-2007period; and, (b) the national mapping burned areas between 1990 and 2009. In this work, in order to complement the more common cluster analysis algorithms, an alternative approach based onscan statistics and on the permutation modelwas used. This statistical methodallows the detection of local excess events and to test if such an excess can reasonably have occurred by chance.Results obtained for different simulations performed for different spatial and temporal windows are presented, compared and interpreted.The influence of several fire factors such as (climate, vegetation type, etc.) is also assessed. Pereira, M.G., Trigo, R.M., DaCamara, C.C., Pereira, J.M.C., Leite, S.M., 2005:"Synoptic patterns associated with large summer forest fires in Portugal".Agricultural and Forest Meteorology. 129, 11-25. Pereira, M. G., Malamud, B. D., Trigo, R. M., and Alves, P. I.: The history and characteristics of the 1980-2005 Portuguese rural fire database, Nat. Hazards Earth Syst. Sci., 11, 3343-3358, doi:10.5194/nhess-11-3343-2011, 2011 AFN, 2011: AutoridadeFlorestalNacional (National Forest Authority). Available at http://www.afn.min-agricultura.pt/portal.

  2. Final report: spatio-temporal data mining of scientific trajectory data

    SciTech Connect

    Gaffney, S; Smyth, P

    2001-01-10

    higher-level representations provide a general framework and basis for further scientific hypothesis generation and investigation, e.g., investigating correlations between local phenomena (such as storm paths) and global trends (such as temperature changes). In this work we focused on detecting and clustering trajectories of individual objects in massive spatio-temporal data sets. There are two primary technical problems involved. First, the local structures of interest must be detected, characterized, and extracted from the mass of overall data. Second, the evolution (in space and/or time) of these structures needs to be modeled and characterized in a systematic manner if the overall goal of producing a reduced and interpretable description of the data is to be met.

  3. Mass Spectrometric Analysis of Spatio-Temporal Dynamics of Crustacean Neuropeptides

    PubMed Central

    OuYang, Chuanzi; Liang, Zhidan; Li, Lingjun

    2014-01-01

    Neuropeptides represent one of the largest classes of signaling molecules used by nervous systems to regulate a wide range of physiological processes. Over the past several years, mass spectrometry (MS)-based strategies have revolutionized the discovery of neuropeptides in numerous model organisms, especially in decapod crustaceans. Here, we focus our discussion on recent advances in the use of MS-based techniques to map neuropeptides in spatial domain and monitoring their dynamic changes in temporal domain. These MS-enabled investigations provide valuable information about the distribution, secretion and potential function of neuropeptides with high molecular specificity and sensitivity. In situ MS imaging and in vivo microdialysis are highlighted as key technologies for probing spatio-temporal dynamics of neuropeptides in the crustacean nervous system. This review summarizes the latest advancement in MS-based methodologies for neuropeptide analysis including typical workflow and sample preparation strategies as well as major neuropeptide families discovered in decapod crustaceans. PMID:25448012

  4. MobilityGraphs: Visual Analysis of Mass Mobility Dynamics via Spatio-Temporal Graphs and Clustering.

    PubMed

    von Landesberger, Tatiana; Brodkorb, Felix; Roskosch, Philipp; Andrienko, Natalia; Andrienko, Gennady; Kerren, Andreas

    2016-01-01

    Learning more about people mobility is an important task for official decision makers and urban planners. Mobility data sets characterize the variation of the presence of people in different places over time as well as movements (or flows) of people between the places. The analysis of mobility data is challenging due to the need to analyze and compare spatial situations (i.e., presence and flows of people at certain time moments) and to gain an understanding of the spatio-temporal changes (variations of situations over time). Traditional flow visualizations usually fail due to massive clutter. Modern approaches offer limited support for investigating the complex variation of the movements over longer time periods. PMID:26529684

  5. A flood risk curve development for inundation disaster considering spatio-temporal rainfall distribution

    NASA Astrophysics Data System (ADS)

    Tanaka, T.; Tachikawa, Y.; Yorozu, K.

    2015-06-01

    To manage flood disaster with an exceeding designed level, flood risk control based on appropriate risk assessment is essential. To make an integrated economic risk assessment by flood disaster, a flood risk curve, which is a relation between flood inundation damage and its exceedance probability, plays an important role. This research purposes a method to develop a flood risk curve by utilizing a probability distribution function of annual maximum rainfall through rainfall-runoff and inundation simulations so that risk assessment can consider climate and socio-economic changes. Among a variety of uncertainties, the method proposed in this study considered spatio-temporal rainfall distributions that have high uncertainty for damage estimation. The method was applied to the Yura-gawa river basin (1882 km2) in Japan; and the annual economic benefit of an existing dam in the basin was successfully quantified by comparing flood risk curves with/without the dam.

  6. Multiblock copolymers exhibiting spatio-temporal structure with autonomous viscosity oscillation

    PubMed Central

    Onoda, Michika; Ueki, Takeshi; Shibayama, Mitsuhiro; Yoshida, Ryo

    2015-01-01

    Here we report an ABA triblock copolymer that can express microscopic autonomous formation and break-up of aggregates under constant condition to generate macroscopic viscoelastic self-oscillation of the solution. The ABA triblock copolymer is designed to have hydrophilic B segment and self-oscillating A segment at the both sides by RAFT copolymerization. In the A segment, a metal catalyst of chemical oscillatory reaction, i.e., the Belousov-Zhabotinsky (BZ) reaction, is introduced as a chemomechanical transducer to change the aggregation state of the polymer depending on the redox states. Time-resolved DLS measurements of the ABA triblock copolymer confirm the presence of a transitional network structure of micelle aggregations in the reduced state and a unimer structure in the oxidized state. This autonomous oscillation of a well-designed triblock copolymer enables dynamic biomimetic softmaterials with spatio-temporal structure. PMID:26511660

  7. A Hybrid Spatio-Temporal Data Indexing Method for Trajectory Databases

    PubMed Central

    Ke, Shengnan; Gong, Jun; Li, Songnian; Zhu, Qing; Liu, Xintao; Zhang, Yeting

    2014-01-01

    In recent years, there has been tremendous growth in the field of indoor and outdoor positioning sensors continuously producing huge volumes of trajectory data that has been used in many fields such as location-based services or location intelligence. Trajectory data is massively increased and semantically complicated, which poses a great challenge on spatio-temporal data indexing. This paper proposes a spatio-temporal data indexing method, named HBSTR-tree, which is a hybrid index structure comprising spatio-temporal R-tree, B*-tree and Hash table. To improve the index generation efficiency, rather than directly inserting trajectory points, we group consecutive trajectory points as nodes according to their spatio-temporal semantics and then insert them into spatio-temporal R-tree as leaf nodes. Hash table is used to manage the latest leaf nodes to reduce the frequency of insertion. A new spatio-temporal interval criterion and a new node-choosing sub-algorithm are also proposed to optimize spatio-temporal R-tree structures. In addition, a B*-tree sub-index of leaf nodes is built to query the trajectories of targeted objects efficiently. Furthermore, a database storage scheme based on a NoSQL-type DBMS is also proposed for the purpose of cloud storage. Experimental results prove that HBSTR-tree outperforms TB*-tree in some aspects such as generation efficiency, query performance and query type. PMID:25051028

  8. A hybrid spatio-temporal data indexing method for trajectory databases.

    PubMed

    Ke, Shengnan; Gong, Jun; Li, Songnian; Zhu, Qing; Liu, Xintao; Zhang, Yeting

    2014-01-01

    In recent years, there has been tremendous growth in the field of indoor and outdoor positioning sensors continuously producing huge volumes of trajectory data that has been used in many fields such as location-based services or location intelligence. Trajectory data is massively increased and semantically complicated, which poses a great challenge on spatio-temporal data indexing. This paper proposes a spatio-temporal data indexing method, named HBSTR-tree, which is a hybrid index structure comprising spatio-temporal R-tree, B*-tree and Hash table. To improve the index generation efficiency, rather than directly inserting trajectory points, we group consecutive trajectory points as nodes according to their spatio-temporal semantics and then insert them into spatio-temporal R-tree as leaf nodes. Hash table is used to manage the latest leaf nodes to reduce the frequency of insertion. A new spatio-temporal interval criterion and a new node-choosing sub-algorithm are also proposed to optimize spatio-temporal R-tree structures. In addition, a B*-tree sub-index of leaf nodes is built to query the trajectories of targeted objects efficiently. Furthermore, a database storage scheme based on a NoSQL-type DBMS is also proposed for the purpose of cloud storage. Experimental results prove that HBSTR-tree outperforms TB*-tree in some aspects such as generation efficiency, query performance and query type. PMID:25051028

  9. Spatio-temporal generation regimes in quasi-CW Raman fiber lasers.

    PubMed

    Tarasov, Nikita; Sugavanam, Srikanth; Churkin, Dmitry

    2015-09-21

    We present experimental measurements of intensity spatio-temporal dynamics in quasi-CW Raman fiber laser. Depending on the power, the laser operates in different spatio-temporal regimes varying from partial mode-locking near the generation threshold to almost stochastic radiation and a generation of short-lived pulses at high power. The transitions between the generation regimes are evident in intensity spatio-temporal dynamics. Two-dimensional auto-correlation functions provide an additional insight into temporal and spatial properties of the observed regimes. PMID:26406625

  10. STSE: Spatio-Temporal Simulation Environment Dedicated to Biology

    PubMed Central

    2011-01-01

    Background Recently, the availability of high-resolution microscopy together with the advancements in the development of biomarkers as reporters of biomolecular interactions increased the importance of imaging methods in molecular cell biology. These techniques enable the investigation of cellular characteristics like volume, size and geometry as well as volume and geometry of intracellular compartments, and the amount of existing proteins in a spatially resolved manner. Such detailed investigations opened up many new areas of research in the study of spatial, complex and dynamic cellular systems. One of the crucial challenges for the study of such systems is the design of a well stuctured and optimized workflow to provide a systematic and efficient hypothesis verification. Computer Science can efficiently address this task by providing software that facilitates handling, analysis, and evaluation of biological data to the benefit of experimenters and modelers. Results The Spatio-Temporal Simulation Environment (STSE) is a set of open-source tools provided to conduct spatio-temporal simulations in discrete structures based on microscopy images. The framework contains modules to digitize, represent, analyze, and mathematically model spatial distributions of biochemical species. Graphical user interface (GUI) tools provided with the software enable meshing of the simulation space based on the Voronoi concept. In addition, it supports to automatically acquire spatial information to the mesh from the images based on pixel luminosity (e.g. corresponding to molecular levels from microscopy images). STSE is freely available either as a stand-alone version or included in the linux live distribution Systems Biology Operational Software (SB.OS) and can be downloaded from http://www.stse-software.org/. The Python source code as well as a comprehensive user manual and video tutorials are also offered to the research community. We discuss main concepts of the STSE design and

  11. Characterization and application of simultaneously spatio-temporally focused ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Greco, Michael J.

    Chirped pulse amplication of ultrafast laser pulses has become an essential technology in the elds of micromachining, tissue ablation, and microscopy. With specically tailored pulses of light we have been able to begin investigation into lab-on-a-chip technology, which has the potential of revolutionizing the medical industry. Advances in microscopy have allowed sub diraction limited resolution to become a reality as well as lensless imaging of single molecules. An intimate knowledge of ultrafast optical pulses, the ability to manipulate an optical spectrum and generate an optical pulse of a specic temporal shape, allows us to continue pushing these elds forward as well as open new ones. This thesis investigates the spatio-temporal construction of pulses which are simultaneously spatio-temporally focused (SSTF) and about their current and future applications. By laterally chirping a compressed laser pulse we have conned the peak intensity to a shorter distance along the optical axis than can be achieved by conventional methods. This also brings about interesting changes to the structure of the pulse intensity such as pulse front tilt (PFT), an eect where the pulse energy is delayed across the focal spot at the focal plane by longer durations than the pulse itself. Though these pulses have found utility in microscopy and micromachining, in-situ methods for characterizing them spatially and temporally are not yet wide spread. I present here an in-situ characterization technique for both spatial and temporal diagnosis of SSTF pulses. By performing a knife-edge scan and collecting the light in a spectrometer, the relative spectral position as well as beam size can be deduced. Temporal characterization is done by dispersion scan, where a second harmonic crystal through the beam focus. Combining the unknown phase of the pulse with the known phase (a result of angular dispersion) allows the unknown phase to be extracted from the second harmonic spectra.

  12. Spatio-Temporal Variability of Aquatic Vegetation in Taihu Lake over the Past 30 Years.

    PubMed

    Zhao, Dehua; Lv, Meiting; Jiang, Hao; Cai, Ying; Xu, Delin; An, Shuqing

    2013-01-01

    It is often difficult to track the spatio-temporal variability of vegetation distribution in lakes because of the technological limitations associated with mapping using traditional field surveys as well as the lack of a unified field survey protocol. Using a series of Landsat remote sensing images (i.e. MSS, TM and ETM+), we mapped the composition and distribution area of emergent, floating-leaf and submerged macrophytes in Taihu Lake, China, at approximate five-year intervals over the past 30 years in order to quantify the spatio-temporal dynamics of the aquatic vegetation. Our results indicated that the total area of aquatic vegetation increased from 187.5 km(2) in 1981 to 485.0 km(2) in 2005 and then suddenly decreased to 341.3 km(2) in 2010. Similarly, submerged vegetation increased from 127.0 km(2) in 1981 to 366.5 km(2) in 2005, and then decreased to 163.3 km(2). Floating-leaf vegetation increased continuously through the study period in both area occupied (12.9 km(2) in 1981 to 146.2 km(2) in 2010) and percentage of the total vegetation (6.88% in 1981 to 42.8% in 2010). In terms of spatial distribution, the aquatic vegetation in Taihu Lake has spread gradually from the East Bay to the surrounding areas. The proportion of vegetation in the East Bay relative to that in the entire lake has decreased continuously from 62.3% in 1981, to 31.1% in 2005 and then to 21.8% in 2010. Our findings have suggested that drastic changes have taken place over the past 30 years in the spatial pattern of aquatic vegetation as well as both its relative composition and the amount of area it occupies. PMID:23823189

  13. Spatio-Temporal Variability of Aquatic Vegetation in Taihu Lake over the Past 30 Years

    PubMed Central

    Zhao, Dehua; Lv, Meiting; Jiang, Hao; Cai, Ying; Xu, Delin; An, Shuqing

    2013-01-01

    It is often difficult to track the spatio-temporal variability of vegetation distribution in lakes because of the technological limitations associated with mapping using traditional field surveys as well as the lack of a unified field survey protocol. Using a series of Landsat remote sensing images (i.e. MSS, TM and ETM+), we mapped the composition and distribution area of emergent, floating-leaf and submerged macrophytes in Taihu Lake, China, at approximate five-year intervals over the past 30 years in order to quantify the spatio-temporal dynamics of the aquatic vegetation. Our results indicated that the total area of aquatic vegetation increased from 187.5 km2 in 1981 to 485.0 km2 in 2005 and then suddenly decreased to 341.3 km2 in 2010. Similarly, submerged vegetation increased from 127.0 km2 in 1981 to 366.5 km2 in 2005, and then decreased to 163.3 km2. Floating-leaf vegetation increased continuously through the study period in both area occupied (12.9 km2 in 1981 to 146.2 km2 in 2010) and percentage of the total vegetation (6.88% in 1981 to 42.8% in 2010). In terms of spatial distribution, the aquatic vegetation in Taihu Lake has spread gradually from the East Bay to the surrounding areas. The proportion of vegetation in the East Bay relative to that in the entire lake has decreased continuously from 62.3% in 1981, to 31.1% in 2005 and then to 21.8% in 2010. Our findings have suggested that drastic changes have taken place over the past 30 years in the spatial pattern of aquatic vegetation as well as both its relative composition and the amount of area it occupies. PMID:23823189

  14. Spatio-temporal soil moisture patterns across gradients of vegetation and topography

    NASA Astrophysics Data System (ADS)

    Hassler, Sibylle; Weiler, Markus; Blume, Theresa

    2014-05-01

    Soil moisture dynamics control hydrological processes on various scales: changes in local water storage and potential activation of preferential flow paths influence connectivity and runoff from hillslopes and ultimately the discharge response of the stream. The spatio-temporal patterns of soil moisture, however, are dependent on a combination of local parameters such as soil type, vegetation and topography as well as meteorological conditions, antecedent moisture and seasonality. In an integrative monitoring study carried out within the CAOS observatory in Luxemburg (http://www.caos-project.de/), soil moisture was measured at 21 sites with 3 soil moisture profiles each. These sites include grassland as well as forest on the one hand and cover different hillslope positions on the other hand. This setup allows us to study both vegetation and topographic effects. The spatio-temporal patterns of soil moisture were analysed using two approaches: 1) we examined temporal persistence of soil moisture patterns with rank stability plots and addressed the variability within and between sites for contrasting meteorological conditions. 2) In a next step we focused on specific hydrologic events: two periods during summer recession were distinguished, first the drying out of the soils during a period of no precipitation, but also the continuing decline even after summer rains have started. Furthermore, the soil moisture response to three different rainfall events was examined, varying in intensity and antecedent moisture conditions. The emerging contrasts in patterns were put into context of site-specific characteristics such as vegetation and topographical position to identify controls on soil moisture dynamics for our range of sites. Ultimately, linking similarity in soil moisture response in landscapes to these controls can elucidate the hydrological functioning of landscape units and thus facilitate modelling efforts.

  15. How spatio-temporal habitat connectivity affects amphibian genetic structure

    USGS Publications Warehouse

    Watts, Alexander G.; Schlichting, P; Billerman, S; Jesmer, B; Micheletti, S; Fortin, M.-J.; Funk, W.C.; Hapeman, P; Muths, Erin L.; Murphy, M.A.

    2015-01-01

    Heterogeneous landscapes and fluctuating environmental conditions can affect species dispersal, population genetics, and genetic structure, yet understanding how biotic and abiotic factors affect population dynamics in a fluctuating environment is critical for species management. We evaluated how spatio-temporal habitat connectivity influences dispersal and genetic structure in a population of boreal chorus frogs (Pseudacris maculata) using a landscape genetics approach. We developed gravity models to assess the contribution of various factors to the observed genetic distance as a measure of functional connectivity. We selected (a) wetland (within-site) and (b) landscape matrix (between-site) characteristics; and (c) wetland connectivity metrics using a unique methodology. Specifically, we developed three networks that quantify wetland connectivity based on: (i) P. maculata dispersal ability, (ii) temporal variation in wetland quality, and (iii) contribution of wetland stepping-stones to frog dispersal. We examined 18 wetlands in Colorado, and quantified 12 microsatellite loci from 322 individual frogs. We found that genetic connectivity was related to topographic complexity, within- and between-wetland differences in moisture, and wetland functional connectivity as contributed by stepping-stone wetlands. Our results highlight the role that dynamic environmental factors have on dispersal-limited species and illustrate how complex asynchronous interactions contribute to the structure of spatially-explicit metapopulations.

  16. How spatio-temporal habitat connectivity affects amphibian genetic structure

    PubMed Central

    Watts, Alexander G.; Schlichting, Peter E.; Billerman, Shawn M.; Jesmer, Brett R.; Micheletti, Steven; Fortin, Marie-Josée; Funk, W. Chris; Hapeman, Paul; Muths, Erin; Murphy, Melanie A.

    2015-01-01

    Heterogeneous landscapes and fluctuating environmental conditions can affect species dispersal, population genetics, and genetic structure, yet understanding how biotic and abiotic factors affect population dynamics in a fluctuating environment is critical for species management. We evaluated how spatio-temporal habitat connectivity influences dispersal and genetic structure in a population of boreal chorus frogs (Pseudacris maculata) using a landscape genetics approach. We developed gravity models to assess the contribution of various factors to the observed genetic distance as a measure of functional connectivity. We selected (a) wetland (within-site) and (b) landscape matrix (between-site) characteristics; and (c) wetland connectivity metrics using a unique methodology. Specifically, we developed three networks that quantify wetland connectivity based on: (i) P. maculata dispersal ability, (ii) temporal variation in wetland quality, and (iii) contribution of wetland stepping-stones to frog dispersal. We examined 18 wetlands in Colorado, and quantified 12 microsatellite loci from 322 individual frogs. We found that genetic connectivity was related to topographic complexity, within- and between-wetland differences in moisture, and wetland functional connectivity as contributed by stepping-stone wetlands. Our results highlight the role that dynamic environmental factors have on dispersal-limited species and illustrate how complex asynchronous interactions contribute to the structure of spatially-explicit metapopulations. PMID:26442094

  17. Spatio-Temporal Multiscale Denoising of Fluoroscopic Sequence.

    PubMed

    Amiot, Carole; Girard, Catherine; Chanussot, Jocelyn; Pescatore, Jeremie; Desvignes, Michel

    2016-06-01

    In the past 20 years, a wide range of complex fluoroscopically guided procedures have shown considerable growth. Biologic effects of the exposure (radiation induced burn, cancer) lead to reduce the dose during the intervention, for the safety of patients and medical staff. However, when the dose is reduced, image quality decreases, with a high level of noise and a very low contrast. Efficient restoration and denoising algorithms should overcome this drawback. We propose a spatio-temporal filter operating in a multi-scales space. This filter relies on a first order, motion compensated, recursive temporal denoising. Temporal high frequency content is first detected and then matched over time to allow for a strong denoising in the temporal axis. We study this filter in the curvelet domain and in the dual-tree complex wavelet domain, and compare those results to state of the art methods. Quantitative and qualitative analysis on both synthetic and real fluoroscopic sequences demonstrate that the proposed filter allows a great dose reduction. PMID:26812705

  18. Spatio-temporally smoothed coherence factor for ultrasound imaging.

    PubMed

    Xu, Mengling; Yang, Xin; Ding, Mingyue; Yuchi, Ming

    2014-01-01

    Coherence-factor-like beamforming methods, such as the coherence factor (CF), the phase coherence factor (PCF), or the sign coherence factor (SCF), have been applied to suppress side and/or grating lobes and clutter in ultrasound imaging. These adaptive weighting factors can be implemented effectively with low computational complexity to improve image contrast properties. However, because of low SNR, the resulting images may suffer from deficiencies, including reduced overall image brightness, increased speckle variance, black-region artifacts surrounding hyperechoic objects, and underestimated magnitudes of point targets. To overcome these artifacts, a new spatio-temporal smoothing procedure is introduced to the CF method. It results in a smoothed coherence factor which measures the signal coherence among the beamsums of the divided subarrays over the duration of a transmit pulse. In addition, the procedure is extended to the SCF using the sign bits of the received signals. Simulated and real experimental data sets demonstrate that the proposed methods can improve the robustness of the CF and SCF with reduced speckle variance and significant removal of black-region artifacts, while preserving the ability to suppress clutter. Consequently, image contrast can be enhanced, especially for anechoic cysts. PMID:24402905

  19. Spatio-temporal distribution of human lifespan in China

    PubMed Central

    Wang, Shaobin; Luo, Kunli; Liu, Yonglin

    2015-01-01

    Based on the data of latest three Chinese population censuses (1990–2010), four lifespan indicators were calculated: centenarians per one hundred thousand inhabitants (CH); longevity index (LI); the percentage of the population aged at least 80 years (ultra-octogenarian index, UOI) and life expectancy at birth (LEB). The spatio-temporal distributions of data at Chinese county level show that high-longevity areas (high values of CH and LI) and low-longevity areas (low CH and LI values) both exhibit clear non-uniformity of spatial distribution and relative immobility through time. Contrarily, the distribution of UOI and LEB shows a decline from the east to the west. The spatial autocorrelation analyses indicate less spatial dependency and several discontinuous clusters regions of high-CH and LI areas. The factors of temperature, topography and wet/dry climate lack of significant influence on CH and LI. It can be inferred that, in addition to genetic factor and living custom, some unique and long-term environmental effects may be related with high or low values of CH and LI. PMID:26346713

  20. Response-mode decomposition of spatio-temporal haemodynamics.

    PubMed

    Pang, J C; Robinson, P A; Aquino, K M

    2016-05-01

    The blood oxygen-level dependent (BOLD) response to a neural stimulus is analysed using the transfer function derived from a physiologically based poroelastic model of cortical tissue. The transfer function is decomposed into components that correspond to distinct poles, each related to a response mode with a natural frequency and dispersion relation; together these yield the total BOLD response. The properties of the decomposed components provide a deeper understanding of the nature of the BOLD response, via the components' frequency dependences, spatial and temporal power spectra, and resonances. The transfer function components are then used to separate the BOLD response to a localized impulse stimulus, termed the Green function or spatio-temporal haemodynamic response function, into component responses that are explicitly related to underlying physiological quantities. The analytical results also provide a quantitative tool to calculate the linear BOLD response to an arbitrary neural drive, which is faster to implement than direct Fourier transform methods. The results of this study can be used to interpret functional magnetic resonance imaging data in new ways based on physiology, to enhance deconvolution methods and to design experimental protocols that can selectively enhance or suppress particular responses, to probe specific physiological phenomena. PMID:27170653

  1. Workload induced spatio-temporal distortions and safety of flight

    SciTech Connect

    Barrett, C.L.; Weisgerber, S.A.; Naval Weapons Center, China Lake, CA )

    1989-01-01

    A theoretical analysis of the relationship between cognitive complexity and the perception of time and distance is presented and experimentally verified. Complex tasks produce high rates of mental representation which affect the subjective sense of duration and, through the subjective time scale, the percept of distance derived from dynamic visual cues (i.e., visual cues requiring rate integration). The analysis of the interrelationship of subjective time and subjective distance yields the prediction that, as a function of cognitive complexity, distance estimates derived from dynamic visual cues will be longer than the actual distance whereas estimates based on perceived temporal duration will be shorter than the actual distance. This prediction was confirmed in an experiment in which subjects (both pilots and non-pilots) estimated distances using either temporal cues or dynamic visual cues. The distance estimation task was also combined with secondary loading tasks in order to vary the overall task complexity. The results indicated that distance estimates based on temporal cues were underestimated while estimates based on visual cues were overestimated. This spatio-temporal distortion effect increased with increases in overall task complexity. 30 refs., 6 figs., 1 tab.

  2. Spatio-Temporal Matching for Human Pose Estimation in Video.

    PubMed

    Zhou, Feng; Torre, Fernando De la

    2016-08-01

    Detection and tracking humans in videos have been long-standing problems in computer vision. Most successful approaches (e.g., deformable parts models) heavily rely on discriminative models to build appearance detectors for body joints and generative models to constrain possible body configurations (e.g., trees). While these 2D models have been successfully applied to images (and with less success to videos), a major challenge is to generalize these models to cope with camera views. In order to achieve view-invariance, these 2D models typically require a large amount of training data across views that is difficult to gather and time-consuming to label. Unlike existing 2D models, this paper formulates the problem of human detection in videos as spatio-temporal matching (STM) between a 3D motion capture model and trajectories in videos. Our algorithm estimates the camera view and selects a subset of tracked trajectories that matches the motion of the 3D model. The STM is efficiently solved with linear programming, and it is robust to tracking mismatches, occlusions and outliers. To the best of our knowledge this is the first paper that solves the correspondence between video and 3D motion capture data for human pose detection. Experiments on the CMU motion capture, Human3.6M, Berkeley MHAD and CMU MAD databases illustrate the benefits of our method over state-of-the-art approaches. PMID:26863647

  3. Spatio-temporal patterns in inclined layer convection

    NASA Astrophysics Data System (ADS)

    Subramanian, Priya; Brausch, Oliver; Daniels, Karen E.; Bodenschatz, Eberhard; Schneider, Tobias M.; Pesch, Werner

    2016-05-01

    This paper reports on a theoretical analysis of the rich variety of spatio-temporal patterns observed recently in inclined layer convection at medium Prandtl number when varying the inclination angle $\\gamma$ and the Rayleigh number $R$. The present numerical investigation of the inclined layer convection system is based on the standard Oberbeck-Boussinesq equations. The patterns are shown to originate from a complicated competition of buoyancy-driven and shear-flow driven pattern forming mechanisms. The former are expressed as \\rm{longitudinal} convection rolls with their axes oriented parallel to the incline, the latter as perpendicular \\rm{transverse} rolls. Along with conventional methods to study roll patterns and their stability, we employ direct numerical simulations in large spatial domains, comparable with the experimental ones. As a result, we determine the phase diagram of the characteristic complex 3D convection patterns above onset of convection in the $\\gamma-R$ plane, and find that it compares very well with the experiments. In particular we demonstrate that interactions of specific Fourier modes, characterized by a resonant interaction of their wavevectors in the layer plane, are key to understanding the pattern morphologies.

  4. Efficient Segmentation of Spatio-Temporal Data from Simulations

    SciTech Connect

    Fodor, I K; Kamath, C

    2003-01-15

    Detecting and tracking objects in spatio-temporal datasets is an active research area with applications in many domains. A common approach is to segment the 2D frames in order to separate the objects of interest from the background, then estimate the motion of the objects and track them over time. Most existing algorithms assume that the objects to be tracked are rigid. In many scientific simulations, however, the objects of interest evolve over time and thus pose additional challenges for the segmentation and tracking tasks. We investigate efficient segmentation methods in the context of scientific simulation data. Instead of segmenting each frame separately, we propose an incremental approach which incorporates the segmentation result from the previous time frame when segmenting the data at the current time frame. We start with the simple K-means method, then we study more complicated segmentation techniques based on Markov random fields. We compare the incremental methods to the corresponding sequential ones both in terms of the quality of the results, as well as computational complexity.

  5. Baseline study of the spatio-temporal patterns of reef fish assemblages prior to a major mining project in New Caledonia (South Pacific).

    PubMed

    Chabanet, Pascale; Guillemot, Nicolas; Kulbicki, Michel; Vigliola, Laurent; Sarramegna, Sébastien

    2010-01-01

    From 2008 onwards, the coral reefs of Koné (New Caledonia) will be subjected to a major anthropogenic perturbation linked to development of a nickel mine. Dredging and sediment runoff may directly damage the reef environment whereas job creation should generate a large demographic increase and thus a rise in fishing activities. This study analyzed reef fish assemblages between 2002 and 2007 with a focus on spatio-temporal variability. Our results indicate strong spatial structure of fish assemblages through time. Total species richness, density and biomass were highly variable between years but temporal variations were consistent among biotopes. A remarkable spatio-temporal stability was observed for trophic (mean 4.6% piscivores, 53.1% carnivores, 30.8% herbivores and 11.4% planktivores) and home range structures of species abundance contributions. These results are discussed and compared with others sites of the South Pacific. For monitoring perspectives, some indicators related to expected disturbances are proposed. PMID:20637479

  6. Remote sensing and GIS analysis for mapping spatio-temporal changes of erosion and deposition of two Mediterranean river deltas: The case of the Axios and Aliakmonas rivers, Greece

    NASA Astrophysics Data System (ADS)

    Petropoulos, George P.; Kalivas, Dionissios P.; Griffiths, Hywel M.; Dimou, Paraskevi P.

    2015-03-01

    Wetlands are among Earth's most dynamic, diverse and varied habitats as the balance between land and water surfaces provide shelter to a unique mixture of plant and animal species. This study explores the changes in two Mediterranean wetland delta environments formed by the Axios and Aliakmonas rivers located in Greece, over a 25-year period (1984-2009). Direct photo-interpretation of four Landsat TM images acquired during the study period was performed. Furthermore, a sophisticated, semi-automatic image classification method based on support vector machines (SVMs) was developed to streamline the mapping process. Deposition and erosion magnitudes at different temporal scales during the study period were quantified using both approaches based on coastline surface area changes. Analysis using both methods was conducted in a geographical information systems (GIS) environment. Direct photo-interpretation, which formed our reference dataset, showed noticeable changes in the coastline deltas of both study areas, with erosion occurring mostly in the earlier periods (1990-2003) in both river deltas followed by deposition in more recent years (2003-2009), but at different magnitudes. Spatial patterns of coastline changes predicted from the SVMs showed similar trends. In absolute terms SVMs predictions of sediment erosion and deposition in the studied area were different in the order of 5-20% in comparison to photo-interpretation, evidencing the potential capability of this method in coastline changes monitoring. One of the main contributions of our work lies to the use of the SVMs classifier in coastal mapping of changes, since to our knowledge use of this technique has been under-explored in this application domain. Furthermore, this study provides important contribution to the understanding of Mediterranean river delta dynamics and their behaviours, and corroborates the usefulness of EO technology and GIS as an effective tool in policy decision making and successful

  7. Spatio-Temporal Measurements of Short Wind Water Waves

    NASA Astrophysics Data System (ADS)

    Rocholz, Roland; Jähne, Bernd

    2010-05-01

    Spatio-temporal measurements of wind-driven short-gravity capillary waves are reported for a wide range of experimental conditions, including wind, rain and surface slicks. The experiments were conducted in the Hamburg linear wind/wave flume in cooperation with the Institute of Oceanography at the University of Hamburg, Germany. Both components of the slope field were measured optically at a fetch of 14.4 m using a color imaging slope gauge (CISG) with a footprint of 223 x 104 mm and a resolution of 0.7 mm. The instrument was improved versus earlier versions (Jähne and Riemer (1990), Klinke (1992)) to achieve a sampling rate of 312.5 Hz, which now allows for the computation of 3D wavenumber-frequency spectra (see Rocholz (2008)). This made it possible to distinguish waves traveling in and against wind direction, which proved useful to distinguish wind waves from ring waves caused by rain drop impacts. Using a new calibration method it was possible to correct for the intrinsic nonlinearities of the instrument in the slope range up to ±1. In addition, the Modulation Transfer Function (MTF) was measured and employed for the restoration of the spectral amplitudes for wavenumbers in the range from 60 to 2300 rad/m. The spectra for pure wind conditions are generally consistent with previous measurements. But, the shape of the saturation spectra in the vicinity of k~1000 rad/m (i.e. pure capillary waves) stands in contradiction to former investigations where a sharp spectral cutoff (k^(-2) or k^(-3)) is commonly reported (e.g. Jähne and Riemer (1990)). This cutoff is reproduced by almost all semi-empirical models of the energy flux in the capillary range (e.g. Kudryavtsev et al. (1999), Apel (1994)). However, the new MTF corrected spectra show only a gentle decrease (between k^(-0.5) and k^(-1)) for k > 1000 rad/m. Therefore the question for the relative importance of different dissipation mechanisms might need a new assessment. References: J. R. Apel. An improved

  8. [Spatio-temporal variation of subtidal meiofauna in a sandy beach from Northeastern Venezuela].

    PubMed

    Arana, Ildefonso Liñero; Ojeda, Sol; Amaro, María Elena

    2013-03-01

    Meiofauna organisms that play an important role in the trophic ecology of soft bottom benthos, have short life cycles and they respond quickly to disturbance and pollution. The present study shows the spatio-temporal variation ofsubtidal meiofauna (metazoans passing a 500im sieve but retained on meshes of 40-63micro m) in four shallow subtidal stations. Samples were taken in the sandy beach of San Luis, in the Northeastern coast of Venezuela, from October 2005 until September 2006. For this, three replicate sediment core samples (4.91cm2), were collected monthly to a depth of 10cm into the sediment, and preserved in 6% formalin stained with rose Bengal. Specimens of 14 meiofaunal groups (Foraminifera excluded) were collected, being the nematodes, ostracods and harpacticoid copepods the most abundant. Monthly density was comprised between 64 and 503ind./10cm2, and mean density of stations between 173 and 449ind./10cm2. There is a trend of low densities from October to February (end of the rainy season until the middle of the dry season). The San Luis beach control of the meiofaunal community is shared by climatic conditions and by the biology of the species found. The meiofauna mean density in San Luis beach (263ind./10cm2) was low when compared to other studies in tropical areas. PMID:23894963

  9. Spatio-Temporal dependence effects of the 17 March 2015 space weather event

    NASA Astrophysics Data System (ADS)

    Bagiya, Mala; Sunda, Surendra; Sunil, A. S.

    2016-07-01

    The super storm of 17 March 2015 has been the largest space weather event of solar cycle 24 till date. The main phase for this storm occurred in two steps. The present study describes the response of global low latitude ionosphere to this event. Total Electron Content (TEC) observations from low latitude International GNSS Services (IGS) stations and one of our own equatorial GNSS station at Tirunelveli are used to derive the temporal ionospheric variability over a large spatial scale during this storm. Intense equatorial ionisation anomaly (EIA) developed over the longitudes where first step of the main phase coincided with local noon time. Equatorial Spread-F (ESF) irregularities occurred quiet strongly in the dusk sector that coincided in time with the initiation of second step of the main phase. The combined effects of overshielding electric field and the disturbance dynamo electric field reduced TEC during first step of the main phase. The storm effects observed to be mostly absent in the post-midnight to early morning sector. The presented spatio-temporal variabilities of low latitude ionosphere during the 17 March 2015 storm are discussed in view of the local time dependence of storm time electrodynamical coupling between high and low latitudes.

  10. Spatio-Temporal Dynamics of Hypoxia during Radiotherapy.

    PubMed

    Kempf, Harald; Bleicher, Marcus; Meyer-Hermann, Michael

    2015-01-01

    Tumour hypoxia plays a pivotal role in cancer therapy for most therapeutic approaches from radiotherapy to immunotherapy. The detailed and accurate knowledge of the oxygen distribution in a tumour is necessary in order to determine the right treatment strategy. Still, due to the limited spatial and temporal resolution of imaging methods as well as lacking fundamental understanding of internal oxygenation dynamics in tumours, the precise oxygen distribution map is rarely available for treatment planing. We employ an agent-based in silico tumour spheroid model in order to study the complex, localized and fast oxygen dynamics in tumour micro-regions which are induced by radiotherapy. A lattice-free, 3D, agent-based approach for cell representation is coupled with a high-resolution diffusion solver that includes a tissue density-dependent diffusion coefficient. This allows us to assess the space- and time-resolved reoxygenation response of a small subvolume of tumour tissue in response to radiotherapy. In response to irradiation the tumour nodule exhibits characteristic reoxygenation and re-depletion dynamics which we resolve with high spatio-temporal resolution. The reoxygenation follows specific timings, which should be respected in treatment in order to maximise the use of the oxygen enhancement effects. Oxygen dynamics within the tumour create windows of opportunity for the use of adjuvant chemotherapeutica and hypoxia-activated drugs. Overall, we show that by using modelling it is possible to follow the oxygenation dynamics beyond common resolution limits and predict beneficial strategies for therapy and in vitro verification. Models of cell cycle and oxygen dynamics in tumours should in the future be combined with imaging techniques, to allow for a systematic experimental study of possible improved schedules and to ultimately extend the reach of oxygenation monitoring available in clinical treatment. PMID:26273841

  11. Spatio-temporal microseismicity clustering in the Cretan region

    NASA Astrophysics Data System (ADS)

    Becker, Dirk; Meier, Thomas; Rische, Martina; Bohnhoff, Marco; Harjes, Hans-Peter

    2006-09-01

    Spatio-temporal clustering of microseismicity in the central forearc of the Hellenic Subduction Zone in the area of Crete is investigated. Data for this study were gathered by temporary short period networks which were installed on the islands of Crete and Gavdos between 1996 and 2004. The similarity of waveforms is quantified systematically to identify clusters of microseismicity. Waveform similarities are calculated using an adaptive time window containing both the P- and S-wave onsets. The cluster detection is performed by applying a single linkage approach. Clusters are found in the interplate seismicity as well as in the intraplate seismicity of the continental crust in the region of the transtensional Ptolemy structure. The majority of the clusters are off the southern coast of Crete, in a region of elevated intraplate microseismic activity within the Aegean plate. Clusters in the Gavdos region are located at depths compatible with the plate interface while cluster activity in the region of the Ptolemy trench is distributed along a nearly vertical structure throughout the crust extending down to the plate interface. Most clusters show swarm-like behaviour with seismic activity confined to only a few hours or days, without a dominant earthquake and with a power law distribution of the interevent times. For the largest cluster, precise relocations of the events using travel time differences of P- and S-waves derived from waveform cross correlations reveal migration of the hypocenters. This cluster is located in the region of the Ptolemy trench and migration occurs along the strike of the trench at ˜ 500 m/day. Relocated hypocenters as well as subtle differences in the waveforms suggest an offset between the hypocenters and thus the activation of distinct patches on the rupture surface. The observed microseismicity patterns may be related to fluids being transported along the plate interface and escaping towards the surface in zones of crustal weakness (Ptolemy

  12. Spatio-Temporal Dynamics of Hypoxia during Radiotherapy

    PubMed Central

    Kempf, Harald; Bleicher, Marcus; Meyer-Hermann, Michael

    2015-01-01

    Tumour hypoxia plays a pivotal role in cancer therapy for most therapeutic approaches from radiotherapy to immunotherapy. The detailed and accurate knowledge of the oxygen distribution in a tumour is necessary in order to determine the right treatment strategy. Still, due to the limited spatial and temporal resolution of imaging methods as well as lacking fundamental understanding of internal oxygenation dynamics in tumours, the precise oxygen distribution map is rarely available for treatment planing. We employ an agent-based in silico tumour spheroid model in order to study the complex, localized and fast oxygen dynamics in tumour micro-regions which are induced by radiotherapy. A lattice-free, 3D, agent-based approach for cell representation is coupled with a high-resolution diffusion solver that includes a tissue density-dependent diffusion coefficient. This allows us to assess the space- and time-resolved reoxygenation response of a small subvolume of tumour tissue in response to radiotherapy. In response to irradiation the tumour nodule exhibits characteristic reoxygenation and re-depletion dynamics which we resolve with high spatio-temporal resolution. The reoxygenation follows specific timings, which should be respected in treatment in order to maximise the use of the oxygen enhancement effects. Oxygen dynamics within the tumour create windows of opportunity for the use of adjuvant chemotherapeutica and hypoxia-activated drugs. Overall, we show that by using modelling it is possible to follow the oxygenation dynamics beyond common resolution limits and predict beneficial strategies for therapy and in vitro verification. Models of cell cycle and oxygen dynamics in tumours should in the future be combined with imaging techniques, to allow for a systematic experimental study of possible improved schedules and to ultimately extend the reach of oxygenation monitoring available in clinical treatment. PMID:26273841

  13. Spatio-temporal coupling of EEG signals in epilepsy

    NASA Astrophysics Data System (ADS)

    Senger, Vanessa; Müller, Jens; Tetzlaff, Ronald

    2011-05-01

    Approximately 1% of the world's population suffer from epileptic seizures throughout their lives that mostly come without sign or warning. Thus, epilepsy is the most common chronical disorder of the neurological system. In the past decades, the problem of detecting a pre-seizure state in epilepsy using EEG signals has been addressed in many contributions by various authors over the past two decades. Up to now, the goal of identifying an impending epileptic seizure with sufficient specificity and reliability has not yet been achieved. Cellular Nonlinear Networks (CNN) are characterized by local couplings of dynamical systems of comparably low complexity. Thus, they are well suited for an implementation as highly parallel analogue processors. Programmable sensor-processor realizations of CNN combine high computational power comparable to tera ops of digital processors with low power consumption. An algorithm allowing an automated and reliable detection of epileptic seizure precursors would be a"huge step" towards the vision of an implantable seizure warning device that could provide information to patients and for a time/event specific treatment directly in the brain. Recent contributions have shown that modeling of brain electrical activity by solutions of Reaction-Diffusion-CNN as well as the application of a CNN predictor taking into account values of neighboring electrodes may contribute to the realization of a seizure warning device. In this paper, a CNN based predictor corresponding to a spatio-temporal filter is applied to multi channel EEG data in order to identify mutual couplings for different channels which lead to a enhanced prediction quality. Long term EEG recordings of different patients are considered. Results calculated for these recordings with inter-ictal phases as well as phases with seizures will be discussed in detail.

  14. Ultrashort relativistic electron bunches and spatio-temporal radiation biology

    NASA Astrophysics Data System (ADS)

    Gauduel, Y. A.; Faure, J.; Malka, V.

    2008-08-01

    The intensive developments of terawatt Ti:Sa lasers permit to extend laser-plasma interactions into the relativistic regime, providing very-short electron or proton bunches. Experimental researches developed at the interface of laser physics and radiation biology, using the combination of sub-picosecond electron beams in the energy range 2-15 MeV with femtosecond near-IR optical pulses might conjecture the real-time investigation of penetrating radiation effects. A perfect synchronization between the particle beam (pump) and optical beam at 820 nm (probe) allows subpicosecond time resolution. This emerging domain involves high-energy radiation femtochemistry (HERF) for which the early spatial energy deposition is decisive for the prediction of cellular and tissular radiation damages. With vacuum-focused intensities of 2.7 x 1019 W cm-2 and a high energy electron total charge of 2.5 nC, radiation events have been investigated in the temporal range 10-13 - 10-10s. The early radiation effects of secondary electron on biomolecular sensors may be investigated inside sub-micrometric ionisation, considering the radial direction of Gaussian electron bunches. It is shown that short range electron-biosensor interactions lower than 10 A take place in nascent track structures triggered by penetrating radiation bunches. The very high dose delivery 1013 Gy s-1 performed with laser plasma accelerator may challenge our understanding of nanodosimetry on the time scale of molecular target motions. High-quality ultrashort penetrating radiation beams open promising opportunities for the development of spatio-temporal radiation biology, a crucial domain of cancer therapy, and would favor novating applications in nanomedicine such as highly-selective shortrange pro-drug activation.

  15. Modeling sediment transport as a spatio-temporal Markov process.

    NASA Astrophysics Data System (ADS)

    Heyman, Joris; Ancey, Christophe

    2014-05-01

    Despite a century of research about sediment transport by bedload occuring in rivers, its constitutive laws remain largely unknown. The proof being that our ability to predict mid-to-long term transported volumes within reasonable confidence interval is almost null. The intrinsic fluctuating nature of bedload transport may be one of the most important reasons why classical approaches fail. Microscopic probabilistic framework has the advantage of taking into account these fluctuations at the particle scale, to understand their effect on the macroscopic variables such as sediment flux. In this framework, bedload transport is seen as the random motion of particles (sand, gravel, pebbles...) over a two-dimensional surface (the river bed). The number of particles in motion, as well as their velocities, are random variables. In this talk, we show how a simple birth-death Markov model governing particle motion on a regular lattice accurately reproduces the spatio-temporal correlations observed at the macroscopic level. Entrainment, deposition and transport of particles by the turbulent fluid (air or water) are supposed to be independent and memoryless processes that modify the number of particles in motion. By means of the Poisson representation, we obtained a Fokker-Planck equation that is exactly equivalent to the master equation and thus valid for all cell sizes. The analysis shows that the number of moving particles evolves locally far from thermodynamic equilibrium. Several analytical results are presented and compared to experimental data. The index of dispersion (or variance over mean ratio) is proved to grow from unity at small scales to larger values at larger scales confirming the non Poisonnian behavior of bedload transport. Also, we study the one and two dimensional K-function, which gives the average number of moving particles located in a ball centered at a particle centroid function of the ball's radius.

  16. Spatio-Temporal Oscillations in Predator-Prey Systems

    NASA Astrophysics Data System (ADS)

    Tomé, T.; de Carvalho, K. Cristina

    2005-10-01

    In recent years a particularly great effort has been made to understand the role of space given by a spatial structure and local interactions in the characterization of the dynamics of competing biological species. Irreversible stochastic lattice models have been studied to mimic predator-prey systems with Markovian local rules based in the Lotka-Volterra model. One of the problems being studied is the stability of the temporal oscillations of the population of two-species systems-whether they are synchronized. Here we study the temporal oscillations of a two-species system by considering two probabilistic cellular automata defined in regular lattices where each site can be in three states: empty, occupied by a prey, or occupied by a predator. One of them, the isotropic model, has local rules similar to those of the contact process and try to mimic the Lotka-Volterra model mechanisms. The other automaton, the anisotropic model, is based in rules that are similar to the isotropic model, but a anisotropic neighborhood is considered. This model was introduced to explore the effect of spatial anisotropy in temporal oscillations. In fact, it has been pointed out that temporally periodic states can be stable in spatial anisotropic irreversible systems whose anisotropy is exploited conveniently. We show Monte Carlo simulations performed on square lattices for both automata. Our results indicate that, in the thermodynamic limit, oscillations can occur only at a local level, even in the anisotropic model. We observe that for given sets of control parameters a spatio-temporal oscillation occurs in the system. These structures are analyzed.

  17. Spatio-temporal representativeness of aerosol remote sensing observations

    NASA Astrophysics Data System (ADS)

    Schutgens, Nick; Gryspeerdt, Edward; Tsyro, Svetlana; Goto, Daisuke; Watson-Parris, Duncan; Weigum, Natalie; Schulz, Michael; Stier, Philip

    2016-04-01

    One characteristic of remote sensing observations is the strong intermittency with which they observe the same scene. Due to unfavourable conditions (due to e.g. low visible light, cloudiness or high surface albedo), sampling constraints (due to e.g. polar orbits) or instrument malfunction or maintenance, gaps in the observing record of hours to months exist. At the same time, satellite L3 products often are spatial aggregates over considerable distances (e.g. 1 by 1 degree). We study the impact of spatio-temporal sampling of observations on their representativeness: i.e. how well can satellite products represent the large scale (~ 100 by 100 km) aerosol field over periods of days, months, or years. This study was conducted by using diverse global and regional aerosol models as a truth and sub-sample them according to actual observations. In this way, we have been able to study the representativeness of different observing systems like MODIS, CALIOP and AERONET. Monthly and yearly averages allow serious sampling errors, that may still be present in multi-year climatologies due to recurring observing patterns. Even daily averages are affected as diurnal cycles can often not be observed. We discuss the implications these representativeness errors have for e.g. model evaluation or the construction of climatologies. We also assess similar representativeness issues in ground site in-situ observations from e.g. EMEP or IMPROVE and show that satellite datasets have distinct advantages due to their better spatial coverage provided temporal sampling is dealt with properly (i.e. through collocation of datasets). Finally, we briefly introduce a software tool (the Community Intercomparison Suite or CIS) that is designed to improve representativeness of datasets in intercomparion studies through aggregation and collocation of data.

  18. Downscaling future precipitation extremes to urban hydrology scales using a spatio-temporal Neyman-Scott weather generator

    NASA Astrophysics Data System (ADS)

    Jomo Danielsen Sørup, Hjalte; Bøssing Christensen, Ole; Arnbjerg-Nielsen, Karsten; Steen Mikkelsen, Peter

    2016-04-01

    Spatio-temporal precipitation is modelled for urban application at 1 h temporal resolution on a 2 km grid using a spatio-temporal Neyman-Scott rectangular pulses weather generator (WG). Precipitation time series used as input to the WG are obtained from a network of 60 tipping-bucket rain gauges irregularly placed in a 40 km × 60 km model domain. The WG simulates precipitation time series that are comparable to the observations with respect to extreme precipitation statistics. The WG is used for downscaling climate change signals from regional climate models (RCMs) with spatial resolutions of 25 and 8 km, respectively. Six different RCM simulation pairs are used to perturb the WG with climate change signals resulting in six very different perturbation schemes. All perturbed WGs result in more extreme precipitation at the sub-daily to multi-daily level and these extremes exhibit a much more realistic spatial pattern than what is observed in RCM precipitation output. The WG seems to correlate increased extreme intensities with an increased spatial extent of the extremes meaning that the climate-change-perturbed extremes have a larger spatial extent than those of the present climate. Overall, the WG produces robust results and is seen as a reliable procedure for downscaling RCM precipitation output for use in urban hydrology.

  19. A Spatio-Temporal Downscaler for Output From Numerical Models

    PubMed Central

    Berrocal, Veronica J.; Gelfand, Alan E.; Holland, David M.

    2010-01-01

    Often, in environmental data collection, data arise from two sources: numerical models and monitoring networks. The first source provides predictions at the level of grid cells, while the second source gives measurements at points. The first is characterized by full spatial coverage of the region of interest, high temporal resolution, no missing data but consequential calibration concerns. The second tends to be sparsely collected in space with coarser temporal resolution, often with missing data but, where recorded, provides, essentially, the true value. Accommodating the spatial misalignment between the two types of data is of fundamental importance for both improved predictions of exposure as well as for evaluation and calibration of the numerical model. In this article we propose a simple, fully model-based strategy to downscale the output from numerical models to point level. The static spatial model, specified within a Bayesian framework, regresses the observed data on the numerical model output using spatially-varying coefficients which are specified through a correlated spatial Gaussian process. As an example, we apply our method to ozone concentration data for the eastern U.S. and compare it to Bayesian melding (Fuentes and Raftery 2005) and ordinary kriging (Cressie 1993; Chilès and Delfiner 1999). Our results show that our method outperforms Bayesian melding in terms of computing speed and it is superior to both Bayesian melding and ordinary kriging in terms of predictive performance; predictions obtained with our method are better calibrated and predictive intervals have empirical coverage closer to the nominal values. Moreover, our model can be easily extended to accommodate for the temporal dimension. In this regard, we consider several spatio-temporal versions of the static model. We compare them using out-of-sample predictions of ozone concentration for the eastern U.S. for the period May 1–October 15, 2001. For the best choice, we present a

  20. Somatic growth dynamics of West Atlantic hawksbill sea turtles: a spatio-temporal perspective

    USGS Publications Warehouse

    Bjorndal, Karen A.; Chaloupka, Milani; Saba, Vincent S.; Diez, Carlos E.; van Dam, Robert P.; Krueger, Barry H.; Horrocks, Julia A.; Santos, Armando J. B.; Bellini, Cláudio; Marcovaldi, Maria A. G.; Nava, Mabel; Willis, Sue; Godley, Brendan J.; Gore, Shannon; Hawkes, Lucy A.; McGowan, Andrew; Witt, Matthew J.; Stringell, Thomas B.; Sanghera, Amdeep; Richardson, Peter B.; Broderick, Annette C.; Phillips, Quinton; Calosso, Marta C.; Claydon, John A. B.; Blumenthal, Janice; Moncada, Felix; Nodarse, Gonzalo; Medina, Yosvani; Dunbar, Stephen G.; Wood, Lawrence D.; Lagueux, Cynthia J.; Campbell, Cathi L.; Meylan, Anne B.; Meylan, Peter A.; Burns Perez, Virginia R.; Coleman, Robin A.; Strindberg, Samantha; Guzmán-H, Vicente; Hart, Kristen M.; Cherkiss, Michael S.; Hillis-Starr, Zandy; Lundgren, Ian; Boulon, Ralf H., Jr.; Connett, Stephen; Outerbridge, Mark E.; Bolten, Alan B.

    2016-01-01

    Somatic growth dynamics are an integrated response to environmental conditions. Hawksbill sea turtles (Eretmochelys imbricata) are long-lived, major consumers in coral reef habitats that move over broad geographic areas (hundreds to thousands of kilometers). We evaluated spatio-temporal effects on hawksbill growth dynamics over a 33-yr period and 24 study sites throughout the West Atlantic and explored relationships between growth dynamics and climate indices. We compiled the largest ever data set on somatic growth rates for hawksbills – 3541 growth increments from 1980 to 2013. Using generalized additive mixed model analyses, we evaluated 10 covariates, including spatial and temporal variation, that could affect growth rates. Growth rates throughout the region responded similarly over space and time. The lack of a spatial effect or spatio-temporal interaction and the very strong temporal effect reveal that growth rates in West Atlantic hawksbills are likely driven by region-wide forces. Between 1997 and 2013, mean growth rates declined significantly and steadily by 18%. Regional climate indices have significant relationships with annual growth rates with 0- or 1-yr lags: positive with the Multivariate El Niño Southern Oscillation Index (correlation = 0.99) and negative with Caribbean sea surface temperature (correlation = −0.85). Declines in growth rates between 1997 and 2013 throughout the West Atlantic most likely resulted from warming waters through indirect negative effects on foraging resources of hawksbills. These climatic influences are complex. With increasing temperatures, trajectories of decline of coral cover and availability in reef habitats of major prey species of hawksbills are not parallel. Knowledge of how choice of foraging habitats, prey selection, and prey abundance are affected by warming water temperatures is needed to understand how climate change will affect productivity of consumers that live in association with coral reefs. Main

  1. A spatio-temporal detective quantum efficiency and its application to fluoroscopic systems

    SciTech Connect

    Friedman, S. N.; Cunningham, I. A.

    2010-11-15

    Purpose: Fluoroscopic x-ray imaging systems are used extensively in spatio-temporal detection tasks and require a spatio-temporal description of system performance. No accepted metric exists that describes spatio-temporal fluoroscopic performance. The detective quantum efficiency (DQE) is a metric widely used in radiography to quantify system performance and as a surrogate measure of patient ''dose efficiency.'' It has been applied previously to fluoroscopic systems with the introduction of a temporal correction factor. However, the use of a temporally-corrected DQE does not provide system temporal information and it is only valid under specific conditions, many of which are not likely to be satisfied by suboptimal systems. The authors propose a spatio-temporal DQE that describes performance in both space and time and is applicable to all spatio-temporal quantum-based imaging systems. Methods: The authors define a spatio-temporal DQE (two spatial-frequency axes and one temporal-frequency axis) in terms of a small-signal spatio-temporal modulation transfer function (MTF) and spatio-temporal noise power spectrum (NPS). Measurements were made on an x-ray image intensifier-based bench-top system using continuous fluoroscopy with an RQA-5 beam at 3.9 {mu}R/frame and hardened 50 kVp beam (0.8 mm Cu filtration added) at 1.9 {mu}R/frame. Results: A zero-frequency DQE value of 0.64 was measured under both conditions. Nonideal performance was noted at both larger spatial and temporal frequencies; DQE values decreased by {approx}50% at the cutoff temporal frequency of 15 Hz. Conclusions: The spatio-temporal DQE enables measurements of decreased temporal system performance at larger temporal frequencies analogous to previous measurements of decreased (spatial) performance. This marks the first time that system performance and dose efficiency in both space and time have been measured on a fluoroscopic system using DQE and is the first step toward the generalized use of DQE on

  2. An Adaptive Organization Method of Geovideo Data for Spatio-Temporal Association Analysis

    NASA Astrophysics Data System (ADS)

    Wu, C.; Zhu, Q.; Zhang, Y. T.; Du, Z. Q.; Zhou, Y.; Xie, X.; He, F.

    2015-07-01

    Public security incidents have been increasingly challenging to address with their new features, including large-scale mobility, multi-stage dynamic evolution, spatio-temporal concurrency and uncertainty in the complex urban environment, which require spatio-temporal association analysis among multiple regional video data for global cognition. However, the existing video data organizational methods that view video as a property of the spatial object or position in space dissever the spatio-temporal relationship of scattered video shots captured from multiple video channels, limit the query functions on interactive retrieval between a camera and its video clips and hinder the comprehensive management of event-related scattered video shots. GeoVideo, which maps video frames onto a geographic space, is a new approach to represent the geographic world, promote security monitoring in a spatial perspective and provide a highly feasible solution to this problem. This paper analyzes the large-scale personnel mobility in public safety events and proposes a multi-level, event-related organization method with massive GeoVideo data by spatio-temporal trajectory. This paper designs a unified object identify(ID) structure to implicitly store the spatio-temporal relationship of scattered video clips and support the distributed storage management of massive cases. Finally, the validity and feasibility of this method are demonstrated through suspect tracking experiments.

  3. Advanced spatio-temporal filtering techniques for photogrammetric image sequence analysis in civil engineering material testing

    NASA Astrophysics Data System (ADS)

    Liebold, F.; Maas, H.-G.

    2016-01-01

    The paper shows advanced spatial, temporal and spatio-temporal filtering techniques which may be used to reduce noise effects in photogrammetric image sequence analysis tasks and tools. As a practical example, the techniques are validated in a photogrammetric spatio-temporal crack detection and analysis tool applied in load tests in civil engineering material testing. The load test technique is based on monocular image sequences of a test object under varying load conditions. The first image of a sequence is defined as a reference image under zero load, wherein interest points are determined and connected in a triangular irregular network structure. For each epoch, these triangles are compared to the reference image triangles to search for deformations. The result of the feature point tracking and triangle comparison process is a spatio-temporally resolved strain value field, wherein cracks can be detected, located and measured via local discrepancies. The strains can be visualized as a color-coded map. In order to improve the measuring system and to reduce noise, the strain values of each triangle must be treated in a filtering process. The paper shows the results of various filter techniques in the spatial and in the temporal domain as well as spatio-temporal filtering techniques applied to these data. The best results were obtained by a bilateral filter in the spatial domain and by a spatio-temporal EOF (empirical orthogonal function) filtering technique.

  4. A Spatio-Temporally Explicit Random Encounter Model for Large-Scale Population Surveys.

    PubMed

    Jousimo, Jussi; Ovaskainen, Otso

    2016-01-01

    Random encounter models can be used to estimate population abundance from indirect data collected by non-invasive sampling methods, such as track counts or camera-trap data. The classical Formozov-Malyshev-Pereleshin (FMP) estimator converts track counts into an estimate of mean population density, assuming that data on the daily movement distances of the animals are available. We utilize generalized linear models with spatio-temporal error structures to extend the FMP estimator into a flexible Bayesian modelling approach that estimates not only total population size, but also spatio-temporal variation in population density. We also introduce a weighting scheme to estimate density on habitats that are not covered by survey transects, assuming that movement data on a subset of individuals is available. We test the performance of spatio-temporal and temporal approaches by a simulation study mimicking the Finnish winter track count survey. The results illustrate how the spatio-temporal modelling approach is able to borrow information from observations made on neighboring locations and times when estimating population density, and that spatio-temporal and temporal smoothing models can provide improved estimates of total population size compared to the FMP method. PMID:27611683

  5. Spatio-temporal Hotelling observer for signal detection from image sequences

    PubMed Central

    Caucci, Luca; Barrett, Harrison H.; Rodríguez, Jeffrey J.

    2010-01-01

    Detection of signals in noisy images is necessary in many applications, including astronomy and medical imaging. The optimal linear observer for performing a detection task, called the Hotelling observer in the medical literature, can be regarded as a generalization of the familiar prewhitening matched filter. Performance on the detection task is limited by randomness in the image data, which stems from randomness in the object, randomness in the imaging system, and randomness in the detector outputs due to photon and readout noise, and the Hotelling observer accounts for all of these effects in an optimal way. If multiple temporal frames of images are acquired, the resulting data set is a spatio-temporal random process, and the Hotelling observer becomes a spatio-temporal linear operator. This paper discusses the theory of the spatio-temporal Hotelling observer and estimation of the required spatio-temporal covariance matrices. It also presents a parallel implementation of the observer on a cluster of Sony PLAYSTATION 3 gaming consoles. As an example, we consider the use of the spatio-temporal Hotelling observer for exoplanet detection. PMID:19550494

  6. Spatio-temporal Hotelling observer for signal detection from image sequences.

    PubMed

    Caucci, Luca; Barrett, Harrison H; Rodriguez, Jeffrey J

    2009-06-22

    Detection of signals in noisy images is necessary in many applications, including astronomy and medical imaging. The optimal linear observer for performing a detection task, called the Hotelling observer in the medical literature, can be regarded as a generalization of the familiar prewhitening matched filter. Performance on the detection task is limited by randomness in the image data, which stems from randomness in the object, randomness in the imaging system, and randomness in the detector outputs due to photon and readout noise, and the Hotelling observer accounts for all of these effects in an optimal way. If multiple temporal frames of images are acquired, the resulting data set is a spatio-temporal random process, and the Hotelling observer becomes a spatio-temporal linear operator. This paper discusses the theory of the spatio-temporal Hotelling observer and estimation of the required spatio-temporal covariance matrices. It also presents a parallel implementation of the observer on a cluster of Sony PLAYSTATION 3 gaming consoles. As an example, we consider the use of the spatio-temporal Hotelling observer for exoplanet detection. PMID:19550494

  7. Spatio-temporal analysis of brain electrical activity in epilepsy based on cellular nonlinear networks

    NASA Astrophysics Data System (ADS)

    Gollas, Frank; Tetzlaff, Ronald

    2009-05-01

    Epilepsy is the most common chronic disorder of the nervous system. Generally, epileptic seizures appear without foregoing sign or warning. The problem of detecting a possible pre-seizure state in epilepsy from EEG signals has been addressed by many authors over the past decades. Different approaches of time series analysis of brain electrical activity already are providing valuable insights into the underlying complex dynamics. But the main goal the identification of an impending epileptic seizure with a sufficient specificity and reliability, has not been achieved up to now. An algorithm for a reliable, automated prediction of epileptic seizures would enable the realization of implantable seizure warning devices, which could provide valuable information to the patient and time/event specific drug delivery or possibly a direct electrical nerve stimulation. Cellular Nonlinear Networks (CNN) are promising candidates for future seizure warning devices. CNN are characterized by local couplings of comparatively simple dynamical systems. With this property these networks are well suited to be realized as highly parallel, analog computer chips. Today available CNN hardware realizations exhibit a processing speed in the range of TeraOps combined with low power consumption. In this contribution new algorithms based on the spatio-temporal dynamics of CNN are considered in order to analyze intracranial EEG signals and thus taking into account mutual dependencies between neighboring regions of the brain. In an identification procedure Reaction-Diffusion CNN (RD-CNN) are determined for short segments of brain electrical activity, by means of a supervised parameter optimization. RD-CNN are deduced from Reaction-Diffusion Systems, which usually are applied to investigate complex phenomena like nonlinear wave propagation or pattern formation. The Local Activity Theory provides a necessary condition for emergent behavior in RD-CNN. In comparison linear spatio-temporal

  8. Hierarchical Bayesian Spatio-Temporal Analysis of Climatic and Socio-Economic Determinants of Rocky Mountain Spotted Fever.

    PubMed

    Raghavan, Ram K; Goodin, Douglas G; Neises, Daniel; Anderson, Gary A; Ganta, Roman R

    2016-01-01

    This study aims to examine the spatio-temporal dynamics of Rocky Mountain spotted fever (RMSF) prevalence in four contiguous states of Midwestern United States, and to determine the impact of environmental and socio-economic factors associated with this disease. Bayesian hierarchical models were used to quantify space and time only trends and spatio-temporal interaction effect in the case reports submitted to the state health departments in the region. Various socio-economic, environmental and climatic covariates screened a priori in a bivariate procedure were added to a main-effects Bayesian model in progressive steps to evaluate important drivers of RMSF space-time patterns in the region. Our results show a steady increase in RMSF incidence over the study period to newer geographic areas, and the posterior probabilities of county-specific trends indicate clustering of high risk counties in the central and southern parts of the study region. At the spatial scale of a county, the prevalence levels of RMSF is influenced by poverty status, average relative humidity, and average land surface temperature (>35°C) in the region, and the relevance of these factors in the context of climate-change impacts on tick-borne diseases are discussed. PMID:26942604

  9. Spatio-temporal analysis of soil erosion risk and runoff using AnnAGNPS

    NASA Astrophysics Data System (ADS)

    Yeshaneh, Eleni; Wagner, Wolfgang; Blöschl, Günter

    2014-05-01

    Soil erosion is one form of land degradation in Ethiopia deteriorating the fertility and productivity of the land. This fact indicates the need to delineate high erosion risk areas for appropriate soil and conservation measures. Land use/cover change is one of the important factors in soil erosion. This study attempts test and implement AnnAGNPS model to estimate the spatio-temporal patterns of soil erosion and runoff associated with land use changes in the past 50 years in the 9900 ha upstream part of the Koga catchment. High erosion risk areas will then be delineated for simulation of the appropriate soil and water conservation measures that would reduce the soil loss. The study is based on two years high temporal resolution data on discharge, sediment, and rain fall accompanied by historical land use/cover data generated from satellite imagery. In addition, it uses several documented physical parameters of the study area. The Koga catchment is one of the agriculture dominated typical catchments in the North Western Ethiopian highlands with high population density that lead to increased pressure on natural resources.

  10. Improving exposure assessment in environmental epidemiology: Application of spatio-temporal visualization tools

    NASA Astrophysics Data System (ADS)

    Meliker, Jaymie R.; Slotnick, Melissa J.; Avruskin, Gillian A.; Kaufmann, Andrew; Jacquez, Geoffrey M.; Nriagu, Jerome O.

    2005-05-01

    A thorough assessment of human exposure to environmental agents should incorporate mobility patterns and temporal changes in human behaviors and concentrations of contaminants; yet the temporal dimension is often under-emphasized in exposure assessment endeavors, due in part to insufficient tools for visualizing and examining temporal datasets. Spatio-temporal visualization tools are valuable for integrating a temporal component, thus allowing for examination of continuous exposure histories in environmental epidemiologic investigations. An application of these tools to a bladder cancer case-control study in Michigan illustrates continuous exposure life-lines and maps that display smooth, continuous changes over time. Preliminary results suggest increased risk of bladder cancer from combined exposure to arsenic in drinking water (>25 μg/day) and heavy smoking (>30 cigarettes/day) in the 1970s and 1980s, and a possible cancer cluster around automotive, paint, and organic chemical industries in the early 1970s. These tools have broad application for examining spatially- and temporally-specific relationships between exposures to environmental risk factors and disease.

  11. Recent homogeneity analysis and long-term spatio-temporal rainfall trends in Nigeria

    NASA Astrophysics Data System (ADS)

    Akinsanola, A. A.; Ogunjobi, K. O.

    2015-12-01

    Accurately predicting precipitation trends is vital in the economic development of a country. Ground observed data from the Nigeria Meteorological Agency (NIMET) was analyzed to study the long-term spatio-temporal trends of rainfall on annual and seasonal scales for 23 stations in Nigeria during a 40-year period spanning from 1974 to 2013. After testing the presence of autocorrelation, Mann-Kendall (modified Mann-Kendall) test was applied to non-autocorrelated (autocorrelated) series to detect the trends in rainfall data. Theil and Sen's slope estimator test was used to find the magnitude of change over a time period. Pettitt's test, Standard Normal Homogeneity Test, and Buishand's test were further used to test the homogeneity of the rainfall series. The results show an increasing trend in annual rainfall; however, only nine stations have a significant increase during the period of study. On the seasonal time scale, a significant increasing trend was observed in the pre- and post-monsoon seasons, while only nine stations show a significant increasing trend in monsoon rainfall and a significant decreasing trend in the winter rainfall over the last 40 years. During the study period, 15.4 and 13.90 % increase were estimated for annual and monsoonal rainfall, respectively. Furthermore, seven stations exhibit changes in mean rainfall while majority of the stations considered (Eighteen stations) exhibit homogeneous trends in annual and seasonal rainfall over the country. The performance of the different tests used in this study was consistent at the verified significance level.

  12. Spatio-Temporal Variability of Saturated Crevasses Along the Margins of Jakobshavn ISBRÆ

    NASA Astrophysics Data System (ADS)

    Ring, A.; Lampkin, D. J.

    2014-12-01

    Jakobshavn Isbræ is the fastest marine-terminating outlet glacier on the Greenland Ice Sheet and has experienced speed up, thinning and increased mass discharge primarily due to ocean-ice interactions at the terminus, over the last two decades. Approximately 60% of the total driving stress within the main ice stream is compensated by resistance due to lateral shear. We have observed the presence of water-filled crevasses, which fill in local depressions and drain seasonally, resulting in meltwater filtration directly into the shear margins. Injection of meltwater into the shear margins can result in shear weakening with implications for observed changes within the ice stream, in addition to, potentially enhancing mass flux into the main trough. Shear weakening, due to infiltrated meltwater, can increase sliding due to basal lubrication or reduce ice stiffness due to cryo-hydrologic warming. In this study, LandSat-7 ETM+ and LandSat-8 OLI images at 15m spatial resolutions are used to characterize the spatio-temporal variability of saturated crevasses during the ablation seasons from 2000 through 2013. Changes in the delineated area of water-filled crevasses are compared to variability in ice surface velocity fields during the analysis period as a first-order assessment on the potential impact these features may have on marginal ice dynamics.

  13. Visual Analysis of Multi-Run Spatio-Temporal Simulations Using Isocontour Similarity for Projected Views.

    PubMed

    Fofonov, Alexey; Molchanov, Vladimir; Linsen, Lars

    2016-08-01

    Multi-run simulations are widely used to investigate how simulated processes evolve depending on varying initial conditions. Frequently, such simulations model the change of spatial phenomena over time. Isocontours have proven to be effective for the visual representation and analysis of 2D and 3D spatial scalar fields. We propose a novel visualization approach for multi-run simulation data based on isocontours. By introducing a distance function for isocontours, we generate a distance matrix used for a multidimensional scaling projection. Multiple simulation runs are represented by polylines in the projected view displaying change over time. We propose a fast calculation of isocontour differences based on a quasi-Monte Carlo approach. For interactive visual analysis, we support filtering and selection mechanisms on the multi-run plot and on linked views to physical space visualizations. Our approach can be effectively used for the visual representation of ensembles, for pattern and outlier detection, for the investigation of the influence of simulation parameters, and for a detailed analysis of the features detected. The proposed method is applicable to data of any spatial dimensionality and any spatial representation (gridded or unstructured). We validate our approach by performing a user study on synthetic data and applying it to different types of multi-run spatio-temporal simulation data. PMID:26561458

  14. Spatio-Temporal Plasticity in Chromatin Organization in Mouse Cell Differentiation and during Drosophila Embryogenesis

    PubMed Central

    Bhattacharya, Dipanjan; Talwar, Shefali; Mazumder, Aprotim; Shivashankar, G.V.

    2009-01-01

    Cellular differentiation and developmental programs require changing patterns of gene expression. Recent experiments have revealed that chromatin organization is highly dynamic within living cells, suggesting possible mechanisms to alter gene expression programs, yet the physical basis of this organization is unclear. In this article, we contrast the differences in the dynamic organization of nuclear architecture between undifferentiated mouse embryonic stem cells and terminally differentiated primary mouse embryonic fibroblasts. Live-cell confocal tracking of nuclear lamina evidences highly flexible nuclear architecture within embryonic stem cells as compared to primary mouse embryonic fibroblasts. These cells also exhibit significant changes in histone and heterochromatin binding proteins correlated with their distinct epigenetic signatures as quantified by immunofluorescence analysis. Further, we follow histone dynamics during the development of the Drosophila melanogaster embryo, which gives an insight into spatio-temporal evolution of chromatin plasticity in an organismal context. Core histone dynamics visualized by fluorescence recovery after photobleaching, fluorescence correlation spectroscopy, and fluorescence anisotropy within the developing embryo, revealed an intriguing transition from plastic to frozen chromatin assembly synchronous with cellular differentiation. In the embryo, core histone proteins are highly mobile before cellularization, actively exchanging with the pool in the yolk. This hyperdynamic mobility decreases as cellularization and differentiation programs set in. These findings reveal a direct correlation between the dynamic transitions in chromatin assembly with the onset of cellular differentiation and developmental programs. PMID:19413989

  15. Spatio-temporal properties and evolution of the 2013 Aigion earthquake swarm (Corinth Gulf, Greece)

    NASA Astrophysics Data System (ADS)

    Mesimeri, M.; Karakostas, V.; Papadimitriou, E.; Schaff, D.; Tsaklidis, G.

    2016-04-01

    The 2013 Aigion earthquake swarm that took place in the west part of Corinth Gulf is investigated for revealing faulting and seismicity properties of the activated area. The activity started on May 21 and was appreciably intense in the next 3 months. The recordings of the Hellenic Unified Seismological Network (HUSN), which is adequately dense around the affected area, were used to accurately locate 1501 events. The double difference ( hypoDD) technique was employed for the manually picked P and S phases along with differential times derived from waveform cross-correlation for improving location accuracy. The activated area with dimensions 6 × 2 km is located approximately 5 km SE of Aigion. Focal mechanisms of 77 events with M ≥ 2.0 were determined from P wave first motions and used for the geometry identification of the ruptured segments. Spatio-temporal distribution of earthquakes revealed an eastward and westward hypocentral migration from the starting point suggesting the division of the seismic swarm into four major clusters. The hypocentral migration was corroborated by the Coulomb stress change calculation, indicating that four fault segments involved in the rupture process successively failed by stress change encouragement. Examination of fluid flow brought out that it cannot be unambiguously considered as the driving mechanism for the successive failures.

  16. Proposal for a Non-Interceptive Spatio-Temporal Correlation Monitor

    SciTech Connect

    Maxwell, T.; Piot, P.; /Northern Illinois U. /Fermilab

    2009-05-01

    Designs toward TeV-range electron-positron linear colliders include a non-zero crossing angle colliding scheme at the interaction point to mitigate instabilities and possible background. Maximizing the luminosity when operating with non-zero crossing angles requires the use of 'crab' cavities to impart a well-defined spatio-temporal correlation. In this paper we propose a novel noninterceptive diagnostic capable of measuring and monitoring the spatio-temporal correlation, i.e. the transverse position of sub-picosecond time slices, within bunch. An analysis of the proposed scheme, its spatio-temporal resolution and its limitations are quantified. Finally, the design of a proof-of-principle experiment in preparation for the Fermilab's A0 photoinjector is presented.

  17. Plant diversity increases spatio-temporal niche complementarity in plant-pollinator interactions.

    PubMed

    Venjakob, Christine; Klein, Alexandra-Maria; Ebeling, Anne; Tscharntke, Teja; Scherber, Christoph

    2016-04-01

    Ongoing biodiversity decline impairs ecosystem processes, including pollination. Flower visitation, an important indicator of pollination services, is influenced by plant species richness. However, the spatio-temporal responses of different pollinator groups to plant species richness have not yet been analyzed experimentally. Here, we used an experimental plant species richness gradient to analyze plant-pollinator interactions with an unprecedented spatio-temporal resolution. We observed four pollinator functional groups (honeybees, bumblebees, solitary bees, and hoverflies) in experimental plots at three different vegetation strata between sunrise and sunset. Visits were modified by plant species richness interacting with time and space. Furthermore, the complementarity of pollinator functional groups in space and time was stronger in species-rich mixtures. We conclude that high plant diversity should ensure stable pollination services, mediated via spatio-temporal niche complementarity in flower visitation. PMID:27069585

  18. The dynamics of spatio-temporal Rho GTPase signaling: formation of signaling patterns

    PubMed Central

    Fritz, Rafael Dominik; Pertz, Olivier

    2016-01-01

    Rho GTPases are crucial signaling molecules that regulate a plethora of biological functions. Traditional biochemical, cell biological, and genetic approaches have founded the basis of Rho GTPase biology. The development of biosensors then allowed measuring Rho GTPase activity with unprecedented spatio-temporal resolution. This revealed that Rho GTPase activity fluctuates on time and length scales of tens of seconds and micrometers, respectively. In this review, we describe Rho GTPase activity patterns observed in different cell systems. We then discuss the growing body of evidence that upstream regulators such as guanine nucleotide exchange factors and GTPase-activating proteins shape these patterns by precisely controlling the spatio-temporal flux of Rho GTPase activity. Finally, we comment on additional mechanisms that might feed into the regulation of these signaling patterns and on novel technologies required to dissect this spatio-temporal complexity. PMID:27158467

  19. Spatio-temporal aggregation of European air quality observations in the Sensor Web

    NASA Astrophysics Data System (ADS)

    Stasch, Christoph; Foerster, Theodor; Autermann, Christian; Pebesma, Edzer

    2012-10-01

    An increasing amount of observations from different applications such as long-term environmental monitoring or disaster management is published in the Web using Sensor Web technologies. The standardization of these technologies eases the integration of heterogeneous observations into several applications. However, as observations differ in spatio-temporal coverage and resolution, aggregation of observations in space and time is needed. We present an approach for spatio-temporal aggregation in the Sensor Web using the Geoprocessing Web. In particular, we define a tailored observation model for different aggregation levels, a process model for aggregation processes and a Spatio-Temporal Aggregation Service. The presented approach is demonstrated by a case study of delivering aggregated air quality observations on-demand in the Sensor Web.

  20. The Relationship between Filling-in Induction and Spatio-Temporal Frequency of Sorrounding Dynamic Textures

    NASA Astrophysics Data System (ADS)

    Yokota, Masae; Yokota, Yasunari

    To elucidate perceptual filling-in mechanisms in peripheral vision, we investigated dependency of filling-in occurrence on spatio-temporal frequency of dynamic textures surrounding the filling-in target. We first measured spatial frequency sensitivity of the filling-in target in static texture. Then, the time to filling-in, when dynamic textures which have variously limited spatio-temporal frequency are surrounding the filling-in target, were measured. According to the hypothesis of filling-in process which has already proposed by the authors, the tendency of inducing filling-in, i.e., the attenuation factor of perceptual power for filling-in target in dynamic textures, is estimated as a function of spatio-temporal frequency. It was suggested that surrounding texture with stronger perception promotes filling-in more intensively.

  1. Geovisualization Approaches for Spatio-temporal Crime Scene Analysis - Towards 4D Crime Mapping

    NASA Astrophysics Data System (ADS)

    Wolff, Markus; Asche, Hartmut

    This paper presents a set of methods and techniques for analysis and multidimensional visualisation of crime scenes in a German city. As a first step the approach implies spatio-temporal analysis of crime scenes. Against this background a GIS-based application is developed that facilitates discovering initial trends in spatio-temporal crime scene distributions even for a GIS untrained user. Based on these results further spatio-temporal analysis is conducted to detect variations of certain hotspots in space and time. In a next step these findings of crime scene analysis are integrated into a geovirtual environment. Behind this background the concept of the space-time cube is adopted to allow for visual analysis of repeat burglary victimisation. Since these procedures require incorporating temporal elements into virtual 3D environments, basic methods for 4D crime scene visualisation are outlined in this paper.

  2. Sedimentological constraints to the spatio-temporal evolution of the first Cenozoic Antarctic glaciation

    NASA Astrophysics Data System (ADS)

    Stocchi, P.; Galeotti, S.; De Boer, B.; Escutia, C.; DeConto, R.; Houben, A. J.; Passchier, S.; Vermeersen, B. L.; Van de Wal, R.; Brinkhuis, H.

    2012-12-01

    Glacial Isostatic Adjustement (GIA) modeling of solid Earth and gravitational perturbations induced by the Antarctic glaciation across the Eocene/Oligocene transition (EOT; ~34 Ma) predicts a relative sea level (rsl) rise over-ice proximal marine marginal settings. Accordingly, available sedimentary records from the Ross Sea (CIROS1, CRP-3), Prydz Bay (ODP 739, 1166) and Wilkes Land (IOPD U1356, U1360) provide evidence for progressively deeper depositional environments across the late Eocene towards the Oligocene isotope event-1 (Oi-1; 33.7 Ma, which marks a major glacial advancement episode. Since bathymetric changes at these near-field sites are controlled by GIA, the analysis and inter-site comparison of their sedimentary records provide insights into the spatio-temporal evolution of the nascent Antarctic Ice Sheet. In this work we simulate the inception of the Antarctic glaciation by means of a thermomechanical ice sheet-shelf model dynamically coupled to a sea level model based on the gravitationally self-consistent Sea Level Equation (SLE). We generate a set of ice-sheet and rsl scenarios according to (i) different values for the Earth rheological parameters, (ii) initial topographic/bathymetric conditions and (iii) precipitation/temperature patterns. By comparing the observations with the modeling solutions we find that the initial undeformed topography/bathymetry, and consequently its deformations driven by the GIA described by the SLE, are important conditions for a realistic development of the Antarctic ice-sheet.

  3. A stereoscopic video conversion scheme based on spatio-temporal analysis of MPEG videos

    NASA Astrophysics Data System (ADS)

    Lin, Guo-Shiang; Huang, Hsiang-Yun; Chen, Wei-Chih; Yeh, Cheng-Ying; Liu, Kai-Che; Lie, Wen-Nung

    2012-12-01

    In this article, an automatic stereoscopic video conversion scheme which accepts MPEG-encoded videos as input is proposed. Our scheme is depth-based, relying on spatio-temporal analysis of the decoded video data to yield depth perception cues, such as temporal motion and spatial contrast, which reflect the relative depths between the foreground and the background areas. Our scheme is shot-adaptive, demanding that shot change detection and shot classification be performed for tuning of algorithm or parameters that are used for depth cue combination. The above-mentioned depth estimation is initially block-based, followed by a locally adaptive joint trilateral upsampling algorithm to reduce the computing load significantly. A recursive temporal filter is used to reduce the possible depth fluctuations (and also artifacts in the synthesized images) resulting from wrong depth estimations. The traditional Depth-Image-Based-Rendering algorithm is used to synthesize the left- and right-view frames for 3D display. Subjective tests show that videos converted by our scheme provide comparable perceived depth and visual quality with those converted from the depth data calculated by stereo vision techniques. Also, our scheme is shown to outperform the well-known TriDef software in terms of human's perceived 3D depth. Based on the implementation by using "OpenMP" parallel programming model, our scheme is capable of executing in real-time on a multi-core CPU platform.

  4. Taming of Modulation Instability by Spatio-Temporal Modulation of the Potential

    NASA Astrophysics Data System (ADS)

    Kumar, S.; Herrero, R.; Botey, M.; Staliunas, K.

    2015-08-01

    Spontaneous pattern formation in a variety of spatially extended nonlinear systems always occurs through a modulation instability, sometimes called Turing instability: the homogeneous state of the system becomes unstable with respect to growing modulation modes. Therefore, the manipulation of the modulation instability is of primary importance in controlling and manipulating the character of spatial patterns initiated by that instability. We show that a spatio-temporal periodic modulation of the potential of spatially extended systems results in a modification of its pattern forming instability. Depending on the modulation character the instability can be partially suppressed, can change its spectrum (for instance the long wave instability can transform into short wave instability), can split into two, or can be completely eliminated. The latter result is of special practical interest, as it can be used to stabilize the intrinsically unstable system. The result bears general character, as it is shown here on a universal model of the Complex Ginzburg-Landau equation in one and two spatial dimensions (and time). The physical mechanism of the instability suppression can be applied to a variety of intrinsically unstable dissipative systems, like self-focusing lasers, reaction-diffusion systems, as well as in unstable conservative systems, like attractive Bose Einstein condensates.

  5. Spatio-temporal Kinetics of Nontypeable Haemophilus influenzae(NTHi) Biofilms

    NASA Astrophysics Data System (ADS)

    Dhanji, Aleya; Rosas, Lucia; Ray, William; Jayaprakash, Ciriyam; Bakaletz, Lauren; Das, Jayajit

    2014-03-01

    Bacteria can form complex spatial structures known as biofilms. Biofilm formation is frequently associated with chronic infections due to the greatly enhanced antibiotic resistance of resident bacteria. However, our understanding of the role of basic processes, such as bacteria replication and resource consumption, in controlling the development and temporal change of the spatial structure remains rudimentary. Here, we examine the growth of cultured biofilms by the opportunistic pathogen NTHi. Through spatial information extracted from confocal microscopy images, we quantitatively characterize the biofilm structure as it evolves over time. We find that the equal-time height-height pair correlation function decreases with distance and scales with time for small length scales. Furthermore, both the surface roughness and the correlation length perpendicular to the surface growth direction increase with time initially and then decrease. We construct a spatially resolved agent based model beginning with the simplest possible case of a single bacteria species Fisher-Kolmogorov-Petrovsky-Piscounov equation. We show that it cannot describe the observed spatio-temporal behavior and suggest an improved two-species model that better captures the dynamics of the NTHi system. Supported by The Research Institute at Nationwide Children's Hospital.

  6. Spatio-temporal variance and meteorological drivers of the urban heat island in a European city

    NASA Astrophysics Data System (ADS)

    Arnds, Daniela; Böhner, Jürgen; Bechtel, Benjamin

    2015-12-01

    Urban areas are especially vulnerable to high temperatures, which will intensify in the future due to climate change. Therefore, both good knowledge about the local urban climate as well as simple and robust methods for its projection are needed. This study has analysed the spatio-temporal variance of the mean nocturnal urban heat island (UHI) of Hamburg, with observations from 40 stations from different suppliers. The UHI showed a radial gradient with about 2 K in the centre mostly corresponding to the urban densities. Temporarily, it has a strong seasonal cycle with the highest values between April and September and an inter-annual variability of approximately 0.5 K. Further, synoptic meteorological drivers of the UHI were analysed, which generally is most pronounced under calm and cloud-free conditions. Considered were meteorological parameters such as relative humidity, wind speed, cloud cover and objective weather types. For the stations with the highest UHI intensities, up to 68.7 % of the variance could be explained by seasonal empirical models and even up to 76.6 % by monthly models.

  7. Taming of Modulation Instability by Spatio-Temporal Modulation of the Potential

    PubMed Central

    Kumar, S.; Herrero, R.; Botey, M.; Staliunas, K.

    2015-01-01

    Spontaneous pattern formation in a variety of spatially extended nonlinear systems always occurs through a modulation instability, sometimes called Turing instability: the homogeneous state of the system becomes unstable with respect to growing modulation modes. Therefore, the manipulation of the modulation instability is of primary importance in controlling and manipulating the character of spatial patterns initiated by that instability. We show that a spatio-temporal periodic modulation of the potential of spatially extended systems results in a modification of its pattern forming instability. Depending on the modulation character the instability can be partially suppressed, can change its spectrum (for instance the long wave instability can transform into short wave instability), can split into two, or can be completely eliminated. The latter result is of special practical interest, as it can be used to stabilize the intrinsically unstable system. The result bears general character, as it is shown here on a universal model of the Complex Ginzburg-Landau equation in one and two spatial dimensions (and time). The physical mechanism of the instability suppression can be applied to a variety of intrinsically unstable dissipative systems, like self-focusing lasers, reaction-diffusion systems, as well as in unstable conservative systems, like attractive Bose Einstein condensates. PMID:26286250

  8. Taming of Modulation Instability by Spatio-Temporal Modulation of the Potential.

    PubMed

    Kumar, S; Herrero, R; Botey, M; Staliunas, K

    2015-01-01

    Spontaneous pattern formation in a variety of spatially extended nonlinear systems always occurs through a modulation instability, sometimes called Turing instability: the homogeneous state of the system becomes unstable with respect to growing modulation modes. Therefore, the manipulation of the modulation instability is of primary importance in controlling and manipulating the character of spatial patterns initiated by that instability. We show that a spatio-temporal periodic modulation of the potential of spatially extended systems results in a modification of its pattern forming instability. Depending on the modulation character the instability can be partially suppressed, can change its spectrum (for instance the long wave instability can transform into short wave instability), can split into two, or can be completely eliminated. The latter result is of special practical interest, as it can be used to stabilize the intrinsically unstable system. The result bears general character, as it is shown here on a universal model of the Complex Ginzburg-Landau equation in one and two spatial dimensions (and time). The physical mechanism of the instability suppression can be applied to a variety of intrinsically unstable dissipative systems, like self-focusing lasers, reaction-diffusion systems, as well as in unstable conservative systems, like attractive Bose Einstein condensates. PMID:26286250

  9. Spatio-temporal covariation of urban particle number concentration and ambient noise

    NASA Astrophysics Data System (ADS)

    Weber, Stephan

    Mobile measurements of ambient noise and particle number concentrations were carried out within an urban residential area in Essen, Germany, during summer 2008. A busy major road with a traffic intensity of about 44,000 vehicles per day was situated within the study area. The spatio-temporal distribution of noise and particles was closely coupled to road traffic on the major road. Total particle number concentrations in proximity to the main road were on average between 25,000 cm -3 and 35,000 cm -3 while sound levels reached 70-78 dB(A). These estimates were more than double-fold (factor 2.4) in comparison to the urban residential background. At a 50 m distance off the road particle number concentrations were decaying to about 50% of the initial value. The measurements were characterised by close spatial correlation between total particle number concentration and ambient noise with correlation coefficients of up to r = 0.74. However, during one measurement day coupling between both quantities was weak due to higher turbulent mixing within the canopy layer and a change in ambient wind directions. Enhanced dilution of particle emission from road traffic by turbulent mixing and 'decoupling' from the influence of road traffic are believed to be responsible.

  10. Spatio-temporal behavior of microwave sheath-voltage combination plasma source

    NASA Astrophysics Data System (ADS)

    Kar, Satyananda; Kousaka, Hiroyuki; Raja, Laxminarayan L.

    2015-05-01

    Microwave sheath-Voltage combination Plasma (MVP) is a high density plasma source and can be used as a suitable plasma processing device (e.g., ionized physical vapor deposition). In the present report, the spatio-temporal behavior of an argon MVP sustained along a direct-current biased Ti rod is investigated. Two plasma modes are observed, one is an "oxidized state" (OS) at the early time of the microwave plasma and the other is "ionized sputter state" (ISS) at the later times. Transition of the plasma from OS to ISS results a prominent change in the visible color of the plasma, resulting from a significant increase in the plasma density, as measured by a Langmuir probe. In the OS, plasma is dominated by Ar ions, and the density is in amplitude order of 1011 cm-3. In the ISS, metal ions from the Ti rod contribute significantly to the ion composition, and higher density plasma (1012 cm-3) is produced. Nearly uniform high density plasma along the length of the Ti rod is produced at very low input microwave powers (around 30 W). Optical emission spectroscopy measurements confirm the presence of sputtered Ti ions and Ti neutrals in the ISS.

  11. Clustering Approach to Quantify Long-Term Spatio-Temporal Interactions in Epileptic Intracranial Electroencephalography

    PubMed Central

    Hegde, Anant; Erdogmus, Deniz; Shiau, Deng S.; Principe, Jose C.; Sackellares, Chris J.

    2007-01-01

    Abnormal dynamical coupling between brain structures is believed to be primarily responsible for the generation of epileptic seizures and their propagation. In this study, we attempt to identify the spatio-temporal interactions of an epileptic brain using a previously proposed nonlinear dependency measure. Using a clustering model, we determine the average spatial mappings in an epileptic brain at different stages of a complex partial seizure. Results involving 8 seizures from 2 epileptic patients suggest that there may be a fixed pattern associated with regional spatio-temporal dynamics during the interictal to pre-post-ictal transition. PMID:18317515

  12. Associations of dragonflies (Odonata) to habitat variables within the Maltese Islands: a spatio-temporal approach.

    PubMed

    Balzan, Mario V

    2012-01-01

    Relatively little information is available on environmental associations and the conservation of Odonata in the Maltese Islands. Aquatic habitats are normally spatio-temporally restricted, often located within predominantly rural landscapes, and are thereby susceptible to farmland water management practices, which may create additional pressure on water resources. This study investigates how odonate assemblage structure and diversity are associated with habitat variables of local breeding habitats and the surrounding agricultural landscapes. Standardized survey methodology for adult Odonata involved periodical counts over selected water-bodies (valley systems, semi-natural ponds, constructed agricultural reservoirs). Habitat variables relating to the type of water body, the floristic and physiognomic characteristics of vegetation, and the composition of the surrounding landscape, were studied and analyzed through a multivariate approach. Overall, odonate diversity was associated with a range of factors across multiple spatial scales, and was found to vary with time. Lentic water-bodies are probably of high conservation value, given that larval stages were mainly associated with this habitat category, and that all species were recorded in the adult stage in this habitat type. Comparatively, lentic and lotic seminatural waterbodies were more diverse than agricultural reservoirs and brackish habitats. Overall, different odonate groups were associated with different vegetation life-forms and height categories. The presence of the great reed, Arundo donax L., an invasive alien species that forms dense stands along several water-bodies within the Islands, seems to influence the abundance and/or occurrence of a number of species. At the landscape scale, roads and other ecologically disturbed ground, surface water-bodies, and landscape diversity were associated with particular components of the odonate assemblages. Findings from this study have several implications for the

  13. Associations of Dragonflies (Odonata) to Habitat Variables within the Maltese Islands: A Spatio-Temporal Approach

    PubMed Central

    Balzan, Mario V.

    2012-01-01

    Relatively little information is available on environmental associations and the conservation of Odonata in the Maltese Islands. Aquatic habitats are normally spatio-temporally restricted, often located within predominantly rural landscapes, and are thereby susceptible to farmland water management practices, which may create additional pressure on water resources. This study investigates how odonate assemblage structure and diversity are associated with habitat variables of local breeding habitats and the surrounding agricultural landscapes. Standardized survey methodology for adult Odonata involved periodical counts over selected water-bodies (valley systems, semi-natural ponds, constructed agricultural reservoirs). Habitat variables relating to the type of water body, the floristic and physiognomic characteristics of vegetation, and the composition of the surrounding landscape, were studied and analyzed through a multivariate approach. Overall, odonate diversity was associated with a range of factors across multiple spatial scales, and was found to vary with time. Lentic water-bodies are probably of high conservation value, given that larval stages were mainly associated with this habitat category, and that all species were recorded in the adult stage in this habitat type. Comparatively, lentic and lotic seminatural waterbodies were more diverse than agricultural reservoirs and brackish habitats. Overall, different odonate groups were associated with different vegetation life-forms and height categories. The presence of the great reed, Arundo donax L., an invasive alien species that forms dense stands along several water-bodies within the Islands, seems to influence the abundance and/or occurrence of a number of species. At the landscape scale, roads and other ecologically disturbed ground, surface water-bodies, and landscape diversity were associated with particular components of the odonate assemblages. Findings from this study have several implications for the

  14. Spatio-temporal structure of the wave packets generated by the solar terminator

    NASA Astrophysics Data System (ADS)

    Afraimovich, E. L.; Edemskiy, I. K.; Voeykov, S. V.; Yasyukevich, Yu. V.; Zhivetiev, I. V.

    2009-10-01

    Using long-term (1998--2009) total electron content (TEC) measurements from the GPS global network including dense network of GPS sites in USA and Japan, we have obtained the first data regarding the spatio-temporal structure and the statistics of medium-scale traveling wave packets (MS TWPs) excited by the solar terminator (ST). Total amount of the detected TWPs exceeds 565,000. There is no correlation between TWPs occurrence and geomagnetic and solar activity. We found that the diurnal, seasonal and spectral MS TWPs characteristics are specified by the solar terminator (ST) dynamics. MS TWPs are the chains of narrow-band TEC oscillations with single packet's duration of about 1-2 h and oscillation periods of 10-20 min. The total duration of chain is about 4-6 h. The MS TWPs spatial structure is characterized by a high degree of anisotropy and coherence at the distance of more than 10 wavelengths. Occurrence rate of daytime MS TWPs is high in winter and during equinoxes. Occurrence rate of nighttime MS TWPs has its peak in summer. These features are consistent with previous MS travelling ionosphere disturbance (TID) statistics obtained from 630-nm airglow imaging observations in Japan. In winter, MS TWPs in the northern hemisphere are observed 3-4 h after the morning ST passage. In summer, MS TWPs are detected 1.5-2 h before the evening ST appearance at the point of observations, but at the moment of the evening ST passage in the magneto-conjugate point. The obtained results are the first experimental evidence for the hypothesis of the ST-generated ion sound waves.

  15. A spatio-temporally detailed and regular description of the external field over the last solar cycle using EOFs

    NASA Astrophysics Data System (ADS)

    Shore, Robert; Freeman, Mervyn; Wild, James; Dorrian, Gareth; Gjerloev, Jesper

    2016-04-01

    Using the Empirical Orthogonal Function (EOF) method, we demonstrate that an irregular network of ground-based vector magnetic data can provide a spatio-temporally detailed and regular description of the external magnetic field without a priori assumptions of the source current geometry. The EOF method analyses the spatio-temporal co-variance of the data to decompose it into dynamically distinct modes (each mode is a pair of spatial and temporal basis vectors). A small number of these modes can cumulatively represent most of the variance of the original data. After binning the observatory data we use the modes to provide a self-consistent infill mechanism for empty bins. Since the basis vectors are defined by the data, the infill solutions only converge upon reinforcement of the natural patterns present in the data, hence the completion of the data coverage is self-consistent. This is in contrast to other commonly-used decomposition methods such as Fourier and spherical harmonic expansions. We discuss the application of the iteratively-infilled EOF method to vector data from the SuperMAG archive spanning 1997 - 2008 (a full solar cycle). Using a comparison of the temporal behaviour of the modes alongside independent measures of solar-terrestrial coupling, we demonstrate that the leading three modes describe the well-known Disturbance-Polar currents types 2 and 1 (DP2, DP1) and the system of cusp currents (DPY). These three modes account for the majority of the variance of the data - other modes describe the spatial motions of these current systems. We demonstrate that the use of ground-based data provides an important complement to the coverage of polar data available from satellites, such as AMPERE. Lastly we discuss situations in which the EOF analysis will perform better or worse than other methods, and assess the types of signal that the analysis responds to most strongly.

  16. Understanding spatio-temporal variation of vegetation phenology and rainfall seasonality in the monsoon Southeast Asia.

    PubMed

    Suepa, Tanita; Qi, Jiaguo; Lawawirojwong, Siam; Messina, Joseph P

    2016-05-01

    The spatio-temporal characteristics of remote sensing are considered to be the primary advantage in environmental studies. With long-term and frequent satellite observations, it is possible to monitor changes in key biophysical attributes such as phenological characteristics, and relate them to climate change by examining their correlations. Although a number of remote sensing methods have been developed to quantify vegetation seasonal cycles using time-series of vegetation indices, there is limited effort to explore and monitor changes and trends of vegetation phenology in the Monsoon Southeast Asia, which is adversely affected by changes in the Asian monsoon climate. In this study, MODIS EVI and TRMM time series data, along with field survey data, were analyzed to quantify phenological patterns and trends in the Monsoon Southeast Asia during 2001-2010 period and assess their relationship with climate change in the region. The results revealed a great regional variability and inter-annual fluctuation in vegetation phenology. The phenological patterns varied spatially across the region and they were strongly correlated with climate variations and land use patterns. The overall phenological trends appeared to shift towards a later and slightly longer growing season up to 14 days from 2001 to 2010. Interestingly, the corresponding rainy season seemed to have started earlier and ended later, resulting in a slightly longer wet season extending up to 7 days, while the total amount of rainfall in the region decreased during the same time period. The phenological shifts and changes in vegetation growth appeared to be associated with climate events such as EL Niño in 2005. Furthermore, rainfall seemed to be the dominant force driving the phenological changes in naturally vegetated areas and rainfed croplands, whereas land use management was the key factor in irrigated agricultural areas. PMID:26922262

  17. Mapping the spatio-temporal distribution of threatened batoids to improve conservation in a subtropical estuary.

    PubMed

    Possatto, F E; Broadhurst, M K; Spach, H L; Winemiller, K O; Millar, R B; Santos, K M; Lamour, M R

    2016-07-01

    The spatio-temporal distributions of four batoid species were examined in a subtropical estuary. Fluvial gradient was the most important factor explaining abundances, reflecting positive relationships with either salinity or distance from urbanised areas that were consistent across seasons and depths. The results support existing protected areas. PMID:27108671

  18. Model term selection for spatio-temporal system identification using mutual information

    NASA Astrophysics Data System (ADS)

    Wang, Shu; Wei, Hua-Liang; Coca, Daniel; Billings, Stephen A.

    2013-02-01

    A new mutual information based algorithm is introduced for term selection in spatio-temporal models. A generalised cross validation procedure is also introduced for model length determination and examples based on cellular automata, coupled map lattice and partial differential equations are described.

  19. Statistical Analysis of Spatio-temporal Variations of Sea Surface Height Observed by Topex Altimeter

    NASA Technical Reports Server (NTRS)

    Fabrikant, A.; Glazman, R. E.; Greysukh, A.

    1994-01-01

    Using non-gridded Topex altimeter data, high resolution 2-d power spectra and spatio-temporal autocorrelation functions of sea surface height (SSH) variations are estimated and employed for studying anisotropic SSH fields varying in a broad range of scales.

  20. Cortical Spatio-Temporal Dynamics Underlying Phonological Target Detection in Humans

    ERIC Educational Resources Information Center

    Chang, Edward F.; Edwards, Erik; Nagarajan, Srikantan S.; Fogelson, Noa; Dalal, Sarang S.; Canolty, Ryan T.; Kirsch, Heidi E.; Barbaro, Nicholas M.; Knight, Robert T.

    2011-01-01

    Selective processing of task-relevant stimuli is critical for goal-directed behavior. We used electrocorticography to assess the spatio-temporal dynamics of cortical activation during a simple phonological target detection task, in which subjects press a button when a prespecified target syllable sound is heard. Simultaneous surface potential…

  1. The Impact of Spatio-Temporal Constraints on Cursive Letter Handwriting in Children

    ERIC Educational Resources Information Center

    Chartrel, Estelle; Vinter, Annie

    2008-01-01

    The study assessed the impact of spatial and temporal constraints on handwriting movements in young children. One hundred children of 5-7 years of age of both genders were given the task of copying isolated cursive letters under four conditions: normal, with temporal, spatial, or spatio-temporal constraints. The results showed that imposing…

  2. Evaluation of Bayesian spatio-temporal latent models in small area health data.

    PubMed

    Choi, Jungsoon; Lawson, Andrew B; Cai, Bo; Hossain, Md Monir

    2011-12-01

    Health outcomes are linked to air pollution, demographic, or socioeconomic factors which vary across space and time. Thus, it is often found that relative risks in space-time health data have locally different temporal patterns. In such cases, latent modeling is useful in the disaggregation of risk profiles. In particular, spatio-temporal mixture models can help to isolate spatial clusters each of which has a homogeneous temporal pattern in relative risks. In mixture modeling, various weight structures can be used and two situations can be considered: the number of underlying components is known or unknown. In this paper, we compare spatio-temporal mixture models with different weight structures in both situations. In addition, spatio-temporal Dirichlet process mixture models are compared to them when the number of components is unknown. For comparison, we propose a set of spatial cluster detection diagnostics based on the posterior distribution of the weights. We also develop new accuracy measures to assess the recovery of true relative risks. Based on the simulation study, we examine the performance of various spatio-temporal mixture models in terms of proposed methods and goodness-of-fit measures. We apply our models to a county-level chronic obstructive pulmonary disease data set from the state of Georgia. PMID:22184483

  3. a Framework for Online Spatio-Temporal Data Visualization Based on HTML5

    NASA Astrophysics Data System (ADS)

    Mao, B.; Wu, Z.; Cao, J.

    2012-07-01

    Web is entering a new phase - HTML5. New features of HTML5 should be studied for online spatio-temporal data visualization. In the proposed framework, spatio-temporal data is stored in the data server and is sent to user browsers with WebSocket. Public geo-data such as Internet digital map is integrated into the browsers. Then animation is implemented through the canvas object defined by the HTML5 specification. To simulate the spatio-temporal data source, we collected the daily location of 15 users with GPS tracker. The current positions of the users are collected every minute and are recorded in a file. Based on this file, we generate a real time spatio-temporal data source which sends out current user location every second.By enlarging the real time scales by 60 times, we can observe the movement clearly. The data transmitted with WebSocket is the coordinates of users' current positions, which will can be demonstrated in client browsers.

  4. On the spatio-temporal dynamics of soil moisture at the field scale

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In this paper, we review the state of the art of characterizing and analyzing spatio-temporal dynamics of soil moisture content at the field scale. We discuss measurement techniques that have become available in recent years and that provide unique opportunities to characterize field scale soil mois...

  5. Regional scale spatio-temporal variability of soil moisture and its relationship with meteorological factors over the Korean peninsula

    NASA Astrophysics Data System (ADS)

    Cho, Eunsang; Choi, Minha

    2014-08-01

    An understanding soil moisture spatio-temporal variability is essential for hydrological and meteorological research. This work aims at evaluating the spatio-temporal variability of near surface soil moisture and assessing dominant meteorological factors that influence spatial variability over the Korean peninsula from May 1 to September 29, 2011. The results of Kolmogorov-Smirnov tests for goodness of fit showed that all applied distributions (normal, log-normal and generalized extreme value: GEV) were appropriate for the datasets and the GEV distribution described best spatial soil moisture patterns. The relationship between the standard deviation and coefficient of variation (CV) of soil moisture with mean soil moisture contents showed an upper convex shape and an exponentially negative pattern, respectively. Skewness exhibited a decreasing pattern with increasing mean soil moisture contents and kurtosis exhibited the U-shaped relationship. In this regional scale (99,720 km2), we found that precipitation indicated temporally stable features through an ANOVA test considering the meteorological (i.e. precipitation, insolation, air temperature, ground temperature and wind speed) and physical (i.e. soil texture, elevation, topography, and land use) factors. Spatial variability of soil moisture affected by the meteorological forcing is shown as result of the relationship between the meteorological factors (precipitation, insolation, air temperature and ground temperature) and the standard deviation of relative difference of soil moisture contents (SDRDt) which implied the spatial variability of soil moisture. The SDRDt showed a positive relationship with the daily mean precipitation, while a negative relationship with insolation, air temperature and ground temperature. The variation of spatial soil moisture pattern is more sensitive to change in ground temperature rather than air temperature changes. Therefore, spatial variability of soil moisture is greatly affected

  6. Using google street view for systematic observation of the built environment: analysis of spatio-temporal instability of imagery dates

    PubMed Central

    2013-01-01

    Background Recently, Google Street View (GSV) has been examined as a tool for remotely conducting systematic observation of the built environment. Studies have found it offers benefits over in-person audits, including efficiency, safety, cost, and the potential to expand built environment research to larger areas and more places globally. However, one limitation has been the lack of documentation on the date of imagery collection. In 2011, Google began placing a date stamp on images which now enables investigation of this concern. This study questions the spatio-temporal stability in the GSV date stamp. Specifically, is the imagery collected contemporaneously? If not, how frequently and where is imagery from different time periods woven together to represent environmental conditions in a particular place. Furthermore, how much continuity exists in imagery for a particular time period? Answering these questions will provide guidance on the use of GSV as a tool for built environment audits. Methods GSV was used to virtually “drive” five sites that are a part of the authors’ ongoing studies. Each street in the sites was “driven” one mouse-click at a time while observing the date stamp on each image. Every time the date stamp changed, this “disruption” was marked on the map. Every street segment in the site was coded by the date the imagery for that segment was collected. Spatial query and descriptive statistics were applied to understand the spatio-temporal patterns of imagery dates. Results Spatio-temporal instability is present in the dates of GSV imagery. Of the 353 disruptions, 82.4% occur close to (<25 m) intersections. The remainder occurs inconsistently in other locations. The extent of continuity for a set of images collected with the same date stamp ranged from 3.13 m to 3373.06 m, though the majority of continuous segments were less than 400 m. Conclusion GSV offers some benefits over traditional built environment audits. However, this

  7. Spatio-temporal variation in European starling reproductive success at multiple small spatial scales

    PubMed Central

    Brickhill, Daisy; Evans, Peter GH; Reid, Jane M

    2015-01-01

    Understanding population dynamics requires spatio-temporal variation in demography to be measured across appropriate spatial and temporal scales. However, the most appropriate spatial scale(s) may not be obvious, few datasets cover sufficient time periods, and key demographic rates are often incompletely measured. Consequently, it is often assumed that demography will be spatially homogeneous within populations that lack obvious subdivision. Here, we quantify small-scale spatial and temporal variation in a key demographic rate, reproductive success (RS), within an apparently contiguous population of European starlings. We used hierarchical cluster analysis to define spatial clusters of nest sites at multiple small spatial scales and long-term data to test the hypothesis that small-scale spatio-temporal variation in RS occurred. RS was measured as the number of chicks alive ca. 12 days posthatch either per first brood or per nest site per breeding season (thereby incorporating multiple breeding attempts). First brood RS varied substantially among spatial clusters and years. Furthermore, the pattern of spatial variation was stable across years; some nest clusters consistently produced more chicks than others. Total seasonal RS also varied substantially among spatial clusters and years. However, the magnitude of variation was much larger and the pattern of spatial variation was no longer temporally consistent. Furthermore, the estimated magnitude of spatial variation in RS was greater at smaller spatial scales. We thereby demonstrate substantial spatial, temporal, and spatio-temporal variation in RS occurring at very small spatial scales. We show that the estimated magnitude of this variation depended on spatial scale and that spatio-temporal variation would not have been detected if season-long RS had not been measured. Such small-scale spatio-temporal variation should be incorporated into empirical and theoretical treatments of population dynamics. PMID:26380670

  8. Annotating spatio-temporal datasets for meaningful analysis in the Web

    NASA Astrophysics Data System (ADS)

    Stasch, Christoph; Pebesma, Edzer; Scheider, Simon

    2014-05-01

    More and more environmental datasets that vary in space and time are available in the Web. This comes along with an advantage of using the data for other purposes than originally foreseen, but also with the danger that users may apply inappropriate analysis procedures due to lack of important assumptions made during the data collection process. In order to guide towards a meaningful (statistical) analysis of spatio-temporal datasets available in the Web, we have developed a Higher-Order-Logic formalism that captures some relevant assumptions in our previous work [1]. It allows to proof on meaningful spatial prediction and aggregation in a semi-automated fashion. In this poster presentation, we will present a concept for annotating spatio-temporal datasets available in the Web with concepts defined in our formalism. Therefore, we have defined a subset of the formalism as a Web Ontology Language (OWL) pattern. It allows capturing the distinction between the different spatio-temporal variable types, i.e. point patterns, fields, lattices and trajectories, that in turn determine whether a particular dataset can be interpolated or aggregated in a meaningful way using a certain procedure. The actual annotations that link spatio-temporal datasets with the concepts in the ontology pattern are provided as Linked Data. In order to allow data producers to add the annotations to their datasets, we have implemented a Web portal that uses a triple store at the backend to store the annotations and to make them available in the Linked Data cloud. Furthermore, we have implemented functions in the statistical environment R to retrieve the RDF annotations and, based on these annotations, to support a stronger typing of spatio-temporal datatypes guiding towards a meaningful analysis in R. [1] Stasch, C., Scheider, S., Pebesma, E., Kuhn, W. (2014): "Meaningful spatial prediction and aggregation", Environmental Modelling & Software, 51, 149-165.

  9. Bayesian hierarchical models for multivariate nonlinear spatio-temporal dynamical processes in the atmosphere and ocean

    NASA Astrophysics Data System (ADS)

    Leeds, W. B.; Wikle, C. K.

    2012-12-01

    Spatio-temporal statistical models, and in particular Bayesian hierarchical models (BHMs), have become increasingly popular as means of representing natural processes such as climate and weather that evolve over space and time. Hierarchical models make it possible to specify separate, conditional probability distributions that account for uncertainty in the observations, the underlying process, and parameters in situations when specifying these sources of uncertainty in a joint probability distribution may be difficult. As a result, BHMs are a natural setting for climatologists, meteorologists, and other environmental scientists to incorporate scientific information (e.g., PDEs, IDEs, etc.) a priori into a rigorous statistical framework that accounts for error in measurements, uncertainty in the understanding of the true underlying process, and uncertainty in the parameters that describe the process. While much work has been done in the development of statistical models for linear dynamic spatio-temporal processes, statistical modeling for nonlinear (and particularly, multivariate nonlinear) spatio-temporal dynamical processes is still a relatively open area of inquiry. As a result, general statistical models for environmental scientists to model complicated nonlinear processes is limited. We address this limitation in the methodology by introducing a multivariate "general quadratic nonlinear" framework for modeling multivariate, nonlinear spatio-temporal random processes inside of a BHM in a way that is especially applicable for problems in the ocean and atmospheric sciences. We show that in addition to the fact that this model addresses the previously mentioned sources of uncertainty for a wide spectrum of multivariate, nonlinear spatio-temporal processes, it is also a natural framework for data assimilation, allowing for the fusing of observations with computer models, computer model emulators, computer model output, or "mechanistically motivated" statistical

  10. Spatio-temporal modelling and assessment of within-species phenological variability using thermal time methods

    NASA Astrophysics Data System (ADS)

    Thompson, R.; Clark, R. M.

    2006-05-01

    Phenological observations of flowering date, budding date or senescence provide very valuable time series. They hold out the prospect for relating plant growth to environmental and climatic factors and hence for engendering a better understanding of plant physiology under natural conditions. The statistical establishment of associations between time series of phenological data and climatic factors provides a means of aiding forecasts of the biological impacts of future climatic change. However, it must be kept in mind that plant growth and behaviour vary spatially as well as temporally. Environmental, climatic and genetic diversity can give rise to spatially structured variation on a range of scales. The variations extend from large-scale geographical (clinal) trends, through medium-scale population and sub-population fluctuations, to micro-scale differentiation among neighbouring plants, where spatially close individuals are found to be genetically more alike than those some distance apart. We developed spatio-temporal phenological models that allow observations from multiple locations to be analysed simultaneously. We applied the models to the first-flowering dates of Prunus padus and Tilia cordata from localities as far apart as Norway and the Caucasus. Our growing-degree-day approach yielded a good fit to the available phenological data and yet involved only a small number of model parameters. It indicated that plants should display different sensitivities to temperature change according to their geographical location and the time of year at which they flower. For spring-flowering plants, we found strong temperature sensitivities for islands and archipelagos with oceanic climates, and low sensitivities in the interiors of continents.